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Abstract

In this thesis, we study some boundary value problems involving micromagnetic
models and differential forms.

In the first part, we consider a nonlocal Ginzburg-Landau model arising in mi-
cromagnetics with an imposed Dirichlet boundary condition. The model typically
involves S2-valued maps with an energy functional depending on several parameters,
which represent physical quantities. A first question concerns the compactness of
magnetizations having the energies of several Néel walls of finite length and topo-
logical defects when these parameters converge to 0. Our method uses techniques
developed for Ginzburg-Landau type problems for the concentration of energy on
vortex balls, together with an approximation argument of S2-valued vector fields by
S1-valued vector fields away from the vortex balls. We also carry out in detail the
proofs of the C∞ regularity in the interior and C1,α regularity up to the boundary,
for all α ∈ (0, 1

2
), of critical points of the model.

In the second part, we study the Poincaré lemma, which states that on a simply
connected domain every closed form is exact. We prove the Poincaré lemma on
a domain with a Dirichlet boundary condition under a natural assumption on the
regularity of the domain: a closed form f in the Hölder space Cr,α is the differential
of a Cr+1,α form, provided that the domain itself is Cr+1,α. The proof is based on a
construction by approximation, together with a duality argument. We also establish
the corresponding statement in the setting of higher order Sobolev spaces.
Keywords: compactness, critical point, Dirichlet condition, divergence equation, Hölder
and Sobolev spaces, harmonic maps, Néel wall, micromagnetics, Poincaré lemma, regular-
ity, vortex, Ginzburg-Landau theory.
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Résumé

Dans cette thèse, nous étudions des problèmes aux limites impliquant le modèle micro-
magnétique et les formes différentielles.

Dans la première partie, nous considérons un modèle non-local de Ginzburg-Landau
apparaissant en micromagnétisme avec une condition au bord de type Dirichlet. Le modèle
typique implique une fonctionelle d’énergie définie pour des applications des valeurs dans la
sphère S2 et qui depend de plusieurs paramètres, qui représentent des quantités physiques.
Une première question concerne la compacité des aimantations ayant les énergies de
quelques parois de Néel de longueur finie et des défauts topologiques lorsque ces paramètres
convergent vers 0. Notre méthode utilise des techniques développées pour les problèmes
de type Ginzburg-Landau sur la concentration d’énergie autour des vortex, avec un argu-
ment d’approximation des champs de vecteurs dans S2 par des champs de vecteurs dans
S1 éloignés des vortex. Nous effectuons également en détail la preuve de la régularité C∞

à l’intérieur et la régularité C1,α au bord, pour tous les α ∈ (0, 1
2), des points critiques du

modèle.
Dans la deuxième partie, nous étudions le lemme de Poincaré qui affirme que sur un

domaine simplement connexe chaque forme fermée est exacte. Nous prouvons le lemme de
Poincaré sur un domaine avec une condition aux limites de Dirichlet sous une hypothèse
naturelle sur la régularité du domaine : une forme fermée f dans l’espace Cr,α est la
différentielle d’une forme Cr+1,α à condition que le domaine lui-même soit Cr+1,α. La
preuve est basée sur une construction par approximation, avec un argument de dualité.
Nous établissons également le résultat correspondant dans le cadre d’espaces de Sobolev
d’ordre supérieur.
Mots cléfs: compacité, point critique, condition de Dirichlet, équation de divergence,
espaces de Hölder et de Sobolev, application harmonique, paroi de Néel, micromagnétisme,
lemme de Poincaré, régularité, vortex, théorie de Ginzburg-Landau.
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Je remercie également touts les collègues de l’IMT, en particulier Martine, Isabelle,
Agnès, Tamara pour leur grande disponibilité, générosité et leur aide. Je tiens à remercier
mes amis en France qui m’ont soutenu pendant mes années à Toulouse: nha Max (Hang-
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Finalement, de tout mon coeur, j’aimerais exprimer toute ma gratitude à mes parents
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II On the Poincaré Lemma on domains 59

4 Introduction and statements of the main results 61
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C Extension of closed forms in Hölder and Sobolev spaces 125
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Chapter 1

Introduction

1.1 Micromagnetics

Micromagnetics is a field of physics that deals especially with the behavior of ferromag-
netic materials at very small length scales. In this theory, the ferromagnetic material is
characterized by a 3D vector-field distribution, called magnetization. The micromagnetic
model consists in associating to the magnetization a micromagnetic energy, whose local
minimizers represent the stable magnetization of the ferromagnetic body. The associated
variational problem is non-convex and non-local which make it difficult to solve analyti-
cally. Moreover, the multi-scale complexity of the micromagnetic functional creates a lot
of asymptotic regimes, depending on the relation between the material and geometrical
parameters. This leads to formation of several magnetization patterns.

One of the most extensively researched topics is the qualitative and quantitative anal-
ysis of magnetization patterns. Since there are several distinct regimes, by identifying and
exploring these regimes, we obtain various type of magnetic walls: 2D wall defects (Néel
wall, Bloch walls), 1D vortex-lines (Bloch lines), boundary vortices. We aim to justify
mathematically the physical prediction on the formation and description of these defects.

1.2 The three-dimensional ferromagnetic model

with Dzyaloshinsky-Moriya interaction

The open set ω ⊂ R3 denotes the ferromagnetic sample that will be considered later
as a cylinder. The magnetization of the ferromagnet ω can be described by a three-
dimensional unit-length vector field m = (m1,m2,m3) : ω → S2. In the classical theory of
micromagnetics (see the book of Hubert and Schäfer [28], also [19]), the free energy per
unit volume of such a magnetization takes the form

E3D = d2

∫
ω
|∇m|2dx+Q

∫
ω
ϕ(m)dx+

∫
R3

|∇U |2dx−2

∫
ω
Hext.mdx+

∫
ω
wD(m)dx. (1.1)

Let us now explain and comment on these five terms.

(i) The first term is called the exchange energy. It penalizes spatial variations of m
through the Dirichlet integral of m. The constant d is the exchange length. It is an
intrinsic parameter of the material of the order of nanometers.

(ii) The second term is the anisotropy energy which refers to the fact that the properties
of a magnetic material are dependent on the directions in which they are measured.
The energy density ϕ is a non negative function called the anisotropy energy density.
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Chapter 1

It is typically a polynomial with symmetry properties inherited from the crystalline
lattice. The zeros of ϕ stands for the preferred directions of magnetizations. For
instance, ϕ(m) = m2

3 favors the easy plan as the horizontal one. The constant Q
is a second intrinsic parameter of the material that measures the strength of the
anisotropy energy relative to the strength of the exchange and stray-field energy.
According to the values of the constant Q, one distinguishes ferromagnetic materials
into two broad classes: soft materials (Q < 1) and hard materials (Q > 1).

(iii) The third term is the energy of the stray field (or the magnetostatic energy), where
the stray-field potential U : R3 → R is generated by the magnetization m through
the classical Maxwell equation for electrostatics, that is given by

−∆U = ∇.(m1ω) in R3, (1.2)

i.e.,

∫
R3

∇U.∇ξdx = −
∫
ω
m.∇ξdx, ∀ξ ∈ C∞0 (R3).

In view of (1.2), there are two sources of stray field ∇U : magnetic volume charges
(with volume charge density ∇.m in ω) and magnetic surface charges (with surface
charge density ν.m on ∂Ω, where ν is the normal component of boundary ∂ω).

(iv) The fourth term is the external field energy generated by an applied external field
Hext : R3 → R3. It favors alignment of the magnetization with the external field
Hext.

(v) Finally, the last term is the energy connected with the Dzyaloshinsky-Moriya inter-
action wD which is considered here in the following form (see Bogdanov and Hubert
[3])

wD = D1w1 +D2w2 +D3w3

= D1(m1∂x2m3 −m2∂x1m3 +m3(∂x1m2 − ∂x2m1))

+D2(m3∂x1m1 −m1∂x1m3 +m3∂x2m2 −m2∂x2m3) (1.3)

+D3(m1∂x3m2 −m2∂x3m1),

with arbitrary coefficients Di. The term w1 in (1.3) favors the Bloch-like spirals.
While the term w2 favors a rotation along the propagation direction of a spiral
structure, as in a Néel wall. Such a rotation is necessarily connected with the
stray-field. The last term w3 in (1.3) favors the formation of spiral structures with
propagation vectors along the crystal axis (x3- axis).

1.3 A reduced two dimensional thin-film model

In this section we will discuss thin magnetic films which involve several length scales:
We assume that the ferromagnetic sample is a cylinder

ω = ω′ × (0, t)

of height t and we denote by l a typical length of the base ω′ ⊂ R2. This film regime
means that the aspect is small, i.e.,

h :=
t

l
� 1. (1.4)

It entails that the variations of m in the third variable are strongly penalized by the energy.
Heuristically, we assume that m depends only on the horizontal variable x′ = (x1, x2)

m(x) = (m′,m3)(x′) : ω → S2 (1.5)

6



Chapter 1

and

m varies on length scales � t

l
. (1.6)

The external field Hext is assumed being in-plane and invariant in x3 , i.e.,

Hext(x) = (H ′ext(x
′), 0).

Notations: in this part, the prime ′ always indicates a 2D quantity. We denote a� b if
a
b → 0 and a . b if a ≤ Cb for some universal constant C > 0.

Using configuration (1.5), the Dzyolashinsky-Moriya interaction reduces as follows:∫
ω
wD(m)dx =

∫
ω
(D1w1 +D2w2)dx

=

∫
ω

(
D1(m.∇′ ×m) +D2(m3∇′.m′ −m′.∇′m3)

)
dx, (1.7)

where
m.∇′ ×m = −m3∂x2m1 −m2∂x1m3 +m3∂x1m2 +m1∂x2m3.

The change of variables x′ 7→ x̃′ = x′

l ∈
ω′

l rescales ω to a set ω̃ = ω̃′ × (0, h) with

diam(ω′) = 1, the external field to H̃ ′ext(x̃
′) = H ′ext(x

′) and the magnetization m̃(x̃′) =
m(x′). Then, it reduces the exchange, anisotropy, external field and the Dzyolashinsky-
Moriya energies to the following form∫

ω

(
d2|∇m|2+Qϕ(m)− 2Hext.m+ wD(m)dx

)
dx

= td2

∫
ω̃′
|∇̃′m̃′|2dx̃′ + tl2

∫
ω̃′

(
Qϕ(m̃)− 2H̃ ′ext.m̃

′
)
dx̃′ (1.8)

+tl

∫
ω̃′

(
D1(m̃.∇̃′ × m̃) +D2(m̃3∇̃′.m̃′ − m̃′.∇̃′m̃3)

)
dx̃′. (1.9)

Since (1.5), the Maxwell equation (1.2) implies that

−∆U = ∇′.m′1ω −m.ν1∂ω in R3, (1.10)

here ν is the unit outer normal vector on ∂ω. In view of (1.10), there are two sources
of stray field ∇U ; that is, the magnetic volume charges which are given by the in-plane
flux ∇′.(m′1ω) and the magnetic surface charges on the top and the bottom side of the
cylinder which are presented by the third component of the magnetization and the lateral
charges m′.ν. Moreover, since (1.10), the non-local magnetostatic energy can be computed
by considering the Fourier transform in the horizontal variables,

F(m′1ω′)(ξ
′) =

1√
2π

∫
R2

e−iξ
′.x′m(x′)1ω′(x

′)dx′ for ξ′ ∈ R2.

One gets (cf. Ignat [29]):∫
R3

|∇U |2dx = t

∫
R2

f(
t

2
|ξ′|)| ξ

′

|ξ′|
· F(m′1ω′)|2dξ′ + t

∫
R2

g(
t

2
|ξ′|)|F(m31ω′)|2dξ′,

where

g(s) =
1− e−2s

2s
and f(s) = 1− g(s) for every s ≥ 0.

In view of (1.6), then the Fourier transform of m is concentrated on wave vectors ξ′ of
order t/l. Assumption (1.4) implies that the arguments of f and g are small in the range
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of ξ′. We then approximate g(s) ≈ 1 and f(s) ≈ s. Rescaling in the length scale l of ω′,
the stray-field energy is approximated as follows (see DeSimone, Kohn, Müller and Otto
[17], Kohn and Slastikov [36]):∫

R3

|∇U |2dx ≈ t2l

2
||(∇̃′.m̃′)ac||2Ḣ−1/2(R2)

+
t2l

2π
|log

l

t
|
∫
∂ω̃′

(m̃′.ν̃)2dH1 + tl2
∫
ω̃′
m̃2

3. (1.11)

Thus, the stray-field energy asymptotically decomposes into three terms in the thin-film
regime. The first one is penalizing the volume charges

(∇̃′.m̃′)ac = ∇̃′.m̃′1ω̃′ ,

as an homogeneous Ḣ−
1
2 -seminorm and induces the leading order of the energy of Néel

walls. The second term counts the lateral charges m̃′.ν̃ in the L2-norm and it is responsible
for the nucleation of boundary vortices The third term penalizes the surface charges m̃3

on the top and bottom of the cylinder and leads to interior vortices (so called Bloch lines).
Summing up (1.8), (1.11), we deduce the following reduced two dimensional thin-film

energy:

Ered(m̃) = td2

∫
ω̃′
|∇̃′m̃|2dx̃′ + t2l

2

∫
R2

∣∣∣∣|∇̃′|−1/2(∇̃.m̃′)ac
∣∣∣∣2dx̃′

+
t2l

2π
|log

l

t
|
∫
∂ω̃′

(m̃′.ν̃)2dH1 + tl2
∫
ω̃′

(
m̃2

3 +Qϕ(m̃)− 2H̃ ′ext.m̃
′
)
dx̃′.

+tl

∫
ω̃′

(
D1(m̃.∇̃′ × m̃) +D2(m̃3∇̃′.m̃′ − m̃′.∇̃′m̃3)

)
dx̃′. (1.12)

Scaling the energy at order of td2, and omitting , the above reduced energy can be written
as the following functional:

Eε,η,κ(m) =

∫
Ω
|∇′m|2dx′ + 1

η
||(∇′.m′)ac||2Ḣ−1/2(R2)

+
| log 2ε2

η |
πη

∫
∂Ω

(m′.ν)2dH1 +
1

ε2

∫
Ω

(
m2

3 +Qϕ(m)− 2Hext.m
′
)
dx′

+κ1

∫
Ω
m.∇′ ×mdx′ + κ2

∫
Ω

(m3∇′.m′ −m′.∇′m3)dx′, (1.13)

where ε = d/l, η = 2d2/(tl), κ = (κ1, κ2) = (lD1/d
2, lD2/d

2) and Ω = ω′. For the conve-
nience, from now on, we denote by

∫
ΩDM(m)dx′ the last term in (1.13), that is,∫

Ω
DM(m)dx′ = κ1

∫
Ω
m.∇′ ×mdx′ + κ2

∫
Ω

(m3∇′.m′ −m′.∇′m3)dx′.

According to the specific thin-film regime, three types of singular pattern of the magne-
tization occur (see DeSimone, Kohn, Müller and Otto [17], Ignat [29]): Néel walls, interior
vortices and boundary vortices. In fact, the formation of one of these patterns depends
on the scale ordering of the three terms in the RHS of (1.11). Let us now discuss a non-
local Ginzburg-Landau model which is strongly motivated by the above two-dimensional
ferromagnetic energy.

1.4 A non local Ginzburg-Landau model

Let Ω ⊂ R2 be a bounded simply-connected domain with a C1,1 boundary and let
g : ∂Ω→ S1 be a C1,1 function satisfying

deg(g, ∂Ω) = d > 0.

8



Chapter 1

Here, the degree of a C1- function g : ∂Ω → S1 is defined on the boundary ∂Ω with the
unit tangential vector τ :

deg(g, ∂Ω) :=
1

2π

∫
∂Ω

det(g, ∂τg)dH1.

If g : ∂Ω→ R2 is C1- function with |g|> 0, we set deg(g, ∂Ω) = deg ( g
|g| , ∂Ω). The notion

of degree can be extended to continuous fields and more generally, VMO vector fields, in
particular H

1
2 (∂Ω, S1) (see Brezis and Nirenberg [10]).

We consider m = (m1,m2,m3) : Ω→ S2 be a vector field with the Dirichlet condition:

m = (m′,m3) = (g, 0) on ∂Ω, (1.14)

and the following micromagnetic energy functional:

Eε,η,κ(m) =

∫
Ω
|∇′m|2dx′+ 1

ε2

∫
Ω
m2

3dx
′+

1

η
||(∇′.m′)ac||2Ḣ−1/2(R2)

+

∫
Ω
DM(m)dx′, (1.15)

where

(∇′.m′)ac = ∇′.m′1Ω. (1.16)

We emphasize that model (1.15) is motivated by the reduced thin-film model (1.13). In
fact, we may ignore the anisotropy and external field terms - they can always be made to
interact with the surviving terms by scaling Q and H ′ext appropriately. The third term of
(1.13) is considered as the penalizing of the lateral charges m′.ν in L2(∂Ω)-norm. Then
if m′.ν = 0 on ∂Ω and Q = 0, H ′ext = 0, then the reduced thin film model (1.13) can be
written exactly as in model (1.15). Moreover, the first and second terms in (1.15) are
reminiscent to the Ginburg-Landau energy. In the case of boundary condtion m′.ν = 0
on ∂Ω, the concentration of Ginzburg-Landau energy around one interior vortex or two
boundary vortices is proved by Ignat and Otto (see [33, Theorem 3]). Here we want
to generalize the vector fields tangent at the boundary by one satisfying the Dirichlet
boundary condition (1.14).

In this work, we shall study the reduced two dimensional films with the Dzyaloshinsky-
Moriya interaction term given by∫

Ω
DM(m)dx′ = κ1

∫
Ω

(m3∇′.m′ −m′.∇′m3)dx′ + κ2

∫
Ω
m.∇′ ×mdx′, (1.17)

where

m.∇′ ×m = −m3∂x2m1 −m2∂x1m3 +m3∂x1m2 +m1∂x2m3.

The parameter κ = (κ1, κ2) appearing in the Dzyaloshinsky-Moriya energy, stands for the
Dzyaloshinsky-Moriya interaction parameter.

The principal questions we shall discuss are the compactness and regularity of mini-
mizer of the non-local energy Eε,η,κ in a certain regime.

The compactness is presented in Chapter 2. For that, we are interested in the asymp-
totic behavior of minimizers of the energy Eε,η,κ in the regime

ε� 1, η � 1 and |κ|� 1.

The singular patterns expected in this context are the Néel walls together with topological
defects (due to the boundary condition (1.14)) standing for interior vortices. The regime
where we study corresponds to the case where topological defects is energetically more
expensive than the Néel wall. Now we shall informally explain how the principle of pole
avoidance leads to the formations of walls and vortices.

9



Chapter 1

Vortices. The competition between the exchange energy and the penalization of the
m3 component will try to enforce the condition m3 = 0. Together with the boundary con-
dition (1.14), this explains the formation of interior vortices. Here m′ carries topological
degree, deg(m′, ∂Ω) = d. One expects the nucleation of interior vortices of core-scale ε.
The scaling of the vortex energy is strong related to the Ginzburg-Landau energy (see the
seminar book of Bethuel, Brézis and Hélein [2]):

min
m′∈H1(Ω,R2)

m′=g on ∂Ω

∫
Ω
Gε(m

′)dx′,

where the Ginzburg-Landau density energy is given by the following:

Gε(m
′) := |∇′m′|2+

1

ε2
(1− |m′|2)2.

The energetic cost of our vortices is given by

2πd|log ε|+O(1).

Néel walls. The stray field tries to enforce the divergence-free condition for m′.
Moreover, the Dzyaloshinsky-Moriya term also sharpens that condition. Therefore, at the
mesoscopic level of magnetization in thin films, we expect

|m′|= 1 and ∇′.m′ = 0 in Ω. (1.18)

We note that (1.14) implies m′.ν = g.ν on the boundary. In general, the combination
of this condition, (1.18) are too rigid for smooth magnetization m′. This can be seen by
writing m′ = ∇′⊥φ with the help of a “stream function” φ. Then (1.18) and (1.14) turn
into a Dirichlet problem for the eikonal equation in φ:

|∇′⊥φ|= 1 in Ω and ∇′⊥φ.ν = g.ν on ∂Ω.

Hence, the divergence-free equation in (1.18) has to be interpreted in the distribution
sense and it is expected to induce line-singularities for solutions m′ . These ridges are
an idealization of the wall formation in thin-film elements at the microscopic level. They
are replaced by smooth transition layers where the magnetization varies very quickly, see
Figure 1.1. Let us recall that the energy Eε,η,κ per unit length of a Néel wall of angle 2θ

Figure 1.1: Néel wall of angle 2θ confined in [−1, 1].

(with θ ∈ (0, π2 ]) is given in DeSimone, Kohn, Muller and Otto [18], Ignat and Otto [32]
(see also Ignat [30]):

π(1− cos θ)2 + o(1)

η|log η|
as η → 0.

10
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Compactness. The first problem we discuss here is the asymptotic as ε, η → 0, |κ|→
∞ of families of two dimensional magnetizations when the energy Eε,η,κ(m) is of order

O(
1

η|log η|
) + 2πd|log ε|.

One of the issues we discuss is the question of the L1 compactness of these families of
magnetizations. The issue consists in rigorously justifying that the constraint |m|= 1 is
conserved by the limit configuration as ε, η → 0, 1/|κ|→ ∞. We emphasize that the regime
that we prove the compactness result corresponds to the case where a topological defect
is more expensive than the Néel wall. More precisely, we have the following:

Theorem 1.1. Let Ω ⊂ R2 be a bounded simply-connected domain with a C1,1 boundary
and g : ∂Ω → S1 be a smooth function satisfying deg(g, ∂Ω) = d ∈ Z\{0}. We consider
the following regime between the parameters ε→ 0, η = η(ε) and κ = κ(ε) such that:

|κ|. 1

ε|log ε|
,

1

η|log η|
� |log ε|.

For each ε, consider a H1(Ω, S2) vector field: mε : Ω→ S2 such that:

m′ε = g on ∂Ω

and

Eε,η,κ(mε)− 2dπ|log ε| . 1

η|log η|
.

Then {mε}ε is relatively compact in Lploc(Ω, S
2) for p ∈ [1,∞) and any accumulation point

m : Ω→ S2 satisfies

m3 = 0, |m′|= 1 in Ω and ∇′.m′ = 0 in D′(Ω).

The above result gives us the compactness in the interior of domain. It may be of
interest to know whether the above sequences of magnetization are relatively compact
on the boundary. Does their limit still satisfy the Dirichlet condition? The answer is
negative in general. We shall prove this by constructing a sequence (mη)η that satisfies
the upper bound as Theorem 1.1 that has a Néel wall going to the boundary, so the
boundary condition (1.14) fails to be true. In fact, we are going to construct the sequence
mη : Ω → S1, (so the third component of mη vanishes). The cost of such configuration
now is O( 1

η|log η|). The idea that mη may have Néel walls tending to the boundary.

Theorem 1.2. Let Ω = (0, 1) × (−1, 1). In the regime η � 1, there exists a C1 vector
field mη : Ω→ S1 and g : Γ = {0} × (−1, 1) ⊂ ∂Ω→ S1 which satisfy

mη = g on Γ ⊂ ∂Ω, ∀η � 1.

mη → m in L1
loc(Ω) as η → 0,

and

Eε,η,κ = O(
1

η|log η|
).

But m 6= g on Γ ⊂ ∂Ω.

Regularity. In Chapter 3, we study the regularity of critical points of the energy
Eε,η,κ, which are subject to the Dirichlet boundary condition (1.14). For that, we consider
Ω be C1,1 domain and a magnetization m = (m′,m3) : Ω→ S2 satisfying

m = (g, 0) on ∂Ω,

11
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where g : ∂Ω→ S1 is a C1,1 function.
Denote

H1
g (Ω,S2) := {u ∈ H1(Ω,R3) : |u(x)|= 1 a.e , u = (g, 0) on ∂Ω}

and

Eε,η,κ(m) =

∫
Ω
|∇′m|2dx′ + 1

ε2

∫
Ω
m2

3dx
′ +

1

η
||(∇′.m′)ac||2Ḣ−1/2(R2)

+

∫
Ω
DM(m)dx′,

where (∇′.m′)ac is defined as in (1.16). The existence of minimizers of Eε,η,κ follows
with the help of the direct method of the calculus of variations and the compact Sobolev
embedding H1(Ω) ↪→ Lq(Ω) for 1 ≤ q < ∞. Critical points of Eε,η,κ on H1

g (Ω, S2) satisfy
the Euler-Lagrange equation

−∆m−m|∇′m|2−1

η

(
H
0

)
+

1

η
(m′.H)m+

1

ε2
((0, 0,m3)−m2

3m)

+ κ1(Id−m⊗m)∇′ ×m+ κ2

((
−∇′m3

∇′.m′
)

+ (∇′m3.m
′ −m3∇′.m′)m

)
= 0 (1.19)

in Ω, where H = ∇′U(·, 0) is the stray field in the plane and

∇′ ×m = (∂x2m3,−∂x1m3, ∂x1m2 − ∂x2m1).

The above equation can be seen as a perturbation of the harmonic map for S2-valued maps
equation. We shall use regularity result of Wente (see [49]) which yields the regularity in
the interior of Ω.

Those proofs also show that m is continuous up to the boundary. In order to obtain a
higher regularity result at the boundary, we need to handle not only the non-local term,
but also the imposed boundary condition (1.14). Compared with the theories related to
the harmonic maps, the non-local term does not allow to get a monotonically formula
which is the principal feature in the partial regularity of the stationary critical point of
harmonic maps (see Hardt, Kinderlehrer and Lin [24], also Evans [20]). In [23], Hardt and
Kinderlehrer used the almost minimizers definition to tackle a different non-local term.
For that, one assumes the natural boundary condition; that is, ∂m

∂ν = 0, where ν is the
unit outer normal vector. Their method can not apply to our imposed boundary condition
(1.14). Finally, we state the regularity results.

Theorem 1.3. Let Ω be a domain of C1,1, g ∈ C1,1(∂Ω, S1) and m ∈ H1
g (Ω, S2) be a

solution of (1.19). Then m ∈ C∞(Ω) ∩ C1,α(Ω), for all α ∈ (0, 1
2).

12



Chapter 2

A compactness result in a
non-local Ginzburg-Landau model
arising in thin ferromagnetic films

Abstract

We analyze the behavior of minimizers in an asymptotic regime for a non-local Ginzburg-
Landau model arising in a thin film micromagnetics where the Dzyaloshinsky-Moriya
interaction is taken into account. It consists in a free energy functional depending on
parameters ε, η and κ and defined over vector fields m : Ω → S2 that satisfy a Dirichlet
boundary condition. We are interested in the behavior of minimizers as ε, η, 1/|κ| → 0.
They are expect to be asymptotically S1- valued maps away from regions of length of scale
ε where intrinsic vortices nucleate and of vanishing divergence away of regions of lengths
of η where Néel walls nucleate. We establish compactness of the magnetizations in the
energetic regime where Néel walls are cheaper than vortices. We also give an example
where the lack of compactness at the boundary occurs.

2.1 Introduction

In thin ferromagnetic films, variations of the magnetization in thickness direction are
strongly penalized. This leads to a reduced two-dimensional variational model where
the magnetization is described by a S2-valued map defined on a 2D domain. The aim
of this Chapter is to study the asymptotic regime for thin ferromagnetic films where
the Dzyaloshinsku-Moriya interation is taken into account and allows the occurrence of
transition layers (Néel walls) and topological defects (vortices).

2.1.1 Model

We will focus on the following two dimensional model for thin ferromagnetic films.
For that, let Ω ⊂ R2 be a bounded simply-connected domain with a C1,1 boundary and
g : ∂Ω→ S1 be a C1,1 function satisfying

deg(g, ∂Ω) = d.

We consider m = (m1,m2,m3) : Ω→ S2 be a vector field with the Dirichlet condition

m = (m′,m3) = (g, 0) on ∂Ω, (2.1)

13



Chapter 2

where m′ = (m1,m2) is the in plane component of the magnetization m. We consider the
following micromagnetic energy functional:

Eε,η,κ(m) =

∫
Ω
|∇′m|2dx′ + 1

ε2

∫
Ω
m2

3dx
′ +

1

η

∫
R2

∣∣∣|∇′|−1/2(∇′.m′)ac
∣∣∣2 dx′ + ∫

Ω
DM(m)dx′

(2.2)
where ε, η > 0 are two small positive parameters, κ is a parameter inside the Dzyaloshinsky-
Moriya interaction term and is discussed later . Here x′ = (x1, x2) are the in-plane variables
with the differential operator

∇′ = (∂x1 , ∂x2),

and the third variable is denoted by x3.

The first term of (2.2) is called the exchange energy. The second and third terms
are derived form the stray field energy (see Section 1.4). The second term penalizes the
surface charges m3 on the top and bottom of the magnetic cylinder. While the third term
counts the penalization of the volume charges ∇′.m′.
Using Fourier transform in the horizontal variables, the non-local term in the energy can
be equivalently expressed in term of L2-norm of the stray-field ∇Uac:∫

R2

∣∣∣|∇′|−1/2(∇′.m′)ac
∣∣∣2 dx′ = ∫

R2

1

|ξ|
|F(∇′.m′)ac|2dξ = 2

∫
R3

|∇Uac|2dx

Here we denote

(∇′.m′)ac = ∇′.m′1Ω

and Uac : R3 → R is the stray field potential which is determined by static Maxwell’s
equation in weak sense:∫

R3

∇Uac(x).∇ζ(x)dx =

∫
Ω
∇′.m′(x′)ζ(x′, 0)dx′ for every ζ ∈ C∞0 (R3). (2.3)

The fourth term is the energy connected with the Dzyaloshinsky-Moriya interaction
(shorten by DM), which is a relativistic effect stemming from spin-orbit coupling and the
lack of inversion symmetry and given by∫

Ω
DM(m)dx′ = κ1

∫
Ω
m.∇′ ×mdx′ + κ2

∫
Ω

(m3∇′.m′ −m′.∇′m3)dx′

= κ1

∫
Ω

(m1∂x2m3 −m2∂x1m3 +m3∂x1m2 −m3∂x2m1)dx′

+κ2

∫
Ω

(m3(∂x1m1 + ∂x2m2)−m1∂x1m3 −m2∂x2m3)dx′, (2.4)

where κ = (κ1, κ2) arbitrary.

Essential features of this variational model are the non-convex constraint |m|= 1 and
the non-locality of the stray field interaction. In this model, we expect asymptotically
two types of singular patterns: singularity lines and vortices. These patterns result from
the competition between the different contributions in the total energy Eε,η,κ(m) with
boundary condition (2.1). Let us explain these structures in the following.

Néel walls. A Néel wall is a transition layer describing a one-dimensional in-plane
rotation connecting two directions of the magnetization. More precisely, it is a one-
dimensional transition m′ = (m1,m2) : R→ S1 that minimizes the energy under boundary
constraint m(±x1) = (cos θ,± sin θ), for x1 ≥ 1, θ ∈ [0, π/2) :

Eη(m) =

∫
R

∣∣∣∣ dmdx1

∣∣∣∣2dx1 +
1

η

∫
R

∣∣∣∣∣∣∣∣ ddx1

∣∣∣∣1/2m1

∣∣∣∣2dx1,
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where θ ∈ [0, π2 ] and η > 0 stand for the angle and core of the wall, respectively.
It follows that the minimizer is a two length scale object: it has a small core with fast
varying rotation and two logarithmically decaying tails. As η → 0, the scale of the Néel
core is given by |x1|. ωcore = O(η) while the two logarithmic decaying tails scale as
ωcore . |x1|. ωtail = O(1), see Melcher [38]. The energetic cost (by unit length) of Néel is
given in DeSimone, Kohn, Muller and Otto [18], Ignat and Otto [32] (see also Ignat [30])
by:

π(1− cos θ)2 + o(1)

η|log η|
as η → 0.

Vortices. Vortices correspond in our model to topological singularities at the micro-
scopic level where the magnetization points out-of-plane. The prototype of a vortex vector
field is given by minimizing the energy:

Eε(m) =

∫
Ω
|∇′m′(x′)|2dx′ + 1

ε2
m2

3dx
′

under the constraint that m ∈ H1(Ω, S2) and m′ = g on the boundary ∂Ω. Since m2
3 =

1−|m′|2 for S2-valued map m, it is strongly related to the minimal Ginzburg-Landau (GL)
energy (see Bethuel, Brézis and Hélein [2]):

min
m′∈H1(Ω,R2)

m′=g on ∂Ω

∫
Ω
Gε(m

′)dx′,

where the GL density energy is given by the following:

Gε(m
′) := |∇′m′|2+

1

ε2
(1− |m′|2)2.

The energetic cost of our vortices is given by

2πd|log ε|+O(1),

because deg(m′, ∂Ω) = d. By Ginzburg-Landau theory, d localized regions are created,
those regions are the cores of the vortex of size ε, where the magnetization becomes indeed
perpendicular to the horizontal plane.

Compactness. We are interested in the following asymptotic regime

ε� 1,
1

η|log η|
� |log ε| and |κ|. 1

ε|log ε|
, (2.5)

where κ = (κ1, κ2).
We also consider families of magnetization mε satisfying the energy bounded

Eε,η,κ(mε)− 2dπ|log ε| . 1

η|log η|
, (2.6)

that is satisfied particular by minimizer of Eε,η,κ. By the regime assumption, it implies
that the size ε of the vortices is smaller exponentially than the size of the Néel wall core η.
We first detect the topological defect regions, which are d vortex cores of size ε. Then we
use an argument of approximating S2-valued magnetization by S1-valued magnetization
away from these vortex cores. This result is due to Ignat and Otto [32]. We expect the
limiting magnetization m satisfies ∇′.m′ = 0 and m3 = 0 in Ω. Together with the Dirichlet
boundary condition (2.1) and the expected condition ∇′.m′ = 0 in Ω, we shall arrive that

∇′.m′ = 0 and m3 = 0 in Ω and m′.ν = g.ν on ∂Ω. (2.7)
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We notice that the conditions ∇′.m′ = 0 in Ω and m′.ν = g.ν on ∂Ω are interpreted in the
distributional senses. In general, the conditions (2.7) is too rigid for smooth magnetization
m. Indeed, writing m′ = −∇′⊥ψ leads to the eikonal equation

|∇′ψ|= 1 in Ω and ∇′⊥ψ.ν = −g.ν on ∂Ω.

As deg(g, ∂Ω) 6= 0, it follows that there is no smooth solution of that problem. On the
other hand, there are many continuous solutions ψ that satisfy the above equation away
from a set of vanishing Lebesgue measure (in particular singularity lines).

Lack of compactness on the boundary of the domain. We are also interested in
the compactness of the above magnetizations m at the boundary ∂Ω. Here we note that,
by the limiting condition ∇′.m′ = 0 and |m′|≤ 1 in Ω, we obtain the compactness of the
normal component of the magnetizations on the boundary. The loss of compactness on
the boundary occurs only in the tangential component.

2.2 Main Results

The notation: We always denote a � b if a
b → 0 and a . b if a ≤ Cb for some

universal constant C.
Our main result concerns the local compactness of the S2-valued magnetizations in a
certain regime.

From now on, we always think U = Uac, and ∇′.m′ = (∇′.m′)ac = ∇′.m′1Ω.

Here Uac is stray field potential which is defined as in (2.3).

Theorem 2.1. Let Ω ⊂ R2 be a bounded simply-connected domain with a C1,1 boundary
and g : ∂Ω → S1 be a C1,1 function satisfying deg(g, ∂Ω) = d ∈ Z\{0}. We consider the
following regime between the parameters ε� 1, η = η(ε) and κ = κ(ε):

|κ|. 1

ε|log ε|
,

1

η|log η|
� |log ε|. (2.8)

For each ε, consider a H1(Ω,S2) vector field: mε : Ω→ S2 such that:

m′ε = g on ∂Ω,

and

Eε,η,κ(mε)− 2dπ|log ε| . 1

η|log η|
. (2.9)

Then {mε}ε is relatively compact in Lploc(Ω, S
2) for every p ∈ [1,∞) and any accumulation

point m : Ω→ S2 satisfies

m3 = 0, |m′|= 1 in Ω and ∇′.m′ = 0 in D′(Ω).

The proof of Theorem 2.1 is based on argument of approximating S2-valued vector
fields by S1-valued vector fields away from small defect regions. This is due to Ignat and
Otto [32] to detect these regions, we use some topological methods due to Jerrard [34] and
Sandier [45] for the concentration of the Ginzburg-Landau energy around vortices. Away
from these small regions, the energy level only allows for Néel walls. The compactness
results for the S1-valued maps due to Ignat and Otto, (see [32]) will lead to conclusion.

Let us discuss the assumption of the regime (2.8) and (2.9). Inequality (2.9) assures
that cutting out the topological defects (d vortices), the remaining energy rescaled at the
energetic level of Néel walls is uniformly bounded. The regime 1

η|log η| � |log ε| is imposed

due to our method to detect vortices and approximate S2- valued vector fields by S1-valued
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vector fields away from the vortex balls. It also means that the energy of the topological
defects is more expensive than the energy of Néel walls. In fact, the above assumption
establishes two principal regimes; namely,

C

η|log η|
≤ 2πα|log ε| for some α ∈ (0, 1) (2.10)

and
εβ . η for any β ∈ (0, 1− α). (2.11)

If we write (2.9) as

Eε,η,κ − 2πd|log ε|≤ C

η|log η|
,

where C given in (2.10), then (2.9) and (2.10) yield that Eε,η,κ ≤ 2π(d + α)|log ε|. Due
to the boundary condition (2.1), we then expect to obtain exactly d vortex regions in the
interior of the domain. Moreover, far from the interior vortices, starting from the values
of m′ on a square grid of size εβ, the approximation argument requires zero degree of m′ in
each cell of the cell grid, leading to the condition β < 1− α, (see Lemma 2.5). Moreover,
the condition εβ . η for any β ∈ (0, 1 − α) is used in order that the approximating S1-
valued vector fields induce a stray field energy of the same order of m′, (see (2.48)).
The regime |κ|. 1

ε|log ε| is rather technical: in fact, according to the boundary condition

(2.1) (in particular m3 = 0 on ∂Ω), and the Green formula, this regime is added to ensure
that the Dzyaloshinsky-Moriya energy is absorbed into the Ginzburg-Landau energy, see
(2.21), (2.22) and (2.29).

In [33, Theorem 2], with a similar energy (without the Dzyaloshinsky-Moriya energy),
Ignat and Otto studied the compactness in thin ferromagnetic films under the Dirichlet
boundary condition for the normal component; that is,

m′.ν = 0 on ∂Ω.

For such a boundary condition, the small defect region consists in either one interior vortex
or two boundary vortices. The case of one interior vortex corresponds to d = 1 in our
Theorem 2.1. For the boundary vortices case, one needs to add more assumptions to detect
those vortices, that is, log|log ε|. 1

η|log η| . We emphasize that due to boundary condition

(1.14), the boundary vortices do not occur in our case.
With the compactness result of Theorem 2.1 , we then obtain that for a subsequence,

mε converges to m almost everywhere in Ω. As a consequence of the dominated conver-
gence theorem, one has mε → m in L1(Ω). Together with the condition ∇′.m′ = 0 in
Ω, one can define the normal trace in sense of distributions for the limiting point m and
m′.ν = g.ν on ∂Ω (see Remark 2.8). It is of interest to know whether the above sequences
of magnetization are relatively compact at the boundary. Does their limit still satisfy the
Dirichlet condition? The answer is negative in general. We shall prove this by constructing
a sequence (mη)η such that mη is S1-valued and satisfies the upper bound as Theorem 2.1
that has a Néel wall tending to the boundary, so the boundary condition (2.1) fails in the
limit η → 0 (due to the tangential component).

Theorem 2.2. Let Ω = (0, 1)× (−1, 1). In the regime 0 < η � 1. There exist a C1 vector
field mη : Ω→ S1 and g : Γ = {0} × (−1, 1) ⊂ ∂Ω→ S1 which satisfy

mη = g on Γ, ∀η � 1,

mη → m in L1
loc(Ω) as η → 0,

and

Eε,η,κ(mη) = O(
1

η|log η|
).

But m 6= g on Γ .
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The constructed sequence (mη)η has the third component vanishing. Therefore, our
model is written as1

Eη(m) =

∫
Ω
|∇′m′|2dx′ + 1

η

∫
R2

∣∣∣∣|∇′|−1/2(∇′.m′)1Ω

∣∣∣∣2dx′.
The cost of such a energy is O( 1

η|log η|). The idea of proof based the fact that (mη)η may
have the Néel walls tending to the boundary as η → 0.

Figure 2.1: Magnetization has Néel walls tending to boundary as η → 0.

The outline of this Chapter is as follows: in the next section, we recall some definitions
on the stray field and some results that we need for the proof of our results such as: the
concentration of the Ginzburg-Landau energy on vortex balls and a compactness result
for S1-valued magnetizations.

2.3 A Few Preliminary Results

2.3.1 Preliminary Results on Existence and Uniqueness of
the Stray Field

We state the existence and uniqueness results for the stray field generated by the
volume charges, as well as the expression of the stray field energy. For that, we introduce
the Beppo-Levi space

BL := {U : R3 → R : ∇U ∈ L2(R3),
U(x)

1 + |x|
∈ L2(R3)}.

Consequently, the space BL endowed by the homogeneous Ḣ1-norm, U 7→ ||∇U ||L2(R3) is
a Hilbert space, and the set C∞0 (R3) of smooth compactly supported functions is a dense
set, see Dautray and Lions [16]. Let us denote by F the Fourier transform of the in-plane
R2, i.e., for every ξ ∈ R2,

Ff(ξ) =
1√
2π

∫
R2

e−ix
′.ξf(x′)dx′,

where f belongs to the Schwartz class S(R2) and F extends to the space of tempered
distributions. We have the following

1We note that as mη,3 = 0, ε and κ do not play any role here.
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Theorem 2.3. Let m ∈ H1(Ω,R2). The variational problem (2.3) has a unique solution
U ∈ BL. Classically, U satisfies

∆U = 0 in R3\Ω× {0}[
∂U
∂x3

]
= −∇′.m′ on Ω× {0},

[U ] = 0 on R2 × {0},
(2.12)

where [q] = q+−q− stands for the jump in the vertical direction x3 of the quantity q across
the horizontal plane. Moreover the stray field energy is also given by∫

R3

|∇U |2dx =

∫
Ω
U(x′, 0)(∇′.m′)(x′)dx′

=
1

2

∫
R2

∣∣∣|∇′|−1/2((∇′.m′)1Ω)
∣∣∣2 dx′ = 1

2

∫
R2

1

|ξ|
|F(∇′.m′1Ω)(ξ)|2dξ (2.13)

A proof of Theorem 2.3 is given in the appendix.

2.3.2 Preliminary Results on the concentration of the Ginburg-
Landau energy

In the proof of Theorem 2.1 we will use the following result due to Jerrard for the
concentration of the GL energy around vortices

Theorem 2.4. (see [34]) Let Ω be a C1,1 domain, α ∈ [0, 1) and d > 0 be a positive
integer. Let g : ∂Ω→ S1 be C1,1 with

|deg(g, ∂Ω)|= d.

There exists R = R(α,d,Ω) > 0 such that for every 0 < r < R, if m′ : Ω → R2 satisfies
the following conditions:

m′ = g on ∂Ω

and ∫
Ω
Gε(m

′)dx′ ≤ 2π(d+ α)|log ε|,

then there exist n distinct points x1, ..., xn ∈ Ω and positive integers d1, ..., dn > 0 such
that the n balls {B(xj , r)}1≤j≤n are disjoint,

n∑
j=1

dj = d

and ∫
B(xj ,r)∩Ω

Gε(m
′)dx′ ≥ 2πdj |log

r

ε
|−C(α,d, R), j = 1, ..., n,

where C(α,d, R) is a constant which only depend on d, α and R.

In Step B of the Proof of Theorem 2.2 we also use the following lemma (see [33, Lemma
2]) that also follows from Theorem 2.4. This gives a link to the condition (2.11).

Lemma 2.5. Let 0 < α < 1, 0 < β < 1− α,C > 0. There exists ε0(α, β, C) > 0 such that

for every ε ∈ (0, ε0) the following holds: if Z =
(
− εβ

2 ,
εβ

2

)2
is the square cell of length εβ

and m′ : Z → B2 is a C1 vector field such that:∫
∂Z
Gε(m

′)dH1 ≤ C|log ε|
εβ

,

∫
Z
Gε(m

′)dx′ ≤ 2πα|log ε|

then

|m′|≥ 1

2
on ∂Z and deg(m′, ∂Z) = 0.
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2.3.3 Compactness result in thin-film micromagnetics

The proof of Theorem 2.1 mainly uses the compactness result of S1-valued vector fields
obtained by Ignat and Otto, see [32]. For the convenience, we state their result. We refer
reader to [32, Theorem 4] for a detailed proof.

