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Résumé en français 
 

L'épilepsie est l'un des troubles neurologiques les plus répandus, qui touche 

plus de soixante-dix millions de personnes dans le monde (environ 1 % de la 

population mondiale) (Katchanov and Birbeck, 2012; Ngugi et al., 2011). Elle se 

caractérise par des crises récurrentes (Kwan and Brodie, 2000) qui nuisent 

considérablement à la qualité de vie des patients. Les crises sont principalement liées 

à des décharges neurales excessives et synchronisées dans une ou plusieurs 

structures du cerveau (Badawy et al., 2012). La thérapie la plus immédiate pour traiter 

et contrôler l'épilepsie est l'utilisation de médicaments, ou éventuellement une 

combinaison de médicaments (Sankaraneni and Lachhwani, 2015). Cependant, un 

tiers des patients épileptiques ne répond pas à la thérapie médicamenteuse (Kobau et 

al., 2008). La chirurgie peut représenter une option pour ces patients, cependant, une 

grande partie des patients (60-70%) n'est pas éligible en raison d'un rapport 

bénéfice/risque défavorable. Par conséquent, il existe un besoin urgent de thérapies 

alternatives qui pourraient réduire de manière significative la fréquence des crises. 

Parmi les approches candidates, la stimulation cérébrale fait l'objet d'une attention 

croissante de la part de la communauté scientifique. 

En effet, il a été démontré il y a plusieurs décennies (Upton and Cooper, 1976) 

que la stimulation électrique du cerveau peut impacter l'activité épileptiforme, ce qui a 

motivé les efforts de recherche visant à identifier ses mécanismes d'action et à 

optimiser ses effets thérapeutiques. De plus, des études expérimentales ont identifié 

un lien entre l'amélioration de l'efficacité de la stimulation cérébrale pour mettre fin aux 

crises d'épilepsie, et le choix des sites de stimulation quand une stimulation multi-site 

est appliquée (Sobayo and Mogul, 2016). Cependant, l'utilisation clinique de la 

stimulation cérébrale dans le contexte de l'épilepsie est encore limitée et largement 

basée sur une approche par essai-erreur (Hoang et al., 2017). En outre, les études 

axées sur les paramètres (intensité, fréquence, forme d'onde, ...) sont encore peu 

nombreuses, essentiellement empiriques et basées sur des évaluations qualitatives. 

Ce problème est dû au fait que la caractérisation précise de la réponse à la stimulation 

au chevet du patient ne peut pas être réalisée, car cela nécessiterait des séances 
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prolongées qui ne sont pas compatibles avec le temps et la tolérance limités des 

patients. Une autre approche consiste à réaliser des expériences in vivo et in vitro sur 

des animaux pour identifier les paramètres les plus efficaces, ce qui n'est pas une 

approche optimale car l'espace total des paramètres de stimulation est trop grand pour 

être pratique à explorer. 

Dans ce contexte, une possibilité d'identifier les paramètres de stimulation 

optimaux, tout en évitant ces longues séances de test irréalistes des paramètres de 

stimulation, consiste à utiliser des modèles bio-informatiques neuro-inspirés. Au cours 

des dernières décennies, de tels modèles ont été développés pour simuler l'activité 

cérébrale à différentes échelles spatiotemporelles. Les modèles microscopiques 

(Hodgkin and Huxley, 1952) décrivent l’activité d'un seul neurone, tandis que les 

modèles mésoscopiques, tels que les modèles de masse neurale (NMM) (Jansen and 

Rit, 1995; Wendling et al., 2002a) ou les modèles dits de champs neuraux (Spiegler 

and Jirsa, 2013) décrivent l'activité moyenne de populations de neurones. Dans le 

domaine de l'épilepsie, les modèles bio-informatiques sont de mieux en mieux 

acceptés et sont maintenant reconnus comme une approche efficace pour obtenir des 

informations sur les mécanismes physiopathologiques qui sous-tendent l'activité 

épileptiforme (F. Wendling et al., 2016). Parmi ces modèles, le choix des NMM pour 

modéliser l'activité épileptiforme est motivé par leur facilité d'utilisation (petit nombre 

de paramètres par rapport aux modèles microscopiques), tout en conservant les 

principales propriétés neuro-anatomiques et neurophysiologiques. En outre, les NMM 

permettent de simuler des signaux à la même échelle que les signaux 

électrophysiologiques enregistrés en clinique, à partir de signaux de scalp (EEG) ou 

intracérébraux (EEG de profondeur, SEEG ou ECoG). L'un des modèles pionniers des 

NMM est le modèle de Jansen et Rit (Jansen and Rit, 1995), initialement développé 

pour étudier les potentiels évoqués visuels, puis adapté pour générer des activités 

épileptiformes avec des valeurs appropriées de paramètres liés à l'excitation et à 

l'inhibition (Wendling et al., 2000). 

En utilisant les NMM et des techniques mathématiques dérivées de la théorie 

des systèmes dynamiques, nous avons tenté identifier les mécanismes conduisant à 

l'initiation, la propagation et la terminaison des crises. La stimulation électrique 

cérébrale a été incluse dans les NMM sur la base de connaissances physiologiques et 
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biophysiques. Par conséquent, la réponse en fréquence d'une population de neurones 

épileptiques à une perturbation électrique externe a été étudiée, et une conception 

plus rationnelle des protocoles de stimulation cérébrale a été suggérée. En plus 

d'étudier les effets de la stimulation d'une seule région, nous avons abordé la question 

de la stimulation multi-sites, qui est une technique émergente consistant à stimuler 

plusieurs sites cérébraux simultanément pour obtenir un effet neuromodulateur. Nous 

avons étudié l'efficacité de la stimulation multi-sites par rapport à la stimulation d'un 

seul site, ainsi que le choix des cibles et du moment de la stimulation. Cette recherche 

nous a conduit à proposer une méthode pour concevoir des méthodes optimales de 

stimulation multi-site visant à faire avorter l'activité épileptiforme.   

 

Dynamique des populations neuronales locales dans des conditions 

spontanées (sans stimulation) 

La dynamique des masses neurales est étroitement liée aux gains synaptiques. 

Chaque état d'excitabilité (résultant de la combinaison des gains synaptiques) d'une 

sous-population neuronale a été associé à un schéma d'activité neuronale. Un tel 

mode de représentation a permis d'identifier les sous-populations neuronales 

impliquées dans la génération de types d'activité spécifiques. Les résultats établissent 

un lien entre l'apparition d'oscillations de haute fréquence et de faible amplitude (dite 

fast onset activity), qui caractérisent l'apparition rapide de l'épilepsie, et une activité 

accrue d'interneurones projetant vers le soma (interneurones inhibiteurs rapides). 

Cette activité accrue est représentée par une augmentation du gain synaptique 

correspondant. De plus, l'activité de fond est liée à des niveaux élevés d'activité 

d'interneurones lents projetant vers les dendrites. Cette sous-population neuronale 

inhibe à la fois les interneurones inhibiteurs projetant vers le soma et les cellules 

pyramidales. Par conséquent, elle entraîne la suppression des oscillations épileptiques 

et diminue les oscillations de grande amplitude générées par les neurones excitateurs 

en influençant les cellules pyramidales. 
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Dynamique de populations neuronales locales dans des conditions de 

stimulation 

Comprendre comment la variation des paramètres de stimulation affecte la 

dynamique d’une région neuronale est essentiel pour la conception d'un protocole de 

stimulation rationnel, et fournir de tels diagrammes de bifurcation pour un modèle 

réaliste de l'activité neuronale sous stimulation électrique est un pas dans cette 

direction. Ces diagrammes ont fourni des résultats cohérents avec les travaux 

précédents relatifs à l'identification de paramètres de stimulation efficaces capables 

d'interrompre les crises d'épilepsie (Beurrier et al., 2001; Filali et al., 2004; Shen et al., 

2003). Les résultats ont également confirmé que l'utilisation de hautes fréquences 

(plus de 90 Hz) associées à une amplitude spécifique (2 mV dans le modèle) a le 

potentiel de supprimer l'activité épileptiforme à basse fréquence. Des travaux futurs 

permettront de valider cette prédiction in vivo. 

Conception d'une stimulation multi-sites capable d’arrêter les crises d'épilepsie 

au niveau réseau 

Les recherches menées au niveau d'une seule population neuronale ont été 

étendues pour optimiser la neurostimulation multi-sites et générer des hypothèses 

expérimentalement vérifiables. La perspective d'effectuer une stimulation multi-sites 

dans l'épilepsie est en partie motivée par les effets rapportés de la stimulation multi-

sites chez l'homme, par exemple dans l'amélioration de la mémoire de travail 

(Alagapan et al., 2019). Dans notre étude, nous avons développé un modèle décrivant 

un réseau neuronal épileptogène et étudié l'impact de la stimulation multi-sites sur les 

régions neuronales connectées générant des décharges interictales; une activité 

reconnue comme un marqueur électrophysiologique des systèmes neuronaux 

épileptogènes (Wendling et al., 2002). Nos résultats ont confirmé l'efficacité de la 

stimulation multi-sites pour réduire la fréquence des décharges épileptiques, et ont 

montré qu'il est possible d'orienter le choix des cibles de stimulation en se basant sur 

une métrique de la théorie des graphes (à savoir la centralité de vecteur propre). Nous 

montrons ainsi que l'efficacité de la stimulation multi-sites est directement liée à la 

structure du circuit et à la connectivité. Ainsi, nous avons présenté une méthode de 

sélection et de limitation du nombre de régions cibles basée sur les potentiels de 

champs locaux (LFP) "enregistrés", qui devrait être réalisable expérimentalement sur 
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la base des LFP enregistrés. Ces « hubs » de connectivité choisis sont caractérisés 

par une connectivité élevée, et leur stimulation a un impact important sur la dynamique 

du réseau, contrairement à la stimulation d'autres nœuds moins centraux. En outre, il 

convient de mentionner que la stimulation multi-sites de quelques régions a été 

identifiée comme optimale, et a surpassé la stimulation du réseau entier ou d'une seule 

région du réseau. 
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Introduction 
 

 

 

Epilepsy is one of the most prevalent neurological disorders, affecting more than 

seventy million people worldwide (approx. 1% of the world population) (Katchanov and 

Birbeck, 2012; Ngugi et al., 2011). It is characterized by recurrent seizures (Kwan and 

Brodie, 2000) that dramatically impair patient’s quality of life. Seizures are primarily 

related to excessive and synchronized neural discharges in one or several brain 

structures (Badawy et al., 2012). The most immediate therapy for treating and 

controlling epilepsy is the use of antiepileptic drugs (AED), or possibly a combination 

of drugs (Sankaraneni and Lachhwani, 2015). However, one third of epileptic patients 

do not respond to drug therapy and are classified as patients with drug-resistant 

epilepsy (DRE) (Kobau et al., 2008). DRE is defined by the International League 

Against Epilepsy as the failure of adequate trials of 2 tolerated, appropriately chosen, 

and used AED schedules, whether as monotherapies or in combination to achieve 

sustained seizure freedom for 12 months, or 3 times the inter-seizure interval before 

the treatment started (Kwan et al., 2010). Surgery can be an option for those drug-

refractory patients, however, a large fraction of patients (60-70%) is not eligible due to 

several factors, including the location of the epileptogenic zone. Regions involved in 

key functions cannot be resected since their removal may result in a highly unfavorable 

benefit/risk ratio. Hence, there is a pressing need for alternative therapies that could 

decrease seizure frequency, or even preventing them completely. Among the therapies 

that could represent an alternative to drugs for those patients, brain stimulation has 
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been receiving increasing attention by the biomedical engineering and clinical 

communities.   

Brain stimulation has been proved as an effective method to modulate neural 

activity (Davis et al., 1982; Upton and Cooper, 1976; Wright and Weller, 1983). 

Consequently, studies have been conducted to identify its mechanisms of action and 

optimize its therapeutic effects, which are still not fully understood today. Stimulation 

parameters such as amplitude, frequency, waveform, timing and anatomical target play 

a critical role in neural tissue response and potential seizure abortion. Depending on 

the combination of those parameters, the net effect has been reported to be either null, 

able to abort seizures, or even induce seizures. Therefore, a major clinical challenge 

is identifying the optimal set of parameters among all the possibilities that would result 

in seizure abortion. An additional challenge is the considerable variation, between 

patients, of the underlying etiology, location and extent of epilepsy.  

Due to this difficulty to rationally provide efficient sets of parameters for epilepsy 

(i.e., with therapeutic effects), the clinical use of brain stimulation in the field of DRE 

has remained limited. Accurate characterization of the stimulation response at the 

bedside cannot be achieved, since this would require extensive testing sessions which 

are not compatible with patients’ and clinicians’ limited time and tolerance. An 

alternative approach is to perform animal in vivo and in vitro experiments to identify the 

most effective parameters, however exploring the entire stimulation parameter space 

is still a major roadblock. In this context, one possibility to identify optimal stimulation 

parameters, while avoiding such unrealistic extended testing sessions of stimulation 

parameters, consists in using computational models taking into account the 

physiological characteristics of brain tissue. 

Over the past decades, different types of models, either neuro-inspired of purely 

mathematical, have been developed to simulate brain activity at different 

spatiotemporal scales. Microscopic models (Hodgkin and Huxley, 1952) describe 

single neuron dynamics; while mesoscopic models, such as neural mass models 

(NMMs) (Jansen and Rit, 1995; Wendling et al., 2002b) or neural field models (Spiegler 

and Jirsa, 2013) describe the averaged activity of neuronal assemblies. In the field of 

epilepsy, computational models have gained acceptance and are now recognized as 

an efficient approach to get insights into the pathophysiological mechanisms 
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underlying epileptiform activity (Fabrice Wendling et al., 2016). In the present thesis, 

the choice of NMMs to model epileptiform activity has been motivated by their ease of 

use (small number of parameters as compared to microscopic models), while retaining 

key neuroanatomical and neurophysiological properties. Furthermore, NMMs simulate 

signals at the same spatial scale than the electrophysiological signals typically 

recorded in clinics, from the scalp level using electroencephalography (EEG), or 

intracerebral using stereo-electroencephalography (SEEG).  

Using NMMs and mathematical techniques derived from dynamical systems 

theory, we have attempted to elucidate the mechanisms underlying the mechanisms 

leading to seizure initiation, propagation and termination. Brain electrical stimulation 

was included in NMMs based on physiological and biophysical knowledge. Therefore, 

the frequency response of an epileptic neuronal population to an external electrical 

perturbation was studied, and a more rational design for brain stimulation protocols 

was determined. In addition to investigating the stimulation effects of a single region, 

we tackled the issue of multi-site stimulation, which is an emerging technique 

consisting in stimulating several brain sites simultaneously to achieve a 

neuromodulatory effect. We investigated the effectiveness of multi-site stimulation as 

compared to single-site stimulation, and the choice of stimulation targets and timing. 

This investigation led us to propose a method to design optimal multi-site stimulation 

methods aiming at aborting epileptiform activity.   

 

This thesis is organized as follows: 

 

- Chapter 1: We provide a state-of-the-art regarding electrophysiological 

activity, the experimental techniques used for measuring neuronal activity, 

epileptic syndromes and the classification of epilepsy seizures. Then, we 

present an overview of neurostimulation, along with the computational 

models and mathematical techniques used to study the brain activity. We 

also introduce the main research question tackled in this thesis, and present 

the gap of knowledge limiting the therapeutic effects of brain stimulation. An 

outline of the proposed approach is provided. 
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- Chapter 2: We introduce the mathematical models used for simulating the 

electrical activity of a single neuronal population in the absence or presence 

of electrical stimulation. The means of coupling neuronal populations and 

constructing a large neuronal network and including stimulation within the 

model are presented.  

 
 

- Chapter 3: First, we present the dynamics of a single neuronal population 

under spontaneous and stimulation conditions. Neuronal dynamics are 

linked to the activity and role of specific neuronal types. Furthermore, we 

present qualitative changes in dynamics while applying electrical stimulation, 

and identify optimal settings to replace pathological activity with a more 

physiological activity. Second, we attempt at deriving a transfer function for 

a non-linear system, with the objective to provide a fast and accurate 

identification of candidate stimulation frequencies that could effectively abort 

the generation of epileptiform activity.  

 

- Chapter 4: In this chapter, we focus on networks of coupled neuronal 

populations. The dynamics of these networks are studied to determine a 

rational design for efficient (i.e., able to abort epileptiform activity) stimulation 

protocols. The previous investigation (Chapter 3) is then extended to 

optimize multi-site neurostimulation by taking into account additional factors 

such as network effects. Experimentally testable hypotheses are also 

proposed. 

 

Finally, we conclude this thesis by discussing our results in the context of the existing 

literature, and provide future perspectives and challenges along our lines of research. 
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Chapter 1 

Literature review and 

problem statement 

 

 

1.1 Electrophysiological activity 
The brain is the organ located in the cranium enabling perception, thoughts, 

emotions, consciousness, and sustaining key vital functions. The brain is composed of 

two main types of cells: neurons (involved in information processing, propagation and 

storage) and glial cells (mainly involved in regulating metabolic processes and 

synapses). Neurons communicate by sending and receiving electrical and chemical 

signals, and are composed of four main parts: dendrites, cell body (soma), axon and 

synapses, as shown in Figure 1.1. Dendrites are appendages responsible for the 

reception of information from other cells, and are organized as a tree-like structure that 

receives inputs from other neurons. The soma supports and maintains the functioning 

of the neuron, since it produces necessary proteins to the function of dendrites and 

axons (Marieb and Hoehn, 2010). When the sum of inputs exceeds a threshold within 

a limited temporal window, the neuron will trigger an action potential that will be 

conducted through the axon until reaching the neuron ending and releasing at the 

synaptic level neurotransmitters (chemical messengers) that will bind on post-synaptic 

receptors (Lovinger, 2008). 
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Figure 1.1. Main components of a neuron (adapted from Santiago Ramón y Cajal). 

Action potentials play a fundamental role in neuronal communication. This 

transient phenomenon is characterized by a drastic and short (millisecond scale) 

depolarization of the membrane. Once the total incoming postsynaptic potentials 

exceeds the so-called firing threshold, typically around -55 mV, an action potential is 

triggered. The generation of action potentials is possible thanks to ionic currents that 

have different kinetics. The ionic channels present on the dendrites’ membrane 

regulate extra/intracellular concentrations of specific ions such as sodium	"#$, 

potassium %$ and chloride	&'(. The opening of channels induces positive ions flow 

into the cell, particularly the entering of sodium, which depolarizes the membrane. 

Once the firing threshold is exceeded, a rapid depolarization occurs driven by the rapid 

opening of voltage-gated "#$ channels, leading further influx of sodium ions within the 

cell, contributing to increase the depolarization. This reversal causes the membrane 

potential to approach the "#$ equilibrium potential at approximately +50 mV. This peak 

is followed by a slower repolarization, caused by a current of %$ ions from the intra-

cellular space to the extra-cellular space. The conductance of %$ ionic channels 

evolves more slowly than sodium channels, and remains high after that the membrane 

potential has returned to its resting state (typically -55 mV), resulting in a membrane 

potential that is transiently more negative than the resting potential, which is called 

hyperpolarization. It is worth mentioning that intra-cellular and extra-cellular ions 

concentrations do not change significantly during an action potential: only a small 
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fraction of ions move across neuron membrane (Chrysafides et al., 2020; Lodish et al., 

2000). The action potential then propagates through the axon until reaching the 

synapse, where neurotransmitters are released and bind on the post-synaptic 

receptors of afferent neurons, potentially inducing action potentials in those target 

neurons. Figure 1.2 presents the time course of an action potential along with the 

aforementioned terminology regarding variations of the membrane potential.  

 

Figure 1.2. Action potential time course (adapted from Wikipedia/Action_potential). 

Once the firing rate threshold is exceeded, following a rapid summation of inputs, a 

rapid depolarization occurs, followed by repolarization and hyperpolarization phase of 

the membrane potential.  

The electrical activity of an assembly of neurons, and the summation of their 

post-synaptic potentials, originate the brain rhythms that can be experimentally 
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recorded in brain tissue. The different electrophysiological patterns generated by 

neuronal activity can be recorded using several techniques that have various degrees 

of invasiveness. For non-invasive recordings, the most common modality is 

electroencephalography (EEG), which consists in measuring neuronal activity from 

cortical sources using scalp electrodes, as presented in Figure 1.3. Although it offers 

a poor spatial resolution (on the order of the square centimeter), it has an excellent 

temporal resolution and no serious safety restrictions; as opposed to invasive 

modalities such as stereo-electroencephalography (SEEG, involving recordings 

through intracranial electrodes). Given the distance between cortical regions and scalp 

electrodes, EEG measures the synchronized oscillations of a neuronal population, 

instead of individual action potentials (Nunez and Srinivasan, 2006). These rhythms 

are classically classified according to their dominant frequency (Buzsáki and Silva, 

2012; Nunez and Cutillo, 1995). 

 

Figure 1.3 Example of a typical recording session of EEG signals (here, a high-

resolution EEG cap with 256 electrodes). 

