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as well for their patience and for introducing me to formal methods. My colleagues at CITI lab offered
me support and great memories, in particular Guillaume Salagnac, François Lesueur, Tristan Delizy,
Guillaume Bono, David Kibloff, Jonathan Tournier, Yohann Uguen and others whom I shared laughs
and scientific conversations with. The administrative personnel also did a great work at maintaining my
ship afloat against procedures and prevented it from sinking down to the benthic floor. Special thanks
to my thesis committee for their reviews and interesting discussions during the presentation and offline.

I would also like to thank friends and family, loving and supportive. In particular, I could have deep
discussions with Jason Lecerf, we helped each other out in difficult moments and did live utter friendship
regardless of the distance from one another. Gary Cottancin and Yannick Marion were supportive and had
wholesome ideas, besides being available and always willing to go to gigs or on vacations together. I shared
cheering freetime with expedition-comrades Pierre Godard, Douglas Raillard and Serguëı Lallement.
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Chapter 1

Introduction

Embedded systems are increasingly used and their application range swiftly grows. Many objects become
equipped with computation and communication abilities, thus widening further the family of embedded
devices. Cloth tags, crop plant sensors, wearables, medical implants and sensors for hard-to-reach areas
are examples of such items. More generally, this thesis focuses on constrained devices. The greatest
constraints are form factor, i.e., the volume occupied by the object itself, and physical access to the
device once deployed. Within the scope of the present thesis, the considered objects are small and
subject to limited maintenance. Indeed, an individual would not want a massive medical implant, for the
benefits brought by the implant might be diminished by the discomfort it would generate. In addition,
when deploying sensors in closed environments or hostile to the human body, such as inside walls or
in radiation-covered areas, physical access to the devices is problematic and thus, must be avoided.
Embedding batteries is limited to some extent, for batteries take space and require the intervention of
a human operator from time to time, thus reducing the autonomy of the object itself. That statement
also stands for rechargeable batteries. One gets the insight that alternative power supplies must be
investigated to supplant the usage of batteries.

Full autonomy is achieved when the device is capable of harvesting energy from its environment.
There are many sources of energy, and as many kinds of energy harvesters: light, electromagnetic waves,
temperature, mechanic movement, motion of the living, air flow, etc. Harvesters yield a variable power,
depending on the nature of the phenomenon to harvest, on environmental conditions and on the harvester
itself. A small solar panel typically delivers less power than a wider one, however some applications might
need a small form factor and hence have to cope with small harvesters.

Apart from solar energy, that usually provides long time windows of stable power, other sources do
not allow that comfort. Eventually, power fails and the platform shuts down until the environmental
conditions are favorable again. With weak energy sources, such as harvesting radio waves from a distant
low-power device, the off-times may last hours or even days. When the energy availability of a platform is
constrained to that extent, it becomes crucial to stop fighting against power outages but, on the contrary,
to compose with them and to integrate off-times as inherent parts of the life of the platform, for power
outages are unavoidable at that point.

Widespread state-of-the-art approaches use Wireless Power Transfer, that consists in purposing an
external device to beam energy into the platform, as seen for credit cards where the card reader beams
energy to whatever card reaches inside its range. Wireless Power Transfer, however, creates an unnatural
environment, for the energy source is made on purpose for that deed, while that energy field would not
be observed in nature otherwise.

This thesis hence sides with alternative solutions, that actually harvest energy from a natural envi-
ronment. Unlike Wireless Power Transfer, a natural environment probably cannot deliver as much energy
and thus, on-times are expected to run shorter and to be less stable as the power demands of the platform
evolve alongside application progress. Hence, applications designed for natural energy harvesting can no
longer afford to restart from the very beginning every time the platform reboots. As a result, considering
the energy constraints that complement the size and access constraints, compliant platforms can only em-
bed low-power components. Computation capabilities cannot exceed that of low-power micro-controllers
and accelerators, hence limiting possible applications to sensor-related and monitoring features, alongside
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16 CHAPTER 1. INTRODUCTION

basic processing.
Forward progress grows into a key concept of platforms that harvest energy from a natural environ-

ment, whereas it is always discarded within the credit card model. There needs to be a way of storing and
loading forward progress so that the application can go on after every power outage. This is correlated to
the concept of checkpointing. It creates a need for embedding non-volatile memories, that are memories
which do not lose their contents whilst not powered. Non-volatile memories are usually purposed to
store the application instructions and the initial values of data sections, often in read-only memories.
On the other hand, the last decades witnessed the emergence of non-volatile Random Access Memories,
that are designed to be used as regular, volatile Random Access Memories. These non-volatile memories
are byte-addressable and, more importantly, have similar read and write access times than their volatile
counterparts. Although they are still behind volatile Random Access Memories in terms of performance
and do not yet have an infinite endurance, they are the most promising hope that energy-harvesting
devices have to establish a persistent data storage.

Considering power outages is not straightforward in common programming languages. It raises a core
question: how to handle every outcome induced by power outages into a programming paradigm? That
question could be addressed in sundry ways, notably language-wise. This thesis proposes to sand off
the sharp edge by providing a lightweight operating system support for traditional embedded software
programming under intermittent power conditions. Hence, the resulting programming paradigm feels
really close to what was done in battery-equipped embedded systems, without the discomfort of manually
managing power outage constraints and without throwing away decades of programming experience.

Providing operating system support to spread application execution across power outages comes
along with its share of challenges and trade-offs. Indeed, operating systems provide useful services for
applications, but the price of that model in comparison to ad-hoc bare-metal baselines is an overhead
due to function calls and to the genericity of the proposed services. It is legitimate to wonder whether
such overheads are acceptable given the energy scarcity. This works shows that a lightweight operating
system layer is actually worth using, for a rigorous automated resource and power outage management
is beneficial in terms of development effort, run-time execution and confidence in application robustness.

Confidence in the behavior of such applications is a major concern when it comes to transiently-
powered systems. Beyond testing systems against a finite benchmark suite, it seems important to take
a step back and retrospectively analyze the concepts developed by such operating systems. The world
of transiently-powered systems clearly lacks proof material to underpin the assumptions that those per-
sistence mechanisms work and maintain an overall consistency to spread an application across power
outages.

The present thesis identifies problematics related to intermittent power and proposes mechanisms for
operating systems to solve those issues. An implementation of the investigated mechanisms within a
lightweight operating system is Sytare. This work further investigates optimizations of such systems,
brings a proof of correctness under intermittent power and builds an accurate energy consumption esti-
mation tool.

Chapter 2 states the general problem and explores related works. Chapter 3 extensively studies exist-
ing operating systems for transiently-powered systems and positions them with respect to the problems
depicted in Chapter 2. Chapter 4 describes in detail Sytare, an operating system for transiently-powered
systems developed and improved during the course of the present thesis. Chapter 5 exposes a novel
peripheral-aware energy model for embedded systems that encompasses changes in platform power state,
a simple power measurement platform to populate the model and an accurate simulator for such plat-
forms. The simulator both reproduces the behavior of the platform in software and hardware and yields
time- and energy-related metrics using the model. Chapter 6 proposes an incremental checkpointing
scheme using a common micro-controller peripheral as an optimization of former checkpointing schemes.
Chapter 7 lays the groundwork for the first formal proof of correctness of checkpointing schemes for
intermittent systems. Finally, Chapter 8 concludes this work and discloses some of its perspectives.



Chapter 2

Problem Statement and Related
Works

Systems supplied with intermittent power must face new challenges with respect to continuously-supplied
systems. Power outages are a kind of failure that makes almost every part of the platform fail, but not
necessarily at the same time. They add complexity to run-time conditions and thus, the correct execution
of long-running applications is not trivial to establish. The present thesis addresses the global problematic
of being able to execute long-running applications despite power outages.

This chapter first discusses energy harvesting, energy sources, power managers and the outcomes
of solely using harvested energy without an additional energy provider. Then, usual platforms that run
under intermittent power are presented. A brief introduction to embedded programming and to embedded
operating systems follows. Non-volatile memories are described after. This chapter then exposes recurrent
problems that arise with intermittent power, either from intermittent properties themselves, or from
application specifications. Those problems lay a baseline in the domain of transiently-powered systems
and are referred to throughout this thesis. Finally, a categorization of existing hardware architectures
equipped with non-volatile RAM is given.

2.1 Energy Harvesting

Harvesting energy consists in transforming an ambient physical phenomenon into energy intended to
be used by some device. The conversion from the physical phenomenon into an electric pulse is the
role of the transducer. Transducers are devices that transform one kind of energy into another. An
interesting property of transducers is that they often work conversely with almost no modification. For
instance, a speaker can be used as a microphone, a Light-Emitting Diode (LED) as a light sensor or
harvester, etc. In general, apart from large solar panels, the raw output of the transducer cannot directly
supply a device. Rectifier circuits are often required. Indeed, depending on the phenomenon and on the
transducer, the raw output voltage may be high but cannot stand a current load, or both voltage and
currents are low. The usage of a rectifier enables to convert the raw output voltage of the transducer
into another voltage, more stable and suited to the device. The nature of the harvested energy, the
performance of the transducer and the efficiency of the rectifier are parameters to study when designing
a platform supplied by energy harvesting. Hence, figures exposed hereafter are for indicative use only,
enabling to reason about orders of magnitude. In addition, many experiments have been conducted, at
different time periods, using different technologies and devices, under different experimental conditions.
Some works report the power density surface-wise, others volume-wise and the last simply report power.
It is nonetheless not necessary to get an exact value as the orders of magnitude speak for themselves.

2.1.1 Energy Sources

There are many natural sources of energy and as many types of transducers to produce electric energy
out of them.
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Light Light is certainly the most popular natural source of energy. It may be harvested using photodi-
odes or photovoltaic cells and generate electrical power between 15 mW.cm−2 and 100 mW.cm−2 [1, 2, 3].
The light source may be natural as sunlight, or synthetic as indoor light or LEDs from another device.
Visible Light Communication systems [4] could benefit from light harvesting using the same device for
communicating and harvesting, i.e., an LED. It was further shown that a red LED could deliver 133 µW
under outdoor sunlight [5], however ambient light reduces light communication efficiency.

Radio and electromagnetic waves An important energy source is radio and other, non-visible elec-
tromagnetic waves. Energy is harvested using inductors and antennas. GSM can provide 0.1 mW.cm−2

of electrical power, Wi-Fi delivers between 10 nW.cm−2 and 10 µW.cm−2 [1, 2] and a vibrating magnet
40 pW.cm−2 [6]. The sensitivity of the harvester, that is the minimal radio power required for the har-
vester to operate, is the most critical and the most constraining property. A plethora of works proposes
different designs for radio energy harvesting. Most of them can deliver 1 V DC output when the incoming
radio power is at least -22 dBm (6 µW) to -14 dBm (40 µW) [7]. As of light, it would be interesting to
build platforms that use the same antenna for both energy harvesting and communication [8].

Temperature Spatial and temporal variations of temperature may also be used to generate energy. A
5 K difference in temperature generates up to 60 µW.cm−2 [9, 1]. The applications are numerous and
notably wearables can take advantage of temperature gradients of the living.

Mechanic movement While some mechanical energy can be managed using magnetic waves, such as
a vibrating magnet or coil, another technology may be used to convert mechanical energy into electrical
energy. Piezoelectric properties achieve such a deed and may provide power, when struck or twisted, in
the order of magnitude of 200 µW.cm−2 to 500 µW.cm−2 [9]. People move and body movement can thus
provide energy. For instance, a heel strike, a finger motion and even blood pressure.

Air flow The flow of gas, like any fluid, can generate energy using, for instance, an anemometer or a
turbine. Wind turbines may produce 28.5 mW.cm−2 [1]. Human breath can generate up to 0.4 W [3]
with a face mask as energy harvester.

2.1.2 Power Outages

Some energy sources are quite stable, for instance, when using large solar panels. This thesis addresses
small objects with, among others, form factor constraints and thus, cannot embed large energy harvesters.
As a consequence, regardless of the harvested energy source, the harvested power is expected to be low.
More importantly, the harvested power is expected to be lower than the power consumption of the supplied
platform in active mode. Active mode depicts an operating mode of the platform when it performs some
operation, e.g., the micro-controller is computing or a piece of data is being sent over radio. Sleeping
modes may consume less instantaneous power than harvested, but performing any useful operation would
result in energy depletion as energy is consumed faster than harvested. Inevitably, that situation incurs
power outages. Given that there is no degree of freedom regarding form factor, considering medical
implants for example, the platform must then face and cope with power outages as an inherent part of its
life. Furthermore, battery-less platforms are designed to overcome the limitations of replacing batteries
over time, hence they are destined to be deployed once and never, or seldom, physically accessed again.
Battery-less platforms are de facto on their own regarding energy supply and must thus accept power
outages.

2.1.3 Power Managers

Aside from the transducer itself, an energy harvester embeds some circuitry, including voltage rectifiers
and power managers. The harvested energy may be used as is or be aggregated into a small storage such
as a small-sized capacitor. A power manager may take responsibility for handling the energy storage: it
dictates when to supply or not the platform. It also provides a befitted power supply to the platform.
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Energy Management Policy

There are two major policies of powering the platform: harvest-use and harvest-store-use [10, 3, 11, 12,
13, 14]. Under the harvest-use policy, the platform is directly wired onto the harvester. It is simple
and may lead to the smallest form factor designs. However, the harvester must provide a high voltage,
i.e., voltage above the operating threshold of the platform plus the voltage drop due to the current
consumption of the platform. When the output of the harvester drops below that threshold, the platform
is abruptly turned off. The other policy, harvest-store-use, introduces an energy storage, such as small
capacitors or super-capacitors. The energy storage acts like a low-pass filter, it enables the platform to
be powered more steadily than under the harvest-use policy. Using a harvest-store-use approach allows
the usage of smaller harvesters and of lower harvested power levels. The downside of harvest-store-use is
that the energy storage must charge up to a certain energy level to power the platform and, depending on
the capacity of the energy storage, the charging phase may take time. The storage element is important
for, in practice, it is not ideal and presents current leakage. Its capacity must be carefully chosen for the
rate at which it charges and discharges is directly incurred to capacity. A trade-off between reactivity
and the ability of being powered on during long times must be established [15]. UFoP [16] derives
this methodology and proposes to decouple capacitance by using several smaller capacitors: one for the
micro-controller and one for every single peripheral.

A hybrid between harvest-use and harvest-store-use has been designed to reconcile both approaches.
Confusedly named either harvest-use(store) [17, 18], harvest-store(use) [19] or harvest-store-use [20], it
tries to use the harvested energy in a harvest-use manner as much as possible and stores the potential
exceeding harvested energy into an energy storage. Once the harvester can no longer provide sufficient
power to the platform, the energy storage takes over so that powered periods are lengthened.

The three power management policies can be implemented in numerous ways. The bulk of existing
works candidly wire the transient power source directly onto the platform to supply, regardless of the
chosen policy [21, 22]. The platforms thus have to cope with a supply voltage that evolves over time.
Fluctuating supply voltage impacts clock frequencies and current consumption [23]. Hence, while directly
wiring a transient power source onto the platform still enables the execution of applications, there are
some pitfalls to avoid. First, all electronic components on the same platform do not necessarily have the
same voltage requirements and the scenario where the power supply is able to supply a given component
but fails to supply another may happen. For instance, low-power micro-controllers usually operate at
1.8 V or even less, whereas radio chipsets might require at least 2 V. In that case, if the voltage of the
power supply, in either of the harvest-use, harvest-store-use or harvest-use(store) modes, stays between
1.8 V and 2 V for some reason, the software application might think that the platform is working well
since the micro-controller is able to execute instructions, however any attempt to use the radio chipset
would inevitably fail. Another pitfall is that varying supply voltage complexifies the task of estimating
the energy consumption of a system, should it be software or hardware.

In order to tackle the two downsides of directly wiring the power source onto the platform to supply,
some works propose to add a voltage regulating stage between the energy storage and the platform in a
harvest-store-use scenario [24, 25, 26]. This approach is also adopted by industrials [27], even for very
constrained energy sources such as ambient radio waves. 1 Using a voltage regulator adds little complexity
to the circuit, but introduces an additional component which efficiency is, in practice, not ideal. Some
energy is wasted due to the fact that voltage regulator are not ideal, yet it is viable to design harvesting
systems with a voltage regulator. A Game Boy that harvests solar energy and button press energy was
designed thus [28].

Improving Harvesting Efficiency

Regardless of the kind of energy source, power managers also work close to the transducer in order to
find an optimal configuration that would maximize the harvested energy. They often embed a Maximum
Power Point Tracking (MPPT) circuit that is designed for that purpose. Harvesters are studied against
I-V curves, i.e., the relationship between voltage and the current that can be drawn from the transducer.
These curves have peaks and MPPT circuits work towards the objective of getting closer to the peaks.
MPPT consists in dynamically adapting the impedance seen by the transducer [29, 30]. To do so,

1https://e-peas.com/types/energy-harvesting/rf/

https://e-peas.com/types/energy-harvesting/rf/
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DC-DC converters can be used for their duty-cycle is controllable and directly affect the impedance.
In order to compute the optimal impedance and duty-cycle, the MPPT circuit must first locate the
instantaneous performance of the circuit on the I-V curve of the transducer. Traditional techniques
of MPPT involve periodically disconnecting the transducer to automatically measure its open-circuit
voltage. The fractional open-circuit voltage technique simply models the optimal voltage to be linear with
the open-circuit voltage. The coefficient of that linear relationship is dependent on the transducer. For
instance, a photovoltaic cell may optimally work at 75 % of its open-circuit voltage. Finally, measuring
the open-circuit voltage must not be performed very often nor for very long, since the transducer is
disconnected from the rest of the circuit and thus cannot deliver its energy to the platform or to the
energy storage, if any.

2.2 Traditional Platforms with Intermittent Power

Today’s most widespread devices that harvest energy are devices such as Radio-Frequency IDentification
(RFID) and Near-Field Communication (NFC) tags [31]. Throughout this chapter, such tags are infor-
mally referred to as credit cards. Credit cards embed a micro-controller programmed with an application.
The application has to run to completion without power outage. Upon reboot, the application restarts
from the beginning to initiate a new transaction. In order for that model to be viable, a card reader
steadily provides a sufficient amount of energy to perform the transactions, without interruption during
the entire process. Hence, the credit card model is a two-fold approach that requires (i) the credit card
itself to communicate information and perform some operations and (ii) an external device that beams
energy onto the credit card. The presence of the external device, here the card reader, is a very strong
assumption for the credit card does not harvest energy from a natural environment, but rather from an
environment made on purpose for the credit card. This is called Wireless Power Transfer. Credit cards
may thus be energy neutral as defined in Section 2.3.2, however the card reader is not.

Harvesting radio energy often generates small power for the device may be far away form the source
or health norms would not enable higher transmission power. PoWiFi [32] observes that Wi-Fi router
have irregular traffic over time and repurposes Wi-Fi networks for power delivery. Wi-Fi routers are
modified to inject superfluous broadcast traffic, called power packets, on available and non-overlapping
Wi-Fi channels. An advantage of using Wi-Fi as the energy source is that the antenna may be used for
both communication and energy harvesting. PoWiFi requires a modification of Wi-Fi traffic and thus is
not entirely natural.

Ambient backscatter enables an efficient energy harvesting of radio power that does not require the
injection of any additional energy source [33]. It comes from the observation that radio waves, especially
television (TV) broadcast waves, are present in most locations. TV waves, in particular, have a large
coverage since TV towers are designed for that purpose. The devices may thus harvest TV energy,
without backup battery, and the communication between devices may be achieved by backscattering the
TV signal. Changing the impedance of the antenna between two impedance values defines an encoding of
zeros and ones, for a matching impedance would absorb the signal while a mismatching impedance would
reflect it, hence backscatter it. Given that TV energy is always present and not initially designed for
harvesting devices, it may be considered almost natural, albeit not being a natural phenomenon unlike
sunlight.

2.3 Embedded Programming

The software is often co-designed alongside the hardware. Programming on embedded targets differs from
programming on desktop targets. Apart from the computing capabilities being different, the experience
of developing is not the same, notably if the software is meant to be executed in a bare-metal manner,
i.e., there is no operating system to rely on.

2.3.1 Programming Basics

Throughout this work, a certain amount of programming notions are referred to, notably CPU registers,
peripheral control registers and stack; heap to a lesser extent.
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The micro-controller contains, among others, a Central Processing Unit (CPU). The CPU itself con-
tains registers which are fast memory units not mapped in memory. Most of the CPU registers are for
general purpose; e.g., arithmetical operations. A few of them are rightfully called special registers. The
program counter contains the address of the current instruction. The status register contains information
about run-time execution, such as the interrupt status (i.e., enabled or disabled) and the condition flags
used for branching. The stack pointer contains the address of the topmost part of the stack.

Stack is a portion of main memory dedicated to storing some of the local variables and information
of functions and interrupt handlers. Stack may be ascending or descending, respectively grows towards
higher or lower addresses. Orthogonally, stack may be full or empty, the stack pointer respectively points
to the actual topmost item or points to the next location after the topmost item. Any combination of
these two axes may exist and it is more a matter of implementation details, since the push and pop

instructions, that respectively put an item on top of the stack and retrieve the topmost item, manage
the stack pointer accordingly to the stack model of the CPU. At the end of the day, the only concerns
about stack management, that truly depend on the stack nature, are its initial value and specific man-
agement operations (e.g., stack lookups without popping any value). These are concerns for a bare-metal
bootloader or for an operating system, even the most basic ones, but not for the application itself, whose
stack is usually managed by a compiler.

A program binary is usually split into several sections. The .text section contains the program
instructions. Most of the time read-only, it may though be modified if the application needs that feature.
Global variables are spread onto two sections: the .bss sections for global variables which initial value is
zero and the .data section for the other global variables. Since the variables of the .data section have
a non-zero but pre-defined initial value, these variables are relocated. The relocation section contains the
initial values of all the variables from the .data section, in the same order and respecting variables sizes
and alignment. The relocation section is allocated apart from the .data section, so that the application
only works on the .data section and the relocation section is read-only. The implicit contract of run-times
is that an external entity is responsible for zeroing the .bss section and copying the relocation section
into the .data section, at run-time and before the application actually starts. This is one of the roles of
bootloaders and operating systems. The stack is also a section on its own, since it must be reserved for
stack purposes. As mentioned, the initial value of the stack pointer must be set before the application
starts.

In bare-metal programming as well as in operating system programming, section locations and sizes
must be carefully studied. Relying on the compiler, section mapping is usually achieved by handcrafted
linker scripts that contain memory placement indications for the linker stage of the binary production.
Specifically, the linker script must at least place the bootloader code at the address corresponding to the
reset value of the program counter, defined by the micro-controller manufacturer.

Heap is a portion of memory dedicated to dynamically-allocated memory, whereas .bss and .data

sections are statically-allocated, i.e., allocated by the compiler. Heap comes with a heap manager, that
proposes a certain amount of services. Amongst the most essential services are the memory allocation
request, e.g., malloc, and the memory liberation request, e.g., free. The main concerns with heap is
that heap memory becomes segmented over time. Memory segmentation may prevent the system from
providing a memory block of the requested size at some point, resulting in a failure. It also makes
the memory allocation and liberation slower. Hence, heap memory is often frowned upon by embedded
developers albeit highly used in non-embedded programming. Static allocation is more predictable and
faster, thus admittedly a good choice for embedded systems.

2.3.2 Intermittent Programming Paradigms

Due to the scarce nature of the harvested energy, using low-power hardware is not sufficient in essence
and the software must be energy-efficient by managing the different power-consuming components in a
clever way.

Energy neutral systems only use the energy harvested from the environment and do not use any other
energy source. Energy neutrality is a property that can be achieved in sundry ways. It depicts a large
spectrum including tiny harvest-use systems on one hand, and larger systems equipped with batteries and
larger harvesters on the other hand [34, 35]. Only smaller platforms are studied in this thesis, for they
have to cope with harsher run-time conditions. The harvest-store-use and harvest-use(store) policies are
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closer to the battery-powered systems, however the energy storage can be as small as a simple capacitor of
a few dozens microfarads, which is orders of magnitude smaller than complex batteries of several ampere-
hours. Existing battery-less systems usually bet on power outage scarcity, due to an efficient energy
management and an energy harvesting source capable of delivering enough power to allow an almost
infinite execution of the application. A cell-phone [36], eye-tracking goggles [37] and a video streamer [38]
are examples of such battery-less systems. In order to reduce energy, these solutions directly wire the
raw output of the sensor to a backscatter emitter. Encoding is simple and filtering is performed by the
reader platform, which itself is not energy-constrained. Hence, these applications remain rather simple.
Power outages occasionally occur, however these applications allow to be restarted from the beginning
every time, as long as the power outages are not too frequent regarding the application performance
expectations. More complex applications cannot be satisfied by these power-related conditions for they
would require some mechanisms to spread across power outages.

Normally-off computing is a paradigm designed to power off components as soon as they are no longer
needed [39]. Any component is concerned, should it be the micro-controller or any peripheral. Special
attention must be drawn to the power-on times of each component though, for some hardware concerns
such as clock stabilization may require dozens or hundreds milliseconds. Ultimately, the whole system can
be turned off while waiting for an external event to occur for instance. Power outages are thus inherently
part of the design. The usage of non-volatile RAM makes normally-off systems feasible as the memory now
needs to be powered on only when reading or writing to it, and keeps its data despite power outages, while
the fully volatile counterparts would need to be kept powered on even when no operation is performed on
it. Considering the unfortunately still standing performance gap between volatile and non-volatile RAMs
discussed in Section 2.5.2, normally-off systems may also embed volatile memory in addition to a volatile
micro-controller and a memory hierarchy must be defined. To that extent, normally-off systems need a
memory policy and need to guarantee consistency within heterogeneous memories.

2.4 Embedded Operating Systems

After being introduced to embedded programming in general and in a bare-metal manner, one must
consider that operating systems for embedded and constrained platforms do exist. Operating Systems
provide a set of services to the applications they host. Amongst the most basic services are peripheral
handling. The applications access the peripherals of the platform using the operating system’s services,
through a so-called Application Programming Interface (API). Operating Systems are also responsible
for the boot sequence of the hardware platform as well as the software environment in which are executed
the applications.

Operating systems generally support several applications, or processes, to execute in parallel, even
if the micro-controller is not multi-threaded. This is called scheduling. The operating system keeps
track of the currently running processes and constantly has to choose, at run-time, how much time or
energy should be given to each process. Processes may be prioritized or, on the contrary, given the same
proportion of execution time.

More sophisticated operating systems isolate processes so that each process cannot access the memory
of other processes. More security-related services might be offered by the operating system, depending
on its complexity and on whether it is relevant for the application that should run on the platform.

2.4.1 Common Operating Systems

The most widespread operating system for embedded platform is likely any distribution of Linux that can
execute on the considered platforms. For instance, Linux is commonly used in single-board computers.
Single-board computers are complete systems, including micro-processors, memory and peripherals, that
are embedded into a single board, as opposed to traditional computers that have a mother board and
many daughter boards for modularity purposes. They are often about as small as credit cards, albeit
not as flat. Popular single-boards include, and are not limited to, the Raspberry Pi, Orange Pi, Ba-
nana Pi, BeagleBoard and Odroid platforms. Single-board platforms tend to increase their computation
capabilities with multi-core micro-processors, higher bus speeds, more RAM, etc. Today, the average
single-board platform has a quad-core micro-processor and several gigabytes of volatile RAM, enabling
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the execution of Linux-based systems. The kernel is often stored in a removable SD card. Some of them
even embed Graphics Processing Units. The recent Nvidia Jetson Nano platforms embed 128 Maxwell
graphical cores and consumes up to 5 W. Single-board platforms are widely used for teaching purposes
and in robotics. They need a power supply capable of delivering several amperes. The energy demands
of such platforms are a few orders of magnitude superior to those of the transiently-powered systems
considered in this thesis.

A Linux-based operating system requires hundreds of megabytes of RAM, as well as hundreds of
megabytes of storage. Of course, the actual requirements of Linux heavily depend on the considered
distribution. However, even the most lightweight distributions need a fair amount of memory and this
is to take into account when designing embedded platforms. Within the context of transiently-powered
systems, today’s non-volatile RAM technologies do not allow that much memory within small form
factors.

Other operating systems target smaller devices. RIOT [40] fits in a few kilobytes, for both instruction
code and RAM usage. RIOT supports multi-threaded applications. Its priority-based scheduler and its
low interrupt latency also widen the applications of RIOT to real-time applications. Some operating
systems incorporate real-time requirements as an inherent part of their design. A key challenge for real-
time embedded systems is to provide deterministic services that execute for a known amount of time,
regardless of the state of the platform. FreeRTOS provides a threading library that aims at ensuring
a correct execution of a well-specified application. µC/OS-II [41] and µC/OS-III [42] are popular real-
time preemptive operating systems. Zephyr is part of the Linux Foundation and inherits some concepts
from Linux, including device trees. Unlike traditional Linux distributions, Zephyr provides a real-time
environment. Finally, VxWorks is also very popular in the world of real-time systems. However, VxWorks
is designed for embedded systems with higher capabilities, such as automotive and robotics.

Although these smaller operating systems consider hardware constraints that arise with the nature of
embedded systems, they are still complex for smaller energy-harvesting devices. Furthermore, although
real-time properties are useful for many applications, the very definition of time, and more specifically
of real-time constraints, is substantially altered and does not have the same semantics when off-times
become part of the application.

2.4.2 Legacy Operating Systems for Constrained Platforms

TinyOS [43] targets sensor networks of constrained nodes that must be reactive to events. It proposes an
event-driven system as an alternative to multi-threaded systems. The application is designed as separate
tasks that are run to completion, i.e., tasks do not hang indefinitely and or not preemptable. Tasks can
be spawned upon event occurrence, either external or initiated by other tasks.

Contiki [44] primarily focuses on the ability to deploy applications and updates onto an entire network.
Contiki aims at being used in constrained platforms. It thus proposes a library of protothreads [45] to
simulate a multi-threaded environment on a single stack. When a protothread blocks, the stack is rewound
to enable another protothread to execute. Contiki’s model differs from that of TinyOS, mainly due to
the protothreads being preemptable. In TinyOS, on the contrary, each task must execute to completion
before another is scheduled and thus, lengthy computations may impede the overall performance of the
task set and the reactivity of the system to external events.

Dewdrop [46] is a task scheduler, designed for computational RFID systems, that leverages energy-
related data to make decisions. The platform is kept in deep sleep when either no action is required
or no activity can be scheduled due to the instantaneous energy level. Taking energy concerns into
account improves the efficiency of the computational RFID platforms, that can operate at longer ranges.
Similarly to TinyOS, Dewdrop asks the application developer to decompose the different activities of
the application into separate tasks, each task being designed to run to completion without interruption.
However, Dewdrop’s task model is more restrictive and more suited to RFID applications: the same task
is repetitively executed. Dewdrop aims at starting the execution of the task at the optimal energy level,
given the challenge that the radio energy source is unpredictable. QuarkOS [47], built on top of Dewdrop,
attempts to address the issue of the long tasks by proposing a decomposition of the tasks into sub-tasks,
yet still designed to run to completion without interruption. The platform may enter deep sleep between
consecutive sub-tasks, in order to recharge the energy storage in the meantime. The granularity of a sub-
task can be as fine as transmitting a single pulse belonging to a bit within an OOK-modulated packet.
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At coarser granularity, a sub-task could, for instance, compute a single pixel from a camera sensor being
read. This, of course, assumes that the activities are divisible, which constrains the network protocols
and the sensing operations. However, an application may run on QuarkOS with a capacitor as small as
0.1 µF.

TinyOS and Dewdrop assume that every task executes to completion before another can execute.
Contiki slightly relaxes that assumption by allowing protothreads to be preempted only when explicitly
requested by the application code or upon completion. These assumptions are broken when troublesome
imminent power outages, that come along with intermittent supply, disturb the run-time conditions. In-
stead of trying to support intermittent power as a software wart inside existing operating systems that
are not designed for such energy constraints, it thus becomes imperative to design operating systems, or
at least helpers, for applications for transiently-powered systems. Chapter 3 and Chapter 4 comprehen-
sively study such operating systems designed for transiently-powered systems, against the problematics
identified in Section 2.6.

2.4.3 Operating Systems for Energy-Harvesting Systems

Energy-harvesting systems are not regular embedded systems. They, or at least the low-end of the energy-
neutral systems, are smaller in size and thus in available power, computation capabilities and RAM size.
It is unlikely to see a Linux-based kernel for transiently-powered systems powered by harvesting radio
wave in a short-term time-span, for instance. It may happen in a distant future, if the advances in
non-volatile RAM technologies and energy harvesting technologies allow it. Before this point is reached,
more modest operating systems must be designed to provide services for applications that would execute
on such platforms.

Bailey et al. discuss the outcomes of integrating non-volatile RAM as an inherent part of the com-
puters, as far as operating systems are concerned [48]. The discussion is not specific to energy-harvesting
systems but scales to any system equipped with non-volatile RAM. Depending on how the non-volatile
RAM is integrated into the system design, the memory hierarchy may be questioned, alongside the
concepts of paging and memory protection. The run-time environment of the software applications com-
pletely changes since the notion of stopping the execution of an application is blurred by the potential
neverending run-time. Distributing software also might change for the relevance of the concept of installer
as defined today is jeopardized and updating software while currently executed may be tricky. Also, fault
management could also be impacted for faults made persistent by the usage of non-volatile RAM are
problematic throughout the life-time of the application, initially designed to be infinite.

With these problematics in mind, alongside the ones exposed in Section 2.6, Chapter 3 provides an
extensive study of operating systems for transiently-powered systems.

2.5 Non-Volatile Memory

The main property of non-volatile memories is data retention, even when not powered. Non-volatile
memories depict a large spectrum of technologies and applications, from the slowest ones such as hard
disk drives to faster ones like the recent non-volatile RAMs.

Non-volatile RAM, besides being non-volatile, are almost as time-efficient as SRAM and as dense
as DRAM [49]. As stated by Bailey et al., the performance of non-volatile RAM is so close to volatile
RAMs that it questions the traditional memory hierarchy that makes computations in the fastest volatile
memory while the slowest non-volatile memory only served as a data storage to repopulate the volatile
memory after exiting an application [48].

In general, memories are required to address a major challenge: how to encode zeros and ones inside
the material. Also, the endurance of the memory, i.e., the amount of accesses that are supported, is
an important criterion, notably for transiently-powered systems with a potentially infinite life-time. It
is not specific to non-volatile memories and each kind of technology comes up with an innovative way
to store data and make the distinction between two logical states. More specifically to non-volatile
memories, the memory chip must be designed to keep its contents intact while the power is off. This is a
complex challenge for the memory can be off during long times and anything could happen during that
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off-time. Temperature and surrounding magnetic field are examples of environmental parameters that
can change over time. Furthermore, constrained embedded systems often have geometric constraints,
hence the chosen technologies must achieve high density, i.e., small form factor. A subsidiary challenge
is the financial cost, but that last concern is out of scope of the present thesis.

2.5.1 Traditional Non-Volatile Memory

Non-volatile memories have existed for a long time and are well integrated into computer designs. Used
to store software instructions, data or application save-states, they are common components.

ROM memories Read-Only Memories (ROM) are read from but not written to. They can be im-
plemented in sundry ways. For instance, a diode matrix is literally not writable for diodes are not
programmable. The matrix is manufactured and from that point onward, its contents are frozen.

Other kind of ROMs emerged, including the Erasable Programmable ROMs (EPROM) and Elec-
trically Erasable Programmable ROMs (EEPROM). They use transistors and thus are theoretically re-
programmable, but the process is either very slow, hardly reachable physically, or the memory itself
has a poor endurance and is best used as a read-only memory. EPROMs can be erased using a strong
ultraviolet beam. One-Time Programmable memory derived from the EPROM, with the removal of the
ultraviolet erasure feature.

Flash Flash is based on the design of an EEPROM. A Flash memory can be read at random addresses
without penalty. However, the writes must obey page constraints that do not allow writes to random
addresses. Indeed, a Flash memory is composed of several non-overlapping sectors of addresses. The
sector to which belongs the address to be written to must be erased and the entire sector must be
populated again, with the new value updated. This makes Flash memory a good candidate for read-only
sections such as software instructions and constants and, to a lower extent, to seldom-updated variables.
However, Flash memory, besides the slow and constrained write protocol, has limited endurance and both
downsides makes Flash memory unsuitable to be used as a working memory.

Sundry variants of Flash memory exist, including NOR and NAND, named after the logical gates
that their internal gates are analogous to. NOR memories try to relax write constraints, allowing random
access writes as long as the values to be written either coincide with the value already present or solely
put zeros in the memory. The erased state of a bit is the logical one and the NOR memories allow random
writes of zeros. On the other hand, writing a one, i.e., resetting a bit, still involves resetting the entire
sector. NAND memory does not allow any random write access, but has a higher density than NOR
memory.

Hard disk drives Hard disk drives store data in a ferromagnetic material, in the shape of a disk.
Reading and writing is performed using magnetic fields created by a magnetic head. The magnetic head
points to a particular point of the disk, thus mechanical action is required to access all locations of the
disk. Hard disk drives require high supply voltage, up to 12 V and consume about a few watts, making
them unfit for transiently-powered systems.

2.5.2 Non-Volatile RAM

Non-Volatile RAMs are more recent than the aforementioned non-volatile memories. Their ultimate
objective is to catch up those older memories, in terms of access latency and density. While read and
write accesses are slower than volatile RAM, they are nonetheless closer to that of RAM rather than
that of traditional non-volatile memories. They are also quite endurant. Manufacturers display figures
as large as 1012 or 1016 writes, though not infinite yet a sound base for transiently-powered systems [49].

There is a tremendous amount of technologies investigated as many implementation alternatives of
the same global specification. They all have different properties and they have been extensively compared
against one another [49, 50]. Some of the technologies appear to be more difficult to design and to manu-
facture than others and thus, they do not have the same maturity. The most promising technologies, such
as Spin Torque Transfer RAM, are slowly emerging but still did not reach a large scale commercialization
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and availability today. On the other hand, other non-volatile RAM technologies, such as Ferroelectric
RAM, have already been widely available and usable for low-power platforms for years.

Phase-Change Memory Phase-Change Memories (PCM) leverage the physical properties of materials
derived from a chalcogenide glass. The chalcogenide glass material is heated at specific temperature levels
in order to control its resistivity. Hence, PCMs are resistive. The heat peak sets the physical state of the
chalcogenide. As long as the material remains in that state, the memory information is kept consistent.
This property is thus used to encode zeros and ones. Indeed, when used as a memory, the material is
locally kept either in a high-resistance disorder amorphous state, or in a low-resistance crystalline state.
A bit can be written by provoking the adequate heat peaks. A bit is read by measuring the current flowing
through the memory cell when a fixed voltage is applied. PCMs have a high write latency because of
thermic concerns and a low-write endurance, although better than Flash. Due to the temperature-related
properties of the material, PCMs are not suited to all environments.

Ferroelectric RAM A Ferroelectric RAM (FRAM or FeRAM) cell consists of a 1T1C structure: one
transistor and one ferroelectric capacitor. The polarity of the capacitor is used to encode zeros and ones.
It may be changed by applying a voltage to the capacitor. Polarity retention is achieved thanks to the
hysteresis properties of the ferroelectric capacitor. In order to read a bit, the memory controller tries
to write a pre-defined value to the bit. If the cell state changes, which is visible as a current pulse,
then the read value was the opposite value of the newly-written one. Otherwise, the read value was the
same value. This means that the read operation is destructive, so a bit which value is needed after the
read operation must be written over again. Despite the destructive read that slows down accesses to
the memory, ferroelectric memory is yet considered fast. In addition, it has small power requirements
and may operate at low supply voltage. It also has a good endurance, altogether making ferroelectric
memory a fair candidate for low-power energy-harvesting platforms. Texas Instruments made the choice
of replacing the entire Flash memory by ferroelectric RAM in their MSP430FR micro-controller family.

Resistive RAM This kind of resistive memory leverages the property of a dielectric to become con-
ductive by applying a sufficiently high voltage. A Resistive RAM (RRAM or ReRAM) cell, otherwise
considered a memristor, consists of two conductive layers insulated by a dielectric material. A high volt-
age provokes the creation of a conductive filament between the two plates, which reduces resistance. In
practice, the resistance varies as an effect of voltage magnitude and polarity that is applied to it. Its
non-volatility is a consequence of its resistance not changing when the memristor is not supplied. To
determine whether the memristor contains a logical zero or a one, the current flowing through the mem-
ristor is compared to the current flowing through a fixed reference resistor while supplied with the same
voltage. RRAM has a high density thanks to its grid-shaped structure. There exists several variants of
resistive RAM. The Oxide-based RAM (OxRAM) uses voltage polarization instead of voltage magnitude.
Based on the polarity applied to the memory cell, a conductive filament is either created or removed
between both conductive layers. Hence, the resistance of the whole memory cell changes following the
polarity of the voltage applied to it. The 1T1R-RRAM technology comprises one transistor and one
resistor, where the resistor is the memory cell itself. It has improved density.

Magnetic RAM Magnetic RAM (MRAM) leverages electron spin to encode zeros and ones. The flow
of electrons inside a ferroelectric material is modified by external magnetic fields and the perturbation
depends on the spin state of each electron. At macroscopic level, this results in a variation of overall
resistance. Two ferromagnetic plates are separated by an insulating dielectric layer. This is called a
Magnetic Tunnel Junction [51]. One ferromagnetic layer has fixed magnetization direction while the
other one may vary. When the magnetization of both layers are equal, the resistance of the memory cell
is low. On the contrary, when the magnetization of both layers are opposite, the resistance is high. The
Spin Torque Transfer MRAM (STT-MRAM) uses a spin-polarized current to change the orientation of
the magnetic field. Spin-Orbit Torque MRAM (SOT-MRAM) isolates the read and the write lines at
the cost of using an additional source of magnetic field for determinism [52]. SOT-MRAM thus achieves
better endurance, density and lower latency that STT-MRAM. A general issue of magnetic RAMs is that,
to some extent, it will be difficult to increase density since magnetic field could impact neighboring cells.
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Nanotube RAM Nanotube RAM (NRAM) embeds a matrix of carbon nanotubes. Nanotubes may
either touch another nanotube or not. Contacts between nanotubes impact the resistance of a given
nanotube, thus encoding zeros and ones. Non-volatility arises from the combination of the mechanical
properties of the nanotubes in the absence of contact, and the Van der Waals force operating locally at
contact points [53].

