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In this thesis, we study some boundary value problems involving micromagnetic models and differential forms.

In the first part, we consider a nonlocal Ginzburg-Landau model arising in micromagnetics with an imposed Dirichlet boundary condition. The model typically involves S 2 -valued maps with an energy functional depending on several parameters, which represent physical quantities. A first question concerns the compactness of magnetizations having the energies of several Néel walls of finite length and topological defects when these parameters converge to 0. Our method uses techniques developed for Ginzburg-Landau type problems for the concentration of energy on vortex balls, together with an approximation argument of S 2 -valued vector fields by S 1 -valued vector fields away from the vortex balls. We also carry out in detail the proofs of the C ∞ regularity in the interior and C 1,α regularity up to the boundary, for all α ∈ (0, 1 2 ), of critical points of the model. In the second part, we study the Poincaré lemma, which states that on a simply connected domain every closed form is exact. We prove the Poincaré lemma on a domain with a Dirichlet boundary condition under a natural assumption on the regularity of the domain: a closed form f in the Hölder space C r,α is the differential of a C r+1,α form, provided that the domain itself is C r+1,α . The proof is based on a construction by approximation, together with a duality argument. We also establish the corresponding statement in the setting of higher order Sobolev spaces.

Résumé

Dans cette thèse, nous étudions des problèmes aux limites impliquant le modèle micromagnétique et les formes différentielles.

Dans la première partie, nous considérons un modèle non-local de Ginzburg-Landau apparaissant en micromagnétisme avec une condition au bord de type Dirichlet. Le modèle typique implique une fonctionelle d'énergie définie pour des applications des valeurs dans la sphère S 2 et qui depend de plusieurs paramètres, qui représentent des quantités physiques. Une première question concerne la compacité des aimantations ayant les énergies de quelques parois de Néel de longueur finie et des défauts topologiques lorsque ces paramètres convergent vers 0. Notre méthode utilise des techniques développées pour les problèmes de type Ginzburg-Landau sur la concentration d'énergie autour des vortex, avec un argument d'approximation des champs de vecteurs dans S 2 par des champs de vecteurs dans S 1 éloignés des vortex. Nous effectuons également en détail la preuve de la régularité C ∞ à l'intérieur et la régularité C 1,α au bord, pour tous les α ∈ (0, 1 2 ), des points critiques du modèle.

Dans la deuxième partie, nous étudions le lemme de Poincaré qui affirme que sur un domaine simplement connexe chaque forme fermée est exacte. Nous prouvons le lemme de Poincaré sur un domaine avec une condition aux limites de Dirichlet sous une hypothèse naturelle sur la régularité du domaine : une forme fermée f dans l'espace C r,α est la différentielle d'une forme C r+1,α à condition que le domaine lui-même soit C r+1,α . La preuve est basée sur une construction par approximation, avec un argument de dualité. Nous établissons également le résultat correspondant dans le cadre d'espaces de Sobolev d'ordre supérieur. Mots cléfs: compacité, point critique, condition de Dirichlet, équation de divergence, espaces de Hölder et de Sobolev, application harmonique, paroi de Néel, micromagnétisme, lemme de Poincaré, régularité, vortex, théorie de Ginzburg-Landau.

Chapter 1 Introduction 1.1 Micromagnetics

Micromagnetics is a field of physics that deals especially with the behavior of ferromagnetic materials at very small length scales. In this theory, the ferromagnetic material is characterized by a 3D vector-field distribution, called magnetization. The micromagnetic model consists in associating to the magnetization a micromagnetic energy, whose local minimizers represent the stable magnetization of the ferromagnetic body. The associated variational problem is non-convex and non-local which make it difficult to solve analytically. Moreover, the multi-scale complexity of the micromagnetic functional creates a lot of asymptotic regimes, depending on the relation between the material and geometrical parameters. This leads to formation of several magnetization patterns.

One of the most extensively researched topics is the qualitative and quantitative analysis of magnetization patterns. Since there are several distinct regimes, by identifying and exploring these regimes, we obtain various type of magnetic walls: 2D wall defects (Néel wall, Bloch walls), 1D vortex-lines (Bloch lines), boundary vortices. We aim to justify mathematically the physical prediction on the formation and description of these defects.

The three-dimensional ferromagnetic model with Dzyaloshinsky-Moriya interaction

The open set ω ⊂ R 3 denotes the ferromagnetic sample that will be considered later as a cylinder. The magnetization of the ferromagnet ω can be described by a threedimensional unit-length vector field m = (m 1 , m 2 , m 3 ) : ω → S 2 . In the classical theory of micromagnetics (see the book of Hubert and Schäfer [START_REF] Hubert | Magnetic Domains: The Analysis of Magnetic Microstructures[END_REF], also [START_REF] Desimone | Recent analytical developments in micromagnetics[END_REF]), the free energy per unit volume of such a magnetization takes the form

E 3D = d 2 ω |∇m| 2 dx + Q ω ϕ(m)dx + R 3 |∇U | 2 dx -2 ω H ext .mdx + ω w D (m)dx. (1.1)
Let us now explain and comment on these five terms.

(i) The first term is called the exchange energy. It penalizes spatial variations of m through the Dirichlet integral of m. The constant d is the exchange length. It is an intrinsic parameter of the material of the order of nanometers.

(ii) The second term is the anisotropy energy which refers to the fact that the properties of a magnetic material are dependent on the directions in which they are measured. The energy density ϕ is a non negative function called the anisotropy energy density.

Chapter 1

It is typically a polynomial with symmetry properties inherited from the crystalline lattice. The zeros of ϕ stands for the preferred directions of magnetizations. For instance, ϕ(m) = m 2 3 favors the easy plan as the horizontal one. The constant Q is a second intrinsic parameter of the material that measures the strength of the anisotropy energy relative to the strength of the exchange and stray-field energy. According to the values of the constant Q, one distinguishes ferromagnetic materials into two broad classes: soft materials (Q < 1) and hard materials (Q > 1).

(iii) The third term is the energy of the stray field (or the magnetostatic energy), where the stray-field potential U : R 3 → R is generated by the magnetization m through the classical Maxwell equation for electrostatics, that is given by

-∆U = ∇.(m1 ω ) in R 3 , (1.2) 
i.e.,

R 3 ∇U.∇ξdx = - ω m.∇ξdx, ∀ξ ∈ C ∞ 0 (R 3 ).
In view of (1.2), there are two sources of stray field ∇U : magnetic volume charges (with volume charge density ∇.m in ω) and magnetic surface charges (with surface charge density ν.m on ∂Ω, where ν is the normal component of boundary ∂ω).

(iv) The fourth term is the external field energy generated by an applied external field H ext : R 3 → R 3 . It favors alignment of the magnetization with the external field H ext .

(v) Finally, the last term is the energy connected with the Dzyaloshinsky-Moriya interaction w D which is considered here in the following form (see Bogdanov and Hubert [START_REF] Bogdanov | Thermodynamically stable magnetic vortex states in magnetic crystals[END_REF])

w D = D 1 w 1 + D 2 w 2 + D 3 w 3 = D 1 (m 1 ∂ x 2 m 3 -m 2 ∂ x 1 m 3 + m 3 (∂ x 1 m 2 -∂ x 2 m 1 )) +D 2 (m 3 ∂ x 1 m 1 -m 1 ∂ x 1 m 3 + m 3 ∂ x 2 m 2 -m 2 ∂ x 2 m 3 ) (1.3) +D 3 (m 1 ∂ x 3 m 2 -m 2 ∂ x 3 m 1 ),
with arbitrary coefficients D i . The term w 1 in (1.3) favors the Bloch-like spirals. While the term w 2 favors a rotation along the propagation direction of a spiral structure, as in a Néel wall. Such a rotation is necessarily connected with the stray-field. The last term w 3 in (1.3) favors the formation of spiral structures with propagation vectors along the crystal axis (x 3 -axis).

A reduced two dimensional thin-film model

In this section we will discuss thin magnetic films which involve several length scales: We assume that the ferromagnetic sample is a cylinder ω = ω × (0, t) of height t and we denote by l a typical length of the base ω ⊂ R 2 . This film regime means that the aspect is small, i.e., h := t l 1.

(1.4)

It entails that the variations of m in the third variable are strongly penalized by the energy. Heuristically, we assume that m depends only on the horizontal variable x = (x 1 , x 2 )

m(x) = (m , m 3 )(x ) : ω → S 2 (1.5)
Chapter 1 and m varies on length scales t l .

(1.6)

The external field H ext is assumed being in-plane and invariant in x 3 , i.e., H ext (x) = (H ext (x ), 0).

Notations: in this part, the prime always indicates a 2D quantity. We denote a b if a b → 0 and a b if a ≤ Cb for some universal constant C > 0.

Using configuration (1.5), the Dzyolashinsky-Moriya interaction reduces as follows:

ω w D (m)dx = ω (D 1 w 1 + D 2 w 2 )dx = ω D 1 (m.∇ × m) + D 2 (m 3 ∇ .m -m .∇ m 3 ) dx, (1.7) 
where

m.∇ × m = -m 3 ∂ x 2 m 1 -m 2 ∂ x 1 m 3 + m 3 ∂ x 1 m 2 + m 1 ∂ x 2 m 3 .
The change of variables x → x = x l ∈ ω l rescales ω to a set ω = ω × (0, h) with diam(ω ) = 1, the external field to H ext ( x ) = H ext (x ) and the magnetization m( x ) = m(x ). Then, it reduces the exchange, anisotropy, external field and the Dzyolashinsky-Moriya energies to the following form (1.9)

Since (1.5), the Maxwell equation (1.2) implies that

-∆U = ∇ .m 1 ω -m.ν1 ∂ω in R 3 , (1.10) 
here ν is the unit outer normal vector on ∂ω. In view of (1.10), there are two sources of stray field ∇U ; that is, the magnetic volume charges which are given by the in-plane flux ∇ .(m 1 ω ) and the magnetic surface charges on the top and the bottom side of the cylinder which are presented by the third component of the magnetization and the lateral charges m .ν. Moreover, since (1.10), the non-local magnetostatic energy can be computed by considering the Fourier transform in the horizontal variables,

F(m 1 ω )(ξ ) = 1 √ 2π R 2 e -iξ .x m(x )1 ω (x )dx for ξ ∈ R 2 .
One gets (cf. Ignat [START_REF] Ignat | A survey of some new results in ferromagnetic thin films[END_REF]):

R 3 |∇U | 2 dx = t R 2 f ( t 2 |ξ |)| ξ |ξ | • F(m 1 ω )| 2 dξ + t R 2 g( t 2 
|ξ |)|F(m 3 1 ω )| 2 dξ , where g(s) = 1 -e -2s 2s and f (s) = 1 -g(s) for every s ≥ 0.

In view of (1.6), then the Fourier transform of m is concentrated on wave vectors ξ of order t/l. Assumption (1.4) implies that the arguments of f and g are small in the range Chapter 1 of ξ . We then approximate g(s) ≈ 1 and f (s) ≈ s. Rescaling in the length scale l of ω , the stray-field energy is approximated as follows (see DeSimone, Kohn, Müller and Otto [START_REF] Desimone | 2-d stability of the néel wall[END_REF], Kohn and Slastikov [START_REF] Kohn | Another thin-film limit of micromagnetics[END_REF]):

R 3 |∇U | 2 dx ≈ t 2 l 2 ||( ∇ . m ) ac || 2 Ḣ-1/2 (R 2 ) + t 2 l 2π |log l t | ∂ ω ( m . ν) 2 dH 1 + tl 2 ω m 2 3 . (1.11)
Thus, the stray-field energy asymptotically decomposes into three terms in the thin-film regime. The first one is penalizing the volume charges ( ∇ . m ) ac = ∇ . m 1 ω , as an homogeneous Ḣ-1 2 -seminorm and induces the leading order of the energy of Néel walls. The second term counts the lateral charges m . ν in the L 2 -norm and it is responsible for the nucleation of boundary vortices The third term penalizes the surface charges m 3 on the top and bottom of the cylinder and leads to interior vortices (so called Bloch lines).

Summing up (1.8), (1.11), we deduce the following reduced two dimensional thin-film energy:

E red ( m) = td 2 ω | ∇ m| 2 d x + t 2 l 2 R 2 | ∇ | -1/2 ( ∇. m ) ac 2 d x + t 2 l 2π |log l t | ∂ ω ( m . ν) 2 dH 1 + tl 2 ω m 2 3 + Qϕ( m) -2 H ext . m d x . +tl ω D 1 ( m. ∇ × m) + D 2 ( m 3 ∇ . m -m . ∇ m 3 ) d x .
(1.12)

Scaling the energy at order of td 2 , and omitting , the above reduced energy can be written as the following functional:

E ,η,κ (m) = Ω |∇ m| 2 dx + 1 η ||(∇ .m ) ac || 2 Ḣ-1/2 (R 2 ) + | log 2 2 η | πη ∂Ω (m .ν) 2 dH 1 + 1 2 Ω m 2 3 + Qϕ(m) -2H ext .m dx +κ 1 Ω m.∇ × mdx + κ 2 Ω (m 3 ∇ .m -m .∇ m 3 )dx , (1.13) 
where = d/l, η = 2d 2 /(tl), κ = (κ 1 , κ 2 ) = (lD 1 /d 2 , lD 2 /d 2 ) and Ω = ω . For the convenience, from now on, we denote by Ω DM (m)dx the last term in (1.13), that is,

Ω DM (m)dx = κ 1 Ω m.∇ × mdx + κ 2 Ω (m 3 ∇ .m -m .∇ m 3 )dx .
According to the specific thin-film regime, three types of singular pattern of the magnetization occur (see DeSimone, Kohn, Müller and Otto [START_REF] Desimone | 2-d stability of the néel wall[END_REF], Ignat [START_REF] Ignat | A survey of some new results in ferromagnetic thin films[END_REF]): Néel walls, interior vortices and boundary vortices. In fact, the formation of one of these patterns depends on the scale ordering of the three terms in the RHS of (1.11). Let us now discuss a nonlocal Ginzburg-Landau model which is strongly motivated by the above two-dimensional ferromagnetic energy.

A non local Ginzburg-Landau model

Let Ω ⊂ R 2 be a bounded simply-connected domain with a C 1,1 boundary and let g : ∂Ω → S 1 be a C 1,1 function satisfying deg(g, ∂Ω) = d > 0.
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Here, the degree of a C 1 -function g : ∂Ω → S 1 is defined on the boundary ∂Ω with the unit tangential vector τ : deg(g, ∂Ω) := 1 2π ∂Ω det(g, ∂ τ g)dH 1 .

If g : ∂Ω → R 2 is C 1 -function with |g|> 0, we set deg(g, ∂Ω) = deg ( g |g| , ∂Ω). The notion of degree can be extended to continuous fields and more generally, VMO vector fields, in particular H 1 2 (∂Ω, S 1 ) (see Brezis and Nirenberg [START_REF] Brézis | Degree theory and bmo; part i: Compact manifolds without boundaries[END_REF]). We consider m = (m 1 , m 2 , m 3 ) : Ω → S 2 be a vector field with the Dirichlet condition: m = (m , m 3 ) = (g, 0) on ∂Ω, (1.14) and the following micromagnetic energy functional:

E ,η,κ (m) = Ω |∇ m| 2 dx + 1 2 Ω m 2 3 dx + 1 η ||(∇ .m ) ac || 2 Ḣ-1/2 (R 2 ) + Ω DM (m)dx , (1.15) 
where (∇ .m ) ac = ∇ .m 1 Ω .

(1. [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques Tome 2[END_REF])

We emphasize that model (1.15) is motivated by the reduced thin-film model (1.13). In fact, we may ignore the anisotropy and external field terms -they can always be made to interact with the surviving terms by scaling Q and H ext appropriately. The third term of (1.13) is considered as the penalizing of the lateral charges m .ν in L 2 (∂Ω)-norm. Then if m .ν = 0 on ∂Ω and Q = 0, H ext = 0, then the reduced thin film model (1.13) can be written exactly as in model (1.15). Moreover, the first and second terms in (1.15) are reminiscent to the Ginburg-Landau energy. In the case of boundary condtion m .ν = 0 on ∂Ω, the concentration of Ginzburg-Landau energy around one interior vortex or two boundary vortices is proved by Ignat and Otto (see [START_REF] Ignat | A compactness result for landau state in thin-film micromagnetics[END_REF]Theorem 3]). Here we want to generalize the vector fields tangent at the boundary by one satisfying the Dirichlet boundary condition (1.14).

In this work, we shall study the reduced two dimensional films with the Dzyaloshinsky-Moriya interaction term given by

Ω DM (m)dx = κ 1 Ω (m 3 ∇ .m -m .∇ m 3 )dx + κ 2 Ω m.∇ × mdx , (1.17) 
where

m.∇ × m = -m 3 ∂ x 2 m 1 -m 2 ∂ x 1 m 3 + m 3 ∂ x 1 m 2 + m 1 ∂ x 2 m 3 .
The parameter κ = (κ 1 , κ 2 ) appearing in the Dzyaloshinsky-Moriya energy, stands for the Dzyaloshinsky-Moriya interaction parameter. The principal questions we shall discuss are the compactness and regularity of minimizer of the non-local energy E ,η,κ in a certain regime.

The compactness is presented in Chapter 2. For that, we are interested in the asymptotic behavior of minimizers of the energy E ,η,κ in the regime 1, η 1 and |κ| 1.

The singular patterns expected in this context are the Néel walls together with topological defects (due to the boundary condition (1.14)) standing for interior vortices. The regime where we study corresponds to the case where topological defects is energetically more expensive than the Néel wall. Now we shall informally explain how the principle of pole avoidance leads to the formations of walls and vortices.

Chapter 1

Vortices. The competition between the exchange energy and the penalization of the m 3 component will try to enforce the condition m 3 = 0. Together with the boundary condition (1.14), this explains the formation of interior vortices. Here m carries topological degree, deg(m , ∂Ω) = d. One expects the nucleation of interior vortices of core-scale . The scaling of the vortex energy is strong related to the Ginzburg-Landau energy (see the seminar book of Bethuel, Brézis and Hélein [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]):

min m ∈H 1 (Ω,R 2 ) m =g on ∂Ω Ω G (m )dx ,
where the Ginzburg-Landau density energy is given by the following:

G (m ) := |∇ m | 2 + 1 2 (1 -|m | 2 ) 2 .
The energetic cost of our vortices is given by 2πd|log |+O [START_REF] Axelsson | Hodge Decompositions on Weakly Lipschitz Domains[END_REF].

Néel walls. The stray field tries to enforce the divergence-free condition for m . Moreover, the Dzyaloshinsky-Moriya term also sharpens that condition. Therefore, at the mesoscopic level of magnetization in thin films, we expect |m |= 1 and ∇ .m = 0 in Ω.

(

We note that (1.14) implies m .ν = g.ν on the boundary. In general, the combination of this condition, (1.18) are too rigid for smooth magnetization m . This can be seen by writing m = ∇ ⊥ φ with the help of a "stream function" φ. Then (1.18) and (1.14) turn into a Dirichlet problem for the eikonal equation in φ:

|∇ ⊥ φ|= 1 in Ω and ∇ ⊥ φ.ν = g.ν on ∂Ω.

Hence, the divergence-free equation in (1.18) has to be interpreted in the distribution sense and it is expected to induce line-singularities for solutions m . These ridges are an idealization of the wall formation in thin-film elements at the microscopic level. They are replaced by smooth transition layers where the magnetization varies very quickly, see Figure 1.1. Let us recall that the energy E ,η,κ per unit length of a Néel wall of angle 2θ (with θ ∈ (0, π 2 ]) is given in DeSimone, Kohn, Muller and Otto [START_REF] Desimone | A reduced theory for thin-film micromagnetics[END_REF], Ignat and Otto [START_REF] Ignat | A compactness result in thin-film micromagnetics and the optimality of the néel wall[END_REF] (see also Ignat [START_REF] Ignat | A Γ-convergence result for néel walls in micromagnetics[END_REF]):

π(1 -cos θ) 2 + o(1) η|log η| as η → 0.
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Compactness. The first problem we discuss here is the asymptotic as , η → 0, |κ|→ ∞ of families of two dimensional magnetizations when the energy E ,η,κ (m) is of order

O( 1 η|log η| ) + 2πd|log |.
One of the issues we discuss is the question of the L 1 compactness of these families of magnetizations. The issue consists in rigorously justifying that the constraint |m|= 1 is conserved by the limit configuration as , η → 0, 1/|κ|→ ∞. We emphasize that the regime that we prove the compactness result corresponds to the case where a topological defect is more expensive than the Néel wall. More precisely, we have the following:

Theorem 1.1. Let Ω ⊂ R 2 be a bounded simply-connected domain with a C 1,1 boundary and g : ∂Ω → S 1 be a smooth function satisfying deg(g, ∂Ω) = d ∈ Z\{0}. We consider the following regime between the parameters → 0, η = η( ) and κ = κ( ) such that:

|κ| 1 |log | , 1 η|log η| |log |.
For each , consider a H 1 (Ω, S 2 ) vector field: m : Ω → S 2 such that:

m = g on ∂Ω and E ,η,κ (m ) -2dπ|log | 1 η|log η| .
Then {m } is relatively compact in L p loc (Ω, S 2 ) for p ∈ [1, ∞) and any accumulation point m : Ω → S 2 satisfies m 3 = 0, |m |= 1 in Ω and ∇ .m = 0 in D (Ω).

The above result gives us the compactness in the interior of domain. It may be of interest to know whether the above sequences of magnetization are relatively compact on the boundary. Does their limit still satisfy the Dirichlet condition? The answer is negative in general. We shall prove this by constructing a sequence (m η ) η that satisfies the upper bound as Theorem 1.1 that has a Néel wall going to the boundary, so the boundary condition (1.14) fails to be true. In fact, we are going to construct the sequence m η : Ω → S 1 , (so the third component of m η vanishes). The cost of such configuration now is O( 1 η|log η| ). The idea that m η may have Néel walls tending to the boundary.

Theorem 1.2. Let Ω = (0, 1) × (-1, 1). In the regime η 1, there exists a C 1 vector field m η : Ω → S 1 and g :

Γ = {0} × (-1, 1) ⊂ ∂Ω → S 1 which satisfy m η = g on Γ ⊂ ∂Ω, ∀η 1. m η → m in L 1 loc (Ω) as η → 0, and E ,η,κ = O( 1 η|log η|
).

But m = g on Γ ⊂ ∂Ω.

Regularity. In Chapter 3, we study the regularity of critical points of the energy E ,η,κ , which are subject to the Dirichlet boundary condition (1.14). For that, we consider Ω be C 1,1 domain and a magnetization m = (m , m 3 ) : Ω → S 2 satisfying m = (g, 0) on ∂Ω,

where g : ∂Ω → S 1 is a C 1,1 function. Denote H 1 g (Ω, S 2 ) := {u ∈ H 1 (Ω, R 3 ) : |u(x)|= 1 a.e , u = (g, 0) on ∂Ω} and E ,η,κ (m) = Ω |∇ m| 2 dx + 1 2 Ω m 2 3 dx + 1 η ||(∇ .m ) ac || 2 Ḣ-1/2 (R 2 ) + Ω DM (m)dx ,
where (∇ .m )ac is defined as in (1.16). The existence of minimizers of E ,η,κ follows with the help of the direct method of the calculus of variations and the compact Sobolev embedding H 1 (Ω) → L q (Ω) for 1 ≤ q < ∞. Critical points of E ,η,κ on H 1 g (Ω, S 2 ) satisfy the Euler-Lagrange equation

-∆m -m|∇ m| 2 - 1 η H 0 + 1 η (m .H)m + 1 2 ((0, 0, m 3 ) -m 2 3 m) + κ 1 (Id -m ⊗ m)∇ × m + κ 2 -∇ m 3 ∇ .m + (∇ m 3 .m -m 3 ∇ .m )m = 0 (1.19)
in Ω, where H = ∇ U (•, 0) is the stray field in the plane and

∇ × m = (∂ x 2 m 3 , -∂ x 1 m 3 , ∂ x 1 m 2 -∂ x 2 m 1 ).
The above equation can be seen as a perturbation of the harmonic map for S 2 -valued maps equation. We shall use regularity result of Wente (see [START_REF] Wente | The differential equation ∆x = 2H(x u x ν ) with vanishing boundary values[END_REF]) which yields the regularity in the interior of Ω.

Those proofs also show that m is continuous up to the boundary. In order to obtain a higher regularity result at the boundary, we need to handle not only the non-local term, but also the imposed boundary condition (1.14). Compared with the theories related to the harmonic maps, the non-local term does not allow to get a monotonically formula which is the principal feature in the partial regularity of the stationary critical point of harmonic maps (see Hardt, Kinderlehrer and Lin [START_REF] Hardt | Existence and partial regularity of static liquid crystal configurations[END_REF], also Evans [START_REF] Evans | Partial regularity for stationary harmonic maps into spheres[END_REF]). In [START_REF] Hardt | Some regularity results in ferromagnetism[END_REF], Hardt and Kinderlehrer used the almost minimizers definition to tackle a different non-local term. For that, one assumes the natural boundary condition; that is, ∂m ∂ν = 0, where ν is the unit outer normal vector. Their method can not apply to our imposed boundary condition (1.14). Finally, we state the regularity results.

Theorem 1.3. Let Ω be a domain of C 1,1 , g ∈ C 1,1 (∂Ω, S 1 ) and m ∈ H 1 g (Ω, S 2 ) be a solution of (1.19). Then m ∈ C ∞ (Ω) ∩ C 1,α (Ω), for all α ∈ (0, 1 2 ).
Chapter 2

A compactness result in a non-local Ginzburg-Landau model arising in thin ferromagnetic films

Abstract

We analyze the behavior of minimizers in an asymptotic regime for a non-local Ginzburg-Landau model arising in a thin film micromagnetics where the Dzyaloshinsky-Moriya interaction is taken into account. It consists in a free energy functional depending on parameters , η and κ and defined over vector fields m : Ω → S 2 that satisfy a Dirichlet boundary condition. We are interested in the behavior of minimizers as , η, 1/|κ| → 0. They are expect to be asymptotically S 1 -valued maps away from regions of length of scale where intrinsic vortices nucleate and of vanishing divergence away of regions of lengths of η where Néel walls nucleate. We establish compactness of the magnetizations in the energetic regime where Néel walls are cheaper than vortices. We also give an example where the lack of compactness at the boundary occurs.

Introduction

In thin ferromagnetic films, variations of the magnetization in thickness direction are strongly penalized. This leads to a reduced two-dimensional variational model where the magnetization is described by a S 2 -valued map defined on a 2D domain. The aim of this Chapter is to study the asymptotic regime for thin ferromagnetic films where the Dzyaloshinsku-Moriya interation is taken into account and allows the occurrence of transition layers (Néel walls) and topological defects (vortices).

Model

We will focus on the following two dimensional model for thin ferromagnetic films. For that, let Ω ⊂ R 2 be a bounded simply-connected domain with a C 1,1 boundary and

g : ∂Ω → S 1 be a C 1,1 function satisfying deg(g, ∂Ω) = d.
We consider m = (m 1 , m 2 , m 3 ) : Ω → S 2 be a vector field with the Dirichlet condition

m = (m , m 3 ) = (g, 0) on ∂Ω, (2.1) 
where m = (m 1 , m 2 ) is the in plane component of the magnetization m. We consider the following micromagnetic energy functional:

E ,η,κ (m) = Ω |∇ m| 2 dx + 1 2 Ω m 2 3 dx + 1 η R 2 |∇ | -1/2 (∇ .m ) ac 2 dx + Ω DM (m)dx (2.
2) where , η > 0 are two small positive parameters, κ is a parameter inside the Dzyaloshinsky-Moriya interaction term and is discussed later . Here x = (x 1 , x 2 ) are the in-plane variables with the differential operator

∇ = (∂ x 1 , ∂ x 2 ),
and the third variable is denoted by x 3 .

The first term of (2.2) is called the exchange energy. The second and third terms are derived form the stray field energy (see Section 1.4). The second term penalizes the surface charges m 3 on the top and bottom of the magnetic cylinder. While the third term counts the penalization of the volume charges ∇ .m . Using Fourier transform in the horizontal variables, the non-local term in the energy can be equivalently expressed in term of L 2 -norm of the stray-field ∇U ac :

R 2 |∇ | -1/2 (∇ .m ) ac 2 dx = R 2 1 |ξ| |F(∇ .m ) ac | 2 dξ = 2 R 3 |∇U ac | 2 dx
Here we denote

(∇ .m ) ac = ∇ .m 1 Ω
and U ac : R 3 → R is the stray field potential which is determined by static Maxwell's equation in weak sense:

R 3 ∇U ac (x).∇ζ(x)dx = Ω ∇ .m (x )ζ(x , 0)dx for every ζ ∈ C ∞ 0 (R 3 ). (2.3)
The fourth term is the energy connected with the Dzyaloshinsky-Moriya interaction (shorten by DM ), which is a relativistic effect stemming from spin-orbit coupling and the lack of inversion symmetry and given by

Ω DM (m)dx = κ 1 Ω m.∇ × mdx + κ 2 Ω (m 3 ∇ .m -m .∇ m 3 )dx = κ 1 Ω (m 1 ∂ x 2 m 3 -m 2 ∂ x 1 m 3 + m 3 ∂ x 1 m 2 -m 3 ∂ x 2 m 1 )dx +κ 2 Ω (m 3 (∂ x 1 m 1 + ∂ x 2 m 2 ) -m 1 ∂ x 1 m 3 -m 2 ∂ x 2 m 3 )dx , (2.4) 
where κ = (κ 1 , κ 2 ) arbitrary. Essential features of this variational model are the non-convex constraint |m|= 1 and the non-locality of the stray field interaction. In this model, we expect asymptotically two types of singular patterns: singularity lines and vortices. These patterns result from the competition between the different contributions in the total energy E ,η,κ (m) with boundary condition (2.1). Let us explain these structures in the following.

Néel walls. A Néel wall is a transition layer describing a one-dimensional in-plane rotation connecting two directions of the magnetization. More precisely, it is a onedimensional transition m = (m 1 , m 2 ) : R → S 1 that minimizes the energy under boundary constraint m(±x 1 ) = (cos θ, ± sin θ), for

x 1 ≥ 1, θ ∈ [0, π/2) : E η (m) = R dm dx 1 2 dx 1 + 1 η R d dx 1 1/2 m 1 2 dx 1 ,
where θ ∈ [0, π 2 ] and η > 0 stand for the angle and core of the wall, respectively. It follows that the minimizer is a two length scale object: it has a small core with fast varying rotation and two logarithmically decaying tails. As η → 0, the scale of the Néel core is given by |x 1 | ω core = O(η) while the two logarithmic decaying tails scale as ω core |x 1 | ω tail = O(1), see Melcher [START_REF] Melcher | The logarithmic tail of néel walls[END_REF]. The energetic cost (by unit length) of Néel is given in DeSimone, Kohn, Muller and Otto [START_REF] Desimone | A reduced theory for thin-film micromagnetics[END_REF], Ignat and Otto [START_REF] Ignat | A compactness result in thin-film micromagnetics and the optimality of the néel wall[END_REF] (see also Ignat [START_REF] Ignat | A Γ-convergence result for néel walls in micromagnetics[END_REF]) by: π(1 -cos θ) 2 + o(1) η|log η| as η → 0.

Vortices. Vortices correspond in our model to topological singularities at the microscopic level where the magnetization points out-of-plane. The prototype of a vortex vector field is given by minimizing the energy:

E (m) = Ω |∇ m (x )| 2 dx + 1 2 m 2 3 dx
under the constraint that m ∈ H 1 (Ω, S 2 ) and m = g on the boundary ∂Ω. Since m 2 3 = 1-|m | 2 for S 2 -valued map m, it is strongly related to the minimal Ginzburg-Landau (GL) energy (see Bethuel, Brézis and Hélein [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]):

min m ∈H 1 (Ω,R 2 ) m =g on ∂Ω Ω G (m )dx ,
where the GL density energy is given by the following:

G (m ) := |∇ m | 2 + 1 2 (1 -|m | 2 ) 2 .
The energetic cost of our vortices is given by 2πd|log 

where κ = (κ 1 , κ 2 ). We also consider families of magnetization m satisfying the energy bounded

E ,η,κ (m ) -2dπ|log | 1 η|log η| , (2.6) 
that is satisfied particular by minimizer of E ,η,κ . By the regime assumption, it implies that the size of the vortices is smaller exponentially than the size of the Néel wall core η.

We first detect the topological defect regions, which are d vortex cores of size . Then we use an argument of approximating S 2 -valued magnetization by S 1 -valued magnetization away from these vortex cores. This result is due to Ignat and Otto [START_REF] Ignat | A compactness result in thin-film micromagnetics and the optimality of the néel wall[END_REF]. We expect the limiting magnetization m satisfies ∇ .m = 0 and m 3 = 0 in Ω. Together with the Dirichlet boundary condition (2.1) and the expected condition ∇ .m = 0 in Ω, we shall arrive that ∇ .m = 0 and m 3 = 0 in Ω and m .ν = g.ν on ∂Ω.

(2.7)

We notice that the conditions ∇ .m = 0 in Ω and m .ν = g.ν on ∂Ω are interpreted in the distributional senses. In general, the conditions (2.7) is too rigid for smooth magnetization m. Indeed, writing m = -∇ ⊥ ψ leads to the eikonal equation

|∇ ψ|= 1 in Ω and ∇ ⊥ ψ.ν = -g.ν on ∂Ω.
As deg(g, ∂Ω) = 0, it follows that there is no smooth solution of that problem. On the other hand, there are many continuous solutions ψ that satisfy the above equation away from a set of vanishing Lebesgue measure (in particular singularity lines).

Lack of compactness on the boundary of the domain. We are also interested in the compactness of the above magnetizations m at the boundary ∂Ω. Here we note that, by the limiting condition ∇ .m = 0 and |m |≤ 1 in Ω, we obtain the compactness of the normal component of the magnetizations on the boundary. The loss of compactness on the boundary occurs only in the tangential component.

Main Results

The notation: We always denote a b if a b → 0 and a b if a ≤ Cb for some universal constant C. Our main result concerns the local compactness of the S 2 -valued magnetizations in a certain regime.

From now on, we always think U = U ac , and

∇ .m = (∇ .m ) ac = ∇ .m 1 Ω .
Here U ac is stray field potential which is defined as in (2.3).

Theorem 2.1. Let Ω ⊂ R 2 be a bounded simply-connected domain with a C 1,1 boundary and g : ∂Ω → S 1 be a C 1,1 function satisfying deg(g, ∂Ω) = d ∈ Z\{0}. We consider the following regime between the parameters 1, η = η( ) and κ = κ( ):

|κ| 1 |log | , 1 η|log η| |log |. (2.8)
For each , consider a H 1 (Ω, S 2 ) vector field: m : Ω → S 2 such that:

m = g on ∂Ω,
and

E ,η,κ (m ) -2dπ|log | 1 η|log η| .
(2.9)

Then {m } is relatively compact in L p loc (Ω, S 2 ) for every p ∈ [1, ∞) and any accumulation point m : Ω → S 2 satisfies m 3 = 0, |m |= 1 in Ω and ∇ .m = 0 in D (Ω).
The proof of Theorem 2.1 is based on argument of approximating S 2 -valued vector fields by S 1 -valued vector fields away from small defect regions. This is due to Ignat and Otto [START_REF] Ignat | A compactness result in thin-film micromagnetics and the optimality of the néel wall[END_REF] to detect these regions, we use some topological methods due to Jerrard [START_REF] Jerrard | Lower bounds for generalized ginzburg-landau functionals[END_REF] and Sandier [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF] for the concentration of the Ginzburg-Landau energy around vortices. Away from these small regions, the energy level only allows for Néel walls. The compactness results for the S 1 -valued maps due to Ignat and Otto, (see [START_REF] Ignat | A compactness result in thin-film micromagnetics and the optimality of the néel wall[END_REF]) will lead to conclusion.

Let us discuss the assumption of the regime (2.8) and (2.9). Inequality (2.9) assures that cutting out the topological defects (d vortices), the remaining energy rescaled at the energetic level of Néel walls is uniformly bounded. The regime 1 η|log η| |log | is imposed due to our method to detect vortices and approximate S 2 -valued vector fields by S 1 -valued vector fields away from the vortex balls. It also means that the energy of the topological defects is more expensive than the energy of Néel walls. In fact, the above assumption establishes two principal regimes; namely,

C η|log η|

≤ 2πα|log | for some α ∈ (0, 1) (2.10) and β η for any β ∈ (0, 1 -α).

(2.11)

If we write (2.9) as

E ,η,κ -2πd|log |≤ C η|log η| ,
where C given in (2.10), then (2.9) and (2.10) yield that E ,η,κ ≤ 2π(d + α)|log |. Due to the boundary condition (2.1), we then expect to obtain exactly d vortex regions in the interior of the domain. Moreover, far from the interior vortices, starting from the values of m on a square grid of size β , the approximation argument requires zero degree of m in each cell of the cell grid, leading to the condition β < 1 -α, (see Lemma 2.5). Moreover, the condition β η for any β ∈ (0, 1 -α) is used in order that the approximating S 1valued vector fields induce a stray field energy of the same order of m , (see (2.48)). The regime |κ| 1 |log | is rather technical: in fact, according to the boundary condition (2.1) (in particular m 3 = 0 on ∂Ω), and the Green formula, this regime is added to ensure that the Dzyaloshinsky-Moriya energy is absorbed into the Ginzburg-Landau energy, see (2.21), (2.22) and (2.29).

In [START_REF] Ignat | A compactness result for landau state in thin-film micromagnetics[END_REF]Theorem 2], with a similar energy (without the Dzyaloshinsky-Moriya energy), Ignat and Otto studied the compactness in thin ferromagnetic films under the Dirichlet boundary condition for the normal component; that is, m .ν = 0 on ∂Ω.

For such a boundary condition, the small defect region consists in either one interior vortex or two boundary vortices. The case of one interior vortex corresponds to d = 1 in our Theorem 2.1. For the boundary vortices case, one needs to add more assumptions to detect those vortices, that is, log|log | 1 η|log η| . We emphasize that due to boundary condition (1.14), the boundary vortices do not occur in our case.

With the compactness result of Theorem 2.1 , we then obtain that for a subsequence, m converges to m almost everywhere in Ω. As a consequence of the dominated convergence theorem, one has m → m in L 1 (Ω). Together with the condition ∇ .m = 0 in Ω, one can define the normal trace in sense of distributions for the limiting point m and m .ν = g.ν on ∂Ω (see Remark 2.8). It is of interest to know whether the above sequences of magnetization are relatively compact at the boundary. Does their limit still satisfy the Dirichlet condition? The answer is negative in general. We shall prove this by constructing a sequence (m η ) η such that m η is S 1 -valued and satisfies the upper bound as Theorem 2.1 that has a Néel wall tending to the boundary, so the boundary condition (2.1) fails in the limit η → 0 (due to the tangential component).

Theorem 2.2. Let Ω = (0, 1) × (-1, 1). In the regime 0 < η 1. There exist a C 1 vector field m η : Ω → S 1 and g : Γ = {0} × (-1, 1) ⊂ ∂Ω → S 1 which satisfy

m η = g on Γ, ∀η 1, m η → m in L 1 loc (Ω) as η → 0, and E ,η,κ (m η ) = O( 1 η|log η|
).

But m = g on Γ .
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The constructed sequence (m η ) η has the third component vanishing. Therefore, our model is written as

1 E η (m) = Ω |∇ m | 2 dx + 1 η R 2 |∇ | -1/2 (∇ .m )1 Ω 2 dx .
The cost of such a energy is O(1 η|log η| ). The idea of proof based the fact that (m η ) η may have the Néel walls tending to the boundary as η → 0. The outline of this Chapter is as follows: in the next section, we recall some definitions on the stray field and some results that we need for the proof of our results such as: the concentration of the Ginzburg-Landau energy on vortex balls and a compactness result for S 1 -valued magnetizations.

A Few Preliminary Results

Preliminary Results on Existence and Uniqueness of the Stray Field

We state the existence and uniqueness results for the stray field generated by the volume charges, as well as the expression of the stray field energy. For that, we introduce the Beppo-Levi space

BL := {U : R 3 → R : ∇U ∈ L 2 (R 3 ), U (x) 1 + |x| ∈ L 2 (R 3 )}.
Consequently, the space BL endowed by the homogeneous Ḣ1 -norm, U → ||∇U || L 2 (R 3 ) is a Hilbert space, and the set C ∞ 0 (R 3 ) of smooth compactly supported functions is a dense set, see Dautray and Lions [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques Tome 2[END_REF]. Let us denote by F the Fourier transform of the in-plane R 2 , i.e., for every ξ ∈ R 2 ,

Ff (ξ) = 1 √ 2π R 2 e -ix .ξ f (x )dx ,
where f belongs to the Schwartz class S(R 2 ) and F extends to the space of tempered distributions. We have the following 

     ∆U = 0 in R 3 \Ω × {0} ∂U ∂x 3 = -∇ .m on Ω × {0}, [U ] = 0 on R 2 × {0}, (2.12) 
where [q] = q + -q -stands for the jump in the vertical direction x 3 of the quantity q across the horizontal plane. Moreover the stray field energy is also given by

R 3 |∇U | 2 dx = Ω U (x , 0)(∇ .m )(x )dx = 1 2 R 2 |∇ | -1/2 ((∇ .m )1 Ω ) 2 dx = 1 2 R 2 1 |ξ| |F(∇ .m 1 Ω )(ξ)| 2 dξ (2.13)
A proof of Theorem 2.3 is given in the appendix.