Brain rhythms refer to the oscillatory activity patterns that can be recorded for 

example with EEG or SEEG. Five main oscillatory patterns can be associated with 

specific behaviors, excitability levels and consciousness states (Mackay, 1997). 1) 
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Delta corresponds to oscillations of frequency lower than 4 Hz with a high amplitude, 

are typically generated by thalamo-cortical circuits (Dossi et al., 1992), and are 

involved in sleep states (Steriade et al., 1993). 2) Theta corresponds to oscillation of a 

frequency between 4 and 7 Hz, and can be observed in the hippocampus and frontal 

cortex (Buzsáki, 2002; Cavanagh and Frank, 2014). Moreover, theta activity 

participates in the process of short-term storage of information also known as working 

memory (Lega et al., 2012), and in the regulation of emotions (Ertl et al., 2013). 3) 

Alpha oscillations are between 8 and 12 Hz, and are the first rhythm that has been 

observed by Hans Berger in 1929, due to its significant amplitude. Alpha oscillations 

are typically observed in posterior regions. Those oscillations have been related, 

among others, to awareness and visual attention (Niedermeyer’s 

Electroencephalography, 2005; “The Brain’s Alpha Rhythms and the Mind - 1st 

Edition,” 2003). 4) Beta oscillations cover the 13-30 Hz frequency band, and are 

present during normal, waking consciousness for example. 5) Gamma oscillations (>30 

Hz) are associated with cognitive processes such as learning and perception 

(Kucewicz et al., 2014). Those main rhythms are represented below in Figure 1.4. 

 

Figure 1.4. Illustration of the five main human EEG rhythms (Campisi et al., 2012).  
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1.2 Epileptic syndromes 

According to the International League Against Epilepsy (ILAE), a seizure can be 

defined as a “transient occurrence of signs and/or symptoms due to abnormal 

excessive or synchronous neural activity in the brain” (Fisher et al., 2005). The 

occurrence of at least two unprovoked or reflex seizures within more than 24 hours 

leads to the diagnosis of the individual as suffering from epilepsy (Fisher et al., 2014). 

This chronic neurological disorder can affect people of all ages, and can result in social, 

behavioral, health and economic consequences to patients and their families. 

The symptoms associated with epileptic seizures differ depending on the 

affected region(s). Common seizure symptoms include temporary confusion, loss of 

consciousness or awareness, jerking movements and muscle contractions (Pack, 

2019). Epileptogenic neuronal regions responsible for this paroxysmal alteration of 

neurologic function can be observed and detected using several techniques. 

Computed tomography (CT) and magnetic resonance imaging (MRI) enables detecting 

epileptic foci caused by morphological abnormalities.  In the absence of morphological 

changes, functional and electrophysiological data are required. Magneto-

encephalography (MEG) enables the identification epileptic foci with a good spatial 

resolution by detecting the (extremely small) magnetic fields generated by neuronal 

activity, however this neuroimaging modality is sensitive to radial sources and is limited 

by its high cost and low penetration (Ebersole and Ebersole, 2010). 

Electroencephalography (EEG) is a commonly used neuroimaging modality proving a 

good temporal resolution but a relatively poor spatial resolution, unlike intracranial EEG 

(sEEG) which is an invasive method that has a much improved spatial resolution since 

electrode contacts are directly at the contact of brain tissue. A combination of EEG and 

MRI may assist neurologists further for the diagnosis of specific epilepsy syndromes 

(Pohlmann-Eden and Newton, 2008). 

Although the predictive value of interictal spikes has been debated, these brief 

paroxysmal discharges that occur between seizures have been considered as a 

biomarker of epileptogenicity (Roehri et al., 2018). Another marker of epileptogenicity 

is high-frequency oscillations (HFOs) (Jacobs et al., 2009, 2008), for which several 

studies have related better postsurgical outcomes to the resection of neuronal areas 
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with higher rates of HFOs (Fedele et al., 2016; Höller et al., 2015; Jacobs et al., 2010, 

2008). However, the difficulty to differentiate between physiological and pathological 

HFOs limits their clinical use as a unique biomarker of epileptogenic tissue (Jacobs et 

al., 2012; Jefferys et al., 2012; Roehri et al., 2018). 

EEG/SEEG signals exhibit typical patterns during seizures, such as spike-

waves events, fast onset activity and after seizure slow waves (Worrell et al., 2008). In 

Figure 1.5, SEEG signals recorded during epileptic seizures in human and mice are 

presented.  

 

 

a) 

b) 
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Figure 1.5 a) SEEG signals recorded in human hippocampus at the onset of a temporal 

lobe seizure. During interval a-1, no epileptiform activity is present, while in a-2 spikes 

are detected followed by fast onset activity in a-3, and finally slow waves during a-4. 

b) SEEG signals recorded from different mice brain regions at the beginning of a 

seizure (left subiculum (LSub), left hippocampus (LHip), left thalamus (LTha), left 

enthorinal cortex (LEC), right enthorinal cortex (REC), right subiculum (RSub)). 

Epileptic seizures are described as either partial or generalized (Pack, 2019). 

Partial seizures involve one of multiple brain foci belonging to the same hemisphere, 

and fall into two categories; with and without loss of consciousness. Conversely, 

generalized seizures involve the entire brain, they can be classified into 6 types; 1) 

absence seizures causing a brief loss of awareness, 2) tonic seizures causing a 

stiffening of the muscles, 3) atonic seizures causing a loss of muscle control, 4) clonic 

seizures associated to repeated or rhythmic, jerking muscle movements, 5) myoclonic 

seizures, and 6) tonic-clonic seizures that are the most dramatic and can cause an 

abrupt loss of consciousness and loss of bladder control. 

Epileptic syndromes are defined as the group of clinical characteristics that 

consistently occur together (Scheffer et al., 2017). This cluster of features incorporates 

seizures types, age at which seizures begin, EEG characteristics, imaging findings, 

triggering factors, and response to anti-epileptic drugs (AEDs) among others. Those 

features provide information regarding etiology and the type of drug that could 

efficiently reduce seizures. Syndromes can vary greatly: some are called ‘benign’, as 

reference to seizure- and drug-free after a certain age; while other syndromes are 

severe and difficult to control. The most common syndromes, based on their frequency, 

are benign rolandic epilepsy, childhood absence epilepsy and temporal lobe epilepsy 

(Boyer, 2016; Cendes, 2004; Guerrini and Pellacani, 2012). Benign rolandic epilepsy 

(BRE) is one of the most common types of epilepsy, accounting more than one-third 

of all epilepsy cases. Symptoms appear during childhood between the ages of 3 and 

10, and cause partial seizures during sleep, accompanied of tingling feeling in the 

mouth and an inability to speak. Anti-epileptic drugs are recommended as a treatment 

for patients suffering from BRE, but are not necessary. Most children suffering from 

this syndrome become seizure-free by the age of 16. Childhood absence epilepsy 

(CAE) is characterized by a brief loss of consciousness and affects children between 
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3 and 6 years. Seizures are often controlled and the patients can regain their normal 

life with anti-epileptic drugs. Up to 90% of children with CAE become seizure-free by 

the age of 12. 

One of the most classic syndromes that is of interest in the context of this thesis 

is temporal lobe epilepsy (TLE), which is common in adults (Tatum, 2012). In TLE, the 

epileptogenic zone is found in temporal structures such as hippocampus or amygdala. 

Seizures begin in late childhood and adolescence and are mostly focal, although some 

TLE patients have generalized seizures. One feature of this type of epilepsy is their 

resistance to antiepileptic drugs, which might require resective surgery (Bernhardt et 

al., 2013; Thom et al., 2010) if the candidate satisfies certain factors. However, a large 

fraction of TLE patients (60-70%) is not eligible to resective surgery due to 1) multiple 

seizure foci involving one or both cerebral hemispheres, and/or 2) unfavorable 

benefit/risk ratio. Thus, there is a pressing need to develop and adopt alternative 

therapies that could significantly relieve seizures. Among the candidate approaches, 

brain stimulation has been receiving increasing attention in the last decade, which is 

reviewed in the next section. 

 

1.3 Neurostimulation 

Neurostimulation refers to the modulation of neuronal activity through electric, 

magnetic, or pharmacologic means. In this thesis, we focused on the use of electric 

stimulation in particular, which consists in delivering an electric current and associated 

electric field in brain tissue to induce a modulation of neuronal activity. This therapeutic 

technique has provided promising results in drug-refractory patients suffering from 

epilepsy in whom surgery would have an unfavorable benefit/risk ratio, and also other 

neurological diseases such as Parkinson’s disease (Deuschl et al., 2006; Weaver et 

al., 2009), and chronic pain (Kumar et al., 2008, 2005) for example. Moreover, it has 

been used even for memory enhancement, relieve depression and eating disorders 

(Akhtar et al., 2016; Dalton et al., 2018; Meisenhelter and Jobst, 2018). 

The ability of electrical stimulation to alter neuronal activity has been 

documented since the mid-20th century (Bailey and Bremer, 1938). Since then, 

significant research efforts have been conducted to determine its mechanisms, effects, 
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potential applications and optimal parameters. The effects of an induced electric field 

are categorized as 1) sub-threshold changes in ongoing neural activity (Bikson et al., 

2004); delivering of a weak electric current assuring and preserving the main properties 

of neuronal function (Lundstrom et al., 2017), or 2) supra-threshold stimulation that 

directly triggers action potentials (Lopez et al., 1991) by depolarizing the neuron 

membrane (Ranck, 1975; Rattay, 1989), and thus activating voltage sensitive ion 

channels responsible for action potential generation (Hodgkin and Huxley, 1952).  

Neurostimulation can be delivered through a variety of modalities differing by 

their invasiveness, targeted neuronal structures and adaptability of its parameters, as 

reviewed below.   

 

Invasive versus non-invasive 

Neurostimulation can either be invasive (targeting deep structures), or non-

invasive (targeting the cortex, i.e. brain surface). Invasive neurostimulation modalities 

require surgical interventions and include deep brain stimulation (DBS), responsive 

neurostimulation (RNS), vagal nerve stimulation and chronic sub-threshold cortical 

stimulation. Non-invasive approaches include transcranial magnetic or electrical 

stimulation. By applying these techniques, the induced currents spread through a large 

portion of neuronal tissue (Miranda et al., 2006), as compared to the focal stimulation 

reached using invasive methods as DBS (Butson et al., 2006). However, non-invasive 

methods are safer, since they do not require a surgical procedure that can induce a 

number of complications such as hemorrhages (Zewdie et al., 2020). 

 

Closed-loop versus Open-loop paradigms 

Most neurostimulation devices are open-loop, i.e. stimulation is delivered 

according to a predefined pattern regardless of underlying electrophysiological activity. 

Stimulation parameters are then fixed based on patients’ response and seizure 

frequency. In contrast, other devices use are based on a closed-loop approach, such 

as the RNS® device (Neuropace, USA) that analyzes in real–time electrophysiological 
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patterns and delivers stimulation only when epileptiform patterns are detected (Heck 

et al., 2014; Jobst et al., 2017; Skarpaas et al., 2019).  

Transcranial magnetic stimulation (TMS) 

TMS refers to the application of a magnetic field which, in turn, causes electric 

currents to flow in brain tissue according to Maxwell-Faraday’s law. In order to induce 

the magnetic field, high-level pulses of electric current are delivered to a coil placed on 

the patient’s head. TMS is a form of supra-threshold stimulation, since neurons are 

forced to trigger action potentials. TMS is used to treat drug-refractory depression 

(Reddy and Vijay, 2017; Rizvi and Khan, 2019) and chronic pain (Hamid et al., 2019), 

and is explored for a wide range of potential applications.  

Transcranial electrical stimulation (TES) 

TES is a non-invasive neurostimulation technique, and depicts a direct 

application of electric current via electrodes placed on the scalp, in correspondence of 

a specific cortical region. TES covers different techniques, which include transcranial 

direct current stimulation (tDCS), transcranial alternative current stimulation (tACS) 

and random noise stimulation (tRNS). As opposed to TMS, TES techniques uses a 

low-intensity current unable to elicit an action potential, thereby only affecting cortical 

excitability (Radman et al., 2009).  

Vagal nerve stimulation (VNS) 

Unlike TMS and TES, VNS is an invasive neurostimulation consisting in the 

implantation of a pulse generator called stimulator in the thoracic chest that supplies 

electrodes threaded around the vague nerve. Used in humans for the first time in 1990 

(Penry and Dean, 1990), VNS is recognized as an effective neurostimulation 

techniques for treating epilepsy (Ben- Menachem et al., 1994; Handforth et al., 1998).  

Deep brain stimulation (DBS) 

DBS involves the insertion of intracranial electrodes to stimulate deep, specific 

brain structures. The implantation of intracranial electrodes to record electrical brain 

activity and stimulation was first introduced by Delgado (Delgado et al., 1952). Since 

then, clinical studies were conducted to explore neurostimulation targets to provide 

relief and alter pathological activity. Although that the mechanisms of DBS are not well 
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understood, it is proven as an effective therapeutic neurostimulation technique to treat 

several neurological disorders, notably Parkinson’s disease (Benabid et al., 1987; 

Cooper et al., 1980). DBS is also being actively explored as a possible therapy for 

epilepsy (Laxpati et al., 2014; Zangiabadi et al., 2019). 

 

Responsive neurostimulation (RNS) 

The RNS system is an invasive, closed-loop neuromodulation approach 

involving implantation of the stimulator in the skull connected to leads placed in up to 

two seizure onset areas. Brain activity is monitored and stimulation is delivered as 

response to the detection of precursor epileptic biomarkers (Morrell and Halpern, 2016; 

Sun et al., 2008). Unlike open-loop approaches which do not include a feedback loop, 

this is an adaptive approach takes into account changes and fluctuations in ongoing 

electrophysiological activity by employing recording sensors. 

 

Chronic sub-threshold cortical stimulation (CSCS) 

CSCS represents another type of invasive stimulation that is still under 

investigation and not widely available. It is an experimental form of stimulation that 

delivers continuous, low-level stimulation at the level of seizure onset zones 

(Lundstrom et al., 2016). 

 

Figure 1.6. Neurostimulation techniques for the treatment of neurological disorders. 

Illustrations present examples of stimulation targets and devices used. (Figure adapted 

from (Edwards et al., 2017)). 
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1.4 Gap of Knowledge 

Significant advances related to recording techniques, molecular and 

computational investigations have enriched our understanding about brain functioning 

in physiological and pathological states. However, several questions remain 

unanswered. Knowledge about the mechanisms of action at the level of neural 

networks, the bridging between neural network and a single neuron, and the factors 

impacting therapeutic effects of a neurostimulation is still limited. In this section, we 

expose the present gaps of knowledge regarding electrical brain stimulation in 

epilepsy. 

 

Causes of epilepsy 

Clinical and molecular biochemistry, electrophysiological and neuroimaging 

exploration techniques such as EEG, computed tomography, and (functional) magnetic 

resonance imaging have contributed in identifying abnormal tissue (Shorvon, 1994) 

and mechanisms of many inherited and acquired disorders. Below, we present several 

possible epilepsy etiologies. 

- Structural etiology: this refers to abnormalities visible on structural 

neuroimaging. Neuroimaging techniques as CT and MRI enable the detection 

of structural abnormalities such as malformations, stroke and trauma. For 

instance, temporal lobe epilepsy is associated to hippocampal sclerosis, which 

is a severe cell loss that can be detected using MRI. The association of 

epileptiform activity with a structural etiology can inform potential surgical 

interventions.  

 

- Genetic etiology:  this refers to genetic mutation involved in the development of 

epilepsy. Molecular genetics can identify these pathogenic mutation, 

nevertheless, in the most cases the underlying genes are unknown. This 

etiology can be suggested based on family history and patients’ age, and is 

more detected in neonatal, childhood and juvenile epilepsies.  
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- Infectious etiology: this is the most common cause of epilepsy (Vezzani et al., 

2016). Infections such as cerebral malaria, viral encephalitis, tuberculosis and 

cerebral toxoplasmosis can lead to triggering epileptic seizures.  

 

- Metabolic etiology: here, epilepsy results from biochemical changes occurring 

throughout the body such as porphyria, uremia and aminoacidopathies. The 

identification of specific metabolic causes allows the suggestion of efficient 

therapies, note that antiepileptic drugs are ineffective against metabolic 

epilepsy.  

 

- Immune etiology: the increasing interest to antibody tests has led to the 

recognition of several immune epilepsies both in adults and children (McKnight 

et al., 2005; Peltola et al., 2000). This etiology is associated with central nervous 

system inflammation that increases the risk of causing epilepsy. 

Let us mention that the unicity of etiology is not guaranteed, and that the 

identified etiology can be caused by another etiology. For instance, metabolic disorders 

or structural abnormalities can be caused by a genetic defect. Moreover, one third of 

adult epilepsy patients are of unknown etiology (Ramanathan et al., 2014). This lack 

of knowledge impairs treatment efficacy since patients’ condition remain refractory to 

conventional medications. Recent studies assume that up to 20% of these epilepsies 

could be explained by autoimmune encephalitis (Dubey et al., 2017). 

 

Electrical brain stimulation 

Despite the widespread use of electrical brain stimulation, either invasive or 

non-invasive, a knowledge gap persists regarding its mechanisms of action, potential 

targets and stimulation parameters, which we briefly review below. 

Mechanisms: Electrical brain stimulation induces neurochemical and 

neurophysiological changes at the membrane and synaptic levels, thereby affecting 

activity changes at the network level via the structural connectome. The mechanisms 

underlying these alterations are still poorly understood. However, the therapeutic 
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effects of brain stimulation are generally linked to either a release of inhibitory 

transmitters (Dostrovsky and Lozano, 2002), or an inactivation of neurons through 

depolarization blockade (Pollo and Villemure, 2007). 

Stimulation targets: Among the factors influencing stimulation efficacy, stimulation 

targets and parameters are crucial. Stimulation can be either applied directly to the 

identified seizure onset zone (SOZ), or indirectly by stimulating a neuronal structure 

indirectly connected to the so-called epileptogenic network. Direct stimulation of the 

SOZ alters tissue excitability and neuronal synchronization, and can exert inhibitory 

effects (Jobst et al., 2010). Conversely, indirect stimulation aims to suppress neuronal 

structures that favor seizure emergence by perturbing neuronal networks. Moreover, 

electrical stimulation can be single-site, i.e. focusing on one brain region; or multi-site, 

i.e. targeting multiple neuronal regions. In the case of seizures involving multiple 

seizure onset zones, multi-site stimulation could be more adequate and efficient than 

single-site stimulation. Multiple targets have been evaluated regarding DBS, including 

the anterior nucleus of the thalamus (ANT), which is one of the most targeted structures 

for the treatment of drug refractory epilepsy (Fisher et al., 2010), but also hippocampus, 

subthalamic nucleus (STN) and centromedian thalamic nucleus (CMTN) (Rahman et 

al., 2010). Typical stimulation settings are: frequency ≥ 100 Hz and voltage between 1 

and 10 V for ANT stimulation; frequency ≥ 130 Hz and voltage between 1 and 5 V for 

hippocampal and STN stimulation; high-frequency stimulation (~100 - 250 Hz) at 

voltage between 1 and 10 V for CMTN (Li and Cook, 2018). Nevertheless, the chosen 

stimulation parameters are empirically fixed during post-operative sessions while 

optimal values remain unknown. Furthermore, there is still a lack of clinical randomized 

control trials comparing these different paradigms. 

 

1.5 Challenges 

Electrical brain stimulation is recognized as a promising therapeutic technique 

to relieve patients suffering from neurological diseases such as epilepsy. The 

increasing attention paid to this neuromodulation strategy has led to the development 

of various stimulation approaches. As aforementioned, the main factors differentiating 

these protocols are the degree of invasiveness, number and type of stimulation targets 
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and stimulation properties including intensity, frequency and waveforms. In addition, 

stimulation can be either single-site or multi-site, invasive targeting deep neuronal 

structures, or non-invasive applied on the scalp and targeting cortical regions. Due to 

this significant diversity in stimulation protocols (Li and Cook, 2018), their comparison 

is especially challenging. 

Only the delivered electrical field can be directly comparable between those 

techniques, but the impact on neuronal tissue and thus the responses to this external 

perturbation are varied and unpredictable. For example, while applying a tDCS, 

although the delivered electrical currents are identical, variables such as the neuronal 

networks involved and the orientation of neurons with respect to the injected electric 

field influence the effects of stimulation and challenge the comparison between clinical 

trials. Various factors, including biological variation, measurement reproducibility and 

the ongoing activity of the stimulated neuronal tissue, which can be affected by factors 

such as past and present neurological activity, influence the response to a specific 

electrical brain stimulation protocol. Those factors limit the identification of optimal 

strategies tailored for specific diseases and patients. 

During the last decades, several computational models have been developed 

and gained acceptance thanks to their ability to 1) simulate brain activity at different 

scales, and 2) reproduce a large range of neuronal rhythms and patterns. Neuro-

inspired models provide access to variables that are difficult or impossible to record 

clinically such as firing rates (FRs) or post-synaptic potentials (PSPs). The monitoring 

of these quantities enables testing hypotheses about the underlying mechanisms, and 

elucidate the general understanding about the function of those neural circuits and their 

modulation by electrical stimulation. In addition, it becomes possible to perform 

extensive exploration of the stimulation parameters space in a relatively short time. In 

the following, the main modeling approaches to simulate brain electrical activity in both 

physiological and pathological states are presented. 
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1.6 Computational models of brain activity 

Computational models have been developed with the objective to understand, 

simulate and predict brain activity at various spatial scales, from the change of ions’ 

gradient along the membrane to electrical oscillations observed on scalp recordings. 

