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Résumé en français 

Chapitre 1 : Contexte 

L’arthrose est une maladie commune affectant les articulations de l’organisme. Dans un organisme sain, 

l’articulation se compose de deux extrémités d’os protégées par du tissu cartilagineux. Celui-ci est 

principalement formé d’une matrice extra-cellulaire riche en fibre de collagène, en protéoglycanes (PGs) 

et en glycosaminoglycanes (GAGs). Un seul type de cellule est présent dans ce tissu avasculaire, les 

chondrocytes, en charge de la production et la dégradation des composés matriciels et donc de l’intégrité 

du tissu. C’est lorsque l’équilibre établi par les chondrocytes est rompu que l’arthrose a lieu avec pour 

principal effet la dégradation du tissu cartilagineux et notamment des protéoglycanes et 

glycosaminoglycanes. 

Lors de stades avancés, la dégradation du cartilage outrepasse la production d’éléments matriciels. Les 

chondrocytes produisent alors des composés matriciels structurellement altérés incapables de posséder 

des fonctions physiologiques ce qui contribue à l’inflammation du tissu et à des douleurs au niveau des 

articulations. 

L’arthrose est actuellement la maladie rhumatismale la plus commune dans le monde et est reconnue 

comme un fardeau pour la santé publique mondiale. Le nombre de patients atteint d’arthrose augmente 

tous les jours dû au vieillissement de la population et à l’augmentation de la prévalence de l’obésité. 

Malheureusement, seuls des traitements symptomatiques sont prescrits aux patients car aucun traitement 

curatif n’a été mis au point à ce jour. 

Les thérapies actuelles en développement se basent sur l’ingénierie tissulaire avec la mise en place de 

réseaux de protéoglycanes et glycosaminoglycanes artificiels ou mimés dans lesquelles des cellules 

souches mésenchymateuses seraient introduites afin qu’elles puissent se différencier en chondrocytes 

produisant des éléments matriciels « sains » dans un environnement non-inflammatoire. Cette stratégie 

a donc été explorée dans le cadre de notre projet. 

Les GAGs sont de longues chaines linéaires de polysaccharides naturels composées de la répétition d’un 

motif disaccharidique où chaque monosaccharide de la chaine peut être acétylé, épimérisé ou sulfaté à 

différentes positions du sucre. La nature du disaccharide, le type de modification ainsi que la position 

des groupements sulfates sur chaque monomère de sucre sont la source de l’extrême diversité structurale 

des glycosaminoglycanes. Ces biomolécules hautement chargées négativement sont ubiquitaires dans 

l’organisme et possèdent une multitude de fonctions structurales et fonctionnelles telles que la 

croissance, la différentiation et la signalisation cellulaire ou encore la régulation de la bioactivité d’une 

multitude de protéines dont les facteurs de croissance. 



 
 

 
7 

Les GAGs sont communément retrouvés attachés à un corps protéique formant ainsi des PGs. Cette 

structure leur confère de la multivalence, propriété indispensable pour exercer leurs activités. Le rôle 

des PGs dans l’organisme est principalement lié aux chaines de GAGs qu’ils portent. 

De par leur implication dans une large gamme de processus physio- et patho-logiques, les GAGs et les 

PGs sont connus pour être de bonnes cibles thérapeutiques et ont d’ailleurs été étudiés dans le cadre de 

la croissance des cellules de différents tissus dits « souples ». Cependant, leur obtention difficile est un 

facteur limitant leur utilisation à des fins thérapeutiques. D’une part, leur extraction à partir de tissus 

animaliers présente des risques de contamination (par des pathogènes par exemple). De plus, la 

production de PGs et GAGs variant fortement en fonction du temps et du tissu, aucun lot ne peut être 

biologiquement identique. D’autre part, leur extrême hétérogénéité structurale rend leur synthèse 

chimique laborieuse et complexe et mène à la fabrication d’une seule chaîne définie tandis qu’aucune 

chaîne de GAG naturel ne présente exactement le même motif dans l’organisme. 

Pour pallier à ce problème, les scientifiques misent depuis quelques années sur la préparation de mimes 

de PGs et de GAGs, appelés glycomimétiques. Ces derniers, plus faciles à obtenir en larges quantités, 

permettent de comprendre le rôle et d’établir des relations structure-activité des biomolécules naturelles 

afin de pouvoir les utiliser in fine comme thérapies. Différents paramètres entrent en jeu dans la 

préparation de glycomimétiques : le type de squelette de la chaîne (polysaccharides naturels, 

glycopolymères ou composés non-sucrés synthétiques), la taille de la chaîne, son degré de sulfatation 

ainsi que sa conformation. 