2.6 Intermittent Computing Problematics

The main constraint that intermittent computing adds to traditional continuously-powered computing,
is the occurrence of power outages. Volatile memories are not designed to retain their contents when
not powered. Hence, their contents can be considered completely lost upon power outage. In practice,
depending on the memory properties, data retention may last for a small duration and some of the data
might be unaltered if the power went back on soon enough after the power outage [54]. However, volatile
memories only guarantee data retention as long as they are powered on, so it is correct to assume that
their contents can no longer be trusted upon power outage and it is incorrect to assume that their contents
are preserved, even partly.

In regular credit card scenarios, the application would always run from the beginning every time the
platform was powered on. Indeed, the platform assumed that an external reader would beam enough
power to perform an entire transaction in a contiguous manner, without any power outage.

Transiently-powered systems do not leverage this assumption and must thus accept power outage as
part of the platform’s life. Any application is likely to last longer than what a small energy harvester or
energy storage could provide to the platform. This observation lays the ground for the problems depicted
hereafter. Specifically, an operating system for transiently-powered systems must address the volatility of
the CPU and the memory (P1), the volatility of peripherals and interrupts (P2), timeliness and atomicity
constraints (P3), while guaranteeing non-volatile memory consistency (P4).

2.6.1 Checkpoint Definition

Throughout this thesis, a checkpoint depicts a state where all system components are consistent with each
other. The system components are the micro-controller, volatile memories and non-volatile memories if
applicable, as well as internal and external peripherals.

The state may be saved, either in a single step or several steps, every component altogether or
separately, actively or passively by using the persistence properties of non-volatile memory for instance.
The mechanisms designed to save the system state are referred to as save.

This state should be loadable in some way, this corresponds to the restoration. In the best case
possible, the exact point where the platform stopped running because of power outage has all system
components consistent and thus, this point itself is a checkpoint. In that case, restoration simply consists
in resuming the application exactly where it stopped when power failed. However, in the general case,
consistency between system components is likely to require the system to roll-back to a safe checkpoint
prior to the point where power failed, as not all nodes in the application’s control-flow graph are valid
candidates for checkpoints.

In addition, the concept of checkpoint, alongside the notions of save and restoration techniques, are
called checkpointing.

Some works, especially the ones that leverage a task-based approach, claim that they do not perform
nor use checkpoints [55]. However, the definition of checkpoint proposed in this thesis is more generic
as it encompasses any technique that isolates points of whole-system consistency. Even for task-based
approaches where partial task progress is always discarded, for task beginnings are checkpoints [56, 55, 15,
57]. Hence, according to this very definition of checkpoint, all the works that aim at ensuring long-running
application’s forward progress across power outages leverage checkpointing.

Definition: Making a Piece of Data Persistent A piece of data is made persistent when it is
managed by the checkpointing system. The checkpointing system is responsible for saving its contents
and restoring it, as well as the consistency of the retained state with respect to the program counter of
resumption.
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i n i t ( ) ;
for ( ; ; ) {

x = sense ( ) ;
y = compute ( x ) ;
send ( y ) ;

}

Life-cycle 1 Life-cycle 2 Life-cycle n...

Power outage

Figure 2.1: Program counter volatility.

2.6.2 P1 — Memory and CPU State Volatility

The most known issue in the area of transiently-powered systems is the persistence of the volatile memory
contents, including main memory as well as CPU registers. Upon power outage, all volatile memories are
discarded and thus, their contents can no longer be trusted. Some mechanism must be able to repopulate
memory and CPU back to a valid, consistent state, so that the application can resume from that point.

The purpose of the memory is to store data, so saving and restoring its state may be as simple
as copying its contents to and from non-volatile memory. The copy may be performed using a Direct
Memory Access (DMA) component, present in every micro-controller, that enables fast copies, even when
the CPU is turned off to save energy.

The CPU registers are not directly addressable so handling their persistence is slightly more challeng-
ing. As far as general purpose registers are concerned, using push and pop instructions allows the CPU
to store and load its registers to and from the stack. Either the stack is located in volatile memory and
can benefit from the persistence mechanisms of the rest of the volatile memory. Or the stack is located
in non-volatile memory, which makes it easier to make persistent, but creates a need for careful handling
in order to preserve memory consistency, as discussed in Section 2.6.5. The CPU also contains a handful
of special registers, such as the program counter, the stack pointer register and the status register.

Making the program counter persistent enables the application to make forward progress, as shown
in Figure 2.1. Without persistent program counter, the application would always reboot from the very
beginning and the energy storage being small, only the first few instructions could ever be executed.
Forward progress can be achieved only if the program counter is made persistent, however it is not
sufficient. As aforementioned, in order to restore the application in a consistent state with regard to
the program counter, the memory contents must be retrieved from the exact point in the application to
which corresponds the program counter. In Figure 2.2, the application stops after setting a value to x.
On reboot, without CPU registers and main memory made persistent, the application tries to use the
value of x for some computation, but x was not re-initialized prior to the computation.

2.6.3 P2 — Handling Peripherals

Peripherals are nowadays still mostly volatile. On boot, they acquire a so-called reset-state, that is a
constant state depicted in the device data-sheet.

i n i t ( ) ;
for ( ; ; ) {

x = sense ( ) ;
y = compute ( x ) ;
send ( y ) ;

}

Value of x?

Figure 2.2: Volatility of CPU registers and memory, assuming program counter volatility being solved.
The variable x could be stored either in a CPU register or on the stack, the issue is yet the same.
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i n i t ( ) ;
for ( ; ; ) {

x = sense ( ) ;
y = compute ( x ) ;
send ( y ) ;

}

Radio initialized
for transmission

Radio in reset-state
not initialized
for transmission

Figure 2.3: Peripheral state volatility, assuming that P1 is sorted out.

This issue was, for a long time, left aside by many systems for transiently-powered systems. However,
it gained in popularity, starting from the moment researchers understood that peripherals were crucial
to transiently-powered systems. Indeed, if such platforms designed to run under harsh run-time environ-
ments were only to perform computations, they would be of no use since any computer or data-center
could perform the same computations, with better software and system support, and with sufficient com-
putation capability to get faster results. It makes no sense to design transiently-powered calculators.
On the contrary, a valid purpose for this kind of platforms is sensing a physical phenomenon using a
sensor, maybe processing the data (e.g., aggregation or filtering) and sending the usable value to a re-
mote, continuously-powered device. Any scenario that would be suitable for transiently-powered systems
involves peripherals and thus, peripherals cannot be set aside of considerations. Persistence of peripherals
include the persistence of the state of each peripheral (P2.1), as well as the persistence of interrupts and
data that arise from interrupts (P2.2).

P2.1 — State Volatility of Peripherals

Peripherals, like any other volatile component, lose their state upon power outage. On reboot, they are
in reset-state which is not necessarily consistent to their state when the program counter was saved.
Figure 2.3 illustrates this issue. The init function initializes the hardware, mainly the sensor used by
sense and the radio used by send. During the first life-cycle, sense expects the sensor to be initialized,
which is the case since it is called after init. However, power fails before send is called. Upon reboot,
the CPU and the memory are assumed to be properly restored in accordance with the program counter
when the power outage occurred. The radio is now in reset-state though, which breaks the assumption
of the application that the send function is called after the radio has been properly initialized. Note that
the assumption would not be broken without the power outage, since the assumptions of C-like languages
would guarantee that send is executed after init.

The simplest kind of peripherals are memory-mapped peripherals. They might be saved and restored
by simply copying their control registers to and from non-volatile memory. However, even memory-
mapped peripherals have some complexity. For instance, control registers designed as locks, require to be
accessed first (unlocked) so that the other control registers become accessible. In addition, locks usually
need a password value written to them in order to successfully lock or unlock them, but reading their
memory-mapped value does not yield the password. An example of such locks is the clock register CSCTL0
of the Texas Instruments’ MSP430FR57 micro-controller family. 2

Moreover, memory-mapped peripherals often have write-only control registers. They thus cannot be
read to be restored later. This is the case for ARM-based GPIO controllers (e.g., Microchip’s SAMS70 3)
that have a write-only control register to set the GPIOs (e.g., PIO SODR) and another write-only control
register to clear the GPIOs (e.g., PIO CODR).

Due to electronic reasons, some control registers might require that a minimum amount of time elapses
before doing another operation. Time requirements are often due to the necessity of waiting for a signal
to stabilize, an oscillator to settle, a capacitor to charge, etc. Voltage references for Analog-to-Digital
Converters (ADCs) are examples of peripherals that use this kind of control registers. The reference
module of Texas Instruments’ MSP430FR5739 4 requires 30 µs to settle, before being usable by any

2https://www.ti.com/lit/ug/slau272d/slau272d.pdf
3http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527D.pdf
4https://www.ti.com/lit/ds/symlink/msp430fr5739.pdf

https://www.ti.com/lit/ug/slau272d/slau272d.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527D.pdf
https://www.ti.com/lit/ds/symlink/msp430fr5739.pdf
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i n i t ( ) ;
r ad i o r e c e i v e mode ( ) ;
while ( ! p a c k e t r e c e i v e d ) ;
packet = r a d i o g e t p a c k e t ( ) ;
ana lyze ( packet ) ;

Busy-wait

(a) Example of application without support for interrupts.

i n i t ( ) ;
r ad i o r e c e i v e mode ( ) ;
cpu low power ( ) ;
ana lyze ( packet ) ; interrupt r a d i o r e c e p t i o n ( ){

packet = r a d i o g e t p a c k e t ( ) ;
}

(b) The same application written with interrupts allowed.

Figure 2.4: Comparison between (a) interrupt-less model and (b) interrupt support.

dependent module, while the ADC itself requires at most 100 ns to settle before the application can issue
sampling commands.

Other peripherals are not mapped in memory and must be accessed through a serial data bus; e.g.,
SPI, I2C. The data is written to or read from the peripheral by accessing the same address in memory
several times in a row. Hence, dumping the contents of such peripherals is not as easy as memory-mapped
peripherals. Furthermore, since the data bus is serial, reading the whole peripheral state would take a
long moment, which is not desirable when a power outage is imminent.

Peripheral persistence is simply one step towards correct execution for transiently-powered systems.
But by itself, it does not solve much. Since the persistence of the CPU program counter dictates where
to resume the application, all the other components to be saved and restored, including peripherals, must
be kept consistent with the checkpoint. If, for some reason, the state of the peripherals changed between
the last checkpoint and the actual power outage, the state of the peripherals in the checkpoint image
must reflect their state when passing through the checkpoint, not the last state observed when the power
actually failed. Such situations arise if the system lets the application run after a checkpoint with no
guarantee that the next checkpoint is reachable.

P2.2 — Interrupt Handling

Interrupt handling is a key notion in embedded systems. It enables reactivity and asynchronous operations
that either come from the application itself, or that come from environmental conditions. Interrupts are
preponderant in programming for embedded systems, hence inherently part of the programming model.
In addition, in low-power systems, it is a common practice to halt the CPU while the platform is waiting
for some wake-up signal on an interrupt line. Figure 2.4 shows the same application without interrupt
support and with interrupt support. Interrupts are twofold: (i) interrupt occurrence and (ii) interrupt-
bound peripheral data.

Current volatile micro-controller designs encode the interrupt occurrence in the peripheral control
registers. For a given peripheral, one or several control registers contain the nature of the interrupt that
occurred, if any. These control registers are volatile and reset upon reboot, meaning that the platform
does not naturally keep track of interrupt occurrence across power outages.

Also, some data are bound to interrupt occurrence. For instance, upon receiving a radio packet, the
contents of the packet are interrupt-bound data. These data are stored inside the peripheral memory,
that is most likely to be fully volatile. Hence, the interrupt-bound data are lost upon power outage.

Overall, it must be an application design choice to choose whether to make an interrupt persist.
Indeed, in portions of applications that require timeliness constraints (cf. problem P3), keeping the
interrupt occurrence and data after a power outage would not make sense if the interrupt-bound data
were meant to be used in a short time-span. However, other portions of the application might not have
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i n i t ( ) ;
for ( ; ; ) {

x = sense ( ) ;
y = compute ( x ) ;
send ( y ) ;

}

Milliseconds

Hours?

Figure 2.5: Illustration of the timeliness constraint, assuming that P1 and P2 are sorted out.

such timely requirements and thus would benefit from making interrupt-bound data persistent across
power outages.

2.6.4 P3 — Timeliness and Atomicity

Intermittent power may lead to long periods of time when the platform is not powered. This is not sup-
ported by traditional programming languages such as C. Furthermore, power outages break assumptions
of such languages: a sequence of instructions is not guaranteed to execute within a consistent time win-
dow. In a continuously-powered scenario, an assembly instruction would take a certain amount of clock
cycles and the next instruction would be executed right after the current instruction completes (out-of-
order execution and instruction pipe-lining are out of scope here). In a transiently-powered scenario, two
instructions might be separated by many hours or days of power outage, as shown in Figure 2.5.

Depending on the application, it might not make sense to process sensed data or to send them after
such a long pause. For instance, computing the average value of the output of a sensor makes sense only
when the samples were taken during a time window where the physical phenomenon to be measured does
not vary much. Consider an application that averages temperature measurements and sends the result
over radio. If the sampling operation starts at the middle of the day, when the sun strongly shines, and
resumes during the night, in that case the computed average has no meaning.

Other applications might however not need timeliness constraints, either depending on the nature of
the application itself, or because the platform is so energy-constrained that a long time-consistent region
would never fit in a single life-cycle.

Nonetheless, timeliness is not solely needed for specification reasons, but also for technical reasons.
Operations on peripherals may take time, and it is often not desirable, in case of an interruption due to
power outage, to attempt to resume exactly where the program stopped, but on the contrary to replay
some of the former operations in order to make the peripheral operation work. A typical example of
such peripheral operations is sending a radio packet. External radio chip-sets such as Texas Instruments’
CC2500 communicate with the micro-controller through a serial bus (SPI in that case). Transmitting
a packet requires to populate the radio FIFO and to send a strobe command. Every piece of data is
exchanged through the serial bus and this takes time. If power fails during this operation, the platform
cannot simply resume at the very same assembly instruction, even under the assumption that the radio
state was properly restored. Instead, the application control-flow must be rolled back to the beginning
of populating the radio FIFO. Another example of such peripheral operations is clock and system stabi-
lization. When powering a peripheral on, or when making a peripheral change its state from one state
to another, the data-sheet may indicate that the system must wait during a fixed duration until a piece
of circuitry stabilizes before utilization. In case of power outage occurring during the wait phase, the
control-flow must roll back to the beginning of the wait in order to ensure that the system waited at least
during the right amount of time.

The key point to ensuring timeliness is offering atomic sections to the run-time environment, as well as
exposing atomic section specification to the developer, through dedicated API functions or by providing
a language better suited to transiently-powered systems.
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2.6.5 P4 — Using Non-volatile Memory as Main Memory

Solving timeliness (P3) is crucial to transiently-powered systems for their application scenarios are based
on peripherals and their correct behavior must be ensured by timeliness support. As seen in Section 2.6.4,
timeliness support eventually brings roll-backs to application control-flow, in locations where there is no
roll-back in a contiguously-powered scenario. In addition, some solutions to application state volatility
(P1), especially compiler-based ones that statically insert checkpoints, might also induce roll-backs. In-
deed, if the application opportunistically executes until the very end of the energy storage, the application
will perform partial progress between the last checkpoint taken and the actual power outage. Then, on
boot, the application resumes at the last checkpoint, introducing a roll-back in the control-flow.

Data retention across power outages is what makes non-volatile memory attractive in transiently-
powered systems. However, in some situations, data retention requires additional care in order to keep
the memory consistent. These situations arise from the roll-backs introduced by either timeliness support
or partial progress between checkpoints.

All these situations can be gathered under a single concept: write-after-read data dependencies.

Write-After-Read Dependencies Hazards

Write-after-read dependencies are usually dangerous in concurrent execution contexts, for they require
a particular order of instructions. A simple write-after-read dependency is ++i, which purpose is to
increment the value of i. In this example, a new value, dependent on the value of i, is written back to i.

In the context of transiently-powered systems, DINO [58] proposes to see intermittence as concurrent
execution: the power outage makes the current task hang forever and a reboot creates a duplicate task
that starts at the last checkpoint. Let us consider that a checkpoint was created right before ++i and
the platform did manage to complete ++i before the energy storage depleted but without being able to
reach the next checkpoint. If i is stored in volatile memory, partial progress is lost and the persistence
mechanism must reinitialize its value so that it is consistent with the last checkpoint reached. If i is stored
in non-volatile memory, it may be tempting to consider that no additional persistence mechanism is to
use [59] and thus, to keep its value that includes the partial progress made between the last checkpoint
and the power outage. Hence, on reboot, the ++i instruction is executed again, with i being already
incremented with respect to the expected value. As a result, a single ++i instruction may increment i

many times, instead of once, if power fails during this write-after-read dependency. The operations that
bring such write-after-read dependencies are non-idempotent. When manipulating non-volatile memory,
a correct execution in ensured if non-volatile variables (P4.1), non-volatile stack (P4.2) and non-volatile
heap (P4.3) are protected against non-idempotent accesses.

Mathematically speaking, idempotence is the property of an operation that may be run multiple times
and yield the same results. For instance, the absolute value, ceiling and floor functions are idempotent. In
the programming world, idempotence has the same meaning, and it is important to note that idempotent
functions may have side effects. However, an idempotent function that has side effects must ensure that
the results of the side effects will always be the same after one or several repetitions. For example, a
function accessing global variables is idempotent if and only if the values of the accessed global variables
are the same after one or several executions of the function. Non-idempotence is the contrary; i.e., non-
idempotent operations do not lead to the same state when performed repeatedly. Less abstractly, i = 4

is idempotent while ++i is not.

Note that this situation is not only specific to non-volatile memory. Anything that may have persistent
consequences is candidate to such vulnerabilities. Besides non-volatile memory, actuators are examples
of systems with persistent consequences [60]. If a radio packet was sent once during partial progress,
it will be sent another time after reboot. If a motor did move during partial progress, it will move
again after reboot. While Phoenix [60] considers such roll-backs in actuator handling a fault, DINO [58]
emphasizes that, in general, it is not possible to “un-launch a rocket or un-toast bread”. As far as radio
packets are concerned, networking protocols usually support packet redundancy, so it is not an actual
problem. Regarding high-power actuators such as motors or servomotors, it is not realistic to consider
that transiently-powered systems can provide for their high power requirements. As a result, this is an
issue in high-power embedded systems that are subject to peripheral failures, but it cannot be observed
under transiently-powered system assumptions.
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nv i = 0 ;
buf [N ] ; // V o l a t i l e or non−v o l a t i l e

i n i t ( ) ;
timely{

while ( i < N)
buf [ i ++] = sense ( ) ;

}
y = compute ( buf ) ;
send ( y ) ;

i = 0

buf[0] = A

i = 1

i = 1

buf[1] = B

Loop restarts at i=1

→ timeliness failure

Figure 2.6: Non-idempotent access to non-volatile memory, assuming that P1, P2 and P3 are sorted out.
The timely block is only conceptual and indicates a portion of code that must be made time-consistent.
The nv decorator specifies that a variable is stored in non-volatile memory, while unspecified variables
can be stored in any kind of memory.

P4.1 — Non-idempotent Accesses to Non-volatile Memory

A well-known issue introduced by the usage of non-volatile memory as main memory is brought by non-
idempotent accesses [58, 61, 55, 62, 63]. Without a proper checkpointing mechanism, when power outage
occurs in the middle of a write-after-read dependency to a variable stored in non-volatile memory, the
platform may be exposed to an issue of non-idempotence. If the software is subject to roll-backs, and
more specifically to the dominating read operation of the write-after-read dependency, the newly read
value will be the one to be written afterwards. In that case, if the written value did change the variable
state, then the newly read value is corrupted which hinders correct execution. Figure 2.6 illustrates this
issue. The application requires a timeliness constraint, here materialized by a timely syntax block, for a
buffer to be filled with sensed values within a short and consistent time-span. The timely syntax is not
necessarily part of the actual syntax of the language, albeit similar to Chinchilla’s atomic block [64], the
timely syntax is purely conceptual for illustration purposes. At the beginning of the application, i, stored
in non-volatile memory, is 0. The variable buf can be either stored in volatile or non-volatile memory, as
long as there exists some mechanisms to make its contents persist across power outages. At this point, buf
is not initialized. Then, the application starts the timely block, which means that a checkpoint stands
here. The loop manages to run only one iteration before power fails, hence buf[0] has a valid value and
i == 1. On reboot, the program counter, the volatile memory and CPU and the peripherals are assumed
to be consistently restored to their state at the beginning of the timely block (P1, P2 and P3 solved).
However, without rolling back non-volatile memory as well, in particular i, i is still equal to 1. The first
iteration of the loop will hence write directly to buf[1] instead of buf[0], meaning that either buf[0]

is left uninitialized (if buf is stored in volatile memory) or with the old value of the former life-cycle (if
buf is stored in non-volatile memory). Regardless of the placement of buf, the behavior is incorrect with
respect to the expectations of the application developer in a continuously-powered scenario.

Peripheral Reads Introduce Idempotence Issues IBIS [63] further investigates non-idempotence
by reasoning at peripheral level. Whenever a write to non-volatile variables is determined by a condition
that depends on a value read from a peripheral, there might be an idempotence issue. After a power
outage, if the control-flow is meant to roll back to before reading the peripheral, a second execution of
the read operation might yield a new, different value with respect to the one that was read before the
power outage. In that case, from the application’s perspective, the control-flow successively took several
branches while it would never happen in a continuously-powered scenario. If the concerned branches
update non-volatile variables, then after the new branch has been followed, the non-volatile memory
contains the stigmata of all the branches that were taken, hence leading to an inconsistent memory state.
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nv good = f a l s e ;
nv bad = f a l s e ;

i n i t ( ) ;
timely{

i f ( s ense ( ) > A)
good = true ;

else
bad = true ;

}
a s s e r t ( good != bad ) ;

sense() = A+10

good = true

good = true

sense() = A-10

bad = true

→ assert failure
Control-flow jump

Figure 2.7: Non-idempotent access to non-volatile memory due to the influence of peripherals on the
control-flow, assuming that P1, P2 and P3 are sorted out. The timely block indicates a portion of code
that must be made time-consistent.

main ( ){
f ( ) ;
g ( ) ;

}

f ( ){
. . .
checkpo int ( ) ;
. . .

}

g ( ){
. . .

}

main

f

main

main

g

main

g

main

f6=

f resumes with g’s stack

Figure 2.8: Non-idempotent access to non-volatile stack, assuming that P1 is sorted out.

Figure 2.7 shows an example application that, in a block subject to timeliness constraint, senses a
sensor and updates either the non-volatile good variable or the non-volatile bad variable. Executing this
application under continuous power would always lead to a state where either good or bad is true, but
both of them cannot be true nor false together at the end, hence the assert condition. During the
execution under intermittent power, the first life-cycle reaches the point where good is set to true after
sense() yielded a value greater than the arbitrary value A. Then, the power fails and the application
resumes at the beginning of the timely block, again assuming that P1, P2 and P3 are solved. Since good

is stored in non-volatile memory and its value was not rolled back, good keeps its value, that is true.
Now, sense() yields a value lower than A and the application control-flow takes the else statement,
resulting in bad being updated to true. The control-flow eventually reaches the end of the timely block
and now, both good and bad are true even though it never should happen.

P4.2 — Non-volatile Stack

Problems can occur when the stack is fully non-volatile [62]. This issue is very similar to non-idempotent
accesses to variables (P4.1). The only difference being that, unlike P4.1, the accesses are not explicitly
written by the developer. Indeed, programming languages such as C rely on Application Binary Interfaces
(ABI) and their matching compilers automatically insert push and pop instructions at the beginning and
at the end of the functions, as well as when registers spill. As a result, unprotected non-volatile stack
frames are vulnerable to non-idempotence issues and thus, to stack corruption. Figure 2.8 shows three
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functions with their own stack frames: main, f and g. During the first life-cycle, the application starts
at the main function, then executes f which creates a checkpoint, returns to main and starts executing g.
Power fails during the execution of g and the last checkpoint was inside f. Since the stack is non-volatile,
it keeps its last contents, that is the stack frame of g on top of the stack frame of main. On boot, the
control-flow is rolled back to f’s checkpoint but the stack is not. This leads to f being unexpectedly
executed with the stack frame of g, hence the execution is incorrect.

P4.3 — Non-volatile Heap

Roll-backs might lead to the usage of variables that were freed between the last checkpoint and the power
outage, as shown in Figure 2.9. In a contiguously-powered scenario, the variable x is valid when its
contents are accessed. If power fails after x being freed, then on reboot the application resumes from the
last checkpoint. The heap is non-volatile and was not rolled back to a consistent state with regard to the
last checkpoint, hence x is still freed and x[0] = 4 will not run correctly.

Since the concept of heap is not popular in very constrained embedded systems, non-idempotence in
non-volatile heap management is not an actual issue for today’s transiently-powered systems. The only
work that cares about this concern to this day is ScEpTIC [62]. However, it might become an upcoming
concern as future transiently-powered systems will embed more memory, have more computation capa-
bilities and will be likely to allow the use of fully non-volatile heap.

Problems P1, P2, P3 and P4 encompass all sources of bugs, identified to this day, that may emerge
from the intermittent nature of power supply in transiently-powered systems. Knowing the threats of
intermittent supply, it is now natural to formulate the following global problematic: how to address these
problems to build correct applications that can spread across power outages? This thesis specifically
orients its point of view towards operating systems. Thus, the problematic may be further tailored as:
what services should an operating system for transiently-powered systems provide in order to guarantee
the correct execution of applications across power outages? To spread application progress across reboots,
the system needs to make the CPU and volatile memory persistent and consistent with one another (P1).
Peripherals must also be kept consistent with the CPU program counter (P2). The system needs to pro-
vide atomic regions for peripheral purposes and for specific time-related application requirements (P3).
The usage of non-volatile memory must take into account consistency issues caused by a clash between
non-idempotent regions and the run-time environment forcing reboots (P4).

2.7 Hardware Architecture for Intermittent Computing

2.7.1 Some Choices are not Deliberate

Design space for embedded platforms can be wide. Any micro-controller, any component is to be picked
with caution in response to the purpose the platform or the application was made for.

With the arrival of volatility-related problems in intermittent computing, design space should be even
wider with a new degree of freedom that is how to integrate non-volatile memory to the whole design.
While some technologies become mature, such as FRAM and PCM, other ones are still emerging and
not available to all researchers. Non-volatile processors, or micro-controllers with non-volatile flip-flops,

i n i t ( ) ;
x = mal loc (N) ;
checkpo int ( ) ;
x [ 0 ] = 4 ;
f r e e ( x ) ;
. . .

x is freed

x is freed

x no longer allocated

Figure 2.9: Non-idempotent access to non-volatile heap.
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are not yet commercially available. Their usage might help in solving the volatility issues, while it would
require interesting mechanisms to avoid non-idempotence issues (P4).

The main hardware architectures that emerged from state-of-the-art approaches are gathered here-
after. Architectures A1 and A2 depict available designs, while architectures A3 and A4 leverage interesting
dedicated hardware solutions that are less accessible.

2.7.2 A1/A3 — Volatile Processor, SRAM and NVRAM

The oldest and most used hardware architecture for transiently-powered systems consists of a volatile
micro-controller, SRAM and NVRAM. This architecture, named A1 here, is supported by all Texas
Instruments’ MSP430FR family micro-controllers. They are specifically designed so that NVRAM is in-
corporated into the micro-controller chip, hence achieving small form factor and good energy performance.
Another way to build such a platform would be to use a micro-controller that exposes its address and
data buses on external pins, and wiring those pins to an external NVRAM, as discussed in Section 4.7.
It has the advantage of using any interesting micro-controller architecture, even from manufacturers that
do not embed NVRAM in their designs, for intermittent computing scenarios. However, it increases form
factor and is less energy-efficient.

Volatile and non-volatile RAMs present differences in energy consumption and access times. In gen-
eral, volatile RAMs are both more energy-efficient and faster than non-volatile ones. Some works use
RAM as working memory for partial progress and only commit progress to NVRAM when reaching a
checkpoint [56, 55, 57, 65, 64, 66, 67].

Older works use Flash technology instead of NVRAM [8, 21], mainly because of the immaturity of
NVRAM at that time. Since NVRAMs have no access constraints like Flash does, it is easy to adopt
NVRAM instead of Flash. The only aspect that could hinder such a change is that NVRAM chips usually
do not exceed a few megabytes, however it is sufficient for transiently-powered systems.

Some works propose the usage of dedicated hardware on top of architecture A1, either as new electronic
features [15] or as new logic to be implemented in future processors [68]. The resulting architecture is
referred to as A3.

2.7.3 A2/A4 — Volatile Processor and NVRAM

Another architecture, named A2, solely consists of a volatile micro-controller and NVRAM. Such an
architecture can be obtained by using the same platforms as A1 and by simply ignoring the on-chip
SRAM.

Other works also propose dedicated hardware [69, 70, 71] on top of architecture A2, the resulting
architecture is called A4.

Architectures A2 and A4 expose fewer degrees of freedom regarding memory placement: every piece
of data outside the micro-controller is non-volatile. By essence, these architectures expose all applications
to P4.

2.7.4 A5 — Non-volatile Processor and NVRAM

Non-volatile processors are processors which parts, up to the entire unit, are made of non-volatile flip-
flops. The basic non-volatile CMOS flip-flop is twofold: a so-called master latch is the traditional volatile
flip-flop and a slave latch contains the non-volatile logic [72]. The slave latch is controlled using logic
switches in order to either save the value from the master latch into the non-volatile cell or reversely
load the value from the non-volatile cell into the master latch. This architecture is a consequence of
non-volatile cells having limited endurance and write performance. The non-volatile processor loads all
latches on boot and saves them all upon imminent power outage, hence current peaks occur during those
phases.

Self-Write-Termination non-volatile flip-flops consist of a volatile latch and, upon completion of any
write to the latch, either set or reset, the new data are copied back to non-volatile memory [73, 74, 75, 76].
Specific modes must, in addition, be implemented to manage the restoration of the latches upon reboot.
Self-Write-Termination enables the flip-flop to reduce time wastes arising from the heterogeneity of setting
or resetting a flip-flop in ReRAM technologies for instance. At the end of the day, the overall energy
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of storing a bit into that kind of flip-flop is orders of magnitude smaller than simply using a traditional
non-volatile flip-flop.

While these solutions target the micro-controller aspect of P1, they would also extend P4 to the micro-
controller itself: roll-backs would build an inconsistent micro-controller state, where general purpose
registers do not match the rolled-back program counter. An undo-log or a double-buffer would be required,
as the solutions depicted in Section 3.4.5 tend to propose, for the micro-controller as well. This would
limit the incentive of using non-volatile processors, since they would still need to be backed up. In
addition, non-volatile processors are to processors what non-volatile RAM is to volatile RAM: slower and
more energy-consuming. These conditions altogether make the usage of non-volatile processors unfit for
transiently-powered systems for now. Hence, they are not yet used in the main literature for transiently-
powered systems.
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Chapter 3

Operating Systems for
Transiently-Powered Systems

Operating systems may refer to a large spectrum of disciplines and this work focuses on one of them,
fundamental to transiently-powered systems: checkpointing. In addition, intermittent computing is a very
constraining environment and traditional, fully-featured operating systems are not likely to be usable in
this context. An operating system for transiently-powered systems thus resembles a library and a run-
time environment for checkpointing purposes, with maybe additional features that mimic traditional
operating systems.

3.1 Application Scenarios

In order to grasp the interest and what is at stake when it comes to transiently-powered systems, in-
specting application scenarios enables a better understanding of such systems. While many former works
solely focused computational applications such as cryptographic applications, it is important to identify
better-suited applications for transiently-powered systems. Indeed, peripherals and sensors in particular
are central to this kind of systems.

3.1.1 The Dilemma of Benchmarks for Transiently-Powered Systems

As stated in Section 2.6.3, the applications for transiently-powered systems must use peripherals in order
to be considered realistic. While they enable to show the real benefits of systems based on checkpointing,
they suffer from unescapable portability issues. Benchmarks hence do no longer only consist of software
code bases. The software embeds driver code that assumes that a specific platform and a specific sensor
are used in the hardware design. As a result, comparing the efficiency of different solutions for transiently-
powered systems is difficult as everyone has to re-implement the other solutions on their platform.

Micro-controllers’ instruction sets and Application Binary Interfaces differ from one manufacturer
to another. Some mechanisms might be implemented in a single or a few instructions at most on a
given platform, whereas it would take many instructions on another platform which was not particularly
designed for a specific usage. For instance, as seen in Chapter 6, returning from MPU fault on an
ARM-Cortex-based micro-controller is straightforward while it would take many instructions on MSP430
including a light software instruction decoder to determine how many words to subtract from the program
counter, to replay the faulting instruction instead of resuming at the next one.

In addition, an application may be designed for some off-the-shelf experimental platform. This
presents the advantages of being available to other researchers, though financial cost might be an issue
in some cases. On the other hand, off-the-shelf platforms are generic and thus, not necessarily designed
for transiently-powered systems. As a result, platform energy consumption might not be optimized, or
the choice of on-board peripherals might not fit the extreme requirements of intermittent power.

Or, an application is designed for a dedicated platform. In that case, the energy efficiency of the
whole platform might be optimal for it was designed for transiently-powered systems on purpose. The
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drawback of building dedicated platforms is that it becomes less easy for the other researchers to get that
platform or to build it.

The following section shows ideas of applications that take advantage of peripherals, gathered from
several works.

3.1.2 Sense, Process and Possibly Send

From the literature, the only kind of peripheral-based applications for transiently-powered systems that
emerged consists in sampling data from sensors, processing the data and sending the results over some
communication channel or showing the results in some way.

Compressive sensing [21, 59] This application accumulates 64 accelerometer measurements and
computes the minimum, maximum, mean and standard deviation of the samples. Raw measurements are
stored in volatile memory and the computed statistics in non-volatile memory.

Environmental monitoring [67] Once per minute, this application senses temperature and humidity
and computes the average over the last windowed measurements. Then, it sends the result over radio.

Cold-chain equipment monitoring [57, 77, 64, 65, 55, 56] This application senses samples from
temperature sensor and compress them using Lempel-Ziv-Welch compression.

Correlated sensing and report [15] This application samples a magnetometer and a proximity
sensor. From these pieces of information, it deduces the distance to the magnetic flux source. Then it
sends the result over Bluetooth-Low-Energy.

Microphone [67] This application samples a microphone and detects vocal commands whenever they
are issued by a human operator. The vocal command indicates what peripheral to sense next. Upon
command detection, it senses the corresponding peripheral. Finally, the application sends the sensed
data.

Activity recognition [67, 57, 77, 64, 65, 55, 56, 58] This application senses samples from a 3-axis
accelerometer. Then, it transforms the samples into features by computing, among others, the mean and
the standard deviation. Using a classification model, it then determines whether the device is stationary
or shaking.

Gesture-activated remote control [15] This application samples a photoresistor. If an object is
detected, it enables a gesture sensor to perform gesture recognition. If the gesture is recognized, it sends
data over Bluetooth-Low-Energy.

Temperature alarm [15] This application samples temperature in a manner that preserves timeliness
among all temperature samples. If the temperature is outside a certain range, send data over Bluetooth-
Low-Energy.

Microphone and accelerometer with interrupts [78] This application is a mix of Activity recog-
nition application and Microphone application, with interrupt support in addition. The software defines
two tasks: one manages the microphone, and the other one manages the accelerometer. By default, the
system is sleeping and wakes up upon microphone activity. The application then performs command
recognition on microphone data. If a command was recognized, it activates the accelerometer task, which
periodically senses and classifies the accelerometer data. Whenever the energy is high enough, it generates
an interrupt which wakes up a task that sends accelerometer data over infrared.
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3.1.3 Benchmarks and Testbenches for Transiently-Powered Systems

Traditional benchmark suites for contiguously-powered systems only comprise code. They are useful to
elaborate the comparison between different solutions by setting up a baseline. Ideally, those benchmark
suites are portable so that anyone can compile them on their own platform and reproduce the comparisons.
Benchmarks for platforms equipped with multi-processors aside, a few benchmarks emerged, targeting
embedded platforms: MiBench [79], BEEBS [80] and Embench 1 are examples of such benchmarks.
However, to this day, none of them actually use peripherals. Inputs are either hard-coded in data arrays,
or obtained through Unix-like read and fscanf primitives. In addition to using dynamic allocation (i.e.,
heap), the whole picture tends to show that these benchmarks, although targeting embedded platforms,
are designed for platforms capable of running a traditional operating system such as an embedded Linux
distribution.

Transiently-powered systems need benchmarks that (i) make use of peripherals (ii) also come with
a physical run-time environment. This physical environment must provide reproducible power outages,
thus somehow emulate the behavior of the energy harvester.

On the hazards of pre-recorded load power traces Ekho [81] warns against pre-recorded load
power traces. Power traces are hardware dependent. Simply changing the nature or the capacitance of
the energy storage has effects on the system’s response to the harvested physcial phenomenon. In a given
trace, if the energy storage saturates, does it really mean that the physical phenomenon ceased to deliver
energy? The energy storage may saturate, and running that power trace with a bigger energy storage
would lead to wrong results, since the bigger energy storage would have continued to accumulate energy
whereas the smaller one could not. The voltage trace from the transducer’s output, either in open-circuit
or with a load, is not meaningful neither since the performance of the transducer depends not only on
the environmental conditions, but also on the current load attached to it, that is, the energy harvester
and the rest of the platform. KARMA [67] uses traces from Mementos [21] and direct outputs from a
solar panel. Eon [82] leverages harvested energy traces instead of voltage traces, but again energy storage
saturation might prevent energy traces from being transposed from a platform to another.

It would be better, although more difficult, to provide a trace of the physical phenomenon itself rather
than the resulting load power trace. For instance, if the energy source is light, a practical trace would
be the timely evolution of the ambient luminance. However, in order to be exploitable, such traces need
a model of the energy harvester, notably a model of the relationship between the physical phenomenon
and the accumulated energy, including energy efficiency ratio.

Ekho [81] proposes to complement the traces information in order to make them transposable to other
platforms, leveraged by works such as InK [78]. Traces include I-V curves, i.e., the relationship between
the current and the output voltage of the transducer. Ekho is an emulator that records I-V curves in order
to emulate them, by dynamically adapting the emulated harvesting current according to the measured
energy storage voltage.

3.2 Software Architecture

Intermittent computing is a totally different paradigm in comparison to traditional computation under
contiguous power. It is likely that solutions to the identified problems have an impact on the programming
model, from the application developer’s perspective.

3.2.1 Baseline: Bare-metal Applications

For comparison purposes, let us consider bare-metal applications as the baseline, written in C language.

Memory Organization They may arrange memory to fit their needs, with a dedicated linker script,
for instance.

1https://embench.org/

https://embench.org/
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Peripheral Accesses In bare-metal scenarios, peripheral control registers may be directly accessed.
However, it is very common and a good practice, even in bare-metal applications, to encapsulate such
accesses onto helpers that can be considered close to Hardware Abstraction Layer and drivers. 23 Those
drivers often come with lightweight data structures that keep track of the state of the underlying periph-
eral. Such data structures are referred to as device contexts. The device context can either mirror the
control registers, or represent the state of the peripheral at a higher level, e.g., the frequency of a clock
that would be used to set the value of several control registers of the clock peripheral.

Interrupts Bare-metal applications often leverage interrupts for asynchronous operations. Interrupt
handlers may perform any operation, however it is common that the interrupt handlers run as shortly as
possible in order to keep a good overall system performance.

Bare-metal Example Figure 3.1 depicts an average scenario of bare-metal application. The software is
carefully structured: the peripherals have their own compilation units and their features are encapsulated
into simple drivers, so that the application logic becomes a separate matter. The application logic is
interrupt-based. Indeed, the CPU is halted most of the time, thanks to the halt cpu routine. Every
100 milliseconds, the CPU is woken up to perform a single measurement and to store it in a buffer. A
radio module is configured in receive mode, with a duty cycle of 10%, meaning that the radio is in receive
mode 10% of the time and idle the remaining 90% of the time. This feature does not need to be manually
managed by the application since it is a common feature of radio chipsets, such as Texas Instruments’
CC2500. 4 Upon receiving a radio packet, the application must send its current buffer contents.

3.2.2 Qualitative Metrics of Programming Effort

In order to compare solutions, one can be interested in seeing their impact on programming ease. More
precisely, discrepancies with respect to the bare-metal scenario depicted above can be informally evalu-
ated. Since intermittent computing influences both application logic and driver programming, program-
ming effort evaluation is twofold: impact on application programming that encompasses language syntax
as well as application logic, and impact on driver programming that focuses on the way to write drivers.

Note that a heavy impact does not necessarily mean that a solution is bad, nor does it mean that
getting into the proposed programming model will be long and difficult. Indeed, intermittent computing
breaks some assumptions of the C language and thus, the C language is far from being perfectly suited to
intermittent environments. Languages purposely designed for intermittent computing will, by definition,
suit the requirements of intermittence, but consequently will be far from a C language baseline.

3.2.3 M — Memory Organization

The choice of the architecture is not sufficient, by itself, to enable application execution across power
outages. A memory policy must be designed to support the application. It also identifies the issues that
will face the application.

M1a — Compute in RAM, Commit to NVRAM The memory organization M1a consists in
working in volatile RAM as contiguously-powered systems do, and in committing progress into NVRAM
at some point. This choice may come from NVRAMs being slower to access and more energy consuming
than volatile RAM. While the gap tends to shrink with technology improvements, this discrepancy still
stands. Since the NVRAM is only used as a storage memory, solutions that adopt M1a are exempt from
P4 issues. If some of the system variables, i.e., not the application variables, are stored in NVRAM, they
are subject to P4 issues though.

