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Abstract

In this thesis, we study some boundary value problems involving micromagnetic
models and differential forms.

In the first part, we consider a nonlocal Ginzburg-Landau model arising in mi-
cromagnetics with an imposed Dirichlet boundary condition. The model typically
involves S2-valued maps with an energy functional depending on several parameters,
which represent physical quantities. A first question concerns the compactness of
magnetizations having the energies of several Néel walls of finite length and topo-
logical defects when these parameters converge to 0. Our method uses techniques
developed for Ginzburg-Landau type problems for the concentration of energy on
vortex balls, together with an approximation argument of S%.-valued vector fields by
St-valued vector fields away from the vortex balls. We also carry out in detail the
proofs of the C™ regularity in the interior and C'** regularity up to the boundary,
for all a € (0, %), of critical points of the model.

In the second part, we study the Poincaré lemma, which states that on a simply
connected domain every closed form is exact. We prove the Poincaré lemma on
a domain with a Dirichlet boundary condition under a natural assumption on the
regularity of the domain: a closed form f in the Holder space C™ is the differential
of a C"1 form, provided that the domain itself is C"™1®. The proof is based on a
construction by approximation, together with a duality argument. We also establish
the corresponding statement in the setting of higher order Sobolev spaces.
Keywords: compactness, critical point, Dirichlet condition, divergence equation, Holder
and Sobolev spaces, harmonic maps, Néel wall, micromagnetics, Poincaré lemma, regular-
ity, vortex, Ginzburg-Landau theory.
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Résumé

Dans cette these, nous étudions des problemes aux limites impliquant le modele micro-
magnétique et les formes différentielles.

Dans la premiere partie, nous considérons un modele non-local de Ginzburg-Landau
apparaissant en micromagnétisme avec une condition au bord de type Dirichlet. Le modele
typique implique une fonctionelle d’énergie définie pour des applications des valeurs dans la
sphere S? et qui depend de plusieurs parametres, qui représentent des quantités physiques.
Une premiere question concerne la compacité des aimantations ayant les énergies de
quelques parois de Néel de longueur finie et des défauts topologiques lorsque ces parametres
convergent vers 0. Notre méthode utilise des techniques développées pour les problemes
de type Ginzburg-Landau sur la concentration d’énergie autour des vortex, avec un argu-
ment d’approximation des champs de vecteurs dans S? par des champs de vecteurs dans
S! éloignés des vortex. Nous effectuons également en détail la preuve de la régularité C>
a I'intérieur et la régularité C1® au bord, pour tous les o € (0, %), des points critiques du
modele.

Dans la deuxieme partie, nous étudions le lemme de Poincaré qui affirme que sur un
domaine simplement connexe chaque forme fermée est exacte. Nous prouvons le lemme de
Poincaré sur un domaine avec une condition aux limites de Dirichlet sous une hypothese
naturelle sur la régularité du domaine : une forme fermée f dans l'espace C™* est la
différentielle d’une forme C™t5* & condition que le domaine lui-méme soit C"™+1. La
preuve est basée sur une construction par approximation, avec un argument de dualité.
Nous établissons également le résultat correspondant dans le cadre d’espaces de Sobolev
d’ordre supérieur.

Mots cléfs: compacité, point critique, condition de Dirichlet, équation de divergence,
espaces de Holder et de Sobolev, application harmonique, paroi de Néel, micromagnétisme,
lemme de Poincaré, régularité, vortex, théorie de Ginzburg-Landau.
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Chapter 1

Introduction

1.1 Micromagnetics

Micromagnetics is a field of physics that deals especially with the behavior of ferromag-
netic materials at very small length scales. In this theory, the ferromagnetic material is
characterized by a 3D vector-field distribution, called magnetization. The micromagnetic
model consists in associating to the magnetization a micromagnetic energy, whose local
minimizers represent the stable magnetization of the ferromagnetic body. The associated
variational problem is non-convex and non-local which make it difficult to solve analyti-
cally. Moreover, the multi-scale complexity of the micromagnetic functional creates a lot
of asymptotic regimes, depending on the relation between the material and geometrical
parameters. This leads to formation of several magnetization patterns.

One of the most extensively researched topics is the qualitative and quantitative anal-
ysis of magnetization patterns. Since there are several distinct regimes, by identifying and
exploring these regimes, we obtain various type of magnetic walls: 2D wall defects (Néel
wall, Bloch walls), 1D vortex-lines (Bloch lines), boundary vortices. We aim to justify
mathematically the physical prediction on the formation and description of these defects.

1.2 The three-dimensional ferromagnetic model
with Dzyaloshinsky-Moriya interaction

The open set w C R? denotes the ferromagnetic sample that will be considered later
as a cylinder. The magnetization of the ferromagnet w can be described by a three-
dimensional unit-length vector field m = (mq, ma, m3) : w — S%. In the classical theory of
micromagnetics (see the book of Hubert and Schéfer [28], also [19]), the free energy per
unit volume of such a magnetization takes the form

Esp :d2/|Vm|2dx+Q/gp(m)dx+/ ]VU|2d:CQ/Hext.md:c+/wp(m)d:v. (1.1)
w w R3 w

w

Let us now explain and comment on these five terms.

(i) The first term is called the exchange energy. It penalizes spatial variations of m
through the Dirichlet integral of m. The constant d is the exchange length. It is an
intrinsic parameter of the material of the order of nanometers.

(ii) The second term is the anisotropy energy which refers to the fact that the properties
of a magnetic material are dependent on the directions in which they are measured.
The energy density ¢ is a non negative function called the anisotropy energy density.
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It is typically a polynomial with symmetry properties inherited from the crystalline
lattice. The zeros of ¢ stands for the preferred directions of magnetizations. For
instance, p(m) = m3 favors the easy plan as the horizontal one. The constant Q
is a second intrinsic parameter of the material that measures the strength of the
anisotropy energy relative to the strength of the exchange and stray-field energy.
According to the values of the constant (), one distinguishes ferromagnetic materials
into two broad classes: soft materials (@ < 1) and hard materials (Q > 1).

(iii) The third term is the energy of the stray field (or the magnetostatic energy), where
the stray-field potential U : R? — R is generated by the magnetization m through
the classical Maxwell equation for electrostatics, that is given by

— AU =V.(ml,) inR? (1.2)

i.e., VU.NVédr = —/ m.Védr, VE € CP(RY).
R3 w

In view of (1.2)), there are two sources of stray field VU: magnetic volume charges
(with volume charge density V.m in w) and magnetic surface charges (with surface
charge density v.m on Jf2, where v is the normal component of boundary dw).

(iv) The fourth term is the external field energy generated by an applied external field
H..; : R? — R3. It favors alignment of the magnetization with the external field
Hext-

(v) Finally, the last term is the energy connected with the Dzyaloshinsky-Moriya inter-
action wp which is considered here in the following form (see Bogdanov and Hubert

[31)
wp = Diw; + Dawg + D3ws
=D (mlammg — TTLQ&UITTL:), + mg(axlmg — OIle))
+D2(m33x1m1 — mlaxlmg + mgazgmg — m28x2m3) (1.3)
+D3(mlar3m2 - mangml))
with arbitrary coefficients D;. The term w; in (1.3]) favors the Bloch-like spirals.
While the term wsy favors a rotation along the propagation direction of a spiral
structure, as in a Néel wall. Such a rotation is necessarily connected with the

stray-field. The last term ws in ((1.3]) favors the formation of spiral structures with
propagation vectors along the crystal axis (z3- axis).

1.3 A reduced two dimensional thin-film model

In this section we will discuss thin magnetic films which involve several length scales:
We assume that the ferromagnetic sample is a cylinder

w=uw x(0,t)
of height ¢ and we denote by [ a typical length of the base w’ C R?. This film regime

means that the aspect is small, i.e.,

hie % <1. (1.4)

It entails that the variations of m in the third variable are strongly penalized by the energy.
Heuristically, we assume that m depends only on the horizontal variable ' = (1, x2)

m(x) = (m',m3)(z) :w — S? (1.5)

6
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and ;
m varies on length scales >> 7 (1.6)

The external field H,; is assumed being in-plane and invariant in 3 , i.e.,

Hegt(z) = (H{z(2), 0).

Notations: in this part, the prime ' always indicates a 2D quantity. We denote a < b if
¢ — 0and a < bif a < Cb for some universal constant C' > 0.
Using configuration (|1.5)), the Dzyolashinsky-Moriya interaction reduces as follows:

/wp(m)dx = /(D1w1 + Dows)dx
= / (Dl(m.V’ x m) + Do(msV'.m' — m'.V’m3)> dx, (1.7)

where
/
m.V' x m = —m3z0z,m1 — Ma0z,m3 + M30yz, Mo + m10,,ms3.

The change of variables 2/ — ¥’ = IT, € WT, rescales w to a set w = @' x (0,h) with

diam(w’) = 1, the external field to H’,(7') = H!,,(z') and the magnetization m(7) =
m(x’). Then, it reduces the exchange, anisotropy, external field and the Dzyolashinsky-
Moriya energies to the following form

/ <d2\Vm]2+Qg0(m) — 2Hyr.-m + wD(m)dx> dx

i /~ 5 2 + 12 /N <Q¢(m) - 2ﬁgm.m’> 0 (1.8)

+tl / (Dl(m.%' x m) + Do(msV'.m' — m’ﬁ’m@)ﬁ. (1.9)
a/

Since ([1.5]), the Maxwell equation ((1.2)) implies that
— AU =V .m'1l, —mwly, in R3, (1.10)

here v is the unit outer normal vector on dw. In view of , there are two sources
of stray field VU; that is, the magnetic volume charges which are given by the in-plane
flux V'.(m'1,) and the magnetic surface charges on the top and the bottom side of the
cylinder which are presented by the third component of the magnetization and the lateral
charges m’.v. Moreover, since , the non-local magnetostatic energy can be computed
by considering the Fourier transform in the horizontal variables,

F(m'1,)(¢) e € m(a) 1y (2 )da for € € R2.

=

One gets (cf. Ignat [29]):

[IVUPds =t [ FGIENI S Fm P +t [ a(GIeDIFmaLPae.

e

where
1— 6_28

g(s) = —5 and f(s) =1 — g(s) for every s > 0.
s

In view of (1.6), then the Fourier transform of m is concentrated on wave vectors & of
order t/l. Assumption (1.4]) implies that the arguments of f and g are small in the range

7
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of ¢. We then approximate g(s) &~ 1 and f(s) ~ s. Rescaling in the length scale [ of «’,
the stray-field energy is approximated as follows (see DeSimone, Kohn, Miiller and Otto
[17], Kohn and Slastikov [36]):
VU |?dx ~ ﬂ\W’ ' Yael|> —|—ﬂllo £| (' D)2dHt + 1% [ w3 (1.11)
s 9 . ac H*1/2(R2) o1t g t oo . = 3 .
Thus, the stray-field energy asymptotically decomposes into three terms in the thin-film
regime. The first one is penalizing the volume charges

(Vi Vae = Vi 1y,

as an homogeneous H ~2-seminorm and induces the leading order of the energy of Néel
walls. The second term counts the lateral charges m/'.7 in the L?-norm and it is responsible
for the nucleation of boundary vortices The third term penalizes the surface charges mg
on the top and bottom of the cylinder and leads to interior vortices (so called Bloch lines).

Summing up , , we deduce the following reduced two dimensional thin-film
energy:

2

- P = =~ -
Erd(m) = tdz/ \V'm|?dz + 2/ 'V’]‘l/z(v.m')ac dz’
w’ R2

—i—ﬂ]lo 5| (~'~)2dH1+tz2/
27'(' gt 7 v ~

ow'’ w

(ﬁmg + Qp(m) — zﬁgm.m'> d7’.
+tl / (D1 (m.V' x m) 4+ Dy(msV'.m — m/ﬁ’mg))dzﬁ (1.12)

Scaling the energy at order of td?, and omitting , the above reduced energy can be written
as the following functional:

1
Eolm) = [ [VmfPde’ & 217 )l By e
Q n
|log 2| 1
+—1 [ (mw)?dH + 2/ <m§ + Qp(m) — 2H€wt.m’> dx’
™ Joo € Jo
+/£1/ m.V' x mdz' + ko / (msV'.m' —m/ . V'mg)dx’, (1.13)
Q Q

where € = d/l,n = 2d?/(tl), k = (k1,k2) = (ID1/d? 1Dy/d?) and Q = '. For the conve-
nience, from now on, we denote by [, DM (m)dz’ the last term in (L.13)), that is,

/ DM (m)dx’ = m/ m.V' x mdx' + ko / (msV'.m' —m' . V'ms)da’.
Q Q Q

According to the specific thin-film regime, three types of singular pattern of the magne-
tization occur (see DeSimone, Kohn, Miiller and Otto [17], Ignat [29]): Néel walls, interior
vortices and boundary vortices. In fact, the formation of one of these patterns depends
on the scale ordering of the three terms in the RHS of (L.11)). Let us now discuss a non-
local Ginzburg-Landau model which is strongly motivated by the above two-dimensional
ferromagnetic energy.

1.4 A non local Ginzburg-Landau model

Let © C R? be a bounded simply-connected domain with a C'!' boundary and let
g:0Q — S! be a Cb! function satisfying

deg(g,00) =d > 0.

8
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Here, the degree of a C'- function g : 9Q — S' is defined on the boundary 9§ with the
unit tangential vector 7:

1
deg(g,09) = o /aﬂ det(g, 0,g)dH".

™

If g : 9Q — R? is C!- function with |g|> 0, we set deg(g, 9Q) = deg (\%I’ 09). The notion

of degree can be extended to continuous fields and more generally, VMO vector fields, in
particular H?z (99, S!) (see Brezis and Nirenberg [10]).
We consider m = (m1, ma, m3) : © — S? be a vector field with the Dirichlet condition:

m = (m’,m3) = (g,0) on 99, (1.14)

and the following micromagnetic energy functional:

1 1
_ fo29.0  * 270+ 1ot 2 /
Eepu(m) /Q\v mfda’ + /Qde:c + (V' )acHHl/Z(RQ)—l—/QDM(m)dx, (1.15)

where
(V’.m’)ac =V .m'lq. (1.16)

We emphasize that model is motivated by the reduced thin-film model . In
fact, we may ignore the anisotropy and external field terms - they can always be made to
interact with the surviving terms by scaling @ and H!_, appropriately. The third term of
is considered as the penalizing of the lateral charges m/.v in L?(99)-norm. Then
if m.v=0on 002 and Q =0, H.,, = 0, then the reduced thin film model (1.13) can be
written exactly as in model . Moreover, the first and second terms in are
reminiscent to the Ginburg-Landau energy. In the case of boundary condtion m’.v = 0
on 01, the concentration of Ginzburg-Landau energy around one interior vortex or two
boundary vortices is proved by Ignat and Otto (see [33, Theorem 3]). Here we want
to generalize the vector fields tangent at the boundary by one satisfying the Dirichlet
boundary condition (1.14]).

In this work, we shall study the reduced two dimensional films with the Dzyaloshinsky-
Moriya interaction term given by

/ DM (m)da" = ky / (msV'.m' —m/ V'm3)da’ + KQ/ m.V' x mdz’, (1.17)
Q Q Q

where
/
m.V' x m = —m30z,m1 — Ma0z, m3 + m30yz, Mo + mM10,,ms3.

The parameter k = (K1, k2) appearing in the Dzyaloshinsky-Moriya energy, stands for the
Dzyaloshinsky-Moriya interaction parameter.

The principal questions we shall discuss are the compactness and regularity of mini-
mizer of the non-local energy E,, . in a certain regime.

The compactness is presented in Chapter [2. For that, we are interested in the asymp-
totic behavior of minimizers of the energy E., . in the regime

e<1l, n<1 and |k[>1.

The singular patterns expected in this context are the Néel walls together with topological
defects (due to the boundary condition ) standing for interior vortices. The regime
where we study corresponds to the case where topological defects is energetically more
expensive than the Néel wall. Now we shall informally explain how the principle of pole
avoidance leads to the formations of walls and vortices.
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Vortices. The competition between the exchange energy and the penalization of the
mga component will try to enforce the condition ms = 0. Together with the boundary con-
dition , this explains the formation of interior vortices. Here m’ carries topological
degree, deg(m’,09Q) = d. One expects the nucleation of interior vortices of core-scale e.
The scaling of the vortex energy is strong related to the Ginzburg-Landau energy (see the
seminar book of Bethuel, Brézis and Hélein [2]):

min / Ge(m')d',
m'€eHL(Q,R?) Jq
m/=g on 02

where the Ginzburg-Landau density energy is given by the following:

1
Ge(m') = [V'm' [P+

(1 ')

The energetic cost of our vortices is given by
27d|log €] +O(1).

Néel walls. The stray field tries to enforce the divergence-free condition for m’.
Moreover, the Dzyaloshinsky-Moriya term also sharpens that condition. Therefore, at the
mesoscopic level of magnetization in thin films, we expect

m'|=1 and V'.m'=0in Q. (1.18)

We note that implies m’.v = g.v on the boundary. In general, the combination
of this condition, are too rigid for smooth magnetization m’. This can be seen by
writing m’ = V/Lgb with the help of a “stream function” ¢. Then and turn
into a Dirichlet problem for the eikonal equation in ¢:

V4igl=1inQ and V "+ é.r=g.von o

Hence, the divergence-free equation in has to be interpreted in the distribution
sense and it is expected to induce line-singularities for solutions m’ . These ridges are
an idealization of the wall formation in thin-film elements at the microscopic level. They
are replaced by smooth transition layers where the magnetization varies very quickly, see
Figure Let us recall that the energy FE , . per unit length of a Néel wall of angle 26

.74

N

Figure 1.1: Néel wall of angle 26 confined in [—1, 1].

(with 6 € (0, §]) is given in DeSimone, Kohn, Muller and Otto [1§], Ignat and Otto [32]
(see also Ignat [30]):
7(1 —cos0)% + o(1)
n|log 7|

asn — 0.

10
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Compactness. The first problem we discuss here is the asymptotic as €, — 0, |x|—
oo of families of two dimensional magnetizations when the energy E., .(m) is of order

1

) + 2md|log €.
n[logn|

o(

One of the issues we discuss is the question of the L' compactness of these families of
magnetizations. The issue consists in rigorously justifying that the constraint |m|= 1 is
conserved by the limit configuration as €, — 0, 1/|x|— oo. We emphasize that the regime
that we prove the compactness result corresponds to the case where a topological defect
is more expensive than the Néel wall. More precisely, we have the following;:

Theorem 1.1. Let Q C R? be a bounded simply-connected domain with a CY' boundary
and g : 0Q — S be a smooth function satisfying deg(g,00) = d € Z\{0}. We consider
the following regime between the parameters e — 0,m = n(e) and k = k(€) such that:

1

ellogel”  nllogn|

< |loge|.

KIS
For each e, consider a H'(2,S?) vector field: m¢ : Q — S? such that:
m.=g on 09

and

Ec px(me) — 2dm|loge| < .
b e S og

P (,S?) forp € [1,00) and any accumulation point

Then {mc}. is relatively compact in Ly,

m: Q — S? satisfies
m3=0, |m|=1:nQ and V'.m' =0 inD(Q).

The above result gives us the compactness in the interior of domain. It may be of
interest to know whether the above sequences of magnetization are relatively compact
on the boundary. Does their limit still satisfy the Dirichlet condition? The answer is
negative in general. We shall prove this by constructing a sequence (my,), that satisfies
the upper bound as Theorem that has a Néel wall going to the boundary, so the
boundary condition fails to be true. In fact, we are going to construct the sequence
my, :Q — S, (so the third component of m,, vanishes). The cost of such configuration
now is O(=~—). The idea that m, may have Néel walls tending to the boundary.

nllog 7|
Theorem 1.2. Let Q = (0,1) x (=1,1). In the regime n < 1, there exists a C' vector
field my, : Q@ — St and g : I' = {0} x (—=1,1) C 92 — St which satisfy

my =g onl CO0Q, Vn<l1.

my — m in L, () as n — 0,

and
1

n[log |

).

Ecpx=0(
But m # g on I' C 0.

Regularity. In Chapter [3] we study the regularity of critical points of the energy
E¢ ., which are subject to the Dirichlet boundary condition (|1.14). For that, we consider
Q) be C*! domain and a magnetization m = (m/,m3) : Q — S? satisfying

m = (g,0) on 01,

11
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where g : 9Q — S! is a C™! function.
Denote

Hgl(Q,Sz) = {ue H'(Q,R?) : |u(z)|=1 a.e ,u = (g,0) on 90}

and
Eepx( /|V’m\ dx’ —i—/mgdx —i——H ) ’)ac@[l/?(RQ)—i-/QDM(m)dx’

where (V'.m/)ac is defined as in (L.16). The existence of minimizers of E. ., follows
with the help of the direct method of the calculus of variations and the compact Sobolev
embedding H'(Q) — L?(Q) for 1 < ¢ < oo. Critical points of E, , on H(Q,S?) satisfy
the Euler-Lagrange equation

1 1 1
— Am — m|V/m\2—E <Ig> + ;(m/H)m + 6—2((0,0, m3) — maim)
—v/mg

+ff1(1d—m®m)V’xm+52<<v,m,

> + (V'mz.m' — m;;V'.m’)’m) =0 (1.19)

in Q, where H = V'U(+,0) is the stray field in the plane and
V' xm = (Opymz, —0p,m3, Op,ma — Opymy).

The above equation can be seen as a perturbation of the harmonic map for S?-valued maps
equation. We shall use regularity result of Wente (see [49]) which yields the regularity in
the interior of 2.

Those proofs also show that m is continuous up to the boundary. In order to obtain a
higher regularity result at the boundary, we need to handle not only the non-local term,
but also the imposed boundary condition . Compared with the theories related to
the harmonic maps, the non-local term does not allow to get a monotonically formula
which is the principal feature in the partial regularity of the stationary critical point of
harmonic maps (see Hardt, Kinderlehrer and Lin [24], also Evans [20]). In [23], Hardt and
Kinderlehrer used the almost minimizers definition to tackle a different non-local term.
For that, one assumes the natural boundary condition; that is, %—T = 0, where v is the
unit outer normal vector. Their method can not apply to our imposed boundary condition
. Finally, we state the regularity results.

Theorem 1.3. Let Q2 be a domain of C*', g € CH1(9Q,SY) and m € Hgl(Q,SQ) be a
solution of (.19). Then m € C*°(Q) N CY*(Q), for all a € (0, 3).

12
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A compactness result in a
non-local Ginzburg-Landau model
arising in thin ferromagnetic films

Abstract
We analyze the behavior of minimizers in an asymptotic regime for a non-local Ginzburg-
Landau model arising in a thin film micromagnetics where the Dzyaloshinsky-Moriya
interaction is taken into account. It consists in a free energy functional depending on
parameters €, and & and defined over vector fields m : Q — S? that satisfy a Dirichlet
boundary condition. We are interested in the behavior of minimizers as €,7,1/|x| — 0.
They are expect to be asymptotically S'- valued maps away from regions of length of scale
€ where intrinsic vortices nucleate and of vanishing divergence away of regions of lengths
of n where Néel walls nucleate. We establish compactness of the magnetizations in the
energetic regime where Néel walls are cheaper than vortices. We also give an example
where the lack of compactness at the boundary occurs.

2.1 Introduction

In thin ferromagnetic films, variations of the magnetization in thickness direction are
strongly penalized. This leads to a reduced two-dimensional variational model where
the magnetization is described by a S?-valued map defined on a 2D domain. The aim
of this Chapter is to study the asymptotic regime for thin ferromagnetic films where
the Dzyaloshinsku-Moriya interation is taken into account and allows the occurrence of
transition layers (Néel walls) and topological defects (vortices).

2.1.1 Model

We will focus on the following two dimensional model for thin ferromagnetic films.
For that, let  C R? be a bounded simply-connected domain with a C*! boundary and
g:0Q — S! be a CV! function satisfying

deg(g,00) = d.
We consider m = (mq, ma,m3) :  — S? be a vector field with the Dirichlet condition

m = (m',m3) = (g,0) on 99, (2.1)

13



Chapter 2

where m’ = (my, ms) is the in plane component of the magnetization m. We consider the
following micromagnetic energy functional:
2 / /
dx’ + / DM (m)dz
Q

1 1
E€7n7,€(m):/|V’m|2da?’+2/m§d:c'+/
Q & Ja n JRr2
(2.2)

where €, 7 > 0 are two small positive parameters, x is a parameter inside the Dzyaloshinsky-
Moriya interaction term and is discussed later . Here 2’ = (1, x2) are the in-plane variables
with the differential operator

IV [V2(V ) ge

v/ = (8:131 9 0:132)7

and the third variable is denoted by x3.

The first term of is called the exchange energy. The second and third terms
are derived form the stray field energy (see Section . The second term penalizes the
surface charges ms on the top and bottom of the magnetic cylinder. While the third term
counts the penalization of the volume charges V'.m/.

Using Fourier transform in the horizontal variables, the non-local term in the energy can
be equivalently expressed in term of L?-norm of the stray-field VU,e:

J.

Here we denote

V|~ Y2(V . ) e

2 /I 1 ’, 2 _ 2
dx’ = —|F(V'm)ge|dE =2 | |VUqgc|*dx
r2 [£] R3

(V'm)ge = Vm/1g

and U,. : R? — R is the stray field potential which is determined by static Maxwell’s
equation in weak sense:

/ VU (2).V((x)dx = / V. (2)¢(2,0)dz’ for every ¢ € CS°(R?). (2.3)
R3 Q

The fourth term is the energy connected with the Dzyaloshinsky-Moriya interaction
(shorten by DM ), which is a relativistic effect stemming from spin-orbit coupling and the
lack of inversion symmetry and given by

/ DM (m)dx' = m/ m.V' x mdx’ + HQ/ (msV'.m' —m/ V'm3)da’

Q Q Q

=K / (m10z,m3 — Moy, m3 + M3Oy, Mo — M30y,my)dz’
Q

+f<c2/ (m3(0zym1 + Opyma) — M10y, M3z — Ma0y,ma)dz’, (2.4)
Q

where k = (k1, ko) arbitrary.

Essential features of this variational model are the non-convex constraint |m|= 1 and
the non-locality of the stray field interaction. In this model, we expect asymptotically
two types of singular patterns: singularity lines and vortices. These patterns result from
the competition between the different contributions in the total energy FE., .(m) with
boundary condition . Let us explain these structures in the following.

Néel walls. A Néel wall is a transition layer describing a one-dimensional in-plane
rotation connecting two directions of the magnetization. More precisely, it is a one-
dimensional transition m’ = (my,ma) : R — S! that minimizes the energy under boundary
constraint m(+x1) = (cos 6, +sinf), for 1 > 1,6 € [0,7/2) :

E,(m) = /]R dxy + 71’ /R

2 1/2

m1

2

d
dl‘lu

day

14
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where 6 € [0, 5] and 1 > 0 stand for the angle and core of the wall, respectively.
It follows that the minimizer is a two length scale object: it has a small core with fast
varying rotation and two logarithmically decaying tails. As 1 — 0, the scale of the Néel
core is given by |71|<S weore = O(n) while the two logarithmic decaying tails scale as
Weore S |71|S wiait = O(1), see Melcher [38]. The energetic cost (by unit length) of Néel is
given in DeSimone, Kohn, Muller and Otto [18], Ignat and Otto [32] (see also Ignat [30])
by:

7(1 —cosf)? + o(1)

n|logn|

Vortices. Vortices correspond in our model to topological singularities at the micro-
scopic level where the magnetization points out-of-plane. The prototype of a vortex vector
field is given by minimizing the energy:

asn — 0.

1
Ec.(m) = /Q|V/m/(:c/)]2d:z:/ + E—ngd:c'

under the constraint that m € H'(£2,S?) and m’ = g on the boundary 9. Since m3 =
1—|m’|? for S?>-valued map m, it is strongly related to the minimal Ginzburg-Landau (GL)

energy (see Bethuel, Brézis and Hélein [2]):

min / Ge(m')da',
m/'eHL(Q,R?) Jq
m/=g on 9N

where the GL density energy is given by the following:
1
Ge(m') := [V'm/ P4+ 5 (1= [m'%)”.
The energetic cost of our vortices is given by
2nd|log €| +0O(1),

because deg(m’, Q) = d. By Ginzburg-Landau theory, d localized regions are created,
those regions are the cores of the vortex of size €, where the magnetization becomes indeed
perpendicular to the horizontal plane.

Compactness. We are interested in the following asymptotic regime

1 1
e<l, —— < |loge] and |K|S —, (2.5)
nllog | €|log €|
where k = (K1, k2).
We also consider families of magnetization m,. satisfying the energy bounded
Ecpx(me) —2dm|loge| S (2.6)

nllogn|’

that is satisfied particular by minimizer of E, .. By the regime assumption, it implies
that the size € of the vortices is smaller exponentially than the size of the Néel wall core 7.
We first detect the topological defect regions, which are d vortex cores of size €. Then we
use an argument of approximating S?-valued magnetization by S'-valued magnetization
away from these vortex cores. This result is due to Ignat and Otto [32]. We expect the
limiting magnetization m satisfies V/.m’ = 0 and m3 = 0 in Q2. Together with the Dirichlet
boundary condition and the expected condition V/.m’ = 0 in €, we shall arrive that

V'.m' =0 and mg =0 in Q and m'.v = g.v on 9. (2.7)

15
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We notice that the conditions V/.m’ = 0 in Q and m’.v = g.v on 99 are interpreted in the
distributional senses. In general, the conditions (2.7) is too rigid for smooth magnetization
m. Indeed, writing m’ = —V'14 leads to the eikonal equation

IV'¥|=1in Q and V' . = —g.v on 09

As deg(g,09Q) # 0, it follows that there is no smooth solution of that problem. On the
other hand, there are many continuous solutions v that satisfy the above equation away
from a set of vanishing Lebesgue measure (in particular singularity lines).

Lack of compactness on the boundary of the domain. We are also interested in
the compactness of the above magnetizations m at the boundary 9f). Here we note that,
by the limiting condition V'.m' = 0 and |m/|< 1 in 2, we obtain the compactness of the
normal component of the magnetizations on the boundary. The loss of compactness on
the boundary occurs only in the tangential component.

2.2 Main Results

The notation: We always denote a < bif § — 0 and a < bifa < Cb for some
universal constant C'.
Our main result concerns the local compactness of the S?-valued magnetizations in a
certain regime.

From now on, we always think ‘ U = U, and V'.m/ = (V'.m/)qe = V..m/ 1. ‘
Here U, is stray field potential which is defined as in (2.3)).

Theorem 2.1. Let Q C R? be a bounded simply-connected domain with a CY' boundary
and g : 9Q — St be a C1Y function satisfying deg(g,00Q) = d € Z\{0}. We consider the
following regime between the parameters e < 1,1 =n(e) and k = k(€):

1
clloge|”  nllogn]

K|S < |logel. (2.8)

For each ¢, consider a H'(§,S?) vector field: m¢ : Q — S? such that:

m. =g on 09,

€

and
Ecpr(me) —2dmlloge| <

. 2.9
n|log 7| (2.9)

P (,S?) for every p € [1,00) and any accumulation

Then {mc}e is relatively compact in Ly,

point m : Q — S? satisfies
m3=0, |m'|=1inQ and V.m'=0inD(Q).

The proof of Theorem is based on argument of approximating S*-valued vector
fields by S'-valued vector fields away from small defect regions. This is due to Ignat and
Otto [32] to detect these regions, we use some topological methods due to Jerrard [34] and
Sandier [45] for the concentration of the Ginzburg-Landau energy around vortices. Away
from these small regions, the energy level only allows for Néel walls. The compactness
results for the S'-valued maps due to Ignat and Otto, (see [32]) will lead to conclusion.

Let us discuss the assumption of the regime and . Inequality assures
that cutting out the topological defects (d vortices), the remaining energy rescaled at the
energetic level of Néel walls is uniformly bounded. The regime m < |log €| is imposed

due to our method to detect vortices and approximate S?- valued vector fields by S'-valued
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vector fields away from the vortex balls. It also means that the energy of the topological
defects is more expensive than the energy of Néel walls. In fact, the above assumption
establishes two principal regimes; namely,

C
n|log 7|

< 2maflog el for some « € (0,1) (2.10)

and
¢’ < for any B € (0,1 — a). (2.11)
If we write as
Ecpx — 2nd|loge|]< ——,
n|logn|
where C given in (2.10)), then and yield that E,, < 2r(d + «)|loge|. Due
to the boundary condition , we then expect to obtain exactly d vortex regions in the
interior of the domain. Moreover, far from the interior vortices, starting from the values
of m’ on a square grid of size P , the approximation argument requires zero degree of m’ in
each cell of the cell grid, leading to the condition 8 < 1 — a, (see Lemma. Moreover,
the condition €’ < 5 for any § € (0,1 — «) is used in order that the approximating S'-
valued vector fields induce a stray field energy of the same order of m’, (see )
The regime |k|< ﬁge‘ is rather technical: in fact, according to the boundary condition
(2.1) (in particular ms = 0 on 99), and the Green formula, this regime is added to ensure
that the Dzyaloshinsky-Moriya energy is absorbed into the Ginzburg-Landau energy, see
E21). @22 and (£29)
In [33] Theorem 2], with a similar energy (without the Dzyaloshinsky-Moriya energy),
Ignat and Otto studied the compactness in thin ferromagnetic films under the Dirichlet
boundary condition for the normal component; that is,

m'.v =0 on ON.

For such a boundary condition, the small defect region consists in either one interior vortex
or two boundary vortices. The case of one interior vortex corresponds to d = 1 in our
Theorem For the boundary vortices case, one needs to add more assumptions to detect
those vortices, that is, log|log €| < m. We emphasize that due to boundary condition
, the boundary vortices do not occur in our case.

With the compactness result of Theorem , we then obtain that for a subsequence,
me converges to m almost everywhere in ). As a consequence of the dominated conver-
gence theorem, one has m, — m in L'(Q)). Together with the condition V.m’ = 0 in
Q, one can define the normal trace in sense of distributions for the limiting point m and
m’.v = g.von 0N (see Remark . It is of interest to know whether the above sequences
of magnetization are relatively compact at the boundary. Does their limit still satisfy the
Dirichlet condition? The answer is negative in general. We shall prove this by constructing
a sequence (my), such that m,, is S'-valued and satisfies the upper bound as Theorem
that has a Néel wall tending to the boundary, so the boundary condition fails in the
limit 7 — 0 (due to the tangential component).