These mathematical formulations can integrate detailed knowledge coming from 

neurobiological research to explain experimental findings, to generate experimentally 

testable hypotheses about possible interaction mechanisms, and analyze overall 

dynamics such as the stability with respect to oscillations / perturbations in the case of 

epileptic systems.  

 

Microscopic approach 

Over the past decades, several models have been constructed at the individual 

neuronal level, and involve a large number of individual neurons interacting through 

synaptic projections. The dynamics of each neuron can be described by models with 

biological relevance such as Hodgkin-Huxley or Morris-Lecar models, or more 

phenomenological representations such as FitzHugh-Nagumo and Hindmarsh-Rose 

models. In the field of epilepsy, these models have advanced our understanding of 

how hyperexcitability develops, how hypersynchronization leads to paroxysmal activity 

and how seizure-like events emerges (van Drongelen et al., 2007). 

 

Hodgkin-Huxley model 

The Hodgkin-Huxley model is a conductance-based model that reproduces 

accurately the generation of action potentials (Hodgkin and Huxley, 1952). This 

biophysical model describes the evolution of the different ionic channels underlying the 

generation and propagation of action potentials in the axon using a set of differential 

equations describing membrane potential dynamics. The relatively slow dynamics 

across the neuron’s membrane is assumed to be explicitly dependent from sodium 

"#$ and potassium %$ channels that govern the flow of those ions through the cell 

membrane, and from the leakage current, primarily related to chloride	&'(. The 

Hodgkin-Huxley model can be expressed as: 
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9:0 = 0; ) −0 	

9<5 = 5; ) − 5 	
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(1.1) 

The constants 3@, -@, B ∈ {"#, %, &E} represent the reversal potentials and 

conductance, respectively. The variables 0, 5 and ℎ represent the probability that a 

channel is activated, while the constants 9@, B ∈ {0, 5, ℎ} correspond to time constants. 

0;, 5;, ℎ; represent values at equilibrium. & denotes the membrane’s capacity, and + 

is the externally applied current.   

  

FitzHugh-Nagumo model 

As opposed to the Hodgkin-Huxley model, the FitzHugh-Nagumo model 

(FitzHugh, 1961) is a phenomenological model. It is written under an analytical form 

allowing the simulation of the neurons membrane potential without distinguishing the 

contributions of different ion channels. It is represented by the following equations: 

 
) = 9 + + ) −

)1

3
+I 	

I = −
1
9
() − # + KI) 

(1.2) 

 

where ) represents the neurons’ membrane potential, I is a recovery variable and + 

is the external input denoting the magnitude of the stimulus current that may come 

from other neurons. # and K are constant parameters usually fixed at 0.7 and 0.8. In 

the case of # = K = 0, the FitzHugh-Nagumo model becomes the Van der Pol oscillator 

(B Van der Pol, 1927). 

 

Hindmarsh-Rose model 

The Hindmarsh model extends the FitzHugh-Nagumo model by adding a third 

dimension. The system representing this model is given by: 
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 M = N − #M1 + KMO − P + +	

N = Q − RMO − N	

P = S[U M − MV − P] 

(1.3) 

 

where M, N, P denote the membrane potential, the fast and slow ion channels dynamics, 

respectively. + represents the external input, similarly to the FitzHugh-Nagumo model. 

The variation of model parameters leads to a large variety of dynamics (Barrio and 

Shilnikov, 2011; Lainscsek et al., 2013). This model is known for its chaotic nature, 

since it is able to generate different spiking patterns while starting from the same initial 

conditions and having the same afferences (Freeman, 2000). Moreover, it enables the 

simulation of neuronal bursting. 

  

Morris-Lecar model 

The Morris-Lecar model (Morris and Lecar, 1981) is a spiking model 

compromising between the biophysically detailed Hodgkin-Huxley and 

phenomenological FitzHugh-Nagumo or Hindmarsh-Rose models. The difference of 

voltage ) depends on the conductance of ionic channels and reversal potential of 

different ions; however, the probabilities of activation or deactivation of ions channels 

are replaced by hyperbolic approximations. The model is given by: 

 &) = + − -78 ) − )78 − -7/0; ) − )7/ − -45 ) − )4 	
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) represents the membrane potential, and 5 recovery variable, i.e. the probability that 

potassium channel is open. + is the external current, and & depicts the membrane 

capacitance. )@, -@, B ∈ {&E, &#, %} are conductance and equilibrium potential of 

chloride, calcium and potassium. Other parameters are constants. 

Macroscopic approach 

Although neuronal network models constructed at the level of a single neuron 

offer the advantage of investigating ongoing mechanisms both at the cellular and 

network levels, they include a large amount of variables and are computationally 

expensive and time consuming. To overcome this issue, mesoscopic models have 

been developed, representing neurons in terms of populations without describing 

explicitly cellular-level mechanisms and considering instead averaged, mean field 

dynamics. Electrophysiological signals that can be experimentally recorded, such as 

the EEG, can be generated and result from interactions between interconnected 

neuronal subpopulations. Neural field models and neural mass models constitute two 

classes of mesoscopic models describing how a quantity characterizing neural activity 

evolves in a spatiotemporal space and only temporal space, respectively.   

 

Epileptor 

Epileptor is a phenomenological model developed to reproduce brain electrical 

activity recorded at seizure onset and offset, such as the abrupt transition to fast 

spiking, and pre-ictal spikes before seizure (Jirsa et al., 2014). It comprises one 

subsystem responsible for generating fast discharges and another responsible for 

generating sharp-wave events. Its mathematical formulation is given by: 

 c^ = d^ − ê c^, cO − f + +ghij	

d^ = Q^ − R^c^O − d^	

cO = 	−dO + cO − cO1 + +ghik + 0.002- − 0.3 f − 3.5 	

dO =
−dO + eO cO

SO
	

f = S U c^ − cn − f − 0.1fo 			Be	f < 0
S U c^ − cn − f 																		Be	f ≥ 0  

(1.5) 
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Where  

ê c^, cO = #c^1 − Kc^O																																			Be	c^ < 0
− 0 − cO + 0.6 f − 4 O c^		Be	c^ ≥ 0

	

eO cO =
0																											Be	cO < −0.25
#O cO + 0.25 		Be	cO ≥ −0.25	

- c^ = t(u i(v c^ 9 R9
i

iw

 

The variables c^ and d^ represent the subsystem responsible for the generation of fast 

discharges, while cO and dO represent the system generating spike-wave events. The 

variable f represents a slow adaptation variable that drive the system to and out of a 

seizure. All other parameters are constants.   

 

xy model 

 The Pz model is an analytical model that does not represent directly a 

physiological reality, however, its parameters can be interpreted as realistic variables 

such as overall excitability of the neuronal population and the balance between 

excitation and inhibition. It is described by a second-order nonlinear ordinary 

differential equation: 

 RP
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1
2
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(1.6) 

 

where a, b and c are real parameters and represent the refractory and shunting 

properties regulating the occurrence of activation rates, the overall excitability of the 

neuronal population and the control parameter, respectively. The variable ~({) 

represents an additive noise following a normal distribution of mean of 1 and standard 

deviation of 0.2. This model features a bistability, i.e. it can change state from the initial 
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steady state to the limit cycle state describing a seizure-like activity following a 

perturbation. 

This model has been used to investigate the impact of an external random noise 

and study the transition between steady-state and limit-cycle state (Koppert et al., 

2016). This model includes only a few parameters, and its dynamics is similar to 

physiological models. However, this model does not allow distinguishing between 

contributions of specific physiological properties. The results show the possibility to 

abort ongoing seizures using random noise. 

 

Wilson-Cowan model 

Wilson and Cowan (Wilson and Cowan, 1973) have considered the excitatory 

and inhibitory properties of a neural mass as two distinct neuronal populations that 

were connected to each other. These excitatory and inhibitory populations are 

represented by two differential equations comprising nonlinear function to couple them 

and mimic an average synaptic effect. This model is written under the following form: 

 RÄÅ
R{

= −
ÄÅ
9Å
+ &ÅÅÇÅÄÅ + &ÉÅÇÉÄÉ	

RÄÉ
R{

= −
ÄÉ
9É
+ &ÉÉÇÉÄÉ + &ÅÉÇÅÄÅ 

(1.7) 

 

where 9 is the population dynamics time constant, Ä is the population activity, &/Ñ is 

the coupling strength from population # to K, and Ç is a sigmoid function representing 

the population average rate 

 
Ç Ä =

1
1 + exp −à Ä − â

 (1.8) 

 

with â and à representing the threshold and slope, respectively.  

This model had then been extended and used to investigate the mechanisms 

that influence the success of single-pulse stimulation in noise-induced spike-wave 
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(SW) seizures characterizing generalized absence seizures. The model represents the 

thalamo-cortical neural population, and was fixed on the bi-stable region in the 

parameter space. Results predicted that SW can be aborted through the application of 

single-pulse stimulation. Moreover, this study pointed at the influence of the direction 

of the stimulus in state space, in addition to the amplitude and phase of (SW), on the 

success of response to stimuli (Taylor et al., 2014). 

In this thesis, our main focus is temporal lobe epilepsy, which is different from 

general absence epilepsy studied by Taylor BN and colleagues, where thalamo-

cortical loops play the major role. We will use bio-inspired neural mass models, which 

include knowledge from neuroanatomy and neurophysiology. These models have the 

capacity to produce EEG-like signals, while most variable represent a precise 

physiological quantity. Our aim is to advance our understanding about the mechanisms 

leading to the generation, propagation and abortion of epileptogenic activity in brain 

tissue. Mathematical techniques will be used to relate seizure dynamics to the activity 

of specific neuronal types and properties. Moreover, stimulation protocols beyond from 

single-pulse stimulation will be explored, and the variables influencing the efficiency of 

external perturbation to decrease / abort epileptogenic activity will be discussed and 

studied. Those models are presented in details in the next Chapter (Neural mass 

models of epilepsy: extension to stimulation-like perturbations). 

 

1.7 Mathematical methods for analysis of brain models 

The variation of model parameters can lead to sudden changes in neuronal 

dynamics. To describe these qualitative changes in system dynamics in response to 

quantitative changes of model parameters, a mathematical method derived from the 

theory of dynamical systems, and known as bifurcation analysis, is used. This 

technique enables a complete visualization of the dynamical repertoire under the 

variation of a parameter, and highlights bifurcation points. Therefore, such bifurcation 

diagrams provide insights regarding physiological factors responsible for these 

alterations, and formulating hypotheses regarding the mechanisms underlying 

neuronal dynamics. 
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The dynamics of neuronal populations can be described by non-linear systems 

of equations. Since these systems are challenging to solve analytically, they are often 

approximated by linear systems near equilibrium points. For instance, a non-linear 

dynamical system, M = e(M), with M({) ∈ ℝ< and e:ℝ< 	→ ℝ< is a non-linear function, 

at an equilibrium point ç (ensuring e(ç) = 0), can be approximated and studied 

through the approximated linear system at this point, written as M = éM. The state 

portrait and stability are then investigated based on the eigenvalues and eigenvectors 

of the Jacobian matrix	é. 

A bifurcation is defined as the point where the system undergoes a transition 

from one dynamic mode into another non-topologically equivalent mode under the 

change of one or more parameters. This is closely related to the equilibria of the 

dynamical system and the qualitative change of its eigenvalues at those equilibria. In 

contrast, stability is related to the signs of the real part of the eigenvalues of the 

linearized system. An equilibrium is stable if all eigenvalues have a negative real part 

(Kuznetsov, 1998), otherwise the equilibrium is unstable. This notion of stability 

includes other closed trajectories, known as limit cycles, which appear when the 

imaginary part of eigenvalues is nonzero. These limit cycles denote oscillations in brain 

models. Furthermore, the eigenvalues position in the complex plane classify the 

equilibrium point. Equilibrium can be: 

- Stable nodes attract neighboring points. They occur when all eigenvalues are 

negative and real. 

 

- Unstable nodes repel neighboring points. They occur when all eigenvalues are 

positive and real. 

 

- Stable focuses attract neighboring points by spiraling inward. They occur when 

eigenvalues are complex conjugate with negative real parts. 

 

- Unstable focuses attract neighboring points by spiraling outward. They occur 

when eigenvalues are complex conjugate with positive real parts. 
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- Saddles attract along two directions and repel along two directions. They occur 

when eigenvalues are real with an opposite sign.  

A bifurcation occurs when the stability or number of equilibrium points changes. 

Below, we present the most important types of bifurcations on which we will 

focus in this manuscript. 

- Saddle-node bifurcation: depicts the collision and disappearance or sudden 

creation of two equilibria (one stable and one unstable). It is also known as “fold” 

or “limit point bifurcation”. 

 

Figure 1.7. Saddle node bifurcation. While variable è is increasing, one stable 

equilibrium points denoted by black dot approaches an unstable equilibrium point 

denoted by a white dot. For è = 0, the two equilibrium point collide and then disappear. 

- Hopf bifurcation: This is an important point when analyzing the dynamics of a 

neuronal model, since it marks the transition from rest to periodic states; 

appearance or disappearance of oscillations. A Hopf bifurcation occurs when 

an equilibrium point changes stability via a pair of imaginary eigenvalues. 

Furthermore, it can be either supercritical (a stable equilibrium becomes 

unstable and a stable limit cycle appears), or subcritical (resulting in an unstable 

limit cycle). 
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Figure 1.8. a) Super- and b) sub-critical Hopf bifurcation. Regarding the supercritical 

Hopf bifurcation, a stable equilibrium point becomes unstable while a stable limit cycle 

emerges. Conversely, during subcritical Hopf bifurcation, an unstable limit cycle 

emerges or disappears, depending on the variation of the control variable represented 

in the figure by è. (Figure adapted from Kuznetsov YA) 

- Period doubling: denotes a point involving the appearance or disappearance of 

a periodic oscillation with twice the period of the original period. A new limit cycle 

emerges from an existing one, while the period is doubled. 

 

- Torus or Neimark-sacker bifurcation: This bifurcation denotes the appearance 

of an invariant closed curve from an equilibrium point. It can be detected near 

limit-Hopf bifurcation. 

 

Other bifurcations can be detected, such as saddle-node on a limit cycle, or more 

generally saddle-homoclinic bifurcation. These bifurcations represent another type 
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from which oscillations can emerge from a fixed point. Saddle node on a limit cycle, 

also called saddle node on invariant circle, (SNIC) depict the collision and 

disappearance of stable and unstable equilibrium points on a limit cycle, and should 

not be confused with saddle-node of limit cycles, representing the collision and 

disappearance of limit cycles. Nevertheless, saddle-homoclinic bifurcations denote the 

collision of a limit point with a limit cycle. 

 

Figure 1.9. Saddle node bifurcation occurring on a limit cycle (SNIC). The stable 

equilibrium point denoted by a black dot, and the unstable equilibrium point denoted 

by a white dot, collide and annihilate with each other. (Figure by Eugene Izhikevich, 

distributed under a CC BY-NC-SA 3.0 License) 

Several tools are available to perform numerical bifurcation analysis, such as 

MATCONT (Dhooge et al., 2003), XPPAUT (Ermentrout, 2002) and AUTO (Doedel et 

al., 1997). For a dynamical system M = e(M, %), the numerical bifurcation analysis 

involves solving a series of problems of the form M = e M,% = ê@ , ∀B ∈ {1, … , 5} where 

ê@ is a fixed value of the parameter K. 
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Problem statement 

 We have provided an overview regarding the physiological properties of brain 

tissue, how increased excitability leads to the generation of epileptiform activity, and 

the challenges of using electrical brain stimulation as a symptomatic treatment for this 

neurological disease. Thus, the main problem that will be addressed in this thesis 
is the design of optimal electrical stimulation protocols able to suppress 
epileptiform activity and restore physiological patterns of activity.  

The problem statement is threefold: 

- Dynamics of neuronal regions according to intrinsic or synaptic 

properties. 

Problem: The dynamics of a neuronal region depending on intrinsic properties, 

such as subpopulation synaptic gain, or influence of neighboring regions is not 

yet fully revealed. For example, how alterations of excitability or afferent activity 

leads to the emergence or disappearance of specific activity patterns remain to 

be elucidated.  

 

Proposed Solution: We propose to perform a bifurcation analysis of biologically-

inspired mesoscopic models. This mathematical method can provide a 

complete characterization of a non-linear dynamical system in terms of stability 

and topological alterations, depending on physiological quantities such as 

neuronal connectivity and excitability parameters. 

 

- The impact of electrical stimulation on a brain region and main underlying 

mechanisms. 

Problem: Electrical brain stimulation is recognized as promising technique for 

the treatment of epilepsy. However, it must be designed with care, since its 

impact can either be positive or negative depending on the chosen parameters. 

Indeed, although stimulation can lead to the abortion or prevention of epileptic 

seizures, the choice of inappropriate parameters could exacerbate epileptiform 

activity. Nowadays, stimulation parameters are still chosen empirically based on 

trial-and-error approach.  
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Proposed Solution: We propose to integrate external stimulation into a neuro-

inspired model of epileptic activity. Then, we analyze the impact of stimulation 

according to its parameters (intensity/amplitude, frequency, waveform, 

stimulation timing) and target. The number of parameters influencing brain 

tissue response and the associated high-dimensional parameter-space are 

among the main factors limiting clinical studies. This procedure will enable 

analyzing the parametric effects of perturbations on a non-linear stochastic 

dynamical system, and gain information about the mechanisms leading to 

seizure abortion. 

 

- Design of network-level optimal stimulations  

 

Problem: Neuronal dynamics at the single-region level depends on the activity 

of other regions within the associated network. The emergence of epileptic 

activity in a region can be caused by afferences from other connected regions. 

Therefore, stimulation of this epileptic region might not be optimal, even if the 

set of stimulation parameters is effective in the case of single, separated 

neuronal region. Additional factors should be taken into account when designing 

a brain stimulation protocol able to suppress epileptiform activity at the large-

scale network level. Stimulation targets identification (which and how many 

regions to stimulate) is crucial. 

 

Proposed Solution: Using graph theory to evaluate the influence of brain regions 

belonging to an epileptogenic network. The identification of the main regions 

driving epileptiform activity will guide the design of optimal stimulation. 
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Chapter 2 

Neural mass models of epilepsy  

 

 

 

In the following, we use a modelling approach known as the neural mass model 

(NMM) approach, which has been developed to simulate the averaged activity of 

neurons assemblies at a mesoscopic scale. NMM are based on the description of 

excitatory and inhibitory interactions between populations of neurons. The fundamental 

properties of NMM are their physiological relevance and ease-of-use, since they 

include a small number of parameters, as compared for example to microscopic 

models, while retaining key neuro-anatomical and neuro-physiological properties. 

Furthermore, NMMs enable simulating signals at a comparable scale than 

electrophysiological signals typically recorded experimentally or clinically, from scalp 

(EEG) or intracerebral (depth-EEG / SEEG) signals. 

 

2.1 Jansen and Rit neural mass model 

One of the pioneering neural mass models is the biologically inspired Jansen 

and Rit model (Jansen and Rit, 1995). This model was initially developed to study 

visual evoked potentials, and is used to describe the activity of a neuronal population 

composed of two subsets of neurons: excitatory glutamatergic cells (i.e. pyramidal 

cells) and inhibitory GABAergic interneurons. Each subset is described by two 

functions: the first one is the “wave-to-pulse” function, converting incoming post 
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synaptic potentials into a population firing rate. This static function was proposed by 

Freeman (Freeman, 1975): 

 
ìB- î = 	

ï:/h
2

1 + {#5ℎ
S
2
î − ïn 	

														=
ï:/h

1 + tcÄñ(ów(ò)
 

(2.1) 

 

where ï:/h  is the maximum firing rate, ïn the value of the average membrane potential 

acting as a firing threshold, and S the slope of the sigmoid at ïn. 

The second one is the “pulse-to-wave” function, ℎg({) or ℎ@({), converting the density 

of pre-synaptic action potentials into an average excitatory (EPSP) or inhibitory (IPSP) 

post-synaptic potential. This function includes physiological time constants: 

 ℎô { = öô#ô{tcÄ(/õi (2.2) 

 

where öô, ê ∈ {t, B} represents the average excitatory or inhibitory synaptic gain, and 

#ô represents the average time constant of the postsynaptic potential, expressed is 

U(^ (or equivalently [Hz]). This operator acts as a linear second order low-pass filter, 

and can be also described as a linear second-order ordinary differential equation via 

the Laplace transform: 

 d = öô#ôc − 2#ôd − #Od (2.3) 

 

where c, d are the input and output signals, respectively. This equation can also be 

written as a system of two first-order differential equations: 

 d { = f { 	

f { = öô#ôc { − 2#ôf { − #Od({) 
(2.4) 

   



46 

 

 

Figure 2.1. a) Sigmoid function: average pulse density (average firing rate as a function 

of the average post-synaptic potential). b) Average post-synaptic membrane 

potentials: excitatory and slow inhibitory obtained from impulses at { = 0 and 

expressed as ℎghú({) = ö. #. {. t(/i, ℎ@<=({) = ù. K. {. t(iÑ with { ≥ 0. Corresponding 

parameters are presented in Table 1. 