Dans notre projet, nous nous sommes focalisés sur la modification de (cyclo)maltooligosaccharides, en 

particulier le malto-heptaose, -hexaose et la β-cyclodextrine, ayant des longueurs de chaînes et des 

conformations tridimensionnelles définies. Ces composés ont déjà fait leur preuve en tant que mimes 

biologiques de GAGs. Le projet s’articule autour de cinq tâches qui seront développées dans chaque 

chapitre : 

- La sulfatation aléatoire des maltooligosaccharides linéaires et cycliques (libres, fonctionnalisés 

et greffés) afin de mimer des GAGs et l’évaluation de leur activité biologique ; 

- La préparation de maltooligosaccharides cycliques régiosélectivement sulfatés et l’évaluation 

de leur activité biologique ; 

- La fonctionnalisation de l’extrémité réductrice des maltooligosaccharides linéaires par une 

fonction thiol ou amine en vue de leur couplage sur un polymère ou une biotine ;  

- Le greffage des chaines linéaires fonctionnalisées à une biotine (pour des tests biologiques) ou 

à un polymère pour créer un mime de PGs. 
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Chapitre 2 : Obtention de glycomimétiques aléatoirement sulfatés à partir de 

(cyclo)maltooligosaccharides 

Dans ce chapitre, nous nous sommes focalisés sur le maltoheptaose, maltohexaose et la β-cyclodextrine 

naturels non-modifiés. Ces composés ont été sulfatés aléatoirement à différents degrés (faible, moyen et 

fort) par variation de la stœchiométrie de l’agent sulfatant, le sulfure de trioxyde. Après caractérisation, 

ils ont été analysés biologiquement afin de tester l’effet de la longueur de chaine (malto-hexaose VS -

heptaose) ainsi que de sa conformation tridimensionnelle (maltoheptaose linéaire VS β-cyclodextrine 

cyclique) sur l’interaction avec des facteurs de croissance liant l’héparine et leur potentialisation. 

Les conditions de sulfatation et notamment leur purification ont d’abord été optimisées avec le 

maltoheptaose. Un mode-opératoire simple a été adopté pour le traitement des mélanges réactionnels à 

l’issu de la réaction : une simple neutralisation suivie d’une purification par GPC a permis d’obtenir des 

produits quasi-purs. Ce protocole a pu également être appliqué pour la β-cyclodextrine. Cependant, 

ayant des quantités très faibles de maltohexaose (composé coûteux), leur sulfatation n’a pu être effectuée 

qu’une seule fois avant optimisation. 

La caractérisation des (cyclo)maltooligosaccharides sulfatés a été réalisé par quatre méthodes 

développées ci-après. 

La spectroscopie par résonance magnétique nucléaire en proton a permis d’avoir une idée globale du 

degré de sulfatation au vu de son allure générale. Plus un composé est sulfaté, plus le spectre « shifte » 

vers les champs faibles, et plus le pic attribué aux protons anomériques est visible comme un multiplet. 

Nous n’avons malheureusement pas pu attester de la présence de composés anhydros par analyse 

complémentaire HMBC. 

L’analyse SEC-MALS permet d’extraire un bon nombre d’information quant à la composition des 

mélanges sulfatés. Tout d’abord, l’allure des pics correspondant aux temps de rétention des composés 

dans le système de chromatographie d’exclusion stérique permet d’avoir une idée de l’homogénéité 

globale du mélange. Par exemple, les pics gaussiens observés pour la majorité de nos mélanges ont 

témoigné de leur homogénéité. Ensuite, nous avons observé que les temps de rétention diminuaient avec 

le degré de sulfatation. Ainsi, les composés hautement sulfatés étaient plus vite élués que ceux moins 

sulfatés (ce qui concorde avec la taille moyenne des composés). De plus, la SEC-MALS permet 

d’extraire des informations telles que la masse moléculaire moyenne en poids Mw, la masse moléculaire 

moyenne en nombre Mn, et l’indice de polydispersité PDI de chaque mélange sulfaté. Globalement, et 

en accord avec la théorie, ces trois paramètres tendaient à augmenter avec le degré de sulfatation. 

L’analyse élémentaire nous a permis de calculer le degré de sulfatation moyen par unité des mélanges 

sulfatés grâce aux pourcentages en carbone et en soufre. Ce degré augmentait entre les composés 

faiblement sulfatés et ceux fortement. De plus, les quantités d’azote dans la majorité des échantillons 
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ont témoigné de la présence de traces d’ammonium carbonate, solvant utilisé lors de la purification des 

mélanges par GPC. 

Enfin, l’analyse infrarouge (FT-IR) nous a permis d’avoir une idée des fonctions chimiques présentes 

de façon qualitative. Ainsi, nous avons pu confirmer la diminution d’hydroxyles et de l’augmentation 

de groupements sulfates, le tout sans hydrolyse. 

Après leur sulfatation et leur caractérisation, les (cyclo)maltooligosaccharides ont été soumis à des tests 

biologiques de deux types : le test ELISA qui permet d’évaluer la capacité de compétition entre nos 

composés et l’héparine pour l’interaction avec des facteurs de croissance liant l’héparine, et le test 

mitogénique sur cellules BAF32 ou HUVEC qui permet de tester la capacité de nos composés à se 

comporter comme des glycomimétiques de GAGs en induisant la prolifération cellulaire. 