Preliminary Results on the concentration of the Ginburg-Landau energy

In the proof of Theorem 2.1 we will use the following result due to Jerrard for the concentration of the GL energy around vortices Theorem 2.4. (see [START_REF] Jerrard | Lower bounds for generalized ginzburg-landau functionals[END_REF]) Let Ω be a C 1,1 domain, α ∈ [0, 1) and d > 0 be a positive integer. Let g : ∂Ω → S 1 be C 1,1 with |deg(g, ∂Ω)|= d. 

There exists R = R(α, d, Ω) > 0 such that for every 0 < r < R, if m : Ω → R
G (m )dx ≥ 2πd j |log r |-C(α, d, R), j = 1, ..., n,
where C(α, d, R) is a constant which only depend on d, α and R.

In Step B of the Proof of Theorem 2.2 we also use the following lemma (see [START_REF] Ignat | A compactness result for landau state in thin-film micromagnetics[END_REF]Lemma 2]) that also follows from Theorem 2.4. This gives a link to the condition (2.11).

Lemma 2.5. Let 0 < α < 1, 0 < β < 1 -α, C > 0. There exists 0 (α, β, C) > 0 such that for every ∈ (0, 0 ) the following holds

: if Z = - β 2 , β 2 2
is the square cell of length β and m : Z → B 2 is a C 1 vector field such that:

∂Z G (m )dH 1 ≤ C|log | β , Z G (m )dx ≤ 2πα|log | then |m |≥ 1 2
on ∂Z and deg(m , ∂Z) = 0.

Compactness result in thin-film micromagnetics

The proof of Theorem 2.1 mainly uses the compactness result of S 1 -valued vector fields obtained by Ignat and Otto, see [START_REF] Ignat | A compactness result in thin-film micromagnetics and the optimality of the néel wall[END_REF]. For the convenience, we state their result. We refer reader to [START_REF] Ignat | A compactness result in thin-film micromagnetics and the optimality of the néel wall[END_REF]Theorem 4] for a detailed proof.

Theorem 2.6. Let B n be the unit ball in R n , n = 2, 3. For every small η > 0, let m η : B 2 → S 1 and h η : B 3 → R 3 be related by

B 3 h η (x).∇ζ(x)dx = B 2 ζ(x , 0)∇ .m η (x )dx , ∀ζ ∈ C ∞ 0 (B 3 ). (2.14)
Suppose that

B 2 |∇ .m η | 2 dx + 1 η B 3 |h η | 2 dx ≤ C η|log η| (2.15)
for some fixed constant C. Then {m η } η↓0 is relatively compact in L 1 (B 2 ) and any accumulation point m :

B 2 → R 2 satisfies:
|m |= 1 a.e in B 2 and ∇ .m = 0 in the sense of distributions.

Proof of Theorem 2.1

This section is devoted to the proof of the compactness result for magnetizations in the energy regime O(

1 η k |log η k | ) + 2πd|log k |.
We will work at the level of sequences of parameters k , η k , κ k , (κ = (κ 1,k , κ 2,k )) and a sequence of magnetization m k satisfying the assumptions in Theorem 2.1.

By assumption, E

k ,η k ,κ k (m k ) -2dπ|log k | 1 η k |log η k | . Then there exists A > 0 such that E k ,η k ,κ k (m k ) -2dπ|log k |≤ A η k |log η k | . (2.16)
Also, by the condition (2.8), there exists α ∈ (0, 1) and C > 0 such that

A η k |log η k | ≤ 2πα|log k |.
(2.17)

and |κ k |≤ C k |log k | 1 k . (2.18)
We split the proof of the Theorem 2.1 in several steps.

Step A We locate the vortex balls of m k . Our strategy is to apply Theorem 2.4 to locate the vortex balls of m k in Ω. It remains to us prove the following claim

Claim 1. Ω |∇ m k | 2 dx + 1 2 k Ω (m 3,k ) 2 dx ≤ 2π(d + α )|log k |, (2.19) 
with some 0 < α < 1.

The proof of Claim 1. Using Green's formula with the fact that m 3,k = 0 on ∂Ω, we rewrite the first part of the DM energy (see (2.4)) as

κ 1,k Ω m k .∇ × m k dx = κ 1,k Ω (m 1,k ∂ x 2 m 3,k -m 2,k ∂ x 1 m 3,k + m 3,k ∂ x 1 m 2,k -m 3,k ∂ x 2 m 1,k )dx = 2κ 1,k Ω (m 3,k ∂ x 1 m 2,k -m 3,k ∂ x 2 m 1,k )dx .
(2.20)
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Equation (2.20) yields that

|κ 1,k Ω m k .∇ × m k dx | ≤ 2|κ 1,k | Ω (|m 3,k ∂ x 2 m 1,k |+|m 3,k ∂ x 1 m 2,k |)dx ≤ a 1 Ω (m 3,k ) 2 dx + b 1 Ω (∂ x 2 m 1,k ) 2 dx + a 1 Ω (m 3,k ) 2 dx + b 1 Ω (∂ x 1 m 2,k ) 2 dx ≤ 2a 1 Ω (m 3,k ) 2 dx + b 1 Ω |∇ m k | 2 dx , (2.21) 
where a 1 , b 1 are positive numbers satisfying a 1 b 1 = κ 2 1,k , will be chosen later, see (2.25). Similarly for the second term of the DM energy

κ 2,k Ω (m 3,k ∇ .m k -m k .∇ m 3,k )dx = 2κ 2,k Ω m 3,k ∇ .m k dx and κ 2,k Ω (m 3,k (∇ .m k ) -m .∇ m 3,k )dx ≤ a 2 Ω (m 3,k ) 2 dx + b 2 Ω |∇ m k | 2 dx , (2.22) 
where a 2 , b 2 are chosen satisfying (2.25).

From the definition of E k ,η k ,κ k , it follows that 

Ω |∇ m k | 2 dx + 1 2 k Ω (m 3,k ) 2 dx ≤ E k ,η k ,κ k (m k ) - 1 η k R 2 ||∇ | -1/2 (∇ .m k )| 2 dx - Ω DM (m k )dx . ( 2 
Ω |∇ m k | 2 dx + 1 2 k Ω (m 3,k ) 2 dx ≤ E k ,η k ,κ k (m k ) + (2a 1 + a 2 ) Ω (m 3,k ) 2 dx + (b 1 + b 2 ) Ω |∇ m k | 2 dx .
Together with (2.16), this implies

(1 -b 1 -b 2 ) Ω |∇ m k | 2 dx + 1 2 k -2a 1 -a 2 Ω (m 3,k ) 2 dx ≤ 2πd|log k |+ A η k |log η k | .
By (2.17), finally, we obtain

Ω |∇ m k | 2 dx + (1/ 2 k -2a 1 -a 2 ) 1 -b 1 -b 2 Ω (m 3,k ) 2 dx ≤ 2π(d + α) 1 -b 1 -b 2 |log k |. (2.24)
To conclude Claim 1, a 1 , b 1 , a 2 , b 2 will be chosen satisfying

           a 1 b 1 = κ 2 1,k , a 2 b 2 = κ 2 2,k , 1 2 k ≤ 1/ 2 k -2a 1 -a 2 1-b 1 -b 2 , (1 -b 1 -b 2 ) > 0 2π(d+α) 1-b 1 -b 2 ≤ 2π(d + α
), for some α ∈ (α, 1) (α < α < 1).

(2.25)
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In fact, we choose b

1 = b 2 = 1-α 4(d+ α 2 + 1 2 ) > 0. An easy computation shows that 2π(d + α) 1 -b 1 -b 2 = 2π(d + α 2 + 1 2 ).
The fourth inequality of (2.25) holds true for

α = α 2 + 1 2 . Setting a 1 = κ 2 1,k b 1 , a 2 = κ 2 2,k
b 2 , therefore, we only need to check that

1 2 k ≤ 1/ 2 k -2a 1 -a 2 1 -b 1 -b 2 .
This can be written equivalently to

1 2 k ≤ 1/ 2 k -2a 1 -a 2 1 -b 1 -b 2 ⇔ b 1 + b 2 2 k ≥ 2a 1 + a 2 ⇔ b 1 + b 2 2 k ≥ 2κ 2 1,k b 1 + κ 2 2,k b 2 .
The last inequality is followed from

|κ k | 1 k .
We complete the proof of Claim 1. We note that, for the proof of Claim 1, we only use the regime assumption

|κ k | 1 k (which is implied by (2.8)).
Remark 2.7. By (2.24) and (2.25), we have immediately that

Ω |∇ m k | 2 dx + 1 2 k Ω (m 3,k ) 2 dx ≤ 2π(d + α )|log k |,
for some α ∈ (0, 1). Hence,

Ω |∇ m k | 2 dx ≤ 2π(d + α )|log k | (2.26)
and 1

2 k Ω (m 3,k ) 2 dx ≤ 2π(d + α )|log k |. (2.27) 
We next apply Theorem 2.4 to m k in domain Ω. There exist R > 0, n k distinct points

x 1,k , ..., x n k ,k in Ω and n k integers d 1,k , d 2,k , ..., d n k ,k > 0, n k i=1 d i,k = d such that for any r ∈ (0, R), B(x j,k ,r)∩Ω G k (m k )dx ≥ 2πd j |log r k |-C(α, d)
for j = 1, ..., n k and k sufficiently larger. We note that x 1,k , ..., x n,k ∈ Ω. Then, summing up by x i,k , it yields The next step is to prove that m k is relatively compact in L 1 (Ω\D). Let B ⊂ Ω\D be an arbitrary square. To simplify the notation, let B = (-1, 1) 2 . We prove that there exists m such that for a subsequence m k → m in L 1 loc (B). The idea is to approximate m k away from D by S 1 -valued vector fields in L 1 loc , denoted by M k which satisfy the hypotheses of Theorem 2.6. This implies that M k → m in L 1 loc . Therefore, we have m k → m in L 1 loc (B).

x j,k B(x j,k ,r)∩Ω G k (m k )dx ≥ 2πd|log r k |-C(α, d)n k ≥ 2πd|log k |-C(α, d, r). ( 2 
Step B. Approximation of m k away from D by S 1 -valued vector fields. We state some inequalities. Firstly,

B |∇ m k | 2 dx + 1 2 k B (1 -|m k | 2 ) 2 dx + 1 η k R 2 ||∇ | -1/2 (∇ .m k )| 2 dx ≤ E k ,η k ,κ k (m k ) - D |∇ m k | 2 dx - 1 2 k D (1 -|m k | 2 ) 2 dx - Ω DM (m)dx .
We observe that

Ω DM (m k )dx = 2κ 1,k Ω (m 3,k (∂ x 1 m 2,k -∂ x 2 m 1,k )dx + 2κ 2,k Ω (m 3,k ∇ .m k )dx .
Then

Ω DM (m k )dx ≤ 2κ 1,k Ω m 3,k (∂ x 1 m 2,k -∂ x 2 m 1,k )dx + 2κ 2,k Ω (m 3,k ∇ .m k )dx ≤ 1 |log k | Ω |∇ m k | 2 dx + 4(κ 2 1,k + κ 2 2,k )|log k | Ω |m 3.k | 2 dx .
Hence,

- Ω DM (m k )dx ≤ Ω DM (m k )dx ≤ 1 |log k | Ω |∇ m k | 2 dx + 4(κ 2 1,k + κ 2 2,k )|log k | Ω |m 3.k | 2 dx .
Using Remark 2.7 and (2.18), one has (2.16) and (2.28)).

- Ω DM (m k )dx ≤ 2π(d + α )(1 + C 2 k |κ k | 2 |log k | 2 ) = O(1
B |∇ m k | 2 dx + 1 2 k B (1 -|m k | 2 ) 2 dx + 1 η k R 2 ||∇ | -1/2 (∇ .m k )| 2 dx ≤ E k ,η k ,κ k (m k ) - D |∇ m k | 2 - 1 2 k D (1 -|m k | 2 ) 2 dx + O(1) ≤ A η k |log η k | + O(1) ( by
This implies that

B |∇ m k | 2 dx + 1 2 k B (1 -|m k | 2 ) 2 dx + 1 η k R 2 ||∇ | -1/2 (∇ .m k )| 2 dx ≤ A η k |log η k | (2.30)
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for k large enough and any A > A.

Moreover, using the hypothesis (2.17), we deduce that

B |∇ m k | 2 dx + 1 2 k B (1 -|m k | 2 ) 2 dx + 1 η k R 2 ||∇ | -1/2 (∇ .m k )| 2 dx ≤ 2π α|log k |, (2.31) 
for some α ∈ (0, 1).

Step B.1 Construction of a square grid. The hypothesis

1 η k |log η k | |log k |, again shows that β k ≤ η k ,
for some β ∈ (0, 1) and β ∈ (0, 1 -α).

(2.32)

Let B ⊂ B be a compact set. For each shift t ∈ [0, β k ), denote:

V t := {(x 1 , x 2 ) ∈ B : x 2 ≡ t (mod β k )}
for the net of horizontal lines at a distance β k in B. By Fubini theorem, there exists

t k ∈ (0, β k ) such that Vt k G k (m k )dH 1 ≤ 1 β k B G k (m k )dx .
If one repeats the above argument for the net of vertical lines at a distance β k in B, we get the square grid R k of size β k such that for k small, the convex hull of R k covers B ⊂ B and the following estimate:

R k G k (m k )dH 1 ≤ 2 A β k η k |log η k |
(by (2.30)).

(2.33)

Together with (2.17), this yields

R k G k (m k )dH 1 ≤ C|log k | -β k . (2.34) 
This implies that |m k |> 1 2 on R k for k large enough. Indeed, denoting ρ = |m k | and min = min{ρ(x ) : x ∈ R k }. We have that

C|log k | -β k ≥ R k G k (m k )dH 1 ≥ R k |∂ τ ρ| 2 + 1 2 k (1 -ρ 2 ) 2 dH 1 ≥ C k (1 -min) 2 ,
where τ is the tangent unit vector at R k . Thus, one concludes that

(1 -min) 2 ≤ C C 1-β k |log k | 1.
Then min > 1 2 for k small enough. Therefore, we can define the degree of m k on each cell of square grid R k by:

deg(m k , ∂Z k ) := deg( m k |m k | , ∂Z k ).
Here, without loss of generality, we denote

Z k = - β k 2 , β k 2 2
by the cell of length β k with ∂Z k ⊂ R k .
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Step B.2 We prove that deg(m k , ∂Z k ) = 0. Inequality (2.31) deduces that

Z k G k (m k )dx ≤ B G k (m k )dx ≤ 2π α|log k |. (2.35)
Moreover, by (2.34), one has 

∂Z k G k (m k )dH 1 ≤ C |log k | β k . ( 2 
m k = |m k |e iϕ k = |m k |v k on ∂Z k and ϕ k ∈ H 1 (∂Z k , R),
where v k := e iϕ k on ∂Z k . Moreover, we can lift m k on the grid.

On each cell Z k of length β k of the grid, we define:

M k = e iΦ k in Z k ,
where Φ k is the harmonic extension of ϕ k in Z k , i.e.

∆Φ k = 0 in Z k Φ k = ϕ k on ∂Z k .
Note that we can estimate

Z k |∇ Φ k | 2 dx ≤ C β k ∂Z k |∇ ϕ k | 2 dH 1 .
Indeed, rescaling by β k , we can assume that

∆Φ = 0 in B = (-1, 1) 2 , Φ = ϕ on ∂B,
where ϕ : ∂B → S 1 satisfies ∂B ϕdH 1 = 0 (up to an additive constant in [0, 2π]). We show the inequality in the unit cell B. We consider a smooth cut-off function Ψ :

[0, 1] → R 1 such that Ψ(t) = 0 in t ≤ 1/2, Ψ(1) = 1
and the extension Φ ext of ϕ in B :

Φ ext (tx) = Ψ(t)ϕ(x ) for t ∈ (0, 1), x ∈ ∂B.
Using the Poincaré-Wirtinger inequality and the trace operator, we obtain

B |∇ Φ| 2 dx ≤ B |∇Φ ext | 2 dx ≤ C ∂B (|∇ ϕ| 2 +ϕ 2 )dH 1 ≤ C ∂B |∇ ϕ| 2 dH 1 .
It follows that:

Z k |∇ M k | 2 dx = Z k |∇ Φ k | 2 dx ≤ C β k ∂Z k |∇ ϕ k | 2 dH 1 = C β k ∂Z k |∇ v k | 2 dH 1 ≤ 4C β k ∂Z k |m k | 2 |∇ v k | 2 dH 1 ≤ 4C β k ∂Z k |∇ m k | 2 dH 1 . (2.37)
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Now we prove that M k is an approximation of m k in L 1 ( B), for a compact B ⊂ B.

To prove that we estimate ||(M k -m k )|| L 2 ( B) . We will also estimate

||∇ (M k -m k )|| L 2 ( B).
Step B. [START_REF] Bourgain | On the equation divY = f and application to control of phases[END_REF] The estimate of ||(M k -m k )|| L 2 . the Poincaré-Wirtinger and (2.37) lead to

Z k M k -- ∂Z k M k 2 dx ≤ C 2β k Z k |∇M k | 2 dx ≤ C 3β k ∂Z k |∇ m k | 2 dH 1 (2.38)
and

Z k m k -- ∂Z k m k 2 dx ≤ C 2β k Z k |∇ m k | 2 dx . (2.39) Using Jensen's inequality, v k = M k = m k |m k | on ∂Z k and |v k |= 1 on ∂Z k , we get: Z k - ∂Z k (M k -m k ) 2 dx = Z k - ∂Z k (v k -m k ) 2 dx ≤ C 2β k - ∂Z k |v k -m k | 2 dH 1 ≤ C β k ∂Z k (1 -|m k |) 2 dH 1 ≤ C β+2 k ∂Z k G k (m k )dH 1 .
Therefore

Z k |M k -m k | 2 dx ≤ C Z k M k -- ∂Z k M k 2 + - ∂Z k (M k -m k ) 2 + m k -- ∂Z k m k 2 dx ≤ C 3β k ∂Z k |∇ m k | 2 dH 1 + C β+2 k ∂Z k G k (m k )dH 1 + C 2β k Z k |∇ m k | 2 dx .
Summing up on all cells Z k of R k , since the convex hull of R k covers B, (2.30) and (2.33) we obtain:

B |M k -m k | 2 dx ≤ C 2β η k |log η k | . (2.40) By (2.32), 2β k ≤ η 2 k η k |log η k |, so ||M k -m k || L 2 ( B) = o(1) as k → ∞. Step B.5. The estimate of ||∇ (M k -m k )|| L 2 .
We have

Z k |∇ (M k -m k )| 2 ≤ 2 Z k |∇ M k | 2 +2 Z k |∇ m k | 2 ≤ C β k ∂Z k |∇ m k | 2 dH 1 + 2 Z k |∇ m k | 2 dx (by (2.37)) ≤ C η k |log η k | ,
where we have used (2.30), (2.33) in the last inequality.

Step C Construct a stray field h k associated to M k in B ⊂ B such that (2.14) and (2.15) hold for the couple (M k , h k ). For simplicity, we assume that B = B 2 . By Theorem 2.3, there exists U k ∈ BL(R 3 ) satisfying

R 3 ∇U k (x)∇ζ(x)dx = Ω ∇ .m k (x )ζ(x , 0)dx for every ζ ∈ C ∞ 0 (R 3 ). (2.41)
We note that the map ξ → B 2 ∇ .m(x )ξ(x , 0)dx is linear continuous in H 1 0 (B 3 ). Indeed,

B 2 ∇ .m (x )ξ(x , 0)dx ≤ ||∇ .m || Ḣ-1/2 (B 2 ) ||ξ(•, 0)|| Ḣ1/2 (B 2 ) ≤ C||∇ .m || Ḣ-1/2 (B 2 ) ||∇ξ|| L 2 (B 3 ) .
By Lax-Milgram's Theorem in H 1 0 (B 3 ), there exists a unique solution U k ∈ H 1 0 (B 3 ) of the following equation:

B 3 ∇U k (x)∇ζ(x)dx = B 2 ∇.(M k -m k )(x )ζ(x , 0)dx , ∀ζ ∈ H 1 0 (B 3 ) (2.42) Choosing h k := ∇(U k + U k ) (2.43)
and summing up (2.41), (2.42) we get that h k is a stray field associated to M k in B 3 and satisfies (2.14). Now, we need to prove that:

B 2 |∇ M k | 2 + 1 η k B 3 |h k | 2 ≤ C η k |log η k | . (2.44)
We observe that:

B 2 |∇ M k | 2 ≤ C η k |log η k |
(by (2.37)).

Using Theorem 2.3 and (2.30) we obtain

B 3 |∇U k | 2 ≤ R 3 |∇U k | 2 = 1 2 R 2 ||∇ | -1/2 (∇ .m k )| 2 ≤ C |log η k | . (2.45)
Then it is sufficient to prove:

B 3 |∇U k | 2 ≤ C |log η k | . (2.46) 
Let us denote by T a linear continuous extension operator:

T : Ḣs (B 2 ) → Ḣs (R 2 ), s = 0, 1,
and let us extend U k by 0 outside B 3 , we still denote it by U k . Then the extension U k belongs to H 1 (R 3 ) and the trace U k | R 2 belongs to Ḣ1/2 (R 2 ). Therefore, we obtain:

U k | R 2 2 Ḣ1/2 (R 2 ) ≤ 1 2 U k 2 Ḣ1 (R 3 ) = 1 2 ∇U k 2 L 2 (B 3 ) .
(2.47)

Now using (2.42) with ζ = U k we have:

∇U k 2 L 2 (B 3 ) = B 3 ∇U k 2 = B 2 ∇ .(M k -m k )U k = R 2 ∇ .T (M k -m k )U k ≤ ∇ .(T (M k -m k )) Ḣ-1/2 (R 2 ) U k | R 2 Ḣ1/2 (R 2 ) ≤ (T (M k -m k )) Ḣ1/2 (R 2 ) U k | R 2 Ḣ1/2 (R 2 ) ≤ C T (M k -m k ) 1/2 L 2 (R 2 ) T (M k -m k ) 1/2 Ḣ1 (R 2 ) ∇U k L 2 (B 3 ) .
We have used the classical interpolation inequality and (2.47) in the last estimate. Then

∇U k L 2 (B 3 ) ≤ C T (M k -m k ) 1/2 L 2 (R 2 ) T (M k -m k ) 1/2 Ḣ1 (R 2 ) ≤ C B 2 |M k -m k | 2 dx 1/2 B 2 |∇ (M k -m k )| 2 dx 1/2 .
In combining the results of Step B.4, Step B.5 and (2.32), this follow

B 3 |∇U k | 2 dx ≤ C β k η k |log η k | ≤ C |log η k | . (2.48)
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By (2.45) and (2.46), we finally obtain that

1 η k B 3 |h k | 2 ≤ C η k |log η k | .
Step D.Completion of the proof of Theorem 2.1.

By

Step C, we now can apply Theorem 2.6 to {(M k , h k )}. Therefore, M k is relatively compact in L 1 (B 2 ) as well as L p (B 2 ). Since the square B was arbitrary chosen in the complement of D and we proved the relatively compact in any ball B compactly included in B, by a diagonal argument, we deduce that {m k } converges in L p (Ω\D) up to subsequence. Letting r → 0, we obtain the conclusion of Theorem 2.1.

We finish this section by Remark 2.8. Assume that {m k } k is a sequence which satisfies the assumptions of Theorem 2.1.

(i) From Theorem 2.1, we know that, up to a subsequence, m k → m almost everywhere in Ω. As |m k |= 1 in Ω, the dominated convergence theorem implies that m k → m in L 1 (Ω).

(ii) Since ∇ .m = 0 in Ω (in the sense of distributions), then we can define the normal trace (m .ν) of m in the sense of distributions; that is,

m .ν, ζ D (∂Ω),D(∂Ω) := Ω m .∇ ζ(x , 0)dx , for ζ ∈ C ∞ (∂Ω).
Here ζ is the extension of ζ into C 1,1 (Ω).

(iii) We have that m .ν = g.ν on ∂Ω.

Indeed, for ζ ∈ C ∞ 0 (R 3 ), using Remark 2.8(i), one has

Ω m (x ).∇ ζ(x , 0)dx = lim k→∞ Ω m k (x ).∇ ζ(x , 0)dx = ∂Ω g.νζdH 1 -lim k→∞ Ω ∇ .m k (x )ζ(x , 0)dx . (2.49)
Equations (2.3) and the Young inequality yield that

Ω ∇ .m k (x )ζ(x , 0)dx = R 3 ∇U k (x)∇ζ(x)dx ≤ ||∇ζ|| L 2 (R 3 ) ||∇U k || L 2 (R 3 ) ,
where ∇U k is the stray field associated with the magnetization m k . Together with Theorem 2.3 and (2.30), this yields

Ω ∇ .m k (x )ζ(x , 0)dx ≤ C |log η k | .
Therefore, we obtain

m .ν = g.ν in D (∂Ω).
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Loss of compactness at the boundary

In this section, we aim to construct an example for the loss of compactness at the boundary, that is stated in Theorem 2.2.

The Proof of Theorem 2.2. The construction is carried in several steps. In this proof, we work at the level of sequences of parameters η k and a sequence of magnetization m k satisfying m k = (g, 0) = (0, -1, 0) on Γ := {0} × [-1, 1] ⊂ ∂Ω.

Step A. The aim of this step is to introduce a Néel wall approximation. We follow Ignat [START_REF] Ignat | A Γ-convergence result for néel walls in micromagnetics[END_REF]. Let us denote

λ k := η k |log η k |.
The parameter λ k corresponds to the core size of an approximation of the Néel wall. More precisely, we consider the following 1D transition layer (u k , v k ) : R → S 1 that approximates a 180 • Néel wall centered at the origin: The exchange energy corresponding to this transition as follows:

u k (t) = |log √ t 2 +λ 2 k | |log λ k | if |t|≤ 1 -λ 2 k , 0 elsewhere, v k (t) =    -1 -u 2 k (t) if t ≤ 0, 1 -u 2 k (t) if t ≥ 0.
R du k dt 2 + dv k dt 2 = R 1 1 -u 2 k du k dt 2 ≤ R 1 1 -u k du k dt 2 = 2 |log λ k | √ 1-λ 2 k - √ 1-λ 2 k t 2 (t 2 + λ 2 ) 2 log t 2 +λ 2 λ 2 dt ≤ 4 λ k |log λ k | 1/λ k 0 s 2 (s 2 + 1) 2 log(s 2 + 1) ds = O 1 λ k |log λ k | . ( 2 

.50)

In order to estimate the stray-field energy of the transition layer, let W k be the radial extension of

u k in R 2 : W k (x ) = u k (|x |) , for x ∈ R 2 .
By Ḣ1/2 (R)-trace estimate of a Ḣ1 (R) -function, it follows:

||u k || 2 Ḣ1/2 (R) ≤ 1 2 R 2 |∇W k | 2 dx ≤ π 1 0 r du k dr 2 dr.
Moreover,

π 1 0 r du k dr 2 dr ≤ π |log λ k | 2 1 0 r 3 (r 2 + λ 2 k ) 2 dr = π |log λ k | 2 1/λ k 0 s 3 (s 2 + 1) 2 ds ≤ π |log λ k | 2 (1 + |log λ k |).
Therefore

||u k || 2 Ḣ1/2 (R) ≤ π + o(1) |log η k | . (2.51) Step B. Construction of sequence (m k ) k . The sequence m k = (m k , m 3,k ) : Ω = (0, 1) × (-1, 1)
→ S 1 we construct will consist of magnetization m k that does not depend on the x 2 variable

m k = m k (x 1 ) and m 3,k (x ) = 0 in Ω.
More precisely, we have:

(m 1,k , m 2,k , m 3,k )(x 1 , x 2 ) = u k x 1 -α k α k , v k x 1 -α k α k , 0 ,
where α k > 0 converges to 0 as k → ∞, will be defined later, see (2.54).

Since

|m k |= 1 in Ω, the full energy E k ,η k ,κ k (m k ) simplifies E η k (m k ) = Ω |∇ m k | 2 dx + 1 η k R 2 ||∇ | -1/2 (∇ .m k )1 Ω | 2 dx .
Observe that m k (x 1 , x 2 ) = (g(x 1 , x 2 ), 0) = (0, -1, 0) at the boundary {0} × (-1, 1). To get the conclusion of Theorem 2.2, we will prove that

m k → (0, 1, 0) in L 1 (Ω). (2.52)
and

E η k (m k ) ≤ π + o(1) η k |log η k | . ( 2 

.53)

Step C The proof of (2.52) and (2.53). We start with (2.52). Firstly,

Ω |m 2,k (x ) -1|dx = 1 0 1 -1 |m 2,k (x ) -1|dx 2 dx 1 = 2 1 0 |m 2,k (x 1 ) -1|dx 1 = 2 2α k 0 |m 2,k (x ) -1|dx 1 + 2 1 2α k |m 2,k (x ) -1|dx 1 = 2α k 1 -1 |v k (t) -1|dt + 2α k ∞ 1 |v k (t) -1|dt = 2α k 1 -1 |v k (t) -1|dt ≤ 8α k .
Chapter 2

This implies that m 2,k converges to 1 in L 1 (Ω) as α k → 0. Moreover, by the assumption m k (x ) ∈ S 1 for every x ∈ Ω, then

Ω |m 1,k (x )| 2 dx = Ω (1 -m 2 2,k (x ))dx ≤ Ω |m 2,k (x ) -1||m 2,k (x ) + 1|dx ≤ 2 Ω |m 2,k (x ) -1|dx ≤ 16α k .
This implies that m 1,k converges to 0 in L 2 (Ω), so also in L 1 (Ω).

The proof of (2.53)

We estimate the exchange energy of m k .

Ω |∇ m k (x )| 2 dx = Ω ∂m 1,k ∂x 1 (x 1 ) 2 + ∂m 2,k ∂x 1 (x 1 ) 2 dx 1 dx 2 = 2 1 0 ∂m 1,k ∂x 1 (x 1 )| 2 + ∂m 2,k ∂x 1 (x 1 ) 2 dx 1 ≤ 2 α k R du k dt (t) 2 + dv k dt (t) 2 dt.
Estimate (2.50) yields that

Ω |∇ m k (x )| 2 dx ≤ O 1 α k λ k |log λ k | . Choosing α k = 1 |log λ k | 1/2 → 0, (2.54) 
we then have

Ω |∇m k (x )| 2 dx = O 1 λ k |log λ k | 1/2 = O 1 η k |log η k | 3/2 .
(2.55)

Estimating the stray-yield energy.

We recall the result of Theorem 2.3 that

R 3 |∇U k (x)| 2 dx = 1 2 R 2 ||∇ | -1/2 (∇ .m k )1 Ω | 2 dx = Ω U k (x , 0)∇ .m k (x )dx , (2.56)
where U k is the stray-field associates with the magnetization m k . Therefore, in order to estimate the stray-field energy, it is sufficient to find an upper bound of

Ω U k (x , 0)∇ .m k (x )dx .
The computation will be done according to

∇ .m k = ∂m 1,k ∂x 1 . Let us recall the homogeneous Ḣ1/2 (R) semi-norm of v : R → R be defined by ||v|| 2 Ḣ1/2 (R) := R |ξ||F 1 v| 2 dξ, (2.57) 
where F 1 (v) ∈ S (R) stands for the Fourier transform of v.

It is known that (see Ignat [START_REF] Ignat | A Γ-convergence result for néel walls in micromagnetics[END_REF]Proposition 7])

||v|| 2 Ḣ1/2 (R) = 1 2π R R |v(s) -v(r)| 2 |s -r| 2 dsdr, (2.58) Chapter 2 also ||v|| 2 Ḣ1/2 (R) = 1 2 min R 2 |∇ V | 2 dx : V (x 1 , 0) = v(x 1 ) for every x 1 ∈ R . (2.59) We now estimate Ω U k (x , 0) ∂m 1,k ∂x 1 (x )dx . Using the fact that m 1,k (x 1 , •) = 0 for any x 1 / ∈ (0, 2α k ), (we extends m 1,k (x 1 , •) = 0 in x 1 ∈ R\[0, 1] ) then Ω U k (x , 0) ∂m 1,k ∂x 1 (x )dx = 1 -1 R U k (x , 0) ∂m 1,k ∂x 1 (x )dx 1 dx 2 .
(2.60)

Without loss of generality, we consider m 1,k as a function of the x 1 -variable, then the Parseval identity and the Cauchy-Schwarz inequality yield:

R U k (x 1 , x 2 , 0) ∂m 1,k ∂x 1 (x )dx 1 2 = R F 1 (U k (•, x 2 , 0))(ξ 1 )F 1 ( ∂m 1,k ∂x 1 )(ξ 1 )dξ 1 2 = R iξ 1 F(U k (•, x 2 , 0))(ξ 1 )F 1 (m 1,k )(ξ 1 )dξ 1 2 ≤ R |ξ 1 ||F 1 (U k (•, x 2 , 0))(ξ 1 )| 2 dξ 1 R |ξ 1 ||F 1 (m 1,k )(ξ 1 )| 2 dξ 1 = ||m 1,k (•)|| 2 Ḣ1/2 (R) ||U k (•, x 2 , 0)|| 2 Ḣ1/2 (R) ≤ 1 2 ||m 1,k (•)|| 2 Ḣ1/2 (R) R 2 |( ∂ ∂x 1 , ∂ ∂x 3 )U k | 2 dx 1 dx 3 . (2.61) 
Here, we have use the definition (2.59) to get the last inequality. As Ḣ1/2 (R) is scaling invariant in R, by the definition of m 1,k , we obtain

||m 1,k (•)|| 2 Ḣ1/2 (R) = ||u k || 2 Ḣ1/2 (R) ≤ π + o(1) |log η k | ( by (2.51)). (2.62) Combining together (2.60)-(2.62) yields that Ω U k (x , 0) ∂m 1,k ∂x 1 (x )dx ≤ 1 -1 1 2 R 2 ∂ ∂x 1 , ∂ ∂x 3 U k (x 1 , x 2 , x 3 ) 2 dx 1 dx 3 1/2 ||u k || Ḣ1/2 (R) dx 2 ≤ √ 2( π + o(1) |log η k | ) 1/2 1 2 R 3 |∇U k (x)| 2 dx 1/2 . (2.63) By (2.56), it implies that 1 η k R 3 |∇U k (x)| 2 dx ≤ π + o(1) η k |log η k | . (2.64)
Finally, summing up (2.50) and (2.64), we get the conclusion of (2.53). The proof of Theorem 2.2 is completed.
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Interior and boundary regularity results in a model for thin ferromagnetic films with Dzyaloshinky-Moriya interaction

Abstract

In this chapter, we study the regularity of critical points of a non-local energy which stems from a two dimensional ferromagnetic model with Dzyaloshinky-Moriya interaction. First we show the interior regularity of critical points, like for S2 -valued harmonic maps on 2D domains, the critical points are smooth in the interior of domain. We also prove a boundary regularity result that the critical points are C1,α up to the boundary, for all α ∈ (0, 1 2 ). The particularity of this work is to study the non-local model within an imposed the Dirichlet boundary condition.

Introduction

In this chapter, we use the notation which are used in the previous chapter. Let Ω ∈ R 2 be a C 1,1 -domain and g : ∂Ω → S 1 be a C 1,1 function. We consider a magnetization m = (m , m 3 ) : Ω ⊂ R 2 → S 2 satisfying the boundary condition m = (g, 0) on ∂Ω.

Denote

H 1 g (Ω, S 2 ) := {u ∈ H 1 (Ω, R 3 ) : |u(x)|= 1 a.e , u = (g, 0) on ∂Ω} and E ,η,κ (m) = Ω |∇ m| 2 dx + 2 2 Ω F (m)dx + 1 η R 2 |∇ | -1/2 (∇ .m ) ac 2 dx + Ω DM (m)dx ,
where , η > 0 are two small positive parameters. Here x = (x 1 , x 2 ) are the in-plane variables with the differential operator

∇ = (∂ x 1 , ∂ x 2 ),
and the third variable is denoted by x 3 .

The first term is the so-called exchange energy, it penalizes spatial variation of m through the Dirichlet integral of m. The second term is the anisotropy energy. The function F : S 2 → R + is smooth whose zeros are the preferred directions of m (called easy axis 1 ).
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The third term in the energy E ,η,κ can be equivalently expressed in term of L 2 -norm of the stray-field ∇U :

R 2 |∇ | -1/2 (∇ .m ) ac 2 dx = R 2 1 |ξ| |F(∇ .m ) ac | 2 dξ = 2 R 3 |∇U | 2 dx.
Here we denote

(∇ .m ) ac = ∇ .m 1 Ω
and U : R 3 → R is the stray field potential which is determined by the static Maxwell equation in weak sense:

R 3 ∇U (x)∇ζ(x)dx = Ω ∇ .m (x )ζ(x , 0)dx for every ζ ∈ C ∞ 0 (R 3 ). (3.1)
The last term is the Dzyaloshinky-Moriya interaction given by

Ω DM (m)dx = κ 1 Ω m.∇ × mdx + κ 2 Ω (m 3 ∇ .m -m .∇ m 3 )dx = κ 1 Ω (m 1 ∂ x 2 m 3 -m 2 ∂ x 1 m 3 + m 3 ∂ x 1 m 2 -m 3 ∂ x 2 m 1 )dx +κ 2 Ω (m 3 (∂ x 1 m 1 + ∂ x 2 m 2 ) -m 1 ∂ x 1 m 3 -m 2 ∂ x 2 m 3 )dx ,
where κ = (κ 1 , κ 2 ) are arbitrary coefficients.

The principal questions we shall discuss here are the existence and regularity of critical points

E ,η,κ (m) defined for m ∈ H 1 g (Ω, S 2 ). The existence of a critical point m ∈ H 1 g (Ω, S 2
) is presented in Section 3.2. Moreover we determiner the Euler-Lagrange equation for the energy E ,η,κ (as in the case of harmonic maps.) Theorem 3.1. Let Ω ⊂ R 2 be a C 1,1 -domain and g : ∂Ω → S 1 be a C 1,1 function. If

1 2 F ((ξ 1 , ξ 2 , ξ 3 )) ≥ 1 + (κ 2 1 + κ 2 2 )ξ 2 3 for all ξ = (ξ 1 , ξ 2 , ξ 3 ) : Ω → S 2 ,
where 1 + is any fixed number larger than 1, then there exists a minimizer m ∈ H 1 g (Ω, S 2 ) of E ,η,κ . Moreover m satisfies the following

-∆m -m|∇ m| 2 - 1 η H 0 + 1 η m .Hm + 1 2 (f (m) -m.f (m)m) + κ 1 (Id -m ⊗ m)∇ × m + κ 2 -∇ m 3 ∇ .m + (∇ m 3 .m -m 3 ∇ .m )m = 0 in D (Ω),
where

H := ∇ U (•, 0) and f = ∇F.
The regularity result we prove in Section 3 is that any critical point m of E ,η,κ over H 1 g (Ω) is smooth in the interior of domain and C 1,α , for all α ∈ (0, 1 2 ) up to the boundary. The regularity theory for critical point of quadratic functional in dimension two has considerably progressed since the theorems of Morrey, see [START_REF] Morrey | Multiple Integrals in the Calculus of Variations[END_REF]. One of the most important results is proved by Hélein, see [START_REF] Hélein | Sur la régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. Séminaire Équations aux dérivées partielles[END_REF]. It concerns the regularity of harmonic maps defined in an open set of R 2 and with values in a sphere (a Riemannian manifold). In [START_REF] Carbou | Regularity for critical points of a non local energy[END_REF], Carbou shows a result of regularity of critical points of a different ferromagnetic model (without any imposed boundary condition). For the regularity in the interior domain, we use mainly here the works of Hélein about the harmonic maps with values into S 2 , also the works of Carbou (see [START_REF] Carbou | Regularity for critical points of a non local energy[END_REF]).

The regularity at the boundary for a three dimensional ferromagnetic functional have been studied by Hardt, Kinderlehrer and Lin (see [START_REF] Hardt | Existence and partial regularity of static liquid crystal configurations[END_REF]), also by Huber ([27]). For that, one studies the minimizing problem

E(m) = d 2 ω |∇m| 2 dx + R 3 |∇U (x)| 2 dx among all function m ∈ H 1 (ω, S 2 )
, where the so-called stray-field potential U : R 3 → R is generated by the Maxwell equation:

-∆U = ∇.(m1 ω ) in R 3 (3.2)
and ω ⊂ R 3 is the ferromagnetic sample. We remark that these minimizers satisfy ∂m ∂ν = 0 on the boundary, where ν is the unit outer normal vector. Thus their Neumann boundary condition is different from our imposed Dirichlet boundary condition.