Theorem 2.6. Let Bn be the unit ball in Rn, n = 2, 3. For every small η > 0, let m′η :
B2 → S1 and hη : B3 → R3 be related by∫

B3

hη(x).∇ζ(x)dx =

∫
B2

ζ(x′, 0)∇′.m′η(x′)dx′, ∀ζ ∈ C∞0 (B3). (2.14)

Suppose that ∫
B2

|∇′.m′η|2dx′ +
1

η

∫
B3

|hη|2dx ≤
C

η|log η|
(2.15)

for some fixed constant C. Then {m′η}η↓0 is relatively compact in L1(B2) and any accu-
mulation point m′ : B2 → R2 satisfies:

|m′|= 1 a.e in B2 and ∇′.m′ = 0 in the sense of distributions.

2.4 Proof of Theorem 2.1

This section is devoted to the proof of the compactness result for magnetizations in
the energy regime O( 1

ηk|log ηk|) + 2πd|log εk|.
We will work at the level of sequences of parameters εk, ηk, κk, (κ = (κ1,k, κ2,k)) and a
sequence of magnetization mk satisfying the assumptions in Theorem 2.1.
By assumption, Eεk,ηk,κk(mk)− 2dπ|log εk|. 1

ηk|log ηk| . Then there exists A > 0 such that

Eεk,ηk,κk(mk)− 2dπ|log εk|≤
A

ηk|log ηk|
. (2.16)

Also, by the condition (2.8), there exists α ∈ (0, 1) and C > 0 such that

A

ηk|log ηk|
≤ 2πα|log εk|. (2.17)

and

|κk|≤
C

εk|log εk|
� 1

εk
. (2.18)

We split the proof of the Theorem 2.1 in several steps.
Step A We locate the vortex balls of mk.

Our strategy is to apply Theorem 2.4 to locate the vortex balls of m′k in Ω. It remains to
us prove the following claim

Claim 1. ∫
Ω
|∇′m′k|2dx′ +

1

ε2k

∫
Ω

(m3,k)
2dx′ ≤ 2π(d+ α′)|log εk|, (2.19)

with some 0 < α′ < 1.

The proof of Claim 1. Using Green’s formula with the fact that m3,k = 0 on ∂Ω, we
rewrite the first part of the DM energy (see (2.4)) as

κ1,k

∫
Ω
mk.∇′ ×mkdx

′

= κ1,k

∫
Ω

(m1,k∂x2m3,k −m2,k∂x1m3,k +m3,k∂x1m2,k −m3,k∂x2m1,k)dx
′

= 2κ1,k

∫
Ω

(m3,k∂x1m2,k −m3,k∂x2m1,k)dx
′. (2.20)
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Equation (2.20) yields that

|κ1,k

∫
Ω
mk.∇′ ×mkdx

′|

≤ 2|κ1,k|
∫

Ω
(|m3,k∂x2m1,k|+|m3,k∂x1m2,k|)dx′

≤ a1

∫
Ω

(m3,k)
2dx′ + b1

∫
Ω

(∂x2m1,k)
2dx′ + a1

∫
Ω

(m3,k)
2dx′ + b1

∫
Ω

(∂x1m2,k)
2dx′

≤ 2a1

∫
Ω

(m3,k)
2dx′ + b1

∫
Ω
|∇′m′k|2dx′, (2.21)

where a1, b1 are positive numbers satisfying a1b1 = κ2
1,k, will be chosen later, see (2.25).

Similarly for the second term of the DM energy

κ2,k

∫
Ω

(m3,k∇′.m′k −m′k.∇′m3,k)dx
′ = 2κ2,k

∫
Ω
m3,k∇′.m′kdx′

and ∣∣∣∣κ2,k

∫
Ω

(m3,k(∇′.m′k)−m′.∇′m3,k)dx
′
∣∣∣∣

≤ a2

∫
Ω

(m3,k)
2dx′ + b2

∫
Ω
|∇′m′k|2dx′, (2.22)

where a2, b2 are chosen satisfying (2.25).
From the definition of Eεk,ηk,κk , it follows that∫

Ω
|∇′m′k|2dx′ +

1

ε2k

∫
Ω

(m3,k)
2dx′

≤ Eεk,ηk,κk(mk)−
1

ηk

∫
R2

||∇′|−1/2(∇′.m′k)|2dx′ −
∫

Ω
DM(mk)dx

′. (2.23)

Combining (2.21)-(2.23), then∫
Ω
|∇′m′k|2dx′ +

1

ε2k

∫
Ω

(m3,k)
2dx′

≤ Eεk,ηk,κk(mk) + (2a1 + a2)

∫
Ω

(m3,k)
2dx′ + (b1 + b2)

∫
Ω
|∇′m′k|2dx′.

Together with (2.16), this implies

(1− b1 − b2)

∫
Ω
|∇′m′k|2dx′ +

(
1

ε2k
− 2a1 − a2

)∫
Ω

(m3,k)
2dx′

≤ 2πd|log εk|+
A

ηk|log ηk|
.

By (2.17), finally, we obtain∫
Ω
|∇′m′k|2dx′ +

(1/ε2k − 2a1 − a2)

1− b1 − b2

∫
Ω

(m3,k)
2dx′ ≤ 2π(d+ α)

1− b1 − b2
|log εk|. (2.24)

To conclude Claim 1, a1, b1, a2, b2 will be chosen satisfying
a1b1 = κ2

1,k,

a2b2 = κ2
2,k,

1
ε2k
≤ 1/ε2k−2a1−a2

1−b1−b2 , (1− b1 − b2) > 0

2π(d+α)
1−b1−b2 ≤ 2π(d+ α′), for some α′ ∈ (α, 1) (α < α′ < 1).

(2.25)
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In fact, we choose b1 = b2 = 1−α
4(d+α

2
+ 1

2)
> 0. An easy computation shows that

2π(d+ α)

1− b1 − b2
= 2π(d+

α

2
+

1

2
).

The fourth inequality of (2.25) holds true for α′ = α
2 + 1

2 .

Setting a1 =
κ2

1,k

b1
, a2 =

κ2
2,k

b2
, therefore, we only need to check that

1

ε2k
≤

1/ε2k − 2a1 − a2

1− b1 − b2
.

This can be written equivalently to

1

ε2k
≤

1/ε2k − 2a1 − a2

1− b1 − b2

⇔ b1 + b2
ε2k

≥ 2a1 + a2

⇔ b1 + b2
ε2k

≥
2κ2

1,k

b1
+
κ2

2,k

b2
.

The last inequality is followed from |κk|� 1
εk

. We complete the proof of Claim 1. We

note that, for the proof of Claim 1, we only use the regime assumption |κk|� 1
εk

(which
is implied by (2.8)).

Remark 2.7. By (2.24) and (2.25), we have immediately that∫
Ω
|∇′m′k|2dx′ +

1

ε2k

∫
Ω

(m3,k)
2dx′ ≤ 2π(d+ α′)|log εk|,

for some α′ ∈ (0, 1). Hence, ∫
Ω
|∇′m′k|2dx′ ≤ 2π(d+ α′)|log εk| (2.26)

and
1

ε2k

∫
Ω

(m3,k)
2dx′ ≤ 2π(d+ α′)|log εk|. (2.27)

We next apply Theorem 2.4 to mk in domain Ω. There exist R > 0, nk distinct points
x1,k, ..., xnk,k in Ω and nk integers d1,k, d2,k, ..., dnk,k > 0,

∑nk
i=1 di,k = d such that for any

r ∈ (0, R), ∫
B(xj,k,r)∩Ω

Gεk(m′k)dx
′ ≥ 2πdj |log

r

εk
|−C(α,d)

for j = 1, ..., nk and k sufficiently larger. We note that x1,k, ..., xn,k ∈ Ω. Then, summing
up by xi,k, it yields∫

⋃
xj,k

B(xj,k,r)∩Ω
Gεk(m′k)dx

′ ≥ 2πd|log
r

εk
|−C(α,d)nk

≥ 2πd|log εk|−C(α,d, r). (2.28)

Up to a subsequence {x1,k}k, ..., {xn,k}k converge to n points x1, ..., xn and we have
for every small r > 0,

B(xj,k, r) ⊂ B(xi, 2r) ∀j = 1, ..., nk, for some i ∈ {1, ..., n},
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for k large sufficiently. The open set D =
⋃n
j=1B(xj , 2r) is the location of the essential

topological defects of each m′k.
The next step is to prove that m′k is relatively compact in L1(Ω\D).

Let B ⊂ Ω\D be an arbitrary square. To simplify the notation, let B = (−1, 1)2. We
prove that there exists m such that for a subsequence mk → m in L1

loc(B).
The idea is to approximate m′k away from D by S1-valued vector fields in L1

loc, denoted
by M ′k which satisfy the hypotheses of Theorem 2.6. This implies that M ′k → m′ in L1

loc.
Therefore, we have m′k → m′ in L1

loc(B).

Step B. Approximation of m′k away from D by S1-valued vector fields.
We state some inequalities. Firstly,∫

B
|∇′m′k|2dx′ +

1

ε2k

∫
B

(1− |m′k|2)2dx′ +
1

ηk

∫
R2

||∇′|−1/2(∇′.m′k)|2dx′

≤ Eεk,ηk,κk(mk)−
∫
D
|∇′m′k|2dx′ −

1

ε2k

∫
D

(1− |m′k|2)2dx′ −
∫

Ω
DM(m)dx′.

We observe that∫
Ω
DM(mk)dx

′ = 2κ1,k

∫
Ω

(m3,k(∂x1m2,k − ∂x2m1,k)dx
′ + 2κ2,k

∫
Ω

(m3,k∇′.m′k)dx′.

Then ∣∣∣∣ ∫
Ω
DM(mk)dx

′
∣∣∣∣

≤
∣∣∣∣2κ1,k

∫
Ω
m3,k(∂x1m2,k − ∂x2m1,k)dx

′
∣∣∣∣+

∣∣∣∣2κ2,k

∫
Ω

(m3,k∇′.m′k)dx′
∣∣∣∣

≤ 1

|log εk|

∫
Ω
|∇′m′k|2dx′ + 4(κ2

1,k + κ2
2,k)|log εk|

∫
Ω
|m3.k|2dx′.

Hence,

−
∫

Ω
DM(mk)dx

′ ≤
∣∣∣∣ ∫

Ω
DM(mk)dx

′
∣∣∣∣

≤ 1

|log εk|

∫
Ω
|∇′m′k|2dx′ + 4(κ2

1,k + κ2
2,k)|log εk|

∫
Ω
|m3.k|2dx′.

Using Remark 2.7 and (2.18), one has

−
∫

Ω
DM(mk)dx

′ ≤ 2π(d+ α′)(1 + Cε2k|κk|2|log εk|2) = O(1). (2.29)

Combining (2.16), (2.28) and (2.29) yields that∫
B
|∇′m′k|2dx′ +

1

ε2k

∫
B

(1− |m′k|2)2dx′ +
1

ηk

∫
R2

||∇′|−1/2(∇′.m′k)|2dx′

≤ Eεk,ηk,κk(mk)−
∫
D
|∇′m′k|2−

1

ε2k

∫
D

(1− |m′k|2)2dx′ +O(1)

≤ A

ηk|log ηk|
+O(1) ( by (2.16) and (2.28)).

This implies that∫
B
|∇′m′k|2dx′ +

1

ε2k

∫
B

(1− |m′k|2)2dx′ +
1

ηk

∫
R2

||∇′|−1/2(∇′.m′k)|2dx′

≤ Ã

ηk|log ηk|
(2.30)
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for k large enough and any Ã > A.
Moreover, using the hypothesis (2.17), we deduce that∫

B
|∇′m′k|2dx′ +

1

ε2k

∫
B

(1− |m′k|2)2dx′ +
1

ηk

∫
R2

||∇′|−1/2(∇′.m′k)|2dx′

≤ 2πα̃|log εk|, (2.31)

for some α̃ ∈ (0, 1).
Step B.1 Construction of a square grid.

The hypothesis 1
ηk|log ηk| � |log εk|, again shows that

εβk ≤ ηk, for some β ∈ (0, 1) and β ∈ (0, 1− α̃). (2.32)

Let B̃ ⊂ B be a compact set. For each shift t ∈ [0, εβk), denote:

Vt := {(x1, x2) ∈ B : x2 ≡ t (mod εβk)}

for the net of horizontal lines at a distance εβk in B. By Fubini theorem, there exists

tk ∈ (0, εβk) such that ∫
Vtk

Gεk(m′k)dH1 ≤ 1

εβk

∫
B
Gεk(m′k)dx

′.

If one repeats the above argument for the net of vertical lines at a distance εβk in B, we get

the square grid Rk of size εβk such that for εk small, the convex hull of Rk covers B̃ ⊂ B
and the following estimate:∫

Rk
Gεk(m′k)dH1 ≤ 2Ã

εβkηk|log ηk|
(by (2.30)). (2.33)

Together with (2.17), this yields∫
Rk
Gεk(m′k)dH1 ≤ C|log εk|ε−βk . (2.34)

This implies that |m′k|>
1
2 on Rk for k large enough. Indeed, denoting ρ = |m′k| and

min = min{ρ(x′) : x′ ∈ Rk}. We have that

C|log εk|ε−βk ≥
∫
Rk
Gεk(m′k)dH1 ≥

∫
Rk

(
|∂τρ|2+

1

ε2k
(1− ρ2)2

)
dH1 ≥ C̃

εk
(1−min)2,

where τ is the tangent unit vector at Rk. Thus, one concludes that

(1−min)2 ≤ C

C̃
ε1−βk |log εk|� 1.

Then min > 1
2 for εk small enough.

Therefore, we can define the degree of m′k on each cell of square grid Rk by:

deg(m′k, ∂Z
k) := deg(

m′k
|m′k|

, ∂Zk).

Here, without loss of generality, we denote Zk =

(
− εβk

2 ,
εβk
2

)2

by the cell of length εβk with

∂Zk ⊂ Rk.
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Step B.2 We prove that deg(m′k, ∂Z
k) = 0.

Inequality (2.31) deduces that∫
Zk

Gεk(m′k)dx
′ ≤

∫
B
Gεk(m′k)dx

′ ≤ 2πα̃|log εk|. (2.35)

Moreover, by (2.34), one has ∫
∂Zk

Gεk(m′k)dH1 ≤ C |log εk|
εβk

. (2.36)

By (2.35) and (2.36), we apply Lemma 2.5 to m′k, to establish deg(mk, ∂Z
k) = 0.

Step B.3. Construct an approximating sequence.
First, note that since Zk is simply connected, |m′k|>

1
2 on ∂Zk and deg(mk, ∂Z

k) = 0 then
we rewrite m′k as

m′k = |m′k|eiϕk = |m′k|vk on ∂Zk and ϕk ∈ H1(∂Zk,R),

where vk := eiϕk on ∂Zk. Moreover, we can lift m′k on the grid.

On each cell Zk of length εβk of the grid, we define:

M ′k = eiΦk in Zk,

where Φk is the harmonic extension of ϕk in Zk, i.e.{
∆Φk = 0 in Zk

Φk = ϕk on ∂Zk.

Note that we can estimate∫
Zk
|∇′Φk|2dx′ ≤ Cεβk

∫
∂Zk
|∇′ϕk|2dH1.

Indeed, rescaling by εβk , we can assume that{
∆Φ = 0 in B = (−1, 1)2,
Φ = ϕ on ∂B,

where ϕ : ∂B → S1 satisfies
∫
∂B ϕdH

1 = 0 (up to an additive constant in [0, 2π]). We show
the inequality in the unit cell B. We consider a smooth cut-off function Ψ : [0, 1] → R1

such that {
Ψ(t) = 0 in t ≤ 1/2,
Ψ(1) = 1

and the extension Φext of ϕ in B :

Φext(tx) = Ψ(t)ϕ(x′) for t ∈ (0, 1), x′ ∈ ∂B.

Using the Poincaré-Wirtinger inequality and the trace operator, we obtain∫
B
|∇′Φ|2dx′ ≤

∫
B
|∇Φext|2dx′ ≤ C

∫
∂B

(|∇′ϕ|2+ϕ2)dH1 ≤ C
∫
∂B
|∇′ϕ|2dH1.

It follows that:∫
Zk
|∇′M ′k|2dx′ =

∫
Zk
|∇′Φk|2dx′

≤ Cεβk
∫
∂Zk
|∇′ϕk|2dH1 = Cεβk

∫
∂Zk
|∇′vk|2dH1

≤ 4Cεβk

∫
∂Zk
|m′k|2|∇′vk|2dH1 ≤ 4Cεβk

∫
∂Zk
|∇′m′k|2dH1. (2.37)
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Now we prove that M ′k is an approximation of m′k in L1(B̃), for a compact B̃ ⊂ B.
To prove that we estimate ||(M ′k−m′k)||L2(B̃)

. We will also estimate ||∇′(M ′k−m′k)||L2(B̃).

Step B.4 The estimate of ||(M ′k −m′k)||L2 .
the Poincaré-Wirtinger and (2.37) lead to∫

Zk

∣∣∣∣M ′k − −∫
∂Zk

M ′k

∣∣∣∣2 dx′ ≤ Cε2βk ∫
Zk
|∇M ′k|2dx′ ≤ Cε

3β
k

∫
∂Zk
|∇′m′k|2dH1 (2.38)

and ∫
Zk

∣∣∣∣m′k − −∫
∂Zk

m′k

∣∣∣∣2 dx ≤ Cε2βk ∫
Zk
|∇′m′k|2dx′. (2.39)

Using Jensen’s inequality, vk = M ′k =
m′k
|m′k|

on ∂Zk and |vk|= 1 on ∂Zk, we get:∫
Zk

∣∣∣∣−∫
∂Zk

(M ′k −m′k)
∣∣∣∣2 dx′ =

∫
Zk

∣∣∣∣−∫
∂Zk

(vk −m′k)
∣∣∣∣2 dx′ ≤ Cε2βk −∫

∂Zk
|vk −m′k|2dH1

≤ Cεβk
∫
∂Zk

(1− |m′k|)2dH1 ≤ Cεβ+2
k

∫
∂Zk

Gεk(m′k)dH1.

Therefore∫
Zk
|M ′k −m′k|2dx′

≤ C
∫
Zk

(∣∣∣∣M ′k − −∫
∂Zk

M ′k

∣∣∣∣2 +

∣∣∣∣−∫
∂Zk

(M ′k −m′k)
∣∣∣∣2 +

∣∣∣∣m′k − −∫
∂Zk

m′k

∣∣∣∣2
)
dx′

≤ Cε3βk
∫
∂Zk
|∇′m′k|2dH1 + Cεβ+2

k

∫
∂Zk

Gεk(m′k)dH1 + Cε2βk

∫
Zk
|∇′m′k|2dx′.

Summing up on all cells Zk of Rk, since the convex hull of Rk covers B̃, (2.30) and (2.33)
we obtain: ∫

B̃
|M ′k −m′k|2dx′ ≤

Cε2β

ηk|log ηk|
. (2.40)

By (2.32), ε2βk ≤ η
2
k � ηk|log ηk|, so ||M ′k −m′k||L2(B̃)

= o(1) as k →∞.
Step B.5. The estimate of ||∇′(M ′k −m′k)||L2 .

We have∫
Zk
|∇′(M ′k −m′k)|2 ≤ 2

∫
Zk
|∇′M ′k|2+2

∫
Zk
|∇′m′k|2

≤ Cεβk
∫
∂Zk
|∇′m′k|2dH1 + 2

∫
Zk
|∇′m′k|2dx′ (by (2.37))

≤ C

ηk|log ηk|
,

where we have used (2.30),(2.33) in the last inequality.
Step C Construct a stray field hk associated to M ′k in B ⊂ B̃ such that (2.14) and

(2.15) hold for the couple (M ′k, hk). For simplicity, we assume that B = B2.
By Theorem 2.3, there exists Uk ∈ BL(R3) satisfying∫

R3

∇Uk(x)∇ζ(x)dx =

∫
Ω
∇′.m′k(x′)ζ(x′, 0)dx′ for every ζ ∈ C∞0 (R3). (2.41)

We note that the map ξ 7→
∫
B2 ∇′.m(x′)ξ(x′, 0)dx′ is linear continuous in H1

0 (B3). Indeed,∫
B2

∇′.m′(x′)ξ(x′, 0)dx′ ≤ ||∇′.m′||Ḣ−1/2(B2)||ξ(·, 0)||Ḣ1/2(B2)

≤ C||∇′.m′||Ḣ−1/2(B2)||∇ξ||L2(B3).
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By Lax-Milgram’s Theorem in H1
0 (B3), there exists a unique solution Uk ∈ H1

0 (B3) of the
following equation:∫

B3

∇Uk(x)∇ζ(x)dx =

∫
B2

∇.(M ′k −m′k)(x′)ζ(x′, 0)dx′, ∀ζ ∈ H1
0 (B3) (2.42)

Choosing
hk := ∇(Uk + Uk) (2.43)

and summing up (2.41), (2.42) we get that hk is a stray field associated to M ′k in B3 and
satisfies (2.14).
Now, we need to prove that:∫

B2

|∇′M ′k|2+
1

ηk

∫
B3

|hk|2≤
C

ηk|log ηk|
. (2.44)

We observe that: ∫
B2

|∇′M ′k|2≤
C

ηk|log ηk|
(by (2.37)).

Using Theorem 2.3 and (2.30) we obtain∫
B3

|∇Uk|2≤
∫
R3

|∇Uk|2=
1

2

∫
R2

||∇′|−1/2(∇′.m′k)|2≤
C

|log ηk|
. (2.45)

Then it is sufficient to prove: ∫
B3

|∇Uk|2≤
C

|log ηk|
. (2.46)

Let us denote by T a linear continuous extension operator:

T : Ḣs(B2)→ Ḣs(R2), s = 0, 1,

and let us extend Uk by 0 outside B3, we still denote it by Uk. Then the extension Uk
belongs to H1(R3) and the trace Uk|R2 belongs to Ḣ1/2(R2). Therefore, we obtain:

‖Uk|R2‖2
Ḣ1/2(R2)

≤ 1

2
‖Uk‖2Ḣ1(R3)

=
1

2
‖∇Uk‖2L2(B3). (2.47)

Now using (2.42) with ζ = Uk we have:

‖∇Uk‖2L2(B3) =

∫
B3

∣∣∇Uk∣∣2 =

∫
B2

∇′.(M ′k −m′k)Uk

=

∫
R2

∇′.T (M ′k −m′k)Uk ≤ ‖∇′.(T (M ′k −m′k))‖Ḣ−1/2(R2)‖Uk|R2‖Ḣ1/2(R2)

≤ ‖(T (M ′k −m′k))‖Ḣ1/2(R2)‖Uk|R2‖Ḣ1/2(R2)

≤ C‖T (M ′k −m′k)‖
1/2
L2(R2)

‖T (M ′k −m′k)‖
1/2

Ḣ1(R2)
‖∇Uk‖L2(B3).

We have used the classical interpolation inequality and (2.47) in the last estimate.
Then

‖∇Uk‖L2(B3) ≤ C‖T (M ′k −m′k)‖
1/2
L2(R2)

‖T (M ′k −m′k)‖
1/2

Ḣ1(R2)

≤ C
(∫

B2

|M ′k −m′k|2dx′
)1/2(∫

B2

|∇′(M ′k −m′k)|2dx′
)1/2

.

In combining the results of Step B.4, Step B.5 and (2.32), this follow∫
B3

|∇Uk|2dx ≤
Cεβk

ηk|log ηk|
≤ C

|log ηk|
. (2.48)
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By (2.45) and (2.46), we finally obtain that

1

ηk

∫
B3

|hk|2≤
C

ηk|log ηk|
.

Step D.Completion of the proof of Theorem 2.1.
By Step C, we now can apply Theorem 2.6 to {(M ′k, hk)}. Therefore, M ′k is relatively
compact in L1(B2) as well as Lp(B2).
Since the square B was arbitrary chosen in the complement of D and we proved the
relatively compact in any ball B compactly included in B, by a diagonal argument, we
deduce that {m′k} converges in Lp(Ω\D) up to subsequence. Letting r → 0, we obtain the
conclusion of Theorem 2.1.

We finish this section by

Remark 2.8. Assume that {mk}k is a sequence which satisfies the assumptions of The-
orem 2.1.

(i) From Theorem 2.1, we know that, up to a subsequence, mk → m almost everywhere
in Ω. As |mk|= 1 in Ω, the dominated convergence theorem implies that mk → m
in L1(Ω).

(ii) Since ∇′.m′ = 0 in Ω (in the sense of distributions), then we can define the normal
trace (m′.ν) of m′ in the sense of distributions; that is,

〈m′.ν, ζ〉D′(∂Ω),D(∂Ω) :=

∫
Ω
m′.∇′ζ(x′, 0)dx′, for ζ ∈ C∞(∂Ω).

Here ζ is the extension of ζ into C1,1(Ω).

(iii) We have that m′.ν = g.ν on ∂Ω.

Indeed, for ζ ∈ C∞0 (R3), using Remark 2.8(i), one has∫
Ω
m′(x′).∇′ζ(x′, 0)dx′ = lim

k→∞

∫
Ω
mk(x

′).∇′ζ(x′, 0)dx′

=

∫
∂Ω
g.νζdH1 − lim

k→∞

∫
Ω
∇′.m′k(x′)ζ(x′, 0)dx′. (2.49)

Equations (2.3) and the Young inequality yield that∣∣∣∣ ∫
Ω
∇′.m′k(x′)ζ(x′, 0)dx′

∣∣∣∣ =

∣∣∣∣ ∫
R3

∇Uk(x)∇ζ(x)dx

∣∣∣∣ ≤ ||∇ζ||L2(R3)||∇Uk||L2(R3),

where∇Uk is the stray field associated with the magnetizationmk. Together with Theorem
2.3 and (2.30), this yields ∣∣∣∣ ∫

Ω
∇′.m′k(x′)ζ(x′, 0)dx′

∣∣∣∣ ≤ C

|log ηk|
.

Therefore, we obtain

m′.ν = g.ν in D′(∂Ω).
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2.5 Loss of compactness at the boundary

In this section, we aim to construct an example for the loss of compactness at the
boundary, that is stated in Theorem 2.2.

The Proof of Theorem 2.2. The construction is carried in several steps. In this proof,
we work at the level of sequences of parameters ηk and a sequence of magnetization mk

satisfying mk = (g, 0) = (0,−1, 0) on Γ := {0} × [−1, 1] ⊂ ∂Ω.

Step A. The aim of this step is to introduce a Néel wall approximation.
We follow Ignat [30]. Let us denote

λk := ηk|log ηk|.

The parameter λk corresponds to the core size of an approximation of the Néel wall. More
precisely, we consider the following 1D transition layer (uk, vk) : R→ S1 that approximates
a 180◦ Néel wall centered at the origin:

uk(t) =

{
|log
√
t2+λ2

k|
|log λk| if |t|≤

√
1− λ2

k,

0 elsewhere,

vk(t) =

 −
√

1− u2
k(t) if t ≤ 0,√

1− u2
k(t) if t ≥ 0.

Figure 2.2: A 180◦ Néel wall approximation

The exchange energy corresponding to this transition as follows:∫
R

∣∣∣∣dukdt
∣∣∣∣2 +

∣∣∣∣dvkdt
∣∣∣∣2 =

∫
R

1

1− u2
k

∣∣∣∣dukdt
∣∣∣∣2

≤
∫
R

1

1− uk

∣∣∣∣dukdt
∣∣∣∣2

=
2

|log λk|

∫ √1−λ2
k

−
√

1−λ2
k

t2

(t2 + λ2)2 log t2+λ2

λ2

dt

≤ 4

λk|log λk|

∫ 1/λk

0

s2

(s2 + 1)2 log(s2 + 1)
ds

= O

(
1

λk|log λk|

)
. (2.50)

In order to estimate the stray-field energy of the transition layer, let Wk be the radial
extension of uk in R2:

Wk(x
′) = uk(|x′|) , for x′ ∈ R2.
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By Ḣ1/2(R)-trace estimate of a Ḣ1(R) - function, it follows:

||uk||2Ḣ1/2(R)
≤ 1

2

∫
R2

|∇Wk|2dx′ ≤ π
∫ 1

0
r

∣∣∣∣dukdr
∣∣∣∣2dr.

Moreover,

π

∫ 1

0
r

∣∣∣∣dukdr
∣∣∣∣2dr ≤ π

|log λk|2

∫ 1

0

r3

(r2 + λ2
k)

2
dr

=
π

|log λk|2

∫ 1/λk

0

s3

(s2 + 1)2
ds ≤ π

|log λk|2
(1 + |log λk|).

Therefore

||uk||2Ḣ1/2(R)
≤ π + o(1)

|log ηk|
. (2.51)

Step B. Construction of sequence (mk)k.
The sequence mk = (m′k,m3,k) : Ω = (0, 1) × (−1, 1) → S1 we construct will consist of
magnetization mk that does not depend on the x2 variable

mk = mk(x1)

and
m3,k(x

′) = 0 in Ω.

More precisely, we have:

(m1,k,m2,k,m3,k)(x1, x2) =

(
uk

(
x1 − αk
αk

)
, vk

(
x1 − αk
αk

)
, 0

)
,

where αk > 0 converges to 0 as k →∞, will be defined later, see (2.54).
Since |m′k|= 1 in Ω, the full energy Eεk,ηk,κk(mk) simplifies

Eηk(mk) =

∫
Ω
|∇′m′k|2dx′ +

1

ηk

∫
R2

||∇′|−1/2(∇′.m′k)1Ω|2dx′.

Observe that mk(x1, x2) = (g(x1, x2), 0) = (0,−1, 0) at the boundary {0} × (−1, 1). To
get the conclusion of Theorem 2.2, we will prove that

mk → (0, 1, 0) in L1(Ω). (2.52)

and

Eηk(mk) ≤
π + o(1)

ηk|log ηk|
. (2.53)

Step C The proof of (2.52) and (2.53). We start with (2.52).
Firstly, ∫

Ω
|m2,k(x

′)− 1|dx′ =
∫ 1

0

∫ 1

−1
|m2,k(x

′)− 1|dx2dx1 = 2

∫ 1

0
|m2,k(x1)− 1|dx1

= 2

∫ 2αk

0
|m2,k(x

′)− 1|dx1 + 2

∫ 1

2αk

|m2,k(x
′)− 1|dx1

= 2αk

∫ 1

−1
|vk(t)− 1|dt+ 2αk

∫ ∞
1
|vk(t)− 1|dt

= 2αk

∫ 1

−1
|vk(t)− 1|dt ≤ 8αk.
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This implies that m2,k converges to 1 in L1(Ω) as αk → 0.
Moreover, by the assumption mk(x

′) ∈ S1 for every x′ ∈ Ω, then∫
Ω
|m1,k(x

′)|2dx′ =
∫

Ω
(1−m2

2,k(x
′))dx′

≤
∫

Ω
|m2,k(x

′)− 1||m2,k(x
′) + 1|dx′ ≤ 2

∫
Ω
|m2,k(x

′)− 1|dx′ ≤ 16αk.

This implies that m1,k converges to 0 in L2(Ω), so also in L1(Ω).
The proof of (2.53)
We estimate the exchange energy of mk.∫

Ω
|∇′mk(x

′)|2dx′ =

∫
Ω

(∣∣∣∣∂m1,k

∂x1
(x1)

∣∣∣∣2 +

∣∣∣∣∂m2,k

∂x1
(x1)

∣∣∣∣2)dx1dx2

= 2

∫ 1

0

(∣∣∣∣∂m1,k

∂x1
(x1)|2 +

∣∣∣∣∂m2,k

∂x1
(x1)

∣∣∣∣2)dx1

≤ 2

αk

∫
R

(∣∣∣∣dukdt (t)

∣∣∣∣2 +

∣∣∣∣dvkdt (t)

∣∣∣∣2)dt.
Estimate (2.50) yields that∫

Ω
|∇′mk(x

′)|2dx′ ≤ O
(

1

αkλk|log λk|

)
.

Choosing

αk =
1

|log λk|1/2
→ 0, (2.54)

we then have ∫
Ω
|∇mk(x

′)|2dx′ = O

(
1

λk|log λk|1/2

)
= O

(
1

ηk|log ηk|3/2

)
. (2.55)

Estimating the stray-yield energy.
We recall the result of Theorem 2.3 that∫

R3

|∇Uk(x)|2dx =
1

2

∫
R2

||∇′|−1/2(∇′.m′k)1Ω|2dx′ =
∫

Ω
Uk(x

′, 0)∇′.m′k(x′)dx′, (2.56)

where Uk is the stray-field associates with the magnetization mk.
Therefore, in order to estimate the stray-field energy, it is sufficient to find an upper bound
of ∫

Ω
Uk(x

′, 0)∇′.m′k(x′)dx′.

The computation will be done according to ∇′.m′k =
∂m1,k

∂x1
.

Let us recall the homogeneous Ḣ1/2(R) semi-norm of v : R→ R be defined by

||v||2
Ḣ1/2(R)

:=

∫
R
|ξ||F1v|2dξ, (2.57)

where F1(v) ∈ S ′(R) stands for the Fourier transform of v.
It is known that (see Ignat [30, Proposition 7])

||v||2
Ḣ1/2(R)

=
1

2π

∫
R

∫
R

|v(s)− v(r)|2

|s− r|2
dsdr, (2.58)
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also

||v||2
Ḣ1/2(R)

=
1

2
min

{∫
R2

|∇′V |2dx′ : V (x1, 0) = v(x1) for every x1 ∈ R
}
. (2.59)

We now estimate
∫

Ω Uk(x
′, 0)

∂m1,k

∂x1
(x′)dx′. Using the fact that m1,k(x1, ·) = 0 for any

x1 /∈ (0, 2αk), (we extends m1,k(x1, ·) = 0 in x1 ∈ R\[0, 1] ) then∫
Ω
Uk(x

′, 0)
∂m1,k

∂x1
(x′)dx′ =

∫ 1

−1

(∫
R
Uk(x

′, 0)
∂m1,k

∂x1
(x′)dx1

)
dx2. (2.60)

Without loss of generality, we consider m1,k as a function of the x1-variable, then the
Parseval identity and the Cauchy-Schwarz inequality yield:(∫

R
Uk(x1, x2, 0)

∂m1,k

∂x1
(x′)dx1

)2

=

(∫
R
F1(Uk(·, x2, 0))(ξ1)F1(

∂m1,k

∂x1
)(ξ1)dξ1

)2

=

(∫
R
iξ1F(Uk(·, x2, 0))(ξ1)F1(m1,k)(ξ1)dξ1

)2

≤
(∫

R
|ξ1||F1(Uk(·, x2, 0))(ξ1)|2dξ1

)(∫
R
|ξ1||F1(m1,k)(ξ1)|2dξ1

)
= ||m1,k(·)||2Ḣ1/2(R)

||Uk(·, x2, 0)||2
Ḣ1/2(R)

≤ 1

2
||m1,k(·)||2Ḣ1/2(R)

∫
R2

|( ∂

∂x1
,
∂

∂x3
)Uk|2dx1dx3. (2.61)

Here, we have use the definition (2.59) to get the last inequality.
As Ḣ1/2(R) is scaling invariant in R, by the definition of m1,k, we obtain

||m1,k(·)||2Ḣ1/2(R)
= ||uk||2Ḣ1/2(R)

≤ π + o(1)

|log ηk|
( by (2.51)). (2.62)

Combining together (2.60)-(2.62) yields that∫
Ω
Uk(x

′, 0)
∂m1,k

∂x1
(x′)dx′

≤
∫ 1

−1

(
1

2

∫
R2

∣∣∣∣( ∂

∂x1
,
∂

∂x3

)
Uk(x1, x2, x3)

∣∣∣∣2dx1dx3

)1/2

||uk||Ḣ1/2(R)dx2

≤
√

2(
π + o(1)

|log ηk|
)1/2

(
1

2

∫
R3

|∇Uk(x)|2dx
)1/2

. (2.63)

By (2.56), it implies that

1

ηk

∫
R3

|∇Uk(x)|2dx ≤ π + o(1)

ηk|log ηk|
. (2.64)

Finally, summing up (2.50) and (2.64), we get the conclusion of (2.53). The proof of
Theorem 2.2 is completed.
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Interior and boundary regularity
results in a model for thin
ferromagnetic films with
Dzyaloshinky-Moriya interaction

Abstract
In this chapter, we study the regularity of critical points of a non-local energy which stems
from a two dimensional ferromagnetic model with Dzyaloshinky-Moriya interaction. First
we show the interior regularity of critical points, like for S2-valued harmonic maps on 2D
domains, the critical points are smooth in the interior of domain. We also prove a boundary
regularity result that the critical points are C1,α up to the boundary, for all α ∈ (0, 1

2). The
particularity of this work is to study the non-local model within an imposed the Dirichlet
boundary condition.

3.1 Introduction

In this chapter, we use the notation which are used in the previous chapter. Let Ω ∈ R2

be a C1,1-domain and g : ∂Ω → S1 be a C1,1 function. We consider a magnetization
m = (m′,m3) : Ω ⊂ R2 → S2 satisfying the boundary condition

m = (g, 0) on ∂Ω.

Denote
H1
g (Ω, S2) := {u ∈ H1(Ω,R3) : |u(x)|= 1 a.e , u = (g, 0) on ∂Ω}

and

Eε,η,κ(m) =

∫
Ω
|∇′m|2dx′+ 2

ε2

∫
Ω
F (m)dx′+

1

η

∫
R2

∣∣∣|∇′|−1/2(∇′.m′)ac
∣∣∣2 dx′+∫

Ω
DM(m)dx′,

where ε, η > 0 are two small positive parameters. Here x′ = (x1, x2) are the in-plane
variables with the differential operator

∇′ = (∂x1 , ∂x2),

and the third variable is denoted by x3.
The first term is the so-called exchange energy, it penalizes spatial variation of m

through the Dirichlet integral ofm. The second term is the anisotropy energy. The function
F : S2 → R+ is smooth whose zeros are the preferred directions of m (called easy axis1 ).

1The previous chapter, F (m) = m2
3/2, so preferring all axis in the horizontal plane.
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The third term in the energy Eε,η,κ can be equivalently expressed in term of L2-norm of
the stray-field ∇U :∫

R2

∣∣∣|∇′|−1/2(∇′.m′)ac
∣∣∣2 dx′ = ∫

R2

1

|ξ|
|F(∇′.m′)ac|2dξ = 2

∫
R3

|∇U |2dx.

Here we denote
(∇′.m′)ac = ∇′.m′1Ω

and U : R3 → R is the stray field potential which is determined by the static Maxwell
equation in weak sense:∫

R3

∇U(x)∇ζ(x)dx =

∫
Ω
∇′.m′(x′)ζ(x′, 0)dx′ for every ζ ∈ C∞0 (R3). (3.1)

The last term is the Dzyaloshinky-Moriya interaction given by∫
Ω
DM(m)dx′ = κ1

∫
Ω
m.∇′ ×mdx′ + κ2

∫
Ω

(m3∇′.m′ −m′.∇′m3)dx′

= κ1

∫
Ω

(m1∂x2m3 −m2∂x1m3 +m3∂x1m2 −m3∂x2m1)dx′

+κ2

∫
Ω

(m3(∂x1m1 + ∂x2m2)−m1∂x1m3 −m2∂x2m3)dx′,

where κ = (κ1, κ2) are arbitrary coefficients.
The principal questions we shall discuss here are the existence and regularity of critical

points Eε,η,κ(m) defined for m ∈ H1
g (Ω,S2).

The existence of a critical point m ∈ H1
g (Ω, S2) is presented in Section 3.2. Moreover we

determiner the Euler-Lagrange equation for the energy Eε,η,κ (as in the case of harmonic
maps.)

Theorem 3.1. Let Ω ⊂ R2 be a C1,1-domain and g : ∂Ω→ S1 be a C1,1 function. If

1

ε2
F ((ξ1, ξ2, ξ3)) ≥ 1+(κ2

1 + κ2
2)ξ2

3 for all ξ = (ξ1, ξ2, ξ3) : Ω→ S2,

where 1+ is any fixed number larger than 1, then there exists a minimizer m ∈ H1
g (Ω,S2)

of Eε,η,κ. Moreover m satisfies the following

−∆m−m|∇′m|2−1

η

(
H
0

)
+

1

η
m′.Hm+

1

ε2
(f(m)−m.f(m)m)

+ κ1(Id−m⊗m)∇′ ×m+ κ2

((
−∇′m3

∇′.m′
)

+ (∇′m3.m
′ −m3∇′.m′)m

)
= 0 in D′(Ω),

where H := ∇′U(·, 0) and f = ∇F.

The regularity result we prove in Section 3 is that any critical point m of Eε,η,κ over
H1
g (Ω) is smooth in the interior of domain and C1,α, for all α ∈ (0, 1

2) up to the boundary.
The regularity theory for critical point of quadratic functional in dimension two has con-
siderably progressed since the theorems of Morrey, see [41]. One of the most important
results is proved by Hélein, see [26]. It concerns the regularity of harmonic maps defined
in an open set of R2 and with values in a sphere (a Riemannian manifold). In [11], Carbou
shows a result of regularity of critical points of a different ferromagnetic model (without
any imposed boundary condition). For the regularity in the interior domain, we use mainly
here the works of Hélein about the harmonic maps with values into S2, also the works of
Carbou (see [11]).
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The regularity at the boundary for a three dimensional ferromagnetic functional have
been studied by Hardt, Kinderlehrer and Lin (see [24]), also by Huber ([27]). For that,
one studies the minimizing problem

E(m) = d2

∫
ω
|∇m|2dx+

∫
R3

|∇U(x)|2dx

among all function m ∈ H1(ω,S2), where the so-called stray-field potential U : R3 → R is
generated by the Maxwell equation:

−∆U = ∇.(m1ω) in R3 (3.2)

and ω ⊂ R3 is the ferromagnetic sample. We remark that these minimizers satisfy ∂m
∂ν = 0

on the boundary, where ν is the unit outer normal vector. Thus their Neumann boundary
condition is different from our imposed Dirichlet boundary condition.

The general idea used in [27] is to construct a reflection at the boundary in order
to establish a situation which is similar to the setting in the interior. In the case of
minimizing harmonic maps, one can follow the ideas by Schoen and Uhlenbeck, see [46]
based on a monotonicity formula. Then, the higher regularity will be obtain by the interior
setting tools. Moreover, a special coordinate system is introduced in [27] in order to obtain
the regularity of differential in the outer normal direction which is based on a reflection
construction and the Neumann boundary condition ∂m

∂ν = 0.
In our work, instead of using the reflection construction, we shall use delicately the

Nirenberg method to obtain a higher regularity through the tangential direction. The reg-
ularity through the normal direction will be obtain by the anisotropic Sobolev embedding,
see [25].

In the next section, we recall some preliminaries on the stray-field and prove the
existence of minimizers. The regularity of critical points shall be given in Section 3.3. It
is split into 2 subsections (the interior regularity and the boundary regularity).

3.2 Existence of minimizers and Euler-Lagrange

equation

Let us first recall some important properties of the stray field
∫
R3 |∇U |2dx. We first

recall the definition of the Beppo-Levi space

BL :=

{
U : R3 → R : ∇U ∈ L2(R3),

U(x)

1 + |x|
∈ L2(R3)

}
.

Consequently, the space BL endowed by the homogeneous Ḣ1− norm, U 7→ ||∇U ||L2(R3) is
a Hilbert space, and the set C∞0 (R3) of smooth compactly supported functions is a dense
set, see Dautray and Lions [16].

Remark 3.2. If m, l ∈ H1(Ω,S2) and U = U(m), V = V (l) are the corresponding solu-
tions of (3.1), then ∫

Ω
V (x′, 0)∇′.m′(x′)dx′ =

∫
Ω
U(x′, 0)∇′.l′(x′)dx′.