Theorem 2.2. Let Q = (0,1) x (—1,1). In the regime 0 < n < 1. There exist a C vector
field my : Q= S and g : I' = {0} x (—1,1) C 9Q — S which satisfy
my=g onl,Vn<1,
my — m in L, () as n — 0,

and
1

n|log 7

Een(my) = O( )-

Butm # g on I.
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The constructed sequence (m,), has the third component vanishing. Therefore, our
model is written adl

1 2
E,(m) :/|V'm'|2d:v’+n/ ‘|V']_1/2(V'.m')]lg da’.
Q R2

The cost of such a energy is O(m). The idea of proof based the fact that (m,), may

have the Néel walls tending to the boundary as n — 0.

1
O(\ log 71|>

Figure 2.1: Magnetization has Néel walls tending to boundary as n — 0.

The outline of this Chapter is as follows: in the next section, we recall some definitions
on the stray field and some results that we need for the proof of our results such as: the
concentration of the Ginzburg-Landau energy on vortex balls and a compactness result
for S'-valued magnetizations.

2.3 A Few Preliminary Results

2.3.1 Preliminary Results on Existence and Uniqueness of
the Stray Field

We state the existence and uniqueness results for the stray field generated by the
volume charges, as well as the expression of the stray field energy. For that, we introduce
the Beppo-Levi space

Ul(z)
1+ |z

BL:={U:R* = R:VU € L*(R%), € L*(R?%)}.

Consequently, the space BL endowed by the homogeneous H'-norm, U — ||VU|| L2(R3) 18
a Hilbert space, and the set C§°(R?) of smooth compactly supported functions is a dense
set, see Dautray and Lions [16]. Let us denote by F the Fourier transform of the in-plane
R?, i.e., for every & € R?,

FF(€) e T f(al)d,

1
N V21 JR2

where f belongs to the Schwartz class S(R?) and F extends to the space of tempered
distributions. We have the following

'We note that as m, 3 = 0, € and £ do not play any role here.
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Theorem 2.3. Let m € HY(Q,R?). The variational problem (2.3) has a unique solution
U € BL. Classically, U satisfies

AU =0 in R3\Q x {0}
[%} = V'’ onQx {0}, (2.12)
U]=0 on R? x {0},

where [q] = ¢ —q~ stands for the jump in the vertical direction x3 of the quantity q across
the horizontal plane. Moreover the stray field energy is also given by

VU d = / U, 0)(V.m') (2! )da’
R3 Q

_1/
_2 R2

A proof of Theorem is given in the appendix.

V(9 1) ! = ;/Wé“}'(v.m’]lg)(é)\zdf (2.13)

2.3.2 Preliminary Results on the concentration of the Ginburg-
Landau energy

In the proof of Theorem we will use the following result due to Jerrard for the
concentration of the GL energy around vortices

Theorem 2.4. (see [F]|]) Let Q be a C*! domain, a € [0,1) and d > 0 be a positive
integer. Let g : 0Q — St be C11 with

deg(g, 09)|= d.

There exists R = R(a,d, Q) > 0 such that for every 0 < r < R, if m’' : Q — R? satisfies
the following conditions:
m' =g on 00

and
| Getmyaa' < 2m(d-+ a)jogel,
Q

then there exist n distinct points x1,...,x, € Q and positive integers dy,...,d, > 0 such
that the n balls {B(xj,7)}<j<n are disjoint,

S d,—d
j=1

and
/ Go(m')da’ > 2md;[log = |—C(ayd, R),j = 1,...om,
B(x;,r)NQ €
where C(a, d, R) is a constant which only depend on d,a and R.

In Step B of the Proof of Theorem [2.2) we also use the following lemma (see [33, Lemma
2]) that also follows from Theorem This gives a link to the condition (2.11)).

Lemma 2.5. Let0<a<1,0< < 1—a,C > 0. There exists eg(a, 5,C) > 0 such that

2
for every € € (0,€y) the following holds: if Z = (—%, %) is the square cell of length €°
and m' : Z — B2 is a C' vector field such that:
Ol

G (m")dH' < oﬁge|’ / Ge(m/)dz' < 2ralloge|
0z € z

then )
|m/|> 5 on 0Z and deg(m’,0Z) = 0.
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2.3.3 Compactness result in thin-film micromagnetics

The proof of Theorem [2.1| mainly uses the compactness result of S'-valued vector fields
obtained by Ignat and Otto, see [32]. For the convenience, we state their result. We refer
reader to [32, Theorem 4] for a detailed proof.

Theorem 2.6. Let B" be the unit ball in R",n = 2,3. For every small n > 0, let m;? :
B2 — S! and h,, : B3 — R3 be related by

/ hy(2).V{(x)dx :/ ¢(2',0)V .my (a")da’, V¢ € C5°(B?). (2.14)
B3 B2

Suppose that

1 C
"' m! 29,0 | — 2 < 21
/BQW m! [Pda’ + n/]BShn| o € (2.15)

for some fized constant C. Then {m/y}, o is relatively compact in L*(B?) and any accu-
mulation point m' : B2 — R? satisfies:

|m/|=1 a.e in B> and V'.m’ =0 in the sense of distributions.

2.4 Proof of Theorem 2.1

This section is devoted to the proof of the compactness result for magnetizations in
the energy regime O(m) + 27d|log ek |.
We will work at the level of sequences of parameters e, ny, ki, (K = (K1, K2k)) and a
sequence of magnetization my satisfying the assumptions in Theorem
By assumption, Ee, r, x, (mi) — 2d|log €;|<S m Then there exists A > 0 such that

Ee mpeonii (M) — 2d|log e | < m- (2.16)
Also, by the condition ([2.8), there exists & € (0,1) and C' > 0 such that
——— < 27mallog €. (2.17)
ik [1og 7k |
and
Rk < ¢ ! (2.18)

—_ <

exlloger| ek

We split the proof of the Theorem in several steps.
Step A We locate the vortex balls of my.

Our strategy is to apply Theorem to locate the vortex balls of mj, in 2. It remains to

us prove the following claim

Claim 1. )
/|V’m§€\2d:c/ + =) / (m31)2da’ < 27(d + /)|log e, (2.19)
Q Lk JQ

with some 0 < o < 1.

The proof of Claim . Using Green’s formula with the fact that ms3; = 0 on 952, we
rewrite the first part of the DM energy (see (2.4])) as

/<a17k/ mi. V' x mydz’
0
/
= K1k / (M1 kOpam3 f; — M2 0z, M3 | + M3 | Ox, M2, — M3 0z, M1 J)dx
0

= 2K1 & / (M3 0y, Mo — m37k8x2m17k)dx/. (2.20)
Q
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Equation (2.20)) yields that

\m’k/ mg.V' x mpdz’|
Q

T2

k|)dz

< 2 / 2 / 2 / 2 /

< al/(m&k) dz +b1/(ax2m17k) dz +a1/(m3’k) dx +b1/(8x1m27k) dz
Q Q Q Q

< 2a1/(m37k)2dw’+bl/\V’mde:c',
Q Q

1

(2.21)

where a1, b; are positive numbers satisfying a1b; = Hi » Will be chosen later, see ([2.25)).
Similarly for the second term of the DM energy

/127;.3/ (ms V' .mj, — mj,.V'msg p)da’ = 2/42,k/ ms V' .mjdz’
Q Q

and

sz,k/ (m3k(V'.my) —m' V'mgy)da'
Q

<ay [ (mys e’ + by [ [V (2:22)
Q Q

where a9, by are chosen satisfying (12.25]).
From the definition of E, ,, ,, it follows that

1
[V + / (s e’
Q

< By (i) — — / V|~ Y2(V" )2’ — /Q DM(mp)da'.  (2.23)

Combining ([2.21] - then
/\V'm2]2dx’+2/(m3,k)2dx'
Q €L JQ

< B () + Qa1+ 2) [ (ma'de’ + (b + ) [ [V
Q Q
Together with (2.16f), this implies

1
(1 =01 —b2) /Q|V’m;€|2dm' + (52 —2a; — az) /Q(m3,k)2d$,

k

< 2rd|log ek |+

M |log ni|
By (2.17)), finally, we obtain
1/€2 —2a; — 27 (d
/ V2 + /e = 20 = a2) / () 2da’ < 2rld+ ) ol (2.24)
0 1—0b1—bo Q 1—b1—bo
To conclude Claim 1}, a1, b1, a2, by will be chosen satisfying

ajby = Hik,
asbe = ﬁ;%k,
Lot (b =) >0 (2.25)

2m(d0) < 94 o), for some o € (0,1) (o<l <1).
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In fact, we choose by = by = 4((11_70?;1) > 0. An easy computation shows that
2t3
2n(d + «) a 1
— =2r(d+ = + =).
b by MdF5H3)

The fourth inquuality of 1) holds true for o/ = ¢ + 1.

Setting a; = %k’ as = ’?—2”“, therefore, we only need to check that

2 _ _
i? S 1/6k 2a1 as
€1 1—01 —by
b b
& ! t 2> 2a1 + a9
€k
b1 + by 2'%%719 "{g,k
e by by

The last inequality is followed from |kj|< i We complete the proof of Claim We
note that, for the proof of Claim |1, we only use the regime assumption |r|< é (which

is implied by (2.8)).
Remark 2.7. By (2.24) and (2.25)), we have immediately that

1
/|V'm§€]2dx/ + = / (m3y)?da’ < 2n(d + /)|log ex|,
Q Lk JQ

for some o/ € (0,1). Hence,

/]V’mﬂzdx’ < 2m(d + o')|log €| (2.26)
Q
and .
2/(m37k)2dx' <27m(d + o/)|log . (2.27)
Ek Q

We next apply Theorem [2.4] to my, in domain Q. There exist R > 0, nj, distinct points
Tl ks eer Ty, ke i ) and ny, integers dy g, do gy .oy dpy o > O,Z?:’“l d; , = d such that for any
r € (0,R),

G, (my,)dz’ > 2mdj|log L!—C’(a, d)
B(2,1,m)N €k

for j = 1,...,n; and k sufficiently larger. We note that x1, ..., 2, % € 2. Then, summing
up by x; 1, it yields

/ G, (my)dx > 2rd|log L\—C(a, d)ny,
Uzj,k ‘B(x],kﬂﬂ)ﬁ(2 fk

> 2md|log ex|—C(a, d, ). (2.28)

Up to a subsequence {1 t}k, ..., {Zn i}k converge to n points 1, ..., 2, and we have
for every small r > 0,

B(zjk,r) C B(x;,2r) Vj=1,...,ng, forsomeiec{1,..,n},
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for k large sufficiently. The open set D = U?Zl B(z;,2r) is the location of the essential
topological defects of each mj..

The next step is to prove that m/, is relatively compact in L*(Q\D).
Let B C Q\D be an arbitrary square. To simplify the notation, let B = (—1,1)2. We

prove that there exists m such that for a subsequence mj — m in L}OC(B).

The idea is to approximate mj away from D by S'-valued vector fields in Llloc, denoted
by M; which satisfy the hypotheses of Theorem This implies that M; — m' in L.
Therefore, we have m) — m/ in L} (B).

Step B. Approzimation of m), away from D by S'-valued vector fields.
We state some inequalities. Firstly,

1 1
/]V’m;€|2d1:’+2/(1— \mﬁclz)de’+/ HV'\_l/z(V’.m;)PdQ:’
B €. JB Nk JR2
1
< B ) = [ (Ve = 5 [ (1= pPRda’ ~ [ DMy’
D €. JD Q
We observe that

/ DM (my)dz' = 2&17k/(m37k(811m27k — Oy i )dz’ + 2/@2,k/(m37kV'.m;§)d:L".
Q Q Q

Then

‘ /Q DM (my)da’

< +

/
2/€1,k/ mg k(O Mok — Op,my i )da
Q

1
= |log ek |

2K 1 / (ms V' .mj,)dz’
Q

[V Paa’+ 40+ ol [ s

Hence,

—/DM(mk)dx’S
Q

/QDM(mk)dx'

1
< o [T 4G+ o ) ogen [ ma P
log ex| Jo Q

Using Remark and ([2.18)), one has
—/ DM (my)dx' < 2r(d + o/)(1 + Céi|rp*[loger|?) = O(1). (2.29)
Q
Combining (2.16)), (2.28)) and (2.29) yields that

1 1
/B|V'm§€|2da:'—|— 62/B(l - |m§€|2)2da€'+ W/R2||V'|_1/2(V’.m;€)|2dx'
k

1
< Ee o (my) — /D‘v,m2’2_62 /D(l - ‘mﬂz)QdQZ/ +0O(1)

k
A
< ellog el +0(1) (by (2.16) and (2.28)).

This implies that

1 1
/B|v’m;§|2dx’+€2/3(1—|m;|2)2dm’+W/Rzuv’rl/?(v’.m;)de’
k

A

<2 (230
i) 1og M| (2:30)
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for k large enough and any A> A
Moreover, using the hypothesis (2.17)), we deduce that

1 1
/B|v’m;€|2d:c’+€2/3(1—|m;|2)2dx’+%/ng|v’|—1/2(v’.m;§)|2dx’
k
< 2mallogek|, (2.31)

for some a € (0,1).
Step B.1 Construction of a square grid.
The hypothesis m < |log €x|, again shows that

B < g, for some B € (0,1) and B € (0,1 — a). (2.32)
Let B C B be a compact set. For each shift ¢ € [0, ef ), denote:

Vi = {(x1,22) € B : x2 =t (mod e’g)}

for the net of horizontal lines at a distance ef in B. By Fubini theorem, there exists

tr € (0, e[,j) such that

G, (m), d’H1</G€k mj,)d
Vi,

If one repeats the above argument for the net of vertical lines at a distance eg in B, we get

the square grid R* of size eg such that for ¢, small, the convex hull of R* covers BCB

and the following estimate:
S 24
Gey, (my)dH™ < B (by (2.30)). (2.33)
RK €% [108 |
Together with (2.17)), this yields

Ge, (ml)dH' < Cllog exle;.”. (2.34)
Rk
This implies that [m}|> 1 on RF for k large enough. Indeed, denoting p = |m}| and

min = min{p(z') : 2’ € R*}. We have that

_ 1 C
Cllog ey e, > /Rk Ge, (my)dH' > /Rk <|070|2+62(1 - p2)2> dH' > —(1 —min)?,
k

€k

where 7 is the tangent unit vector at R¥. Thus, one concludes that
_ C -
(1-— mm)2 < Eei ﬂ|log x| < 1.

Then min > % for €x small enough.
Therefore, we can define the degree of m). on each cell of square grid RF by:

deg(ml,, 02%) .= deg(| k| oZ").
My

2
B B
Here, without loss of generality, we denote ZF = <— %’C, 62’“> by the cell of length eg with
07 C RF.

24



Chapter 2

Step B.2 We prove that deg(m},,0Z*) = 0.
Inequality ([2.31) deduces that

G, (mj,)dx' < / G, (m},)dz’ < 2mallog el (2.35)
Z B

Moreover, by (2.34)), one has

G, (ml)dH! < C“Og;”.

0Zy, Ek

By (2.35)) and (2.36)), we apply Lemma to my, to establish deg(my, 0Z%) = 0.

Step B.3. Construct an approximating sequence.
First, note that since Zj, is simply connected, |mj|> % on 07, and deg(myg, 0Z%) = 0 then
we rewrite mj, as

(2.36)

mj, = |mj|e't = |mj|v, on 0ZF and ¢, € H' (02", R),

where vy, := €'?* on 0Z*. Moreover, we can lift mj, on the grid.
On each cell Z* of length ei of the grid, we define:

M}, = ¢'®* in ZF,
where @, is the harmonic extension of ¢y, in Z*, i.e.

AP, =0 in ZF
®, =, on 0ZF.

Note that we can estimate
/ V' 2da’ < O / V' o P
Zk YA

Indeed, rescaling by ef, we can assume that

AP =0 inB=(-1,1)2
d=0p on 0B,

where ¢ : B — S! satisfies [,)5 pdH' = 0 (up to an additive constant in [0, 27]). We show
the inequality in the unit cell B. We consider a smooth cut-off function ¥ : [0,1] — R!
such that
U(t)=0 1int<1/2,
{ U(1l)=1

and the extension ®..; of ¢ in B :

Dpi(tz) = V(t)p(2) for t € (0,1), 2’ € OB.

Using the Poincaré-Wirtinger inequality and the trace operator, we obtain
/yv'cpy%zx’ g/\wmmx/ < c/ (Vo) dH! < c/ Vo2
B B OB dB
It follows that:
/ V' M|2da’ = / V' ®y|*da’
zk zk
<cq [ IVabant =cd [ [wufan
YA 0zk

<4Ce} / ml| 2|V v 2dH < 4Ce€] / \V'mj|*dH!. (2.37)
oZk YA
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Now we prove that M is an approximation of mj in Ll(g), for a compact B C B.

To prove that we estimate ||(M], —m;C)HB(E). We will also estimate ||V' (M} —mj)|| 12 (B).

Step B.4 The estimate of |[(M] —m})|| 2.
the Poincaré-Wirtinger and (12.37)) lead to

2
/ M — ][ M| do! < 0 / VMLPd! < CEF / Vil ZaH (2.38)
Zk YA Zk YA

2
mh— )
zk ozk

Using Jensen’s inequality, vy, = M) = ﬁ—?' on 0ZF and |vi|=1 on 0ZF, we get:
k

2
AL og=mp) @ = [ 1 mi)
Zk YA Zk ozk

<cd [ a-pmilpant <cd [ G ()i,
YA YA
Therefore

/Zk|M]; — ml,|*da’

2 2
<C ‘M,; —][ M, ][ (M, —mj,)| + ‘m; —][ my| | da’
Zk ozk oZk 0zk

< C’eiﬁ \V'm) |2 dH + Cef”/ G, (m))dH" + CeiB/ |V'm),|2da’.
oZk k k

and

dx < Cei’8 /Zk]V’mMZda:’. (2.39)

2
dz’ < Cezﬂ ][ |log — ml|?dH!
ozk

2
+

Summing up on all cells Z* of R*, since the convex hull of R* covers B and (2.33] -

we obtain:
Ce2P

M, —ml|2de’ < —— . 2.40
/§’ F d = nillog k| (2.40)

By (2.32), eiﬁ < n? < nillogml, so || M} — m;C||L2(§): o(1) as k — oo.
Step B.5. The estimate of ||V' (M, —m})|| 2.
We have

<ce / \V'mwcml 2 / Vil 2’ (by (E37)
ozk Zk

¢
- nkllognk\’

where we have used (| - in the last inequality.

Step C Construct a stmy ﬁeld hy, associated to My in B C B such that (| - and
- ) hold for the couple (Mj,, hy). For simplicity, we assume that B = B2
By Theorem |2 ., there exists U, € BL(R?) satisfying

VUi (2)V{(x)dz = / V' .m(2)¢ (2, 0)dz’ for every ¢ € CS°(R?). (2.41)
R3 Q

We note that the map & — [, V/.m(2')¢(2/,0)da’ is linear continuous in H{ (B?). Indeed,

Vo (@)6(a!, 0)de’ < 19 ||y 1€ Ol 1 2o
< OV -2 ) || VE N 2w

BQ
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By Lax-Milgram’s Theorem in H}(B?), there exists a unique solution Uy, € H}(B?) of the
following equation:

VU (2)V¢(x)dx = | V. (M}, —m})(z")¢(2',0)dx’, V¢ e HY(B?) (2.42)
B3 B2
Choosing B
hi = V(U + Uy) (2.43)
and summing up (2.41)), (2.42) we get that hy, is a stray field associated to M}, in B? and
satisfies ([2.14]).
Now, we need to prove that:
V' My |*+— / . 2.44
/ VM 1 77k|10g M| (2.44)
We observe that: o
V'M —— (by (2.37)).
/ | = Tllog i ( :
Using Theorem and ( we obtain
1 C
VU< | [VU*= / V/|V(v 2< 2.45
/v _/RS| =g [V AT e (245)

Then it is sufficient to prove:
(2.46)

VU<
/ VU< llog k.|

Let us denote by 7' a linear continuous extension operator:
T : H*(B?) — H*(R?), s5=0,1,

and let us extend Uy by 0 outside B3, we still denpte it by Uy. Then the extension Uy,
belongs to H'(R?) and the trace U|gz2 belongs to H'/?(R?). Therefore, we obtain:

_ 1 _
Tl sy < 500 s sy = 3 I T oy (2.47)
Now using (2.42)) with ¢ = U}, we have:
J— J— 2 —
B3 B2
= [, VIO = T < IV T8, = i)l -1y [T e

< (DM = i) /2 e [Tl e oy

2 2
< C|T(M}, — mi) || I T (M}, — i) ||

L2(R2) HI(RZ)HVUICHLQ(B?’)'

We have used the classical interpolation inequality and (2.47)) in the last estimate.
Then

1/2
H1(R?)

1/2 1/2
< c(/ \M,;—m'kﬁd:g') </ |v'(M,;_m;)|de'> .
B2 B2

In combining the results of Step B.4, Step B.5 and ([2.32)), this follow

IVOllp2ges) < CUTMG = mi) |l 1T (MG, = mi)|

/5
Ce < C

. (2.48
nk\lognk\ [log x| )

/ ‘VU}J dr <
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By ([2.45)) and (2.46)), we finally obtain that

e ©

1
L s —¢
e Jps k| 1og M|

Step D.Completion of the proof of Theorem [2.1]
By Step C, we now can apply Theorem to {(Mj, hi)}. Therefore, M] is relatively
compact in L'(B?) as well as LP(B?).
Since the square B was arbitrary chosen in the complement of D and we proved the
relatively compact in any ball B compactly included in B, by a diagonal argument, we
deduce that {m} } converges in LP(2\ D) up to subsequence. Letting  — 0, we obtain the
conclusion of Theorem 2.11

We finish this section by

Remark 2.8. Assume that {my}x is a sequence which satisfies the assumptions of The-

orem 2.11

(i) From Theorem we know that, up to a subsequence, m; — m almost everywhere
in Q. As |mg|=1 in Q, the dominated convergence theorem implies that my — m
in L'(Q).

(ii) Since V'.m/ =0 in © (in the sense of distributions), then we can define the normal
trace (m'.v) of m’ in the sense of distributions; that is,

(m'.v, C)pr(oq) D00) = /Qm/.V/C(JU/,O)d:c/7 for ¢ € C*°(09).

Here ( is the extension of ¢ into CH1(€).
(iii) We have that m’.v = g.v on 99Q.

Indeed, for ¢ € C§°(R?), using Remark (i)7 one has

k—o0

/m’(x’).V'C(x’,O)da:’ = lim/mk(x').vlg(x’,O)dx'
Q Q
:/ gvCdH — lim | V'.mj(2)¢(2,0)d2’.  (2.49)
90 k—oo JO

Equations (2.3) and the Young inequality yield that

< IVCl 23| [VU|| 2 (m3)>

/ V' .mj(2")¢(2',0)da’
Q

= ‘ VU (2)V((x)dx
R3

where VU is the stray field associated with the magnetization my. Together with Theorem

and (2.30)), this yields

Therefore, we obtain
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2.5 Loss of compactness at the boundary

In this section, we aim to construct an example for the loss of compactness at the
boundary, that is stated in Theorem

The Proof of Theorem[2.4. The construction is carried in several steps. In this proof,
we work at the level of sequences of parameters 7, and a sequence of magnetization mg
satisfying my, = (g,0) = (0,—1,0) on I" := {0} x [-1,1] C 99.

Step A. The aim of this step is to introduce a Néel wall approximation.
We follow Ignat [30]. Let us denote

Ak := g [log Ny |.

The parameter )\, corresponds to the core size of an approximation of the Néel wall. More
precisely, we consider the following 1D transition layer (ug,vx) : R — S! that approximates
a 180° Néel wall centered at the origin:

[log \/t24+A2] . 2
wp(t) =4 Togmr LIS /I= A
0 elsewhere,
2 .
onlt) = I —ug(t) ift<0,
1—wui(t) ift>0.
1 1
tp(t)
vE(t)
25 foly
0 1
-1 0 +1 -1 0 +1

) Ty

Figure 2.2: A 180° Néel wall approximation

The exchange energy corresponding to this transition as follows:

/dwﬂ dug | - [ du[*
r | dt dt o Jrl—u2| dt
<[ duy |
- 1— | dt

V1-A7 2
dt
HOg )\k‘ / Vi-xZ (82 + )\2)210gt 12

§2

1/
< d
- )\k|log k| /0 (s24+1)%log(s®> +1) §
1
=0 ——— ). 2.50
<)\k:|10g>\k|> (250)

In order to estimate the stray-field energy of the transition layer, let W be the radial
extension of wuy, in R?:

Wi(2') = ug(|2']) , for 2’ € R2
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By H'/?(R)-trace estimate of a H'(R) - function, it follows:

2
dr.

du

1 1
2 2 9.1
||uk”I—'[1/2(R)§ 2/RQ‘VW]¢| dx S?T/O r d

r

Moreover,

1
7'['/7"
0

1 3
T r
dr < / dr
llog \e|? Jo (r2 + )\z)z

1/ Xk 3

T S v

= — ds < 1 log \i.|).
[log e 2 /ﬁ F12% = Tlogagp 1 T log M)

Therefore
T+ o(1)

< -7, 2.51
)= Tog il (2:51)

k12

Step B. Construction of sequence (my).
The sequence my, = (m}, msx) : @ = (0,1) x (—1,1) — S' we construct will consist of
magnetization m; that does not depend on the x5 variable

my = my(x1)

and
ms(z') =0 in Q.

More precisely, we have:

1 — ag T — o
(ma g, ma g, msx)(z1,22) = | ug , Uk 0,
ag, ay

where ay > 0 converges to 0 as kK — oo, will be defined later, see ([2.54]).
Since |mj|= 1 in Q, the full energy E., ,, «,(m) simplifies

1
By(m) = [ (V'miPae’ + [ 972V ) 10
Q Nk JR2

Observe that mg(x1,22) = (g(r1,22),0) = (0,—1,0) at the boundary {0} x (—1,1). To
get the conclusion of Theorem we will prove that

my — (0,1,0) in L(Q). (2.52)
and )
T+ 0
E, (mp) < ——=. 2.53
Step C The proof of (2.52)) and (2.53)). We start with (2.52)).
Firstly,

1 el 1
/\mzk(azl) —1|d2’ = / / ]mg’k(x') — 1|dzodx; = 2/ |ma i (z1) — 1|dzy
Q 0 J-1 0

20tk 1
s / ima (@) — 1]day +2 / o p(a) — 1]day
0 2

A

1 ]
= 20%/ ]vk(t) - Hdt + 20%/ ‘Uk(t) - 1‘dt
1

-1

1
_ 2%/ o (£) — 1]t < Saue.
~1
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This implies that mg converges to 1 in L*(Q) as oy, — 0.
Moreover, by the assumption my(z') € S for every z’ € €, then

[P’ = [ (1= md e

0 Q '

< / Ima k(@) — 1||mag(z’) + 1|d2’ < 2/ Ima(2') — 1|dz’ < 16ay.
Q Q

This implies that mq j converges to 0 in L*(Q), so also in L!(2).

The proof of ([2:53)

We estimate the exchange energy of my.
’ 3m2,k

om 2 2

/ N2 g0 _ 1,k

/Q|mG(:c)| do _/Qq P ()| | (331)' )dmldxg
2,k(

1 8m1,k- 2 am 2
_2/0 <‘ S )+ | )d:pl

6$1
9 2
<= < (t) >dt.
ag Jr
Estimate (2.50) yields that

1
V'myp (') |2dx’ < O<>
/Q k( )| ak)\kllog )\k‘

1‘1)

duk

2
| +

duy
dt

Choosing
1
-~ 0, 9.54
(697 ‘log )\k|1/2 ( )
we then have
/\mG(x')]2dx/ =0 o =0 v (2.55)
0 Ak|log Ag|1/2 nellogme|?/? ) .

Estimating the stray-yield energy.
We recall the result of Theorem that

1
/R V@) = /R NIV 29 g v ofda = /Q (2!, 0)V il (2)da!,  (2.56)

where Uy, is the stray-field associates with the magnetization my.
Therefore, in order to estimate the stray-field energy, it is sufficient to find an upper bound
of

/ Ur(2',0)V'.m).(2')dz’.
Q

The computation will be done according to V'.m) = ag?lk.

Let us recall the homogeneous H'/ 2(R) semi-norm of v : R — R be defined by

ol ageyi= [ Jl1Frolde, (2.57)

where F1(v) € 8'(R) stands for the Fourier transform of v.
It is known that (see Ignat [30, Proposition 7])

v
1012y //’ s—r|2 dsdr (2.58)
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also

1
|]v|]H1/2(R) 5 mln{ V'V 2da’ : V(x1,0) = v(x) for every z; € R} . (2.59)

We now estimate [, Up(2/ 0)8m1k( ")dz'. Using the fact that myg(x1,-) = 0 for any
z1 ¢ (0,20ay), (we extends mLk(a?l, ) =0in z; € R\[0,1] ) then

/ U (e, 0) 2T (47 g — / 1 ( / Uk(m’,O)M(a:’)dan)dmg. (2.60)
Q Oxq —1 \JR 9

Without loss of generality, we consider m;j as a function of the x;-variable, then the
Parseval identity and the Cauchy-Schwarz inequality yield:

</RUk(a:1,a;2,O)ag;11 (z )dx1>2

om

</f1 (Uk (-, 2, ))(51)]:1( )(51)d§1>2

2
< 161 F (Ug (-, z2, ))(fl)fl(mm)(&)d&)

( [lal7 @t a0nea ) ( [lalmmueke)

| ()HHl/Z HUk( €2, )HHI/Q()

1 0
< lm sy [ s 5o Uil dardes. (2.61)

IN

Here, we have use the definition (| - to get the last inequality.
As HY2(R) is scaling invariant in R, by the definition of m1,k, we obtain

T+ o(1
Hml,k(')“?‘p/z —”UkHHuz <|1T ( by (251)). (2.62)

Combining together (2.60))-(2.62)) yields that

om
/ / /
/QUk(a:, 0) . (z")dx

] (LI ot

2 1/2
d:vldx3> ||Uk’|Hl/2(R)de2

Oox1 Ox
1/2
ﬁ(m 1/2( / IVUL( )]2dx> . (2.63)
K
By (2.56)), it implies that
7T+0(1)
U ( T Sa— 2.64
/ VU 77k|10g77k| (264

Finally, summing up (2.50) and (2.64), we get the conclusion of (2.53). The proof of
Theorem [2.9] is completed. O
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Interior and boundary regularity
results in a model for thin
ferromagnetic films with
Dzyaloshinky-Moriya interaction

Abstract
In this chapter, we study the regularity of critical points of a non-local energy which stems
from a two dimensional ferromagnetic model with Dzyaloshinky-Moriya interaction. First
we show the interior regularity of critical points, like for S?-valued harmonic maps on 2D
domains, the critical points are smooth in the interior of domain. We also prove a boundary
regularity result that the critical points are C'%® up to the boundary, for all a € (0, ) The
particularity of this work is to study the non-local model within an imposed the Dlrlchlet
boundary condition.

3.1 Introduction

In this chapter, we use the notation which are used in the previous chapter. Let 2 € R?
be a Chl-domain and g : 9Q — S' be a CY! function. We consider a magnetization
m = (m/,m3) : Q C R? — S? satisfying the boundary condition

m = (g,0) on 0.
Denote
1 2y ._ 1 3y . _ _
H,(Q,8%) :={ue H (R") : |u(z)|=1ae,u=(g,0) on 0Q}

and

Ee /|V'm\ dx +/ m)dx'+—~ /
2

where €, > 0 are two small positive parameters. Here 2/ = (x1,23) are the in-plane
variables with the differential operator

V/ = (8$17812)7

and the third variable is denoted by x3.

The first term is the so-called exchange energy, it penalizes spatial variation of m
through the Dirichlet integral of m. The second term is the anisotropy energy. The function
F :S? - R, is smooth whose zeros are the preferred directions of m (called easy axi{-] ).

I|71/2(v/'7n/)ac

2
dx’—i—/ DM (m)dx’
Q

!The previous chapter, F(m) = m%/2, so preferring all axis in the horizontal plane.
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The third term in the energy FE., . can be equivalently expressed in term of L?-norm of
the stray-field VU:

J.

Here we denote

’v/|—1/2(v/.m/)ac

2 1
d:n’:/ |]—"(V’.m’)ac|2d§:2/ VU |?dz.
r2 [¢] R3

(V') ge = V.M 1g

and U : R? — R is the stray field potential which is determined by the static Maxwell
equation in weak sense:

VU (2)V({(z)dx = / V' .m! (2')¢ (2, 0)dx’ for every ¢ € C5°(R?). (3.1)
R3 Q

The last term is the Dzyaloshinky-Moriya interaction given by
/QDM(m)dx’ = /ﬂfgm.v/ x mdx' + ng/ﬂ(mgv/.m’ —m'.V'mg)dx’
=K /Q(mlﬁmmg — Mgz, m3 + m3z0y, mo — M30y,my )dz’
+K2 /Q (m3(0zym1 + Opyma) — M10y, M3z — M0y, ma)da’,

where k = (K1, ko) are arbitrary coefficients.

The principal questions we shall discuss here are the existence and regularity of critical
points e «(m) defined for m € Hj(Q,S?).
The existence of a critical point m € H ;(Q, S?) is presented in Section Moreover we
determiner the Euler-Lagrange equation for the energy E. , . (as in the case of harmonic
maps. )

Theorem 3.1. Let Q C R? be a CV-domain and g : 0 — St be a CY' function. If

SF(1,6,60)) 2 1703 + W) for all € = (61,62, 6) -0 = &,

where 17 is any fized number larger than 1, then there exists a minimizer m € Hgl(Q,SQ)
of Ee - Moreover m satisfies the following

—Am — m|V'm|2—717 <€I> + ;m'.Hm + é(f(m) —m.f(m)m)

—V/mg

+r1(Id —m@m)V' x m + Ky (( V'

) + (V'mz.m' — m;;V’.m’)m) =0 in D'(Q),

where H := V'U(-,0) and f = VF.