The general idea used in [START_REF] Huber | Boundary regularity for minimizers of the micromagnetic energy functional[END_REF] is to construct a reflection at the boundary in order to establish a situation which is similar to the setting in the interior. In the case of minimizing harmonic maps, one can follow the ideas by Schoen and Uhlenbeck, see [START_REF] Schoen | A regularity theory for harmonic maps[END_REF] based on a monotonicity formula. Then, the higher regularity will be obtain by the interior setting tools. Moreover, a special coordinate system is introduced in [START_REF] Huber | Boundary regularity for minimizers of the micromagnetic energy functional[END_REF] in order to obtain the regularity of differential in the outer normal direction which is based on a reflection construction and the Neumann boundary condition ∂m ∂ν = 0. In our work, instead of using the reflection construction, we shall use delicately the Nirenberg method to obtain a higher regularity through the tangential direction. The regularity through the normal direction will be obtain by the anisotropic Sobolev embedding, see [START_REF] Haškovec | A note on the anisotropic generalizations of the sobolev and morrey embedding theorems[END_REF].

In the next section, we recall some preliminaries on the stray-field and prove the existence of minimizers. The regularity of critical points shall be given in Section 3.3. It is split into 2 subsections (the interior regularity and the boundary regularity).

Existence of minimizers and Euler-Lagrange equation

Let us first recall some important properties of the stray field

R 3 |∇U | 2 dx.
We first recall the definition of the Beppo-Levi space

BL := U : R 3 → R : ∇U ∈ L 2 (R 3 ), U (x) 1 + |x| ∈ L 2 (R 3 ) .
Consequently, the space BL endowed by the homogeneous Ḣ1 -norm,

U → ||∇U || L 2 (R 3
) is a Hilbert space, and the set C ∞ 0 (R 3 ) of smooth compactly supported functions is a dense set, see Dautray and Lions [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques Tome 2[END_REF].

Remark 3.2. If m, l ∈ H 1 (Ω, S 2 ) and U = U (m), V = V (l) are the corresponding solu- tions of (3.1), then Ω V (x , 0)∇ .m (x )dx = Ω U (x , 0)∇ .l (x )dx . Indeed, by the density of C ∞ 0 (R 3 ) in BL(R 3 ), then (3.1) is still true for every ζ ∈ BL(R 3 ). Choose ζ = V, we obtain: Ω V (x , 0)∇ .m (x )dx = R 3 ∇U (x)∇V (x)dx = Ω U (x , 0)∇ .l (x )dx . Remark 3.3. For m ∈ H 1 (Ω, R 2
) and the stray potential U (m) satisfying the Maxwell equation (3.1), one can present U under the term of the Fourier transform (see the proof of Theorem 2.3 in the appendix)

F(U (•, 0))(ξ) = 1 2|ξ| F((∇ .m )1 Ω )(ξ) for all ξ ∈ R 2 . (3.3) Hence, |R 2 |∇U (•, 0)| 2 dx = R 2 |ξ| 2 |F(U (•, 0))(ξ)| 2 dξ = R 2 |ξ| 2 1 4|ξ| 2 |F((∇ .m )1 Ω )(ξ)| 2 dξ = 1 4 ||(∇ .m )1 Ω || 2 L 2 (R 2 ) ≤ 1 4 ||∇ .m || 2 L 2 (Ω) . This implies that ∇ U (•, 0) ∈ L 2 (R 2 ).
Moreover, when m is more regular, one has

Lemma 3.4. If m ∈ H k loc (Ω) ∩ H 1 (Ω) then U (•, 0) ∈ H k loc (Ω), ∀k ≥ 2.
The proof of Lemma 3.4 is given in the appendix.

The existence of minimizers

Let Ω ∈ R 2 be a C 1,1 -domain and g : ∂Ω → S 1 be a smooth function. In this section, we study the existence of a minimizer of the energy E ,η,κ (m) under the constrains m ∈ H 1 g (Ω, S 2 ). For that we assume that

1 2 F ((ξ 1 , ξ 2 , ξ 3 )) ≥ 1 + (κ 2 1 + κ 2 2 )ξ 2 3 for all ξ = (ξ 1 , ξ 2 , ξ 3 ) : Ω → S 2 , (3.4) 
where 1 + is any fixed number larger than 1. Observe that

E ,η,κ (m) > -∞ for every m ∈ H 1 g (Ω, S 2 ). (3.5)
Indeed, using the definition of the DM term and the boundary condition m = (g, 0) on ∂Ω, one has by integration by parts

κ 1 Ω m.∇ × mdx = 2κ 1 Ω (m 3 ∂ x 1 m 2 -m 3 ∂ x 2 m 1 )dx and κ 2 Ω (m 3 ∇ .m -m .∇ m 3 )dx = 2κ 2 Ω m 3 ∇ .m dx .
Therefore

Ω DM (m)dx ≤ 2 + (κ 2 1 + κ 2 2 ) Ω m 2 3 dx + 1 - Ω |∇ m | 2 dx 2 2 Ω F (m)dx + 1 - Ω |∇ m | 2 dx
where 2 + := 2.1 + with 1 + given in (3.4) and 1 -= 2 2 -. Combining with (3.4) and the definition of the energy, this yields (3.5).

By the above argument, we then take (m k ) k a minimizing sequence of

E ,η,κ in H 1 g (Ω, S 2 ) for , η, κ fixed. Since (0 + ) Ω |∇m k | 2 ≤ E ,η,κ (m k ) for some 0 + > 0 and (m k ) takes values in S 2 , the se- quence (m k ) k is bounded in H 1 (Ω). Hence, up to a subsequence, there exists m ∈ H 1 (Ω, R 3 ) such that (i) m k m weakly in H 1 (Ω, R 3 ), (ii) m k → m in L p (Ω, R 3 ) for every 1 ≤ p < +∞ (iii) |m|= 1 in Ω.
The third convergence implies that m is S 2 -valued. By the trace operator, we also get that

m = g in H 1/2 (∂Ω). (3.6) Moreover, Ω |∇ m| 2 dx ≤ lim inf Ω |∇ m k | 2 dx , Ω F (m k )dx → Ω F (m)dx .
We are going to establish that

Ω DM (m k )dx → Ω DM (m)dx .
Indeed, let us consider the first term of DM energy, ( Ω m.∇ × m). Observe that

m k → m strongly in L 2 (Ω, S 2 ),
and

∇ × m k ∇ × m weakly in L 2 (Ω, R 3 ).
Therefore, we get

Ω m k .∇ × m k dx → Ω m.∇ × mdx . (3.7)
Using the same argument as above for the second term of the DM energy, we obtain

Ω m 3,k ∇ .m k -m k .∇ m 3,k dx → Ω m 3 ∇ .m -m .∇ m 3 dx .
Then we get the convergence of the DM energy. We now prove the convergence of the stray-field energy. Let us call U k , U the stray potentials associated with m k , m satisfying (3.1). By Theorem 2.3, we get

∇(U k -U ) 2 L 2 (R 3 ) = 1 2 R 2 1 |ξ| F((∇ .(m k -m ))1 Ω )(ξ) 2 dξ = 1 2 R 2 1 |ξ| R 2 e -ix ξ ∇ .(m k -m )1 Ω dx 2 dξ.
Since m k = m = g on the boundary ∂Ω, we then use the Green theorem to obtain

∇(U k -U ) 2 L 2 (R 3 ) = 1 2 R 2 1 |ξ| R 2 -ie -ix ξ ξ.(m k -m )1 Ω dx 2 dξ. ≤ 1 2 R 2 1 |ξ| |ξ| 2 |F((m k -m )1 Ω )(ξ)| 2 dξ = 1 2 (m k -m )1 Ω 2 Ḣ1/2 (R 2 ) .
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The standard interpolation inequality implies that

∇(U k -U ) 2 L 2 (R 3 ) ≤ 1 2 (m k -m )1 Ω Ḣ1 (R 2 ) (m k -m )1 Ω L 2 (R 2 ) = 1 2 m k -m Ḣ1 (Ω) m k -m L 2 (Ω) .
The first factor in the right hand side is bounded while the second one tends to 0. This proves that ∇U k converges to ∇U in L 2 (R 3 ). We conclude that m is a minimizer of E ,η,κ over H 1 g (Ω, S 2 ).

Euler-Lagrange equation

We are going to compute the Euler-Lagrange equation satisfied by the critical points

m k ∈ H 1 g (Ω) of E ,η,κ . Let Φ be an element of C ∞ 0 (Ω, R 3 
). We set

m t = m + tΦ |m + tΦ| , for t small (e.g. t ≤ 1 ||Φ|| L ∞ (Ω) +1 ), otherwise m + tΦ may has zeros. Since |m + tΦ| -1 = |m| 2 +2tm.Φ + t 2 |Φ| 2 -1/2 = 1 -tm.Φ + O(t 2 ), then m t = m + t(Id -m ⊗ m)Φ + O(t 2 ). Let U t (m t ) ∈ BL(R 3
) be the solution of the Maxwell equation (3.1) associated with m t . We ahve

E ,η,κ (m t ) = 1 2 Ω |∇ m t | 2 + 1 2 Ω F (m t )dx + 1 2η Ω U t (x , 0)∇ .m t (x )dx + Ω DM (m t )dx (3.8)
and σ(m) = (Id -m ⊗ m)Φ. Since (3.1) is linear and has a unique solution, then

U t = U + tσU + O(t 2 ),
where σU is the solution of (3.1) , or

     ∆(σU ) = 0 in R 3 (Ω × {0}), ∂σU ∂x 3 = -∇ .(σ(m) ) on Ω × {0}, [σU ] = 0 on R 2 × {0}.
We prove that

E ,η,κ (m t ) = E ,η,κ (m) + tσE ,η,κ + O(t 2 ), (3.9) 
where

σE ,η,κ := Ω ∇ m.∇ (σ(m))dx + 1 2 Ω (∂ x 1 , ∂ x 2 , ∂ x 3 )F (m).σ(m)dx + 1 η Ω U (x , 0)∇ .(σ(m) dx +2κ 1 Ω σ(m).∇ × mdx + 2κ 2 Ω (m 3 ∇ .σ(m) + σ(m) 3 ∇ .m )dx .
Indeed, it is simple to check that

Ω |∇ m t | 2 dx = Ω |∇ m| 2 dx + 2t Ω ∇ m.∇ σ(m)dx + O(t 2 ),
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and

Ω F (m t )dx = Ω F (m)dx +t Ω (∇ , ∂ x 3 )F (m).σ(m)dx +O(t 2
) (by Taylor's expansion).

Remark 3.2 and definition of U t yield that

Ω U t (x , 0)∇ .m t (x)dx = Ω U (x , 0)∇ .m (x )dx +t Ω U (x , 0)∇ .σ(m) (x )dx + t Ω σU (x , 0)∇ .m (x )dx + O(t 2 ), = Ω U (x , 0)∇ .m (x )dx + 2t Ω U (x , 0)∇ .σ(m) (x )dx + O(t 2 ).
For the first term in the DM energy, one has

κ 1 Ω m t .∇ × m t dx = κ 1 Ω m.∇ × mdx + tκ 1 Ω m.∇ × σ(m)dx + Ω σ(m).∇ × mdx + O(t 2 ).
We recall that m 3 = m t,3 = 0 on the boundary, thus integration by parts implies

Ω m.∇ × σ(m)dx + Ω σ(m).∇ × mdx = 2 Ω σ(m).∇ × mdx .
This implies that

κ 1 Ω m t .∇ × m t dx = κ 1 Ω m.∇ × mdx + 2tκ 1 Ω σ(m).∇ × mdx + O(t 2 ).
We also have that

κ 2 Ω m t,3 (∇ .m t -m t .∇ m t,3 )dx = 2κ 2 Ω m t,3 ∇ .m t dx .
An easy computation shows that

2κ 2 Ω m t,3 ∇ .m t dx = 2κ 2 Ω m 3 ∇ .m dx + 2tκ 2 Ω (σ(m) 3 ∇ .m + m 3 ∇ .σ(m) )dx + O(t 2 ) (3.10)
which proves (3.9). We now determine the Euler-Lagrange equation.

Rewriting the first term in σE ,η,κ .

Ω ∇ m.∇ σ(m)dx = Ω ∇ m.∇ (Φ -m.Φ m)dx = Ω ∇ m.∇ Φdx - Ω |∇ m| 2 m.Φdx - Ω ∇ m.(m∇ (m.Φ) T )dx = Ω ∇ m.∇ Φdx - Ω |∇ m| 2 m.Φdx . (3.11) 
We have used that m orthogonal to ∇ m in the last equality.

Hence

Ω ∇ m.∇ (σ(m)) = -∆m -m|∇ m| 2 ; Φ D (Ω),D(Ω) .
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Rewriting the second term in σE ,η,κ .

Ω (∂ x 1 , ∂ x 2 , ∂ x 3 )F (m).σ(m) = (∂ x 1 , ∂ x 2 , ∂ x 3 )F (m)-m.(∂ x 1 , ∂ x 2 , ∂ x 3 )F (m)m; Φ D (Ω),D(Ω) .
Rewriting the third term in σE ,η,κ . Using the Green formula and the fact that Φ = 0 on ∂Ω, one has

Ω U (x , 0)∇ .σ(m) dx = Ω U (x , 0)∇ .(Φ -m.Φ m )dx = Ω (-∇ U (x , 0).Φ + ∇ U (x , 0).m Φ.m)dx = Ω (-(∇ U (x , 0), 0).Φ + ∇ U (x , 0).m m.Φ)dx = -(∇ U (•, 0), 0) + ∇ U (•, 0).m m; Φ D (Ω),D(Ω) .
Rewriting the DM I term in σE ,η,κ . The first term in the DM I.

2 Ω σ(m).∇ × mdx = 2 Ω Φ.∇ × mdx - Ω m.Φ m.∇ × m dx = Φ, 2∇ × m -2m(m.∇ × m) D (Ω),D(Ω) .
The second term in the DM I. By integration by parts, it follows for Φ = 0 on ∂Ω

2 Ω m 3 ∇ .σ(m) + σ(m) 3 ∇ .m dx = 2 Ω (m 3 ∇.(Φ -m.Φm ) + (Φ 3 -m.Φm 3 )∇ .m )dx = 2 Ω ((m 3 ∇ .Φ + Φ 3 ∇ .m ) -(m 3 ∇ (m.Φ).m + m 3 m.Φ∇ .m + m.Φm 3 ∇ .m ))dx = 2 Ω ((-∇ m 3 .Φ + ∇ .m Φ 3 ) -(-∇ .(m 3 m )m.Φ + 2m 3 ∇ .m m.Φ))dx = 2 Ω ((-∂ x 1 m 3 , -∂ x 2 m 3 , ∇ .m ).Φ -(m 3 ∇ .m -∇ m 3 .m )m.Φ)dx (3.12) So, the Euler-Lagrange equation is ∆m = -m|∇ m| 2 + 1 2 ((∂ x 1 , ∂ x 2 , ∂ x 3 )F (m) -m.(∂ x 1 , ∂ x 2 , ∂ x 3 )F (m)m) + 1 η - H 0 + m .Hm + κ 1 (Id -m ⊗ m)∇ × m (3.13) +κ 2 -∇ m 3 ∇ .m + (∇ m 3 .m -m 3 ∇ .m )m in D(Ω),
where

H := ∇ U (•, 0). Denote K(•, m) = -1 2 ((∂ x 1 , ∂ x 2 , ∂ x 3 )F (m) + m.(∂ x 1 , ∂ x 2 , ∂ x 3 )F (m)m) + 1 η H 0 -m .Hm -κ 1 (Id -m ⊗ m)∇ × m -κ 2 -∇ m 3 ∇ .m + (∇ m 3 .m -m 3 ∇ .m )m . (3.14)
Finally, we obtain the Euler-Lagrange equation:

Ω ∇ m∇ Φdx = Ω (m|∇ m| 2 +K(x , m(x ))).Φdx ∀Φ ∈ C ∞ 0 (Ω, R 3 ). (3.15)
Remark 3.5.

(i) By the definition of K, the assumption of the function F and Remark

3.3, then if m ∈ H 1 g (Ω, S 2 ) is a critical point of E ,η,κ , then we have immediately that K ∈ L 2 (Ω, R 3 ). (ii) Since m ∈ H 1 g (Ω, S 2 ) and K ∈ L 2 (Ω, R 3
), then we have m|∇ m|2 +K(x , m(x )) ∈ L 1 (Ω, R 3 ). By a duality argument 2 , this implies that (3.15) holds true for every Φ ∈ H 1 0 ∩ L ∞ (Ω, R 3 ).

Regularity of critical points

In this Section, we prove

Theorem 3.6. Let Ω be a C 1,1 -domain, F ∈ C ∞ (S 2 ) and g : ∂Ω → S 1 be a C 1,1 function. Let m ∈ H 1 g (Ω, S 2 ) be an critical point of E ,η,κ . Then m ∈ C ∞ (Ω) ∩ C 1,α (Ω) for all α ∈ (0, 1 2 ).
For that, we shall split the proof into two parts, the regularity of m in the interior domain and the regularity of m up to the boundary.

Interior regularity

We aim to prove the regularity of the solution (3.13) in the interior of the domain Ω. We follow the method used by Carbou for a slightly different ferromagnetic model in dimension 2 (see [START_REF] Carbou | Regularity for critical points of a non local energy[END_REF]), also by Jost for the interior regularity of harmonic maps into the sphere (see [START_REF] Jost | Riemannian Geometry and Geometric Analysis[END_REF]). For the conveniences, we have some notational conventions:

From now on, we will write 

∇ = (∂ x 1 , ∂ x 2 ) instead of ∇ , ∇.m = ∂ x 1 m 1 + ∂ x 2 m 2 , x ∈ R 2 standing
Ω ∇m∇Φdx = Ω (m|∇m| 2 +K(x, m(x))).Φdx ∀Φ ∈ H 1 0 ∩ L ∞ (Ω, R 3 ). (3.16)
Also, we shall always integrate w.r.t. to the Lebesgue measure dx and this will often be omitted.

The main goal of this section is the following theorem

Theorem 3.7. Let Ω be a C 1,1 simply connected domain, g : ∂Ω → S 1 be a C 1,1 function and m ∈ H 1 g (Ω, S 2 ) be the solution of (3.13). Then m ∈ C ∞ (Ω).
For the continuity of m ∈ C 0 (Ω) we first rely on the result of Wente which is proved in [8, Lemma A.1 and Remark A.1]:

Lemma 3.8. Assume that Ω is a C 1,1 domain in R 2 and f = (f 1 , f 2 ), h = (h 1 , h 2 ) ∈ H 1 (Ω, R 2 ) and u ∈ W 1,1 0 (Ω) is a solution of ∆u = 2 i=1 ∇f i ∇ ⊥ h i , then u ∈ C 0 (Ω).
Proof of Theorem 3.7. The proof is carried out in several steps.

Step AWe prove that m ∈ C 0 (Ω, S 2 ). In this step we only use that K ∈ L 2 (Ω). The fact |m|= 1 a.e implies that:

3 i=1 m i ∂ x k m i = 0, for k = 1, 2.
Then for any i ∈ {1, 2, 3}, we rewrite (3.13) in the form:

-∆m i = 2 k=1 3 j=1 ∂ x k m j (m i ∂ x k m j -m j ∂ x k m i ) + K i , (3.17) 
where

K = (K 1 , K 2 , K 3 ) is denoted as in (3.14).
Remark that in the sense of distributions:

2 k=1 ∂ x k (m i ∂ x k m j -m j ∂ x k m i ) = 2 k=1 (∂ x k m i ∂ x k m j + m i ∂ 2 x k x k m j -∂ x k m j ∂ x k m i -m j ∂ 2 x k x k m i ) = m i ∆m j -m j ∆m i .
Together with (3.16), this implies that

2 k=1 ∂ x k (m i ∂ x k m j -m j ∂ x k m i ) = m i (-m j |∇m| 2 -K j ) -m j (-m i |∇m| 2 -K i ) = -m i K j + m j K i .
Since m is uniformly bounded by 1 and K ∈ L 2 (Ω, R 3 ), then

-m i K j + m j K i ∈ L 2 (Ω). Let b ij be a solution in H 1 (Ω, R 2 ) of ∇.b ij = -m i K j + m j K i in Ω.
Therefore we obtain:

∇.(m i ∇m j -m j ∇m i -b ij ) = 0 in D (Ω).
Applying the Poincaré lemma to (m i ∇m j -m j ∇m i -b ij ) in the simply connected domain Ω , then there exists c ij ∈ H 1 (Ω, R 2 ) such that:

m i ∇m j -m j ∇m i -b ij = ∇ ⊥ c ij in Ω.
Combining with (3.17), this yields

-∆m i = 3 j=1 (∇m j .∇ ⊥ c ij + ∇m j .b ij ) + K i in D (Ω) for any i ∈ {1, 2, 3}. Let α i ∈ C 0 (Ω) ∩ H 1 0 (Ω) be the solution of -∆α i = 3 j=1 ∇m j .∇ ⊥ c ij in Ω, α i = 0 on ∂Ω,
( this is thanks to Theorem 2.3) and β i ∈ C 0,γ (Ω), for some γ ∈ (0, 1), be the solution of

-∆β i = 3 j=1 ∇m j .b ij + K i in Ω β i = m i = g i on ∂Ω. (3.18) Indeed, since b ij ∈ H 1 (Ω, R 2 ) ⊂ L p (Ω, R 2 ) for all 1 ≤ p < ∞, then 3 j=1 ∇m j .b ij + K i ∈ L 2 -(Ω)
, where 2 -is any positive number less than 2. By the standard elliptic theory, since g ∈ C 1,1 (∂Ω, there exists a unique β i ∈ W 2,2 -(Ω) satisfying (3.18) . By the Morrey inequality, β i ∈ C 0,γ (Ω) for some γ. As α i + β i satisfies the PDE

-∆(α i + β i ) = 3 j=1 (∇m j .∇ ⊥ c ij + ∇m j .b ij ) + K i in Ω, α i + β i = g i on ∂Ω,
the uniqueness of the Poisson equation with Dirichlet condition implies that m i = α i + β i . So we have m ∈ C 0 (Ω). In the next step, using m ∈ C 0 (Ω), we are going to sharpen the interior regularity.

Step B We prove m ∈ H 2 loc (Ω, S 2 ).

Step B is a consequence of the following auxiliary result which is inspired by [START_REF] Jost | Riemannian Geometry and Geometric Analysis[END_REF]Theorem 9

.6.1]. Lemma 3.9. Suppose m ∈ C 0 ∩ H 1 (B(x 0 , R), S 2 ) is a solution of (3.16). Then m ∈ H 2 (B(x 0 , R 2 
)), moreover we have the estimate:

||D 2 m|| L 2 (B(x 0 , R 2 )) ≤ C + C||∇m|| L 2 (B(x 0 ,R)) , (3.19) 
where C > 0 depends on R.

Before proving the Lemma 3.9, let us give the following Lemma.

Lemma 3.10. Let Ω ⊂ R 2 be an open domain and m ∈ H 1 ∩ C 0 (Ω, S 2 ) be a solution of (3.16). Then for every 0 > 0, there exist ρ > 0 such that

B(P,ρ) |∇m(x)| 2 η 2 (x)dx ≤ 0 B(P,ρ) |∇η(x)| 2 dx,
for all P ∈ Ω, B(P, ρ) ⊂ Ω and η ∈ H 1 0 (B(P, ρ)).

Proof of the Lemma 3.10. We first work with η ∈ C ∞ 0 (B(P, ρ)).

Choosing Φ(x) = (m(x)- m(P ))η 2 (x) ∈ H 1 0 ∩ L ∞ (Ω, R 3 ) in (3.16
), we obtain

B(P,ρ) ∇m(x)∇((m(x) -m(P ))η 2 (x))dx = B(P,ρ) (m(x)|∇m(x)| 2 +K)((m(x) -m(P ))η 2 (x)dx.
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Hence,

B(P,ρ) |∇m| 2 η 2 = - B(P,ρ) 2η∇η∇m(m(•) -m(P )) + B(P,ρ) |∇m| 2 m.(m(•) -m(P ))η 2 (x) + B(P,ρ) K(•, m(•))(m(•) -m(P ))η 2 ≤ 2 B(P,ρ) η∇η∇m(m(•) -m(P )) + sup B(P,ρ) |m(•) -m(P )| B(P,ρ) |∇m| 2 η 2 + sup B(P,ρ) |m(•) -m(P )|||K(•, m(•), )|| L 2 (B(P,ρ)) ||η|| 2 L 4 (B(P,ρ)) ≤ 1 2 B(P,ρ) |∇m| 2 η 2 + 2 sup B(P,ρ) |m(•) -m(P )| 2 B(P,ρ) |∇η| 2 + sup B(P,ρ) |m(•) -m(P )| B(P,ρ) |∇m| 2 η 2 + Cρ sup B(P,ρ) |m(•) -m(P )| B(P,ρ) |∇η| 2 ,
where we used the Sobolev inequality

Cρ B(0,ρ) |∇η| 2 ≥ B(0,ρ) |η| 4 1/2
, the Young inequality and the fact K ∈ L 2 (Ω, R 3 ) in the last inequality. The Lemma follows because we can make sup x∈B(P,ρ)

|m(x) -m(P )| arbitrarily small by choosing ρ sufficiently small since m is continuous. Finally, we note that, by using the density argument, the conclusion holds for η ∈ H 1 0 (B(P, ρ)). Indeed, for any η ∈ H 1 0 (B(P, ρ)), there exists η k ∈ C ∞ 0 (B(P, ρ)) such that

η k → η a.e η k → η in H 1 (B(P, ρ)).
Then by Fatou's Lemma

B(P,ρ) |∇m| 2 η 2 ≤ lim inf B(P,ρ) |∇m(x)| 2 η 2 k (x)dx ≤ lim inf 0 B(P,ρ) |∇η k (x)| 2 dx = 0 B(P,ρ) |∇η| 2 .
We continue with the proof of Lemma 3.9:

Proof of Lemma 3.9. The idea of the proof is to estimate the term

B(P,ρ) |∇(D h γ m)| 2 ξ 2 ,
where ξ is a good cut-off function to be defined later, D h γ m is γ th -difference quotient of size h defined by

D h γ m(x) = m(x + he γ ) -m(x) h for γ = 1, 2
and P B(P, ρ) cover B(x 0 , R) . For any P ∈ Ω and R > R > 0 such that B(P, R ) ⊂⊂ B(x 0 , R), we choose a test function in (3.16) as Φ = D -h γ (ξ 2 D h γ m), here ξ ∈ C ∞ 0 (B(P, R )) and 0 ≤ ξ ≤ 1 will be chosen later Chapter 3

(see (3.26)). Equation (3.16) implies that

B(P,R ) ∇m∇Φ = B(P,R ) ∇m∇(D -h γ (ξ 2 D h γ m)) = B(P,R ) (m|∇m| 2 +K)D -h γ (ξ 2 D h γ m).
For h sufficiently small depending dist(supp(ζ), ∂B(P, R )), the integration by parts formula for difference quotients

B(P,R ) vD -h γ w = - B(P,R ) wD h γ v
implies that

B(P,R ) ∇m∇(D -h γ (ξ 2 D h γ m)) = B(P,R ) ∇mD -h γ (∇(ξ 2 D h γ m)) = - B(P,R ) D h γ (∇m)∇(ξ 2 D h γ m).
Then

B(P,R ) D h γ (∇m)∇(ξ 2 D h γ m) = - B(P,R ) (m|∇m| 2 +K)D -h γ (ξ 2 D h γ m).
Moreover:

D h γ (∇m)∇(ξ 2 D h γ m) = |∇(D h γ m)| 2 ξ 2 + ∇(D h γ m)2ξ∇ξD h γ m. Then B(P,R ) |∇(D h γ m)| 2 ξ 2 = - B(P,R ) (m|∇m| 2 +K)D -h γ (ξ 2 D h γ m) - B(P,R ) 2ξ∇ξD h γ m∇(D h γ m). (3.20)
We are going to estimate the right hand side of (3.20). First, by Young's inequality,

B(P,R ) 2ξ∇ξD h γ m∇(D h γ m) ≤ 1 B(P,R ) |∇(D h γ m)| 2 ξ 2 + 1 1 B(P,R ) |D h γ m| 2 |∇ξ| 2 , (3.21)
for any 1 > 0.

We assume that 0 < |h|< 1 2 dist(supp(ξ), ∂B(P, R )), then one has (see Evans [START_REF] Evans | Partial differential equations[END_REF])

B(P,R ) |D -h γ (ξ 2 D h γ m)| 2 ≤ C B(P,R ) |∇(ξ 2 D h γ m)| 2 . (3.22)
The second term of RHS-(3.20) is estimated by Young's inequality and (3.22)

B(P,R ) KD -h γ (ξ 2 D h γ m) ≤ 1 2 1 B(P,R ) |K| 2 + 1 2 B(P,R ) |D -h γ (ξ 2 D h γ m)| 2 ≤ 1 2 1 B(P,R ) |K| 2 + 1 2 C B(P,R ) |∇(ξ 2 D h γ m)| 2 ≤ 1 2 1 B(P,R ) |K| 2 + 1 2 C B(P,R ) (8ξ 2 |∇ξ| 2 |D h γ m| 2 +2ξ 4 |∇(D h γ m)| 2 ) ≤ 1 2 1 B(P,R ) |K| 2 + 1 2 C B(P,R ) (8ξ 2 |∇ξ| 2 |D h γ m| 2 +2ξ 2 |∇(D h γ m)| 2 ). (3.23)
Here, in the second inequality, We continue with

B(P,R ) m|∇m| 2 D -h γ (ξ 2 D h γ m) = B(P,R ) D h γ (m|∇m| 2 )ξ 2 D h γ m ≤ B(P,R ) (|D h γ m||∇m| 2 +|m h |(|∇m|+|(∇m) h ||D h γ (∇m)|)ξ 2 |D h γ m| ≤ B(P,R ) |D h γ m| 2 |∇m| 2 ξ 2 + B(P,R ) (|∇m|+|(∇m) h |)|D h γ m||∇(D h γ m)|ξ 2 ≤ B(P,R ) |D h γ m| 2 |∇m| 2 ξ 2 + 1 2 B(P,R ) |∇(D h γ m)| 2 ξ 2 (3.24) + 1 2 1 B(P,R ) (|∇m|+|(∇m) h |) 2 |D h γ m| 2 ξ 2 ,
where m h (x) := m(x + he γ ) and (∇m) h (x) = ∇m(x + he γ ).

Here we have used the formula

D h γ (vw) = v h D h γ w + wD h γ v, for v h (x) := v(x + he γ ). Combining (3.20)-(3.24), 0 ≤ ξ ≤ 1, K ∈ L 2 (Ω)
and choosing 1 small enough, this yields that: Thus, all preceding integrals need to be evaluated only on B(P, ρ). Applying Lemma 3.10

B(P,R ) |∇(D h γ m)| 2 ξ 2 ≤ C(1 + B(P,R ) |D h γ m| 2 |∇ξ| 2 (3.25) + B(P,R ) |∇m| 2 |D h γ m| 2 ξ 2 + B(P,R ) |(∇m) h | 2 |D h γ m| 2 ξ 2 ).
to η = |D h γ m|ξ ∈ H 1 0 ∩ L ∞ (B(x 0 , ρ))
, we obtain:

B(P,ρ) |∇m| 2 |D h γ m| 2 ξ 2 ≤ 0 B(P,ρ) |∇(|D h γ m|ξ)| 2 ≤ 2 0 B(P,ρ) |∇(D h γ m)| 2 ξ 2 + 2 0 B(P,ρ) |D h γ m| 2 |∇ξ| 2 . (3.27)
Similarly, using Lemma 3.10 again with the function m(• + he γ ) we obtain

B(P,ρ) |(∇m) h | 2 |D h γ m| 2 ξ 2 ≤ 2 0 B(P,ρ) |∇(D h γ m)| 2 ξ 2 + 2 0 B(P,ρ) |D h γ m| 2 |∇ξ| 2 . (3.28)
Since |∇ξ|≤ 4 ρ in B(P, ρ), (3.25), (3.27), (3.28), we choose 0 small enough, then for 0 < |h|< dist(supp(ξ), ∂B(P, ρ)), we get

B(P,ρ) |∇(D h γ m)| 2 ξ 2 ≤ C(1 + B(P,ρ) |D h γ m| 2 |∇ξ| 2 ) ≤ C(1 + 16 ρ 2 B(P,ρ) |∇m| 2 ). (3.29)
The properties of ξ imply that

B(P, ρ 2 ) |∇(D h γ m)| 2 ≤ B(P,ρ) |∇(D h γ m)| 2 ξ 2 ≤ C(1 + 16 ρ 2 B(P,ρ) |∇m| 2 ) ≤ C + C ρ 2 B(P,ρ) |∇m| 2 . (3.30)
Covering B(x 0 , R 2 ) by balls B(P, ρ 2 ) with B(P, ρ) ⊂ B(x 0 , R), we obtain the desired estimate for

B(x 0 , R 2 ) |D 2 m| 2 .
This finished the proof of Lemma 3.10. By Lemma (3.10), Step B (i.e. m ∈ H 2 loc (Ω, S 2 )) follows immediately.

Step C The aim of this step is to prove that m ∈ H 3 loc (Ω). By Step B and Lemma 3.4, we know that m ∈ H 2 loc (Ω) , H ∈ H 1 loc (Ω), where H is defined as (H = ∇U (•, 0)). First, we claim that K ∈ H 1 loc (Ω). Indeed, we note

|∇(m.(∇, ∂ x 3 )F (m)m)|≤ C(|D 2 F (m)||m|+|∇m||(∇, ∂ x 3 )F (m)||m|), |∇(m Hm)|≤ C(|∇H||m| 2 +|∇m||H||m|), |∇((m ⊗ m)∇ × m)|≤ C(|∇m| 2 |m|+|D 2 m||m| 2 ) and |∇((-∇m 3 .m -m 3 ∇.m )m)|≤ C(|D 2 m||m| 2 +|∇m| 2 |m|).
Combining the definition of K (see (3.14)), these above facts and the regularities of m, H, F

(m ∈ H 2 loc ⊂ W 1,p loc for all 1 ≤ p < ∞, H ∈ H 1 loc ⊂ L p loc (Ω), F ∈ C ∞ ), this yields K ∈ H 1 loc (Ω, R 3
). We want to apply the standard interior elliptic regularity to equation

-∆m = m|∇m| 2 +K(•, m(•)) in D (Ω). (3.31)
The principal difficulty of this step is to deal with the term m|∇m| 2 . Observe that:

∇(m|∇m| 2 ) = ∇m|∇m| 2 +2mD 2 m∇m.
The first term ∇m|∇m| 2 ∈ L p for all p < +∞. For the second term, one has D 2 m ∈ L 2 loc (Ω), m∇m ∈ L p loc (Ω) for all 1 ≤ p < ∞, thus mD 2 m∇m ∈ L q for all 1 ≤ q < 2. It then suffices to show that |D 2 m||∇m|∈ L 2 loc (Ω). It is a direct consequence of the following lemma:

Lemma 3.11. Suppose K ∈ H 1 (B(x 0 , R)) and m ∈ H 2 (B(x 0 , R), S 2 )(⊂ C 0 (B(x 0 , R), S 2 )) is a solution of (3.16). Then B(x 0 , R 2 ) |∇m| 2 |D 2 m| 2 < +∞. (3.32) Moreover m ∈ H 3 loc (B(x 0 , R), S 2 ).
Chapter 3

Proof of Lemma 3.11. Since (3.16), one has

B(x 0 ,R) ∂ xγ (∇m).∇Φ = - B(x 0 ,R) ∇m.∂ xγ (∇Φ) = - B(x 0 ,R) (m|∇m| 2 +K).∂ xγ Φ (3.33)
for all Φ ∈ C ∞ 0 (B(x 0 , R), R 3 ) and γ ∈ {1, 2}. By a density argument, this implies that (3.33) holds true for every Φ ∈ H 1 0 (B(x 0 , R)). Denote: ω L = min{L, |∇m| 2 }, with L > 0. We remark that:

ω L ∈ L ∞ (B(x 0 , R)), ∇ω L (x) = 0 a.e. in {x : |∇m(x)| 2 > L}. It implies that |∇ω L |≤ 2|D 2 m|ω 1/2 L , (3.34) in particular ω L ∈ H 1 (B(x 0 , R)). Choosing Φ = η 2 ω L ∂ xγ m ∈ H 1 0 (B(x 0 , R), R 3 ) in (3.33) where η ∈ C ∞ 0 (B(x 0 , R)) with 0 ≤ η ≤ 1 will be defined later (see (3.43)), then B(x 0 ,R) ∂ xγ (∇m).∇(η 2 ω L ∂ xγ m) = - B(x 0 ,R) (m|∇m| 2 +K).∂ xγ (η 2 ω L ∂ xγ m). (3.35) 
We now develop the right hand side of (3.35).

Estimate of the first term of the RHS of (3.35). The properties of the function η and (3.34) yield that

B(x 0 ,R) m|∇m| 2 .∂ xγ Φ = B(x 0 ,R) m|∇m| 2 .∂ xγ (η 2 )ω L ∂ xγ m + B(x 0 ,R) m|∇m| 2 .η 2 ∂ xγ ω L ∂ xγ m + B(x 0 ,R) m|∇m| 2 η 2 .ω L ∂ 2 xγ xγ m ≤ C B(x 0 ,R) |∇η||∇m| 2 ω L |∇m| +2 B(x 0 ,R) |∇m| 2 |D 2 m|ω 1/2 L |∇m|+ B(x 0 ,R) |∇m| 2 η 2 ω L |D 2 m| ≤ C B(x 0 ,R) |∇η||∇m| 5 +3 B(x 0 ,R) |∇m| 4 |D 2 m|.
Using the Young inequality, we then obtain

B(x 0 ,R) |∇m| 4 |D 2 m|≤ 1 2 B(x 0 ,R) |∇m| 8 + 1 2 B(x 0 ,R) |D 2 m| 2 .
We deduce that

B(x 0 ,R) m|∇m| 2 .∂ xγ Φ ≤ C B(x 0 ,R) |∇η||∇m| 5 + 3 2 B(x 0 ,R) |∇m| 8 + B(x 0 ,R) |D 2 m| 2 < ∞. (3.36)
Estimate of the second term of the RHS of (3.35). Similarly to the above estimate, since

K ∈ H 1 (B(x 0 , R)) then K ∈ L p (B(x 0 , R)) for all 1 ≤ p < ∞, then B(x 0 ,R) K.∂ xγ (η 2 ω L ∂ xγ m) (3.37) = B(x 0 ,R) K.(∂ xγ (η 2 )ω L ∂ xγ m + η 2 ∂ xγ ω L ∂ xγ m + η 2 ω L ∂ 2 xγ xγ m) ≤ B(x 0 ,R) |K|(C|∇η|ω L |∇m|+2|D 2 m|ω 1/2 L |∇m|+ω L |D 2 m|) ≤ B(x 0 ,R) (C|K||∇η||∇m| 3 +3|K||D 2 m||∇m| 2 ). ≤ C |K||∇η||∇m| 3 L 1 + 3||D 2 m|| L 2 |K||∇m| 2 L 2 . (3.38)
Therefore, all terms on the right hand side of (3.35) remain bounded as L → ∞. The same then has to happen for the left hand side of (3.35). Therefore,

lim sup L→∞ 2 γ=1 B(x 0 ,R) ∂ xγ (∇m).∇(η 2 ω L ∂ xγ m) < C. (3.39)
The expression in modulus can be written as

2 γ=1 B(x 0 ,R) ∂ xγ (∇m).∇(η 2 ω L ∂ xγ m) = 2 γ=1 B(x 0 ,R) ∂ xγ (∇m).2η∇ηω L ∂ xγ m + B(x 0 ,R) ∂ xγ (∇m).η 2 ∇ω L ∂ xγ m + B(x 0 ,R) ∂ xγ (∇m).η 2 ω L ∇(∂ xγ m) . (3.40)
We denote ω := |∇m| 2 in B(x 0 , R).

Since ∂ xγ ω = 2∂ xγ (∇m).∇m for γ = 1, 2 and ∇ω L = 0 in {ω > L}, then the second integral of the right hand side of (3.40) can rewrite as

B(x 0 ,R) 2 γ=1 ∂ xγ (∇m).η 2 ∇ω L ∂ xγ m = 1 2 {ω≤L} η 2 |∇ω| 2 , (3.41) 
and it is non-negative.