2https://www.gitbook.com/book/arobenko/bare_metal_cpp
3http://umanovskis.se/files/arm-baremetal-ebook.pdf
4https://www.ti.com/lit/ds/symlink/cc2500.pdf

https://www.gitbook.com/book/arobenko/bare_metal_cpp
http://umanovskis.se/files/arm-baremetal-ebook.pdf
https://www.ti.com/lit/ds/symlink/cc2500.pdf
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#include <temperature . h>
#include <rad io . h>
#include <t imer . h>
#include <b u f f e r . h>

stat ic b u f f e r t ∗ b u f f e r ;

int main ( void ) {
/∗ I n i t i a l i z e p e r i p h e r a l s ∗/
t e m p e r a t u r e i n i t ( ) ;

r a d i o i n i t ( ) ;
rad io se t mode (RECEIVE DUTY CYCLE 10 PERCENT ) ;

/∗ Temperature sense t imer ∗/
t i m e r s t a r t (100 MS ) ;

for ( ; ; )
ha l t cpu ( ) ;

return 0 ;
}

i n t e r r u p t t i m e r i n t e r r u p t ( void ) {
bu f f e r add ( bu f f e r , t emperature sense ( ) ) ;
t i m e r s t a r t (100 MS ) ;

}

i n t e r r u p t r a d i o r e c e i v e ( void ) {
i f ( b u f f e r s i z e ( b u f f e r ) ) {

rad io se t mode (TRANSMISSION) ;
rad io s end ( b u f f e r c o n t e n t s ( b u f f e r ) ) ;
rad io se t mode (RECEIVE DUTY CYCLE 10 PERCENT ) ;
b u f f e r c l e a r ( b u f f e r ) ;

}
}

Figure 3.1: Example of bare-metal application that aims at being energy-efficient: the radio is setup
with a low duty-cycle and the CPU is halted most of the time. The peripherals wake the CPU up when
it is time to either sense the temperature sensor or send the data over radio. The buffer t structure
materializes a generic circular buffer type.
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M1b — Compute in RAM, Commit to NVRAM and Some Variables in NVRAM The
memory organization M1b is similar to M1a. The difference is that M1b enables the application to
store its variable directly into NVRAM. This kind of memory organization is only used by task-based
solutions [55, 65, 15, 78, 57]. Task-shared variables are stored in non-volatile memory while task-local
variables are stored in volatile memory. Task-shared variables are privatized: tasks operate on a local
copy and then commit the final value to the original location in non-volatile memory when they complete.

M2 — Use Only NVRAM Under the architectures A2 and A4, relying on the sole use of NVRAM,
the memory has no choice but being non-volatile. It is called M2. As a result, apart from the micro-
controller that stays volatile (i.e., registers), stack and all variables are mapped into NVRAM. Hence,
this design choice only reduces the impact of P1 but does not erase it entirely. Also, adopting M2
automatically brings up P4 issues.

3.2.4 E — Execution Model

Besides the architecture and the memory organization, systems need an execution model. This impacts
programming model as well.

E1 — Mono-task Model The most straightforward execution model is the mono-task model, called
E1. It directly derives from the bare-metal approach and thus, does not require many changes with
respect to the bare-metal baseline.

E2 — Task-based Model Another popular approach is task-based. In transiently-powered systems,
task-based approaches follow the same scheme [56, 55, 65, 15, 78, 57]. Tasks are run atomically as a
way to address P3. This execution model comes with programming languages, designed for task-based
systems, with carefully chosen semantics. Since atomicity is at the essence of such approaches, the tasks
are guaranteed to be run atomically. However, atomicity raises constraints on the energy storage, as it
has to provide enough energy for the longest task to execute. Using E2, the application developer must
handcraft every task and hardware. Even computing sections, that usually do not require atomicity, might
be spread onto several tasks in order to execute them under intermittent power. Since the application
developer is in charge of defining task boundaries, and task boundaries being checkpoints, as a result the
application developer is in charge of manually placing the checkpoints. Overall, task-based models fit
well the requirements deriving from P3, but need heavy changes with respect to the bare-metal baseline.

3.3 Designing Platforms for Intermittent Computing

3.3.1 Platforms

WISP [8] is probably the most popular platform designed for transiently-powered systems. It specifically
targets RFID systems and, as a consequence, harvests radio energy. WISP chose to supply the platform
with a 1.8 V voltage regulator, which provides stable supply voltage for the micro-controller and the
peripherals. Although the design is getting older now, originally embedding an MSP430F1232 micro-
controller with Flash memory, the design may be easily adapted to use a more up-to-date NVRAM-
based micro-controller. Moo [83] proposes an upgrade of the WISP platform that includes a new micro-
controller, an external EEPROM and tools for measuring harvested current. The micro-controller is
replaced with an MSP430F2618, that offers more memory and GPIOs, yet still uses Flash technology.

Capybara [15] is dedicated to dynamically adapting the energy storage to the energy needs of the
application. The application is cut down into tasks by the developer and every task is annotated with
energy requirements. Capybara comprises several capacitative units and dynamically switches them
individually in or out so that the overall capacitance of the energy storage becomes adequate for the
task needs. Specifically, Capybara allows the application developer to choose whether an atomic task is
reactive with low capacitance or energy-consuming with high capacitance. The duration necessary to fill
up the energy storage, as well as the powered-on duration, directly depend on the capacitance. Hence, it
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Table 3.1: Comparison between existing systems for transiently-powered systems, with respect to their
ability to solve the identified problems.

System Archi. Mem. Task P2.1 P2.2 P3 P4.1 P4.2 App. eff. Drv. eff.
KARMA [67]

A1

M1a E1

Y
Y Y +

++
Sytare [66] +
RESTOP [84] N N + ++
HarvOS [85]

N
Y N 0 0

MPatch [28]
Mementos [21]

N
Y + 0

Hibernus [22, 86] N 0 0
eM-map [87]

M1b

E1 N
Y Y N + 0

Chinchilla [64] N Y Y N + ++
Coati [57]

E2 N

Y Y Y N +++ ++
Alpaca [55]

N
Y Y N +++ 0

Chain [56]
Coala [88] N Y +++ 0
Ratchet [61]

A2 M2

E1 N N
Y Y

Y 0 0
Samoyed [77]

N
0 +++

TICS [89] ++ 0
Quickrecall [59] N N N ++ +
CatNap [90]

E2 N
Y Y N ++ 0

DINO [58]
N Y Y N

+++ 0
InK [78] ++ 0
Capybara [15]

A3 M1a
E2 N N Y Y N +++ ++

Mayfly [65]
Reli [68] Indep. N N N 0 0
Clank [69]

A4 M2
E2 N N N Y Y 0 0

TCCP [91] Indep. N Y N Y Y 0 0

is crucial to manage capacitance for reactivity purposes. Capybara also uses voltage regulators to supply
the micro-controller and the peripherals.

3.4 Solutions Brought by Existing Approaches

3.4.1 Literature Overview

Many works try to solve the generic problem of spreading the execution of an application across power
outages. They may consider all the problems depicted in Section 2.6, or only some of them. The main
works are quickly described hereafter and their answers to the identified problems are further detailed
in the next sections. A summary of these works, their properties and their responses to the identified
problems is depicted in Table 3.1. The coming literature overview is sorted in an order that is close to
the classification from Table 3.1, modulo precedence constraints in the explanations.

Mementos [21] Mementos relies on energy-aware static checkpointing. Checkpoint trigger locations
are inserted at compile-time. Then, at run-time, the platform senses the remaining energy by performing
an ADC measurement of the energy storage and tests it against a pre-defined threshold. Mementos also
provides hints of atomicity, by disabling checkpointing in the code sections that require atomicity.

Hibernus [22] / Hibernus++ [86] Hibernus performs checkpoints when the energy storage voltage
drops below a certain threshold. The save voltage threshold, as well as the booting voltage threshold,
may be dynamically adapted. If the checkpointing did fail during the last power outage, the save voltage
threshold is increased so that the save operation is given more energy to complete. This management of
voltage thresholds may enable the utilization of smaller capacitors as energy storage.
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KARMA [67] KARMA focuses on the support for asynchronous peripheral operations for transiently-
powered systems. It adopts a peripheral model based on finite state machines, where asynchronous
operations must be encoded as states. Asynchronous states must encompass all possible combinations,
resulting in an exponential expansion of the state machines. The driver developer is in charge of main-
taining these state machines. A queue of operations complements the drivers in order to restore the
peripherals to a consistent state with the last checkpoint. A peripheral operation is rolled back, upon
reboot, if power failed while executing it, as Sytare [66] does, thanks to KARMA’s queue of operations.
KARMA operates at driver API level, as Sytare does.

RESTOP [84] RESTOP specifically targets P2. It consists in a middleware layer between application
and drivers. RESTOP keeps a history of peripheral accesses. As a consequence, restoring the peripherals
is done by running all entries of the peripheral access history. RESTOP requires the driver developer to
manually classify every peripheral routine within a set of categories, in order to optimize the endlessly-
growing peripheral access history.

HarvOS [85] HarvOS, despite statically inserting checkpoints, aims at reducing the amount of check-
points and their durations, which are usually prominent in static approaches. It accomplishes so by
postponing checkpoints to whenever it becomes urgent to checkpoint. Actually, it inserts many check-
point locations but, similarly to Mementos [21], the system performs an energy measurement to decide at
run-time if a save operation craves to be performed. HarvOS static analysis enables the estimation of the
worst-case memory usage throughout the whole control-flow graph. HarvOS compiler can then deduce
the amount of energy needed to checkpoint that worst-case data amount. It deduces the amount of time
available for the application for each life-cycle, after subtracting the durations of checkpointing mecha-
nisms. The control-flow graph is divided into sub-graphs that take at most half of the cycles available
in the worst-case, ending with a checkpoint location. Function calls are replaced by their corresponding
inlined blocks for the energy estimation, and a checkpoint is automatically placed upon returning from
the functions. Interrupt handlers are also instrumented: checkpoints are inserted at the very beginning
and upon returning from interrupt.

MPatch [28] MPatch is a checkpointing system specifically designed for a battery-free Game Boy.
It initiates a checkpointing operation as soon as a power outage becomes imminent and optimizes the
amount of data to transfer using harware-assisted detection of modified memory regions. Memory usage
is further analyzed to decrease checkpoint size.

eM-map [87] eM-map targets an optimal memory placement to reduce both the energy overhead of
the checkpointing techniques and their non-determinism due to power outages occurring at any time. It
is a brute-force algorithm that measures the energy consumption of running each function with different
variable placements, either in volatile RAM or non-volatile RAM, in order to keep the least energy
consuming. Application functions are treated as separate and independent entities. Each function has its
own .bss and .data sections. Checkpointing operations are performed upon returning from functions.
However, a realistic application scenario may involve hundreds of functions and furthermore, they might
communicate through global variables, hence mitigating the feasibility of such a brute-force methodology.

Chinchilla [64] Chinchilla statically inserts many checkpoints and dynamically selects the checkpoints
to actually perform, as Mementos [21] does. The code is decomposed into blocks, in practice basic blocks,
and checkpoints are placed on the blocks boundaries. Chinchilla assumes that blocks energy consumption
has a low variance. It lets the application developer write special blocks, atomic blocks, that prevent
Chinchilla from inserting checkpoints. A variable is stored in non-volatile memory only if its liveness
crosses a static checkpoint. Non-volatile variables are instrumented with an undo-log which, on overflow,
provokes a checkpoint. Peripherals are not handled as Chinchilla requires the driver developer to provide
an initialization function to manually manage P2.

Chain [56] Chain is one of the first task-based approaches for transiently-powered systems that lay
ground of further improvements. Tasks are explicitly written by the application developer. They run
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atomically, in an all-or-nothing manner. On reboot, the application always restarts the current task, thus
re-initializing memory to the beginning of the task prevents the system from inconsistencies. Tasks are
chained together, which resembles a data-flow oriented approach: tasks consume data from other task
and produce data for other tasks. Intra-task variables are stored in volatile RAM whereas inter-task
variables are stored in non-volatile memory and must be accessed through Chain’s primitives ensuring
idempotence. However, Chain does not support peripherals.

Alpaca [55] Alpaca is based on Chain [56], thus inherits its task properties regarding atomicity and
idempotence. Alpaca totally supersedes Chain within transiently-powered system context. Inter-task
variables, also called task-shared variables, are analyzed against write-after-read dependencies. Then,
only task-shared variables used in a write-after-read dependency are privatized, that is, duplicated as
local copies to be committed upon task completion. On boot, peripherals are initialized by an initial-
ization routine, but it only supports a single configuration. As a result, Alpaca provides no peripheral
checkpointing mechanism.

Capybara [15] Capybara is a platform that enables dynamic energy storage configuration to suit
application demands. It highlights the inevitable trade-off between system reactivity and atomicity.
Indeed, atomicity often implies a bigger energy storage in order to run long atomic sections to completion
without power outage. Bigger energy storage is slower to charge, which decreases system reactivity.
Capybara aims at providing fair reactivity when the application needs reactivity and atomicity when the
application needs atomicity. Its software is based on Alpaca [55]. In addition, every task is annotated
with an energy mode, that at run-time corresponds to a given energy storage capacitance. Capybara is
capable, at the beginning of every task, of selecting capacitive banks in order to increase or decrease the
energy storage capacitance in accordance with the application specifications. The voltage thresholds of
platform booting and shutdown stay constant, only capacitance changes. The application programmer
must measure the energy requirements of the tasks themselves. Experimental results shows that the type
of energy storage matters in terms of performance and liability. Capybara is then a smart breakthrough
that takes energy demands variations into account.

Coati [57] Coati runs on the Capybara platform [15], using a task-based model similar to Alpaca’s [55].
It complements Capybara’s approach with the support for event-driven concurrency for transiently-
powered systems. Coati adopts a split-phase interrupt model, where a top-half runs immediately and
a bottom-half is deferred to the completion of the current task. As a result, tasks can be preempted
only by top-halves. The key issue is that the concurrency brought by interrupts can make execution
non-idempotent, while originally designed to be idempotent in an interrupt-free context. It thus uses a
transactional memory for which the programmer must use specific read and write primitives. While
Coati supports interrupt when not bothered by power outage, it is still unclear whether P2.1 is handled.

Coala [88] Coala is a multi-task system where each task is supposedly atomic, modulo task splitting
whenever tasks fail to complete before power outage twice in a row. Energy demands are dynamically
estimated based on recent history. That information is used to determine whether tasks can be coalesced
or, on the contrary, split. Task coalescing reduces the amount of checkpoints during a single life-cycle
and task splitting tries to cut down tasks that are so energy-consuming that they cannot complete
within a single life-cycle. However, coalescing tasks introduces new write-after-read dependencies and
Coala proposes a virtual memory manager to prevent these new dependencies from endangering memory
consistency. The memory manager acts like a cache that commits to non-volatile memory upon page
unloading, only if they were modified.

Samoyed [77] Samoyed provides an interesting way of handling peripherals at API-level. Timeliness
motivates the peripheral API routines made atomic. The driver developer provides scale-down rules for
every peripheral routine when necessary. At run-time, Samoyed tries to run the peripheral operation, and
if a power outage occurs in the meantime, the scale-down rule is applied on the peripheral operation upon
reboot in order to make the atomic section smaller and likelier to complete without power outage. In
addition, non-volatile variables are managed using an undo-log in order to solve non-idempotence issues.
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Ratchet [61] Ratchet aims at statically guarantee idempotence properties without imposing a pro-
gramming model to the application developer. Its compiler cuts down the application into idempotent
sections, linked by statically-inserted checkpoints. Code sections are separated at every write-after-read
dependency, between the read and the write operations, by a checkpoint that thus creates two idempotent
sections. Ratchet also considers pop instructions as write-after-read dependencies. The pop instructions
are thus replaced by load instructions and the stack pointer is updated in a separate instruction, in order
to place a checkpoint, which could not be achieved while keeping an all-in-one pop instruction. This
checkpointing system is complemented by a timer, in case a large section of code does not have any
write-after-read dependency.

TICS [89] TICS provides strong semantics for timeliness constraints in a new language. The new
semantics resemble try/catch blocks, where the exceptions are time-related, based on application-defined
annotations. A checkpoint is performed when a time-constrained block successfully completes. TICS
further enables the use of pointers and recursion within transient computing context. This is achieved
by versioning data. Write operations to non-volatile memory are instrumented. TICS uses a fixed-size
non-volatile undo log, which is cleared upon successful checkpoint. An overflow in the undo log triggers
a dynamic checkpoint.

Quickrecall [59] Quickrecall assumes no volatile SRAM (architecture A2). Checkpoint occurs when
the energy storage voltage drops below a certain threshold. Only peripheral control registers are saved,
which was shown imperfect even for simple peripherals in Section 2.6.3. The driver developer must yet
specify an initialization routine.

CatNap [90] CatNap considers application tasks, event handlers and even considers energy recharge
times as tasks. CatNap schedules event handlers as a traditional Real-Time Operating System would.
The highest priority is given to event handlers, then recharge tasks and finally application tasks have
the lowest priority. In addition, CatNap encourages the application developer to design degradable
algorithms, i.e., through iterative processes that refine a computation, so that the scheduler can decide
to abandon the remaining iterations while keeping a fair, yet degraded, result to work with. This limits
the extent of applications targeted by CatNap.

DINO [58] DINO targets atomicity and idempotence in order to guarantee data consistency. The
application developer must manually place checkpoints in their code. It proposes smart models for
intermittence: as concurrency with data races and as control-flow with data-flow induced by power
outages.

InK [78] InK focuses on reactivity to events, taking advantage of interrupts rather than polling control
registers. Ink leverages a task-based model, where tasks are atomic, idempotent like Alpaca [55] and
prioritized furthermore. Preemption occurs on task boundaries, however tasks can be interrupted by
interrupts, as in Coati [57]. Tasks belong to task threads and each task thread has a priority alongside an
event queue. Interrupts may push events to the event queues. Scheduling is dynamic, the next task to be
scheduled is always taken from the task thread of highest priority which has tasks ready to be executed.

Mayfly [65] Mayfly is a task-based system, similar to Alpaca [55]: tasks are atomic, task-local vari-
ables are stored in volatile memory and task results in non-volatile memory. The key improvement is
that tasks are prioritized and data exchanged between tasks can be tagged with time-related information.
The application developer may, using Mayfly’s dedicated data-flow language, specify an expiration dura-
tion, the minimal delay between samples to limit the throughput and the amount of data to accumulate
before running a given task. The time-related specifications leverage an external piece of hardware: an
almost persistent timekeeper that is a low-power clock that can run when the rest of the platform is
turned off, in order to keep track of time in case a power outage lasts for few minutes only. Mayfly’s
scheduler implements a greedy algorithm based on task priorities. Task priorities are automatically de-
termined at compile-time, provided task graph analysis. The checkpoint image comprises time, scheduler
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state through the task graph, and inter-task data. Peripherals must be manually handled by the driver
developer.

Reli [68] Reli is an architectural modification of the CPU at micro-instruction level, that enables a
contiguous checkpointing of the system, while not altering the programming model. Reli keeps track of
register values and changed data memory locations in two separate stacks. When the execution of a CPU
instruction modifies a register, the register and its value is pushed onto the first stack. When it modifies
a memory location, the address and the value are pushed onto the second stack. By construction, saving
the system is done in an incremental fashion. The restoration process consists in browsing the register
modification stack and the memory modification stack in order to write the values consistent with the
point of interruption. Depending on the nature of the application, Reli’s approach may lead to overhead
when the same address or same register is written to several times in a short time-span. Indeed, this would
update the stack several times. This approach cannot solve P3 since checkpointing at every instruction
does not enable atomic sections larger than one instruction.

Clank [69] Clank is the architecture-level counterpart of Ratchet [61]. The key difference is that the
separation into idempotent sections is performed at run-time instead of compile-time. Clank leverages
a dedicated architecture that spies on the address and data buses. It physically provides two buffers,
namely for read-dominated and write-dominated variables. At run-time, a write-after-read dependency
is detected when the CPU tries to write to a read-dominated variable. Clank updates its buffers on the
fly, and performs checkpoint when either a write-after-read dependency is actually detected, or when the
buffers overflow. Checkpoint operations flush the buffers, allowing further application progress. Clank’s
buffers also act like redo logs, that enable to roll-back the values of the non-volatile variables upon reboot.
The run-time is also complemented by a watchdog timer that, similarly to Ratchet’s, breaks large sections
without write-after-read dependency into smaller sections so that roll-backs do discard only little progress
every time.

TCCP [91] TCCP uses dedicated hardware to dynamically place checkpoints, while being transparent
from the application developer’s perspective. It leverages a processor where every register is mirrored
by a non-volatile counterpart. The memory is entirely non-volatile, however the processor has a volatile
cache to reduce the energy overhead of using non-volatile memory as main memory. The volatile cache
is committed to non-volatile memory at checkpoint time and upon cache overflow.

Pheonix [60] Phoenix is a peripheral recovery system. It does not target transiently-powered sys-
tems but rather more power-consuming platforms such as autonomous vehicles and robots. The failures
Phoenix is resilient to are not power outages, however they include communication failures, timeouts and
spurious interrupts. Phoenix assumes that the system may identify a failure any time after the failure
actually occurred, but not necessarily right after. Driver routines are atomic and drivers must provide
a recover function. The difference with other state-of-the-art checkpointing systems that solve P3 is
that Phoenix considers that some peripheral operations must not be replayed and thus must be skipped.
Outputs to a console or actuator operations are typical examples of such peripheral operations that must
not be replayed according to Phoenix. Phoenix maintains a peripheral operation log. A log entry is
composed of the arguments, the return value of the given driven routine and the roll-back point in case
of failure. Whenever a failure occurs, the entire system is rolled back to the point of failed access. The
concerned peripheral is recovered and Phoenix re-executes the failed access in addition to all accesses to
dependent peripherals.

Helpers for Transiently-Powered Systems

IBIS [63] IBIS is a tool that highlights non-idempotent sections. It comprises a static analysis and
a dynamic run-time environment. The static analysis is generic and thus does not assume a specific
programming model, but it may yield false positives and false negatives. However, it does not sup-
port recursive functions and requires the application developer to manually indicate which routines are
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dependent on the peripheral inputs. On the other hand, the dynamic run-time is based on Alpaca’s pro-
gramming model [55] and instruments the code. Variables are constantly under taint tracking analysis,
which slows the execution but yields no false positive.

TARDIS [54] TARDIS uses SRAM remanence decay to estimate the duration of power outage. It is
an alternative to external real-time clocks since no specific hardware is involved, at the price of allocating
some SRAM space to TARDIS. Before power fails, TARDIS loads a fixed-size buffer into SRAM containing
ones. On boot, TARDIS estimates the time elapsed without power using the ratio of zeros over the total
buffer size. This analysis is complemented by the usage of a temperature sensor, taking into account the
fact that a temperature change might have affected the decay rate. Depending on the buffer size and
specific SRAM technology, this approach enables to coarsely keep track of time across power outages
from seconds to several hours.

CusTARD [92] CusTARD consists in charging an external capacitor when the platform is powered
on, and measuring the analog voltage of that capacitor upon next boot. A temperature sensor also
complements the approach, since temperature affects capacitor behavior. CusTARD also considers using
an external low-power real-time clock, coupled with a small capacitor in the range of 0.1 µF. However,
even low-power real-time clocks draw current, need an initialization time in the range of half a second
every life-cycle and can measure only a few dozens seconds with a small capacitor.

3.4.2 Solutions to P1

Solutions to Program Counter Volatility

Program counter persistence defines where the application shall resume after a power outage occurred.
Existing works can be coarsely spread onto two categories as far as checkpoint insertion is concerned:
static and dynamic. Static checkpoint insertion elects specific code locations to be checkpoints whereas
dynamic checkpoint insertion lets the application live on its own and makes any code location a checkpoint
whenever an imminent power outage is foreseen.

Static Checkpoint Insertion Some works require the application developer to manually place check-
points, either explicitly inside function bodies [58], or by imposing a task-based vision where the appli-
cation developer has the responsibility to handcraft atomic tasks which boundaries are, per se, check-
points [56, 55, 65, 15, 78, 57].

Some approaches statically provision the application code with checkpoints, based on energy bud-
get [70, 71], on the likeliness of power outage to occur [21, 85, 64], or on idempotence-related concerns [61]
(cf. P4). The static provisioning may be performed either as a compiler pass [21, 85, 64, 61] or at archi-
tectural level using high-level synthesis [70, 71].

When dealing with static approaches, the program counter of resumption is known at compile-time:
it becomes a constant for a given checkpoint location, which makes checkpointing more instinctive in
comparison to guessing which program counter to restore. However, compiler-based solutions are sub-
ject to checkpoint over-provisioning, due to, amongst others, loops and function calls. Large overheads
result from this checkpoint over-provision, which impedes application progress. As an optimization,
compiler-based solutions may change the semantics of checkpoints so that, at run-time, checkpoint loca-
tions evaluate a condition in order to decide whether to actually perform the save operation or not. This
selection condition can be timer-based [64], or based on the measurement of the remaining system energy
using an Analog-to-Digital Converter [21, 71, 85, 64]. On the other hand, considering the scenarios where
two consecutive checkpoints are so far from each other that the energy storage might never provide suffi-
cient energy to the system to make forward progress, compiler-based solutions might enhance their static
checkpoints with timer-based checkpoint watchdogs, that save the system upon timeout and introduce
hints of dynamicity [61].

Static analysis further presents the advantage of knowing, at any point in the control-flow graph, the
liveness of the variables. However, variables that fit in CPU registers are not really a concern since the
CPU usually has a small amount of registers, meaning that the overhead of saving all CPU registers
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Figure 3.2: Typical run-time of just-in-time checkpointing systems that initiate a checkpointing operation
whenever the available energy drops below a threshold. Every life-cycle starts with restoring a valid
checkpoint, in blue, then the application resumes, in green, and the checkpointing routine is called once
before power fails. Either the checkpointing operation succeeds, in yellow, or fails, in red.

regardless of variable liveness is reasonably acceptable. Variables that spill registers are stored in the
stack, so their liveness is already taken care of by stack management.

Dynamic Checkpoint Insertion Other approaches provide just-in-time checkpoints. They usually
leverage the measurement of the remaining energy of the energy storage by an analog comparator capable
of triggering an interrupt when the energy storage voltage drops below a certain threshold [22, 86, 59,
66, 77]. Figure 3.2 illustrates the just-in-time checkpointing concept. The comparator feature is very
common in most micro-controllers, making this solution easy to adopt. However, the voltage comparator
must work hand in hand with a voltage reference module. The latter is the most constraining part of
just-in-time checkpointing systems since voltage reference capabilities vary from a micro-controller to
another. In the worst case scenario, just-in-time checkpointing does not exclude the usage of an external,
dedicated voltage reference that would allow a finer configuration of the checkpointing voltage threshold,
despite increasing form factor and energy demands.

Reli [68] investigates the interesting area of architecture, by acting at processor micro-operation level.
Every instruction that writes into CPU registers or memory is modified so that it logs the written values
and their corresponding addresses, either in the register file or in memory, into a log. The log operates
at control-block level, hence almost every instruction is candidate to be a valid checkpoint. Clank [69]
is Ratchet’s architecture-based counterpart that also aims at breaking non-idempotent dependencies by
inserting a checkpoint between the write and the read operations. Clank records reads and writes to non-
volatile locations and dynamically triggers a checkpoint when the system performs a write operation to
a memory location that was read prior to that point. However, although architecture-based solutions are
always interesting and clever, they are rarely accessible nor is it realistic to foresee their implementation
in common micro-controllers later on.

It is important to note that just-in-time checkpointing also supports periodical checkpointing as well
as static checkpointing. Just-in-time checkpointing is then more of an optimization of such solutions,
aiming at reducing the amounts of checkpoints per life-cycle to its strict minimum, that is, once. As a
result, some solutions are not bound to any specific checkpointing paradigm, but are compatible with
both static and just-in-time checkpointing [84, 67, 89].

Solutions to Memory Volatility

Architectures A2 and A4 make no use of volatile RAM. As a result, solutions relying on these architectures
avoid memory volatility [58, 59, 61, 69, 78, 77, 89].
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The other architectures use volatile memory and are thus subject to memory volatility. This discussion
is rather technical than conceptual since its essence is largely considered trivial. Only its optimizations,
notably to reduce the duration of saving and restoring memory, are studied. Saving the volatile memory
may be as simple as a copy of the whole volatile memory in use (i.e., .bss and .data sections) to
non-volatile memory. Restoration can thus be achieved by mirroring the save operation, by copying the
data from non-volatile memory back into volatile memory. All micro-controllers embed a Direct Memory
Access (DMA) module, a physical part of the micro-controller dedicated to memory transfers. They can
be configured to perform fast copies between memory locations. The DMAs are wired to the address and
data buses, meaning that they can operate on any permitted address range, regardless of the underlying
memory type. They can issue read and write commands to volatile and non-volatile memories, which
makes DMAs bare essentials to checkpointing for transiently-powered systems. Some works, related to
incremental checkpointing as discussed in Chapter 6, investigate ways to reduce the amount of data to
be saved and restored. Handled properly, it does not affect the checkpointing methods correctness, but
rather decreases their execution time so that a greater part of time and energy budgets can be allocated to
the application itself. On the other hand, TotalRecall [93] stands as an exception for it assumes that the
supply voltage never drops below the minimal retention voltage of the volatile SRAM, around 0.4 V, and
thus claims that saving volatile SRAM is not necessary, as long as the off-times are not long enough to
endanger the assumption. The assumption is very specific and substantially limits design space, however
TotalRecall is an outlier worth mentioning.

The micro-controller registers may be directly saved into and from non-volatile memory, using store

and load instructions. Otherwise, they can be saved and stored to and from the stack using push and pop

instructions. If the stack is non-volatile then the issue is settled. If the stack belongs to volatile memory,
it may thus be saved and restored alongside the rest of the volatile memory, as aforementioned. Special
micro-controller registers might not be handled as easily. For instance, in ARM-based architectures, the
least significant bit of the program counter indicates whether the micro-controller runs in thumb mode.
Depending on the architecture, the read program counter may correspond to the address of the next
instruction instead of the current instruction. In general, the Application Binary Interfaces are designed
to handle special registers in some efficient way, upon interrupt occurrence, by pushing the adequate
copies onto the stack and thus simplifying the checkpointing. This gives a helping hand to interrupt-
based checkpointing systems, either timer-based or just-in-time. Finally, the stack pointer might not be
allowed to be pushed onto the stack by itself, thus needs to be treated apart from the other registers,
manually stored and restored to and from a non-volatile variable for instance.

3.4.3 Solutions to P2

In many works, the volatility of peripherals is not studied [21, 68, 61, 85, 56, 69, 89]. Other works
expect application developers to manually provide peripheral state persistence and hence do not support
it [59, 58, 65, 64, 78].

Samoyed [77] assumes that every function re-initializes the peripherals it uses. This makes sure
that the peripherals are in the state they are expected to be in. However, it complexifies peripheral
programming and introduces a high overhead when re-configuring peripherals is not really required; e.g.,
if the peripheral configuration did not change since the last time the function was called. At the end of
the day, the application developer remains in charge of making peripheral state persistent across power
outages.

The Alpaca-based task-oriented systems assume that the system is provided with a routine that
initializes peripherals on every reboot [55, 15, 57]. In Alpaca-based languages, the peripherals are assumed
to always have the same state for a given task. This, combined with task atomicity, gives homogeneous
assumptions to the application regarding peripherals.

Hibernus++ [86] keeps a copy of memory-mapped peripheral control registers. This might be sufficient
to partly support really simple peripherals. As seen in Section 2.6.3, it is not sufficient to fully support
peripherals, even simple ones: control registers might require a specific sequence of operations, timing
constraints, write-only control registers cannot be read, and some peripherals are accessed through data
buses.
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Solutions to P2.1 RESTOP [84] logs every peripheral access that happened during the application
lifetime. In order to postpone log overflow, RESTOP proposes a log compression technique that leverages
the application developer who must manually tag every peripheral access. The tag indicates whether to
save the operation into the log, replace an old entry or save yet keep a former similar operation. In
order to restore the states of the peripherals, RESTOP must go through the entire log and replay every
formerly-logged operation, which takes a long time. As a result, the log of peripheral operations must be
part of the checkpoint image.

KARMA [67] represents drivers as finite state machines alongside a queue of peripheral operations,
similar to that of RESTOP. The queue of peripheral operations aims at keeping the state machines simple,
where the parameterization of the operations are left to the operation queue. The queue benefits from
compression that eliminates former operations that led to the same driver state. Since the state machines
are finite, the operation queue size is bounded. Similarly to RESTOP, the queue of peripheral operations
must be executed at some point, to restore the states of the peripherals. Hence, the checkpoint image
must contain the state machines and the queues of peripheral operations.

Solutions to P2.2 Only a few works support interrupt handling, despite being at the core of embedded
system programming. Interrupt handling brings concurrency which might break assumptions whereas
solutions for transiently-powered systems want to make sure that certain properties, namely idempotence-
related, are ensured. Handling power outages is already a challenge for such systems and supporting
interrupts in such a context can only increase complexity.

KARMA [67] enables the application to register callbacks to respond to hardware interrupts. The
“waiting” phase of the peripheral-based asynchronous operations is encoded inside the peripheral state
machines. Peripherals that allow multiple asynchronous operations require a state machine which size
grows according to all possible combinations, making both run-time conditions and driver programming
delicate to maintain. KARMA saves the current state of all peripherals. Interrupt occurrence is not
made persistent itself, however KARMA recalls that a given peripheral was waiting for a callback: on
reboot, KARMA replays the peripheral operations from the peripheral operation log, leading to the
restoration of the corresponding state related to the asynchronous operation. Hence, KARMA only
supports asynchronous calls which callbacks can fully execute before the energy storage depletes. The
callbacks cannot survive power outages nor are the interrupt-bound data made persistent.

HarvOS [85] takes interrupt handlers into account while statically inserting checkpoints. Since an
interrupt handler can be fired almost from anywhere in the code, HarvOS systematically inserts a check-
point site at the beginning and at the end of every interrupt handler. A checkpoint site is a point in
the code, statically inserted by the compiler, that first measures the remaining energy of the platform
and then decide whether to actually perform a checkpoint operation. Interrupt handlers are treated the
same as regular code in HarvOS model and thus, interrupt handlers have checkpoint sites inside their
control-flow graphs. Checkpoint sites are inserted so that the energy storage can provide energy for a
sub-path between two consecutive checkpoint sites to eventually complete, ensuring forward progress. As
a result, the control-flow of interrupt handlers is made persistent by HarvOS. This mechanism enables
HarvOS to make interrupt occurrence persistent. Interrupt-bound data can be made persistent if the
first action realized by the interrupt handler is storing the interrupt-bound data directly from the periph-
eral memory into either a variable managed by the checkpointing system, or into non-volatile memory.
However, HarvOS focuses on the computational logic so it does not provide explicit mechanisms to save
interrupt-bound data.

Coati [57] uses interrupts as a way to schedule tasks: interrupt occurrence generates a Coati event,
that tells Coati’s scheduler to run some task in the future. Coati uses a split-phase interrupt model
that resembles the models of Linux tasklets 5, TinyOS [43] and Sytare [66]. In Coati, the top-half of an
event always preempts the application, while its bottom-half is deferred to be scheduled later. The top-
half is in charge of acknowledging the interrupt at hardware level as well as storing the interrupt-bound
data as soon as possible. The bottom-half is written by the application developer and only serves the
application purposes, since the hardware-level interactions were taken care of by the matching top-half.
The persistence of Coati’s scheduler ensures the persistence of interrupt occurrence. The reactivity of
the top-halves and the fact that they are designed to extract the peripheral data at earliest altogether

5https://www.kernel.org/doc/htmldocs/kernel-hacking/basics-softirqs.html

https://www.kernel.org/doc/htmldocs/kernel-hacking/basics-softirqs.html
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ensure the persistence of interrupt-bound data.

3.4.4 Solutions to P3

Timeliness constraints need a mechanism that enables a given sequence of operations to run without
power outage. All existing solutions propose to opportunistically execute the time-constrained section
and provide a roll-back mechanism in case power failed during the execution of the time-constrained
section.

Disabling Checkpoints Mementos [21] proposes atomic regions by simply disabling the checkpointing
mechanisms for the sections that require timeliness. In some cases, all interrupts may be disabled as
well [94].

Chinchilla [64] arbitrarily decomposes the application into blocks that are bounded by checkpoints.
Checkpoints cannot be inserted anywhere else than at the beginning and at the end of any block. Hence,
on boot the application can only restart at the beginning of a block, not at its middle, ensuring block
atomicity. Chinchilla lets the application developer define atomic blocks through syntactic sugar. Atomic
blocks defined in such a way prevent Chinchilla’s compiler from decomposing these atomic blocks into
smaller blocks and thus, accordingly to Chinchilla’s definition of block, impedes the insertion of check-
points inside the atomic block.

TICS [89] enables the application developer to manually annotate portions of code that must be made
time-consistent. TICS comes with a language that provides not only atomicity as part of its syntax, but
also enables to parameterize the behavior of the application, depending on the discrepancy between the
application’s timely specifications and the actual run-time execution. Its programming model essentially
leverages a try/catch approach, where the supported exceptions are time-related. TICS implements
the time-related blocks by automatically disabling checkpoints, e.g., to guarantee that the sensed data
and their correlated time-stamps are consistent, then placing a checkpoint afterwards. The application
developer has to provide fallback functions for each portion of code that requires timeliness and those
fallback functions are not themselves subject to timeliness.

Partial Checkpoints KARMA [67] and Samoyed [77], similarly to Sytare [66], allow checkpoints
anywhere in the code, but if power fails during a peripheral operation, the application will restart at the
very beginning of that peripheral operation. Peripheral operations are defined as API functions, meaning
that atomicity is ensured at API function granularity. Samoyed further requires the driver developer to
provide, for each peripheral operation, a scaling rule aiming at reducing the energy requirements of that
peripheral operation if power failed during its execution. While it enables a better energy utilization, it
over-complexifies peripheral programming and increases risks of bug since the developer must design and
maintain the actual peripheral operation as well as the burdens and outcomes of scaling them down.

Atomicity by Construction DINO’s model [58] requires the application developer to manually place
barriers in the code. DINO then sees every possible path between consecutive barriers, even across
complex control-flow and across function calls, as an atomic path. Each path then starts and ends with
a barrier, materialized by a checkpoint in practice, and partial progress within such a path is always
discarded.

Chain [56], the Alpaca-based solutions [55, 15, 63, 57], Mayfly [65] and InK [78] are tasked-based
approaches. Each task is designed to leverage a consistent memory snapshot (P1), to run opportunistically
and to discard any task-related partial progress whenever power fails during the execution of a task. On
boot, the application always restarts at the beginning of the task that was interrupted, thus enforcing
atomicity. SONIC [95] relaxes task atomicity by allowing loops with idempotent iterations to be resumed
where they were interrupted, thus optimizing neural network applications.

Automatic Atomicity Ratchet [61] is a special case because it does not support peripherals. However,
Ratchet provides small atomic regions for memory operations, computed automatically and statically, so
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that memory-related non-idempotent operations can be safely executed without endangering the execu-
tion. This mechanism solves P4.1 and P4.2, however it is worth mentioning that it is closely related to
atomicity.

3.4.5 Solutions to P4

Solutions to P4.1

Undo-logging Chinchilla [64], Samoyed [77] and TICS [89] opt for an undo-log for non-volatile vari-
ables. Write-access to pointers is further instrumented by TICS in order to provide protection against non-
idempotence for pointers which target addresses cannot be resolved at compile-time. Undo-logging [96]
keeps a history of the variable contents, hence an optimized log management is required to fit transiently-
powered system conditions.

Double-buffering Task-based approaches for architecture A1 usually place task-local variables in
volatile RAM and shared variables in non-volatile RAM [56, 55, 65, 78, 57]. Only shared variables are
stored in non-volatile memory, so only shared variables are subject to P4.1. They are double-buffered,
meaning that the tasks work on a privatized copy of the actual shared variable. As a result, the original
values of the shared variables are kept in non-volatile memory, in consistence with the last checkpoint.
Variable privatizations may be stored either in volatile memory or non-volatile memory [56, 55, 57]. It
does not matter for correctness, but this design choice may have an impact on execution time and en-
ergy requirements, since volatile and non-volatile memories do not have the same performance. In these
task-based solutions, since atomicity is guaranteed at task level, the copy of the non-volatile variables
is consistent with the beginning of the task, that is the point of resumption after reboot. When a task
completes, the new values of the non-volatile variables are copied back to their safe locations in a commit
manner, becoming consistent with the newly-crossed checkpoint, i.e., next task.

Approaches not based on tasks, such as DINO [58], ensure non-volatile memory consistency by saving
the non-volatile memory contents alongside the checkpoint and restoring them to the same state on
reboot. The main difference with task-based approaches is that checkpoints could be placed almost
anywhere in the code, not necessarily at the beginning, and thus initialization time, of tasks or code
execution units.

Breaking Write-After-Read Dependencies Ratchet [61] statically analyzes accesses to non-volatile
memory locations. It identifies all write-after-read dependencies and inserts a checkpoint between the read
and the write operations. Clank [69] is the architecture-level counterpart to Ratchet whereas Ratchet
operates at compiler-level. Accesses to non-volatile memory are dynamically monitored by a specific
hardware component spying on the memory address bus. Clank comprises a read buffer and a write
buffer, that altogether enable to detect on-the-fly write-after-read dependencies. Upon a write access to
non-volatile memory, if the address was formerly stored in the read buffer, a write-after-read dependency
is confirmed and Clank triggers a checkpoint between the read and the write operations, as Ratchet does.
Finally, Ratchet & Clank double-buffer their checkpoints, so that partial progress can be discarded and
the non-volatile state can stay consistent with the checkpoints breaking write-after-read dependencies
apart.

Solutions to P4.2

TICS [89] adopts a fully non-volatile stack. In order to optimize checkpoint size, TICS segments the stack
and double-buffers the topmost stack segment, that is the portion of stack being currently modified. Older
stack segments are already stored in non-volatile memory and not modified, thus do not need to be copied
again. Hence, upon reboot, TICS rolls back the topmost stack segment to a state consistent with the
last checkpoint.

Ratchet [61] protects non-volatile stack from non-idempotent operations by breaking pop instructions
into a sequence of instructions that first read the data pointed to by the stack pointer, and then update
the stack pointer. From that point onward, non-volatile stack contents can be considered regular non-
volatile variables, and Ratchet’s systematic protection of write-after-read dependencies applies for this
newly-managed non-volatile stack as well.
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Chapter 4

Sytare

Sytare is a lightweight kernel that pioneers peripheral handling for transiently-powered systems (P2). Its
main objective, besides guaranteeing peripheral consistency across power outages, is to have a minimal
impact on programming model, at both application and driver levels.

Sytare [66] is a contribution of this work, initially created a year before this work[97] and further
developed within this work. Sytare already existed with its solutions to problems P1, P2.1 and P3. This
work has extended Sytare’s scope to support interrupts (P2.2), including interrupt handling and the
scheduler itself. The present work also revised the evaluation protocol that was hardly reproducible prior
to this, by designing a dedicated environment for transiently-powered systems. This chapter describes
Sytare in its entirety as a way to evaluate Sytare against the problems exposed in Section 2.6, albeit
including former work, for the sake of comprehensiveness.