Indeed, by the density of C∞0 (R3) in BL(R3), then (3.1) is still true for every ζ ∈
BL(R3).
Choose ζ = V, we obtain:∫

Ω
V (x′, 0)∇′.m′(x′)dx′ =

∫
R3

∇U(x)∇V (x)dx′ =

∫
Ω
U(x′, 0)∇′.l′(x′)dx′.
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Remark 3.3. For m ∈ H1(Ω,R2) and the stray potential U(m) satisfying the Maxwell
equation (3.1), one can present U under the term of the Fourier transform (see the proof
of Theorem 2.3 in the appendix)

F(U(·, 0))(ξ) =
1

2|ξ|
F((∇′.m′)1Ω)(ξ) for all ξ ∈ R2. (3.3)

Hence,∫
|R2

|∇U(·, 0)|2dx′ =
∫
R2

|ξ|2|F(U(·, 0))(ξ)|2dξ =

∫
R2

|ξ|2 1

4|ξ|2
|F((∇′.m′)1Ω)(ξ)|2dξ

=
1

4
||(∇′.m′)1Ω||2L2(R2)

≤ 1

4
||∇′.m′||2L2(Ω).

This implies that ∇′U(·, 0) ∈ L2(R2).

Moreover, when m is more regular, one has

Lemma 3.4. If m ∈ Hk
loc(Ω) ∩H1(Ω) then U(·, 0) ∈ Hk

loc(Ω),∀k ≥ 2.

The proof of Lemma 3.4 is given in the appendix.

3.2.1 The existence of minimizers

Let Ω ∈ R2 be a C1,1-domain and g : ∂Ω → S1 be a smooth function. In this
section, we study the existence of a minimizer of the energy Eε,η,κ(m) under the constrains
m ∈ H1

g (Ω, S2). For that we assume that

1

ε2
F ((ξ1, ξ2, ξ3)) ≥ 1+(κ2

1 + κ2
2)ξ2

3 for all ξ = (ξ1, ξ2, ξ3) : Ω→ S2, (3.4)

where 1+ is any fixed number larger than 1. Observe that

Eε,η,κ(m) > −∞ for every m ∈ H1
g (Ω,S2). (3.5)

Indeed, using the definition of the DM term and the boundary condition m = (g, 0) on
∂Ω, one has by integration by parts

κ1

∫
Ω
m.∇′ ×mdx′ = 2κ1

∫
Ω

(m3∂x1m2 −m3∂x2m1)dx′

and

κ2

∫
Ω

(m3∇′.m′ −m′.∇′m3)dx′ = 2κ2

∫
Ω
m3∇′.m′dx′.

Therefore ∫
Ω
DM(m)dx′ ≤ 2+(κ2

1 + κ2
2)

∫
Ω
m2

3dx
′ + 1−

∫
Ω
|∇′m′|2dx′

2

ε2

∫
Ω
F (m)dx′ + 1−

∫
Ω
|∇′m′|2dx′

where 2+ := 2.1+ with 1+ given in (3.4) and 1− = 2
2− . Combining with (3.4) and the

definition of the energy, this yields (3.5).
By the above argument, we then take (mk)k a minimizing sequence of Eε,η,κ inH1

g (Ω,S2)
for ε, η, κ fixed.
Since (0+)

∫
Ω|∇m

′
k|2≤ Eε,η,κ(mk) for some 0+ > 0 and (mk) takes values in S2, the se-

quence (mk)k is bounded in H1(Ω).
Hence, up to a subsequence, there exists m ∈ H1(Ω,R3) such that
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(i) mk ⇀m weakly in H1(Ω,R3),

(ii) mk → m in Lp(Ω,R3) for every 1 ≤ p < +∞

(iii) |m|= 1 in Ω.

The third convergence implies that m is S2-valued. By the trace operator, we also get that

m′ = g in H1/2(∂Ω). (3.6)

Moreover, ∫
Ω
|∇′m|2dx′ ≤ lim inf

∫
Ω
|∇′mk|2dx′,∫

Ω
F (mk)dx

′ →
∫

Ω
F (m)dx′.

We are going to establish that∫
Ω
DM(mk)dx

′ →
∫

Ω
DM(m)dx′.

Indeed, let us consider the first term of DM energy, (
∫

Ωm.∇
′ ×m). Observe that

mk → m strongly in L2(Ω, S2),

and

∇′ ×mk ⇀ ∇′ ×m weakly in L2(Ω,R3).

Therefore, we get ∫
Ω
mk.∇′ ×mkdx

′ →
∫

Ω
m.∇′ ×mdx′. (3.7)

Using the same argument as above for the second term of the DM energy, we obtain∫
Ω

(
m3,k∇′.m′k −m′k.∇′m3,k

)
dx′ →

∫
Ω

(
m3∇′.m′ −m′.∇′m3

)
dx′.

Then we get the convergence of the DM energy.

We now prove the convergence of the stray-field energy. Let us call Uk, U the stray
potentials associated with mk,m satisfying (3.1).
By Theorem 2.3, we get

‖∇(Uk − U)‖2L2(R3) =
1

2

∫
R2

1

|ξ|

∣∣∣∣F((∇′.(m′k −m′))1Ω)(ξ)

∣∣∣∣2dξ
=

1

2

∫
R2

1

|ξ|

∣∣∣∣ ∫
R2

e−ix
′ξ∇′.(m′k −m′)1Ωdx

′
∣∣∣∣2dξ.

Since m′k = m′ = g on the boundary ∂Ω, we then use the Green theorem to obtain

‖∇(Uk − U)‖2L2(R3) =
1

2

∫
R2

1

|ξ|

∣∣∣∣ ∫
R2

−ie−ix′ξξ.(m′k −m′)1Ωdx
′
∣∣∣∣2dξ.

≤ 1

2

∫
R2

1

|ξ|
|ξ|2|F((m′k −m′)1Ω)(ξ)|2dξ

=
1

2
‖(m′k −m′)1Ω‖2Ḣ1/2(R2)

.
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The standard interpolation inequality implies that

‖∇(Uk − U)‖2L2(R3) ≤ 1

2
‖(m′k −m′)1Ω‖Ḣ1(R2)‖(m

′
k −m′)1Ω‖L2(R2)

=
1

2
‖m′k −m′‖Ḣ1(Ω)‖m

′
k −m′‖L2(Ω).

The first factor in the right hand side is bounded while the second one tends to 0. This
proves that ∇Uk converges to ∇U in L2(R3). We conclude that m is a minimizer of Eε,η,κ
over H1

g (Ω, S2).

3.2.2 Euler-Lagrange equation

We are going to compute the Euler-Lagrange equation satisfied by the critical points
mk ∈ H1

g (Ω) of Eε,η,κ. Let Φ be an element of C∞0 (Ω,R3). We set

mt =
m+ tΦ

|m+ tΦ|
,

for t small (e.g. t ≤ 1
||Φ||L∞(Ω)+1), otherwise m + tΦ may has zeros. Since |m + tΦ|−1=(

|m|2+2tm.Φ + t2|Φ|2
)−1/2

= 1− tm.Φ +O(t2), then

mt = m+ t(Id−m⊗m)Φ +O(t2).

Let Ut(mt) ∈ BL(R3) be the solution of the Maxwell equation (3.1) associated with mt.
We ahve

Eε,η,κ(mt) =
1

2

∫
Ω
|∇′mt|2+

1

ε2

∫
Ω
F (mt)dx

′

+
1

2η

∫
Ω
Ut(x

′, 0)∇′.m′t(x′)dx′ +
∫

Ω
DM(mt)dx

′ (3.8)

and σ(m) = (Id−m⊗m)Φ.
Since (3.1) is linear and has a unique solution, then Ut = U + tσU +O(t2),
where σU is the solution of (3.1) , or

∆(σU) = 0 in R3�(Ω× {0}),[
∂σU
∂x3

]
= −∇′.(σ(m)′) on Ω× {0},

[σU ] = 0 on R2 × {0}.

We prove that
Eε,η,κ(mt) = Eε,η,κ(m) + tσEε,η,κ +O(t2), (3.9)

where

σEε,η,κ :=

∫
Ω
∇′m.∇′(σ(m))dx′ +

1

ε2

∫
Ω

(∂x1 , ∂x2 , ∂x3)F (m).σ(m)dx′

+
1

η

∫
Ω
U(x′, 0)∇′.(σ(m)′dx′

+2κ1

∫
Ω
σ(m).∇′ ×mdx′ + 2κ2

∫
Ω

(m3∇′.σ(m)′ + σ(m)3∇′.m′)dx′.

Indeed, it is simple to check that∫
Ω
|∇′mt|2dx′ =

∫
Ω
|∇′m|2dx′ + 2t

∫
Ω
∇′m.∇′σ(m)dx′ +O(t2),
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and∫
Ω
F (mt)dx

′ =

∫
Ω
F (m)dx′+t

∫
Ω

(∇′, ∂x3)F (m).σ(m)dx′+O(t2) (by Taylor’s expansion).

Remark 3.2 and definition of Ut yield that∫
Ω
Ut(x

′, 0)∇′.m′t(x)dx′ =

∫
Ω
U(x′, 0)∇′.m′(x′)dx′

+t

∫
Ω
U(x′, 0)∇′.σ(m)′(x′)dx′ + t

∫
Ω
σU(x′, 0)∇′.m′(x′)dx′ +O(t2),

=

∫
Ω
U(x′, 0)∇′.m′(x′)dx′ + 2t

∫
Ω
U(x′, 0)∇′.σ(m)′(x′)dx′ +O(t2).

For the first term in the DM energy, one has

κ1

∫
Ω
mt.∇′ ×mtdx

′

= κ1

∫
Ω
m.∇′ ×mdx′ + tκ1

(∫
Ω
m.∇′ × σ(m)dx′ +

∫
Ω
σ(m).∇′ ×mdx′

)
+O(t2).

We recall that m3 = mt,3 = 0 on the boundary, thus integration by parts implies∫
Ω
m.∇′ × σ(m)dx′ +

∫
Ω
σ(m).∇′ ×mdx′ = 2

∫
Ω
σ(m).∇′ ×mdx′.

This implies that

κ1

∫
Ω
mt.∇′ ×mtdx

′ = κ1

∫
Ω
m.∇′ ×mdx′ + 2tκ1

∫
Ω
σ(m).∇′ ×mdx′ +O(t2).

We also have that

κ2

∫
Ω
mt,3(∇′.m′t −m′t.∇′mt,3)dx′ = 2κ2

∫
Ω
mt,3∇′.m′tdx′.

An easy computation shows that

2κ2

∫
Ω
mt,3∇′.m′tdx′

= 2κ2

∫
Ω
m3∇′.m′dx′ + 2tκ2

∫
Ω

(σ(m)3∇′.m′ +m3∇′.σ(m)′)dx′ +O(t2) (3.10)

which proves (3.9).
We now determine the Euler-Lagrange equation.
Rewriting the first term in σEε,η,κ.∫

Ω
∇′m.∇′σ(m)dx′ =

∫
Ω
∇′m.∇′(Φ−m.Φm)dx′

=

∫
Ω
∇′m.∇′Φdx′ −

∫
Ω
|∇′m|2m.Φdx′ −

∫
Ω
∇′m.(m∇′(m.Φ)T )dx′

=

∫
Ω
∇′m.∇′Φdx′ −

∫
Ω
|∇′m|2m.Φdx′. (3.11)

We have used that m orthogonal to ∇′m in the last equality.
Hence ∫

Ω
∇′m.∇′(σ(m)) = 〈−∆m−m|∇′m|2; Φ〉D′(Ω),D(Ω).

39



Chapter 3

Rewriting the second term in σEε,η,κ.∫
Ω

(∂x1 , ∂x2 , ∂x3)F (m).σ(m) = 〈(∂x1 , ∂x2 , ∂x3)F (m)−m.(∂x1 , ∂x2 , ∂x3)F (m)m; Φ〉D′(Ω),D(Ω).

Rewriting the third term in σEε,η,κ.
Using the Green formula and the fact that Φ = 0 on ∂Ω, one has∫

Ω
U(x′, 0)∇′.σ(m)′dx′ =

∫
Ω
U(x′, 0)∇′.(Φ′ −m.Φm′)dx′

=

∫
Ω

(−∇′U(x′, 0).Φ′ +∇′U(x′, 0).m′Φ.m)dx′

=

∫
Ω

(−(∇′U(x′, 0), 0).Φ +∇′U(x′, 0).m′m.Φ)dx′

= 〈−(∇′U(·, 0), 0) +∇′U(·, 0).m′m; Φ〉D′(Ω),D(Ω).

Rewriting the DMI term in σEε,η,κ.
The first term in the DMI.

2

∫
Ω
σ(m).∇′ ×mdx′ = 2

(∫
Ω

Φ.∇′ ×mdx′ −
∫

Ω
m.Φm.∇′ ×m

)
dx′

= 〈Φ, 2∇′ ×m− 2m(m.∇′ ×m)〉D′(Ω),D(Ω).

The second term in the DMI. By integration by parts, it follows for Φ = 0 on ∂Ω

2

∫
Ω
m3∇′.σ(m)′ + σ(m)3∇′.m′dx′

= 2

∫
Ω

(m3∇.(Φ′ −m.Φm′) + (Φ3 −m.Φm3)∇′.m′)dx′

= 2

∫
Ω

((m3∇′.Φ′ + Φ3∇′.m′)− (m3∇′(m.Φ).m′ +m3m.Φ∇′.m′ +m.Φm3∇′.m′))dx′

= 2

∫
Ω

((−∇′m3.Φ
′ +∇′.m′Φ3)− (−∇′.(m3m

′)m.Φ + 2m3∇′.m′m.Φ))dx′

= 2

∫
Ω

((−∂x1m3,−∂x2m3,∇′.m′).Φ− (m3∇′.m′ −∇′m3.m
′)m.Φ)dx′ (3.12)

So, the Euler-Lagrange equation is

∆m = −m|∇′m|2+
1

ε2
((∂x1 , ∂x2 , ∂x3)F (m)−m.(∂x1 , ∂x2 , ∂x3)F (m)m)

+
1

η

(
−
(
H
0

)
+m′.Hm

)
+ κ1(Id−m⊗m)∇′ ×m (3.13)

+κ2

((
−∇′m3

∇′.m′
)

+ (∇′m3.m
′ −m3∇′.m′)m

)
in D(Ω),

where H := ∇′U(·, 0).
Denote

K(·,m) =
−1

ε2
((∂x1 , ∂x2 , ∂x3)F (m) +m.(∂x1 , ∂x2 , ∂x3)F (m)m)

+
1

η

((
H
0

)
−m′.Hm

)
− κ1(Id−m⊗m)∇′ ×m

−κ2

((
−∇′m3

∇′.m′
)

+ (∇′m3.m
′ −m3∇′.m′)m

)
. (3.14)

Finally, we obtain the Euler-Lagrange equation:∫
Ω
∇′m∇′Φdx′ =

∫
Ω

(m|∇′m|2+K(x′,m(x′))).Φdx′ ∀Φ ∈ C∞0 (Ω,R3). (3.15)
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Remark 3.5. (i) By the definition of K, the assumption of the function F and Remark
3.3, then if m ∈ H1

g (Ω, S2) is a critical point of Eε,η,κ, then we have immediately
that K ∈ L2(Ω,R3).

(ii) Since m ∈ H1
g (Ω, S2) and K ∈ L2(Ω,R3), then we have m|∇′m|2+K(x′,m(x′)) ∈

L1(Ω,R3). By a duality argument 2, this implies that (3.15) holds true for every
Φ ∈ H1

0 ∩ L∞(Ω,R3).

3.3 Regularity of critical points

In this Section, we prove

Theorem 3.6. Let Ω be a C1,1- domain, F ∈ C∞(S2) and g : ∂Ω → S1 be a C1,1

function. Let m ∈ H1
g (Ω,S2) be an critical point of Eε,η,κ. Then m ∈ C∞(Ω) ∩ C1,α(Ω)

for all α ∈ (0, 1
2).

For that, we shall split the proof into two parts, the regularity of m in the interior
domain and the regularity of m up to the boundary.

3.3.1 Interior regularity

We aim to prove the regularity of the solution (3.13) in the interior of the domain
Ω. We follow the method used by Carbou for a slightly different ferromagnetic model in
dimension 2 (see [11]), also by Jost for the interior regularity of harmonic maps into the
sphere (see [35]).
For the conveniences, we have some notational conventions:

From now on, we will write ∇ = (∂x1 , ∂x2) instead of ∇′, ∇.m′ = ∂x1m1 + ∂x2m2,
x ∈ R2 standing for the in-plan quantity. Combining the Euler-Lagrange equation (3.15)
and Remark 3.5, we has∫

Ω
∇m∇Φdx =

∫
Ω

(m|∇m|2+K(x,m(x))).Φdx ∀Φ ∈ H1
0 ∩ L∞(Ω,R3). (3.16)

Also, we shall always integrate w.r.t. to the Lebesgue measure dx and this will often be
omitted.
The main goal of this section is the following theorem

Theorem 3.7. Let Ω be a C1,1 simply connected domain, g : ∂Ω→ S1 be a C1,1 function
and m ∈ H1

g (Ω,S2) be the solution of (3.13). Then m ∈ C∞(Ω).

For the continuity of m ∈ C0(Ω) we first rely on the result of Wente which is proved
in [8, Lemma A.1 and Remark A.1]:

Lemma 3.8. Assume that Ω is a C1,1 domain in R2 and f = (f1, f2), h = (h1, h2) ∈
H1(Ω,R2) and u ∈W 1,1

0 (Ω) is a solution of

∆u =
2∑
i=1

∇fi∇⊥hi,

then u ∈ C0(Ω).

2For every such Φ,∃Φn ∈ C∞0 (Ω) s.t. |Φn|≤ ||Φ||L∞ ,Φn → Φ in H1(Ω), Φn → Φ a.e in Ω.
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Proof of Theorem 3.7. The proof is carried out in several steps.

Step AWe prove that m ∈ C0(Ω, S2).
In this step we only use that K ∈ L2(Ω). The fact |m|= 1 a.e implies that:

3∑
i=1

mi∂xkmi = 0, for k = 1, 2.

Then for any i ∈ {1, 2, 3}, we rewrite (3.13) in the form:

−∆mi =
2∑

k=1

3∑
j=1

∂xkmj(mi∂xkmj −mj∂xkmi) +Ki, (3.17)

where K = (K1,K2,K3) is denoted as in (3.14).
Remark that in the sense of distributions:

2∑
k=1

∂xk(mi∂xkmj −mj∂xkmi) =

2∑
k=1

(∂xkmi∂xkmj +mi∂
2
xkxk

mj − ∂xkmj∂xkmi −mj∂
2
xkxk

mi)

= mi∆mj −mj∆mi.

Together with (3.16), this implies that

2∑
k=1

∂xk(mi∂xkmj −mj∂xkmi) = mi(−mj |∇m|2−Kj)−mj(−mi|∇m|2−Ki)

= −miKj +mjKi.

Since m is uniformly bounded by 1 and K ∈ L2(Ω,R3), then

−miKj +mjKi ∈ L2(Ω).

Let bij be a solution in H1(Ω,R2) of

∇.bij = −miKj +mjKi in Ω.

Therefore we obtain:

∇.(mi∇mj −mj∇mi − bij) = 0 in D′(Ω).

Applying the Poincaré lemma to (mi∇mj−mj∇mi−bij) in the simply connected domain
Ω , then there exists cij ∈ H1(Ω,R2) such that:

mi∇mj −mj∇mi − bij = ∇⊥cij in Ω.

Combining with (3.17), this yields

−∆mi =
3∑
j=1

(∇mj .∇⊥cij +∇mj .bij) +Ki in D′(Ω) for any i ∈ {1, 2, 3}.

Let αi ∈ C0(Ω) ∩H1
0 (Ω) be the solution of{

−∆αi =
∑3

j=1∇mj .∇⊥cij in Ω,

αi = 0 on ∂Ω,
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( this is thanks to Theorem 2.3) and βi ∈ C0,γ(Ω), for some γ ∈ (0, 1), be the solution of

{
−∆βi =

∑3
j=1∇mj .bij +Ki in Ω

βi = mi = gi on ∂Ω.
(3.18)

Indeed, since bij ∈ H1(Ω,R2) ⊂ Lp(Ω,R2) for all 1 ≤ p < ∞, then
∑3

j=1∇mj .bij + Ki ∈
L2−(Ω), where 2− is any positive number less than 2. By the standard elliptic theory,
since g ∈ C1,1(∂Ω, there exists a unique βi ∈ W 2,2−(Ω) satisfying (3.18) . By the Morrey
inequality, βi ∈ C0,γ(Ω) for some γ. As αi + βi satisfies the PDE

{
−∆(αi + βi) =

∑3
j=1(∇mj .∇⊥cij +∇mj .bij) +Ki in Ω,

αi + βi = gi on ∂Ω,

the uniqueness of the Poisson equation with Dirichlet condition implies that mi = αi+βi.
So we have m ∈ C0(Ω). In the next step, using m ∈ C0(Ω), we are going to sharpen the
interior regularity.

Step B We prove m ∈ H2
loc(Ω,S2).

Step B is a consequence of the following auxiliary result which is inspired by [35, Theorem
9.6.1].

Lemma 3.9. Suppose m ∈ C0 ∩ H1(B(x0, R), S2) is a solution of (3.16). Then m ∈
H2(B(x0,

R
2 )), moreover we have the estimate:

||D2m||L2(B(x0,
R
2

))≤ C + C||∇m||L2(B(x0,R)), (3.19)

where C > 0 depends on R.

Before proving the Lemma 3.9, let us give the following Lemma.

Lemma 3.10. Let Ω ⊂ R2 be an open domain and m ∈ H1 ∩ C0(Ω, S2) be a solution of
(3.16). Then for every ε0 > 0, there exist ρ > 0 such that

∫
B(P,ρ)

|∇m(x)|2η2(x)dx ≤ ε0
∫
B(P,ρ)

|∇η(x)|2dx,

for all P ∈ Ω, B(P, ρ) ⊂ Ω and η ∈ H1
0 (B(P, ρ)).

Proof of the Lemma 3.10. We first work with η ∈ C∞0 (B(P, ρ)). Choosing Φ(x) = (m(x)−
m(P ))η2(x) ∈ H1

0 ∩ L∞(Ω,R3) in (3.16), we obtain

∫
B(P,ρ)

∇m(x)∇((m(x)−m(P ))η2(x))dx

=

∫
B(P,ρ)

(m(x)|∇m(x)|2+K)((m(x)−m(P ))η2(x)dx.
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Hence, ∫
B(P,ρ)

|∇m|2η2 = −
∫
B(P,ρ)

2η∇η∇m(m(·)−m(P ))

+

∫
B(P,ρ)

|∇m|2m.(m(·)−m(P ))η2(x) +

∫
B(P,ρ)

K(·,m(·))(m(·)−m(P ))η2

≤

∣∣∣∣∣2
∫
B(P,ρ)

η∇η∇m(m(·)−m(P ))

∣∣∣∣∣+ sup
B(P,ρ)

|m(·)−m(P )|
∫
B(P,ρ)

|∇m|2η2

+ sup
B(P,ρ)

|m(·)−m(P )|||K(·,m(·), )||L2(B(P,ρ))||η||2L4(B(P,ρ))

≤ 1

2

∫
B(P,ρ)

|∇m|2η2 + 2 sup
B(P,ρ)

|m(·)−m(P )|2
∫
B(P,ρ)

|∇η|2

+ sup
B(P,ρ)

|m(·)−m(P )|
∫
B(P,ρ)

|∇m|2η2 + Cρ sup
B(P,ρ)

|m(·)−m(P )|
∫
B(P,ρ)

|∇η|2,

where we used the Sobolev inequality

Cρ

∫
B(0,ρ)

|∇η|2≥
(∫

B(0,ρ)
|η|4
)1/2

,

the Young inequality and the fact K ∈ L2(Ω,R3) in the last inequality. The Lemma follows
because we can make sup

x∈B(P,ρ)
|m(x) − m(P )| arbitrarily small by choosing ρ sufficiently

small since m is continuous.
Finally, we note that, by using the density argument, the conclusion holds for η ∈
H1

0 (B(P, ρ)). Indeed, for any η ∈ H1
0 (B(P, ρ)), there exists ηk ∈ C∞0 (B(P, ρ)) such that{

ηk → η a.e
ηk → η in H1(B(P, ρ)).

Then by Fatou’s Lemma∫
B(P,ρ)

|∇m|2η2 ≤ lim inf

∫
B(P,ρ)

|∇m(x)|2η2
k(x)dx

≤ lim inf ε0

∫
B(P,ρ)

|∇ηk(x)|2dx = ε0

∫
B(P,ρ)

|∇η|2.

We continue with the proof of Lemma 3.9:

Proof of Lemma 3.9. The idea of the proof is to estimate the term∫
B(P,ρ)

|∇(Dh
γm)|2ξ2,

where ξ is a good cut-off function to be defined later, Dh
γm is γth-difference quotient of

size h defined by

Dh
γm(x) =

m(x+ heγ)−m(x)

h
for γ = 1, 2

and
⋃
P B(P, ρ) cover B(x0, R) .

For any P ∈ Ω and R > R′ > 0 such that B(P,R′) ⊂⊂ B(x0, R), we choose a test function
in (3.16) as Φ = D−hγ (ξ2Dh

γm), here ξ ∈ C∞0 (B(P,R′)) and 0 ≤ ξ ≤ 1 will be chosen later
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(see(3.26)).
Equation (3.16) implies that∫

B(P,R′)
∇m∇Φ =

∫
B(P,R′)

∇m∇(D−hγ (ξ2Dh
γm)) =

∫
B(P,R′)

(m|∇m|2+K)D−hγ (ξ2Dh
γm).

For h sufficiently small depending dist(supp(ζ), ∂B(P,R′)), the integration by parts for-
mula for difference quotients∫

B(P,R′)
vD−hγ w = −

∫
B(P,R′)

wDh
γv

implies that∫
B(P,R′)

∇m∇(D−hγ (ξ2Dh
γm)) =

∫
B(P,R′)

∇mD−hγ (∇(ξ2Dh
γm))

= −
∫
B(P,R′)

Dh
γ (∇m)∇(ξ2Dh

γm).

Then ∫
B(P,R′)

Dh
γ (∇m)∇(ξ2Dh

γm) = −
∫
B(P,R′)

(m|∇m|2+K)D−hγ (ξ2Dh
γm).

Moreover:
Dh
γ (∇m)∇(ξ2Dh

γm) = |∇(Dh
γm)|2ξ2 +∇(Dh

γm)2ξ∇ξDh
γm.

Then∫
B(P,R′)

|∇(Dh
γm)|2ξ2

= −
∫
B(P,R′)

(m|∇m|2+K)D−hγ (ξ2Dh
γm)−

∫
B(P,R′)

2ξ∇ξDh
γm∇(Dh

γm). (3.20)

We are going to estimate the right hand side of (3.20). First, by Young’s inequality,∣∣∣∣∣
∫
B(P,R′)

2ξ∇ξDh
γm∇(Dh

γm)

∣∣∣∣∣
≤ ε1

∫
B(P,R′)

|∇(Dh
γm)|2ξ2 +

1

ε1

∫
B(P,R′)

|Dh
γm|2|∇ξ|2, (3.21)

for any ε1 > 0.
We assume that 0 < |h|< 1

2dist(supp(ξ), ∂B(P,R′)), then one has (see Evans [21])∫
B(P,R′)

|D−hγ (ξ2Dh
γm)|2≤ C

∫
B(P,R′)

|∇(ξ2Dh
γm)|2. (3.22)

The second term of RHS-(3.20) is estimated by Young’s inequality and (3.22)∣∣∣∣∣
∫
B(P,R′)

KD−hγ (ξ2Dh
γm)

∣∣∣∣∣
≤ 1

2ε1

∫
B(P,R′)

|K|2+
ε1
2

∫
B(P,R′)

|D−hγ (ξ2Dh
γm)|2

≤ 1

2ε1

∫
B(P,R′)

|K|2+
ε1
2
C

∫
B(P,R′)

|∇(ξ2Dh
γm)|2

≤ 1

2ε1

∫
B(P,R′)

|K|2+
ε1
2
C

∫
B(P,R′)

(8ξ2|∇ξ|2|Dh
γm|2+2ξ4|∇(Dh

γm)|2)

≤ 1

2ε1

∫
B(P,R′)

|K|2+
ε1
2
C

∫
B(P,R′)

(8ξ2|∇ξ|2|Dh
γm|2+2ξ2|∇(Dh

γm)|2). (3.23)
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Here, in the second inequality, We continue with∣∣∣∣∣
∫
B(P,R′)

m|∇m|2D−hγ (ξ2Dh
γm)

∣∣∣∣∣ =

∣∣∣∣∣
∫
B(P,R′)

Dh
γ (m|∇m|2)ξ2Dh

γm

∣∣∣∣∣
≤
∫
B(P,R′)

(|Dh
γm||∇m|2+|mh|(|∇m|+|(∇m)h||Dh

γ (∇m)|)ξ2|Dh
γm|

≤
∫
B(P,R′)

|Dh
γm|2|∇m|2ξ2 +

∫
B(P,R′)

(|∇m|+|(∇m)h|)|Dh
γm||∇(Dh

γm)|ξ2

≤
∫
B(P,R′)

|Dh
γm|2|∇m|2ξ2 +

ε1
2

∫
B(P,R′)

|∇(Dh
γm)|2ξ2 (3.24)

+
1

2ε1

∫
B(P,R′)

(|∇m|+|(∇m)h|)2|Dh
γm|2ξ2,

where mh(x) := m(x+ heγ) and (∇m)h(x) = ∇m(x+ heγ).
Here we have used the formula

Dh
γ (vw) = vhDh

γw + wDh
γv,

for vh(x) := v(x+ heγ).
Combining (3.20)-(3.24), 0 ≤ ξ ≤ 1, K ∈ L2(Ω) and choosing ε1 small enough, this yields
that: ∫

B(P,R′)
|∇(Dh

γm)|2ξ2 ≤ C(1 +

∫
B(P,R′)

|Dh
γm|2|∇ξ|2 (3.25)

+

∫
B(P,R′)

|∇m|2|Dh
γm|2ξ2 +

∫
B(P,R′)

|(∇m)h|2|Dh
γm|2ξ2).

For ε0 > 0, we choose R′ = ρ > 0 as in Lemma 3.10 with

B(P, ρ) ⊂ B(x0, R)

and we choose ξ ∈ C∞0 (B(P, ρ)) such that

ξ = 1 in B(P,
ρ

2
) and 0 ≤ ξ ≤ 1, |∇ξ|≤ 4

ρ
in B(P, ρ). (3.26)

Thus, all preceding integrals need to be evaluated only on B(P, ρ). Applying Lemma 3.10
to η = |Dh

γm|ξ ∈ H1
0 ∩ L∞(B(x0, ρ)), we obtain:∫

B(P,ρ)
|∇m|2|Dh

γm|2ξ2

≤ ε0
∫
B(P,ρ)

|∇(|Dh
γm|ξ)|2

≤ 2ε0

∫
B(P,ρ)

|∇(Dh
γm)|2ξ2 + 2ε0

∫
B(P,ρ)

|Dh
γm|2|∇ξ|2. (3.27)

Similarly, using Lemma 3.10 again with the function m(·+ heγ) we obtain∫
B(P,ρ)

|(∇m)h|2|Dh
γm|2ξ2 ≤ 2ε0

∫
B(P,ρ)

|∇(Dh
γm)|2ξ2 + 2ε0

∫
B(P,ρ)

|Dh
γm|2|∇ξ|2. (3.28)

Since |∇ξ|≤ 4
ρ in B(P, ρ), (3.25), (3.27), (3.28), we choose ε0 small enough, then for

0 < |h|< dist(supp(ξ), ∂B(P, ρ)), we get∫
B(P,ρ)

|∇(Dh
γm)|2ξ2 ≤ C(1 +

∫
B(P,ρ)

|Dh
γm|2|∇ξ|2)

≤ C(1 +
16

ρ2

∫
B(P,ρ)

|∇m|2). (3.29)
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The properties of ξ imply that∫
B(P, ρ

2
)
|∇(Dh

γm)|2 ≤
∫
B(P,ρ)

|∇(Dh
γm)|2ξ2

≤ C(1 +
16

ρ2

∫
B(P,ρ)

|∇m|2)

≤ C +
C

ρ2

∫
B(P,ρ)

|∇m|2. (3.30)

Covering B(x0,
R
2 ) by balls B(P, ρ2) with B(P, ρ) ⊂ B(x0, R), we obtain the desired esti-

mate for ∫
B(x0,

R
2

)
|D2m|2.

This finished the proof of Lemma 3.10. By Lemma (3.10), Step B (i.e. m ∈ H2
loc(Ω,S2))

follows immediately.

Step C The aim of this step is to prove that m ∈ H3
loc(Ω).

By Step B and Lemma 3.4, we know that m ∈ H2
loc(Ω) , H ∈ H1

loc(Ω), where H is defined
as (H = ∇U(·, 0)). First, we claim that K ∈ H1

loc(Ω). Indeed, we note

|∇(m.(∇, ∂x3)F (m)m)|≤ C(|D2F (m)||m|+|∇m||(∇, ∂x3)F (m)||m|),

|∇(m′Hm)|≤ C(|∇H||m|2+|∇m||H||m|),

|∇((m⊗m)∇×m)|≤ C(|∇m|2|m|+|D2m||m|2)

and

|∇((−∇m3.m
′ −m3∇.m′)m)|≤ C(|D2m||m|2+|∇m|2|m|).

Combining the definition of K (see (3.14)), these above facts and the regularities of m,H,F
(m ∈ H2

loc ⊂ W 1,p
loc for all 1 ≤ p < ∞, H ∈ H1

loc ⊂ Lploc(Ω), F ∈ C∞), this yields
K ∈ H1

loc(Ω,R3).
We want to apply the standard interior elliptic regularity to equation

−∆m = m|∇m|2+K(·,m(·)) in D′(Ω). (3.31)

The principal difficulty of this step is to deal with the term m|∇m|2. Observe that:

∇(m|∇m|2) = ∇m|∇m|2+2mD2m∇m.

The first term ∇m|∇m|2∈ Lp for all p < +∞. For the second term, one has D2m ∈
L2
loc(Ω), m∇m ∈ Lploc(Ω) for all 1 ≤ p < ∞, thus mD2m∇m ∈ Lq for all 1 ≤ q < 2. It

then suffices to show that |D2m||∇m|∈ L2
loc(Ω). It is a direct consequence of the following

lemma:

Lemma 3.11. Suppose K ∈ H1(B(x0, R)) and m ∈ H2(B(x0, R),S2)(⊂ C0(B(x0, R),S2))
is a solution of (3.16). Then ∫

B(x0,
R
2

)
|∇m|2|D2m|2< +∞. (3.32)

Moreover m ∈ H3
loc(B(x0, R),S2).
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Proof of Lemma 3.11. Since (3.16), one has∫
B(x0,R)

∂xγ (∇m).∇Φ = −
∫
B(x0,R)

∇m.∂xγ (∇Φ)

= −
∫
B(x0,R)

(m|∇m|2+K).∂xγΦ (3.33)

for all Φ ∈ C∞0 (B(x0, R),R3) and γ ∈ {1, 2}.
By a density argument, this implies that (3.33) holds true for every Φ ∈ H1

0 (B(x0, R)).
Denote: ωL = min{L, |∇m|2}, with L > 0.
We remark that:

ωL ∈ L∞(B(x0, R)),

∇ωL(x) = 0 a.e. in {x : |∇m(x)|2> L}.

It implies that

|∇ωL|≤ 2|D2m|ω1/2
L , (3.34)

in particular ωL ∈ H1(B(x0, R)).
Choosing Φ = η2ωL∂xγm ∈ H1

0 (B(x0, R),R3) in (3.33) where η ∈ C∞0 (B(x0, R)) with
0 ≤ η ≤ 1 will be defined later (see (3.43)), then∫

B(x0,R)
∂xγ (∇m).∇(η2ωL∂xγm) = −

∫
B(x0,R)

(m|∇m|2+K).∂xγ (η2ωL∂xγm). (3.35)

We now develop the right hand side of (3.35).
Estimate of the first term of the RHS of (3.35). The properties of the function η and
(3.34) yield that∫
B(x0,R)

m|∇m|2.∂xγΦ =

∫
B(x0,R)

m|∇m|2.∂xγ (η2)ωL∂xγm

+

∫
B(x0,R)

m|∇m|2.η2∂xγωL∂xγm+

∫
B(x0,R)

m|∇m|2η2.ωL∂
2
xγxγm

≤ C
∫
B(x0,R)

|∇η||∇m|2ωL|∇m|

+2

∫
B(x0,R)

|∇m|2|D2m|ω1/2
L |∇m|+

∫
B(x0,R)

|∇m|2η2ωL|D2m|

≤ C
∫
B(x0,R)

|∇η||∇m|5+3

∫
B(x0,R)

|∇m|4|D2m|.

Using the Young inequality, we then obtain∫
B(x0,R)

|∇m|4|D2m|≤ 1

2

∫
B(x0,R)

|∇m|8+
1

2

∫
B(x0,R)

|D2m|2.

We deduce that∫
B(x0,R)

m|∇m|2.∂xγΦ ≤ C
∫
B(x0,R)

|∇η||∇m|5+
3

2

(∫
B(x0,R)

|∇m|8+

∫
B(x0,R)

|D2m|2
)
<∞.

(3.36)
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Estimate of the second term of the RHS of (3.35). Similarly to the above estimate, since
K ∈ H1(B(x0, R)) then K ∈ Lp(B(x0, R)) for all 1 ≤ p <∞, then∫

B(x0,R)
K.∂xγ (η2ωL∂xγm) (3.37)

=

∫
B(x0,R)

K.(∂xγ (η2)ωL∂xγm+ η2∂xγωL∂xγm+ η2ωL∂
2
xγxγm)

≤
∫
B(x0,R)

|K|(C|∇η|ωL|∇m|+2|D2m|ω1/2
L |∇m|+ωL|D

2m|)

≤
∫
B(x0,R)

(C|K||∇η||∇m|3+3|K||D2m||∇m|2).

≤ C
∥∥∥∥|K||∇η||∇m|3∥∥∥∥

L1

+ 3||D2m||L2

∥∥∥∥|K||∇m|2∥∥∥∥
L2

. (3.38)

Therefore, all terms on the right hand side of (3.35) remain bounded as L → ∞. The
same then has to happen for the left hand side of (3.35). Therefore,

lim sup
L→∞

∣∣∣∣ 2∑
γ=1

∫
B(x0,R)

∂xγ (∇m).∇(η2ωL∂xγm)

∣∣∣∣ < C. (3.39)

The expression in modulus can be written as

2∑
γ=1

∫
B(x0,R)

∂xγ (∇m).∇(η2ωL∂xγm) =

2∑
γ=1

(∫
B(x0,R)

∂xγ (∇m).2η∇ηωL∂xγm

+

∫
B(x0,R)

∂xγ (∇m).η2∇ωL∂xγm+

∫
B(x0,R)

∂xγ (∇m).η2ωL∇(∂xγm)

)
. (3.40)

We denote
ω := |∇m|2 in B(x0, R).

Since ∂xγω = 2∂xγ (∇m).∇m for γ = 1, 2 and ∇ωL = 0 in {ω > L}, then the second
integral of the right hand side of (3.40) can rewrite as∫

B(x0,R)

2∑
γ=1

∂xγ (∇m).η2∇ωL∂xγm =
1

2

∫
{ω≤L}

η2|∇ω|2, (3.41)

and it is non-negative.
For the first term in right hand side of (3.40), by the Young inequality,∣∣∣∣∣∣

2∑
γ=1

∫
B(x0,R)

∂xγ (∇m).2η∇ηωL∂xγm

∣∣∣∣∣∣
≤
∫
B(x0,R)

|D2m|2+C

∫
B(x0,R)

|∇m|6|∇η|2η2 < +∞. (3.42)

Recalling

0 ≤ η ≤ 1, |∇η|≤ 2

R
in B(x0, R), (3.43)

and combining with (3.40) - (3.42), this implies that

2∑
γ=1

∫
B(x0,

R
2

)
|∂xγ (∇m)|2ωL < C
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uniformly in L > 0 for γ = 1, 2
Applying Fatou’s Lemma, we obtain that∫

B(x0,
R
2

)
|D2m|2|∇m|2≤ C.

We then apply the interior elliptic regularity to (3.31) with the the fact that the right
hand side of (3.31) belongs to H1

loc(Ω). Finally, we obtain that m ∈ H3
loc(Ω,S2).

Step D Conclude the proof of Theorem 3.7.
We first claim that

Claim 2. If m ∈ Hk
loc(Ω, S2) satisfies (3.13) and F is a smooth function, for k ≥ 3, then

m|∇m|2 and K belong to Hk−1
loc (Ω), where K is defined as in (3.14).

Proof of Claim 2. We assume that m ∈ Hk
loc(Ω, S2). By Lemma 3.4, we have that

H ∈ Hk−1
loc (Ω). Therefore, Dk−1m,Dk−2H ∈ Lploc, 1 ≤ p <∞ and Drm,Dr−1H ∈ L∞ for

r ∈ N and r ≤ k − 2.
Using the Leibniz rule, one has

|Dk−1(m|∇m|2)|≤ C
( ∑

p+q+r=k+1

k−1≥p≥0,k≥q,r≥1

|Dpm||Dqm||Drm|
)
.

This implies that m|∇m|2∈ Hk−1
loc (Ω).

We use the same argument to estimate K given in (3.14), here we only check the term
mHm, the other terms are estimated analogously:

|Dk−1(mHm)|≤ C
( ∑
p+q+r=k−1

|Dpm||DqH||Drm|
)
.

This implies that mHm ∈ Hk−1
loc (Ω). Therefore K ∈ Hk−1

loc (Ω).
Applying the interior elliptic regularity to (3.13), combined with Claim 2, by bootstrap, we
obtain that m ∈ Hk

loc(Ω) for every k ∈ N. Finally, by the Morrey inequality, we conclude
m ∈ C∞(Ω).

3.3.2 Regularity at the boundary

In this part, we study the regularity at the boudary of the critical points of Eε,η,κ.
Our strategy is firstly to adapt the method used in the interior regularity to obtain that
m ∈ H2(Ω). We recall that by Step A of the proof of Theorem 3.7, m ∈ C0(Ω). We then
expect to transfer the boundary regularity problem to the local interior regularity by a
diffeomorphism mapping. In fact, it boosts the regularity becoming ∂τm ∈ H1(V ) and
∂νm ∈ W 1,1(V ) where τ, ν are the tangent and normal vectors, respectively which are
well-defined in a tabular neighborhood V of the boundary ∂Ω. We split this part into
some steps.

Step A Prove that m ∈ H2(Ω). Let us fix x0 ∈ ∂Ω and note that since ∂Ω ∈ C1,1, to
simply notation, we may assume that x0 = (0, 0) and up to rotation

Ω ∩B(x0, r) = {x ∈ B(x0, r)|x2 > γ(x1)},

for some r > 0 and some C1,1 function γ : (−r, r)→ R, γ(0) = 0.
We change coordinates near a point x0 = (0, 0) ∈ ∂Ω so as to ”flatten out” the boundary.
We define ψ = (ψ1, ψ2) : Ω ∩B(x0, r)→ R2 as{

ψ1(x1, x2) = x1

ψ2(x1, x2) = x2 − γ(x1),
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and φ = (φ1, φ2) = ψ−1 : B(x0, r) ∩ {y2 > 0} → R2{
φ1(y1, y2) = y1

φ2(y1, y2) = y2 + γ(y1).

Then φ = ψ−1 and the mapping ψ straightens out ∂Ω near x0 = (0, 0). Observe also that

det∇ψ = det∇φ = 1.

We choose s > 0 so small the half-ball B+(x0, s) := B(x0, s) ∩ {y2 > 0} lies in ψ(Ω ∩
B(x0, r)). We also extend the function g into R2, still denote g and g ∈ C1,1(R2).
Let us define m = m ◦ φ in B+(x0, s) , g = g ◦ φ on ∂B+(x0, s)). Since ∂Ω ∈ C1,1 and
g ∈ C1,1(∂Ω), then Φ ∈ C1,1 and g ∈ C1,1.
We have the Euler-Lagrange equation in the half-ball B+(x0, s)

Lemma 3.12. The Euler-Lagrange equation for m on B+(x0, s) writes∫
B+(0,s)

∇mA(y).∇ΦA(y)−m(y)|∇mA(y)|2.Φ(y)−K.Φ(y) = 0 (3.44)

for all test function Φ ∈ H1
0 ∩ L∞(B+(x0, s),R3), where the matrix A is defined as

A(y) = ∇ψ(φ(y))

and
K(y) = K ◦ φ(y).

The proof of Lemma 3.12. Equation (3.16) and Remark 3.5 give∫
Ω∩B(x0,r)

∇m.∇Φdx =

∫
Ω∩B(x0,r)

(m|∇m|2+K)Φdx, ∀Φ ∈ H1
0 ∩ L∞(Ω ∩B(x0, r)).