The regularity result we prove in Section 3 is that any critical point m of E, . over
H;(Q) is smooth in the interior of domain and C*¢, for all a € (0, %) up to the boundary.
The regularity theory for critical point of quadratic functional in dimension two has con-
siderably progressed since the theorems of Morrey, see [41]. One of the most important
results is proved by Hélein, see [26]. It concerns the regularity of harmonic maps defined
in an open set of R? and with values in a sphere (a Riemannian manifold). In [I1], Carbou
shows a result of regularity of critical points of a different ferromagnetic model (without
any imposed boundary condition). For the regularity in the interior domain, we use mainly
here the works of Hélein about the harmonic maps with values into S?, also the works of
Carbou (see [11]).
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The regularity at the boundary for a three dimensional ferromagnetic functional have
been studied by Hardt, Kinderlehrer and Lin (see [24]), also by Huber ([27]). For that,
one studies the minimizing problem

E(m) :dQ/]Vm\2da:+/ VU (2)|*dx
w R3

among all function m € H'(w,S?), where the so-called stray-field potential U : R® — R is
generated by the Maxwell equation:

—AU = V.(ml,) inR3 (3.2)

and w C R3 is the ferromagnetic sample. We remark that these minimizers satisfy %—T =0

on the boundary, where v is the unit outer normal vector. Thus their Neumann boundary
condition is different from our imposed Dirichlet boundary condition.

The general idea used in [27] is to construct a reflection at the boundary in order
to establish a situation which is similar to the setting in the interior. In the case of
minimizing harmonic maps, one can follow the ideas by Schoen and Uhlenbeck, see [46]
based on a monotonicity formula. Then, the higher regularity will be obtain by the interior
setting tools. Moreover, a special coordinate system is introduced in [27] in order to obtain
the regularity of differential in the outer normal direction which is based on a reflection
construction and the Neumann boundary condition %—T = 0.

In our work, instead of using the reflection construction, we shall use delicately the
Nirenberg method to obtain a higher regularity through the tangential direction. The reg-
ularity through the normal direction will be obtain by the anisotropic Sobolev embedding,
see [25].

In the next section, we recall some preliminaries on the stray-field and prove the
existence of minimizers. The regularity of critical points shall be given in Section It
is split into 2 subsections (the interior regularity and the boundary regularity).

3.2 Existence of minimizers and Euler-Lagrange
equation

Let us first recall some important properties of the stray field fR3|VU |2dz. We first
recall the definition of the Beppo-Levi space

BL = {U ‘R3 - R: VU € L*(R?),

Consequently, the space BL endowed by the homogeneous H'— norm, U ~ ||VU]| L2(R3) 18
a Hilbert space, and the set C§°(R?) of smooth compactly supported functions is a dense
set, see Dautray and Lions [16].

Remark 3.2. If m,l € H*(Q,S?) and U = U(m),V = V(l) are the corresponding solu-

tions of ({3.1)), then

/ V(' 0)V (2 )da’ — / U, 0V 1 (o) da.
Q Q
Indeed, by the density of C§°(R?) in BL(R?), then (3.1) is still true for every ¢ €
BL(R?).
Choose ¢ = V, we obtain:

/V(JJ',O)V’.m’(:c')d:c': VU(x)VV(x)dx/:/U(x/,O)V’.l/(x/)dx’.
Q

R3 Q
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Remark 3.3. For m € H'(©2,R?) and the stray potential U(m) satisfying the Maxwell
equation (3.1)), one can present U under the term of the Fourier transform (see the proof
of Theorem in the appendix)

F(U(-,0))(¢) = 2|1£|}"((V’.m’)119)(§) for all £ € R?. (3.3)

Hence,
1
[vveors = [ erFOCo@rE = [ Rl AT mOta) @)
1
= (17" Lol Ba ey
1
< ZHv/'m/H%Q(Q)'
This implies that V'U(-,0) € L?(R?).
Moreover, when m is more regular, one has

Lemma 3.4. If m € HE _(Q) N HY(Q) then U(-,0) € HE (Q),Vk > 2.
The proof of Lemma [3.4]is given in the appendix.

3.2.1 The existence of minimizers

Let © € R? be a Cbl-domain and g : 92 — S! be a smooth function. In this
section, we study the existence of a minimizer of the energy E.,, (m) under the constrains
m e Hgl(Q, S?). For that we assume that

1
FF((&,6,6)) 2 17 (5] + )& for all € = (€1,6,8) 1 @ = 87, (3:4)
where 17 is any fixed number larger than 1. Observe that
Ec ) x(m) > —oo for every m € H;(Q,SQ). (3.5)

Indeed, using the definition of the DM term and the boundary condition m = (g,0) on
0f), one has by integration by parts

K1 / m.V' x mdx' = 2k, / (m30z,mo — m30y,my)dz’
Q Q

and
Iig/(mgvl.ml —m/.V'm3)dx’ = 2&2/ msV' .m'dx’.
Q Q
Therefore
/DM(m)dx’ < 2T (K3 + /@%)/ madx’ + 1_/|V’m’|2daz'
Q Q Q
2
= [ F(m)dz'+17 / |V'm/|2da’
e Ja Q
where 2F := 2.1% with 1% given in (84) and 1~ = ;2. Combining with (3:4) and the

definition of the energy, this yields .

By the above argument, we then take (my)j a minimizing sequence of E , . in H, gl (Q,$?)
for €,n, k fixed.
Since (01) [o|Vm} < By «(my) for some 0 > 0 and (my) takes values in S?, the se-
quence (my)y is bounded in H*(Q).
Hence, up to a subsequence, there exists m € H'(Q, R3) such that
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(i) my — m weakly in H'(Q,R3),
(ii) my — m in LP(Q,R3) for every 1 < p < +o00
(iii) |m|=11in Q.
The third convergence implies that m is S?>-valued. By the trace operator, we also get that
m' =g in HY2(5Q). (3.6)

Moreover,

/|V'm\2dx' §liminf/|vlmk\2dx',
Q Q

/SZF(mk)dx'a/QF(m)dx’.

We are going to establish that

/Q DM (my)da’ — /Q DM (m)da'.

Indeed, let us consider the first term of DM energy, ([, m.V’ x m). Observe that
my, — m strongly in L?(Q, S?),
and
V' x my, —= V' x m weakly in L*(Q,R?).
Therefore, we get

/ my. V' x mypds’ — / m.V' x mdx’. (3.7)
Q Q

Using the same argument as above for the second term of the DM energy, we obtain

/ (Tng’kvl.ﬂ’b?f — m;.V’m&k)dm’ — / (mgv/.m/ — m/.vlm3> d:L',.
Q Q

Then we get the convergence of the DM energy.

We now prove the convergence of the stray-field energy. Let us call U, U the stray
potentials associated with mg, m satisfying .
By Theorem [2.3], we get

2

dg

VW= Ol = [, g P = ) ta)(©

:1/ 1‘/ e Y (m), — m')1qda’
2 Jr2 [&]] Jr2

Since mj, = m’ = g on the boundary 9, we then use the Green theorem to obtain

2

de.

2

L de.

1 -
= / ‘/ —ie e (m), — m/)Loda’
2 Jre ]| Jr2

}iQ L) 2
<5 [ lePIFm, =)o)

1
= S = ) L0

IV (Uk = U)|1 2z
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The standard interpolation inequality implies that

IV Uk = U)ll72@sy < 5llmi —m")Lall g eyl (m), — m') Lol L2 (g2

Hmk m/HHl(Q)HmZ; —m'|[L2(0)

The first factor in the right hand side is bounded while the second one tends to 0. This
proves that VUj converges to VU in L?(R3). We conclude that m is a minimizer of E
over H}(,S?).

3.2.2 FEuler-Lagrange equation

We are going to compute the Euler-Lagrange equation satisfied by the critical points
my € Hgl(Q) of Ecp . Let ® be an element of C§°(92, R?). We set

m + td

for ¢ small (e.g. t < otherwise m + t® may has zeros. Since |m + t®| 1=

Tl
(mf2+2tm.® + 12®]2) > = 1 — tm.® + O(#2), then
my =m +t(Id — m ®@m)® + O(t?).

Let U;(my) € BL(R3) be the solution of the Maxwell equation (3.1)) associated with m;.
We ahve

Eepn(me) / Ve + /<mt>dx’

+ 1 / Us(2!, 0)V" .l (2! )da! + / DM(my)ds' (3.8)
2n Ja Q

and a(m) =({Id—m®m)d.
Since is linear and has a unique solution, then Uy = U + toU + O(#?),
where UU is the solution of (3.1)) , or

A(eU) =0 in R3\ (2 x {0}),
[%’Tﬂ — _V'.(c(m))) onQx {0},
[cU] =0 on R? x {0}.
We prove that
Eepw(mi) = Eey (M) +t0Eey 0 + Ot?), (3.9)
where
T / Vm.V (o (m))da’ + — / Doy, Oy Do) F (m).0r(m)da’

+/ Uz, 0)V'.(o(m) da’
nJa
—|—2/§1/ o(m).V' x mdz’ + 2ks / (m3V'.a(m) + o(m)sV'.m')dz’
Q Q
Indeed, it is simple to check that

/\V’m\ dz’ —/\V'm\zd:c +2t/ V'm.V'o(m)dz' + O(t?),
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and
/QF(mt)d:c’ = /QF(m)dx’—i—t/Q(V’, Oz )F(m).o(m)dz’+0(t?)  (by Taylor’s expansion).
Remark and definition of U; yield that
/QUt(:U',O)V’.mQ(x)dw’ = /QU(.I‘/, 0)V'.m/(z)dz’
+t /Q U(z',0)V'.o(m) (z)dx" +t /Q oU(z', 0)V'.m/ (z)dz’ + O(t?),
:/QU(x’,O)V’.m'(x’)dx’+2t/ﬂU(m',O)V’.o(m)’(w’)dw’+O(t2).

For the first term in the DM energy, one has
K1 / me. V' x myda’
Q
= m/ m.V' x mdz’' + tr </ m.V' x o(m)da’ +/ a(m).V' x mdx’) +O(t%).
Q Q Q
We recall that ms3 = m; 3 = 0 on the boundary, thus integration by parts implies
/ m.V' x o(m)da’ +/ a(m).V' x mdz' = 2/ o(m).V' x mda’.
Q Q Q
This implies that
/ﬂ/ me. V' x muda’ = ml/ m.V' x mdx' + 2tm/ o(m).V' x mdz' + O(tz).
Q Q Q
We also have that
! / / ! ! ! / /
K,Q/ my,3(Viomy —my.Vimy3)da' = 2/-12/ my 3V .mydz’.
Q Q
An easy computation shows that
2/@/ mt73V'.m;d:B’
Q

= 2/{2/ msV'.m'dz’ + 2t/£2/ (o(m)3V'.m' +m3V'.o(m))de’ +O(*) (3.10)
Q Q

which proves (3.9)).

We now determine the Euler-Lagrange equation.
Rewriting the first term in o E,) .

/V’m.V’a(m)dw’ :/V’m.V’(@—m@m)dQ:’
Q Q
:/V’m.V’Q)d:r’—/\V'm\Qm.CIde'—/ V'm.(mV' (m.®)")d2’
Q Q Q
:/V'm.V'@dm'—/|V'm|2m.<1>dx’. (3.11)
Q Q

We have used that m orthogonal to V/m in the last equality.
Hence

/Q V'm.V (o(m)) = (—Am — m|V'm|% ®) iy poy-
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Rewriting the second term in o Eey, .

/Q(aﬂﬁlv 81‘2’ aﬂcs)F(m)U(m) = <(8931 ) 89627 81‘3)F(m)_m'(8361’ 81‘2’ aﬂﬁs)F(m)ma (I>>D’(Q),D(Q)-

Rewriting the third term in o E,) .
Using the Green formula and the fact that ® = 0 on 9, one has

/ Ul 0V o(m)ds’ = / U, 0)V (& — m.® m')da
Q Q
- /(—V’U(x’,()).rb’+V’U(x’,0).m’<1>.m)dx’
Q
= /(—(V’U(aﬁ’,O),O).CI) + VU, 0).m'm.®)da’
Q

= (=(V'U(-,0),0) + V'U(-,0).m" m; ®)p (o) p(02)-

Rewriting the DM1I term in o Ecy .
The first term in the DM1.

2/ o(m).V' x mds’ = 2</ ®.V' x mdr' — / m.®m.V' x m)d:c'
Q Q Q

= <CI), QV/ xXm — 2m(mV’ X m)>D/(Q)’D(Q).
The second term in the DM I. By integration by parts, it follows for ® = 0 on 92

? / m3V'.a(m)' + o(m)sV'.m'da’
Q
=2 / (m3V.(® — m.®m') + (&3 — m.®m3)V'.m/)dz’
Q
=92 / ((m3V/,<I>’ + <I>3V/.m/) - (m3V’(m_(I>)_m/ T+ magm.®V'.m’ + m-q)mgvl.m’))dm’
Q

=2 / ((=V'm3.® + V'.m'®3) — (=V'.(mgm")m.® + 2m3V'.m'm.®))dz’
Q

=2 /Q((—ﬁxlmg, —0p,m3, V'.m).® — (m3V'.m’ — V'mz.m')m.®)dx’ (3.12)
So, the Euler-Lagrange equation is
A = VPt (Ory, Oay, 00, F(m) — m.(Osy, Oy, ) F(m)m)
—i—:] <— (g) —i—m’.Hm) +r1(Id—m@m)V' xm (3.13)

-V’ .
+K2 << V’.WWZ’?’) + (V'mg.m' — mgvl.m')m) in D(Q),

where H := V'U(-,0).
Denote

K(m) = 5 ((Ony, 00z, 00, F(m) + 1m.(0ay Oy, 0y F(m)m)

2
—i-?l? ((Ig) —m’.Hm) —k1(Id —m@m)V' xm

o/
— Ko <( VY;Z,S) + (V'mg.m' — m;;V'.m’)m) . (3.14)

Finally, we obtain the Euler-Lagrange equation:

/V'mvl@da:’ = /(m|V'm|2+K(x’,m(x/))).q)da:’ VO € C5°(Q,R?). (3.15)
Q Q
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Remark 3.5. (i) By the definition of K, the assumption of the function F' and Remark
then if m € H;(Q,SQ) is a critical point of E, ., then we have immediately
that K € L*(Q,R3).

(ii) Since m € H,(€2,S%) and K € L*(2,R?), then we have m|V'm|*+K (2/,m(z')) €
L'(Q,R?). By a duality argument [ this implies that (3.15) holds true for every
® € HE N L™(Q,R3).

3.3 Regularity of critical points
In this Section, we prove

Theorem 3.6. Let Q be a CH'- domain, F € C®(S?) and g : 092 — S! be a OY!
function. Let m € H;(Q,S2) be an critical point of Ec, .. Then m € C®(2) N CH*(Q
for all a € (0, 3).

For that, we shall split the proof into two parts, the regularity of m in the interior
domain and the regularity of m up to the boundary.

3.3.1 Interior regularity

We aim to prove the regularity of the solution in the interior of the domain
Q. We follow the method used by Carbou for a slightly different ferromagnetic model in
dimension 2 (see [L1]), also by Jost for the interior regularity of harmonic maps into the
sphere (see [39]).
For the conveniences, we have some notational conventions:

From now on, we will write V = (0,,,0,,) instead of V', V.m' = 0,,m1 + Or,ma,
x € R? standing for the in-plan quantity. Combining the Euler-Lagrange equation ([3.15))
and Remark we has

/ VmVodr = /(me|2+K(x,m(x))).<I>da: V& € Hy N L>®(Q,R3). (3.16)
Q Q

Also, we shall always integrate w.r.t. to the Lebesgue measure dx and this will often be
omitted.
The main goal of this section is the following theorem

Theorem 3.7. Let Q be a CY' simply connected domain, g : 99 — S' be a CY function
and m € H}(,S?) be the solution of (3.13). Then m € C*°(9Q).

For the continuity of m € C%(Q) we first rely on the result of Wente which is proved
in [8, Lemma A.1 and Remark A.1]:

Lemma 3.8. Assume that  is a C%' domain in R? and f = (f1, fo),h = (h1,h2) €
HY(Q,R?) and u € W&’l(ﬂ) is a solution of
2
Au=>"VfiV'h,
i=1

then u € CO(Q).

2For every such ®,3®,, € C5°(Q) s.t. [®,|< ||®]|p~, Py, — @ in HY(Q), ®,, — ® a.e in Q.
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Proof of Theorem[3.7. The proof is carried out in several steps.

Step A We prove that m € C°(€,S?).
In this step we only use that K € L?(Q2). The fact |m|= 1 a.e implies that:

3
Zmi&ckmi =0, for k =1,2.
i=1

Then for any i € {1,2,3}, we rewrite (3.13) in the form:

2 3
k=1 j—1

where K = (K7, Ko, K3) is denoted as in ({3.14]).
Remark that in the sense of distributions:

2 2
Z Oy (MiOgmj — MOy, M) = Z(@zkmﬁmkmj + miﬁikkaj — Oz, MmOz, mj — mj82
o = f;zlAm] — m;Am,.
Together with , this implies that
2
Z Oz, (MiOy,mj — MmOy, m;) = m;(—m;|Vm|*—K;) — mj(fmi|Vm|2fKZ)

= —m;Kj + m; K.
Since m is uniformly bounded by 1 and K € L?(2,R?), then
—m;K; +mjK; € L*().
Let b;; be a solution in H!(Q, R?) of
V.bij = —m; K; +m; K; in Q).
Therefore we obtain:
V.(m;Vm; —m;jVm; — b;;) = 0 in D'(Q).

Applying the Poincaré lemma to (m;Vm; —m;Vm; —b;;) in the simply connected domain
Q , then there exists ¢;; € H'(Q,R?) such that:

miij - miji - bl'j = VLCZ'J' in Q.
Combining with (3.17)), this yields

3
—Am; = Z(ij.VLcij + Vm;.b;j) + K; in D'(Q) for any i € {1,2,3}.
j=1

Let o; € C°(Q) N H} () be the solution of

—AO[Z' = Z?:l ij.vJ‘Cij in Q,
a; =0 on 0f),

TETk
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( this is thanks to Theorem and 3; € C%7(Q), for some v € (0,1), be the solution of

{ —ABi =30 Vmjby + K;  inQ (3.18)

Bi = m; = g; on 0f).

Indeed, since b;; € H'(Q,R?) C LP(Q,R?) for all 1 < p < oo, then Z?:l Vm;.bj; + K; €
L? (Q), where 2~ is any positive number less than 2. By the standard elliptic theory,
since g € C11(99, there exists a unique 3; € W227(Q) satisfying (3.18)) . By the Morrey
inequality, 3; € C%7(Q) for some 7. As a; + 3; satisfies the PDE

—A(Oé,; -+ 62) = Z;’Zl(ij.VLcij + ij.bij) + K; in Q,
a; + Bi = g on 981,

the uniqueness of the Poisson equation with Dirichlet condition implies that m; = oy + ;.
So we have m € C°(Q). In the next step, using m € C°(£2), we are going to sharpen the
interior regularity.

Step B We prove m € HlQOC(Q,S2).
Step B is a consequence of the following auxiliary result which is inspired by [35, Theorem
9.6.1].

Lemma 3.9. Suppose m € C° N HY(B(zo, R),S?) is a solution of (3.16). Then m €
H?(B(xo, %)), moreover we have the estimate:

HD2mHL2(B(xO,§))§ C + ClIVm|12(B(wo,R)) (3.19)
where C' > 0 depends on R.

Before proving the Lemma let us give the following Lemma.

Lemma 3.10. Let Q C R? be an open domain and m € H' N C°(Q,S?) be a solution of
(13.16)). Then for every eg > 0, there exist p > 0 such that

/ Vm(@) Pr(@)de < e / V() 2de,
B(P,p) B(P,p)

for all P € Q,B(P,p) C Q and n € H}(B(P,p)).

Proof of the Lemma[3.10, We first work with n € C§°(B(P, p)). Choosing ®(z) = (m(z)—
m(P))n?(x) € Hi N L>®(Q,R3) in (3.16)), we obtain

/ Vin()V((m(z) — m(P))r(x))dx
B(P,p)

- / (m ()| T () P+ ) (m () — m(P))n? (x) e
B(P,p)
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Hence,
/ VP = — / W Vm(m(-) — m(P))
B(P,p) B(P,p)

2 ) —m 2(x (N () —m 2
w1 ) = mE) + [ KmO)m) = mP)n

B(P,p)

< + sup [m(-) —m(P)] [Vm*?

B(P,p) B(P,p)

2 /B oy TAY) — m(P)

+ sup |m(-) = m(P)IECm()) 2 1R sm),
B(P,p)

1
<5 [ [T 2 sup ) =) [ o

+ sup [m() r/ VP + Cp sup m(-) r/ Vnl?,
B(P.p) B(P,p) B(P,p) B(P,p)

where we used the Sobolev inequality

1/2
Co [ vapz ( / m“) |
B(0,p) B(0,p)

the Young inequality and the fact K € L?(2, R3) in the last inequality. The Lemma follows

because we can make sup |m(x) — m(P)| arbitrarily small by choosing p sufficiently
z€B(P,p)
small since m is continuous.

Finally, we note that, by using the density argument, the conclusion holds for n €
H(B(P, p)). Indeed, for any n € H}(B(P, p)), there exists n, € C§5°(B(P, p)) such that

{ ’l7k—>7] a.e
e —n in HY(B(P,p)).

Then by Fatou’s Lemma

/ |Vm|?n? < lim inf/ |Vm(z)|*nE (z)dx
B(P,p) B(P,p)

< liminf eo/ |V (x)|*de = eo/ |Vn|2.
B(P,p) B(P,p)

O
We continue with the proof of Lemma

Proof of Lemma[3.9. The idea of the proof is to estimate the term

[ wwhmpe,
B(P,p)

where £ is a good cut-off function to be defined later, D,}Y‘m is y'-difference quotient of

size h defined by

m(x + hey) —m(z)
h

Ds”m(x) = for y=1,2

and (Jp B(P, p) cover B(xo, R) .
For any P € Q and R > R’ > 0 such that B(P, R') CC B(xo, R), we choose a test function
n (3.16) as ® = D;h(EQDQLm), here £ € C§°(B(P, R')) and 0 < £ < 1 will be chosen later
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(sec(E20)).
Equation (3.16)) implies that

/ VmV®d = / VmV (D;"(¢°Dlm)) = / (m|Vm|*+K)D;"(&*Dlm).
B(P,R) B(P,R) B(P,R’)

For h sufficiently small depending dist(supp(¢),dB(P, R')), the integration by parts for-
mula for difference quotients

/ va_hw = —/ wD;‘v
B(P,R') B(P,R’)

implies that

/ VmV(D;"(¢°Dm)) = / VmD;"(V(¢DEm))
B(P,R) B(P,R")

= - / DI(Vm)V(£2Dlm).
B(P,R")

Then
) ATV (EDIm) = - /B o T HEOD €D )
Moreover:
DI(Vm)V(&2Dm) = [V(Dlm)[?€% + V(DEm)26vEDIm.
Then

/ V(D) P2
B(P,R)

= — / (m|Vm|*+K)D;"(&*Dlm) — / 26VED!mV (Dlm).  (3.20)
B(P,R) B(P,R')

We are going to estimate the right hand side of (3.20)). First, by Young’s inequality,

/ 26VEDImV (Dhm) |
B(P,R')

1
<af vOmpes [
B(P,R/) €1 JB(P,

)

|DEm[?[VE?, (3.21)
R)

for any €1 > 0.
We assume that 0 < |h|< 1dist(supp(¢), 0B(P, R')), then one has (see Evans [21])

/ D" (€2 Dim)P< C/ V(€2 Dlm) . (3.22)
B(P,R) B(P,R!)

The second term of RHS-(3.20)) is estimated by Young’s inequality and (3.22))

/ KD;h(»g?D’;m)‘
B(P,R')

1 €1 _
<oc [ KPS [ Di@Dlm)P
2e1 Jp(p.R) 2 Jpwpry !

1

<L KP+SC [ E@nimf
2e1 Jp(pR)) 2 JBr)

1 €
s [ KRGO [ (V| Dhm e 9 (Dhm)l)
€1 JB(P.R) B(P,R')
1

2¢1 JB(PR

IN

IN

ym%“c/ (8| VE P DIm[*+26%|V(Dim)[?).  (3.23)
) 2 Jpeer)
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Here, in the second inequality, We continue with

/ m|Vm[*D;" (&2 Dlm)
B(P,R)

/ DI (m|Vm|*)&Dlm
B(P,R")

< / (IDEm||Vm| >+ m" (| Vm|+|(Vm)"|| DI (Vm)|)€2| Dim|
B(P,R')

< / |DEm|? [ Vm[?¢? + / (IVml|+[(Vm)") | Dim||V (D]m)|¢
B(P,R’) B(P,R')

€
< / [ Dhmf|Vm|*€? + 2 / |V(Dlm) 2> (3.24)
B(P.R') B(P.R')

1
(|Vm|+|(Vm)*|)?| Dim|*¢?,

261 B(P,R')

where m"(z) := m(x + he,) and (Vm)"(z) = Vm(z + he,).
Here we have used the formula

D,};(vw) = th;lw + wD};v,
for v"(z) := v(x + he,).

Combining (8.20)-(3.24), 0 < ¢ < 1, K € L?*() and choosing €; small enough, this yields
that:

[ vwimre <ca [ phmPve? (3.25)
B(P,R') B(P,R')

s [ wmPIDmPe [ |(Fm)PDhm e,
B(P,R’) B(P,R')
For €y > 0, we choose R = p > 0 as in Lemma with
B(Pap) C B(JS‘(),R)
and we choose £ € C§°(B(P, p)) such that

4
£€=1in B(P, g) and 0= €1, |VE[< - in B(P,p). (3.26)

Thus, all preceding integrals need to be evaluated only on B(P, p). Applying Lemma
ton = \D?m\ﬁ € H} N L>(B(x¢,p)), we obtain:

/ V|| Dl 262

B(P.p)

< / V(1D mle)]?
B(P,p)

< % / V(D m)[2€2 + 260 /
B(P,p) B(p,

Similarly, using Lemma again with the function m(- + he,) we obtain

/ (V)" 2| Dl €2 §2eg/ |V(D§m)|2§2+2eo/
B(P,p) B(P,p)

B(P,p

|DEm|?| VP (3.27)
p)

|Dim*|VEP?. (3.28)
)

Since |V¢|< % in B(P,p), (3.25), (3.27), (3.28), we choose ¢y small enough, then for
0 < |h|< dist(supp(&), 0B(P, p)), we get

/ V(Drm)PE < C(1+ / D VER)
B(P,p) B(P,p)

1
<C(1+ S/ IVm|?). (3.29)
P” JB(P,p)
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The properties of £ imply that

<C+ 02/ |Vm|?. (3.30)
P~ JB(Pyp)

Covering B(xo, %) by balls B(P, £) with B(P, p) C B(xo, R), we obtain the desired esti-

mate for
/ |D*m|?.
B(wo,g)

O

This finished the proof of Lemma By Lemma (3.10), Step B (i.e. m € H? (9, §?))

follows immediately.
Step C The aim of this step is to prove that m € Hﬁ)c(ﬂ)
By Step B and Lemma we know that m € H2 () , H € H] (Q), where H is defined

as (H = VU(-,0)). First, we claim that K € H. (). Indeed, we note
|V (1.(V, 8y ) F(m)m)|< C(ID*F(m)|m|+|Vm||(V, 8z, ) F (m)||m]),

[V (m' Hm)|< C(IVH|[m|*+[Vm||H]m]),
V((m@m)V x m)|< C(IVm[*|m|+|D*m||m|[?*)

and
IV((=Vmz.m' —m3V.m')m)|< C(|D*m||m|*+|Vm|*|m)|).

Combining the definition of K (see (3.14])), these above facts and the regularities of m, H, F’
(m € HE, C Wil foralll < p < oo, H € H., C LV (Q), F € C®), this yields

K € HL (Q,R3).

loc
We want to apply the standard interior elliptic regularity to equation

— Am = m|Vm|*4+K(-,m(:)) in D'(Q). (3.31)
The principal difficulty of this step is to deal with the term m|Vm|?. Observe that:
V(m|Vm|*) = Vm|Vm|*+2mD?*mVm.

The first term Vm|Vm|?€ LP for all p < +oo. For the second term, one has D?m €
L%OC(Q), mVm € L} (Q) for all 1 < p < oo, thus mD*mVm € L9 forall 1 < g < 2. It

then suffices to show that |D?m||Vm|e L2 (). It is a direct consequence of the following
lemma:

Lemma 3.11. Suppose K € H'(B(zo, R)) andm € H*(B(xo, R),S?)(C C°(B(z0, R),S?))
is a solution of (3.16)). Then

B L
0,5

Moreover m € Hl?;c

(B(l'o, R)a Sz)
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Proof of Lemma Since (3.16)), one has

/ Oy (V). VD = / Vm.d,, (V)
B(zo,R) B(zo,R)

__ / (m|Vm[2+K).0,. (3.33)
B(zo,R)

for all ® € C§°(B(wo, R),R?) and v € {1,2}.

By a density argument, this implies that holds true for every ® € H}(B(xo, R)).
Denote: wy, = min{L,|Vm/|?}, with L > 0.

We remark that:

wr, € L(B(zo, R)),
Vwr(z) =0 a.e. in {z: |Vm(z)|*> L}.

It implies that

IVwr|< 2| D?mlw)/?, (3.34)

in particular wy;, € HY(B(xo, R)).
Choosing ® = n*wr8, m € Hy(B(zo, R),R?) in (3.33) where n € C§°(B(zo, R)) with
0 <7 <1 will be defined later (see (3.43)), then

/ Do, (V1) (101,00, m) = — / (VP K).8, (Pwrde.m).  (3.35)
B(zo,R) B(zo,R)

We now develop the right hand side of ([3.35]).
Estimate of the first term of the RHS of (3.35). The properties of the function n and

(3.34)) yield that

/ m|Vm|2.8x7<I> :/ m|Vm|2.8x7(772)wL8x7m
B(zo,R) B(zo,R)
+/ m|Vm|2.n28xwa8%m+/ m|Vm|*n? wrd?. . m
B(zo,R) B(zo,R) v

<o VilIVmPurlvm)
B(zo,R)

+2/ |vm|2|172m|w§/2|vm|+/ V| 22w, | D?*m|
B(zo,R) B(zo,R)

<c yvn||vm|5+3/ V|| D2m).
B(xo,R) (:Eo,R)

Using the Young inequality, we then obtain

1 1
/ V[ D?m]< / \Vm]8+/ D22,
B(zo,R) 2 JB(xo,R) 2 JB(xo,R)

We deduce that

/ m|Vm|*.0,,® < C / !Vn\IVm\5+3< / [Vml*+ / |D2m\2> < 0.
B(xo,R) B(zo,R) 2\ JB(0o,R) B(zo,R)
(3.36)
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Estimate of the second term of the RHS of (3.35)). Similarly to the above estimate, since
K € HY(B(zo, R)) then K € LP(B(xo, R)) for all 1 < p < oo, then

/ K.0,, (nzwLé?Mm) (3.37)
B(zo,R)

- / ( ) K(afcw (772)wLa$'ym + nzafcwwLaxwm + HQWLQQ%WIW )
B(zo,R

< / |K|(C| Vil Vm|+2| D*mlw 2 Vm| +wr | D?*m))
B Zo,

< [ (CIEIVHlITm K] D] Tl
xo

)

< C" |K||Vm/|? (3.38)

31l + 3]|D%m)| 2
Ll

L2

Therefore, all terms on the right hand side of (3.35) remain bounded as L — oo. The
same then has to happen for the left hand side of (3.35)). Therefore,

2

lim sup
L—oo

/ axv(Vm).V(WQwLaxvm)’ <C (3.39)
"}/:1 B(x07 )

The expression in modulus can be written as

2

Z/ Oz, (Vm). V(n2wL8x7m Z </ Oz, (Vm).2nVnw0,,m
:Bo,R) (1'07 )

v=1

+/ amw(Vm).UQVwLamwm—i—/ 6$7(Vm).772wLV(8%m)>. (3.40)
B(zo,R) B

(z0,RR)

We denote
= |Vm/|? in B(xzo, R).

Since 0y, w = 20, (Vm).Vm for v = 1,2 and Vwy = 0 in {w > L}, then the second
integral of the right hand side of (3.40|) can rewrite as

2
1
/ E axW(Vm).n2VwLaxwm: / | Vwl|?, (3.41)
B(zo,R) 25 2 Jiw<ny

and it is non-negative.
For the first term in right hand side of (3.40)), by the Young inequality,

2

/ 0z, (Vm).2nVnwr,0p, m
7:1 B(.Z‘(),R)

</ |D*m|*+C IVm|®|Vn*n? < 4oo. (3.42)
B(wo,R) B(wo,R)

Recalling
2
0<7n<1|Vnl< & in B(wo, R), (3.43)

and combining with (3.40)) - (3.42]), this implies that

Z/ (V) |Pwr, < O
B(mg,2
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uniformly in L > 0 for v =1,2
Applying Fatou’s Lemma, we obtain that

/ |D?m|?|Vm|*< C.
B(zo,%)

We then apply the interior elliptic regularity to with the the fact that the right
hand side of belongs to H} (Q). Finally, we obtain that m € Hp (Q,S?).

Step D Conclude the proof of Theorem[3.7
We first claim that

Claim 2. If m € HZIZC(Q,SQ) satisfies (3.13) and F' is a smooth function, for k > 3, then

m|Vm|? and K belong to Hl]zzl(Q), where K is defined as in (3.14)).

Proof of Claim @ We assume that m € Hl’j)C(Q,SQ). By Lemma we have that
H € HF7H(Q). Therefore, D*~'m, DF2H € I 1 <p < oo and D'm,D""'H € L™ for

reNandr <k -2
Using the Leibniz rule, one has

|DF=(m|Vm/|?)|< c( > \meupqmup’"m|>.
ptgt+r=k+1
k—1>p>0,k>q,r>1

This implies that m|Vm|?€ HjH(Q).