Section 4.1 presents the architecture and memory organization supported by Sytare. Section 4.2,
Section 4.3 and Section 4.4 detail how Sytare respectively addresses problems P1, P2 and P3. Section 4.5
introduces the software behind Sytare and Section 4.6 evaluates its performance in comparison to a
bare-metal baseline. Section 4.7 presents ARMorik, a new ARM-based platform that was developed
throughout this thesis, with more volatile and non-volatile memory, on which Sytare has been ported.
Finally, Section 4.8 concludes.

4.1 Design Choices

Sytare is designed for platforms that have both volatile and non-volatile memories (architecture A1), as
shown in Figure 4.1. Considering non-volatile memory slower and more energy-consuming than volatile
memory, non-volatile memory is only used for storage purposes and kernel variables, while actual working
memory is volatile (memory organization M1a). The application must not create non-volatile variables
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Figure 4.1: Overview of the hardware and software architectures Sytare is designed for.
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and, as a consequence, Sytare does not target problem P4. Sytare targets programming ease as well, and
thus tends to reduce deviations from the bare-metal baseline discussed in Section 3.2.1 (execution model
E1). Programming ease is achieved by letting the application and driver developer write their code as
they please with only a few constraints. The driver developer must provide a function for peripheral
state restoration and save and, in exchange, Sytare guarantees that the peripherals will be restored
transparently and made consistent with the state of the application at its point of resumption. From
the driver developer’s perspective, Sytare transparently handles variable allocation and only asks them
to access peripherals through systematic wrappers, which solely adds a prefix to functions that handle
peripheral operations.

4.2 Solution to P1

4.2.1 Just-in-time Checkpointing

Sytare is a just-in-time checkpointing system. It requires an analog comparator channel to be dedicated to
power outage anticipation. In practice, Sytare works in scenarios where the platform is directly powered
by the energy storage, as simple as a small capacitor, or where the capacitor is gated by a stable voltage
regulator such as a low-dropout regulator. In both scenarios, depending on the analog capabilities of the
micro-controller, notably the built-in voltage reference to compare the energy storage voltage to, just-
in-time checkpointing may require the usage of external components. For instance, the voltage reference
of Texas Instruments’ MSP430FR5739 being limited, the energy storage voltage needs to be externally
divided by two, by using a 2 MΩ voltage divider. The analog comparator triggers an interrupt when the
energy storage voltage drops below a software-defined threshold. Hence, no polling is required whilst the
application is running. The interrupt system also offers the advantage of pushing the return value onto
the stack. Thus, making the stack persistent solves program counter volatility issue. If the imminent
power outage interrupt occurs during a peripheral operation, the program counter is handled differently,
as seen in Section 4.4, in order to preserve atomicity. The comparator interrupt handler pushes the CPU
registers onto the stack, thus again, making the stack persistent solves the issue of CPU volatility.

Upon imminent power outage, the interrupt handler further performs a DMA copy of all used volatile
RAM into non-volatile memory. Used volatile RAM includes the application’s stack, .bss and .data

sections. Volatile RAM usage is determined using linker script variables and does not take into account
variable liveness nor does it evaluate that the variable contents actually changed since the last checkpoint.
This latter point, selective checkpointing based on variable changes, is an optimization discussed in
Chapter 6.

4.2.2 Double-buffering

Sytare’s checkpoint images are double-buffered so that, at any time during the application’s life, a valid
checkpoint is always available to roll-back to. It ensures that, since checkpoint building is not atomic and
power may actually fail during the process, checkpoint corruption becomes no longer an issue. It ensures
that the worst-case scenario simply discards the progress of the last life-cycle, instead of completely
crashing or restarting at the very beginning of the application.

4.3 Solution to P2

As discussed in Section 2.6.3, checkpointing memory contents is not enough when the system includes
hardware peripherals. Restoring the state of a hardware device requires non-trivial operations like config-
uring some I/O pins, communicating over a serial bus (which itself should be initialized first), respecting
certain timing constraints, etc. The solution to this issue is quite simple but requires some cooperation
from the driver developer. This cooperation consists in describing the state of the device in a device
context and in providing an init, a save, a restore and optionally an on interrupt function for each
driver.
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stat ic struct c l o c k s t a t e t {
u i n t 1 6 t c s c t l [ 7 ] ;

} context ;

void c l o c k s e t c s c t l 1 ( u i n t 1 6 t x ) {
CSCTL0 = CSKEY;
CSCTL1 = x ;
CSCTL0 = 0 ;

context . c s c t l [ 1 ] = x ;
}

(a) Mapped-in-memory structures.

enum c l o c k d c o f r e q e {
DCO FREQ 5 33 ,
DCO FREQ 6 67 ,
DCO FREQ 8,
DCO FREQ 16 ,
DCO FREQ 20 ,
DCO FREQ 24

} ;

stat ic struct c l o c k s t a t e t {
enum c l o c k d c o f r e q e dco ;
/∗ Other c l o c k s here ∗/

} context ;

void c l o c k s e t d c o f r e q (
enum c l o c k d c o f r e q e dco ) {
const u i n t 8 t va lue s [ ] = {

0x00 , 0x02 , 0x06 ,
0x80 , 0x82 , 0x86

} ;

CSCTL0 = CSKEY;
CSCTL1 = va lue s [ dco ] ;
CSCTL0 = 0 ;

context . dco = dco ;
}

(b) Higher level driver contexts.

Figure 4.2: Examples of drivers for the clock system of Texas Instruments’ MSP430FR5739 micro-
controller. Driver routines clock set csctl1 and clock set dco freq both perform the same opera-
tion: they set the global clock frequency, which is the default clock source for the CPU for instance.
Semantically speaking, clock set dco freq has more meaning and the utilization of the enumeration
type prevents, to some extent, the utilization of unauthorized values, while clock set csctl1 is not very
meaningful and admits all inputs.

4.3.1 Device Contexts

Sytare chooses to stay as close as possible to the bare-metal baseline. In bare-metal applications, it
is common to represent the state of a peripheral through structures; e.g., struct in C language. The
structures may either mirror all the control registers so that they can be directly mapped onto the
physical memory addresses, or represent higher level features. For instance, the clock frequency of the
micro-controller usually requires an oscillator source, plus one or several clock dividers. These pieces
of information might correspond to separate control registers. The lowest representation level of clock
frequency could be an actual mirror of the involved registers. A higher representation level could be
the target frequency value in Hz, or an enumeration value that directly maps to a frequency. Figure 4.2
illustrates this concept with the Digitally Controlled Oscillator of MSP430FR57xx micro-controllers.
Figure 4.2a shows a low-level device context that mirrors the control registers, whereas Figure 4.2b
shows a higher level device context where the clock frequency is depicted by an enumeration value.
Depending on the driver, a low-level device context might take a great amount of memory but be simple
to copy from and to, while a high-level device context might optimize memory requirements but result
in longer save and restoration times. As discussed in Section 3.2.1, high level driver states are more
verbose and might complexify drivers. However, such high-level drivers are always gladly welcomed by
application developers, that no longer need to dive into all the peripherals’ data-sheets. Representing
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peripheral-related data using enumerations further adds semantics to the code and the compiler prevents
unexpected statically-resolved values from being used, which is a great asset towards driver correctness.
Sytare makes no specific assumption regarding which concept of device context is chosen by the driver
developer, as long as the following driver routines are consistent with the device context choice.

4.3.2 Initialization Function

In the early steps of the application, the peripherals and their device contexts need to be initialized. Hence,
each driver provides an init function. In a bare-metal scenario, such a function would simply set the
peripheral to a pre-defined or user-specified state, alongside initializing the internal structures, if any, to
a consistent state with respect to the peripheral state. This still stands within Sytare, where the internal
structure is the device context. However, Sytare requires little cooperation from the driver developer.
The init function must register the corresponding driver to Sytare, by calling Sytare’s register function.

Sytare’s register function registers a driver that is defined by its entry points: (i) a save function,
(ii) a restore function and a (iii) on interrupt function, as depicted hereafter. Sytare records that
driver for save and restoration purposes. In addition, Sytare allocates a memory place in both checkpoint
images for the device context. The register function must thus implement a simple memory allocator.
How the allocation is done is implementation-defined and not actually part of Sytare’s contribution.
Driver memory allocation may be as simple as a growing pointer. No memory free operation is required
for applications are likely to use their peripherals throughout the entire application life-time.

Sytare also records the order with which the init functions are called. This order will be used for
driver restoration purposes, provided that the application developer called the init functions in a logical
order that respects driver dependencies. For instance, if the radio is accessed through an SPI bus, the
init function of the SPI peripheral must be called before the init function of the radio peripheral. In
a bare-metal scenario, the initialization routines are always called in a logical order that respects driver
dependencies, meaning that Sytare changes nothing from this perspective. It may be noted that driver
dependencies could be encoded in the driver themselves and valid sequences of init calls automatically
generated, either at compile-time or dynamically. For the sake of simplicity, Sytare chose to rely on
the application developer who, as stated before, would have called the init functions in a correct order
anyway.

4.3.3 Save Function

The driver developer must provide a save function for each driver. Sytare calls the save function with
a target address as the argument. The target address is located in non-volatile memory, inside the next

checkpoint image, precisely at the offset allocated by Sytare when the driver first registered. The save

function must simply copy the device context from volatile memory into that target address range. It
may be noted that save functions can be automatically generated, which limits the burden on the driver
developer’s shoulders.

4.3.4 Restore Function

The driver developer must also provide a restore function for each driver. It must first mirror the
behavior of the save function; i.e., copy the device context from the dedicated location of the last

checkpoint image back into the volatile device context.

The restore function is also responsible for setting the state of the peripheral to the one depicted
by the newly-copied device context. In practice, that second part of the restore function is a variation
of the init section. However, the driver must not register itself again. It must solely call the adequate
driver routines to navigate from the reset state of the peripheral, to the state to restore.

Doing so is an alternative to undo-logs and other history-based approaches. It has the advantages of
being simple, having a light memory footprint (i.e., only code size) and running rather fast in comparison
to replay a history of actions, while not being memory-growing. On the other hand, it requires the driver
developer to design every path from the reset state to the states that are possible to restore.
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4.3.5 Interrupt Callback

In order to provide a programming environment as close to bare-metal programming as possible, interrupts
become a major feature that is seldom supported in today’s operating systems for transiently-powered
systems. Originally not part of Sytare before this thesis [97], adding interrupt support to Sytare is one
of the contributions of this work. When considering sensor networks, the application ideally does not
want to lose packets and must thus be kept reactive to external events. In addition, energy is scarce and
applications cannot afford to actively poll events. It is a common optimization to set the micro-controller
into a low-power mode and to react upon an interrupt, for instance.

The interrupt handlers must be short enough not to hinder application reactivity, however the op-
erating system layer should let the application developer register their own handlers. In general, such
handlers access peripherals, for instance to dump the contents of a received radio packet. Knowing in
advance nothing of the application developer’s interrupt handlers, it seems natural to adopt a two-phase
approach, one phase purposed to perform the critical operations while the second one allows longer yet
postponable operations, as done in Linux systems.

Sytare manages the interrupt’s top-half with little cooperation from the driver developer. The top-half
immediately runs with highest priority, acknowledges the interrupt and calls the on interrupt function
of the concerned peripheral. The sole purpose of the on interrupt is to copy the interrupt-bound data
from the peripheral memory into the volatile device driver. The driver developer has to keep in mind
that on interrupt, for it is written by the driver developer, is called from the top-half of the interrupt,
meaning that on interrupt should be meant to execute swiftly, in order to maintain a good system
quality of service. It also means that the on interrupt routines inherit their run-time properties from
top-halves, i.e., they are run on the kernel stack.

Lengthy processing of the interrupt-bound data must be handled by the bottom-half of the in-
terrupt. The bottom-half is written by the application developer and thus runs on the application
stack, in order to be made persistent should power fail during the execution of the bottom-half. The
application developer must tell Sytare to register the bottom-half using a dedicated Sytare call, i.e.,
syt register event handler. Sytare proposes a handful of event identifiers that connect to different
events and their related interrupts, e.g., GPIO pin change, radio packet reception. The bottom-half is
added to the scheduler by Sytare upon interrupt occurrence, right after the top-half completes.

The scheduler policy is rather simple. If the application is currently running a bottom-half, then
defer the new bottom-half to the termination of the current bottom-half, and after the completion of
any other waiting bottom-half that were inserted before the considered bottom-half. If the application
is running bare application, then the bottom-half is executed right after the top-half completes and
before the bare application resumes. In other terms, bare application has the lowest priority, interrupt
top-halves the highest and bottom-halves have varying priority depending on whether a bottom-half is
already running. As a consequence, the bare application may resume if and only if all top-halves and
bottom-halves completed. The key idea of this scheduling policy is that the application must be kept as
reactive to events as possible and nested bottom-halves are forbidden in order to keep the control-flow
fairly simple and to reduce access races to variables and peripherals. Note that the choice can be made to
allow nested bottom-halves, however this would further complexify system design that is already complex
enough with actual interrupts and power outages.

Scheduler data, i.e., system state and the queue of pending bottom-halves, are managed by Sytare
and benefit from an ad-hoc management in order to prevent P4 from corrupting scheduler data.

4.3.6 Driver Routine Wrappers

Sytare acts as an intermediate layer between application and drivers. Notably, Sytare defines a generic
driver routine wrapper, that takes effect both at the entry and upon returning from driver routines. The
application cannot directly call the driver routine, but must call the corresponding wrapper instead. In
particular, the wrapper exit is in charge of saving the device context changes from the volatile working
copy into the next checkpoint image. A more exhaustive description of driver routine wrappers is given
in Section 4.4, as a consequence of wrappers tackling both P2 and P3.
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Application Kernel Radio SPI

app main()

syt send packet(x)

send packet(x)

spi write frame(y)

mark dirty(SPI)
return

mark dirty(Radio)
return

spi save()

return
radio save()

return
return

Figure 4.3: Sequence diagram of a nested driver call, showing the interactions between Sytare, the drivers
and the application. The blue activity is the wrapper entry and the yellow one is the wrapper exit.

4.3.7 Nested Driver Routines

It is not uncommon that a driver routine calls another driver routine. For instance, a driver routine that
operates on a radio chipset accessed through an SPI bus must issue SPI commands. In that example,
the radio handling operation is encapsulated in a specific radio driver routine, while the SPI handling
operations are encapsulated in specific SPI driver routines.

Wrappers are designed to ensure atomicity of the entire peripheral operation, regardless of the order
of driver routine nests. Wrappers thus need to operate on the outer driver routine.

In Sytare’s model, the wrappers perform a transition from application context to kernel context on
entry and from kernel context to application context on exit. Then, all driver code is run in kernel mode.
As a consequence, when a driver routine needs to call another driver routine, regardless of originating
from the same driver or not, it must not use wrappers but must directly call the other driver routine.
This policy enables nested driver routines to provoke a single context change at the beginning of the outer
driver routine and a single context change at the very end of the outer driver routine. It also ensures
that no partial progress is saved, for the commit operation is performed only when all driver routines
have completed. Figure 4.3 displays how the application interacts with the drivers through the usage of
Sytare’s wrappers.

4.4 Solution to P3

Timeliness and atomicity constraints require the application to be rolled-back in case power failed during
the execution of such constrained code sections. All kinds of memory must be consistent with one
another. Specifically, peripherals must be rolled-back to their state at the beginning of the atomic
section in addition to CPU and memory states.

It is important to note that Sytare solely considers timeliness constraints within peripheral accesses.
Indeed, Sytare does not directly provide atomic semantics to the application developer. As a result,
a computation is allowed to take several hours when taking off-times into account. Sytare supports
timeliness and atomicity constraints for peripheral operations however; e.g., if power fails while a radio
packet is being sent, Sytare repeats the packet sending attempt upon reboot instead of trying to send
“the rest of the packet”. However, when reading data from sensors, Sytare does not timestamp values
nor does it guarantee that the usage of the data will be completed in a given time-span. In Sytare’s
model, sensor data usage is managed by the application, while Sytare simply ensures that the sensing
itself is time-consistent. But this limitation may be easily bypassed by encapsulating the timely code into
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a function and calling it using Sytare’s wrappers.

4.4.1 Application and Kernel Stacks

Sytare has two stacks: the application stack is dedicated to the application and the kernel stack, a smaller
one, is dedicated to Sytare’s own mechanisms. The application always runs on the application stack while
Sytare always runs on the kernel stack. The application stack is part of the checkpointing image whereas
the kernel stack is not. They are both stored in volatile memory, meaning that it is part of the design
that the application stack is made persistent and that the kernel stack is always lost upon power outage.
This property lays ground for atomicity, as atomic sections would benefit from running on a disposable
stack.

Theoretically, it is not absolutely necessary to execute kernel and application onto separate stacks. In
a scenario without P2.2, the bottommost part of the stack is owned by the application. The stack grows
but is always owned by the application. An imminent power outage would push some kernel interrupt
data on top of the stack. Hence, it is straightforward to distinguish stacks and, since the application stack
is the only one made persistent, storing the application’s stack pointer value is sufficient. Indeed, upon
reboot, the kernel may restore the stack only up to the recorded stack pointer and reset the stack pointer
to the recorded value. With the introduction of P2.2 and its solution based on kernel-managed top-halves
and application-managed bottom-halves, a single stack would have kernel-owned and application-owned
variables interleaved. Using a single stack would thus not be as straightforward as in a scenario without
P2.2.

4.4.2 Driver Organization

As aforementioned, Sytare requires the driver developer to provide a device context structure for each
driver, containing whatever information the driver developer considers necessary to be able to restore each
driver to any restorable state. The device context has one volatile instance, stored in volatile memory,
that is the working device context. The device context has two non-volatile instances, stored in the last

and next checkpoint images. To grant atomicity to the application at driver level, device contexts are
managed in a commit-based manner.

4.4.3 Driver Routines

Sytare asks the driver developer to work only on the volatile working instance. If a driver routine
changes the state of the peripheral and thus, of the driver, the driver routine must set a volatile flag that
indicates that the driver is dirty, i.e., modified. The dirtiness flag is stored in volatile memory, alongside
the working device context. Each driver has its own dirtiness flag.

4.4.4 Driver Routine Wrappers

Sytare acts as an intermediate layer between application and drivers. Notably, Sytare defines a generic
driver routine wrapper, that takes effect both at the entry and upon returning from driver routines. The
application may not directly call the driver routine, but must call the corresponding wrapper instead.

The wrapper entry has two missions: (i) recording the address and arguments of the targeted periph-
eral call and (ii) switching stacks from application to kernel stack. Indeed, since the wrapper is always
called from the application context, the wrapper may safely assume that it is called from the application
stack. Furthermore, in order to benefit from the disposable kernel stack designed for atomicity purposes,
the wrapper entry changes stack.

The wrapper exit (i) commits modified drivers to the next checkpoint image, then mirrors the wrapper
entry: (ii) the stack is switched back from kernel stack to application stack and (iii) the peripheral call
record is cleared now that the next checkpoint image is consistent.
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struct {
save: address
restore: address
onInterrupt: address

} Driver

(a) Sytare’s Driver structure.

struct {
bottomHalves[]: array of address
bottomHalf: address
driverCall: address
events: array of integer

} Interrupt

(b) Sytare’s Interrupt structure.

struct {
stack[]: array of word
data[]: array of word
bss[]: array of word
sp: address
driverCall: address
driverContexts[]: memory area
interrupt: Interrupt

} Checkpoint

(c) Sytare’s Checkpoint image structure.

Data:

drivers[]: array of Driver in NVRAM
next: pointer of Checkpoint in
NVRAM
last: pointer of Checkpoint in
NVRAM

(d) Sytare’s global variables, stored in non-volatile
memory.

Figure 4.4: Data structures and global variables of Sytare.
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Figure 4.5: Run-time state machine of Sytare, with interrupts left aside.

4.5 Integration

In order to address problems P1, P2 and P3, Sytare needs some data structures to be defined, as illustrated
in Figure 4.4.

The application run-time may be represented as a state machine that clearly shows when occur the
persistence mechanisms and when the application may run. This is the purpose of Figure 4.5. Note
that the distinction between the “Restore” and “Initialize” states may be removed provided that the
compilation pass or the platform programming pass is able to populate a valid checkpoint image, i.e.,
the last checkpoint would correspond to the application state at the beginning of the main function.
Figure 4.5 is intentionally simplified not to represent the interrupts and scheduler policy. Given that
simplification, the only states that have interrupts enabled are “Run application” and “Driver call”
states. The other states cannot be interrupted by any interrupt, however the platform may obviously
run out of power while run-time is in those states. Checkpoint image double-buffering makes the overall
system resilient to unexpected shutdowns during those states.

When an imminent power outage is detected, Sytare finalizes the next checkpoint image and eventually
swaps next and last checkpoint images, as illustrated in Algorithm 4.1. Checkpoint image finalization
consists in copying run-time data, namely the application stack, .data and .bss sections into the next

checkpoint image. In practice, only half of the checkpoint image swap is performed at this point, to
make the operation atomic. Upon reboot, the location of the next image is always determined as the
counterpart of the last image, as shown hereafter, so it is unnecessary to perform a complete swap
between last and next images before power outage. Only the value of last matters.
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Algorithm 4.1: Imminent power outage interrupt handler.

Input: Application state
Output: next, last
Interrupt(imminent-power-outage) begin

acknowledge interrupt
switch to kernel stack

next.stack ← application’s stack
next.data ← application’s .data section
next.bss ← application’s .bss section
next.sp ← application’s stack pointer
last ← next
shutdown

end

The reciprocal operation is the restoration function, illustrated in Algorithm 4.2. Sytare’s restoration
function is a little more complex than the save counterpart. Indeed, Sytare’s save function is only
responsible for making persistent the computational application state, for the state of peripherals is made
persistent in a continuous manner, upon returning from every wrapper exit. On the other hand, Sytare’s
restoration function is responsible for both restoring the application state and the state of the peripherals.
In addition, the restoration function must act differently upon the application being interrupted during
application code, i.e., “Run application” state of Figure 4.5 and during driver code, i.e., “Driver call”
state. The fact that application code and driver code run on separate states motivates this control-flow
distinction.

The wrappers ensure incremental peripheral state persistence. Their behavior, depicted in the previous
section, is illustrated in Algorithm 4.3. The wrapper exit mirrors the wrapper entry, the only difference
being that the wrapper exit must commit all changes made to peripherals. The commit operation
applies to all drivers, for nested driver calls might involve driver routines from other drivers, as shown in
Figure 4.3. The example of wrapped driver call further shows how easy and systematic the wrapper is
and that it may be automatically generated for programming ease.

Supporting interrupts complexifies the overall picture. Figure 4.6 shows the complete state machine
of Sytare, including interrupt-related states. The “Bottom-half” and “Bottom-half driver call” states
interact with one another like “Run application” and “Driver call” states do, for they are respectively
analogous to them. Power outage detection is enabled in all application- and driver-related states, namely
“Run application”, “Driver call”, “Bottom-half” and “Bottom-half driver call” states. The complete state
automaton of Sytare involves a new kernel-side state in comparison to that of Figure 4.5, the “Top-half”
state. Whenever an interrupt is fired during the execution of application- and driver-related states,
system state transitions to “Top-half” state. Then, upon top-half completion, the next system state is
determined by the contents of the bottom-half queue. The transitions are thus fully deterministic, for
Sytare’s scheduler prohibits nested bottom-halves and ensures that bottom-halves have a higher priority
than “Run application” and “Driver call” states. Algorithm 4.4 shows the simple bottom-half scheduler
and what an interrupt should look like, apart from the imminent power outage interrupt. Hardware
operations are performed first, that is acknowledging the interrupt. A new event is added to the set of
pending events. All drivers on interrupt functions, i.e., top-halves, are called for it is their responsibility
to accept or discard the event whether they are not concerned. Modified drivers are then saved in order
to make persistent the interrupt-bound data. Then, depending on whether the interrupt occurred during
application context or driver context, the scheduler is invoked differently. In addition to executing on
separate stacks, Sytare’s scheduler also applies the worst-case policy. Sytare restarts the interrupted
driver call, the same way Sytare would if power failed during the same call, in order to avoid peripheral
failures. This is why drivers are restored in that specific case, to preserve peripheral state consistency.
Other policies may include opportunistically resume the driver call at the same point it was interrupted,
but it would not guarantee resilience against peripheral failures. Driver wrappers could also disable the
other interrupts than the imminent power outage to simplify the design, but it would result in a less
reactive system. Sytare thus stays quite simple and reactive at the same time.
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Algorithm 4.2: Restoration function.

Input: last
Function(retry-driver-call) begin

restore driver call arguments from application stack
goto last.driverCall

end

Input: image
Data: chkpt0, chkpt1
Function(other) begin

if image = chkpt0 then
return chkpt1

end
return chkpt0

end

Input: last, drivers
Output: next, application state
Function(restore-checkpoint) begin

next ← other(last)
next.driverCall ← last.driverCall
next.interrupt ← last.interrupt

application’s stack ← last.stack
application’s .data section ← last.data
application’s .bss section ← last.bss
application’s stack pointer ← last.sp

forall d ∈ drivers do
d.restore()

end
initialize voltage comparator

if last.driverCall = 0 then
switch to application stack
pop CPU registers from application stack
return from interrupt

else
retry-driver-call()

end

end
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Algorithm 4.3: Wrapper entry, wrapper exit and a typical example of a wrapped driver routine.

Input: Driver call arguments
Output: next
Function(wrapper-entry) begin

push arguments onto the application stack
switch to kernel stack
next.driverCall ← program counter

end

Input: drivers
Output: next
Function(wrapper-exit) begin

forall d ∈ drivers do
d.save()

end

next.driverCall ← 0
switch to application stack
pop arguments from the application stack

end

Input: Driver call address
Function(wrapped-drvcall-example) begin

wrapper-entry()
goto Driver call address
wrapper-exit()

end

Bottom-half driver call

Kernel Interrupt
Top-half

Initialize

Restore

Save

Boot

Off

Run application

Driver call

Bottom-half (BH)

Not first boot

First boot

Actual power outage

HW

reboot

Interrupt

Empty queue
and app running

Interrupt

Empty queue
and driver running

Interrupt or BH completion

BH queued or
BH running

Interrupt

BH driver running
Power outage detected

Wrapper
entry

Wrapper
exit

Wrapper
entry

Wrapper
exit

Interrupted during

BH driver

App

DriverDriver
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Figure 4.6: Complete run-time state machine of Sytare.
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Algorithm 4.4: A typical interrupt handler, distinct from the imminent power outage interrupt,
and its interactions with Sytare’s scheduler.

Input: next
Output: next
Function(run-scheduler) begin

while event ∈ next.interrupt.events do
next.interrupt.events ← next.interrupt.events \{ event }
next.interrupt.bottomHalf ← next.interrupt.bottomHalves[event]

enable interrupts
next.interrupt.bottomHalf()
disable interrupts

next.interrupt.bottomHalf ← 0

end

end

Input: newEvent, next, drivers
Output: next, drivers
Function(generic-interrupt-handler) begin

switch to kernel stack
acknowledge interrupt

next.interrupt.events ← next.interrupt.events ∪{newEvent}
forall d ∈ drivers do

d.onInterrupt(newEvent)
end
forall d ∈ drivers do

d.save()
end

if on kernel stack then
forall d ∈ drivers do

d.restore()
end

switch to application stack
if no bottom-half preempted ∧ next.interrupt.events 6= ∅ then

next.interrupt.driverCall ← next.driverCall
next.driverCall ← 0
run-scheduler()
next.driverCall ← next.interrupt.driverCall
next.interrupt.driverCall ← 0

end
switch to kernel stack
retry-driver-call()

else
switch to application stack
if no bottom-half preempted ∧ next.interrupt.events 6= ∅ then

run-scheduler()
end
return from interrupt

end

end
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4.6 Performance Evaluation

The present evaluation of Sytare is performed on the MSP430-EXPFR5739 board. 1 It comprises an
evaluation of the time overhead of Sytare’s mechanisms with respect to the overall application duration,
a fine-grain quantitative time requirements of the boot sequence, discussion about minimal life-cycle
duration, memory utilization and energy overhead in a real harvesting scenario.

4.6.1 Power Supply

Power supply is implemented with a programmable power supply for reproducibility. It generates a square
signal that can support hundreds of mA for peak activity. It is really important that the power supply is
capable of providing the current required by the platform since an unfit power supply would experience
high voltage drops that would weaken the results. In the applications depicted hereafter, the current
needs never get higher than 25 mA. The output of the programmable power supply is directly connected
to the supply pins of the target board. This means that the power supply emulates an energy harvester
which energy storage is gated behind a voltage regulator. The power supply can make life-cycles as small
as 3 ms.

In addition, the power supply also includes digital pins that support a simple and efficient protocol
to instrument software-define breakpoints. This feature enables the power supply to measure and record
the execution time between breakpoints.

4.6.2 Benchmark applications

Sytare was tested against three applications involving various levels of interaction with peripheral devices.

LEDs LEDs slowly increases a counter and displays its value using LEDs. This application is rather
simple and not actually realistic of what a useful application for transiently-powered systems would be.
However, it enables to study the performance overhead of adding persistence to a simple peripheral
and driver routine wrappers. In addition, this application uses eight LEDs, which makes its power
consumption profile interesting to look at: the power consumption of the platform is directly linked to
the value of the counter, and more precisely to the amount of ones in its binary representation.

Sense Sense senses the temperature 80 times using the internal Analog-to-Digital Converter, stores the
values and the average value in volatile memory. Between each measurement, the application busy-waits
5 milliseconds.

Wireless Sensor Network Wireless Sensor Network (WSN) senses the temperature using the internal
Analog-to-Digital Converter, aggregates ten measurements then sends the information alongside platform
statistics, using RF, to a continuously-powered sink. The sink simply checks the contents of the radio
packets and is not part of the device under test. The application then puts the radio chipset in sleep mode
and waits for some time. The whole process is done 50 times. This application also demonstrates the
transparent use of peripherals with inter-peripheral dependencies for more realistic scenarios, as discussed
in Section 3.1.

All applications can be compiled on top of Sytare or as bare-metal applications. The evaluation of
both versions of the applications serve as a basis for the present evaluation.

4.6.3 Time Efficiency

The most natural metrics, in energy-constrained systems, concerns time efficiency. Specifically, since
the studied solution to execute long-running applications in an intermittent power context leverages
a lightweight operating system, it is important to assess the time efficiency of the operating system’s
mechanisms. In other terms, an ideal operating system would have a negligible impact on the overall
performance, leaving a fair execution time to the application.

1https://www.ti.com/lit/ug/slau343b/slau343b.pdf

https://www.ti.com/lit/ug/slau343b/slau343b.pdf
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Ground Truth Execution Time

For a given application, let Twired be the time it takes to run the application to completion under
continuous power, without Sytare or any persistence mechanism. Twired is measured between the instant
the power is turned on and the instant the application completes. As a consequence, Twired includes
hardware boot time as well as program initialization. Twired is used as a ground truth baseline for the
evaluation of Sytare, since Twired corresponds to the execution time of a bare-metal version of a given
application. Twired is measured using the programmable power supply which was initially parameterized
so that the application has enough time to complete without power outage.

Theoretically, a bare-metal scenario would probably take the shape of a super-loop, that is an infinite
loop that performs the same sequence of operations over and over. Thus, it was necessary to modify this
model so that the super-loop is no longer infinite but iterates a constant number of times, in order to
bound Twired.

Execution Time Under Intermittent Power

To establish a comparison with Twired, the evaluation needs a time metrics for the Sytare-aided version of
the application. In transiently-powered systems, there are on-time and off-time periods, when respectively
the power is on and off. However, the off-time is of little interest, as the platform is completely inactive
during those periods. Hence, the evaluation focuses on the on-time. Let Ton be a fixed on-time duration
for all life-cycles. For each point in Figure 4.7, the power supply is configured to deliver a given Ton. The
platform is then repeatedly powered for this duration, then powered off. Hence, Ton is a parameter of
this evaluation.

Let Ttransient(Ton) be the time needed for the Sytare-aided version of the application to complete, for a
given value of Ton. Ttransient(Ton) is defined as the sum of all on-time periods through all life-cycles. Off-
time periods are not studied as they do not give any information, nor may the application make progress
during off-time periods. However, Ttransient(Ton) includes the boot time, both hardware and software, and
the durations of the checkpoint operations. Ttransient(Ton) is measured using the programmable power
supply, programmed in accordance to Ton.

The overhead of Sytare, in terms of execution time, is expressed through the effective yield Y (Ton),
for any value of Ton, as defined in Equation (4.1).

Y (Ton) =
Twired

Ttransient(Ton)
(4.1)

From the definitions of Twired and Ttransient(Ton), the effective yield is expected to be bounded between
0 and 1.

Minimal Life-cycle Duration

For small values of Ton, the chances the platform can successfully boot are identical to none and the
application will never finish. In other words Ttransient(Ton) would be infinite and the effective yield would
be zero. The minimal life-cycle on-time required for the application to make progress, named Tmin

on , is
defined by Equation (4.2).

Y (Tmin
on ) = 0 ∧ ∀Ton > Tmin

on , Y (Ton) > 0 (4.2)

Maximal Yield

On the other hand, when Ton approaches Twired, then the application will run to completion in just
one life-cycle with little kernel interaction. In this case, the overhead corresponds to the driver routine
wrappers only. Indeed, without power outage, there is no checkpoint save nor restore operation, nor
multiple hardware boot times. Thus, even though the kernel boots only once and never has to save or
restore checkpoints, execution overhead arising from the system call wrappers still impacts performance
and the effective yield will never reach 100%. For this very reason, this particular situation makes Sytare’s
time overhead minimal, leading to the highest yield values. The maximal yield, named Y max, corresponds
to this situation and bounds Sytare’s yield.
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(a) LED counter application.
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(b) Sense application.
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(c) WSN application.

Figure 4.7: Temporal yield measurements as a function of life-cycle duration (Ton) for all applications.

Measurements and Results

For each application, the monitoring programmable power supply measures Twired and Ttransient(Ton).
This information enables to compute the effective yield Y (Ton), shown in Figure 4.7, respectively for the
LEDs, Sense and WSN applications. The yield measurements match a hyperbola model, shown in blue
in Figure 4.7. A hyperbola has an equation like Ŷ (Ton) = a

Ton
+ Y max. The fact that the hyperbola

model fits well the real-life measurements allows to compute the smallest life-cycle duration for which the
application can be executed to completion in a transient power context, Tmin

on . Indeed, since the slope of
Y (Ton) is almost infinite when Ton is small, Tmin

on cannot be measured with great accuracy. However, it
may be precisely estimated by using the model, notably Tmin

on = − a
Y max . The maximal yield, Y max is,

however, measured by reading the asymptotic value of the yield measurements.

The results are given in Table 4.1. The LEDs application uses only LEDs, thus only uses one driver
that must be made persistent across power outages. Although the driver is simple, the overhead of Sytare

Table 4.1: Twired, Y max and Tmin
on for each application. Twired std dev. is the standard deviation of Twired

over a hundred samples.

App. Twired (ms) Twired std dev. (µs) Y max Tmin
on (ms)

LEDs 1003.61 5.06 0.9953 2.04
Sense 410.56 4.61 0.9994 3.27
WSN 891.80 360 0.9729 2.70
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is visible as the yield does not exceed Y max = 99.53%. The Sense application uses multiple peripherals
but stays efficient in terms of yield (Y max = 99.94%) as the different drivers in use do not have a long
hardware initialization. The WSN application is a realistic application used for Sytare evaluation. The
utilization of a complex active RF transceiver decreases the maximal yield of the application, as RF chip
initialization and restoration require active polling and multiple SPI transactions. Besides, the action of
sending a message consumes much more current, inducing a voltage drop and increasing the risks of failed
checkpoint or of having to retry a code section with timeliness constraints. Despite these points, Sytare is
able to run the application on transient power under intermittent supply. The overhead of driver routine
wrappers is rather low since the application reaches Y max = 97.29% yield efficiency.

In addition, Figure 4.7 emphasizes the life-cycle requirements to perform 90% yield efficiency. The
LEDs application only needs life-cycles as short as 22 ms to achieve 90% yield efficiency, the Sense
application needs 33 ms life-cycles and the WSN application 42 ms life-cycles. In comparison to the
respectively 1003 ms, 410 ms and 891 ms given by Twired, the requirements to ensure a certain quality of
service are far less constraining than in the ground truth without checkpointing mechanism.

Except for the first life-cycle, any life-cycle comprises a restoration and a checkpointing phase. If a
life-cycle lasts less than restoration time and checkpointing time, application cannot make any progress.
In addition, timeliness constraints dictated by the application require some parts of the software to be
executed at once or retried from the beginning if power failed. Thus, depending on the application, a
life-cycle must be long enough for the longest or most energy-consuming driver routine, in addition to
restoration and checkpointing times.

Table 4.1 also shows the minimal durations of a life-cycle, called Tmin
on , for various applications.

Applications that are not peripheral intensive, such as LEDs, can make progress with shorter life-cycles
than applications such as Sense and WSN. The minimal life-cycle duration is however different between
applications, depending on what peripherals they use. Typically, an application using the radio frequency
chip under Sytare is limited by the energy consumption of the restoration function of the RF driver. This
sets the lower bound of the viable life-cycle duration to above 3 ms. The other applications do not
use this peripheral and their minimal life-cycle duration is around 2 ms. This means that the energy
harvester only needs to provide enough energy for the platform to run at least for a few milliseconds.
It also demonstrates that Sytare efficiency depends on the application’s usage of peripherals and on the
complexity of the driver API.

The conclusion about this evaluation is that all applications succeed in running under intermittent
supply using Sytare. Applications can run over much shorter life-cycles than required to run them to
completion in a credit card model, without losing much yield efficiency.

4.6.4 Kernel

Running the aforementioned applications, the yield did come close to 1 but not actually reach it, because
of Sytare’s mechanisms. This section focuses on the sources of overhead of Sytare: restoration, save
and driver routine wrappers. In addition, these mechanisms also require memory. Non-volatile memory
when speaking of checkpoint images, and volatile memory when it comes to Sytare’s dedicated kernel
stack and application stack. Finally, aside from time concerns and looking directly at the overall energy
consumption, the energy requirements of Sytare’s restoration and save operations are measured for the
WSN application, using a real energy harvester from industry.

System Boot and Restoration

Table 4.2 shows the time spent by the kernel in various phases of the boot sequence, measured for the
WSN application. A great portion of boot time is dedicated to booting the platform, which is inherent
to the platform itself and not a result of Sytare’s doing, and restoring the peripheral state which is the
responsibility of Sytare. On the other hand, restoring the state of the application itself and restoring
the device context, which is the software part of the restoration, take a total of 72 µs only, being several
orders of magnitude faster than the platform hardware boot and the restoration of peripherals. It must
be noted that restoring peripheral state does not take the same amount of time as it depends on the
amount and type of the peripherals. An active polling phase in the peripheral re-initialization, or the
size of the configuration to restore, are factors that impact boot time. More precisely, the majority of
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Table 4.2: Booting sequence of WSN application.

Phase Time (µs) Ratio (%)
Hardware boot 1240 49.4
Application restoration 45 1.8
Device context restoration 27 1.1
Peripheral state restoration 1170 46.5
Checkpoint initialization 30 1.2

Table 4.3: Temporal impact of driver routine wrappers.

Driver routine Wrapper time overhead
LED toggle +1325%
Sense temperature +27%
Radio sleep +137%
Radio wake up +8%
Radio packet send +1%

the time spent in restoring the state of peripherals is taken by the restoration of the radio device (around
78%), far above the ADC converter (8%), the SPI bus (6%), the clock (4%) and the GPIOs (3%).

System Save

In its current version, Sytare copies the different sections from volatile memory to the next checkpoint
image, regardless of whether they were modified or not. This is prone to further optimization, for instance
with incremental checkpointing seen in Chapter 6. However, without optimization, for a given application,
the amount of copied data is always the same, which makes the save execution time deterministic and
constant as well. More specifically, for the LEDs and WSN applications, the save time is 26 µs. Note
that the checkpointing trigger voltage that generates the imminent power outage interrupt has been
set experimentally to a value large enough to allow checkpointing completion in normal conditions.
Dynamically adapting this threshold may be important for optimization of transiently-powered systems
with just-in-time checkpointing.

Driver Routine Wrappers

The overhead induced by Sytare is not only the sum of the restoration and save times. During application
execution, the calls to driver routines via system calls induce time overhead. This overhead is shown in
Table 4.3 for several drivers routines. The overhead induced by Sytare for context switch and for saving
device contexts depends on the complexity of the peripheral to be accessed and the complexity of hardware
actions achieved during a driver routine. The proportion of run-time dedicated to wrappers with respect
to the driver routine itself varies from more than 90%, for the LED toggle routine, to an extremely low
value, less than 1% for the radio packet sending routine. In practice, as far as the LED toggle routine
is concerned, the routine itself consists of a handful of instructions only, and the wrappers only add a
dozen microseconds. The relative overhead is high tough, for the LED toggle routine takes less than a
microsecond. Nevertheless, the impact of driver routine wrappers on the overall runtime is low, as yield
values can reach up to 97%. This may be explained by the fact that driver routine wrappers take about
the same duration for all drivers. Hence, short-running driver routines such as toggling an LED are more
impacted than already long-running driver routines such as sending a packet over radio.

Memory Occupation

The RAM overhead of Sytare is mostly imputable to the need of a separate kernel stack of size limited to
128 bytes. The MSP430FR5739 micro-controller only embeds 1 kB of volatile RAM and Sytare makes the
choice to grant most of it to the application needs. The driver memory occupation in RAM is increased
approximately by the size of the mirrored configuration. For example the RF chip driver that comes
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Table 4.4: NVRAM requirements, in bytes, of some applications. Checkpoint image size is accounted
twice in the total NVRAM use, for checkpoints are double-buffered.

App. Total NVRAM use Checkpoint image Relative checkpoint size (%)
LEDs 6952 385 11.1
Sense 8696 405 9.3
WSN 11994 503 8.4

Table 4.5: Kernel stack utilization, in bytes, for button and radio applications, under several runtime
scenarios.

Application Power outages IRQ occurrences Kernel stack utilization

Buttons
0

0 42
≥ 10 62

2
0 42

≥ 10 68

Radio
0

0 58
≥ 10 100

2
0 62

≥ 10 102

with Sytare requires 44 additional bytes in RAM for persistence management. The kernel variables and
checkpoint images are located in NVRAM and do not impact kernel RAM occupation.