For the first term in right hand side of (3.40), by the Young inequality,

2 γ=1 B(x 0 ,R) ∂ xγ (∇m).2η∇ηω L ∂ xγ m ≤ B(x 0 ,R) |D 2 m| 2 +C B(x 0 ,R) |∇m| 6 |∇η| 2 η 2 < +∞. (3.42) Recalling 0 ≤ η ≤ 1, |∇η|≤ 2 R in B(x 0 , R), (3.43) 
and combining with (3.40) - (3.42), this implies that

2 γ=1 B(x 0 , R 2 ) |∂ xγ (∇m)| 2 ω L < C
uniformly in L > 0 for γ = 1, 2 Applying Fatou's Lemma, we obtain that

B(x 0 , R 2 ) |D 2 m| 2 |∇m| 2 ≤ C.
We then apply the interior elliptic regularity to (3.31) with the the fact that the right hand side of (3.31) 

H ∈ H k-1 loc (Ω). Therefore, D k-1 m, D k-2 H ∈ L p loc , 1 ≤ p < ∞ and D r m, D r-1 H ∈ L ∞ for r ∈ N and r ≤ k -2.
Using the Leibniz rule, one has

|D k-1 (m|∇m| 2 )|≤ C p+q+r=k+1 k-1≥p≥0,k≥q,r≥1
|D p m||D q m||D r m| .

This implies that m|∇m| 2 ∈ H k-1 loc (Ω). We use the same argument to estimate K given in (3.14), here we only check the term mHm, the other terms are estimated analogously:

|D k-1 (mHm)|≤ C p+q+r=k-1 |D p m||D q H||D r m| .
This implies that mHm ∈ H k-1 loc (Ω). Therefore K ∈ H k-1 loc (Ω). Applying the interior elliptic regularity to (3.13), combined with Claim 2, by bootstrap, we obtain that m ∈ H k loc (Ω) for every k ∈ N. Finally, by the Morrey inequality, we conclude m ∈ C ∞ (Ω).

Regularity at the boundary

In this part, we study the regularity at the boudary of the critical points of E ,η,κ . Our strategy is firstly to adapt the method used in the interior regularity to obtain that m ∈ H 2 (Ω). We recall that by Step A of the proof of Theorem 3.7, m ∈ C 0 (Ω). We then expect to transfer the boundary regularity problem to the local interior regularity by a diffeomorphism mapping. In fact, it boosts the regularity becoming

∂ τ m ∈ H 1 (V ) and ∂ ν m ∈ W 1,1 (V )
where τ, ν are the tangent and normal vectors, respectively which are well-defined in a tabular neighborhood V of the boundary ∂Ω. We split this part into some steps.

Step A Prove that m ∈ H 2 (Ω). Let us fix x 0 ∈ ∂Ω and note that since ∂Ω ∈ C 1,1 , to simply notation, we may assume that x 0 = (0, 0) and up to rotation

Ω ∩ B(x 0 , r) = {x ∈ B(x 0 , r)|x 2 > γ(x 1 )},
for some r > 0 and some C 1,1 function γ : (-r, r) → R, γ(0) = 0. We change coordinates near a point x 0 = (0, 0) ∈ ∂Ω so as to "flatten out" the boundary. We define ψ = (ψ 1 , ψ 2 ) : Ω ∩ B(x 0 , r) → R 2 as

ψ 1 (x 1 , x 2 ) = x 1 ψ 2 (x 1 , x 2 ) = x 2 -γ(x 1 ), and φ = (φ 1 , φ 2 ) = ψ -1 : B(x 0 , r) ∩ {y 2 > 0} → R 2 φ 1 (y 1 , y 2 ) = y 1 φ 2 (y 1 , y 2 ) = y 2 + γ(y 1 ).
Then φ = ψ -1 and the mapping ψ straightens out ∂Ω near x 0 = (0, 0). Observe also that det∇ψ = det∇φ = 1.

We choose s > 0 so small the half-ball B + (x 0 , s) := B(x 0 , s) ∩ {y 2 > 0} lies in ψ(Ω ∩ B(x 0 , r)). We also extend the function g into R 2 , still denote g and g

∈ C 1,1 (R 2 ). Let us define m = m • φ in B + (x 0 , s) , g = g • φ on ∂B + (x 0 , s)). Since ∂Ω ∈ C 1,1 and g ∈ C 1,1 (∂Ω), then Φ ∈ C 1,1 and g ∈ C 1,1 .
We have the Euler-Lagrange equation in the half-ball B + (x 0 , s) Lemma 3.12. The Euler-Lagrange equation for m on B + (x 0 , s) writes

B + (0,s) ∇mA(y).∇ΦA(y) -m(y)|∇mA(y)| 2 .Φ(y) -K.Φ(y) = 0 (3.44) for all test function Φ ∈ H 1 0 ∩ L ∞ (B + (x 0 , s), R 3 
), where the matrix A is defined as

A(y) = ∇ψ(φ(y))
and

K(y) = K • φ(y).
The proof of Lemma 3.12. Equation (3.16) and Remark 3.5 give

Ω∩B(x 0 ,r) ∇m.∇Φdx = Ω∩B(x 0 ,r) (m|∇m| 2 +K)Φdx, ∀Φ ∈ H 1 0 ∩ L ∞ (Ω ∩ B(x 0 , r)).
Then

φ(B + (x 0 ,s)) ∇m.∇Φdx = φ(B + (x 0 ,s)) (m|∇m| 2 +K)Φdx, ∀Φ ∈ H 1 0 ∩ L ∞ (B + (x 0 , s)).
As m = m • φ -1 and Φ = Φ • φ, by the change of variable φ(y) = x,

B + (x 0 ,s) ∇m∇(φ -1 )(φ).∇Φ∇(φ -1 )(φ)|det∇φ|dy = B + (x 0 ,s) (m|∇m∇(φ -1 )(φ)| 2 +K • φ)Φ|det∇φ|dy.
The conclusion of Lemma 3.12 is implied by the fact |det∇φ|= 1.

From now on, we use m, Φ, K instead of m, Φ, K, respectively, and denote B(x 0 , s) by B(s). By the smoothness of the boundary, we can assume g ∈ C 1,1 (B + (s)) ⊂ H 2 (B + (s)).

Remark 3.13. We now remark that equation (3.44) can be considered as

B + (s) a αβ ∂ α m∂ β Φ = B + (s) (m|∇mA| 2 +K)Φ for all Φ ∈ H 1 0 ∩ L ∞ (B + (s)), (3.45) 
where (a αβ ) αβ = AA T . We have the following:

(i) (a αβ ) α,β is Lipschitz continuous on B + (s) (ii) λ -1 |ξ| 2 ≤ a αβ ξ α ξ β ≤ λ|ξ| 2 for all ξ ∈ R 2 . Lemma 3.14. Suppose m ∈ C 0 (B + (s))∩H 1 (B + (s)) is a solution of (3.45) with m = (g, 0) on ∂B + (s) ∩ R. Then ∂ x 1 m ∈ H 1 (B + (ρ/2
)), for some ρ > 0.

Proof. The idea of the proof is similar to the interior case, we estimate the term

B + (s) |∇(D h 1 m)| 2 ξ 2
, where ξ is a good cut-off function. We choose a test function in (3.45) as

Φ = D -h 1 (ξ 2 D h 1 (m -g)) ∈ H 1 0 ∩ L ∞ (B + (s))
where ξ ∈ C ∞ 0 (B(s)), 0 ≤ ξ ≤ 1 will be chosen later (see (3.57)) and D h 1 is defined by

D h 1 m(x) := m(x + he 1 ) -m(x) h .
By a discrete integration by parts and (3.45), we have that

B + (s) D h 1 (a αβ ∂ α m)∂ β (ξ 2 D h 1 (m -g)) = - B + (s) a αβ ∂ α m.D -h 1 (∂ β (ξ 2 D h 1 (m -g))) = - B + (s) a αβ ∂ α m.∂ β (D -h 1 (ξ 2 D h 1 (m -g)) = - B + (s) (m|∇mA| 2 +K).D -h 1 (ξ 2 D h 1 (m -g)). (3.46) 
Moreover

D h 1 (a αβ ∂ α m)∂ β (ξ 2 D h 1 (m -g)) (3.47) = D h 1 a αβ ∂ α m2ξ∂ β ξD h 1 (m -g) + D h 1 a αβ ∂ α mξ 2 ∂ β (D h 1 (m -g)) +a αβ,h D h 1 (∂ α m)2ξ∂ β ξD h 1 (m -g) + a αβ,h D h 1 (∂ α m)ξ 2 ∂ β (D h 1 (m -g)),
where a αβ,h (x) = a αβ (x + he 1 ).

Combining with (3.46), this yields that

B + (s) a αβ,h ∂ α (D h 1 m)∂ β (D h 1 m)ξ 2 = - B + (s) (m|∇mA| 2 +K)D -h 1 (ξ 2 D h 1 (m -g)) + B + (s) a αβ,h ∂ α (D h 1 m)∂ β (D h 1 g)ξ 2 - B + (s) D h 1 a αβ ∂ α m2ξ∂ β ξD h 1 (m -g) - B + (s) D h 1 a αβ ∂ α mξ 2 ∂ β (D h 1 (m -g)) - B + (s) a αβ,h D h 1 (∂ α m)2ξ∂ β ξD h 1 (m -g). (3.48) 
We estimate the second term of RHS of (3.48) as follows

B + (s) a αβ,h ∂ α (D h 1 m)∂ β (D h 1 g)ξ 2 ≤ ||a αβ,h || L ∞ 0 B + (s) |∇(D h 1 m)| 2 ξ 2 + 1 4 0 B + (s) |∇(D h 1 g)| 2 ξ 2 (3.49) ≤ C 0 B + (s) |∇(D h 1 m)| 2 ξ 2 + C 0 ( 0 ) .
As for the third term,

B + (s) D h 1 a αβ ∂ α m2ξ∂ β ξD h 1 (m -g) ≤ ||D h 1 a αβ || L ∞ B + (s) |∇ξ| 2 |∇m| 2 + B + (s) |D h 1 (m -g)| 2 ξ 2 (3.50) ≤ ||∇a αβ || L ∞ B + (s) C s 2 |∇m| 2 +2 B + (s) |D h 1 m| 2 ξ 2 + 2 B + (s) |D h 1 g| 2 ξ 2 ≤ C 0 .
Here we have used the fact that |∇ξ|≤ C s in B + (s) (see (3.57)). For the fourth term

B + (s) D h 1 (a αβ )∂ α mξ 2 ∂ β (D h 1 (m -g)) ≤ ||D h 1 a αβ || L ∞ B + (s) 1 4 0 |∇m| 2 ξ 2 + B + (s) 0 |∇(D h 1 (m -g))| 2 ξ 2 ≤ ||∇a αβ || L ∞ B + (s) 1 4 0 |∇m| 2 ξ 2 + B + (s) 2 0 |∇(D h 1 m)| 2 ξ 2 + B + (s) 2 0 |∇(D h 1 g)| 2 ξ 2 ≤ C 0 B + (s) 2 0 |∇(D h 1 m)| 2 ξ 2 + C( 0 ) . (3.51) 
We now estimate the last term

B + (s) a αβ,h D h 1 (∂ α m)2ξ∂ β ξD h 1 (m -g) ≤ ||a αβ || L ∞ 0 B + (s) |D h 1 (∇m)| 2 ξ 2 + 2 0 B + (s) |∇ξ| 2 (|D h 1 m| 2 +|D h 1 g| 2 ) ≤ C 0 0 B + (s) |D h 1 (∇m)| 2 ξ 2 + C( 0 ) ( by (3.57)). (3.52)
We proceed to estimating the first term of RHS of (3.48), firstly,

B + (s) K.D -h 1 (ξ 2 D h 1 (m -g)) ≤ 1 4 0 B + (s) |K| 2 + 0 B + (s) |D -h 1 (ξ 2 D h 1 (m -g))| 2 ≤ 1 2 0 B + (s) |K| 2 + 0 B + (s) |∇(ξ 2 D h 1 (m -g))| 2 ≤ 1 4 0 B + (s) |K| 2 +2 0 B + (s) ξ 4 |∇(D h 1 (m -g))| 2 +8 0 B + (s) ξ 2 |∇ξ| 2 |D h 1 (m -g)| 2 ≤ 1 4 0 B + (s) |K| 2 +4 0 B + (s) ξ 2 |∇(D h 1 (m))| 2 +4 0 B + (s) ξ 2 |∇(D h 1 (g))| 2 +16 0 B + (s) |∇ξ| 2 |D h 1 (m)| 2 +16 0 B + (s) |∇ξ| 2 |D h 1 (g)| 2 .
As K ∈ L 2 (B + (s), and |∇ξ|≤ C s in B + (s), (see (3.57)), then we obtain

B + (s) KD -h 1 (ξ 2 D h 1 (m-g)) ≤ 4 0 B + (s) ξ 2 |∇(D h 1 (m))| 2 +16 0 B + (s) |∇ξ| 2 |D h 1 (m)| 2 +C( 0 ).
(3.53) By the discrete integration by parts, we estimate the remain term in RHS of (3.48):

B + (s) m|∇mA| 2 D -h 1 (ξ 2 D h 1 (m -g)) = B + (s) D h 1 (m|∇mA| 2 )ξ 2 D h 1 (m -g) ≤ B + (s) |D h 1 m||∇mA| 2 +|D h 1 (∇mA)| |∇mA|+|(∇mA) h | ξ 2 |D h 1 (m -g)|,
where (∇m) h (x) := ∇m(x + he 1 ) and (∇mA) h (x) := (∇mA)(x + he 1 ). We estimate:

B + (s) |D h 1 m||∇mA|ξ 2 |D h 1 (m -g)|≤ C B + (s) |D h 1 m| 2 |∇m| 2 +|D h 1 g| 2 |∇m| 2 , B + (s) |D h 1 (∇mA)||∇mA|ξ 2 |D h 1 (m -g)| ≤ 0 2 B + (s) |D h 1 (∇mA)| 2 + 1 C 0 B + (s) |∇m| 2 |D h 1 m| 2 ξ 2 + |∇m| 2 |D h 1 m| 2 ξ 2 and B + (s) |D h 1 (∇mA)||(∇mA) h |ξ 2 |D h 1 (m -g)| ≤ 0 2 B + (s) |D h 1 (∇mA)| 2 + 1 C 0 B + (s) |(∇m) h | 2 |D h 1 m| 2 ξ 2 + |(∇m) h | 2 |D h 1 m| 2 ξ 2
for any 0 > 0. Here we have used Remark 3.13 and Young's inequality to obtain the above estimates.

The above estimates imply that

B + (s) m|∇mA| 2 D -h 1 (ξ 2 D h 1 (m -g)) ≤ 0 B + (s) |D h 1 (∇m)| 2 ξ 2 + C( 0 ) B + (s) |∇m| 2 |D h 1 m| 2 ξ 2 + B + (s) |(∇m) h | 2 |D h 1 m| 2 ξ 2 + C( 0 ). (3.54)
From (3.49)-(3.54), choose 0 small enough, we then obtain

B + (s) |∇(D h 1 m)| 2 ξ 2 ≤ C 1 + B + (s) |∇m| 2 |D h 1 m| 2 ξ 2 + B + (s) |(∇m) h | 2 |D h 1 m| 2 ξ 2 . (3.55)
Similar to the interior regularity, it remains to estimate the term

B + (s) |∇m| 2 |D h 1 m| 2 ξ 2 + B + (s) |(∇m) h | 2 |D h 1 m| 2 ξ 2 (3.56)
to conclude the proof of the Lemma 3.14.

For 1 > 0, we choose ρ > 0 as in the Lemma 3.15 below and choose ξ ∈

C ∞ 0 (B(s)) with 0 ≤ ξ ≤ 1 in B(s) satisfying ξ = 1 in B( s 2 
) and |∇ξ|≤ 4 s in B(s).

(3.57)

Applying the Lemma 3.15 to

η = |D h 1 m|ξ ∈ H 1 0 ∩ L ∞ (B + (ρ)), B + (ρ) |∇m| 2 |D h 1 m| 2 ξ 2 ≤ 1 B + (ρ) |∇[(D h 1 m)ξ]| 2 +C B + (ρ) |D h 1 m| 2 ξ 2 ≤ 2 1 B + (ρ) |∇(D h 1 m)| 2 ξ 2 + 2 1 B + (ρ) |D h 1 m| 2 |∇ξ| 2 +C B + (ρ) |D h 1 m| 2 ξ 2 . (3.58)
The properties of η yields that

B + (ρ) |D h 1 m| 2 |∇ξ| 2 ≤ 16 ρ 2 supp(ξ)∩B + (ρ) |D h 1 m| 2 ≤ C B + (ρ) |∇m| 2 ,
and

B + (ρ) |D h 1 m| 2 ξ 2 ≤ supp(ξ)∩B + (ρ) |D h 1 m| 2 ≤ C B + (ρ) |∇m| 2 for 0 < |h|< 1 2 (dist(supp(ξ), (-ρ, ρ) × {0})). This implies that B + (ρ) |∇m| 2 |D h 1 m| 2 ξ 2 ≤ 2 1 B + (ρ) |∇(D h 1 m)| 2 ξ 2 + C B + (ρ) |∇m| 2 .
These arguments apply similarly to the term

B + (s) |(∇m) h | 2 |D h 1 m| 2 ξ 2 .
We then obtain that

B + (ρ) |(∇m) h | 2 |D h 1 m| 2 ξ 2 ≤ 2 1 B + (ρ) |∇(D h 1 m)| 2 ξ 2 + C B + (ρ) |∇m| 2 .
Combining with(3.55) and choosing 1 small enough, it yields

B + (ρ/2) |∇(D h 1 m)| 2 ≤ B + (ρ) |∇(D h 1 m)| 2 ξ 2 ≤ C + C B + (ρ/2) |∇m| 2 .
The proof of Lemma 3.14 is completed.

We note that, by (3.45), one gets

α,β -∂ β (a αβ ∂ α m) = (m|∇mA| 2 +K) in B + (ρ). (3.59) Using a αβ ∈ W 1,∞ (B + (ρ)), ∂ 1 m ∈ H 1 (B + (ρ/ 2 
)) and the right hand side of (3.59) belong to L 1 (B + (ρ)), we then obtain that a 22 ∂ 22 m ∈ L 1 (B + (ρ/2)). We recall that by Remark 3.13, 0 < 1 λ < a 22 . Therefore

∂ 22 m ∈ L 1 (B + (ρ/2)). We know that ∂ 22 m ∈ L 1 (B + (ρ/2)), ∂ 12 m ∈ L 2 (B + (ρ/2)).
Using the anisotropic Sobolev embedding (see [START_REF] Haškovec | A note on the anisotropic generalizations of the sobolev and morrey embedding theorems[END_REF]Theorem 1], also [42, Theorem 2]), we get ∂ 2 m ∈ L 4 (B + (ρ/2)). Thus the RHS of (3.59) belongs to L 2 (B + (ρ/2)). The standard elliptic regularity deduces that m ∈ H 2 (B + (ρ/2)). Finally, we get m ∈ H 2 (Ω).

Step B Hölder regularity. Up to now, we know that m ∈ H 2 (Ω, S 2 ), that implies m ∈ C 0,α (Ω, S 2 ), for some 0 < α < 1. We now want to improve the regularity at the boundary to C 1,α (Ω), ∀ 0 < α < 1 2 . Since m ∈ H 2 (Ω, S 2 ), then ∇m ∈ L q , ∀ 1 ≤ q < ∞. In particular, extending by 0 outside Ω, one has (∇m)1 Ω ∈ H s (R 2 ) for 0 < s < 1 2 . These above facts imply that ∇(m|∇m| 2 ) ∈ W 1,q (Ω), ∀1 ≤ q < 2. Indeed, one has

∇(m|∇m| 2 ) = ∇m|∇m | 2 +2mD 2 m∇m ∈ L q (Ω), ∀1 ≤ q < 2.
We note that if ζ ∈ W 1,q (Ω) for all 1 ≤ q < 2, then by the Sobolev embedding, ζ ∈ H s (Ω) for all 0 < s < 1. Therefore, we obtain that m|∇m| 2 ∈ H s (Ω) for all 0 < s < 1. We now use again the formula

F(U (•, 0))(ξ) = 1 2|ξ| F((∇.m )1 Ω )(ξ)
to obtain that for s < 1 2 :

R 2 |ξ| 2+2s |F(U (•, 0))(ξ)| 2 = R 2 1 4 |ξ| 2s |F((∇.m )1 Ω )(ξ)| 2 = 1 4 ||(∇ .m)1 Ω || 2 Ḣs (R 2 ) < ∞. (3.60) This leads to ∇U ∈ H s (R 2 ), therefore H = ∇U (•, 0)1 Ω ∈ H s (R 2 ) for s < 1 2 .
Then m Hm ∈ H s (Ω) for all 0 < s < 1 2 . Back to (3.13), since m ∈ H 2 (Ω), F is smooth, H, m Hm ∈ H s for all 0 < s < 1 2 , then we deduce the right hand side of (3.13) belongs to H s (Ω) for all 0 < s < 1 2 . Using the elliptic regularity with the fact that m = (g, 0) ∈ C 1,1 (∂Ω), we then obtain that m ∈ H s+2 (Ω) for all 0 < s < 1 2 . The Morrey embedding leads that m ∈ C 1,α (Ω) for all 0 < α < 1 2 . We finish this Chapter by Lemma 3.15. Support m ∈ C 0 (B + (s))∩H 1 (B + (s)) is a solution of (3.45) with m = (g, 0) on ∂B + (s). Then for every > 0, there exists ρ > 0 such that

B + (ρ) |∇m| 2 η 2 ≤ B + (ρ) |∇η| 2 +C B + (ρ) η 2 , (3.61) for all η ∈ H 1 0 ∩ L ∞ (B + (s)) and η = 0 on B + (s)\B + (s/2). Proof of Lemma 3.15. Choose Φ(x) = (m(x) -g(x))η 2 ∈ H 1 0 ∩ L ∞ (B + (s)) in (3.45), we have B + (s) a αβ ∂ α m∂ β ((m -g)η 2 ) = B + (s) (m|∇mA| 2 +K)((m -g)η 2 ).
(3.62)

Then B + (s) a αβ ∂ α m∂ β mη 2 = - B + (s) a αβ ∂ α m2η∂ β η(m -g) + B + (s) a αβ ∂ α mη 2 ∂ β g + B + (s) (m|∇mA| 2 +K)(m -g)η 2 . (3.63)
Chapter 3

We estimate the first term in the RHS

B + (s) a αβ ∂ α m2η∂ β η(m -g) ≤ ||a αβ || L ∞ B + (s) |∇m| 2 η 2 + 4 B + (s) |∇η| 2 (m -g) 2 .
As for the second term, one has

B + (s) a αβ ∂ α m∂ β gη 2 ≤ ||a αβ || L ∞ 2 B + (s) |∇m| 2 η 2 + 1 2 B + (s) |∇g| 2 η 2 .
Moreover

B + (s) m|∇mA| 2 (m -g)η 2 ≤ sup B + (s) |(m -g)| B + (s) |∇mA| 2 η 2 , B + (s) K(m -g)η 2 ≤ sup B + (s) |(m -g)|||K|| L 2 ||η|| 2 L 4 ≤ Cs sup B + (s) |(m -g)||K|| L 2 ||∇η|| 2 L 2 .
Here, we have used the Sobolev inequality

Cρ B + (s) |∇η| 2 ≥ B + (s) |η| 4 1/2
in the last line. The proof of Lemma follows because m = g on ∂B + (s) and we can make sup

Chapter 4

Introduction and statements of the main results

Abstract

This chapter is based on a work (see [START_REF] Bousquet | On the poincaré lemma on domains[END_REF]) in collaboration with my adviser Pierre Bousquet.

We give motivations as well as results on the Poincaré lemma. We also introduce basic methodologies to tackle our problems.

An overview of the Poincaré lemma

The central theme of this work is the Poincaré lemma on a domain with a Dirichlet boundary condition. The Poincaré lemma amounts to saying that a closed differential form is exact. Our interest is in a sharp version of the Poincaré lemma regarding the regularity of the domain. To formulate the motivation, we start from the divergence equation on a bounded domain Ω in R n , under the Dirichlet boundary condition. Given p ∈ (1, +∞) and a function f ∈ L p (Ω), we look for a vector field X ∈ W 1,p (Ω, R n ) which satisfies the two following conditions: div X = f in Ω, X = 0 on ∂Ω.

In view of the Dirichlet boundary condition, a necessary condition for the existence of a solution X is

Ω f dx = Ω div X dx = ∂Ω X, ν dσ = 0.
Here, we assume that Ω is at least Lipschitz regular, in order to use the integration by parts formula.

A standard way of tackling this equation is to solve the Poisson equation ∆u = f in Ω to get a solution u in W 2,p (Ω), which classically requires that Ω be C 1,1 , see e.g. [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 9.15]. The vector field X = ∇u then satisfies div X = ∆u = f and belongs to W 1,p (Ω). If one further imposes a Neumann boundary condition for u, namely ∂u ∂ν = 0 on ∂Ω, then the normal component of X vanishes on ∂Ω. It is then possible to modify X to cancel its tangential component, see e.g. [13, Theorem 9.2, Remark 9.3 (iii)]. In a similar way, if f belongs to the Hölder space C 0,α (Ω) for some α ∈ (0, 1), then one gets a C 1,α (Ω) solution X by the elliptic regularity theory in these spaces, see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 6.31]. Here, Ω is assumed to be C 2,α .

The main drawback of this approach is that it requires a stronger regularity assumption for the domain Ω than the one naturally expected. This leads to the two following questions: for f ∈ L p (Ω), is it possible to solve (4.1) when Ω is merely Lipschitz? And when f ∈ C 0,α (Ω), is it enough to assume that Ω is C 1,α to get a solution X ∈ C 1,α (Ω)?

There are several alternative strategies to prove that the answer to the first question is positive, see e.g. [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF]Remark 9.3] and [START_REF] Russ | A survey about the equation divu = f in bounded domains of R n[END_REF] for references. In the setting of Hölder spaces, we are not aware of any such result in the literature. Naturally, one can formulate similar questions in higher order Sobolev and Hölder spaces. For instance, given a nonnegative integer r and f ∈ C r,α (Ω) such that Ω f dx = 0, can one find a solution X ∈ C r+1,α (Ω) to (4.1) provided that Ω is C r+1,α ?

The divergence equation can be seen as a particular case of the Poincaré lemma, when the right hand side f is identified to an n form. More generally, when f is a differential form of degree k ∈ {1, . . . , n}, we can consider the differential form equation:

dX = f in Ω, X = 0 on ∂Ω,
where d is the exterior derivative operator. Now, a solution X is a (k -1) form on Ω.

Assuming that f has C r,α (Ω) coefficients, one expects to find a solution X with C r+1,α (Ω) coefficients, provided some necessary conditions are satisfied: f should be a closed form, satisfy certain boundary conditions and be orthogonal to a certain set of harmonic forms on Ω (in connection with a possible non trivial topology of the domain). Once again, it is possible to solve the Poincaré lemma in the scale of Sobolev or Hölder spaces, by relying on the elliptic regularity theory. However, to get a solution in C r+1,α (Ω), this strategy requires that Ω be at least a C r+2,α domain, namely one degree of differentiability higher than the solution itself. In this article, we establish that the Poincaré lemma holds true in the scale of Hölder and Sobolev spaces when the domain has the same order of differentiability as the expected solutions. Hence, the solvability of the divergence equation in W 1,p 0 (Ω) under the natural assumption that Ω be Lipschitz is not a peculiarity of the 0 order Sobolev case: it remains true in the setting of differential forms, in Hölder spaces as well as higher order Sobolev spaces.

The statements of the main results

The divergence problem

Our first result answers the divergence problem in the scale of Hölder spaces. Assume that the right hand side of equation (4.1) belongs to the Banach space

C r,α H (Ω) := f ∈ C r,α (Ω) : Ω f (x)dx = 0 .
We look for a vector field X in the Banach space

C r+1,α z (Ω, R n ) := X ∈ C r+1,α (Ω, R n ) : X = 0 on ∂Ω
such that div X = f. Moreover, we expect that the solution X can be chosen continuously and linearly with respect to f . This is not obvious since such a solution X, when it exists, is not unique. In other words, we address the existence problem: does there exist a right inverse to div :

C r+1,α z (Ω, R n ) → C r,α
H (Ω)? This is indeed our first result, under the mere assumption that Ω has the same regularity as X itself.

Theorem 4.1. Let r ≥ 0 be an integer and 0 < α < 1. Let Ω be a bounded connected open C r+1,α set in R n . Then, given any f ∈ C r,α (Ω) such that

Ω f (x)dx = 0, there exists X ∈ C r+1,α (Ω, R n ) verifying div X = f in Ω, X = 0 on ∂Ω. (4.2)
Furthermore, the correspondence f → X can be chosen linear and there exists C = C(r, α, Ω) > 0 such that

||X|| C r+1,α (Ω) ≤ C||f || C r,α (Ω) . (4.3) 
As we have already said, the divergence equation is a particular case of the differential form equation. Correspondingly, the above result is a particular case of our study of the Poincaré lemma (cf. Chapter 6). However, the proof is much more elementary in this case, which requires only that Ω f = 0. We shall indeed take the shortest route to approach the existence of solutions of the divergence problem which is inspired by the result of Bourgain and Brezis, see [START_REF] Bourgain | On the equation divY = f and application to control of phases[END_REF]Theorem 2']. For the convenience of the reader, we have gathered and proved the results in Chapter 5. This chapter will be carried out quite comprehensively. This helps to better understand the Poincaré Lemma in Chapter 6.

The Poincaré lemma in Hölder spaces

In order to state the second result, we need to introduce some notations. The set of k forms on Ω with C r,α (Ω) coefficients will be denoted by C r,α (Ω, Λ k ). We introduce the Banach space

C r,α H (Ω, Λ k ) := f ∈ C r,α (Ω, Λ k ) : df = 0 in Ω, ν ∧ f = 0 on ∂Ω, Ω f, χ = 0, ∀χ ∈ H k T (Ω) , (4.4) 
where H k T (Ω) is the set of the Dirichlet harmonic fields of order k, defined as

H k T (Ω) = {h ∈ L 2 (Ω, Λ k ) : δh = 0 in Ω, d(h z ) = 0 in R n }.
Here, h z means the extension of h by zero outside Ω. The identity d(h z ) = 0 must be understood in the sense of distributions:

∀θ ∈ C ∞ c (R n , Λ k ), R n h, δθ dx = 0.
The outer unit normal ν to Ω is identified to a 1 form:

we set ν = ν 1 dx 1 + • • • + ν n dx n if ν 1 , .
. . , ν n are the coordinates of ν in the standard basis of R n , where δ is the adjoint of d which is defined as in (6.9), Chapter 6.

For the Poincaré lemma, we look for a (k -1) form X in the Banach space

C r+1,α z (Ω, Λ k-1 ) := X ∈ C r+1,α (Ω, Λ k-1 ) : X = 0 on ∂Ω (4.5)
such that dX = f, where f ∈ C r,α H (Ω, Λ k ) is given. We also prove the existence of the right inverse to the exterior derivative operator d :

C r+1,α z (Ω, Λ k-1 ) → C r,α H (Ω, Λ k ).
It is stated in the following Theorem 4.2. Let r ≥ 0 be an integer and Then there exists X ∈ C r+1,α (Ω, Λ k-1 ) such that

0 < α < 1. Let Ω be a bounded open C r+1,α set in R n . Let f ∈ C r,α (Ω, Λ k ), 1 ≤ k ≤ n, be such that df = 0 in Ω, ν ∧ f = 0 on ∂Ω,
dX = f in Ω, X = 0 on ∂Ω.
Furthermore, the correspondence f → X can be chosen linear and there exists C = C(r, α, Ω) > 0 such that

||X|| C r+1,α (Ω,Λ k-1 ) ≤ C||f || C r,α (Ω,Λ k ) .
We emphasize that the assumptions on f are necessary to obtain a solution. Indeed, if X ∈ C r+1,α (Ω, Λ k-1 ), then d(dX) = 0. If in addition, X = 0 on ∂Ω, then ν ∧ X = 0 and thus ν ∧ dX = 0 on ∂Ω, see [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF]Theorem 3.23]. When r = 0, these conditions must be understood in the sense of distributions, namely:

∀θ ∈ C ∞ c (R n , Λ k ), R n f z , δθ dx = Ω f, δθ dx = Ω dX, δθ dx = 0,
where the last line follows from the integration by parts formula, see Proposition 6.9, in Chapter 6. The last assumption (4.6) also follows from the integration by parts formula.

In fact, for every χ ∈ L 2 (Ω) such that δχ = 0 in the sense of distributions, one has for every

X ∈ C ∞ c (Ω, Λ k-1 ), Ω dX, χ dx = ∂Ω X ∧ ν, χ = 0.
This remains true by density for X ∈ W 1,2 0 (Ω, Λ k-1 ), and thus in particular for X ∈ C r+1,α z (Ω, Λ k-1 ). Finally, we formulate the corresponding result of the Poincaré lemma in the scale of Sobolev spaces.

The Poincaré lemma in Sobolev spaces

In the setting of Sobolev spaces, given two integers r ≥ 0, k ∈ {1, . . . , n}, and p ∈ (1, ∞), we introduce the sets

W r,p ν (Ω, Λ k ) = {f ∈ W r,p (Ω, Λ k ), df = 0 on Ω, ν ∧ f = 0 on ∂Ω}, W r+1,p z (Ω, Λ k-1 ) = {X ∈ W r+1,p (Ω, Λ k-1
), X = 0 on ∂Ω}.

One expects to obtain the conclusion for the Sobolev setting, namely: the existence of a right inverse d :

W r+1,p z (Ω, Λ k-1 ) → W r,p H (Ω, Λ k ), where W r,p H (Ω, Λ k ) := f ∈ W r,p ν (Ω, Λ k ) : Ω f, χ = 0 , ∀ χ ∈ H k T (Ω) .
We remark that a priori the quantity Ω f, χ does not necessarily make sense for every f ∈ W r,p (Ω, Λ k ) and χ ∈ H k T (Ω). This is the reason why in the next statement, we assume that the Dirichlet harmonic fields on Ω are regular enough. In view of the above facts, we state the following statement. 

∈ (1, ∞). Let Ω be a bounded C r,1 domain in R n . Assume also that H k T (Ω) ⊂ L p (Ω, Λ k ). Let f ∈ W r,p (Ω, Λ k ) be such that df = 0 in Ω, ν ∧ f = 0 on ∂Ω, and for every h ∈ H k T (Ω), Ω f, h dx = 0. (4.7)
Then there exists X ∈ W r+1,p (Ω, Λ k-1 ) such that

dX = f in Ω, X = 0 on ∂Ω.
Furthermore, the correspondence f → X can be chosen linear and there exists C = C(r, p, Ω) > 0 such that

||X|| W r+1,p (Ω,Λ k-1 ) ≤ C||f || W r,p (Ω,Λ k ) .

Methodology

Our strategy is greatly inspired from the proof of [4, Theorem 2] which considers the divergence equation (4.1) for a right hand side in L p (Ω) satisfying Ω f dx = 0, p ∈ (1, ∞). In this setting, Bourgain and Brezis rely on two main ingredients. First, they observe that the range of the differential operator div :

W 1,p 0 (Ω, R n ) → L p H (Ω)
is dense. Here, we have denoted by L p H (Ω) the set of those f ∈ L p (Ω) such that Ω f dx = 0. Actually, the dual operator of div is simply the gradient

∇ : (L p H (Ω)) * ⊂ (W 1,p 0 (Ω, R n )) * .
One can identify (L p H (Ω)) * to L p H (Ω). It is then easily shown that the kernel of ∇ is trivial. Equivalently, the range of div is dense in L p H (Ω). In the setting of Hölder spaces, this argument is less obvious. We just mention here that the dual space of C 0,α H cannot be identified to a subspace of the distributions on Ω. For instance, given a ∈ ∂Ω, the Dirac mass δ a located at a is a non trivial element of (C 0,α H ) * but its restriction to C ∞ c (Ω) is trivial. However, this duality approach can be generalized to any higher order Sobolev spaces or Hölder spaces, and this is probably one of the main achievements of this part of the thesis to do so. The strategy adopted to [START_REF] Bourgain | On the equation divY = f and application to control of phases[END_REF] can be adapted to various equations and spaces (see [START_REF] Bousquet | A limiting case for the divergence equation[END_REF], [START_REF] Bousquet | The equation divu + a = f[END_REF]).

The second ingredient used in [START_REF] Bourgain | On the equation divY = f and application to control of phases[END_REF] is the construction of an approximate solution to the divergence equation. More precisely, Bourgain and Brezis construct two linear operators

S : L p H (Ω) → W 1,p 0 (Ω) , K : L p H (Ω) → L p H (Ω)
such that S is continuous, K is compact, and for every f ∈ L p H (Ω), f = div (Sf ) + Kf . Hence, up to the compact perturbation Kf , Sf is a right inverse to the divergence equation. In order to perform this construction, one localizes the problem on small balls intersecting ∂Ω, where Ω can be seen as the epigraph of a Lipschitz function. In such a situation, it is possible to define an exact right inverse to the divergence operator. However, when gluing together all these local constructions, an error term is produced, which gives birth to the perturbation operator K.

This argument can be extended with some care to the Hölder framework. The construction on each small ball does not require a rectification of the boundary by local charts to reduce the problem to the case when Ω is a half space. Instead one uses an approximation argument reminiscent of the proof of the open map theorem. This is a crucial fact for our purposes. Indeed, if α is a C r+1,α form of degree k ∈ {1, . . . , n} and φ is a C r+1,α local chart, then the pullback φ * α is merely C r,α since the pullback introduces partial derivatives of φ. On the contrary, the approximation argument allows not to lose one order of differentiability.

Once the operators S and K are constructed, one relies on the following functional analysis statement to obtain a true, global right inverse to the divergence operator: Lemma 4.4. Let E, F be two Banach spaces and let T be a bounded operator from E to F . Assume that ker(T * ) = {0}

and that there exists a bounded operator S from F to E and a compact operator K from F into itself such that

T • S = Id + K.
Then T admits a right inverse.

The above Lemma is applied to

E = W 1,p 0 (Ω, R n ), F = L p H , T = div
, where the condition ker(T * ) = {0} amounts to the first ingredient described above. Dealing with the Poincaré lemma, in the case of Hölder spaces, we will construct such a right inverse operator S as in the following Theorem. Theorem 4.5. For every integer r ≥ 0, there is a bounded operator

S : C r,α H (Ω, Λ k ) → C r+1,α z (Ω, Λ k-1 )
such that for every

f ∈ C r,α H (Ω, Λ k ) f -d(Sf ) ∈ C r,α H (Ω, Λ k ) and ||f -d(Sf )|| C r+1,α z (Ω,Λ k-1 ) ≤ C||f || C r,α H (Ω,Λ k ) .
Chapter 5

On the divergence equation in Hölder spaces

Abstract This chapter studies the solution X of the equation

div X = f in Ω, X = 0 on ∂Ω,
where f is given. It is devoted to the proof of Theorem 4.1. This result is a particular case of the study on the Poincaré lemma (see Chapter 6). However, the proofs are much simpler in this case, when we consider the data f as a function instead of a differential form of degree n. In this case, the boundary condition of f will be ignored, whereas it will be taken into account in the next chapter in order to prove Theorem 4.2.

The main theorem

The main result of this chapter is the following Theorem 5.1. Let r ≥ 0 be an integer and 0 < α < 1. Let Ω be a bounded connected open C r+1,α set in R n . Then, given any f ∈ C r,α (Ω) such that

Ω f (x)dx = 0, there exists X ∈ C r+1,α (Ω, R n ) verifying div X = f in Ω, X = 0 on ∂Ω. (5.1)
Furthermore, the correspondence f → X can be chosen linear and there exists

C = C(r, α, Ω) > 0 such that ||X|| C r+1,α (Ω) ≤ C||f || C r,α (Ω) .
If Ω is not connected, then the condition Ω f = 0 has to hold on each connected component of Ω.

The main point of Theorem 5.1 is the assumption on the domain Ω which is assumed to be only C r+1,α . In the case Ω of class C r+2,α , equation (5.1) can be reduced to an elliptic problem for which standard techniques apply. For completeness, let us state the result in [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF].