We use the same argument to estimate K given in (3.14), here we only check the term
mHm, the other terms are estimated analogously:

yD“(mHm)\gc( > |me\|DqH|]D”m|>.
ptgt+r=k—1

This implies that mHm € Hlkozl(Q) Therefore K € Hl]f)zl(Q)
Applying the interior elliptic regularity to (3.13]), combined with Claim[2] by bootstrap, we

obtain that m € H l’fm(Q) for every k € N. Finally, by the Morrey inequality, we conclude
m e C®(Q). O

3.3.2 Regularity at the boundary

In this part, we study the regularity at the boudary of the critical points of F, ..
Our strategy is firstly to adapt the method used in the interior regularity to obtain that
m € H?(2). We recall that by Step A of the proof of Theorem m € C%(Q). We then
expect to transfer the boundary regularity problem to the local interior regularity by a
diffeomorphism mapping. In fact, it boosts the regularity becoming 9,m € H'(V) and
d,m € WH(V) where 7,v are the tangent and normal vectors, respectively which are
well-defined in a tabular neighborhood V' of the boundary 0€). We split this part into
some steps.

Step A Prove that m € H?(2). Let us fix 9 € 9§ and note that since 9Q € C11] to
simply notation, we may assume that xo = (0,0) and up to rotation

QﬂB(ajo,T) = {l‘ S B(£0ﬂ")|£2 > ’Y(l'l)},

for some 7 > 0 and some C! function v : (—r,7) — R, v(0) = 0.
We change coordinates near a point xg = (0,0) € 92 so as to "flatten out” the boundary.
We define 1 = (¢1,19) : QN B(zo,7r) — R? as

{ Y1 (1, 22) = 21
¢2(ZE1,I2) =2 — ’Y($1)7
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and ¢ = (¢1,¢2) =¥ ~1: B(wg,7) N {ya > 0} — R?

{ o1(y1,y2) = 01
b2(y1,y2) = y2 +v(y1)-

Then ¢ = 1»~! and the mapping 1) straightens out 9§ near zo = (0,0). Observe also that
detViy = detVe = 1.

We choose s > 0 so small the half-ball B (xg,s) := B(xo,s) N {y2 > 0} lies in (2N
B(zg,r)). We also extend the function g into R?, still denote g and g € C''1(R?).

Let us define m = m o ¢ in By (x0,8) , g = go ¢ on OB (zg,s)). Since 9Q € C+! and
g € CH1(09Q), then ® € CH! and g € O,

We have the Euler-Lagrange equation in the half-ball B (xq, s)

Lemma 3.12. The Euler-Lagrange equation for m on By (xo,s) writes
/ ., VAW TBAG) ) VmAW) P B) - FE@) =0 (.40
+(0,s

for all test function ® € HE N L= (B (x0,s), R3), where the matriz A is defined as

Aly) = V(o(y))

and

K(y) = K o ¢(y).

The proof of Lemma[3.13 Equation (3.16) and Remark [3.5] give

/ Vm.Vodr = / (m|Vm|*+K)®dz, V& € H} N L>®(Q N B(xo,r)).
QNB(zo,r) QNB(zo,r)
Then
/ Vm.Vodr = / (m|Vm|[*+K)®dz, Y& € HE N L°(B(z0, s)).
$(By (20,5)) $(B+(20,5))

Asm=mo¢ ! and ® = ® o ¢, by the change of variable ¢(y) = z,

/B I V(@) ety
- /B Lm0 )Tt iy

The conclusion of Lemma is implied by the fact |detV¢|= 1. O

From now on, we use m, ®, K instead of m, ®, K, respectively, and denote B(zq, s) by

B(s). By the smoothness of the boundary, we can assume g € C1'(By(s)) C H?(B.(s)).

Remark 3.13. We now remark that equation (3.44]) can be considered as

/ a®?ymdz® = / (m|VmAPP+K)® for all ® € H} N L™(By(s)), (3.45)
B (s) B (s)
where (a®?),5 = AAT. We have the following:

(i) (a®?)4p is Lipschitz continuous on B (s)

51



Chapter 3

(i) A7YE[2< a®Beaés < MEJ? for all € € R2,

Lemma 3.14. Suppose m € CY(By(s))NH (B, (s)) is a solution of (3.45) withm = (g,0)
on OBy (s) NR. Then 8,,m € H(By(p/2)), for some p > 0.

Proof. The idea of the proof is similar to the interior case, we estimate the term fB+(S) |V (Dpm)|2€2,
where ¢ is a good cut-off function. We choose a test function in (3.45) as

® = D (€2 DY (m — g)) € Hy N L™(By.(s))

where £ € C§°(B(s)), 0 < ¢ < 1 will be chosen later (see (3.57)) and D is defined by

m(z + hey) — m(m)

Dm(x) = .

By a discrete integration by parts and (3.45]), we have that

/ DI 03m) 05 (2D (m — g)) = / a®%0,m. D" (95 (E2DM(m — g))
Bi(s) B (s)

/ 0 0om.95(D " (2D (m — g))

AT
=— / (m|VmA|+K).Dy (2D (m — g)). (3.46)
By (s)
Moreover
D (a* 0om)8p(§* DY (m — g)) (3.47)

= DYa*8,m2695€ DY (m — g) + D1 a’ 0,m&*dp(DY (m — g))
+a®*" DY (0am)2£05E DY (m — g) + a®*" D (9am)€295(DY (m — g)),

where a®?"(z) = a®P(z 4 hey).
Combining with (3.46]), this yields that

/ a0, (D) (Dlm)€?
By (s)

. / (m|VmA[P+K) Dy (€2D0 (m — g)) + / 0@, (D)0 (Dhg)e?

By (s) By (s)
- / D1a*®0,m2605€ DY (m — g) — / D10 0,mg205(Dh(m — g))
Bi(s) Bi(s)
- D @um)2€05€ D m ). (3.48)
1+ (s

We estimate the second term of RHS of (3.48) as follows

/ 0B, (Dlm)0s(Dlg)e?
By (s)

1
< || Lo (60 / IV(D{m)[€* + — / V(D?g)IZ»S?) (3.49)
By (s) B (s)

4eq

< C(GQ/B ( )\V(D{Lm)\2§2 + Co(eo)).
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As for the third term,

/ D?aaﬁﬁam%@géD?(m -9)
B(s)

sHD?aaﬁHLwU V&2 Vm|*+ / |D?<m—g>|2£2> (3.50)
By (s) B (s)
o C
<||Va BHLw(/ —|Vm[*+2 / |Dim|?€% + 2 / |D?g|2§2>
Bi(s) $ B(s) By (s)
< Q).

Here we have used the fact that |V{|< % in B1(s) (see (3.57)).
For the fourth term

/B o D}(a*)8am&?05(D} (m — g))‘

1
< || DYa% || e (/ ——|Vm|*¢? +/ co| V(DY (m — 9))|252>
B By (s)

1 (s) 4€0

o 1
<ivalom( [ vl [ vt
By (s) *€0 By (s)

h 22
[ IVt )
< co< / QEOV(D{Lm)PgMC(EO)). (3.51)
Bi(s)

We now estimate the last term

/ a8 DI (@,m) 26056 D (m — g)
B (s)

o 2
< | <eo [ ptempe 2 [ |V€2(D’fm\2+\D?g\2)>
By(s) €0 JB4(s)
<cofwf  IDHEIMEECl@) (o @) (3.52)
B+ S
We proceed to estimating the first term of RHS of (3.48)), firstly,
| KDMEDim - g)
By (s)

1 _
K> / IDIM(E DN (m — g))P
(s) By (s)

S R
460 B+ s

1
<or [ IKPve [ VD - o)
€0 JB4(s) Bi(s)
1
<o [ KPe2a [ QIVDim - g)Pasa [ @Dl - g
€0 JB4(s) By (s) By (s)
1
<o [Pt [ ENOimPr [ VD)
€0 /B (s) By (s) By (s)

+16eo /B V1D 416 / VEPIDh (g)]?.
+8

Bi(s
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As K € L*(B4(s), and |V¢|< € in By (s), (see (3:57)), then we obtain

[ KDMEDtm—g) < teo [
By (s)

By (s)

&IV (D} m) P+1660 [

B4 (s

)rvfsﬂDﬁm)r%C(eo).

(3.53)
By the discrete integration by parts, we estimate the remain term in RHS of (3.48)):

/ m\VmA|2th(€2D?(m—g))| =
B(s)

/ DY (m|VmA2)E2D) (m — g)
By (s)

< [ (IDtmlwmaP D Tm)] (19mAl+ (T ) ) €Dl on - )l
B (s)

where (Vm)"(z) := Vm(x + hey) and (VmA)"(x) := (VmA)(z + hey).
We estimate:

/ Dm|VmAIE| D (m — g)|< C / (|D?m|2|Vm|2+\D?g|2|Vm\2),
By (s) By (s)

/B DI (VmA)|[Vm A€ DY (m — g)|
+(s

€ 1
< 50 |D?(VmA)|2+7C (/ |Vm|2|D?m|2£2 + Vm|2|D?m|2£2>
By (s) €0 \JBy(s)

and

/B D EImA(FmA) €Dl — g)

< = DM (VmA —
2 JB IDi(VmA)| +CEO (/B

+(s)

(Vm)" | Dym|*¢? + |(Vm)h|2|D?m|2€2>
+(s)
for any €y > 0. Here we have used Remark and Young’s inequality to obtain the

above estimates.
The above estimates imply that

/ m|VmAPDM(E D (m — g))| < o / D (Vm) 262
B (s) By (s)

wo@) [ (omPiptnPe s [ [omEplnPe) + Cla). (35
By (s) By (s)
From (3.49)-(3.54)), choose ¢y small enough, we then obtain
[ votmpe
By (s)
<C (1 +/ |Vm|?| Dim|?¢2 +/ \(vm)hy2|D{Lm|2§2> . (3.55)
B (s) By (s)

Similar to the interior regularity, it remains to estimate the term

/ V| Dme? + / (V)" | Dl ?¢? (3.56)
B (s) By (s)
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to conclude the proof of the Lemma (3.14
For ¢; > 0, we choose p > 0 as in the Lemma below and choose £ € C§°(B(s))
with 0 < ¢ <1 in B(s) satisfying

£=1in B(g) and |V¢|< % in B(s). (3.57)

Applying the Lemma ton = |Dim|¢ € HE N L>(Bi(p)),

/ VmPDimPe <a / ViDtmyEr+e [ |DimpPe
B (p) By (p) By (p)

<2 [ [VOImPE 20 [ DimPIveP?
By (p) By (p)
+C | Dhm)?e2. (3.58)
B4 (p)

The properties of 0 yields that

16
/ Dimp|veP< 19 / DimP<c [ |Vm].
By (p) P~ Jsupp(§)NB (p) By (p)

and

/ Dime? < / Dimp*< C / Vi
By (p) supp(§)NB+(p) By (p)

for 0 < |h|< §(dist(supp(£), (—p, p) x {0})).
This implies that
[ wmPIDtmpe <2a [ wOmPe o [ 9mp,
By (p) B (p) B (p)

These arguments apply similarly to the term fB+(S)\(Vm)h]2]D{Lm]2§2. We then obtain
that
(V) PDimPE <20 [ [W@ImPE4C [ vmp
B(p) B4 (p) B4 (p)

Combining with(3.55) and choosing €; small enough, it yields

[ wwimps [ votmpe<crc [ vmp
Bi(p/2) By (p) Bi(p/2)

The proof of Lemma is completed. O

We note that, by (3.45]), one gets

> —05(a*Pdam) = (m|VmAP+K) in By (p). (3.59)
a,B

Using a®® € W(B, (p)),01m € H' (B, (p/2)) and the right hand side of belong to
LY(B4(p)), we then obtain that a?2050m € L*(B4(p/2)). We recall that by Remark
0< % < a??. Therefore Oom € L' (B (p/2)). We know that dsom € L' (B (p/2)), 010m €
L?*(B4(p/2)). Using the anisotropic Sobolev embedding (see [25, Theorem 1], also [42]
Theorem 2]), we get dom € L*(B, (p/2)). Thus the RHS of belongs to L2(B(p/2)).
The standard elliptic regularity deduces that m € H?(B4(p/2)). Finally, we get m €
H2(9Q).
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Step B Hélder reqularity. Up to now, we know that m € H?(£,S?), that implies
m € C%*(Q,S?), for some 0 < a < 1. We now want to improve the regularity at the
boundary to C12(Q), VO < a < 1.

Since m € H?(Q,S?), then Vm € L9,V 1 < q < oco. In particular, extending by
0 outside €, one has (Vm)lg € H*(R?) for 0 < s < 3. These above facts imply that
V(m|Vm|?) € Wh(Q), V1 < g < 2.
Indeed, one has

V(m|Vm|?) = Vm|Vm/[*4+2mD*mVm € LI1(Q), V1 < ¢ < 2.

We note that if ¢ € W1H9(Q) for all 1 < ¢ < 2, then by the Sobolev embedding, ¢ € H*(Q)
for all 0 < s < 1. Therefore, we obtain that m|Vm|*e H*(Q) for all 0 < s < 1.
We now use again the formula

FU(0)(€) = 2|1€|f<<v.m'>1g><s>

to obtain that for s < %:

LI rueonor = [ JeEIE @)@
R2 R2

1
— ZH(v’.m)ﬂg\|1%-IS(R2)< 0. (3.60)

This leads to VU € H*(R?), therefore H = VU(-,0)1q € H*(R?) for s < . Then
m/Hm € H*(Q) for all 0 < s < 3.
Back to , since m € H?(2), F is smooth, H,m'Hm € H* for all 0 < s < %, then we
deduce the right hand side of belongs to H*(Q2) for all 0 < s < % Using the elliptic
regularity with the fact that m = (g,0) € C1(99), we then obtain that m € H**2(Q) for
all 0 < s < 1.
The Morrey embedding leads that m € C1*(Q) for all 0 < a < 3.

We finish this Chapter by

Lemma 3.15. Support m € C%(B,.(s))NH(B4(s)) is a solution of (3.45)) with m = (g,0)
on OBy (s). Then for every e > 0, there exists p > 0 such that

/ |Vm|*n? < e/ \Vn\2+0/ 7, (3.61)
B (p) Bi(p) By (p)

for allm € HE N L>®(By(s)) and n =0 on B4 (s)\B1(s/2).

Proof of Lemma[3.15 Choose ®(x) = (m(x) — g(z))n* € H} N L>®(B,(s)) in (3.45), we

have
[ aoumds(m—git) = [ (lVmAP+E) (- g)rP) (3.62)
B (s) By (s)
Then
/ aaﬁaamagan = — / aaﬁaam2n8/377(m —g)+ / aaﬁaaan(?gg
By (s) By (s) By (s)

+/ (m|VmAP+K)(m — g)n*. (3.63)
B (s)

56



Chapter 3

We estimate the first term in the RHS

/ aaﬂ(‘)am2778577(m -9)
By (s)

4
< 11| ( / T+ 2 / |V77|2(m—9)2>-
By (s) € JBi(s)

As for the second term, one has

«Q a € 1
/ 0 0ampgn’| <[] o= (2/ [Vm|*n® + o !Vg\zﬁz) .
B+ (s) Bi(s) € JB.(s)
Moreover
2 2 2 92
[ momaRn - o] < suplom gl [ [wmary
B4 (s) B, (s) B (s)

‘/B ()K(m—g)nz‘ < sup [(m — g)|lIK|[z2lInlZ< Cs sup [(m — g)||K]| 2] [ V]|
+(s

B (s) By (s)

Here, we have used the Sobolev inequality

1/2
co [ vz ( / W‘)
B(s) B(s)

in the last line. The proof of Lemma follows because m = g on 0B, (s) and we can make

sup |m — g| arbitrary small by choosing s sufficiently small, and s small enough. O
By (s)
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Part 11

On the Poincaré Lemma on
domains
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Chapter 4

Introduction and statements of
the main results

Abstract
This chapter is based on a work (see [7]) in collaboration with my adviser Pierre Bousquet.
We give motivations as well as results on the Poincaré lemma. We also introduce basic
methodologies to tackle our problems.

4.1 An overview of the Poincaré lemma

The central theme of this work is the Poincaré lemma on a domain with a Dirichlet
boundary condition. The Poincaré lemma amounts to saying that a closed differential form
is exact. Our interest is in a sharp version of the Poincaré lemma regarding the regularity
of the domain. To formulate the motivation, we start from the divergence equation on a
bounded domain € in R", under the Dirichlet boundary condition. Given p € (1,+00)
and a function f € LP(2), we look for a vector field X € W1P(Q, R") which satisfies the
two following conditions:

(4.1)

divX =f inQ,
X=0 on 0f2.

In view of the Dirichlet boundary condition, a necessary condition for the existence of a

solution X is
/ fdiL‘—/diVde—/ (X,v)do = 0.
Q Q o0

Here, we assume that (2 is at least Lipschitz regular, in order to use the integration by
parts formula.

A standard way of tackling this equation is to solve the Poisson equation Au = f in
Q to get a solution v in W?2P(Q), which classically requires that Q be C™!, see e.g. [22]
Theorem 9.15]. The vector field X = Vu then satisfies div X = Au = f and belongs to
WLP(Q). If one further imposes a Neumann boundary condition for u, namely % =0on
0%}, then the normal component of X vanishes on 0€2. It is then possible to modify X to
cancel its tangential component, see e.g. [13, Theorem 9.2, Remark 9.3 (iii)]. In a similar
way, if f belongs to the Holder space C%(€2) for some o € (0, 1), then one gets a C1*(€2)
solution X by the elliptic regularity theory in these spaces, see [22, Theorem 6.31]. Here,
Q) is assumed to be C><.

The main drawback of this approach is that it requires a stronger regularity assump-
tion for the domain €2 than the one naturally expected. This leads to the two following
questions: for f € LP(Q2), is it possible to solve when €) is merely Lipschitz? And
when f € C%%(Q), is it enough to assume that Q is C1“ to get a solution X € C1(Q)?
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There are several alternative strategies to prove that the answer to the first question is
positive, see e.g. [13, Remark 9.3] and [44] for references. In the setting of Hélder spaces,
we are not aware of any such result in the literature. Naturally, one can formulate similar
questions in higher order Sobolev and Hoélder spaces. For instance, given a nonnegative
integer r and f € C™*(Q) such that [, f dz = 0, can one find a solution X € C" ()
to provided that Q is C™t1o?

The divergence equation can be seen as a particular case of the Poincaré lemma, when
the right hand side f is identified to an n form. More generally, when f is a differential
form of degree k € {1,...,n}, we can consider the differential form equation:

dX =f inQ,
X=0 on 012,

where d is the exterior derivative operator. Now, a solution X is a (k — 1) form on .
Assuming that f has C™%(Q) coefficients, one expects to find a solution X with C™+1:2((2)
coefficients, provided some necessary conditions are satisfied: f should be a closed form,
satisfy certain boundary conditions and be orthogonal to a certain set of harmonic forms
on  (in connection with a possible non trivial topology of the domain).

Once again, it is possible to solve the Poincaré lemma in the scale of Sobolev or
Holder spaces, by relying on the elliptic regularity theory. However, to get a solution in
C+12(Q), this strategy requires that € be at least a C"t2® domain, namely one degree
of differentiability higher than the solution itself. In this article, we establish that the
Poincaré lemma holds true in the scale of Holder and Sobolev spaces when the domain
has the same order of differentiability as the expected solutions. Hence, the solvability of
the divergence equation in VVO1 P(Q2) under the natural assumption that Q be Lipschitz is
not a peculiarity of the 0 order Sobolev case: it remains true in the setting of differential
forms, in Holder spaces as well as higher order Sobolev spaces.

4.2 The statements of the main results

4.2.1 The divergence problem

Our first result answers the divergence problem in the scale of Holder spaces. Assume
that the right hand side of equation (4.1]) belongs to the Banach space

C3(Q) = {f € Ch(Q) : / f(x)dx = O} :
Q
We look for a vector field X in the Banach space
CITL(QLR") == {X € C"TP¥(Q,R™) : X =0 on 9Q}

such that div X = f. Moreover, we expect that the solution X can be chosen continuously
and linearly with respect to f. This is not obvious since such a solution X, when it exists,
is not unique. In other words, we address the existence problem: does there exist a right
inverse to div : CLTH*(Q, R") — Cy ()7

This is indeed our first result, under the mere assumption that €2 has the same regularity
as X itself.

Theorem 4.1. Let r > 0 be an integer and 0 < o < 1. Let & be a bounded connected
open CTTL% set in R™. Then, given any f € C™%(Q) such that

/Q f(@)dz =0,
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there exists X € C"T19(Q, R™) verifying

{ divX =/f inQQ, (4.2)

X =0 on 0N).

Furthermore, the correspondence f — X can be chosen linear and there exists C' =
C(r,a, ) > 0 such that

X i@ < Cllfllona . (4.3)

As we have already said, the divergence equation is a particular case of the differential
form equation. Correspondingly, the above result is a particular case of our study of the
Poincaré lemma (cf. Chapter @ However, the proof is much more elementary in this case,
which requires only that fQ f = 0. We shall indeed take the shortest route to approach the
existence of solutions of the divergence problem which is inspired by the result of Bourgain
and Brezis, see [4, Theorem 2’]. For the convenience of the reader, we have gathered and
proved the results in Chapter [5} This chapter will be carried out quite comprehensively.
This helps to better understand the Poincaré Lemma in Chapter [6]

4.2.2 The Poincaré lemma in Holder spaces

In order to state the second result, we need to introduce some notations. The set of
k forms on Q with C™*(Q) coefficients will be denoted by C”*(Q, A¥). We introduce the
Banach space

o (Q, AF) = {f € Cm(Q,A*) :df =0in Q,v A f=0on 99Q,

[=0wme Hé%(@)}, (4.4)
Q

where H%(€2) is the set of the Dirichlet harmonic fields of order k, defined as
HE(Q) = {h € L2(Q,A%) : 6h =0 in Q,d(h.) = 0 in R"}.

Here, h, means the extension of h by zero outside Q. The identity d(h,) = 0 must be
understood in the sense of distributions:

V0 € C°(R™, AF), / (h,80) dz = 0.

The outer unit normal v to € is identified to a 1 form: we set v = vidxy + - - - + vpdx, if
vi,...,V, are the coordinates of v in the standard basis of R™, where ¢ is the adjoint of d
which is defined as in , Chapter @

For the Poincaré lemma, we look for a (k — 1) form X in the Banach space

Crte(@ A7) = {X € 7@ A7) X = 0 on 00} ()

such that dX = f, where f € C;’ia(ﬁ, AF) is given. We also prove the existence of the
right inverse to the exterior derivative operator d : C1™%(Q, AF~1) — C5*(Q, A¥). Tt is
stated in the following

Theorem 4.2. Let r > 0 be an integer and 0 < a < 1. Let Q be a bounded open C™+1
set in R™. Let f € C™(Q,A*),1 < k < n, be such that

df =0 in Q,
vAf=0 ondQ,
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and for every x € HA(Q),
[t da=o. (4.6)

Then there exists X € CT+52(Q, A¥=1) such that

dX =f inQ,
X =0 on 0N).

Furthermore, the correspondence f — X can be chosen linear and there exists C' =
C(r,a,Q) > 0 such that

HXHCT+I,Q(§7A]€71)S C”f”cr,a(ﬁ’/\k)

We emphasize that the assumptions on f are necessary to obtain a solution. Indeed,
if X € Cm+he(Q, AF1), then d(dX) = 0. If in addition, X = 0 on 9Q, then v A X =0
and thus v A dX = 0 on 09, see [13, Theorem 3.23]. When r = 0, these conditions must
be understood in the sense of distributions, namely:

Vo € CSO(R",A’“),/ (f.,66) dxz/(f,é&} dxz/(dX,éO) dx =0,
n Q Q

where the last line follows from the integration by parts formula, see Proposition in
Chapter @] The last assumption also follows from the integration by parts formula.
In fact, for every x € L?(Q) such that &y = 0 in the sense of distributions, one has for
every X € C°(Q, Ak~1),

/Q<dX,x> dx:/ (X Av,x) = 0.

[2}9]

This remains true by density for X € I/VO1 ’2(Q,Ak_1), and thus in particular for X €

CLhY(Q, AF1). Finally, we formulate the corresponding result of the Poincaré lemma in

the scale of Sobolev spaces.

4.2.3 The Poincaré lemma in Sobolev spaces

In the setting of Sobolev spaces, given two integers r > 0, k € {1,...,n}, and p €
(1,00), we introduce the sets

WIP(Q,AF) = {f e W™P(Q,AF),df =0 on Q,v A f =0 on 00},

WIFP(Q AR = {X € WEP(, A1), X = 0 on 992}

One expects to obtain the conclusion for the Sobolev setting, namely: the existence of a
right inverse d : W T17(Q, AF=1) — W]P(Q, AF), where

WP (Q,AF) = {f € WP(Q,AY) - /Q (f.x)=0,Yxe H%(Q)}.

We remark that a prior: the quantity fQ< f,x)does not necessarily make sense for every
feWrP(Q,AF) and x € HZ}(Q) This is the reason why in the next statement, we assume
that the Dirichlet harmonic fields on 2 are regular enough. In view of the above facts, we
state the following statement.
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Theorem 4.3. Letr € N, k € {1,...,n} and p € (1,00). Let ) be a bounded C™' domain
in R"™. Assume also that H&(Q) € L' (Q, AF). Let f € WP(Q, A¥) be such that

df =0 in €,
vAf=0 on0f,

and for every h € H%.(Q),
[ rydz=o (47)
Q

Then there exists X € WL (Q, A¥=1) such that

dX =f inQ,
X =0 on 0N).

Furthermore, the correspondence f — X can be chosen linear and there exists C' =

C(r,p,Q) > 0 such that

[ X |10 @061y < Cllfllwrro,a%)-

4.3 Methodology

Our strategy is greatly inspired from the proof of [4, Theorem 2] which considers the
divergence equation for a right hand side in LP(Q2) satisfying [, fdz =0, p € (1,00).
In this setting, Bourgain and Brezis rely on two main ingredients. First, they observe that
the range of the differential operator

div : Wy P(Q,R") — L (Q)

is dense. Here, we have denoted by L% () the set of those f € LP(2) such that [, f dx = 0.
Actually, the dual operator of div is simply the gradient

Vo (L5, ()" € (WP (Q,R™)".

One can identify (L%, (2))* to L%/ (€2). It is then easily shown that the kernel of V is trivial.
Equivalently, the range of div is dense in L%(Q). In the setting of Holder spaces, this
argument is less obvious. We just mention here that the dual space of C’%a cannot be
identified to a subspace of the distributions on 2. For instance, given a € 02, the Dirac
mass d, located at a is a non trivial element of (C’;]f‘)* but its restriction to C2°(Q) is
trivial. However, this duality approach can be generalized to any higher order Sobolev
spaces or Holder spaces, and this is probably one of the main achievements of this part of
the thesis to do so. The strategy adopted to [4] can be adapted to various equations and
spaces (see [6],[5]).

The second ingredient used in [4] is the construction of an approximate solution to the
divergence equation. More precisely, Bourgain and Brezis construct two linear operators

S:IE(Q) —»WoP(Q) K :IE(Q)— LB(Q)

such that S is continuous, K is compact, and for every f € L%(Q), f=div(Sf) +
K f. Hence, up to the compact perturbation K f, Sf is a right inverse to the divergence
equation. In order to perform this construction, one localizes the problem on small balls
intersecting 02, where {2 can be seen as the epigraph of a Lipschitz function. In such a
situation, it is possible to define an exact right inverse to the divergence operator. However,
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when gluing together all these local constructions, an error term is produced, which gives
birth to the perturbation operator K.

This argument can be extended with some care to the Holder framework. The con-
struction on each small ball does not require a rectification of the boundary by local charts
to reduce the problem to the case when () is a half space. Instead one uses an approx-
imation argument reminiscent of the proof of the open map theorem. This is a crucial
fact for our purposes. Indeed, if o is a C"*1 form of degree k € {1,...,n} and ¢ is
a O"t19 Jocal chart, then the pullback ¢*« is merely C™® since the pullback introduces
partial derivatives of ¢. On the contrary, the approximation argument allows not to lose
one order of differentiability.

Once the operators S and K are constructed, one relies on the following functional
analysis statement to obtain a true, global right inverse to the divergence operator:

Lemma 4.4. Let E, F be two Banach spaces and let T be a bounded operator from E to
F. Assume that
ker(T*) = {0}

and that there exists a bounded operator S from F to E and a compact operator K from
F into itself such that
ToS=1I1d+ K.

Then T admits a right inverse.

The above Lemma is applied to E = Wol’p(Q,R"),F = L5, T = div, where the
condition ker(7%) = {0} amounts to the first ingredient described above.
Dealing with the Poincaré lemma, in the case of Holder spaces, we will construct such a
right inverse operator .S as in the following Theorem.

Theorem 4.5. For every integer r > 0, there is a bounded operator
S: C;f‘(ﬁ, AF) — Crrbe(qQ, AR
such that for every f € C;za(ﬁ, AF)
f—d(Sf) € G5 (Q,AY)

and

Hf - d(Sf)]\C;+1,a(§7Ak,1)§ C"f”c@“(ﬁ,Ak)'
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On the divergence equation in
Holder spaces

Abstract
This chapter studies the solution X of the equation

divX =f 1inQQ,
X=0 on 012,

where f is given. It is devoted to the proof of Theorem This result is a particular
case of the study on the Poincaré lemma (see Chapter @ However, the proofs are much
simpler in this case, when we consider the data f as a function instead of a differential
form of degree n. In this case, the boundary condition of f will be ignored, whereas it will
be taken into account in the next chapter in order to prove Theorem

5.1 The main theorem
The main result of this chapter is the following

Theorem 5.1. Let r > 0 be an integer and 0 < o < 1. Let  be a bounded connected
open C™ 1% set in R™. Then, given any f € C™%(Q) such that

/Q f(a)dz = 0,

there exists X € C"T19(Q, R"™) verifying

{ divX =f in(, (5.1)

X =0 on 0f).

Furthermore, the correspondence f +— X can be chosen linear and there exists C =
C(r,a,Q) >0 such that
HXHCTH,DL@)S CHfHCna(ﬁ)'

If © is not connected, then the condition fQ f = 0 has to hold on each connected
component of 2.

The main point of Theorem is the assumption on the domain {2 which is assumed
to be only C™T12 In the case Q of class C"%, equation can be reduced to an
elliptic problem for which standard techniques apply. For completeness, let us state the
result in [13].
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Theorem 5.2. ([153, Theorem 9.2]) Let r > 0 be an integer and 0 < o < 1. Let Q C R"
be a bounded connected open C™2% set. The following conditions are then equivalent:

|r=o

(ii) there exists X € C™TL(Q,R") verifying

(i) the function f € C™*(Q) satisfies

divX =f inQ,
X=0 on Of2.

Furthermore, the correspondence f — X can be chosen linear and there exists C' =
C(r,a,Q) > 0 such that
X |lgr+ra< Cllflcre-

Similar results hold for f € LP,1 < p < oo, finding X € WP, However the result
is false if p = 1 or p = oo. In [4], Bourgain and Brezis have proved that the divergence
equation div X = f has not necessarily a solution in Wh! (respect W1>°) when f €
L' (respect f € L™) even when () is a smooth domain. It is also false for C%® when a = 0
or a = 1, see Dacorogna, Fusco and Tartar [15], and McMullen [37].

5.2 The idea of the proof

In the spirit of the proof of [4, Theorem 2|, with some modifications, our argument
relies heavily on the following Lemma

Lemma 5.3. ([{, Lemma 8]) Let E,F be two Banach spaces and let T be a bounded
operator from E to F. Assume that

ker(T*) = {0}

and that there exists a bounded operator S from F to E and a compact operator K from
F into itself such that
ToS=1d+ K.

Then T admits a right inverse.
More precisely, we establish Theorem by proving the existence of a right inverse to
T: CITH(QLR™) — O (Q),

where

are defined by
CITQRY) == {X € "7, R") : X =0 on 90}
and

Cy Q) :={feC™(Q): /Qfdx = 0}.

In order to prove Theorem we shall apply Lemma, to E = CLTVQ, R, F =
C;"f‘(ﬁ) and T = div. In the Holder setting of the divergence problem, such a right
inverse operator S will be constructed as in the following Theorem.
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Theorem 5.4. For every integer r > 0, there is a bounded operator S : C3*(Q) —
CLHY(Q,R™) such that for every f € Cp*(Q)

f—div(Sf) e CITh(Q)

and
||f — div Sf”cr+1,a(§)§ CHchm(ﬁ)-

Let us mention that to tackle the regularity of the divergence equation, the standard
elliptic theories are still important features. In the proof of Theorem below, we will
handle the lack of regularity of the domain by localizing the problem on small domains
intersecting 92 (denoted (V;);) which are C"+1« - diffeomorphic to cubes in R". We first
study the divergence equation in the cube where we require the boundary condition of
the solutions only on one side of the cube. This problem can be treated easily by using
the smooth domain version of the divergence problem (Theorem [5.2)). By using the local
charts, solutions in a cube give us local constructions of the bounded operators. We then
glue all these local constructions, an error term is produced, which gives birth to the
perturbation operator K.

We emphasize that the composition of the solutions of the divergence equation in
the cube and diffeomorphisms does not imply directly the existence of solutions of the
divergence equation in a neighborhood of the boundary, because the diffeomorphisms are
not linear in general. Moreover, the perturbation operator (Kf = f — Sf) is required
to belong to C"™t1® while f only belongs to C™®. Therefore, design and choice of the
coordinate maps need great care. In fact, we shall consider locally €2 as the epigraph of a
function v : Q7 € R"~! — R and consider the local chart defined by

C: (2 n) € Q1= Q1 x (0,1) = (2,2 +9(2") € Vi

Figure 5.1

To complete the proof of Theorem [5.1] we have to verify that ker(T*) = {0}. As we
said in the methodology section, in the Holder setting, the proof of ker(7T™*) = {0} is less
trivial than in the Sobolev setting.