Then∫
φ(B+(x0,s))

∇m.∇Φdx =

∫
φ(B+(x0,s))

(m|∇m|2+K)Φdx, ∀Φ ∈ H1
0 ∩ L∞(B+(x0, s)).

As m = m ◦ φ−1 and Φ = Φ ◦ φ, by the change of variable φ(y) = x,∫
B+(x0,s)

∇m∇(φ−1)(φ).∇Φ∇(φ−1)(φ)|det∇φ|dy

=

∫
B+(x0,s)

(m|∇m∇(φ−1)(φ)|2+K ◦ φ)Φ|det∇φ|dy.

The conclusion of Lemma 3.12 is implied by the fact |det∇φ|= 1.

From now on, we use m,Φ,K instead of m,Φ,K, respectively, and denote B(x0, s) by
B(s). By the smoothness of the boundary, we can assume g ∈ C1,1(B+(s)) ⊂ H2(B+(s)).

Remark 3.13. We now remark that equation (3.44) can be considered as∫
B+(s)

aαβ∂αm∂βΦ =

∫
B+(s)

(m|∇mA|2+K)Φ for all Φ ∈ H1
0 ∩ L∞(B+(s)), (3.45)

where (aαβ)αβ = AAT . We have the following:

(i) (aαβ)α,β is Lipschitz continuous on B+(s)
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(ii) λ−1|ξ|2≤ aαβξαξβ ≤ λ|ξ|2 for all ξ ∈ R2.

Lemma 3.14. Suppose m ∈ C0(B+(s))∩H1(B+(s)) is a solution of (3.45) with m = (g, 0)
on ∂B+(s) ∩ R. Then ∂x1m ∈ H1(B+(ρ/2)), for some ρ > 0.

Proof. The idea of the proof is similar to the interior case, we estimate the term
∫
B+(s)|∇(Dh

1m)|2ξ2,

where ξ is a good cut-off function. We choose a test function in (3.45) as

Φ = D−h1 (ξ2Dh
1 (m− g)) ∈ H1

0 ∩ L∞(B+(s))

where ξ ∈ C∞0 (B(s)), 0 ≤ ξ ≤ 1 will be chosen later (see (3.57)) and Dh
1 is defined by

Dh
1m(x) :=

m(x+ he1)−m(x)

h
.

By a discrete integration by parts and (3.45), we have that∫
B+(s)

Dh
1 (aαβ∂αm)∂β(ξ2Dh

1 (m− g)) = −
∫
B+(s)

aαβ∂αm.D
−h
1 (∂β(ξ2Dh

1 (m− g)))

= −
∫
B+(s)

aαβ∂αm.∂β(D−h1 (ξ2Dh
1 (m− g))

= −
∫
B+(s)

(m|∇mA|2+K).D−h1 (ξ2Dh
1 (m− g)). (3.46)

Moreover

Dh
1 (aαβ∂αm)∂β(ξ2Dh

1 (m− g)) (3.47)

= Dh
1a

αβ∂αm2ξ∂βξD
h
1 (m− g) +Dh

1a
αβ∂αmξ

2∂β(Dh
1 (m− g))

+aαβ,hDh
1 (∂αm)2ξ∂βξD

h
1 (m− g) + aαβ,hDh

1 (∂αm)ξ2∂β(Dh
1 (m− g)),

where aαβ,h(x) = aαβ(x+ he1).
Combining with (3.46), this yields that∫

B+(s)
aαβ,h∂α(Dh

1m)∂β(Dh
1m)ξ2

= −
∫
B+(s)

(m|∇mA|2+K)D−h1 (ξ2Dh
1 (m− g)) +

∫
B+(s)

aαβ,h∂α(Dh
1m)∂β(Dh

1g)ξ2

−
∫
B+(s)

Dh
1a

αβ∂αm2ξ∂βξD
h
1 (m− g)−

∫
B+(s)

Dh
1a

αβ∂αmξ
2∂β(Dh

1 (m− g))

−
∫
B+(s)

aαβ,hDh
1 (∂αm)2ξ∂βξD

h
1 (m− g). (3.48)

We estimate the second term of RHS of (3.48) as follows∣∣∣∣∣
∫
B+(s)

aαβ,h∂α(Dh
1m)∂β(Dh

1g)ξ2

∣∣∣∣∣
≤ ||aαβ,h||L∞

(
ε0

∫
B+(s)

|∇(Dh
1m)|2ξ2 +

1

4ε0

∫
B+(s)

|∇(Dh
1g)|2ξ2

)
(3.49)

≤ C
(
ε0

∫
B+(s)

|∇(Dh
1m)|2ξ2 + C0(ε0)

)
.
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As for the third term,∣∣∣∣∣
∫
B+(s)

Dh
1a

αβ∂αm2ξ∂βξD
h
1 (m− g)

∣∣∣∣∣
≤ ||Dh

1a
αβ||L∞

(∫
B+(s)

|∇ξ|2|∇m|2+

∫
B+(s)

|Dh
1 (m− g)|2ξ2

)
(3.50)

≤ ||∇aαβ||L∞
(∫

B+(s)

C

s2
|∇m|2+2

∫
B+(s)

|Dh
1m|2ξ2 + 2

∫
B+(s)

|Dh
1g|2ξ2

)
≤ C0.

Here we have used the fact that |∇ξ|≤ C
s in B+(s) (see (3.57)).

For the fourth term∣∣∣∣∣
∫
B+(s)

Dh
1 (aαβ)∂αmξ

2∂β(Dh
1 (m− g))

∣∣∣∣∣
≤ ||Dh

1a
αβ||L∞

(∫
B+(s)

1

4ε0
|∇m|2ξ2 +

∫
B+(s)

ε0|∇(Dh
1 (m− g))|2ξ2

)

≤ ||∇aαβ||L∞
(∫

B+(s)

1

4ε0
|∇m|2ξ2 +

∫
B+(s)

2ε0|∇(Dh
1m)|2ξ2

+

∫
B+(s)

2ε0|∇(Dh
1g)|2ξ2

)
≤ C0

(∫
B+(s)

2ε0|∇(Dh
1m)|2ξ2 + C(ε0)

)
. (3.51)

We now estimate the last term∣∣∣∣∣
∫
B+(s)

aαβ,hDh
1 (∂αm)2ξ∂βξD

h
1 (m− g)

∣∣∣∣∣
≤ ||aαβ||L∞

(
ε0

∫
B+(s)

|Dh
1 (∇m)|2ξ2 +

2

ε0

∫
B+(s)

|∇ξ|2(|Dh
1m|2+|Dh

1g|2)

)

≤ C0

(
ε0

∫
B+(s)

|Dh
1 (∇m)|2ξ2 + C(ε0)

)
( by (3.57)). (3.52)

We proceed to estimating the first term of RHS of (3.48), firstly,∫
B+(s)

K.D−h1 (ξ2Dh
1 (m− g))

≤ 1

4ε0

∫
B+(s)

|K|2+ε0

∫
B+(s)

|D−h1 (ξ2Dh
1 (m− g))|2

≤ 1

2ε0

∫
B+(s)

|K|2+ε0

∫
B+(s)

|∇(ξ2Dh
1 (m− g))|2

≤ 1

4ε0

∫
B+(s)

|K|2+2ε0

∫
B+(s)

ξ4|∇(Dh
1 (m− g))|2+8ε0

∫
B+(s)

ξ2|∇ξ|2|Dh
1 (m− g)|2

≤ 1

4ε0

∫
B+(s)

|K|2+4ε0

∫
B+(s)

ξ2|∇(Dh
1 (m))|2+4ε0

∫
B+(s)

ξ2|∇(Dh
1 (g))|2

+16ε0

∫
B+(s)

|∇ξ|2|Dh
1 (m)|2+16ε0

∫
B+(s)

|∇ξ|2|Dh
1 (g)|2.
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As K ∈ L2(B+(s), and |∇ξ|≤ C
s in B+(s), (see (3.57)), then we obtain∫

B+(s)
KD−h1 (ξ2Dh

1 (m−g)) ≤ 4ε0

∫
B+(s)

ξ2|∇(Dh
1 (m))|2+16ε0

∫
B+(s)

|∇ξ|2|Dh
1 (m)|2+C(ε0).

(3.53)
By the discrete integration by parts, we estimate the remain term in RHS of (3.48):∣∣∣∣∣

∫
B+(s)

m|∇mA|2D−h1 (ξ2Dh
1 (m− g))

∣∣∣∣∣ =

∣∣∣∣∣
∫
B+(s)

Dh
1 (m|∇mA|2)ξ2Dh

1 (m− g)

∣∣∣∣∣
≤
∫
B+(s)

(
|Dh

1m||∇mA|2+|Dh
1 (∇mA)|

(
|∇mA|+|(∇mA)h|

))
ξ2|Dh

1 (m− g)|,

where (∇m)h(x) := ∇m(x+ he1) and (∇mA)h(x) := (∇mA)(x+ he1).
We estimate:∫

B+(s)
|Dh

1m||∇mA|ξ2|Dh
1 (m− g)|≤ C

∫
B+(s)

(
|Dh

1m|2|∇m|2+|Dh
1g|2|∇m|2

)
,

∫
B+(s)

|Dh
1 (∇mA)||∇mA|ξ2|Dh

1 (m− g)|

≤ ε0
2

∫
B+(s)

|Dh
1 (∇mA)|2+

1

Cε0

(∫
B+(s)

|∇m|2|Dh
1m|2ξ2 + |∇m|2|Dh

1m|2ξ2

)

and∫
B+(s)

|Dh
1 (∇mA)||(∇mA)h|ξ2|Dh

1 (m− g)|

≤ ε0
2

∫
B+(s)

|Dh
1 (∇mA)|2+

1

Cε0

(∫
B+(s)

|(∇m)h|2|Dh
1m|2ξ2 + |(∇m)h|2|Dh

1m|2ξ2

)

for any ε0 > 0. Here we have used Remark 3.13 and Young’s inequality to obtain the
above estimates.
The above estimates imply that∣∣∣∣∣
∫
B+(s)

m|∇mA|2D−h1 (ξ2Dh
1 (m− g))

∣∣∣∣∣ ≤ ε0
∫
B+(s)

|Dh
1 (∇m)|2ξ2

+ C(ε0)

(∫
B+(s)

|∇m|2|Dh
1m|2ξ2 +

∫
B+(s)

|(∇m)h|2|Dh
1m|2ξ2

)
+ C(ε0). (3.54)

From (3.49)-(3.54), choose ε0 small enough, we then obtain∫
B+(s)

|∇(Dh
1m)|2ξ2

≤ C

(
1 +

∫
B+(s)

|∇m|2|Dh
1m|2ξ2 +

∫
B+(s)

|(∇m)h|2|Dh
1m|2ξ2

)
. (3.55)

Similar to the interior regularity, it remains to estimate the term∫
B+(s)

|∇m|2|Dh
1m|2ξ2 +

∫
B+(s)

|(∇m)h|2|Dh
1m|2ξ2 (3.56)
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to conclude the proof of the Lemma 3.14.

For ε1 > 0, we choose ρ > 0 as in the Lemma 3.15 below and choose ξ ∈ C∞0 (B(s))
with 0 ≤ ξ ≤ 1 in B(s) satisfying

ξ = 1 in B(
s

2
) and |∇ξ|≤ 4

s
in B(s). (3.57)

Applying the Lemma 3.15 to η = |Dh
1m|ξ ∈ H1

0 ∩ L∞(B+(ρ)),∫
B+(ρ)

|∇m|2|Dh
1m|2ξ2 ≤ ε1

∫
B+(ρ)

|∇[(Dh
1m)ξ]|2+C

∫
B+(ρ)

|Dh
1m|2ξ2

≤ 2ε1

∫
B+(ρ)

|∇(Dh
1m)|2ξ2 + 2ε1

∫
B+(ρ)

|Dh
1m|2|∇ξ|2

+C

∫
B+(ρ)

|Dh
1m|2ξ2. (3.58)

The properties of η yields that∫
B+(ρ)

|Dh
1m|2|∇ξ|2≤

16

ρ2

∫
supp(ξ)∩B+(ρ)

|Dh
1m|2≤ C

∫
B+(ρ)

|∇m|2,

and ∫
B+(ρ)

|Dh
1m|2ξ2 ≤

∫
supp(ξ)∩B+(ρ)

|Dh
1m|2≤ C

∫
B+(ρ)

|∇m|2

for 0 < |h|< 1
2(dist(supp(ξ), (−ρ, ρ)× {0})).

This implies that∫
B+(ρ)

|∇m|2|Dh
1m|2ξ2 ≤ 2ε1

∫
B+(ρ)

|∇(Dh
1m)|2ξ2 + C

∫
B+(ρ)

|∇m|2.

These arguments apply similarly to the term
∫
B+(s)|(∇m)h|2|Dh

1m|2ξ2. We then obtain
that ∫

B+(ρ)
|(∇m)h|2|Dh

1m|2ξ2 ≤ 2ε1

∫
B+(ρ)

|∇(Dh
1m)|2ξ2 + C

∫
B+(ρ)

|∇m|2.

Combining with(3.55) and choosing ε1 small enough, it yields∫
B+(ρ/2)

|∇(Dh
1m)|2≤

∫
B+(ρ)

|∇(Dh
1m)|2ξ2 ≤ C + C

∫
B+(ρ/2)

|∇m|2.

The proof of Lemma 3.14 is completed.

We note that, by (3.45), one gets∑
α,β

−∂β(aαβ∂αm) = (m|∇mA|2+K) in B+(ρ). (3.59)

Using aαβ ∈W 1,∞(B+(ρ)), ∂1m ∈ H1(B+(ρ/2)) and the right hand side of (3.59) belong to
L1(B+(ρ)), we then obtain that a22∂22m ∈ L1(B+(ρ/2)). We recall that by Remark 3.13,
0 < 1

λ < a22. Therefore ∂22m ∈ L1(B+(ρ/2)). We know that ∂22m ∈ L1(B+(ρ/2)), ∂12m ∈
L2(B+(ρ/2)). Using the anisotropic Sobolev embedding (see [25, Theorem 1], also [42,
Theorem 2]), we get ∂2m ∈ L4(B+(ρ/2)). Thus the RHS of (3.59) belongs to L2(B+(ρ/2)).
The standard elliptic regularity deduces that m ∈ H2(B+(ρ/2)). Finally, we get m ∈
H2(Ω).
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Step B Hölder regularity. Up to now, we know that m ∈ H2(Ω,S2), that implies
m ∈ C0,α(Ω, S2), for some 0 < α < 1. We now want to improve the regularity at the
boundary to C1,α(Ω), ∀ 0 < α < 1

2 .

Since m ∈ H2(Ω, S2), then ∇m ∈ Lq,∀ 1 ≤ q < ∞. In particular, extending by
0 outside Ω, one has (∇m)1Ω ∈ Hs(R2) for 0 < s < 1

2 . These above facts imply that
∇(m|∇m|2) ∈W 1,q(Ω), ∀1 ≤ q < 2.
Indeed, one has

∇(m|∇m|2) = ∇m|∇m′|2+2mD2m∇m ∈ Lq(Ω), ∀1 ≤ q < 2.

We note that if ζ ∈W 1,q(Ω) for all 1 ≤ q < 2, then by the Sobolev embedding, ζ ∈ Hs(Ω)
for all 0 < s < 1. Therefore, we obtain that m|∇m|2∈ Hs(Ω) for all 0 < s < 1.
We now use again the formula

F(U(·, 0))(ξ) =
1

2|ξ|
F((∇.m′)1Ω)(ξ)

to obtain that for s < 1
2 :∫

R2

|ξ|2+2s|F(U(·, 0))(ξ)|2 =

∫
R2

1

4
|ξ|2s|F((∇.m′)1Ω)(ξ)|2

=
1

4
||(∇′.m)1Ω||2Ḣs(R2)

<∞. (3.60)

This leads to ∇U ∈ Hs(R2), therefore H = ∇U(·, 0)1Ω ∈ Hs(R2) for s < 1
2 . Then

m′Hm ∈ Hs(Ω) for all 0 < s < 1
2 .

Back to (3.13), since m ∈ H2(Ω), F is smooth, H,m′Hm ∈ Hs for all 0 < s < 1
2 , then we

deduce the right hand side of (3.13) belongs to Hs(Ω) for all 0 < s < 1
2 . Using the elliptic

regularity with the fact that m = (g, 0) ∈ C1,1(∂Ω), we then obtain that m ∈ Hs+2(Ω) for
all 0 < s < 1

2 .
The Morrey embedding leads that m ∈ C1,α(Ω) for all 0 < α < 1

2 .

We finish this Chapter by

Lemma 3.15. Support m ∈ C0(B+(s))∩H1(B+(s)) is a solution of (3.45) with m = (g, 0)
on ∂B+(s). Then for every ε > 0, there exists ρ > 0 such that∫

B+(ρ)
|∇m|2η2 ≤ ε

∫
B+(ρ)

|∇η|2+C

∫
B+(ρ)

η2, (3.61)

for all η ∈ H1
0 ∩ L∞(B+(s)) and η = 0 on B+(s)\B+(s/2).

Proof of Lemma 3.15. Choose Φ(x) = (m(x) − g(x))η2 ∈ H1
0 ∩ L∞(B+(s)) in (3.45), we

have ∫
B+(s)

aαβ∂αm∂β((m− g)η2) =

∫
B+(s)

(m|∇mA|2+K)((m− g)η2). (3.62)

Then ∫
B+(s)

aαβ∂αm∂βmη
2 = −

∫
B+(s)

aαβ∂αm2η∂βη(m− g) +

∫
B+(s)

aαβ∂αmη
2∂βg

+

∫
B+(s)

(m|∇mA|2+K)(m− g)η2. (3.63)

56



Chapter 3

We estimate the first term in the RHS∣∣∣∣∣
∫
B+(s)

aαβ∂αm2η∂βη(m− g)

∣∣∣∣∣
≤ ||aαβ||L∞

(
ε

∫
B+(s)

|∇m|2η2 +
4

ε

∫
B+(s)

|∇η|2(m− g)2

)
.

As for the second term, one has∣∣∣∣∣
∫
B+(s)

aαβ∂αm∂βgη
2

∣∣∣∣∣ ≤ ||aαβ||L∞
(
ε

2

∫
B+(s)

|∇m|2η2 +
1

2ε

∫
B+(s)

|∇g|2η2

)
.

Moreover ∣∣∣∣∣
∫
B+(s)

m|∇mA|2(m− g)η2

∣∣∣∣∣ ≤ sup
B+(s)

|(m− g)|
∫
B+(s)

|∇mA|2η2,

∣∣∣∣ ∫
B+(s)

K(m− g)η2

∣∣∣∣ ≤ sup
B+(s)

|(m− g)|||K||L2 ||η||2L4≤ Cs sup
B+(s)

|(m− g)||K||L2 ||∇η||2L2 .

Here, we have used the Sobolev inequality

Cρ

∫
B+(s)

|∇η|2≥
(∫

B+(s)
|η|4
)1/2

in the last line. The proof of Lemma follows because m = g on ∂B+(s) and we can make
sup
B+(s)

|m− g| arbitrary small by choosing s sufficiently small, and s small enough.
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Chapter 4

Introduction and statements of
the main results

Abstract
This chapter is based on a work (see [7]) in collaboration with my adviser Pierre Bousquet.
We give motivations as well as results on the Poincaré lemma. We also introduce basic
methodologies to tackle our problems.

4.1 An overview of the Poincaré lemma

The central theme of this work is the Poincaré lemma on a domain with a Dirichlet
boundary condition. The Poincaré lemma amounts to saying that a closed differential form
is exact. Our interest is in a sharp version of the Poincaré lemma regarding the regularity
of the domain. To formulate the motivation, we start from the divergence equation on a
bounded domain Ω in Rn, under the Dirichlet boundary condition. Given p ∈ (1,+∞)
and a function f ∈ Lp(Ω), we look for a vector field X ∈ W 1,p(Ω,Rn) which satisfies the
two following conditions: {

divX = f in Ω,
X = 0 on ∂Ω.

(4.1)

In view of the Dirichlet boundary condition, a necessary condition for the existence of a
solution X is ∫

Ω
f dx =

∫
Ω

divX dx =

∫
∂Ω
〈X, ν〉 dσ = 0.

Here, we assume that Ω is at least Lipschitz regular, in order to use the integration by
parts formula.

A standard way of tackling this equation is to solve the Poisson equation ∆u = f in
Ω to get a solution u in W 2,p(Ω), which classically requires that Ω be C1,1, see e.g. [22,
Theorem 9.15]. The vector field X = ∇u then satisfies divX = ∆u = f and belongs to
W 1,p(Ω). If one further imposes a Neumann boundary condition for u, namely ∂u

∂ν = 0 on
∂Ω, then the normal component of X vanishes on ∂Ω. It is then possible to modify X to
cancel its tangential component, see e.g. [13, Theorem 9.2, Remark 9.3 (iii)]. In a similar
way, if f belongs to the Hölder space C0,α(Ω) for some α ∈ (0, 1), then one gets a C1,α(Ω)
solution X by the elliptic regularity theory in these spaces, see [22, Theorem 6.31]. Here,
Ω is assumed to be C2,α.

The main drawback of this approach is that it requires a stronger regularity assump-
tion for the domain Ω than the one naturally expected. This leads to the two following
questions: for f ∈ Lp(Ω), is it possible to solve (4.1) when Ω is merely Lipschitz? And
when f ∈ C0,α(Ω), is it enough to assume that Ω is C1,α to get a solution X ∈ C1,α(Ω)?
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There are several alternative strategies to prove that the answer to the first question is
positive, see e.g. [13, Remark 9.3] and [44] for references. In the setting of Hölder spaces,
we are not aware of any such result in the literature. Naturally, one can formulate similar
questions in higher order Sobolev and Hölder spaces. For instance, given a nonnegative
integer r and f ∈ Cr,α(Ω) such that

∫
Ω f dx = 0, can one find a solution X ∈ Cr+1,α(Ω)

to (4.1) provided that Ω is Cr+1,α?
The divergence equation can be seen as a particular case of the Poincaré lemma, when

the right hand side f is identified to an n form. More generally, when f is a differential
form of degree k ∈ {1, . . . , n}, we can consider the differential form equation:{

dX = f in Ω,
X = 0 on ∂Ω,

where d is the exterior derivative operator. Now, a solution X is a (k − 1) form on Ω.
Assuming that f has Cr,α(Ω) coefficients, one expects to find a solution X with Cr+1,α(Ω)
coefficients, provided some necessary conditions are satisfied: f should be a closed form,
satisfy certain boundary conditions and be orthogonal to a certain set of harmonic forms
on Ω (in connection with a possible non trivial topology of the domain).

Once again, it is possible to solve the Poincaré lemma in the scale of Sobolev or
Hölder spaces, by relying on the elliptic regularity theory. However, to get a solution in
Cr+1,α(Ω), this strategy requires that Ω be at least a Cr+2,α domain, namely one degree
of differentiability higher than the solution itself. In this article, we establish that the
Poincaré lemma holds true in the scale of Hölder and Sobolev spaces when the domain
has the same order of differentiability as the expected solutions. Hence, the solvability of
the divergence equation in W 1,p

0 (Ω) under the natural assumption that Ω be Lipschitz is
not a peculiarity of the 0 order Sobolev case: it remains true in the setting of differential
forms, in Hölder spaces as well as higher order Sobolev spaces.

4.2 The statements of the main results

4.2.1 The divergence problem

Our first result answers the divergence problem in the scale of Hölder spaces. Assume
that the right hand side of equation (4.1) belongs to the Banach space

Cr,αH (Ω) :=

{
f ∈ Cr,α(Ω) :

∫
Ω
f(x)dx = 0

}
.

We look for a vector field X in the Banach space

Cr+1,α
z (Ω,Rn) :=

{
X ∈ Cr+1,α(Ω,Rn) : X = 0 on ∂Ω

}
such that divX = f. Moreover, we expect that the solution X can be chosen continuously
and linearly with respect to f . This is not obvious since such a solution X, when it exists,
is not unique. In other words, we address the existence problem: does there exist a right
inverse to div : Cr+1,α

z (Ω,Rn)→ Cr,αH (Ω)?
This is indeed our first result, under the mere assumption that Ω has the same regularity
as X itself.

Theorem 4.1. Let r ≥ 0 be an integer and 0 < α < 1. Let Ω be a bounded connected
open Cr+1,α set in Rn. Then, given any f ∈ Cr,α(Ω) such that∫

Ω
f(x)dx = 0,
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there exists X ∈ Cr+1,α(Ω,Rn) verifying{
divX = f in Ω,
X = 0 on ∂Ω.

(4.2)

Furthermore, the correspondence f 7→ X can be chosen linear and there exists C =
C(r, α,Ω) > 0 such that

||X||Cr+1,α(Ω)≤ C||f ||Cr,α(Ω). (4.3)

As we have already said, the divergence equation is a particular case of the differential
form equation. Correspondingly, the above result is a particular case of our study of the
Poincaré lemma (cf. Chapter 6). However, the proof is much more elementary in this case,
which requires only that

∫
Ω f = 0. We shall indeed take the shortest route to approach the

existence of solutions of the divergence problem which is inspired by the result of Bourgain
and Brezis, see [4, Theorem 2’]. For the convenience of the reader, we have gathered and
proved the results in Chapter 5. This chapter will be carried out quite comprehensively.
This helps to better understand the Poincaré Lemma in Chapter 6.

4.2.2 The Poincaré lemma in Hölder spaces

In order to state the second result, we need to introduce some notations. The set of
k forms on Ω with Cr,α(Ω) coefficients will be denoted by Cr,α(Ω,Λk). We introduce the
Banach space

Cr,αH (Ω,Λk) :=

{
f ∈ Cr,α(Ω,Λk) : df = 0 in Ω, ν ∧ f = 0 on ∂Ω,∫

Ω
〈f, χ〉 = 0,∀χ ∈ HkT (Ω)

}
, (4.4)

where HkT (Ω) is the set of the Dirichlet harmonic fields of order k, defined as

HkT (Ω) = {h ∈ L2(Ω,Λk) : δh = 0 in Ω,d(hz) = 0 in Rn}.

Here, hz means the extension of h by zero outside Ω. The identity d(hz) = 0 must be
understood in the sense of distributions:

∀θ ∈ C∞c (Rn,Λk),
∫
Rn
〈h, δθ〉 dx = 0.

The outer unit normal ν to Ω is identified to a 1 form: we set ν = ν1dx1 + · · ·+ νndxn if
ν1, . . . , νn are the coordinates of ν in the standard basis of Rn, where δ is the adjoint of d
which is defined as in (6.9), Chapter 6.

For the Poincaré lemma, we look for a (k − 1) form X in the Banach space

Cr+1,α
z (Ω,Λk−1) :=

{
X ∈ Cr+1,α(Ω,Λk−1) : X = 0 on ∂Ω

}
(4.5)

such that dX = f, where f ∈ Cr,αH (Ω,Λk) is given. We also prove the existence of the

right inverse to the exterior derivative operator d : Cr+1,α
z (Ω,Λk−1) → Cr,αH (Ω,Λk). It is

stated in the following

Theorem 4.2. Let r ≥ 0 be an integer and 0 < α < 1. Let Ω be a bounded open Cr+1,α

set in Rn. Let f ∈ Cr,α(Ω,Λk), 1 ≤ k ≤ n, be such that{
df = 0 in Ω,
ν ∧ f = 0 on ∂Ω,
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and for every χ ∈ HkT (Ω), ∫
Ω
〈f, χ〉 dx = 0. (4.6)

Then there exists X ∈ Cr+1,α(Ω,Λk−1) such that{
dX = f in Ω,
X = 0 on ∂Ω.

Furthermore, the correspondence f 7→ X can be chosen linear and there exists C =
C(r, α,Ω) > 0 such that

||X||Cr+1,α(Ω,Λk−1)≤ C||f ||Cr,α(Ω,Λk).

We emphasize that the assumptions on f are necessary to obtain a solution. Indeed,
if X ∈ Cr+1,α(Ω,Λk−1), then d(dX) = 0. If in addition, X = 0 on ∂Ω, then ν ∧X = 0
and thus ν ∧ dX = 0 on ∂Ω, see [13, Theorem 3.23]. When r = 0, these conditions must
be understood in the sense of distributions, namely:

∀θ ∈ C∞c (Rn,Λk),
∫
Rn
〈fz, δθ〉 dx =

∫
Ω
〈f, δθ〉 dx =

∫
Ω
〈dX, δθ〉 dx = 0,

where the last line follows from the integration by parts formula, see Proposition 6.9, in
Chapter 6. The last assumption (4.6) also follows from the integration by parts formula.
In fact, for every χ ∈ L2(Ω) such that δχ = 0 in the sense of distributions, one has for
every X ∈ C∞c (Ω,Λk−1), ∫

Ω
〈dX,χ〉 dx =

∫
∂Ω
〈X ∧ ν, χ〉 = 0.

This remains true by density for X ∈ W 1,2
0 (Ω,Λk−1), and thus in particular for X ∈

Cr+1,α
z (Ω,Λk−1). Finally, we formulate the corresponding result of the Poincaré lemma in

the scale of Sobolev spaces.

4.2.3 The Poincaré lemma in Sobolev spaces

In the setting of Sobolev spaces, given two integers r ≥ 0, k ∈ {1, . . . , n}, and p ∈
(1,∞), we introduce the sets

W r,p
ν (Ω,Λk) = {f ∈W r,p(Ω,Λk),df = 0 on Ω, ν ∧ f = 0 on ∂Ω},

W r+1,p
z (Ω,Λk−1) = {X ∈W r+1,p(Ω,Λk−1), X = 0 on ∂Ω}.

One expects to obtain the conclusion for the Sobolev setting, namely: the existence of a
right inverse d : W r+1,p

z (Ω,Λk−1)→W r,p
H (Ω,Λk), where

W r,p
H (Ω,Λk) :=

{
f ∈W r,p

ν (Ω,Λk) :

∫
Ω
〈f, χ〉 = 0 , ∀ χ ∈ HkT (Ω)

}
.

We remark that a priori the quantity
∫

Ω〈f, χ〉does not necessarily make sense for every
f ∈W r,p(Ω,Λk) and χ ∈ HkT (Ω). This is the reason why in the next statement, we assume
that the Dirichlet harmonic fields on Ω are regular enough. In view of the above facts, we
state the following statement.
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Theorem 4.3. Let r ∈ N, k ∈ {1, . . . , n} and p ∈ (1,∞). Let Ω be a bounded Cr,1 domain
in Rn. Assume also that HkT (Ω) ⊂ Lp′(Ω,Λk). Let f ∈W r,p(Ω,Λk) be such that{

df = 0 in Ω,
ν ∧ f = 0 on ∂Ω,

and for every h ∈ HkT (Ω), ∫
Ω
〈f, h〉 dx = 0. (4.7)

Then there exists X ∈W r+1,p(Ω,Λk−1) such that{
dX = f in Ω,
X = 0 on ∂Ω.

Furthermore, the correspondence f 7→ X can be chosen linear and there exists C =
C(r, p,Ω) > 0 such that

||X||W r+1,p(Ω,Λk−1)≤ C||f ||W r,p(Ω,Λk).

4.3 Methodology

Our strategy is greatly inspired from the proof of [4, Theorem 2] which considers the
divergence equation (4.1) for a right hand side in Lp(Ω) satisfying

∫
Ω fdx = 0, p ∈ (1,∞).

In this setting, Bourgain and Brezis rely on two main ingredients. First, they observe that
the range of the differential operator

div : W 1,p
0 (Ω,Rn)→ LpH(Ω)

is dense. Here, we have denoted by LpH(Ω) the set of those f ∈ Lp(Ω) such that
∫

Ω f dx = 0.
Actually, the dual operator of div is simply the gradient

∇ : (LpH(Ω))∗ ⊂ (W 1,p
0 (Ω,Rn))∗.

One can identify (LpH(Ω))∗ to Lp
′

H(Ω). It is then easily shown that the kernel of ∇ is trivial.
Equivalently, the range of div is dense in LpH(Ω). In the setting of Hölder spaces, this

argument is less obvious. We just mention here that the dual space of C0,α
H cannot be

identified to a subspace of the distributions on Ω. For instance, given a ∈ ∂Ω, the Dirac
mass δa located at a is a non trivial element of (C0,α

H )∗ but its restriction to C∞c (Ω) is
trivial. However, this duality approach can be generalized to any higher order Sobolev
spaces or Hölder spaces, and this is probably one of the main achievements of this part of
the thesis to do so. The strategy adopted to [4] can be adapted to various equations and
spaces (see [6],[5]).

The second ingredient used in [4] is the construction of an approximate solution to the
divergence equation. More precisely, Bourgain and Brezis construct two linear operators

S : LpH(Ω)→W 1,p
0 (Ω) , K : LpH(Ω)→ LpH(Ω)

such that S is continuous, K is compact, and for every f ∈ LpH(Ω), f = div (Sf) +
Kf . Hence, up to the compact perturbation Kf , Sf is a right inverse to the divergence
equation. In order to perform this construction, one localizes the problem on small balls
intersecting ∂Ω, where Ω can be seen as the epigraph of a Lipschitz function. In such a
situation, it is possible to define an exact right inverse to the divergence operator. However,
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when gluing together all these local constructions, an error term is produced, which gives
birth to the perturbation operator K.

This argument can be extended with some care to the Hölder framework. The con-
struction on each small ball does not require a rectification of the boundary by local charts
to reduce the problem to the case when Ω is a half space. Instead one uses an approx-
imation argument reminiscent of the proof of the open map theorem. This is a crucial
fact for our purposes. Indeed, if α is a Cr+1,α form of degree k ∈ {1, . . . , n} and φ is
a Cr+1,α local chart, then the pullback φ∗α is merely Cr,α since the pullback introduces
partial derivatives of φ. On the contrary, the approximation argument allows not to lose
one order of differentiability.

Once the operators S and K are constructed, one relies on the following functional
analysis statement to obtain a true, global right inverse to the divergence operator:

Lemma 4.4. Let E,F be two Banach spaces and let T be a bounded operator from E to
F . Assume that

ker(T ∗) = {0}

and that there exists a bounded operator S from F to E and a compact operator K from
F into itself such that

T ◦ S = Id+K.

Then T admits a right inverse.

The above Lemma is applied to E = W 1,p
0 (Ω,Rn), F = LpH, T = div , where the

condition ker(T ∗) = {0} amounts to the first ingredient described above.
Dealing with the Poincaré lemma, in the case of Hölder spaces, we will construct such a
right inverse operator S as in the following Theorem.

Theorem 4.5. For every integer r ≥ 0, there is a bounded operator

S : Cr,αH (Ω,Λk)→ Cr+1,α
z (Ω,Λk−1)

such that for every f ∈ Cr,αH (Ω,Λk)

f − d(Sf) ∈ Cr,αH (Ω,Λk)

and
||f − d(Sf)||

Cr+1,α
z (Ω,Λk−1)

≤ C||f ||Cr,αH (Ω,Λk).
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On the divergence equation in
Hölder spaces

Abstract
This chapter studies the solution X of the equation{

divX = f in Ω,
X = 0 on ∂Ω,

where f is given. It is devoted to the proof of Theorem 4.1. This result is a particular
case of the study on the Poincaré lemma (see Chapter 6). However, the proofs are much
simpler in this case, when we consider the data f as a function instead of a differential
form of degree n. In this case, the boundary condition of f will be ignored, whereas it will
be taken into account in the next chapter in order to prove Theorem 4.2.

5.1 The main theorem

The main result of this chapter is the following

Theorem 5.1. Let r ≥ 0 be an integer and 0 < α < 1. Let Ω be a bounded connected
open Cr+1,α set in Rn. Then, given any f ∈ Cr,α(Ω) such that∫

Ω
f(x)dx = 0,

there exists X ∈ Cr+1,α(Ω,Rn) verifying{
divX = f in Ω,
X = 0 on ∂Ω.

(5.1)

Furthermore, the correspondence f 7→ X can be chosen linear and there exists C =
C(r, α,Ω) > 0 such that

||X||Cr+1,α(Ω)≤ C||f ||Cr,α(Ω).

If Ω is not connected, then the condition
∫

Ω f = 0 has to hold on each connected
component of Ω.

The main point of Theorem 5.1 is the assumption on the domain Ω which is assumed
to be only Cr+1,α. In the case Ω of class Cr+2,α, equation (5.1) can be reduced to an
elliptic problem for which standard techniques apply. For completeness, let us state the
result in [13].
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Theorem 5.2. ([13, Theorem 9.2]) Let r ≥ 0 be an integer and 0 < α < 1. Let Ω ⊂ Rn
be a bounded connected open Cr+2,α set. The following conditions are then equivalent:

(i) the function f ∈ Cr,α(Ω) satisfies ∫
Ω
f = 0.

(ii) there exists X ∈ Cr+1,α(Ω,Rn) verifying{
divX = f in Ω,
X = 0 on ∂Ω.

Furthermore, the correspondence f 7→ X can be chosen linear and there exists C =
C(r, α,Ω) > 0 such that

||X||Cr+1,α≤ C||f ||Cr,α .

Similar results hold for f ∈ Lp, 1 < p < ∞, finding X ∈ W 1,p. However the result
is false if p = 1 or p = ∞. In [4], Bourgain and Brezis have proved that the divergence
equation div X = f has not necessarily a solution in W 1,1 (respect W 1,∞) when f ∈
L1(respect f ∈ L∞) even when Ω is a smooth domain. It is also false for C0,α when α = 0
or α = 1, see Dacorogna, Fusco and Tartar [15], and McMullen [37].

5.2 The idea of the proof

In the spirit of the proof of [4, Theorem 2], with some modifications, our argument
relies heavily on the following Lemma

Lemma 5.3. ([4, Lemma 8]) Let E,F be two Banach spaces and let T be a bounded
operator from E to F . Assume that

ker(T ∗) = {0}

and that there exists a bounded operator S from F to E and a compact operator K from
F into itself such that

T ◦ S = Id+K.

Then T admits a right inverse.

More precisely, we establish Theorem 5.1 by proving the existence of a right inverse to

T : Cr+1,α
z (Ω,Rn)→ Cr,αH (Ω),

where
Cr+1,α
z (Ω,Rn), Cr,αH (Ω)

are defined by

Cr+1,α
z (Ω,Rn) := {X ∈ Cr+1,α(Ω,Rn) : X = 0 on ∂Ω}

and

Cr,αH (Ω) := {f ∈ Cr,α(Ω) :

∫
Ω
fdx = 0}.

In order to prove Theorem 5.1, we shall apply Lemma 5.3 to E = Cr+1,α
z (Ω,Rn), F =

Cr,αH (Ω) and T = div . In the Hölder setting of the divergence problem, such a right
inverse operator S will be constructed as in the following Theorem.
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Theorem 5.4. For every integer r ≥ 0, there is a bounded operator S : Cr,αH (Ω) →
Cr+1,α
z (Ω,Rn) such that for every f ∈ Cr,αH (Ω)

f − div (Sf) ∈ Cr+1,α
z (Ω)

and

||f − divSf ||Cr+1,α(Ω)≤ C||f ||Cr,α(Ω).

Let us mention that to tackle the regularity of the divergence equation, the standard
elliptic theories are still important features. In the proof of Theorem 5.4 below, we will
handle the lack of regularity of the domain by localizing the problem on small domains
intersecting ∂Ω (denoted (Vi)i) which are Cr+1,α - diffeomorphic to cubes in Rn. We first
study the divergence equation in the cube where we require the boundary condition of
the solutions only on one side of the cube. This problem can be treated easily by using
the smooth domain version of the divergence problem (Theorem 5.2). By using the local
charts, solutions in a cube give us local constructions of the bounded operators. We then
glue all these local constructions, an error term is produced, which gives birth to the
perturbation operator K.

We emphasize that the composition of the solutions of the divergence equation in
the cube and diffeomorphisms does not imply directly the existence of solutions of the
divergence equation in a neighborhood of the boundary, because the diffeomorphisms are
not linear in general. Moreover, the perturbation operator (Kf = f − Sf) is required
to belong to Cr+1,α while f only belongs to Cr,α. Therefore, design and choice of the
coordinate maps need great care. In fact, we shall consider locally Ω as the epigraph of a
function ψ : Q′1 ⊂ Rn−1 → R and consider the local chart defined by

Φ : (x′, xn) ∈ Q1 = Q′1 × (0, 1) 7→ (x′, xn + ψ(x′)) ∈ Vi.

Figure 5.1

To complete the proof of Theorem 5.1, we have to verify that ker(T ∗) = {0}. As we
said in the methodology section, in the Hölder setting, the proof of ker(T ∗) = {0} is less
trivial than in the Sobolev setting.

This chapter is organized as follows: In the next section, we recall some definitions
and preliminaries on Hölder spaces. The proof of Theorem 5.4 will be given in Section 5.4.
Then we get the conclusion of Theorem 5.1 by proving that ker(T ∗) = {0}. Some proofs
for the preliminary results on Hölder spaces will be given in the appendix.

5.3 Definitions and Preliminaries

In this section, we recall some elementary properties of Hölder spaces. We refer to [13,
Chapter 16] for more refined statements.
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Let Ω be a non-empty bounded domain in Rn with n ≥ 2 and α ∈ (0, 1]. Given
f : Ω→ R, we define the Hölder semi-norm:

[f ]C0,α(Ω) = sup
x,y∈Ω
x 6=y

|f(x)− f(y)|
|x− y|α

.

For every r ∈ N, we denote by Cr,α(Ω) the set of those continuous maps f : Ω→ R which
have continuous derivatives on Ω up to the order r and such that for every multi-index
β = (β1, . . . , βn) ∈ Nn of length |β|(:= β1 + · · ·+ βn) = r, one has

[Dβf ]C0,α(Ω) <∞.

Here, we have denoted

Dβf =
∂|β|f

∂xβ1
1 ...∂x

βn
n

.

We observe that the derivatives up to the order r of a map f ∈ Cr,α(Ω) can be continuously
extended to Ω. The set Cr,α(Ω) is a Banach space when equipped with the norm

‖f‖Cr,α(Ω)= ‖f‖Cr(Ω)+ max
β∈Nn
|β|=r

[Dβf ]C0,α(Ω)

where
‖f‖Cr(Ω)= max

β∈Nn
|β|≤r

sup
x∈Ω
|Dβf(x)|.

We can readily generalize the above definitions to the case of vector-valued functions: given
m ∈ N, we define the space Cr,α(Ω;Rm) as the set of those f = (f1, . . . , fm) : Ω → Rm
such that each component fi belongs to Cr,α(Ω). We also use the norm

‖f‖Cr,α(Ω;Rm)=
m∑
i=1

‖fi‖Cr,α(Ω).

Finally, when α = 0, we set Cr,0(Ω,Rm) = Cr(Ω,Rm). In this case, we write

[Dβu]C0,0(Ω) = 0, for all |β|= r

and
||u||Cr,0(Ω)= ||u||Cr(Ω).

Given x, y ∈ Ω, we denote by dΩ(x, y) the distance between x and y relative to Ω:

dΩ(x, y) = inf
γ∈W 1,∞([0,1],Ω),
γ(0)=x,γ(1)=y

∫ 1

0
|γ′(t)| dt.

Here, |γ′(t)| is the Euclidean norm of the vector γ′(t) in Rn. We also define the corre-
sponding diameter of Ω

dΩ = sup
x,y∈Ω

dΩ(x, y) (5.2)

as well as

δΩ = sup
x,y∈Ω,
x6=y

dΩ(x, y)

|x− y|
. (5.3)

When Ω is a Lipschitz domain, one can easily prove that δΩ is finite, see Remark 5.11. By
Lipschitz set, we mean that Ω is locally the epigraph of a Lipschitz continuous function of
n− 1 variables in an appropriate coordinate system.

We now recall some properties of the Hölder spaces.
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Proposition 5.5. [13, Theorem 16.11] Let Ω be a bounded Lipschitz domain in Rn. Then
there exists a linear extension operator

E :
⋃
r∈N

α∈[0,1]

Cr,α(Ω)→
⋃
r∈N

α∈[0,1]

Cr,α(Rn).

More precisely, for every r ∈ N, there exists a constant C = C(r,Ω) > 0 such that for
every α ∈ [0, 1] and every f ∈ Cr,α(Ω), one has

E(f)|Ω= f, supp [E(f)] is compact, ||E(f)||Cr,α(Rn)≤ C||f ||Cr,α(Ω).

The space Cr,α(Ω) is an algebra:

Proposition 5.6. Let r ∈ N and α ∈ (0, 1]. Let Ω ⊂ Rn be a bounded Lipschitz domain.
We denote by dΩ the diameter of Ω. Then there exists a constant C = C(r, n) > 0 such
that for every f, g ∈ Cr,α(Ω)

||fg||Cr,α(Ω)≤ C(δΩ + dΩ)r||f ||Cr,α(Ω)||g||Cr,α(Ω).