Theorem 5.2. ([13, Theorem 9.2]) Let r ≥ 0 be an integer and 0 < α < 1. Let Ω ⊂ R n be a bounded connected open C r+2,α set. The following conditions are then equivalent:

(i) the function f ∈ C r,α (Ω) satisfies Ω f = 0. (ii) there exists X ∈ C r+1,α (Ω, R n ) verifying div X = f in Ω, X = 0 on ∂Ω.
Furthermore, the correspondence f → X can be chosen linear and there exists

C = C(r, α, Ω) > 0 such that ||X|| C r+1,α ≤ C||f || C r,α .
Similar results hold for f ∈ L p , 1 < p < ∞, finding X ∈ W 1,p . However the result is false if p = 1 or p = ∞. In [START_REF] Bourgain | On the equation divY = f and application to control of phases[END_REF], Bourgain and Brezis have proved that the divergence equation div X = f has not necessarily a solution in W 1,1 (respect W 1,∞ ) when f ∈ L 1 (respect f ∈ L ∞ ) even when Ω is a smooth domain. It is also false for C 0,α when α = 0 or α = 1, see Dacorogna, Fusco and Tartar [START_REF] Dacorogna | On the solvability of the equation divu = f in L 1 and in C 0[END_REF], and McMullen [START_REF] Mcmullen | Lipschitz maps and nets in euclidean space[END_REF].

The idea of the proof

In the spirit of the proof of [4, Theorem 2], with some modifications, our argument relies heavily on the following Lemma Lemma 5.3. ([4, Lemma 8]) Let E, F be two Banach spaces and let T be a bounded operator from E to F . Assume that ker(T * ) = {0} and that there exists a bounded operator S from F to E and a compact operator K from F into itself such that T • S = Id + K.

Then T admits a right inverse.

More precisely, we establish Theorem 5.1 by proving the existence of a right inverse to

T : C r+1,α z (Ω, R n ) → C r,α H (Ω), where C r+1,α z (Ω, R n ), C r,α H (Ω) are defined by C r+1,α z (Ω, R n ) := {X ∈ C r+1,α (Ω, R n ) : X = 0 on ∂Ω} and C r,α H (Ω) := {f ∈ C r,α (Ω) : Ω f dx = 0}.
In order to prove Theorem 5.1, we shall apply Lemma 5.

3 to E = C r+1,α z (Ω, R n ), F = C r,α
H (Ω) and T = div . In the Hölder setting of the divergence problem, such a right inverse operator S will be constructed as in the following Theorem.

Theorem 5.4. For every integer r ≥ 0, there is a bounded operator S : C r,α

H (Ω) → C r+1,α z (Ω, R n ) such that for every f ∈ C r,α H (Ω) f -div (Sf ) ∈ C r+1,α z (Ω) and ||f -div Sf || C r+1,α (Ω) ≤ C||f || C r,α (Ω) .
Let us mention that to tackle the regularity of the divergence equation, the standard elliptic theories are still important features. In the proof of Theorem 5.4 below, we will handle the lack of regularity of the domain by localizing the problem on small domains intersecting ∂Ω (denoted (V i ) i ) which are C r+1,α -diffeomorphic to cubes in R n . We first study the divergence equation in the cube where we require the boundary condition of the solutions only on one side of the cube. This problem can be treated easily by using the smooth domain version of the divergence problem (Theorem 5.2). By using the local charts, solutions in a cube give us local constructions of the bounded operators. We then glue all these local constructions, an error term is produced, which gives birth to the perturbation operator K.

We emphasize that the composition of the solutions of the divergence equation in the cube and diffeomorphisms does not imply directly the existence of solutions of the divergence equation in a neighborhood of the boundary, because the diffeomorphisms are not linear in general. Moreover, the perturbation operator (Kf = f -Sf ) is required to belong to C r+1,α while f only belongs to C r,α . Therefore, design and choice of the coordinate maps need great care. In fact, we shall consider locally Ω as the epigraph of a function ψ : Q 1 ⊂ R n-1 → R and consider the local chart defined by To complete the proof of Theorem 5.1, we have to verify that ker(T * ) = {0}. As we said in the methodology section, in the Hölder setting, the proof of ker(T * ) = {0} is less trivial than in the Sobolev setting.

Φ : (x , x n ) ∈ Q 1 = Q 1 × (0, 1) → (x , x n + ψ(x )) ∈ V i .
This chapter is organized as follows: In the next section, we recall some definitions and preliminaries on Hölder spaces. The proof of Theorem 5.4 will be given in Section 5.4. Then we get the conclusion of Theorem 5.1 by proving that ker(T * ) = {0}. Some proofs for the preliminary results on Hölder spaces will be given in the appendix.

Definitions and Preliminaries

In this section, we recall some elementary properties of Hölder spaces. We refer to [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF]Chapter 16] for more refined statements.

Let Ω be a non-empty bounded domain in R n with n ≥ 2 and α ∈ (0, 1]. Given f : Ω → R, we define the Hölder semi-norm:

[f ] C 0,α (Ω) = sup x,y∈Ω x =y |f (x) -f (y)| |x -y| α .
For every r ∈ N, we denote by C r,α (Ω) the set of those continuous maps f : Ω → R which have continuous derivatives on Ω up to the order r and such that for every multi-index

β = (β 1 , . . . , β n ) ∈ N n of length |β|(:= β 1 + • • • + β n ) = r, one has [D β f ] C 0,α (Ω) < ∞.
Here, we have denoted

D β f = ∂ |β| f ∂x β 1 1 ...∂x βn n .
We observe that the derivatives up to the order r of a map f ∈ C r,α (Ω) can be continuously extended to Ω. The set C r,α (Ω) is a Banach space when equipped with the norm

f C r,α (Ω) = f C r (Ω) + max β∈N n |β|=r [D β f ] C 0,α (Ω)
where

f C r (Ω) = max β∈N n |β|≤r sup x∈Ω |D β f (x)|.
We can readily generalize the above definitions to the case of vector-valued functions: given m ∈ N, we define the space C r,α (Ω; R m ) as the set of those f = (f 1 , . . . , f m ) : Ω → R m such that each component f i belongs to C r,α (Ω). We also use the norm

f C r,α (Ω;R m ) = m i=1 f i C r,α (Ω) .
Finally, when α = 0, we set C r,0 (Ω, R m ) = C r (Ω, R m ). In this case, we write

[D β u] C 0,0 (Ω) = 0, for all |β|= r and ||u|| C r,0 (Ω) = ||u|| C r (Ω) .
Given x, y ∈ Ω, we denote by d Ω (x, y) the distance between x and y relative to Ω:

d Ω (x, y) = inf γ∈W 1,∞ ([0,1],Ω), γ(0)=x,γ(1)=y 1 0 |γ (t)| dt.
Here, |γ (t)| is the Euclidean norm of the vector γ (t) in R n . We also define the corresponding diameter of Ω d Ω = sup

x,y∈Ω

d Ω (x, y) (5.2)
as well as

δ Ω = sup x,y∈Ω, x =y d Ω (x, y) |x -y| . (5.3)
When Ω is a Lipschitz domain, one can easily prove that δ Ω is finite, see Remark 5.11. By Lipschitz set, we mean that Ω is locally the epigraph of a Lipschitz continuous function of n -1 variables in an appropriate coordinate system. We now recall some properties of the Hölder spaces.

Proposition 5.5. [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF]Theorem 16.11] Let Ω be a bounded Lipschitz domain in R n . Then there exists a linear extension operator

E : r∈N α∈[0,1] C r,α (Ω) → r∈N α∈[0,1] C r,α (R n ).
More precisely, for every r ∈ N, there exists a constant C = C(r, Ω) > 0 such that for every α ∈ [0, 1] and every f ∈ C r,α (Ω), one has

E(f )| Ω = f, supp [E(f )] is compact, ||E(f )|| C r,α (R n ) ≤ C||f || C r,α (Ω) .
The space C r,α (Ω) is an algebra:

Proposition 5.6. Let r ∈ N and α ∈ (0, 1]. Let Ω ⊂ R n be a bounded Lipschitz domain.

We denote by d Ω the diameter of Ω. Then there exists a constant C = C(r, n) > 0 such that for every f, g ∈ C r,α (Ω)

||f g|| C r,α (Ω) ≤ C(δ Ω + d Ω ) r ||f || C r,α (Ω) ||g|| C r,α (Ω) .
The above proposition is a variant of [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF]Theorem 16.28]. The latter is sharper regarding the norms of f and g in the right hand side. However, it allows a dependence of the constant C with respect to the set Ω which is not explicitly stated. This is the reason why we have formulated the above result in this form, in order to be more precise on this dependence. A proof of Proposition 5.6 is given in the appendix.

Finally, under suitable assumptions on r and α, Hölder continuous functions are stable with respect to composition. In the sequel, we need a result that we have not been able to find in the literature in this form. Proposition 5.7. Let r ∈ N \ {0} and α ∈ (0, 1). Let Ω ⊂ R n , O ⊂ R m be bounded Lipschitz domains, Then there exists a constant C = C(r, n) > 0 such that for every

f ∈ C r,α (Ω, R m ) and g ∈ C r,α (O, R) with f (Ω) ⊂ O, one has ||g • f || C r,α (Ω) ≤ C(δ Ω + d Ω ) r 2 ||g|| C r,α (O) (||Df || r+α C r-1,α (Ω) +1).
Remark 5.8. When g ∈ C 0,α (O, R) and f ∈ C 1,α (Ω, R m ), we will use the following elementary inequality:

||g • f || C 0,α (Ω) ≤ δ Ω ||g|| C 0,α (Ω) (||Df || α C 0 (Ω) +1).
The proofs of Proposition 5.7 and Remark 5.8 are given in the appendix.

The proof of Theorem 5.4

Throughout this section, the constants are all denoted by the same letter C and only depend on the parameters r, α, n and ρ which are introduced below. We will not systematically mention this dependence. On the contrary, when the constants depend on other quantities, we will emphasize this dependence.

Solution of the divergence equation on a cube

As explained in the introduction, the first step in the proof of Theorem 5.4 is to solve the divergence equation when Ω is a cube and the boundary condition is only required on one side of the cube.

In the following, for every δ > 0, we denote by Q δ the cube (0, δ) n while Q δ is the lower side of Q δ , namely Q δ = (0, δ) n-1 × {0}. We will often identify Q δ with (0, δ) n-1 . Lemma 5.9. Let r ∈ N, α ∈ (0, 1), ρ > 0 and f ∈ C r,α (Q ρ ). Then there exists X ∈ C r+1,α (Q ρ ; R n ) such that div X = f on Q ρ and X = 0 on Q ρ . Furthermore, there exists

C = C(r, α, ρ, n) > 0 such that ||X|| C r+1,α (Qρ) ≤ C||f || C r,α (Qρ) .
Proof of Lemma 5.9. Without loss of generality, by a dilation argument, one can assume that ρ = 1 (the constant C in the statement is allowed to depend on ρ). By the extension property on Hölder spaces, see Proposition 5.6, there exists

f ∈ C r,α (R n ) such that ||f || C r,α (R n ) ≤ C||f || C r,α (Q 1 ) .
(5.4)

Let ω be a smooth bounded open set such that Q 1 ⊂ ω ⊂ R n-1 × (0, +∞). In particular, Q 1 ⊂ ∂ω and ω can be chosen such that its volume |ω| depends only n . Let also θ ∈ C ∞ c (ω) be such that supp θ ∩ Q 1 = ∅ and ω θ = 1. We then define

f := f - ω f θ.
Observe that ω f = 0 and f := f on Q 1 . Theorem 5.2 applied to f on ω yields a vector field X ∈ C r+1,α (ω; R n ) such that div X = f on ω and X = 0 on ∂ω. Moreover, there exists C = C(r, α, ω) > 0 such that

|| X|| C r+1,α (ω) ≤ C|| f || C r,α (ω) .
We next observe that

|| f || C r,α (ω) ≤ ||f || C r,α (ω) +|ω| f C 0 (ω) θ C r,α (ω) ≤ C||f || C r,α (ω) .
In view of (5.4), this implies that

|| f || C r,α (ω) ≤ C||f || C r,α (Q 1 ) .
Then X := X| Q 1 satisfies all the required properties.

Solution of the divergence equation on an epigraph

Given ρ > 0, let ψ ∈ C r+1,α (Q ρ ). We introduce the C r+1,α diffeomorphism Φ = (Φ 1 , ..., Φ n ) : x = (x , x n ) ∈ Q ρ → (x , x n + ψ(x ))
and define the open set

U = Φ(Q ρ ) = {(x , x n ) ∈ Q ρ × (0, +∞) : ψ(x ) < x n < ψ(x ) + ρ}.
(5.5) Since we will apply Propositions 5.6 and 5.7 on U , we first need to estimate the geometrical quantities d U and δ U , see (5.2) and (5.3). Lemma 5.10. For every x, y ∈ U ,

d U (x, y) ≤ 3(1 + ∇ψ ∞ )|x -y|.
In particular, δ U ≤ 3(1 + ∇ψ ∞ ).

Proof. For every x = (x , x n ), y = (y , y n ) ∈ U , the Lipschitz map

γ : t ∈ [0, 1] → (1 -t)x + ty , ψ((1 -t)x + ty ) + (1 -t)(x n -ψ(x )) + t(y n -ψ(y ))
takes its values into U and satisfies γ(0) = x, γ(1) = y. Hence,

d U (x, y) ≤ 1 0 |γ (t)| dt. For a.e. t ∈ [0, 1], γ (t) = (y -x , ∇ψ((1 -t)x + ty ), y -x + (y n -x n ) + (ψ(x ) -ψ(y )), so that γ (t)| 2 ≤ |y -x | 2 +3 ∇ψ 2 L ∞ |y -x | 2 +3|ψ(x ) -ψ(y )| 2 +3|x n -y n | 2 ≤ (3 + 6 ∇ψ 2 L ∞ )|x -y| 2 .
Hence,

d U (x, y) ≤ (3 + 6 ∇ψ 2 ∞ ) 1 2 |x -y|≤ 3(1 + ∇ψ ∞ )|x -y|
and the assertion of the lemma follows.

Remark 5.11. The proof of the above lemma shows that when Ω is the epigraph of a Lipschitz function ψ : Ω → R, where Ω is a convex open set in R n-1 , then the intrinsic distance d Ω (x, y) between two points x and y in Ω is not larger than 3(1 + ∇ψ ∞ )|x -y|. This implies that when Ω is any Lipschitz domain in R n , then δ Ω < ∞.

Proof of Remark 5.11. Indeed, assume by contradiction that there are two sequences of points (x i ) i and (y i ) i in Ω such that x i = y i for every i and

lim i→+∞ d Ω (x i , y i ) |x i -y i | = +∞.
Then, by compactness of Ω, up to extraction (we do not relabel), (x i ) i and (y i ) i converge to the same boundary point z ∈ ∂Ω. Since Ω is Lipschitz, there exists an open set U in R n such that Ω ∩ U is, in an appropriate system of coordinates, the epigraph of a Lipschitz continuous function ψ defined on a ball B ⊂ R n-1 . For every i sufficiently large, x i and y i belong to U . Hence,

d Ω (x i , y i ) ≤ d Ω∩U (x i , y i ) ≤ 3(1 + |∇ψ| L ∞ )|x i -y i |.
This proves that lim i→+∞ d Ω (x i ,y i )

|x i -y i | ≤ 3(1+|∇ψ| L ∞ ): a contradiction.
We can thus conclude that δ Ω is finite.

In the spirit of [4, Lemma 6] and [START_REF] Bousquet | A limiting case for the divergence equation[END_REF]Lemma 7.4], we have the following lemma. Lemma 5.12. Let r ∈ N, α ∈ (0, 1) and ρ > 0. There exists ∈ (0, 1) such that if

ψ ∈ C r+1,α (Q ρ ) satisfies ||∇ψ|| C r,α ≤ , then for every f ∈ C r,α (U ), there exists X ∈ C r+1,α (U , R n ) which satisfies div X = f in U and X = 0 on {(x , ψ(x )) : x ∈ Q ρ }.
Moreover, there exists C = C(r, α, ρ, n) > 0 such that

||X|| C r+1,α (U ) ≤ C||f || C r,α (U ) .
Proof. Without loss of generality, one can assume that ρ = 1. For

x = (x , x n ) ∈ Q 1 , we define the function f := f • Φ. Then f ∈ C r,α (Q 1 ) and || f || C r,α (Q 1 ) ≤ C||f || C r,α (U ) , (5.6) 
for some C = C(r, α, n). Indeed, if r = 0, then Remark 5.8 implies

f C 0,α ≤ (1 + δ Q 1 )||f || C 0,α (||DΦ|| α C 0 +1) while if r ≥ 1, then Proposition 5.7 gives || f || C r,α ≤ C(1 + δ Q 1 + d Q 1 )||f || C r,α ||DΦ|| r+α C r-1,α +1 . (5.7)
By definition of Φ, one has

∂Φ j ∂x i i,j =    1 if i = j, ∂ψ ∂x i if i < n and j = n, 0 otherwise.
Therefore

||DΦ|| r+α C r-1,α ≤ C(1 + ||∇ψ|| C r-1,α (Q 1 ) ) r+α . (5.8)
Then, the proof of (5.6) is a consequence of (5.7), (5.8) and the fact that by Lemma B.1,

||∇ψ|| C r-1,α ≤ C(1 + δ Q 1 + d Q 1 )||∇ψ|| C r,α ≤ C ≤ C.
Applying Lemma 5.9 to f ∈ C r,α (Q 1 ), there exists

X ∈ C r+1,α (Q 1 , R n ) such that div X = f in Q 1 , X = 0 on Q 1 , || X|| C r+1,α (Q 1 ) ≤ C|| f || C r,α (Q 1 ) .
(5.9)

We now consider

X 0 : U → R n defined by X 0 (x) = X(Φ -1 (x)) = X(x , x n -ψ(x )) and rewrite X as X = ( X 1 , ..., X n ) = ( X , X n ). Then we have div X 0 (x) = div ( X • Φ -1 (x)) = n i=1 ∂[ X(Φ -1 (x)))] i ∂x i = n i,j=1 ∂ X i ∂x j • Φ -1 (x) ∂(Φ -1 ) j ∂x i (x) = n i=1 ∂ X i ∂x i • Φ -1 (x) ∂(Φ -1 ) i ∂x i (x) + 1≤i =j≤n ∂ X i ∂x j • Φ -1 (x) ∂(Φ -1 ) j ∂x i (x).
Using again the definition of Φ, we have

∂(Φ -1 ) j ∂x i i,j =    1 if i = j, -∂ψ ∂x i if i < n and j = n, 0 otherwise. This gives div X 0 = (div X) • Φ -1 - n-1 i=1 ∂ X i ∂x n (Φ -1 (x)) ∂ψ ∂x i (x ).
Hence,

div X 0 (x) -f (x) = n-1 i=1 ∂ X i ∂x n (Φ -1 (x)) ∂ψ ∂x i (x ).
Using Proposition 5.6, one gets

||div X 0 -f || C r,α (U ) ≤ n-1 i=1 ∂ X i ∂x n • Φ -1 ∂ψ ∂x i C r,α (U ) ≤ C(1 + δ U + d U ) r n-1 i=1 ∂ X i ∂x d • Φ -1 C r,α (U ) ∂ψ ∂x i C r,α (Q 1 )
.

Hence, according to the assumption ||∇ψ|| C r,α (R n-1 ) ≤ , one gets

||div X 0 -f || C r,α (U ) ≤ C n-1 i=1 ∂ X i ∂x n • Φ -1 C r,α (U )
.

(5.10)

From Proposition 5.7, it follows that

∂ X i ∂x n • Φ -1 C r,α (U ) ≤ C(1 + δ U + d U ) r 2 ∂ X i ∂x n C r,α (Q 1 ) DΦ -1 r+α C r-1,α (U ) +1 . Therefore ∂ X i ∂x n • Φ -1 C r,α (U ) ≤ C ∂ X i ∂x n C r,α (Q 1 )
.

(5.11)

Combining (5.6),(5.9),(5.10) and (5.11), we get

||div X 0 -f || C r,α (U ) ≤ C||f || C r,α (U ) ,
for some C which only depends on r, α and n. Using again Proposition 5.7, we obtain

||X 0 || C r+1,α (U ) ≤ C(1 + δ U + d U ) (r+1) 2 || X|| C r+1,α (Q 1 ) DΦ -1 r+1+α C r,α (U ) +1 ≤ C|| X|| C r+1,α (Q 1 )
. (5.12)

Combining (5.6),(5.9) and (5.12), we find

||X 0 || C r+1,α (U ) ≤ C||f || C r,α (Ω) .
(5.13)

We now fix ∈ (0, 1) in such a way that λ := C < 1. Let us summarize the current state of the proof as follows: we have proved that given f ∈ C r,α (U ), there exists

X 0 ∈ C r+1,α (U , R n ) such that X 0 = 0 on {(x , ψ(x )) : x ∈ Q 1 } and ||div X 0 -f || C r,α (U ) ≤ λ||f || C r,α (U ) , ||X 0 || C r+1,α (U ) ≤ C 0 ||f || C r,α (U ) ,
with λ ∈ (0, 1) and C 0 = C 0 (r, n, α). We now construct by induction a sequence (X i ) i∈N ⊂ C r+1,α (U , R n ) such that for every i ∈ N,

div X i -(f -div i-1 j=0 X j ) C r,α (U ) ≤ λ f -div i-1 j=0 X j C r,α (U ) , (5.14 
)

X i = 0 on {(x , ψ(x )) : x ∈ Q 1 }, (5.15 
)

X i C r+1,α (U ) ≤ C 0 f -div i-1 j=0 X j C r,α (U )
.

(5.16)

The vector field X 0 has been constructed above. Assuming that X 0 , . . . , X i-1 have been defined for some i ∈ N, then we define X i exactly as we have done for X 0 except that we replace f by f -div i-1 j=0 X j . Then X i satisfies the three properties above. This completes the proof of the existence of the sequence (X i ) i∈N .

We deduce from (5.14) that

f -div i-1 j=0 X j C r,α (U ) ≤ λ f -div i-2 j=0 X j C r,α (U ) ≤ . . . ≤ λ i-1 f C r,α (U ) .
(5.17)

Together with (5.16), this implies that

X i C r+1,α (U ) ≤ C 0 λ i-1 f C r,α (U ) .
It follows that the sum i∈N X i converges in the space C r+1,α (U ) to some vector field X such that X = 0 on {(x , ψ(x

)) : x ∈ Q 1 } and X C r+1,α (U ) ≤ C f C r,α (U )
. Moreover, by (5.17), one has div X = f. This completes the proof of Lemma 5.12.

Next, we remove the smallness condition on ψ. Let us consider ψ ∈ C r+1,α (Q ρ ) and

U δ = {(x , x n ) ∈ Q δ × R : ψ(x ) < x n < ψ(x ) + ρ}.
Lemma 5.13. With the above notation, there exists δ > 0 which depends only on r, α, n, ρ and ∇ψ C r,α (Q ρ ) with the following property: Given any f ∈ C r,α (U δ ), there is some

X ∈ C r+1,α (U δ ) satisfying div X = f in U δ , X = 0 on {(x , ψ(x )) : x ∈ Q δ } and ||X|| C r+1,α (U δ ) ≤ C||f || C r,α (U δ ) ,
where C > 0 depends on r, α, n, ρ and ∇ψ C r,α (Q ρ ) .

Proof. We take again ρ = 1. Given δ > 0 (which will be subject to subsequent restrictions) and f ∈ C r,α (U δ ), let us define for every

x = (x , x n ) ∈ U 1 , ψ δ (x ) = ψ(δx ) and f δ (x , x n ) = f (δx , x n ). Then ψ δ ∈ C r+1,α (Q 1 )
and

∇ψ δ C r,α (Q 1 ) = δ (∇ψ)(δ•) C r,α (Q 1 )
so that by Proposition 5.7,

∇ψ δ C r,α (Q 1 ) ≤ Cδ ∇ψ C r,α ((Q 1 )) (δ r+α + 1) ≤ Cδ ∇ψ C r,α ((Q 1 )) .
Similarly,

||f δ || C r,α (U 1 ) ≤ C||f || C r,α (U δ ) .
There exists

δ 0 = δ 0 (r, α, d, ∇ψ C r,α ((Q 1 )
) ) such that for every 0 < δ < δ 0 , one has

||∇ψ δ || C r,α (Q 1 )
< where is given by Lemma 5.12.

Applying Lemma 5.12 to ψ δ , f δ , U 1 , we get a vector field X δ ∈ C r+1,α (U 1 ) satisfying:

div X δ = f δ in U 1 , X δ = 0 on {(x , ψ δ (x )) : x ∈ Q 1 } and ||X δ || C r+1,α (U 1 ) ≤ C||f δ || C r,α (U 1 )
.

We now set for every (x

, x d ) ∈ U δ , X(x , x n ) = δX δ x δ , x n , X n δ x δ , x n . Then div X = f in U δ , X = 0 on {(x , ψ(x )) : x ∈ Q δ } and ||X|| C r+1,α (U δ ) ≤ C||f || C r,α (U δ ) ,
where C = C(r, α, d, δ, ρ). The proof of Lemma 5.13 is complete.

Remark 5.14. The vector field X δ constructed in the proof of Lemma 5.13 also satisfies the following estimates: for every s ∈ {0, . . . , r},

X δ C s+1,α (U δ ) ≤ C f C s,α (U δ )
where C only depends on r, α, n, ρ and ∇ψ C r,α (Q ρ ) .

This easily follows from Proposition 5.6 and Proposition 5.7, exactly as in the proof of Lemmata 5.9, 5.12 and 5.13.

Conclusion of Theorem 5.4

We now present the Proof of Theorem 5.4 . Since Ω is C r+1,α , for every x ∈ ∂Ω, there exists an open neighborhood W ⊂ R n of x and a positive number ρ > 0 such that

• W ∩ Ω is isometric to {(y , y n ) ∈ Q ρ × R : ψ(y ) < y n < ψ(y ) + ρ}, • W ∩ ∂Ω is isometric to {(y , y n ) ∈ Q ρ × R : ψ(y ) = y n } where ψ ∈ C r,α (Q ρ ).
There exists a parameter δ > 0 depending on r, α, n, ρ, ψ such that Lemma 5.13 gives a solution to the divergence equation on the set {(y , y n ) ∈ Q δ × R : ψ(y ) < y n < ψ(y ) + ρ}. We deduce therefrom that there exists an open neighborhood V of x contained in W and a vector field

X ∈ C r+1,α (V ∩ Ω; R n ) such that div X = f in V ∩ Ω, X = 0 on V ∩ ∂Ω and X C r+1,α (V ∩Ω) ≤ C f C r,α (V ∩Ω) .
Here, the constant C depends on r, α, n and Ω. By compactness of ∂Ω, one can find a covering of ∂Ω by such open sets V i , i = 1, . . . , k. In particular, for every i ∈ {1, . . . , k}, there exists

X i ∈ C r+1,α (V i ; R n ) such that div X i = f in Ω ∩ V i , X i = 0 on ∂Ω ∩ V i .
and

||X i || C r+1,α (V i ) ≤ C||f || C r,α (V i ) .
(5.18)

Let also V 0 ⊂ Ω such that V 0 is a C r+2,α domain and Ω ⊂ k i=0 V i . We then solve div X 0 = f in V 0 ⊂ Ω, for example X 0 = ∇(∆ -1 f ), where ∆ -1 is defined with the zero Dirichlet boundary condition on ∂V 0 . Moreover, there exists a constant

C = C(r, α, V 0 ) > 0 such that ||X 0 || C r+1,α (V 0 ) ≤ C||f || C r,α (V 0 ) . (5.19) 
To the covering (V i ) 0≤i≤k of Ω, we associate a partition of unity (θ i ) 0≤i≤k such that

k i=0 θ i = 1 in Ω, and θ i ∈ C ∞ c (V i ) for i = 0, 1, ..., k.
We set

Sf = k i=0 θ i X i .
(5.20)

Then div Sf = f + k i=0 ∇θ i • X i . (5.21) This implies f -Sf C r+1,α (Ω) ≤ k i=0 ∇θ i • X i C r+1,α (Ω) ≤ C k i=0 X i C r+1,α (Ω) ,
where C depends on r, α and Ω. We deduce from (5.18) and (5.19) that

f -Sf C r+1,α (Ω) ≤ C f C r,α (Ω) .
Finally, since supp (∇θ 0 ) Ω and X i = 0 on supp θ i ∩ ∂Ω, one has f -Sf = 0 on ∂Ω.

The proof is complete.

Remark 5.15. From the above proof, let us remark that, for any f ∈ C r,α (Ω), we can rewrite f in the following form

f = -div Sf + k i=0 ∇θ i • X i , where Sf = k i=0 θ i X i ∈ C r+1,α z (Ω, R n ) and k i=0 ∇θ i • X i ∈ C r+1,α z (Ω).
According to Remark 5.14, the local solutions X i arising in the proof of Theorem 5.4 have the following additional property: Remark 5.16. For every s ∈ 0, . . . , r,

X i C s+1,α (Ω∩V i ) ≤ C f C s,α (Ω)
for some C = C(r, α, n, Ω). We finally turn to the proof of Theorem 5.1. We want to apply Lemma 5.3 to the linear continuous map T = div from the set

C r+1,α z (Ω, R n ) = {X ∈ C r+1,α (Ω, R n ) : X = 0 on ∂Ω} into C r,α H (Ω) = f ∈ C r,α (Ω) : Ω f = 0 .
We define the linear map K by K(f ) = -f + Sf where S is given by Theorem 5.4. By construction,

Kf = k i=0 ∇θ i • X i , with X i ∈ C r+1,α (Ω, R n ) and θ i ∈ C ∞ c (R n ) for all i ∈ {0, ..., k}. Since the embedding C r+1,α (Ω, R n ) ⊂ C r,α (Ω, R n ) is compact, we deduce that the operator K is compact from C r,α H into C r,α
H . It remains to prove that ker T * = {0}. This is the content of the following Theorem 5.17 Proof of Theorem 5.17. Let v ∈ ker T * . By definition of the adjoint operator, this means

v, T X (C r,α H ) * ,C r,α H = 0, ∀X ∈ C r+1,α z (Ω, R n ). (5.22) We claim that v, ϕ (C r,α H ) * ,C r,α H = 0, ∀ϕ ∈ C ∞ c (Ω) with Ω ϕ = 0. (5.23)
Indeed, let us define the distribution v by

v : ϕ ∈ C ∞ c (Ω) → v, ϕ - 1 |Ω| Ω ϕ (C r,α H ) * ,C r,α H .
For every X ∈ C ∞ c (Ω), Ω T X = Ω div X = 0 and thus using (5.22), one has

v, T X - 1 |Ω| Ω T X (C r,α H ) * ,C r,α H = v, T X (C r,α H ) * ,C r,α H = 0.
It follows that the distribution v vanishes on the set {div X : X ∈ C ∞ c (Ω)}, which implies that v is a constant distribution. Hence, there exists c ∈ R such that for every

ϕ ∈ C ∞ c (Ω), v, ϕ - 1 |Ω| Ω ϕ (C r,α H ) * ,C r,α H = c Ω ϕ (5.24)
and (5.23) follows.

We next prove that for every v ∈ (C r,α H ) * , there exists C > 0 such that for every

f ∈ C r,α H , v, f (C r,α H ) * ,C r,α H ≤ C f C 0,α .
Indeed, given f ∈ C r,α H (Ω), we rely on Remark 5.15 to get the decomposition

f = div X + k i=0 ∇θ i • X i , (5.25) 
where X ∈ C r+1,α z (Ω, R n ) and the sum k i=0 ∇θ i • X i , that we denote by g, also belongs to C r+1,α z , see (5.21). Using equations (5.22) and (5.25), we obtain

v, f (C r,α H ) * ,(C r,α H ) = v, g (C r,α H ) * ,(C r,α H ) ≤ v (C r,α H ) * g C r,α H . Since g = k i=0 ∇θ i • X i , one has g C r,α H = g C r,α (Ω) ≤ C k i=0 X i C r,α (V i ∩Ω) .
The open set V i is the domain of the local solution X i introduced in the proof of Theorem 5.4. We now rely on Remark 5.16 with s = r -1 to estimate:

X i C r,α (V i ∩Ω) ≤ C f C r-1,α (Ω) .
Hence, we get

g C r,α H ≤ C f C r-1,α (Ω) , which implies v, f (C r,α H ) * ,C r,α H ≤ C v (C r,α H ) * f C r-1,α (Ω)
. We can repeat the above argument taking into account this new estimate that we apply to g instead of f (observe that g = f -div X also belongs to C r,α H ):

v, f (C r,α H ) * ,C r,α H = v, g (C r,α H ) * ,C r,α H ≤ C v (C r,α H ) * g C r-1,α ( 
Ω) . Using Remark 5.14 again with s = r -2, one has

g C r-1,α (Ω) ≤ C k i=0 X i C r-1,α (V i ∩Ω) ≤ C f C r-2,α (Ω) .
We deduce therefrom that

v, f (C r,α H ) * ,C r,α H ≤ C f C r-2,α (Ω) .
Iterating this calculation, we finally obtain

v, f (C r,α H ) * ,C r,α H ≤ C f C 0,α (Ω) (5.26)
where C depends on r, α, Ω and v. Applying Lemma 5.18 below to g, there exists a sequence (g m ) m , with g m ∈ C ∞ c (Ω), Ω g m = 0 such that g m → g in C 0,α (Ω). Now we use (5.23) and (5.26) to obtain that

v, f (C r,α H ) * ,C r,α H = v, g (C r,α H ) * ,C r,α H = lim m→+∞ v, g -g m (C r,α H ) * ,C r,α H ≤ v (C r,α H ) * lim sup m→+∞ ||g -g m || C 0,α = 0. One deduces that v, f (C r,α H ) * ,C r,α H = 0 for all f ∈ C r,α
H and thus v = 0. This completes the proof of the lemma.

We finish this section by Lemma 5.18:

Lemma 5.18. Let r ∈ N * , f ∈ C r,α (Ω) with f = 0 on ∂Ω and Ω f = 0. Then there exists a sequence (f m ) m ⊂ C ∞ c (Ω) such that Ω f m = 0 for every m ∈ N and f m → f in C 0,α (Ω).
Proof of Lemma 5.18 . We split the proof of Lemma 5.18 into two steps:

Step 1 : Let g ∈ C r,α (Ω) with g = 0 on ∂Ω and Ω g = 0. Then there exists a sequence (g m ) m ⊂ C 0,1 c (Ω) such that Ω g m = 0 for every m ∈ N and

g m → g in C 0,α (Ω).
Step 2 : Let g ∈ C 0,1 c (Ω) with Ω g = 0. Then there exists a sequence (g m ) m ⊂ C ∞ c (Ω) such that Ω g m = 0 for every m ∈ N and

g m → g in C 0,α (Ω).
We easily get the conclusion from the two above steps.

Proof of Step 1. Let us define the function θ : R -→ R by:

θ (t) =        0 if -≤ t ≤ , 2t -2 if < t < 2 , 2t + 2 if -2 < t < -, t
otherwise, and g = θ • g. Then g ∈ C 0,1 c (Ω). We next prove that g converges to g in C 0,α (Ω). First of all, for every x ∈ Ω

|g (x) -g(x)| ≤ (|g (x)|+|g(x)|)1 {|g|≤2 } ≤ 2|g(x)|1 {|g|≤2 } ≤ 4 .
(5.27)

Then g converges to g uniformly in C 0 (Ω).

We now estimate the Holder-semi norm sup

x =y |(g -g )(x) -(g -g )(y)| |x -y| α ≤ sup |x-y|≥ |(g -g )(x) -(g -g )(y)| |x -y| α + sup 0<|x-y|< |(g -g )(x) -(g -g )(y)| |x -y| α . (5.28)
We estimate the first term of (5.28) using (5.27):

sup |x-y|≥ |(g -g )(x) -(g -g )(y)| |x -y| α ≤ sup |x-y|≥ |(g -g )(x)|+|(g -g )(y)| |x -y| α ≤ sup |x-y|≥ 8 |x -y| α ≤ 8 1-α .
(5.29)

As for the second term of (5.28), one has

sup 0<|x-y|< |(g -g )(x) -(g -g )(y)| |x -y| α ≤ sup 0<|x-y|< |g(x) -g(y)|+|g (x) -g (y)| |x -y| α ≤ sup 0<|x-y|< ||Dg|| L ∞ |x -y|+||Dg || L ∞ |x -y| |x -y| α . Using that ||θ || L ∞ ≤ 2 in R, which implies that Dg ε L ∞ ≤ 2 Dg L ∞ , one gets sup 0<|x-y|< |(g -g )(x) -(g -g )(y)| |x -y| α ≤ sup 0<|x-y|< 3||Dg|| L ∞ |x -y| |x -y| α ≤ sup 0<|x-y|< 3||Dg|| L ∞ |x -y| 1-α ≤ 3||Dg|| L ∞ 1-α .
(5.30)

Combining (5.29) and (5.30), we get

[g -g ] C 0,α (Ω) ≤ 8 1-α + 3||Dg|| L ∞ 1-α ≤ Cε 1-α .
By uniform convergence,

lim ε Ω g ε = Ω g = 0. Let θ ∈ C ∞ c (Ω) such that θ = 1.
Then the family ( g ε ) ε>0 defined by

g ε := g - 1 |Ω| Ω g θ
satisfies all the required properties. Proof of Step 2. In this step, we start with a function g ∈ C 0,1 c (Ω) satisfying Ω g = 0. We still denote by g the extension by 0 of g on the whole R n .

Let

ζ ∈ C ∞ c (R n ) such that supp(ζ) ⊂ B(0, 1), ζ ≥ 0 and R n ζ(x)dx = 1.
The desired g is then given by g = ζ * g,

where ζ (x) = 1 n ζ( x ).
Then for every small enough, g ∈ C ∞ c (Ω) and by the Fubini theorem, Ω g = 0. Moreover, for any β ∈ (0, 1),

|g -g | C 0 ≤ C β ||g|| C 0,β .
Indeed, by definition of the convolution, one has

g (x) -g(x) = R n 1 n ζ( y )[g(x -y) -g(x)]dy = R n ζ(z)[g(x -z) -g(x)]dz.
Then using that supp ζ ⊂ B(0, 1) and |ζ| β ≤ 1 on B(0, 1), one gets

g -g C 0 ≤ β g C 0,β R n ζ(z)|z| β dz ≤ β g C 0,β . (5.31) 
By writing for every x, y ∈ Ω, x = y,

|(g -g)(x) -(g -g)(y)| |x -y| α = |(g -g)(x) -(g -g)(y)| |x -y| α |(g -g)(x) -(g -g)(y)| 1-α ≤ 2 1-α [g -g] α C 0,1 g -g 1-α C 0 , one gets [g -g ] C 0,α ≤ 2 1-α [g -g] α C 0,1 g -g 1-α C 0 and thus ||g -g|| C 0,α = g -g C 0 +[g -g] C 0,α ≤ g -g C 0 +2 1-α ||g -g || α C 0,1 ||g -g || 1-α C 0 . (5.32)
Moreover, we have that

||g -g || C 0,1 ≤ ||g || C 0,1 +||g|| C 0,1 ≤ 2||g|| C 0,1 . (5.33) 
Combining (5.31)-(5.33), we obtain the conclusion.

Here, h z means the extension of h by zero outside Ω. The two conditions δh = 0, dh z = 0 must be understood in the sense of distributions:

∀η ∈ C ∞ c (Ω, Λ k-1 ), Ω h, dη dx = 0, ∀θ ∈ C ∞ c (R n , Λ k+1 ), R n h, δθ dx = 0.
The latter condition is a weak formulation of the fact that dh = 0 on Ω and h ∧ ν = 0 on ∂Ω. The set H k T (Ω) is closely related to the topology of Ω, see e.g. [START_REF] Mitrea | Layer potentials, the hodge laplacian, and global boundary problems in nonsmooth riemannian manifolds[END_REF]Chapter 11]. Now, for every h ∈ H k T , one has δh = 0 and thus, for every

X ∈ C ∞ c (Ω, Λ k-1 ), Ω dX, h dx = 0.
This remains true by density for

X ∈ W 1,2 0 (Ω, Λ k-1 ), in particular for X ∈ C r+1,α z (Ω, Λ k-1
). This yields a third necessary condition on the right hand side f of (6.1) to ensure the existence of a solution X: f should be orthogonal to any element of H k T (Ω). We are thus led to introduce the Banach space

C r,α H (Ω, Λ k ) := f ∈ C r,α (Ω, Λ k ) : df = 0 in Ω, ν ∧ f = 0 on ∂Ω, Ω f, h = 0, ∀h ∈ H k T (Ω) .
We can now formulate (6.1) as follows: is it true that any

f ∈ C r,α H (Ω, Λ k ) is the differential of some X ∈ C r+1,α z
(Ω, Λ k-1 ) ? Actually, we expect that the solution X can be chosen continuously and linearly with respect to f . This is not obvious since such a solution X, when it exists, is not unique. In other words, does there exist a right inverse to

d : C r+1,α z (Ω, Λ k-1 ) → C r,α
H (Ω, Λ k ) ? This is indeed our main result, under the assumption that Ω has the same regularity as X itself. Theorem 6.1. Let r ∈ N, k ∈ {1, . . . , n} and α ∈ (0, 1). Let Ω be a bounded

C r+1,α domain in R n . Let f ∈ C r,α (Ω, Λ k ) be such that df = 0 in Ω, ν ∧ f = 0 on ∂Ω, (6.3) 
and for every h

∈ H k T (Ω), Ω f, h dx = 0. (6.4)
Then there exists

X ∈ C r+1,α (Ω, Λ k-1 ) such that dX = f in Ω, X = 0 on ∂Ω. (6.5) 
Furthermore, the correspondence f → X can be chosen linear and there exists C = C(r, α, Ω) > 0 such that

||X|| C r+1,α (Ω,Λ k-1 ) ≤ C||f || C r,α (Ω,Λ k ) .
When r = 0, the condition df = 0 has to be understood in the sense of distributions in D (Ω) (the assumption f ∧ ν = 0 has a classical pointwise meaning since f is continuous on the closure of Ω). Remark 6.2. We can allow more general boundary conditions. Namely, if one replaces the homogeneous Dirichlet boundary condition X = 0 on ∂Ω by X = X 0 for some X 0 ∈ C r+1,α (Ω, Λ k-1 ), then the corresponding statement holds true under the necessary and sufficient conditions: df = 0 in Ω, ν ∧ f = ν ∧ dX 0 on ∂Ω, and for every h ∈ H k T (Ω),

Ω f, h - ∂Ω ν ∧ X 0 , h = 0.
Indeed, for X 0 ∈ C r+1,α (Ω, Λ k-1 ), the differential form

f 1 = f -dX 0 ∈ C r,α (Ω, Λ k ) satisfies df 1 = 0 in Ω , ν ∧ f 1 = 0 on ∂Ω and Ω f 1 , h dx = 0, ∀h ∈ H k T (Ω).
By Theorem 6.1, there exists

X 1 ∈ C r+1 z (Ω, Λ k-1
) such that dX 1 = f 1 in Ω. Thus, X = X 0 + X 1 satisfies all the required properties.