 

The afferences of neighboring neural masses are represented by an excitatory 

input, which is modeled by a white Gaussian noise. The interactions between 

pyramidal cells and interneurons are represented by four connectivity constants, &^ to 

&6, representing the average number of synaptic contacts. The model is summarized 

below in Figure 2.2. 
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Figure 2.2. a) Structure and b) Block diagram of the Jansen and Rit NMM. a) 

Population of pyramidal cells (green triangle) interacts with an inhibitory population of 

interneurons (orange rectangle). Solid-lines arrows represent excitatory connections, 

while dashed-lines represent inhibitory ones. b) d@ { , B ∈ {0, 1, 2} correspond to the 

output of pyramidal cells, excitatory and inhibitory interneurons, respectively. Ä { 	is a 

white Gaussian noise representing excitatory inputs from neighboring areas. The &@, B ∈

1, 2, 3, 4  coefficients represent the average number of synaptic contacts. 

 

This model can be translated into the following set of differential equations: 

 dn { = d1 { 	

d1 { = ö# Ä { + ìB- d^ { − dO { − 2#d1 { − #Odn { 	

d^ { = d6 { 	

d6 { = ö#&OìB- &^dn { − 2#d6 { − #Od^ { 	

dO { = dû { 	

dû { = ùK&6ìB- &1dn { − 2Kdû { − KOdO({) 

(2.5) 

 

The average post-synaptic potential of pyramidal cells d^({) − dO({) represents the 

model output, according to the assumption that the summation of post-synaptic 

potentials onto pyramidal cells constitutes the main contribution of local field potentials 

(Kandel, 2000). Model parameters, their interpretation and their typical values as 

evaluated experimentally are provided in Table 1. 
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Parameter Description Value 

ö, ù Average excitatory and inhibitory 

synaptic gains, respectively. 

ö = 3.25	0)	

ù = 22	0)	 

#, K Average time constants of post-

synaptic potentials.  

# = 100	U(^	

K = 30	U(^ 

&@, B ∈ {1, 2, 3, 4} Average number of synaptic 

contacts of excitatory and 

inhibitory connections. 

&^ = &	

&O = 0.8×&	

&1 = 0.25×&	

&6 = 0.25×&	

& = 135 

ïn, ï:/h, S Threshold, maximum output, and 

slope of the sigmoid 

function	ìB-(î). 

ïn = 6	0)	

ï:/h = 5	U(^	

S = 0.56	0)(^ 

Table 1. Jansen and Rit model parameters and their physiological meaning.  

 

Depending on excitatory and inhibitory synaptic gains (A, B), the model can 

generate a variety of neuronal rhythms (background activity, sporadic spikes, periodic 

spikes and alpha-band sinusoidal oscillations), as shown below (Figure 2.3): 



49 

 

 

Figure 2.3. a) Activity map in the excitatory / inhibitory synaptic gains space. Black 

region represents background activity. Red region represents aperiodic spikes. Blue 

region represents periodic spikes, while green region represents alpha-band sinusoidal 

oscillations. b) Different model outputs while changing synaptic gains ö, ù ∈

{ 4.1, 25.5 , 4.4, 20 , 5.2, 23.5 , 5.5, 9 . Color codes for activities are respected. 

 The different patterns presented in Figure 2.3-b have been classified either 

based on a combination of signal properties such as the frequency domain and the 

peaks detection, or using a sequential machine learning model for which the inputs is 

the frequency domain and the outputs are the different neuronal activities that the 

system able to generate. The accuracy of this model for detecting background activity, 

periodic spikes and alpha-band sinusoidal oscillations was higher than 95%, and equal 

to 79.56% for aperiodic spikes.  

Regarding numerical calculations, all stochastic simulations were performed 

with a linear additive Gaussian white noise, and using the Euler-Maruyama method 

(Maruyama, 1955). Deterministic simulations are performed using the Runge-Kutta 4 

method. 
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2.2 Wendling’s neural mass model 

 

Although the Jansen and Rit model can produce a large variety of EEG-like 

waveforms and rhythms, this model cannot generate the high-frequency activity that 

characterize the onset of epilepsy seizures (Allen et al., 1992) and guide the 

identification of epileptogenic regions. This so-called fast onset activity is hypothesized 

to originate from increased activity of fast inhibitory interneurons, thereby modulating 

the membrane potential of pyramidal cells. Therefore, based on the literature (Banks 

et al., 2000; Jefferys et al., 1996; Whittington et al., 2000), Wendling et al. have 

extended the Jansen and Rit formulation by introducing a second type of inhibitory 

interneurons ¢öùö£,§/•i with faster kinetics. This class of neurons represents fast 

somatic-projecting inhibitory interneurons, which activate rapidly and contribute to the 

generation of gamma rhythms (Veit et al., 2017). 

The Wendling NMM consists of three different neuronal subpopulations; 

pyramidal cells, dendritic-projection interneurons with slow synaptic kinetics 

¢öùö£,•¶ß® and somatic-projecting interneurons with fast synaptic kinetics	¢öùö£,§/•i. 

Each population is described by the same two functions presented while introducing 

Jansen and Rit neural mass model. For more details, the reader is referred to 

(Wendling et al., 2002b). This model can be translated into a set of five second-order 

differential equations: 

 

 dn { = ö#ìB- d^ { − dO { − d1 { − 2#dn { − #Odn { 	

d^ { = ö# Ä { + &OìB- &^dn { − 2#d^ { − #Od^ { 	

dO { = ùK&6ìB- &1dn { − 2KdO { − KOdO { 	

d1 { = ¢-&oìB- &ûdn { − d6 { − 2-d1 { − -Od1 { 	

d6 { = ùK&zìB- &1dn { − 2Kd6 { − KOd6({)	 

(2.6) 
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The summation d^ − dO − d1 represents the incoming firing rate to the population of 

pyramidal cells. Moreover, it represents the local field potential of the neuronal region 

(Kandel, 2000).  

 

Figure 2.4. a) Schematic and b) Block diagram representation of Wendling’s neural 

mass model. a) The arrows ending with triangles represent excitatory connections, 

while arrows ending with circles denote inhibitory connections. b) The terms d@, B ∈

{0, 1, 2, 3, 4} represent the post-synaptic potentials of pyramidal cells, excitatory 

feedback, and both slow and fast inhibitory interneurons, respectively. Input Ä({) 

represents the influence of neighboring regions and is modelled by a white Gaussian 

noise. The &@, B ∈ 1, … , 7  coefficients represent the average number of synaptic 

contacts. The summation of post-synaptic potentials at the level of pyramidal cells 

constitute the main contribution of LFP (Kandel, 2000). This value is present in the 

model with the term	d^ { − dO { − d1({). 

 

Parameter Description Value 

ö, ù, ¢ Average excitatory, slow and fast 

inhibitory synaptic gains, 

respectively. 

ö = 3.25	0)	

ù = 22	0)		

¢ = 20	0) 
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#, K, - Average time constants of post 

synaptic potentials.  

# = 100	U(^	

K = 30	U(^	

- = 350	U(^ 

&@, B ∈ {1, … , 7} Average number of synaptic 

contacts of excitatory and 

inhibitory connections. 

&^ = &	

&O = 0.8×&	

&1 = 0.25×&	

&6 = 0.25×&	

&û = 0.3×&	

&z = 0.1×&	

&o = 0.8×&	

& = 135 

ïn, ï:/h, S Threshold, maximum output, and 

slope of the sigmoid 

function	ìB-(î). 

ïn = 6	0)	

ï:/h = 5	U(^	

S = 0.56	0)(^ 

Table 2. Model parameters and their physiological meaning. 

 

Example of bifurcation analysis of a Wendling’s NMM 

 For a Wendling’s NMM, the system of equations is of the form	™´
™i
= e(d, %), 

where e is a map from ℝ^n to	ℝ^n, % is the input, and d is the state space and equal 

to	 dn, … , d¨ ≠. To study the model response while varying the excitatory synaptic 

gain	ö, for example, we first determine equilibrium points. Then, based on eigenvalues 

of the system Jacobian at each point, we study and identify the various types of 

bifurcations that the system undergoes.  

 

The equilibrium points are the points for which	™´
™i
= e d, ö = 0. We obtain: 
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dn { =

ö
#
ìB- d^ { − dO { − d1 { 	

d^ { =
ö
#
Ä + &OìB- &^dn { 	

dO { =
ù
K
&6ìB-	 &1dn { 	

d1 { =
¢
-
&oìB- &ûdn { − d6 { 	

d6 { =
ù
K
&zìB- &1dn { 	

dû { = dz { = do { = dÆ { = d¨ { = 0 

(2.7) 

   

This system leads to the equation of the one-parameter family of equilibrium points in 

the (ö, M = d^ − dO − d1)-plane: 

 

 
M =

ö
#
Ä + &OìB- &^

ö
#
ìB- M −

ù
K
&6ìB- &1

ö
#
ìB- M 	

								−
¢
-
&oìB- &û

ö
#
ìB- M −

ù
K
&zìB- &1

ö
#
ìB- M  

(2.8) 

   

M = d^ − dO − d1 represents the model output and ö is the input. We present the curve 

defined by the equation (2.8) in Figure 2.3. For a particular value of	ö, the number of 

intersections between the curve and the vertical line ö correspond to the number of 

equilibrium points. 
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Figure 2.5. Equilibrium points. This curve has been defined by equation (2.8). The solid 

lines represent stable equilibrium points, while dashed line represents unstable ones. 

 

 To describe the system behavior near an equilibrium point, we rely on the 

Hartman-Grobman theorem (Grobman, 1959; Hartman, 1960) that relates the local 

behavior of its linearized system around the same point. Then, we calculate the 

eigenvalues of the Jacobian matrix Ø#Q of the linearized system at this point: 

 

 Ø#Q = 0û +û
ö^ öO

 (2.9) 

   

where	+û is the identity matrix, 0û is a null matrix and ö^ and öO are five-dimensional 

matrices defined as follow:  
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, 

öO = RB#-(−2#,−2#,−2K,−2-,−2K) 

(2.10) 

 

The functions ∞, è, |, _, ~, ± are defined as follows: 

 ∞ M = ö#ìB-≤ M ,	

è M = ö#&^&OìB-≤ &^
ö
#
ìB- M ,	

| M = ùK&1&6ìB-≤ &1
ö
#
ìB- M ,	

_ M = ¢-&û&oìB-≤ &û
ö
#
ìB- M −

ù
K
&zìB- &1

ö
#
ìB- M ,	

~ M = ùK&z&1ìB-≤ &1
ö
#
ìB- M ,	

± M = −¢-&oìB-≤ &û
ö
#
ìB- M −

ù
K
&zìB- &1

ö
#
ìB- M  

(2.11) 

 

where ìB-′ is the derivative of the sigmoid function.  

 

 The eigenvalues of the Jacobian matrix determine the stability of equilibrium 

points and detect bifurcations, as reviewed previously. As a reminder, on the one hand, 

stability is related to the sign of eigenvalues’ real part. If all eigenvalues have a negative 

real part, the equilibrium point is stable; otherwise, this point is considered as unstable. 

On the other hand, bifurcations are linked to the eigenvalues position in the complex 

plane. For example, when two complex conjugate eigenvalues cross the imaginary 

axis, the system undergoes a Hopf bifurcation. The detection of this point is crucial, 

since it highlights the appearance or disappearance of limit cycles; i.e. periodic 
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oscillations. As another example, when a real eigenvalue crosses the imaginary axis 

and there are no other eigenvalues on this axis, a fold bifurcation occurs. For more 

details, the reader is referred to (Kuznetsov, 1998; Perko, 2001). 

In the following, we present the detected bifurcation points while increasing the 

average excitatory synaptic gain A: 

 

 

Figure 2.6. Equilibrium points and detected bifurcation points. The black curve is 

defined by the equation (2.8). The solid lines represent stable equilibrium points, while 

the dashed line represents the unstable ones. The system undergoes bifurcations, 

while changing the value of the average excitatory synaptic gain A. Two limit point 

denoted by green triangles are detected for ö = 3.42 mV and ö = 4.95 mV. A Hopf 

bifurcation is detected for ö = 20.1 mV and highlights the emergence or disappearance 

of periodic oscillations.  

 

Identifying which physiological parameters are key to the dynamics of a single 

neural mass is key to investigate hypotheses about seizures initiation and termination. 
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Moreover, this is a pre-requisite before moving on to large-scale models and analyze 

seizures propagation. 

 

2.3 Coupling of models 

 

Neurons communicate through a combination of chemical and electrical 

interactions. Information passes electrically through the dendrites, soma and axon. 

Then, the transmission from one neuron to another at the level of synapses is generally 

chemical (Lovinger, 2008; Ovsepian, 2017). First, vesicles filled of neurotransmitters 

are positioned at the axon terminal of the presynaptic neuron. When an action potential 

reaches the axon and causes the opening of voltage-sensitive calcium channels, this 

leads to an increase in local intracellular calcium concentration. This increase in 

concentration causes the release of neurotransmitters into the small synaptic gap 

between the two neurons. The post-synaptic neuron on the other side of the synaptic 

cleft senses the released neurotransmitters via various types of receptors (Hyman, 

2005) situated on its surface membrane. 

Synaptic contacts and functional mechanisms (i.e., causing excitation or 

inhibition) depend on the type of neurotransmitter receptors on the post-synaptic 

neuron. These receptors are specific of the chemical neurotransmitter, and modulate 

the post-synaptic neuron membrane potential by causing either excitation or inhibition, 

depending on the net current flow across the membrane (Davies, 2007; Kandel, 2000). 

Although we are using a non-microscopic modelling approach, this information about 

the transmission mechanism is taken into account when constructing a neuronal 

network comprising multiple neuronal regions. Figure 2.7 represents the method 

followed to couple two neural masses. 
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Figure 2.7. Neural mass coupling strategy. The firing rate (red cross) of a 

subpopulation belonging to neural mass 1 is added to postsynaptic potential entering 

a population belonging to neural mass 2 after being multiplied by connectivity 

coefficient ê and passing the transfer function of the receiving population.  

 

Network studied in this thesis: Two feed-forward connected Wendling neural 

mass models 

 

We designed a simple neural mass network including two Wendling models to 

explore and reveal mechanisms responsible for the onset, spread and termination of 

epileptiform activity. We constructed the network as presented in equation (2.3). We 

assumed that only the pyramidal neurons of region 1 projected to region 2. Hence, the 

firing rate generated by the pyramidal neurons of the region 1 is converted into an 

excitatory postsynaptic potential at the level of the projected subpopulations. Figure 

2.7 illustrates a connection between the pyramidal neurons of region 1 and the 

subpopulations of region 2. The system describing the two uni-directionally coupled 

Wendling NMMs is represented by 22 first-order differential equations: ten describing 

each region as given in (2.6), plus two additional equations representing the synaptic 

projection, as follows: 
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 Region 1: 

dn { = d^n({)	

d^n { = ö^#ìB- d^ { − 2#d^n { − #Odn({)	

d^ { = d^^ { − d^O { − d^1({)	

d^^ { = ö^# Ä { + &OìB- &^dn { − 2#d^^ {

− #O d^ { + dO { + d1 { 	

dO { = d^O({)	

d^O { = ù^K&6ìB- &1dn { − 2Kd^O { − KOdO({)	

d1 { = d^1({)	

d^1 { = ¢^-&oìB- &ûdn { − d6 { − 2-d^1 { − -Od1({)	

d6 { = d^6({)	

d^6 { = ù^K&zìB- &1dn { − 2Kd^6 { − KOd6 { 	 

Region 2: 

dû { = d^û({)	

d^û { = öO#ìB- dz { + &¥¥dOn({) − 2#d^û { − #Odû({)	

dz { = d^z { − d^o { − d^Æ({)	

d^z { = öO# Ä { + &OìB- &^dû { − 2#d^z {

− #O dz { + do { + dÆ { 	

do { = d^o({)	

d^o { = ùOK&6ìB- &1dû { + &¥µÉdOn({) − 2Kd^o { − KOdo({)	

dÆ { = d^Æ({)	

d^Æ { = ¢O-&oìB- &ûdû { − d¨ { + &¥∂ÉdOn({) − 2-d^Æ {

− -OdÆ({)	

d¨ { = d^¨({)	

d^¨ { = ùOK&zìB- &1dû { + &¥µÉdOn({) − 2Kd^¨ { − KOd¨ { 	 

Synaptic projection: 

dOn { = dO^ { 	

dO^ { = öO#ìB- d^ { − 2#dO^ { − #OdOn({) 

(2.12) 
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Where variable dOn represents the afferent EPSPs, and the variables &¥¥, &¥µÉ, &¥∂É are 

the connectivity strengths between pyramidal neurons of region 1; and pyramidal 

neurons, slow and fast inhibitory interneurons, respectively. The variable dOn 

represents the afferent from region 1. 
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Figure 2.8. Structure of a simple network formed by two uni-directionally coupled Wendling’s NMMs. a) Schematic representation, 
and b) Block diagram. Each region is composed of three neural subpopulations, as shown in Figure 2.4. The firing rate of pyramidal 
cells of the region 1 is projected at each time step on the subpopulations of region 2 after going through the transfer function of region 
2 pyramidal cells and adding a connectivity constant, which represents the synaptic strength of the corresponding synaptic projection.

a) 

b) 
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2.4 How we added the perturbation 
 

In this section, we present how the stimulation protocol is integrated in the 

computational models presented above. 

 
Figure 2.9. Influence of an electric field on a subpopulation of neurons. a) How 

stimulation applied on specific neuronal subpopulation is added. b) Effect of applied 

fields on transmembrane potentials and threshold for triggering a single action potential 

(Figure adapted from M. Bikson et al. 2004) 

 

Neurons are excitable cells that are sensitive to external electric fields  !  

(Bikson et al., 2004). More precisely, the variation of the transmembrane potential of 

neurons	(Δ%), therefore the excitability, is assumed to be a linear function of electric 

field	Δ% = (. !, where ( is a constant (Miranda et al., 2009). Based on this assumption, 

the electrical stimulation was added to post-synaptic potentials entering each 

subpopulation. Therefore, the net effect of the stimulation was to depolarize targeted 

subpopulations. For example, while modeling a neuronal region using the Wendling’s 

neural mass model, the LFP is the result of the interaction of three neuronal 

subpopulations, as presented earlier. An applied electrical stimulation impacted each 

of these neuronal subpopulations, and was added as an input to the sigmoid functions 

after being multiplied by subpopulation-dependent stimulation coefficient.  
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We present below the differential equations describing a stimulated Wendling’s 

NMM: 

 *+, = *-	
*-, = ./012 340516 + 8 − 2/*- − /;*+	
8, = *< − *= − *>	
*<, = ./ ? + @;012 340516 + @A*+ − 2/*< − /; 8 + *; + *B 	
*;, = *=	
*=, = CD@E012 3FG0516 + @B*+ − 2D*= − D;*;	
*B, = *>	
*>, = H2@=012 3IG0516 + @-*+ − *E − 22*> − 2;*B	
*E, = *J	
*J, = CD@<012 3FG0516 + @B*+ − 2D*J − D;*E 

(2.13) 

 

 

This set of differential equations provides a direct access to the LFP value 

presented by the variable	8. The variables (34, 3FG, 3IG) represent stimulation 

coefficients upon pyramidal cells and slow and fast inhibitory interneurons, 

respectively. The variable 0516 represent the applied electrical stimulation.  

It is now established that epilepsy is a network disease (Berg et al., 2010). An 

epileptic network consists of cortical and subcortical structures that are anatomically 

and functionally connected (Spencer, 2002). Thus, afferents from any structures 

belonging to the epileptic network will affects other structures. Temporal lobe epilepsy, 

studied in this thesis, involves seizures that originate in hippocampus and other 

anatomically and functionally connected neuronal brain networks within and beyond 

the temporal lobe (Bettus et al., 2009; Morgan et al., 2010). These networks include 

neuronal structures such as thalamus, entorhinal cortex and amygdalae (Norden and 

Blumenfeld, 2002). This network structure justified and led to the existence of two 

different stimulation paradigms; direct and indirect stimulation. The first one represents 

a direct targeting of the neuronal structure implicated in the generation of the 

pathological activity. The second consists in stimulating a neuronal structure belonging 

to the epileptogenic network and presenting afferent output to the epileptogenic 

structure from which the seizure is triggered and propagated. This indirect stimulation 

alters the pathological activity via synaptic activation of neurons, in contrast to direct 

activation caused by a direct stimulation.  
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Figure 2.10.  Stimulation paradigms. Neuronal region 2 could be either directly 

stimulated (red arrow) or indirectly stimulation through stimulating neuronal region 1 

presenting an afferent output to neuronal region 2. A neuronal region is modeled using 

Wendling’s neural mass model. L, 0M and NM represent pyramidal cells, slow and fast 

inhibitory interneurons, respectively.  
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Chapter 3 

Dynamics of local neuronal populations 
under spontaneous and stimulated 
conditions 
 
 
 
 

3.1 Spontaneous condition: Investigation of models 
parameters 

 

The variation of model parameters, extrinsic input and synaptic gains, can lead 

to sudden, qualitative changes in neuronal activities. In this section, we perform a 

bifurcation analysis of the WNMM presented in the previous chapter. We describe 

below the qualitative changes in dynamics for system (2.3) in response to quantitative 

input changes (external input p and synaptic gains).  

 

Variation of the external input p 

All parameters, except the extrinsic noise	?, were kept constant and equal to 

standard values mentioned in Table 2. 