The above proposition is a variant of [13, Theorem 16.28]. The latter is sharper
regarding the norms of f and g in the right hand side. However, it allows a dependence of
the constant C with respect to the set Ω which is not explicitly stated. This is the reason
why we have formulated the above result in this form, in order to be more precise on this
dependence. A proof of Proposition 5.6 is given in the appendix.

Finally, under suitable assumptions on r and α, Hölder continuous functions are stable
with respect to composition. In the sequel, we need a result that we have not been able
to find in the literature in this form.

Proposition 5.7. Let r ∈ N \ {0} and α ∈ (0, 1). Let Ω ⊂ Rn, O ⊂ Rm be bounded
Lipschitz domains, Then there exists a constant C = C(r, n) > 0 such that for every
f ∈ Cr,α(Ω,Rm) and g ∈ Cr,α(O,R) with f(Ω) ⊂ O, one has

||g ◦ f ||Cr,α(Ω)≤ C(δΩ + dΩ)r
2 ||g||Cr,α(O)(||Df ||

r+α
Cr−1,α(Ω)

+1).

Remark 5.8. When g ∈ C0,α(O,R) and f ∈ C1,α(Ω,Rm), we will use the following
elementary inequality:

||g ◦ f ||C0,α(Ω)≤ δΩ||g||C0,α(Ω)(||Df ||
α
C0(Ω)

+1).

The proofs of Proposition 5.7 and Remark 5.8 are given in the appendix.

5.4 The proof of Theorem 5.4

Throughout this section, the constants are all denoted by the same letter C and only
depend on the parameters r, α, n and ρ which are introduced below. We will not system-
atically mention this dependence. On the contrary, when the constants depend on other
quantities, we will emphasize this dependence.
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5.4.1 Solution of the divergence equation on a cube

As explained in the introduction, the first step in the proof of Theorem 5.4 is to solve
the divergence equation when Ω is a cube and the boundary condition is only required on
one side of the cube.

In the following, for every δ > 0, we denote by Qδ the cube (0, δ)n while Q′δ is the
lower side of Qδ, namely Q′δ = (0, δ)n−1 × {0}. We will often identify Q′δ with (0, δ)n−1.

Lemma 5.9. Let r ∈ N, α ∈ (0, 1), ρ > 0 and f ∈ Cr,α(Qρ). Then there exists X ∈
Cr+1,α(Qρ;Rn) such that divX = f on Qρ and X = 0 on Q′ρ. Furthermore, there exists
C = C(r, α, ρ, n) > 0 such that

||X||Cr+1,α(Qρ)≤ C||f ||Cr,α(Qρ).

Proof of Lemma 5.9. Without loss of generality, by a dilation argument, one can assume
that ρ = 1 (the constant C in the statement is allowed to depend on ρ). By the extension
property on Hölder spaces, see Proposition 5.6, there exists f ∈ Cr,α(Rn) such that

||f ||Cr,α(Rn)≤ C||f ||Cr,α(Q1). (5.4)

Let ω be a smooth bounded open set such that Q1 ⊂ ω ⊂ Rn−1 × (0,+∞). In particular,
Q′1 ⊂ ∂ω and ω can be chosen such that its volume |ω| depends only n . Let also θ ∈ C∞c (ω)
be such that supp θ ∩Q1 = ∅ and

∫
ω θ = 1. We then define

f̃ := f −
(∫

ω
f

)
θ.

Observe that
∫
ω f̃ = 0 and f̃ := f on Q1. Theorem 5.2 applied to f̃ on ω yields a vector

field X̃ ∈ Cr+1,α(ω;Rn) such that div X̃ = f̃ on ω and X̃ = 0 on ∂ω. Moreover, there
exists C = C(r, α, ω) > 0 such that

||X̃||Cr+1,α(ω)≤ C||f̃ ||Cr,α(ω).

We next observe that

||f̃ ||Cr,α(ω)≤ ||f ||Cr,α(ω)+|ω|‖f‖C0(ω)‖θ‖Cr,α(ω)≤ C||f ||Cr,α(ω).

In view of (5.4), this implies that

||f̃ ||Cr,α(ω)≤ C||f ||Cr,α(Q1).

Then X := X̃|Q1
satisfies all the required properties.

5.4.2 Solution of the divergence equation on an epigraph

Given ρ > 0, let ψ ∈ Cr+1,α(Q′ρ). We introduce the Cr+1,α diffeomorphism

Φ = (Φ1, ...,Φn) : x = (x′, xn) ∈ Qρ 7→ (x′, xn + ψ(x′))

and define the open set

U = Φ(Qρ) = {(x′, xn) ∈ Q′ρ × (0,+∞) : ψ(x′) < xn < ψ(x′) + ρ}. (5.5)

Since we will apply Propositions 5.6 and 5.7 on U , we first need to estimate the
geometrical quantities dU and δU , see (5.2) and (5.3).
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Lemma 5.10. For every x, y ∈ U ,

dU (x, y) ≤ 3(1 + ‖∇ψ‖∞)|x− y|.

In particular, δU ≤ 3(1 + ‖∇ψ‖∞).

Proof. For every x = (x′, xn), y = (y′, yn) ∈ U , the Lipschitz map

γ : t ∈ [0, 1] 7→
(

(1− t)x′ + ty′, ψ((1− t)x′ + ty′) + (1− t)(xn − ψ(x′)) + t(yn − ψ(y′))

)
takes its values into U and satisfies γ(0) = x, γ(1) = y. Hence,

dU (x, y) ≤
∫ 1

0
|γ′(t)| dt.

For a.e. t ∈ [0, 1],

γ′(t) = (y′ − x′, 〈∇ψ((1− t)x′ + ty′), y′ − x′〉+ (yn − xn) + (ψ(x′)− ψ(y′)),

so that

γ′(t)|2 ≤ |y′ − x′|2+3‖∇ψ‖2L∞ |y′ − x′|2+3|ψ(x′)− ψ(y′)|2+3|xn − yn|2

≤ (3 + 6‖∇ψ‖2L∞)|x− y|2.

Hence,

dU (x, y) ≤ (3 + 6‖∇ψ‖2∞)
1
2 |x− y|≤ 3(1 + ‖∇ψ‖∞)|x− y|

and the assertion of the lemma follows.

Remark 5.11. The proof of the above lemma shows that when Ω is the epigraph of a
Lipschitz function ψ : Ω′ → R, where Ω′ is a convex open set in Rn−1, then the intrinsic
distance dΩ(x, y) between two points x and y in Ω is not larger than 3(1 +‖∇ψ‖∞)|x−y|.
This implies that when Ω is any Lipschitz domain in Rn, then δΩ <∞.

Proof of Remark 5.11. Indeed, assume by contradiction that there are two sequences of
points (xi)i and (yi)i in Ω such that xi 6= yi for every i and

lim
i→+∞

dΩ(xi, yi)

|xi − yi|
= +∞.

Then, by compactness of Ω, up to extraction (we do not relabel), (xi)i and (yi)i converge
to the same boundary point z ∈ ∂Ω. Since Ω is Lipschitz, there exists an open set U in Rn
such that Ω ∩ U is, in an appropriate system of coordinates, the epigraph of a Lipschitz
continuous function ψ defined on a ball B′ ⊂ Rn−1. For every i sufficiently large, xi and
yi belong to U . Hence,

dΩ(xi, yi) ≤ dΩ∩U (xi, yi) ≤ 3(1 + |∇ψ|L∞)|xi − yi|.

This proves that limi→+∞
dΩ(xi,yi)
|xi−yi| ≤ 3(1+|∇ψ|L∞): a contradiction. We can thus conclude

that δΩ is finite.

In the spirit of [4, Lemma 6] and [6, Lemma 7.4], we have the following lemma.
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Lemma 5.12. Let r ∈ N, α ∈ (0, 1) and ρ > 0. There exists ε ∈ (0, 1) such that if
ψ ∈ Cr+1,α(Q′ρ) satisfies ||∇ψ||Cr,α≤ ε, then for every f ∈ Cr,α(U), there exists X ∈
Cr+1,α(U,Rn) which satisfies

divX = f in U and X = 0 on {(x′, ψ(x′)) : x′ ∈ Q′ρ}.

Moreover, there exists C = C(r, α, ρ, n) > 0 such that

||X||Cr+1,α(U)≤ C||f ||Cr,α(U).

Proof. Without loss of generality, one can assume that ρ = 1. For x = (x′, xn) ∈ Q1, we
define the function f̃ := f ◦ Φ. Then f̃ ∈ Cr,α(Q1) and

||f̃ ||Cr,α(Q1)≤ C||f ||Cr,α(U), (5.6)

for some C = C(r, α, n). Indeed, if r = 0, then Remark 5.8 implies

‖f̃‖C0,α≤ (1 + δQ1)||f ||C0,α(||DΦ||αC0+1)

while if r ≥ 1, then Proposition 5.7 gives

||f̃ ||Cr,α≤ C(1 + δQ1 + dQ1)||f ||Cr,α
(
||DΦ||r+α

Cr−1,α+1

)
. (5.7)

By definition of Φ, one has

(
∂Φj

∂xi

)
i,j

=


1 if i = j,
∂ψ
∂xi

if i < n and j = n,

0 otherwise.

Therefore

||DΦ||r+α
Cr−1,α≤ C(1 + ||∇ψ||

Cr−1,α(Q′1)
)r+α. (5.8)

Then, the proof of (5.6) is a consequence of (5.7), (5.8) and the fact that by Lemma B.1,

||∇ψ||Cr−1,α≤ C(1 + δQ1 + dQ1)||∇ψ||Cr,α≤ Cε ≤ C.

Applying Lemma 5.9 to f̃ ∈ Cr,α(Q1), there exists X̃ ∈ Cr+1,α(Q1,Rn) such that

div X̃ = f̃ in Q1, X̃ = 0 on Q′1,

||X̃||Cr+1,α(Q1)≤ C||f̃ ||Cr,α(Q1). (5.9)

We now consider X0 : U → Rn defined by X0(x) = X̃(Φ−1(x)) = X̃(x′, xn − ψ(x′)) and
rewrite X̃ as X̃ = (X̃1, ..., X̃n) = (X̃ ′, X̃n). Then we have

divX0(x) = div (X̃ ◦ Φ−1(x)) =

n∑
i=1

∂[X̃(Φ−1(x)))]i

∂xi

=

n∑
i,j=1

∂X̃i

∂xj
◦ Φ−1(x)

∂(Φ−1)j

∂xi
(x)

=

n∑
i=1

∂X̃i

∂xi
◦ Φ−1(x)

∂(Φ−1)i

∂xi
(x) +

∑
1≤i 6=j≤n

∂X̃i

∂xj
◦ Φ−1(x)

∂(Φ−1)j

∂xi
(x).

74



Chapter 5

Using again the definition of Φ, we have

(
∂(Φ−1)j

∂xi

)
i,j

=


1 if i = j,

− ∂ψ
∂xi

if i < n and j = n,

0 otherwise.

This gives

divX0 = (div X̃) ◦ Φ−1 −
n−1∑
i=1

∂X̃i

∂xn
(Φ−1(x))

∂ψ

∂xi
(x′).

Hence,

divX0(x)− f(x) =
n−1∑
i=1

∂X̃i

∂xn
(Φ−1(x))

∂ψ

∂xi
(x′).

Using Proposition 5.6, one gets

||divX0 − f ||Cr,α(U)≤
n−1∑
i=1

∥∥∥∥∥∂X̃i

∂xn
◦ Φ−1 ∂ψ

∂xi

∥∥∥∥∥
Cr,α(U)

≤ C(1 + δU + dU )r
n−1∑
i=1

∥∥∥∥∥∂X̃i

∂xd
◦ Φ−1

∥∥∥∥∥
Cr,α(U)

∥∥∥∥ ∂ψ∂xi
∥∥∥∥
Cr,α(Q′1)

.

Hence, according to the assumption ||∇ψ||Cr,α(Rn−1)≤ ε, one gets

||divX0 − f ||Cr,α(U)≤ Cε
n−1∑
i=1

∥∥∥∥∥∂X̃i

∂xn
◦ Φ−1

∥∥∥∥∥
Cr,α(U)

. (5.10)

From Proposition 5.7, it follows that∥∥∥∥∥∂X̃i

∂xn
◦ Φ−1

∥∥∥∥∥
Cr,α(U)

≤ C(1 + δU + dU )r
2

∥∥∥∥∥∂X̃i

∂xn

∥∥∥∥∥
Cr,α(Q1)

(
‖DΦ−1‖r+α

Cr−1,α(U)
+1
)
.

Therefore ∥∥∥∥∥∂X̃i

∂xn
◦ Φ−1

∥∥∥∥∥
Cr,α(U)

≤ C

∥∥∥∥∥∂X̃i

∂xn

∥∥∥∥∥
Cr,α(Q1)

. (5.11)

Combining (5.6),(5.9),(5.10) and (5.11), we get

||divX0 − f ||Cr,α(U)≤ εC||f ||Cr,α(U),

for some C which only depends on r, α and n. Using again Proposition 5.7, we obtain

||X0||Cr+1,α(U)

≤ C(1 + δU + dU )(r+1)2 ||X̃||Cr+1,α(Q1)

(
‖DΦ−1‖r+1+α

Cr,α(U)
+1
)
≤ C||X̃||Cr+1,α(Q1). (5.12)

Combining (5.6),(5.9) and (5.12), we find

||X0||Cr+1,α(U)≤ C||f ||Cr,α(Ω). (5.13)

We now fix ε ∈ (0, 1) in such a way that λ := Cε < 1. Let us summarize the current
state of the proof as follows: we have proved that given f ∈ Cr,α(U), there exists X0 ∈
Cr+1,α(U,Rn) such that

X0 = 0 on {(x′, ψ(x′)) : x′ ∈ Q′1}
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and

||divX0 − f ||Cr,α(U)≤ λ||f ||Cr,α(U) , ||X0||Cr+1,α(U)≤ C0||f ||Cr,α(U),

with λ ∈ (0, 1) and C0 = C0(r, n, α). We now construct by induction a sequence (Xi)i∈N ⊂
Cr+1,α(U,Rn) such that for every i ∈ N,∥∥∥∥∥∥divXi − (f − div

i−1∑
j=0

Xj)

∥∥∥∥∥∥
Cr,α(U)

≤ λ

∥∥∥∥∥∥f − div
i−1∑
j=0

Xj

∥∥∥∥∥∥
Cr,α(U)

, (5.14)

Xi = 0 on {(x′, ψ(x′)) : x′ ∈ Q′1}, (5.15)

‖Xi‖Cr+1,α(U)≤ C0

∥∥∥∥∥∥f − div
i−1∑
j=0

Xj

∥∥∥∥∥∥
Cr,α(U)

. (5.16)

The vector field X0 has been constructed above. Assuming that X0, . . . , Xi−1 have been
defined for some i ∈ N, then we define Xi exactly as we have done for X0 except that
we replace f by f − div

∑i−1
j=0Xj . Then Xi satisfies the three properties above. This

completes the proof of the existence of the sequence (Xi)i∈N.

We deduce from (5.14) that∥∥∥∥∥∥f − div
i−1∑
j=0

Xj

∥∥∥∥∥∥
Cr,α(U)

≤ λ

∥∥∥∥∥∥f − div
i−2∑
j=0

Xj

∥∥∥∥∥∥
Cr,α(U)

≤ . . . ≤ λi−1‖f‖Cr,α(U). (5.17)

Together with (5.16), this implies that

‖Xi‖Cr+1,α(U)≤ C0λ
i−1‖f‖Cr,α(U).

It follows that the sum
∑

i∈NXi converges in the space Cr+1,α(U) to some vector field X
such that X = 0 on {(x′, ψ(x′)) : x′ ∈ Q′1} and ‖X‖Cr+1,α(U)≤ C‖f‖Cr,α(U). Moreover, by

(5.17), one has

divX = f.

This completes the proof of Lemma 5.12.

Next, we remove the smallness condition on ψ. Let us consider ψ ∈ Cr+1,α(Q′ρ) and

Uδ = {(x′, xn) ∈ Q′δ × R : ψ(x′) < xn < ψ(x′) + ρ}.

Lemma 5.13. With the above notation, there exists δ > 0 which depends only on r, α, n, ρ
and ‖∇ψ‖

Cr,α(Q′ρ)
with the following property: Given any f ∈ Cr,α(Uδ), there is some

X ∈ Cr+1,α(Uδ) satisfying

divX = f in Uδ, X = 0 on {(x′, ψ(x′)) : x′ ∈ Q′δ}

and

||X||Cr+1,α(Uδ)
≤ C||f ||Cr,α(Uδ)

,

where C > 0 depends on r, α, n, ρ and ‖∇ψ‖
Cr,α(Q′ρ)

.
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Proof. We take again ρ = 1. Given δ > 0 (which will be subject to subsequent restric-
tions) and f ∈ Cr,α(Uδ), let us define for every x = (x′, xn) ∈ U1, ψδ(x

′) = ψ(δx′) and
fδ(x

′, xn) = f(δx′, xn). Then ψδ ∈ Cr+1,α(Q′1) and

‖∇ψδ‖Cr,α(Q′1)
= δ‖(∇ψ)(δ·)‖

Cr,α(Q′1)

so that by Proposition 5.7,

‖∇ψδ‖Cr,α(Q′1)
≤ Cδ‖∇ψ‖

Cr,α((Q′1))
(δr+α + 1) ≤ Cδ‖∇ψ‖

Cr,α((Q′1))
.

Similarly,

||fδ||Cr,α(U1)≤ C||f ||Cr,α(Uδ)
.

There exists δ0 = δ0(r, α, d, ‖∇ψ‖
Cr,α((Q′1))

) such that for every 0 < δ < δ0, one has

||∇ψδ||Cr,α(Q′1)
< ε where ε is given by Lemma 5.12.

Applying Lemma 5.12 to ψδ, fδ, U1, we get a vector field Xδ ∈ Cr+1,α(U1) satisfying:

divXδ = fδ in U1 , Xδ = 0 on {(x′, ψδ(x′)) : x′ ∈ Q′1}

and

||Xδ||Cr+1,α(U1)≤ C||fδ||Cr,α(U1).

We now set for every (x′, xd) ∈ Uδ,

X(x′, xn) =

(
δX ′δ

(
x′

δ
, xn

)
, Xn

δ

(
x′

δ
, xn

))
.

Then

divX = f in Uδ, X = 0 on {(x′, ψ(x′)) : x′ ∈ Q′δ}

and

||X||Cr+1,α(Uδ)
≤ C||f ||Cr,α(Uδ)

,

where C = C(r, α, d, δ, ρ). The proof of Lemma 5.13 is complete.

Remark 5.14. The vector field Xδ constructed in the proof of Lemma 5.13 also satisfies
the following estimates: for every s ∈ {0, . . . , r},

‖Xδ‖Cs+1,α(Uδ)≤ C‖f‖Cs,α(Uδ)

where C only depends on r, α, n, ρ and ‖∇ψ‖Cr,α(Q′ρ).

This easily follows from Proposition 5.6 and Proposition 5.7, exactly as in the proof
of Lemmata 5.9, 5.12 and 5.13.

5.4.3 Conclusion of Theorem 5.4

We now present the

Proof of Theorem 5.4 . Since Ω is Cr+1,α, for every x ∈ ∂Ω, there exists an open neigh-
borhood W ⊂ Rn of x and a positive number ρ > 0 such that

• W ∩ Ω is isometric to {(y′, yn) ∈ Q′ρ × R : ψ(y′) < yn < ψ(y′) + ρ},

• W ∩ ∂Ω is isometric to {(y′, yn) ∈ Q′ρ × R : ψ(y′) = yn}
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where ψ ∈ Cr,α(Q′ρ).
There exists a parameter δ > 0 depending on r, α, n, ρ, ψ such that Lemma 5.13 gives a

solution to the divergence equation on the set {(y′, yn) ∈ Q′δ×R : ψ(y′) < yn < ψ(y′)+ρ}.
We deduce therefrom that there exists an open neighborhood V of x contained in W and
a vector field X ∈ Cr+1,α(V ∩ Ω;Rn) such that

divX = f in V ∩ Ω, X = 0 on V ∩ ∂Ω

and
‖X‖Cr+1,α(V ∩Ω)≤ C‖f‖Cr,α(V ∩Ω).

Here, the constant C depends on r, α, n and Ω.
By compactness of ∂Ω, one can find a covering of ∂Ω by such open sets Vi, i = 1, . . . , k.

In particular, for every i ∈ {1, . . . , k}, there exists Xi ∈ Cr+1,α(Vi;Rn) such that

divXi = f in Ω ∩ Vi, Xi = 0 on ∂Ω ∩ Vi.

and
||Xi||Cr+1,α(Vi)

≤ C||f ||Cr,α(Vi)
. (5.18)

Let also V0 ⊂ Ω such that V0 is a Cr+2,α domain and Ω ⊂
⋃k
i=0 Vi. We then solve

divX0 = f in V0 ⊂ Ω, for example X0 = ∇(∆−1f), where ∆−1 is defined with the zero
Dirichlet boundary condition on ∂V0.Moreover, there exists a constant C = C(r, α, V0) > 0
such that

||X0||Cr+1,α(V0)≤ C||f ||Cr,α(V0). (5.19)

To the covering (Vi)0≤i≤k of Ω, we associate a partition of unity (θi)0≤i≤k such that

k∑
i=0

θi = 1 in Ω, and θi ∈ C∞c (Vi) for i = 0, 1, ..., k.

We set

Sf =

k∑
i=0

θiXi. (5.20)

Then

div Sf = f +
k∑
i=0

∇θi ·Xi. (5.21)

This implies

‖f − Sf‖Cr+1,α(Ω)≤
k∑
i=0

‖∇θi ·Xi‖Cr+1,α(Ω)≤ C
k∑
i=0

‖Xi‖Cr+1,α(Ω),

where C depends on r, α and Ω. We deduce from (5.18) and (5.19) that

‖f − Sf‖Cr+1,α(Ω)≤ C‖f‖Cr,α(Ω).

Finally, since supp (∇θ0) b Ω and Xi = 0 on supp θi ∩ ∂Ω, one has f − Sf = 0 on ∂Ω.
The proof is complete.

Remark 5.15. From the above proof, let us remark that, for any f ∈ Cr,α(Ω), we can
rewrite f in the following form

f = −divSf +
k∑
i=0

∇θi ·Xi,

where Sf =
∑k

i=0 θiXi ∈ Cr+1,α
z (Ω,Rn) and

∑k
i=0∇θi ·Xi ∈ Cr+1,α

z (Ω).
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According to Remark 5.14, the local solutions Xi arising in the proof of Theorem 5.4
have the following additional property:

Remark 5.16. For every s ∈ 0, . . . , r,

‖Xi‖Cs+1,α(Ω∩Vi)≤ C‖f‖Cs,α(Ω)

for some C = C(r, α, n,Ω).

5.5 Proof of ker(T ∗) = {0} and the conclusion of

Theorem 5.1.

We finally turn to the proof of Theorem 5.1. We want to apply Lemma 5.3 to the
linear continuous map T = div from the set

Cr+1,α
z (Ω,Rn) = {X ∈ Cr+1,α(Ω,Rn) : X = 0 on ∂Ω}

into

Cr,αH (Ω) =

{
f ∈ Cr,α(Ω) :

∫
Ω
f = 0

}
.

We define the linear map K by K(f) = −f + Sf where S is given by Theorem 5.4. By
construction, Kf =

∑k
i=0∇θi · Xi, with Xi ∈ Cr+1,α(Ω,Rn) and θi ∈ C∞c (Rn) for all

i ∈ {0, ..., k}. Since the embedding Cr+1,α(Ω,Rn) ⊂ Cr,α(Ω,Rn) is compact, we deduce
that the operator K is compact from Cr,αH into Cr,αH .

It remains to prove that kerT ∗ = {0}. This is the content of the following

Theorem 5.17. The dual operator T ∗ : (Cr,αH )∗ → (Cr+1,α
z )∗ has a trivial kernel:

ker(T ∗) = {0}.

Proof of Theorem 5.17. Let v ∈ kerT ∗. By definition of the adjoint operator, this means

〈v, TX〉(Cr,αH )∗,Cr,αH
= 0, ∀X ∈ Cr+1,α

z (Ω,Rn). (5.22)

We claim that

〈v, ϕ〉(Cr,αH )∗,Cr,αH
= 0, ∀ϕ ∈ C∞c (Ω) with

∫
Ω
ϕ = 0. (5.23)

Indeed, let us define the distribution v by

v : ϕ ∈ C∞c (Ω) 7→ 〈v, ϕ− 1

|Ω|

∫
Ω
ϕ〉(Cr,αH )∗,Cr,αH

.

For every X ∈ C∞c (Ω),
∫

Ω TX =
∫

Ω divX = 0 and thus using (5.22), one has

〈v, TX − 1

|Ω|

∫
Ω
TX〉(Cr,αH )∗,Cr,αH

= 〈v, TX〉(Cr,αH )∗,Cr,αH
= 0.

It follows that the distribution v vanishes on the set {divX : X ∈ C∞c (Ω)}, which implies
that v is a constant distribution. Hence, there exists c ∈ R such that for every ϕ ∈ C∞c (Ω),

〈v, ϕ− 1

|Ω|

∫
Ω
ϕ〉(Cr,αH )∗,Cr,αH

= c

∫
Ω
ϕ (5.24)

and (5.23) follows.
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We next prove that for every v ∈ (Cr,αH )∗, there exists C > 0 such that for every
f ∈ Cr,αH ,

〈v, f〉(Cr,αH )∗,Cr,αH
≤ C‖f‖C0,α .

Indeed, given f ∈ Cr,αH (Ω), we rely on Remark 5.15 to get the decomposition

f = divX +
k∑
i=0

∇θi ·Xi, (5.25)

where X ∈ Cr+1,α
z (Ω,Rn) and the sum

∑k
i=0∇θi ·Xi, that we denote by g, also belongs

to Cr+1,α
z , see (5.21).

Using equations (5.22) and (5.25), we obtain

〈v, f〉(Cr,αH )∗,(Cr,αH ) = 〈v, g〉(Cr,αH )∗,(Cr,αH ) ≤ ‖v‖(Cr,αH )∗‖g‖Cr,αH .

Since g =
∑k

i=0∇θi ·Xi, one has

‖g‖Cr,αH = ‖g‖Cr,α(Ω)≤ C
k∑
i=0

‖Xi‖Cr,α(Vi∩Ω)
.

The open set Vi is the domain of the local solution Xi introduced in the proof of Theorem
5.4. We now rely on Remark 5.16 with s = r − 1 to estimate:

‖Xi‖Cr,α(Vi∩Ω)≤ C‖f‖Cr−1,α(Ω).

Hence, we get

‖g‖Cr,αH ≤ C‖f‖Cr−1,α(Ω),

which implies

〈v, f〉(Cr,αH )∗,Cr,αH
≤ C‖v‖(Cr,αH )∗‖f‖Cr−1,α(Ω).

We can repeat the above argument taking into account this new estimate that we apply
to g instead of f (observe that g = f − divX also belongs to Cr,αH ):

〈v, f〉(Cr,αH )∗,Cr,αH
= 〈v, g〉(Cr,αH )∗,Cr,αH

≤ C‖v‖(Cr,αH )∗‖g‖Cr−1,α(Ω).

Using Remark 5.14 again with s = r − 2, one has

‖g‖Cr−1,α(Ω)≤ C
k∑
i=0

‖Xi‖Cr−1,α(Vi∩Ω)≤ C‖f‖Cr−2,α(Ω).

We deduce therefrom that

〈v, f〉(Cr,αH )∗,Cr,αH
≤ C‖f‖Cr−2,α(Ω).

Iterating this calculation, we finally obtain

〈v, f〉(Cr,αH )∗,Cr,αH
≤ C‖f‖C0,α(Ω) (5.26)

where C depends on r, α,Ω and v.

Applying Lemma 5.18 below to g, there exists a sequence (gm)m, with gm ∈ C∞c (Ω),∫
Ω gm = 0 such that

gm → g in C0,α(Ω).

80



Chapter 5

Now we use (5.23) and (5.26) to obtain that

〈v, f〉(Cr,αH )∗,Cr,αH
= 〈v, g〉(Cr,αH )∗,Cr,αH

= lim
m→+∞

〈v, g − gm〉(Cr,αH )∗,Cr,αH

≤ ‖v‖(Cr,αH )∗ lim sup
m→+∞

||g − gm||C0,α= 0.

One deduces that 〈v, f〉(Cr,αH )∗,Cr,αH
= 0 for all f ∈ Cr,αH and thus v = 0. This completes

the proof of the lemma.

We finish this section by Lemma 5.18:

Lemma 5.18. Let r ∈ N∗, f ∈ Cr,α(Ω) with f = 0 on ∂Ω and
∫

Ω f = 0. Then there
exists a sequence (fm)m ⊂ C∞c (Ω) such that

∫
Ω fm = 0 for every m ∈ N and

fm → f in C0,α(Ω).

Proof of Lemma 5.18 . We split the proof of Lemma 5.18 into two steps:
Step 1 : Let g ∈ Cr,α(Ω) with g = 0 on ∂Ω and

∫
Ω g = 0. Then there exists a

sequence (gm)m ⊂ C0,1
c (Ω) such that

∫
Ω gm = 0 for every m ∈ N and

gm → g in C0,α(Ω).

Step 2 : Let g ∈ C0,1
c (Ω) with

∫
Ω g = 0. Then there exists a sequence (gm)m ⊂ C∞c (Ω)

such that
∫

Ω gm = 0 for every m ∈ N and

gm → g in C0,α(Ω).

We easily get the conclusion from the two above steps.
Proof of Step 1. Let us define the function θε : R −→ R by:

θε(t) =


0 if − ε ≤ t ≤ ε,
2t− 2ε if ε < t < 2ε,
2t+ 2ε if − 2ε < t < −ε,
t otherwise,

and gε = θε ◦ g. Then gε ∈ C0,1
c (Ω). We next prove that gε converges to g in C0,α(Ω). First

of all, for every x ∈ Ω

|gε(x)− g(x)| ≤ (|gε(x)|+|g(x)|)1{|g|≤2ε}

≤ 2|g(x)|1{|g|≤2ε} ≤ 4ε. (5.27)

Then gε converges to g uniformly in C0(Ω).
We now estimate the Holder-semi norm

sup
x6=y

|(g − gε)(x)− (g − gε)(y)|
|x− y|α

≤ sup
|x−y|≥ε

|(g − gε)(x)− (g − gε)(y)|
|x− y|α

+ sup
0<|x−y|<ε

|(g − gε)(x)− (g − gε)(y)|
|x− y|α

. (5.28)

We estimate the first term of (5.28) using (5.27):

sup
|x−y|≥ε

|(g − gε)(x)− (g − gε)(y)|
|x− y|α

≤ sup
|x−y|≥ε

|(g − gε)(x)|+|(g − gε)(y)|
|x− y|α

≤ sup
|x−y|≥ε

8ε

|x− y|α
≤ 8ε1−α. (5.29)
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As for the second term of (5.28), one has

sup
0<|x−y|<ε

|(g − gε)(x)− (g − gε)(y)|
|x− y|α

≤ sup
0<|x−y|<ε

|g(x)− g(y)|+|gε(x)− gε(y)|
|x− y|α

≤ sup
0<|x−y|<ε

||Dg||L∞ |x− y|+||Dgε||L∞ |x− y|
|x− y|α

.

Using that ||θ′ε||L∞≤ 2 in R, which implies that ‖Dgε‖L∞≤ 2‖Dg‖L∞ , one gets

sup
0<|x−y|<ε

|(g − gε)(x)− (g − gε)(y)|
|x− y|α

≤ sup
0<|x−y|<ε

3||Dg||L∞ |x− y|
|x− y|α

≤ sup
0<|x−y|<ε

3||Dg||L∞ |x− y|1−α

≤ 3||Dg||L∞ε1−α. (5.30)

Combining (5.29) and (5.30), we get

[g − gε]C0,α(Ω) ≤ 8ε1−α + 3||Dg||L∞ε1−α ≤ Cε1−α.

By uniform convergence,

lim
ε

∫
Ω
gε =

∫
Ω
g = 0.

Let θ ∈ C∞c (Ω) such that
∫
θ = 1. Then the family (g̃ε)ε>0 defined by

g̃ε := gε −
(

1

|Ω|

∫
Ω
gε

)
θ

satisfies all the required properties.
Proof of Step 2. In this step, we start with a function g ∈ C0,1

c (Ω) satisfying
∫

Ω g = 0.
We still denote by g the extension by 0 of g on the whole Rn.

Let ζ ∈ C∞c (Rn) such that supp(ζ) ⊂ B(0, 1), ζ ≥ 0 and∫
Rn
ζ(x)dx = 1.

The desired gε is then given by
gε = ζε ∗ g,

where

ζε(x) =
1

εn
ζ(
x

ε
).

Then for every ε small enough, gε ∈ C∞c (Ω) and by the Fubini theorem,
∫

Ω gε = 0.
Moreover, for any β ∈ (0, 1),

|g − gε|C0≤ Cεβ||g||C0,β .

Indeed, by definition of the convolution, one has

gε(x)− g(x) =

∫
Rn

1

εn
ζ(
y

ε
)[g(x− y)− g(x)]dy =

∫
Rn
ζ(z)[g(x− εz)− g(x)]dz.

Then using that supp ζ ⊂ B(0, 1) and |ζ|β≤ 1 on B(0, 1), one gets

‖g − gε‖C0≤ εβ‖g‖C0,β

∫
Rn
ζ(z)|z|βdz ≤ εβ‖g‖C0,β . (5.31)
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By writing for every x, y ∈ Ω, x 6= y,

|(gε − g)(x)− (gε − g)(y)|
|x− y|α

=

(
|(gε − g)(x)− (gε − g)(y)|

|x− y|

)α
|(gε − g)(x)− (gε − g)(y)|1−α

≤ 21−α[gε − g]αC0,1‖gε − g‖1−αC0 ,

one gets
[g − gε]C0,α ≤ 21−α[gε − g]αC0,1‖gε − g‖1−αC0

and thus

||gε− g||C0,α= ‖gε− g‖C0+[gε− g]C0,α ≤ ‖gε− g‖C0+21−α||g− gε||αC0,1 ||g− gε||1−αC0 . (5.32)

Moreover, we have that

||g − gε||C0,1≤ ||gε||C0,1+||g||C0,1≤ 2||g||C0,1 . (5.33)

Combining (5.31)-(5.33), we obtain the conclusion.
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Chapter 6

On the Poincaré Lemma on
domains

Abstract
This chapter is based on a work (see [7]) in collaboration with my adviser Pierre Bousquet.
We are interested in the Poincaré lemma on a bounded domain, under a Dirichlet boundary
condition {

dX = f in Ω,
X = 0 on ∂Ω,

where f is a differential form of degree k and d is the exterior derivative operator. We
prove the existence of a solution under a sharp regularity assumption on the domain Ω and
in Hölder spaces. This result generalizes Theorem 5.1 to the differential form equation.
Finally, our results cover the whole scale of Sobolev spaces.

6.1 Statements of the main results

For the convenience of the reader, let us recall some notations and state again the
main result which is introduced in Chapter 4. We formulate the differential form equation
in terms of functions spaces.
Let Ω be a domain (namely a connected open set) in Rn, with n ≥ 2. Given k ∈ {1, . . . , n},
r ∈ N and α ∈ (0, 1), we define the set Cr,α(Ω,Λk) of those k differential forms with Cr,α

coefficients in Ω. Given f ∈ Cr,α(Ω,Λk), we look for a (k−1) form X in the Banach space

Cr+1,α
z (Ω,Λk−1) :=

{
X ∈ Cr+1,α(Ω,Λk−1) : X = 0 on ∂Ω

}
such that {

dX = f in Ω,
X = 0 on ∂Ω.

(6.1)

Observe that any X ∈ Cr+1,α
z (Ω,Λk−1) satisfies d(dX) = 0 (when r = 0, this condition

must be understood in the sense of distributions). Moreover, the boundary condition
X = 0 on ∂Ω implies that ν ∧ dX = 0 on ∂Ω, see [13, Theorem 3.23]. In this identity,
the outer unit normal ν to Ω is identified to a 1 form: we set ν = ν1dx1 + · · · + νndxn
if ν1, . . . , νn are the coordinates of ν in the standard basis of Rn. We deduce therefrom
two necessary conditions on a k form f ∈ Cr,α(Ω,Λk) for the existence of a solution X to
(6.1): f should be a closed form, and satisfy the boundary condition f ∧ ν = 0 on ∂Ω.
In case when Ω is topologically nontrivial, one must add a further requirement. Let us
introduce the set HkT (Ω) of the Dirichlet harmonic fields of order k, defined as

HkT (Ω) = {h ∈ L2(Ω,Λk) : δh = 0,dhz = 0}. (6.2)
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Here, hz means the extension of h by zero outside Ω. The two conditions δh = 0,dhz = 0
must be understood in the sense of distributions:

∀η ∈ C∞c (Ω,Λk−1),

∫
Ω
〈h,dη〉 dx = 0,

∀θ ∈ C∞c (Rn,Λk+1),

∫
Rn
〈h, δθ〉 dx = 0.

The latter condition is a weak formulation of the fact that dh = 0 on Ω and h ∧ ν = 0 on
∂Ω. The set HkT (Ω) is closely related to the topology of Ω, see e.g. [40, Chapter 11].

Now, for every h ∈ HkT , one has δh = 0 and thus, for every X ∈ C∞c (Ω,Λk−1),∫
Ω
〈dX,h〉 dx = 0.

This remains true by density forX ∈W 1,2
0 (Ω,Λk−1), in particular forX ∈ Cr+1,α

z (Ω,Λk−1).
This yields a third necessary condition on the right hand side f of (6.1) to ensure the ex-
istence of a solution X: f should be orthogonal to any element of HkT (Ω). We are thus
led to introduce the Banach space

Cr,αH (Ω,Λk) :=

{
f ∈ Cr,α(Ω,Λk) : df = 0 in Ω, ν ∧ f = 0 on ∂Ω,∫

Ω
〈f, h〉 = 0,∀h ∈ HkT (Ω)

}
.

We can now formulate (6.1) as follows: is it true that any f ∈ Cr,αH (Ω,Λk) is the differential

of some X ∈ Cr+1,α
z (Ω,Λk−1) ? Actually, we expect that the solution X can be chosen

continuously and linearly with respect to f . This is not obvious since such a solution
X, when it exists, is not unique. In other words, does there exist a right inverse to
d : Cr+1,α

z (Ω,Λk−1)→ Cr,αH (Ω,Λk) ?
This is indeed our main result, under the assumption that Ω has the same regularity

as X itself.

Theorem 6.1. Let r ∈ N, k ∈ {1, . . . , n} and α ∈ (0, 1). Let Ω be a bounded Cr+1,α

domain in Rn. Let f ∈ Cr,α(Ω,Λk) be such that{
df = 0 in Ω,
ν ∧ f = 0 on ∂Ω,

(6.3)

and for every h ∈ HkT (Ω), ∫
Ω
〈f, h〉 dx = 0. (6.4)

Then there exists X ∈ Cr+1,α(Ω,Λk−1) such that{
dX = f in Ω,
X = 0 on ∂Ω.

(6.5)

Furthermore, the correspondence f 7→ X can be chosen linear and there exists C =
C(r, α,Ω) > 0 such that

||X||Cr+1,α(Ω,Λk−1)≤ C||f ||Cr,α(Ω,Λk).

When r = 0, the condition df = 0 has to be understood in the sense of distributions
in D′(Ω) (the assumption f ∧ν = 0 has a classical pointwise meaning since f is continuous
on the closure of Ω).
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Remark 6.2. We can allow more general boundary conditions. Namely, if one replaces
the homogeneous Dirichlet boundary condition X = 0 on ∂Ω by X = X0 for some X0 ∈
Cr+1,α(Ω,Λk−1), then the corresponding statement holds true under the necessary and
sufficient conditions: df = 0 in Ω, ν ∧ f = ν ∧ dX0 on ∂Ω, and for every h ∈ HkT (Ω),∫

Ω
〈f, h〉 −

∫
∂Ω
〈ν ∧X0, h〉 = 0.

Indeed, for X0 ∈ Cr+1,α(Ω,Λk−1), the differential form f1 = f − dX0 ∈ Cr,α(Ω,Λk)
satisfies

df1 = 0 in Ω , ν ∧ f1 = 0 on ∂Ω

and ∫
Ω
〈f1, h〉 dx = 0, ∀h ∈ HkT (Ω).

By Theorem 6.1, there exists X1 ∈ Cr+1
z (Ω,Λk−1) such that dX1 = f1 in Ω. Thus, X =

X0 +X1 satisfies all the required properties.
The proof of Theorem 6.1 shares some features with the argument used in the pre-

vious Chapter. For that we look for a right inverse to the exterior derivative operator
d : Cr+1,α

z (Ω,Λk−1) → Cr,αH (Ω,Λk). It is a consequence of Lemma 5.3 and the following
Theorem

Theorem 6.3. For every integer r ≥ 0, there is a bounded operator

S : Cr,αH (Ω,Λk)→ Cr+1,α
z (Ω,Λk−1)

such that for every f ∈ Cr,αH (Ω,Λk)

f − d(Sf) ∈ Cr,αH (Ω,Λk)

and
||f − d(Sf)||

Cr+1,α
z (Ω,Λk−1)

≤ C||f ||Cr,αH (Ω,Λk).

The proof of Theorem 6.3 will follow the same strategy as the proof of Theorem
5.4; that is, we localize the problem on small balls and perform the construction of the
bounded operator S by the gluing process. Compared with the divergence equation, the
assumptions on data entail several difficulties, namely:

- The boundary condition. In the case of n forms, the boundary condition of the data
f is ignored. But that boundary condition will be taken into account in the general
case. It is one of the difficulties we need to handle when we proceed the matching of
the boundary condition of the data in the cube and those in the neighborhood of the
boundary of Ω. It is well-known that if φ is a local chart, the pullback of the local
chart commutes with the exterior derivative operator; namely, for any k differential
form f , one has φ∗(df) = d(φ∗f). Here φ∗(f) is the pullback of f by φ. However,
the normal vector of the boundary is not necessarily conserved by the pullback of a
diffeomorphism.

- The closeness. The closeness of the data is the second issue we meet. It follows from
the fact that, the closeness of the n differential form f is automatically satisfied,
(
∫

Ω f = 0) while in general, df = 0 has the classical (pointwise) sense. This fact
involve new technical difficulties for equation (6.1) in the cube, as well as for the
proof of ker (d)∗ = {0}, where

(d)∗ : (Cr,αH )∗ → (Cr+1,α
z )∗

is the adjoint operator of d and (Cr+1,α
z )∗, (Cr,αH )∗ are the dual spaces of Cr+1,α

z , Cr,αH
(respectively).
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Remark 6.4. 1. When Ω is merely Lipschitz, Mitrea, Mitrea and Taylor [40, Chapter

11] prove that HkT (Ω) coincides with the space Hk,2∧ (Ω) of those maps h ∈ C1(Ω,Λk)
which satisfy dh = 0, δh = 0, ν ∧ h = 0 and such that a certain trace of h (in an
appropriate sense) belongs to L2(∂Ω).

2. When Ω is Lipschitz, there exists q0 > 2 such that Hk,2∧ (Ω) is contained in Lq(Ω,Λk)
for every q ∈ [1, q0), see [40, Theorem 11.2].

3. Finally, the set of harmonic fields with vanishing tangential components has finite
dimension, see [40, Theorem 11.1].

One can formulate a twin result of Theorem 6.1 in the scale of Sobolev spaces. Given
p ∈ (1,∞) and a Lipschitz bounded domain Ω, it is possible to find a solution X ∈
W 1,p

0 (Ω,Λk+1) to (6.1) when f ∈ Lp(Ω,Λk) satisfies the necessary condition dfz = 0 in
D′(Rn) (remember that fz is the extension of f by 0 outside Ω) and an orthogonality
assumption with respect to HkT (Ω). A more regular solution exists provided that the set
Ω is regular enough, in the following precise way:

Theorem 6.5. Let r ∈ N, k ∈ {1, . . . , n} and p ∈ (1,∞). Let Ω be a bounded Cr,1 domain
in Rn. Assume also that HkT (Ω) ⊂ Lp′(Ω,Λk). Let f ∈W r,p(Ω,Λk) be such that{

df = 0 in Ω,
ν ∧ f = 0 on ∂Ω,

and for every h ∈ HkT (Ω), ∫
Ω
〈f, h〉 dx = 0.