The proof of Theorem 6.1 shares some features with the argument used in the previous Chapter. For that we look for a right inverse to the exterior derivative operator

d : C r+1,α z (Ω, Λ k-1 ) → C r,α H (Ω, Λ k ).
It is a consequence of Lemma 5.3 and the following Theorem Theorem 6.3. For every integer r ≥ 0, there is a bounded operator

S : C r,α H (Ω, Λ k ) → C r+1,α z (Ω, Λ k-1 ) such that for every f ∈ C r,α H (Ω, Λ k ) f -d(Sf ) ∈ C r,α H (Ω, Λ k ) and ||f -d(Sf )|| C r+1,α z (Ω,Λ k-1 ) ≤ C||f || C r,α H (Ω,Λ k
) . The proof of Theorem 6.3 will follow the same strategy as the proof of Theorem 5.4; that is, we localize the problem on small balls and perform the construction of the bounded operator S by the gluing process. Compared with the divergence equation, the assumptions on data entail several difficulties, namely:

-The boundary condition. In the case of n forms, the boundary condition of the data f is ignored. But that boundary condition will be taken into account in the general case. It is one of the difficulties we need to handle when we proceed the matching of the boundary condition of the data in the cube and those in the neighborhood of the boundary of Ω. It is well-known that if φ is a local chart, the pullback of the local chart commutes with the exterior derivative operator; namely, for any k differential form f , one has φ * (df ) = d(φ * f ). Here φ * (f ) is the pullback of f by φ. However, the normal vector of the boundary is not necessarily conserved by the pullback of a diffeomorphism.

-The closeness. The closeness of the data is the second issue we meet. It follows from the fact that, the closeness of the n differential form f is automatically satisfied, ( Ω f = 0) while in general, df = 0 has the classical (pointwise) sense. This fact involve new technical difficulties for equation (6.1) in the cube, as well as for the proof of ker (d) * = {0}, where When Ω is merely Lipschitz, Mitrea, Mitrea and Taylor [START_REF] Mitrea | Layer potentials, the hodge laplacian, and global boundary problems in nonsmooth riemannian manifolds[END_REF]Chapter 11] prove that H k T (Ω) coincides with the space H k,2 ∧ (Ω) of those maps h ∈ C 1 (Ω, Λ k ) which satisfy dh = 0, δh = 0, ν ∧ h = 0 and such that a certain trace of h (in an appropriate sense) belongs to L 2 (∂Ω).

2. When Ω is Lipschitz, there exists q 0 > 2 such that H k,2 ∧ (Ω) is contained in L q (Ω, Λ k ) for every q ∈ [1, q 0 ), see [START_REF] Mitrea | Layer potentials, the hodge laplacian, and global boundary problems in nonsmooth riemannian manifolds[END_REF]Theorem 11.2].

3. Finally, the set of harmonic fields with vanishing tangential components has finite dimension, see [START_REF] Mitrea | Layer potentials, the hodge laplacian, and global boundary problems in nonsmooth riemannian manifolds[END_REF]Theorem 11.1].

One can formulate a twin result of Theorem 6.1 in the scale of Sobolev spaces. Given p ∈ (1, ∞) and a Lipschitz bounded domain Ω, it is possible to find a solution X ∈ W 1,p 0 (Ω, Λ k+1 ) to (6.1) when f ∈ L p (Ω, Λ k ) satisfies the necessary condition df z = 0 in D (R n ) (remember that f z is the extension of f by 0 outside Ω) and an orthogonality assumption with respect to H k T (Ω). A more regular solution exists provided that the set Ω is regular enough, in the following precise way:

Theorem 6.5. Let r ∈ N, k ∈ {1, . . . , n} and p ∈ (1, ∞). Let Ω be a bounded C r,1 domain in R n . Assume also that H k T (Ω) ⊂ L p (Ω, Λ k ). Let f ∈ W r,p (Ω, Λ k ) be such that df = 0 in Ω, ν ∧ f = 0 on ∂Ω, and for every h ∈ H k T (Ω), Ω f, h dx = 0.
Then there exists X ∈ W r+1,p (Ω, Λ k-1 ) such that

dX = f in Ω, X = 0 on ∂Ω.
Furthermore, the correspondence f → X can be chosen linear and there exists C = C(r, p, Ω) > 0 such that

||X|| W r+1,p (Ω,Λ k-1 ) ≤ C||f || W r,p (Ω,Λ k ) .
The assumption that H k T (Ω) ⊂ L p (Ω, Λ k ) has been introduced to guarantee that the quantity Ω f, h dx is well-defined for every h ∈ H k T . This requirement is automatically satisfied when p ≥ 2.

In the case when H k T (Ω) ⊂ L p (Ω, Λ k ) (which may happen when r = 0 and p is close to 1), one can rely on the following weaker form of Theorem 6.5:

Remark 6.6. Let k ∈ {1, . . . , n} and p ∈ (1, ∞). Let Ω be a bounded Lipschitz domain in R n . Assume also that H k T (Ω) ⊂ L p (Ω, Λ k ). Let f ∈ L p (Ω, Λ k ) be such that df z = 0 in D (R n ). Then there exists X ∈ W 1,p 0 (Ω, Λ k-1
) and h ∈ H k T (Ω) such that dX + h = f in Ω. Furthermore, the correspondence f → (X, h) can be chosen linear and there exists

C = C(p, Ω) > 0 such that ||X|| W 1,p (Ω,Λ k-1 ) + h L 2 (Ω,Λ k ) ≤ C||f || L p (Ω,Λ k ) .
The space H k T (Ω) is finite dimensional, see Remark 6.4. Hence, all the norms are equivalent on this set. In the last estimate, one can thus replace the L 2 norm of h by h L p (Ω,Λ k ) . Remark 6.7. In the limiting case p = 1, there exist closed forms f ∈ L 1 (B n , Λ k ), where B n is the unit ball in R n , which cannot be written as f = dX, for any X ∈ W 1,1 (B n , Λ k-1 ), see [START_REF] Bourgain | On the equation divY = f and application to control of phases[END_REF] for the case k = n and [START_REF] Curcȃ | On the representation as exterior differentials of closed forms with L 1coefficients[END_REF] for k ∈ {1, . . . , n -1}. The same assertion holds true for p = +∞.

Comparison with previous results

The proofs of our results rely on a version of the Poincaré lemma for smooth open sets. Under such an assumption, one can exploit the elliptic regularity theory to construct solutions to (6.1) by using the Hodge-Morrey decomposition. This approach is detailed by Csató, Dacorogna and Kneuss in [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF], where Theorem 6.1 is stated for Ω of class C r+3,α and Theorem 6.5 holds true provided that Ω is C r+3 , see [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF]Theorem 8.16]. According to [START_REF] Morrey | Multiple Integrals in the Calculus of Variations[END_REF]Theorem 7.7.8 (ii)], it seems enough to assume that Ω is in C r+2,α to write the Hodge-Morrey decomposition in the scale of Hölder spaces. In the specific setting of Sobolev spaces, see also [START_REF] Schwarz | Hodge decomposition : a method for solving boundary value problems[END_REF]Section 3.3] (where Ω is assumed to be smooth). Remark 6.8. Let us observe that the set H k T (Ω) as defined in (6.2) slightly differs from the one introduced in [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF] and [START_REF] Morrey | Multiple Integrals in the Calculus of Variations[END_REF], where harmonic fields are required to be in W 1,2 instead of L 2 . In [1, Theorem 4.10], Axelsson and McIntosh establish that these two sets coincide when Ω is C 2 .

In the case when Ω is Lipschitz, Bogovskii [START_REF] Valli | On the integral representation of the solution to the stokes system[END_REF] has introduced an alternative strategy to construct a solution to the divergence equation (4.1) when the right hand side f is in L p (Ω). This approach has been subsequently extended to produce a solution to the Poincaré lemma (6.1) in the whole scale of Besov spaces B s,p q (which contains all the Sobolev and Hölder spaces), see in particular [START_REF] Mitrea | The poisson problem for the exterior derivative operator with dirichlet boundary condition on nonsmooth domains[END_REF] and [START_REF] Costabel | On Bogovskii and regularized Poincare integral operators for de Rham complexes on Lipschitz domains[END_REF]. Typically, this construction requires that the right hand side f is in the closure of k forms with smooth compactly supported coefficients. In order to emphasize the consequences of this fact, let us state a version of [START_REF] Mitrea | The poisson problem for the exterior derivative operator with dirichlet boundary condition on nonsmooth domains[END_REF]Theorem 1.2] in the setting of standard Sobolev spaces W r,p (Ω), when r ≥ 1 and H k T (Ω) = {0}: there exists a solution X to (6.1) if f ∈ W r,p (Ω, Λ k ) is closed and satisfies the following condition

∀α = (α 1 , . . . , α n ) with |α|≤ r -1, Tr D α f | ∂Ω = 0. (6.6) 
We observe that when r = 1, this amounts to f = 0 on ∂Ω, which is more restrictive than the condition f ∧ ν = 0 of our Theorem 6.5. When r ≥ 2, the discrepancy with our own assumptions increases, since (6.6) involves vanishing conditions on the derivatives of f . We should mention however that the solution obtained in [39, Theorem 1.2] is in the closure of smooth compactly supported k + 1 forms, a property which considerably differs from the mere Dirichlet condition X = 0 on ∂Ω. In other words, the Bogovskii approach generally requires additional assumptions on the right hand side f which are not necessary to solve the Poincaré lemma under the sole requirement that the solution X vanishes on the boundary. In the specific case r = 0, one can rely on two properties that fail to be true when

r ≥ 1: first, C ∞ c (Ω, Λ k ) is dense in L p (Ω, Λ k
) and moreover, the set W 1,p z (Ω, Λ k+1 ) of Sobolev forms vanishing on the boundary coincides with the closure

W 1,p 0 (Ω, Λ k+1 ) of C ∞ c (Ω, Λ k+1 ) in W 1,p (Ω, Λ k+1
). In such a situation, the results in [START_REF] Mitrea | The poisson problem for the exterior derivative operator with dirichlet boundary condition on nonsmooth domains[END_REF] cover our Theorem 6.5, when H k T (Ω) = {0}. The Bogovskii construction as extended in [START_REF] Costabel | On Bogovskii and regularized Poincare integral operators for de Rham complexes on Lipschitz domains[END_REF] can be applied to the framework of Hölder spaces, but still in the case when one considers the closure of compactly supported forms, which, once again, differs from the standard Hölder spaces that we consider. For instance, even in the case r = 0, a k form with C r+1,α (Ω) coefficients which vanish on the boundary, cannot be approximated in general by a sequence of smooth compactly supported forms in C r+1,α (such an approximation would imply that the derivatives vanish as well).

Plan of Chapter 6: In the next section, we recall some definitions and preliminaries differential forms. The proof of Theorem 6.1 will begin in the third part, where we prove Theorem 6.3. Then we complete the proof of Theorem 6.1 by proving that ker(T * ) = {0}. In Section 6.3.5, we restrict our attention to the Sobolev setting. Finally, for the convenience of the reader, we have gathered in the appendix some technical tools.

Preliminaries

In this section, we recall some definitions and properties of differential forms.

Let Ω ⊂ R n be a bounded domain in R n . A differential k form f on Ω will be denoted by

f = 1≤i 1 <...<i k ≤n f i 1 ...i k dx i 1 ∧ ... ∧ dx i k ,
where

f i 1 ...i k : Ω → R, for every 1 ≤ i 1 < ... < i k ≤ n. It is sometimes convenient to use the alternative notation f = I∈J k,n f I dx I , where J k,n = {I = (i 1 , ..., i k ) ∈ N k , 1 ≤ i 1 < ... < i k ≤ n}, and for I = (i 1 , . . . , i k ) ∈ J k,n , f I = f i 1 ...i k , dx I = dx i 1 ∧ ... ∧ x i k .
We often write J k instead of J k,n when the dimension n is obvious. Given two k forms f, g, we define the function:

f, g = 1≤i 1 <...<i k ≤n f i 1 ...i k g i 1 ...i k .
The Hodge star-operator is the linear operator * mapping k forms to n -k forms for every k ∈ {0, . . . , n} and defined by

f ∧ g = * f, g dx 1 ∧ ... ∧ dx n , (6.7) 
for every n -k form g. We will use that for a k form f , one has (see [13, Theorem 2.10]) * ( * f ) = (-1) k(n-k) f. (

When each coefficient f I of a k form f belongs to a certain L p (Ω), we write f ∈ L p (Ω, Λ k ) and we introduce the norm

f L p (Ω,Λ k ) = I∈J k,n f I L p (Ω) .
Similar definitions are generalized to any functions spaces.

Given a k form f with C 1 or Sobolev coefficients, its exterior derivative df, is the (k + 1) form defined by

df = 1≤i 1 <...<i k+1 ≤n k+1 γ=1 (-1) γ-1 ∂f i 1 ... iγ ...i k ∂x iγ dx i 1 ∧ ... ∧ dx i k+1 for k < n,
and df = 0 for k = n. Here, the notation i 1 ... i γ ...i k means i 1 ...i γ-1 i γ+1 ...i k .

The codifferential δf is the (k -1) form given by

δf = 1≤i 1 <...<i k-1 ≤n n j=1 j i 1 ...i k-1 ∂f i 1 ...i k-1 ,j ∂x j dx i 1 ∧ ... ∧ dx i k-1 for k > 0, (6.9) 
where (i 1 ...i k-1 , j) denotes the index rearranged increasingly and

j i 1 ...i k-1 = 0 if j ∈ {i 1 , ..., i k-1 }, (-1) γ-1 if i γ-1 < j < i γ .
If k = 1, this formula reads δf = n i=1 ∂f i ∂x i . When k = 0, we set δf = 0. These two operators are related one to the other by the identity [13, Definition 3.2 (ii)]:

δf = (-1) n(k-1) * (d( * f )). ( 6.10) 
We denote by ν = (ν 1 , . . . , ν n ) the outward unit normal to Ω that we identify with the 1 form ν = n i=1 ν i dx i . When k < n, we also consider on ∂Ω the tangential part ν ∧ f of f which is the (k + 1) form

ν ∧ f = 1≤i 1 <...<i k+1 ≤n k+1 γ=1 (-1) γ-1 ν iγ f i 1 ... iγ ...i k+1 dx i 1 ∧ ... ∧ dx i k+1 .
If k = n, then ν ∧ f = 0. Finally, when k > 0, the normal part ν f on ∂Ω is the following (k -1) form:

ν f = 1≤i 1 <...<i k-1 ≤n n j=1 j i 1 ...i k-1 ν j f i 1 ...i k-1 ,j dx i 1 ∧ ... ∧ dx i k-1
When k = 0, we set ν f = 0. The normal and tangential components are related by the following identity (see e.g. [13, Proposition 3.20 (i)]):

f = ν ∧ (ν f ) + ν (ν ∧ f ). (6.11) 
We will also use the fact that ν ∧ f = 0 on ∂Ω if and only if i * (f ) = 0, where i : ∂Ω → R n is the inclusion map, see [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF]Remark 3.22].

We conclude this section with the integration by parts formula for which we require that Ω is at least Lipschitz continuous (see e.g. [13, Theorem 3.28]):

Proposition 6.9. Let k ∈ {1, . . . , n}, f ∈ C 1 (Ω, Λ k-1 ) and g ∈ C 1 (Ω, Λ k ). Then Ω df, g + Ω f, δg = ∂Ω ν ∧ f, g = ∂Ω f, ν g .
By density, the formula remains true when f and g belong to Sobolev spaces. Remark 6.10. By definition of the exterior derivative, for any f ∈ C r+1,α (Ω, Λ k ), one has

||df || C r,α (Ω,Λ k+1 ) = 1≤i 1 <...<i k+1 ≤n ||(df ) i 1 ...i k+1 || C r + max β∈N n ,|β|=r [D β (df ) i 1 ...i k+1 ] C 0,α ≤ C 1≤i 1 <...<i k ≤n ||f i 1 ...i k || C r+1 + max β∈N n ,|β|=r+1 [D β f i 1 ...i k ] C 0,α ≤ C||f || C r+1,α (Ω,Λ k ) .
6.3 The proof of Theorem 6.1

Solution of the Poincaré lemma on a cube

We follow the same strategy as in the divergence problem. Firstly, we solve the Poincaré lemma when Ω is a cube and the boundary condition is required on only one side of the cube.

In the following, for every ρ > 0, we denote by Q ρ the cube (0, ρ) n while Q ρ is the lower side of Q ρ , namely Q ρ = (0, ρ) n-1 × {0}. We will often identify Q ρ with (0, ρ) n-1 . Lemma 6.11. Let r ∈ N, k ∈ {1, . . . , n}, α ∈ (0, 1), ρ > 0, and

f ∈ C r,α (Q ρ , Λ k ) such that df = 0 in Q ρ , dx n ∧ f = 0 on Q ρ . (6.12) 
Then there exists

X ∈ C r+1,α (Q ρ , Λ k-1 ) such that dX = f in Q ρ , X = 0 on Q ρ .
Furthermore, there exists

C = C(r, α, ρ, n) > 0 such that ||X|| C r+1,α (Qρ,Λ k-1 ) ≤ C||f || C r,α (Qρ,Λ k ) . (6.13) 
Remark 6.12.

(i) In the case k = n, conditions (6.12) are automatically satisfied for every

f ∈ C r,α (Q ρ , Λ n ).
(ii) If r ≥ 1, the condition df = 0 has a classical (pointwise) sense. If r = 0, it is understood in the sense of distributions: for every

ϕ ∈ C ∞ c (Q ρ , Λ k ), Qρ f, δϕ dx = 0.
Proof of Lemma 6.11. We rely on the existence of a solution to dX = f on the cube Q ρ (without boundary condition) which is established in the Appendix C. We next modify X on Q ρ in order to satisfy the boundary condition X = 0 there. This strategy is essentially the same as the one presented in [13, sections 8.3 and 8.4] where Q ρ is replaced by the upper half space (or a smooth domain). We explain here how to extend this construction to domains with corners like the cube Q ρ . Without loss of generality, by a dilation argument, we can assume that ρ = 1. Applying Proposition C.6 to the closed form

f ∈ C r,α (Q 1 , Λ k ), there exists X ∈ C r+1,α (Q 1 , Λ k-1 ) such that dX = f in Q 1 and ||X|| C r+1,α ≤ C||f || C r,α , (6.14) 
for some C = C(r, α, n) > 0.

By assumption, on

Q 1 , dx n ∧ dX = dx n ∧ f = 0.
Equivalently, i * (dX) = 0, where i is the inclusion map

x ∈ R n-1 → (x , 0) ∈ R n . Hence, the differential form X = i * (X) satisfies dX = 0 on Q 1 . Observe that X ∈ C r+1,α (Q 1 , Λ k-1 )
and

||X || C r+1,α (Q 1 ,Λ k-1 ) ≤ ||X|| C r+1,α (Q 1 ,Λ k-1 ) . (6.15) 
When k = 1, X is a function and X is simply the restriction of X to Q 1 . The fact that dX = 0 implies that X is a constant c. Observe that

|c|≤ X C 0 ≤ ||X|| C r+1,α . Setting X = X -c, one has dX = f on Q 1 , X = 0 on Q 1 and X C r+1,α ≤ C||f || C r,α . When 2 ≤ k ≤ n, we apply again Proposition C.6 to X on Q 1 : there exists Y ∈ C r+2,α (Q 1 , Λ k-2 ) such that dY = X on Q 1 and ||Y || C r+2,α ≤ C||X || C r+1,α . (6.16) 
We now define the (k -2) form Y = π * (Y ) where π :

(x , x n ) ∈ R n-1 × R → x ∈ R n-1 . Then Y ∈ C r+2,α (Q 1 , Λ k-2
), and since π

• i = id R n-1 , one has i * Y = Y . Moreover, ||Y || C r+2,α (Q 1 ,Λ k-2 ) ≤ ||Y || C r+2,α (Q 1 ,Λ k-2
) . (6.17)

The k form X = X -dY belongs to C r+1,α (Q 1 , Λ k-1 ) and satisfies

d X = dX -ddY = dX = f on Q 1 . Moreover, on Q 1 , i * ( X) = i * (X) -i * (dY ) = X -d(i * Y ) = X -dY = 0.
In other words, dx n ∧ X = 0 on Q 1 . By Lemma C.3 (that we apply with c = X and c i = 0 for every i), there exists

Y ∈ C r+2,α (Q 1 , Λ k-2 ) such that d Y agrees with X on Q 1 and || Y || C r+2,α (Q 1 ,Λ k-2 ) ≤ C|| X|| C r+1,α (Q 1 ,Λ k-1 ) . (6.18) Set X = X -d Y in Q 1 . Then dX = d X -dd Y = f in Q 1 and X = 0 on Q 1 .
Inequality (6.13) is a direct consequence of the construction of X and inequalities (6.14)- (6.18).

We next present a Sobolev version of the above lemma. The main difference in the proof is that the trace of a map u ∈ W 1,p (Q ρ ) on Q ρ is not in the Sobolev space W 1,p (Q ρ ) any more. This is in strong contrast with the Hölder case where the restriction of a Hölder continuous function is still Hölder continuous with the same exponents.

Lemma 6.13. Let r ∈ N, k ∈ {1, . . . , n} , p ∈ (1, ∞), ρ > 0, and f ∈ W r,p (Q ρ , Λ k ) such that df = 0 in Q ρ , dx n ∧ f = 0 on Q ρ . (6.19)
Then there exists X ∈ W r+1,p (Q ρ , Λ k-1 ) such that

dX = f in Q ρ , X = 0 on Q ρ .
Furthermore, there exists C = C(r, p, ρ, n) > 0 such that

||X|| W r+1,p (Qρ,Λ k-1 ) ≤ C||f || W r,p (Qρ,Λ k ) .
Proof. We can assume that ρ = 1. Let us first consider the case r = 0. When f has L p coefficients, one cannot define the trace of f as a function on Q ρ and one cannot apply the standard Poincaré lemma to i * (f ). In fact, the conditions (6.19) have to be understood in the distributional sense:

d(f z ) = 0 on Q 1 × (-1, 1)
where f z is the extension of f by 0 on Q 1 × (-1, 1). By Proposition C.7, there exists X ∈ W 1,p (Q 1 × (-1, 1), Λ k-1 ) such that dX = f z on Q 1 × (-1, 1), with the corresponding estimate. In particular, dX = 0 on Q 1 × (-1, 0). When k = 1, X is a function, which is equal to a constant c on Q 1 × (-1, 0). Then X = X -c satisfies all the desired properties. When 2 ≤ k ≤ n, we rely on Proposition C.7 to get some

Y ∈ W 2,p (Q 1 × (-1, 0), Λ k-2 ) such that dY = X on Q 1 × (-1, 0) with Y W 2,p (Q 1 ×(-1,0),Λ k-2 ) ≤ C X W 1,p (Q 1 ×(-1,1),Λ k-1 )
.

We extend Y to a map in W 2,p (Q 1 × (-1, 1), Λ k-2 ) still denoted by Y . We finally set

X = (X -dY )| Q 1 . Then dX = dX = f on Q 1 . Since X = dY on Q 1 × (-1, 0), their traces coincide on Q 1 (as W 1-1
p ,p maps) and thus the trace of X on Q 1 vanishes. Moreover,

X W 1,p (Q 1 ,Λ k-1 ) ≤ X W 1,p (Q 1 ,Λ k-1 ) + dY W 1,p (Q 1 ,Λ k-1 ) ≤ C X W 1,p (Q 1 ×(-1,1),Λ k-1 ) ≤ C f z L p (Q 1 ×(-1,1),Λ k ) = C f L p (Q 1 ,Λ k ) .
The proof is complete in the case r = 0. When r ≥ 1, the proof is very similar to the proof of the Hölder case except that we rely on Proposition C.7 instead of Proposition C.6 and on Lemma C.4 instead of Lemma C.3. The main difference is that, with the notation used in the proof of Lemma 6.11, one has

Y ∈ W r+2-1 p ,p (Q 1 , Λ k-2 ),
and we cannot set Y = π * (Y ), because such a map would not belong to W r+2,p (Q 1 , Λ k-2 ). Instead, we extend each coefficient

Y I , I ∈ J k-2,n-1 , of Y as a W r+2,p function Y I on Q 1 such that Y I W r+2,p (Q 1 ) ≤ C Y I W r+2-1 p ,p (Q 1 )
for some C = C(r, p, n) > 0. We next define

Y = I∈J k-2,n-1 Y I dx I . Then Y ∈ W r+2,p (Q 1 , Λ k-2 ), i * Y = Y and Y W r+2,p (Q 1 ,Λ k-2 ) ≤ C Y W r+2-1 p ,p (Q 1 ,Λ k-2 )
.

The rest of the proof is essentially the same and we omit it.

Solution of the Poincaré lemma on an epigraph

Given ρ > 0, let ψ ∈ C r+1,α (Q ρ ). In this section, we establish the Poincaré lemma on the epigraph of ψ with a boundary condition along the graph of ψ. More precisely, let us define the open set

U = {(x , x n ) ∈ Q ρ × (0, +∞) : ψ(x ) < x n < ψ(x ) + ρ}.
A normal vector to the graph of {(x , ψ(x )) : x ∈ Q 1 } at a point (x , ψ(x )) is given by ν(x , ψ(x )) = (ν 1 , . . . , ν n )(x , ψ(x )) = ∂ψ ∂x 1 (x ), ..., ∂ψ ∂x n-1 (x ), -1 . (6.20)

As usual, we identify the vector ν with the 1 differential form n i=1 ν i dx i , which belongs to C r,α (Q ρ , Λ 1 ). We emphasize that the geometrical quantities d U and δ U (is defined as in (5.2) and (5.3)) are finite. More precisely, one has, for every x, y ∈ U ,

d U (x, y) ≤ 3(1 + ∇ψ ∞ )|x -y| , δ U ≤ 3(1 + ∇ψ ∞ ). (6.21)
The proof of (6.21) is detailed in the Chapter 5, see Lemma 5.10 and Remark 5.11.

We now proceed with the construction of a solution to the Poincaré lemma on U . In the spirit of [4, Lemma 6], see also [START_REF] Bousquet | A limiting case for the divergence equation[END_REF]Lemma 7.4], we first consider the case when the gradient of ψ is small. Lemma 6.14. Let r ∈ N, k ∈ {1, . . . , n}, α ∈ (0, 1) and ρ > 0. There exists ∈ (0, 1)

such that if ψ ∈ C r+1,α (Q ρ ) such that ||∇ψ|| C r,α ≤ , then for every f ∈ C r,α (U , Λ k ) such that df = 0 in U, ν ∧ f = 0 on {(x , ψ(x )) : x ∈ Q ρ }, there exists X ∈ C r+1,α (U , Λ k-1 ) which satisfies dX = f in U and X = 0 on {(x , ψ(x )) : x ∈ Q ρ }.
Moreover, there exists C = C(r, α, ρ, n) > 0 such that

||X|| C r+1,α (U ,Λ k-1 ) ≤ C||f || C r,α (U ,Λ k ) .
Proof. Without loss of generality, one can assume that ρ = 1. We introduce the C r+1,α diffeomorphism Φ :

x = (x , x n ) ∈ Q 1 → (x , x n + ψ(x )) ∈ U .
Observe that U = Φ(Q 1 ). We next define the k form f := Φ * (f ). Then f ∈ C r,α (Q 1 , Λ k ) and

|| f || C r,α (Q 1 ,Λ k ) ≤ C||f || C r,α (U ,Λ k ) . (6.22) Indeed, writing f = 1≤i 1 <...<i k ≤n f i 1 ...i k dx i 1 ∧ ... ∧ dx i k , one has: f = 1≤i 1 <...<i k ≤n f i 1 ...i k • Φ dΦ i 1 ∧ ... ∧ dΦ i k = 1≤i 1 <...<i k <n f i 1 ...i k • Φ dΦ i 1 ∧ ... ∧ dΦ i k + 1≤i 1 <...<i k-1 <n f i 1 ...i k-1 n • Φ dΦ i 1 ∧ ... ∧ dΦ i k-1 ∧ dΦ n .
The first term agrees with 1≤i 1 <...<i k <n f i 1 ...i k • Φ dx i 1 ∧ ... ∧ dx i k while the second term is equal to

1≤i 1 <...<i k-1 <n f i 1 ...i k-1 n • Φ dx i 1 ∧ ... ∧ dx i k-1 ∧ (dx n + n-1 l=1 ∂ψ ∂x l dx l ).
It thus follows that

f = 1≤i 1 <...<i k ≤n f i 1 ...i k • Φdx i 1 ∧ ... ∧ dx i k + A, (6.23) 
where for every (x

, x n ) ∈ Q 1 , A(x , x n ) = 1≤i 1 <...<i k-1 <n n-1 l=1 f i 1 ...i k-1 n • Φ(x , x n ) ∂ψ ∂x l (x )dx i 1 ∧ ... ∧ dx i k-1 ∧ dx l .
Note also that when r ≥ 1,

||DΦ|| r+α C r-1,α ≤ C(1 + ||∇ψ|| C r-1,α (Q 1 ) ) r+α ≤ C ,
where C = C (r, α, n) > 0. Here, we have used the assumption ||∇ψ|| C r,α ≤ ≤ 1. When r = 0, we have instead ||DΦ|| α C 0,α ≤ C, for some C = C(n, α). Hence, (6.22) is now a consequence of (6.23), Proposition 5.6 and Remark 5.8 for r = 0 and Proposition 5.7 for r ≥ 1.

Moreover,

d f = 0 in Q 1 . (6.24) 
Indeed, when r ≥ 1,

d f = d(Φ * (f )) = Φ * (df ) = 0.
When r = 0, we observe that for every

θ ∈ C ∞ c (Q 1 , Λ k+1 ), Q 1 f , δθ dx = (-1) nk Q 1 f , * d( * θ) dx = (-1) nk Q 1 d( * θ) ∧ f .
The first equality is a consequence of (6.10) while the second one follows from (6.7). By the change of variables formula, this gives

Q 1 f , δθ dx = (-1) nk U (Φ -1 ) * (d( * θ) ∧ f ) = (-1) nk U (Φ -1 ) * (d( * θ)) ∧ (Φ -1 ) * ( f ).
Since (Φ -1 ) * ( f ) = f and (Φ -1 ) * (d( * θ)) = d((Φ -1 ) * ( * θ)), (6.7) again implies that

Q 1 f , δθ dx = (-1) nk U f, * d((Φ -1 ) * ( * θ)) dx.
Next, by (6.8), * d((Φ -1 ) * ( * θ)) = (-1) (k+1)(n-k-1) * d( * * (Φ -1 ) * ( * θ)) so that by (6.10), * d((Φ -1 ) * ( * θ)) = (-1) (k+1)(n-k-1) (-1) nk δ( * (Φ -1 ) * ( * θ)). Finally, one obtains

Q 1 f , δθ dx = (-1) (k+1)(n-k-1) U f, δ * (Φ -1 ) * ( * θ) dx. (6.25)
Since * (Φ -1 ) * ( * θ) is compactly supported in U and df = 0 in the sense of distributions on U , we can conclude that d f = 0 in the sense of distributions. We next establish

dx n ∧ f = 0 on Q 1 . (6.26)
As in the calculation leading to (6.23), one has

Φ * (ν) = n i=1 ν i • Φdx i + n-1 l=1 ν n • Φ ∂ψ ∂x l dx l .
Using (6.20), one gets

Φ * (ν)(x , 0) = n-1 i=1 ∂ψ ∂x i (x )dx i -dx n - n-1 l=1 ∂ψ ∂x l (x )dx l = -dx n . Hence, 0 = Φ * (ν ∧ f ) = Φ * (ν) ∧ Φ * (f ) = -dx n ∧ f ,
which proves (6.26).

In view of (6.24) and (6.26), we can apply Lemma 6.11 to

f ∈ C r,α (Q 1 , Λ k ): there exists X ∈ C r+1,α (Q 1 , Λ k-1 ) such that d X = f in Q 1 , X = 0 on Q 1 and || X|| C r+1,α (Q 1 ) ≤ C|| f || C r,α (Q 1 ) . (6.27) 
We write X = I∈J k-1 X I dx I and define1 

X 0 = I∈J k-1 (X 0 ) I dx I ,
where (X 0 ) I (x) = X I (Φ -1 (x)), ∀x ∈ U . (6.28)

Since for every x = (x , x n ) ∈ U , Φ -1 (x) = (x , x n -ψ(x )) , one has for every

I ∈ J k-1 , ∂(X 0 ) I ∂x l (x) = ∂ X I ∂x l (x , x n -ψ(x )) -∂ X I ∂xn (x , x n -ψ(x )) ∂ψ ∂x l (x ) if l < n, ∂ X I ∂xn (x , x n -ψ(x )) if l = n.
Hence,

dX 0 (x) = I∈J k-1 n l=1 ∂(X 0 ) I ∂x l (x)dx l ∧ dx I = I∈J k-1 n l=1 ∂ X I ∂x l (x , x n -ψ(x ))dx l ∧ dx I + B = d X(Φ -1 (x)) + B,
where

B = - I∈J k-1 n-1 l=1 ∂ X I ∂x l (x , x n -ψ(x )) ∂ψ ∂x l (x )dx l ∧ dx I .
Using that d X = f and (6.23), this implies that

dX 0 = f + B + B , (6.29) 
where for every x = (x , x n ) ∈ U ,

B (x) = 1≤i 1 <...<i k-1 <n n-1 l=1 f i 1 ...i k-1 n (x) ∂ψ ∂x l (x )dx i 1 ∧ ... ∧ dx i k-1 ∧ dx l .
In view of Proposition 5.6, estimates (6.21) and the assumption ||∇ψ|| C r,α ≤ ,

B C r,α (U ) ≤ C ||f || C r,α (U ) ,
for some C = C(r, α, n) > 0. One gets a similar estimate for B by relying also on (6.27) and Proposition 5.7 (or Remark 5.8 when r = 0). We then deduce from (6.29) that

||dX 0 -f || C r,α (U ) ≤ C 0 ||f || C r,α (U ) , (6.30) 
for some C 0 = C 0 (r, α, n) > 0. Using again Proposition 5.7 and the definition of X 0 , see (6.28), we obtain

||X 0 || C r+1,α (U ) ≤ C|| X|| C r+1,α (Q 1 ) . (6.31) 
Combining (6.22) and (6.27), one gets

||X 0 || C r+1,α (U ) ≤ C||f || C r,α (U ) (6.32) 
for some C = C(r, α, n) > 0. Moreover, the definition of X 0 also implies that X 0 = 0 on {(x , ψ(x )) : x ∈ Q 1 }.

We now fix ∈ (0, 1) in such a way that λ := C 0 < 1 where C 0 is the constant in (6.30).

Let us summarize the current state of the proof as follows: we have proved that given

a closed form f ∈ C r,α (U , Λ k ) satisfying ν ∧ f = 0 on {(x , ψ(x )) : x ∈ Q 1 }, there exists X 0 ∈ C r+1,α (U , Λ k-1 ) such that X 0 = 0 on {(x , ψ(x )) : x ∈ Q 1 } and ||dX 0 -f || C r,α (U ) ≤ λ||f || C r,α (U ) , ||X 0 || C r+1,α (U ) ≤ C||f || C r,α (U ) ,
with λ ∈ (0, 1) and C = C(r, α, n) > 0. We now construct by induction a sequence (X i ) i∈N ⊂ C r+1,α (U , R n ) such that for every i ≥ 0,

dX i -(f -d i-1 j=0 X j ) C r,α (U ) ≤ λ f -d i-1 j=0 X j C r,α (U ) , (6.33 
)

X i = 0 on {(x , ψ(x )) : x ∈ Q 1 }, (6.34) 
X i C r+1,α (U ) ≤ C f -d i-1 j=0 X j C r,α (U ) . (6.35) 
The (k -1) form X 0 has been constructed above. Assuming that X 0 , . . . , X i-1 have been defined for some i ≥ 1, then we define X i exactly as we have done for X 0 except that we replace f by f -d i-1 j=0 X j . This is possible since

d(f -d i-1 j=0 X j ) = 0 in U and ν ∧ (f -d i-1 j=0 X j ) = 0 on {(x , ψ(x )) : x ∈ Q 1 }.
The latter condition is a consequence of the fact that each X j = 0 on the graph of ψ, so that ν ∧ dX j = 0 there. Then X i satisfies the three properties aboves. This completes the proof of the existence of the sequence (X i ) i∈N . We deduce from (6.33) that

f -d i j=0 X j C r,α (U ) ≤ λ f -d i-1 j=0 X j C r,α (U ) ≤ . . . ≤ λ i+1 f C r,α (U ) . (6.36) 
Together with (6.35), this implies that

X i C r+1,α (U ) ≤ Cλ i f C r,α (U ) .
It follows that the sum i∈N X i converges in the Banach space C r+1,α (U ) to some k -1 form X such that X = 0 on {(x , ψ(x )) :

x ∈ Q 1 } and X C r+1,α (U ) ≤ C f C r,α (U ) .
Moreover, by (6.36), one has dX = f. This completes the proof of Lemma 6.14.

We proceed to remove the smallness condition on ∇ψ, as in [6, Lemma 7.5]. Given 0 < δ ≤ ρ, we consider ψ ∈ C r+1,α (Q ρ ) and use the notation:

U δ = {(x , x n ) ∈ Q δ × R : ψ(x ) < x n < ψ(x ) + ρ}.
Lemma 6.15. Let r ∈ N, k ∈ {1, . . . , n}, α ∈ (0, 1), ρ > 0. Then there exists δ = δ(r, α, ρ, n, ∇ψ C r,α (Q ρ ) ) > 0 with the following property: for every

f ∈ C r,α (U δ , Λ k ) such that df = 0 in U δ , and ν ∧ f = 0 on {(x , ψ(x )) : x ∈ Q δ }, there exists X ∈ C r+1,α (U δ ) such that dX = f in U δ , X = 0 on {(x , ψ(x )) : x ∈ Q δ } and ||X|| C r+1,α (U δ ) ≤ C||f || C r,α (U δ ) ,
where C = C(r, α, ρ, n, ∇ψ C r,α (Q ρ ) ) > 0.