This chapter is organized as follows: In the next section, we recall some definitions
and preliminaries on Holder spaces. The proof of Theorem will be given in Section [5.4
Then we get the conclusion of Theorem by proving that ker(7*) = {0}. Some proofs
for the preliminary results on Holder spaces will be given in the appendix.

5.3 Definitions and Preliminaries

In this section, we recall some elementary properties of Holder spaces. We refer to [13]
Chapter 16| for more refined statements.
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Let © be a non-empty bounded domain in R™ with n > 2 and a € (0,1]. Given
f:Q — R, we define the Holder semi-norm:

_ () = f()]
Hlevee = S0 T =y
T#Y

For every r € N, we denote by C™%(Q) the set of those continuous maps f :  — R which
have continuous derivatives on 2 up to the order r and such that for every multi-index
B=(P1,---,0n) € N" of length |3|(:= 1+ -+ + B,) =, one has

[Dﬁf]c(m( ) < 00

Here, we have denoted

We observe that the derivatives up to the order r of a map f € C™*(Q2) can be continuously
extended to . The set C™*(£2) is a Banach space when equipped with the norm

£ llona@= £ lor @+ masx[D? Fleoa
|B|=r
where
Il = mas suplD” (@)
|B\<7’

We can readily generalize the above definitions to the case of vector-valued functions: given
m € N, we define the space C"*(€2;R™) as the set of those f = (fi,..., fm) : @ = R™
such that each component f; belongs to C"%(£2). We also use the norm

1f lre@mmy= DI fillora
=1

Finally, when o = 0, we set C™?(Q, R™) = C"(2,R™). In this case, we write
[D%u] o0y = 0, for all |B|=r
and
HUHcr,O(ﬁ): HUHCT@)-
Given z,y € , we denote by dq(z,y) the distance between = and y relative to €2
do(z,y) = in / Iy (6)] dt.
vewl 22 (10,1],Q
v(0 77(1) y

Here, |7/(t)| is the Euclidean norm of the vector +/(t) in R™. We also define the corre-
sponding diameter of 2

z,yeﬁ
as well as J
dq = sup do(z,y) (5.3)
Z’,yEﬁ, |.I - y|
TH#Y

When € is a Lipschitz domain, one can easily prove that dq is finite, see Remark [5.11] By
Lipschitz set, we mean that € is locally the epigraph of a Lipschitz continuous function of
n — 1 variables in an appropriate coordinate system.

We now recall some properties of the Holder spaces.
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Proposition 5.5. [13, Theorem 16.11] Let Q be a bounded Lipschitz domain in R™. Then
there exists a linear extension operator

E - U Croz U Cra Rn

reN reN
a€l0,1] a€l0,1]

More precisely, for every r € N, there exists a constant C = C(r,2) > 0 such that for
every a € [0,1] and every f € C"*(Q), one has

ENlg= 1, supp[E(F) is compact,  [E(llere@n Cllfllorey
The space C™(Q)) is an algebra:

Proposition 5.6. Let r € N and o € (0,1]. Let Q C R™ be a bounded Lipschitz domain.
We denote by dq the diameter of Q. Then there exists a constant C = C(r,n) > 0 such
that for every f,g € C™*(Q)

Hngcr,a@S C(da + dﬂ)r|’chr,a(ﬁ)Hchm(ﬁ)

The above proposition is a variant of [I3l Theorem 16.28]. The latter is sharper
regarding the norms of f and ¢ in the right hand side. However, it allows a dependence of
the constant C' with respect to the set 2 which is not explicitly stated. This is the reason
why we have formulated the above result in this form, in order to be more precise on this
dependence. A proof of Proposition is given in the appendix.

Finally, under suitable assumptions on r and «, Holder continuous functions are stable
with respect to composition. In the sequel, we need a result that we have not been able
to find in the literature in this form.

Proposition 5.7. Let r € N\ {0} and a € (0,1). Let @ C R",O C R™ be bounded
Lipschitz domains, Then there exists a constant C = C(r,n) > 0 such that for every
feCr?(Q,R™) and g € C™*(O,R) with f(2) C O, one has

190 Fllgra@< COa +da) llgllora@ YDA gy )

Remark 5.8. When g € C%¥(O,R) and f € CY*(Q,R™), we will use the following
elementary inequality:

g © fllco.e < dallgllco.a @) (1D FIIo @ +1)-

The proofs of Proposition and Remark are given in the appendix.

5.4 The proof of Theorem

Throughout this section, the constants are all denoted by the same letter C' and only
depend on the parameters 7, a,n and p which are introduced below. We will not system-
atically mention this dependence. On the contrary, when the constants depend on other
quantities, we will emphasize this dependence.
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5.4.1 Solution of the divergence equation on a cube

As explained in the introduction, the first step in the proof of Theorem is to solve
the divergence equation when € is a cube and the boundary condition is only required on
one side of the cube.

In the following, for every 6 > 0, we denote by Qs the cube (0,6)" while Qj is the
lower side of Qs, namely Q5 = (0,6)"~! x {0}. We will often identify Q% with (0,8)"~L.

Lemma 5.9. Let r € N, o € (0,1), p > 0 and f € C™*(Q,). Then there exists X €
C™The(Q,; R™) such that divX = f on Q, and X =0 on Q/p. Furthermore, there exists
C =C(r,a,p,n) >0 such that

X g1 < Cllflleraggny

Proof of Lemma[5.9. Without loss of generality, by a dilation argument, one can assume
that p = 1 (the constant C in the statement is allowed to depend on p). By the extension
property on Holder spaces, see Proposition there exists f € C™*(R™) such that

1 llcre@m < Cllllona - (5.4)

Let w be a smooth bounded open set such that Q7 C w C R"™! x (0, +00). In particular,
Q) C 0w and w can be chosen such that its volume |w| depends only n . Let also 6 € C°(w)
be such that supp 6 N Q; = 0 and [ 6§ = 1. We then define

Observe that f f =0 and f = fon Q1 Theorem apphed to f on w yields a vector

field X € Cm+1e(@; R") such that divX = f on w and X =0 on dw. Moreover, there
exists C' = C(r, a,w) > 0 such that

| X||er+t.a@) < Cllifllcre@)-
‘We next observe that

1/lloma@ < 1 fllome@ +lwll Flloo@ 10llora@ < Cllfllore

In view of ([5.4)), this implies that
1Fllome@ < Cllflloren:

Then X = X \@ satisfies all the required properties.

5.4.2 Solution of the divergence equation on an epigraph
Given p > 0, let ¢ € CT+1’a(@). We introduce the C"+1@ diffeomorphism
d= (0., 0") :x = (2/,2,) € Q, > (2,2 + ()
and define the open set
U=2(Q) ={(2',2n) € @, x (0,+00) : Y(2) <z < (') + p}. (5.5)

Since we will apply Propositions and on U, we first need to estimate the
geometrical quantities dy and dy, see (5.2)) and ([5.3)).
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Lemma 5.10. For every x,y € U,
dy(z,y) < 3L+ [[Vllo)lz = yl.
In particular, 5y < 3(1 + ||V ||oo)-

Proof. For every z = (2',2,),y = (y,yn) € U, the Lipschitz map
vt 0010 (1= 0/ 4 /00 = 0+ 1) + (1= Ol ~ 9+t~ 00
takes its values into U and satisfies v(0) = z, 7(1) = y. Hence,
1
Aoy < [ O]
0

For a.e. t € [0,1],

V()= — 2 (Vo((1 = t)a" + ),y —2') + (yn — zn) + (=) = 0(Y)),

so that
YO < =2 PH3IVEITely’ — 2/ P+3l0 (") — () +3]en — yal
< (B4 6[V|[7ee) | — yf*.
Hence,
1
dy(z,y) < B+6[VY|2) 2]z — y[< 3(1+ [V loo) |z — v
and the assertion of the lemma follows. O

Remark 5.11. The proof of the above lemma shows that when €2 is the epigraph of a
Lipschitz function 1 : ' — R, where Q' is a convex open set in R”~!, then the intrinsic
distance dq(x,y) between two points x and y in € is not larger than 3(14 ||V |loo )|z — /.
This implies that when € is any Lipschitz domain in R™, then dq < oc.

Proof of Remark|5.11. Indeed, assume by contradiction that there are two sequences of
points (x;); and (y;); in € such that x; # y; for every ¢ and

d . .
lim do(i, 4:) = +00.
1—+400 ‘.%'Z - yi]

Then, by compactness of ), up to extraction (we do not relabel), (x;); and (y;); converge
to the same boundary point z € 0€2. Since €2 is Lipschitz, there exists an open set U in R"”
such that QN U is, in an appropriate system of coordinates, the epigraph of a Lipschitz
continuous function ¢ defined on a ball B’ ¢ R*~!. For every i sufficiently large, z; and
y; belong to U. Hence,

do(zs,yi) < donu(zs,yi) < 3(1 + [V e )|xi — yil.

This proves that lim;_, % < 3(14|Ve e ): acontradiction. We can thus conclude

that dq is finite. O

In the spirit of [4, Lemma 6] and [6, Lemma 7.4], we have the following lemma.
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Lemma 5.12. Let r € N, a € (0,1) and p > 0. There exists ¢ € (0,1) such that if
¢ e CrHhe(Q) satisfies [|Vip||cra< €, then for every f € C™(U), there exists X €
Cr+Le(U,R™) which satisfies

divX = finU and X =0 on {(2',4(2')) : 2’ € Q,}.
Moreover, there exists C = C(r,a, p,n) > 0 such that

X et @< Cllfllone @)

Proof. Without loss of generality, one can assume that p = 1. For x = (2, x,) € Q1, we
define the function f := f o ®. Then f € C"*(Q) and

I lleregn < Cllfllera @y, (5.6)
for some C' = C(r,a,n). Indeed, if » = 0, then Remark implies
[fllco.a < (L4 0@ fllco. ([[DO][¢0+1)

while if » > 1, then Proposition gives

1Fllemes O+ 69, +dou) | fllcne (\D<I>Hgt91,a+1). (5.7)

By definition of ®, one has

1 ifi=j,

0PI
<8‘) = % ifi <nandj=n,
Ti/ g 0 otherwise.
Therefore
I1D2I5521,0 < CA+ (VY oragr) (5.8)

Then, the proof of is a consequence of , and the fact that by Lemma
IVl 1< C(1L + S, + dg,) Vel cra< Ce < C.
Applying Lemma to f e O™ (Q1), there exists X e C™1(Q1,R™) such that
divX=/finQ, X=0onQ,
1K lorsr.0 g < CllFllone@ny- (5.9)

We now consider Xg : U — R" defined by Xo(x) = X (@ Y(z)) = X(«',x, — ¥(a')) and
rewrite X as X = (X!, ..., X") = (X', X™). Then we have

div Xo(z) = div(X 0 @7 (2)) = Y

i,7=1 J

R OX () OXt | 9(®L)
Y G et T @ Y G e 0T )
i=1 1<i#j<n
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Using again the definition of ®, we have

. 1 ifi=j
‘b_l J )
<8(81:-)> = _% ifi <nand j=n,
! & 0 otherwise.
This gives
S X' N
div Xy = (divX)o® ! -
o = (v X) 087 - 3 @ ) )
Hence,
n—1 o<
: ox*, o
div Xo(w) = f(z) = 3 5o—(@7 (@) 5 (&),
i=1 " !
Using Proposition [5.6] one gets
n—1 i
. 0xX* L 0Y
HleXO - fHCT,a(U)S Z 8,1‘n od 0,%@ B
i=1 e (U)
n—1 i
ox* 0
C1+ 8y +dy) Y || 5o 007! 61? -
=1 || 9%d cre(T) Tillere@)

Hence, according to the assumption |[V¢)||cr.a@n-1)< €, one gets

n—1

X'
1div Xo = fllgra@n < Ce Y od~! (5.10)
i=1 Tn Ccra(T)
From Proposition it follows that
85(:Z 1 2 85(:7' -1 +
< T T o .
| L. C<CO+dytdy)” | (1D~ 175, o +1)
cre(T) Cre(Q1)
Therefore _ _
ox? ox?
o1 < . 11
oxy, ° _ = ¢ oxy, _ (5.11)
cme(U) Cme(Qu)

Combining (), (5:9),(B-10) and (11), we get
||div Xo — chm(U)S ﬁéllf\lcm@,
for some C' which only depends on 7, a and n. Using again Proposition we obtain

HXOHCH—IC!(U)
< C(1+éy+dy) 7«+1)2||X||CT+1 (@7) (HDq) L||rtLlte +1) < CHXHCTH,Q(@). (5.12)

CT& )
Combining (5.6)),(5.9) and (5.12), we find
Xollgrssa@) < Cllfllgmem (5.13)

We now fix € € (0,1) in such a way that A := Ce < 1. Let us summarize the current
state of the proof as follows: we have proved that given f € C™%(U), there exists Xy €
C™1Le(U,R™) such that

Xo=0on{(z/,¢(2')) : 2" € Q1}
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and
||diVXO - f||cr,a(U)§ )‘HfH(Jna(U) ’ ||XO||CT+1,a(ﬁ)§ COHchm(ﬁ),

with A € (0,1) and Co = Cy(r,n, ). We now construct by induction a sequence (X;)ien C
C+La(U, R™) such that for every i € N,

i—1 i—1
divX; — (f —div > X;) <A|f-div) X , (5.14)
]70 ora (U) .7:0 o (U)
X;=0on {(z,¥(z)) : 2" € Q}}, (5.15)
i—1
1 Xillgrs1a@n < Col|[f —div Y X; : (5.16)
Jj=0 C”I‘,OA(U)
The vector field Xy has been constructed above. Assuming that Xg,..., X;_1 have been

defined for some i € N, then we define X; exactly as we have done for Xy except that
we replace f by f — div Z;;B X;. Then X; satisfies the three properties above. This
completes the proof of the existence of the sequence (X;);en.

We deduce from that

i—1 i—2
f—div) X <A f—div )X < AN Y ey (5.17)
j=0 o (ﬁ) Jj=0 Cr,a(U)

Together with (5.16]), this implies that
HXZ'HcrH,a(U)S CO)\FleHCT,a(U)-

It follows that the sum ), X; converges in the space C"1%(U) to some vector field X
such that X =0 on {(2/,¢(2')) : 2/ € Q}} and 1 Xl rsra@) < Cllfllgra(m)- Moreover, by

(5.17)), one has
divX = f.

This completes the proof of Lemma [5.12 O

Next, we remove the smallness condition on . Let us consider ¢ € C’”‘l"”(@) and
Us = {(2',2n) € Q5 x R: () < an < 9(2') + p}.

Lemma 5.13. With the above notation, there exists § > 0 which depends only on r,a,n, p
and HVW\CW(Q,) with the following property: Given any f € C™%(Us), there is some
P

X € C™the(Us) satisfying

divX =finUs, X=0on{ v)):2cqQs

and

HXHCH-l,a(Ui&)S C“f"cr,a(ﬁé),
where C > 0 depends on r,a,n, p and ||V1/J||CW(Q—/),
P
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Proof. We take again p = 1. Given § > 0 (which will be subject to subsequent restric-
tions) and f € C™*(Us), let us define for every & = (a/,z,) € Uy, ¥s(2’) = ¢(d2’) and
fs(z' zn) = f(62',2,). Then s € CT™T1(Q}) and

fl
so that by Proposition

1995l ey < OOVl iy (8 + 1) < O8IV iy
Similarly,

Hfzicha(ﬁl)S CHchna(ﬁéy

There exists dg = do(r, o, d, vaﬂcm((@))) such that for every 0 < 6 < Jp, one has
1
[|Vs]| cra(gr)< € where € is given by Lemma
1 —
Applying Lemma to s, f5, U1, we get a vector field X5 € C™t12(U) satisfying:

divXs=fsinlU; X5 =0on {(z/,¢s(2")) : 2’ € Q1}

and
||X5HCT+1,&(71)§ CchSHcm(Ui)-

We now set for every (2/,x4) € Uy,

/ /
X(a:’,xn) = <5X(’; (?,xn> , X5 <§,xn>> .

Then
divX = f in Uy, X =0on {(«,v(z")): 2 € Qf}
and
Xl greva@y < Cllfllore @y
where C = C(r, o, d, 0, p). The proof of Lemma is complete. O

Remark 5.14. The vector field X constructed in the proof of Lemma also satisfies
the following estimates: for every s € {0,...,r},

[ Xsllcsraws) < Cllf llosews)
where C only depends on r, a,n, p and ||V¢||Cw(Qf,).
P
This easily follows from Proposition and Proposition exactly as in the proof

of Lemmata and

5.4.3 Conclusion of Theorem [5.4l

We now present the

Proof of Theorem[5.4] . Since Q is C"™Th2, for every z € 99, there exists an open neigh-
borhood W C R" of z and a positive number p > 0 such that

e WNQ is isometric to {(y',yn) € Q), x R:¥(y') < yn <¥(Y') + p},

e WNOQ is isometric to {(y',yn) € Q, x R:Y(y) = yn}

7



Chapter 5

where ¢ € C™*(Q),).

There exists a parameter § > 0 depending on r, a, n, p, 1) such that Lemma/5.13| gives a
solution to the divergence equation on the set {(v/,yn) € Q5 xR : ¥(v) < yn < ¥(Y')+p}.
We deduce therefrom that there exists an open neighborhood V' of & contained in W and
a vector field X € C"T5(V N Q;R") such that

divX=finVNQ  X=0onVnNoN

and
”X”cv-ﬂ,a(W)g CHf”cw(W)‘
Here, the constant C' depends on r, a, n and Q.

By compactness of 0€2, one can find a covering of 02 by such open sets V;, i = 1,... k.
In particular, for every i € {1,...,k}, there exists X; € C"t1:%(V;; R") such that

divX; = fin QNV,, X;=0o0n0QnNV,.

and
Xl 77y Ol e (5.18)

Let also Vp C Q such that Vj is a C"™%% domain and Q C U?:o V;. We then solve
div X = fin Vp C Q, for example Xy = V(A~!f), where A~! is defined with the zero
Dirichlet boundary condition on OVj. Moreover, there exists a constant C' = C(r, «, V) > 0
such that

1Xollor 107 < Cllf lonaqiny (5.19)
To the covering (V;)o<i<k of €2, we associate a partition of unity (6;)o<i<x such that

k
D 0;=1inQ, and 6; € C*(V;) for i = 0,1,..., k.
=0

We set i
S5 =3 60X, (5.20)
i=0
Then
k
div Sf=f+)_ Vb;- X;. (5.21)
i=0
This implies
k k
||f - Sf||cr+1,a(§)§ ZHV@- : Xi”chrl,a(ﬁ)S CZHXZ'HCTH,«I@),
i=0 i=0

where C' depends on r,« and 2. We deduce from ([5.18) and (5.19) that

Hf - SfHC?“-H,a(ﬁ)S CHfHCr,a(ﬁ)

Finally, since supp (Vép) € Q and X; = 0 on supp 60; NI, one has f — Sf = 0 on 9.
The proof is complete. O

Remark 5.15. From the above proof, let us remark that, for any f € C™*(2), we can
rewrite f in the following form

k
f=—divSf+> V- X;,
=0

where Sf = Zi’c:o 0;X; € C.TH*(Q,R") and Zf:o Vo; - X; € CLTH Q).
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According to Remark the local solutions X; arising in the proof of Theorem [5.4
have the following additional property:

Remark 5.16. For every s € 0,...,r,

[ Xillgstra@avy < Clif llsam)
for some C' = C(r,a,m, Q).

5.5 Proof of ker(7*) = {0} and the conclusion of
Theorem [5.1].

We finally turn to the proof of Theorem We want to apply Lemma to the
linear continuous map 7' = div from the set

CI(@RY) = (X € C(@,RY) X = 0 on 00)
into
cr@={rece@: [ r=o}.

We define the linear map K by K(f) = —f + Sf where S is given by Theorem By
construction, Kf = Y% V6 - X;, with X; € C"F1(Q,R") and §; € CZ(R™) for all
i € {0,...,k}. Since the embedding C"T1*(Q,R") C C™*(Q,R") is compact, we deduce
that the operator K is compact from C3;* into C3;.

It remains to prove that ker 7% = {0}. This is the content of the following

Theorem 5.17. The dual operator T* : (C3*)* — (CETY has a trivial kernel:
ker(T*) = {0}.

Proof of Theorem[5.17. Let v € ker T*. By definition of the adjoint operator, this means

(0, TX) ey cpe =0, VX € CTFL(Q,R™). (5.22)
We claim that
(v, 90>(C;2a)*,0;2a =0, Ve CX(Q) with /ng =0. (5.23)

Indeed, let us define the distribution v by
_ o 1
Ui €CX(Q) = (v, — A P (L one

For every X € C°(Q), [ TX = [,divX = 0 and thus using (5.22), one has

H H

1
<U,TX — |§2|/QTX>(CT’Q)*,C,ZQ = <U7TX>(C;’_OL)*,CT’O‘ = O

It follows that the distribution ¥ vanishes on the set {div X : X € C2°(Q2)}, which implies
that 7 is a constant distribution. Hence, there exists ¢ € R such that for every ¢ € C2°(2),

1
I e (5.24)

and (5.23)) follows.
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We next prove that for every v € (C3,%)*, there exists C' > 0 such that for every
feqy’,
(v, fczeyecne < Cllfllcoa.

Indeed, given f € C’;’a (Q), we rely on Remark to get the decomposition

k
f=divX +) Vb X, (5.25)
=0

where X € C2TH*(Q,R") and the sum Zf:o V0; - X;, that we denote by g, also belongs
to CLTH% see (5.21).

Using equations (5.22)) and ([5.25)), we obtain

(v, ey cmey = (W g oreye eney < lvlleney-llgllere-

Since g = Zf:o V0; - X;, one has

k

l9llcze=llgllcre@m < CZHXz‘ch(v;-mQ)'
i=0

The open set V; is the domain of the local solution X; introduced in the proof of Theorem
We now rely on Remark with s =7 — 1 to estimate:

1 Xill orowmey < Cllf lor-1.0(m)-

Hence, we get
lglleze < Clifllorr.a@)

which implies

<'U,f>(0’20¢)*’0’1;{,a S CHU”(C;ZQ)* fHCr—l,a(ﬁ)-

We can repeat the above argument taking into account this new estimate that we apply
to g instead of f (observe that g = f — div X also belongs to C3,%):

(v, Py cne = W 9 ey o < Clvlleney gl gre@)-

Using Remark again with s = r — 2, one has

k
19llcrr.a@ = C DI Xillorro ) < Cllflor-2e@):
=0

We deduce therefrom that

<U7 f>(C;{’a)*,C;_i°‘ < CHfHCT‘—Q,a(ﬁ)-

Iterating this calculation, we finally obtain

(0, N cgey-cpe < Cllfllgow@ (5.26)

where C depends on 7, o, €2 and v.
Applying Lemma below to g, there exists a sequence (g )m, with g, € C>(Q),
J 9m = 0 such that
Gm — g in CO(Q).
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Now we use ((5.23)) and (5.26)) to obtain that

(0, F) ey one = (0 9) ey oo

= lim {(v,g— L\ AT
(0.9 = by oy

< ||v|](c7r{,a)*limsup||g — gml|co.a= 0.

m——+00

One deduces that (v, f)creys ore = 0for all f € C3* and thus v = 0. This completes
the proof of the lemma. O

We finish this section by Lemma

Lemma 5.18. Let r € N*, f € C™*(Q) with f = 0 on 9Q and [, f = 0. Then there
exists a sequence (fm)m C CZ(Q) such that [ f =0 for every m € N and

fm = fin CO(Q).
Proof of Lemma . We split the proof of Lemma [5.18| into two steps:

Step 1 : Let g € C™*(Q) with g = 0 on 9Q and [, g = 0. Then there exists a
sequence (gm)m C CO(€2) such that Jo 9m =0 for every m € N and

Gm — g in CO%(Q).

Step 2 : Let g € C2H(Q) with Jo g = 0. Then there exists a sequence (gm)m C C°(2)
such that fQ gm = 0 for every m € N and

Gm — g in CO¥(Q).

We easily get the conclusion from the two above steps.
Proof of Step 1. Let us define the function . : R — R by:

0 if —e<t<e,

2t —2e¢  if e <t < 2,

2t +2e¢  if —2e <t < —¢,
t otherwise,

0c(t) =

and gc = 6. 0g. Then g, € Cg’l(Q). We next prove that g. converges to g in C%*(Q2). First
of all, for every x € Q

19¢(x) = g(@)] < (I9¢(2)[+]g(2)]) Ljg<2c)
< 2|g(x)\]l{‘g‘§2€} < Ae. (527)

Then g, converges to g uniformly in C°(€2).
We now estimate the Holder-semi norm

sup (g — 9e) () — (9 — 9]) ()|
TH#Y ’SL‘ - y|a
< (9 —gc) (@) — (9 — 9) (W) (9 — g)(x) — (g — o) ()| (5.28)

sup + sup
la—y|>e |z —y|* 0<la—yl<e |z —y|*

We estimate the first term of ([5.28]) using (5.27)):

wp 0=000 =600 =000~ 00
lx—y|>e ’.1‘ - y| |z—y|>e€ ‘x - y’

< 87, (5.29)

< sup <
|lz—y|>e€ |$ - y|a
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As for the second term of ([5.28)), one has

sup (9 — ge)(x) — (!i— 9e) ()] < sup lg(w) — g(y)|+|ge£$) — 9¢(v)]
0<|z—y|<e ‘fL‘ - y’ 0<|z—y|<e |LE - y|
< sup 1Dgllz=|2 = yl+|Dgellree |z — y|

N 0<|z—y|<e |x_y|o¢

Using that [|07||~< 2 in R, which implies that ||Dg.| < 2||Dg||e, one gets

9 =9)@) = (99 . 3lDgllex]z —y]

sup

0<|z—y|<e ‘:L' - y’a N 0<|z—y|<e |a7 - y|a
< sup  3||Dgllpeelz -yl
0<|z—y|<e
< 3||Dg|| e (5.30)

Combining (5.29)) and (5.30), we get

(9= 9oy < 867 + 3| Dyllpee’ ™ < CeTT

lim/gsz/g:O
¢ Ja Q

Let 6 € C°(€) such that [ = 1. Then the family (g.)e>0 defined by

7 0
e =09 — | = [ 9¢ |0
: (IQ\ 0

satisfies all the required properties.

Proof of Step 2. In this step, we start with a function g € C’g’l(Q) satisfying [, g = 0.
We still denote by g the extension by 0 of g on the whole R”.

Let ¢ € C*(R™) such that supp(¢) € B(0,1),¢ > 0 and

By uniform convergence,

((x)dx = 1.
Rn
The desired g, is then given by
ge = Ce * ¢,
where
1

Ca) = 5¢).

e
Then for every e small enough, g. € C°(Q2) and by the Fubini theorem, fQ ge = 0.
Moreover, for any 8 € (0, 1),

19 — gelco< CEP||g|| cous.

Indeed, by definition of the convolution, one has

) = 9(e) = [ ZoDlaa =) =gty = [ clota = e2) = glold.

n €7 €

Then using that supp ¢ € B(0,1) and |¢|’< 1 on B(0, 1), one gets

19 = gellco < EBHQHCOﬂ/R ¢(2)|=dz < €|lgllcos- (5.31)
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By writing for every z,y € Q, x # y,

[(9e — 9)(x) — (9 — 9)(¥)]

|z — y|*
(g = 9)(2) = (9e — 9) (W) \* -
- (Moo= la (90~ 9)(&) — e — ) ) '™
< 2'7%g — g]%0allge — gll 0"
one gets
[9 — gelco.e < 2% ge — g]201llge — gll50®
and thus

llge — gllcoa= llge — gllcot[ge — glco.e < llge — gllco+2" (19 — gell&o.1 19 — gell o™ (5.32)
Moreover, we have that
g = gellcoa < [lgellcor+llgllcoa < 2[|gl| o (5.33)

Combining (5.31)-(5.33)), we obtain the conclusion. O
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Chapter 6

On the Poincaré Lemma on
domains

Abstract
This chapter is based on a work (see [7]) in collaboration with my adviser Pierre Bousquet.
We are interested in the Poincaré lemma on a bounded domain, under a Dirichlet boundary
condition

X=0 on 05,

where f is a differential form of degree k and d is the exterior derivative operator. We
prove the existence of a solution under a sharp regularity assumption on the domain €2 and
in Holder spaces. This result generalizes Theorem to the differential form equation.
Finally, our results cover the whole scale of Sobolev spaces.

{dX:f in Q,

6.1 Statements of the main results

For the convenience of the reader, let us recall some notations and state again the
main result which is introduced in Chapter [4l We formulate the differential form equation
in terms of functions spaces.

Let © be a domain (namely a connected open set) in R", with n > 2. Given k € {1,...,n},
r € Nand a € (0,1), we define the set C™*(Q, A¥) of those k differential forms with C"®
coefficients in Q. Given f € C™*(Q, A¥), we look for a (k—1) form X in the Banach space

CrHbe(@ A7) = {X € CTH(@ AR ) X = 0 on 902}

such that

X=0 on 0f2. (6.1)
Observe that any X € CLT1*(Q, A*1) satisfies d(dX) = 0 (when r = 0, this condition
must be understood in the sense of distributions). Moreover, the boundary condition
X = 0 on 09 implies that v A dX = 0 on 01, see [13, Theorem 3.23]. In this identity,
the outer unit normal v to Q2 is identified to a 1 form: we set v = vidxy + - -+ + vpdo,
if vq,..., v, are the coordinates of v in the standard basis of R”. We deduce therefrom
two necessary conditions on a k form f € C™(Q, A¥) for the existence of a solution X to
: f should be a closed form, and satisfy the boundary condition f A v = 0 on 9.
In case when (2 is topologically nontrivial, one must add a further requirement. Let us
introduce the set H%(Q) of the Dirichlet harmonic fields of order k, defined as

HE(Q) = {h € L2(Q,A*) : 6h = 0,dh. = 0}. (6.2)

{dX:f in Q,
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Here, h, means the extension of h by zero outside 2. The two conditions dh = 0,dh, =0
must be understood in the sense of distributions:

Wi € (0, AFY), / (h, i) dz = 0,
Q

n

Vo € C?(R”,A’““),/ (h,86) dz = 0.

The latter condition is a weak formulation of the fact that dh =0 on 2 and hAv =0 on
0f). The set HX(Q) is closely related to the topology of (2, see e.g. [40), Chapter 11].
Now, for every h € ”H%, one has 6k = 0 and thus, for every X € C°(Q, A*~1),

/Q<dX, h)dz = 0.

This remains true by density for X € W, (€, A¥=1), in particular for X € CLT%(Q, AF-1).
This yields a third necessary condition on the right hand side f of to ensure the ex-
istence of a solution X: f should be orthogonal to any element of H%(Q) We are thus
led to introduce the Banach space

Cgf(ﬁ, Ak) = {f e C™(Q,A") :df =0in Qv A f =0 on 99,

/Q<f, h) =0,Vh € H{;(Q)}.

We can now formulate (6.1)) as follows: is it true that any f € C3% (9, AF) is the differential

of some X € C’;H’a(ﬁ, AF=1) 7 Actually, we expect that the solution X can be chosen
continuously and linearly with respect to f. This is not obvious since such a solution
X, when it exists, is not unique. In other words, does there exist a right inverse to
d: O QA1) = OF%(Q,AF) 7

This is indeed our main result, under the assumption that 2 has the same regularity
as X itself.

Theorem 6.1. Let r € N, k € {1,...,n} and o € (0,1). Let Q be a bounded C™+1:
domain in R™. Let f € C"*(Q, A*) be such that

and for every h € HX(Q),
/<f, h) dz = 0. (6.4)
Q

Then there evists X € C"12(Q, A*=1) such that

{ dX =f inQQ, (6.5)

X=0 on 0N.

Furthermore, the correspondence f +— X can be chosen linear and there exists C' =

C(r,a,Q) > 0 such that

HXHCT+I,D¢(§7AIC71)S O”f”cr,a(ﬁ’/\k)

When r = 0, the condition df = 0 has to be understood in the sense of distributions
in D'(2) (the assumption f Av = 0 has a classical pointwise meaning since f is continuous
on the closure of ).
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Remark 6.2. We can allow more general boundary conditions. Namely, if one replaces
the homogeneous Dirichlet boundary condition X = 0 on 992 by X = X for some X €
crle(q, Akil), then the corresponding statement holds true under the necessary and
sufficient conditions: df =01in Q, v A f = v AdXg on 0, and for every h € H%(Q),

/Q<f,h)—/m<uAXo,h>:0.

Indeed, for Xy € C™+5e(Q, A¥=1), the differential form f; = f — dX, € C™(Q, A)
satisfies
dfi=0inQ , vAjfi=0onod

and

/(fl,h> dr =0, VYheHEQ).
Q

By Theorem there exists X; € C71(Q, A*~1) such that dX; = f; in Q. Thus, X =
Xo + X satisfies all the required properties.

The proof of Theorem shares some features with the argument used in the pre-
vious Chapter. For that we look for a right inverse to the exterior derivative operator
d: CITh@Q AR - C3,"(Q,A%). It is a consequence of Lemma and the following
Theorem

Theorem 6.3. For every integer r > 0, there is a bounded operator
S C’;f(ﬁ, AF) — Crrbe(q, AR
such that for every f € C&a(ﬁ, AF)
f—d(Sf) € G5 (Q,AY)

and

1 = d(SHllcrragac—1y < Cllfllere @ar)-

The proof of Theorem [6.3 will follow the same strategy as the proof of Theorem
that is, we localize the problem on small balls and perform the construction of the
bounded operator S by the gluing process. Compared with the divergence equation, the
assumptions on data entail several difficulties, namely:

- The boundary condition. In the case of n forms, the boundary condition of the data
f is ignored. But that boundary condition will be taken into account in the general
case. It is one of the difficulties we need to handle when we proceed the matching of
the boundary condition of the data in the cube and those in the neighborhood of the
boundary of €. It is well-known that if ¢ is a local chart, the pullback of the local
chart commutes with the exterior derivative operator; namely, for any k differential
form f, one has ¢*(df) = d(¢*f). Here ¢*(f) is the pullback of f by ¢. However,
the normal vector of the boundary is not necessarily conserved by the pullback of a
diffeomorphism.