Table 4.4 shows the amount of NVRAM used by each application. The checkpoint image size is the
size of a single checkpoint image. Since Sytare uses a double-buffer mechanism for checkpoint images, the
total NVRAM space used solely by the checkpoint images is twice as large. Both images take less than
12% of the total NVRAM utilization. The remaining NVRAM consists of the instruction code itself, which
includes the application logic that does not change from the bare-metal baseline and Sytare’s code. The
WSN application occupies almost 12 kB out of the available 16 kB of NVRAM from the MSP430FR5739
micro-controller, mostly due to code size. NVRAM requirements vary from an application to another
because they do not use the same amount of drivers, of variables, etc.

Kernel stack utilization

Sytare kernel runs on its own stack, which means that part of the memory is dedicated to the kernel and
is not usable from application space. In order to evaluate the amount of used kernel stack, two additional
applications were used: a button application that counts the amount of times a button is pressed, and a
radio application that counts the amount of received packets. The button is wired to a hardware interrupt
and so is the radio packet reception. Using interrupts enables to measure scenarios with waiting bottom-
halves, where the stack usage is generally more important than interrupt-less scenarios. Both applications
display their counter on the LEDs.

These two applications were run with two parameters: (i) the amount of power outages throughout
the experiment and (ii) the amount of times the application was interrupted by the button or the radio,
excluding power outage detection. Table 4.5 shows how much kernel stack is actually used for both
applications under these scenarios. The results show that interrupt handling requires few dozens of bytes
at most. Given these results, in the present implementation, the amount of RAM assigned to kernel stack
may be safely set to 128 bytes.

However, the nature of the application may change the stack requirements of the kernel, since using
different peripherals may result in a different kernel stack utilization. For instance, the GPIO driver
performs trivial operations, while the radio driver is built on top of the SPI driver and also uses the
GPIO driver. As a result, there are many nested driver routines and kernel stack usage increases. In
addition, interrupts add stack utilization overhead as they involve driver calls and manipulate kernel
internal functions. Power outages do not substantially change kernel stack usage, as the kernel stack is
reset on boot.
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Figure 4.8: Excerpt of the available energy in the storage capacitor, as the platform harvests solar energy.
Peaks above 1000 µJ are caused by an internal feature of the harvester. When the solar panel is covered,
the storage capacitor is charged too slowly and the harvester initiates a cold-start boot in order to make
sure that the next life-cycle will have enough energy for its demands.

Application stack utilization overhead

Application stack utilization mainly depends on the application itself. However, Sytare needs to store
some data on the application stack to achieve persistence.

When switching from application stack to kernel stack on driver routine wrapper entry, thirteen
16-bit registers are pushed onto the application stack. As a result, the wrapper mechanism adds a 26-
byte overhead to application stack utilization. Since a bottom-half can run when the main application
is interrupted during a driver routine, and since bottom-halves also can use peripherals, then in this
worst-case scenario the 26-byte overhead can be accumulated, making this overhead reach 52 bytes.

When power outage detection interrupt is generated, the micro-controller pushes two 16-bit registers
onto the current stack. Hence, whenever power outage detection occurs while running application code,
a 4-byte overhead will be observed in the application stack.

As a result, the typical worst-case scenario as far as application stack utilization overhead is concerned
is when the main application is interrupted during a system call and power outage detection occurs when
the bottom-half uses a system call. In this specific situation, overhead adds up to 56 bytes. In the
experiments, 256 bytes for the application stack were enough in total, for all applications.

Energy overhead

Sytare was tested against the AEM10940 energy harvester from e-peas 2 company. It consists of a solar
energy harvester and a power manager, and accumulated energy into a capacitor. In the experiments,
a large capacitor of 330 µF was used. The embedded power manager powers on and off the MSP-
EXP430FR5739 board, respectively whenever the capacitor voltage goes beyond Vboot = 3.21 V or below
Vdeath = 2.93 V, which gives an energy budget of 313 µJ. For these applications, lower capacitor values
may be used as the longest driver call, namely the radio packet sending driver routine, does not need
that much energy. As discussed by the authors of Capybara [15], the storage should be large enough to
run the largest atomic section. The largest atomic section is the radio packet sending system call which
takes 100 µJ. The solar cell used in the experiments is the CBC-SEH-01 3, a 32 cm2 solar cell. A smaller
cell can be used and would simply decrease the frequency of the life-cycles, as long as the delivered power
is large enough to enable harvesting.

Figure 4.8 shows the amount of energy stored in the capacitor over a period of 200 seconds, under
indoor light conditions, while covering the solar cell occasionally. Crescent phases correspond to periods
of time when the capacitor is charging and the device under test is unconnected by the power manager.
Decrescent phases correspond to periods of time when the device under test is supplied by the power
manager. The capacitor is refilled within 730 milliseconds in case of usual office light conditions and

2https://e-peas.com/
3https://www.ti.com/lit/ug/slau273d/slau273d.pdf

https://e-peas.com/
https://www.ti.com/lit/ug/slau273d/slau273d.pdf
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within 10 seconds when the solar cell is covered. This scenario is thus realistic for a low-power application
solely supplied by energy harvesting. Figure 4.8, albeit being an actual measurement, is shown only for
hypothesis validation purposes and the measurements themselves are shown as indicative only. The
measurements cannot be used as an energy trace, as discussed in Section 3.1.3, for they are dependent
on the experimental conditions.

Checkpoint creation and restoration operations respectively consume 0.183 µJ and 2.115 µJ every
life-cycle, leaving 310 µJ for the application to run every life-cycle. Hence, Sytare does not impede
application progress as it keeps it energy budget small enough and lets the application use the bulk of
the energy available.

4.7 ARMorik: Towards new Architectures with NVRAM

The observation can be made that the amount of micro-controllers equipped with non-volatile RAM is
limited. The bulk of them is constituted by Texas Instruments’ MSP430FR family, using FRAM as a full
replacement of Flash. Aside from that specific architecture, other manufacturers and other architectures
are timorous towards the usage of non-volatile RAM. This is certainly the consequence of the firms not
trusting the economic viability of such a new architecture.

MSP430 has its limitations and, although people like to write portable code, the presence of power out-
ages breaks several assumptions of programming languages such as C, hence some low-level architecture-
specific code must be written at some point. It would be interesting to see how operating systems for
transiently-powered systems can be written on ARM architectures, for instance. Furthermore, as dis-
cussed in Chapter 6, the MPU of ARM-Cortex micro-controllers has more features and is better suited
to incremental checkpointing in comparison to that of the MSP430FR micro-controllers.

In addition, as long as the performance gap between volatile and non-volatile RAM is not fixed
and as long as the non-volatile RAM has such a limited endurance, platforms are likely to embed both
kinds of memory. The MSP430FR micro-controllers with the greatest amount of volatile RAM are
the MP430FR604x family, with only 12 kB of volatile RAM and 64 kB non-volatile RAM. The micro-
controllers with the greatest amount of non-volatile RAM embed 256 kB of non-volatile RAM but only
8 kB of volatile RAM. More complex applications would be enabled if the platform had more memory.
The amount of memory also impacts persistence mechanism design for transiently-powered systems, as
discussed in Chapter 6, thus motivating the need for platforms with more volatile RAM and non-volatile
RAM.

In the research community, a platform was designed with an ARM Cortex-M3 micro-controller and
Flash, but without non-volatile RAM [98]. Another platform, ENGAGE, embeds an ARM Cortex-M4
micro-controller, wired with a 512 kB external FRAM chip [28]. ENGAGE was not yet published at the
time of design of the present platform proposal. However, the external FRAM chip used by ENGAGE
has a serial SPI interface, which means that reads and writes to non-volatile RAM are even slower than
usual.

This section presents ARMorik, an ARM-based alternative to existing platforms equipped with non-
volatile RAM, as a subsidiary contribution of this thesis. The design includes an external parallel FRAM
chip to map the non-volatile RAM into memory address space, thus mimicking the MSP430FR micro-
controllers, in order to keep the performance of FRAM without the overhead of a serial bus.

4.7.1 Hardware Design

The key point of ARMorik is that the non-volatile RAM chip is accessed through a parallel bus. This
means that there is a pin for every single bit of address and every single bit of data, in addition to the
control pins and power pins.

External NVRAM From the memory’s perspective, there is a variety of non-volatile RAM chips
that expose a parallel bus, so the choice of the memory chip is only guided by memory capacity and
power-related concerns. The Cypress FM28V202A 4 256 kB FRAM chip was chosen, for its interface
similar to that of an SRAM. The constructor indicates that the memory consumes 7 mA in active mode,

4https://www.cypress.com/file/136441/download

https://www.cypress.com/file/136441/download
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which is high when considering that the MSP430FR micro-controllers consume less than 2 mA including
the processor and the built-in FRAM. However, a design with an external memory will always be less
energy-efficient than a design with every component belonging to the same chip. The ability of the
ARMorik platform to demonstrate the interest in transiently-powered systems with more memory and
other architectures than MSP430 is not impacted though.

Micro-controller The bottleneck is the micro-controller. Indeed, it is not acceptable to use GPIOs
to communicate with the external memory chip and the reason is twofold. First, GPIOs require a
certain update latency and cannot fully take advantage of the low latency of memories. For instance, the
FM28V202A chip has a latency faster than 100 ns, meaning that the GPIOs must operate at least at
10 MHz. Bit banging, even using a DMA to accelerate the process, is not likely to achieve such frequencies
with low-power and low-frequency micro-controllers. Furthermore, there are dozens pins to update, driven
by several control registers, which must be carefully performed to avoid bad intermediate states. Second,
in order to read or write data from and to the external memory using a GPIO-based bus, the software
would have to set the appropriate control registers each time. The external memory chip can thus not
be mapped in memory using pins as GPIOs and hence, one cannot simply access the external memory
using a single load or store instruction, which would both generate time overhead and force the software
to access the memory through a dedicated API. It is thus necessary that the micro-controller embeds a
dedicated logic for external memories. This last property is dependent on the manufacturers. Microchip’s
ATSAMS70Q19 5 micro-controller, based on an ARM Cortex-M7, was chosen for its ARM architecture,
its Static Memory Controller (SMC) that suits the external memory chip and its parallel address and
data buses multiplexed to the pins of the chip. It also has 256 kB SRAM and 512 kB Flash memory.
The Low-profile Quad Flat Package (LQFP), a popular surface-mounted integrated circuit package, was
elected for its ease of hand-soldering compared to the ball grid array alternatives even though the latter
were more commercially available.

External peripherals Besides the built-in peripherals of the micro-controller, the ARMorik platform
embeds a handful of toy yet useful peripherals. First, the board has a socket for Texas Instruments’
CC2500EMK radio module for compatibility with the MSP430-EXPFR5739 board. Hence, the original
driver of the CC2500 module for Sytare can be used almost as is, and the ARMorik platform can even
communicate with the MSP430-EXPFR5739 over radio. ARMorik also comprises the ADT7310 6 digital
temperature sensor from Analog Devices. Both the radio module and the temperature sensor use the SPI
bus, which is an interesting study case for driver design on a bus with several slaves. Indeed, works that
support peripherals (P2), including Sytare as presented here, show applications that use a few peripherals
that do not collide with one another. In reality, peripherals are multiplexed and there are often mutually-
exclusive configurations. Sytare supports peripheral re-configuration at run-time while many existing
works set this concern aside and consider that either the reset-state of the peripherals are sufficient or
that a routine written by the application developer is called upon reboot to reset the peripherals to a
fixed, known state. Building a platform that has mutually-exclusive configurations is both closer to real
systems and also highlights the need of a true peripheral restoration system rather than a hardcoded
state setting. ARMorik also embeds a photodiode as an analog peripheral to be sensed using an ADC.
Any high-resistance photodiode can fit and the one used in the prototype is the NSL-4962 from Advanced
Photonix. Finally, there are eight LEDs apart from the power- and debug-related LEDs.

Power supply The different hardware components of the board operate at different supply voltage
ranges, but their intersection is non-null. The temperature sensor requires at least 2.7 V, the radio
module 1.8 V and the minimal supply voltage of the micro-controller depends on the required internal
peripherals. For instance, the USB module of the micro-controller, albeit not used in ARMorik, requires
at least 3.0 V and the Digital-to-Analog Converter controller at least 2.5 V. Also, the resistors in series
with the LEDs and the photodiode must be adapted to the supply voltage. There is no other constraint
on the minimal supply voltage. Hence, the board proposes a supply module with either a fixed 2.2 V
supply or a variable supply between 2.0 V and 3.3 V configurable using a potentiometer. Those supply

5https://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527D.pdf
6https://www.analog.com/media/en/technical-documentation/data-sheets/ADT7310.pdf

https://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527D.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADT7310.pdf
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voltages are provided through an external USB cable, but the low power consumption of the platform
allows it to be supplied even with the motherboard of a computer, as opposed to single-board computers
that require a 3 A supply.

Circuit design Figure 4.9 shows a photograph and the board design of the ARMorik platform. The
dashed lines isolate the power supply and the programming interface from the actual platform proposal.
The USBALIM jumper may be unplugged to allow another power supply, such as an energy harvester.
The entire schematics are available online. 7

Energy consumption The energy consumption of the ARMorik platform was not studied. It is
considered irrelevant, for the non-volatile RAM is external to the micro-controller and thus cannot be
as optimized as an all-in-one micro-controller such as the MSP430FR ones. However, ARMorik is a
proof-of-concept platform that encourages other types of architectures to benefit from the properties of
non-volatile RAM.

4.7.2 Software

Any ARMv7-M Thumb-2 code can execute on the platform. More specifically to this thesis, Sytare was
ported onto the ARMorik platform, thus named sytARM. 8

Programming The board provides a Serial Wire Debug (SWD) port on which a programmer can be
wired when needed. The programming feature was tested with the Atmel-ICE programmer. Within
the context of sytARM, the programming is twofold. A first pass populates the non-volatile RAM with
a valid checkpoint image corresponding to the application and peripheral states of the application at
the beginning of the main function. This first pass is not part of the application software for it is
automatically performed before the actual application is flashed. The second pass is the transfer of the
actual application to the Flash memory of the micro-controller and from that point onward, the platform
is ready to use. Again, the application solely consists of the binary image that resides in Flash memory
and of the checkpoint images that reside in non-volatile RAM. Note that the Flash memory is only used
as a read-only memory in sytARM, to store instructions and relevant read-only data. Populating the
non-volatile RAM chip is automatically performed as a service provided by sytARM toolchain. The main
discrepancy between sytARM and Sytare is that a valid checkpoint is provided before the application
even starts. This feature simplifies the state-machine from Figure 4.5, thus removing the Initialize

state. This service does not leverage any ARM-related mechanism and can thus be implemented on
MSP430 as well. It simply arises from the “from scratch” approach that was free of legacy code whereas
Sytare emerged from successive development sprints.

Broadened application spectrum The 256 kB of volatile RAM allow the execution of more complex
applications. For illustrative purposes, MicroPython 9, an implementation of Python 3.x for constrained
micro-controllers, has been easily ported onto ARMorik. A MicroPython hello-world application, with its
dependencies regarding MicroPython, takes 415.4 kB of instruction memory and that particular imple-
mentation required 16 kB of heap. It could not be executed on any MSP430FR micro-controller equipped
with non-volatile RAM. In comparison, the LED hello-world of sytARM, similar to the LEDs application
of Sytare, requires 4.3 kB of instruction memory and no heap.

4.7.3 ARM-related mechanisms

SuperVisor Call The Thumb-2 instruction set provides a SuperVisor Call (SVC) instruction that
immediately provokes an interrupt. That instruction uses an immediate value as argument and its
semantics are left to the software developer. In sytARM, svc #0 invokes the restoration, svc #1 is a

7https://github.com/gberthou/armorik
8https://gitlab.inria.fr/gabertho/sytarm
9https://github.com/micropython/micropython
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(a) Photograph of the ARMorik board.

(b) Design of the ARMorik board.

Figure 4.9: Photograph and board design of ARMorik.
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wrapper entry and svc #2 a wrapper exit. This makes the kernel code more homogeneous for the SVC
execution mode is that of interrupt mode. In the implementation of Sytare on MSP430, the code has
to manually fake the interrupt context while sytARM leverages an ARM instruction to execute in a real
interrupt context. In addition, the interrupt system of the Application Binary Interface of the Cortex-
M architectures alleviates stack management whereas it must be done by hand under the MSP430X
architecture.

Memory Protection Unit As discussed in Chapter 6, the Cortex-M7 MPU provides a Memory Pro-
tection Unit suitable for memory modification detection at run-time, allowing incremental checkpointing.

Platforms with a greater amount of memory, such as ARMorik, enable to design applications that over-
come the simple sensor use-case. They also show the limitations and the non-scalability of some check-
pointing techniques currently used for transiently-powered systems with no more than a few kilobytes
of volatile memory, as discussed in Chapter 6. Provided that manufacturers will integrate non-volatile
RAM to micro-controllers with more memory, the research in transiently-powered systems can be ex-
tended beyond the technological limitations of today’s platforms.

4.8 Conclusion

Sytare is a lightweight kernel for transiently-powered systems. It brings a real and efficient answer to
problems P1, P2 and P3 altogether. To this extent, Sytare was the first kernel to support peripheral
state persistence and consistency alongside application state persistence. It also supports user-defined
interrupt handlers, making the typical Sytare application closer to a bare-metal baseline, while other
state-of-the-art approaches still do not. Bare-metal applications can run on top of Sytare almost as
is. The only major modification is that peripheral accesses must be encapsulated into an API, as often
encountered in bare-metal development anyway, using Sytare wrappers as an additional layer between
application and drivers. The drivers must also implement a restoration routine and a save routine in order
to benefit from Sytare’s peripheral persistence mechanisms. An optional routine called upon interrupt
occurrence may be required if the driver needs to react to some interrupt line, so that the application-side
of the interrupt handler can also benefit from state persistence.

While application state checkpointing is not new, Sytare combines classical checkpointing of the
application with incremental checkpointing of the peripherals, which was not done before. The peripherals
are saved on-the-go, for any driver routine that alters the state of a peripheral notifies Sytare to partially
save the newly acquired state. The peripheral-related data to be saved are internal states that enable
the drivers to restore peripherals to the same states that were incrementally saved. The so-called driver
contexts, that encompass enough data to restore the state of a peripheral, do not necessarily correspond to
actual memory-mapped registers. This is less memory-consuming and also allows the usage of peripherals
accessed through a communication bus, such as SPI or I2C. This design choice is important since the
energy storage is likely not to afford to dump all the control registers of peripherals accessed through a
serial bus, while an imminent power outage threatens the system. Besides, the support for atomic regions,
i.e., portions of code that must be consistently run in one life-cycle or retried from the beginning, enables
the application to use complex peripherals. Timers, serial interfaces, Analog-to-Digital Converter and
radio transceivers are examples of non-trivial peripherals that are guaranteed to correctly run under
intermittent power. Actually, the mechanisms of Sytare are generic and hence, any peripheral can be
made compatible with intermittent power, as long as the energy storage enables their usage.

A first implementation of Sytare, on the MSP-EXP430FR5739 board from Texas Instruments which
includes 16 kB of FRAM together with traditional RAM, shows that the proposal is realistic and suits
transiently-powered systems, for its performace impact is reasonable. Applications running on top of
Sytare may reach more than 90 % of their temporal performance whith life-cycles shorter than 50 mil-
liseconds. In addition, those applications may run with non-null forward progress as long as the platform
is continuously powered on more than 5 milliseconds before power fails. In the case of atomic code sec-
tions, the concerned life-cycles must be at least as long as the given atomic code section. It is important
to note that the overhead of the persistence mechanisms introduced by Sytare is low, in comparison to
the improvement brought by substantially less constraining life-cycle durations. The time overhead due
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Sytare wrapping driver calls is quantified and the experiments show that this overhead is less than one
percent of sending a radio packet for instance. More generally, applications achieve more than 97 % of
their temporal performance when continuously powered, meaning that the wrappers have a low overall
overhead, even when the application is peripheral-intensive.

A later implementation on the ARMorik platform, equipped with an ARM Cortex-M7 micro-controller
and an external parallel FRAM, consolidates Sytare’s suitability for transiently-powered systems and
opens the way towards new energy-efficient systems using low-power ARM platforms.

The core contribution of this thesis regarding Sytare is the interrupt support to overcome P2.2. The
experiment consolidation, achieved by developing an automated testbench for yield measurements, was
also a key task that contributed to the reproducibility and the confidence in the results. The end-to-end
design and development of the ARMorik platform and its software as a demonstrator for Sytare and a
prospective vision of future features for transiently-powered systems is also brought by this work. Finally,
maintaining the software of Sytare was a long engineering task that was yet necessary to sort issues out
and increase correctness with regard to the problematics related to intermittent power.

An improved version of Sytare could perform smarter checkpoints, where portions of memory are
selected if they were modified between two consecutive checkpoints. This is studied in detail in Chapter 6.

Applications that run under intermittent conditions must face issue P3 at some point and thus, might
be exposed to retrying code sections. If they could evaluate the energy requirements of all atomic sections,
they, or the kernel, might be able to anticipate power outages and determine whenever trying an atomic
section is doomed to fail. A model that includes peripheral state analysis, as well as a cycle-accurate
simulator for transiently-powered systems are depicted in Chapter 5. They may serve as a solid basis for
energy requirements evaluation and any kernel mechanism that would decide whether to start a given
atomic section, considering the remaining energy.

Also, if the non-volatile RAM technologies tend to be more energy efficient and thus have closer
performance to volatile RAM technologies, it becomes worthwhile to investigate the memory placement of
variables, including application variables. More specifically, it may be interesting to allow the application
developer to allocate variables directly in non-volatile RAM. This would expose the entire system to issue
P4 and require a thorough support of the identificated issues, i.e., P1, P2, P3 and P4, by the kernel.
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Chapter 5

Energy Model of Intermittent
Systems and Measurements

The static checkpointing systems discussed in Chapter 3 over-provision the application with checkpoints
so that the code sections between consecutive checkpoints are likely not to exceed the capabilities of the
energy storage. The just-in-time approaches discussed in Chapter 3 and Chapter 4 reduce the amount
of checkpoints per life-cycle to the minimal amount of one checkpoint. However, in both checkpointing
models, the timeliness and atomicity constraints, namely P3 as defined in Chapter 2, require specific
portions of code to run in a consistent time window, and to be retried from the beginning if the corre-
sponding operations were interrupted. In the latter case, the application wastes energy trying to run the
code section with timeliness requirements once or multiple times, for the only try that enables forward
progress is the last one, i.e., the try that can complete before power fails.

Today’s system layers that support intermittent power lack insight of the energy requirements of
portions of code. Knowledge about these figures would help, either at compile- or at run-time, the system
to make clever decisions, for instance. Being able to tell whether a code section with timeliness constraints
may complete within the remaining energy of the current life-cycle enables further optimizations. The
system could schedule another, less consuming application task, assuming that the application is divided
into tasks. Or the system could simply shutdown early, should the power manager be able to provide such
feature, in order for the energy storage to reach the boot energy threshold faster and thus, decrease the
off-times. Here, the assumption is made that the system layer provides a reliable, flawless checkpointing
mechanism. The knowledge about energy consumption is considered an indication for optimization
purposes and does not dismiss the system layer from checkpointing. While the present chapter discusses
what resembles an average-case scenario, more comprehensive and pessimistic considerations such as the
worst-case energy consumption are totally separate concerns.

This chapter offers an energy-related model of embedded software that takes peripherals into account
and echoes a former publication [99]. That model is implemented into a simulator for transiently-powered
systems, capable of accurately estimating the energy consumption of any piece of code, whether it in-
volves peripherals or not. The simulator is designed to run unaltered binary images for Texas Instruments’
MSP430FR5739, however its modularity enables to extend its usage to any other Instruction Set Archi-
tecture (ISA) with low development effort. In order for the simulator to yield adequate results, the model
must be populated with actual measurements. A cheap and simple, yet efficient energy measurement
device is described in this chapter for that purpose.

Section 5.1 presents the state of the art on energy models for peripherals, software and power supplies.
Section 5.2 evokes existing methodologies for energy consumption measurement and Section 5.3 existing
simulators that target energy consumption estimation. A new model for software and peripherals is
presented in Section 5.4. This model leverages an abstraction of peripherals which is built from the driver
API and not from the peripheral data-sheet. Section 5.5 proposes a methodology for low-cost energy
measurement within adequate power ranges for low-power platforms. All peripheral driver calls and
peripheral power states were precisely measured this way. Section 5.6 exposes a simulator for transiently-
powered systems using the proposed energy model and energy measurement methodology to populate
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the model. The simulator operates at cycle-level for software and abstracts driver calls using the model
depicted hereafter. Finally, Section 5.7 shows the performance of the simulator with respect to real-life
measurements.

5.1 State-of-the-art Energy Models

Three main approaches can be used to evaluate the energy consumption of embedded systems: theoretical
analysis, simulation and hardware measurement. To yield realistic results, simulation must be calibrated
with real measurements. One issue is to establish an energy model of all hardware components: CPU,
memory and peripherals.

Profiling energy consumption on real hardware has already been studied, but either the peripherals
were not specifically studied [100] or the targeted platforms were high-end systems [101].

5.1.1 Hardware Models

The EPIC model [23] tackles the aspect that makes common approaches ineffective in their energy
consumption prediction. Many works want to analyze the energy consumption of transiently-powered
systems in which energy storage is directly wired to the platform, i.e., the harvest-use model discussed in
Section 2.1.3. They often tend to forget that, as a consequence of design choices, the supply voltage of such
platforms varies over time and thus, their energy consumption varies. Running the same instruction twice
at different supply voltages result in a different energy consumption. Indeed, a change in supply voltage
provokes a change in both the current consumption and the actual clock frequency. When the supply
voltage decreases, the clock frequency slightly decreases, which means that a given operation would take
more time than at higher supply voltage. However, the overall power consumption substantially decreases
for the electronic components waste smaller power in Joule effect. At the end of the day, decreasing supply
voltage incurs longer execution times but smaller energy requirements. While EPIC is right about changes
in energy demands, it assumes that the energy storage directly supplies the platform, i.e., without voltage
regulator, which is the opposite assumption of this chapter, as discussed in Section 2.1.3. Nonetheless,
EPIC is a key work that should broaden minds about energy calculation: it is not as simple as multiplying
voltage, current and time altogether at a large scale without inspecting local variations. Despite working
on different assumptions, EPIC lays the groundwork for the reasoning that motivates this very work:
executing the same piece of code does not always take the same amount of energy.

5.1.2 Software Models

The EH Model [102] grasps the energy consumption of checkpointing mechanisms, notably the energy
of creating and restoring checkpoints. The EH Model supports a variety of existing static and just-in-
time checkpoint mechanisms. It is an important tool for design space exploration as the authors state.
However, it reasons in terms of energy budgets and cannot be used to model the energy consumption
of a given, actual piece of code. The electronic aspects are also left apart as a separate concern. The
physical quantities that are analyzed are energy and time, and the EH model does not delve deep into
the analysis of instantaneous current consumption.

Other works propose power state tracking [103, 104, 105, 106]. Micro-controllers and peripherals are
assumed to follow a finite state automaton, where a fixed, constant power consumption is associated to
each state. Those states are thus called power states.

SysWCEC [106] proposes a model where the micro-controller may have several power modes while
the peripherals may only have two states, on and off. It is focused on the worst case through static
analysis and exhaustive path enumeration to handle all cases in a multi-task model. SysWCEC computes
all combinatory power states, which is exponential in the number of components taken into account,
and thus hardly scalable to actual applications. In reality, peripherals are often more complex than
simple on and off state machines. The main difference with the work depicted in the present chapter is
that SysWCEC targets Worst-Case Energy Consumption (WCEC), while the present work focuses on an
average case. While SysWCEC is a smart WCEC approach that enables to reason about dimensioning
platforms or emphasizing harsh run-time conditions, it is still a worst-case approach and it is thus expected
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to yield significantly higher energy consumption results with respect to the average case targeted by this
work.

Cherifi et al. [105] propose to define power states at API-level. The states are extracted automatically
by analyzing, at run-time, changes in the instantaneous power consumption, in correlation with the
functions called by the software. They use an expensive power tracer with a minimal latency of 20 µs
between consecutive samples. The measurements are back-annotated into the generated automata. Their
work leverages only high current gaps, which are observed with peripherals such as radio chips, from
several milliamperes to dozens milliamperes, but does not apply to less consuming peripherals. Cherifi et
al. consider stable power states, but shorter states and transitions between states are not modeled.
However, their model provides a sound baseline for simulators such as the one exposed in this chapter.
It furthermore shows that power-annotated finite state machines are a promising way to be investigated.

Quanto [103] and Powertrace [104] are energy profilers for embedded systems that operate on a single
device as well as over networks. Quanto’s power state model is populated using measurements performed
using the iCount [107] energy meter. An operating system layer dynamically keeps track of changes in
power states. This is achieved by modifying driver code: a driver routine that changes the power state
of a peripheral must notify the system layer of the change. The energy consumption may be cut down
into several energy sinks, each energy sink being associated with a software-initiated activity. This way,
Quanto and Powertace are able to provide a detailed energy profile at run-time, befitted to the needs
of the application developer. These tags may also be transmitted through network packet tags, hence
extending the profiling methodology to an entire operating network.

However, these works only reason about states, but all of them assume that transitions between states
are purely symbolical and thus do not study transitions. On the contrary, this chapter extends power
state tracking and adds semantics to the transitions in order to enhance the energy model. Reasoning
at driver API level, transitions may be driver calls, or sometimes software-initiated automated hardware
transitions in the case of asynchronous calls. This chapter proposes to add a duration and an energy cost
to every transition, i.e., to every driver call.

5.1.3 Power Supply Models

First, the most natural power supply is the constant and continuous voltage, e.g., the power supply of
a desktop computer. In the context of transiently-powered systems, the scheme becomes more complex
for the power supply loses its property of continuity. In addition, power supplies for energy harvesting
devices are not unified and there exist fundamental differences from one another.

As seen in Section 2.1.3, the platforms may or may not be directly wired to the transient energy stor-
age. In the case where the platforms are directly wired to the transient energy storage, a supplemental
measurement and analysis of the instantaneous supply voltage is crucial in order to provide a correct
model and a correct estimation of the energy consumption [23]. On the other hand, when a voltage
regulator is wired between the energy storage and the platform, the resulting supply voltage is nearly
perfectly constant, provided that the energy storage voltage meets the voltage regulator requirements. In
other terms, the usage of a voltage regulator enables to model the voltage supply as a square function:
its output voltage is either near 0 V or near its nominal voltage. Transitions between those two states
may or may not be considered. They may be assumed to be short in terms of time and not significant in
terms of ratio between transition times and stabilized times. The model depicted in this chapter opts for
a power supply with a voltage regulator, providing a constant supply voltage to the platform under test.
This choice is the direct consequence of the discussion from Section 5.1.1, for supply voltage fluctuations
uselessly add complexity to the energy model and can disturb electronic components such as clocks and
oscillators.

Regardless of the energy model design, a certain amount of energy-related physical quantities are ex-
pected to be involved. In order to yield an estimation of the energy consumption of some portion of code,
the model needs to be populated with actual values. Such values can be either obtained by scanning the
data-sheets of the electronic components, or by measuring the required quantities directly on the real
hardware. Next section addresses this problematic and reviews ways of measuring energy consumption
from the literature.
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5.2 Energy Measurement for Low-Power Systems

Energy consumption measurement for low-power embedded devices is not an easy task. The main issues
are cost, design complexity, dynamic range and accuracy. There are numerous ways to measure energy.
State-of-the-art approaches are reviewed hereafter.

5.2.1 Temporal Integration of Power

A first approach is to measure and integrate instantaneous power over time. Di Nisio et al. [108] identify
two categories of circuits for current measurement. The simplest one uses a shunt resistor on the high-end
of the platform under test and the other one uses a feedback circuit that enables higher resistor values.
The main issue with the circuits using shunt a resistor is that the circuit subtracts from the supply voltage
a voltage that is linear to the current drawn by the platform. When the platform under test draws a
high current, e.g., when sending a radio packet, the voltage drop due to the usage of a shunt resistor
might be significant. The worst-case scenario would be that the voltage drop is so high that the voltage
drops below the minimal working supply voltage of the platform, thus preventing any correct functioning
every time the platform performs that power-consuming operation. But even without reaching such an
extreme extent, variations in supply voltage change the power consumption of the platform, as highlit
by the EPIC model [23]. A variation of the traditional shunt resistor circuit is to use a smaller shunt
resistor and to amplify the voltage of the shunt resistor using an operational amplifier [109]. A drawback
of the amplified variation of the shunt resistor circuit is that noise is amplified and that the operational
amplifier introduces an offset. The actual gain of the operational amplifier may also differ from the
nominal value from the data-sheet, but remains a constant value when used in a suitable signal frequency
range. However, it is possible to calibrate out these values using reference current sinks. The other type
of circuit is the one proposed by Di Nisio et al. It derives from the widespread voltage-controlled current
sink based on an operational amplifier and resembles the design of a feedback ammeter. By adding a
resistor in series with the platform under test, the resistor behaves like a shunt resistor. However, their
proposal takes advantage of the near short-circuit of the operational amplifier to bypass the resistor and
provide a stable supply to the platform under test, thus tackling the main issue of using shunt resistors. In
addition, their technique enables the usage of higher resistor values, so that the measured values are less
prone to noise. On the other hand, their circuit requires that the supply of the measurement equipment
to be greater than the supply voltage of the platform, including the voltage of the potentially big resistor.
This might result in the need of an external power supply, which is not necessarily desirable.

Although the proposal of Di Nisio et al. is appealing due to the stability of its supply, this chapter
uses the simpler amplified shunt resistor circuit. It must be noted that the sole purpose of the energy
measurements, in this chapter, is to populate the model with exploitable values, while keeping in mind
that a simulator can be built out of it. While the quality of the measurements de facto impacts the
accuracy of the simulation, the model itself is nonetheless totally independent of numerical values and
stands given any energy measurement methodology.

EMPIOT [109] proposes an accurate, low-cost power measurement platform and targets wireless
devices. It aims the same kind of platforms as targeted here, although EMPIOT considers that the
platform may draw up to 400 mA whereas in transiently-powered systems it is more realistic to consider
30 mA instead. Hence, the platform proposed in this chapter is similar to EMPIOT, but is more suited
to the specific dynamic range and resolution needed on low-power devices. In addition to targeting
platforms that can draw one order of magnitude higher more current, EMPIOT also has a relatively large
resolution of 100 µA. The measurement platform described in this chapter proposes to measure currents
up to 26 mA with a 6 µA resolution.

Eprof [101] is an energy profiler that keeps track of the energy consumption and associates it to a
software location, despite asynchronous operations. Eprof repeatedly interrupts the micro-processor to
capture the stack trace of the running thread. The evaluation of the energy consumption of asynchronous
driver calls takes advantage of the existing concept of device requests, provided by operating systems such
as Linux. Hence, eprof targets platforms with more capabilities than current transiently-powered systems.
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5.2.2 Other Approaches

A completely different approach consists in using a coulomb counter that integrates the current over time
directly in hardware. Hahm and Adler [110] use that approach. However, the measurement platform
proposed for this chapter does not use a coulomb counter because of the known imprecision in the
measurement of the capacitance of a capacitor. In addition, design simplicity is one of the main concerns
of the measurement platform.

PEEK [111] provides a physical platform for energy measurements. It leverages a current mirror, to
replicate the current drawn by the platform without disturbance. Two capacitors alternately charge and
discharge at a rate that is proportional to the current drawn by the platform under test.

The energy meter iCount [107] powers a platform by storing some energy into an inductor. The
platform under test draws its energy from the inductor, until the energy level of the inductor drops
below the minimal value that enables the platform to be powered. The energy budget of this usage of
the inductor is thus constant and iCount counts the amount of times the inductor was depleted to yield
its estimation of the energy consumption. The energy meter iCount further provides a constant supply
voltage to the platform under test by using a boost voltage regulator. Its energetic resolution is around
0.5 µJ and its highest sampling frequency is 66 kHz.

5.3 State-of-the-art Simulators

Platform simulators that target energy consumption estimation already exist.

Bouhadiba et al. propose a simulation at transaction-level [112]. While that solution identifies the
power states of the platforms, it rather simulates elapsed time and does not simulate the peripheral
operations themselves, nor the execution of the instructions on the micro-controller.

PowerTOSSIM [113] is a simulation environment of TinyOS applications. PowerTOSSIM tracks the
evolution of the power state of all peripherals and replaces the software basic blocks by an estimation
of their execution times. Transitions in the power state automata are tracked using a trace of driver
calls. The software model of TOSSIM, on which PowerTOSSIM is based, requires that the application is
re-compiled specifically for the simulator. Similarly to the work of Bouhadiba et al., the micro-controller
instructions are not executed, hence TOSSIM cannot yield a precise value of the computational intensive
parts of software, such as processing sensed data. PowerTOSSIM bypasses that limitation by counting the
amount of times a basic block was executed, having formerly instrumented every basic block in TOSSIM,
and by estimating the time required to execute every basic block. The instructions are thus not actually
simulated, and the result is still an estimate, albeit closer to reality than what TOSSIM could have
yielded. In their experiments, the authors noted a discrepancy of 1.5% to 33.0% cycle count for software
execution. The whole simulation could thus be improved with a cycle-accurate simulator that simulates
every instruction on an unmodified binary.

Another method consists in modeling the platform on a Field-Programmable Gate Array (FPGA)
platform with a dedicated monitor that analyzes memory accesses and elapsed cycles [114]. That method
leverages memory energy models in order to yield energy estimations, but the monitor does not record
changes of peripheral power state.

5.4 Energy Model of Intermittent Systems at Software Level

This section defines the energy model as a contribution to accurately describe the energetic behavior of
transiently-powered systems. The present model extends the concept of power state tracking. Tradi-
tionally, peripheral operations initiate transitions between power states and those transitions are purely
symbolical, as if such transitions took no time nor energy from the available energy budget. This chapter
proposes a novel model that gives meaning to transitions between power states in order to improve model
fidelity.
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Figure 5.1: Driver state machine of the driver for CC2500EMK radio daughter board. State is Idle after
driver initialization. The values were measured as shown in Section 5.5.

5.4.1 Peripheral Model

The behavior of any peripheral can be modeled using a finite state machine. It can be as simple as a
two-state on/off machine, or it can be much more complex as, for instance, a radio chip state machine
with several internal states. These state machines are usually documented in the hardware data-sheet.
In general, it is not necessary to model peripherals at a fine grain. Only the state machine of the driver
API itself, which is either a subset of the actual peripheral state machine or a higher-level finite state
machine, may be considered. The proposal of this chapter is to use these driver state machines to model
the power consumption of the peripherals. A typical example of such a driver state machine is the one of
the radio chip used in this study, that is Texas Instruments’ CC2500EMK daughter board, represented in
Figure 5.1. The state automaton from Figure 5.1 illustrates the difference between the driver API state
machine and the data-sheet state machine. Indeed, the data-sheet exposes all the hardware states of the
radio chip whereas the API only exposes higher level services and thus simplifies the state machine. This
is desirable for it alleviates the state machines. The resulting driver state machine contains only three
states: Idle, Sleep and RX. There is no dedicated state for data transmission. Indeed, the driver call for
transmission starts from the Idle state, temporarily switches to the hardware transmission state, then
switches back to Idle state when the radio packet is sent. Hence, from the driver’s perspective, the state
did not change.

In a driver state machine, each state is considered to have its own power state, i.e., current con-
sumption, assumed to be constant until the peripheral state changes. A strong assumption of the model
brought by this chapter is that peripheral power state does not change on its own but always on behalf
of the driver routines. In other terms, the present model solely accounts for synchronous APIs. This is a
simplifying assumption but, as supported by the results exposed in Section 5.7, it is sufficient to obtain a
fair estimation of reality. Strictly speaking, asynchronous calls may allow peripherals to change without
the explicit intervention of software code. Timers are examples of such peripherals, for their counter reg-
isters do not require any software intervention to update their values, but the counter evolution does not
modify the timer power consumption. In order to handle asynchronous calls, the present model assumes
that an interrupt is always raised when a peripheral gets into a state that changes its power consumption
on its own, so that the interrupt handler becomes one of the transitions of the driver state machine.

In a driver state machine, the transitions have specific semantics. First, all transitions correspond to
a driver call. This directly derives from the assumption that driver calls are synchronous. In addition,
each driver call, i.e., transition between driver states, has a given cost in execution time and energy.
The arguments passed to the driver routines might have an influence on these metrics. Sending a radio
packet is a typical example of such a parameterized driver routine because the duration and the energy
consumption of the call increase along with the increased size of the packet, as illustrated by send(pkt)

in Figure 5.1. However, while conducting experiments, most of the durations and energy values associated
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Figure 5.2: Power state machine of the MSP430FR5739 micro-controller. Initial state is Active mode.
The values of current consumption were measured as shown in Section 5.5. The transitions from Active

state to LPMx are performed by a single instruction, hence the operation lasts a few cycles and is accounted
for no additional energy consumption. Conversely, the durations of the transitions from LPMx states to
Active mode vary between 0.58 µs and 120 µs for the MSP430FR5739 micro-controller, depending on
the low-power mode.

to driver calls did not depend on the parameters. The last statement however strongly depends on the
driver API comprehensiveness. For instance, a driver API that would let the application finely tune the
configuration of the peripherals might have a config routine with many parameters that would totally
change the behavior of the config routine, e.g., using a switch statement. It may also be noted that
the same driver call may consume a different amount of energy, depending on the current state of the
peripheral. This is the case of the sleep driver call from Figure 5.1, that consumes 0.27 µJ when issued
from Idle state and 1.19 µJ when issued from RX mode. The duration is the same for the code of sleep
is unique. The difference in energy consumption is solely imputable to the fact that the starting states
have different current consumptions.

The states carry information about the peripheral power state. Transitions between states carry
information about consumed energy and elapsed time for each transition. Transition information is a
major aspect of this contribution, for it is the key information usually ignored by state-of-the-art power
state tracking models. Every peripheral operation invocation broadens the gap between the energy
estimation of such models and the real conditions, for elapsed time and energy consumed during the
execution of the peripheral operation vanish from the overall balance. This motivates the need for a
transition model in addition to the existing power state models, which is the main purpose of the present
model. To populate this model, numerical values have been obtained by profiling the drivers of Sytare
using the methodology described in Section 5.5.

The micro-controller itself also has a power state machine. It has several operating modes: an active
mode enabling software to make progress, and the low-power modes disabling several CPU components.
All low-power modes share the property that no instruction can be executed. Hence, the semantics of the
transitions slightly differ from the transitions of the driver state machine. The micro-controller executes
a specific instruction to enter a low-power mode and only the occurrence of an interrupt may achieve
the transition back to the active mode. The power state automaton of the micro-controller is shown in
Figure 5.2. Transitions from low-power modes to active mode involve re-enabling internal clock, thus it
takes a certain amount of time depending on the clocks to re-enable.