Proof. Without loss of generality, we can assume that ρ = 1. Let δ ∈ (0, 1) such that δ ∇ψ C r,α (Q 1 ) < , where is given by Lemma 6.14. We then define ψ δ (x ) = ψ(δx ), x ∈

Q 1 . Then ∇ψ δ C r,α (Q 1 ) ≤ δ ∇ψ C r,α (Q δ ) < .
We also set Ψ δ

(x) = (δx , x n ), x = (x , x n ) ∈ Q 1 × R and W 1 = {(x , x n ) ∈ Q 1 × R : ψ δ (x ) < x n < ψ δ (x ) + 1}. Observe that Ψ δ (W 1 ) = U δ . Let f ∈ C r,α (U δ , Λ k ). We introduce f δ = Ψ * δ (f ).
Then by Remark 5.8 when r = 0 and Proposition 5.7 when r ≥ 1,

f δ ∈ C r,α (W 1 , Λ k ) and ||f δ || C r,α (W 1 ,Λ k ) ≤ C||f || C r,α (U δ ,Λ k ) (6.37)
for some C = C(r, α, n) > 0. For the normal to {(x , ψ(x )) : x ∈ Q δ }, we choose the 1 form ν = n i=1 ν i dx i defined by

ν i (x , ψ(x )) = ∂ψ ∂x i (x ) if i < n, ν n (x , ψ(x )) = -1.
Then for every x ∈ Q 1 ,

Ψ * δ (ν)(x , ψ δ (x )) = n-1 i=1 ∂ψ ∂x i (δx )δdx i -dx n = n-1 i=1 ∂ψ δ ∂x i (x )dx i -dx n .
In the framework of Sobolev spaces, it is possible to formulate the corresponding versions of Lemma 6.14 and Lemma 6.15. Here, we only write the latter for later reference. Lemma 6.18. Let r ∈ N, k ∈ {1, . . . , n}, p ∈ (1, ∞), ρ > 0. With the above notation, there exists δ = δ(r, p, ρ, n, ∇ψ W r,∞ (Q ρ ) ) > 0 with the following property: for every f ∈ W r,p (U δ , Λ k ) such that df = 0 in U δ , and ν ∧ f = 0 on {(x , ψ(x

)) : x ∈ Q δ }, there exists X ∈ W r+1,p (U δ ) such that dX = f in U δ , X = 0 on {(x , ψ(x )) : x ∈ Q δ } and ||X|| W r+1,p (U δ ) ≤ C||f || W r,p (U δ ) ,
where

C = C(r, α, ρ, n, ∇ψ W r,∞ (Q ρ ) ) > 0.
The proof is essentially the same as in the Hölder case except that we use Lemma 6.13 instead of Lemma 6.11. Moreover, the substitutes of Proposition 5.6 and Proposition 5.7 are given by the two following facts: For every f ∈ W r,p , g ∈ W r,∞ , the Leibniz rule implies that f g ∈ W r,p and

f g W r,p ≤ C f W r,p g W r,∞ ,
where C = C(r, p, n) > 0. For every f ∈ W r,p and every biLipschitz homeomorphism Ξ ∈ W r+1,∞ with a Jacobian larger than a constant c 0 > 0, the change of variables formula implies that f • Ξ ∈ W r,p and

f • Ξ W r,p ≤    Cc -1 p 0 f W r,p ( DΞ r W r-1,∞ +1) if r ≥ 1, c -1 p 0 f L p if r = 0,
where C = C(r, p, n) > 0. In fact, we use two types of diffeomorphisms: Ξ(x , x n ) = (x , x n ± ψ(x )) which has a Jacobian equal to 1, and Ξ ± (x , x n ) = (δ ±1 x , x n ), which has a Jacobian equal to δ ±(n-1) . When r = 0, one cannot define the trace of f as a function on the graph {(x , ψ(x )) : x ∈ Q δ }. In that case, we establish (6.26) in Lemma 6.14 or (6.38) in Lemma 6.15 by relying on the distributional formulation of these conditions, more precisely by using the identity (6.25), which holds true for every θ ∈ C 1 (Q 1 , Λ k+1 ).

The counterparts of Remarks 6.16 and 6.17 remain valid in the Sobolev framework as well.

Approximate solution on a bounded set

In this section, we construct an approximate solution to the Poincaré lemma on a bounded set. More precisely, given two integers r ∈ N and k ∈ {1, . . . , n} and an exponent α ∈ (0, 1), we consider the two following spaces:

the set C r,α ν (Ω, Λ k ) of those f ∈ C r,α (Ω, Λ k ) such that df = 0 in Ω, ν ∧ f = 0 on ∂Ω, the set C r+1,α z (Ω, Λ k-1 ) of those X ∈ C r+1,α (Ω, Λ k-1
) such that X = 0 on ∂Ω. Lemma 6.19. Let r ∈ N, k ∈ {1, . . . , n}. Let Ω be a bounded C r+1,α domain in R n . Then there exist two continuous linear operators

S : C r,α ν (Ω, Λ k ) → C r+1,α z (Ω, Λ k-1 ), K : C r,α ν (Ω, Λ k ) → C r+1,α z (Ω, Λ k ) such that d(Sf ) + Kf = f for every f ∈ C r,α ν (Ω, Λ k ).
Using the compact embedding ι : C r+1,α → C r,α , we can see that the operator ι • K is compact from C r,α ν into itself. In that sense, Sf is indeed an approximate solution for the equation f = dX.

Proof. Since Ω is C r+1,α , for every x ∈ ∂Ω, there exists an open neighborhood W ⊂ R n of x, a positive number ρ > 0 and a function ψ ∈ C r+1,α (Q ρ ) such that

• W ∩ Ω is isometric to {(y , y n ) ∈ Q ρ × R : ψ(y ) < y n < ψ(y ) + ρ}, • W ∩ ∂Ω is isometric to {(y , y n ) ∈ Q ρ × R : ψ(y ) = y n }.
There exists some δ > 0 depending on r, α, n, ρ, ψ such that Lemma 6.15 gives a solution to the Poincaré lemma on the set {(y , y n ) ∈ Q δ × R : ψ(y ) < y n < ψ(y ) + ρ}, which vanishes on the lower part of the boundary {(y , ψ(y )) : y ∈ Q δ }. We deduce therefrom that there exists an open neighborhood V of x contained in W and

X ∈ C r+1,α (V ∩ Ω; Λ k-1 ) such that dX = f in V ∩ Ω, X = 0 on V ∩ ∂Ω and X C r+1,α (V ∩Ω,Λ k-1 ) ≤ C f C r,α (V ∩Ω,Λ k ) .
Here, the constant C depends on r, α, n and Ω. By compactness of ∂Ω, one can find a covering of ∂Ω by such open sets V i , i = 1, . . . , l. We denote by X i ∈ C r+1,α (V i ∩ Ω, Λ k-1 ) the corresponding solution. In particular,

||X i || C r+1,α (V i ,Λ k-1 ) ≤ C||f || C r,α (V i ,Λ k ) .
(6.39)

Let also V 0 be a smooth open subset of Ω such that Ω ⊂ l i=0 V i . We now rely on the classical Hodge-Morrey decomposition on a smooth domain, see e.g. [13, Theorem 6.12 (i)]: there exist

X 0 ∈ C r+1 (V 0 , Λ k-1 ), h 0 ∈ H k T (V 0 ) ∩ W 1,2 (V 0 , Λ k ) such that f = dX 0 + h 0 .
Moreover, X 0 and h 0 can be chosen linearly, and satisfying the estimates: for every s ∈ {0, 1, ..., r}, for every α ∈ (0, 1),

||X 0 || C s+1,α (V 0 ,Λ k-1 ) ≤ C||f || C s,α (V 0 ,Λ k ) , (6.40 
)

||h 0 || C s,α (V 0 ,Λ k ) ≤ C||f || C s,α (V 0 ,Λ k ) , for some C = C(s, α , V 0 ). Since V 0 is smooth, the set 2 H k T (V 0 ) ∩ W 1,2 (V 0 , Λ k ) is contained in C ∞ (V 0 , Λ k )
, see e.g. [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF]Theorem 6.3]. Moreover, it is finite dimensional, see e.g. [13, Theorem 6.5 (i)]). In particular, all the norms are equivalent on that space. It follows that

h 0 C s+1,α (V 0 ,Λ k ) ≤ C f C s,α (V 0 ,Λ k ) .
(6.41)

In the same spirit as Remark 6.20, one has: Remark 6.22. The above construction allows to require that given a finite family of exponents 1 < p 1 < • • • < p I ≤ p, the maps S and K are continuous from W s,p i ν into W s+1,p i z , for every i ∈ {1, . . . , I} and every s ∈ {0, . . . , r}.

Proof of Theorem 6.1

We finally turn to the proof of Theorem 6.1. We want to apply Lemma 5.3 to the exterior derivative operator T = d from the set

E = C r+1,α z (Ω, Λ k-1 ) into F = C r,α H (Ω, Λ k ) where C r,α H (Ω, Λ k ) = f ∈ C r,α (Ω, Λ k ) : df = 0 in Ω, ν∧f = 0 on ∂Ω, Ω f, h = 0, ∀h ∈ H k T (Ω) .
Remember that H k T (Ω) is defined by

H k T (Ω) = {h ∈ L 2 (Ω, Λ k ) : δh = 0, d(h z ) = 0},
where the index z denotes the extension by zero outside Ω. In other words, C r,α

H (Ω, Λ k ) = C r,α ν (Ω, Λ k ) ∩ (H k T (Ω)) ⊥
, where the ⊥ sign is related to the inner product in L 2 (Ω, Λ k ). We introduce the two operators S and K given by Lemma 6.19. We first observe that for every h

∈ H k T (Ω), Ω dX, h dx = 0, ∀X ∈ C ∞ c (Ω, Λ k-1 ). By density of C ∞ c (Ω, Λ k-1 ) in W 1,2 0 (Ω, Λ k-1
), the above identity remains true for X ∈ W 1,2 0 , and thus in particular for X = Sf . Hence, Kf = f -d(Sf ) also belongs to (H k T (Ω)) ⊥ ; that is,

K(C r,α H (Ω, Λ k )) ⊂ C r+1,α z (Ω, Λ k ) ∩ (H k T (Ω)) ⊥ .
Since the embedding ι :

C r+1,α (Ω, Λ k ) → C r,α (Ω, Λ k ) is compact and K : C r,α ν (Ω, Λ k ) → C r+1,α z (Ω, Λ k ) is continuous, it follows that ι • K : C r,α H (Ω, Λ k ) → C r,α H (Ω, Λ k ) is compact.
In the following, in order to simplify the notation, we abbreviate ι • K into K. By construction, Id = T • S + K. The last assumption of Lemma 5.3 that we have to establish is ker T * = {0}. This is a consequence of the following:

Lemma 6.23. Let v ∈ (C r,α ν (Ω, Λ k )) * such that for every X ∈ C r+1,α z (Ω, Λ k-1 ), v, dX (C r,α ν (Ω,Λ k )) * ,C r,α ν (Ω,Λ k ) = 0. Then v ∈ H k T (Ω), in the sense that there exists h ∈ H k T (Ω) such that for every f ∈ C r,α ν (Ω, Λ k ), v, f (C r,α ν (Ω,Λ k )) * ,C r,α ν (Ω,Λ k ) = Ω h, f dx.
We first explain how Lemma 6.23 implies that ker

T * = {0}. Let v ∈ ker T * ⊂ (C r,α H (Ω, Λ k )) * .
Then by the Hahn-Banach theorem, there exists a continuous extension v

of v to C r,α ν (Ω, Λ k ) ⊃ C r,α H (Ω, Λ k ). In particular, for every X ∈ C r+1,α z (Ω, Λ k-1 ), v, dX (C r,α ν (Ω,Λ k )) * ,C r,α ν (Ω,Λ k ) = v, dX (C r,α H (Ω,Λ k )) * ,C r,α H (Ω,Λ k ) = 0.
where the last equality follows from the assumption on v. This proves that δw = 0. Next, for every X ∈ C ∞ (Ω, Λ k+1 ), for every g ∈ C r,α ν (Ω, Λ k ), Ω g, δX dx = 0.

We deduce in particular that δX ∈ cl L 2 ({g ∈ C r,α ν (Ω, Λ k ) : g = 0 on ∂Ω)} This means that d(w z ) = 0, where w z is the extension of w by 0 outside Ω. This completes the proof of the fact that w ∈ H k T .

Step 4. Conclusion of the proof. For every f ∈ C r,α ν (Ω, Λ k ), we rely on Lemma 6.19

to write f = d(Sf ) + Kf , with Sf ∈ C r+1,α z (Ω, Λ k-1 ), Kf ∈ C r+1,α ν (Ω, Λ k ) and Kf = 0 on ∂Ω. It follows that v, f (C r,α ν ) * ,C r,α ν = v, Kf (C r,α ν ) * ,C r,α ν . Since Kf ∈ C r+1,α ν
(Ω, Λ k ) with Kf = 0 on ∂Ω, we can apply the previous step to Kf :

v, Kf (C r,α ν ) * ,C r,α ν = Ω w, Kf dx, where w ∈ H k T . We deduce therefrom that v, f (C r,α ν ) * ,C r,α ν = Ω w, Kf dx. Since d(Sf ) ∈ (H k T ) ⊥ and w ∈ H k T , it follows that v, f (C r,α ν ) * ,C r,α ν = Ω w, Kf + d(Sf ) dx = Ω w, f dx,
as desired.

Remark 6.24. The converse of Lemma 6.23 is true: if v ∈ H k T (Ω), then v, dX = 0 for every X ∈ C r+1,α z (Ω, Λ k-1 ). Indeed, one can approximate such an X by a sequence (X i ) i∈N ⊂ C ∞ c (Ω, Λ k-1 ) for the W 1,2 0 topology. Since v, dX i = 0, we obtain the desired result when i → +∞. Remark 6.25. In the setting of Theorem 6.1 but under the additional assumption that Ω is C r+3,α , the construction of the vector X presented in [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF]Theorem 8.16] is linear and universal, in the following sense: there exists a linear map Ξ 0 :

r∈N α∈(0,1) C r,α (Ω, Λ k ) → r∈N α∈(0,1) C r+1,α (Ω; Λ k-1 ) such that for every r ∈ N, α ∈ (0, 1), for every f ∈ C r,α (Ω, Λ k ) satisfying df = 0 in Ω, ν ∧ f = 0 on ∂Ω, one has Ξ 0 (f ) ∈ C r+1,α (Ω; Λ k-1 ), d(Ξ 0 (f )) = f on Ω, Ξ 0 (f ) = 0 on ∂Ω, Ξ 0 (f ) C r+1,α ≤ C f C r,α
for some C = C(r, α, Ω) > 0. The same remark can be made in the framework of Lemma 6.11. The proofs of Lemma 6.14 and Lemma 6.15 are based on linear constructions as well. However, due to the restrictions on ε in Lemma 6.14 and on δ in Lemma 6.15, they are not universal in the above sense.

Observing that p = p I and W 

≤ C f L p I-1 ν . This gives v, f (W r,p ν ) * ,W r,p ν ≤ C f L p I-1 .
Iterating on p I , p I-1 , . . . , p 0 = 2, we finally obtain

v, f (W r,p ν ) * ,W r,p ν ≤ C f L 2 . (6.51)
Since p r ≥ 2, one has W r,p ν ⊂ L 2 and it is thus possible to extend v as a continuous linear map on cl L 2 (W r,p ν (Ω, Λ k )). We then set v = 0 on (cl L 2 (W r,p ν (Ω, Λ k ))) ⊥ . We can conclude that v ∈ H k T , as in the Hölder case, see Step 3 of the proof of Lemma 6.23. This completes the proof of our claim (6.49).

Step 2. In this step, we prove Theorem 6.5 under the additional assumption that p r ≥ 2. The proof is in the same vein as the one of Theorem 6.1, but much simpler. We only indicate the main changes.

We apply Lemma 5.

3 to T = d from the set E = W r+1,p z (Ω, Λ k-1 ) into F = W r,p H (Ω, Λ k ) where W r,p H (Ω, Λ k ) = {f ∈ W r,p (Ω, Λ k ) : df = 0 in Ω, ν∧f = 0 on ∂Ω, Ω f, h = 0, ∀h ∈ H k T (Ω)}.
We introduce the two operators S and K given by Lemma 6.21. Then, relying on the compact embedding W r+1,p z ⊂ W r,p z , one deduces, as in the Hölder case, that K is a compact map from W r,p H (Ω, Λ k ) into itself. The fact that ker T * = {0} now follows from Step 1 and the fact that W r,p H ⊂ (H k T ) ⊥ . We can thus apply Lemma 5.3 and get Theorem 6.5 when p r ≥ 2.

Step 3. We now prove Theorem 6.5 under the assumption that H k T (Ω) ⊂ L (pr) . In view of Step 2, one can assume that p r < 2 (which implies in particular that p < 2). Let f ∈ W r,p ν (Ω, Λ k ). We write f = d( Sf ) + Kf , with Sf, Kf ∈ W r+1,p z , where p * = np/(n -p) Since W r+1,p z ⊂ W r,p * z , this means that f can be written as dX 1 + f 1 , with X 1 ∈ W r+1,p z and f 1 ∈ W r,p * ν . If p * < 2, we repeat this construction for f 1 , to get

f 1 = dY + f 2 with Y ∈ W r+1,p * z and f 2 ∈ W r,(p * ) * ν . This implies that f = dX 2 + f 2 , with X 2 = X 1 + Y ∈ W r+1,p z . Iterating this construction yields X ∈ W r+1,p z , f ∈ W r,2 ν such that f = dX + f . (6.52) By the Sobolev embedding, X ∈ W 1,pr 0 (Ω, Λ k-1 ). Let (Y j ) j∈N ⊂ C ∞ c (Ω, Λ k-1 ) con- verging to X in W 1,pr 0 . For every j ∈ N and every h ∈ H k T (Ω), Ω dY j , h dx = 0. Since (dY j ) j∈N converges to dX in L pr and H k T (Ω) ⊂ L (pr) (Ω, Λ k ), it follows that Ω dX , h dx = 0.
Hence, dX ∈ (H k T ) ⊥ . We deduce therefrom that if in (6.52), we further assume that f ∈ W r,p H , then f ∈ W r,2 H . We can then apply Step 2 to f : there exists

Z ∈ W r+1,2 z (Ω, Λ k-1 ) ⊂ W r+1,p z (Ω, Λ k-1 ) such that f = dZ. This yields f = d(X + Z).
Since all the above constructions can be made continuously and linearly, this completes the proof of Theorem 6.5.

Denote f = ∇ .m 1 Ω . We show that

||f || Ḣ-1/2 (R 2 ) ≤ C||f || L 2 (R 2 ) ≤ C||∇m|| L 2 (Ω) < +∞. Indeed, ||f || 2 Ḣ-1/2 (R 2 ) = |ζ|>1 |F(f )(ζ)| 2 |ξ| dζ + |ζ|≤1 |F(f )(ζ)| 2 |ζ| dζ ≤ ||F(f )|| 2 L 2 (R 2 ) +||F(f )|| 2 L ∞ (R 2 ) |ζ|≤1 1 |ζ| dζ ≤ C(||f || 2 L 2 (R 2 ) +||f || 2 L 1 (R 2 ) ) ≤ C||f || 2 L 2 (R 2 ) , (A.2)
where we used that supp(f ) is compact in R 2 (as Ω is bounded). As consequence of Lax-Milgram's Theorem, the variational problem (2.3) has a unique solution of U ∈ BL(R 3 ) The classical equation (2.12) is obtained obviously. Indeed, by choosing ξ

∈ C ∞ 0 (R 3 \(Ω × {0})), then R 3 ∇U (x).∇ξ(x)dx = 0 for all ξ ∈ C ∞ 0 (R 3 \(Ω × {0})). It implies that ∆U = 0 in R 3 \(Ω × {0}). (A.3) Chapter A Moreover, for any η ∈ C ∞ 0 (Ω × {0}), there exists ξ ∈ C ∞ 0 (R 3 ) such that ξ(•, 0) = η. Then Ω ∇ .m (x )η(x )dx = R 3 ∇U (x)∇ξ(x)dx = R 3 + ∇U (x)∇ξ(x)dx + R 3 - ∇U (x)∇ξ(x)dx = Ω - ∂U ∂x 3 ξ(x , 0)dx = Ω - ∂U ∂x 3 η(x )dx. (A.4)
We then obtain the second equation of (2.12). It remains to prove (2.13). Applying the Fourier transform with respect to the in-plane variable x onto (A.3), we get an ODE for F(U ) in terms of x 3 with the Fourier variable ζ as parameter:

∂ 2 ∂ 2 x 3 F(U )(ζ, •) -|ζ| 2 F(U )(ζ, •) = 0 for x 3 = 0.ζ ∈ R 2 . (A.5)
The jump condition follows that:

∂ ∂x 3 F(U )(ζ, •) = -F(∇ .m 1 Ω )(ζ) for x 3 = 0, ζ = 0. (A.6)
Recall that U ∈ BL(R 3 ). The trace of U is well defined, see Dautray and Lions [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques Tome 2[END_REF]. The uniqueness of U implies that U is symmetric w.r.t. 

F(U )(ζ, x 3 ) = 1 2|ζ| e -|ζ||x 3 | F(∇ .m 1 Ω )(ζ) for ζ = 0, x 3 ∈ R. (A.8) Plancherel's identity yields R 3 |∇U | 2 dx = R 2 R |ζ| 2 |F(U )(ζ, x 3 )| 2 + ∂F(U )(ζ, x 3 ) ∂x 3 2 dζdx 3 = 1 2 R 2 R e -2|ζ||x 3 | |F(∇ .m 1 Ω )(ζ)| 2 dξ = 1 2 R 2 1 |ζ| |F(∇ .m 1 Ω )(ξ)| 2 dξ. (A.9) Moreover, since C ∞ 0 (R 3 ) is dense in BL(R 3 ), we obtain that R 3 |∇U (x)| 2 dx = Ω ∇ .m (x )∇U (x , 0)dx
This completes the proof of Theorem 2.3.

We next establish a basic regularity for the solution U of When k ≥ 2, we assume that m ∈ H k loc (Ω). We take W ⊂ Ω a compact set and fix δ = dist (∂Ω, W )/(2k + 2) > 0. We want to prove that U ∈ H k loc (Ω) Choose a smooth cut-off function θ with θ = 1 in W δ and θ = 0 outside of W 2δ , where W 2δ is defined by

W 2δ := {x ∈ Ω : dist(x, W ) < 2δ}.
Let us denote h = -∇ .m 1 Ω ∈ L 2 (Ω). Since equation (3.1) is linear and has a unique solution, then we can decompose h = h 0 + h 1 where h 0 = θh and obtain

U = U 0 + U 1 with i ∈ {1, 2}      ∆U i = 0 in R 3 \(Ω × {0}), ∂U i ∂x 3 = h i on Ω × {0}, [U i ] = 0 on Ω × {0}. Since m ∈ H k loc (Ω), then m ∈ H k (W 2δ ). It implies that h 0 = θh = -θ∇ .m 1 Ω ∈ H k-1 (R 2 ).
Using the same argument as in Remark 3.3, one has

R 2 |ξ| 2k |F(U 0 (•, 0))(ξ)| 2 dξ = R 2 |ξ| 2k 1 4|ξ| 2 |F(h 0 )(ξ)| 2 dξ = 1 4 ||h 0 || 2 Ḣk-1 (R 2 ) . This implies that ∇ k U 0 (•, 0) ∈ L 2 (R 2 ). Hence, U 0 (•, 0) ∈ H k loc (R 2 ). We want to prove that U 1 ∈ H k loc (W ). Set V = ∆ U 1 (•, 0) in the sense of distributions, where ∆ = ∂ 2 x 1 x 1 + ∂ 2 x 2 x 2 .
We shall prove that V ∈ H k-2 (W ). Using a duality argument, we claim that

V, ∂ α ∂x α η L 2 (W ) ≤ C(k)||η|| L 2 (W )
for every η ∈ C ∞ 0 (W ) and every multi-index α ∈ N 2 , |α|= k -2. Indeed, using the definitions of U 1 , V and the explicit expression of the Ḣ1/2 scalar product, we get

(V, ∂ α ∂x α η) L 2 (W ) = (F(V ), F( ∂ α ∂x α η)) L 2 (R 2 ) = (- |ξ| 2 F(h 1 ), F( ∂ α ∂x α η)) L 2 (R 2 ) = -1 2 (h 1 , ∂ α ∂x α η) Ḣ1/2 (R 2 ) = -1 4π R 2 R 2 (h 1 (x) -h 1 (y))( ∂ α ∂x α η(x) -∂ α ∂y α η(y)) |x -y| 3 dxdy = 1 2π supp h 1 h 1 (x) supp η ∂ α ∂y α η(y) |x -y| 3 dydx ≤ C(k) δ 3+|α| ||h 1 || L 2 (R 2 ) ||η|| L 2 (W ) .
We have used the Green formula, the estimate

∂ α ∂y α 1 |x-y| 3 ≤ C(k) 1 |x-y| 3+|α| and the fact that supp (h 1 ) ⊂ W 2δ \W δ , supp (η) ⊂ W have distance ≥ δ. The proof is completed. This implies [f g] C 0,α ≤ f C 0 [g] C 0,α + [f ] C 0,α g C 0 and thus f g C 0,α ≤ f C 0 g C 0 + f C 0 [g] C 0,α + [f ] C 0,α g C 0 ≤ f C 0,α g C 0,α .
We now assume that the result holds true for r ∈ N and we prove it for r + 1. We rely on (B.1) to write

f g C r+1,α ≤ C( f g C 0 + D(f g) C r,α ) ≤ C( f C 0 g C 0 + f Dg C r,α + gDf C r,α ).
By the induction assumption, one gets

f g C r+1,α ≤ C( f C 0 g C 0 +(δ Ω + d Ω ) r f C r,α Dg C r,α +(δ Ω + d Ω ) r g C r,α Df C r,α ), for some new constant C = C(r, n) > 0. By Lemma B.1, f C r,α ≤ C(δ Ω + d Ω ) f C r+1,α . Moreover, Dg C r,α ≤ C g C r+1,α , see (B.1). Hence, f C r,α Dg C r,α ≤ C(δ Ω + d Ω ) f C r+1,α g C r+1,α .
By changing the roles of f and g, we finally obtain

f g C r+1,α ≤ C(δ Ω + d Ω ) r+1 f C r+1,α g C r+1,α
possibly for a different constant C = C(r, n) > 0. This proves the assertion for r + 1, completing the proof of the proposition.

We next justify the Remark 5.8: Let α ∈ (0, 1) and

f ∈ C 1 (Ω, R m ), g ∈ C 0,α (O, R) with f (Ω) ⊂ O. First, g • f C 0 ≤ g C 0 .
Moreover, for every x, y ∈ Ω, the mean value inequality implies

|g • f (x) -g • f (y)|≤ [g] C 0,α |f (x) -f (y)| α ≤ [g] C 0,α ||Df || α C 0 |x -y| α δ α Ω . Hence, [g • f ] C 0,α ≤ [g] C 0,α ||Df || α C 0 δ α Ω . Thus, ||g • f || C 0,α = ||g • f || C 0 + [g • f ] C 0,α ≤ ||g|| C 0,α (||Df || α C 0 δ α Ω + 1) ≤ δ Ω ||g|| C 0,α (||Df || α C 0 +1).
In the last inequality, we have used the fact that δ Ω ≥ 1. This completes the proof of Remark 5.8. We now give the Proof of Proposition 5.7. We prove the assertion by induction on r ≥ 1. For r = 1, we write that g

• f C 1,α = max |β|≤1 D β (g • f ) C 0 + max |β|=1 [D β (g • f )] C 0,α .
By writing for every |β|= 1,

D β (g • f ) = |γ|=1 (D γ g) • f D β f γ , Chapter B one gets D β (g • f ) C 0 ≤ (Dg) • f C 0 Df C 0 ≤ Dg C 0 Df C 0 and also [D β (g • f )] C 0,α ≤ (Dg) • f C 0 [Df ] C 0,α + [(Dg) • f ] C 0,α Df C 0 . By Remark 5.8, one has [(Dg) • f ] C 0,α ≤ δ Ω Dg C 0,α ( Df α C 0 +1). Hence, [D β (g • f )] C 0,α ≤ Dg C 0 [Df ] C 0,α + δ Ω Dg C 0,α ( Df α C 0 +1) Df C 0 ≤ Cδ Ω g C 1,α ( Df 1+α C 0,α +1).
This proves the result for r = 1. Assuming the estimate for r ≥ 1, let us prove it for r + 1. We write

||g • f || C r+1,α ≤ C(||g • f || C 0 +||D(g • f )|| C r,α ) ≤ C(||g|| C 0 + |β|=|γ|=1 ||(D γ g) • f D β f γ || C r,α ). (B.2) By Proposition 5.6, ||(D γ g) • f D β f γ || C r,α ≤ C(δ Ω + d Ω ) r ||(D γ g) • f || C r,α ||D β f γ || C r,α .
By the induction assumption, one has

||(D γ g) • f || C r,α ≤ C(δ Ω + d Ω ) r 2 D γ g C r,α ( Df r+α C r-1,α +1)
and thus

||(D γ g) • f D β f γ || C r,α ≤ C(δ Ω + d Ω ) r 2 +r Dg C r,α ( Df r+α C r-1,α +1) Df || C r,α ≤ C(δ Ω + d Ω ) r 2 +r+r+α g C r+1,α ( Df r+α+1 C r,α +1).
In the last line, we have used Lemma B.1 to write Df

C r-1,α ≤ C(δ Ω + d Ω ) Df C r,α and Dg C r,α ≤ C g C r+1,α . Inserting this inequality into (B.2), one obtains ||g • f || C r+1,α ≤ C(δ Ω + d Ω ) (r+1) 2 g C r+1,α ( Df r+α+1 C r,α +1).
This proves the assertion for r + 1 and completes the proof of the proposition.

As an application of Propositions 5.6 and 5.7, we deduce the following version of Proposition 5.7 for differential forms: Lemma B.2. Let r ∈ N, α ∈ (0, 1) and ρ : Ω → V be a C r+1,α map, where Ω and V are two bounded domains in R n . Then for every k ∈ {0, . . . , n} and f

∈ C r,α (V , Λ k ), ρ * (f ) C r,α (Ω,Λ k ) ≤ C f C r,α (V ,Λ k ) ,
where C depends only on r, α, n, ρ C r+1,α , and the geometrical quantities

d Ω , δ Ω . Proof. Let f ∈ 1≤i 1 <...<i k ≤n f i 1 ...i k dx i 1 ∧ ... ∧ dx i k . Then ρ * (f ) = 1≤i 1 <...<i k ≤n f i 1 ...i k • ρdρ i 1 ∧ ... ∧ dρ i k , where dρ s = n i=1 ∂ρ s ∂x i dx i , ∀s ∈ {0, ..., n}.
Hence,

ρ * (f ) = 1≤i 1 <...<i k ≤n f i 1 ...i k • ρ j l =jm,∀l =m ∂ρ i 1 ∂x j 1 ... ∂ρ i k ∂x j k dx j 1 ∧ ... ∧ dx j k = j l =jm,∀l =m 1≤i 1 <...<i k ≤n f i 1 ...i k • ρ. ∂ρ i 1 ∂x j 1 ... ∂ρ i k ∂x j k dx j 1 ∧ ... ∧ dx j k .
This implies that

||ρ * (f )|| C r,α ≤ j l =jm,∀l =m 1≤i 1 <...<i k ≤n f i 1 ...i k • ρ. ∂ρ i 1 ∂x j 1 ... ∂ρ i k ∂x j k C r,α . 
Using Proposition 5.6, we obtain

||ρ * (f )|| C r,α ≤ C 1≤i 1 <...<i k ≤n ||f i 1 ...i k • ρ|| C r,α Dρ k C r,α , where C = C(d Ω , δ Ω , k, n) > 0. When r ≥ 1, Proposition 5.7 implies ||ρ * (f )|| C r,α (Ω,Λ k ) ≤ C 1≤i 1 <...<i k ≤n ||f i 1 ...i k || C r,α (||Dρ|| r+α C r-1,α +1)||Dρ|| k C r,α ,
possibly for a larger constant C. In view of (B.1), this leads to the conclusion. When r = 0, we rely instead on Remark 5.8 and conclude similarly.

The end of this section is devoted to the proof of the following approximation result:

Proposition B.3. Let α ∈ (0, 1)
and Ω be a bounded C 1,α domain in R n . Then there exists a sequence {η i } i∈N mapping linearly, for every ∈ {0, . . . , n}, C 0,α z (Ω, Λ ) into C ∞ c (Ω, Λ ) and such that for every g ∈ C 0,α z (Ω, Λ ), for every α ∈ (0, α),

lim i→∞ η i (g) -g C 0,α (Ω,Λ ) = 0. Moreover, for every g ∈ W 1,1 0 (Ω, Λ ) ∩ C 0,α z (Ω, Λ ) such that dg ∈ C 0,α z (Ω, Λ +1 ), one has η i (dg) = d(η i (g)).
The proof of this proposition is based on several technical remarks. The first one is a result on the continuity of translations in Hölder spaces.

Lemma B.4. Let ζ ∈ C ∞ c (B(0, 2 
)) such that 0 ≤ ζ ≤ 1 and for every t ∈ R,

β t : x ∈ R n → x + ζ(x)t -→ e n .
Then there exist ε > 0 and C > 0 such that for every 0 < α < α < 1, for every

f ∈ C 0,α (R n ) and every t ∈ [-ε, ε], f • β t -f C 0,α (R n ) ≤ C|t| α-α f C 0,α (B(0,2)) ,
where C only depends on ζ.

Proof. There exists a ball B B(0, 2) such that B supp ζ. In order to simplify the notation, we set

B = B(0, 2). Let ε > 0 such that B + B(0, ε) ⊂ B . Let f ∈ C 0,α (R n ) and t ∈ [-ε, ε]. Then f • β t = f outside B and β t (B) ⊂ B .
Using the Hölder continuity of f , we thus have for every

x ∈ R n , |f • β t (x) -f (x)|≤ [f ] C 0,α (B ) |β t (x) -x| α .
By using the definition of β t and the fact that 0

≤ ζ ≤ 1, one gets |f • β t (x) -f (x)|≤ [f ] C 0,α (B ) t α . (B.3)
Next, for every x ∈ B and y ∈ R n , we estimate the quantity

|(f • β t -f )(x) -(f • β t -f )(y)|
as follows: When |x -y|< t, we write

|(f • β t -f )(x) -(f • β t -f )(y)|≤ |f • β t (x) -f • β t (y)|+|f (x) -f (y)|.
By Hölder continuity of f and the fact that x, β t (x), y and β t (y) all belong to B , this gives

|(f • β t -f )(x) -(f • β t -f )(y)|≤ [f ] C 0,α (B ) (|β t (x) -β t (y)| α +|x -y| α ).
By the definition of β t and the mean value inequality applied to ζ, one gets 

|(f • β t -f )(x) -(f • β t -f )(y)| ≤ [f ] C 0,α (B ) ( ∇ζ α C 0 (B ) +2)|x -y| α ≤ [f ]
|(f • β t -f )(x) -(f • β t -f )(y)|≤ 2[f ] C 0,α (B ) t α ≤ 2[f ] C 0,α (B ) |t| α-α |x -y| α .
We have thus proved that for every x ∈ B, y ∈ R n ,

|(f • β t -f )(x) -(f • β t -f )(y)|≤ 2[f ] C 0,α (B ) ( ∇ζ α C 0 (B) +1)|t| α-α |x -y| α .
The case when x ∈ R n and y ∈ B is similar. Finally, when x ∈ B and y ∈ B, |(f • β tf )(x) -(f • β t -f )(y)|= 0. This implies that for any x, y ∈ R n ,

[f • β t -f ] C 0,α (R n ) ≤ 2[f ] C 0,α (B ) ( ∇ζ α C 0 (B) +1)|t| α-α .
The proof is complete.

We proceed to extend the above lemma to differential forms.

Lemma B.5. With the notation of Lemma B.4, for every 0 < α < α < 1, for every k ∈ {0, . . . , n}, for every f ∈ C 0,α (R n , Λ k ) and every t ∈ [-1, 1],

β * t (f ) -f C 0,α (R n ,Λ k ) ≤ C|t| α-α f C 0,α (B(0,2),Λ k ) ,
where C only depends on η.
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Proof. Let f = 1≤i 1 <•••<i k ≤n f i 1 ...i k dx i 1 ∧ . . . ∧ dx i k . Then

β * t (f ) = 1≤i 1 <•••<i k ≤n f i 1 ...i k • β t dβ i 1 t ∧ . . . ∧ dβ i k t .
By construction,

dβ i t = dx i if i < n, dx n + tdζ if i = n.
Hence,

β * t (f ) = 1≤i 1 <•••<i k ≤n f i 1 ...i k •β t dx i 1 ∧. . .∧dx i k +t 1≤i 1 <•••<i k-1 <n f i 1 ...i k-1 n •β t dx i 1 ∧. . .∧dx i k-1 ∧dζ.
It follows that

β * t (f ) -f C 0,α (R n ,Λ k ) ≤ 1≤i 1 <•••<i k ≤n f i 1 ...i k • β t -f i 1 ...i k C 0,α (R n ) + C|t| 1≤i 1 <•••<i k-1 <n f i 1 ...i k-1 n • β t C 0,α (B(0,2)) ,
where C = C(ζ, n) > 0. Here, for the second term, we have used Proposition 5.6 and the fact that dζ is compactly supported in B(0, 2). Thus, by the triangle inequality,

β * t (f ) -f C 0,α (R n ,Λ k ) ≤ (1 + C|t|) 1≤i 1 <•••<i k ≤n f i 1 ...i k • β t -f i 1 ...i k C 0,α (R n ) + C|t| 1≤i 1 <•••<i k-1 <n
f i 1 ...i k-1 n C 0,α (B(0,2)) .

In view of Lemma B.4 applied to each f i 1 ...i k , this gives

β * t (f ) -f C 0,α (R n ,Λ k ) ≤ C (1 + C|t|)|t| α-α 1≤i 1 <•••<i k ≤n f i 1 ...i k C 0,α (B(0,2)) + C |t| 1≤i 1 <•••<i k-1 <n f i 1 ...i k-1 n C 0,α (B(0,2)) ≤ C |t| α-α f C 0,α (B(0,2),Λ k ) .
The proof is complete.

The next tool is used to approximate a differential form which vanishes on the boundary of a domain Ω by a family of forms which are compactly supported in Ω.

Lemma B.6. Let α ∈ (0, 1) and Ω be a bounded C 1,α domain. Then there exists a family φ t : R n -→ R n , 0 < t < T, of C 1,α diffeomorphisms, which agree with the identity outside a compact set, and such that φ t (Ω) ⊃ Ω, 0 < t < T, (B.4) ∀f ∈ C 0,α loc (R n , Λ k ), ∀α ∈ (0, α), lim Proof. The construction below is standard in the setting of Lebesgue spaces, see e.g. [START_REF] Axelsson | Hodge Decompositions on Weakly Lipschitz Domains[END_REF]Lemma 4.5]. We detail the proof in order to check that it can be extended to Hölder spaces.

Since Ω is of class C 1,α , one can find a finite covering {V j } 1≤j≤l of ∂Ω by bounded open sets, and a corresponding family of C 1,α diffeomorphisms ρ j : B(0, 2) → V j such that ρ j (B(0, 2) ∩ R n + ) = V j ∩ Ω, ρ j (B(0, 2) ∩ (R n-1 × {0})) = V j ∩ ∂Ω, where R n + is the upper half space R n-1 × (0, +∞). One can further assume that ∂Ω ⊂ Define for t ∈ [0, 1], the translation map

β t : R n -→ R n x → x -ζ(x)t -→ e n .
Let φ j t = ρ j • β t • ρ -1 j extended by the identity outside V j and let

φ t = φ l t • ... • φ 1 t .
Then φ t is a C 1,α diffeomorphism which coincides with the identity outside ∪ i V i . For every j and t > 0 sufficiently small, φ j t (Ω) ⊃ Ω, (B.6) Indeed, let x ∈ ∂Ω. Since each φ j t is a diffeomorphism, we deduce from (B.6) that φ j t (Ω) ⊃ Ω. Applying this observation to φ l t , φ l-1 t , . . . , φ 1 t successively, one gets l + 1 points x = x l+1 , . . . , x 1 in Ω such that x i+1 = φ i t (x i ) for every i = l, . . . , 1. In particular, x = φ t (x 1 ). It remains to prove that x 1 ∈ Ω. Since ∂Ω ⊂ l j=1 ρ j (B(0, 1/2)), there exists i ∈ {1, . . . , l} such that x ∈ ρ i (B(0, 1/2)). Moreover, by construction of φ j t , for every j ∈ {1, . . . , l}, |x j+1 -x j |= |φ j t (x j ) -x j |≤ |ρ j | C 0,1 |β t (ρ -1 j (x j )) -ρ -1 j (x j )|≤ t|ρ j | C 0,1 .

φ j t (Ω) ⊃ Ω ∩ ρ j (B(
It follows that max j |x -x j |≤ lt max j |ρ j | C 0,1 . There exists r > 0 such that for every i ∈ {1, . . . , l}, for every x ∈ ρ i (B(0, 1 2 )), for every y ∈ R n such that |x -y|< r, one has y ∈ ρ i (B(0, 1)) (this can be easily seen by contradiction). Then for t < r l max j |ρ j | C 0,1 , the definition of r implies that x i+1 ∈ ρ i (B(0, 1)). By using (B.7), we deduce that x i ∈ Ω. If i = 1, then we are done. Otherwise, we repeatedly use (B.6) to get that x 1 ∈ Ω, as desired. This completes the proof of (B.8).