66 

 

 

Figure 3.1. a) Bifurcation of the LFP with respect to the input	?. The solid and dashed 

black lines denote stable and unstable equilibrium points, respectively. The green 

curve corresponds to stable limit cycles. The red curve depicts the frequency of 

periodic oscillations for	? ∈ 203.22, 995.41 . Triangles and circles denote limit and 

Hopf bifurcation points. b) LFP time-series while ? ∈ {180, 400, 800, X(198, 50)}, 

respectively. 

 

The bifurcation diagram (Figure 3.1-a) can be divided into three regions. For 

0 ≤ ? ≤ 203.2, all the eigenvalues of matrix (2.9) have a negative part, and the 

equilibrium points are stable, corresponding to background activity. Then, a homoclinic 

limit cycle appears suddenly and generates high amplitude oscillations (Grimbert and 

Faugeras, 2006). For a Gaussian noise of a mean value near to the point separating 

the two regions and a non-null standard deviation, spikes are generated. The last time 

series in Figure 3.1-b illustrates an example, where the mean noise mean value is 

equal to 198 and the standard deviation is equal to 50, which generates a spiking 
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activity. For 203.22 ≤ ? ≤ 995.41, the system exhibits quasi-sinusoidal activities that 

arise from a branch of stable periodic orbits delimited by a Hopf bifurcation. The 

oscillations with a large amplitude are related to a rhythmic activity, while those with a 

relatively small amplitude are related to alpha activity. For values of ? greater than 

995.41, the system returns to background activity. 

Typically, the white Gaussian noise ? used has a rate ranging from 60 to 120 

pulses per second. This interval belongs to the first region where the system generates 

background activity. Increasing the noise can induce the onset of spiking activity. 

 

Influence of synaptic gains 

 Previous studies have shown that electrical stimulation modulates 

neurotransmitters’ concentrations (Das et al., 2016; Tawfik et al., 2010) and thereby 

neuronal excitability, while the associated mechanisms are still unclear. In the 

following, we investigate how the variation of synaptic gains controls the type of activity 

that can be generated.  
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Variation of the average excitatory synaptic gain A 

 

Figure 3.2. LFP as a function of the average excitatory synaptic gain A and frequency 

of periodic oscillations. The solid and dashed black curves represent stable and 

unstable equilibrium points, respectively. The green and blue curves correspond to 

stable and unstable limit cycles, respectively. The red curve depicts the frequency of 

periodic oscillations for . ∈ 4.95, 20.1  mV. Triangles and circle denote limit and Hopf 

bifurcation points. 

Figure 3.2 presents all the dynamics that the differential equations system (2.6) 

can generate while varying the excitatory synaptic gain	.. This diagram enables 

discriminating the . values for which the system oscillates, and those for which the 

system is attracted by a stable limit point corresponding to either background activity 

or low-amplitude high-frequency activity in the presence of noise. Therefore, this 

analysis delivers insights about the required alterations to modify pathological 

dynamics towards more physiological dynamics.  
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The bifurcation diagram (Figure 3.2, left y-axis) can be divided into five regions. 

In the first region where	. ∈ 0, 3.42 	6%, the system possesses a single branch of 

stable equilibrium points and generates background activity with an increasing LFP 

mean value. In the second region where	. ∈ 3.42, 4.95 	6%, the equilibrium points lie 

on a S-shaped curve between two limit point bifurcations at the interval extremities. 

At	. = 4.95	6%, the system undergoes a saddle-node on invariant circle (SNIC) 

bifurcation where a rhythmic activity appears. This rhythmic activity persists until the 

supercritical Hopf bifurcation at	. = 20.1	6%. The region of periodic oscillations is 

further divided into two regions (see Figure 3.2, right y-axis). For	. ∈ 4.95, 17.3 	6%, 

the system generates alpha-band oscillations at a frequency around 8 Hz. The diagram 

shows the existence of multiple types of alpha rhythms, representing different limit 

cycles with different amplitude ranges. Finally, for	. ∈ 20.1, 30 	6%, the system has 

stable equilibrium points.  

 

Variation of the average inhibitory synaptic gains (B, G) 

 Inhibitory interneurons originate specific oscillatory patterns at different 

frequencies depending on their type. In particular, GABAergic interneurons have been 

shown to exhibit different firing patterns in relation to network oscillations (Middleton et 

al, 2008), indicating that they control oscillations in the brain (Klausberger and 

Somogyi, 2008; Le Magueresse and Monyer, 2013; Tremblay et al., 2016). For 

example, it has been experimentally evidenced that these neurons play a critical role 

in the generation and maintenance of high-frequency activity (Magloire, Mercier et al., 

2019). Therefore, linking the oscillations to degree of excitability of these interneurons, 

and understanding how a lack of slow GABAergic neurons affected by epilepsy (Dudek 

and Shao, 2003) can impact the generation of epileptiform activity crucial.  
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Figure 3.3. LFP as a function of the average inhibitory synaptic gains B (upper panel) 

and G (lower panels). a,b) All model parameter values except B in a) and G in b) are 

equal to the values in Table 1. c) The values of slow inhibitory and excitatory synaptic 

gains A and B were modified to 2 mV and 5 mV, respectively. Stable and unstable 

equilibria lie on solid and dashed black curves, respectively. Blue and green curves 

represent the minima and maxima of the unstable and stable limit cycles rising from 

Hopf bifurcations at C = 14.9 mV in a) and H = 32.2 mV in c). The red curve represents 

the frequency of stable limit cycles. 

Figure 3.3 presents the solutions of the WNMM (equation (2.6)) as a function of 

the inhibitory synaptic gains B and G, while other parameters are provided in Table 1. 

The equilibria (2.8) as a function of B lie on a Z-shaped curve, as can be seen in Figure 

3.3-a. The lower branch of the Z-shaped curve corresponds to background activity 

(C > 6.29	6%), whereas the upper branch solutions for 0 < C < 14.9	6% can yield 

ripples with a frequency greater than 8 Hz under noisy input. The system can switch 
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between these two behaviors in the bi-stable region for C ∈ 6.29, 14.9 	6%, which is 

separated by the unstable branch of equilibria (Figure 3.4-a). The upper branch 

undergoes a Hopf bifurcation at C = 14.9	6%, resulting in a branch of stable limit cycles 

for C ∈ 13.1, 14.9 	6% making a homoclinic connection with a saddle point on the 

middle branch of the A-shaped curve. Note that the LFP mean value decreases as the 

parameter B increases, which is equivalent to decreasing the excitation/inhibition ratio 

(A/B).  

 

Figure 3.4. LFP signals for slow inhibitory synaptic gains equal to 14 mV in a) and 8 

mV in b). The noise mean is equal to 90 until 5 s and is then doubled. The noise 

standard deviation is kept constant and equal to 30. 

H.C._,`abc neurons have been shown to be involve in the generation of low 

amplitude, high-frequency oscillations, namely low-voltage fast onset activity, which is 

one of the markers of epileptic seizures (Jacobs et al., 2008; Roehri et al., 2018). 

Wendling et al (Wendling et al., 2002b) have noted that the system can generate low-

voltage fast onset when the H.C._,bdef interneuron inhibitory impact on the H.C._,`abc 

interneuron population is decreased and the excitation is increased. Indeed, increasing 

the value of G, while all the other parameters are kept constant and equal to values 

presented in Table 1, slightly decreases the mean LFP value but does not generate 

fast onset activity (Figure 3.3-b). Fast activity appears if the slow inhibitory synaptic 

gain B is decreased and the excitatory one A is increased, as exemplified in Figure 
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3.3-c. Under such conditions, the system has stable equilibrium points until	H =

32.2	6% where a Hopf bifurcation occurs, and high-frequency, high-amplitude 

oscillations appear (about 30 Hz). This behavior is preceded by the appearance of low-

amplitude, fast-frequency oscillations for values of G closer to 32.2 mV. Let us note 

that the oscillation amplitude increases with G.  

These diagrams enable us formulating hypotheses about the mechanisms 

leading to the generation or abortion of epileptic seizures. For instance, the excitation 

of glutamatergic neurons drives the neuronal population to theta- and alpha-band 

oscillations, as presented in Figure 3.2. However, the same figure also provides an 

unintuitive prediction: over-excitation of glutamatergic neurons could stop oscillations, 

through a possible depolarization block. Although further in vivo experiments could be 

performed to test this this computational result, this result could explain seizures 

termination. Regarding inhibitory processes, excitation of H.C._,bdef interneurons 

weakens the influence of H.C._,`abc interneurons, and keeps the system in 

background activity mode. Conversely, excitation of glutamatergic neurons and 

H.C._,`abc interneurons combined with the inhibition of H.C._,bdef interneurons 

promotes the emergence of high-frequency activity that resembles epileptic seizures 

(Figure 3.3-c). Such prediction is possible thanks to the WNMM formulation, which 

considers different GABAergic interneuron subtypes with fast and slow kinetics 

separately and distinguishes excitatory/inhibitory ratio between them and pyramidal 

neurons.   

In the following, we performed a co-dimension 1 bifurcation analysis of the 

WNMM by changing one of the gain parameters, while all the other model parameters 

were kept constant and equal to the values presented in Table 2. Then, we continue 

our investigation in the parameter space of (A, B, G) for which the system has an 

oscillatory behavior. In particular, we follow the Hopf and limit points of the bifurcation 

diagram in Figure 3.3-a, since they are related to sporadic spikes and periodic 

oscillations. 
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Figure 3.5. Continuation of Hopf and limit point bifurcations in (A, B)-parameter space 

for different values of G. The green and red curves represent limit points; while blue, 

black and purple curves represent Hopf points. 

Figure 3.5 presents the locations of Hopf and limit point bifurcation points in 

Figure 3.2 and 3.3 in the (A, B) space for different values of G. Fast oscillations can be 

introduced by increasing G. For instance, for H = 40	6% and	. = 10	6%, the system 

undergoes three Hopf bifurcations along the B axis. The system generates a periodic 

activity of a frequency around 30 Hz between the first two Hopf bifurcations (the purple 

curve) similar to the one presented in Figure 3.6-a. In the small interval between the 
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second and the third Hopf Bifurcations, although the system has equilibrium points, 

fluctuations in the input parameter ?(5) yield ripples. The system generates fast onset 

activity for B values closer to the second Hopf bifurcation. Figure 3.6-b shows a time 

series of this fast onset activity in the presence of noisy input. The frequency decreases 

as the B value approaches the third Hopf bifurcation point before switching to alpha 

oscillations of a frequency around 8 Hz followed by high-amplitude theta-band spiking 

oscillations. For this example, the system undergoes a SNIC bifurcation for	C > 50	6%, 

where the system switches from a stable periodic behavior to background activity.  

 

Figure 3.6. LFP and corresponding power spectrum generated by a WNMM for 

synaptic gains	 ., C, H ∈ { 10, 4, 40 	6%, 10, 7, 40 	6%}, respectively. A) The fast 

oscillations (high beta / gamma range) observed in the LFP are due to the activity of 

fast inhibitory interneurons. 

 

For a better understanding of Figure 3.5, we present a set of co-dimension 1 

bifurcation diagrams in Figure 3.7. These diagrams provide three key information on 

the system’s dynamics. First, increasing the excitatory synaptic gain A leads to periodic 

solutions and expands the range of slow inhibitory synaptic gains for which the system 

generates periodic oscillations. Second, increasing the fast inhibitory synaptic gain G 

promotes the appearance of fast oscillations, including low-voltage, fast-onset activity. 

Third, increasing the slow inhibitory synaptic gain B inhibits the system and leads to 
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replacing oscillatory activity by background activity. Indeed, the network structure 

explains this inhibitory impact of H.C._,bdef interneurons, which (i) prevent pyramidal 

cells from excessively firing, thereby modulating the activity of connected 

subpopulations, and (ii) inhibit H.C._,`abc interneurons and prevent them from 

generating high-frequency oscillations. 

 

 

Figure 3.7. Bifurcation diagrams obtained when changing the average slow inhibitory 

synaptic gain B for several values of excitatory and fast inhibitory synaptic gains (A, 

G). The red and black curves represent stable and unstable equilibrium points, 

respectively. The green and blue curves represent stable and unstable limit cycles, 

respectively. 

 



76 

 

In a nutshell, we investigated, in this section, how neural masses dynamics 

change in response to alterations in synaptic gains. Each excitability state (resulting 

from the combination of synaptic gains) of a neuronal subpopulation was associated 

with a neuronal activity pattern. Such visualization enabled the identification of the 

neuronal subpopulations involved in the generation of specific activity patterns. Results 

link the appearance of high-frequency low-amplitude oscillations, which characterize 

epileptic fast onset, to an increased activity of somatic-projecting, fast inhibitory 

interneurons (Figure 3.3-c). This increased activity is represented by an increase in the 

corresponding synaptic gain. Furthermore, background activity is related to high levels 

of activity of dendritic-projecting, slow inhibitory interneurons. This neuronal 

subpopulation inhibits both the somatic projecting inhibitory interneurons and 

pyramidal cells. Therefore, it leads to the suppression of epileptic oscillations and 

diminishes high-amplitude oscillations generated by the excitatory neurons through 

influencing pyramidal cells.  

 

3.2 Stimulated condition: Investigation of stimulation 
parameters 

 

Bifurcation analysis of a Wendling’s neural mass model under stimulation 

The main objective of this section is to determine effective stimulation 

parameters that can effectively abort an epileptic seizure, thereby replacing 

pathological activity by another activity pattern closer to physiological activity.  

In theory, the impact of electrical brain stimulation differs depending on the 

impacted neuronal types, due to several factors such as the electrical field orientation 

with respect to the somato-dendritic axis of neurons (Komarov et al., 2019). However, 

for the sake of simplicity, we assume in the following that the considered neuronal 

populations were equally impacted by the applied electrical stimulation.  
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Fig. 3.8. Block diagram of Wendling’s neural mass model. The terms *g, 1 ∈ {0, … ,3} 

represent post-synaptic potentials of pyramidal cells, excitatory interneurons and both 

slow and fast inhibitory interneurons, respectively. The ℎ boxes denote the post-

synaptic response function of each type, whilst 012 denote the non-linear conversion 

of the membrane potential into an output firing rate. The constants @g, 1 ∈ {1, … ,7} 

account for the strength of the synaptic connections between populations. The red 

flashes indicate where in the model the stimulation was included. 

Wendling’s NMM alone is described by 10 first-order differential equations, i.e. 

two equations for each neural subpopulation. Furthermore, we added two first-order 

differential equations whose solution consisted in the desired sinusoidal stimulation 

pattern. 
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 *+, = *<	

*<, = ./012 /6?×*- + 8 − 2/*< − /;*+	

8, = *= − *> − *J	

*=, = ./ ? + @;012 /6?×*- + @A*+ − 2/*= − /; 8 + *; + *B 	

*;, = *>	

*>, = CD@E012 /6?×*- + @B*+ − 2D*> − D;*;	

*B, = *J	

*J, = H2@=012 /6?×*- + @-*+ − *E − 22*J − 2;*B	

*E, = *A+	

*A+, = CD@<012 /6?×*- + @B*+ − 2D*A+ − D;*E	

*-, = *- + 2k×lmno×*AA − *- *-; + *AA; 	

*AA, = *AA − 2k×lmno×*- − *AA(*-; + *AA; )	 

 

(3.1) 

This set of differential equations is equivalent to the set presented by Wendling 

(Wendling et al., 2002b), plus the two differential equations represent electrical 

stimulation, which were derived by using a simple change of variable. This 

representation provides direct access to the LFP value presented by the variable 8. 

These equations depend on 14 parameters (., /, C, D, … ) plus the stimulation 

amplitude and frequency, denoted by /6? and lmno, respectively. Regarding the 

system initial conditions, all were fixed equal to 0, except *AA(0) which was equal to 

the stimulation amplitude. In this set of differential equations, *-(5) represents the 

sinusoidal stimulation of a frequency equal to lmno and a given amplitude. 

Table 2 summarizes the interpretation of model parameters along with their 

values. By tuning model parameters, these five different types of activity can be 

simulated (background activity, sporadic spikes, rhythmic spikes, fast onset activity 

and theta-alpha seizure-like activity). Since we aimed at describing the changes 

caused by electrical stimulation as seizure starts, we selected model parameters 

producing rhythmic spikes, as presented in Figure 3.9-a. 

For this particular parameter setting (sustained spiking activity), the model can 

be viewed as a dynamical system composed of coupled oscillators. The solution, 

presented in Figure 3.9-a, corresponds to a stable periodic orbit repeating itself over 
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time. This orbit, represented in a two-dimensional manifold, is a limit cycle, as disclosed 

by the plotting of the phase portrait of the model under the “no stimulation” condition 

(Figure 3.9-b,c). 

 

Figure 3.9. a) LFP generated by Wendling’s NMM in the absence of 

stimulation	 /6?, lmno = (0, 0). b, c) LFP with respect to slow and fast inhibitory 

synaptic potentials. This closed solution correspond to a cycle or periodic orbit of (2.6). 

The excitatory and slow inhibitory synaptic gains were equal to (5.5, 25) mV, 

respectively. All other parameters were kept equal to values presented in Table 2. 

 

Bifurcation analysis 

This section is organized as follows. First, the bifurcation diagram when varying 

the stimulation amplitude is presented. Second, the bifurcation diagram obtained when 

varying the stimulation frequency is reported for a fixed amplitude. 
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Amplitude variation 

 

Figure 3.10. a) LFP bifurcation diagram with respect the input amplitude. The green 

lines correspond to stable limit cycles, while the blue lines represent unstable ones. 

The red star denotes a Torus bifurcation, and black triangles represent limit points. b) 

Time series while applying sinusoidal stimulation of a frequency equal to 90 Hz and an 

amplitude equal to 3 mV and 1 mV, respectively. The stimulation is applied at 5 = 5p. 

 

The bifurcation analysis was started from the periodic orbit when the stimulation 

amplitude was equal to 7 mV and the frequency equal to 90 Hz. The initial step for 

bifurcation calculation was chosen equal to −10q;. For /6? = 1,479	6%, the system 

undergoes a limit point accompanied by a change of stability, pointing out that two 

periodic solutions collide and disappear when the amplitude passes this critical value. 

Another limit point was detected when /6? was equal to 3.56 mV, only indicating a 

turning point of the branch and not involving a change in stability. 
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Figure 3.10-a illustrates that the system continued to generate rhythmic activity 

when the stimulation amplitude was changed. For every /6? value, we observed a 

cycle. However, the LFP amplitude differed from the one presented in Figure 3.9-a for 

the studied system without stimulation. In fact, the rhythmic activity generated without 

stimulation had an amplitude equal to 37.8 mV, while applying a sinusoidal stimulation 

of a frequency equal to 90 Hz and an amplitude higher than 1.5 mV reduced this value, 

as presented in Figure 3.10-b. For instance, applying a sinusoidal stimulation of an 

amplitude equal to 3 mV and a frequency of 90 Hz resulted in an LFP of amplitude 

0.13 mV. Therefore, we can conclude that this specific stimulation suppressed 

epileptiform activity.  

 

 Frequency variation 

 

Figure 3.11. a) LFP bifurcation diagram with respect to the input frequency. The green 

lines correspond to stable limit cycles while the blue lines represent instable ones. The 

red star denotes a Torus bifurcation and black triangles represent limit points. b) Time 
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series while applying sinusoidal stimulation of an amplitude equal to 3 mV and a 

frequency equal to 5 Hz and 90 Hz, respectively. The stimulation is applied at 5 = 5	p. 

The bifurcation diagram presented in Figure 3.11-a shows two types of limit 

cycles: stable limit cycles (green), and unstable limit cycles (blue). The limit point that 

separates those two types was detected when the stimulation frequency was equal to 

8.45 Hz. We concluded that increasing the stimulation frequency decreases LFP 

amplitude. 

For stimulation frequencies lower than 8.45 Hz, the system generates rhythmic 

activity of higher amplitude, presumably since the stimulation frequency was close to 

the system’s intrinsic frequency. Therefore, this confirms that stimulation efficacy of 

stimulation depends both on amplitude and frequency. The optimal (amplitude, 

frequency) couple able to suppress epileptic activity are in the sub-region of the 

parameter space where the frequency is higher than 90 Hz, and the amplitude greater 

than 1.5 mV. 

Understanding how the variation of stimulation parameters impacts neuronal 

dynamics is key for the design of rationale-based stimulation protocol, and providing 

such bifurcation diagrams for a realistic model of neuronal activity is a step in that 

direction. These diagrams provided results consistent with previous works related to 

the identification of effective stimulation parameters capable of aborting epileptic 

seizures (Beurrier et al., 2001; Filali et al., 2004; Shen et al., 2003). Results also 

confirmed that the use of high frequencies (over 90 Hz) along with a specific amplitude 

(2 mV in the model) has the potential to suppress low-frequency epileptiform activity. 

Future work will validate this prediction in vivo.  

Finally, our model-guided approach reinforces the rationale for the design of 

neuromodulation therapies, which classically involves an empirical, sub-optimal “trial-

and-error” approach. Using the tools presented here, it appears at reach to design 

optimal waveforms (frequency, amplitude), that drive a dynamical system (here, a 

neural mass model) from one attractor (here, a limit cycle corresponding to 

pathological low-frequency oscillations) onto a fixed point (here, background activity).  
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3.3 Particular case: weak perturbations 

In this section, an explicit mathematical expression of the transfer function 

relating the input (applied stimulation) to the output (simulated LFP under stimulation) 

is provided. The motivation for following this approach is the potential to classify 

effective stimulation parameters by quantifying the stimulation impact on neuronal 

activity patterns. The major roadblock to derive such transfer function is that neural 

mass models feature a non-linearity, preventing the analytical derivation of the 

system’s transfer function. Generally, non-linear functions are replaced by linear ones, 

or a linearization around equilibrium point is performed. In the following, we followed a 

different approach enabling the derivation of an analytical expression of the transfer 

function for a non-linear system.  