Considering separate state machines instead of explicitly enumerating all power state combinations
at platform-level, in addition to using a high-level driver API, makes the model proposal of this chapter
realistic and scalable to any embedded system.

5.4.2 Software Model

In general, the overall power consumption of a board depends on the power state of the entire platform.
This encompasses not only the direct consequences of the piece of software actually being executed, but
also the consequences of formerly executed pieces of software, as well as possible asynchronous operations.
For instance, the same portion of code may consume more or less energy while an LED is on or off. It
may also change without any software intervention. Such a situation occurs when a peripheral internally
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Figure 5.3: Example showing how the platform’s power state evolves with driver calls. On the left, the
individual power state machines of the CPU, LED and radio chip. The values are displayed for illustrative
purposes and do not correspond to actual current measurement. LPM stands for Low-Power Mode. On
the right, the evolution of current consumption following a particular software trace. The compute call
does not alter platform power state.

triggers another as a timer would, or when an external peripheral embeds its own logic and decides to
change on its own. Again, the present model assumes driver call synchronicity.

A software program is modeled as a control-flow graph where each node consists of a sequence of
either regular assembly instructions or calls to driver functions. Software code that does not call any
driver function may change the application state but may not impact the platform power state. On
the contrary, only driver code is allowed to modify the peripherals and thus, the platform power state.
Driver routines are modeled as atomic function calls, even though in reality they might be interrupted
by interrupt service routines. Figure 5.3 illustrates this model, applied to a simplified example platform.
The peripheral models, on the left-hand side, are only illustrative here and the real models are detailed
in Section 5.4.1. The example follows a linear control-flow graph, where driver calls, such as led on, and
computational functions, such as compute, are executed. While compute is being executed, the platform
power state does not change whereas the driver calls change the platform power state.

As for other chapters of this thesis, the model relies on a distinct separation between computational
code and peripheral operations through the definition of driver code. As discussed in Section 3.2.1,
assuming the existence of a separate driver code is totally realistic for both bare-metal and system-
supported views.

5.4.3 Power Supply Model

This chapter supports two power supply models. The first model consists in supplying the platform
with continuous supply. It corresponds to battery-powered scenarios where the battery is able to supply
steady power during years. The second model consists in harvesting energy and storing it into a capacitor
that supplies the platform through a voltage regulator. Power outages are likely to occur often. Hence,
the energy harvesting supply model requires a power manager in order to schedule charge and discharge
phases. Both these models also assume that the platform is supplied with a constant, steady voltage
supply. This assumption is realistic for voltage regulators are used in continuously-powered systems and
in some power managers for intermittent systems based on energy harvesting as discussed in Section 2.1.3.

5.5 Energy Consumption Measurement

There is a plethora of ways to measure instantaneous current. All of them have their advantages and
drawbacks, as well as their own performance profiles: supply voltage perturbation, amount of noise,
dynamic range, etc. In the particular case of this work, the measurement platform must provide a high
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Figure 5.4: Measurement circuit schematics.

sampling frequency because power consumption may change every dozen of instructions. It must also
provide a high dynamic range.

The measurement circuit relies on a simple design, similar to that of EMPIOT [109]. The circuit,
shown in Figure 5.4, includes a shunt resistor of 0.2 Ω in series on the high-end of the supply voltage of
the device under test (DUT). The voltage across the shunt resistor is amplified using Texas Instruments’
INA212 operational amplifier with a gain of 1000 V/V. The output of the operational amplifier is fed to
Texas Instruments’ ADS8661 12-bit Analog-to-Digital Converter. The controller circuit is a Raspberry
Pi 3 Model B, executing bare-metal code in order to have a better control over timing constraints than
when executing on top of a non-realtime operating system such as Linux. The regulated 3.3V power rail
of the Raspberry Pi 3 powers the device under test, while the unregulated 5V power rail powers both
the operational amplifier and the ADC. Before measuring, the monitoring device is calibrated using a set
of known resistors that emulate fixed, constant current loads. The calibration is a linear regression. In
this case, the linear slope coefficient is 200 V/A, which corresponds to the 0.2 Ω resistor amplified by the
operational amplifier with a gain of 1000 V/V.

The circuit actually measures the voltage across the shunt resistor, which is linear to the instantaneous
current i(t) drawn by the device under test. The energy consumption of executing a piece of code, ∆E,
is given in Equation (5.1), where VCC(t) is the instantaneous supply voltage, t0 and t1 the time-stamps
corresponding respectively to the beginning and the end of the operation to monitor.

∆E =

∫ t1

t0

VCC(t)× i(t)× dt (5.1)

As mentioned in Section 5.4.3, the supply voltage VCC is constant over time, either in a continuous
power scenario or an energy harvesting scenario with a voltage regulator. Hence, VCC may be moved
out of the integral in Equation (5.1). Furthermore, the integral of the current can be substituted by the
integral average of the current, multiplied by the elapsed time. Here, the current data is discretized due
to sampling so the energy evaluation uses the discrete current average I[t0,t1] as an approximation of the
integral average during the sampling time interval [t0, t1]. The expression of ∆E may thus be simplified
as shown in Equation (5.2).

∆E = VCC × I[t0,t1] × (t1 − t0) (5.2)

The instantaneous current i(t) is obtained from the ADC values: i(t) = Istep×XADC(t)+Ioffset, where
Istep is the current increment for each ADC step, XADC the value returned by the ADC and Ioffset the
measurement offset due to the operational amplifier. The average of the ADC samples over [t0, t1] defines
XADC,[t0,t1], thus echoing the definition of I[t0,t1]. ∆E may be further defined as shown in Equation (5.3),
which links energy consumption and sampled ADC values. After calibration, Istep = 6.4 µA/step and
Ioffset = −4.0 µA.

∆E = VCC × (Istep ×XADC,[t0,t1] + Ioffset)× (t1 − t0) (5.3)

The value of ∆E given by Equation (5.3) is the energy consumed by the entire platform during [t0, t1].
This means that the micro-controller, as well as all other powered-on peripherals, are accounted. In order
to isolate the energy consumption of a specific subset of components, the experiment operator must
subtract, to ∆E, the energy consumption of the rest of the platform. For instance, when sending a radio
packet, the micro-controller is in active mode and consumes energy as such. To determine the radio-
related energy consumption of sending a radio packet, the energy consumption of the micro-controller’s
active mode during the entire time interval must be subtracted. Obviously, to reduce the amount of
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Table 5.1: Measurements of driver calls energy consumption and duration for the radio, temperature
sensor and accelerometer as implemented in Sytare. ∆E(x) and ∆t(x) are represented on Figure 5.5.

Driver call ∆t (µs) ∆E (µJ) from to
rf init 451 10.3 uninit init
rf config 575 4.5 init idle
rf idle 112 6.0 RX idle
rf wakeup 399 3.1 sleep idle

rf sleep
25 0.2 idle sleep
25 1.1 RX sleep

rf rx enter 952 28 idle RX
rf send(x) ∆t(x) ∆E(x) idle idle
temp init 159 0 uninit init
temp sample 76 0.2 init init
accel init 55 0 uninit off
accel on 1025 46 off on
accel off 10 0 on off
accel sample 171 0 on on

other components to subtract, it is recommended to disable as many other components as possible before
performing the measurements, leaving only the absolute necessary components on.

The whole monitoring device achieves a dynamic range between 8 µA and 26 mA, samples at 170 kHz
and presents a noise that theoretically would correspond to 6 least significant bits. In practice, such a
high noise was not observed during the experiments. High-frequency current noise incurs errors in energy
measurement. But since integrated high-frequency signals result in small quantities, the overall error is
expected to be small as well.

This power monitoring methodology has the advantages of being simple, low-cost and compatible
with any platform for the only hardware requirements are basic: a power supply pin on which to plug the
shunt resistor, and a couple of GPIOs. The value of the shunt resistor and the gain of the operational
amplifier are specific to the targeted platform though.

5.6 Simulation and Energy Consumption Prediction

In order to provide an estimation of the energy consumption of a piece of code, the model described in
Section 5.4 needs to be populated with numerical values obtained using a measurement device such as
the one described in Section 5.5. Notably, the transitions of the driver state automata are tagged with a
duration and an energy consumption. It is crucial to get those values right in order to yield an accurate
estimation.

5.6.1 Regular Driver Calls

Measurements of duration and energy consumption for driver calls, i.e., state transitions, are given in
Table 5.1. Some driver calls appear to consume no energy, because their consumption is already accounted
in the consumption of the platform over the measured duration. In other terms, when the state of
the platform is never changed by the driver routine, no additional energy consumption is accounted.
This is the case of accel sample that samples accelerometer values without changing the state of the
accelerometer nor the rest of the platform. However, it does not stand for rf send for that driver routine
makes internal changes in the state of the radio chip.
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Table 5.2: Difference in measured current levels between on and off states of the Memory Protection
Unit (MPU), accelerometer and LED.

Driver state ion − ioff (µA)
MPU 0.54
Accelerometer 385
Single LED 1230
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Figure 5.5: Measured (a) energy consumption and (b) duration of radio emission for different packet
lengths.

5.6.2 On/off drivers

Some drivers might only present a simple, two-state machine. For instance, LEDs are based on GPIOs,
but since it only makes sense to use them as outputs, the state machine of each LED has two states: on
and off. Table 5.2 shows current measurements for some peripherals modeled as on/off drivers. Their
driver state automaton could be more complex, however in practice, their set of driver routines currently
only achieve transitions between two states. Current is computed by averaging the platform current
during a certain amount of time. Computing the difference between two power states of the platform
cancels out the consumption of other components that might be powered on.

5.6.3 Driver Routines with Parameters

Driver call energy consumption also depends on the parameters that are passed to the driver routines.
For instance, the length of the packet to be sent has a substantial impact on time and energy costs. In
order for any prediction to be accurate, the influence of parameter values must be modeled.

A parameterized driver call is exemplified by the rf send driver call of radio peripheral. The measured
energy and duration of the packet-sending driver routine are shown in Figure 5.5. For each packet length
from 1 byte to 254 bytes, packet emission was measured 64 times. Energy measurements have a standard
deviation not higher than 3.6% of the average value. Duration measurements have a standard deviation
of at most 11.4 µs in a few cases, and 1.8 µs in average. The relationship between energy and packet
length may be modeled as a simple a linear regression: ∆E(L) = 2.39 × L + 47.71 µJ, where L is the
packet length. The relationship between run-time and packet length is better modeled as a two-part linear
regression which parameters change at 64 bytes, that is the size of the internal transmission FIFO of the
radio peripheral. For packets smaller than 64 bytes, ∆t(L) = 38.1 × L + 1263.3 µs. For larger packets,
∆t(L) = 32.0× L + 1646.3 µs. The discrepancy between energy and time behaviors originates from the
energy of populating the FIFO being a few orders of magnitude lower than the energy of actually sending
the packet. Hence, the influence of the FIFO limitation is less visible regarding energy in comparison to
time.
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Figure 5.6: Excerpt of simulation record, in solid blue, and actual measurement, in dotted red, of the first
seven data batches of the Complete-WSN application. The application uses a radio, an accelerometer
and temperature sensor.

5.6.4 Integration in Simulation

The model described in Section 5.4 was implemented on a simulator 1 built on top of ArchC [115].
ArchC is a language for CPU architecture and ISA description. It aims at generating cycle-accurate
SystemC code for simulation purposes. For the needs of the simulator, an ArchC model of the MSP430X
instruction set was written, in order to execute the binary images compiled for MSP430FR5739 without
any modification. This makes the energy estimations relevant for the simulator and the real platform run
the same binary image.

Compared to other state-of-the-art simulators, the proposed simulator really executes the genuine
software parts, i.e., the computational parts of the code, in a cycle-accurate fashion. The driver part
is run symbolically: instead of executing every single instruction of a driver call, the whole routine is
bypassed and only its functional effects are simulated. The time duration and energy consumption are
directly taken from the measurements presented above. As far as genuine software is concerned, the
actual pipeline of the MSP430X architecture not being open-source, the simulator uses a simple heuristic
to simulate instruction pipelining: all instructions have their theoretical cycle costs subtracted by 1.
Experiments from Section 5.7 show that this estimation gives adequate results.

The simulator comes with two power supply models, as aforementioned: (i) continuous supply and
(ii) energy harvester with a power manager that stores energy into a capacitor and powers the device
under test through a voltage regulator. In the second scenario, the voltage conversion is considered
conservative so far, i.e., there is no energy loss due to the circuitry. When the capacitor voltage drops
below a certain threshold, the simulator generates an interrupt and calls the software-defined interrupt
handler of the kernel as it would be done in a real scenario of just-in-time systems such as Sytare. Then,
when the capacitor voltage drops further to a lower threshold, the simulator virtually switches the device
off, refills the capacitor and restarts the virtual platform by running the reset entry of the kernel interrupt
vector.

Figure 5.6 illustrates the simulation, under continuous supply, of a specific application which repeat-
edly senses accelerometer and temperature data and sends the data over radio. The graph also shows
actual current values measured on the same application on real hardware. The current peaks correspond
to sending radio packets. The main discrepancy between simulation and measurements is that the simu-
lated peaks are smaller yet broader. This observation is a consequence of the usage of the discrete current
average I of the model depicted in Section 5.5. I is computed so that its temporal integral is the same
than the temporal integral of the instantaneous current.

1https://github.com/gberthou/archc-msp430x/tree/sytare-syscalls

https://github.com/gberthou/archc-msp430x/tree/sytare-syscalls
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Figure 5.7: Instantaneous current consumption for a transmission of a 128-byte long radio packet.
Hatched areas depict the equivalent surface corresponding to the consumption of the radio, in blue,
and of the rest of the platform, in red. These averaged values are used in simulating transmissions.

The soundness of this model is asserted, as shown in Section 5.7, if the measured energy consumption
and the simulated one match. For instance, in Figure 5.7, the area under the curve of the instantaneous
current is equal to the sum of both hatched areas. This principle is what makes the present model both
simple and accurate.

5.6.5 Benchmark Applications

The simulation is tested against a benchmark made of the following applications.

LEDs LEDs counts from 0 to 255 while displaying the counter on the LEDs. It is the same application
as defined in Section 4.6.2.

Accelerometer Accelerometer turns on the accelerometer, performs ten measurements and turns off
the accelerometer, waits one millisecond, repeated 256 times.

Radio Radio puts the radio into sleep mode, waits one millisecond, puts the radio to idle mode and
sends a 128-byte long packet, repeated 256 times.

Complete-WSN Complete-WSN uses accelerometer, temperature sensor and radio. It slightly differs
from the WSN application from Section 4.6.2. It senses acceleration and temperature several times as
data batches and sends the data batches over radio as small packets. The first data batch contains one
acceleration and temperature measurement, the second one contains two measurements, and so on, so
that data batches grow with time. Data batches are sent over radio through 32 byte-long packets, without
any particular network layer that would ensure reception on the other end of the radio channel. The
radio is sleeping while sensing data and the accelerometer is always on. The maximal data batch size is
statically defined.

5.7 Experimental Results

The results of these simulations are shown in Table 5.3 and Table 5.4. Simulation achieves less than 1%
time estimation error and less than 5% energy estimation error, which makes this methodology suitable
for a precise estimation of low-power embedded systems with important peripheral usage. The platform
depicted in Section 5.5 enables to measure the instantaneous current drawn by the device under test. For
instance, Figure 5.7 shows the evolution of the platform current during a radio emission of a 128-byte
long packet (rf send(pkt) driver call in Table 5.1). In this specific example, the behavior of the radio
transmission is simplified during simulation, but its simulated energy consumption is still accurate, as
shown in Table 5.4.
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Table 5.3: Comparison, for execution time, between measurements and simulation of the benchmark
applications on the MSP-EXP430FR5739 platform.

Application Measured ∆t (ms) Simulated ∆t (ms) ∆t error (%)
LEDs 274 274 0.0
Accelerometer 948 959 1.2
Radio 1815 1836 1.2
Complete-WSN 783 781 0.3

Table 5.4: Comparison, for energy consumption, between measurements and simulation of the benchmark
applications on the MSP-EXP430FR5739 platform.

Application Measured ∆E (µJ) Simulated ∆E (µJ) ∆E error (%)
LEDs 5596 5595 0.0
Accelerometer 17113 16309 4.7
Radio 102706 107285 4.5
Complete-WSN 16114 16315 1.2

5.8 Conclusion

The main contribution of this chapter is a new simplified energy model that enables the accurate sim-
ulation of low-power embedded systems using peripherals. This is achieved by modeling driver calls at
coarse grain, in a parametric way, while the rest of the code is simulated at instruction-level.

The proposed model is validated by implementing a simulator that may be adapted to support any
Instruction Set Architecture and any peripheral. In the experiments conducted here, the simulator targets
an MSP-EXP430FR5739 platform equipped with an accelerometer, a temperature sensor and an external
radio chip. For this platform, the simulator achieves good estimation: less than 1% time estimation error
and less than 5% energy estimation error. An important aspect of this work is that it is suited to
intermittent system simulation as well.

The energy consumption of the peripherals and driver calls has been precisely obtained using a low-cost
measurement platform, hence accessible to any embedded system designer.

The aim of the simulator is average time and energy consumption estimations, while plenty of other
works only focus on the worst case. Though it is necessary to evaluate worst case for software and
hardware design purposes, it is also important to get a more realistic estimation which order of magnitude
better reflects the behavior of the platform. Indeed, average cases are more representative of the probable
run-time conditions and transiently-powered systems often use checkpointing.

Using a precise simulator is useful, not only to measure the energy needs of a given portion of code,
but also to conduct large experiments on sundry binary images, while taking advantage of the resources of
the simulation environment. This approach supersedes the slow traditional procedure that would consist
in flashing a binary image and testing it against measurement devices, with a limited amount of hardware
platforms. Such a usage of the simulator is made for the generation of the results exposed in Section 6.4,
for they involve hundreds of binary images to be tested under several environment scenarios.

In the specific case of transiently-powered systems with heterogeneous memory, such as the MSP430FR
micro-controllers equipped with both volatile RAM and non-volatile RAM, the energy consumption model
could be further improved by adding a memory model that would support heterogeneity. For instance,
the non-volatile RAM of the MSP430FR5739 micro-controller is thrice slower than its volatile RAM.
Notably in scenarios where the software evenly shares its memory accesses between a slow and a fast
memory, the simulator might benefit from a finer memory model.

In the experiments, the driver interacted with a virtual environment, e.g., by sending radio packets.
The simulator could be further improved by adding a scenario description language that would allow
the experiment operator to encode some data into the simulation environment. Such data could be the
contents of an incoming radio packet, or could be the occurrence of some external event, such as a button
being pressed. This perspective would increase the reproducibility of experiments and provide a sound
simulation environment to virtually deploy platforms and analyze their consumption.



Chapter 6

MPU-Based Incremental
Checkpointing

The checkpointing schemes depicted in Chapter 3 and Chapter 4 do achieve persistence and guarantee
consistency between memory and peripherals. However, some of these approaches, notably the ones that
do not leverage a static analysis and variable liveness analysis, may save or restore more data than needed.
Indeed, under intermittent power, life-cycles may be expected to be fairly short, reducing the likeliness
of the application to either modify or read all of its variables before power fails.

This chapter focuses on application state persistence, that is P1. Extending the incremental check-
pointing concept to peripheral state is more complex. It is actually already proposed by Sytare, as
discussed in Section 4.4.4, for the evolution of the state of peripherals is progressively and incrementally
committed to the next checkpoint image. Sytare then proposes a two-phase checkpointing system: a
just-in-time mechanism for application state persistence and an incremental mechanism for peripheral
state persistence. The idea behind this chapter is to make application state persistence incremental as
well, albeit still performed once per life-cycle.

While existing approaches already target incremental checkpointing, this one aims at providing incre-
mental checkpointing with minimal overhead, by using a simple component present in most of today’s
micro-controllers: a Memory Protection Unit (MPU). MPUs are embedded in low-power micro-controllers
for they are not as elaborated as Memory Management Units (MMU), for instance. Traditionally used
for process isolation, to run untrusted code or to prevent memory-related bugs resulting from a bad
memory management, MPUs may also be used for checkpointing purposes. The technique described in
this chapter results from a former publication [116] while the benefits of such a technique are studied in
greater depth here.

The basics and elementary notions of incremental checkpointing are stated in Section 6.1, including
existing software-based and hardware-based approaches. Then, the overall design of this MPU-based
incremental checkpointing proposal, evoking earlier works as stated later, is depicted in Section 6.2. A
novel generic yet realistic model complements this contribution. The model, described in Section 6.3,
includes eleven parameters and enables to reason about the energy consumption of the MPU-based ap-
proach in comparison to a full copy. The model also serves as a basis for discussion of transiently-powered
systems requirements. The analysis shows that even for short amounts of RAM, e.g., 20 kB, MPU-based
incremental checkpointing is much less energy consuming than a full copy of the RAM contents, even
when taking advantage of the speedup brought by a Direct Memory Access (DMA) component. The
current proposal was implemented and executed on a cycle-accurate simulator of the FRAM-based MSP-
EXP430FR5739 demonstration platform. Simulation confirms the reasoning brought by the model, as
demonstrated in Section 6.4, and the benefits of this technique for transiently-powered systems that use
checkpointing.

97
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6.1 Towards Incremental Checkpointing

Energy available for transiently-powered systems is scarce and thus need to be carefully managed. The
worst-case scenario would be that the operating system consumes the entire energy budget for its own
needs, leaving nothing for the application, which would substantially annihilate the motivation for using
an operating system. Hence, the operating system must provide efficient mechanisms for whatever pur-
poses it is made for. This is true for all systems, however even if a desktop application may suffer from
a few slow-downs and give an uncomfortable experience to the human user, the situation would threaten
the feasibility of an application under intermittent power assumptions.

In general, such systems use optimized copy operations to populate their checkpoints. The use of a
Direct Memory Access, enabling hardware copy operations at a frequency close to that of the memory bus,
is very common. Operating systems yet need to optimize how they orchestrate their copy operations.
Specifically, two axes of improvement are to be investigated: checkpointing less often and performing
smaller copies. Those two axes are orthogonal and the present contribution targets the latter: smaller
copies. The first axis, checkpointing less often, is already addressed by just-in-time checkpointing, as
described in Section 3.4.2.

Some works propose to decrease the amount of RAM copied to non-volatile RAM, either by considering
the role of each region of the RAM [98] or by considering incremental checkpointing [117, 98]. Several
works have proposed solutions to improve checkpointing efficiency, i.e., minimizing energy spent for
checkpointing.

6.1.1 Software-based Approaches

Aı̈t-Aoudia et al. [117] proposes an incremental checkpointing scheme to reduce the amount of writes to
non-volatile RAM as much as possible. Their solution leverages a kernel layer, that allocates equally-
sized blocks stored in non-volatile RAM. They use a double-buffered checkpoint image in order to prevent
permanent crashes. They define a checkpoint image as an ordered array of pointers that point to the
address of the non-volatile blocks. If a portion of memory did not change between two consecutive
checkpoints, the analogous pointers point to the same block. If the portion of memory did change, then
the analogous pointers target separate blocks. The block pool requires garbage collection and a block
allocator. Modified blocks are detected by hashing the contents of every block. Thus, their approach
presents two sources of overhead: (i) the performance of the implementation of the garbage collector and
block allocator and (ii) the performance of the hash algorithm. No information is given about the hash
algorithm, however it may be assumed that its execution time is linear to the block size. In addition, the
hash algorithm might introduce redundancy, thus bugs may arise whenever two different block contents
yield the same hash value. Depending on the nature of the hash algorithm, this situation is not likely to
happen, but since platforms that harvest energy are designed to run almost forever, this may occur in
the platform’s life-time.

Bhatti and Mottola [98] assign separate roles to different RAM regions, namely the stack, heap,
.bss and .data sections. The main assumption of their work is that the non-volatile storage is Flash
which, as discussed in Section 2.5.1, has page constraints. They propose three optimizations. The first
one, named Split, simply discards unused stack and does not take into account heap fragmentation: it
solely excludes the unused stack from being part of the checkpoint image. The second one, named Heap
Tracker, discards unused stack and unused heap. The third one, named Copy-If-Change, proposes an
incremental checkpointing scheme. During the first checkpoint operation, the Flash memory needs to
be populated, so the entire RAM contents are copied to Flash. Then, only modified portions of RAM
need to be updated in the Flash storage. Since their approach assumes a Flash storage, the portions of
RAM are studied at the granularity of the Flash page size, for page size is the smallest Flash memory
unit that may be updated. The authors did not discuss the block modification detection algorithm of
Copy-If-Change, but rather disclose that the Flash-located counterpart of a block is read and compared
to the actual RAM block. It can thus be assumed that the comparison is linear to the block size, and
that the comparison algorithm early stops when the first discrepancy is found. In addition, it must be
noted that the block modification detection algorithm requires potentially numerous Flash reads and that
read accesses to Flash may be slower than read accesses to RAM. Flash-related optimizations, such as
page alignment and making data contiguous, are out of scope here since the present thesis focuses on the



6.1. TOWARDS INCREMENTAL CHECKPOINTING 99

usage of non-volatile RAM over the usage of other non-volatile memories.
DICE [118] is a checkpointing optimization scheme that is compatible with statically-provisioned

checkpoints as well as just-in-time checkpointing techniques, such as the ones depicted in Chapter 3.
DICE handles differently .bss, .data and heap sections on one side and stack on the other side. A
compiler pass identifies direct writes to global variables, i.e., .bss and .data sections, but accesses to
global variables through pointers must be instrumented at run-time. The compiler pass records the
updates along the natural execution of the application. DICE stores the records as a bitmap where
each bit maps a byte of main memory. While this feature enables the actual save operation to already
know what variables to save, unlike approaches that require to determine block modification at that
critical point [117, 98], it places overhead on every single write to those variables. More specifically, if an
application requires writes to the same variable several times in a short time-span, DICE would record
the writes several times albeit not necessary in case the next power outage occurs later on. The stack
is instrumented by the compiler pass as the latter can evaluate the stack frame size of a given function.
Only the current topmost working portion of the stack is saved, which corresponds to the modified stack.
The stack pointer is handled with special care for, upon returning from a function, lower portions of stack
may also be modified.

eM-map [87] proposes an interesting memory mapping where each function is free to allocate its
variables either in volatile RAM or non-volatile RAM. It is not an incremental approach per se, however
eM-map also aims at, amongst others, reducing the energy dedicated to checkpointing.

Libckpt [119] provides transparent checkpointing for Unix-based systems. As far as incremental
checkpointing is concerned, libckpt uses the Unix mprotect system call to write-protect all memory
pages of the application data, i.e., to make them read-only. An access mismatch generates a Unix SEGV
signal and the corresponding signal handler from libckpt flags the page as modified. Upon next checkpoint
save operation, only modified pages are included in the checkpoint image.

6.1.2 Hardware-based Approaches

Few works leverage hardware for checkpointing. Bartling et al. [120] propose to design a non-volatile
micro-controller which automatically saves all CPU and peripheral registers to FRAM, upon detecting
a power outage. However, this solution proposal leverages a new kind of architecture, not necessarily
accessible to researchers for the time being.

Egger et al. [121], whilst studying operating systems for high-power virtual machines, observe that
system caches operate at the granularity of disk blocks. They propose to spy on the disk operations in
order to flag memory pages that are identical to their disk page counterpart. Using this knowledge, the
operating system may safely exclude these identical, i.e., unmodified, memory pages from the checkpoint
image. Their run-time assumptions are far from the ones of transiently-powered systems, considering
the fact that they target continuously-powered high-power virtual machines, yet the aims are identical.
While checkpointing for transiently-powered systems solely tackles power outages, in the world of virtual
machines, checkpointing is mostly used for any kind of failure or to stop the virtual machines at any time.
Virtual machines issue their disk operations using a hypervisor and Egger et al. propose to dynamically
instrument the hypervisor. The hypervisor is a piece of software that provides the virtual environment
in which the virtual machines run. It notably provides an API to isolate the virtual machines peripheral
accesses from the actual operating system and physical machines that support them. Egger et al. propose
to write-protect the memory pages mapped to the disk blocks, using a power-consuming MMU. An MMU
is a hardware component, present in some power-consuming micro-controllers and micro-processors, that
provides virtual addresses and access right management to software-defined parts of the memory. MMUs
must maintain a translation lookaside buffer that stores the address mapping configuration. In the work
of Egger et al., a write access to a read-only address triggers an MMU page fault exception, which grants
write-access to the faulting page and restarts the aborted write operation. However, MMUs are absent
from low-power embedded designs because of their power requirements.

Freezer [122] leverages a dedicated piece of hardware as a checkpointing helper. It is a checkpoint
controller that spies on the address bus and manages a bitmap of modified memory blocks, one bit per
block. Upon imminent power outage detection, the bitmap is parsed in order to determine whether to save
the corresponding memory block. Freezer is designed to suit the energy demands of transiently-powered
systems with a hardware solution that is tailored for checkpointing purposes, without the intervention
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Table 6.1: Characteristics of the MPUs from two low-power architectures. A suitable MPU depicts an
MPU that can efficiently be used for incremental checkpointing, i.e., an MPU that may operate over
the entire volatile memory range and that can replay the faulting instruction upon returning from access
mismatch interrupt.

MPU Address range Regions Region size Suitable
MSP430FR57xx NVRAM only 3 Customizable No
ARM Cortex-M Entire memory 8 with 8 subre-

gions per region
Customizable one
region at a time

Yes

of software. It thus supersedes the usage of an MMU. However, Freezer remains a specific hardware
component and, consequently, cannot be used on today’s off-the-shelf platforms.

These works define incremental checkpointing. In order to selectively save memory regions from volatile to
non-volatile memory, the entire volatile RAM must be mirrored in the checkpointing image at least once,
or more in case of double-buffering for instance. This stands regardless of the checkpointing mechanism
being incremental or not, for the system must always be able to repopulate the RAM upon restoration
process.

This chapter proposes a similar scheme to the one of libckpt [119] and Egger et al. [121]. Instead of
using Unix system calls that would draw heavy dependencies and would hardly fit on today’s transiently-
powered systems and instead of leveraging a high-power MMU, the present solution features a low-power
and less sophisticated MPU. This key difference enables to extend the usage of this type of incremental
checkpointing to more modest micro-controllers and harsher run-time conditions. In addition, this work
exposes a parameterizable model of the energy consumption of the save operations in case of a full
copy or in case of an MPU-based incremental approach. This novel model is totally distinct from the
implementation and is a contribution by itself, for it greatly helps to design platforms and to choose kernel
policies. Note that the chapter is written as if assuming that the incremental checkpointing mechanism
was implemented on top of Sytare. It is nevertheless independent of the underlying system layer and can
be easily adapted to any other approach.

6.2 Incremental Checkpointing Design using an MPU

An ideally efficient incremental checkpointing mechanism would only save data that have been modified
during the current life-cycle. This work heads towards this goal, through the utilization of an MPU in
order to reduce the quantity of data saved into non-volatile RAM, i.e., to get as close as possible to the
ideal case. This section briefly recalls the principle of MPUs, then the present proposal of MPU-based
incremental checkpointing mechanism is detailed, as well as the MPU requirements to make the proposal
feasible.

6.2.1 Memory Protection Units

Low-power embedded systems do not have hardware support for memory virtualization through MMUs.
An MMU is energy-expensive, mainly because of the presence of the Translation Lookaside Buffers, made
of associative memory. However, many embedded systems include hardware support for memory isolation
thanks to MPUs which enable to manage access rights to some memory region.

The characteristics of an MPU substantially vary from one platform to another but their goal is the
same: guarantee memory integrity and fire interrupts upon access rights mismatch. Table 6.1 gives the
characteristics of MPUs present on the MSP430FR57xx and ARM Cortex-M platforms. The criterion
“Suitable” indicates whether a given MPU may easily support this technique, as explained hereafter.

6.2.2 Leveraging an MPU for Incremental Checkpointing

The main objective of this work is to reduce time elapsed in operating system context, to allow the
application to execute longer with respect to the operating system. Here, the operating system cannot
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afford to compute checksums on memory regions as in previous works [117]. The present proposal consists
in using MPU as hardware support for incremental checkpointing, while the software remains oblivious
to the detection of modified variables. The idea is to keep track of whether an MPU region has been
modified since the last checkpoint or not.

Set of dirty regions

Let D be the set of dirty regions, i.e., MPU regions that have been modified since the last checkpoint.
When a write occurs in the region Ri of RAM, the MPU triggers a kernel-managed interrupt. In practice,
D may be implemented as a bitfield. MPUs being simple, the amount of regions or sub-regions rarely
exceeds 64, which makes any implementation of D remain a simple data structure.

Boot sequence

Right after boot, D is empty (D = ∅) and all regions of volatile RAM are write-protected by the MPU.
This work does not provide a lazy policy for data restoration, meaning that the restoration routine is
not modified further than the initialization of D and of the MPU. In the very specific case of Sytare,
Algorithm 4.2 still stands. This is complementary to any checkpointing mechanism.

MPU access mismatch interrupt

An MPU interrupt is fired whenever an unauthorized access to some memory location is attempted.
Within the context of this proposal, an MPU interrupt is fired only when the application tries to write to
a read-only location. The interrupt handler marks dirty the region that possesses the faulting location:
D ← D ∪ {Ri}. The interrupt handler then unprotects the region, so that further write accesses to the
region are allowed. As a consequence, the set of protected regions is always the complementary set to D;
i.e., locked regions = {Ri∀i} \D. The interrupt handler finally returns to the faulting instruction, i.e.,
the instruction that caused the write mismatch access. The notion of faulting instruction is crucial to
this approach, for the system needs to re-execute the instruction with the updated access rights. Now
that the region is unprotected, the write access can complete without further interrupt and the execution
resumes as usual.

Checkpoint save operation

When it is time to perform the save operation, the system reads the information held inside D. For each
region registered inside D, the system performs a DMA copy from the original volatile RAM location
into the next checkpoint image.

1 stat ic int a = 0 ; /∗ Region R0 , . bss ∗/
2 stat ic int b = 1 ; /∗ Region R4 , . data ∗/
3
4 void main ( void )
5 {
6 compute 1 ( ) ;
7 a = 42 ;
8 compute 2 ( ) ;
9 b = 24 ;

10 compute 3 ( ) ;
11 }

(a) C code.

Line D
6-7 ∅
7-8 {R0}
8-9 {R0}

9-10 {R0, R4}

(b) Evolution of the set of dirty regions,
without power outage.

Figure 6.1: Toy code that illustrates memory accesses to different MPU regions.
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Scenario Example

The code sequence in Figure 6.1 illustrates this mechanism, assuming an 8 kB volatile RAM and an
MPU capable of protecting eight equally-sized regions R0 to R7 of 1 kB each. First, the system initializes
its intrinsic variables and mechanisms. At the end of that operation, D = ∅. The application runs
compute 1, which does not change variables outside the CPU registers or the application stack, thus D
stays empty. The application then writes to variable a, located in region R0. Since, at that point, R0

is write-protected, an MPU interrupt is triggered. The interrupt handler is executed. Upon interrupt
handler completion, D = {R0} and the MPU is configured to stop protecting R0. Line 7 is executed
again, this time with R0 no longer protected. The write to variable a that originally failed, is now
executed correctly and the value of variable a is updated. The program continues its normal execution,
runs compute 2 that, like compute 1, does not raise any MPU interrupt. Then, when reaching line 9, the
application tries to write a value to variable b. Given that variable b is not located in the same region
that the formerly unlocked region of variable a, another MPU interrupt is raised. Upon interrupt handler
completion, D = {R0, R4} and the MPU is configured to stop protecting both R0 and R4. The write
to variable b is successfully re-played and the application continues its execution. Later on, the system
eventually wants to perform a checkpoint save operation. When that moment comes, only regions R0

and R4 are copied to non-volatile RAM.

MPU requirements

This design of MPU-based incremental checkpointing requires the MPU to provide a certain set of features.
The MPU must (i) operate at least on the entire RAM address range and (ii) raise interrupts that are
able to return to the faulting instruction. The “Suitable” criterion of Table 6.1 thus asserts whether a
given MPU may be compatible with both aforementioned requirements.

The MPU of the MSP430FR57xx micro-controller family only maps non-volatile RAM, it is sufficient
to discard that kind of micro-controller according to the criterion. In addition, its interrupt system would
return to the instruction following the faulting instruction. Workarounds may be engineered in order to
deduce the address of the faulting instruction by embedding a lightweight MSP430X instruction decoder,
which would substantially hamper the performance of an MPU-based incremental checkpointing. Hence,
the MPU of the MSP430FR57xx micro-controller family is not suitable for this. However, for practical
purposes, since Sytare and its applications were written for the MSP430FR5739 micro-controller, an
adapted version of the MPU was integrated to the platform simulator described in Section 5.6 in order
to keep Sytare’s code-base.

On the other hand, the MPU of ARM Cortex-M micro-controllers meet the MPU requirements and are
thus perfectly befitted for this work. This is the purpose of the ARMorik platform detailed in Section 4.7,
that comprises an ARM Cortex-M7 micro-controller. The MPUs from the Cortex-M micro-controllers
constrain memory placement and require a more elaborate linker script, for the MPU page addresses must
be aligned with their sizes, which are powers of two. Apart from that constraint, the MPU is flexible and
enables efficient implementations of the present contribution.

The energy gain, compared to saving the entire RAM, depends on the characteristics of the executed
application, as well as platform-related parameters. These characteristics and parameters are detailed in
the next section.

6.3 Analysis of the Energetic Benefits of Incremental Check-
pointing

Before proceeding to the implementation and its results, this work provides a model of the energy con-
sumption of the save operation, for the application state only, with and without the MPU-based incre-
mental approach. Any additional operation, such as saving the state of peripherals, is out of scope here as
this approach does not monitor accesses to peripheral control registers. The baseline is a non-incremental
approach, that is a full copy of the .bss and .data sections regardless of them being modified or not.
This baseline is referred to as the full-copy approach.
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Table 6.2: Model parameters and their default values, used in the models of the full copy and the MPU-
based incremental approaches.

Symbol Description Unit Typical value
Swords Amount of RAM used by the application Word 213

fDMA DMA bandwidth Word/second 8× 106

Pplat Power drawn by the whole platform, without CPU,
DMA nor MPU

Watt 1.65× 10−2

PDMA Power drawn by the enabled DMA Watt ε
PMPU Power drawn by the enabled MPU Watt 1× 10−5

PCPU Power drawn by the unhalted CPU Watt 3.96× 10−3

α Average ratio of dirty regions within one life-cycle - 0.1
Nregion Number of regions handled by the MPU - 16
toverhead Time to check if a region must be copied Second 3× 10−6

tint Execution time of the MPU interrupt handler Second 5× 10−6

Ecritical Average amount of energy wasted due to re-
executing code when the MPU interrupt occurs dur-
ing a critical section

Joule ε

The energy consumed by this process depends on several parameters. The model depicted in this
chapter, as well as the results that come out of it, may be used as a base for design space exploration, in
terms of hardware and software specifications.

6.3.1 Modeling MPU-based Incremental Checkpoint

Model parameters

The performance of this proposal heavily depends on some parameters, listed in Table 6.2. The amount
of RAM used Swords is important for the bigger the memory is, the more vital it becomes to save energy
by selectively checkpointing fractions of memory to non-volatile RAM. Swords is accounted word-wise,
since the DMA is considered to be used at word granularity to use the best performance from the DMA.
Hence, the actual RAM size is obtained by multiplying Swords by the size of a word on a given platform.
For instance, the MSP430FR57xx has 16bit-long words, meaning that the RAM size in bytes would be
twice as large. The operating frequency of the DMA fDMA directly impacts the time needed to perform
a checkpoint.

The average dirtiness ratio, α, is the average proportion of regions that have been modified since
last checkpoint when a new checkpoint arrives. This parameter α is important: a small value gives
this proposal better results. In many transiently-powered systems, little energy is available between
consecutive checkpoints, allowing the execution of a few thousands or millions of instructions each time.
Hence, α is indeed expected to be low. Note that α is a complex parameter, for it depends on the energy
budget of the platform and on the application behavior, since the application may dynamically change
the power consumption of the platform.

This proposal relies on a standard micro-controller equipped with an MPU. The amount of regions
Nregion that the MPU can handle is also crucial. If the regions are too numerous, the platform spends
a long time handling interrupts. But on the other hand, with fewer regions, the checkpointing is less
incremental and closer to a full copy of the RAM contents. The characteristics of the MPU define
the upper bound of Nregion, however the system is free to use fewer regions. Although the MPU is a
hardware component, it is driven by software, which means that there is some time overhead due to the
CPU running instructions. This overhead is specific to incremental checkpointing. There are two sources
of software-related time overhead. First, this mechanism is interrupt-based which introduces an overhead,
named here tint, that is the time to handle the MPU interrupt. The interrupt handler must simply flag the
concerned memory region as dirty, and unlock that region to allow further modifications from the software
until the memory is saved in the checkpointing process. Second, during the checkpointing process, the
software must check every region dirtiness flag to determine whether they must be copied or not, this
overhead is called toverhead. Both overheads are expected to be small, but not negligible, within the order
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of a few microseconds for each.
This model also needs insight about some electronics aspects of the platform. Four distinct power

sinks are considered: the micro-controller itself that consumes PCPU, the DMA that consumes PDMA

apart from the micro-controller, the MPU that consumes PMPU, and the rest of the platform, including
peripherals, that consumes Pplat. The power consumption of the MPU, PMPU, is only accounted in the
incremental checkpointing since the full copy does not need the MPU and thus it can be turned off. The
different power consumptions are platform-dependent and furthermore, Pplat also depends on the appli-
cation since the amount and the nature of enabled peripherals depend on the state of the application at a
given point in time. The default values of the power consumptions were chosen arbitrarily for the analysis.
PCPU is set to 3.96 mW, which corresponds to 1.2 mA, the measured consumption of the active mode of
the MSP430FR5739, under a 3.3 V supply. Pplat is set to 16.5 mW which corresponds to a consumption
of 5 mA under a 3.3 V supply. The value of Pplat can be interpreted as the time-related average of the
platform, excluding the micro-controller, when the radio is on for reception or transmission during 25%
of the time. PDMA is considered negligible as low-power part of the micro-controller. PMPU, although
also part of the micro-controller, is considered to symbolically consume 10 µW. In practice, any increase
in power consumption was not detected using the methodology depicted in Section 5.5. However, the
analysis aims at being fair, so a symbolic non-zero value was given to PMPU in order to encompass more
power-consuming MPUs, while not reaching the power consumption of a power-consuming MMU neither.