We now check the last assertion of the lemma. Set f 1 = (φ 2 t ) * ...(φ l t ) * (f ). By the triangle inequality,

||φ * t (f ) -f || C 0,α (R n ) = ||(φ 1 t ) * (f 1 ) -f || C 0,α (R n ) ≤ ||(φ 1 t ) * (f 1 ) -f 1 || C 0,α (R n ) +||f 1 -f || C 0,α (R n ) .
Now, using that ρ 1 is a C 1,α map which is the identity outside a compact set of R n and Lemma B.2

||(φ 1 t ) * (f 1 ) -f 1 || C 0,α (R n ) ≤ C β * t ρ * 1 (f 1 ) -ρ * 1 (f 1 ) C 0,α (R n ) .
Let α 1 ∈ (α , α). In view of Lemma B.5, this gives ||(φ 1 t ) * (f 1 ) -f 1 || C 0,α (R n ) ≤ C|t| α 1 -α ρ * 1 (f 1 ) C 0,α 1 (B(0,2)) .

Using Lemma B.2 again, one gets ||(φ 1 t ) * (f 1 ) -f 1 || C 0,α (R n ) ≤ C|t| α 1 -α f 1 C 0,α 1 (ρ 1 (B(0,2)) .

By the triangle inequality and the fact that ||f || C 0,α 1 ≤ C||f || C 0,α , ∀ 0 ≤ α 1 < α ≤ 1, (this constant C does not depend on α, α ), then

||(φ 1 t ) * (f 1 ) -f 1 || C 0,α (R n ) ≤ C|t| α 1 -α f 1 -f C 0,α 1 (R n ) +C|t| α 1 -α f C 0,α 1 (ρ 1 (B(0,2)) ≤ C|t| α 1 -α f 1 -f C 0,α 1 (R n ) +C|t| α 1 -α f C 0,α (ρ 1 (B(0,2)) .
We have thus proved that

||φ * t (f ) -f || C 0,α (R n ) ≤ C f 1 -f C 0,α 1 (R n ) +C|t| α 1 -α f C 0,α (ρ 1 (B(0,2)) .
Repeating the above estimate for φ 2 t , . . . , φ l t with a sequence of exponents α = α 0 < α 1 < • • • < α l = α, we finally get

||φ * t (f ) -f || C 0,α (R n ) ≤ C l i=1 |t| α i -α i-1 f C 0,α (∪ n i=1 ρ i (B(0,2)) .
This implies (B.5) and completes the proof of Lemma B.6.

We have now all the ingredients to present the proof of Proposition B.3.

Proof. We introduce a family (ξ s ) s↓0 of mollifiers such that supp ξ s B(0, s). We also use the family (φ t ) t↓0 constructed in Lemma B. [START_REF] Bousquet | A limiting case for the divergence equation[END_REF]. By (B.4), φ t (∂Ω) ⊂ R n \ Ω. Hence, for every (small) t > 0, there exists s t > 0 such that φ t (∂Ω + B(0, s t )) ⊂ R n \ Ω. Given g ∈ C 0,α z (Ω, Λ ), φ * t (g z ) = 0 on ∂Ω + B(0, s t ). Here, as usual, g z is the extension of g by 0 outside Ω. Hence, ξ st * (φ * t (g z )) belongs to C ∞ c (Ω, Λ ). Moreover, for every g ∈ W 1,1 0 (Ω, Λ ), d(ξ st * (φ * t (g z ))) = ξ st * (d(φ * t (g z ))) = ξ st * (φ * t (dg z )).

Let (t i ) i∈N be a sequence decreasing to 0 and s i = s t i for every i ∈ N. We then set η i (g) = ξ s i * (φ * t i (g z ))| Ω . It remains to prove that lim i→+∞ η i (g) -g C 0,α (Ω,Λ ) = 0. (B.9)

By the triangle inequality, η i (g) -g C 0,α (Ω,Λ ) ≤ ξ s i * (φ * t i (g z )) -ξ s i * g z C 0,α (Ω,Λ ) + ξ s i * g z -g C 0,α (Ω,Λ ) .

Since (ξ s i ) i∈N is a sequence of mollifiers and g z ∈ C 0,α (R n , Λ ), lim i→+∞ ξ s i * g z -g C 0,α (Ω,Λ ) = 0 and moreover, ξ s i * (φ * t i (g z )) -ξ s i * g z C 0,α (Ω,Λ ) ≤ φ * t i (g z ) -g z C 0,α (Ω,Λ ) . By Lemma B.6, the latter quantity converges to 0. This proves (B.9). We define G(x) = G(x , x n ) = x m n m! R n-1 ϕ(y )g(x -x n y )dy .

The function G can be rewritten as

G(x , x n ) = x m n m! R n-1 1 x n-1 n ϕ
x -y x n g(y )dy for all x n > 0.

(C.3)

We compute the derivatives of G when x n = 0. We find, for 1 ≤ i ≤ n -1, Observe that ψ l i 1 ,..,i k does not depend on g. In the particular case where g ≡ 1, then by construction, G(x , x n ) = x m n /m!. Hence, when l ≤ m -1, (C.8) gives

∂G ∂x i (x , x n ) = x m n m! R n-1 1 x n-
0 = ∂ k ∂x i 1 ...∂x i k ∂ l ∂x l n x m n m! xn=0 = R n-1
ψ l i 1 ,..,i k (y ) dy .

When l = m, one has instead

1 = ∂ m ∂x m n x m n m! xn=0 = R n-1
ψ l i 1 ,..,i k (y ) dy .

Coming back to (C.8) for a general g, this implies that when l ≤ m -1, Finally, in order to establish the estimate (C.1), one starts from (C.7) with k + l = m:

∂ k ∂x i 1 ...∂x i k ∂ l
∂ k ∂x i 1 ...∂x i k ∂ l ∂x l n G(x , x n ) = R n-1 ψ l i 1 ,.
.,i k (y )g(x -x n y )dy .

Since ψ l i 1 ,..,i k ∈ C ∞ c (R n-1 ) and g ∈ C r+1-m,α (R n-1 ), one easily deduces that the function

∂ k ∂x i 1 ...∂x i k ∂ l ∂x l n G belongs to C r+1-m,α loc (R n-1 × [0, +∞)) with ∂ k ∂x i 1 ...∂x i k ∂ l ∂x l n G C r+1-m,α (Q 1 ) ≤ C g C r+1-m,α (R n-1 ) ≤ C g C r+1-m,α (Q 1 ) ,
where the last inequality follows from (C.2). Since G ∈ C ∞ (R n-1 × (0, +∞)), it follows that G ∈ C r+1,α (R n-1 ×[0, +∞)) with the corresponding estimates on Q 1 . This completes the proof of Lemma C.1.

We deduce from the above lemma the following statement where we prescribe each normal derivative of the extension F . Lemma C.2. Let r ∈ N and α ∈ (0, 1). Let (c i ) 1≤i≤r+1 be a family of functions such that c i ∈ C r+1-i,α ([0, 1] n-1 × {0}).

Then there exists b ∈ C r+1,α (Q 1 ) satisfying, all over Q 1 = (0, 1) n-1 × {0}, b = 0 Indeed, since δκ = 0, one has for i k-2 < n, ∂κ i 1 ...i k-2 j ∂x j +(-1) k-2 ∂κ i 1 ...i k-2 n ∂x n = 0.

The first two terms of the above sum vanish, since κ = 0 on Q 1 . Hence, the third term vanishes as well. This proves (C.14). In the following, we just rely on (C.14) and not on the facts that κ = 0, δκ = 0 on Q 1 . Finally, we define the desired extension of f as follows:

f (x) = f (x) if x ∈ Q 1 dκ(x) if x ∈ Q 1 × [-1, 0]. (C.15)
In order to justify that f has C r,α ([0, 1] n-1 ×[-1, 1]) coefficients, we only need to prove that for every j ∈ {0, . . . , r}, The case j = 0 follows from the fact that dκ = f on Q 1 . When j ≥ 1, this amounts to prove that

∂ j ∂x j n ((dκ) i 1 ..i k ) = ∂ j ∂x j n (f i 1 ...i k ) on Q 1 , for every 1 ≤ i k < ... < i k ≤ n. (C.17)
Let us first consider the case j = 1 (which implicitly means that we are in the case r ≥ 1). In view of (C.18), we can conclude that

∂ ∂x n ((dκ) i 1 ..i k ) = (-1) k-1 ∂ 2 κ i 1 ...i k-1 ∂x 2 n = ∂ ∂x n f i 1 ...i k .
Here in the second equality, we have used (C.12) with j = 1. We next assume that i k < n. On Q 1 , for every γ ∈ {1, . . . , k}, We then observe that

(
k γ =1 γ-1 α =1
(-1) γ-1 (- We now exploit the fact that (df ) i 1 ...i k n = 0 to deduce that the right hand side of the above equality is equal to ∂ ∂xn f i 1 ...i k . This completes the proof of the case i k < n. We have thus proved that (C.17) holds true when j = 1.

We now proceed by induction on j ∈ {1, . . . , r}. Assume that the result is true for some j -1 ∈ {1, . . . , r -1}, namely,

∂ j-1 ∂x j-1 n (dκ)(x , 0) = ∂ j-1 ∂x j-1 n f (x , 0), ∀x ∈ Q 1 .
Let us prove it for j. Set

f j = ∂ j ∂x j n f and κ j = ∂ j ∂x j n κ.
We need to establish that ∂ ∂x n (dκ j-1 ) = ∂ ∂x n f j-1 . This is the same proof as in the case j = 0 in view of the fact that df j-1 = 0 on Q 1 by the Schwarz lemma and dκ j-1 = f j-1 on Q 1 by the induction assumption. We also rely on the two following identities: for every i

1 < • • • < i k-1 ≤ n, ∂ ∂x n (κ j-1 i 1 ...i k-2 i k-1 ) = 0, if i k-1 = n, ∂ 2 ∂x 2 n (κ j-1 i 1 ...i k-1 ) = (-1) k-1 ∂ ∂x n f j-1 i 1 ...i k-1 n , if i k-1 < n.
The first equality follows from (C.13) (and is a substitute to (C.14)) while the second one is a consequence of (C.12). This completes the proof.

We can now state the main result of this section, namely the Poincaré lemma in Hölder spaces defined on a cube, without any boundary condition: Proposition C.6. Let r ∈ N, k ∈ {1, . . . , n} and α ∈ (0, 1). Let f ∈ C r,α (Q 1 , Λ k ) such that df = 0 in Q 1 . Then there exists X ∈ C r+1,α (Q 1 , Λ k-1 ) such that

dX = f in Q 1 .
Moreover, the correspondence f → X can be chosen linear and continuous. In particular, there exists C = C(r, α, n) > 0 such that

||X|| C r+1,α ≤ C||f || C r,α .
where C = C(r, α, n) > 0.

Applying the induction hypothesis to the closed form i * f on Q 1 , there exists X ∈ C r+1,α (Q 1 , Λ k-1 ) such that dX = i * f on Q 1 with the corresponding estimate.

Set Y = π * (X ). Then Y ∈ C r+1,α (Q 1 × [-1, 1], Λ k-1 ) and

i * (dY ) = d(i * Y ) = d(X ) = i * f, or equivalently, ν ∧ dY = ν ∧ f on Q 1 . By definition of Y , ||Y || C r+1,α (Q 1 ×[-1,1],Λ k-1 ) ≤ C||f || C r,α (Q 1 ,Λ k ) .
This completes the construction of Y . Since ν ∧ (f -dY ) = 0 on Q 1 , we can rely on Lemma C.5 to construct an extension f ∈ C r+1,α (Q 1 × [-1, 1], Λ k ) such that f = f -dY on Q 1 , df = 0 on Q 1 × (-1, 1) and

f C r,α (Q 1 ×[-1,1],Λ k ) ≤ C f -dY C r,α (Q 1 ,Λ k ) .
Then the map f = f + dY is an extension for f to

Q 1 × [-1, 1]. Moreover, d f = 0 and f C r,α (Q 1 ×[-1,1],Λ k ) ≤ C f C r,α (Q 1 ,Λ k ) .
We can repeat the same construction in every direction of the coordinate axes to obtain an extension to [-1, 2] n , see 

Figure C.1

We then replicate the whole construction sufficiently many times to get an extension to [-j, j] n , with j large enough to ensure that [-j, j] n contains a ball B(0, R) which contains Q 1 . This yields a k form still denoted by f ∈ C r,α (B(0, R), Λ k ) such that d f = 0, f = f on Q 1 and f C r,α (B(0,R),Λ k ) ≤ C f C r,α (Q 1 ,Λ k ) , with C = C(r, α, n) > 0.

We then apply the classical Poincaré lemma [13, Theorem 8.3] on the ball B(0, R) to get X ∈ C r+1,α (B(0, R), Λ k-1 ) such that d X = f with the corresponding estimate. Then X = X| Q 1 satisfies all the desired properties. 

). Let f ∈ W s,p (Q 1 , Λ k ) such that df = 0 in Q 1 , 1 ≤ k ≤ n. Then there exists X ∈ W s+1,p (Q 1 , Λ k-1 ) satisfying dX = f in Q 1 .
Moreover, the correspondence f → X can be chosen linear and continuous. In particular, there exists C = C(s, p, n) > 0 such that ||X|| W s+1,p ≤ C||f || W s,p . Proof. The above statement corresponds to [START_REF] Costabel | On Bogovskii and regularized Poincare integral operators for de Rham complexes on Lipschitz domains[END_REF]Proposition 4.1 (i)] where we replace the scale of H s spaces by the scale of W s,p spaces, which is possible in view of [START_REF] Costabel | On Bogovskii and regularized Poincare integral operators for de Rham complexes on Lipschitz domains[END_REF]Remark 3.5].

In fact, the Bogovskii construction described in [START_REF] Costabel | On Bogovskii and regularized Poincare integral operators for de Rham complexes on Lipschitz domains[END_REF] can be performed in the whole scale of Besov spaces, see [START_REF] Costabel | On Bogovskii and regularized Poincare integral operators for de Rham complexes on Lipschitz domains[END_REF]Remark 3.5]. Since Hölder spaces can be seen as particular Besov spaces, this can be used to give an alternate proof to Proposition C.6. We have preferred to give an explicit construction, based on the Poincaré lemma on smooth domains. [START_REF] Brézis | Multiple solutions of h-systems and rellich's conjecture[END_REF] 

ω d 2 2 ω| ∇ m | 2 d x + tl 2 ωD 1 (

 2221 |∇m| 2 +Qϕ(m) -2H ext .m + w D (m)dx dx = td Qϕ( m) -2 H ext . m d x (1.8) +tl ω m. ∇ × m) + D 2 ( m 3 ∇ . m -m . ∇ m 3 ) d x .

Figure 1 . 1 :

 11 Figure 1.1: Néel wall of angle 2θ confined in [-1, 1].

Figure 2 . 1 :

 21 Figure 2.1: Magnetization has Néel walls tending to boundary as η → 0.

2

 2 satisfies the following conditions: m = g on ∂Ω and Ω G (m )dx ≤ 2π(d + α)|log |, then there exist n distinct points x 1 , ..., x n ∈ Ω and positive integers d 1 , ..., d n > 0 such that the n balls {B(x j , r)} 1≤j≤n are disjoint, n j=1 d j = d and B(x j ,r)∩Ω

Figure 2 . 2 :

 22 Figure 2.2: A 180 • Néel wall approximation

  for the in-plan quantity. Combining the Euler-Lagrange equation (3.15) and Remark 3.5, we has

For 0

 0 > 0, we choose R = ρ > 0 as in Lemma 3.10 with B(P, ρ) ⊂ B(x 0 , R) and we choose ξ ∈ C ∞ 0 (B(P, ρ)) such that ξ = 1 in B(P, ρ 2 ) and 0 ≤ ξ ≤ 1, |∇ξ|≤ 4 ρ in B(P, ρ). (3.26)

Theorem 4 . 3 .

 43 Let r ∈ N, k ∈ {1, . . . , n} and p

Figure 5 . 1

 51 Figure 5.1

5. 5

 5 Proof of ker(T * ) = {0} and the conclusion of Theorem 5.1.

.

  The dual operator T * : (C r,α H ) * → (C r+1,α z ) * has a trivial kernel: ker(T * ) = {0}.

  (d) * : (C r,α H ) * → (C r+1,α z ) * is the adjoint operator of d and (C r+1,α z ) * , (C r,α H ) * are the dual spaces of C r+1,α z , C r,α H (respectively).

  x 3 = 0, i.e., U is continuous on x 3 = 0. Then [F(U )(ζ, •)] = 0 for x 3 = 0. (A.7) Equations (A.5)-(A.7) give the explicit solution, (see [30, Proposition 4]),

R 3 ∇U

 3 (x).∇ζ(x)dx = Ω ∇ .m (x )ζ(x , 0)dx for every ζ ∈ C ∞ 0 (R 3 ). (A.10) For that we give the Proof of Lemma 3.4. The proof is inspired from Ignat and Knüpfer [31, Lemma 3.1].

  C 0,α (B ) ( ∇ζ α C 0 (B ) +2)|t| α-α |x -y| α .When |x -y|≥ t instead, we write|(f • β t -f )(x) -(f • β t -f )(y)|≤ |f • β t (x) -f (x)|+|f • β t (y) -f (y)|.By (B.3), one gets

  t→0 ||φ * t (f ) -f || C 0,α (Ω,Λ k ) = 0. (B.5)

l

  j=1 ρ j (B(0, 1/2)). Let ζ ∈ C ∞ c (R n ) be such that 0 ≤ ζ ≤ 1, ζ| B(0,1) = 1 and ζ| R n \B(0,2) = 0.

1 ϕ 1 ψ 1 n R n- 1 ψ

 1111 g(x -x n y )dy , (y )g(x -x n y )dyx m-1 n m! R n-1 ∇ϕ(y ), y g(x -x n y )dy . (C.5)We prove by induction that for every l ∈ {1, . . . , m}, there exists a functionψ l ∈ C ∞ c (R n ) which depends only on l, ϕ, m, n such that ∂ l G ∂x l n (x , x n ) = x m-l n R n-1 ψ l (y )g(x -x n y )dy . (C.6)It follows from (C.5) that (C.6) is true when l = 1 withψ 1 (y ) = 1 m! (m + 1 -n)ϕ(y ) -∇ϕ(y ), y .We assume that (C.6) holds for some l ∈ {1, . . . , m -1}. The same computation as in the case l = 1 shows that l (y )g(x -x n y )dy = x m-l-l+1 (y )g(x -y x n )dy withψ l+1 (y ) = (m -l + 1 -n)ψ l (y ) -∇ψ l (y ), y .This completes the proof of (C.6).As in the computation leading to (C.4), one has for (i1 , .., i k ) ∈ {1, . . . , n -1} k and k + l ≤ m, ∂ k ∂x i 1 ...∂x i k ∂ l ∂x l n G(x , x n ) = x m-k-l n R n-1 ψ l i 1 ...i k (y )g(x -x n y )dy . (C.7)whereψ l i 1 ...i k (y ) = ∂ k ∂x i 1 ...∂x i k ψ l (y ) .The formula (C.7) extends continuously tox n = 0. When k + l < m, then ∂ k ∂x i 1 ...∂x i k ∂ l ∂x l n G(x , 0) = 0. When k + l = m, one gets ∂ k ∂x i 1 ...∂x i k ∂ l ∂x l n G(x , 0) = g(x )R n-1 ψ l i 1 ,..,i k (y ) dy .(C.8)

  , 0) = g(x ).

  ∂κ i 1 ...i γ-1 jiγ ...i k-2 ∂x j

f

  (x , 0), ∀x ∈ Q 1 and j ≤ r.(C.16)

Fix 1 ≤(- 1 ) γ- 1 ∂ 2 κ

 1112 i 1 < ... < i k-1 < i k ≤ n.By definition of the exterior differential operator, one has ∂ ∂x n ((dκ) i 1 ...i k ) = k γ=1 i 1 ... iγ ...i k ∂x iγ ∂x n . (C.18) Assume that i k = n. We then rely on (C.14) to deduce that on Q 1 , for every γ < k, ∂ 2 κ i 1 ... iγ ...i k-1 n ∂x iγ x n = 0.

  Figure C.1.

Finally, we state

  the analogue of Proposition C.6 in the setting of Sobolev spaces: Proposition C.7. Let s ∈ [0, +∞), k ∈ {1, . . . , n} and p ∈ (1, ∞

  

  Theorem 2.3. Let m ∈ H 1 (Ω, R 2 ). The variational problem (2.3) has a unique solution U ∈ BL. Classically, U satisfies

	Chapter 2

  .28) Up to a subsequence {x 1,k } k , ..., {x n,k } k converge to n points x 1 , ..., x n and we have for every small r > 0, B(x j,k , r) ⊂ B(x i , 2r) ∀j = 1, ..., n k , for some i ∈ {1, ..., n},for k large sufficiently. The open set D = n j=1 B(x j , 2r) is the location of the essential topological defects of each m k .

  belongs to H 1 loc (Ω). Finally, we obtain that m ∈ H 3 loc (Ω, S 2 ). Step D Conclude the proof of Theorem 3.7. We first claim that Claim 2. If m ∈ H k loc (Ω, S 2 ) satisfies (3.13) and F is a smooth function, for k ≥ 3, then m|∇m| 2 and K belong to H k-1 loc (Ω), where K is defined as in (3.14). Proof of Claim 2. We assume that m ∈ H k loc (Ω, S 2 ). By Lemma 3.4, we have that

  1,p I-1 ⊂ L p I , one has Kf L p ν ≤ C Kf

		W	ν 1,p I-1	. Remark
	6.22 with s = 0 implies that Kf	W ν 1,p I-1	

  dκ) i 1 ... iγ ...i k n = ∂κ i 1 ... iα... iγ ...i k n ∂κ i 1 ... iγ ... iα...i k n ∂x iα + (-1) k-1 ∂κ i 1 ... iγ ...i k

		γ-1	
		α=1 (-1) α-1	∂x iα
		k	
	+	α=γ+1 (-1) ∂x n	.

α 

  1) α-1 ∂κ i 1 ... iα... iγ ...i k n ∂x iγ ∂x iα + ∂κ i 1 ... iα... iγ ...i k n ∂x iγ ∂x iα = 0. In view of (C.18), this implies that ∂ ∂x n (dκ) i 1 ...i k = (-1) k-1 k γ=1 (-1) γ-1 ∂ ∂x iγ (dκ) i 1 ... iγ ..i k n . (C.19) Using that on Q 1 , f i 1 ... iγ ...i k n = (dκ) i 1 ... iγ ...i k n , one gets ∂ ∂x iγ f i 1 ... iγ ..i k n .

	∂ ∂x n	(dκ) i 1 ...i k = (-1) k-1	k γ=1	(-1) γ-1
			k		k
			γ =1	α =γ+1

(-1) γ-1 (-1) α

We note that as m η,3 = 0, and κ do not play any role here.

The previous chapter, F (m) = m

/2, so preferring all axis in the horizontal plane.

For every such Φ, ∃Φ n ∈ C ∞ 0 (Ω) s.t. |Φ n |≤ ||Φ|| L ∞ , Φ n → Φ in H 1 (Ω), Φ n → Φ a.e in Ω.

B + (s)|m -g| arbitrary small by choosing s sufficiently small, and s small enough.

One could be tempted to define X 0 = (Φ -1 ) * ( X). However, such a form would not have C r+1,α coefficients in general, see the paragraph before Lemma 5.3.

As a matter of fact, on a C 2 domain, harmonic fields have W 1,2 coefficients, see Remark 6.8. However, we do not need this (non trivial) regularity result here.

Remerciements

Part II

On the Poincaré Lemma on domains Chapter 6

On the Poincaré Lemma on domains Abstract This chapter is based on a work (see [START_REF] Bousquet | On the poincaré lemma on domains[END_REF]) in collaboration with my adviser Pierre Bousquet.

We are interested in the Poincaré lemma on a bounded domain, under a Dirichlet boundary condition dX = f in Ω, X = 0 on ∂Ω, where f is a differential form of degree k and d is the exterior derivative operator. We prove the existence of a solution under a sharp regularity assumption on the domain Ω and in Hölder spaces. This result generalizes Theorem 5.1 to the differential form equation. Finally, our results cover the whole scale of Sobolev spaces.

Statements of the main results

For the convenience of the reader, let us recall some notations and state again the main result which is introduced in Chapter 4. We formulate the differential form equation in terms of functions spaces.

Let Ω be a domain (namely a connected open set) in R n , with n ≥ 2. Given k ∈ {1, . . . , n}, r ∈ N and α ∈ (0, 1), we define the set C r,α (Ω, Λ k ) of those k differential forms with C r,α coefficients in Ω. Given f ∈ C r,α (Ω, Λ k ), we look for a (k -1) form X in the Banach space C r+1,α z (Ω, Λ k-1 ) := X ∈ C r+1,α (Ω, Λ k-1 ) : X = 0 on ∂Ω such that dX = f in Ω, X = 0 on ∂Ω. (6.1)

Observe that any X ∈ C r+1,α z (Ω, Λ k-1 ) satisfies d(dX) = 0 (when r = 0, this condition must be understood in the sense of distributions). Moreover, the boundary condition X = 0 on ∂Ω implies that ν ∧ dX = 0 on ∂Ω, see [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF]Theorem 3.23]. In this identity, the outer unit normal ν to Ω is identified to a 1 form: we set ν = ν 1 dx 1 + • • • + ν n dx n if ν 1 , . . . , ν n are the coordinates of ν in the standard basis of R n . We deduce therefrom two necessary conditions on a k form f ∈ C r,α (Ω, Λ k ) for the existence of a solution X to (6.1): f should be a closed form, and satisfy the boundary condition f ∧ ν = 0 on ∂Ω. In case when Ω is topologically nontrivial, one must add a further requirement. Let us introduce the set H k T (Ω) of the Dirichlet harmonic fields of order k, defined as H k T (Ω) = {h ∈ L 2 (Ω, Λ k ) : δh = 0, dh z = 0}. (6.2)
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Hence, ν δ := Ψ * δ (ν) defines a normal to the graph of ψ δ . Moreover, on {(x , ψ δ (x )) :

Finally, when r ≥ 1,

When r = 0, the above identity can be understood in the sense of distributions. We can thus apply Lemma 6.14 to the closed form f δ ∈ C r,α (W 1 ): there exists

We then set

for some C = C(r, α, δ, n) > 0. The boundary condition

is satisfied since

The proof of Lemma 6.15 is complete.

Remark 6.16. Given a finite set A ⊂ (0, α], one can require that the solution X δ given by Lemma 6.15 satisy the additional estimates: for every s ∈ {0, . . . , r} and every α ∈ A, one has

where

Indeed, such estimates automatically hold in the setting of all the intermediate results leading to Lemma 6.15, including Lemma C.3 and Proposition C.6 in the appendix, with one exception: in the proof of Lemma 6.14, we have used an approximation scheme which relies on the choice of a parameter ε such that C 0 ε < 1, where C 0 = C 0 (r, α, n, ρ) > 0, see inequality (6.30). By replacing this constant C 0 by a possibly larger constant C 0 , we can ensure that (6.30) holds true for every s ∈ {0, . . . , r} and α ∈ A. Thus, if we decrease ε in order to have C 0 ε < 1, the approximation scheme of Lemma 6.14 is valid in every C s,α spaces, for every s ∈ {0, . . . , r} and α ∈ A. Finally, the value of δ in the proof of Lemma 6.15 must be modified accordingly, in order to satisfy the condition δ ∇ψ C s,α < ε (for this new value of ε), for every s ∈ {0, . . . , r} and α ∈ A.

As a consequence of the proofs of the above lemmata, one can also ensure that Remark 6.17. In the setting of Lemma 6.15, the correspondance f → X is linear.
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To the covering (V i ) 0≤i≤l of Ω, we associate a partition of unity (θ i ) 0≤i≤l such that l i=0 θ i = 1 in Ω, and θ i ∈ C ∞ c (V i ) for i = 0, 1, ..., l.

Finally, we set

Then, in view of (6.39), (6.40) and Proposition 5.6, S is a continuous operator from C r,α ν into C r+1,α z and

Using that θ 0 dX 0 = θ 0 (f -h 0 ) and for every i ∈ {1, . . . , l}, θ i dX i = θ i f , one gets

Observe that Kf | ∂Ω = 0. As a consequence of (6.41) with s = r and α = α, the linear map

According to Remark 6.16 and also (6.40), one can require that given a finite set A ⊂ (0, α], the local solutions X i , arising in the proof of Lemma 6.19 have the following additional property: For every s ∈ 0, . . . , r and α ∈ A,

for some C = C(r, A, n, Ω). Relying on the explicit expression of Kf and also (6.41), one has

A similar calculation holds true for Sf . We can thus state the following: Remark 6.20. The maps S and K are continuous from C s,α ν into C s+1,α z , for every s ∈ {0, . . . , r} and α ∈ A.

In the following, we will apply this remark for A = {α, α } for some α ∈ (0, α). In the setting of Sobolev spaces, given two integers r ≥ 0, k ∈ {1, . . . , n}, and p ∈ (1, ∞), we introduce the sets

), X = 0 on ∂Ω}.

Then the same construction as in the Hölder case, except that one relies on Lemma 6.18 instead of Lemma 6.15, leads to Lemma 6.21. Let r ∈ N, k ∈ {1, . . . , n} and p ∈ (1, ∞). Let Ω be a bounded C r,1 domain in R n . Then there exist two continuous linear operators
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By Lemma 6.23, v can be identified to an element of H k T . This implies that for every

This proves that v = 0, as desired.

We next turn to the

We fix some α ∈ (0, α). We split the proof into four steps.

Step 1. In the first step, we prove that there exists a constant

we can repeat the above argument taking into account this new estimate that we apply to Kf instead of f :

Using Remark 6.20 with s = r -2, we deduce that

for some new constant C = C(v, r, α, Ω). Iterating this calculation, we obtain that

In the case r = 0, this estimate is obvious. Finally, when r ≥ 0, we rely on Remark 6.20 with s = 0 and A = {α , α} to get

Hence, reasoning as above, one has

This completes the proof of Step 1.

Step 2. The aim of this step is to prove that there exists a constant C > 0 such that

We define a sequence (p i ) i≥0 by induction as follows: p 0 = 2 and

Observe that p i+1 > p i if p i ≤ n and when p i < n, then

Hence, one can define p I to be the first term of the sequence such that p I ≥ n 1-α . By the Sobolev and the Morrey embeddings, we have for every 0

Since Ω is C r+1,α and thus C 0,1 , we can rely on Lemma 6.21 with r = 0 and p = p I to write

Relying on the approximation result given in Proposition B.3, there exists a family of linear maps {η i } i∈N such that for every ∈ {0, . . . , n}, η i maps C 0,α z (Ω, Λ ) into C ∞ c (Ω, Λ ) and for every g ∈ C 0,α z (Ω, Λ ),

We apply this last property to the map h = Sf which belongs to
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In the right hand side, we use that

Hence, letting i → +∞ in (6.45), one gets

By the Morrey embedding,

By Remark 6.22, one can require that K is continuous from

We start again from (6.44) but instead of relying on Step 1, we exploit the above inequality with η i ( Kf ) instead of f to get the following analogue of (6.45):

Since η i ( Kf ) converges to Kf in L p I and using also (6.46), this gives

In view of the Sobolev inequality W 1,p I-1 ⊂ L p I , this implies

By Remark 6.22, we get

Iterating these estimates, we finally obtain

which is the conclusion of Step 2.

Step 3. In this step, we prove that the restriction w of v to {f ∈ C r,α ν (Ω, Λ k ) : f = 0 on ∂Ω} belongs to H k T . By the previous step, there exists C > 0 such that for every

Hence, w can be continuously extended to the subset

where cl L 2 denotes the closure in L 2 . We then extend w by setting w = 0 on the orthogonal space of this subset. By the usual identification of L 2 with its dual, we can now consider w as an element of L 2 (Ω, Λ k ). We proceed to prove that w ∈ H k T . First, for every

6.3.5 Proofs of Theorem 6.5 and Remark 6.6

Let r ∈ N, k ∈ {1, . . . , n} and p ∈ (1, ∞). Let Ω be a bounded C r,1 domain in R n . By the Sobolev embedding, the space W r,p (Ω, Λ k ) is contained in L pr (Ω, Λ k ), where

We denote by (p r ) the Hölder exponent of p r .

In the framework of Theorem 6.5, the main assumption is that

In the first two steps of the proof below, we do not need this property but assume instead that p r ≥ 2. The latter condition implies that W r,p ⊂ L 2 . In particular, the integral Ω f, h dx is well defined for every f ∈ W r,p ν (Ω, Λ k ) and every h ∈ H k T . In the final step, we prove Theorem 6.5 under the assumption

Since p r ≥ p, (6.48) may be seen as a less restrictive hypothesis than (6.47). Actually, when r = 0, namely when Ω is Lipschitz, they coincide while when Ω is C 1 , it is very plausible that the methods of [START_REF] Mitrea | Layer potentials, the hodge laplacian, and global boundary problems in nonsmooth riemannian manifolds[END_REF]Chapter 11] imply that

Proof of Theorem 6.5.

Step 1. We first establish a Sobolev version of Lemma 6.23 under the assumption p r ≥ 2:

We then claim that v ∈ H k T (Ω). (6.49) Indeed, let f ∈ W r,p ν (Ω, Λ k ). We introduce the two operators S and K given by Lemma

Relying on Remark 6.22 with s = r -1, one gets

for some C = C(v, Ω, r, p) > 0. Iterating on r, r -1, . . . , 0, this leads to

Otherwise, in the case p > 2, we introduce as in Step 2 of the proof of Lemma 6.23, a sequence p 0 = 2 < p 1 < • • • < p I = p such that W 1,p i-1 (Ω) ⊂ L p i (Ω), for i = 1, . . . , I. We then exploit the estimate (6.50) for Kf instead of f , namely
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We end this section with the proof of Remark 6.6. In this setting, the main assumption is now that

Proof of Remark 6.6. Let f ∈ L p ν (Ω, Λ k ). If p ≥ 2, then L p ⊂ L 2 and we can introduce the L 2 orthogonal projection h of f on H k T (Ω). Then by (6.53

We can thus apply Theorem 6.5 to find some X ∈ W 1,p z (Ω, Λ k ) such that f -h = dX. Theorem 6.6 is proved in that case.

If p < 2, then we can find

Step 3 of the proof of Theorem 6.5, see (6.52). By the previous argument applied to f 1 instead of f , one can write

which completes the proof of the remark.

Appendix A On the magnetostatic energy

In this appendix, we present the proofs of several elementary results on the magnetostatic energy. Throughout this section, we use the notation

and ∇ = (∇ , ∂ x 3 ). The dash indicates a 2D quantity.

Proof of Theorem 2.3 . We apply Lax-Migram's Theorem for the variational problem (2.3) in space BL to obtain the unique existence. For this, we will check that the map ξ → Ω ∇ .m(x )ξ(x , 0)dx is linear continuous in our (BL, ||•|| Ḣ1 ). For every ξ ∈ BL, we have

Here, we have used the interpolation inequality in the first line and the trace estimate in the second line. It remains to prove that ∇ .m 1 Ω ∈

Operations in Hölder spaces

This appendix is mainly devoted to the proofs of Propositions 5.6 and 5.7, and an approximation result in Hölder spaces, see Proposition B.3.

In the sequel, we will rely on the fact that, given a domain Ω ⊂ R n , for every r ∈ N * and every α ∈ (0, 1), for every f ∈ C r,α (Ω), one has

In the next estimate, we use the geometric quantities d Ω and δ Ω introduced in (5.2) and (5.3).

Lemma B.1.

Let Ω be a bounded domain in R n . Then there exists a constant C = C(n) > 0 such that for every r ∈ N * , α ∈ (0, 1) and every f ∈ C r,α (Ω), one has

Proof. Let β ∈ N n such that |β|= r -1 and x, y ∈ Ω. Then, by the mean value inequality, there exists C = C(n) > 0 such that

The result follows since δ Ω ≥ 1.

We proceed with the Proof of Proposition 5.6. . We prove the result by induction on r ∈ N. For r = 0, let f, g ∈ C 0,α (Ω). Then f g C 0 ≤ f C 0 g C 0 and for every x, y ∈ Ω, we can write

Appendix C Extension of closed forms in Hölder and Sobolev spaces

Throughout this section, we still use the notation Q 1 = (0, 1) n and Q 1 = (0, 1) n-1 ×{0}. The latter will be often identified to (0, 1) n-1 .

Given a k closed form f with C r,α coefficients on Q 1 , we want to construct a (k -1) form X with C r+1,α coefficients such that dX = f . We do not require any boundary condition on X.

The difficulty is that Q 1 is merely Lipschitz so that the classical Poincaré lemma in Hölder spaces does not apply. Here is our strategy. We first construct an extension f of f to a smooth open set ω such that f is still closed on ω. We then apply the classical Poincaré lemma on the smooth set ω: this gives X ∈ C r+1,α (Q 1 , Λ k-1 ) such that d X = f . Then by restriction, X := X| Q 1 is a solution of the Poincaré lemma on Q 1 . In order to construct the closed form f , we need some extensions lemma in the setting of Hölder spaces.

A Sobolev version of the above result is presented at the end of this appendix, where we rely instead on the Bogovskii construction, see Proposition C.7.

The following statement generalizes [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF]Lemma 8.11], where the result is proved for m = 1.

with C = C(r, α, m, n) > 0.

Proof. Using Proposition 5.5, we first extend the function g ∈ C r+1-m,α (Q 1 ) to R n-1 , in such a way that the resulting extension g satisfies

), δ > 0 be such that suppϕ ⊂ B (0, δ) and
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Moreover there exists a constant C > 0 such that

Proof of Lemma C.2. We set F 0 = 0. By Lemma C.1, we can construct by induction on i = 1, . . . , r + 1, a function F i ∈ C r+1,α (Q 1 ) such that

Then, the function b = r+1 i=1 F i satisfies all the required properties.

Here is a version of Lemma C.2 for differential forms.

Moreover, there exists a constant C = C(r, α, n) > 0 such that

.

The above statement corresponds to [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF]Lemma 8.11], except for the condition (C.9) which is not required in the quoted reference.

Proof. We denote

and when r ≥ 1,

A simple computation shows that on Q 1 db = ν ∧ (ν c) and δb = ν (ν c) = 0.
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We combine the first equation with the hypothesis ν ∧ c = 0 to get

The last equality relies on (6.11). Identity (C.9) follows from (C.10). The proof is complete.

In the setting of Sobolev spaces, we will only need the following simplified version of Lemma C.3.

Moreover, there exists a constant C = C(r, p, n) > 0 such that

.

The proof of Lemma C.4 is essentially based on the same ideas as the one of Lemma C.3 and we omit it. However, it relies on a Sobolev version of Lemma C.1, which is more delicate to prove than Lemma C.1 itself, see e.g. [START_REF] Runst | Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations[END_REF]Section 2.4.2].

Coming back to the setting of Hölder spaces, we deduce from Lemma C.3 an extension property for closed forms. The difficulty here is that we require that the extension remains closed.

that we denote by f , such that

Moreover, there exists C = C(r, α, n) > 0 such that

and when r ≥ 1, for every j ∈ {1, . . . , r}, for every 1 ≤ i

Moreover there exists a constant C > 0 such that

If follows from the two facts κ = 0 and δκ = 0 that ∂ ∂x n κ i 1 ...i k-2 n = 0, for every 1 ≤ i 1 < ... < i k-2 < n.

(C.14)
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Proof. When k = n, one can rely on the extension property in Hölder spaces, see Proposition 5.5: there exists f ∈ C r,α (R n , Λ n ) such that f

for some C = C(r, n) > 0. Since f is an n form, it is automatically closed. Applying the classical Poincaré lemma (see e.g. [START_REF] Csató | The Pullback Equation for Differential Forms[END_REF]Theorem 8.3]) on a large ball B(0, R) containing Q 1 , there exists X ∈ C r+1,α (B(0, R), Λ n-1 ) such that d X = f and Then X = X| Q 1 satisfies all the desired properties. This proves Proposition C.6 when k = n. In particular, this settles the case n = 1. We prove the result by induction on n ∈ N, n ≥ 1. Assume that the result is true for some n ≥ 1. We will prove that it holds for n + 1. Let k ∈ {1, . . . , n + 1} and f ∈ C r,α (Q 1 , Λ k ) such that df = 0.

We introduce the two following maps:

We claim that i * f is closed on Q 1 . This is obvious when r ≥ 1 since one can write d(i * (f )) = i * (df ) = 0. When r = 0, we use that for every θ ∈ C ∞ c (Q 1 , Λ k+1 ),

We apply the above identity to θ(x ,

). Since δθ = ζδθ , one has

The Fubini theorem then implies

Since this is true for every ζ ∈ C ∞ c (0, 1), we deduce therefrom that for every x n ∈ (0, 1),

By continuity of f on Q 1 , this implies that

Moreover, θ has no normal component, and the same is true for δθ . Hence, f, δθ (x , 0) = i * f, δθ (x ). It follows that

This proves that i * f is also closed in the sense of distributions. We next construct a form Y ∈ C r+1,α (Q 1 × [-1, 1], Λ k-1 ) such that ν ∧ dY = ν ∧ f on Q 1 and moreover