- The closeness. The closeness of the data is the second issue we meet. It follows from
the fact that, the closeness of the n differential form f is automatically satisfied,
(Jo f = 0) while in general, df = 0 has the classical (pointwise) sense. This fact
involve new technical difficulties for equation in the cube, as well as for the
proof of ker (d)* = {0}, where

(d)" : (C3")" — (Crrhoy

is the adjoint operator of d and (C%TH*)*, (C37)* are the dual spaces of crthe Cy”
(respectively).
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Remark 6.4. 1. When € is merely Lipschitz, Mitrea, Mitrea and Taylor [40, Chapter
11] prove that H%(2) coincides with the space #%2(Q) of those maps h € C1(Q, A¥)
which satisfy dh = 0, h = 0, v A h = 0 and such that a certain trace of h (in an
appropriate sense) belongs to L2(9).

2. When Q is Lipschitz, there exists ¢o > 2 such that () is contained in L4(2, A¥)
for every ¢ € [1, qp), see [40, Theorem 11.2].

3. Finally, the set of harmonic fields with vanishing tangential components has finite
dimension, see [40, Theorem 11.1].

One can formulate a twin result of Theorem in the scale of Sobolev spaces. Given
p € (1,00) and a Lipschitz bounded domain £, it is possible to find a solution X €
Wol’p(Q,Ak“) to when f € LP(Q, A¥) satisfies the necessary condition df, = 0 in
D'(R™) (remember that f, is the extension of f by 0 outside Q) and an orthogonality
assumption with respect to ’H%(Q) A more regular solution exists provided that the set
Q) is regular enough, in the following precise way:

Theorem 6.5. Letr € N, k € {1,...,n} and p € (1,00). Let 2 be a bounded C™' domain
in R™. Assume also that HE() € LY (Q,AF). Let f € W™P(Q, A*) be such that

df =0 in Q,
vAf=0 on 09,

and for every h € HA(Q),
/ (oY da = 0,
Q
Then there exists X € W™HLP(Q, A¥=1) such that

dX =f inQQ,
X =0 on 0f2.

Furthermore, the correspondence f +— X can be chosen linear and there exists C =
C(r,p,Q) > 0 such that

X lwr+1p@ar-—1y< Cll fllwre@,ar)-

The assumption that H%(Q) C LP' (€, A¥) has been introduced to guarantee that the
quantity [ (f,h)dx is well-defined for every h € 7-[52. This requirement is automatically
satisfied when p > 2.

In the case when H%(Q) ¢ Lp/(Q, AF) (which may happen when r = 0 and p is close
to 1), one can rely on the following weaker form of Theorem (6.5

Remark 6.6. Let k € {1,...,n} and p € (1,00). Let Q be a bounded Lipschitz domain
in R™. Assume also that H%(Q) C LP(Q,A¥). Let f € LP(Q, A¥) be such that df, = 0
in D'(R™). Then there exists X € Wol’p(Q,Ak_l) and h € HE(Q) such that dX +h = f
in Q. Furthermore, the correspondence f +— (X, h) can be chosen linear and there exists
C = C(p,2) > 0 such that

X lwe@ar—1y R L2,a0) < Clf | o ,ak)-

The space HA(Q) is finite dimensional, see Remark Hence, all the norms are

equivalent on this set. In the last estimate, one can thus replace the L? norm of h by
12/l Lo (e, A%)-
Remark 6.7. In the limiting case p = 1, there exist closed forms f € L'(B", Ak), where
B" is the unit ball in R™, which cannot be written as f = dX, for any X € Wh1(B", AF~1),
see [4] for the case k = n and [14] for k € {1,...,n — 1}. The same assertion holds true
for p = +o0.
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6.1.1 Comparison with previous results

The proofs of our results rely on a version of the Poincaré lemma for smooth open
sets. Under such an assumption, one can exploit the elliptic regularity theory to construct
solutions to by using the Hodge-Morrey decomposition. This approach is detailed by
Csatd, Dacorogna and Kneuss in [13], where Theorem is stated for  of class C" T3
and Theorem holds true provided that  is C"*3, see [I3, Theorem 8.16]. According
to [41, Theorem 7.7.8 (ii)], it seems enough to assume that  is in C"™ "2 to write the
Hodge-Morrey decomposition in the scale of Holder spaces. In the specific setting of
Sobolev spaces, see also [47), Section 3.3] (where € is assumed to be smooth).

Remark 6.8. Let us observe that the set H%(Q) as defined in (6.2) slightly differs from
the one introduced in [13] and [4I], where harmonic fields are required to be in W12
instead of L. In [I, Theorem 4.10], Axelsson and McIntosh establish that these two sets
coincide when Q is C2.

In the case when € is Lipschitz, Bogovskii [4§] has introduced an alternative strategy
to construct a solution to the divergence equation when the right hand side f is
in LP(€2). This approach has been subsequently extended to produce a solution to the
Poincaré lemma in the whole scale of Besov spaces By” (which contains all the
Sobolev and Holder spaces), see in particular [39] and [12]. Typically, this construction
requires that the right hand side f is in the closure of k£ forms with smooth compactly
supported coefficients. In order to emphasize the consequences of this fact, let us state
a version of [39, Theorem 1.2] in the setting of standard Sobolev spaces W"P()), when
r > 1 and HA(Q) = {0}: there exists a solution X to if f € WrP(Q,A¥) is closed
and satisfies the following condition

Va = (o, ..., ap) with |a|<r—1, Tr D flaa= 0. (6.6)

We observe that when » = 1, this amounts to f = 0 on 0f), which is more restrictive
than the condition f A v = 0 of our Theorem When r > 2, the discrepancy with our
own assumptions increases, since involves vanishing conditions on the derivatives of
f. We should mention however that the solution obtained in [39, Theorem 1.2] is in the
closure of smooth compactly supported k + 1 forms, a property which considerably differs
from the mere Dirichlet condition X = 0 on 0f2. In other words, the Bogovskii approach
generally requires additional assumptions on the right hand side f which are not necessary
to solve the Poincaré lemma under the sole requirement that the solution X vanishes on
the boundary.

In the specific case » = 0, one can rely on two properties that fail to be true when
r > 1: first, C2°(Q, A¥) is dense in LP(Q, A¥) and moreover, the set W2 P (Q, AF1) of
Sobolev forms vanishing on the boundary coincides with the closure T/VO1 P(Q, AF+L) of
C(Q, A¥+1) in WHP(Q, A¥+1). In such a situation, the results in [39] cover our Theorem
(6.5, when #(Q) = {0}.

The Bogovskii construction as extended in [I2] can be applied to the framework of
Hoélder spaces, but still in the case when one considers the closure of compactly supported
forms, which, once again, differs from the standard Holder spaces that we consider. For
instance, even in the case r = 0, a k form with C"*1%(Q) coefficients which vanish on
the boundary, cannot be approximated in general by a sequence of smooth compactly
supported forms in C"t1® (such an approximation would imply that the derivatives vanish
as well).

Plan of Chapter [6: In the next section, we recall some definitions and preliminaries
differential forms. The proof of Theorem will begin in the third part, where we prove
Theorem Then we complete the proof of Theorem by proving that ker(7™) =
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{0}. In Section we restrict our attention to the Sobolev setting. Finally, for the
convenience of the reader, we have gathered in the appendix some technical tools.

6.2 Preliminaries

In this section, we recall some definitions and properties of differential forms.
Let Q C R™ be a bounded domain in R™. A differential k£ form f on  will be denoted
by
f= Y faadat AL Ada,
1<y <...<ip<n

where f;, ;. Q2 = R, for every 1 <143 < ... < i < n. It is sometimes convenient to use
the alternative notation
f = Z ffdxlv

IEJk,n

where J ., = {1 = (i1, ..., %) € NF 1 <iy <. <ip<n},and for I = (iy,...,i;) € Tkems
fr = firir, da! = dzt A ... A 2. We often write Jj instead of Jr.n when the dimension
n is obvious.

Given two k forms f, g, we define the function:

(f,9) = Z Jiv.ipGis.ip,-

1<ii<..<ip<n

The Hodge star-operator is the linear operator * mapping k forms to n — k forms for every
k€ {0,...,n} and defined by

fAg=(xf g)dzt A...Adz", (6.7)

for every n — k form g.
We will use that for a k form f, one has (see [I3, Theorem 2.10])

% (xf) = (—1)F=R) g, (6.8)

When each coefficient f; of a k form f belongs to a certain LP(Q2), we write f €
LP(Q, A¥) and we introduce the norm

| £l Lo (@,a%)= Z 1 frll e ()

IEJk,n

Similar definitions are generalized to any functions spaces.
Given a k form f with C! or Sobolev coefficients, its exterior derivative df, is the
(k + 1) form defined by

! of ~ .\ A
df = Z (Z(—1)7_1w>dle A ... ANdx'+t for k < n,

ox;
1<ii<..<igy1<n Sy=1 “

and df = 0 for kK = n. Here, the notation zlz/.\yzk MeANS 41 ...0y— 1y 1...0k-
The codifferential d f is the (k — 1) form given by

noo OFf. . , , ,
of = Z ( ezllklfn&:“_”> dx"t A ... Ndx" 1 for k > 0, (6.9)
1<i1<...<ip_1<n > j=1 J
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where (i1...ix—1, j) denotes the index rearranged increasingly and

€

i 0 if j € {i1, ..y in—1},
1.0 —1 (_1)7_1 lf i’y—l <] < 'iry.

If £ = 1, this formula reads f = Y ;| giz When k = 0, we set 6f = 0. These two

operators are related one to the other by the identity [13, Definition 3.2 (ii)]:
8f = (—1)"*F Vs (d(xf)). (6.10)

We denote by v = (v1, ..., 1,) the outward unit normal to €2 that we identify with the
1 form v =Y, v;dz’. When k < n, we also consider on 952 the tangential part v A f of
f which is the (k+ 1) form

k+1
VA f= Z (Z(—l)v_luiwfi ...z‘;...z‘k+1>dxi1 A o Adar
1<i1 <. <ipy1<n Sy=1
If k = n, then v A f = 0. Finally, when k > 0, the normal part vJf on 0 is the following
(k—1) form:
2R DR O 3T ST AR AP
1<i1<.<ip1<n S j=1

When k = 0, we set v_f = 0. The normal and tangential components are related by the
following identity (see e.g. [13, Proposition 3.20 (i)]):

f=vAWwaf)+vilvAf). (6.11)

We will also use the fact that v A f = 0 on 09 if and only if i*(f) = 0, where i : 9Q — R"
is the inclusion map, see [I3, Remark 3.22].

We conclude this section with the integration by parts formula for which we require
that  is at least Lipschitz continuous (see e.g. [13, Theorem 3.28)):

Proposition 6.9. Let k € {1,...,n}, f € CY(Q,A*1) and g € C*(Q, A¥). Then

Lara+ [ .60~ [ wnro=[ it

By density, the formula remains true when f and g belong to Sobolev spaces.

Remark 6.10. By definition of the exterior derivative, for any f € C™T12(Q, A*), one
has

de| ’CT,Q(Q,ARH) = Z H(df)lllk+1 ||C"'+ max [Dﬁ(df)il--~ik+1]007a>

Nn | §|=
1§i1<...<ik+1§n Be 7‘/8| T

< 5 (Ifallont, max D i)

N7n —r4+1
1<it<...<ip<n BEN™,|B|=r+

S C‘ |f| ‘CT+1,&(§7AI€) .
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6.3 The proof of Theorem 6.1

6.3.1 Solution of the Poincaré lemma on a cube

We follow the same strategy as in the divergence problem. Firstly, we solve the
Poincaré lemma when 2 is a cube and the boundary condition is required on only one side
of the cube.

In the following, for every p > 0, we denote by @, the cube (0,p)" while @), is the
lower side of @, namely @}, = (0, p)" 1 x {0}. We will often identify Q/, with (0, p)" L

Lemma 6.11. Letr € N,k € {1,...,n}, a € (0,1),p > 0, and f € C"*(Q,, A*) such that

df =0 in Q,,
{ dep, Nf=0 on Qp;. (6.12)

Then there exists X € CTH’O‘(@p,Ak_l) such that

dxX =f in@,
X=0 on Q).

Furthermore, there exists C = C(r,a, p,n) > 0 such that

X v @onr-1y< CllFllomagrany (6.13)

Remark 6.12. (i) In the case k = n, conditions (6.12)) are automatically satisfied for
every f € C™*(Q,, A"™).

(ii) If r > 1, the condition df = 0 has a classical (pointwise) sense. If r = 0, it is
understood in the sense of distributions: for every ¢ € C2°(Q,, AF),

/ (f,0p)dx =0.
Qp
Proof of Lemma[6.11, We rely on the existence of a solution to dX = f on the cube Q,
(without boundary condition) which is established in the Appendix [C| We next modify X
on Q;, in order to satisfy the boundary condition X = 0 there. This strategy is essentially
the same as the one presented in [I3} sections 8.3 and 8.4] where @, is replaced by the
upper half space (or a smooth domain). We explain here how to extend this construction
to domains with corners like the cube @),,.

Without loss of generality, by a dilation argument, we can assume that p = 1. Applying
Proposition to the closed form f € C™*(Qq, A¥), there exists X € C"+be(Qy, A1)
such that dX = f in Q; and

1 XIlcr+1.a< Cllfllome (6.14)

for some C' = C(r,a,n) > 0.
By assumption, on @,
de, NdX =dx, N f = 0.

Equivalently, i*(dX) = 0, where i is the inclusion map 2’ € R*~! — (2/,0) € R".
Hence, the differential form X’ = i*(X) satisfies dX’ = 0 on Q. Observe that X’ €
CT+1’Q(QII,Ak_1) and

|’X/||Cr+1,a(Q7/17Ak71)§ HYHCT+1,Q(@’AI€—I)- (6.15)
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When k£ = 1, X is a function and X’ is simply the restriction of X to Qi’l The fact
that dX’ = 0 implies that X’ is a constant c¢. Observe that

el< Ko< 1K llgrene-
Setting X = X — ¢, one has dX = f on Q1, X =0 on Q} and
[Xlcrra< Cll fllere.

When 2 < k < n, we apply again Proposition to X' on @f: there exists Y/ €
Cm29(Q4, A¥=2) such that dY’' = X’ on Q) and

HY’HCT+2,0¢S CHX,HCT+1,0¢. (616)

We now define the (k — 2) form Y = 7*(Y"’) where 7 : (z/,2,) € R" ! xR — 2/ € R* 1,
Then Y € C™2%%(Q1, A*~2), and since 7 0 i = idgn-1, one has i*Y = Y’. Moreover,

(Y| grez.e @y ar—2) < HY,HCTH,Q(Q*/DM_Q). (6.17)
The k form X = X — dY belongs to C"1(Qy, AF~1) and satisfies
dX =dX —ddY =dX = f on Q.
Moreover, on Q],
(X)) =i*(X) —i*(dY) = X' —d(i*Y) = X' —dY’ = 0.

In other words, dx,, AX = 0 on Q). BlLemma (that we apply with ¢ = X and ¢ =0
for every ), there exists Y € C"™"2%(Qy, A¥=2) such that dY agrees with X on Q) and
||Y‘ |CT+2’O‘(@,AIC72)§ C| |X| ‘CT+1‘Q(Q,1,AI€71) . (6.18)
Set N N
X=X —-dY in Q;.
Then B B
dX =dX —ddY = finQ; and X =0on Q.

Inequality (6.13]) is a direct consequence of the construction of X and inequalities ((6.14])-
619). O

We next present a Sobolev version of the above lemma. The main difference in the
proof is that the trace of a map u € WhP(Q,) on @/, is not in the Sobolev space WLP(Q;)
any more. This is in strong contrast with the Holder case where the restriction of a Hélder
continuous function is still Hélder continuous with the same exponents.

Lemma 6.13. Letr € Nk € {1,...,n} , p € (1,00),p > 0, and f € W"P(Q,, A*) such

that
df =0 in Q,,
{ den Nf =0 onQ,. (6.19)

Then there exists X € WHP(Q,, A¥1) such that

dX =f inQ,,
X=0 on Q.

Furthermore, there exists C = C(r,p, p,n) > 0 such that

X w10, 001 < Cllf llwro(q,.a%)-
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Proof. We can assume that p = 1. Let us first consider the case r = 0. When f has L?
coefficients, one cannot define the trace of f as a function on @', and one cannot apply the
standard Poincaré lemma to ¢*(f). In fact, the conditions have to be understood
in the distributional sense:

d(f.) =0o0n Q) x (—1,1)
where f, is the extension of f by 0 on @} x (—1,1). By Proposition there exists
X € WhP(Q) x (—=1,1),Ak1) such that dX = f, on Q) x (—1,1), with the corresponding
estimate. In particular, dX =0 on Q] x (—1,0).
When k£ = 1, X is a function, which is equal to a constant ¢ on Q7 % (=1,0). Then
X = X — c satisfies all the desired properties.
When 2 < k < n, we rely on Proposition to get some Y € W?2P(Q] x (—1,0),AF2)
such that dY = X on Q) x (—1,0) with

1Y w2 (@) x(~1,00,05-2)< ClIX lwto (g x(~1,1),051)-
We extend Y to a map in W2P(Q} x (—1,1), A*~2) still denoted by Y. We finally set
X = (Y_ d?)|Q1'
Then dX = dX = f on Q. Since X = dY on Q) x (—1,0), their traces coincide on Q}

1
(as Wi eP maps) and thus the trace of X on @} vanishes. Moreover,

IX e ar—1y < 1Xwir@uar- Y Twiegan-1< ClUX lwreqr x(-1,1),a6-1)
< O follr@ x (—1,),00= Ol Fll Lo (o am)-

The proof is complete in the case r = 0.

When r > 1, the proof is very similar to the proof of the Holder case except that we
rely on Proposition [C.7] instead of Proposition and on Lemma [C.4] instead of Lemma
The main difference is that, with the notation used in the proof of Lemma [6.11] one
has

Y’ e Wr+27%,p(Qll7Ak72)7

and we cannot set Y = 7*(Y”), because such a map would not belong to W"+22(Q}, A¥=2).
Instead, we extend each coefficient Y/, I € Jy_2,,—1, of Y as a WT+2P function Y7 on Q4
such that

1Y lwr+20(0,) < CHYIIHWH%%

Q1)
for some C' = C(r,p,n) > 0. We next define
Y=Y Vi
Ie€Jk—2,n—1
Then Y € W™2P(Qq, A¥=2), *Y =Y’ and
/
I les2r@uar < CIY sy g e sy
The rest of the proof is essentially the same and we omit it. O

6.3.2 Solution of the Poincaré lemma on an epigraph

Given p > 0, let ¢ € C™The (@) In this section, we establish the Poincaré lemma on
the epigraph of ¢ with a boundary condition along the graph of . More precisely, let us
define the open set

U={(@"2n) € Q, x(0,+00) : ¥(2') <z <1p(2') + p}.
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A normal vector to the graph of {(z/,¢(2)) : 2/ € Q}} at a point (2,4 (2’)) is given by

u(w',wm'))—<u1,...,un><x',¢<w'>>—(&”(x') i <m'>,—1). (6.20)

0z T 0w
As usual, we identify the vector v with the 1 differential form > ; vida?, which belongs
to C™%( ;),Al).
We emphasize that the geometrical quantities diy and dyy (is defined as in ((5.2)) and (5.3))
are finite. More precisely, one has, for every z,y € U,

dy(z,y) <31+ [Vlloo)lz =yl 0v <3(1+ [[VYloo)- (6.21)

The proof of ([6.21) is detailed in the Chapter [5| see Lemma and Remark

We now proceed with the construction of a solution to the Poincaré lemma on U. In
the spirit of [4l Lemma 6], see also [0, Lemma 7.4], we first consider the case when the
gradient of ¢ is small.

Lemma 6.14. Letr € N,k € {1,...,n}, a € (0,1) and p > 0. There exists € € (0,1) such
that if ¢ € C"T12(QL) such that ||Vi||cra< €, then for every f € C™*(U, AF) such that

{ df =0 mn U,
vAf=0 on{(@ () 2" €Q,},
there exists X € C™L(U, A*=1) which satisfies
dX = finU and X =0 on {(«',¢(2')) : 2’ € Q,}.
Moreover, there ezists C = C(r,a, p,n) > 0 such that
X rira@ar-—1)< Cllfll e @ amy:-

Proof. Without loss of generality, one can assume that p = 1. We introduce the C™+1@

diffeomorphism
O:2=(2',2,) €Q1+— (2,2, +9(2)) €U.

Observe that U = ®(Q1). N
We next define the k form f := ®*(f). Then f € C"*(Qy, A*) and

171l gregr aty< Cllllora@an- (6.22)

Indeed, writing f = Zl<i1<...<ik<n filmikdazil A ... A dx'* one has:

;o= Z firip 0 @ dD™ A . A dD
1< <..<ip<n
= Y fai o ®dDT AL AdDH
1< << <n
+ Z firoip_an © ® dO A LA DL A D

1<i1 <. <igp_1<n

The first term agrees with Zl<il<...<ik<n firoip, 0 ® da’ A ... Adx® while the second term
is equal to

n—1
Z firoip_no® dz™ A .. Adx1 A (da™ + Z a—wdxl).
I=1

) | Iy
1< <. <ip—1<n
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It thus follows that

F= Y fu.io®da A Ada' 4 A, (6.23)

1<i1<..<ix<n

where for every (2/,2,,) € Q1,

A2 zn) = > Zf“ i yn 0 @(2 xn)gw( Nzt A LA dzr A dal

1<in<..<igp_1<n l=1

Note also that when r > 1,

D& < CA+VY | grragry) " < C)

where C’ = C'(r,a,n) > 0. Here, we have used the assumption ||V||cre< e < 1. When
r = 0, we have instead
|1D®|[Go.0 < C,

for some C' = C'(n, «). Hence, (6.22)) is now a consequence of ([6.23)), Proposition and
Remark [5.8| for » = 0 and Proposition [5.7] for r > 1.
Moreover,

df =0in Q;. (6.24)

Indeed, when r > 1, N
df = d(®(f)) = ¢*(df) = 0.
When r = 0, we observe that for every § € C°(Qy, AF*1),

/ <f,56>dx:(—1)"k/ <f,*d(*e)>dx=(—1)”k/ d(x0) A f.

The first equality is a consequence of ((6.10) while the second one follows from (6.7]). By
the change of variables formula, this gives

/ (F, 86) dx = (— 1) /U (@) (d(+0) A F) = (—1)* /U (@1 (d(+0)) A (317 ().

Since (®71)*(f) = f and (&71)*(d(+0)) = d((®7)*(+0)), again implies that

/1<f 56} d n’f/U £ 4d (DY (+0)) da.

Next, by (6.8), *d((®1)*(x0)) = (—1)**FD=k=1) w d(x % (D~1)*(x0)) so that by (6.10),
«d((D1)*(x0)) = (—1)*+D(—k=1)(_1)nk§(5(d~1)*(xh)). Finally, one obtains

/Ql(f,am do = (—1)F+D(n=k= 1)/ 1,6 < (*0)>>d (6.25)

Since *(®~1)*(xf) is compactly supported in U and df = 0 in the sense of distributions
on U, we can conclude that df = 0 in the sense of distributions.
We next establish _
dz, A f =0 on Q). (6.26)

As in the calculation leading to (6.23)), one has
n n—1
= v; o ®dx' + Vp 0 d——da!.
e Tl
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Using (6.20]), one gets

Z 8:151 — dz" Z (%l = —dz™.

Hence,

0= (v A f) = B*(v) AD*(f) = —da™ A T,

which proves - -
In view of ( ! nd -7 we can apply Lemma [6.11 to f € C™%(Q1, A¥): there
exists X € C"1(Qp, A*~1) such that

dX:fin@, )Z':Ooanl

and B N
X |lerera@n < Cllfllora@r): (6.27)

We write X = Zfejk—l Xda! and deﬁn

Xo= Y (Xo)da', where (Xo);(z) = X;(® (z)), Vrel. (6.28)
1€Jr-1

Since for every z = (2/,2,) € U, ®~1(x) = (2,2, — ¢(2')) , one has for every I € Jp_1,

3(X0)I(:U) {%ﬁf (2, @ —Y(2)) — f%?,f’ (@, 20— Y(2) Fo () ifl<n,

Oy gf’ (', xy, —P(2))) if I =n.
Hence,
dXo(z) = I Xo)s (z)dz' A dat
15 = o
k—1
" 9X
= < %(w’,xn (")) dat A da ) +B=dX(® (z))+ B,

eqn, Ni=1 M

where

I€Jk—1 1=1

Using that dX = fand (6.23)), this implies that
dXo=f+B+ B, (6.29)
where for every z = (2/,2,) € U,

n—1 8¢ ' )
B'(z) = Z Z fil'“ik*m(x)aiscl@/)dw“ A oo Ada =1 A dat.

1<i1<... <1 <n 1=1
In view of Proposition estimates (6.21)) and the assumption ||V)||cra< €,

1Bl gn )< Cellfllra s

10ne could be tempted to define Xy = (®~1)*(X). However, such a form would not have
Ot coefficients in general, see the paragraph before Lemma
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for some C' = C(r,a,n) > 0. One gets a similar estimate for B by relying also on (6.27)
and Proposition (or Remark |5.8 when = 0). We then deduce from (6.29) that

14X = fllgra@) < Coellfllcra@): (6:30)

for some Cy = Cy(r,a,n) > 0. Using again Proposition and the definition of X, see
(6.28]), we obtain

||X0”CT+1»&(U)§ C||X||Cr+1,a(@)- (6.31)
Combining (6.22) and (6.27)), one gets
1Xollgrss.a@ < Cllf lona (6.32)

for some C' = C(r,a,n) > 0. Moreover, the definition of Xy also implies that Xy = 0 on
[ @) o e Q).

We now fix € € (0,1) in such a way that A := Cpe < 1 where Cp is the constant in
(6.30).

Let us summarize the current state of the proof as follows: we have proved that given
a closed form f € O™*(U, A¥) satisfying v A f =0 on {(2/,%(2')) : 2’ € Q}}, there exists
Xo € CmtL(U, A*=1) such that

Xo=0on {(z',¥(a')) : 2’ € Q1}

and
1dX0 = Fllora@S Mfllore@ + IXollorta@ < Cllflleme@:

with A € (0,1) and C' = C(r,a,n) > 0. We now construct by induction a sequence
(Xi)ien C C™T12(U,R"™) such that for every i > 0,

i—1 i—1
dX;— (f—d>_X;) <A|f-dd X : (6.33)
=0 Hlere@) =0 lere@)
Xi=0on {(z/,4(2") : 2" € Q1}, (6.34)
i—1
1 Xillgrrra@< C || f = dZXj : (6.35)
=0 lere@)

The (k — 1) form X has been constructed above. Assuming that Xy, ..., X;_1 have been
defined for some i > 1, then we define X; exactly as we have done for X except that we
replace f by f — dzz;% Xj. This is possible since

i—1 i—1
d(f —dd X;)=0m T andvA(f—dd X;)=0on{(«,4)):2' € Q}}.
j=0 Jj=0

The latter condition is a consequence of the fact that each X; = 0 on the graph of 1, so
that v A dX; = 0 there.
Then X; satisfies the three properties aboves. This completes the proof of the existence
of the sequence (X;);en.

We deduce from that

i i—1
f-dd_ X, <A|f-dd_X; <o S A Fllgra@y (6.36)
§=0 j=0

cre(T) cre(U)
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Together with (6.35]), this implies that
HXiHcrH,a(ﬁ)S C)\i”chna(Uy

It follows that the sum Y, . X; converges in the Banach space C"™1*(U) to some k — 1
form X such that X = 0 on {(z/,9(2)) : 2’ € @1} and [ X|crira@ < Cllfllorem)-

Moreover, by (6.36)), one has
dx = f.

This completes the proof of Lemma, [6.14 O

We proceed to remove the smallness condition on Vi, as in [0, Lemma 7.5]. Given
0 < 6 < p, we consider 1) € C”“’O‘(Q’p) and use the notation:

Us = {(2',2,) € Q5 x R: 4p(2) < xp < 9(2') + p}

Lemma 6.15. Let r € Nk € {1,...,n}, o € (0,1),p > 0. Then there exists 6 =
3(r, a, p,m, HV@UHCT,Q(Q—,/J)) > 0 with the following property: for every f € C™*(Us, A¥) such
that

df =0inUs, andvAf=0on{(z,v()):2" €qQs},

there exists X € CTT12(Us) such that
dX = f in Uy, X =0 on {(2/,9(2)) : 2" € Qf}
and
X ler 103y < Cllfora(my)
where C' = C(r,a, p,n, ||V1/JHCW(Q#)) > 0.
P

Proof. Without loss of generality, we can assume that p = 1. Let § € (0,1) such that
(5”V¢HCW(@)< €, where € is given by Lemma . We then define 15(x’) = ¢(02),2' €
1

Qi’l. Then
”v/lp(sHCr,a(Qi/l)S 5||vw|’0r,a(ag)< €.

We also set Us(x) = (62, 2,), v = (2',2,) € Q] x R and
Wi ={(2',zn) € Q) x R: 9s(2) < 2, < s(z’) + 1}.

Observe that Ws(W;) = Us. Let f € C™*(Us, A¥). We introduce fs = W5(f). Then by
Remark when r = 0 and Proposition when r > 1, f5 € C™*(Wy, AF) and

sl cremwr army < Cllllcrams ax (6.37)

for some C' = C(r,a,n) > 0. For the normal to {(2/,¢(2")) : 2’ € Q%}, we choose the 1
form v = Y1, v;dz’ defined by

vi(x' () = g;b (2') if i <, vp(2' (') = —1.
Then for every 2’ € Qf,
W) r(a) = S 22 ot — o = 5 08 (ot —
i1 81}@ i—1 8:132
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Hence, vs := Uj(v) defines a normal to the graph of 1s. Moreover, on {(z',v5(2")) : 2’ €
1},
vs A fs = U5(v) NV5(f) = U5(v A f) = 0. (6.38)

Finally, when r > 1,
d(fs) = d((¥5)"(f)) = V5(df) = 0 in W

When r = 0, the above identity can be understood in the sense of distributions.
We can thus apply Lemma to the closed form f5 € C™*(W7): there exists X5 €
crbe(wy, Ak_l) such that

dXs = fs in Wi, X5 =0on {(2/,¢5(2")) : 2’ € Q1}

and
HX5HCT+1,Q(W1,A’€—1)§ C|‘f6||cm(W1,Ak)'
We then set
X = (U51)"(Xs)-

Hence,

dX = d((¥;")"(Xs)) = (5 1)"(dXs) = (¥5)"(f5) = [ in Us
and

X lgrs1.0@y < Ol llome @y

for some C' = C(r,a,d,n) > 0. The boundary condition
X =0on {(z/,¥(a")) : z € Qs}
is satisfied since
X5 =0on {(«,¢5(2") : 2’ € Q1} = U5 ({(2/,9(2)) : ¢ € Q5})-
The proof of Lemma [6.15] is complete. O

Remark 6.16. Given a finite set A C (0, ], one can require that the solution X given
by Lemma satisy the additional estimates: for every s € {0,...,r} and every o/ € A,
one has

||X6||cs+1,a’(U5)§ CHchs,a’(U(;)
where C = C(r, A, p,n, HV@DHCW(@)) > 0.

Indeed, such estimates automatically hold in the setting of all the intermediate results
leading to Lemma [6.15] including Lemma and Proposition in the appendix, with
one exception: in the proof of Lemma [6.14] we have used an approximation scheme which
relies on the choice of a parameter ¢ such that Coe < 1, where Cy = Co(r, a, m, p) > 0, see
inequality @ . By replacing this constant Cjy by a possibly larger constant C{), we can
ensure that (]6__36[) holds true for every s € {0,...,r} and o € A. Thus, if we decrease ¢
in order to have Cje < 1, the approximation scheme of Lemma is valid in every C'5¢
spaces, for every s € {0,...,r} and o/ € A. Finally, the value of § in the proof of Lemma
must be modified accordingly, in order to satisfy the condition d[|V|| s < € (for
this new value of ¢), for every s € {0,...,r} and o/ € A.

As a consequence of the proofs of the above lemmata, one can also ensure that

Remark 6.17. In the setting of Lemma the correspondance f +— X is linear.
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In the framework of Sobolev spaces, it is possible to formulate the corresponding
versions of Lemmal6.14]and Lemmal6.15] Here, we only write the latter for later reference.

Lemma 6.18. Let r € Nk € {1,...,n}, p € (1,00),p > 0. With the above notation,
there exists & = 6(r,p, p,n, ||v’(/]||Wr,oo(Q;))) > 0 with the following property: for every

f € WrP(Us, A*) such that
df =0inUs, andvAf=0on{(z,v()):2" €qQs},
there exists X € WtLP(Us) such that
dX = f in Us, X =0 on {(2,9(2")) : 2’ € Qf}

and
X wrro@wy < Cllfllwrews)

where C' = C(r,a, p,n, ||V¢||W“°°(Q;)) > 0.

The proof is essentially the same as in the Holder case except that we use Lemma [6.13
instead of Lemma [6.11] Moreover, the substitutes of Proposition [5.6 and Proposition [5.7]
are given by the two following facts:

For every f € W™P g € W™, the Leibniz rule implies that fg € W™ and

Ifgllwre< Cllfl[wrellgllweree,

where C' = C(r,p,n) > 0.

For every f € W™P and every biLipschitz homeomorphism = € W1 with a Jacobian
larger than a constant cy > 0, the change of variables formula implies that f o= € WP
and

_1
O " fllwrr (IDE s 41) i 21,

I£ 0 Zlweo i |
co "I fllze ifr=0,

where C = C(r,p,n) > 0. In fact, we use two types of diffeomorphisms: =(2/,z,) =
(2, x, + (")) which has a Jacobian equal to 1, and Z*(2/, ,,) = (6*'2’, z,,), which has
a Jacobian equal to §+(—1),

When r = 0, one cannot define the trace of f as a function on the graph {(2’,¢(2)) :

' € Q5}. In that case, we establish (6.26) in Lemma or (6.38) in Lemma by

relying on the distributional formulation of these conditions, more precisely by using the
identity (6.25), which holds true for every § € C1(Qy, AF*1).