Here, we propose to tackle this issue by using a different mathematical 

approach inspired from non-commutative rings theory, enabling the identification of a 

transfer function for a non-linear system. First, the algebraic formalism and the 

proposed approach that enables the derivation of the transfer function for a non-linear 

system without the linearization assumption are introduced. Second, the resulting 

function is validated by comparing with numerical simulations of the model. These 

results provide further understanding of frequency-dependent effects of the applied 

stimulation and resonance phenomena.  

The response of a system to a specific stimulation is in general possible through 

the transfer function, which is a compact description of the input/output relationship. 

The transfer function is a powerful method for dealing with complex systems, since it 

provides knowledge of the system’s response for any input signal, and on resonance 

frequencies where the response amplitude is a relative maximum. The identification of 

such resonance frequencies is especially relevant to ends of therapy. In the case of 

linear systems, the Laplace transform can be used to compute the transfer function. 

For instance, it is used in the design controllers to switch between different types of 

system representations; mainly between a state-space representation and an input-

output description. However, the system of differential equations governing a simple 

neural mass model, namely the Jansen-Rit model, involves non-linear functions. 
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Therefore, the use of the Laplace transform is not possible, since associativity is not 

valid. To explain this further, let us consider two simple non-linear systems: 

 *A = 2A rA 	

*; = 2;(r;) 
(3.1) 

 

where rA, r;, *A, *; ∈ ℝ represent the inputs and outputs, respectively, and 2A, 2; are 

differentiable functions from ℝ to ℝ. The system output depends on the order in which 

these systems are combined together. For instance, the system * = 2; 2A r  is not 

equivalent to the system	* = 2A 2; r . To tackle this issue, differentiating is used, 

since the derivative of a composite function is simply a product of derivatives of its 

components. However, this requires an appropriate algebraic framework, which is 

presented below. 

 In the following, the algebraic point of view in non-linear control systems and 

methods of pseudo-linear algebra are presented. For more technical constructions and 

further details, the reader can refer to (Conte et al., 1999). 

 

Meromorphic functions and differential forms 

Our aforementioned non-linear dynamic system (2.5) can be written under the 

following form: 

 t = l t, 0516  

8 = 2(t, 0516) 
(3.2) 

where t ∈ uv, 0516 ∈ uw and 8 ∈ ux denote the state vector, input and output of the 

system, respectively. Moreover,	l and 2 are meromorphic functions, which are 

elements of the quotient field of the ring of holomorphic functions. This dynamic system 

is called control system or non-linear control system, to stress the fact that l and 2 are 

non-linear. Let y denote the field of meromorphic functions of t and	0516. Therefore, 

the system (3.2) belongs to	y. A derivative operator z acting on y is defined as follows: 
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 ztg = tg = lg t, 0516 	

zl t, 0516 =
{l
{tg

ztg

v

g|A

+
{l

{0516}

w

}|A

z0516}											∀1 ∈ {1, … , �} 
(3.3) 

To handle the theoretical properties of the non-linear system (3.2), we define a vector 

space spanned over y by differentials of elements of y, namely: 

 Ä = p?/�Å ÇÉ; 	É ∈ Å  (3.4) 

Elements of Ä are called one-forms, or more generally differential forms. Any element 

in Ä is a vector of the form: 

 Ö = Üg
g

ÇÉg (3.5) 

where all Üg ∈ y. We define a differential operator, denoted by d, from y to	Ä, as: 

 
Ç:Å ⟶ Ä	; Çl =

{l
{tg

Çtg

v

g|A

+
{l

{0516}
Ç0516}

w

}|A

 (3.6) 

Thus, Çl is usually referred to the differential of	l. Finally, the vector space Ä can be 

endowed with a differential structure by defining a derivative operator: 

 zÖ = Ö = z Üg ÇÉg + ÜgÇ(zÉg)
g

 (3.7) 

This algebraic point of view enables treating non-linear control problems of the 

form (3.2). However, we still need to introduce some algebraic objects to ensure 

analytical computation of a non-linear transfer function. 

 

Pseudo-derivations, skew polynomials and pseudo-linear operators 

In this section, we present skew polynomials, which act as differential operators 

on the vector space	Ä. Quotients of such polynomials can be considered as the transfer 

function of the considered non-linear system. This function completely characterizes 

non-linear dynamics of a given system at any operating point, which prevents 

approximations such as linearizing around a fixed operating point. For more theoretical 
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details, the reader is referred to (Bronstein and Petkovšek, 1996; Halás et al., 2008; 

Zheng et al., 2001). In the following, all fields are commutative and all rings are non-

commutative. 

1) Pseudo derivation. Let Å be a field and â:	Å ⟶ Å an injective endomorphism, 

it satisfies: 

 â / + D = â / + â D 	

â /D = â / â D 											∀/, D ∈ Å 

(3.8) 

A map z:	Å ⟶ Å which satisfies: 

 z / + D = z / + z D 	

z /D = â / z D + z / D 
(3.9) 

is called a pseudo-derivation. 

2) Skew polynomials. The left skew polynomial ring given by	â, and z is the ring 

(Å ä ;+, . ) of polynomials in the indeterminate ä over Å with the usual addition, 

and the non-commutative multiplication given by the commutation rule: 

 ä/ = â / ä + z / 		, ∀/ ∈ Å (3.10) 

We denote the left skew polynomial ring	Å ä; â, z . Elements of this ring are called 

skew polynomials, or non-commutative polynomials. 

 

3) Pseudo-linear operators. Let ã be a vector space over	Å. A map å:	ã ⟶ ã is 

called pseudo-linear if:  

 å r + ç = å r + å ç 	

å /r = â / å r + z / r	

∀/ ∈ Å, ∀r, ç ∈ ã 

(3.11) 

If	â = 1, then (3.11) is similar to a derivation on	ã. Skew polynomials can act on the 

vector space ã and thus represent operators. Any pseudo-linear map å:	ã ⟶ ã 

induces an action: 
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. ∶ Å ä; â, z ×ã ⟶ ã;	 /gäg

v

g|+

	 . r = /gåg r
v

g|+

							∀r ∈ ã (3.12) 

 

Quotients of skew polynomials 

One of the most important properties of the left skew polynomial ring Å ä; â, z  

is the non-containment of zero divisors. Such property is used in the following section 

to compute the inverse of a matrix and determine the transfer function, and is 

summarized in the following condition. 

Ore condition. For all non-zero	/, D ∈ Å ä; â, z , there exists a non-zero è, Ç ∈

Å ä; â, z  such that 

 èD = Ç/ (3.13) 

 

In other words, each two elements of Å ä; â, z  have a common left multiple. Å ä; â, z  

can thus be embedded into a non-commutative quotient field by defining quotients as  

 /
D
= DqA. /							∀/, D ∈ Å ä; â, z , D ≠ 0 (3.14) 

We denote the quotient field of skew polynomials by	Å < ä; 	â, z >. In the following, 

the transfer function of a non-linear system will be written as a fraction of two skew 

polynomials. 

 

Calculation of the Jansen and Rit model transfer function 

Using the pseudo-linear algebra presented above, the transfer function of the 

Jansen and Rit model can be computed. The non-linear system (3.1) can be written 

as follows:  
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t =

*+ 5
*A 5
*; 5
*B 5
*E 5
*- 5

= l t, 0516 =

*B 5
*E 5
*- 5

./012 0516 5 − 2/*B 5 − /;*+ 5
./@;012 @A*+ 5 − 2/*E 5 − /;*A 5
CD@E012 @B*+ 5 − 2D*- 5 − D;*; 5

	

8 = 2 t, 0516 = 0 1 −1 0 0 0

*+ 5
*A 5
*; 5
*B 5
*E 5
*- 5

 

(3.15) 

 

where 8 is the system output, and is equal to the difference between the post-synaptic 

potential at the level of pyramidal cells. We differentiate (17) and apply the following 

Lemma: 

For any l ∈ Å, 

 z Çl = Ç(zl) (3.16) 

 

Proof: using equation (3.7), we obtain 

 
z Çl = z

{l
{Ég

ÇÉg

v

g|A

= z
{l
{Ég

v

g|A

ÇÉg +
{l
{Ég

Ç(
v

g|A

zÉg)	

=
{;l
{É}{Ég

v

g,}|A

zÉ}ÇÉg +
{l
{Ég

Ç(
v

g|A

zÉg) 

(3.17) 

 
Ç(zl) = Ç

{l
{Ég

zÉg

v

g|A

= Ç
{l
{Ég

v

g|A

zÉg +
{l
{Ég

Ç(
v

g|A

zÉg)	

=
{;l
{É}{Ég

v

g,}|A

ÇÉ}zÉg +
{l
{Ég

Ç(
v

g|A

zÉg) 

(3.18) 
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After considering the fact that for any	l ∈ Å, {;l {É}{Ég = {;l {Ég{É} we 

obtain	z Çl = Ç(zl). As a result of (3.16), a state representation (3.15) can be written 

after differentiating as follows: 

 Çt = .Çt + CÇ0516	

Ç8 = @Çt 
(3.19) 

where: 

 

. =
{l
{t

=

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−/; 0 0 −2/ 0 0

./@;@A012, @A*+ 5 −/; 0 0 −2/ 0
CD@E@B012, @B*+ 5 0 −D; 0 0 −2D

	

C =
{l

{0516
=

0
0
0

./012,(0516)
0
0

	

@ =
{2
{t

=

0
1
−1
0
0
0

 

(3.20) 

 

In light of the above, we notice that the derivative operator z acting on Å (3.3) 

is a pseudo-derivation (3.9) with respect to	â = 1Å. Therefore, the derivative operator 

acting on Ä (3.7) is a pseudo-linear map (3.11), with respect to  â = 1Å also. This leads 

to the following action:  

 
. ∶ Å ä; 1Å, z ×Ä ⟶ Ä;	 /gpg

v

g|+

	 . r = /gzg r
v

g|+

		 (3.21) 

 

Moreover, the commutation rule (3.10) is transformed into pl = lp + l on	Å ä; 1Å, z . 
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Thus, the polynomials may not only act on one-forms, but it is also possible to extract 

from one-forms corresponding polynomials. For instance, a one-form Ç* can be written 

as	pÇ*. 

By using (3.21), we obtain: 

 pM< − . Çt = CÇ0516	

Ç8 = @Çt 
(3.22) 

where M< is the identity matrix. Consequently, Ç8 = @(pM< − .)qACÇ0516. As a result, 

the transfer function of our system is: 

 N p = @(pM< − .)qAC (3.23) 

To compute the transfer function (25), we have to compute the left-hand inverse 

of the matrix (pM< − .), which is not trivial since multiplication is not commutative and 

the entries of our matrix are skew polynomials. In order to solve linear equations in 

non-commutative fields, the Ore condition (Ore, 1933) is used. It guarantees that each 

two elements of the skew polynomial ring Å[p; â, z] have a common left multiple. Let’s 

denote pM< − . qA as follows: 

 
(pM< − .)qA =

ìîî ⋯ ìîñ
⋮ ⋱ ⋮
ìñî ⋯ ìññ

 (3.24) 

 

By considering the values of vectors C and	@, the transfer function is related to 

identifying the terms /;E and	/BE. We first decompose (pM< − .) into four blocks: 

 pM< − . =
.AA .A;
.;A .;;

 (3.25) 

Due to the Ore condition, matrices	@AA,@A;, @;A and @;; of appropriate dimensions could 

be found such that @;;.A; = @A;.;; and	@;A.AA = @AA.;A. Then,  

 
pM< − . qA =

(@;;.AA − @A;.;A)qA@;; −(@;;.AA − @A;.;A)qA@A;
−(@AA.;; − @;A.A;)qA@;A (@AA.;; − @;A.A;)qA@AA

 (3.26) 
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represents the left-hand inverse. Since we are interested in terms /;E and	/BE, we only 

need to compute the matrix	−(@;;.AA − @A;.;A)qA@A;. By using the Ore condition, we 

obtain: 

 

− @;;.AA − @A;.;A qA@A; =

1
(p + /);

0 0

./@A@;012,(@A*+ 5 )
(p + /)E

1
(p + /);

0

CD@B@E012,(@B*+ 5 )
(p + /);(p + D);

0
1

(p + D);

 (3.27) 

 

Hence, the transfer function of non-linear system (3.15) is equal to: 

 
N p =

./@A@;012,(@A*+)
(p + /)E

−
CD@B@E012,(@B*+)
(p + /);(p + D);

×	./012,(0516) (3.28) 

 

Let us mention that this analytical expression of the transfer function features the 

variable	*+ 5 , corresponding to the output firing rate of the pyramidal population, and 

also the applied stimulation	0516(5). Therefore, this implies that the obtained transfer 

function is time-dependent, i.e., for each frequency, equation (3.28) is a function of 

time, which is challenge since this implies a numerical resolution that we aimed at 

avoiding by the use of an analytical transfer function.  

In order to overcome this difficulty, we approximated the function mean value within 

the frequency response. For instance, we assumed that the mean value of *+ is small 

and close to zero, and changes slightly while varying the frequency. More precisely, at 

low frequencies, the mean value of the postsynaptic potential of pyramidal cells *+ 

fluctuates slightly around a given value, noted here by *+, before converging towards 

it while increasing the frequency. 

Using this approximation, equation (3.28) becomes independent of *+ variations, and 

becomes 

 N p =
./@A@;012,(@A*+)

(p + /)E
−
CD@B@E012,(@B*+)
(p + /);(p + D);

×	./012,(0516) (3.29) 
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In Figure 3.12 below, we present the frequency responses obtained either by using 

equation (3.28), or just by simply approximating *+ as its mean value when the 

stimulation frequency is equal to	100	ôö.  

 

Figure 3.12. Frequency responses calculated using either equation (3.28) or equation 

(3.29). For the first equation, the mean value of postsynaptic potential of pyramidal 

cells *+ for each frequency was computed. However, for equation (3.29), only the mean 

value of *+ for stimulation frequency equal to 100 Hz is required. 

To verify the validity of the aforementioned analytical transfer function, we 

compared it to the transfer function computed numerically. Indeed, system (2.5) 

provides the necessary information to compute the numerical transfer function. For 

several stimulation frequencies, and by keeping the parameters values used originally 

by Jansen and Rit, the set of non-linear differential equations was solved. For these 

LFPs, the numerical frequency response was extracted:  

 XõN = 20úù2A+(%b %û) (3.30) 
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where %b =
ü†° ¢I4 qü£§	(¢I4)

;
, and %û = 1 since the stimulation amplitude is equal to 

1mV. 

 

 

Figure 3.13. Comparison of analytical and numerical transfer functions. The blue curve 

represents the frequency response obtained from equation (3.29), while the red curve 

represents the frequency response obtained numerically. For each frequency, we 

computed the output of the system (LFP), the numerical frequency response being 

described by equation (3.30). 

The comparison between the analytical and numerical solutions presented in 

Figure 3.13 illustrates the effectiveness of our analytical transfer function calculated by 

using non-commutative field theory. The curves are extremely similar up to	100	ôö, 

even if minor differences are present due to the solving method used for simulations 

and the simplifications suggested to remove the time-dependency. However, the 

resonance frequency is identical for both, which is one of the major characteristics 

provided by the non-linear transfer function. 
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This analytical expression, linking an external electrical stimulation to neural 

activity, illustrate how model parameters impact the characteristics of the local field 

potential. Moreover, it gives insights into the subset of parameters that control the level 

of excitability. Second, using this expression resulted in a considerably lower 

computation time. For example, for a frequency vector composed of 500 points, 48 

seconds were required to calculate all frequency responses, while our approximation 

led to a computation time of less than 3 seconds (factor 16).  

 

Figure 3.14. Resonance frequencies for different gain values. The excitatory synaptic 

gain . ∈ 0.1, 7  mV and the inhibitory synaptic gain C ∈ [0.1, 50] mV. 

First, the highest frequencies are located along a line corresponding to a specific 

excitability ratio ./C and evolve smoothly. Second, when this ratio decreases or 

increases, the resonance frequency decreases or vanishes. More specifically, the blue 

regions represent the frequency responses diagrams with a starting magnitude 

approximately equal to the maximum value. In such cases, a change in stimulation 

frequency does not alter the system’s dynamics. 
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As aforementioned, the resonance frequency could have a greater impact on 

neural activity, since it favors the generation of high amplitude oscillations. Therefore, 

if the objective is to replace epileptiform activity by a more “physiological” activity, it is 

then reasonable to avoid the use of this frequency as a stimulation frequency. We 

evaluate the validity of this hypothesis below. Previously, we computed the frequency 

response for different excitatory and inhibitory synaptic gains, which are associated 

with distinct neural dynamics. For instance, if the excitatory synaptic gain . is equal to 

4	6% and the inhibitory synaptic gain C is equal to	28	6%, the gain diagram presented 

in Figure 3.15 is obtained. 

 

Figure 3.15. Analytically- and numerically-derived transfer function. Here, the 

excitatory synaptic gain is equal to 4 mV and the inhibitory synaptic gain B is equal to 

28 mV. 

First, there is a good agreement between the analytical and numerical frequency 

responses, and the analytical transfer function remains valid for a wide range of 

synaptic gain values. Furthermore, the maximal magnitude is reached for a frequency 

of approximately 5 Hz, which can be considered as the resonance frequency. Then, 

using the parameters from Table 1, we changed the stimulation frequency only.   
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Figure 3.16. Simulated LFP generated with the model (3.15) during 50 Hz (upper 

panel) and 5 Hz (lower panel) stimulation. The simulated LFP represents the summed 

average post-synaptic potentials on pyramidal cells. The LFP during 5 Hz stimulation 

is drastically different than for 50 Hz stimulation, with significantly higher-amplitude 

oscillations induced at the stimulation frequency. 

The results presented in Figure 3.16 demonstrate that the amplitude of LFP 

oscillations induced by stimulation are drastically different depending on the stimulation 

frequency. By choosing a stimulation frequency close to the resonance frequency, it is 

possible to alter LFP dynamics and induce oscillations, highlighting the key role of the 

stimulation frequency. For example, if the objective is to abort epileptic seizures, which 

involve low-frequency activity during the beginning of the seizure itself (< 10 Hz), it is 

first required to determine the appropriate stimulation parameters that could 

reverse/abort pathological dynamics and not exacerbating those. 

Here, we provided an analytical expression of the transfer function for a non-

linear system, namely the Jansen and Rit neural mass model. The motivation for this 

work is the generic nature of this model, which is widely used in neuroscience and can 
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be used as a basis for large-scale models of brain activity. Furthermore, neural mass 

models have the advantage to provide signals that are directly comparable with 

experimental LFPs. Therefore, the perspective of identifying transfer functions avoiding 

inappropriate stimulation parameters and estimating optimal ones to alter neural 

dynamics in a predetermined way is especially appealing. This would indeed save a 

considerable computation time as compared to running an extensive number of 

numerical simulations.  

Since the system described by equations (3.15) involves non-linear asymmetric 

functions, we first attempted at replacing them by linear ones. We proceeded to a 

linearization around a special point ç+ describing the PSP for which a 50 % firing rate 

is achieved. The resulting system was an approximation of the original system for 

which it was much simpler to compute the transfer function through the Laplace 

transform. This procedure has been followed earlier to design a closed-loop 

proportional-integral controller for the Jansen and Rit neural mass model (Wang et al., 

2016). Although it provides an approximation of the system dynamics, the frequency 

responses were unreliable due to the loss of linearity, and were different from those 

obtained numerically.  

Over the last decades, mathematicians developed sophisticated theories to 

develop further non-linear approaches. Here, we applied the theory of non-

commutative rings to overcome the non-associativity problem accompanying non-

linear systems, which impedes the determination of an analytical expression linking 

the system input to its output. Hence, following this method, we provided a unique 

description of the stimulation/LFP relationship for the non-linear Jansen and Rit neural 

mass model, which is not achievable using conventional methods. However, this 

approach has some limitations. In addition to the difficulty of calculating the left-hand 

inverse of a matrix	 pMv − . , � ∈ ℕ, due to both the non-commutative multiplication and 

the dimension of our system, it should also be stressed that the analytical expression 

of the transfer function may contain a state space variable (which is our case) as 

opposed to linear systems.  

In conclusion, we presented a method solving the non-associativity problem, 

and computed the transfer function of the Jansen and Rit model without any 

linearization of the system. This analytical expression was used to study the frequency 
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response. In addition to determining the range of optimal frequencies able to alter 

neural dynamics as measured using the LFP, it indicates which frequencies to avoid 

(resonant frequencies). In terms of future work, one possibility would be to derive the 

transfer function of a coupled Jansen and Rit neural mass model, paving the way to 

study and optimize the stimulation of large-scale neural networks involving a generator 

of epileptic activity. Since we derived an analytical expression involving frequency, this 

would provide a better control of the high-dimensional system. The extension of this 

work to more biologically comprehensive neural mass models could also provide a 

unique view on the mechanisms of physiological and pathophysiological activity in 

realistic large-scale networks. 