Then there exists X ∈W r+1,p(Ω,Λk−1) such that{
dX = f in Ω,
X = 0 on ∂Ω.

Furthermore, the correspondence f 7→ X can be chosen linear and there exists C =
C(r, p,Ω) > 0 such that

||X||W r+1,p(Ω,Λk−1)≤ C||f ||W r,p(Ω,Λk).

The assumption that HkT (Ω) ⊂ Lp
′
(Ω,Λk) has been introduced to guarantee that the

quantity
∫

Ω〈f, h〉 dx is well-defined for every h ∈ HkT . This requirement is automatically
satisfied when p ≥ 2.

In the case when HkT (Ω) 6⊂ Lp
′
(Ω,Λk) (which may happen when r = 0 and p is close

to 1), one can rely on the following weaker form of Theorem 6.5:

Remark 6.6. Let k ∈ {1, . . . , n} and p ∈ (1,∞). Let Ω be a bounded Lipschitz domain
in Rn. Assume also that HkT (Ω) ⊂ Lp(Ω,Λk). Let f ∈ Lp(Ω,Λk) be such that dfz = 0

in D′(Rn). Then there exists X ∈ W 1,p
0 (Ω,Λk−1) and h ∈ HkT (Ω) such that dX + h = f

in Ω. Furthermore, the correspondence f 7→ (X,h) can be chosen linear and there exists
C = C(p,Ω) > 0 such that

||X||W 1,p(Ω,Λk−1)+‖h‖L2(Ω,Λk)≤ C||f ||Lp(Ω,Λk).

The space HkT (Ω) is finite dimensional, see Remark 6.4. Hence, all the norms are
equivalent on this set. In the last estimate, one can thus replace the L2 norm of h by
‖h‖Lp(Ω,Λk).

Remark 6.7. In the limiting case p = 1, there exist closed forms f ∈ L1(Bn,Λk), where
Bn is the unit ball in Rn, which cannot be written as f = dX, for any X ∈W 1,1(Bn,Λk−1),
see [4] for the case k = n and [14] for k ∈ {1, . . . , n − 1}. The same assertion holds true
for p = +∞.
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6.1.1 Comparison with previous results

The proofs of our results rely on a version of the Poincaré lemma for smooth open
sets. Under such an assumption, one can exploit the elliptic regularity theory to construct
solutions to (6.1) by using the Hodge-Morrey decomposition. This approach is detailed by
Csató, Dacorogna and Kneuss in [13], where Theorem 6.1 is stated for Ω of class Cr+3,α

and Theorem 6.5 holds true provided that Ω is Cr+3, see [13, Theorem 8.16]. According
to [41, Theorem 7.7.8 (ii)], it seems enough to assume that Ω is in Cr+2,α to write the
Hodge-Morrey decomposition in the scale of Hölder spaces. In the specific setting of
Sobolev spaces, see also [47, Section 3.3] (where Ω is assumed to be smooth).

Remark 6.8. Let us observe that the set HkT (Ω) as defined in (6.2) slightly differs from
the one introduced in [13] and [41], where harmonic fields are required to be in W 1,2

instead of L2. In [1, Theorem 4.10], Axelsson and McIntosh establish that these two sets
coincide when Ω is C2.

In the case when Ω is Lipschitz, Bogovskii [48] has introduced an alternative strategy
to construct a solution to the divergence equation (4.1) when the right hand side f is
in Lp(Ω). This approach has been subsequently extended to produce a solution to the
Poincaré lemma (6.1) in the whole scale of Besov spaces Bs,p

q (which contains all the
Sobolev and Hölder spaces), see in particular [39] and [12]. Typically, this construction
requires that the right hand side f is in the closure of k forms with smooth compactly
supported coefficients. In order to emphasize the consequences of this fact, let us state
a version of [39, Theorem 1.2] in the setting of standard Sobolev spaces W r,p(Ω), when
r ≥ 1 and HkT (Ω) = {0}: there exists a solution X to (6.1) if f ∈ W r,p(Ω,Λk) is closed
and satisfies the following condition

∀α = (α1, . . . , αn) with |α|≤ r − 1, Tr Dαf |∂Ω= 0. (6.6)

We observe that when r = 1, this amounts to f = 0 on ∂Ω, which is more restrictive
than the condition f ∧ ν = 0 of our Theorem 6.5. When r ≥ 2, the discrepancy with our
own assumptions increases, since (6.6) involves vanishing conditions on the derivatives of
f . We should mention however that the solution obtained in [39, Theorem 1.2] is in the
closure of smooth compactly supported k+ 1 forms, a property which considerably differs
from the mere Dirichlet condition X = 0 on ∂Ω. In other words, the Bogovskii approach
generally requires additional assumptions on the right hand side f which are not necessary
to solve the Poincaré lemma under the sole requirement that the solution X vanishes on
the boundary.

In the specific case r = 0, one can rely on two properties that fail to be true when
r ≥ 1: first, C∞c (Ω,Λk) is dense in Lp(Ω,Λk) and moreover, the set W 1,p

z (Ω,Λk+1) of
Sobolev forms vanishing on the boundary coincides with the closure W 1,p

0 (Ω,Λk+1) of
C∞c (Ω,Λk+1) in W 1,p(Ω,Λk+1). In such a situation, the results in [39] cover our Theorem
6.5, when HkT (Ω) = {0}.

The Bogovskii construction as extended in [12] can be applied to the framework of
Hölder spaces, but still in the case when one considers the closure of compactly supported
forms, which, once again, differs from the standard Hölder spaces that we consider. For
instance, even in the case r = 0, a k form with Cr+1,α(Ω) coefficients which vanish on
the boundary, cannot be approximated in general by a sequence of smooth compactly
supported forms in Cr+1,α (such an approximation would imply that the derivatives vanish
as well).

Plan of Chapter 6: In the next section, we recall some definitions and preliminaries
differential forms. The proof of Theorem 6.1 will begin in the third part, where we prove
Theorem 6.3. Then we complete the proof of Theorem 6.1 by proving that ker(T ∗) =
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{0}. In Section 6.3.5, we restrict our attention to the Sobolev setting. Finally, for the
convenience of the reader, we have gathered in the appendix some technical tools.

6.2 Preliminaries

In this section, we recall some definitions and properties of differential forms.

Let Ω ⊂ Rn be a bounded domain in Rn. A differential k form f on Ω will be denoted
by

f =
∑

1≤i1<...<ik≤n
fi1...ikdx

i1 ∧ ... ∧ dxik ,

where fi1...ik : Ω → R, for every 1 ≤ i1 < ... < ik ≤ n. It is sometimes convenient to use
the alternative notation

f =
∑

I∈Jk,n

fIdx
I ,

where Jk,n = {I = (i1, ..., ik) ∈ Nk, 1 ≤ i1 < ... < ik ≤ n}, and for I = (i1, . . . , ik) ∈ Jk,n,
fI = fi1...ik , dxI = dxi1 ∧ ... ∧ xik . We often write Jk instead of Jk,n when the dimension
n is obvious.

Given two k forms f, g, we define the function:

〈f, g〉 =
∑

1≤i1<...<ik≤n
fi1...ikgi1...ik .

The Hodge star-operator is the linear operator ∗ mapping k forms to n−k forms for every
k ∈ {0, . . . , n} and defined by

f ∧ g = 〈∗f, g〉dx1 ∧ ... ∧ dxn, (6.7)

for every n− k form g.
We will use that for a k form f , one has (see [13, Theorem 2.10])

∗ (∗f) = (−1)k(n−k)f. (6.8)

When each coefficient fI of a k form f belongs to a certain Lp(Ω), we write f ∈
Lp(Ω,Λk) and we introduce the norm

‖f‖Lp(Ω,Λk)=
∑

I∈Jk,n

‖fI‖Lp(Ω).

Similar definitions are generalized to any functions spaces.

Given a k form f with C1 or Sobolev coefficients, its exterior derivative df, is the
(k + 1) form defined by

df =
∑

1≤i1<...<ik+1≤n

( k+1∑
γ=1

(−1)γ−1
∂fi1...îγ ...ik
∂xiγ

)
dxi1 ∧ ... ∧ dxik+1 for k < n,

and df = 0 for k = n. Here, the notation i1...îγ ...ik means i1...iγ−1iγ+1...ik.

The codifferential δf is the (k − 1) form given by

δf =
∑

1≤i1<...<ik−1≤n

( n∑
j=1

εji1...ik−1

∂fi1...ik−1,j

∂xj

)
dxi1 ∧ ... ∧ dxik−1 for k > 0, (6.9)

90



Chapter 6

where (i1...ik−1, j) denotes the index rearranged increasingly and

εji1...ik−1
=

{
0 if j ∈ {i1, ..., ik−1},
(−1)γ−1 if iγ−1 < j < iγ .

If k = 1, this formula reads δf =
∑n

i=1
∂fi
∂xi

. When k = 0, we set δf = 0. These two
operators are related one to the other by the identity [13, Definition 3.2 (ii)]:

δf = (−1)n(k−1) ∗ (d(∗f)). (6.10)

We denote by ν = (ν1, . . . , νn) the outward unit normal to Ω that we identify with the
1 form ν =

∑n
i=1 νidx

i. When k < n, we also consider on ∂Ω the tangential part ν ∧ f of
f which is the (k + 1) form

ν ∧ f =
∑

1≤i1<...<ik+1≤n

( k+1∑
γ=1

(−1)γ−1νiγfi1...îγ ...ik+1

)
dxi1 ∧ ... ∧ dxik+1 .

If k = n, then ν ∧ f = 0. Finally, when k > 0, the normal part νyf on ∂Ω is the following
(k − 1) form:

νyf =
∑

1≤i1<...<ik−1≤n

( n∑
j=1

εji1...ik−1
νjfi1...ik−1,j

)
dxi1 ∧ ... ∧ dxik−1

When k = 0, we set νyf = 0. The normal and tangential components are related by the
following identity (see e.g. [13, Proposition 3.20 (i)]):

f = ν ∧ (νyf) + νy(ν ∧ f). (6.11)

We will also use the fact that ν ∧ f = 0 on ∂Ω if and only if i∗(f) = 0, where i : ∂Ω→ Rn
is the inclusion map, see [13, Remark 3.22].

We conclude this section with the integration by parts formula for which we require
that Ω is at least Lipschitz continuous (see e.g. [13, Theorem 3.28]):

Proposition 6.9. Let k ∈ {1, . . . , n}, f ∈ C1(Ω,Λk−1) and g ∈ C1(Ω,Λk). Then∫
Ω
〈df, g〉+

∫
Ω
〈f, δg〉 =

∫
∂Ω
〈ν ∧ f, g〉 =

∫
∂Ω
〈f, νyg〉.

By density, the formula remains true when f and g belong to Sobolev spaces.

Remark 6.10. By definition of the exterior derivative, for any f ∈ Cr+1,α(Ω,Λk), one
has

||df ||Cr,α(Ω,Λk+1) =
∑

1≤i1<...<ik+1≤n

(
||(df)i1...ik+1

||Cr+ max
β∈Nn,|β|=r

[Dβ(df)i1...ik+1
]C0,α

)

≤ C
∑

1≤i1<...<ik≤n

(
||fi1...ik ||Cr+1+ max

β∈Nn,|β|=r+1
[Dβfi1...ik ]C0,α

)
≤ C||f ||Cr+1,α(Ω,Λk).
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6.3 The proof of Theorem 6.1

6.3.1 Solution of the Poincaré lemma on a cube

We follow the same strategy as in the divergence problem. Firstly, we solve the
Poincaré lemma when Ω is a cube and the boundary condition is required on only one side
of the cube.

In the following, for every ρ > 0, we denote by Qρ the cube (0, ρ)n while Q′ρ is the
lower side of Qρ, namely Q′ρ = (0, ρ)n−1 × {0}. We will often identify Q′ρ with (0, ρ)n−1.

Lemma 6.11. Let r ∈ N, k ∈ {1, . . . , n}, α ∈ (0, 1), ρ > 0, and f ∈ Cr,α(Qρ,Λ
k) such that{

df = 0 in Qρ,
dxn ∧ f = 0 on Q′ρ.

(6.12)

Then there exists X ∈ Cr+1,α(Qρ,Λ
k−1) such that{
dX = f in Qρ,
X = 0 on Q′ρ.

Furthermore, there exists C = C(r, α, ρ, n) > 0 such that

||X||Cr+1,α(Qρ,Λk−1)≤ C||f ||Cr,α(Qρ,Λk). (6.13)

Remark 6.12. (i) In the case k = n, conditions (6.12) are automatically satisfied for
every f ∈ Cr,α(Qρ,Λ

n).

(ii) If r ≥ 1, the condition df = 0 has a classical (pointwise) sense. If r = 0, it is
understood in the sense of distributions: for every ϕ ∈ C∞c (Qρ,Λ

k),∫
Qρ

〈f, δϕ〉 dx = 0.

Proof of Lemma 6.11. We rely on the existence of a solution to dX = f on the cube Qρ
(without boundary condition) which is established in the Appendix C. We next modify X
on Q′ρ in order to satisfy the boundary condition X = 0 there. This strategy is essentially
the same as the one presented in [13, sections 8.3 and 8.4] where Qρ is replaced by the
upper half space (or a smooth domain). We explain here how to extend this construction
to domains with corners like the cube Qρ.

Without loss of generality, by a dilation argument, we can assume that ρ = 1. Applying
Proposition C.6 to the closed form f ∈ Cr,α(Q1,Λ

k), there exists X ∈ Cr+1,α(Q1,Λ
k−1)

such that dX = f in Q1 and

||X||Cr+1,α≤ C||f ||Cr,α , (6.14)

for some C = C(r, α, n) > 0.

By assumption, on Q′1,

dxn ∧ dX = dxn ∧ f = 0.

Equivalently, i∗(dX) = 0, where i is the inclusion map x′ ∈ Rn−1 7→ (x′, 0) ∈ Rn.
Hence, the differential form X ′ = i∗(X) satisfies dX ′ = 0 on Q′1. Observe that X ′ ∈
Cr+1,α(Q′1,Λ

k−1) and

||X ′||
Cr+1,α(Q′1,Λ

k−1)
≤ ||X||Cr+1,α(Q1,Λk−1). (6.15)
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When k = 1, X is a function and X ′ is simply the restriction of X to Q′1. The fact
that dX ′ = 0 implies that X ′ is a constant c. Observe that

|c|≤ ‖X‖C0≤ ||X||Cr+1,α .

Setting X = X − c, one has dX = f on Q1, X = 0 on Q′1 and

‖X‖Cr+1,α≤ C||f ||Cr,α .

When 2 ≤ k ≤ n, we apply again Proposition C.6 to X ′ on Q′1: there exists Y ′ ∈
Cr+2,α(Q′1,Λ

k−2) such that dY ′ = X ′ on Q′1 and

||Y ′||Cr+2,α≤ C||X ′||Cr+1,α . (6.16)

We now define the (k − 2) form Y = π∗(Y ′) where π : (x′, xn) ∈ Rn−1 × R 7→ x′ ∈ Rn−1.
Then Y ∈ Cr+2,α(Q1,Λ

k−2), and since π ◦ i = idRn−1 , one has i∗Y = Y ′. Moreover,

||Y ||Cr+2,α(Q1,Λk−2)≤ ||Y
′||
Cr+2,α(Q′1,Λ

k−2)
. (6.17)

The k form X̃ = X − dY belongs to Cr+1,α(Q1,Λ
k−1) and satisfies

dX̃ = dX − ddY = dX = f on Q1.

Moreover, on Q′1,

i∗(X̃) = i∗(X)− i∗(dY ) = X ′ − d(i∗Y ) = X ′ − dY ′ = 0.

In other words, dxn∧ X̃ = 0 on Q′1. By Lemma C.3 (that we apply with c = X̃ and ci = 0

for every i), there exists Ỹ ∈ Cr+2,α(Q1,Λ
k−2) such that dỸ agrees with X̃ on Q′1 and

||Ỹ ||Cr+2,α(Q1,Λk−2)≤ C||X̃||Cr+1,α(Q′1,Λ
k−1). (6.18)

Set
X = X̃ − dỸ in Q1.

Then
dX = dX̃ − ddỸ = f in Q1 and X = 0 on Q′1.

Inequality (6.13) is a direct consequence of the construction of X and inequalities (6.14)-
(6.18).

We next present a Sobolev version of the above lemma. The main difference in the
proof is that the trace of a map u ∈W 1,p(Qρ) on Q′ρ is not in the Sobolev space W 1,p(Q′ρ)
any more. This is in strong contrast with the Hölder case where the restriction of a Hölder
continuous function is still Hölder continuous with the same exponents.

Lemma 6.13. Let r ∈ N, k ∈ {1, . . . , n} , p ∈ (1,∞), ρ > 0, and f ∈ W r,p(Qρ,Λ
k) such

that {
df = 0 in Qρ,
dxn ∧ f = 0 on Q′ρ.

(6.19)

Then there exists X ∈W r+1,p(Qρ,Λ
k−1) such that{
dX = f in Qρ,
X = 0 on Q′ρ.

Furthermore, there exists C = C(r, p, ρ, n) > 0 such that

||X||W r+1,p(Qρ,Λk−1)≤ C||f ||W r,p(Qρ,Λk).
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Proof. We can assume that ρ = 1. Let us first consider the case r = 0. When f has Lp

coefficients, one cannot define the trace of f as a function on Q′ρ and one cannot apply the
standard Poincaré lemma to i∗(f). In fact, the conditions (6.19) have to be understood
in the distributional sense:

d(fz) = 0 on Q′1 × (−1, 1)

where fz is the extension of f by 0 on Q′1 × (−1, 1). By Proposition C.7, there exists
X ∈W 1,p(Q′1× (−1, 1),Λk−1) such that dX = fz on Q′1× (−1, 1), with the corresponding
estimate. In particular, dX = 0 on Q′1 × (−1, 0).
When k = 1, X is a function, which is equal to a constant c on Q′1 × (−1, 0). Then
X = X − c satisfies all the desired properties.
When 2 ≤ k ≤ n, we rely on Proposition C.7 to get some Y ∈ W 2,p(Q′1 × (−1, 0),Λk−2)
such that dY = X on Q′1 × (−1, 0) with

‖Y ‖W 2,p(Q′1×(−1,0),Λk−2)≤ C‖X‖W 1,p(Q′1×(−1,1),Λk−1).

We extend Y to a map in W 2,p(Q′1 × (−1, 1),Λk−2) still denoted by Y . We finally set

X = (X − dY )|Q1 .

Then dX = dX = f on Q1. Since X = dY on Q′1 × (−1, 0), their traces coincide on Q′1
(as W

1− 1
p
,p

maps) and thus the trace of X on Q′1 vanishes. Moreover,

‖X‖W 1,p(Q1,Λk−1) ≤ ‖X‖W 1,p(Q1,Λk−1)+‖dY ‖W 1,p(Q1,Λk−1)≤ C‖X‖W 1,p(Q′1×(−1,1),Λk−1)

≤ C ′‖fz‖Lp(Q′1×(−1,1),Λk)= C ′‖f‖Lp(Q1,Λk).

The proof is complete in the case r = 0.
When r ≥ 1, the proof is very similar to the proof of the Hölder case except that we

rely on Proposition C.7 instead of Proposition C.6 and on Lemma C.4 instead of Lemma
C.3. The main difference is that, with the notation used in the proof of Lemma 6.11, one
has

Y ′ ∈W r+2− 1
p
,p

(Q′1,Λ
k−2),

and we cannot set Y = π∗(Y ′), because such a map would not belong to W r+2,p(Q′1,Λ
k−2).

Instead, we extend each coefficient Y ′I , I ∈ Jk−2,n−1, of Y ′ as a W r+2,p function YI on Q1

such that
‖YI‖W r+2,p(Q1)≤ C‖Y ′I‖

W
r+2− 1

p ,p(Q′1)

for some C = C(r, p, n) > 0. We next define

Y =
∑

I∈Jk−2,n−1

YIdx
I .

Then Y ∈W r+2,p(Q1,Λ
k−2), i∗Y = Y ′ and

‖Y ‖W r+2,p(Q1,Λk−2)≤ C‖Y ′‖
W
r+2− 1

p ,p(Q′1,Λ
k−2)

.

The rest of the proof is essentially the same and we omit it.

6.3.2 Solution of the Poincaré lemma on an epigraph

Given ρ > 0, let ψ ∈ Cr+1,α(Q′ρ). In this section, we establish the Poincaré lemma on
the epigraph of ψ with a boundary condition along the graph of ψ. More precisely, let us
define the open set

U = {(x′, xn) ∈ Q′ρ × (0,+∞) : ψ(x′) < xn < ψ(x′) + ρ}.
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A normal vector to the graph of {(x′, ψ(x′)) : x′ ∈ Q′1} at a point (x′, ψ(x′)) is given by

ν(x′, ψ(x′)) = (ν1, . . . , νn)(x′, ψ(x′)) =

(
∂ψ

∂x1
(x′), ...,

∂ψ

∂xn−1
(x′),−1

)
. (6.20)

As usual, we identify the vector ν with the 1 differential form
∑n

i=1 νidx
i, which belongs

to Cr,α(Q′ρ,Λ
1).

We emphasize that the geometrical quantities dU and δU (is defined as in (5.2) and (5.3))
are finite. More precisely, one has, for every x, y ∈ U ,

dU (x, y) ≤ 3(1 + ‖∇ψ‖∞)|x− y| , δU ≤ 3(1 + ‖∇ψ‖∞). (6.21)

The proof of (6.21) is detailed in the Chapter 5, see Lemma 5.10 and Remark 5.11.
We now proceed with the construction of a solution to the Poincaré lemma on U . In

the spirit of [4, Lemma 6], see also [6, Lemma 7.4], we first consider the case when the
gradient of ψ is small.

Lemma 6.14. Let r ∈ N, k ∈ {1, . . . , n}, α ∈ (0, 1) and ρ > 0. There exists ε ∈ (0, 1) such
that if ψ ∈ Cr+1,α(Q′ρ) such that ||∇ψ||Cr,α≤ ε, then for every f ∈ Cr,α(U,Λk) such that{

df = 0 in U,
ν ∧ f = 0 on {(x′, ψ(x′)) : x′ ∈ Q′ρ},

there exists X ∈ Cr+1,α(U,Λk−1) which satisfies

dX = f in U and X = 0 on {(x′, ψ(x′)) : x′ ∈ Q′ρ}.

Moreover, there exists C = C(r, α, ρ, n) > 0 such that

||X||Cr+1,α(U,Λk−1)≤ C||f ||Cr,α(U,Λk).

Proof. Without loss of generality, one can assume that ρ = 1. We introduce the Cr+1,α

diffeomorphism
Φ : x = (x′, xn) ∈ Q1 7→ (x′, xn + ψ(x′)) ∈ U.

Observe that U = Φ(Q1).
We next define the k form f̃ := Φ∗(f). Then f̃ ∈ Cr,α(Q1,Λ

k) and

||f̃ ||Cr,α(Q1,Λk)≤ C||f ||Cr,α(U,Λk). (6.22)

Indeed, writing f =
∑

1≤i1<...<ik≤n fi1...ikdx
i1 ∧ ... ∧ dxik , one has:

f̃ =
∑

1≤i1<...<ik≤n
fi1...ik ◦ Φ dΦi1 ∧ ... ∧ dΦik

=
∑

1≤i1<...<ik<n
fi1...ik ◦ Φ dΦi1 ∧ ... ∧ dΦik

+
∑

1≤i1<...<ik−1<n

fi1...ik−1n ◦ Φ dΦi1 ∧ ... ∧ dΦik−1 ∧ dΦn.

The first term agrees with
∑

1≤i1<...<ik<n fi1...ik ◦Φ dxi1 ∧ ...∧ dxik while the second term
is equal to

∑
1≤i1<...<ik−1<n

fi1...ik−1n ◦ Φ dxi1 ∧ ... ∧ dxik−1 ∧ (dxn +

n−1∑
l=1

∂ψ

∂xl
dxl).
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It thus follows that

f̃ =
∑

1≤i1<...<ik≤n
fi1...ik ◦ Φdxi1 ∧ ... ∧ dxik +A, (6.23)

where for every (x′, xn) ∈ Q1,

A(x′, xn) =
∑

1≤i1<...<ik−1<n

n−1∑
l=1

fi1...ik−1n ◦ Φ(x′, xn)
∂ψ

∂xl
(x′)dxi1 ∧ ... ∧ dxik−1 ∧ dxl.

Note also that when r ≥ 1,

||DΦ||r+α
Cr−1,α≤ C(1 + ||∇ψ||

Cr−1,α(Q′1)
)r+α ≤ C ′,

where C ′ = C ′(r, α, n) > 0. Here, we have used the assumption ||∇ψ||Cr,α≤ ε ≤ 1. When
r = 0, we have instead

||DΦ||αC0,α≤ C,

for some C = C(n, α). Hence, (6.22) is now a consequence of (6.23), Proposition 5.6 and
Remark 5.8 for r = 0 and Proposition 5.7 for r ≥ 1.

Moreover,
df̃ = 0 in Q1. (6.24)

Indeed, when r ≥ 1,
df̃ = d(Φ∗(f)) = Φ∗(df) = 0.

When r = 0, we observe that for every θ ∈ C∞c (Q1,Λ
k+1),∫

Q1

〈f̃ , δθ〉 dx = (−1)nk
∫
Q1

〈f̃ , ∗d(∗θ)〉 dx = (−1)nk
∫
Q1

d(∗θ) ∧ f̃ .

The first equality is a consequence of (6.10) while the second one follows from (6.7). By
the change of variables formula, this gives∫

Q1

〈f̃ , δθ〉 dx = (−1)nk
∫
U

(Φ−1)∗(d(∗θ) ∧ f̃) = (−1)nk
∫
U

(Φ−1)∗(d(∗θ)) ∧ (Φ−1)∗(f̃).

Since (Φ−1)∗(f̃) = f and (Φ−1)∗(d(∗θ)) = d((Φ−1)∗(∗θ)), (6.7) again implies that∫
Q1

〈f̃ , δθ〉 dx = (−1)nk
∫
U
〈f, ∗d((Φ−1)∗(∗θ))〉 dx.

Next, by (6.8), ∗d((Φ−1)∗(∗θ)) = (−1)(k+1)(n−k−1) ∗ d(∗ ∗ (Φ−1)∗(∗θ)) so that by (6.10),
∗d((Φ−1)∗(∗θ)) = (−1)(k+1)(n−k−1)(−1)nkδ(∗(Φ−1)∗(∗θ)). Finally, one obtains∫

Q1

〈f̃ , δθ〉 dx = (−1)(k+1)(n−k−1)

∫
U
〈f, δ

(
∗ (Φ−1)∗(∗θ)

)
〉 dx. (6.25)

Since ∗(Φ−1)∗(∗θ) is compactly supported in U and df = 0 in the sense of distributions
on U , we can conclude that df̃ = 0 in the sense of distributions.

We next establish
dxn ∧ f̃ = 0 on Q′1. (6.26)

As in the calculation leading to (6.23), one has

Φ∗(ν) =

n∑
i=1

νi ◦ Φdxi +

n−1∑
l=1

νn ◦ Φ
∂ψ

∂xl
dxl.
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Using (6.20), one gets

Φ∗(ν)(x′, 0) =
n−1∑
i=1

∂ψ

∂xi
(x′)dxi − dxn −

n−1∑
l=1

∂ψ

∂xl
(x′)dxl = −dxn.

Hence,
0 = Φ∗(ν ∧ f) = Φ∗(ν) ∧ Φ∗(f) = −dxn ∧ f̃ ,

which proves (6.26).
In view of (6.24) and (6.26), we can apply Lemma 6.11 to f̃ ∈ Cr,α(Q1,Λ

k): there
exists X̃ ∈ Cr+1,α(Q1,Λ

k−1) such that

dX̃ = f̃ in Q1, X̃ = 0 on Q′1

and
||X̃||Cr+1,α(Q1)≤ C||f̃ ||Cr,α(Q1). (6.27)

We write X̃ =
∑

I∈Jk−1
X̃Idx

I and define1

X0 =
∑

I∈Jk−1

(X0)Idx
I , where (X0)I(x) = X̃I(Φ

−1(x)), ∀x ∈ U. (6.28)

Since for every x = (x′, xn) ∈ U , Φ−1(x) = (x′, xn − ψ(x′)) , one has for every I ∈ Jk−1,

∂(X0)I
∂xl

(x) =

{
∂X̃I
∂xl

(x′, xn − ψ(x′))− ∂X̃I
∂xn

(x′, xn − ψ(x′)) ∂ψ∂xl (x
′) if l < n,

∂X̃I
∂xn

(x′, xn − ψ(x′)) if l = n.

Hence,

dX0(x) =
∑

I∈Jk−1

n∑
l=1

∂(X0)I
∂xl

(x)dxl ∧ dxI

=
∑

I∈Jk−1

( n∑
l=1

∂X̃I

∂xl
(x′, xn − ψ(x′))dxl ∧ dxI

)
+B = dX̃(Φ−1(x)) +B,

where

B = −
∑

I∈Jk−1

n−1∑
l=1

∂X̃I

∂xl
(x′, xn − ψ(x′))

∂ψ

∂xl
(x′)dxl ∧ dxI .

Using that dX̃ = f̃ and (6.23), this implies that

dX0 = f +B +B′, (6.29)

where for every x = (x′, xn) ∈ U ,

B′(x) =
∑

1≤i1<...<ik−1<n

n−1∑
l=1

fi1...ik−1n(x)
∂ψ

∂xl
(x′)dxi1 ∧ ... ∧ dxik−1 ∧ dxl.

In view of Proposition 5.6, estimates (6.21) and the assumption ||∇ψ||Cr,α≤ ε,

‖B′‖Cr,α(U)≤ Cε||f ||Cr,α(U),

1One could be tempted to define X0 = (Φ−1)∗(X̃). However, such a form would not have
Cr+1,α coefficients in general, see the paragraph before Lemma 5.3.
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for some C = C(r, α, n) > 0. One gets a similar estimate for B by relying also on (6.27)
and Proposition 5.7 (or Remark 5.8 when r = 0). We then deduce from (6.29) that

||dX0 − f ||Cr,α(U)≤ C0ε||f ||Cr,α(U), (6.30)

for some C0 = C0(r, α, n) > 0. Using again Proposition 5.7 and the definition of X0, see
(6.28), we obtain

||X0||Cr+1,α(U)≤ C||X̃||Cr+1,α(Q1). (6.31)

Combining (6.22) and (6.27), one gets

||X0||Cr+1,α(U)≤ C||f ||Cr,α(U) (6.32)

for some C = C(r, α, n) > 0. Moreover, the definition of X0 also implies that X0 = 0 on
{(x′, ψ(x′)) : x′ ∈ Q′1}.

We now fix ε ∈ (0, 1) in such a way that λ := C0ε < 1 where C0 is the constant in
(6.30).

Let us summarize the current state of the proof as follows: we have proved that given
a closed form f ∈ Cr,α(U,Λk) satisfying ν ∧ f = 0 on {(x′, ψ(x′)) : x′ ∈ Q′1}, there exists
X0 ∈ Cr+1,α(U,Λk−1) such that

X0 = 0 on {(x′, ψ(x′)) : x′ ∈ Q′1}

and
||dX0 − f ||Cr,α(U)≤ λ||f ||Cr,α(U) , ||X0||Cr+1,α(U)≤ C||f ||Cr,α(U),

with λ ∈ (0, 1) and C = C(r, α, n) > 0. We now construct by induction a sequence
(Xi)i∈N ⊂ Cr+1,α(U,Rn) such that for every i ≥ 0,∥∥∥∥∥∥dXi − (f − d

i−1∑
j=0

Xj)

∥∥∥∥∥∥
Cr,α(U)

≤ λ

∥∥∥∥∥∥f − d
i−1∑
j=0

Xj

∥∥∥∥∥∥
Cr,α(U)

, (6.33)

Xi = 0 on {(x′, ψ(x′)) : x′ ∈ Q′1}, (6.34)

‖Xi‖Cr+1,α(U)≤ C

∥∥∥∥∥∥f − d
i−1∑
j=0

Xj

∥∥∥∥∥∥
Cr,α(U)

. (6.35)

The (k− 1) form X0 has been constructed above. Assuming that X0, . . . , Xi−1 have been
defined for some i ≥ 1, then we define Xi exactly as we have done for X0 except that we
replace f by f − d

∑i−1
j=0Xj . This is possible since

d(f − d
i−1∑
j=0

Xj) = 0 in U and ν ∧ (f − d
i−1∑
j=0

Xj) = 0 on {(x′, ψ(x′)) : x′ ∈ Q′1}.

The latter condition is a consequence of the fact that each Xj = 0 on the graph of ψ, so
that ν ∧ dXj = 0 there.
Then Xi satisfies the three properties aboves. This completes the proof of the existence
of the sequence (Xi)i∈N.

We deduce from (6.33) that∥∥∥∥∥∥f − d
i∑

j=0

Xj

∥∥∥∥∥∥
Cr,α(U)

≤ λ

∥∥∥∥∥∥f − d
i−1∑
j=0

Xj

∥∥∥∥∥∥
Cr,α(U)

≤ . . . ≤ λi+1‖f‖Cr,α(U). (6.36)
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Together with (6.35), this implies that

‖Xi‖Cr+1,α(U)≤ Cλ
i‖f‖Cr,α(U).

It follows that the sum
∑

i∈NXi converges in the Banach space Cr+1,α(U) to some k − 1
form X such that X = 0 on {(x′, ψ(x′)) : x′ ∈ Q′1} and ‖X‖Cr+1,α(U)≤ C‖f‖Cr,α(U).

Moreover, by (6.36), one has

dX = f.

This completes the proof of Lemma 6.14.

We proceed to remove the smallness condition on ∇ψ, as in [6, Lemma 7.5]. Given
0 < δ ≤ ρ, we consider ψ ∈ Cr+1,α(Q′ρ) and use the notation:

Uδ = {(x′, xn) ∈ Q′δ × R : ψ(x′) < xn < ψ(x′) + ρ}.

Lemma 6.15. Let r ∈ N, k ∈ {1, . . . , n}, α ∈ (0, 1), ρ > 0. Then there exists δ =
δ(r, α, ρ, n, ‖∇ψ‖

Cr,α(Q′ρ)
) > 0 with the following property: for every f ∈ Cr,α(Uδ,Λ

k) such

that

df = 0 in Uδ, and ν ∧ f = 0 on {(x′, ψ(x′)) : x′ ∈ Q′δ},

there exists X ∈ Cr+1,α(Uδ) such that

dX = f in Uδ, X = 0 on {(x′, ψ(x′)) : x′ ∈ Q′δ}

and

||X||Cr+1,α(Uδ)
≤ C||f ||Cr,α(Uδ)

,

where C = C(r, α, ρ, n, ‖∇ψ‖
Cr,α(Q′ρ)

) > 0.

Proof. Without loss of generality, we can assume that ρ = 1. Let δ ∈ (0, 1) such that
δ‖∇ψ‖

Cr,α(Q′1)
< ε, where ε is given by Lemma 6.14. We then define ψδ(x

′) = ψ(δx′), x′ ∈
Q′1. Then

‖∇ψδ‖Cr,α(Q′1)
≤ δ‖∇ψ‖

Cr,α(Q′δ)
< ε.

We also set Ψδ(x) = (δx′, xn), x = (x′, xn) ∈ Q′1 × R and

W1 = {(x′, xn) ∈ Q′1 × R : ψδ(x
′) < xn < ψδ(x

′) + 1}.

Observe that Ψδ(W1) = Uδ. Let f ∈ Cr,α(Uδ,Λ
k). We introduce fδ = Ψ∗δ(f). Then by

Remark 5.8 when r = 0 and Proposition 5.7 when r ≥ 1, fδ ∈ Cr,α(W1,Λ
k) and

||fδ||Cr,α(W1,Λk)≤ C||f ||Cr,α(Uδ,Λk) (6.37)

for some C = C(r, α, n) > 0. For the normal to {(x′, ψ(x′)) : x′ ∈ Q′δ}, we choose the 1
form ν =

∑n
i=1 νidx

i defined by

νi(x
′, ψ(x′)) =

∂ψ

∂xi
(x′) if i < n, νn(x′, ψ(x′)) = −1.

Then for every x′ ∈ Q′1,

Ψ∗δ(ν)(x′, ψδ(x
′)) =

n−1∑
i=1

∂ψ

∂xi
(δx′)δdxi − dxn =

n−1∑
i=1

∂ψδ
∂xi

(x′)dxi − dxn.
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Hence, νδ := Ψ∗δ(ν) defines a normal to the graph of ψδ. Moreover, on {(x′, ψδ(x′)) : x′ ∈
Q′1},

νδ ∧ fδ = Ψ∗δ(ν) ∧Ψ∗δ(f) = Ψ∗δ(ν ∧ f) = 0. (6.38)

Finally, when r ≥ 1,

d(fδ) = d((Ψδ)
∗(f)) = Ψ∗δ(df) = 0 in W1.

When r = 0, the above identity can be understood in the sense of distributions.

We can thus apply Lemma 6.14 to the closed form fδ ∈ Cr,α(W1): there exists Xδ ∈
Cr+1,α(W1,Λ

k−1) such that

dXδ = fδ in W1, Xδ = 0 on {(x′, ψδ(x′)) : x′ ∈ Q′1}

and

||Xδ||Cr+1,α(W1,Λk−1)≤ C||fδ||Cr,α(W1,Λk).

We then set

X = (Ψ−1
δ )∗(Xδ).

Hence,

dX = d((Ψ−1
δ )∗(Xδ)) = (Ψ−1

δ )∗(dXδ) = (Ψ−1
δ )∗(fδ) = f in Uδ

and

||X||Cr+1,α(Uδ)
≤ C||f ||Cr,α(Uδ)

,

for some C = C(r, α, δ, n) > 0. The boundary condition

X = 0 on {(x′, ψ(x′)) : x ∈ Q′δ}

is satisfied since

Xδ = 0 on {(x′, ψδ(x′)) : x′ ∈ Q′1} = Ψ−1
δ ({(x′, ψ(x′)) : x′ ∈ Q′δ}).

The proof of Lemma 6.15 is complete.

Remark 6.16. Given a finite set A ⊂ (0, α], one can require that the solution Xδ given
by Lemma 6.15 satisy the additional estimates: for every s ∈ {0, . . . , r} and every α′ ∈ A,
one has

‖Xδ‖Cs+1,α′ (Uδ)
≤ C‖f‖Cs,α′ (Uδ)

where C = C(r,A, ρ, n, ‖∇ψ‖Cr,α(Q′ρ)) > 0.

Indeed, such estimates automatically hold in the setting of all the intermediate results
leading to Lemma 6.15, including Lemma C.3 and Proposition C.6 in the appendix, with
one exception: in the proof of Lemma 6.14, we have used an approximation scheme which
relies on the choice of a parameter ε such that C0ε < 1, where C0 = C0(r, α, n, ρ) > 0, see
inequality (6.30). By replacing this constant C0 by a possibly larger constant C ′0, we can
ensure that (6.30) holds true for every s ∈ {0, . . . , r} and α′ ∈ A. Thus, if we decrease ε
in order to have C ′0ε < 1, the approximation scheme of Lemma 6.14 is valid in every Cs,α

′

spaces, for every s ∈ {0, . . . , r} and α′ ∈ A. Finally, the value of δ in the proof of Lemma
6.15 must be modified accordingly, in order to satisfy the condition δ‖∇ψ‖Cs,α′< ε (for
this new value of ε), for every s ∈ {0, . . . , r} and α′ ∈ A.

As a consequence of the proofs of the above lemmata, one can also ensure that

Remark 6.17. In the setting of Lemma 6.15, the correspondance f 7→ X is linear.
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In the framework of Sobolev spaces, it is possible to formulate the corresponding
versions of Lemma 6.14 and Lemma 6.15. Here, we only write the latter for later reference.

Lemma 6.18. Let r ∈ N, k ∈ {1, . . . , n}, p ∈ (1,∞), ρ > 0. With the above notation,
there exists δ = δ(r, p, ρ, n, ‖∇ψ‖W r,∞(Q′ρ)) > 0 with the following property: for every

f ∈W r,p(Uδ,Λ
k) such that

df = 0 in Uδ, and ν ∧ f = 0 on {(x′, ψ(x′)) : x′ ∈ Q′δ},

there exists X ∈W r+1,p(Uδ) such that

dX = f in Uδ, X = 0 on {(x′, ψ(x′)) : x′ ∈ Q′δ}

and

||X||W r+1,p(Uδ)≤ C||f ||W r,p(Uδ),

where C = C(r, α, ρ, n, ‖∇ψ‖W r,∞(Q′ρ)) > 0.

The proof is essentially the same as in the Hölder case except that we use Lemma 6.13
instead of Lemma 6.11. Moreover, the substitutes of Proposition 5.6 and Proposition 5.7
are given by the two following facts:
For every f ∈W r,p, g ∈W r,∞, the Leibniz rule implies that fg ∈W r,p and

‖fg‖W r,p≤ C‖f‖W r,p‖g‖W r,∞ ,

where C = C(r, p, n) > 0.
For every f ∈ W r,p and every biLipschitz homeomorphism Ξ ∈ W r+1,∞ with a Jacobian
larger than a constant c0 > 0, the change of variables formula implies that f ◦ Ξ ∈ W r,p

and

‖f ◦ Ξ‖W r,p≤

 Cc
− 1
p

0 ‖f‖W r,p(‖DΞ‖rW r−1,∞+1) if r ≥ 1,

c
− 1
p

0 ‖f‖Lp if r = 0,

where C = C(r, p, n) > 0. In fact, we use two types of diffeomorphisms: Ξ(x′, xn) =
(x′, xn ± ψ(x′)) which has a Jacobian equal to 1, and Ξ±(x′, xn) = (δ±1x′, xn), which has
a Jacobian equal to δ±(n−1).

When r = 0, one cannot define the trace of f as a function on the graph {(x′, ψ(x′)) :
x′ ∈ Q′δ}. In that case, we establish (6.26) in Lemma 6.14 or (6.38) in Lemma 6.15 by
relying on the distributional formulation of these conditions, more precisely by using the
identity (6.25), which holds true for every θ ∈ C1(Q1,Λ

k+1).
The counterparts of Remarks 6.16 and 6.17 remain valid in the Sobolev framework as

well.

6.3.3 Approximate solution on a bounded set

In this section, we construct an approximate solution to the Poincaré lemma on a
bounded set. More precisely, given two integers r ∈ N and k ∈ {1, . . . , n} and an exponent
α ∈ (0, 1), we consider the two following spaces:
the set Cr,αν (Ω,Λk) of those f ∈ Cr,α(Ω,Λk) such that

df = 0 in Ω, ν ∧ f = 0 on ∂Ω,

the set Cr+1,α
z (Ω,Λk−1) of those X ∈ Cr+1,α(Ω,Λk−1) such that

X = 0 on ∂Ω.
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Lemma 6.19. Let r ∈ N, k ∈ {1, . . . , n}. Let Ω be a bounded Cr+1,α domain in Rn. Then
there exist two continuous linear operators

S : Cr,αν (Ω,Λk)→ Cr+1,α
z (Ω,Λk−1), K : Cr,αν (Ω,Λk)→ Cr+1,α

z (Ω,Λk)

such that d(Sf) +Kf = f for every f ∈ Cr,αν (Ω,Λk).

Using the compact embedding ι : Cr+1,α ↪→ Cr,α, we can see that the operator ι ◦K
is compact from Cr,αν into itself. In that sense, Sf is indeed an approximate solution for
the equation f = dX.

Proof. Since Ω is Cr+1,α, for every x ∈ ∂Ω, there exists an open neighborhood W ⊂ Rn
of x, a positive number ρ > 0 and a function ψ ∈ Cr+1,α(Q′ρ) such that

• W ∩ Ω is isometric to {(y′, yn) ∈ Q′ρ × R : ψ(y′) < yn < ψ(y′) + ρ},

• W ∩ ∂Ω is isometric to {(y′, yn) ∈ Q′ρ × R : ψ(y′) = yn}.

There exists some δ > 0 depending on r, α, n, ρ, ψ such that Lemma 6.15 gives a solu-
tion to the Poincaré lemma on the set {(y′, yn) ∈ Q′δ × R : ψ(y′) < yn < ψ(y′) + ρ},
which vanishes on the lower part of the boundary {(y′, ψ(y′)) : y′ ∈ Q′δ}. We de-
duce therefrom that there exists an open neighborhood V of x contained in W and
X ∈ Cr+1,α(V ∩ Ω; Λk−1) such that

dX = f in V ∩ Ω, X = 0 on V ∩ ∂Ω

and
‖X‖Cr+1,α(V ∩Ω,Λk−1)≤ C‖f‖Cr,α(V ∩Ω,Λk).