Once acquainted with these parameters, the next section describes the equations that analytically com-
pute the energy spent by performing a full copy of the entire RAM, named Efull-copy, by this MPU-based
incremental checkpointing solution, referred to as EMPU-incremental, as well as state-of-the-art approaches
named Ehash and EDICE.

Power levels

The model supports four power states. Indeed, the CPU and the DMA are considered mutually exclusive
and the MPU is accounted only in the MPU-based approach unlike the other approaches that make no
use of MPU. In the full copy approach, the copy is performed by the DMA, so the CPU is off, hence the
power level of that approach is PDMA + Pplat. In the rest of this chapter, for clarity purposes, combined
power levels are depicted using a set notation, e.g., P{DMA, plat} = PDMA + Pplat.

In the MPU-based approach, the MPU is always on. The copy is performed by the DMA, while the
dirtiness detection and the interrupt handlers are run on the CPU. Hence, the MPU-based approach
needs two power levels: (i)P{DMA, MPU, plat} and (ii)P{CPU, MPU, plat}.

Finally, the software-based approaches studied here [117, 98, 118] present time overhead due to CPU-
based computations. These specific phases use no MPU nor DMA, hence their power level is P{CPU, plat}.
These power levels are used in the following energy requirement analysis.

Full copy energy consumption

As the save operation of the checkpointing scheme is performed using a DMA, i.e., without using the
CPU, the energy required to checkpoint the entire RAM is simply given by Equation (6.1):

Efull-copy =
Swords

fDMA
× P{DMA, plat} (6.1)

MPU-based incremental checkpointing energy consumption

To compute the energy used by the MPU-based incremental mechanism, the expression of EMPU-incremental

is more complex and the definition of intermediate symbols helps. To save a single region using DMA,
with the CPU halted, the required energy is expressed as:

Eregion =
Rwords

fDMA
× P{DMA, MPU, plat}

With Rwords = d Swords

Nregion
e the amount of words in a region. This model assumes, for simplification purposes,

that the MPU regions are equally-sized, hence the definition of Rwords. However, model aside, this
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proposal of incremental checkpointing does not impose that the MPU regions should be equally-sized.
On the contrary, a clever organization strategy of the MPU regions and of the variable allocation may
improve the performance of the incremental checkpointing.

The energy consumed by MPU interrupt handling corresponds to the energy spent by the MPU
interrupt handler plus the energy needed to re-run a portion of code, if for instance the interrupt occurred
during a code section with timeliness constraints, cf. problem P3 and its solutions depicted in Chapter 3
and Chapter 4. The energy spent to re-run a timely portion of code is abstracted by Ecritical. In reality,
each timely portion of code has its own needs, meaning that there would be as many values of Ecritical

as concerned portions of code. However, for the sake of model simplicity, a unique value of Ecritical

is considered. In some cases, frequent interrupts might prevent the application from efficiently making
progress. Hence, the energy of dirtiness detection, Edetect, is expressed as:

Edetect = tint × P{CPU, MPU, plat} + Ecritical

In the analysis presented in Section 6.3.2, the energy overhead due to re-executing atomic section is
ignored, i.e., Ecritical = ε in Table 6.2, but in the cycle-accurate simulation in Section 6.4, it is simulated.
In practice, it depends on the application requirements in terms of timeliness constraints, and on the way
the system handles timeliness.

The energy to checkpoint only dirty regions, Edirty, corresponds to:

Edirty = Ndirty × Eregion + toverhead × P{CPU, MPU, plat}

With Ndirty = dα×Nregione, the average amount of dirty regions per checkpoint.
Finally, the energy dedicated to incremental checkpointing, named EMPU-incremental, during an entire

life-cycle, is given by Equation (6.2):

EMPU-incremental = Edirty +Ndirty × Edetect (6.2)

It should also be noted that the MPU must be on at all times, which adds a background power consump-
tion that constrains the energy budget over the entire life-cycle.

Hash-based energy consumption

The proposals of Aı̈t-Aoudia et al. [117] and of Bhatti and Mottola [98] determine, at checkpoint time,
which portions of memory are modified using a software computation that reads all memory regions.
They are alike, albeit Aı̈t-Aoudia et al. use a hash function whereas Bhatti and Mottola make a word-
to-word comparison. The two proposals are referred to as, respectively, Hash and Sweep. The model of
the energy consumption can be derived from the model of the MPU-based incremental checkpointing.

These solutions do not use the MPU, resulting in PMPU = 0, tint = 0 and Ecritical = 0. In addition,
the time overhead due to hashing or sweeping memory is not the same as toverhead. As stated before, the
time overhead of the hash- or sweep-based approaches is linear to Swords. A specific parameter, thash-word,
is defined and represents the time taken to hash or sweep over a single word. Hence, the time overhead
of those solutions is expressed as Swords × thash-word. The energy requirements of saving a checkpoint for
those solutions, named Ehash, is then expressed by Equation (6.3), derived from Equation (6.2):

Ehash = Ndirty ×
Rwords

fDMA
× P{DMA, plat} + Swords × thash-word × P{CPU, plat} (6.3)

Note that the amount of regions is no longer limited by hardware, however this study considers it equal
to the formerly defined Nregion for comparison purposes. In practice, the thash-word of Aı̈t-Aoudia et al.
is expected to be larger than that of Bhatti and Mottola, for a hash operation over the entire memory is
likelier to last longer than comparing words and early-stopping upon the first discrepancy. However, they
are accounted the same within this study, and a default value of thash-word = 1

24 µs is considered. This
corresponds to a single machine cycle for an MSP430FR5739 micro-controller operating at 24 MHz. This
value is chosen in order to show a fair comparison of the MPU-based approach with those approaches,
taken under their sunniest side, i.e., minimizing Ehash.
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DICE energy consumption

DICE [118] records every write to a global variable through a record system call. That system call is
purely software and may be expected to be fast, yet it is called every time a global variable is written
to. Let W be the average amount of writes to global variables between two consecutive checkpoints. Let
trecord be the completion time of the record system call. Then, the energy of recording every write to
global variables, Erecord is defined as follows:

Erecord = W × trecord × P{CPU, plat}

DICE saves the topmost portion of the stack. Let Stopmost-stack be the average size, in words, of the
topmost portion of stack. Then, the energy of copying it, Etopmost-stack, is defined as follows:

Etopmost-stack =
Stopmost-stack

fDMA
× P{DMA, plat}

Finally, DICE copies the dirty bytes. The copy is performed at the granularity of the bytes, unlike the
other incremental approaches that operate at the granularity of a block. Hence, the ratio of dirty bytes
must be defined, named α∗ to show the analogy with α. The amount of dirty bytes is thus dα∗×Swordse.
Furthermore, DICE reads an internal bitmap in order to determine which bytes must be copied. This
is performed in software and has a temporal cost for each bit, named tbit. Since a bit corresponds to
a byte in main memory, there are dSwords×Nbytes-per-word

8 e bits, with Nbytes-per-word the word width on a
given platform. On an MSP430FR57xx platform, Nbytes-per-word = 2. The energy of copying dirty bytes,
Edirty-bytes, is then:

Edirty-bytes =
dα∗ × Swordse

fDMA
× P{DMA, plat} + dSwords ×Nbytes-per-word

8
e × tbit × P{CPU, plat}

Note that the definition of Edirty-bytes considers word-wise DMA copies, whereas in practice DICE checks
dirtiness byte-wise and the dirty bytes are not necessarily contiguous in memory, meaning that many
copies would be needed with software overhead between copies. Again, this study wants to demonstrate
a fair comparison with state-of-the-art approaches and thus presents DICE under optimal conditions,
i.e., minimizing EDICE as defined hereafter.

As a consequence, the overall energy of the save operation using DICE, EDICE is summed in Equa-
tion (6.4):

EDICE = Erecord + Etopmost-stack + Edirty-bytes (6.4)

For the remaining part of this study, the default value of W is 128, meaning that there are 128 write
accesses to global variables between consecutive checkpoints in average. Assuming that DICE’s topmost
stack management is efficient, Stopmost-stack is set to 16 words. Again assuming DICE’s efficiency, trecord

and tbit are respectively set to 1 µs and 1
24 µs, exposing DICE’s best performance. Also, for comparison

purposes, α∗ is set equal to α.

6.3.2 Comparison with Other Approaches

In this section, the benefits of the present proposal are evaluated using the analytical model provided
in the previous section. Specifically, Equation (6.2) is studied against Equation (6.1), Equation (6.3)
and Equation (6.4), by exploring their behaviors when parameters change. The parameters that are
not indicated in the following figures have default values mentioned in Table 6.2. These values have
been obtained when measuring the properties of the MSP430FR5739 micro-controller, as described in
Section 5.5. The precision of these values is not very important here. What is important is the aspect of
the evolution of energy consumption when some parameter, e.g., RAM size, changes.
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Figure 6.2: Energy consumption of the checkpointing mechanisms with respect to size of RAM for different
values of Nregion.

Impact of RAM size Figure 6.2 shows the energy consumption with respect to the RAM size for
different values of Nregion. The first intuition is confirmed, the larger the amount of RAM used is,
the better is this proposal. Another observation from Figure 6.2 is that the MPU-based incremental
checkpointing is not always the most efficient with an increase of the amount of regions. This phenomenon
is detailed and discussed in the next section. The plots from Figure 6.2 keep the same features when
making Swords vary. This gives a hint about the conditions that make the MPU-based incremental
checkpointing consume less energy than the other approaches, as studied hereafter.

When comparing to the full copy baseline, the MPU-based approach is less energy-consuming when
the RAM size is greater than a certain value Smin/full-copy, . The definition of Smin/full-copy stands only
when the relationship of Equation (6.5) is true:

PMPU ×Ndirty < P{DMA, plat} × (Nregion −Ndirty) (6.5)

Equation (6.5) illustrates the fact that the energy overhead due to using the MPU must be lower than
the energy saved by not copying the Nregion −Ndirty unmodified regions. Provided that Equation (6.5)
stands, then:

∀Swords > Smin/full-copy, EMPU-incremental(Swords) < Efull-copy(Swords)

In other terms, Smin/full-copy is the minimal amount of RAM words that makes the incremental check-
pointing worth using in comparison to the classical full copy. Note that Smin/full-copy actually depends
on the other parameters as listed in Table 6.2, as explicitly stated in Equation (6.6).

Smin/full-copy =
fDMA × [( toverhead

Ndirty
+ tint)× P{CPU, MPU, plat} + Ecritical] + ∆R × P{DMA, MPU, plat}

P{DMA, plat}
Ndirty

− P{DMA, MPU, plat}
Nregion

(6.6)

Where ∆R = Rwords − Swords

Nregion
, i.e., the remaining part of word due to the ceil operation that defines

Rwords. As a matter of fact, the value of ∆R lies between 0 and 1 and a fair estimation of Smin/full-copy may
consider ∆R being 0 or 1, with a low impact on the result, compared to the memory demands of realistic
applications that are orders of magnitude higher. In practice, Smin/full-copy may also be determined using
a dichotomic reasoning as well, between the values given by Equation (6.6) with ∆R = 0 and ∆R = 1.

When comparing the MPU-based approach to the hash- or sweep-based methods, the observations
are the same. However, since the hash- and sweep-based methods are more optimized than the full-copy,
the MPU-based approach is best only when the RAM size exceeds a greater value, named Smin/hash. The
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definition of Smin/hash stands only if the relationship stated in Equation (6.7) is true:

Ndirty ×
PMPU

fDMA
< Nregion × thash-word × P{CPU, plat} (6.7)

Equation (6.7) materializes the fact that the energy overhead of enabling the MPU must be lower than
the energy consumed by hashing the entire memory. Then, analytically, Smin/hash follows Equation (6.8).

Smin/hash = Ndirty ×
(tint + toverhead

Ndirty
)× P{CPU, MPU, plat} + Ecritical + ∆R × PMPU

fDMA

thash-word × P{CPU, plat} −
Ndirty×PMPU

Nreg×fDMA

(6.8)

As with Smin/full-copy, Smin/hash may be obtained using a dichotomic approach between the boundaries
set by setting ∆R to 0 and to 1.

In Figure 6.2, the MPU-based approach is always less energy-consuming than DICE. Actually, their
graphs cross at a large negative value of Swords. The condition for EMPU-incremental to be lesser than
EDICE, is given, considering that α∗ = α, in Equation (6.9).

Ndirty

Nregion
×
P{CPU, MPU, plat}

fDMA
< α×

P{DMA, plat}

fDMA
+
Nbytes-per-word

8
× tbit × P{CPU, plat} (6.9)

Equation (6.9) illustrates the trade-off between copying dirty regions with the MPU on one hand, and
copying dirty bytes and managing the bitmap on the other hand. The minimal RAM size that makes
the MPU-based approach beneficial over DICE, Smin/DICE, could be defined, however in the case of
Figure 6.2, the MPU-based approach is always better using the default values of the other parameters.

Finally, a global threshold, named Smin can be defined as the least amount of RAM required to make
the MPU-based approach better than all the other studied approaches. As a consequence :

Smin = max{Smin/full-copy, Smin/hash}

In Figure 6.2, the values of Smin are fairly low, less than 2 kB, which implies that the MPU-based
approach consumes less energy than the other approaches for the needs of realistic applications. The
slopes of the graphs also show that DICE and the MPU-based approach are more scalable than the full-
copy and the hash-based approaches, i.e., increasing RAM demands increases the checkpointing energy,
but to a lower extent. However, it is necessary to mitigate these results by taking into account the
influence of other parameters, as discussed further below.

Impact of the amount of regions If the regions are too numerous, the platform spends a long time
handling MPU interrupts. But if Nregion is too small, the checkpointing is less incremental and resembles
more the classical full-copy with detrimental overhead. This is illustrated by Figure 6.3: for the considered
amounts of RAM, the optimal amount of regions is below ten. In the 16 kB RAM scenario, the MPU-based
approach needs at least three regions to be beneficial over DICE and in the 64 kB scenario, it requires
five regions. With Nregion increasing, the oscillations get weaker but the overall energy consumption of
the MPU-based mechanisms increases as well, for the run-time is likelier to be interrupted more often.
The worst case scenario would be that the application attempts to write to variables that are located in
different regions, so the MPU interrupt handlers prevent the application from making progress.

Impact of other parameters The model provided here does involve eleven parameters that interact
with each other in a complex manner. Figure 6.4 proposes to look at other parameters while exploring
away from the default values mentioned in Table 6.2.

Figure 6.4a confirms that a high α decreases the efficiency of incremental checkpointing. Indeed, when
α grows towards 1, the system has to copy an amount of data that becomes closer to the amount of data
required by the classical full copy. In that case, the overhead due to MPU interrupt handling makes it
a challenge, for the MPU-based incremental checkpointing, to keep being beneficial. However, even with
stable energy harvesters that are able to run the platform longer and thus to achieve a greater α such
as solar-based harvesters, the incremental checkpointing requires only a few thousands of words to show
better performance.
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Figure 6.3: Energy consumption of the checkpointing mechanisms with respect to the amount of MPU
regions for different RAM sizes.

0 0.2 0.4 0.6 0.8

0

2,000

4,000

6,000

α

S
m

in
(W

or
d

s)

(a)

0 20 40 60 80 100

500

1,000

1,500

Pplat (mW)

S
m

in
(W

or
d

s)

(b)

0 100 200 300

0

0.5

1

1.5

·104

tint (µs)

S
m

in
(W

or
d

s)

(c)

0 1 2 3

320

340

360

380

PMPU (mW)

S
m

in
(W

or
d

s)

(d)

Figure 6.4: Impact of (a) α, (b) Pplat, (c) tint and (d) PMPU on Smin, the minimal amount of RAM words
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Figure 6.4b shows that the lesser Pplat is, the less efficient the incremental checkpointing is. This
observation can be directly derived from Equation (6.5) and Equation (6.7). Decreasing Pplat applies a
greater pressure on PMPU, which is likelier to be less efficient. In practice, this means that the time saved
by using the incremental checkpointing saves a greater amount of energy if the platform is consuming a
lot of power when performing the save operation, as one could expect.

Figure 6.4c confirms the fact that the execution time of the MPU interrupt handler is crucial. A longer
execution time means a higher energy budget allocated for checkpointing, since the micro-controller and
the peripherals are consuming power in the meantime.

The electronic properties of the MPU can differ from a micro-controller to another and its configuration
may have an impact on its consumption. This motivates the need to study the influence of PMPU on the
performance of the incremental checkpointing. Figure 6.4d shows that, if the MPU consumes more, Smin

increases accordingly, meaning that there must be a greater amount of memory to be made persistent
in order to keep the incremental checkpointing beneficial. However, Smin values are still low, even when
PMPU is high. Thus, even a complex, power-consuming MPU would not hinder the benefits of the
MPU-based incremental checkpointing.

Some extreme values were shown on purpose in Figure 6.4, in order to emphasize the low yet realistic
requirements that make this proposal efficient. For instance, tint is not expected to be greater than a
few microseconds, however Figure 6.4c shows that greater values would require a greater Smin but still
realistic from the application’s perspective. Another example is when α is very high in Figure 6.4a. In
practice, the application is not expected to modify most of the memory contents before a power outage
occurs, yet greater values of α would require a realistic value of Smin. In any case, Smin is always low,
making the incremental checkpointing often worth using over a classical full copy.

6.4 Validation through Simulation

In this section, the analytical results are validated thanks to a simulation platform. One limitation of the
analytical approach is that α is always the same whereas it may change from one life-cycle to another.
In cycle-accurate simulation, as in reality, α changes every life-cycle. Another limitation is that Pplat is
not constant throughout the life-time of the application. In order to simplify the model, an average Pplat

was considered, but the simulator computes the exact instantaneous power consumption, depending on
the state of the platform and peripherals at any time. This section focuses on a comparison between the
MPU-based approach and the full-copy baseline.

6.4.1 Simulation Platform

The simulator used to yield the experimental results is the one depicted in Section 5.6. It thus simulates
an MSP430FR5739 micro-controller with some peripherals. For the needs of this very work, the imple-
mentation of the MPU in the simulator was modified to handle up to sixteen regions instead of three, as
well as to cover volatile RAM address range instead of solely the non-volatile RAM address range. This
new MPU is then compliant with the MPU requirements listed in Section 6.2.2 and mimics the features
of ARM Cortex-M MPUs. The memory capacity of the platform was also virtually modified in order
to propose 20 kB volatile RAM and 40 kB non-volatile RAM. 1 The rest of the virtual platform is left
untouched.

6.4.2 Benchmark Applications

The simulation is tested against home-made benchmarks for no unified benchmark suite for transiently-
powered systems using peripherals exists yet. The benchmark consists of a few applications, some of them
being more computational while the rest is more focused on peripheral usage. Computational applications
are investigated here as well, in order to truly evaluate this proposal against sundry application demands,
to see the behavior of this proposal with computational and memory-intensive applications and peripheral-
intensive applications.

1https://github.com/gberthou/archc-msp430x/tree/wider-memory

https://github.com/gberthou/archc-msp430x/tree/wider-memory
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Figure 6.5: Checkpointing energy consumption with respect to size of RAM for different applications,
when the energy budget is 120 µJ.

Quicksort Quicksort initializes and sorts an array of pseudo-random data. The array size is statically
defined. The initialization phase modifies the entire array in descending address order, meaning that α
is meant to be rather high at the beginning of the application, before the actual sort algorithm runs.

RSA RSA initializes and performs an RSA encryption onto an array of data. The array size is statically
defined.

Complete-WSN Complete-WSN uses accelerometer, temperature sensor and radio. It is the same
benchmark application that is described in Section 5.6.5.

All applications are declined into several instances, one instance per combination of Swords and Nregion

values if the MPU is enabled, one instance per value of Swords for the full copy version without MPU.
Swords is made to vary by changing, at compile-time, the static array sizes in order to obtain the desired
volatile RAM utilization. Each instance has its own memory access signature, that impacts α. How-
ever, α is also impacted by the available energy within a single life-cycle, i.e., the weaker the life-cycle,
the lower is expected to be α. The experiments made also vary the available energy. This experimen-
tal methodology generates hundreds of instances, i.e., hundreds of executable binary images, as well as
dozens run-time scenarios dependent on the available energy. Combined altogether, there are thousands
experiments to conduct, hence another motivation for simulation over actual measurements. In all the
results presented here, the available life-cycle energy is 120 µJ.

6.4.3 Checkpointing Layer

The aforementioned applications run on top of Sytare, as depicted in Chapter 4. Within the context of
this work, the mechanism that makes the volatile RAM persist in non-volatile RAM was slightly modified,
by integrating MPU information and selectively copying from volatile RAM to non-volatile RAM based
on that information. 2 The results shown for the full copy correspond to the original version of Sytare.

6.4.4 Validation of Analytical Results

Given the experimental setup described in the previous section, the actual performance of this MPU-based
incremental checkpointing proposal is evaluated here against the simulation platform. The displayed α
values are computed as the average α of the first 32 life-cycles for all executions involved in a given graph.

Impact of RAM size Figure 6.5 shows how the needs in RAM impact the energy required for check-
pointing for the benchmark applications. The results are similar to the anticipated values given by the
model and shown in Figure 6.2. The major discrepancy is the fact that, in practice, α is not a constant.

2https://gitlab.inria.fr/citi-lab/sytare/-/tree/ex-mpu

https://gitlab.inria.fr/citi-lab/sytare/-/tree/ex-mpu
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Figure 6.6: Checkpointing energy consumption with respect to the amount of MPU regions for different
applications, when the energy budget is 120 µJ.

Indeed, depending on where the application resumes and on the energy budget of the next life-cycle, the
application does not require the same regions, nor the same amount of regions, to be made persistent for
the next life-cycle. The results show that, when the application uses more than a hundred RAM words
(Smin/full-copy is around 100), it is always better to use the incremental checkpointing rather than full
RAM copy.

Impact of the amount of regions Figure 6.6 shows how the amount of MPU regions impacts the
energy required for checkpointing for the benchmark applications. Analytical results showed that incre-
mental checkpointing is always better than a full RAM copy, when α is low enough. To this extent,
simulation results are alike. The visible steps of Figure 6.3 do not appear in Figure 6.6 for the amount
of regions was made to vary at fine grain in Figure 6.3, unlike along powers of two in Figure 6.6.

6.5 Validation on a Real Platform

The MPU-based incremental checkpointing proposal was implemented, not only in simulation, but also
on a real platform, namely ARMorik. For today’s ARM micro-controllers are not yet equipped with
non-volatile RAM, ARMorik uses an external parallel non-volatile memory chip, hence it consumes
significantly more energy than if the memory is embedded inside the micro-controller’s chip. Energy
measurements on the ARMorik platform would thus not be realistic nor meaningful and, as a result,
the implementation on the ARMorik platform is genuinely for qualitative appreciation. The MPU of
the ARM Cortex-M7 fits perfectly the requirements of this solution, which makes the proposal viable on
low-power micro-controllers, although more elaborated than an MSP430FR5739 micro-controller.

6.6 Conclusion

The MPU-based incremental checkpointing uses an MPU to make portions of memory read-only on boot
and keep track of their modifications, throughout a life-cycle, using the access mismatch exception. The
model, as well as the experimental results in simulation, give the MPU-based approach the lowest energy
requirements in comparison to a classical full copy, to a hash performed in software and to a systematic
instrumentation of the write accesses. The present proposal is realistic in terms of feasibility and energy
requirements, even for transiently-powered systems, although the MPU needs to be elaborated enough.
It was implemented on the ARMorik platform and lately, a similar approach leveraging MPU exception
was adopted on a battery-free Game Boy [28], thus corroborating the adequation of such a solution
on transiently-powered systems. The conditions under which MPU-based incremental checkpointing is
better than an unselective copy are realistic today, and they will be even more realistic in the future as
the amount of embedded RAM is likely to increase. However, the checkpointing time and energy depend
on the amount of dirty regions, and thus the checkpointing system loses part of its determinism.
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The novel model exposed in this chapter enables reasoning on the performance of any checkpointing
scheme, using a handful of parameters. Its limitations include the fact that, in reality, the dirtiness ratio
and the power drawn by the platform are not constants but values that change over time.

Also, it may be noticed that the duration of a life-cycle, which depends on the energy storage, is not
important to appreciate the benefits of incremental checkpointing. It only has an impact on the amount
of dirty regions. With shorter life-cycles, there would be fewer dirty regions as fewer write instructions
would be executed. This work targets rather small systems, that cannot be powered by solar panels, nor
embed a big capacitor, which is the case for many applications. It would be interesting to extensively
study the amount of dirty regions with regard to the power source, the energy storage and the application
needs, but this is left for future work.

This work currently proposes to selectively save memory regions based on whether they were modified
or not. However, the restoration scheme is the same: all memory regions are restored. It is possible to
extend the concept of this work to restoration as well. A lazy restoration policy would not restore the
RAM on boot, apart from the required stack to make the application resumable. Instead, the memory
regions can be read-protected in addition to write-protected. On the first read attempt to a given region,
the MPU handles the exception, restores the matching region and grants read access to the region. The
write accesses would be addressed independently of the read accesses, in the very same manner than
depicted in this chapter.
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Chapter 7

Formal Proof of
Checkpointing-Based Intermittent
Systems

The literature about operating systems for transiently-powered systems contains many solutions that
propose interesting mechanisms to enable the execution of long-running applications despite unpredicted
power outages, however their properties are not formally demonstrated. The papers informally state that
their proposals work, at best providing insights of proofs or using some application benchmarks [84, 66,
67, 77]. Some works model their solutions more formally and expose a central theorem [58]. Yet it is a
single block in the logic and the proof must be integrated into a larger picture.

A formal proof of such systems would decouple the proposal from its implementation. Indeed, an
implementation bug should not make a valid proposal fail and conversely, observing an expected execution
of several benchmark applications does not prove the concept and the mechanisms behind under any
situation.

The present chapter briefly summarizes the first work that proposes a comprehensive and peripheral-
aware model of transiently-powered systems equipped with non-volatile memory [123]. The published
work provides a high-level model of application specification and run-time execution. It then truly
proves that the principles some operating systems rely on allow the correct execution of long-running
applications across power outages. Ironically enough, the objective of this chapter is not, in its essence,
to exhaustively formalize the problem and its solutions, but is rather a bare introduction to the published
work that soundly defines each entity and conducts all formal proofs.

Memory and CPU volatility (P1) is assumed to be correctly handled by existing operating systems,
for it is achievable through basic copies from and to non-volatile memory. Consistency between saved
memory and CPU states is to be carefully looked over, however it is the matter of a few picked assembly
instructions. The objective of this work is not to prove assembly code nor to mistrust the persistence
properties of non-volatile technologies. As a result, this work leaves P1 aside and focuses on the correctness
of an application with respect to problems P2 and P3, that involve peripherals and roll-backs required for
correct execution of peripheral operations under intermittent power. A later publication of Surbatovich et
al. [124] targets a formal proof of the correct execution of non-idempotent accesses to non-volatile memory
(P4). The contribution of this thesis within the context of this chapter, apart from bringing the topic to
the table, was the informal specification of the intermittent run-time and of an operating system through
the example of Sytare. The remainder of the contribution, including the formal model, Coq development 1

and proof design, was performed by the co-authors for their expertise made them the most competent to
perform these tasks.

Section 7.1 exposes a glimpse of formal models of systems and parts of systems, as well as recent
advances in models and proofs that integrate crash into their designs. Section 7.2 is a quick recapitulation
of the problems brought by intermittent power as initially studied in Section 2.6. Then, Section 7.3
defines the model of the specification and of a run-time environment with power outages. Section 7.4

1https://gabertho.gitlabpages.inria.fr/icp-model/
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informally initiates the reasoning behind the proof that execution traces under intermittent power are
refinements of the specification as long as there exists a checkpointing mechanism that tackles P1, P2
and P3. Finally, Section 7.5 discusses the adequation of existing system layers for transiently-powered
systems, including Sytare developed in this work and presented in Chapter 4, with respect to the present
model and Section 7.6 concludes that topic.

7.1 Proving Systems

Proving properties of operating systems is not an easy task. Multi-threaded systems complicate the
exercise [125, 126] but fortunately enough, transiently-powered systems are not as sophisticated. Non-
volatile memories are common examples of proven systems for their states are, by definition, persistent
thus any error can be propagated over time and is likely to cause an error in the future.

Hoare logic Hoare logic leverages reasoning about what predicates hold before and after a program is
executed. The notation {precondition} S {postcondition} states that, if precondition holds, the program
S can run and upon completion, postcondition then holds. Chen et al. use Hoare logic to certify a
Unix-like file-system with logging [127]. They further extend that work by creating an actual certified
file-system, FSCQ [128], that is machine-checkable using the Coq proof assistant. It is based on Crash
Hoare Logic, a variant from the Hoare logic. The motivation behind the extension of Hoare logic is that
it natively does not support crash. Within Hoare logic, a crash would interrupt a program, which thus
may no longer guarantee that the postcondition is settled. In addition, it does not support recovery that
would involve a specific recovery procedure. Crash Hoare Logic, on the other hand, proposes semantics
for crash conditions and recovery execution.

Linearizability Linearizability involves to reason about a trace of invocations and their response
events [129]. Distinction can be made between sequential and concurrent traces. Sequential traces
require their invocations to be directly followed by their response, whereas concurrent traces do not fol-
low that rule. Straightforward concurrency can be observed in a multi-threaded environment, however it
is also present in single-threaded embedded systems when initiating asynchronous peripheral operations.
Linearizability properties can be extended to integrate crashes, for instance with the introduction of the
concept of durable linearizability [130, 126]. Crash events complement the set of available events in a
trace. The notion of durable linearizability, as defined in [130], does account for operations that leave an
observable mark before the crash occurred. Buffered durable linearizability expresses that the state after
the crash must be consistent, but not necessarily up-to-date. However, that logic does not formalize the
timeliness constraints. The application resumes, after the crash has been handled, and the trace follows
its intended flow.

Domain-Specific Language Domain-Specific Languages (DSLs) are designed to model a high-level
interface of a system. The system is described using a state machine and each of the possible operations is
modeled regarding its impacts on the system state. The aim of solutions based on DSLs is to establish a
bisimulation between two programs, one being a transformed version of the other. The reference program
is the specification while the one to be proven a simulation of the former is the actual implementation
or any execution of that implementation. The transitions between states come along with a sequence
of observable effects and the sequence of observable effects must be rigorously the same between the
specification and the implementation. CompCert [131] is a formally-verified compiler for a subset of the
C programming language that shines by using the Coq proof assistant both for compiler programming
and correctness proof. CertiKOS [132] enables the construction of certified concurrent operating systems.
An example of such kernels, mC2, is mostly compiled with CompCert to that extent. Perennial [125]
verifies crash-safe systems in a concurrent multi-threaded context. It defines correctness as a refinement
between the code of an application and its specification. Perennial defines a DSL that, alongside a proof
of linearizability of concurrent accesses to a shared resource, enables the refinement to be established. It
is complemented with Hoare logic for each operation. Surbatovich et al. [124] also rely on a DSL. They
center their analysis on architectures such as A2 and A4 with a memory organization M2 where variables
may be allocated directly in non-volatile memory. More specifically, they target issue P4 that arises when
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non-idempotent accesses to non-volatile variables are interrupted by a power outage, including changes
in control-flow due to peripheral operations not necessarily returning the same value before and after
the power outage occurred. They assume a static checkpointing scheme that is complementary to the
assumption of just-in-time checkpointing of this chapter, as stated hereafter. ELEVEN82 [133] analyzes
C code with the intent to detect recoverability bugs or prove their absence. The key idea behind that
work is that, after a program has recovered from crash, its state must simulate a valid state that was
observed before the crash. Considering traces, the recovery operation must thus be able to reset the
system state to a prior point in the trace. ELEVEN82 illustrates the concept of crash with an external
event that nullifies volatile state but preserves non-volatile state, which is precisely the kind of crash
targeted by this thesis. The main objective behind ELEVEN82 is to show whether a bisimulation be-
tween the trace of the program with crashes and the trace of the program without crash can be established.

As seen in the former works, these techniques are not disjoint but quite combinable. For instance,
Hoare logic can be integrated into DSLs [125]. It is also common to use DSLs with linear trace analysis,
which is leveraged by the model described in this chapter. Peripheral operations are inherent parts of
that language for they may modify the state of the platform. A refinement between the specification and
the crash-aware model is proven in [123].

7.2 Challenges of Intermittence

A comprehensive study of challenges brought by intermittent power is exposed in Section 2.6. The
volatility of the memory and of computational parts of the platform, P1, is left aside for it is assumed to
be well handled by operating systems. The volatility of peripheral states, P2, is at stake for they are reset
upon reboot, thus breaking the assumptions of the software, initially designed to be run sequentially with
former peripheral calls having effective consequences on run-time. The timeliness constraint, P3, requires
sections of the application to be run in a continuous time-span. If the remaining energy does not enable
the platform to complete a section of code with timeliness constraint, the entire section is intended to be
attempted again from the beginning, when the energy storage permits it. The usual solutions to P3 in
the literature either maintain a finite or infinite log of peripheral operations or roll-back the control-flow
of the application to the beginning of the section with timeliness constraint. Either way, the control-
flow is rewound in time, which also breaks the assumptions of the software, since those transitions do
not correspond to explicit control-flow operations allowed by programming languages such as calling a
function, loop statements, etc. The unexpected rewinding potentially creates a failure in non-idempotent
environments, which is the core of P4. A non-idempotent environment includes actions that cannot be
undone, such as physically moving a mechanical device, or writing to non-volatile memory.

7.3 Model and Definitions

The present model leverages a certain amount of assumptions. The main assumption is that the non-
volatile memory is only used as a persistent storage and cannot be used as a working memory. It
corresponds to the architecture A1 and the memory organization M1a, that are leveraged by systems
such as Mementos [21], Hibernus [22, 86], HarvOS [85], RESTOP [84], KARMA [67], MPatch [28], and
Sytare [66]. Variables are only stored in SRAM. This assumption wipes out P4, but the specific proof
of operating systems that cope with P4 has been studied [124]. Furthermore, P1 is considered solved.
This chapter can thus plainly focus on correctness regarding peripherals. In addition, the environment
in which evolve the peripherals is assumed to be idempotent. Network layers handle repeated packets,
so a network-related peripheral does fall into that category. But a motor does not, for its movement is
not automatically undone. A just-in-time checkpointing, with an imminent power outage interrupt, is
assumed, to only observe one checkpoint per life-cycle, but the model and proof can be easily adapted
to encompass the entire spectrum of checkpoint mechanisms. What matters is that a checkpointing
mechanism is assumed. However, this model does not assume that the checkpointing operation always
succeeds. For instance, if the imminent power outage energy threshold is dynamically updated, this
model encompasses the cases where the remaining energy is so low that the checkpointing operation
cannot complete before the platform actually runs out of power.
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In the context of intermittent computing, correctness of a particular execution can be defined as the
execution effectively following a given specification. That specification is the behavior of an application
under continuous supply. Since P1 is assumed to be solved and P4 is not considered in this chapter,
the present specification is tailored to encompass both P2 and P3, i.e., peripheral state volatility and
timeliness constraints. Hence, the specification is entirely correlated with peripherals but not with soft-
ware concerns such as the state of the volatile memory. As a consequence, the specification is a trace of
peripheral operations, an ordered sequence. It is to be noted that a matching trace also testifies that P1
is properly handled for later peripheral operations can be reached only if the software logic is properly
made both persistent and consistent with peripherals. Aside from the trace itself, correctness also implies
that timely operations are executed within a single life-cycle, or retried from the beginning otherwise.

7.3.1 Entity Definitions

Micro-controller The notion of micro-controller here encompasses the register file and volatile RAM.
Peripherals are defined after. Non-volatile memory is simply modeled as a piece of memory with data
retention properties when the platform is no longer powered. Non-volatile memory as working memory
is not supported by this model and is left for future work, as addressed in [124].

Peripherals The peripherals are considered to have one or several states. Their states may be modified
only upon the execution of peripheral operations. This model roughly resembles the one depicted in
Chapter 5, without the energy-related concerns and valid at any granularity, from a high-level API to a
low-level per control register grain.

7.3.2 Specification Under Continuous Power

The specification has two distinct modes: user mode and driver mode. User mode depicts computational
code that may be interrupted and resumed at any point within its inner control-flow graph, i.e., without
timeliness constraint. Driver mode is the complementary state, i.e., code that must be time-consistent.
Although it is called driver mode, the specification stands for any time-consistent code, even code that
would mix peripheral operations and computations to guarantee a certain time-consistency between
sampled sensor values and the transmission of some data related to the samples. In the specific case of
correctness, i.e., ensuring that the run-time environment is not broken, such timeliness constraints are
rather soft while peripheral timeliness constraints such as waiting for an oscillator to stabilize are hard
for failing the latter would impede any further execution while the former would only consider outdated
data but not threaten the application logic.

Hence, the present model imposes a certain amount of rules or axioms. Code in user mode cannot
interact with peripherals and only code in driver mode can. This corresponds to the common separation
between application code and driver code, through a well-designed API for instance as discussed in
Section 3.2.1. Changing from either mode to the other is performed using an enter operation and a leave
operation that respectively enters and leaves driver mode. Unlike the wrapper entry and exit defined
in Chapter 4, the enter and leave operations are purely symbolical and do not correspond to an actual
change in system state. Indeed, the instructions involved in the wrapper entry and exit may be merged
with the driver call code so that the system state effectively transitions from user to driver state abruptly.
Figure 7.1 illustrates the concept of specification under continuous power, using a two-state automaton
that fully describes the run-time under continuous power. The two states are User and Driver, and four
types of operations, i.e., transitions, exist. A USR operation works in User state and does not change
the state. It corresponds to some computation, making the application progress but without accessing

User Driver

USR DRV
ENTER

LEAVE

Figure 7.1: State machine of the system under continuous power. The Driver operations are the only
operations to be accounted into the specification.
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the peripherals. Its driver counterpart is the DRV operation that works in Driver state. It corresponds
to a peripheral operation, such as the modification of a control register. Finally, the ENTER and LEAVE

operations, as already defined, are the only operations capable of changing the system state.
Recalling that ENTER and LEAVE are symbolical and that USR operations cannot access peripherals, the

only kind of operations that appear in the specification trace are the DRV operations, for the specification
only accounts for the changes in peripheral state. For clarity purposes, an instance of specification is
noted as a semicolon-separated sequence of peripheral operations, i.e., op1; op2; ...; opn where each opi is
a peripheral operation.

7.3.3 Execution Trace Under Intermittent Power

The introduction of intermittent power brings its challenges, discussed in Chapter 2, and their solutions,
discussed in Chapter 3 and Chapter 4. This chapter assumes a just-in-time checkpointing system, that
triggers an explicit checkpointing operation upon the detection of an imminent power outage at run-time.
The state machine of the system under intermittent power is based on the one of the continuous power,
originally depicted in Figure 7.1. One difference, that actually does not change the state automaton, is
that now the ENTER and LEAVE transitions are respectively recorded into the execution trace as E and
L events, while they do not appear in the specification. This being stated, new states and transitions
complement the state automaton.

The checkpointing operation is performed in a new system state called Power. The imminent power
outage interrupt is enabled during the User and Driver states, meaning that there is a transition from
those states to Power. In a sunnybright scenario, the checkpoint succeeds and the system goes from state
Power to state Off-OK. If the checkpointing operation fails, for instance because the energy level threshold
of the imminent power outage interrupt has been dynamically set to an insufficient value, the system
state enters the Off-KO state. The distinction between the Off-OK and Off-KO states is made here to ease
the understanding, whereas both states were merged in the original publication. In terms of hardware
state, there is a single off state where supply voltage is not high enough to power on the components. In
addition, the imminent power outage interrupt may simply not be fired at all, for instance if the interrupts
were disabled by the application for some reason or if the interrupt threshold was set too low. In that
case, the platform eventually runs out of power without even attempting a checkpointing operation.
There thus exist transitions from the User and Driver states to the Off-KO states. Upon reboot, the
last valid checkpoint is always restored. If the system stopped in Off-OK state, the last valid checkpoint
corresponds to the latest forward progress. On the other hand, if the system stopped in Off-KO state,
the operating system layer restores the same checkpoint as in the previous life-cycle, hence cancelling all
partial progress that has been done during the previous life-cycle. This can be easily implemented as
a double-buffer, as some existing solutions already do. Finally, an optional Init state materializes all
operations needed by the operating system during the very first boot of the platform. These operations
may include the initialization of non-volatile memory and of internal variables of the operating system.
However, as demonstrated in Section 4.7, the existence of that Init state is implementation-related and
is not actually needed if the programming toolchain is able to properly populate the non-volatile memory
with a valid checkpoint. Figure 7.2 shows the state machine of the system under intermittent power, as
an augmentation of the automaton from Figure 7.1.

The execution trace, as opposed to the specification, is not only limited to the peripheral operations.
An execution trace also records the events of successful and failed checkpoints. A checkpointing operation
is successful if and only if the system successively takes an energy interrupt transition and a checkpoint
success transition, as shown in Figure 7.2. In other terms, a checkpointing operation is successful when
the system reaches the Off-OK state. On the contrary, a checkpointing operation is not successful when
the system reaches the Off-KO state. Several paths lead to that failed state. The platform can either
fail to trigger the imminent power outage interrupt, which automatically leads to the Off-KO state. Or
the imminent power outage interrupt handler can lack energy to complete. Regardless of the path taken
to reach either of the Off-OK and Off-KO states, the definition of execution trace requires the definition
of two events: (i) a successful checkpoint denoted Chkpt3 and (ii) a failed checkpoint denoted Chkpt7.
An execution trace thus consists of sequences of peripheral operations bounded by E and L events, plus
Chkpt3 events and Chkpt7 events. It may also contain unfinished sequences of peripheral operations,
starting by an E event and ending with either a Chkpt3 event or a Chkpt7 event, in case they could not
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complete until a power outage occurred.

7.3.4 Differences With the Original Model

The model presented in this chapter differs from that of [123]. First, the state automaton of the system
under intermittent power makes a clear distinction between the Off-OK and Off-KO states whereas they
were originally grouped together into a single state. Here the choice was made to separate them so that
the states themselves carry the information on whether the checkpointing operations could or could not
be performed before power outage. Also, to limit the amount of separate transitions, a single energy
interrupt transitions from both User and Driver states to Power state. Similarly, a single actual power
outage transitions from both User and Driver states to Off-KO state. The resulting model is simpler,
but the transitions do no longer carry the information of the initial state. Note that the model does
not lose its ability to grasp the non-determinism of the success of the checkpointing operation, for the
transitions available from Power state are taken non-deterministically.