Closed-loop Jansen and Rit model:  

Below, we extracted an analytical transfer function for the open-loop Jansen and 

Rit model. Here, we use the same method to extract the transfer function for a closed 

loop Jansen and Rit model receiving an external electrical stimulation at the level of 

pyramidal cells. This system depends on the past in contrast the previous one, which 

challenges the derivation of an analytical expression of its transfer function. 

 

t =

*+ 5
*A 5
*; 5
*B 5
*E 5
*- 5

= l t, 0516 	

t =

*B 5
*E 5
*- 5

./012 0516 5 + *A 5 − *;(5) − 2/*B 5 − /;*+ 5
./@;012 @A*+ 5 − 2/*E 5 − /;*A 5
CD@E012 @B*+ 5 − 2D*- 5 − D;*; 5

	

8 = 2 t, 0516 = 0 1 −1 0 0 0

*+ 5
*A 5
*; 5
*B 5
*E 5
*- 5

 

(3.31) 

The model can be represented as follows: 
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Instead of studying the whole system, we decomposed it into several connected 

transfer functions representing each neuronal subpopulation: 

 ÇßNL = Ç*A − Ç*;	

ÇßNL = !äè	Ç*+ − M�ℎ	Ç*+	

ÇßNL = !äè	L*m	Ç0516 + !äè	L*m	Ç*A − !äè	L*m	Ç*;

− M�ℎ	L*m	Ç0516 − M�ℎ	L*m	Ç*A + M�ℎ	L*m	Ç*; 

(3.32) 

 

ÇßNL =
!äè	L*m − M�ℎ	L*m

1 − !äè	L*m + M�ℎ	L*m
Ç0516 

Exc, Pyr and Inh represent transfer function for pyramidal cells, excitatory and 

inhibitory interneurons and are equal to: 

!äè =
./@A@;
p + / ; 012

, @A*+ 	

M�ℎ =
CD@B@E
p + D ; 012

, @B*+ 	

L*m =
./

p + / ; 012
,(0516 + *A − *;) 

Therefore, we obtain the following transfer function for the closed-loop Jansen and Rit 

model: 

õN p =

./@A@;012, @A*+
p + / E − CD@B@E012

, @B*+
p + D ; p + / ; ./012′(0516 + *A − *;)

1 − ./@A@;012, @A*+
p + / E − CD@B@E012

, @B*+
p + D ; p + / ; ./012′(0516 + *A − *;)
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(3.33) 

As presented above, this technique led to an analytical expression linking the 

input (electrical stimulation) to the model response represented by the LFP. It should 

be noted that even the transfer function of coupled models is possible using this 

approach (already calculated but not presented here). However, the use this 

expression remains limited since it depends on state variables such as the post-

synaptic potential of excitatory and inhibitory interneurons	(*A, *;). Therefore, an 

approximation of this system is needed to envision further developments and 

applications.  

 

3.4 Perturbed condition: dynamics of a local neuronal region 
receiving afferents from another region 

 

In this section, we investigate the impact on dynamics caused by incoming 

afferents from another region as a perturbation, instead of an applied electrical 

stimulation. We consider two unidirectionally coupled WNMMs, each representing a 

neuronal region (region 1 and region 2), given in eq. (2.12). Then, we investigate how 

epileptogenic discharges spread from one region to the other showing a healthy 

activity. In particular, we consider projections from pyramidal cells of the first region to 

(i) pyramidal cells, (ii) slow GABAergic interneurons, and (iii) fast GABAergic 

interneurons of the second region.  

Parameter values of both regions are equal to those presented in Table 2, 

except excitatory and slow inhibitory synaptic gain of regions 1; ., C = (5.5, 25) mV.  
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3.4.1 Variation of connectivity strength between the pyramidal cells of two 
neuronal regions 

 

Figure 3.17. a) LFP of region 2 as function of @44 and the frequency of periodic 

oscillations. b) LFPs of the both regions when @44 = 40. The green and blue curves 

represent stable and unstable limit cycles, respectively. Red curves represent the 

frequency of limit cycles. 

In the absence of synaptic interaction between the pyramidal cells of the two 

regions, region 2 generates background activity. As the coupling strength @44 

increases, region 1 modulates the activity of region 2. The latter begins to generate 

periodic oscillations at a frequency equal to those generated by the region 1. The 

amplitude of the LFP signal slightly increases until @44 ≈ 39.15, where we observe a 

sharp increase from 5 mV to 15 mV. The system undergoes a period doubling (PD) 

bifurcation around @44 ≈ 39.15 again that is followed by a cascade of PD bifurcations. 
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The right axis of Figure 3.17-a shows the frequency of periodic oscillations. For @44 ∈

[39.15, 50], the LFP is a mix of rhythmic activities of different amplitudes, as presented 

in Figure 3.17-b. 

As @44 continues to increase, the LFP amplitude of region 2 increases while 

maintaining the same frequency with region 1. The LFP maximal amplitude of region 

2 depends on the maximal values of the average post-synaptic membrane potentials 

of the neuronal subpopulations of region 2, which are influenced by the corresponding 

synaptic gains. For higher values of @44, region 2 becomes fully synchronized with 

region 1. 

 

3.4.2 Variation of connectivity strength between pyramidal cells of region 1 and 
slow or fast inhibitory interneurons of region 2 

 

Figure 3.18. LFP of region 2 and frequency of periodic oscillations as a function of @4FG 

and @4IG. The green curves represent the minima and maxima of the stable limit cycles. 

Red curves represent the frequency of the cycles. 

Introducing an interaction between the pyramidal cells of region 1 and the 

H.C._,bdef interneurons of region 2 by taking @4FG ≠ 0 yields a rhythmic activity in the 

region 2 at a frequency equal to that of the LFP of the region 1. Excitation of H.C._,bdef 

interneurons impacts the activity of the H.C._,`abc interneurons due to the inhibitory 

relation between them. Furthermore, exciting H.C._,bdef interneurons prevents 
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pyramidal cells from firing, hence, influences indirectly the activity of excitatory 

interneurons. The maximum value of the LFP generated decreases for @4FG > 35 and 

approaches 0, indicating the saturation of H.C._,bdef interneurons. 

When an interaction between the pyramidal cells of region 1 and the H.C._,`abc 

interneurons of region 2 is introduced by taking @4IG ≠ 0, the LFP of region 2 evolves 

similarly to the one for @4FG ≠ 0. The difference we observe while @4IG and @4FG are 

being increased is the amplitude of the resulting LFPs, which  is due to the difference 

in synaptic gains B and G. 

Finally, differently than the case where we vary the fast inhibitory synaptic gain 

in section 3.1, when a region receives an excitatory post-synaptic potential in the pre-

ictal regime from highly-connected region, it oscillates at a frequency equal to that of 

the master (Figure 3.18, right y-axis) instead of producing its own frequency.   

 

3.4.3 Dynamic repertoire of region 2 under a unidirectional influence of region 1 

It is experimentally evidenced that the intrinsic properties (connectivity, synaptic 

gains, excitability...) of neural regions receiving epileptic activity varies. Therefore, 

strategies for preventing pathological activity at a certain region can depend on the 

network structure, mainly to the connectivity strength. In Section 3.1, we have provided 

a repertoire of the dynamics for a single WNMM as a function of the synaptic gains. 

Here, we perform a similar analysis, where we vary the synaptic gains of region 2 while 

it receives pre-ictal rhythmic activity from region 1. We reconsider the three different 

network structures presented in Section 3.4.2. In all cases, the connectivity strengths 

are set to 60. 
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Figure 3.19. Bifurcation diagrams as a function of the excitatory, slow inhibitory and 

fast inhibitory synaptic gains for unidirectional single projection from the pyramidal cells 

of the region 1 to the different subpopulations of the region 2. Along row 1 

(@44, @4FG, @4IG) = (60, 0, 0), row 2 (@44, @4FG, @4IG) = (0, 60, 0), and row 3 

(@44, @4FG, @4IG) = (0, 0, 60). The green and blue curves denote the maxima and minima 

of the stable and unstable limit cycles, respectively. 

The first column of Figure 3.19 shows that increasing the excitatory synaptic 

gain A increases the amplitude of the periodic oscillations in region 2. In all cases, 

over-excitation preserves the rhythmic activity, as opposed to the single WNMM in 

Figure 3.2 where the over-excitation stops the rhythmic activity. Moreover, the over-

excitation pushes the system towards non-periodic chaotic oscillations.  

 For a connection between pyramidal cells of both regions, the bifurcation 

diagram when varying the excitatory synaptic gain A shows a sudden transition, 

separating periodic oscillations of large amplitudes from a small amplitude ones. A 

similar transition was observed while varying the connectivity strength @44 (Figure 

3.17-a). Even if these neurophysiological factors (@44	and  .) impact different neuro-
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electrical signals; the first one impacts postsynaptic potential while the second one 

impacts action potentials, they cause similar variations in activity.  

The second column of Figure 3.19 shows that increasing the slow inhibitory 

synaptic gain B inhibits the whole system for @4FG = 0. The LFP amplitude become 

smaller for bigger values of B. These appearing low-amplitude oscillations could be 

considered closer to background activity, which is in line with results shown in Figure 

3.3. However, when the H.C._,bdef subpopulation receives an oscillatory afferent, its 

post-synaptic potential increases. Combined with the increase of the synaptic gain B, 

they cause an imbalance between the post-synaptic potentials and the system 

continues to generate periodic oscillations at higher amplitudes than the other network 

structures would yield.  

In neither of the coupling strategies increasing the fast inhibitory synaptic gain 

G decreases the LFP amplitude, nor aborts a seizure. The same remark was inferred 

previously in Section 3.1. However, the system generates an oscillatory behavior even 

for small values of G, unlike what was shown in Figure 3.2-c. 

We studied the impact of an epileptic afferent, or in other words seizure 

propagation, as a function of both the coupling strength and network structure. We 

have observed that a synchronization of neural activity, hence both regions oscillate at 

the same frequency, with the amplitude depending on the projected neuronal 

subpopulation. For instance, the pyramidal cells show more “resistance” to afferent 

than somatic or dendritic projecting inhibitory interneurons as indicated by higher levels 

of connectivity strength required to transmit region 1 activity. These results are in line 

with previous experimental work that highlighted a higher activation threshold of 

pyramidal cells than as compared to interneurons (Kann, 2016).  

Although new dynamics emerge comparing to results presented in section 3.1, 

the slow inhibitory interneuron subpopulation remains as the subpopulation able to 

inhibit epileptiform patterns. Moreover, our results underline an important difference 

between increasing the average post-synaptic potential of slow inhibitory interneurons 

and increasing the average pre-synaptic potential on the same population. The first 

inhibits the neuronal region and then stops epileptic activity, while the second yields 

high-amplitude oscillations in the system.  
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Chapter 4 

Optimization of multi-site stimulation 
 

 

 

There is experimental evidence that stimulating multiple brain regions could be 

more effective than stimulating a single one (Sobayo and Mogul, 2016). In this chapter, 

we present models of functionally connected epileptogenic regions by coupling 

modified Jansen and Rit NMMs (presented in Chapter 2), enabling the study of network 

effects in response to stimulation-like perturbations. This approach is used to 

determine relevant regions driving and controlling epileptiform activity. In addition, 

single-site stimulation is compared with multi-site stimulation, and designed optimal 

strategies are proposed to desynchronize neuronal activity and abort epileptiform 

activity at the network scale. The impact of the number of targets is studied, and a 

strategy to select potential stimulation targets from patient electrophysiological signals 

is suggested.  

 

Network architecture 

The constructed network consisted in seven regions denoted by X™g, 1 ∈

1,… , 7  (as presented in Figure 4.1-c). Each region was modelled using the modified 
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Jansen and Rit NMM presented below (Figure 4.1-d). Parameter values were equal to 

those in Table 1, except excitatory and inhibitory synaptic gains that were modified to 

3.85 mV and 16.7 mV, respectively, to generate interictal discharges. White Gaussian 

noise was added to the firing rate of incoming excitatory input onto pyramidal cells in 

each NMM, with a mean 6 and a standard deviation â equal to 90 Hz and 1.2, 

respectively. We used the Euler-Maruyama method to solve the set of equations 

(Maruyama, 1955). The network was fully connected, in that each NMM received 

afferents from all other NMMs; action potentials of pyramidal cells of all X™}, ´ ∈

1,… , 7 , ´ ≠ 1 were added at the level of pyramidal cells of X™g (Figure 4.1-d). These 

afferents were modulated through a NMM-dependent connectivity constants @g,}, 1, ´ ∈

{1, … , 7} and a propagation delay arbitrarily chosen as 30 ms. The connectivity matrix 

was a hollow matrix with dimensionless components chosen uniformly within the 

interval [0, 1.7]. Those randomly chosen values were kept fixed for all simulations. 

 

Stimulation 

The stimulation waveform is another key parameter in determining the impact 

of neuromodulation on brain tissue (Warren M. Grill, 2015). We used a square bi-

phasic waveform to mimic the charge-balanced biphasic pulse stimulation used in 

clinical practice. Compared to monophasic pulse stimulation or direct current 

stimulation, bi-phasic stimulation limits irreversible damage caused by charge 

accumulation in the tissue (Merrill et al., 2005; Butson et al., 2005). The stimulation of 

network nodes was altered via population-dependent coupling coefficients	3g ∈

0, 1 , ∀1 ∈ {1, … , 7}, as presented in Figure 4.1-c.  
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Figure 4.1. a) Structure and b) Block diagram of the modified Jansen and Rit NMM 

accounting for stimulation. c) Diagram of the complete network allowing for single-site 

and multi-site stimulation, and d) block diagram of each node with its input and output. 
a) Population of pyramidal cells (green triangle) interacts with an inhibitory population 

of interneurons (orange rectangle). Solid-lines arrows represent excitatory 

connections, while dashed-lines represent inhibitory ones. b) *g 5 , 1 ∈ {0, 1, 2} 

correspond to the output of pyramidal cells, excitatory and inhibitory interneurons, 

respectively. ?(5) is a white Gaussian noise representing excitatory inputs from 

neighboring areas. The “Stim” symbol represents a modification with respect as 

compared to the original Jansen and Rit model, where electrical stimulation is applied 

in the model. c and d) The network is composed of 7 fully connected NMMs. Each 

node receives stimulation (bi-phasic waveform) with population-dependent coupling 

coefficients	3g, 1 ∈ {1, … , 7}, in addition to afferents from other NMMs. The afferents 

received by a given NMM j from a given NMM i with 1 ∈ {1, … , 7} and 1 ≠ ´ are converted 

into a post-synaptic potential before being added as an input to pyramidal cells. The 

@g,}, 1, ´ ∈ {1, … , 7} coefficients represent connectivity constants between network 

populations. 
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Before passing to the network scale, we first analyzed stimulation effects on a 

single population. We tuned the synaptic gains (Table 1) of the NMM to generate 

interictal discharges, as shown in Figure 4.2-a. We then evaluated the impact of 

sinusoidal stimulation parameters (amplitude, frequency) on the neuronal population 

activity. Results are summarized in the bifurcation diagram of Figure 4.2, which shows 

the changes in dynamics under stimulation.  

 

 

Figure 4.2. Analysis of stimulation effects on a single population. a) Simulated interictal 

discharges under “no stimulation” condition. b) Sinusoidal stimulation (amplitude 3 mV, 

frequency ranging from 0 to 150 Hz) applied to all neuronal subpopulations. c) 

Sinusoidal stimulation (amplitude 3 mV, frequency ranging from 0 to 150 Hz) applied 

only to inhibitory interneurons. b,c) In both cases, system dynamics depend on 

stimulation parameters as depicted by LFP amplitudes (blue and green curves) and 

frequencies (red curves). Stable and unstable limit cycles are represented by solid 

green and dashed blue lines, while their frequencies are represented by solid and 

dashed red lines, respectively. d) LFP signal observed for optimal stimulation 
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parameters (amplitude 3 mV, frequency 90 Hz). To generate sporadic discharges, 

average excitatory (A) and inhibitory (B) synaptic gains were fixed at 3.85 mV and 15 

mV, respectively. For the sake of readability, results are shown for stimulation 

frequencies within the [0, 40] Hz range. Abbreviations; LP: limit points, PD: period 

doubling, TR: Torus bifurcations.  

 

Figures 4.2-b,c illustrate all the dynamics that the system presented in Figure 

4.1-b can generate while varying the frequency of a sinusoidal stimulation applied 

either on all neuronal subpopulations (left panel), or only to inhibitory interneurons 

(right panel). It is then possible to distinguish between stimulation frequencies for which 

the system generates high-amplitude oscillations, and those for which the system is 

attracted by a small, stable limit cycle that can be considered as a stable limit point. In 

addition, it highlights the sensitivity of neurostimulation parameters and reveals the 

effects of neuronal selectivity.  

The bifurcation diagram presented in Figure 4.2-b can be divided into three 

regions. In the first region where lmnoFcgw ∈ [0, 5.18[ Hz, the system is attracted by 

stable limit cycles and generates rhythmic activities of increasing frequencies and 

modulated amplitudes. In the second region where lmnoFcgw ∈ [5.18, 10.83[ Hz, 

population activity is altered and unsteady. We detect closed trajectories of limit cycles 

with different amplitude ranges and numerous period doublings where oscillations of 

double the period of original ones are induced. Throughout this interval, the LFP 

consists in an oscillatory activity involving a mix of frequencies and amplitudes. Third, 

for lmnoFcgw ∈ 10.83, 150  Hz, we detect a saddle-node bifurcation for periodic orbits 

coupled to a subcritical Neimark-Sacker bifurcation for lmnoFcgw = 10.83 Hz. Beyond 

these bifurcation points, a pair of limit cycles, stable and unstable (solid-green and 

dashed-blue lines), are created and the system is attracted by stable limit cycles of 

decreasing amplitudes. Increasing stimulation frequency (typically > 50 Hz) leads to 

periodic oscillations of frequency identical to the stimulation frequency, and of 

amplitude close to zero. 

The bifurcation diagram presented in Figure 4.2-c exhibits similar dynamics, 

since global activity is still altered until reaching a separation stimulation frequency 
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from which the amplitude of the oscillating activity decreases. Interestingly, unstable 

cycles (dashed blue lines) disappear while stimulating only inhibitory interneurons. This 

highlights the differential effects of stimulation depending on specific neuronal 

subtypes that are impacted. The stimulation frequency required to abort epileptiform 

activity is lower when targeting GABAergic interneurons, as compared to all 

subpopulations.  

Those results provide indication of the potential parameters able to locally abort 

epileptiform activity, and promote instead an electrophysiological pattern closer to 

physiological activity (Figure 4.2-d). In the following, we take advantage of the 

knowledge at the single population level to attempt controlling epileptic activity in 

networks of neuronal populations. 

 

Resonance phenomena 

Another important point to investigate is the impact of stimulation on a “healthy” 

neuronal region. Therefore, we studied the effects of stimulation frequency while a 

single unconnected NMM was generating background activity. Average excitatory and 

inhibitory synaptic gains were fixed to 6 mV and 7 mV, respectively. All other model 

parameters were equal to the values presented in Table 1. 
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Figure 4.3. (Left panels) LFP amplitude and frequency as a function of stimulation 

frequency. (Right panels) Corresponding resonant and non-resonant time series. The 

same sinusoidal stimulation was added to the post-synaptic potential for all model 

subpopulations, 3û, 3g = (1, 1). Stable and unstable limit cycles are represented by 

solid green and dashed blue lines, while their frequencies are represented by solid and 

dashed red lines, respectively. The stars and circles denote period-doublings (PD) and 

limit points (LP), respectively.  

Figure 4.3 shows LFP amplitude as a function of the stimulation frequency and 

for fixed stimulation amplitudes. Depending on the stimulation amplitude, the system 

had a different resonance frequency for which high-amplitude oscillations appear. By 

increasing the stimulation amplitude, the model had a smaller resonance frequency, 

and generated oscillations of larger amplitude. For a stimulation amplitude equal to 0.5 

mV (upper panel), the resonance frequency was 7 Hz. However, by increasing the 

stimulation amplitude to 5 mV (lower panel), the resonance frequency decreased to 

3.5 Hz and bifurcation points, impacting the LFP frequency domain, were detected 

unlike upper and middle panels.  
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For lmnoFcgw = 6.9 Hz, a period doubling bifurcation was detected, and the 

following limit cycles lost stability. Moreover, their frequency was changed and became 

equal to half the frequency of stable cycles. Then, another period doubling bifurcation 

point was detected for lmnoFcgw = 3.58 Hz preceded by a limit point for lmnoFcgw = 3.35 

Hz. This period doubling point led to another change in stability and a doubling of the 

frequency of limit cycles. For lmnoFcgw ∈]3.35, 8.3[ Hz, the system was attracted by 

stable and unstable attractors, and the LFP frequency domain included other 

frequencies in addition to the stimulation frequency. 

 

4.1 Optimal stimulation strategy: Single- vs multi-site 
stimulation and identification of stimulation targets 

 

From the single-site stimulation study, we retained the following stimulation 

parameters for multi-site stimulation: amplitude equal to 3 mV and a frequency equal 

to 90 Hz. In order to mimic stimulation protocols routinely performed in clinical 

epileptology, biphasic pulse stimulation was used. Pulse stimulation (amp=3mV, 

lmnoFcgw=90 Hz, pulse width=5 ms per phase) was applied to pyramidal cells and 

interneurons subpopulations as soon as epileptic spiking activity was detected in at 

least one network node. Stimulation duration was set to 1s, and was delivered only 

during time intervals showing epileptic activity for more than 1s. Spiking periods of 

shorter durations were not considered (no stimulation delivered). 