Here, the constant C depends on r, α, n and Ω.
By compactness of ∂Ω, one can find a covering of ∂Ω by such open sets Vi, i = 1, . . . , l.

We denote by Xi ∈ Cr+1,α(Vi ∩ Ω,Λk−1) the corresponding solution. In particular,

||Xi||Cr+1,α(Vi,Λk−1)≤ C||f ||Cr,α(Vi,Λk). (6.39)

Let also V0 be a smooth open subset of Ω such that Ω ⊂
⋃l
i=0 Vi. We now rely on the

classical Hodge-Morrey decomposition on a smooth domain, see e.g. [13, Theorem 6.12
(i)]: there exist X0 ∈ Cr+1(V0,Λ

k−1), h0 ∈ HkT (V0) ∩W 1,2(V0,Λ
k) such that

f = dX0 + h0.

Moreover, X0 and h0 can be chosen linearly, and satisfying the estimates: for every s ∈
{0, 1, ..., r}, for every α′ ∈ (0, 1),

||X0||Cs+1,α′ (V0,Λk−1)≤ C||f ||Cs,α′ (V0,Λk), (6.40)

||h0||Cs,α′ (V0,Λk)≤ C||f ||Cs,α′ (V0,Λk),

for some C = C(s, α′, V0).
Since V0 is smooth, the set2 HkT (V0)∩W 1,2(V0,Λ

k) is contained in C∞(V0,Λ
k), see e.g.

[13, Theorem 6.3]. Moreover, it is finite dimensional, see e.g. [13, Theorem 6.5 (i)]). In
particular, all the norms are equivalent on that space. It follows that

‖h0‖Cs+1,α′ (V0,Λk)≤ C‖f‖Cs,α′ (V0,Λk). (6.41)

2As a matter of fact, on a C2 domain, harmonic fields have W 1,2 coefficients, see Remark 6.8.
However, we do not need this (non trivial) regularity result here.

102



Chapter 6

To the covering (Vi)0≤i≤l of Ω, we associate a partition of unity (θi)0≤i≤l such that

l∑
i=0

θi = 1 in Ω, and θi ∈ C∞c (Vi) for i = 0, 1, ..., l.

Finally, we set

Sf =

l∑
i=0

θiXi.

Then, in view of (6.39), (6.40) and Proposition 5.6, S is a continuous operator from Cr,αν
into Cr+1,α

z and

d(Sf) =
l∑

i=0

θidXi +
l∑

i=0

dθi ∧Xi.

Using that θ0dX0 = θ0(f − h0) and for every i ∈ {1, . . . , l}, θidXi = θif , one gets
d(Sf) = f −Kf with

Kf = −
l∑

i=0

dθi ∧Xi + h0θ0. (6.42)

Observe that Kf |∂Ω= 0. As a consequence of (6.41) with s = r and α′ = α, the linear
map f 7→ h0 is continuous from Cr,αν (Ω,Λk) into Cr+1,α(V0,Λ

k). Hence, K is a continuous
operator from Cr,αν into Cr+1,α

z . The proof is complete.

According to Remark 6.16 and also (6.40), one can require that given a finite set
A ⊂ (0, α], the local solutions Xi, arising in the proof of Lemma 6.19 have the following
additional property: For every s ∈ 0, . . . , r and α′ ∈ A,

‖Xi‖Cs+1,α′ (Ω∩Vi,Λk−1)≤ C‖f‖Cs,α′ (Ω,Λk)

for some C = C(r,A, n,Ω). Relying on the explicit expression of Kf and also (6.41), one
has

‖Kf‖Cs+1,α′ (Ω,Λk−1≤ C

(
l∑

i=0

‖Xi‖Cs+1,α′ (Ω∩Vi,Λk−1)+‖h0‖Cs+1,α′ (V0,Λk)

)
≤ C ′‖f‖Cs,α′ (Ω,Λk).

A similar calculation holds true for Sf . We can thus state the following:

Remark 6.20. The maps S and K are continuous from Cs,α
′

ν into Cs+1,α′
z , for every

s ∈ {0, . . . , r} and α′ ∈ A.

In the following, we will apply this remark for A = {α, α′} for some α′ ∈ (0, α).
In the setting of Sobolev spaces, given two integers r ≥ 0, k ∈ {1, . . . , n}, and p ∈

(1,∞), we introduce the sets

W r,p
ν (Ω,Λk) = {f ∈W r,p(Ω,Λk),df = 0 on Ω, ν ∧ f = 0 on ∂Ω},

W r+1,p
z (Ω,Λk−1) = {X ∈W r+1,p(Ω,Λk−1), X = 0 on ∂Ω}.

Then the same construction as in the Hölder case, except that one relies on Lemma 6.18
instead of Lemma 6.15, leads to

Lemma 6.21. Let r ∈ N, k ∈ {1, . . . , n} and p ∈ (1,∞). Let Ω be a bounded Cr,1 domain
in Rn. Then there exist two continuous linear operators

S̃ : W r,p
ν (Ω,Λk)→W r+1,p

z (Ω,Λk−1), K̃ : W r,p
ν (Ω,Λk)→W r+1,p

z (Ω,Λk)

such that d(S̃f) + K̃f = f for every f ∈W r,p
ν (Ω,Λk).
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In the same spirit as Remark 6.20, one has:

Remark 6.22. The above construction allows to require that given a finite family of
exponents 1 < p1 < · · · < pI ≤ p, the maps S̃ and K̃ are continuous from W s,pi

ν into
W s+1,pi
z , for every i ∈ {1, . . . , I} and every s ∈ {0, . . . , r}.

6.3.4 Proof of Theorem 6.1

We finally turn to the proof of Theorem 6.1. We want to apply Lemma 5.3 to the
exterior derivative operator T = d from the set E = Cr+1,α

z (Ω,Λk−1) into F = Cr,αH (Ω,Λk)
where

Cr,αH (Ω,Λk) =

{
f ∈ Cr,α(Ω,Λk) : df = 0 in Ω, ν∧f = 0 on ∂Ω,

∫
Ω
〈f, h〉 = 0,∀h ∈ HkT (Ω)

}
.

Remember that HkT (Ω) is defined by

HkT (Ω) = {h ∈ L2(Ω,Λk) : δh = 0,d(hz) = 0},

where the index z denotes the extension by zero outside Ω. In other words, Cr,αH (Ω,Λk) =
Cr,αν (Ω,Λk) ∩ (HkT (Ω))⊥, where the ⊥ sign is related to the inner product in L2(Ω,Λk).

We introduce the two operators S and K given by Lemma 6.19. We first observe that
for every h ∈ HkT (Ω), ∫

Ω
〈dX,h〉 dx = 0, ∀X ∈ C∞c (Ω,Λk−1).

By density of C∞c (Ω,Λk−1) in W 1,2
0 (Ω,Λk−1), the above identity remains true for X ∈

W 1,2
0 , and thus in particular for X = Sf . Hence, Kf = f − d(Sf) also belongs to

(HkT (Ω))⊥; that is,

K(Cr,αH (Ω,Λk)) ⊂ Cr+1,α
z (Ω,Λk) ∩ (HkT (Ω))⊥.

Since the embedding ι : Cr+1,α(Ω,Λk)→ Cr,α(Ω,Λk) is compact andK : Cr,αν (Ω,Λk)→
Cr+1,α
z (Ω,Λk) is continuous, it follows that

ι ◦K : Cr,αH (Ω,Λk)→ Cr,αH (Ω,Λk) is compact.

In the following, in order to simplify the notation, we abbreviate ι ◦ K into K. By
construction, Id = T ◦ S + K. The last assumption of Lemma 5.3 that we have to
establish is kerT ∗ = {0}. This is a consequence of the following:

Lemma 6.23. Let v ∈ (Cr,αν (Ω,Λk))∗ such that for every X ∈ Cr+1,α
z (Ω,Λk−1),

〈v,dX〉(Cr,αν (Ω,Λk))∗,Cr,αν (Ω,Λk) = 0.

Then v ∈ HkT (Ω), in the sense that there exists h ∈ HkT (Ω) such that for every f ∈
Cr,αν (Ω,Λk),

〈v, f〉(Cr,αν (Ω,Λk))∗,Cr,αν (Ω,Λk) =

∫
Ω
〈h, f〉 dx.

We first explain how Lemma 6.23 implies that kerT ∗ = {0}. Let v ∈ kerT ∗ ⊂
(Cr,αH (Ω,Λk))∗. Then by the Hahn-Banach theorem, there exists a continuous extension v

of v to Cr,αν (Ω,Λk) ⊃ Cr,αH (Ω,Λk). In particular, for every X ∈ Cr+1,α
z (Ω,Λk−1),

〈v,dX〉(Cr,αν (Ω,Λk))∗,Cr,αν (Ω,Λk) = 〈v,dX〉(Cr,αH (Ω,Λk))∗,Cr,αH (Ω,Λk) = 0.
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By Lemma 6.23, v can be identified to an element of HkT . This implies that for every
f ∈ Cr,αH (Ω,Λk),

〈v, f〉(Cr,αH (Ω,Λk))∗,Cr,αH (Ω,Λk) = 〈v, f〉(Cr,αν (Ω,Λk))∗,Cr,αν (Ω,Λk) =

∫
Ω
〈v, f〉 dx.

By definition of Cr,αH (Ω,Λk), f ∈ (HkT )⊥ and thus

〈v, f〉(Cr,αH (Ω,Λk))∗,Cr,αH (Ω,Λk) = 0.

This proves that v = 0, as desired.
We next turn to the

Proof of Lemma 6.23. Let v ∈ (Cr,αν (Ω,Λk))∗ such that

〈v,dX〉(Cr,αν )∗,Cr,αν = 0, ∀X ∈ Cr+1,α
z . (6.43)

We fix some α′ ∈ (0, α). We split the proof into four steps.

Step 1. In the first step, we prove that there exists a constant C = C(v, r, α, α′,Ω) > 0
such that for every f ∈ Cr,αν ,

〈v, f〉(Cr,αν )∗,Cr,αν ≤ C||f ||C0,α′ .

We first assume that r ≥ 1. Let f ∈ Cr,αν . Since Sf ∈ Cr+1,α
z , (6.43) implies

〈v, f〉(Cr,αν )∗,Cr,αν = 〈v,dSf +Kf〉(Cr,αν )∗,Cr,αν = 〈v,Kf〉(Cr,αν )∗,Cr,αν .

Hence,

〈v, f〉(Cr,αν )∗,Cr,αν ≤ ‖v‖(Cr,αν )∗‖Kf‖Cr,α .

By Remark 6.20 with s = r − 1, one has

||Kf ||Cr,α≤ C||f ||Cr−1,α .

Hence,

〈v, f〉(Cr,αν )∗,Cr,αν ≤ C||v||(Cr,αν )∗ ||f ||Cr−1,α .

If r ≥ 2, we can repeat the above argument taking into account this new estimate that we
apply to Kf instead of f :

〈v, f〉(Cr,αν )∗,Cr,αν = 〈v,Kf〉(Cr,αν )∗,Cr,αν ≤ C||v||(Cr,αν )∗ ||Kf ||Cr−1,α .

Using Remark 6.20 with s = r − 2, we deduce that

〈v, f〉(Cr,αν )∗,Cr,αν ≤ C||f ||Cr−2,α

for some new constant C = C(v, r, α,Ω). Iterating this calculation, we obtain that

〈v, f〉(Cr,αν )∗,Cr,αν ≤ C||f ||C0,α .

In the case r = 0, this estimate is obvious.
Finally, when r ≥ 0, we rely on Remark 6.20 with s = 0 and A = {α′, α} to get

||Kf ||C1,α′≤ C||f ||C0,α′ .
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Hence, reasoning as above, one has

〈v, f〉(Cr,αν )∗,Cr,αν = 〈v,Kf〉(Cr,αν )∗,Cr,αν

≤ C||Kf ||C0,α≤ C ′||Kf ||C1,α′≤ C ′′||f ||C0,α′ .

This completes the proof of Step 1.
Step 2. The aim of this step is to prove that there exists a constant C > 0 such that

〈v, f〉(Cr,αν )∗,Cr,αν ≤ C||f ||L2(Ω,Λk), for all f ∈ Cr,αν (Ω,Λk) such that f = 0 on ∂Ω.

We define a sequence (pi)i≥0 by induction as follows: p0 = 2 and

pi+1 =

{
(pi)

∗ = npi
n−pi if pi < n,

max(pi,
n

1−α) if pi ≥ n.

Observe that pi+1 > pi if pi ≤ n and when pi < n, then

pi+1 − pi =
pipi+1

n
≥ 1

n
.

Hence, one can define pI to be the first term of the sequence such that pI ≥ n
1−α . By the

Sobolev and the Morrey embeddings, we have for every 0 ≤ i ≤ I − 1,

W 1,pi ⊂ Lpi+1 , W 1,pI ⊂ C0,α.

Let f ∈ Cr,αν (Ω,Λk) such that f = 0 on ∂Ω. In particular, f ∈ LpIν (Ω,Λk). Since Ω is
Cr+1,α and thus C0,1, we can rely on Lemma 6.21 with r = 0 and p = pI to write

f = d(S̃f) + K̃f,

with S̃f ∈ W 1,pI
0 (Ω,Λk−1), K̃f ∈ W 1,pI

0 (Ω,Λk). Since df = 0 in D′(Ω), one has dK̃f =

d(f − d(S̃f)) = 0. Hence, K̃f ∈W 1,pI
ν (Ω,Λk).

Relying on the approximation result given in Proposition B.3, there exists a family of
linear maps {ηi}i∈N such that for every ` ∈ {0, . . . , n}, ηi maps C0,α

z (Ω,Λ`) into C∞c (Ω,Λ`)
and for every g ∈ C0,α

z (Ω,Λ`),

lim
i→∞
‖ηi(g)− g‖C0,α′= 0.

Moreover, for every h ∈W 1,1
0 (Ω,Λ`) ∩ C0,α

z (Ω,Λ`) such that dh ∈ C0,α
z , one has ηi(dh) =

d(ηi(h)).
We apply this last property to the map h = S̃f which belongs to W 1,pI

0 ⊂W 1,1
0 ∩C0,α

z

and satisfies d(S̃f) = f − K̃f ∈ C0,α
z (indeed, observe that f ∈ Cr,αz ⊂ C0,α

z and K̃f ∈
W 1,pI

0 ⊂ C0,α
z ). This gives ηi(d(S̃f)) = d(ηi(S̃f)).

Since ηi(S̃f) ∈ C∞c (Ω,Λk−1), the assumption on v implies

0 = 〈v,d(ηi(S̃f))〉(Cr,αν )∗,Cr,αν .

Next, by linearity of ηi,

ηi(f) = ηi(d(S̃f)) + ηi(K̃f) = d(ηi(S̃f)) + ηi(K̃f).

Hence,
〈v, ηi(f)〉(Cr,αν )∗,Cr,αν = 〈v, ηi(K̃f)〉(Cr,αν )∗,Cr,αν . (6.44)

By Step 1,
〈v, ηi(f)〉(Cr,αν )∗,Cr,αν ≤ C‖ηi(K̃f)‖C0,α′ . (6.45)
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In the right hand side, we use that K̃(f) ∈W 1,pI
0 ⊂ C0,α

z , to deduce that ηi(K̃f) converges

in C0,α′ to K̃f .
In the left hand side, since f ∈ C0,α

z one has limi→∞‖f − ηi(f)‖C0,α′= 0 and thus by Step
1,

〈v, f〉(Cr,αν )∗,Cr,αν = lim
i→∞
〈v, ηi(f)〉(Cr,αν )∗,Cr,αν . (6.46)

Hence, letting i→ +∞ in (6.45), one gets

〈v, f〉(Cr,αν )∗,Cr,αν ≤ C‖K̃f‖C0,α′ .

By the Morrey embedding,

〈v, f〉(Cr,αν )∗,Cr,αν ≤ C‖K̃f‖W 1,pI .

By Remark 6.22, one can require that K̃ is continuous from LpI into W 1,pI . Hence,

〈v, f〉(Cr,αν )∗,Cr,αν ≤ C‖f‖LpI .

We start again from (6.44) but instead of relying on Step 1, we exploit the above inequality
with ηi(K̃f) instead of f to get the following analogue of (6.45):

〈v, ηi(f)〉(Cr,αν )∗,Cr,αν ≤ C‖ηi(K̃f)‖LpI .

Since ηi(K̃f) converges to K̃f in LpI and using also (6.46), this gives

〈v, f〉(Cr,αν )∗,Cr,αν ≤ C‖K̃f‖LpI .

In view of the Sobolev inequality W 1,pI−1 ⊂ LpI , this implies

〈v, f〉(Cr,αν )∗,Cr,αν ≤ C‖K̃f‖W 1,pI−1 .

By Remark 6.22, we get

〈v, f〉(Cr,αν )∗,Cr,αν ≤ C‖f‖LpI−1 .

Iterating these estimates, we finally obtain

〈v, f〉(Cr,αν )∗,Cr,αν ≤ C‖f‖Lp0 = C‖f‖L2 ,

which is the conclusion of Step 2.

Step 3. In this step, we prove that the restriction w of v to {f ∈ Cr,αν (Ω,Λk) : f =
0 on ∂Ω} belongs to HkT . By the previous step, there exists C > 0 such that for every
f ∈ Cr,αν with f = 0 on ∂Ω,

〈w, f〉 ≤ C‖f‖L2 .

Hence, w can be continuously extended to the subset

clL2({f ∈ Cr,αν (Ω,Λk) : f = 0 on ∂Ω}) ⊂ L2(Ω,Λk),

where clL2 denotes the closure in L2. We then extend w by setting w = 0 on the orthogonal
space of this subset. By the usual identification of L2 with its dual, we can now consider
w as an element of L2(Ω,Λk).

We proceed to prove that w ∈ HkT . First, for every X ∈ C∞c (Ω,Λk−1),∫
Ω
〈w,dX〉 dx = 〈v,dX〉(Cr,αν )∗,Cr,αν = 0,
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where the last equality follows from the assumption on v. This proves that δw = 0. Next,
for every X ∈ C∞(Ω,Λk+1), for every g ∈ Cr,αν (Ω,Λk),∫

Ω
〈g, δX〉 dx = 0.

We deduce in particular that δX ∈
(

clL2({g ∈ Cr,αν (Ω,Λk) : g = 0 on ∂Ω)}
)⊥

and thus∫
Ω
〈w, δX〉 dx = 0.

This means that d(wz) = 0, where wz is the extension of w by 0 outside Ω. This completes
the proof of the fact that w ∈ HkT .

Step 4. Conclusion of the proof. For every f ∈ Cr,αν (Ω,Λk), we rely on Lemma 6.19
to write f = d(Sf) + Kf , with Sf ∈ Cr+1,α

z (Ω,Λk−1), Kf ∈ Cr+1,α
ν (Ω,Λk) and Kf = 0

on ∂Ω. It follows that

〈v, f〉(Cr,αν )∗,Cr,αν = 〈v,Kf〉(Cr,αν )∗,Cr,αν .

Since Kf ∈ Cr+1,α
ν (Ω,Λk) with Kf = 0 on ∂Ω, we can apply the previous step to Kf :

〈v,Kf〉(Cr,αν )∗,Cr,αν =

∫
Ω
〈w,Kf〉 dx,

where w ∈ HkT . We deduce therefrom that

〈v, f〉(Cr,αν )∗,Cr,αν =

∫
Ω
〈w,Kf〉 dx.

Since d(Sf) ∈ (HkT )⊥ and w ∈ HkT , it follows that

〈v, f〉(Cr,αν )∗,Cr,αν =

∫
Ω
〈w,Kf + d(Sf)〉 dx =

∫
Ω
〈w, f〉 dx,

as desired.

Remark 6.24. The converse of Lemma 6.23 is true: if v ∈ HkT (Ω), then 〈v,dX〉 = 0 for

every X ∈ Cr+1,α
z (Ω,Λk−1).

Indeed, one can approximate such an X by a sequence (Xi)i∈N ⊂ C∞c (Ω,Λk−1) for the
W 1,2

0 topology. Since 〈v,dXi〉 = 0, we obtain the desired result when i→ +∞.

Remark 6.25. In the setting of Theorem 6.1 but under the additional assumption that
Ω is Cr+3,α, the construction of the vector X presented in [13, Theorem 8.16] is linear and
universal, in the following sense: there exists a linear map

Ξ0 :
⋃
r∈N

α∈(0,1)

Cr,α(Ω,Λk)→
⋃
r∈N

α∈(0,1)

Cr+1,α(Ω; Λk−1)

such that for every r ∈ N, α ∈ (0, 1), for every f ∈ Cr,α(Ω,Λk) satisfying{
df = 0 in Ω,
ν ∧ f = 0 on ∂Ω,

one has Ξ0(f) ∈ Cr+1,α(Ω; Λk−1),

d(Ξ0(f)) = f on Ω, Ξ0(f) = 0 on ∂Ω,

‖Ξ0(f)‖Cr+1,α≤ C‖f‖Cr,α
for some C = C(r, α,Ω) > 0. The same remark can be made in the framework of Lemma
6.11. The proofs of Lemma 6.14 and Lemma 6.15 are based on linear constructions as
well. However, due to the restrictions on ε in Lemma 6.14 and on δ in Lemma 6.15, they
are not universal in the above sense.
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6.3.5 Proofs of Theorem 6.5 and Remark 6.6

Let r ∈ N, k ∈ {1, . . . , n} and p ∈ (1,∞). Let Ω be a bounded Cr,1 domain in Rn. By
the Sobolev embedding, the space W r,p(Ω,Λk) is contained in Lpr(Ω,Λk), where

pr =

{
np/(n− rp) if rp < n,

max(2, p) if rp ≥ n.

We denote by (pr)
′ the Hölder exponent of pr.

In the framework of Theorem 6.5, the main assumption is that

HkT (Ω) ⊂ Lp′(Ω,Λk). (6.47)

In the first two steps of the proof below, we do not need this property but assume instead
that pr ≥ 2. The latter condition implies that W r,p ⊂ L2. In particular, the integral∫

Ω〈f, h〉 dx is well defined for every f ∈ W r,p
ν (Ω,Λk) and every h ∈ HkT . In the final step,

we prove Theorem 6.5 under the assumption

HkT (Ω) ⊂ L(pr)′(Ω,Λk). (6.48)

Since pr ≥ p, (6.48) may be seen as a less restrictive hypothesis than (6.47). Actually,
when r = 0, namely when Ω is Lipschitz, they coincide while when Ω is C1, it is very
plausible that the methods of [40, Chapter 11] imply that HkT (Ω) ⊂ ∩1<q<∞L

q(Ω,Λk).

Proof of Theorem 6.5. Step 1. We first establish a Sobolev version of Lemma 6.23 under
the assumption pr ≥ 2:

Let v ∈ (W r,p
ν (Ω,Λk))∗ such that for every X ∈W r+1,p

z (Ω,Λk−1),

〈v,dX〉(W r,p
ν (Ω,Λk))∗,W r,p

ν (Ω,Λk) = 0.

We then claim that

v ∈ HkT (Ω). (6.49)

Indeed, let f ∈W r,p
ν (Ω,Λk). We introduce the two operators S̃ and K̃ given by Lemma

6.21. Since S̃f ∈W r+1,p
z , 〈v,d(Sf)〉(W r,p

ν )∗,W r,p
ν

= 0 and thus

〈v, f〉(W r,p
ν )∗,W r,p

ν
= 〈v, K̃f〉(W r,p

ν )∗,W r,p
ν
≤ ‖v‖(W r,p

ν )∗‖K̃f‖W r,p
ν
.

Relying on Remark 6.22 with s = r − 1, one gets

〈v, f〉(W r,p
ν )∗,W r,p

ν
≤ C‖f‖

W r−1,p
ν

,

for some C = C(v,Ω, r, p) > 0. Iterating on r, r − 1, . . . , 0, this leads to

〈v, f〉(W r,p
ν )∗,W r,p

ν
≤ C‖f‖Lpν . (6.50)

If p ≤ 2, this proves in particular that

〈v, f〉(W r,p
ν )∗,W r,p

ν
≤ C‖f‖L2

ν
.

Otherwise, in the case p > 2, we introduce as in Step 2 of the proof of Lemma 6.23, a
sequence p0 = 2 < p1 < · · · < pI = p such that W 1,pi−1(Ω) ⊂ Lpi(Ω), for i = 1, . . . , I. We
then exploit the estimate (6.50) for K̃f instead of f , namely

〈v, f〉(W r,p
ν )∗,W r,p

ν
= 〈v, K̃f〉(W r,p

ν )∗,W r,p
ν
≤ C‖K̃f‖Lpν .
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Observing that p = pI and W 1,pI−1 ⊂ LpI , one has ‖K̃f‖Lpν≤ C‖K̃f‖
W

1,pI−1
ν

. Remark

6.22 with s = 0 implies that ‖K̃f‖
W

1,pI−1
ν

≤ C‖f‖
L
pI−1
ν

. This gives

〈v, f〉(W r,p
ν )∗,W r,p

ν
≤ C‖f‖LpI−1 .

Iterating on pI , pI−1, . . . , p0 = 2, we finally obtain

〈v, f〉(W r,p
ν )∗,W r,p

ν
≤ C‖f‖L2 . (6.51)

Since pr ≥ 2, one has W r,p
ν ⊂ L2 and it is thus possible to extend v as a continuous linear

map on clL2(W r,p
ν (Ω,Λk)). We then set v = 0 on (clL2(W r,p

ν (Ω,Λk)))⊥. We can conclude
that v ∈ HkT , as in the Hölder case, see Step 3 of the proof of Lemma 6.23. This completes
the proof of our claim (6.49).

Step 2. In this step, we prove Theorem 6.5 under the additional assumption that
pr ≥ 2. The proof is in the same vein as the one of Theorem 6.1, but much simpler. We
only indicate the main changes.

We apply Lemma 5.3 to T = d from the set E = W r+1,p
z (Ω,Λk−1) into F = W r,p

H (Ω,Λk)
where

W r,p
H (Ω,Λk) = {f ∈W r,p(Ω,Λk) : df = 0 in Ω, ν∧f = 0 on ∂Ω,

∫
Ω
〈f, h〉 = 0, ∀h ∈ HkT (Ω)}.

We introduce the two operators S̃ and K̃ given by Lemma 6.21. Then, relying on the
compact embedding W r+1,p

z ⊂ W r,p
z , one deduces, as in the Hölder case, that K̃ is a

compact map from W r,p
H (Ω,Λk) into itself. The fact that ker T ∗ = {0} now follows from

Step 1 and the fact that W r,p
H ⊂ (HkT )⊥. We can thus apply Lemma 5.3 and get Theorem

6.5 when pr ≥ 2.
Step 3. We now prove Theorem 6.5 under the assumption that HkT (Ω) ⊂ L(pr)′ .
In view of Step 2, one can assume that pr < 2 (which implies in particular that

p < 2). Let f ∈ W r,p
ν (Ω,Λk). We write f = d(S̃f) + K̃f , with S̃f, K̃f ∈ W r+1,p

z , where

p∗ = np/(n − p) Since W r+1,p
z ⊂ W r,p∗

z , this means that f can be written as dX1 + f1,

with X1 ∈ W r+1,p
z and f1 ∈ W r,p∗

ν . If p∗ < 2, we repeat this construction for f1, to get

f1 = dY + f2 with Y ∈W r+1,p∗
z and f2 ∈W r,(p∗)∗

ν . This implies that f = dX2 + f2, with
X2 = X1 + Y ∈ W r+1,p

z . Iterating this construction yields X` ∈ W r+1,p
z , f` ∈ W r,2

ν such
that

f = dX` + f`. (6.52)

By the Sobolev embedding, X` ∈ W 1,pr
0 (Ω,Λk−1). Let (Yj)j∈N ⊂ C∞c (Ω,Λk−1) con-

verging to X` in W 1,pr
0 . For every j ∈ N and every h ∈ HkT (Ω),∫

Ω
〈dYj , h〉 dx = 0.

Since (dYj)j∈N converges to dX in Lpr and HkT (Ω) ⊂ L(pr)′(Ω,Λk), it follows that∫
Ω
〈dX`, h〉 dx = 0.

Hence, dX` ∈ (HkT )⊥. We deduce therefrom that if in (6.52), we further assume that

f ∈W r,p
H , then f` ∈W r,2

H .

We can then apply Step 2 to f`: there exists Z ∈W r+1,2
z (Ω,Λk−1) ⊂W r+1,p

z (Ω,Λk−1)
such that f` = dZ. This yields

f = d(X` + Z).

Since all the above constructions can be made continuously and linearly, this completes
the proof of Theorem 6.5.
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We end this section with the proof of Remark 6.6. In this setting, the main assumption
is now that

HkT (Ω) ⊂ Lp(Ω,Λk). (6.53)

Proof of Remark 6.6. Let f ∈ Lpν(Ω,Λk). If p ≥ 2, then Lp ⊂ L2 and we can introduce
the L2 orthogonal projection h of f on HkT (Ω). Then by (6.53), f − h ∈ LpH(Ω,Λk). Since

p ≥ 2, HkT (Ω) ⊂ Lp′(Ω,Λk). We can thus apply Theorem 6.5 to find some X ∈W 1,p
z (Ω,Λk)

such that f − h = dX. Theorem 6.6 is proved in that case.
If p < 2, then we can find X1 ∈W 1,p

z (Ω,Λk−1), f1 ∈ L2
ν(Ω,Λk) such that f = dX1 +f1,

as in Step 3 of the proof of Theorem 6.5, see (6.52). By the previous argument applied to
f1 instead of f , one can write f1 = dX2 + h, with X2 ∈ W 1,2

z (Ω,Λk−1) and h ∈ HkT (Ω).
Then f = d(X1 +X2) + h, which completes the proof of the remark.
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Appendix A

On the magnetostatic energy

In this appendix, we present the proofs of several elementary results on the magneto-
static energy.
Throughout this section, we use the notation

m = (m′,m3) : Ω→ S2

and ∇ = (∇′, ∂x3). The dash ′ indicates a 2D quantity.

Proof of Theorem 2.3 . We apply Lax-Migram’s Theorem for the variational problem (2.3)
in space BL to obtain the unique existence. For this, we will check that the map ξ 7→∫

Ω∇
′.m(x′)ξ(x′, 0)dx′ is linear continuous in our (BL, ||·||Ḣ1). For every ξ ∈ BL, we have∣∣∣∣ ∫

Ω
∇′.m′(x′)ξ(x′, 0)dx′

∣∣∣∣ ≤ ||∇′.m′1Ω||Ḣ−1/2(R2)||ξ(·, 0)||Ḣ1/2(R2)

≤ C||∇′.m′1Ω||Ḣ−1/2(R2)||∇ξ||L2(R3). (A.1)

Here, we have used the interpolation inequality in the first line and the trace estimate in
the second line. It remains to prove that ∇′.m′1Ω ∈ Ḣ

1
@

(R2)

Denote f = ∇′.m′ 1Ω. We show that

||f ||Ḣ−1/2(R2)≤ C||f ||L2(R2)≤ C||∇m||L2(Ω)< +∞.

Indeed,

||f ||2
Ḣ−1/2(R2)

=

∫
|ζ|>1

|F(f)(ζ)|2

|ξ|
dζ +

∫
|ζ|≤1

|F(f)(ζ)|2

|ζ|
dζ

≤ ||F(f)||2L2(R2)+||F(f)||2L∞(R2)

∫
|ζ|≤1

1

|ζ|
dζ

≤ C(||f ||2L2(R2)+||f ||
2
L1(R2)) ≤ C||f ||

2
L2(R2), (A.2)

where we used that supp(f) is compact in R2 (as Ω is bounded).
As consequence of Lax-Milgram’s Theorem, the variational problem (2.3) has a unique

solution of U ∈ BL(R3)
The classical equation (2.12) is obtained obviously. Indeed, by choosing ξ ∈ C∞0 (R3\(Ω×
{0})), then ∫

R3

∇U(x).∇ξ(x)dx = 0 for all ξ ∈ C∞0 (R3\(Ω× {0})).

It implies that
∆U = 0 in R3\(Ω× {0}). (A.3)
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Moreover, for any η ∈ C∞0 (Ω× {0}), there exists ξ ∈ C∞0 (R3) such that ξ(·, 0) = η.
Then ∫

Ω
∇′.m′(x′)η(x′)dx′ =

∫
R3

∇U(x)∇ξ(x)dx

=

∫
R3

+

∇U(x)∇ξ(x)dx+

∫
R3
−

∇U(x)∇ξ(x)dx

=

∫
Ω
−
[
∂U

∂x3

]
ξ(x′, 0)dx′ =

∫
Ω
−
[
∂U

∂x3

]
η(x′)dx.′ (A.4)

We then obtain the second equation of (2.12).

It remains to prove (2.13). Applying the Fourier transform with respect to the in-plane
variable x′ onto (A.3), we get an ODE for F(U) in terms of x3 with the Fourier variable
ζ as parameter:

∂2

∂2x3
F(U)(ζ, ·)− |ζ|2F(U)(ζ, ·) = 0 for x3 6= 0.ζ ∈ R2. (A.5)

The jump condition follows that:[
∂

∂x3
F(U)(ζ, ·)

]
= −F(∇′.m′1Ω)(ζ) for x3 = 0, ζ 6= 0. (A.6)

Recall that U ∈ BL(R3). The trace of U is well defined, see Dautray and Lions [16]. The
uniqueness of U implies that U is symmetric w.r.t. x3 = 0, i.e., U is continuous on x3 = 0.
Then

[F(U)(ζ, ·)] = 0 for x3 = 0. (A.7)

Equations (A.5)-(A.7) give the explicit solution, (see [30, Proposition 4]),

F(U)(ζ, x3) =
1

2|ζ|
e−|ζ||x3|F(∇′.m′1Ω)(ζ) for ζ 6= 0, x3 ∈ R. (A.8)

Plancherel’s identity yields∫
R3

|∇U |2dx =

∫
R2

∫
R

(
|ζ|2|F(U)(ζ, x3)|2+

∣∣∣∣∂F(U)(ζ, x3)

∂x3

∣∣∣∣2)dζdx3

=
1

2

∫
R2

∫
R
e−2|ζ||x3||F(∇′.m′1Ω)(ζ)|2dξ

=
1

2

∫
R2

1

|ζ|
|F(∇′.m′1Ω)(ξ)|2dξ. (A.9)

Moreover, since C∞0 (R3) is dense in BL(R3), we obtain that∫
R3

|∇U(x)|2dx =

∫
Ω
∇′.m′(x′)∇U(x′, 0)dx′

This completes the proof of Theorem 2.3.

We next establish a basic regularity for the solution U of∫
R3

∇U(x).∇ζ(x)dx =

∫
Ω
∇′.m′(x′)ζ(x′, 0)dx′ for every ζ ∈ C∞0 (R3). (A.10)

For that we give the
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Proof of Lemma 3.4. The proof is inspired from Ignat and Knüpfer [31, Lemma 3.1].
When k ≥ 2, we assume that m ∈ Hk

loc(Ω). We take W ⊂ Ω a compact set and fix
δ = dist (∂Ω,W )/(2k + 2) > 0. We want to prove that U ∈ Hk

loc(Ω)
Choose a smooth cut-off function θ with θ = 1 in Wδ and θ = 0 outside of W2δ, where
W2δ is defined by

W2δ := {x ∈ Ω : dist(x,W ) < 2δ}.

Let us denote h = −∇′.m′1Ω ∈ L2(Ω). Since equation (3.1) is linear and has a unique
solution, then we can decompose h = h0 +h1 where h0 = θh and obtain U = U0 +U1 with
i ∈ {1, 2} 

∆Ui = 0 in R3\(Ω× {0}),[
∂Ui
∂x3

]
= hi on Ω× {0},

[Ui] = 0 on Ω× {0}.

Since m ∈ Hk
loc(Ω), then m ∈ Hk(W2δ). It implies that

h0 = θh = −θ∇′.m′1Ω ∈ Hk−1(R2).

Using the same argument as in Remark 3.3, one has∫
R2

|ξ|2k|F(U0(·, 0))(ξ)|2dξ =

∫
R2

|ξ|2k 1

4|ξ|2
|F(h0)(ξ)|2dξ

=
1

4
||h0||2Ḣk−1(R2)

.

This implies that ∇′kU0(·, 0) ∈ L2(R2). Hence, U0(·, 0) ∈ Hk
loc(R2). We want to prove that

U1 ∈ Hk
loc(W ).

Set V = ∆′U1(·, 0) in the sense of distributions, where ∆′ = ∂2
x1x1

+ ∂2
x2x2

. We shall prove
that V ∈ Hk−2(W ). Using a duality argument, we claim that∣∣∣∣(V, ∂α∂xα η

)
L2(W )

∣∣∣∣ ≤ C(k)||η||L2(W )

for every η ∈ C∞0 (W ) and every multi-index α ∈ N2, |α|= k − 2.
Indeed, using the definitions of U1, V and the explicit expression of the Ḣ1/2 scalar product,
we get∣∣∣∣(V, ∂α∂xα η)L2(W )

∣∣∣∣ =

∣∣∣∣(F(V ),F(
∂α

∂xα
η))L2(R2)

∣∣∣∣ =

∣∣∣∣(−|ξ|2 F(h1),F(
∂α

∂xα
η))L2(R2)

∣∣∣∣
=

∣∣∣∣−1

2
(h1,

∂α

∂xα
η)Ḣ1/2(R2)

∣∣∣∣
=

∣∣∣∣−1

4π

∫
R2

∫
R2

(h1(x)− h1(y))( ∂α

∂xα η(x)− ∂α

∂yα η(y))

|x− y|3
dxdy

∣∣∣∣
=

∣∣∣∣ 1

2π

∫
supp h1

h1(x)

∫
supp η

∂α

∂yα η(y)

|x− y|3
dydx

∣∣∣∣
≤ C(k)

δ3+|α| ||h1||L2(R2)||η||L2(W ).

We have used the Green formula, the estimate

∣∣∣∣ ∂α∂yα 1
|x−y|3

∣∣∣∣ ≤ C(k) 1
|x−y|3+|α| and the fact

that supp (h1) ⊂W2δ\Wδ , supp (η) ⊂W have distance ≥ δ. The proof is completed.
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Appendix B

Operations in Hölder spaces

This appendix is mainly devoted to the proofs of Propositions 5.6 and 5.7, and an
approximation result in Hölder spaces, see Proposition B.3.

In the sequel, we will rely on the fact that, given a domain Ω ⊂ Rn, for every r ∈ N∗
and every α ∈ (0, 1), for every f ∈ Cr,α(Ω), one has

‖f‖Cr,α(Ω)≤ C(‖f‖C0(Ω)+‖Df‖Cr−1,α(Ω;Rn)) , ‖Df‖Cr−1,α(Ω;Rn)≤ C‖f‖Cr,α(Ω),

(B.1)
with C = C(n) > 0.

In the next estimate, we use the geometric quantities dΩ and δΩ introduced in (5.2)
and (5.3).

Lemma B.1. Let Ω be a bounded domain in Rn. Then there exists a constant C = C(n) >
0 such that for every r ∈ N∗, α ∈ (0, 1) and every f ∈ Cr,α(Ω), one has

‖f‖Cr−1,α≤ C(δΩ + dΩ)‖f‖Cr,α .

Proof. Let β ∈ Nn such that |β|= r− 1 and x, y ∈ Ω. Then, by the mean value inequality,
there exists C = C(n) > 0 such that

|Dβf(x)−Dβf(y)|≤ C‖f‖CrdΩ(x, y) ≤ C‖f‖Cr |x− y|αd1−α
Ω δαΩ.

This implies that [Dβf ]C0,α ≤ CδαΩd
1−α
Ω ‖f‖Cr . Since ‖f‖Cr−1≤ ‖f‖Cr , one gets

‖f‖Cr−1,α≤ ‖f‖Cr+CδαΩd1−α
Ω ‖f‖Cr≤ (1 + CδαΩd

1−α
Ω )‖f‖Cr,α .

Next,

(1 + CδαΩd
1−α
Ω ) ≤ (C + 1)(1 + δαΩd

1−α
Ω )

≤ (C + 1)(1 + max(δΩ, dΩ)α+(1−α))

≤ (C + 1)(1 + δΩ + dΩ).

The result follows since δΩ ≥ 1.

We proceed with the

Proof of Proposition 5.6. . We prove the result by induction on r ∈ N. For r = 0, let
f, g ∈ C0,α(Ω). Then ‖fg‖C0≤ ‖f‖C0‖g‖C0 and for every x, y ∈ Ω, we can write

|(fg)(x)−(fg)(y)|≤ |f(x)||g(x)−g(y)|+|f(x)−f(y)||g(y)|≤
(
‖f‖C0 [g]C0,α+[f ]C0,α‖g‖C0

)
|x−y|α.
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This implies

[fg]C0,α ≤ ‖f‖C0 [g]C0,α + [f ]C0,α‖g‖C0

and thus

‖fg‖C0,α≤ ‖f‖C0‖g‖C0+‖f‖C0 [g]C0,α + [f ]C0,α‖g‖C0≤ ‖f‖C0,α‖g‖C0,α .

We now assume that the result holds true for r ∈ N and we prove it for r+ 1. We rely on
(B.1) to write

‖fg‖Cr+1,α≤ C(‖fg‖C0+‖D(fg)‖Cr,α) ≤ C(‖f‖C0‖g‖C0+‖fDg‖Cr,α+‖gDf‖Cr,α).

By the induction assumption, one gets

‖fg‖Cr+1,α≤ C(‖f‖C0‖g‖C0+(δΩ + dΩ)r‖f‖Cr,α‖Dg‖Cr,α+(δΩ + dΩ)r‖g‖Cr,α‖Df‖Cr,α),

for some new constant C = C(r, n) > 0. By Lemma B.1, ‖f‖Cr,α≤ C(δΩ + dΩ)‖f‖Cr+1,α .
Moreover, ‖Dg‖Cr,α≤ C‖g‖Cr+1,α , see (B.1). Hence,

‖f‖Cr,α‖Dg‖Cr,α≤ C(δΩ + dΩ)‖f‖Cr+1,α‖g‖Cr+1,α .

By changing the roles of f and g, we finally obtain

‖fg‖Cr+1,α≤ C(δΩ + dΩ)r+1‖f‖Cr+1,α‖g‖Cr+1,α

possibly for a different constant C = C(r, n) > 0. This proves the assertion for r + 1,
completing the proof of the proposition.

We next justify the Remark 5.8: Let α ∈ (0, 1) and f ∈ C1(Ω,Rm), g ∈ C0,α(O,R)
with f(Ω) ⊂ O. First,

‖g ◦ f‖C0≤ ‖g‖C0 .

Moreover, for every x, y ∈ Ω, the mean value inequality implies

|g ◦ f(x)− g ◦ f(y)|≤ [g]C0,α |f(x)− f(y)|α≤ [g]C0,α ||Df ||αC0 |x− y|αδαΩ.

Hence,

[g ◦ f ]C0,α ≤ [g]C0,α ||Df ||αC0δ
α
Ω.

Thus,

||g ◦ f ||C0,α= ||g ◦ f ||C0+ [g ◦ f ]C0,α ≤ ||g||C0,α(||Df ||αC0δ
α
Ω + 1) ≤ δΩ||g||C0,α(||Df ||αC0+1).

In the last inequality, we have used the fact that δΩ ≥ 1. This completes the proof of
Remark 5.8.

We now give the

Proof of Proposition 5.7. We prove the assertion by induction on r ≥ 1. For r = 1, we
write that

‖g ◦ f‖C1,α= max
|β|≤1
‖Dβ(g ◦ f)‖C0+ max

|β|=1
[Dβ(g ◦ f)]C0,α .

By writing for every |β|= 1,

Dβ(g ◦ f) =
∑
|γ|=1

(Dγg) ◦ fDβfγ ,
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one gets

‖Dβ(g ◦ f)‖C0≤ ‖(Dg) ◦ f‖C0‖Df‖C0≤ ‖Dg‖C0‖Df‖C0

and also

[Dβ(g ◦ f)]C0,α ≤ ‖(Dg) ◦ f‖C0 [Df ]C0,α + [(Dg) ◦ f ]C0,α‖Df‖C0 .

By Remark 5.8, one has [(Dg) ◦ f ]C0,α ≤ δΩ‖Dg‖C0,α(‖Df‖αC0+1). Hence,

[Dβ(g ◦ f)]C0,α ≤ ‖Dg‖C0 [Df ]C0,α + δΩ‖Dg‖C0,α(‖Df‖αC0+1)‖Df‖C0

≤ CδΩ‖g‖C1,α(‖Df‖1+α
C0,α+1).