The counterparts of Remarks [6.16| and remain valid in the Sobolev framework as
well.

6.3.3 Approximate solution on a bounded set

In this section, we construct an approximate solution to the Poincaré lemma on a
bounded set. More precisely, given two integers r € N and k € {1,...,n} and an exponent
a € (0,1), we consider the two following spaces:
the set C,*(Q, AF) of those f € C™* (2, A¥) such that

df =01in Q, v A f=0on 0,
the set CLH*(Q, A¥=1) of those X € C™+12(Q, A*~1) such that

X =0 on 09.
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Lemma 6.19. Letr € N, k € {1,...,n}. Let Q be a bounded C" 1% domain in R™. Then
there exist two continuous linear operators

S Cm(Q, ARy — oTThe(q, AR, K : Ch(Q, AF) — crtle(Q, AF)
such that d(Sf) + Kf = f for every f € C%(Q, AF).

Using the compact embedding ¢ : C"Th® < O™ we can see that the operator ¢ o K
is compact from C,* into itself. In that sense, Sf is indeed an approximate solution for
the equation f = dX.

Proof. Since Q is C"t1@, for every € 02, there exists an open neighborhood W C R"™
of x, a positive number p > 0 and a function ¢ € C””H’“(Q;) such that

o W NQis isometric to {(y',yn) € @, x R:Y(y') < yn <P(Y') + p},
o W N0 is isometric to {(y', yn) € @), x R: P(y') = yn}.

There exists some § > 0 depending on r, a, n, p, 1 such that Lemma [6.15] gives a solu-
tion to the Poincaré lemma on the set {(y/,yn) € Q5 X R : ¥(¥) < yn < YY) + p},
which vanishes on the lower part of the boundary {(y',¢(y)) : ¥ € Q5}. We de-
duce therefrom that there exists an open neighborhood V of x contained in W and
X € C™the(V N Q; AR 1) such that

dX =finVnQ, X =0o0on VnNoQ

and
[ X | crs1.07mm,ak-1) S Cllf ll oo (7@ Ak -

Here, the constant C' depends on r, o, n and €.
By compactness of 0€2, one can find a covering of 0€2 by such open sets V;, i =1,... 1.
We denote by X; € C™T52(V; N Q, A¥~1) the corresponding solution. In particular,

||Xi||cr+1,a(7i7Ak—1)§ C| |f| |CT,Q(W,AI€) . (639)

Let also V) be a smooth open subset of €2 such that Q C Ué:o Vi. We now rely on the

classical Hodge-Morrey decomposition on a smooth domain, see e.g. [13] Theorem 6.12
(i)]: there exist Xo € C"T1(Vp, AF=1), hg € HE (Vo) N WH2(Vp, A¥) such that

f=dXo+ ho.

Moreover, Xy and hg can be chosen linearly, and satisfying the estimates: for every s €
{0,1,...,7}, for every o’ € (0,1),

HX0| |Cs+1,a’(707Ak—1)§ C| |f| ‘C’S’O‘/(vo,Ak)’ (640)

| ’h()‘ |Csva’(?o,/\k) S C’ ‘f| |Cs,&’(VO7Ak)7
for some C' = C(s,d/, V). B
Since Vj is smooth, the se HE (Vo) nWE2(Vy, AF) is contained in C°°(Vp, AF), see e.g.
[13, Theorem 6.3]. Moreover, it is finite dimensional, see e.g. [I3, Theorem 6.5 (i)]). In
particular, all the norms are equivalent on that space. It follows that

Hh0||cs+1,a/(v0,/\k)§ CHchs,a’(%,Aky (6-41)

2As a matter of fact, on a C? domain, harmonic fields have W12 coeflicients, see Remark
However, we do not need this (non trivial) regularity result here.
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To the covering (V;)o<i<; of §2, we associate a partition of unity (6;)o<;<; such that

l
D 6i=1inQ, and 6; € C*(Vi) for i = 0,1, ..., 1.
=0

Finally, we set

l
Sf =Y 6:X..
=0

Then, in view of (6.39)), (6.40) and Proposition S is a continuous operator from C;,“
into C’;H’a and

l l
d(Sf) =) 6:dX;+ > dbi AX;.
=0 =0

Using that 0pdXo = 0o(f — ho) and for every i € {1,...,1}, 6;,dX; = 0,f, one gets
d(Sf) = f — Kf with
!
Kf ==Y df; A X;+ hobo. (6.42)
i=0

Observe that K f|go= 0. As a consequence of 16.41: with s = r and o/ = «, the linear
map f — hg is continuous from C;>*(Q, AF) into C™+1%(Vp, A¥). Hence, K is a continuous
operator from C'® into CZ 5%, The proof is complete. O

According to Remark and also (6.40)), one can require that given a finite set
A C (0, ], the local solutions X;, arising in the proof of Lemma have the following
additional property: For every s €0,...,7r and o’ € A,

HXi”Cs+1,a’(97m/i7/\k—1)§ CHf||Cs,a’(ﬁ7Ak)
for some C' = C(r, A,n, ). Relying on the explicit expression of K f and also (6.41]), one
has

l

||KfHCs+1,o¢’(ﬁ7Ak—1§ C (ZHX’L'||Cs+1,o/(QmV'i7Ak:—l)+||h0”Cs+1,o¢’(‘/0?Ak:)> < C/||f||Cs,a/(§7Ak)-
=0

A similar calculation holds true for Sf. We can thus state the following;:

Remark 6.20. The maps S and K are continuous from C,f’a/ into C‘;H’a,

s€{0,...,r} and &/ € A.

, for every

In the following, we will apply this remark for A = {a, o’} for some o’ € (0, ).
In the setting of Sobolev spaces, given two integers r > 0, k € {1,...,n}, and p €
(1, 00), we introduce the sets

WP (Q,AF) = {f € WIP(Q,A),df =0 on Qv A f =0 on 99},
WIHP(Q, AR = {X € WTHP(Q, A7), X = 0 on 0}

Then the same construction as in the Holder case, except that one relies on Lemma [6.18

instead of Lemma leads to

Lemma 6.21. Letr € Nk € {1,...,n} and p € (1,00). Let Q be a bounded C™* domain
i R™. Then there exist two continuous linear operators

S WIP(Q, ARy — WIthe(Q ARTYY K WP, AR) — WP, AF)
such that d(Sf) + K f = f for every f € WiP(, AF).
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In the same spirit as Remark one has:

Remark 6.22. The above construction allows to require that given a finite family of
exponents 1 < p; < --- < pr < p, the maps S and K are continuous from W;"* into
WEtEPi for every i € {1,...,1} and every s € {0,...,r}.

6.3.4 Proof of Theorem [6.1]

We finally turn to the proof of Theorem We want to apply Lemma to the
exterior derivative operator T = d from the set E = C7 (€, A*~1) into F = C3 (9, AF)
where

o (L AF) = {f e C™ QA" :df =0in Q,uAf =0 on aQ,/<f,h> =0,Vh e H;’?(Q)}.
Q

Remember that #%(Q) is defined by
HE(Q) = {h e L*(Q,A¥) : 6h = 0,d(h.) = 0},

where the index z denotes the extension by zero outside Q. In other words, C3;* (Q,AF) =
Cr®(Q, AF) N (HE ()1, where the L sign is related to the inner product in L?(, AF).

We introduce the two operators S and K given by Lemma We first observe that
for every h € HE(Q),

/(dX, hyde =0, VX € CX(Q,A"1).
Q

By density of C2°(Q, A*~1) in W&’2(Q,Ak_1), the above identity remains true for X €
W01’2, and thus in particular for X = Sf. Hence, Kf = f — d(Sf) also belongs to
(HE(Q))*; that is,

K(Cy(Q,A%)) ¢ orthe@, A n (HE ().

Since the embedding ¢« : C™T12(Q, A¥) — C™(Q, A¥) is compact and K : C;*(Q, AF) —
CLhY(€, AF) is continuous, it follows that

Lo K : O3 (L A%) — C5%(Q, AF) is compact.

In the following, in order to simplify the notation, we abbreviate ¢ o K into K. By
construction, Id = T o S + K. The last assumption of Lemma that we have to
establish is ker 7% = {0}. This is a consequence of the following:

Lemma 6.23. Let v € (CL(Q, A%))* such that for every X € CLTH(Q, AF1),
(0, dX) (cre@ary- ope@ar) = 0

Then v € HE(Q), in the sense that there exists h € HE(Q) such that for every f €
Cy™ (Q, AF),

(W, Pl epe@amr oo @an) = /Q<h’ ) de.

We first explain how Lemma implies that ker7* = {0}. Let v € kerT* C
(C3 (@, AF))*. Then by the Hahn-Banach theorem, there exists a continuous extension T
of v to CJ*(Q, AF) D C3;%(€2, AF). In particular, for every X € CIT (@, AR,

(0, dX) (cre@any- cpe@ary = (U 8X) (cra@ary)- cre@ar)y = 0-
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By Lemma v can be identified to an element of ’H’% This implies that for every
fe (A%,

<U,f)(c;a(ﬁ,Ak))*,cQa(ﬁ,Ak) = (v, f>(og’a(ﬁ,/\k))*,c;’a(ﬁ,/\k) = /Q<U> f)dz.

By definition of C3,"(Q,A¥), f € (#%)* and thus

(0, F)cre@ary- cne@ary = 0-

This proves that v = 0, as desired.
We next turn to the

Proof of Lemma[6.23 Let v € (Cy*(Q, A¥))* such that
<U, dX>(CZ:’a)*,CZ’a =0, VX e C;+1’a. (643)
We fix some o’ € (0, ). We split the proof into four steps.

Step 1. In the first step, we prove that there exists a constant C' = C(v,r,a,a/,Q) > 0
such that for every f € C¢,

(v, cpeycpe < Cllfllgoar-
We first assume that r > 1. Let f € Cp®. Since Sf € CLT1%, (6.43) implies

<U, f> (CT7O)*,C:;70‘ = <U, de + Kf>(c£aa)*70:;,0< = <’U, Kf> (0570)*70570 .

v

Hence,
(v, oy coe < vl cpey- 1K fllere.

By Remark with s =r — 1, one has
I|K fllcre< Cl|f]lar-1.a.

Hence,
(W, licpoyecpe < CllollepeyIf llorra-

If r > 2, we can repeat the above argument taking into account this new estimate that we
apply to K f instead of f:

(v, fepeye.cpe = W K f)opeys ape < Cllollopey 1K fller-ra.
Using Remark with s = r — 2, we deduce that
(0, f)epey coe < Cllfllgr-2.a
for some new constant C' = C(v,r, «, 2). Iterating this calculation, we obtain that

(0, ey cpe < Cllfllgoa.

In the case r = 0, this estimate is obvious.
Finally, when r > 0, we rely on Remark with s =0 and A = {d/, a} to get

K fll oo < Cllfll o0
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Hence, reasoning as above, one has

(W, Flcmeye cpe = (0, K)oy oo
< CNK fllcoa< C'|K fllcar < C”|| fll coar -

This completes the proof of Step 1.
Step 2. The aim of this step is to prove that there exists a constant C' > 0 such that

(, creyecme < Cllfllp2@an, forall f € C(Q, A¥) such that f = 0 on 9.
We define a sequence (p;);>0 by induction as follows: pp = 2 and
pist = {(pz')* = % ?fpi <mn,
max(p;, 7o) if pi > n.
Observe that p;+1 > p; if p; < n and when p; < n, then
Pipit1 o 1

> .
n n

Pi+1 —Pi =

Hence, one can define p; to be the first term of the sequence such that p; > 1*~. By the
Sobolev and the Morrey embeddings, we have for every 0 <¢ <1 —1,

lepi C Lmﬂ7 WLPI C 0076{

Let f € C;%(Q, AF) such that f = 0 on 9. In particular, f € LL' (2, A¥). Since Q is
C™t1he and thus C%!, we can rely on Lemma with » = 0 and p = p; to write

f=4d(Sf)+Kf,

with Sf € WP (Q, AF1), K f € WP (Q, A¥). Since df = 0 in D'(), one has dK f =
d(f —d(Sf)) = 0. Hence, K f € WP (Q, A¥).

Relying on the approximation result given in Proposition there exists a family of
linear maps {7; }sen such that for every £ € {0,...,n}, n; maps C;"*(Q, A?) into C°(Q, AY)
and for every g € C2*(Q, AY),

lim [|9;(g) — gllco.ar= 0.
1— 00

Moreover, for every h € Wol’l(Q, A N CP*(Q, AY) such that dh € C2*, one has n;(dh) =
d(ni(h)). N

We apply this last property to the map h = S f which belongs to Wol’p’ C VVOL1 neY™
and satisfies d(Sf) = f — Kf € C>* (indeed, observe that f € CI'* ¢ C2“ and Kf €
Wyt © C2*). This gives 7;(d(Sf)) = d(n;(Sf)).

Since 7;(Sf) € C°(Q, A¥1), the assumption on v implies

0= (v, d(m(gf)»(c;va)*,cﬁ’“-

Next, by linearity of n;,

ni(f) = n(d(SF)) + m (K f) = d(mi(Sf)) + mi(K f).
Hence, B
(W, ni () croye cme = (UK f)) (cpeys cne- (6.44)

By Step 1, ~
(i () cpeye.cpe < Cllm(K )l oo (6.45)
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In the right hand side, we use that I?(f) € Wol’pI C C2 to deduce that n,(I?f) converges
in €% to Kf.
In the left hand side, since f € C2% one has lim; o0 || f = 1 (f) || c0.or = 0 and thus by Step
L,

(v, Fepeycpe = Hm (v,m:(f)) cpeye cope (6.46)

Hence, letting ¢ — +oo in (6.45]), one gets
(v, [ epoycre < CIK fllgoar

By the Morrey embedding,
(v, fepeys ope < CIE fllwra-
By Remark one can require that K is continuous from LP! into WLPr. Hence,

(v, ey cme < Cllfllzer

We start again from (6.44)) but instead of relying on Step 1, we exploit the above inequality
with n;(K f) instead of f to get the following analogue of (6.45]):

(,mi(f))cpoyecpe < Cllni(Kf)|ler-
Since m(f( f) converges to Kf in LP! and using also (6.46)), this gives
(v, epoycpe < C| K fllper
In view of the Sobolev inequality W!PI-1 C LPI this implies
W, ey e < CIR fllyron -
By Remark we get
(v, Py ope < Cllfllpra

Iterating these estimates, we finally obtain

(0, F)epeys.cpe < Cllfllro= Cll ]2,

which is the conclusion of Step 2.
Step 3. In this step, we prove that the restriction w of v to {f € CLY(Q,AF) : f =
0 on 092} belongs to 7-[% By the previous step, there exists C' > 0 such that for every
f ey with f =0 on 09,
(w, f) < Ollf 2.

Hence, w can be continuously extended to the subset
cl2({f € CoYQ,AR) - f =00n 00}) C L3, AF),

where cl; > denotes the closure in L2. We then extend w by setting w = 0 on the orthogonal
space of this subset. By the usual identification of L? with its dual, we can now consider
w as an element of L?(Q, A¥).

We proceed to prove that w € ”H[} First, for every X € C2°(1, AR,

/Q<w,dX> dz = (v,dX) ey cre =0,
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where the last equality follows from the assumption on v. This proves that dw = 0. Next,
for every X € C°°(Q, A¥+1), for every g € C,%(Q, AF),

/(g,5X> dz = 0.
Q
B 1
We deduce in particular that §X € (C1L2<{g € Cr*(Q,AF):g=0on 69)}) and thus

/Q<w, 5X) dz = 0.

This means that d(w,) = 0, where w, is the extension of w by 0 outside §2. This completes
the proof of the fact that w € H?

Step 4. Conclusion of the proof. For every f € Cp“(Q, A¥), we rely on Lemma
to write f = d(Sf) + K f, with Sf € CLTH*@Q,A* ), Kf € CLTH(Q,A%) and Kf =0
on 0N2. It follows that

(v, fcreye cme = (0, K f)cpeys cne.

Since K f € Cp (€, AF) with K f = 0 on 9, we can apply the previous step to K f:

(0, K fopoy cpe = /Q (w, K ) da,

where w € ’Hlj‘i We deduce therefrom that

<v,f)(C;,a)*7C;,a = /Q<w,Kf> dz.

Since d(Sf) € (HE)*+ and w € HE., it follows that

(0, gy cpe = /Q (w, K f +d(S)) dx = /Q (w, f) d,

as desired. O
Remark 6.24. The converse of Lemma is true: if v € HE(Q), then (v,dX) = 0 for
every X € CLTH(Q, AR L),

Indeed, one can approximate such an X by a sequence (X;);eny C C2°(£2, Akil) for the
W01’2 topology. Since (v,dX;) = 0, we obtain the desired result when i — +o0.

Remark 6.25. In the setting of Theorem but under the additional assumption that
Q is O™t the construction of the vector X presented in [I3, Theorem 8.16] is linear and
universal, in the following sense: there exists a linear map
Zo: U CT’Q(Q, Ak) N U CT+1,a(ﬁ; Akfl)
reN reN
ac(0,1) a€(0,1)

such that for every r € N,a € (0, 1), for every f € C™%(Q, A¥) satisfying

df =0 in Q,

vAf=0 on 01,

one has Zg(f) € C™+1a(Q; AF1),
d(Zo(f)) = f on Q, Zo(f) =0 on 09,
1Z0(f)ller+ra< Cllfllore
for some C' = C(r, o, 2) > 0. The same remark can be made in the framework of Lemma
6.11} The proofs of Lemma and Lemma [6.15] are based on linear constructions as
well. However, due to the restrictions on € in Lemma and on § in Lemma they

are not universal in the above sense.

108



Chapter 6

6.3.5 Proofs of Theorem [6.5 and Remark [6.6]

Let r € N, k€ {1,...,n} and p € (1,00). Let 2 be a bounded C™! domain in R". By
the Sobolev embedding, the space WP (2, A¥) is contained in LPr (2, A¥), where

_Jnp/(n—rp) ifrp<mn,
br= max(2,p) if rp>n.

We denote by (p;)’ the Holder exponent of p..
In the framework of Theorem the main assumption is that

HE(Q) C LP'(Q, AF). (6.47)

In the first two steps of the proof below, we do not need this property but assume instead
that p, > 2. The latter condition implies that W”"? C L?. In particular, the integral
Jo(fs h) dx is well defined for every f € W,*(Q, A¥) and every h € HE. In the final step,
we prove Theorem under the assumption

HE(Q) € L)' (Q, AF). (6.48)

Since p, > p, (6.48) may be seen as a less restrictive hypothesis than (6.47). Actually,
when 7 = 0, namely when Q is Lipschitz, they coincide while when Q is C', it is very
plausible that the methods of [40, Chapter 11] imply that H%(Q) C NicgeooL4(2, AF).

Proof of Theorem [6.5. Step 1. We first establish a Sobolev version of Lemma [6.23] under
the assumption p, > 2:
Let v € (W5P(Q, AF))* such that for every X € Wi THP(Q, AF1),

<’U, dX>(WJ’P(Q,Ak))*,WJ’p(Q,Ak) = 0

We then claim that
v e HE(Q). (6.49)

Indeed, let f € W, P(Q, AF). We introduce the two operators S and K given by Lemma
Since Sf € Wi TP (v, ad(Sf))wrrys wre = 0 and thus

(v, ) wprywrr = (Uaf?f>(wﬁ’p)*,wgvp < \\U”(WJ’P)*\\I?f\|W;"’p-
Relying on Remark with s = r — 1, one gets
(v, Hwzeys wre < Cfllyr—1e,
for some C' = C(v,Q,r,p) > 0. Iterating on r,r — 1,...,0, this leads to
, Fawrey wre < C| fllzz- (6.50)
If p < 2, this proves in particular that
, Faweey wre < C| fllLz-

Otherwise, in the case p > 2, we introduce as in Step 2 of the proof of Lemma [6.23] a
sequence pg = 2 < py < --- < py = p such that Whri-1(Q) C LPi(Q), fori=1,...,1. We
then exploit the estimate (6.50)) for K f instead of f, namely

(v, P gy e = (0, K awprywivr < CIEflp-
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Observing that p = p; and WHPi-1 C LPI one has HI?fHLgS CHI?fHWLp[_l. Remark
6.22{ with s = 0 implies that Hf(fHWl,pI,l < C| fll;pr-1. This gives

(v, wpeywpe < Cllfllprr-r-

Iterating on pr,pr—1,...,p0 = 2, we finally obtain

(0, N wpryewyr < Cllflz2 (6.51)

Since p, > 2, one has WP C L? and it is thus possible to extend v as a continuous linear
map on cly2 (W, P(Q, A¥)). We then set v = 0 on (cl2(W,P (2, A¥)))+. We can conclude
that v € H?, as in the Holder case, see Step 3 of the proof of Lemma This completes

the proof of our claim ([6.49).
Step 2. In this step, we prove Theorem under the additional assumption that

pr > 2. The proof is in the same vein as the one of Theorem but much simpler. We
only indicate the main changes.
We apply Lemmato T = d from the set E = W, (Q, A*1) into F = W, P(Q, A¥)

where

WIP(Q, AF) = (f € WHP(Q,AF) : df = 0 in Q,vAf = 0 on 92, / (£ B) = 0,h € HE(Q).
Q

We introduce the two operators S and K given by Lemma Then, relying on the
compact embedding W2 ¢ WP, one deduces, as in the Holder case, that K is a
compact map from W,7(Q, A¥) into itself. The fact that ker 7% = {0} now follows from
Step 1 and the fact that W;Zp C (H%)l. We can thus apply Lemma and get Theorem

when p, > 2.

Step 3. We now prove Theorem under the assumption that HA(Q) C L),

In view of Step 2, one can assume that p, < 2 (which implies in particular that
p < 2). Let f € W,P(Q,A*). We write f = d(gf) + f(f, with gf, f(f € W;H’p, where
p* = np/(n — p) Since Withe Wzr’p*, this means that f can be written as dX; + f1,
with X; € WZ T and fie Wrr If p* < 2, we repeat this construction for f;, to get
fi=dY + fo with Y € W2 and f, € W®)" . This implies that f = dXs + fa, with
Xo=X1+Y € W;H’p. Iterating this construction yields X, € W§+1’p, fe € WVT’2 such
that

f=dXe+ fo. (6.52)

By the Sobolev embedding, X, € Wol’pT(Q,Ak_l). Let (Yj)jen C C(Q,AF1) con-

verging to Xy in Wol’p’“. For every j € N and every h € HZ}(Q),

/(de,h) dz = 0.
Q
Since (dY;)jen converges to dX in LPr and HAE(Q) C L®P)'(Q, A®), it follows that

/(ng, h)dx = 0.
Q

Hence, dX,; € (H%)'. We deduce therefrom that if in (6.52), we further assume that
f e WP, then f, € W;2.
We can then apply Step 2 to fy: there exists Z € Wi TH24(Q, AF—1) ¢ Wi TP (Q, AF1)
such that f, = dZ. This yields
f=d(Xe+ 2).
Since all the above constructions can be made continuously and linearly, this completes

the proof of Theorem [6.5
O
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We end this section with the proof of Remark[6.6] In this setting, the main assumption
is now that

HE(Q) C LP(Q, A). (6.53)

Proof of Remark[6.6 Let f € LU(2,A¥). If p > 2, then LP C L? and we can introduce
the L? orthogonal projection h of f on H%(Q). Then by (6.53), f —h € L% (2, A¥). Since
p > 2, HE(Q) € ¥ (92, A¥). We can thus apply Theorem [6.5to find some X € WP (Q, AF)
such that f —h = dX. Theorem is proved in that case.

If p < 2, then we can find X; € Wzl’p(Q,Ak_l), f1 € L2(Q, A¥) such that f = dX;+ fi,
as in Step 3 of the proof of Theorem see . By the previous argument applied to
f1 instead of f, one can write f; = dX5 + h, with X5 € W;’2(Q,Ak*1) and h € H%(Q)
Then f = d(X; + X2) + h, which completes the proof of the remark.

O
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Appendix A

On the magnetostatic energy

In this appendix, we present the proofs of several elementary results on the magneto-
static energy.
Throughout this section, we use the notation

m = (m',m3): Q — S?
and V = (V’,0,,). The dash ’ indicates a 2D quantity.

Proof of Theorem . We apply Lax-Migram’s Theorem for the variational problem ([2.3))
in space BL to obtain the unique existence. For this, we will check that the map £ —
Jo V/.m(z")€(a’,0)da’ is linear continuous in our (BL,|||| ;1). For every & € BL, we have

’Avl,m/(ml)é(x/?o)dx/ S Hv/m/]]'Q’|H71/2(R2)H§(70)HH1/2(R2)
< C‘|Vl-m/lﬂ‘|H71/2(R2)HV§HL2(R3)‘ (A1)

Here, we have used the interpolation inequality in the f}rst line and the trace estimate in
B 2

the second line. It remains to prove that V'.m'l1g € H a(®%)

Denote f = V'.m’ 1g. We show that

"f”H*l/Z(R2)§ Cll fllL2@2y < Cl[Vm[L2q)< +oo.

Indeed,

. o EDQP FHOP
(T _AmLﬂ%+Amhﬂ%

1

< HJ"(f)@%R%H’f(f>H%°°(R2)/<|<1 %

< O 2e) I 171 m2y) < ClIT2 ey (A.2)

where we used that supp(f) is compact in R? (as  is bounded).

As consequence of Lax-Milgram’s Theorem, the variational problem (2.3) has a unique
solution of U € BL(R3)
The classical equation (2.12)) is obtained obviously. Indeed, by choosing ¢ € C§°(R3\(Q x
{0})), then

VU (z).V&(z)de =0 for all £ € C3°(R*\(Q x {0})).
R3
It implies that
AU =0 in R?\(Q x {0}). (A.3)
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Moreover, for any n € C§°(Q x {0}), there exists £ € C5°(R?) such that £(+,0) = 1.
Then

/ V'.m! (2" )n(2")dz' = VU (2)VE(x)dx
Q R3

= VU (z)VE(x)dx + /]12{3 VU (z)VE(x)dx

RY
— [ 1% e 0par = [ - |2 pat)da (A4)
o |03 o |03

We then obtain the second equation of .

It remains to prove . Applying the Fourier transform with respect to the in-plane
variable 2’ onto (A.3), we get an ODE for F(U) in terms of z3 with the Fourier variable
¢ as parameter:

82

2 TG~ ICPFWO)G) =0 foras £0¢ € R, (4.5)

The jump condition follows that:
0
e FO)G)| = ~FTa1a)(Q) forza = 0.6 0. (A6

Recall that U € BL(R3). The trace of U is well defined, see Dautray and Lions [16]. The
uniqueness of U implies that U is symmetric w.r.t. 3 =0, i.e., U is continuous on x3 = 0.
Then

[FU)(,-)] =0 for xg =0. (A7)
Equations (A.5)-(A.7)) give the explicit solution, (see [30, Proposition 4]),

FUY(C,w3) = quel<lx3f(v'.m'1g)(g) for ¢ # 0,25 € R. (A.8)

Plancherel’s identity yields

2 _ 2 )2 OF(U)(¢, x3)
[wuras = [ [ (Pro)ceps | 2208

1 —2/¢|as ' !

= z/Rz/Re 2Welleal| 7(V.m' 1) () Pdg

R S 2

=3 / I F (Vi 10) ). (A-9)

2
) dCdas

Moreover, since C§°(R3) is dense in BL(R?), we obtain that

/ VU (2)|*dx = / V'.m!(2")VU (2, 0)dz’
R3 Q
This completes the proof of Theorem O

We next establish a basic regularity for the solution U of

VU (x).V{(x)dx = / V' .m!(2")¢ (2, 0)da’ for every ¢ € C5°(R?). (A.10)
R3 Q

For that we give the
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Proof of Lemma([3.J The proof is inspired from Ignat and Kniipfer [31, Lemma 3.1].
When k£ > 2, we assume that m € Hlk (©2). We take W C Q a compact set and fix
§ = dist (09, W)/(2k + 2) > 0. We want to prove that U € HF ()
Choose a smooth cut-off function # with # = 1 in Ws and 6 = 0 outside of Wys5, where
Wys is defined by
Was = {z € Q : dist(z, W) < 26}.

Let us denote h = —V'.m/lg € L?(). Since equation (3.1)) is linear and has a unique
solution, then we can decompose h = hg + h1 where hg = #h and obtain U = Uy + Uy with
ie{1,2} B

AU; =0 in R3\(Q x {0}),
[%} =h; on Q x {0},
[U:]=0 on Q x {0}.

Since m € Hf (), then m € H*(Was). It implies that
ho = 0h = —OV'.m/1q € H*1(R?).

Using the same argument as in Remark one has
JRGREACTRONGIRS / €% ey | Cho) ()
R? 4|§|
HhOHHk 1(R2)"
This implies that V'*Uy(-,0) € L2(R2). Hence, Uy(-,0) € HF (R?). We want to prove that

U € loc(W)
Set V = A'U;(+,0) in the sense of distributions, where A’ =92 . +82,,..

that V € H*=2(W). Using a duality argument, we claim that

8&
v, < Ck
(7 57) | < OOl

for every n € C§°(W) and every multi-index o € N2, |a|= k — 2.
Indeed, using the definitions of Uy, V and the explicit expression of the H 1/2 gcalar product,
we get

We shall prove

o 9° €] 0%
’(‘/7 WW)LQ(W)‘ = (]:(V)a]:(@n))m(ﬂ@) = ‘(_2F(h1)7f(w77))L2(R2)

-1 0°

= 7(h1,ﬁ77>1'{1/2(]g2)

(ha( O p(z) — L=
_ / / 1 1(9)) (55 773( )~ 3y n(y))dxdy‘
R2 JR2 |z -yl
9

= hi(z / Wx?ﬂygdydm’
27T supp hi supp 7 lz —yl
C(k

< S gzl zzon

We have used the Green formula, the estimate ’(.)a;xlyp < C(k)m and the fact

that supp (hy) C Was\W; , supp (n) C W have distance > d. The proof is completed. [
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Operations in Holder spaces

This appendix is mainly devoted to the proofs of Propositions and and an
approximation result in Holder spaces, see Proposition
In the sequel, we will rely on the fact that, given a domain 2 C R™, for every r € N*

and every «a € (0,1), for every f € C™%(f), one has

1llgra@< CUAoog D lerra@any)  »  IDSler1o@zn< Clflony:
(B.1)

with C = C(n) > 0.
In the next estimate, we use the geometric quantities dg and g introduced in ([5.2))

and .

Lemma B.1. Let Q be a bounded domain in R™. Then there exists a constant C = C'(n) >

0 such that for every r € N*, a € (0,1) and every f € C™*(Q2), one has

[fller-1.0< C(d0 + do)ll fllore.

Proof. Let f € N such that |f|=7r—1 and z,y € Q. Then, by the mean value inequality,
there exists C'= C(n) > 0 such that

D () — D’ f(y)|< C| flcrda(z, y) < Cllfllor |z — y|*dy 63,
This implies that [D? f]go.a < C38de | fllcr. Since || f|gr—1< || f]lor, one gets

Ifler-1a< I fller+Co3dg | fller< (1 + Cogdg )l f cme-

Next,
(1+ C83de, ) < (C+1)(1+ 83dg )
< (C' 4+ 1)(1 + max(dq, dg)*+17)
< (C+1)(1+ 0q + dq).
The result follows since 6 > 1. O

We proceed with the

Proof of Proposition[5.6, . We prove the result by induction on r € N. For r = 0, let
f,9 € C*(Q). Then ||fgllco< ||fllcollgllco and for every z,y € Q, we can write

|(fg)(@)=(fa)WI< [ f(@)lg(z)—gW) I+ f ()= F(Y)llg(y)|< (Hfllco[g]oovaﬂf]co,a||g||co>\ﬂf—yla.
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This implies
[fglcoe < [[fllcolglcoe + [flooallgllco
and thus

I£gllcoa< | fllcollgllco+lI fllcolglcoe + [flcoallgllco< [ fllcoallglco.-

We now assume that the result holds true for » € N and we prove it for » 4+ 1. We rely on

(B.1) to write
1fgller+ra< C(lIfgllco+ID(f9)llcre) < ClIfllcollglco+ 1 fDgllcratllgD fllere).

By the induction assumption, one gets

[fgllcr+ra< CUlfleollgllco+ (e + da)"[| fllcre | Dgllore+(0a 4 do)"[lgllere [ Dfllcre),

for some new constant C' = C(r,n) > 0. By Lemma [B.1] | f||cre< C(da + do)|| f|lcr+t.a-
Moreover, ||Dg|lcr.«< C|lg||cr+1.e, see (B.1]). Hence,

[fllerallDgllore< Cléa + da)ll fllcrrellgllgra.

By changing the roles of f and g, we finally obtain

Ifgllcrra< C(ba +da)™ [ fllor+rallgliorsia

possibly for a different constant C' = C(r,n) > 0. This proves the assertion for r + 1,
completing the proof of the proposition.
O

We next justify the Remark Let a € (0,1) and f € C1(Q,R™), g € C**(O,R)
with f(Q) C O. First,
llg o fllco< llgllco-

Moreover, for every x,y € €2, the mean value inequality implies

lgo f(x) —go fW)I< glcoalf(z) = F()|*< [glcoa || Df|[¢olz — y|*0g.
Hence,
[90 fleoa < [glcoe [[Df[E0d0-
Thus,

lg o fllcoa=llge fllcot[g o flooa < llgllcoa (D FI[E0d0 +1) < dallgllco((IDf[Eo+1)-

In the last inequality, we have used the fact that dg > 1. This completes the proof of
Remark 5.8
We now give the

Proof of Proposition[5.7. We prove the assertion by induction on r > 1. For r = 1, we
write that

go fllere= max||D?(g o f)| co+max[D?(g o f)]co.e.
lg o flle |,B|§1H (g0 flle \6|:1[ (ge e

By writing for every |5]|= 1,

DP(gof)= Y (D)o D¢,

[v]=1
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one gets
ID%(g 0 fllco< (Dg) © fllcolDf o< IDgllcoll DS llco
and also

[D%(g0 fleoa < [I(Dg) o fllco[Dfleoa +[(Dg) o flooa | DSl co-

By Remark one has [(Dg) o flco.o < da||Dgllco«(||Df|¢o-+1). Hence,

[D%(g 0 leoa < 1Dglloo[Df]co.a + dallDyllco (1D flIga+1) 1D flco

< Cdallgllere (IDfllgoa+1).