In simulated networks, nodes were represented by NMMs in which parameters 

were set to generate interictal spikes. In the presence of connections, these epileptic 

spikes showed a higher degree of synchronization, as depicted in Figure 4.4-a for a 

network of 7 nodes. Epochs of epileptic activity and background activity are reflected 

in the summation of LFPs (denoted by Σ) generated at each node (Figure 4.4-b). 

Therefore, Σ was used to determine multi-site stimulation onset times. As depicted in 

Figure 4.4-b, stimulation times (red dots) could be correctly determined, i.e. as soon 

as at least one node of the network generated epileptiform activity.  Figure 4.4-c 

presents the impact of stimulation delivered at these stimulation times when one node 

was stimulated, while Figure 4.4-d shows this impact when stimulation was applied on 
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all nodes at the exact same times. Interestingly, multi-site stimulation leads to shorter 

epochs of epileptic activity and longer epochs of background activity. 

 

Figure 4.4. a) LFPs of each network NMMs in the absence of electrical stimulation, and 

b) their summation. c, d) LFP summation after applying a charge-balanced biphasic 

stimulation of amplitude, frequency and pulse width of 3 mV, 90 Hz and 5 ms, on NMM 

1 and all NMMs; respectively. Red circles indicate stimulus onsets, while blue and 

green markers indicate respectively the beginning and end of epileptic activity epochs. 
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Quantification of stimulation efficiency 

In order to quantify the efficiency of stimulation in terms of suppressing epileptic 

discharges, we proposed a new index based on their occurrence. It is referred to as 

the amount of epileptic discharges index (AEDI) and defined as follows:  

 .!≠M = XgΔg
E

g

 (4.1) 

Where Xg represents the occurrence of an interval of a duration Δg during which 

epileptic activity is observed. The duration exponent emphasizes the duration of 

interictal discharges. This index quantifies the number and duration of time intervals 

exhibiting epileptic discharges. In the following, any stimulation protocol leading to the 

reduction of the AEDI computed under control condition (no stimulation) is considered 

to have a therapeutic effect. The issue is to identify stimulation parameters (amplitude, 

frequency, nodes to stimulate) which maximize this reduction (i.e. minimize AEDI). In 

practice, therapeutic effect is marked by an increase/decrease of short/long Δg on the 

histogram. Thus, once stimulation was delivered, we delimited non-silent intervals (i.e. 

exhibiting epileptic activity) on the summation of all network LFP signals in absolute 

value, by setting a threshold and applying a forward and backward filter to smooth the 

signal. Then, histograms showing their occurrence with respect to their duration were 

generated and AEDI values were computed. 

 

How many nodes and which ones? 

We simulated LFP signals for 1000 networks of 7 coupled neuronal populations 

(Figure 4.1-c). For each network, we investigated the impact of stimulation and 

constructed the histograms of epileptic discharges occurrence for all 127 possible 

ways to stimulate the network when the number n of nodes varies from 1 to 7, and 

when all combinations of the n stimulated nodes are being tested. The 7-NMMs had 

the same parameters values, and only the connectivity matrix and random excitatory 

inputs describing the influence of neighboring NMMs were generated each time. Then, 

AEDI values were computed as a function of the number of stimulated NMMs on a total 

of 127,000 simulations.  
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To classify network nodes according to their impact on network-level activity, 

we used a graph theory measure known as eigenvector centrality (EVC), which was 

used to score the influence of each node. Computed on functional connectivity 

matrices, a high EVC value means that a considered node is connected to have 

preferential connections to other nodes in the network and drives their activity. In 

practice, we used LFP signals to compute EVC. To determine connectivity matrices, 

we computed the degree of coupling between network nodes, while considering the 

directionality of coupling. Connectivity matrices were computed from the non-linear 

correlation coefficient ℎ; (Lopes da Silva et al., 1989; Pijn and Lopes da Silva, 1993) 

which is given by: 

 ℎ; =
*g − * ; − *g − l äg

;Æ
g|A

Æ
g|A

*g − * ;Æ
g|A

 (4.2) 

 

Where *g, äg, ∀1 ∈ 1, X  represent samples of two LFP signals generated by two 

nodes	ä, *. l is a piecewise function passing from midpoints (ä, *) after presenting the 

amplitude signal * with respect to that of signal ä and dividing the x-axis into equal 

sized bins. These linear line segments form a linear approximation of the nonlinear 

regression curve. The correlation value varies between 0 (no association between 

signals) and 1 (one signal is fully predictable based on the other). 

Finally, results were compared to ground-truth connectivity matrices explicitly 

known for each network model. 

 

Results 
 

Using	Σ, we first determined the number of nodes to stimulate to obtain the 

highest therapeutic effect as denoted by minimal AEDI values. To proceed, we first 

evaluated the stimulation impact on the network using Σ as a function of the number of 

NMMs stimulated. For this purpose, we simulated LFPs while applying all the 127 

possible combinations for the stimulation and compared AEDIs (number and choice of 

nodes to stimulate). Then, we focused on how to identify the optimal NMM to be 

stimulated from LFP signals. In our investigation, we used the nonlinear correlation 
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coefficient ℎ; to estimate connectivity links between network NMMs, and computed 

EVC values to determine the stimulation targets. Ground truth connectivity matrices 

were used to validate model-based predictions. 

 

Figure 4.5. a) Normalized AEDI as a function of the number of stimulated NMMs in the 

network. b) Histograms of epileptic discharges occurrence with respect to their 

duration. The same charge-balanced biphasic stimulation (amplitude 3 mV, frequency 

90 Hz, pulse width 5 ms) was used for all simulations.  

Figure 4.5 confirms the effectiveness of multi-site stimulation as compared to 

single-site stimulation. Furthermore, it shows that stimulating a network subset is 

sufficient and efficient, in terms of AEDI, than stimulating the whole network (optimality 

while stimulating four NMMs). For each network simulation, 127 stimulation 

possibilities were tested, and the minimal AEDI obtained while stimulating the same 

number of NMMs was retained, and an average value over all simulations was plotted. 
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We identified the optimal number of NMMs to stimulate as equal to four. However, 

starting from 3 and up to 6 NMMs, the difference in AEDIs was minimal. 

Targeted network nodes. For each simulation, we compared the first three dominant 

NMMs showing higher EVC scores to those possessing a higher number of outgoing 

connections. Interestingly, EVC values predicted correctly 2 out of 3 optimal stimulation 

targets 862 times (89.2% of simulations), the exact same three NMMs 375 times 

(38.8%), and at least two NMMs 487 times (50.4%). 

Regarding the simulation presented in Figure 4.4-a, the reconstructed connectivity 

matrix identified NMMs 1, 2 and 5 as the most involved in epileptiform activity 

propagation. Interestingly, the same NMMs were detected by the EVC calculation, 

suggesting that the level of induced network synchrony was a key factor in stimulation 

efficacy. While testing all the 35 possible combinations for a multi-site stimulation 

targeting three NMMs, the minimal AEDI was obtained while targeting these NMMs 

and was equal after normalization with respect to infinity norm (max) to 0.15. Again, 

this value was lower than when all network nodes were stimulated. Figure 4.5-b 

presents the resulting histograms in the absence of stimulation and while stimulating 

NMM 1, the whole network and the set {1, 2, 5} of NMMs, respectively. 

 

4.2 Optimal stimulation strategy: Open- vs closed-loop and 
impact of stimulation timing with respect to epileptic 
discharge onset 

 

 

In addition to emphasizing the effectiveness of multi-site stimulation, Figure 4.6 

(below) enables the comparison between closed- and open-loop stimulation 

protocols, and illustrates the impact of stimulation timing. Figures 4.6-a and 4.6-b 

present  the proportion of epileptic activity in the absence of stimulation, after applying 

a stimulation regardless of oscillation onsets (OL), once oscillations begin (@ßA) and a 

0.25 second before oscillations’ onsets (@ß;). This metric is defined by the ratio of the 

multiplication of the occurrence of interictal discharges by their duration and the signal 

duration. 
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Using a charge-balanced biphasic stimulation of amplitude 3 mV and a 

frequency of 90 Hz upon all network NMMs, and for a total of 500 simulations in the 

case of one or group of networks (single or different individuals) (as the connectivity 

coefficients are fixed or not), we found that OL stimulation reduced the proportion of 

epileptic activity by 30 % and provided similar results as compared to (@ßA) stimulation. 

However, (@ß;) was more efficient than both previous forms of neuromodulation. 

These differences were related to the stimulation triggering moments. In order to 

illustrate this difference, we projected the y3-nullcline and the system’s response to 

stimulation (black curves) on the (*;, *+)-plane in panels c and d of Figure 4.6. The 

green arrows in panel 4.6-c show the flow direction. The *B-nullcline is given by the 

following function driven from system (1) by taking its right hand side to 0: 

 

 lr�è *+ =
.
/
× ? + @;012 @A*+ − 012qA(

/
.
*+) (4.3) 

 

Notice that the function (3) yields a hysteresis curve, along which the large amplitude 

oscillations take place by jumping between the upper and lower branches and passing 

close to the fold points. A closed-loop stimulation algorithm based on oscillations 

detection would be inefficient to prevent the system from oscillating, since such 

stimulation would be applied when the flow takes off after passing close to the left hand 

side fold point. In order to prevent large amplitude oscillations and maintain 

background activity, the stimulation should be applied before the system reaches the 

left hand side fold point (Figure 4.6-d). Otherwise, once a spike is triggered, it is not 

possible to stop it until it approaches this point.  
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Figure 4.6. a,b) Boxes showing normalized AEDI while stimulating randomly (OL) or at 

oscillation onsets (@ßA), or 0.25 s before oscillation onsets (@ß;). c,d) the projection *B-

nullcline and trajectories of the Jansen-Rit NMM in the plane (*;, *+), while synaptic 

gains were fixed to generate spiking activity, in the absence and presence of a charge-

balanced biphasic pulses stimulation (amp=3 mV, lmnoFcgw=90 Hz) applied one second 

before spiking onset, respectively. In b) both connectivity coefficients and noise are 

modified (multiple networks), as opposed to a) where only the noise is modified (same 

network). The boxes mean values from left to right are [(a: {0.92, 0.61, 0.63, 0.60}), (b: 

{0.94, 0.63, 0.66, 0.60})]. Continuous and dashed parts of the red curve represent 

stable and unstable branches of the y3-nullcline, respectively, where the blue points 

represent the folds of the curve. The green arrows represent the flow direction.  
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To summarize, we developed biologically-inspired models of brain activity 

receiving stimulation at two levels of description (single- and multi-population 

epileptogenic networks). First, bifurcation analysis was used to determine optimal 

parameters able to abort epileptiform patterns. Second, a graph-theory based method 

based on EVC was presented to classify network nodes in an epileptogenic network 

based on their contribution to seizure generation and propagation. The best 

therapeutic effects (i.e., reduction of epileptiform discharges duration and occurrence 

rate) were obtained by the specific targeting of nodes with the highest eigenvector 

centrality values. The timing of stimulation was also found to be critical in seizure 

abortion impact. Overall, these results provide a proof-of concept that using network 

neuroscience combined with physiology-based computational models of brain activity 

can provide an effective method for the rational design of brain stimulation protocols in 

epilepsy.   
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General discussion and 
Future perspectives 

 

 

 

Neurostimulation has long been identified as a promising approach to decrease 

the occurrence of seizures, which dramatically impair the quality of life of patients 

suffering from epilepsy. However, despite recognized applicability, safety and 

encouraging results, brain stimulation still cannot be routinely indicated as a treatment 

for focal epilepsies. From a clinical viewpoint, stimulation parameters are chosen 

empirically and a rational definition and design of stimulation protocols is still missing. 

From a theoretical viewpoint, understanding the factors underlying the generation of 

epileptiform activity is still challenging. Furthermore, predicting and understanding the 

brain network response to specific electrical stimulation patterns is a delicate and open 

problem.  

One of the main objectives of this thesis was to study and design a multi-site 

electrical stimulation able to abort epileptic seizures. To achieve this, we opted for a 

gradual approach. First, we studied the qualitative changes in dynamics caused by 

quantitative changes in excitability. After providing the whole dynamical repertoire of a 

neuronal region while altering its excitability, we moved to the study of its dynamics 

under stimulation. EEG signals were analyzed to identify qualitative changes in 

dynamics caused by specific stimulations, as well as the types of bifurcations involved 

in these changes, and the impact of electrical stimulation parameter space on the 

model behavior was explored in order to understand the effects of stimulations on 

activity patterns. The findings and observations were used as a basis for studying the 
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stimulation impact on a whole neuronal network composed of different connected 

neuronal populations.  

 

Impact of neighboring neuronal regions and the activity of specific types of 
neurons on its dynamics  

We have used a generic modeling approach representing neuronal networks 

across the cortex as “neural masses” consisting in a few thousands of neurons, and 

describing their averaged activity. This approach is widely used and accepted in 

neuroscience, and can be used as a basis for a large-scale models of brain activity. 

Furthermore, neural mass models have the advantage to simulate signals that are 

directly comparable with experimental LFPs, since both simulated and recorded 

signals originate from phenomena at a comparable spatial scale.  

After introducing the bio-inspired computational models allowing the simulation 

of the activity of a neuronal population, we conducted bifurcation analyzes. The results 

provided an exhaustive characterization of changes in population activity with respect 

to the variation of synaptic gains and an external input from neighboring neuronal 

populations. Furthermore, the excitation/ inhibition ratio was presented as an index 

underlying the dysfunction and stability of a neuronal circuit. However, the use of 

Wendling’s neural mass model, which includes an additional type of inhibitory 

interneurons (fast somatic-projecting inhibitory interneurons), had shown that this 

index might not be optimal to quantify the epileptogenicity of a neuronal population. In 

fact, the conducted bifurcation analysis while varying the synaptic gain of fast inhibitory 

interneurons has demonstrated the involvement of these inhibitory interneurons in the 

generation of the epileptic activity, challenging the notion that promoting the 

appearance of epileptiform activity requires necessarily a high excitation/ inhibition 

ratio. Besides, the bifurcation diagrams while varying either the excitatory input ? or 

the excitatory synaptic gain . show that an over-excitation triggers the compensatory 

inhibitory role of slow inhibitory interneurons, and then counteracts over-excitation, 

stops the pathological oscillatory activity and imposes background activity.  
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Design of optimal stimulation protocols able to abort epileptiform activity in a 
single neuronal population 

Significant research efforts have been made over the last decades to identify 

effective stimulation parameters in specific therapeutic applications. Some studies 

have argued for the efficacy of high stimulation frequencies (typically around 100 Hz) 

(Filali et al., 2004; Kim et al., 2012; Shen et al., 2003; Beurrier et al., 2001), while others 

provided evidence that low frequency stimulation (frequency lower than 5Hz) is an 

effective perturbation able to reduce seizures frequency (Albensi et al., 2004; Jerger 

and Schiff, 1995). A common conclusion from those studies is that the most effective 

stimulation parameters to control epileptiform activity remain unknown to date.  

In this thesis, the response of neuronal populations to electrical stimulation 

applied during seizure onset was explored. EEG signals were analyzed to identify 

qualitative changes in dynamics caused by stimulation, as well as the types of 

bifurcations involved in these changes. Our results support previous studies promoting 

the use of high stimulation frequencies to abort seizures (Bikson et al., 2001; Lian et 

al., 2003). However, our results highlight the dependence of stimulation efficacy on 

both stimulation intensity and frequency. Stimulations with an amplitude lower than 2 

mV were identified as non-effective irrespective of frequency. Moreover, resonance 

stimuli that can lead to an exacerbation of epileptiform activity have been found. It is 

worth mentioning that, in our investigations, the stimulation amplitude represents an 

alteration of the post-synaptic potential caused by applying an electrical stimulation at 

a specific intensity. An additional step relating these two measures (i.e., voltage and 

intensity) would be required before conducting experimental studies. Let us note that 

additional biophysical factors related to the tissue properties (e.g., conductivity) and 

the electrode/electrolyte interface influence this conversion. 

Then, we attempted to determine an analytical expression of the transfer 

function for a non-linear system, namely Jansen and Rit model, as another strategy to 

estimate optimal stimulation parameters to alter specific properties of neural dynamics 

and avoid resonance effects. As in the case of bifurcation analysis, the use of a transfer 
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function would save a considerable computational time, as compared to running an 

extensive number of numerical simulations.  

Since the neural mass model represented by equations (3.15), involves non-

linear asymmetric functions, we first attempted at replacing them by linear ones. We 

proceeded to a linearization around a special point describing the PSP for which a 50% 

firing rate is achieved. The resulting system was an approximation of the original 

system for which it was much simpler to compute the transfer function through the 

Laplace transform. This procedure has been followed previously to design a closed-

loop proportional-integral controller for the Jansen and Rit neural mass model (Wang, 

Niebur et al., 2016). Although it provides some information and approximates the 

system behavior, the frequency responses were unreliable due to the loss of linearity 

and were different from those obtained numerically. This motivated the investigation of 

other non-linear approaches allowing the control of non-linear system without 

performing a linearization.  

Over the last decades, mathematicians have developed sophisticated theories 

that have paved the path for the development of non-linear approaches. Here, we 

applied the theory of non-commutative rings to overcome the non-associativity problem 

which is characteristic of non-linear systems, and prevents the derivation of an 

analytical expression linking the system input to its output. Hence, following this 

method, we provided a unique description of the simulation/LFP relationship for the 

non-linear Jansen and Rit neural mass model, which is not achievable using 

conventional methods. However, this approach has some limitations, including the fact 

that the analytical expression of the transfer function may contain a state space 

variable as opposed to linear systems.  

 

Design of a multi-site stimulation to abort epileptic seizures at the network level  

The investigations conducted at the level of one single neuronal population were 

extended to optimize multi-site neurostimulation and generate experimentally testable 

hypotheses. The perspective to perform multi-site stimulation in epilepsy is in part 

motivated by reported effects of multi-site stimulation in humans, for example in 

working memory enhancement (Alagapan et al., 2019). In our investigation, we 
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developed a computational model of an epileptogenic neuronal network and studied 

the impact of multi-site stimulation on connected neuronal regions generating interictal 

discharges; an activity recognized as an electrophysiological marker of epileptogenic 

neuronal systems (Wendling et al., 2002). Our results confirmed the effectiveness of 

multi-site stimulation in reducing the frequency of epileptic discharges, and have 

shown that it is possible to guide the choice of stimulation targets based on a graph 

theory metric (namely eigenvector centrality). We also presented a method for 

selecting and limiting the number of target regions based on “recorded” LFPs, which 

should be achievable experimentally based on recorded LFPs. These chosen 

connectivity hubs are characterized by a high output functional connectivity, and 

stimulating those regions strongly impacts network dynamics, as opposed to other 

locations. Moreover, it is worth mentioning that multi-site stimulation of a few regions 

was identified as optimal, and outperformed stimulation of the entire network or of a 

single region.  

We have shown that closed-loop stimulation based on the detection of low-

frequency epileptiform activity is able to suppress interictal discharges. However, the 

difference as compared to open-loop stimulation, while the system is in an 

epileptogenic state, was minimal. Despite this similar performance, a closed-loop 

paradigm should be preferred since stimulation is only delivered if and when needed, 

minimizing the injection of current within brain tissue. Our results also suggest that a 

closed-loop protocol could be efficient to determine the seizure onset, and deliver 

stimulation for a fixed period of time that would be equivalent to the duration of a 

seizure (Jenssen et al., 2006).  

Furthermore, our study provides new insights on the role that GABAergic 

inhibitory neurons play in regulating the activity of glutamatergic neurons (Ingram et 

al., 2019; Komarov et al., 2019). We conclude that the capability to selectively activate 

specific neuronal types will greatly enhance the efficiency of brain stimulation by 

reducing the termination time and minimizing seizure spread within the cortical 

network. We propose that this model prediction could be tested experimentally using 

optogenetics, which is an experimental neuromodulation technique that enables the 

selective activation of specific neuronal types. In addition, we identified a resonant 

frequency to avoid in brain stimulation protocols for epilepsy, since stimulation 

delivered at this frequency can enhance the generation of epileptiform patterns and 
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favor the generation of high-amplitude oscillations, which is in addition amplified by 

network effects. Therefore, in order to replace epileptiform activity by a more 

“physiological” activity, it would be appropriate to avoid using such resonant 

frequencies as stimulation frequencies.    

In terms of limitations, avenues for improvement could consist in adopting more 

realistic models, such as the Wendling neural mass model (Wendling et al., 2002). This 

model comprises somatic-projecting interneurons with faster synaptic kinetics, and has 

the ability to generate more diverse activities (e.g., fast onset activity). In the presence 

of these fast components, the circuit structure could be reconsidered by including 

feedforward inhibition to the feedforward excitation adopted here (Chen et al., 2017; 

Womelsdorf et al., 2014). Finally, the biophysics layer of the model describing the 

impact of the electrical stimulation onto neuronal types could be improved by using 

experimental data linking the levels of in situ electric fields with the corresponding 

depolarization at the level of neuron membranes (Bikson et al., 2004). Other interaction 

mechanisms between the induced electric field and brain tissue could also be 

investigated, such as the possible modulation of neurotransmitter release probability 

by the induced electric field (Denoyer et al., 2020).  
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