This proves the result for r = 1. Assuming the estimate for r ≥ 1, let us prove it for r+ 1.
We write

||g ◦ f ||Cr+1,α ≤ C(||g ◦ f ||C0+||D(g ◦ f)||Cr,α)

≤ C(||g||C0+
∑

|β|=|γ|=1

||(Dγg) ◦ fDβfγ ||Cr,α). (B.2)

By Proposition 5.6,

||(Dγg) ◦ fDβfγ ||Cr,α≤ C(δΩ + dΩ)r||(Dγg) ◦ f ||Cr,α ||Dβfγ ||Cr,α .

By the induction assumption, one has

||(Dγg) ◦ f ||Cr,α≤ C(δΩ + dΩ)r
2‖Dγg‖Cr,α(‖Df‖r+α

Cr−1,α+1)

and thus

||(Dγg) ◦ fDβfγ ||Cr,α ≤ C(δΩ + dΩ)r
2+r‖Dg‖Cr,α(‖Df‖r+α

Cr−1,α+1)‖Df ||Cr,α

≤ C(δΩ + dΩ)r
2+r+r+α‖g‖Cr+1,α(‖Df‖r+α+1

Cr,α +1).

In the last line, we have used Lemma B.1 to write ‖Df‖Cr−1,α≤ C(δΩ + dΩ)‖Df‖Cr,α and
‖Dg‖Cr,α≤ C‖g‖Cr+1,α . Inserting this inequality into (B.2), one obtains

||g ◦ f ||Cr+1,α≤ C(δΩ + dΩ)(r+1)2‖g‖Cr+1,α(‖Df‖r+α+1
Cr,α +1).

This proves the assertion for r + 1 and completes the proof of the proposition.

As an application of Propositions 5.6 and 5.7, we deduce the following version of
Proposition 5.7 for differential forms:

Lemma B.2. Let r ∈ N, α ∈ (0, 1) and ρ : Ω → V be a Cr+1,α map, where Ω and V are
two bounded domains in Rn. Then for every k ∈ {0, . . . , n} and f ∈ Cr,α(V ,Λk),

‖ρ∗(f)‖Cr,α(Ω,Λk)≤ C‖f‖Cr,α(V ,Λk),

where C depends only on r, α, n, ‖ρ‖Cr+1,α, and the geometrical quantities dΩ, δΩ.

Proof. Let f ∈
∑

1≤i1<...<ik≤n fi1...ikdx
i1 ∧ ... ∧ dxik . Then

ρ∗(f) =
∑

1≤i1<...<ik≤n
fi1...ik ◦ ρdρ

i1 ∧ ... ∧ dρik ,
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where

dρs =

n∑
i=1

∂ρs

∂xi
dxi, ∀s ∈ {0, ..., n}.

Hence,

ρ∗(f) =
∑

1≤i1<...<ik≤n
fi1...ik ◦ ρ

∑
jl 6=jm,∀l 6=m

(
∂ρi1

∂xj1
...
∂ρik

∂xjk

)
dxj1 ∧ ... ∧ dxjk

=
∑

jl 6=jm,∀l 6=m

( ∑
1≤i1<...<ik≤n

fi1...ik ◦ ρ.
∂ρi1

∂xj1
...
∂ρik

∂xjk

)
dxj1 ∧ ... ∧ dxjk .

This implies that

||ρ∗(f)||Cr,α≤
∑

jl 6=jm,∀l 6=m

∑
1≤i1<...<ik≤n

∥∥∥∥fi1...ik ◦ ρ. ∂ρi1∂xj1
...
∂ρik

∂xjk

∥∥∥∥
Cr,α

.

Using Proposition 5.6, we obtain

||ρ∗(f)||Cr,α≤ C
∑

1≤i1<...<ik≤n
||fi1...ik ◦ ρ||Cr,α‖Dρ‖

k
Cr,α ,

where C = C(dΩ, δΩ, k, n) > 0. When r ≥ 1, Proposition 5.7 implies

||ρ∗(f)||Cr,α(Ω,Λk)≤ C
∑

1≤i1<...<ik≤n
||fi1...ik ||Cr,α(||Dρ||r+α

Cr−1,α+1)||Dρ||kCr,α ,

possibly for a larger constant C. In view of (B.1), this leads to the conclusion. When
r = 0, we rely instead on Remark 5.8 and conclude similarly.

The end of this section is devoted to the proof of the following approximation result:

Proposition B.3. Let α ∈ (0, 1) and Ω be a bounded C1,α domain in Rn. Then there
exists a sequence {ηi}i∈N mapping linearly, for every ` ∈ {0, . . . , n}, C0,α

z (Ω,Λ`) into
C∞c (Ω,Λ`) and such that for every g ∈ C0,α

z (Ω,Λ`), for every α′ ∈ (0, α),

lim
i→∞
‖ηi(g)− g‖C0,α′ (Ω,Λ`)= 0.

Moreover, for every g ∈W 1,1
0 (Ω,Λ`) ∩ C0,α

z (Ω,Λ`) such that dg ∈ C0,α
z (Ω,Λ`+1), one has

ηi(dg) = d(ηi(g)).

The proof of this proposition is based on several technical remarks. The first one is a
result on the continuity of translations in Hölder spaces.

Lemma B.4. Let ζ ∈ C∞c (B(0, 2)) such that 0 ≤ ζ ≤ 1 and for every t ∈ R,

βt : x ∈ Rn 7→ x+ ζ(x)t−→en.

Then there exist ε > 0 and C > 0 such that for every 0 < α′ < α < 1, for every
f ∈ C0,α(Rn) and every t ∈ [−ε, ε],

‖f ◦ βt − f‖C0,α′ (Rn)≤ C|t|
α−α′‖f‖

C0,α(B(0,2))
,

where C only depends on ζ.
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Proof. There exists a ball B b B(0, 2) such that B c supp ζ. In order to simplify the
notation, we set B′ = B(0, 2). Let ε > 0 such that B + B(0, ε) ⊂ B′. Let f ∈ C0,α(Rn)
and t ∈ [−ε, ε]. Then f ◦ βt = f outside B and βt(B) ⊂ B′. Using the Hölder continuity
of f , we thus have for every x ∈ Rn,

|f ◦ βt(x)− f(x)|≤ [f ]C0,α(B′)|βt(x)− x|α.

By using the definition of βt and the fact that 0 ≤ ζ ≤ 1, one gets

|f ◦ βt(x)− f(x)|≤ [f ]C0,α(B′)t
α. (B.3)

Next, for every x ∈ B and y ∈ Rn, we estimate the quantity

|(f ◦ βt − f)(x)− (f ◦ βt − f)(y)|

as follows: When |x− y|< t, we write

|(f ◦ βt − f)(x)− (f ◦ βt − f)(y)|≤ |f ◦ βt(x)− f ◦ βt(y)|+|f(x)− f(y)|.

By Hölder continuity of f and the fact that x, βt(x), y and βt(y) all belong to B′, this
gives

|(f ◦ βt − f)(x)− (f ◦ βt − f)(y)|≤ [f ]C0,α(B′)(|βt(x)− βt(y)|α+|x− y|α).

By the definition of βt and the mean value inequality applied to ζ, one gets

|(f ◦ βt − f)(x)− (f ◦ βt − f)(y)| ≤ [f ]C0,α(B′)(‖∇ζ‖
α
C0(B′)

+2)|x− y|α

≤ [f ]C0,α(B′)(‖∇ζ‖
α
C0(B′)

+2)|t|α−α′ |x− y|α′ .

When |x− y|≥ t instead, we write

|(f ◦ βt − f)(x)− (f ◦ βt − f)(y)|≤ |f ◦ βt(x)− f(x)|+|f ◦ βt(y)− f(y)|.

By (B.3), one gets

|(f ◦ βt − f)(x)− (f ◦ βt − f)(y)|≤ 2[f ]C0,α(B′)t
α ≤ 2[f ]C0,α(B′)|t|

α−α′ |x− y|α′ .

We have thus proved that for every x ∈ B, y ∈ Rn,

|(f ◦ βt − f)(x)− (f ◦ βt − f)(y)|≤ 2[f ]C0,α(B′)(‖∇ζ‖
α
C0(B)

+1)|t|α−α′ |x− y|α′ .

The case when x ∈ Rn and y ∈ B is similar. Finally, when x 6∈ B and y 6∈ B, |(f ◦ βt −
f)(x)− (f ◦ βt − f)(y)|= 0. This implies that for any x, y ∈ Rn,

[f ◦ βt − f ]C0,α′ (Rn) ≤ 2[f ]C0,α(B′)(‖∇ζ‖
α
C0(B)

+1)|t|α−α′ .

The proof is complete.

We proceed to extend the above lemma to differential forms.

Lemma B.5. With the notation of Lemma B.4, for every 0 < α′ < α < 1, for every
k ∈ {0, . . . , n}, for every f ∈ C0,α(Rn,Λk) and every t ∈ [−1, 1],

‖β∗t (f)− f‖C0,α′ (Rn,Λk)≤ C|t|
α−α′‖f‖

C0,α(B(0,2),Λk)
,

where C only depends on η.
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Proof. Let f =
∑

1≤i1<···<ik≤n fi1...ikdx
i1 ∧ . . . ∧ dxik . Then

β∗t (f) =
∑

1≤i1<···<ik≤n
fi1...ik ◦ βtdβ

i1
t ∧ . . . ∧ dβ

ik
t .

By construction,

dβit =

{
dxi if i < n,

dxn + tdζ if i = n.

Hence,

β∗t (f) =
∑

1≤i1<···<ik≤n
fi1...ik◦βtdx

i1∧. . .∧dxik+t
∑

1≤i1<···<ik−1<n

fi1...ik−1n◦βtdx
i1∧. . .∧dxik−1∧dζ.

It follows that

‖β∗t (f)− f‖C0,α′ (Rn,Λk)≤
∑

1≤i1<···<ik≤n
‖fi1...ik ◦ βt − fi1...ik‖C0,α′ (Rn)

+ C|t|
∑

1≤i1<···<ik−1<n

‖fi1...ik−1n ◦ βt‖C0,α′ (B(0,2))
,

where C = C(ζ, n) > 0. Here, for the second term, we have used Proposition 5.6 and the
fact that dζ is compactly supported in B(0, 2). Thus, by the triangle inequality,

‖β∗t (f)− f‖C0,α′ (Rn,Λk)≤ (1 + C|t|)
∑

1≤i1<···<ik≤n
‖fi1...ik ◦ βt − fi1...ik‖C0,α′ (Rn)

+ C|t|
∑

1≤i1<···<ik−1<n

‖fi1...ik−1n‖C0,α′ (B(0,2))
.

In view of Lemma B.4 applied to each fi1...ik , this gives

‖β∗t (f)− f‖C0,α′ (Rn,Λk) ≤ C
′(1 + C|t|)|t|α−α′

∑
1≤i1<···<ik≤n

‖fi1...ik‖C0,α(B(0,2))

+ C ′|t|
∑

1≤i1<···<ik−1<n

‖fi1...ik−1n‖C0,α(B(0,2))

≤ C ′′|t|α−α′‖f‖
C0,α(B(0,2),Λk)

.

The proof is complete.

The next tool is used to approximate a differential form which vanishes on the boundary
of a domain Ω by a family of forms which are compactly supported in Ω.

Lemma B.6. Let α ∈ (0, 1) and Ω be a bounded C1,α domain. Then there exists a family
φt : Rn −→ Rn, 0 < t < T, of C1,α diffeomorphisms, which agree with the identity outside
a compact set, and such that

φt(Ω) ⊃ Ω, 0 < t < T, (B.4)

∀f ∈ C0,α
loc (Rn,Λk),∀α′ ∈ (0, α), lim

t→0
||φ∗t (f)− f ||C0,α′ (Ω,Λk)= 0. (B.5)
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Proof. The construction below is standard in the setting of Lebesgue spaces, see e.g. [1,
Lemma 4.5]. We detail the proof in order to check that it can be extended to Hölder
spaces.

Since Ω is of class C1,α, one can find a finite covering {Vj}1≤j≤l of ∂Ω by bounded

open sets, and a corresponding family of C1,α diffeomorphisms ρj : B(0, 2)→ Vj such that

ρj(B(0, 2) ∩ Rn+) = Vj ∩ Ω, ρj(B(0, 2) ∩ (Rn−1 × {0})) = Vj ∩ ∂Ω,

where Rn+ is the upper half space Rn−1 × (0,+∞). One can further assume that ∂Ω ⊂⋃l
j=1 ρj(B(0, 1/2)).

Let ζ ∈ C∞c (Rn) be such that

0 ≤ ζ ≤ 1, ζ|B(0,1)= 1 and ζ|Rn\B(0,2)= 0.

Define for t ∈ [0, 1], the translation map

βt : Rn −→ Rn

x 7→ x− ζ(x)t−→en.

Let φjt = ρj ◦ βt ◦ ρ−1
j extended by the identity outside Vj and let

φt = φlt ◦ ... ◦ φ1
t .

Then φt is a C1,α diffeomorphism which coincides with the identity outside ∪iVi. For every
j and t > 0 sufficiently small,

φjt (Ω) ⊃ Ω, (B.6)

φjt (Ω) ⊃ Ω ∩ ρj(B(0, 1)). (B.7)

It follows from (B.6) that φt(Ω) ⊃ Ω but for t sufficiently small, we have the stronger
property

φt(Ω) ⊃ Ω. (B.8)

Indeed, let x ∈ ∂Ω. Since each φjt is a diffeomorphism, we deduce from (B.6) that φjt (Ω) ⊃
Ω. Applying this observation to φlt, φ

l−1
t , . . . , φ1

t successively, one gets l + 1 points x =
xl+1, . . . , x1 in Ω such that xi+1 = φit(xi) for every i = l, . . . , 1. In particular, x = φt(x1).
It remains to prove that x1 ∈ Ω. Since ∂Ω ⊂

⋃l
j=1 ρj(B(0, 1/2)), there exists i ∈ {1, . . . , l}

such that x ∈ ρi(B(0, 1/2)). Moreover, by construction of φjt , for every j ∈ {1, . . . , l},

|xj+1 − xj |= |φjt (xj)− xj |≤ |ρj |C0,1 |βt(ρ−1
j (xj))− ρ−1

j (xj)|≤ t|ρj |C0,1 .

It follows that maxj |x− xj |≤ ltmaxj |ρj |C0,1 .
There exists r > 0 such that for every i ∈ {1, . . . , l}, for every x ∈ ρi(B(0, 1

2)), for
every y ∈ Rn such that |x − y|< r, one has y ∈ ρi(B(0, 1)) (this can be easily seen by
contradiction). Then for t < r

lmaxj |ρj |C0,1
, the definition of r implies that xi+1 ∈ ρi(B(0, 1)).

By using (B.7), we deduce that xi ∈ Ω. If i = 1, then we are done. Otherwise, we
repeatedly use (B.6) to get that x1 ∈ Ω, as desired. This completes the proof of (B.8).

We now check the last assertion of the lemma. Set f1 = (φ2
t )
∗...(φlt)

∗(f). By the
triangle inequality,

||φ∗t (f)− f ||C0,α′ (Rn) = ||(φ1
t )
∗(f1)− f ||C0,α′ (Rn)

≤ ||(φ1
t )
∗(f1)− f1||C0,α′ (Rn)+||f1 − f ||C0,α′ (Rn).

Now, using that ρ1 is a C1,α map which is the identity outside a compact set of Rn and
Lemma B.2

||(φ1
t )
∗(f1)− f1||C0,α′ (Rn)≤ C‖β

∗
t ρ
∗
1(f1)− ρ∗1(f1)‖C0,α′ (Rn).
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Let α1 ∈ (α′, α). In view of Lemma B.5, this gives

||(φ1
t )
∗(f1)− f1||C0,α′ (Rn)≤ C|t|

α1−α′‖ρ∗1(f1)‖
C0,α1 (B(0,2))

.

Using Lemma B.2 again, one gets

||(φ1
t )
∗(f1)− f1||C0,α′ (Rn)≤ C|t|

α1−α′‖f1‖C0,α1 (ρ1(B(0,2))
.

By the triangle inequality and the fact that ||f ||C0,α1≤ C||f ||C0,α , ∀ 0 ≤ α1 < α ≤ 1, (this
constant C does not depend on α, α′), then

||(φ1
t )
∗(f1)− f1||C0,α′ (Rn) ≤ C|t|α1−α′‖f1 − f‖C0,α1 (Rn)+C|t|α1−α′‖f‖

C0,α1 (ρ1(B(0,2))

≤ C|t|α1−α′‖f1 − f‖C0,α1 (Rn)+C|t|α1−α′‖f‖
C0,α(ρ1(B(0,2))

.

We have thus proved that

||φ∗t (f)− f ||C0,α′ (Rn)≤ C‖f1 − f‖C0,α1 (Rn)+C|t|α1−α′‖f‖
C0,α(ρ1(B(0,2))

.

Repeating the above estimate for φ2
t , . . . , φ

l
t with a sequence of exponents α′ = α0 < α1 <

· · · < αl = α, we finally get

||φ∗t (f)− f ||C0,α′ (Rn)≤ C
l∑

i=1

|t|αi−αi−1‖f‖
C0,α(∪ni=1ρi(B(0,2))

.

This implies (B.5) and completes the proof of Lemma B.6.

We have now all the ingredients to present the proof of Proposition B.3.

Proof. We introduce a family (ξs)s↓0 of mollifiers such that supp ξs b B(0, s). We also use
the family (φt)t↓0 constructed in Lemma B.6.
By (B.4), φt(∂Ω) ⊂ Rn \ Ω. Hence, for every (small) t > 0, there exists st > 0 such that
φt(∂Ω + B(0, st)) ⊂ Rn \ Ω. Given g ∈ C0,α

z (Ω,Λ`), φ∗t (gz) = 0 on ∂Ω + B(0, st). Here, as
usual, gz is the extension of g by 0 outside Ω. Hence, ξst ∗ (φ∗t (gz)) belongs to C∞c (Ω,Λ`).
Moreover, for every g ∈W 1,1

0 (Ω,Λ`),

d(ξst ∗ (φ∗t (gz))) = ξst ∗ (d(φ∗t (gz))) = ξst ∗ (φ∗t (dgz)).

Let (ti)i∈N be a sequence decreasing to 0 and si = sti for every i ∈ N. We then set
ηi(g) = ξsi ∗ (φ∗ti(gz))|Ω. It remains to prove that

lim
i→+∞

‖ηi(g)− g‖C0,α′ (Ω,Λ`)= 0. (B.9)

By the triangle inequality,

‖ηi(g)− g‖C0,α′ (Ω,Λ`)≤ ‖ξsi ∗ (φ∗ti(gz))− ξsi ∗ gz‖C0,α′ (Ω,Λ`)+‖ξsi ∗ gz − g‖C0,α′ (Ω,Λ`).

Since (ξsi)i∈N is a sequence of mollifiers and gz ∈ C0,α(Rn,Λ`),

lim
i→+∞

‖ξsi ∗ gz − g‖C0,α′ (Ω,Λ`)= 0

and moreover, ‖ξsi ∗ (φ∗ti(gz)) − ξsi ∗ gz‖C0,α′ (Ω,Λ`)≤ ‖φ
∗
ti(gz) − gz‖C0,α′ (Ω,Λ`). By Lemma

B.6, the latter quantity converges to 0. This proves (B.9).
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Appendix C

Extension of closed forms in
Hölder and Sobolev spaces

Throughout this section, we still use the notationQ1 = (0, 1)n andQ′1 = (0, 1)n−1×{0}.
The latter will be often identified to (0, 1)n−1.

Given a k closed form f with Cr,α coefficients on Q1, we want to construct a (k − 1)
form X with Cr+1,α coefficients such that dX = f . We do not require any boundary
condition on X.

The difficulty is that Q1 is merely Lipschitz so that the classical Poincaré lemma in
Hölder spaces does not apply. Here is our strategy. We first construct an extension f̃ of
f to a smooth open set ω such that f̃ is still closed on ω. We then apply the classical
Poincaré lemma on the smooth set ω: this gives X̃ ∈ Cr+1,α(Q1,Λ

k−1) such that dX̃ = f̃ .
Then by restriction, X := X̃|Q1

is a solution of the Poincaré lemma on Q1. In order

to construct the closed form f̃ , we need some extensions lemma in the setting of Hölder
spaces.

A Sobolev version of the above result is presented at the end of this appendix, where
we rely instead on the Bogovskii construction, see Proposition C.7.

The following statement generalizes [13, Lemma 8.11], where the result is proved for
m = 1.

Lemma C.1. Let r,m ∈ N such that m ≤ r + 1, α ∈ (0, 1) and g ∈ Cr+1−m,α(Q′1). Then
there exists G ∈ Cr+1,α(Q1) satisfying, all over Q′1,

∂mG

∂xmn
= g , DβG = 0, for all multi-index β = (β1, . . . , βn) such that βn < m

and

||G||Cr+1,α(Q1)≤ C||g||Cr+1−m,α(Q′1)
, (C.1)

with C = C(r, α,m, n) > 0.

Proof. Using Proposition 5.5, we first extend the function g ∈ Cr+1−m,α(Q′1) to Rn−1, in
such a way that the resulting extension g satisfies

||g||Cr+1−m,α(Rn−1)≤ C||g||Cr+1−m,α(Q′1)
. (C.2)

Let ϕ ∈ C∞c (Rn−1), δ > 0 be such that

suppϕ ⊂ B′(0, δ) and

∫
Rn−1

ϕ = 1.
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We define

G(x) = G(x′, xn) =
xmn
m!

∫
Rn−1

ϕ(y′)g(x′ − xny′)dy′.

The function G can be rewritten as

G(x′, xn) =
xmn
m!

∫
Rn−1

1

xn−1
n

ϕ

(
x′ − y′

xn

)
g(y′)dy′ for all xn > 0. (C.3)

We compute the derivatives of G when xn 6= 0. We find, for 1 ≤ i ≤ n− 1,

∂G

∂xi
(x′, xn) =

xmn
m!

∫
Rn−1

1

xn−1
n

∂ϕ

∂xi

(
x′ − y′

xn

)
1

xn
g(y′)dy′

=
xm−1
n

m!

∫
Rn−1

∂ϕ

∂xi
(y′)g(x′ − xny′)dy′, (C.4)

whereas for i = n,

∂G

∂xn
(x′, xn) =

∂

∂xn

(
xm+1−n
n

m!

∫
Rn−1

ϕ(
x′ − y′

xn
)g(y′)dy′

)
=

(m+ 1− n)xm−1
n

m!

∫
Rn−1

ϕ(y′)g(x′ − xny′)dy′

− xm−1
n

m!

∫
Rn−1

〈∇ϕ(y′), y′〉g(x′ − xny′)dy′. (C.5)

We prove by induction that for every l ∈ {1, . . . ,m}, there exists a function ψl ∈
C∞c (Rn) which depends only on l, ϕ,m, n such that

∂lG

∂xln
(x′, xn) = xm−ln

∫
Rn−1

ψl(y′)g(x′ − xny′)dy′. (C.6)

It follows from (C.5) that (C.6) is true when l = 1 with

ψ1(y′) =
1

m!

(
(m+ 1− n)ϕ(y′)− 〈∇ϕ(y′), y′〉

)
.

We assume that (C.6) holds for some l ∈ {1, . . . ,m− 1}. The same computation as in the
case l = 1 shows that

∂l+1

∂xl+1
n

G(x′, xn) =
∂

∂xn

(
xm−ln

∫
Rn−1

ψl(y′)g(x′ − xny′)dy′
)

= xm−l−1
n

∫
Rn−1

ψl+1(y′)g(x′ − y′xn)dy′

with

ψl+1(y′) =

(
(m− l + 1− n)ψl(y′)− 〈∇ψl(y′), y′〉

)
.

This completes the proof of (C.6).
As in the computation leading to (C.4), one has for (i1, .., ik) ∈ {1, . . . , n − 1}k and
k + l ≤ m,

∂k

∂xi1 ...∂xik

∂l

∂xln
G(x′, xn) = xm−k−ln

∫
Rn−1

ψli1...ik(y′)g(x′ − xny′)dy′. (C.7)

where

ψli1...ik(y′) =

(
∂k

∂xi1 ...∂xik
ψl(y′)

)
.
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The formula (C.7) extends continuously to xn = 0.
When k + l < m, then

∂k

∂xi1 ...∂xik

∂l

∂xln
G(x′, 0) = 0.

When k + l = m, one gets

∂k

∂xi1 ...∂xik

∂l

∂xln
G(x′, 0) = g(x′)

∫
Rn−1

ψli1,..,ik(y′) dy′. (C.8)

Observe that ψli1,..,ik does not depend on g. In the particular case where g ≡ 1, then by
construction, G(x′, xn) = xmn /m!. Hence, when l ≤ m− 1, (C.8) gives

0 =
∂k

∂xi1 ...∂xik

∂l

∂xln

(
xmn
m!

)∣∣∣∣
xn=0

=

∫
Rn−1

ψli1,..,ik(y′) dy′.

When l = m, one has instead

1 =
∂m

∂xmn

(
xmn
m!

)∣∣∣∣
xn=0

=

∫
Rn−1

ψli1,..,ik(y′) dy′.

Coming back to (C.8) for a general g, this implies that when l ≤ m− 1,

∂k

∂xi1 ...∂xik

∂l

∂xln
G(x′, 0) = 0

while when l = m,
∂m

∂xmn
G(x′, 0) = g(x′).

Finally, in order to establish the estimate (C.1), one starts from (C.7) with k + l = m:

∂k

∂xi1 ...∂xik

∂l

∂xln
G(x′, xn) =

∫
Rn−1

ψli1,..,ik(y′)g(x′ − xny′)dy′.

Since ψli1,..,ik ∈ C
∞
c (Rn−1) and g ∈ Cr+1−m,α(Rn−1), one easily deduces that the function

∂k

∂xi1 ...∂xik

∂l

∂xln
G belongs to Cr+1−m,α

loc (Rn−1 × [0,+∞)) with

∥∥∥∥ ∂k

∂xi1 ...∂xik

∂l

∂xln
G

∥∥∥∥
Cr+1−m,α(Q1)

≤ C‖g‖Cr+1−m,α(Rn−1)≤ C ′‖g‖Cr+1−m,α(Q′1)
,

where the last inequality follows from (C.2). Since G ∈ C∞(Rn−1 × (0,+∞)), it follows
that G ∈ Cr+1,α(Rn−1× [0,+∞)) with the corresponding estimates on Q1. This completes
the proof of Lemma C.1.

We deduce from the above lemma the following statement where we prescribe each
normal derivative of the extension F .

Lemma C.2. Let r ∈ N and α ∈ (0, 1). Let (ci)1≤i≤r+1 be a family of functions such that

ci ∈ Cr+1−i,α([0, 1]n−1 × {0}).

Then there exists b ∈ Cr+1,α(Q1) satisfying, all over Q′1 = (0, 1)n−1 × {0},

b = 0
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and
∂ib

∂xin
= ci , i = 1, ..., r + 1.

Moreover there exists a constant C > 0 such that

||b||Cr+1,α(Q1)≤ C
( r+1∑
i=1

||ci||Cr+1−i,α(Q′1)

)
.

Proof of Lemma C.2. We set F0 = 0. By Lemma C.1, we can construct by induction on
i = 1, . . . , r + 1, a function Fi ∈ Cr+1,α(Q1) such that

DβFi = 0, on Q′1, for all multi-index β such that |β|< i

and
∂i

∂xin
Fi = ci −

∂i

∂xin

( i−1∑
j=0

Fj

)
.

Then, the function b =
∑r+1

i=1 Fi satisfies all the required properties.

Here is a version of Lemma C.2 for differential forms.

Lemma C.3. Let r ∈ N, k ∈ {1, . . . , n} and α ∈ (0, 1). Let c ∈ Cr,α(Q1,Λ
k) be such

that ν ∧ c = 0 on Q′1. When r ≥ 1, we also introduce a family (ci)2≤i≤r+1 such that
ci ∈ Cr+1−i,α(Q1,Λ

k−1) for each i ∈ {2, . . . , r+1}. Then there exists b ∈ Cr+1,α(Q1,Λ
k−1)

satisfying all over Q′1 :
db = c, δb = 0, b = 0

and when r ≥ 1,
∂ib

∂xin
= ci, for all 2 ≤ i ≤ r + 1. (C.9)

Moreover, there exists a constant C = C(r, α, n) > 0 such that

||b||Cr+1,α(Q1,Λk−1)≤ C
(
||c||

Cr,α(Q′1,Λ
k)

+

r+1∑
i=2

||ci||
Cr+1−i,α(Q′1,Λ

k−1)

)
.

The above statement corresponds to [13, Lemma 8.11], except for the condition (C.9)
which is not required in the quoted reference.

Proof. We denote cj =
∑

1≤i1<...<ik−1≤n c
j
i1...ik−1

dxi1 ∧ ... ∧ dxik−1 . By Lemma C.2, for

every multi-index 1 ≤ i1 < ... < ik−1 ≤ n, there exists bi1...ik−1
∈ Cr+1,α(Q1) such that on

Q′1,
bi1...ik−1

= 0 , ∇bi1...ik−1
= (νyc)i1...ik−1

ν,

and when r ≥ 1,
∂ibi1...ik−1

∂xin
= cii1...ik−1

, 2 ≤ i ≤ r + 1. (C.10)

Set
b =

∑
1≤i1<...<ik−1≤n

bi1...ik−1
dxi1 ∧ ... ∧ dxik−1 .

A simple computation shows that on Q′1

db = ν ∧ (νyc) and δb = νy(νyc) = 0.
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We combine the first equation with the hypothesis ν ∧ c = 0 to get

db = ν ∧ (νyc) + νy(ν ∧ c) = c.

The last equality relies on (6.11). Identity (C.9) follows from (C.10). The proof is complete.

In the setting of Sobolev spaces, we will only need the following simplified version of
Lemma C.3.

Lemma C.4. Let r ∈ N \ {0}, k ∈ {1, . . . , n} and p ∈ (1,∞). Let c ∈ W r,p(Q1,Λ
k) be

such that ν ∧ c = 0 on Q′1. Then there exists b ∈W r+1,p(Q1,Λ
k−1) satisfying all over Q′1 :

db = c, δb = 0, b = 0.

Moreover, there exists a constant C = C(r, p, n) > 0 such that

||b||W r+1,p(Q1,Λk−1)≤ C||c||
W
r− 1

p ,p(Q′1,Λ
k)
.

The proof of Lemma C.4 is essentially based on the same ideas as the one of Lemma
C.3 and we omit it. However, it relies on a Sobolev version of Lemma C.1, which is more
delicate to prove than Lemma C.1 itself, see e.g. [43, Section 2.4.2].

Coming back to the setting of Hölder spaces, we deduce from Lemma C.3 an extension
property for closed forms. The difficulty here is that we require that the extension remains
closed.

Lemma C.5. Let r ∈ N, k ∈ {1, . . . , n} and α ∈ (0, 1). Let f ∈ Cr,α(Q1,Λ
k) such that

df = 0 in Q1 and f ∧ ν = 0 on Q′1. Then there exists an extension of f in Q′1 × [−1, 1],

that we denote by f̃ , such that

df̃ = 0 in Q′1 × [−1, 1] and f̃ = f in Q1.

Moreover, there exists C = C(r, α, n) > 0 such that

||f̃ ||
Cr,α(Q′1×[−1,1],Λk)

≤ C||f ||Cr,α(Q1,Λk).

Proof. We write f =
∑

1≤i1<...<ik≤n fi1...ikdx
i1 ∧ ... ∧ dxik . Since ν ∧ f = 0 on Q′1, we

can rely on Lemma C.3 to construct κ =
∑

1≤i1<...<ik−1≤n κi1...ik−1
dxi1 ∧ ... ∧ dxik−1 with

Cr+1,α(Q′1 × [−1, 0]) coefficients such that all over Q′1 :

dκ = f, κ = 0, δκ = 0 (C.11)

and when r ≥ 1, for every j ∈ {1, . . . , r}, for every 1 ≤ i1 < ... < ik−1 ≤ n,

∂j+1

∂xnj+1
κi1...ik−1

= (−1)k−1 ∂j

∂xnj
fi1...ik−1n, if ik−1 < n, (C.12)

∂j+1

∂xnj+1
κi1...ik−1

= 0, if ik−1 = n. (C.13)

Moreover there exists a constant C > 0 such that

||κ||
Cr+1,α(Q′1×[−1,0])

≤ C||f ||
Cr,α(Q′1)

.

If follows from the two facts κ = 0 and δκ = 0 that

∂

∂xn
κi1...ik−2n = 0, for every 1 ≤ i1 < ... < ik−2 < n. (C.14)
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Indeed, since δκ = 0, one has for ik−2 < n,

k−2∑
γ=1

(−1)γ−1
∑

iγ−1<j<iγ

∂κi1...iγ−1jiγ ...ik−2

∂xj
+(−1)k−2

n−1∑
j=ik−2+1

∂κi1...ik−2j

∂xj
+(−1)k−2∂κi1...ik−2n

∂xn
= 0.

The first two terms of the above sum vanish, since κ = 0 on Q′1. Hence, the third term
vanishes as well. This proves (C.14). In the following, we just rely on (C.14) and not on
the facts that κ = 0, δκ = 0 on Q′1.

Finally, we define the desired extension of f as follows:

f(x) =

{
f(x) if x ∈ Q1

dκ(x) if x ∈ Q′1 × [−1, 0].
(C.15)

In order to justify that f has Cr,α([0, 1]n−1× [−1, 1]) coefficients, we only need to prove
that for every j ∈ {0, . . . , r},

∂j

∂xjn
(dκ)(x′, 0) =

∂j

∂xjn
f(x′, 0), ∀x′ ∈ Q′1 and j ≤ r. (C.16)

The case j = 0 follows from the fact that dκ = f on Q′1. When j ≥ 1, this amounts to
prove that

∂j

∂xjn
((dκ)i1..ik) =

∂j

∂xjn
(fi1...ik) on Q′1, for every 1 ≤ ik < ... < ik ≤ n. (C.17)

Let us first consider the case j = 1 (which implicitly means that we are in the case r ≥ 1).
Fix 1 ≤ i1 < ... < ik−1 < ik ≤ n. By definition of the exterior differential operator, one
has

∂

∂xn
((dκ)i1...ik) =

k∑
γ=1

(−1)γ−1
∂2κi1...îγ ...ik
∂xiγ∂xn

. (C.18)

Assume that ik = n. We then rely on (C.14) to deduce that on Q′1, for every γ < k,

∂2κi1...îγ ...ik−1n

∂xiγxn
= 0.

In view of (C.18), we can conclude that

∂

∂xn
((dκ)i1..ik) = (−1)k−1∂

2κi1...ik−1

∂x2
n

=
∂

∂xn
fi1...ik .

Here in the second equality, we have used (C.12) with j = 1.
We next assume that ik < n. On Q′1, for every γ ∈ {1, . . . , k},

(dκ)i1...̂iγ ...ikn =

γ−1∑
α=1

(−1)α−1
∂κi1...îα...îγ ...ikn

∂xiα

+
k∑

α=γ+1

(−1)α
∂κi1...îγ ...îα...ikn

∂xiα
+ (−1)k−1

∂κi1...îγ ...ik
∂xn

.

We then observe that

k∑
γ =1

γ−1∑
α =1

(−1)γ−1(−1)α−1
∂κi1...̂iα...îγ ...ikn

∂xiγ∂xiα
+

k∑
γ =1

k∑
α =γ+1

(−1)γ−1(−1)α
∂κi1...̂iα...îγ ...ikn

∂xiγ∂xiα
= 0.
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In view of (C.18), this implies that

∂

∂xn

(
(dκ)i1...ik

)
= (−1)k−1

k∑
γ=1

(−1)γ−1 ∂

∂xiγ

(
(dκ)i1...îγ ..ikn

)
. (C.19)

Using that on Q′1, fi1...îγ ...ikn = (dκ)i1...îγ ...ikn, one gets

∂

∂xn

(
(dκ)i1...ik

)
= (−1)k−1

k∑
γ=1

(−1)γ−1 ∂

∂xiγ
fi1...îγ ..ikn.

We now exploit the fact that (df)i1...ikn = 0 to deduce that the right hand side of the
above equality is equal to ∂

∂xn
fi1...ik . This completes the proof of the case ik < n. We

have thus proved that (C.17) holds true when j = 1.

We now proceed by induction on j ∈ {1, . . . , r}. Assume that the result is true for
some j − 1 ∈ {1, . . . , r − 1}, namely,

∂j−1

∂xj−1
n

(dκ)(x′, 0) =
∂j−1

∂xj−1
n

f(x′, 0), ∀x′ ∈ Q′1.

Let us prove it for j. Set

f j =
∂j

∂xjn
f and κj =

∂j

∂xjn
κ.

We need to establish that
∂

∂xn
(dκj−1) =

∂

∂xn
f j−1.

This is the same proof as in the case j = 0 in view of the fact that df j−1 = 0 on Q1 by
the Schwarz lemma and dκj−1 = f j−1 on Q′1 by the induction assumption. We also rely
on the two following identities: for every i1 < · · · < ik−1 ≤ n,

∂

∂xn
(κj−1
i1...ik−2ik−1

) = 0, if ik−1 = n,

∂2

∂x2
n

(κj−1
i1...ik−1

) = (−1)k−1 ∂

∂xn
f j−1
i1...ik−1n

, if ik−1 < n.

The first equality follows from (C.13) (and is a substitute to (C.14)) while the second one
is a consequence of (C.12). This completes the proof.

We can now state the main result of this section, namely the Poincaré lemma in Hölder
spaces defined on a cube, without any boundary condition:

Proposition C.6. Let r ∈ N, k ∈ {1, . . . , n} and α ∈ (0, 1). Let f ∈ Cr,α(Q1,Λ
k) such

that df = 0 in Q1. Then there exists X ∈ Cr+1,α(Q1,Λ
k−1) such that

dX = f in Q1.

Moreover, the correspondence f 7→ X can be chosen linear and continuous. In particular,
there exists C = C(r, α, n) > 0 such that

||X||Cr+1,α≤ C||f ||Cr,α .
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Proof. When k = n, one can rely on the extension property in Hölder spaces, see Proposi-
tion 5.5: there exists f̃ ∈ Cr,α(Rn,Λn) such that f̃ |Q1

= f and ‖f̃‖Cr,α(Rn,Λn)≤ C‖f‖Cr,α(Q1,Λn)

for some C = C(r, n) > 0. Since f̃ is an n form, it is automatically closed. Applying the
classical Poincaré lemma (see e.g. [13, Theorem 8.3]) on a large ball B(0, R) containing
Q1, there exists X̃ ∈ Cr+1,α(B(0, R),Λn−1) such that dX̃ = f̃ and

||X̃||
Cr+1,α(B(0,R),Λn−1)

≤ C||f̃ ||
Cr,α(B(0,R),Λn−1)

≤ C||f̃ ||Cr,α(Rn,Λn−1)≤ C ′||f ||Cr,α(Q1,Λn−1).

Then X = X̃|Q1
satisfies all the desired properties. This proves Proposition C.6 when

k = n. In particular, this settles the case n = 1.
We prove the result by induction on n ∈ N, n ≥ 1. Assume that the result is true

for some n ≥ 1. We will prove that it holds for n + 1. Let k ∈ {1, . . . , n + 1} and
f ∈ Cr,α(Q1,Λ

k) such that df = 0.
We introduce the two following maps:

i : x′ ∈ Rn−1 7→ (x′, 0) ∈ Rn , π : (x′, xn) ∈ Rn 7→ x′ ∈ Rn−1.

We claim that i∗f is closed on Q′1. This is obvious when r ≥ 1 since one can write
d(i∗(f)) = i∗(df) = 0. When r = 0, we use that for every θ ∈ C∞c (Q1,Λ

k+1),∫
Q1

〈f, δθ〉 dx = 0.

We apply the above identity to θ(x′, xn) = ζ(xn)θ′(x′) with ζ ∈ C∞c (0, 1), θ′ =
∑

I∈Ik+1,n−1
θ′Idx

I ∈
C∞c (Q′1,Λ

k+1). Since δθ = ζδθ′, one has∫
Q1

ζ〈f, δθ′〉 dx = 0.

The Fubini theorem then implies∫ 1

0
ζ(xn) dxn

∫
Q′1

〈f, δθ′〉(x′, xn) dx′ = 0.

Since this is true for every ζ ∈ C∞c (0, 1), we deduce therefrom that for every xn ∈ (0, 1),∫
Q′1

〈f, δθ′〉(x′, xn) dx′ = 0.

By continuity of f on Q1, this implies that∫
Q′1

〈f, δθ′〉(x′, 0) dx′ = 0.

Moreover, θ′ has no normal component, and the same is true for δθ′.
Hence, 〈f, δθ′〉(x′, 0) = 〈i∗f, δθ′〉(x′). It follows that∫

Q′1

〈i∗f, δθ′〉 dx′ = 0.

This proves that i∗f is also closed in the sense of distributions.
We next construct a form Y ∈ Cr+1,α(Q′1× [−1, 1],Λk−1) such that ν ∧dY = ν ∧ f on

Q′1 and moreover

||Y ||
Cr+1,α(Q′1×[−1,1],Λk−1)

≤ C||f ||
Cr,α(Q′1,Λ

k)
,
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where C = C(r, α, n) > 0.

Applying the induction hypothesis to the closed form i∗f on Q′1, there exists X ′ ∈
Cr+1,α(Q′1,Λ

k−1) such that dX = i∗f on Q′1 with the corresponding estimate.

Set Y = π∗(X ′). Then Y ∈ Cr+1,α(Q′1 × [−1, 1],Λk−1) and

i∗(dY ) = d(i∗Y ) = d(X ′) = i∗f,

or equivalently, ν ∧ dY = ν ∧ f on Q′1. By definition of Y ,

||Y ||
Cr+1,α(Q′1×[−1,1],Λk−1)

≤ C||f ||
Cr,α(Q′1,Λ

k)
.

This completes the construction of Y .

Since ν ∧ (f − dY ) = 0 on Q′1, we can rely on Lemma C.5 to construct an extension
f ∈ Cr+1,α(Q′1 × [−1, 1],Λk) such that f = f − dY on Q1, df = 0 on Q′1 × (−1, 1) and

‖f‖
Cr,α(Q′1×[−1,1],Λk)

≤ C‖f − dY ‖Cr,α(Q1,Λk).

Then the map f̃ = f + dY is an extension for f to Q′1 × [−1, 1]. Moreover, df̃ = 0

and ‖f̃‖
Cr,α(Q′1×[−1,1],Λk)

≤ C‖f‖Cr,α(Q1,Λk).

We can repeat the same construction in every direction of the coordinate axes to obtain
an extension to [−1, 2]n, see Figure C.1.

Figure C.1

We then replicate the whole construction sufficiently many times to get an extension to
[−j, j]n, with j large enough to ensure that [−j, j]n contains a ball B(0, R) which contains
Q1. This yields a k form still denoted by f̃ ∈ Cr,α(B(0, R),Λk) such that df̃ = 0, f̃ = f
on Q1 and ‖f̃‖

Cr,α(B(0,R),Λk)
≤ C‖f‖Cr,α(Q1,Λk), with C = C(r, α, n) > 0.

We then apply the classical Poincaré lemma [13, Theorem 8.3] on the ball B(0, R) to
get X̃ ∈ Cr+1,α(B(0, R),Λk−1) such that dX̃ = f̃ with the corresponding estimate. Then
X = X̃|Q1

satisfies all the desired properties.

Finally, we state the analogue of Proposition C.6 in the setting of Sobolev spaces:

Proposition C.7. Let s ∈ [0,+∞), k ∈ {1, . . . , n} and p ∈ (1,∞). Let f ∈W s,p(Q1,Λ
k)

such that df = 0 in Q1, 1 ≤ k ≤ n. Then there exists X ∈W s+1,p(Q1,Λ
k−1) satisfying

dX = f in Q1.

Moreover, the correspondence f 7→ X can be chosen linear and continuous. In particular,
there exists C = C(s, p, n) > 0 such that

||X||W s+1,p≤ C||f ||W s,p .
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Proof. The above statement corresponds to [12, Proposition 4.1 (i)] where we replace the
scale of Hs spaces by the scale of W s,p spaces, which is possible in view of [12, Remark
3.5].

In fact, the Bogovskii construction described in [12] can be performed in the whole scale
of Besov spaces, see [12, Remark 3.5]. Since Hölder spaces can be seen as particular Besov
spaces, this can be used to give an alternate proof to Proposition C.6. We have preferred
to give an explicit construction, based on the Poincaré lemma on smooth domains.

[9]
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