Another main difference with the original model is that the execution trace does no longer include
succeeded or failed logging operations. Instead, it proposes to include the events E and L, respectively
corresponding to the ENTER and LEAVE transitions. This proposal appears to be more natural after reading
Chapter 4. This modified execution trace definition is shown hereafter to be equivalent to that of the
original model, through the usage of the second filter pass.

The proof elaborated by the co-authors in [123] is tailored for the model depicted in that very publi-
cation. The proof would need some adjustments to work on the present model. Next section hence shows
an insight of reasoning about the present model.

7.4 Proof Sketch

The correctness of the system mechanisms addressing problems related to intermittent power is estab-
lished by showing that any execution trace matches a specification. The subtlety of the semantics of
matching is that code re-execution is allowed, as long as the repeated code is under a timeliness-related
constraint. For instance, if the application needs to perform several DRV operations in a row, i.e., in the
Driver state, the application has to re-execute the entire sequence of DRV operations had the platform
run out of power during the sequence execution.

To show, in a more straightforward manner, the correspondence between the execution trace and
the specification, a three-pass filtering of the execution trace is proposed. The present description of
the filtering passes can resemble regular expressions. The filtering itself is however conceptual and not
dependent on the present expressions.

The first pass consists in removing the sub-traces of the life-cycles that could not successfully check-
point, i.e., that led to a Chkpt7 event. As a consequence, the sub-trace between a Chkpt3 event (or the
beginning of the trace) and the following Chkpt7 event can be discarded. For instance, the execution
trace E; op1;L;Chkpt3;E; op2;Chkpt7 becomes E; op1;L;Chkpt3. The motivation for this filter comes
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Figure 7.2: State machine of the system under intermittent power. The energy interrupt depicts the
imminent power outage interrupt, while the power outage event depicts the actual power outage.



7.4. PROOF SKETCH 121

1 sram int x ;
2 timely { // ENTER
3 temp conf ig ( ) ;
4 x = temp sample ( ) ;
5 } // LEAVE
6 sram int y = compute ( x ) ;
7 timely { // ENTER
8 s p i c o n f i g (RADIO) ;
9 r a d i o c o n f i g (SEND) ;

10 rad io s end ( y ) ;
11 } // LEAVE

(a) Example of application code. The timely

blocks specify the timeliness constraints of the ap-
plication. The keyword timely is conceptual and
its expression, within an actual programming lan-
guage or using a particular library, is prone to vary.

SPEC = 3; 4; 8; 9; 10

EXEC = E; 3; 4;L;E; 8; 9;Chkpt3;
E; 8;Chkpt7;
E; 8; 9; 10;L;Chkpt3

f(EXEC) = E; 3; 4;L;E; 8; 9;Chkpt3;
E; 8; 9; 10;L;Chkpt3

(g ◦ f)(EXEC) = E; 3; 4;L;Chkpt3;
E; 8; 9; 10;L;Chkpt3

(h ◦ g ◦ f)(EXEC) = 3; 4; 8; 9; 10

(b) Specification (SPEC) and a possible execution trace
(EXEC) under intermittent power of the application given
in (a). The execution trace is refined after the first pass
(f), the second pass (g) and the third pass (h). SPEC and
(h ◦ g ◦ f)(EXEC) match. The peripheral operations are
denoted by their line number.

Figure 7.3: Example of application code with timeliness constraints, alongside its specification and a
possible execution trace, showing that they match.

from the operating system layer complying with the ability to always keep a valid checkpoint in memory,
e.g., using checkpoint double-buffering.

The second pass removes partial progress that was made in Driver state but that could not complete
until the energy depleted. The sub-trace between an E event and a consecutive Chkpt3 event is discarded,
provided that there is no L event in between. The Chkpt7 events were formerly removed by the first
pass. For instance, the execution trace E; op1;L;Chkpt3;E; op2;Chkpt3 becomes E; op1;L;Chkpt3. The
motivation for this filter arises from the assumption of idempotent environment, as well as the software
itself being idempotent due to the memory hierarchy assumption that volatile RAM is used as working
memory and non-volatile memory for storage purpose only.

The third pass removes all E, L and Chkpt3 events from the execution trace, to map the execution
trace alphabet onto the specification alphabet. For instance, the execution trace E; op1; op2;L;Chkpt3
becomes op1; op2. This pass solely serves the purpose of comparing an execution trace to a specification.

Figure 7.3 illustrates the mapping between execution trace and specification, through a typical ex-
ample of application with timeliness constraint. The considered execution trace, EXEC, involves three
life-cycles. The first one is able to complete the first timely block (lines 3 and 4), to perform some
computation on sampled data (line 6) and starts executing the second timely block. An imminent power
outage interrupt occurs and the system successfully performs a checkpointing operation. On reboot, the
application resumes at line 7 for the timeliness constraint imposes the second timely block to be re-tried
from the beginning. During the second life-cycle, the timely block cannot complete and the following
checkpointing operation fails. At the beginning of the third life-cycle, the system again resumes at line 7
thanks to the former valid checkpoint that guarantees non-negative progress despite checkpoints occasion-
ally failing. The second timely block completes within the third life-cycle and, later on, a checkpointing
operation is successfully performed. The idempotent properties of the operating system layer, in addition
to the assumptions of this chapter, allow the aforementioned execution trace filter to operate. As a result,
the execution trace matches the specification and thus, that particular execution is correct.

The definition of the specification and of the execution trace, combined with the filters proposed
above, give an insight on how to reason about correctness of execution under intermittent power. This
chapter however does not delve deeper into formalism and proof, for it is already done, alongside Coq
development, in the original publication [123] by the co-authors.
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7.5 Applications of the Model to Actual Systems

In order for the execution trace to match the specification, the software, or more probably the system
layer, must have certain properties, namely solve P1, P2.1 and P3. Indeed, without P1 solved, no forward
progress can be saved so the application would have to restart from the very beginning after every power
outage. That situation is precisely that of the credit card model and, while it works using beamed energy
supply, it would be completely useless when harvesting natural energy from the environment as discussed
in Section 2.2. In addition, without P2.1 solved, the peripherals reboot in reset-state and one cannot
expect the observable trace to be the same with the peripherals in different configurations that the ones
expected by the software. The only valid trace that would exist under intermittent power would be a
trace where the application restarts from the very beginning of the application every time a power outage
occurs, similarly to P1 not being solved, hence also falling back into the credit card model. Without P3
solved, timeliness assumptions are broken, which can impede compliance with functional specifications
from the data-sheets of the peripherals. The software is initially written assuming that these time-related
concerns are handled consistently and power outages break the assumption of time-consistency.

According to table 3.1, the only two systems that comply with the requirements of solving P1, P2.1
and P3 are KARMA [67] and Sytare [66]. RESTOP [84] does not support timeliness constraints, for its
driver layer operates at the granularity of an access to a single peripheral control register, while timeliness
constraints may spread onto several accesses, e.g., when calibrating a sensor. After modifying RESTOP
to support timeliness constraints, which should not be difficult given the fact that RESTOP records all
peripheral accesses, it could become a candidate to fit in the present model and its proof of correctness.
KARMA and RESTOP both record a log of peripheral operations, which directly maps onto the traces of
peripheral operations that are core to the specification and execution traces. Sytare only records the last
defined states of peripherals and the restore function of every driver is in charge of finding a path in the
drivers state automata to reach those states again, which can be considered an aggressive optimization
of logging. Anyway, peripheral operation logging is simply a helper and makes the mapping with the
present model more straightforward. In practice, it is simply an implementation detail. The properties to
be respected being that P1, P2.1 and P3 are correctly treated. Sytare further employs function wrappers
for driver routines, which correspond, to some extent, to the ENTER and LEAVE events of the execution
trace.

Myriads of systems do address P1 and P3, but the peripheral state volatility is not handled: either
peripherals are simply ignored or the system assumes that the peripherals are to be restored at a pre-
defined hardcoded state [21, 58, 86, 61, 56, 55, 65, 87, 64, 78, 15, 57, 77, 89]. They could fit in the present
model if they did manage to support peripherals, however it is not an easy task.

7.6 Conclusion

This chapter echoes a former publication [123] that proposes a specification of intermittent computing with
peripherals. It highlights the required properties of a just-in-time checkpointing mechanism or operating
system layer that must be complied with in order to guarantee correct execution under intermittent
power. This model focuses on peripherals as they are the most challenging part of such checkpointing
mechanisms, given the problems P2 and P3. A clear distinction between user mode and driver mode is
stated as a basis of the model. A so-called specification records the sequence of peripheral operations
that should be observed when running a given application under continuous power. The actual trace also
records peripheral operations, as well as completed and failed checkpoints, plus the transitions between
user mode and driver mode. If the checkpointing system enables to discard partial progress in the
execution of driver mode without non-idempotent behavior, it can be shown that the execution trace
effectively corresponds to the specification. Thus are stated the minimal conditions that a checkpointing
system should satisfy to correctly handle peripherals. The correctness of the model was formally proven
in [123]. Although the assumptions of the model limit the extent of its applications, it can nonetheless
support KARMA and Sytare, plus RESTOP modulo the support for timeliness constraints. The most
constraining assumption is the non-volatile memory solely used for storage purposes and not as working
memory. Relaxing that very assumption would extend the usage of the resulting model to architectures
A2 and A4 and thus to the checkpointing systems that leverage those architectures.



Chapter 8

Conclusion

The present thesis proposes a handful of contributions in the area of transiently-powered systems at
operating system level. A certain amount of domains are involved in this work, including but not
limited to software programming, electronics, architecture, simulation and formal proofs. Similarly, a
large spectrum of tasks was undertaken during the realization of this work, from high-level modeling to
embedded software development and maintenance, plus electronic design and soldering and correctness
proving along the path. The following sections bring out the essence of this work in a nutshell and open
the thinking to new and interesting perspectives.

8.1 A Quick Glance at the Contributions

An intermittent supply impedes the proper execution of traditional applications. Credit cards assume that
the energy will be eventually back in amounts that allow the execution of an application to completion.
More constrained systems, like transiently-powered systems, do not make that assumption and have to
cope with power outages. Many parts of the system state are volatile and thus lost upon power outage,
hence platforms embed non-volatile memory, not only to store instructions but also to save application
progress. The micro-controller, the memory contents and the peripherals must be kept consistent with
one another regarding the application as specified for a continuously-powered scenario. Special care must
be given to peripherals which are not as simple to restore as memory, for they may involve specific
sequences of operations, atomic waits, any form of operation that must be time-consistent and restarted
from the beginning should power fail. Timeliness also adds time-related semantics to the application. The
application developer knows the needs of the application and can tell whether a given piece of data needs
to be time-consistent with another one, by for instance reasoning about the expiration time of a sensed
value, considering that off-times can be as long as hours or days. Common solutions use checkpointing
to spread the execution of applications across power outages, which can induce unspecified roll-backs in
the control-flow and threaten non-volatile memory consistency if not properly handled.

Today’s solutions to spreading execution across power outages are numerous and leverage different
architectures. The most prominent ones consist of a mix of volatile and non-volatile memory, or of
a single non-volatile memory. In every depicted solution, the processors are volatile for non-volatile
processors are still experimental to this day. Checkpoints can be inserted statically, dynamically upon
timer expiration or energy storage monitoring, or by design with multi-task languages that consider task
boundaries checkpoints. Peripheral handling is not very popular, but works that consider peripherals
tend to use more or less compressed logs of peripheral accesses.

Sytare was the first kernel to support peripheral state persistence and consistency, interrupts and
application state persistence altogether. Its motto is to have the lightest impact on the application
and driver programming, to enable support of almost bare-metal applications with the least amount of
modifications. By using a wrapper mechanism around driver routines, Sytare achieves that objective: the
application only prefixes driver calls to benefit from Sytare’s atomicity mechanism. On the other hand,
Sytare however requires the driver developer to provide an initialization routine, an interrupt routine, a
save routine and a restoration routine. While the initialization and the interrupt routines exist anyway in
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common driver development best practices, the save and restoration routines arise from the intermittent
nature of the power supply. Peripherals are saved incrementally upon returning from driver routine and
the state of the application and memory are saved in bulk when the energy storage runs low. Sytare was
initially developed for MSP430 and, during the present thesis, acquired interrupt support. Sytare has
then been ported to ARM Cortex-M micro-controllers and runs on the ARMorik platform, which was
designed and assembled to propose an ARM-based alternative to the traditional MSP430-based platforms
with more volatile memory as future platforms would tend to embed more volatile memory.

A novel and accurate peripheral-aware energy model for embedded systems is proposed in this thesis.
Using separate basic power state machines, the cost of combinatorial automata can be avoided. Even a
low-cost energy meter can provide figures that are precise enough for the model, thus populated by the
measurements, to yield accurate results. The model is implemented inside a simulator that reproduces
the behavior of the platform at instruction-level for genuine computational software sections, while the
software sections involving peripherals are symbolically executed at the granularity of a driver routine.
The symbolical execution consists in changing the state of the platform according to the specification
of the driver routine, plus advancing time and augmenting energy consumption by amounts that were
measured offline for the given driver routine. Hence, the model includes a time and an energy model
of each relevant driver routine. The bulk of the driver routines can be represented as constants if the
driver API is well-designed, or may be linear with respect to a parameter in the specific case of sending a
radio packet, for instance, as the execution time and energy depend on packet length. Such a simulator
thus predicts not only time, but also energy requirements, as well as the locations, in the code, of power
outages. In addition, it enables large-scale testing of application benchmarks under repeatable virtual
environment conditions. While the simulator is calibrated for an average case estimation, it is useful
for dimensioning albeit not considering absolute worst-case concerns and gives a realistic hint about an
application’s needs and behavior.

As an improvement of classical full checkpointing, this thesis proposes to focus on modified volatile
memory regions, as far as application state is concerned. Within the proposed alternative to Sytare
checkpointing, peripherals are still managed as Sytare does. A Memory Protection Unit (MPU), present
in all micro-controllers, is used to set all volatile memory regions as read-only. Upon access mismatch
exception, the memory region is marked to be saved during next checkpointing operation, and the region
is unlocked to enable further modifications for the kernel already knows that any change made to the
region must be part of the next checkpoint. This is called MPU-based incremental checkpointing. The
proposal comes along with a novel model of checkpointing systems with eleven parameters to play around
with. The model enables the comparison between different checkpointing schemes and is furthermore a
handy tool for a system designer willing to quickly explore design space based on their needs. When the
application uses more than a few kilobytes of volatile memory, MPU-based incremental checkpointing is
always better than a full copy or manually-managed section modification detection alternatives. With
forthcoming platforms that are likely to embed more memory, incremental checkpointing will become
even more beneficial and could thus integrate new systems for transiently-powered systems.

Finally, the present thesis formulates a formal proof of checkpointing systems for transiently-powered
systems that was never attempted before. By considering the sequence of peripheral operations under
continuous power as a specification, it is possible to show that the actual trace of peripheral operations
that are observed under intermittent power does or does not comply to the specification, using trace
refinement. The model leveraged by the proof encompasses just-in-time checkpointing systems and sup-
ports actual systems such as KARMA and Sytare. The proof unsurprisingly shows that a just-in-time
checkpointing system must, besides making application state persistent, enable control-flow roll-backs
for timeliness purposes and prevent non-idempotent operations. Discarding partial progress between the
roll-back location and the location where the control-flow halted before the last power outage is a common
way to prevent non-idempotent operations and thus fits the proof.

8.2 Perspectives

Each contribution of this thesis, as well as the thesis at a global scope, leads to questioning about
transiently-powered systems, in terms of services to be provided by an operating system layer, of en-
ergy consumption estimation, of embedded systems simulation, of correctness of such systems under
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intermittent power and of communication protocols that involve transiently-powered systems.

8.2.1 Operating System

Energy-aware scheduler Current operating systems for transiently-powered systems, depicted in
Chapter 3 and Chapter 4, opportunistically place checkpoints, either statically or dynamically, to ensure
forward progress. Recent advances target the evaluation of the energy consumption of an application
or part of an application, as discussed in Chapter 6. That information may be used to dimension the
hardware platform, such as the adequate capacity of the energy storage. It could be further used to
build an energy-aware scheduler that can preempt operations that cannot complete due to the remaining
energy and knowledge about the energetic properties of the operation to perform. It would be interesting
to see priority inversion between tasks due to dynamic energetic concerns, when a less energy-consuming
task preempts another more consuming and initially with higher priority, while complying to precedence
constraints such as ensuring that a sensing task did produce a sufficient amount of data for a processing
task to operate. Ultimately, such a scheduler would decrease the likeliness of atomic sections with
timeliness constraints to be started without the guarantee that they can be run to completion before any
power outage occurs. That scheduler would enable to save failed attempts and use the remaining energy
either to make forward progress in another non-atomic task, or to shutdown the platform early so that
the required energy level is reached sooner than if the energy storage was completely depleted trying
to run an atomic section that could not complete. The latter point requires close cooperation with the
power manager module, for it is yet not common for a power manager for low-power energy-harvesting
devices to provide a logic pin to force an early shutdown.

Incremental checkpointing The MPU-based incremental checkpointing contribution from Chapter 6
can be further extended to not only have a selective save operation, but also a lazy restoration. By
setting memory regions with no read nor write access on boot, the kernel is able to catch any attempt to
read a memory region and restore that region only on that occasion. Then, the memory region is granted
with read permission and the next write to it will flag the region as to be part of the next checkpoint,
following the scheme depicted in Chapter 6.

Memory placement Within the optimistic scenario where the performance gap between volatile mem-
ories and non-volatile memories shrinks, the memory organization of transiently-powered systems should
tend to resemble a flat organization rather than a hierarchy. While some existing works currently place
all data into non-volatile memory, many others use volatile memory as a fast main memory and propose a
commit policy to make changes to volatile memory persistent, by copying the adequate pieces of data into
non-volatile memory. Regardless of the solution, today’s assumptions weigh down the usage of memory
from the application developer’s point of view. They can be restricted to the sole use of volatile memory
whereas the non-volatile memory is only managed by the operating system layer, as done in Sytare. Or
they can be restricted to use a specific non-volatile memory access API, hardly allowing pointers, in order
to tackle non-idempotence issues arising from letting the application developer place their variables in
non-volatile memory. Efforts, either in software or directly in architectural support, could further simplify
variable management by allowing the application developer to use their variables as it pleases them, with
a smart underlying mechanism that would address non-idempotence concerns if a given variable resides
in non-volatile memory.

8.2.2 Worst-Case Energy Consumption

While the contribution model of Chapter 5 studies an average case, worst cases are more popular due
to their bounding properties, useful for dimensioning hardware and conducting feasibility studies. Static
analyses do already exist.

0g [134] computes the Worst-Case Energy Consumption (WCEC) of a given program, either in ab-
solute terms whenever the consumption of all micro-controller instructions is properly characterized, or
in relative terms on the contrary. 0g specifically targets energy-constrained embedded systems, however
its analysis does not include peripherals, which are the most versatile components and have the greatest
impact on energy consumption. However, the authors of 0g rightfully state that computing the WCEC is



126 CHAPTER 8. CONCLUSION

not as simple as computing the Worst-Case Execution Time (WCET) and multiplying it with the power
consumption, for simply multiplying WCET with the power consumption is a common misconception of
the domain. Using that misconception, the worst-case power consumption must be considered, i.e., the
power consumption of the platform with all peripherals in their most consuming power state. Embedded
software developers know that their software must be energy-efficient and thus always propose a better
peripheral management policy than setting all peripherals to their most consuming power state. Hence,
a poorly-built WCEC may be orders of magnitude higher than realistic scenarios.

SysWCEC [106] considers several power states for each peripheral. The peripheral accesses are studied
at driver API level, which does not encompass subtle state variations such as when configuring several
control registers in a row. In addition, short busy-waits are often present in embedded software, e.g.,
when waiting for an oscillator to settle or for a hardware buffer to consume its data. It is thus not
unfrequent to see control structures such as while(REGISTER & mask);. Any WCEC or WCET tool
would yield either an infinite energy consumption or execution time, or would assume an arbitrary amount
of iterations and yield an unrealistic result. It would be interesting to incorporate data-sheet knowledge
and measurements as annotations for the WCEC tool, in order to yield realistic upper-bounds of the
energy consumption.

Also, fine instruction study should be performed. Not all stores and loads are equivalent and the
addresses give useful information about what parts of the platform are involved in a given instruction.
Address analysis would enable the WCEC tool to distinguish between volatile memories, non-volatile
memories and each peripheral, knowing that the wait state, i.e., the duration of the memory trans-
action, depends on the nature of the underlying memory and that peripherals further alter the state
of the platform. Such alterations include power consumption and clock frequency, that have a strong
impact on energy estimation. In addition, serial buses require reads and writes to the same address.
For instance, while(n−−) {FIFO = ∗ptr++;} writes n words to a First In, First Out (FIFO) memory.
Technically, there are n writes to the same address. However, the result is different from only writing
the last value for the FIFO actually accumulates data, while a variable would not. On the contrary,
while(n−−) {a = ∗ptr++;} could be coarsely rewritten a = ptr[n−1]; n = 0; provided that a and ptr
are variables without side effect.

At the end of the day, peripheral-aware WCEC analysis with fine grain instruction and address
analysis would be both an interesting and challenging topic to work on. In the context of this thesis,
a joint work with another research team was initiated towards that direction. The idea was to modify
the Heptane WCET estimation tool [135] to build a new WCEC tool capable of accurately estimating
the energy consumption of busy-waits, of memory accesses and of peripheral-related operations using
data-sheet figures and actual measurements as inputs. However, it remained stalled due to a lack of time.

8.2.3 Simulation

The simulator depicted in Chapter 5 provides accurate results, but that accuracy can be further im-
proved. Instructions that use memory-based operands are not yet checked against the target addresses.
This results in some discrepancy with respect to the reality for the simulator primarily targets a MSP-
EXP430FR5739 with heterogeneous memory. Accesses to volatile memory and non-volatile memory do
not require the same duration and these properties must be taken into account by the simulator. Fur-
thermore, to enable extensive benchmarking, it would be interesting to integrate a scenario description
language to the simulator. Hence, it would become possible to place events at some points in time, such
as the reception of a radio packet. Scenarios could incorporate pre-programmed data exchange to sim-
ulate a distant node for instance, as well as events related to energy harvesting such as an energy surge
or specific charging patterns. With both improvements, the resulting simulator would have increased
accuracy and become a basis for sandboxing transiently-powered systems and wireless sensor networks.

8.2.4 Formal Proof

The proof exposed in Chapter 7 reasons about an architecture where volatile memory is used as main
memory and non-volatile memory is solely used for persistent storage purposes. While that assumption
encompasses a large amount of today’s systems for transiently-powered systems, many others do not
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make use of volatile memory and prefer working directly in non-volatile memory. The proof could thus
be further extended to support those systems.

8.2.5 Communication Protocol

Off-the-shelf communication protocols often assume a stable power supply. Common ones allow failures to
occur, for instance when a network packet is poorly sent or not received at all. However, communication
failures are often addressed by redundancy and checksums, which implicitly assume that the communicat-
ing nodes can provide both computational abilities and energy to reissue a packet or to hash its contents.
Within transiently-powered systems, one has to consider both sides of the communication. A first scenario
would be that a remote operator, with steady power, queries one or more transiently-powered systems
and they answer opportunistically if they received the query within an on-time. The communication
would hence be asymmetrical, for on one hand there would be an operator with great amounts of energy
and on the other hand an energy-harvesting device. It would remove half of the difficulty, for only the
power supply of the energy-harvesting device would be an issue. The applications of such a scenario are
rather limited, but it is a natural approach at building wireless sensor networks where the sensor nodes
are solely responsible for sensing and transmitting the data when requested. Another, more complex,
scenario might only involve transiently-powered systems or allow sensor nodes to communicate with one
another, e.g., to propagate the data from distant sensor nodes towards an operator. This second scenario
is far more interesting, scientifically speaking, than the first one, for in a local communication both ends
may shutdown at any time. An energy-related rendezvous may be agreed between both nodes, as part
of a handshake sequence, to initiate a data exchange when both nodes can afford it, in terms of energy.
For instance, the first node that harvested enough energy can relay part of its energy to the other node
in order to make both nodes available for communication.

8.3 Transiently-Powered Systems of Tomorrow

Today, micro-controller manufacturers are fainthearted regarding the integration of non-volatile RAM, let
alone the replacement of volatile RAM by non-volatile RAM, in new micro-controller designs. Concretely,
only Texas Instruments provide such micro-controllers, and a chat with other manufacturers revealed their
untrust in the economic viability of such architectures. The first step to overcome is thus to convince
industrials to dig into the direction of platforms equipped with non-volatile RAM, aside from data-centers.
Recent MSP430 platforms from Texas Instruments tend to corroborate that newer designs incorporate
more memory, both volatile and non-volatile. It is thus expectable that, provided that these micro-
controllers perdure, they would embed more memory and even more computation capabilities and more
complex peripherals.

Advances in platform energy efficiency and in energy harvester design may lengthen life-cycle duration
or enable form-factor reduction to unlock new kinds of applications. However, power outages are still
foreseen to be part of tomorrow’s low-power platforms, hence transiently-powered systems will continue
to exist. The usage of lightweight operating systems that provide a failure-resilient run-time environment
to applications may become more popular as software engineering for these platforms would be eased.
Such operating systems would provide efficient answers to application and peripheral state volatility,
timeliness constraints and issues related to non-idempotent operations altogether.
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Appendix A

Glossary

ABI Application Binary Interface
API Application Programming Interface
CMOS Complementary Metal-Oxide Semiconductor
CPU Central Processing Unit
DMA Direct Memory Access
DSL Domain-Specific Language
DUT Device Under Test
FRAM Ferroelectric Random-Access Memory
GPIO General-Purpose Input/Output
I2C Inter-Integrated Circuit
ISA Instruction Set Architecture
LED Light-Emitting Diode
LPM Low-Power Mode
Life-cycle Period of time when the platform is continuously powered on. The elec-

tronic requirements of all hardware components, including the micro-
controller, peripherals and potential external memories, are met.

MMU Memory Management Unit
MPU Memory Protection Unit
NVRAM Non-Volatile Random-Access Memory
Power outage The exact moment when the power supply fails, leaving the platform in

a hardware off state. A hardware reboot is required, when the power
eventually comes back. Right after that point, all volatile elements are
considered lost and peripherals are at reset-state.

SPI Serial Peripheral Interface
SRAM Static Random-Access Memory
WCEC Worst-Case Energy Consumption
WCET Worst-Case Execution Time
WSN Wireless Sensor Network
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Appendix C

Abstract

Some electronic devices cannot embed any battery because of space- or cost-related concerns. Notably,
small devices harvest energy from their environment to gap the absence of battery. Medical sensors
and crop probes are examples of such devices. These devices are likely to consume energy faster than
they can harvest, when considering non-solar energy or small harvesters for instance. They are thus
exposed to frequent power outages and must cope with an intermittent supply and are referred to as
transiently-powered systems. Instead of restarting the application from the very beginning on every
boot, it is possible to resume the application where it stopped. Non-volatile memories keep their data
across power outages and their usage enable persistent data storage. Non-volatile RAM (NVRAM)
and traditional volatile RAM have similar access latencies, which makes NVRAM technologies good
candidates for persistent storage of energy-constrained devices. This work highlights the benefits of using
NVRAM for the purpose of enabling the execution of long-running application despite power outages.
This study proposes to solve issues related to intermittent supply at operating system level, which role is
to manage application progress persistence and maintain consistency between memories and peripherals.
This work also proposes a model for transiently-powered systems to lay the ground for energy consumption
estimation of code involving peripherals. A new checkpointing mechanism, based on a hardware MPU,
is proposed as a checkpointing optimization. Finally, this work proposes an introduction to proof of
correctness at operating system level for transiently-powered systems.

Certains objets électroniques ne peuvent embarquer de pile ou de batterie, pour des raisons de place ou
de coût. C’est le cas de petits objets, récoltant de l’énergie depuis leur environnement, afin de pallier
l’absence de batterie. Capteurs médicaux et sondes agronomiques en sont des exemples. En général, ces
objets consomment de l’énergie plus rapidement qu’ils n’en récoltent, notamment pour les appareils non
équipés de cellules photovoltäıques. En résultent de fréquentes coupures de courant lors de l’exécution
de l’application, on parle alors d’alimentation intermittente. Plutôt que de recommencer l’application du
début à chaque redémarrage, il est possible de développer des mécanismes afin de reprendre l’exécution à
l’endroit où elle s’était arrêtée. L’utilisation de mémoires non-volatiles, qui ne perdent pas leurs données
lorsque la plate-forme est éteinte, permet le stockage de données en dépit des coupures de courant. En
particulier, les RAM non-volatiles (NVRAM) ont des temps d’accès voisins des RAM volatiles, ce qui
permet de les utiliser comme des mémoires courantes, à l’opposé des mémoires type Flash dont le temps
et l’énergie d’écriture sont trop élevés. Ce travail met en exergue l’utilisation de NVRAM afin d’exécuter
une application longue en dépit des coupures de courant. Il s’articule autour du développement d’un
système d’exploitation visant ce type d’objet, assurant une cohérence entre les mémoires et l’état des
périphériques à chaque instant. En outre, il propose un modèle de systèmes à alimentation intermittente,
servant de base pour l’évaluation des coûts énergétiques de portions de code impliquant des opérations
sur les péripheriques. Un nouveau mécanisme de sauvegarde basé sur une MPU matérielle est proposé
pour optimiser la sauvegarde de données. Enfin, ce travail propose une introduction à la preuve formelle
d’exécution correcte pour systèmes à alimentation intermittente.
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Appendix D

Résumé de la thèse

Titre de la thèse en Français: Système d’exploitation dédié aux systèmes embarqués basse consommation
équipés de NVRAM.

L’informatique s’intègre dans beaucoup d’objets du quotidien, et cette tendance se renforce toujours.
Des étiquettes de vêtements, des capteurs agricoles, des implants médicaux et des capteurs déployés dans
des zones difficiles d’accès en sont autant d’exemples. Ces objets ne peuvent se permettre d’embarquer
piles et batteries, car ces dernières occupent beaucoup d’espace et nécessitent l’intervention d’un opérateur
humain pour remplacer les piles ou recharger les batteries. Au contraire, des objets autonomes doivent
récolter de l’énergie depuis leur environnement. Les sources d’énergie sont variées: la lumière, les ondes
électromagnétiques, le gradient de température, le mouvement, etc. De petits objets ne peuvent embar-
quer que de petits récolteurs d’énergie et, en général, de telles plates-formes consomment de l’énergie plus
rapidement qu’elles n’en récoltent. En résultent de nombreuses coupures de courant inopinées, on parle
alors d’alimentation intermittente.

L’alimentation intermittente empêche l’exécution correcte d’applications telles qu’elles sont conçues
actuellement. Par exemple, les cartes de paiement font l’hypothèse qu’il sera toujours possible d’exécuter
une application de bout en bout en une fois. Des systèmes plus contraints, faisant l’objet de cette thèse,
n’émettent pas cette hypothèse et doivent faire face à des coupures de courant intempestives. L’idée
principale est, au lieu de recommencer une application depuis le début après chaque coupure de courant,
d’intégrer les coupures au cycle de vie des applications. En d’autres termes, cette thèse s’intéresse aux
moyens de répartir l’exécution d’applications sur plusieurs périodes de courant, i.e., périodes entre deux
coupures de courant. En particulier, ce travail apporte plusieurs contributions dans le domaine des objets
à alimentation intermittente, du point de vue des systèmes d’exploitation.

Beaucoup de composants de ces plates-formes sont volatiles et perdent leurs contenus lors d’une
coupure de courant. Elles embarquent alors de la mémoire non-volatile pour sauvegarder un état cohérent
de l’application. Les contraintes énergétiques des appareils visés par cette thèse sont telles qu’ils peuvent
rester éteints pendant des heures, voire des jours, ce qui n’est pas nativement prévu par les langages de
programmation classiques tels que le C.

Les coupures de courant sont à l’origine de problèmes particuliers. L’état du micro-contrôleur et le
contenu des mémoires volatiles sont perdus en l’absence de courant (problème P1). Il en va de même pour
les périphériques et les données qui y sont reliées (problème P2), telles que celles portées par les interrup-
tions matérielles. Les périphériques ne sont pas aussi simples à restaurer que la mémoire et nécessitent
un traitement à part. En effet, certains accès aux périphériques requièrent des séquences spécifiques
d’opérations ou des délais d’attente non-interruptibles. De surcrôıt, les états du micro-contrôleur, des
mémoires volatiles et non-volatiles doivent être maintenus cohérents les uns avec les autres, en toutes
circonstances. Le scénario se complique lorsque l’on intègre une composante temporelle aux opérations
logicielles et matérielles (problème P3). D’un point de vue matériel, certaines opérations ne peuvent être
interrompues par une coupure de courant, comme lorsque l’on envoie un paquet radio. L’opération doit
s’exécuter de manière ininterrompue car reprendre l’envoi au milieu du paquet après un redémarrage n’a
pas de sens. De même, d’un point de vue logiciel, il est légitime de se demander quelle serait la perti-
nence de garder une valeur lue sur un capteur après une longue coupure de plusieurs heures. Certaines
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applications nécessitent alors que le traitement de données relevées par des capteurs s’exécute dans la
même période de courant que l’opération d’échantillonnage correspondante, et doivent alors retenter le
processus dans son intégralité si une coupure survenait.

Les travaux qui adressent les problèmes liés à l’intermittence ont recours au checkpointing afin de
répartir l’exécution d’applications sur plusieurs périodes de courant. Les travaux qui proposent une
solution au problème P3, i.e., celui des opérations non-interruptibles ainsi que de l’expiration des données,
ont souvent recours à des retours en arrière dans le flot de contrôle de l’application. Ces retours en arrière
ne sont pas observés dans une exécution exempte de coupures de courant, ce qui induit des mouvements
de flot de contrôle imprévus par la spécification logicielle. Les langages de programmation et leurs
compilateurs font l’hypothèse que les instructions se suivent séquentiellement et que les mouvements de
flot de contrôle sont explicites, via des structures de contrôle comme if, while, ou des appels de fonctions
par exemple. Les retours en arrière infirment ces hypothèses, ce qui peut aboutir à une corruption des
données, notamment en mémoire non-volatile, car certaines opérations non-idempotentes peuvent être
amenées à être rejouées, et donc produire un résultat incorrect étant donné le caractère non-idempotent
de ces opérations (problème P4).

Les travaux existants aujourd’hui qui visent à résoudre les problèmes P1, P2, P3 ou P4 reposent
sur des architectures variées. La plus populaire embarque, à la fois, de la mémoire volatile et de la
mémoire non-volatile, car les performances des mémoires non-volatiles sont encore en deçà de celles de
leurs alternatives volatiles, pour le moment. D’autres optent pour une mémoire de travail totalement
non-volatile. Enfin, certains travaux étudient la conception de micro-contrôleurs, en tout ou partie non-
volatiles, afin d’étendre les propriétes non-volatiles à l’unité de calcul en elle-même, mais ils sont toujours
à l’état de prototypes expérimentaux. Indépendamment de l’architecture choisie, les checkpoints sont
placés statiquement ou dynamiquement sur expiration d’un timer ou sur détection de coupure de courant
imminente. D’autres travaux conçoivent des applications sur un modèle multi-tâche, dans lequel les
frontières des tâches sont des checkpoints par construction. Le problème de la volatilité des périphériques
(P2) n’est pas souvent abordé, et les travaux qui s’y intéressent ont recours à l’enregistrement de séquences
d’opérations périphériques, de manière plus ou moins compressée.

Sytare est le premier système d’exploitation léger à apporter une solution aux problèmes P1, P2 et
P3. Son objectif est de permettre l’écriture d’applications qui diffèrent le moins possible du modèle
d’applications sur machine-nue. Sytare y parvient grâce à son mécanisme d’appel de driver au travers
d’une API qui résout les problèmes P2 et P3 de manière transparente pour les développeurs d’applications.
En revanche, les développeurs de drivers doivent fournir quelques routines pour chaque driver : pour
l’initialisation du périphérique, ses interruptions, sa sauvegarde et sa restauration. Les deux premières
seraient présentes, de tout manière, dans une application sur machine-nue, et donc seules les routines
de sauvegarde et de restauration sont réellement imposées par Sytare. Les périphériques (P2) sont
sauvegardés de manière incrémentale, à la fin de l’exécution de chaque routine driver qui change l’état
dudit périphérique. A l’entrée d’une routine driver, Sytare enregistre l’appel et ses arguments de sorte à
pouvoir ré-exécuter la routine depuis le début si une coupure de courant interrompt l’opération (P3). Le
micro-contrôleur et la mémoire (P1) sont sauvegardés uniquement sur détection de coupure imminente.
Avant cette thèse, Sytare existait déjà mais ne permettait pas encore les interruptions, essentielles dans
le développement d’applications sur machine-nue. La présente thèse y contribue alors, en ajoutant la
persistence des interruptions et des données associées, ainsi qu’un portage de Sytare sur la plate-forme
ARMorik. ARMorik a été conçue et assemblée dans le cadre de ce travail, afin de fournir une alternative
aux plates-formes MSP430, en proposant une architecture basée sur ARM ainsi que de plus grandes
capacités de stockage, volatile comme non-volatile, afin de prévoir l’avènement de futures plates-formes.

Cette thèse propose en outre un modèle et une méthodologie afin d’estimer, de manière précise, la
consommation énergétique de logiciels déployés sur plates-formes embarquées. En utilisant une machine
à états distincte pour chaque composant de la plate-forme, le modèle n’a pas besoin de construire de
machines à états combinatoires. Pour donner des estimations, le modèle est peuplé avec des mesures
effectuées sur plate-forme réelle. Ce travail montre qu’il est possible d’obtenir des estimations précises
en utilisant une plate-forme de mesure simple. Le modèle est ensuite implémenté dans un simulateur
en deux parties, prenant en entrée les mêmes binaires que ceux qui sont exécutés sur machine réelle.
Les parties logicielles exemptes d’utilisation de périphériques sont simulées au cycle près, tandis que les
opérations sur les périphériques sont simulées de manière symbolique à la granularité d’une routine driver.
L’exécution symbolique consiste à changer l’état du périphérique tel que spécifié par la documentation de
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la routine, et à faire avancer le temps et l’énergie dans la simulation, de sorte à ce que la durée d’exécution
et la consommation énergétique soient équivalentes à une observation réelle. Le modèle énergétique a
donc besoin d’un modèle pour chaque routine driver. En pratique, il s’agit de simples constantes, mais
cela dépend de l’API driver considérée. Certaines routines nécessitent un modèle un peu plus complexe,
comme l’envoi d’un paquet radio dont le temps d’exécution et la consommation énergétique sont linéaires
avec la taille du paquet à envoyer. Le simulateur permet d’estimer le temps d’exécution, la consommation
énergétique, les endroits probables de coupure de courant, et sert aussi à conduire des expériences à plus
grande échelle car il est facile d’exécuter plusieurs centaines d’instances du simulateur sur une machine,
plutôt que de réaliser le même nombre de tests sur plates-formes réelles.

Dans les applications dont les périodes de courant sont courtes, il est peu probable que beaucoup
de mémoire soit modifiée entre deux coupures de courant. Il est donc possible d’optimiser les réponses
usuelles au problème P1, de sorte à ne copier que les parties de la mémoire qui ont été modifiées. Sytare a
alors été amélioré, pour que sa sauvegarde de mémoire devienne incrémentale, à l’instar des périphériques,
la différence étant que la mémoire n’est sauvegardée qu’une fois par période de courant. En utilisant une
Memory Protection Unit (MPU), la mémoire est découpée en régions que Sytare configure en lecture
seule à chaque démarrage. Lorsque l’application souhaite écrire dans la mémoire, une exception d’accès
mémoire est alors générée. Ensuite, Sytare marque la région correspondante comme modifiée, rend les
droits d’écriture à la région mémoire, et ré-execute l’instruction ayant généré l’exception, afin que la
modification puisse avoir lieu. Lors de l’interruption de coupure de courant imminente, Sytare ne copie
que les régions qui ont été marquées comme modifiées durant la période de courant. Ce travail propose
aussi un modèle énergétique des méthodes de checkpointing faisant interagir onze paramètres. Le modèle
permet de comparer différentes approches, ainsi que d’aider à la conception de nouveaux mécanismes de
sauvegarde. En prévoyant que les futures plates-formes embarqueront davantage de mémoire, il deviendra
de plus en plus impératif d’avoir recours au checkpointing incrémental.

Enfin, le domaine des systèmes à alimentation intermittente a besoin de preuves formelles quant
à l’exécution correcte d’applications en dépit des coupures de courant. En partant du principe que
P1 est déjà correctement géré par les systèmes actuels, on peut définir une spécification de l’exécution
d’applications comme une trace d’opérations sur les périphériques. Il s’agit de prouver que les traces
réellement observées correspondent à la spécification, grâce au concept de raffinement de trace. La
résolution de P3 implique des retours en arrière, et notamment les potentielles opérations sur périphériques
doivent être rejouées. Le raffinement de trace doit alors tenir compte de ces retours en arrière et, si
l’impact des opérations périphériques sur l’environnement est idempotent, alors cela n’affecte pas la
preuve. En pratique, certaines opérations ne sont pas idempotentes, comme l’envoi d’un paquet radio.
Mais dans ce cas précis, les communications sont régies par une pile réseau dont les protocoles prévoient,
entre autres, la redondance de paquets. La preuve introduite dans ce travail se calque sur des systèmes
à sauvegarde lors de coupures de courant imminentes, et prouve l’exactitude des systèmes KARMA et
Sytare en l’état, ainsi que RESTOP si on lui implémente une solution à P3.

Cette thèse se positionne dans une vision des systèmes à alimentation intermittente orientée vers les
systèmes d’exploitation, bien que rejoignant d’autres domaines tels que l’architecture et l’électronique,
avec la conception et le développement d’ARMorik ainsi que de plates-formes de tests et de mesures. Il
est possible d’étendre les travaux présentés dans cet ouvrage. Les données énergétiques peuvent servir à
mettre au point un ordonnanceur intelligent. Le checkpointing incrémental peut être davantage optimisé
en restaurant les régions mémoire uniquement lorsqu’elles sont lues, afin de ne pas avoir à restaurer des
régions qui ne seraient pas utilisées pour une période de courant donnée. L’avènement de nouvelles plates-
formes embarquées contenant davantage de mémoire et les avancées technologiques à prévoir dans les
mémoires non-volatiles pourront remettre en question certains choix actuels de placement des données en
mémoire. Il sera intéressant d’étudier les améliorations rendues possibles par ces nouvelles architectures.
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