This proves the result for r = 1. Assuming the estimate for r > 1, let us prove it for r+ 1.
We write

g o fllgr+ra < C(llg o fllco+[1D(g o fllere)

< C(lgllcot+ Y II(D7g) 0 fDPf|cra). (B.2)
1Bl=IvI=1

By Proposition [5.6
1(D7g) o fDP f7||cra< C(6a + da)"[|(D7g) © fllcra||DP £ |lore.
By the induction assumption, one has
1(Dg) © fllere< C(a + da)" [ D7gllcra (IDF 5% o t1)
and thus

2
1(D7g) o fD?f|lcre < C(8q +da)" || Dgllcra (IDflIgh a+ DI DS llone

2
< C(0a +da)" T gllerra (IDFIEEET+1).

In the last line, we have used Lemma to write || D f||gr-1.a < C(dq + da)|| D f||cre and
|Dgllcr.e < C||g|lcr+1.«. Inserting this inequality into (B.2)), one obtains

2
lg© fllgrsia< C(6a +da) "V gl erna (IDFlIGHET 1),

This proves the assertion for r + 1 and completes the proof of the proposition.
O

As an application of Propositions [5.6] and we deduce the following version of
Proposition [5.7] for differential forms:

Lemma B.2. Let r € Nya € (0,1) and p: Q — V be a C"tH% map, where Q and V are
two bounded domains in R™. Then for every k € {0,...,n} and f € C™(V,A¥),

||P*(f)”cr,a(§,/\k)§ C||f||cr,a(V,Ak)a
where C' depends only on r,a,n, ||pl|cr+i.e, and the geometrical quantities dg, dg.

Proof. Let f €3 1« <i<n firipdz™ A ... A dx'. Then

p(f) = Z firoip 0 pdp™ A .. Adp'™,

1< <. <ip<n
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where
n s )
dp* =" Pda’, s e{o,..n}
=1 i
Hence,
p*(f) = Z fir.inop Z <apA "'8p- )d:rjl A o A dxIk
1<ii<...<ig<n iitimdim NOTa I

8pi1 8pi’€ : :
= i ) dx?t A ... A dxdk.
S (X feacrghge )i hnds

Ji#im VlEm N 1<i <...<i<n

This implies that

lo*(Nllera< > >

1FGm VEm 1<i1 <...<ip<n

8pi1 apik
0zj, " Oz,

fulk °p

C'r‘,a

Using Proposition we obtain

% k
1" (Dllera< C Y Nirecii © pllemal| DpllEre,

1<ig <...<ip<n

where C' = C(dg, 0q, k,n) > 0. When r > 1, Proposition implies

1" (Dlera@an<C D Wi allera([DolG e+ DIIDp|[Ena,
1<i1<...<ip<n

possibly for a larger constant C'. In view of (B.1f), this leads to the conclusion. When
r = 0, we rely instead on Remark [5.8 and conclude similarly. O

The end of this section is devoted to the proof of the following approximation result:

Proposition B.3. Let a € (0,1) and Q be a bounded C** domain in R™. Then there
exists a sequence {n;}ien mapping linearly, for every £ € {0,...,n}, Cg’a(ﬁ, AY) into
C=(Q, AY) and such that for every g € CY(Q, AY), for every o/ € (0,a),
Jim [[7:(9) = 9llco.er ,0)= O-
Moreover, for every g € WOI’I(Q, A N CP (2, AY) such that dg € CI*(2, AP+Y), one has
ni(dg) = d(ni(g))-

The proof of this proposition is based on several technical remarks. The first one is a
result on the continuity of translations in Holder spaces.

Lemma B.4. Let ¢ € C°(B(0,2)) such that 0 < ( <1 and for every t € R,
Bi:x € R" x—i—C(:p)tE{.

Then there exist € > 0 and C > 0 such that for every 0 < o < a < 1, for every
f € CO(R™) and every t € [—¢,¢€],

1 o B — fHCU»a'(R")S C‘t‘a_aleHco,a(my

where C' only depends on (.
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Proof. There exists a ball B € B(0,2) such that B 3 supp ¢. In order to simplify the
notation, we set B’ = B(0,2). Let ¢ > 0 such that B + B(0,e) C B'. Let f € C%*(R")
and t € [—¢,e]. Then f o 3y = f outside B and 3;(B) C B’. Using the Holder continuity
of f, we thus have for every x € R",

| 0 Bi(@) = f(@)|< [fleoas|Be(z) — =]
By using the definition of 8; and the fact that 0 < ¢ < 1, one gets
|f o Bi(@) = f(@)I< [f]co.e @)™ (B.3)
Next, for every € B and y € R™, we estimate the quantity
|(f o B = £)(@) = (f o B = /)(W)]
as follows: When |z — y|< t, we write
(f 0 B — f)(@) = (fo Be = FYWIS |f 0 Belw) = foBe(y) [+ f () — f(y)]-

By Holder continuity of f and the fact that x, 8¢(x),y and 5i(y) all belong to B’, this
gives

[(f 0Bt = F)(x) = (f o Be = WIS [fl oo @ (1Be(x) — Be(y)|*+]z — y[).
By the definition of 8; and the mean value inequality applied to (, one gets
[(f 0Bt = (@) = (Fo B = N < [flgoaa (IVClIEo 57y T2z = y[*
< e (IVC S gy + 2 2~y
When |z — y|> ¢ instead, we write
[(f o Be = F)(x) = (FoBe = WIS |f o Belx) — f(@)|+]F o Be(y) — f(w)l-
By , one gets
(F 0 B = £)@) = (F 0 B = HOIE 2Flon @t < 2l ool — 91"
We have thus proved that for every z € B, y € R",
[(f Bt = (@) = (f 0 B = NI 2Uf oz (IVElIGo G+ |2 =yl

The case when € R™ and y € B is similar. Finally, when x ¢ B and y & B, |(f o 8 —
f)(@) = (fo Bt — f)(y)|=0. This implies that for any z,y € R",

£ 0 B = Fleowr @y < 2Aflonagam (IV¢1S0m+ DI
The proof is complete. O

We proceed to extend the above lemma to differential forms.

Lemma B.5. With the notation of Lemma for every 0 < o < a < 1, for every
k€ {0,...,n}, for every f € CO%(R", A*) and every t € [-1,1],

187 (f) = fll oot (e Ak < C’t’%a/||f”oo,a(15a(o72),/\k)’

where C' only depends on n.
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Proof. Let f = Zl<i1<,_<ik<n firipdz™ A ... Adz™. Then

B = D funioBdBl A NdBE.

1< <<, <n

By construction,

, dzt if i < n,
dp; = o
dx™ 4+ tdC if i = n.

Hence,

Br(f) = Z fil._,ikoﬁtdm’“/\. Azt Z fil,__ik_lno/é’tda:il/\. S Az AC.

1<i1 << <n 1<) < <1 <n

It follows that

||/8;/k(f) - f”C'O,a’(]Rn7Ak)§ Z anlk o Bt - f’il...ikHCO,a’(Rn)

1<ip < <ip<n

+ C|t| > [ fir...in—1n © Bell oo B0 2))

1<t < <ip—1<n

where C' = C(¢,n) > 0. Here, for the second term, we have used Proposition and the
fact that d¢ is compactly supported in B(0,2). Thus, by the triangle inequality,

185 (f) — fHCOvO/(]Rn,Ak)S (1+Clt]) Z | fir.iw © B — fil...’ikHCO,a/(Rn)

1<t << <n

+ Clt| Z Hfh---ik_lano,oc’(W)'

1< < <1 <n

In view of Lemma applied to each f;, . ;,, this gives

182(F) = Fllgo.r n ary < C'A+CUDHT 370 Ifiriill oo @)
1<iy < <ip<n
+C Y Muienllcoe@am
1<i1 < <ig—1<n
< C"IH N f o @z an)-

The proof is complete.
O

The next tool is used to approximate a differential form which vanishes on the boundary
of a domain 2 by a family of forms which are compactly supported in 2.

Lemma B.6. Let a € (0,1) and Q be a bounded C** domain. Then there exists a family
¢ R — R™,0 <t < T, of %% diffeomorphisms, which agree with the identity outside
a compact set, and such that

G()DQ, 0<t<T, (B.4)
v € Cppd (R, AR, Yo € (0,0),  Tl[07(f) = fllcnwr@an=0-  (B5)
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Proof. The construction below is standard in the setting of Lebesgue spaces, see e.g. [Il
Lemma 4.5]. We detail the proof in order to check that it can be extended to Holder
spaces.

Since © is of class C1?, one can find a finite covering {V;}1<j<; of 9Q by bounded

open sets, and a corresponding family of C1* diffeomorphisms p; : B(0,2) — VJ such that
p(B(0.2) NRY) = V;NQ,  p;(B(0,2) N (R™ x {0})) = V; 10,

where R’} is the upper half space R™! x (0,+00). One can further assume that 92 C

Uj=1 05 (B(0,1/2)).
Let ¢ € C°(R™) be such that

0<¢<1, (lgon=1 and (|rm\g,2)=0.
Define for t € [0, 1], the translation map

Bt :R* — R"
z— x—((2)tey.

Let gbg =pjofo pjfl extended by the identity outside V; and let

dr=¢lo...opt

Then ¢; is a C1@ diffeomorphism which coincides with the identity outside U;V;. For every
j and t > 0 sufficiently small, A
¢ () O 9, (B.6)
¢(©2) > 0 py(B(0,1)). (B.7)
It follows from that ¢.(2) D Q but for t sufficiently small, we have the stronger
property B
de(Q2) D Q. (B.8)

Indeed, let z € 9. Since each ¢{ is a diffeomorphism, we deduce from that qb{ Q) >
Q. Applying this observation to ¢é, i_l, ..., ¢} successively, one gets [ + 1 points x =
Ti41,- .-, 21 in Q such that z;41 = ¢i(z;) for every i = [,..., 1. In particular, z = ¢;(x1).
It remains to prove that x; € Q. Since 92 C Ué-:l p;j(B(0,1/2)), there exists i € {1,...,1}

such that z € p;(B(0,1/2)). Moreover, by construction of ¢/, for every j € {1,...,1},
211 — 1= |61 (25) — 251< |pjlcoa|Be(p;  (x5) — p; ()< tlpslcon

It follows that max;|z — z;|< lt max;|p;|co.1.

There exists r > 0 such that for every i € {1,...,l}, for every x € p;(B(0, %)), for
every y € R" such that |x — y|< r, one has y € p;(B(0,1)) (this can be easily seen by
contradiction). Then for ¢ < m, the definition of 7 implies that ;1 € p;(B(0,1)).
By using , we deduce that z; € €. If i = 1, then we are done. Otherwise, we
repeatedly use to get that z; € Q, as desired. This completes the proof of .

We now check the last assertion of the lemma. Set fi = (¢?)*...(¢})*(f). By the
triangle inequality,

167 (f) = fllooar @y = (@) (f1) = fllcow gny
< 1(68)*(f1) = fillcowr oy It = Fll o gy

Now, using that p; is a C1® map which is the identity outside a compact set of R” and
Lemma

16D (1) = fill o oy < CUBE AL = 01| o -
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Let a1 € (¢, ). In view of Lemma this gives

160 (f1) = Fill o @m < CHI 10Tl co.on @02
Using Lemma [B:2] again, one gets

160 (F1) = Fillgo.or @y < CH* [ fill cos 5037

By the triangle inequality and the fact that || f||c0.01 < C||f]|co.e, VO < a1 < a < 1, (this
constant C' does not depend on a, a’), then

16D (f1) = Aillcow @y < CHO 1 = Fllevor @y +CIHA | Flgom @503
S OR* A - fHCO»a1(Rn)+C|t|al_a HfHCO»Ué(pl(B(O,Q))'

We have thus proved that

HQb:(f) - f||CO,a’(R")§ CHfl - f‘|COﬂ“1(R")+C|t|al_alHf”co,a(pl(m(og))-

Repeating the above estimate for ¢7, ..., gbé with a sequence of exponents o = ap < a1 <
-+ < o = a, we finally get

l
”qb:;(f) - f||C’0»O/(]Rn)S CZ;|t|aiOéi1 HfHCO’O‘(U?:l,Di(B(O,Z))'

This implies (B.5)) and completes the proof of Lemma O
We have now all the ingredients to present the proof of Proposition

Proof. We introduce a family (£5)s0 of mollifiers such that supp & € B(0, s). We also use
the family (¢¢)¢ 0 constructed in Lemma

By (B.4), ¢:(092) C R™\ Q. Hence, for every (small) ¢ > 0, there exists s; > 0 such that
P (00 +B(0,5,)) C R\ Q. Given g € CY*(Q, AY), ¢ (g.) = 0 on 9Q + B(0, s;). Here, as
usual, g, is the extension of g by 0 outside Q. Hence, &, * (¢} (g.)) belongs to C2°(£2, A°).
Moreover, for every g € W& ’1(9, AY),

d(&s, * (67 (92))) = &s, * (d(97(92))) = &s, * (91 (dg2))-

Let (t;)ien be a sequence decreasing to 0 and s; = s, for every i € N. We then set
ni(g) = &, * (97,(92))|- It remains to prove that

Jim [17:(9) = gllgo.er @ aey= 0. (B.9)
By the triangle inequality,
1ni(g) — gHCO»O/(ﬁAé)S 1€s: % (01,(92)) — &, * ngco,a’(ﬁ,M)"‘H&i *Gz — QHCOYa’(QAZ)-
Since (&g, )ien is a sequence of mollifiers and g, € C%*(R™, A?),
i_l)ifrnOOHfSi * Gz — gﬂco,a’(ﬁ,/\é): 0

and moreover, |[§s; * (67,(g2)) — &, * gzucoya’(ﬁ,z\t’)é 167, (92) — QZHCO,oc’(QAéy By Lemma
the latter quantity converges to 0. This proves . 0
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Extension of closed forms in
Holder and Sobolev spaces

Throughout this section, we still use the notation Q1 = (0,1)" and Q) = (0,1)"~1x{0}.
The latter will be often identified to (0,1)"~!.

Given a k closed form f with C™® coefficients on @)1, we want to construct a (k — 1)
form X with C"t1® coefficients such that dX = f. We do not require any boundary
condition on X.

The difficulty is that ()1 is merely Lipschitz so that the classical Poincaré lemma in
Hélder spaces does not apply. Here is our strategy. We first construct an extension f of
f to a smooth open set w such that f is still closed on w. We then apply the classical
Poincaré lemma on the smooth set w: this gives X € " (Qy, AF1) such that dX = f.
Then by restriction, X := =X |Q1 is a solution of the Poincaré lemma on ). In order

to construct the closed form f, we need some extensions lemma in the setting of Holder
spaces.

A Sobolev version of the above result is presented at the end of this appendix, where
we rely instead on the Bogovskii construction, see Proposition

The following statement generalizes [13 Lemma 8.11], where the result is proved for
m = 1.

Lemma C.1. Let r,m € N such that m <r+1, a € (0,1) and g € Crti=me(Qh). Then
there exists G € C™T1(Q1) satisfying, all over Q,
oG

oxm

=g , DAG =0, for all multi-index 8 = (B1, ..., Bn) such that 5, <m

and
”G”CT+1 « Ql)— C||9HOT‘+1 ma(Q/) (Cl)

with C = C(r,a,m,n) > 0.

Proof. Using Proposition we first extend the function g € CT =™ (Qi’l) to R* 1 in
such a way that the resulting extension g satisfies

’ ‘g‘ |CT+17'm,a(Rn71) S C‘ |g’ ’CT+17M,O¢(Q7/1) . (C2)

Let ¢ € C°(R™ 1), 6 > 0 be such that
suppy C B/(0,4) and / o =1
Rn—1
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We define m
Gla) = Gla's) = 25 [ o/ )ala’ — /)y
m'! Rn—l
The function G can be rewritten as
" 1 -y \_
G, x,) = ﬁ /Rn1 xﬁ_l(p( o )g(y’)dy’ for all x,, > 0. (C.3)

We compute the derivatives of G when x,, # 0. We find, for 1 <i<n—1,

oG zm 1 8o /2 -\ 1_
(' zn) = /R — (p< y)g(y’)dy’

m!

8.%‘ n—1 :L‘ﬁ 1 8%2 Tn In
xnm_l N N
= Tl Janss 9, W9 — @y )y (C4)

whereas for i = n,

2w = e (B [ o gtay )

Oz, Oxy, m! Rn—1 Tn

(m+1—n)zm! _

= T e(y)g(2" — 2ny)dy

m: Rn—1

mnm_l NN N

- (Ve(y),y)g(a" — zny')dy. (C.5)
m.: Rn—1

We prove by induction that for every [ € {1,...,m}, there exists a function ¢' €

C2°(R™) which depends only on [, ¢, m,n such that

alG / m—I Lo IN=( ] ! /
8?(% \Tn) = Ty en (0 (y )g(:U —xpy)dy'. (0'6)

It follows from ((C.5)) that (C.6) is true when [ = 1 with
1
010 = g ((m 1= met)) = (Tt ) ).

We assume that (C.6)) holds for some [ € {1,...,m — 1}. The same computation as in the
case [ = 1 shows that

8l+1 / a m—I Lo IN=( / /
—7 G zn) = 5 (wn Y (y)g(a’ — zny )dy>

8x£l+1 8$n Rn—l

with
Sy = <<m 1wy - <w’<y'>,y'>).

This completes the proof of (C.6]).
As in the computation leading to (C.4), one has for (i,..,ix) € {1,...,n — 1}* and
k+1<m,

ak al m—k—l

- - - / —_ AT T / /
Oz, .07, axglG(x’wn) Tn oy Vinan )9 = @y )dy (C.7)

where

Ui (W) = ((%wl(y’))
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The formula (C.7) extends continuously to z, = 0.
When k + 1 < m, then
ok o
776’ 0 0.
x4y ...0x;, Ozl (z',0) =

When k + [ = m, one gets

P Y awy=g@) [ v o)y (©.8)
x4, ...0x;, Ozl v Ro-1 U v '

Observe that w i, does not depend on g. In the particular case where g = 1, then by
construction, G(a: zn) = 2 /m!. Hence, when | <m — 1, (C.8) gives

o ot [xm .
0= o oo 0al \mil = )y
8%18% 8.%% (ml) - /Rn_l %1,..,% (y ) Y

When [ = m, one has instead

om  [zm
1= on = Lo dy.
oxm (m') 2n=0 /Rnl w“""““(y) Y

Coming back to (C.8) for a general g, this implies that when [ < m — 1,

ok o
Oxs, .0z, a?G(I 0)=0

while when [ = m,
8m

oxm

Finally, in order to establish the estimate ((C.1|), one starts from (C.7)) with k +1=m

G, 0) =g(2).

ok o

77(;/”: l"/f/_n/d/.
S O ) = [ 00— )y

Since 1/;5 . EC (R"1) and g € C™H1="%(R"~1), one easily deduces that the function

k r4+1— .
(%11878%6 ; G belongs to C, + TR X [0, 400)) with
o* o'
V. Ao G < C|[gl|cr —m,o(Rn— < C, 1 —mea (AT
‘895,;1...%% e [gller+i-ma@n-1)< Cllgll grei-meary

where the last inequality follows from (C.2). Since G € C*®°(R"~! x (0, +00)), it follows
that G € C"*1(R"~1 x [0, +00)) with the corresponding estimates on Q1. This completes
the proof of Lemma O

We deduce from the above lemma the following statement where we prescribe each
normal derivative of the extension F.

Lemma C.2. Letr € N and a € (0,1). Let (¢;)i<i<r4+1 be a family of functions such that
c C«r+1fi,a([07 1]7171 % {0})
Then there exists b € CTT1%(Q1) satisfying, all over Q) = (0,1)"~! x {0},

b=0
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and ,
d'b
oxt,

Moreover there exists a constant C' > 0 such that

=c¢ , 1=1,....,r+ 1.

r+1
Hb| |Cr+1,a(a)§ C < Z| |Cz| |Cr+1i,a(Q/l)) .
=1

Proof of Lemma[C.3 We set Fy = 0. By Lemma [C.I we can construct by induction on
i=1,...,7+1, a function F; € C"19(Q1) such that

DPF; =0, on @}, for all multi-index /8 such that |3|< i

o g (]
7=0

Then, the function b = Z:ill F; satisfies all the required properties.

and

Here is a version of Lemma for differential forms.

Lemma C.3. Let r € N, k € {1,...,n} and a € (0,1). Let c € C™*(Qy,A*) be such
that v Ac =0 on Q). When r > 1, we also introduce a family (c')a<i<r4+1 such that
ci € CTTI=h(Qq, AF1) for eachi € {2,...,r+1}. Then there exists b € C"H1e(Qy, AF~1)
satisfying all over @ :
db = c, b =0, b=0
and when r > 1, .
J'b

Dai =, forall2 <i<r+41. (C.9)

Moreover, there exists a constant C = C(r,a,n) > 0 such that

r+1
”b| |C’T+1,a(@7Ak*1)S C <| |C| ’C”7Q(Q7’1,Ak)+ Z‘ |CZ‘ |C7"+li,a(Q/17Ak1)> .
1=2

The above statement corresponds to [13l Lemma 8.11], except for the condition (C.9))
which is not required in the quoted reference.

Proof. We denote ¢/ = Zl<i1<...<ik_1<n cglmik_ldmil A ... A dz'*-1. By Lemma [C.2, for
every multi-index 1 < iy < ... <ig_1 < n, there exists b;, _;,_, € C"1%(Q1) such that on
aYl

1>

biy..ip, =0 ; Vi, iy = (V2C)iy. iy, Vs
and when r > 1, '
Obiriey _ i 2<i<r+1 C.10
W_Cil"'ik_l’ <i<r+41. (C.10)
Set ' _
b= > biy.ip_ Azt A o A dathr

1§i1<...<ik,1§n

A simple computation shows that on @}

db=v A (vic) and b = vi(vuc) = 0.
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We combine the first equation with the hypothesis v A ¢ = 0 to get
db=v A (vac)+vi(vAc)=c.

The last equality relies on (6.11)). Identity (C.9)) follows from (C.10)). The proof is complete.
]

In the setting of Sobolev spaces, we will only need the following simplified version of
Lemma

Lemma C.4. Let r € N\ {0}, k € {1,...,n} and p € (1,00). Let c € W"P(Qy, AF) be
such that v Ac =0 on Q}. Then there exists b € W H1P(Qy, AF=YY satisfying all over Q) :

db=c, 6b =0, b=0.
Moreover, there ezists a constant C = C(r,p,n) > 0 such that
blhwsa@u 0= Cllell o o

The proof of Lemma is essentially based on the same ideas as the one of Lemma
[C:3]and we omit it. However, it relies on a Sobolev version of Lemma which is more
delicate to prove than Lemma itself, see e.g. [43], Section 2.4.2].

Coming back to the setting of Holder spaces, we deduce from Lemma [C.3|an extension
property for closed forms. The difficulty here is that we require that the extension remains
closed.

Lemma C.5. Letr € N, k € {1,...,n} and a € (0,1). Let f € C"*(Q1,A¥) such that

df =0in Q1 and f Av =0 on Q). Then there exists an extension of f in Q) x [—1,1],
that we denote by f, such that

df =0 in Q) x [~1,1] and f=7f1inQ.

Moreover, there exists C = C(r,a,n) > 0 such that
1llrne@xi-11.40 = Cllfllore@ra;

Proof. We write f = Zl§i1<“_<ik§n firipdz™ A .. Adx®. Since v A f = 0 on @}, we
can rely on Lemma to construct Kk = 21§i1<...<ik,1§n Hil,..ik71d$il A ... A dx' -1 with
CrHe(Q) x [~1,0]) coefficients such that all over Q) :

dk = f, k=0, 0k =0 (C.11)
and when r > 1, for every j € {1,...,r}, for every 1 <ij < ... <ix_1 <mn,
oi+1 O o
mﬁil---ik—l = (—1)k lmfil---ik—1n7 lf Tk—1 < n, (012)
n n
§i+1
—0, if ip_y = n. (C.13)

—Kiy.i
8xn]+1 21U —1

Moreover there exists a constant C' > 0 such that

HHHCT+1,0¢(Q7/1X[_1’0])§ CHfHC’I‘,a(Qill)

If follows from the two facts K = 0 and dx = 0 that

0
%Hilmik72n =0, forevery 1 <i; < .. <ip_9 <n. (C.14)
n
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Indeed, since dx = 0, one has for iy_o < n,

IS( 1)7—1 Z 3I£i1...i—y—1ji«,...ik72+( 1)k—2 nil aliil...ik,gj_F( 1)k_285i1...ik,2n _ 0
=1 Iy —1<j<iy axj J=ik—2+1 axj O,

The first two terms of the above sum vanish, since kK = 0 on Q). Hence, the third term
vanishes as well. This proves . In the following, we just rely on and not on
the facts that kK =0, 6k = 0 on Q.

Finally, we define the desired extension of f as follows:

= | fl@) ifze@
o) = { di(z) ifze Q’i x [—1,0]. (C.15)

In order to justify that f has C™([0,1]"~! x [~1, 1]) coefficients, we only need to prove
that for every j € {0,...,7},

J J —
(9(1 (dr)(2',0) = (ijf(x',()), Vz' € Q) and j <. (C.16)

The case j = 0 follows from the fact that dx = f on Q). When j > 1, this amounts to
prove that

O (i) = 2

P, P ——(fi,..ip) on @), for every 1 <ij, < ... < i} < n. (C.17)
Tn

Let us first consider the case j = 1 (which implicitly means that we are in the case r > 1).
Fix 1 <141 < ... < i1 < i < n. By definition of the exterior differential operator, one
has . X
0 Ky £
d Y — )yl Metyetk C.18
By (@R)0) = L7 e (C.18)
Assume that i, = n. We then rely on (C.14) to deduce that on @, for every v < k,
11ty 1T
—— =0.
Oz, xp

In view of ((C.18)), we can conclude that

9 k7182’€i1~--i —1
%((dﬁ)il--ik) =(-1) (‘):c%k = o, 1.

Here in the second equality, we have used (C.12) with j = 1.
We next assume that i, < n. On @/, for every v € {1,...,k},

Rt 0K,
~ — _ a—lw
(@K); 7 in = ;( 1) D
k Ok, ~ ~ . ok. ~ .
+ _1)o Metyedan B Ykl |tttk
(XZZ’Y+1( ) Oz, - O
‘We then observe that
k 771 8,%. -~ ~ . k k (9/-{,. -~ ~ .
B D A Y B S L i AL 1)~ L _qyo_edasdy kg
vz:ﬂaﬂ( ey Oz, Oz, z:: :Z: - O, 0z;,
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In view of (C.18)), this implies that

ain <(d/€>i1...z’k> = (—1)F i(—l)v—laiw <(d/<a)i1“_i;“ikn>. (C.19)

Using that on @/, fz'l...f@...ikn = (dr),, £ iyn ONC gets

0 . L0
M((dﬁ)il...ik) = (-1)F 12(—1)7 183% fiv i

We now exploit the fact that (df)i,..ixn = 0 to deduce that the right hand side of the
above equality is equal to ax fir..ip,- This completes the proof of the case i, < n. We
have thus proved that ( - ) holds true when j = 1.

We now proceed by induction on j € {1,...,7}. Assume that the result is true for
some j — 1 € {1,...,r — 1}, namely,

3;'71 -1

P )@, 0) = L pl0), Vel e Q.

Let us prove it for j. Set

o7 o’
= and J = —
! ox), ! oxl,
We need to establish that 5 5
J—1y _ ¥ rj-1
Oxn, (dr’™) oy, /

This is the same proof as in the case j = 0 in view of the fact that df’~' = 0 on Q; by
the Schwarz lemma and dr/~! = f7=1 on @} by the induction assumption. We also rely
on the two following identities: for every i1 < -+ < ip_1 < m,

9 i~ o
67( gl..%ik_gik_l) = 07 lf lk—l = n;
o 0

—_— 1 .
Oz2 (Kf, i) = (=1) f1 i ymo ko1 <
n

The first equality follows from ((C.13) (and is a substitute to (C.14])) while the second one
is a consequence of ((C.12)). This completes the proof. O

We can now state the main result of this section, namely the Poincaré lemma in Holder
spaces defined on a cube, without any boundary condition:

Proposition C.6. Let r € N, k € {1,...,n} and o € (0,1). Let f € C"*(Q1,A*) such
that df =0 in Q1. Then there exists X € CTT5(Q1, A*~1) such that

dX =f inQ.

Moreover, the correspondence f +— X can be chosen linear and continuous. In particular,
there exists C = C(r,a,n) > 0 such that

1 XI[grera< Cllfllera-
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Proof. When k = n, one can rely on the extension property in Holder spaces, see Proposi-
tion there exists f € C™*(R", A") such that f|g5 = f and || f||cra@r any< C'HfHCT,a(@ Am)
for some C' = C(r,n) > 0. Since fis an n form, it is automatically closed. Applying the

classical Poincaré lemma (see e.g. [13, Theorem 8.3]) on a large ball B(0, R) containing
Q1, there exists X € C"t1%(B(0, R), A"~ 1) such that dX = f and

H)a|CT'+1,a(B(0,R),An71)§ CHchr,a(mAnq)S CHfHCT»a(Rn,Anfl)S C,Hchna(@,An—l)-

Then X = X |@ satisfies all the desired properties. This proves Proposition when
k = n. In particular, this settles the case n = 1.

We prove the result by induction on n € N,n > 1. Assume that the result is true
for some n > 1. We will prove that it holds for n + 1. Let & € {1,...,n + 1} and
f € C™(Qq, AF) such that df = 0.

We introduce the two following maps:

i e R (2/,0) € R” , 7 (2, x,) €ER" = 2’ € R*TL

We claim that i*f is closed on Q). This is obvious when r > 1 since one can write
d(i*(f)) =i*(df) = 0. When 7 = 0, we use that for every 6 € C°(Qq, A1),

/ (f,80) dz = 0.

1

We apply the above identity to 0(z', 2,) = ((2n)0 (2) with ¢ € C2°(0,1), 0" = > req, | 0hdx! €
C2(Q, A**1). Since 86 = (8¢, one has

C(f,80') dz = 0.
Q1

The Fubini theorem then implies

1
| ctande, [ (7,60 ) do' <0,
0 Q]
Since this is true for every ¢ € Cg°(0,1), we deduce therefrom that for every z, € (0, 1),
/ (f,80") (2, zy) d2’ = 0.
Q1
By continuity of f on Qq, this implies that
/ (f,60")(2,0)dz’ = 0.
@

Moreover, ' has no normal component, and the same is true for 86'.

Hence, (f,860")(2',0) = (i*f,80")(z'). It follows that

/ (i £, 80') da’ = 0.
Q

1
This proves that ¢* f is also closed in the sense of distributions.

_ We next construct a form Y € OT+1e(Q) x [~1,1], A*=1) such that v AdY = v A f on
@} and moreover

‘|Y|’CT+1,D<(Q7’1><[—1,1],A’“*1)§ CHfHCT»a(Qi’l,A’“)’
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where C' = C(r,a,n) > 0.

Applying the induction hypothesis to the closed form i*f on Q', there exists X’ €
Crrbe(Qh, AF1) such that dX =i* f on @7 with the corresponding estimate.

Set Y = 7*(X’). Then Y € C™*1%(Q} x [~1,1],A¥~!) and

i*(dY) = d(i*Y) = d(X') = i*f,
or equivalently, v AdY =v A f on Qi’l By definition of Y,
HY‘|Cr+1,a(Q7/1><[_171LAk71)S CHfHCT,oc(Qi/hAk)'

This completes the construction of Y.
_ Since v A (f —dY) =0 on Q}, we can rely on Lemma to construct an extension
f e ortba(Qy x [-1,1],A%) such that f = f —dY on Q1, df =0 on Q] x (—1,1) and

H?Hcr,a(Qﬁx[_LH,Ak)g Clif - dY”C’"’“(@J\’“)'

Then the map f = f + dY is an extension for f to Q' x [~1,1]. Moreover, df =0

and Hf||cr,a(Q7/1X[,171]7Ak)§ CHchna(@,Ak)'
We can repeat the same construction in every direction of the coordinate axes to obtain
an extension to [—1,2]", see Figure

Fommmmmm—————— B i L]
' ]

Figure C.1

We then replicate the whole construction sufficiently many times to get an extension to
[=J,7]", with j large enough to ensure that [—j, j]" contains a ball B(0, R) which contains
Q1. This yields a k form still denoted by f € C™(B(0, R), AF) such that df =0, f = f
on @ and Hf”crva(m,Ak)S Clliflra @y ary, With C = C(r,a,n) > 0.

We then apply the classical Poincaré lemma [13, Theorem 8.3] on the ball B(0, R) to

get )Z'Ne Cm+Le(B(0, R), A*~1) such that dX = f with the corresponding estimate. Then
X=X |@ satisfies all the desired properties.

O
Finally, we state the analogue of Proposition in the setting of Sobolev spaces:

Proposition C.7. Let s € [0,+00), k€ {1,...,n} and p € (1,00). Let f € W*P(Q1,A¥)
such that df =0 in Q, 1 < k < n. Then there exists X € WtLP(Qy, AF~1) satisfying

dX =f inQ.

Moreover, the correspondence f — X can be chosen linear and continuous. In particular,
there exists C = C(s,p,n) > 0 such that

[ X [wet10 < Cllfllwsr.
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Proof. The above statement corresponds to [12, Proposition 4.1 (i)] where we replace the
scale of H® spaces by the scale of W*P spaces, which is possible in view of [12, Remark

3.5]. O

In fact, the Bogovskii construction described in [12] can be performed in the whole scale
of Besov spaces, see [12, Remark 3.5]. Since Holder spaces can be seen as particular Besov
spaces, this can be used to give an alternate proof to Proposition We have preferred
to give an explicit construction, based on the Poincaré lemma on smooth domains.

[9]
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