Ainsi, les dérivés modérément et hautement sulfatés des (cyclo)maltooligosaccharides ont semblé avoir 

de meilleures affinités et ont induit des réponses cellulaires plus intenses que ceux légèrement sulfatés. 

La taille minimale requise pour l’interaction avec les facteurs de croissance testés a été évaluée à sept 

unités de sucre en comparant les effets des maltoheptaose et maltohexaose sulfatés mais reste à être 

confirmée. L’interaction et la potentialisation semblaient varier selon la conformation linéaire ou 

cyclique des oligosaccharides. 

Chapitre 3 : Obtention de glycomimétiques régiosélectivement sulfatés à partir de 

cyclomaltooligosaccharides 

Après avoir découvert que les β-cyclodextrines pouvaient exercer des rôles comparables aux GAGs 

(voir chapitre 2), nous nous sommes penchés sur l’effet de la position des groupements sulfates sur 

l’activité biologique de ces composés cycliques. Pour ce faire, la chimie sélective des β-cyclodextrines 

a été exploitée. Elle se base sur la symétrie de type Cn et la différence de réactivité entre les hydroxyles 

OH-6, les secondaires OH-2 et OH-3 de ces molécules cycliques. Ainsi, les hydroxyles primaires OH-

6 sont les plus réactifs et accessibles, les OH-2 sont les plus acides et les OH-3 sont les moins accessibles 

et réactifs. Grâce à ces différences, il est possible de sélectivement fonctionnaliser les OH-6 ou bien les 

OH-2, et de réaliser via l’utilisation de groupements protecteurs orthogonaux des per-modifications à 

chacune des positions. Dans ce cadre, de nombreux exemples de fonctionnalisations sélectives ainsi que 

de stratégie de synthèse ont été développés principalement pour des applications en électrophorèse 

capillaire. 

Nous nous sommes inspirés de quelques-uns d’entre eux pour préparer six composés régiosélectivement 

sulfatés : les 2S-, 3S-, 6S-, 2,3S-, 2,6S-, et 3,6S- β-cyclodextrines. 

Le point de départ de toutes les synthèses a été le même : la préparation de la β-cyclodextrine 6-O-tert-

butyldimethylsilylée. Par la suite, la 6S-β-cyclodextrine a pu être obtenue en cinq étapes. La 2,3S-β-

cyclodextrine a nécessité sept étapes, et les positions OH-2 et OH-3 n’ont pas pu être entièrement 
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sulfatées, probablement dû à la proximité de ces hydroxyles et à l’encombrement stérique des 

groupements sulfates. De son côté, la 2,6S-β-cyclodextrine n’a pas pu être terminée à temps dû à l’échec 

d’une étape de désilylation. La 2S-β-cyclodextrine a pu être synthétisé en sept étapes, et la 3,6S-β-

cyclodextrine en cinq. Malheureusement, aucune stratégie de synthèse n’a fonctionné pour la 3S-β-

cyclodextrine, qui n’a donc pas pu être préparée. 

Après caractérisation, les différentes β-cyclodextrines sulfatées ont été soumises à des tests biologiques 

afin d’évaluer le possible effet de la position des sulfates sur leur activité biologique. Leur habilité à être 

des compétiteurs avec l’héparine a été évaluée avec FGF-2 et VEGF. Selon le facteur de croissance 

testé, différents ordres de grandeur des IC50 a été obtenu, et les composés semblaient interagir 

différemment selon leur motif de sulfatation. 

Chapitre 4 : Modification de l’extrémité réductrice de maltooligosaccharides 

Afin d’obtenir des mimes de protéoglycanes, il a été envisagé de greffer plusieurs chaines linéaires de 

maltooligosaccharides (étant de potentiels mimes de GAGs) sur un polymère bactérien portant soit des 

fonctions alcènes soit des fonctions acides carboxyliques pendantes. Pour effectuer ce couplage, les 

chaines ont été soit thiol- soit amine-fonctionnalisées pour un future couplage thiol-ène ou amide 

respectivement. 

L’extrémité réductrice étant porteuse d’une fonction aldéhyde, c’est celle qui peut être modifiée chimio-

sélectivement par rapport aux autres hydroxyles. Afin d’avoir des adduits fonctionnalisés en un nombre 

d’étapes limitées, la fonctionnalisation directe sur sucre non-protégé a été choisie. Plus précisément, 

l’extrémité réductrice des maltooligosaccharides a été modifiée par introduction d’un linker bis-

fonctionnalisé (comportent une amine et un(e) thiol/amine). 

 La piste du couplage thiol-ène a d’abord été investie par la production de maltooligosaccharides thiol-

fonctionnalisés puisque le polymère bactérien porte des fonctions alcènes potentiellement modifiables 

par un couplage thiol-ène. Trois stratégies ont été développées. 

La première stratégie s’est basée sur l’utilisation de la cystamine (diamine aliphatique contenant un pont 

disulfure) et son espèce réduite, la cysteamine. Ce chemin synthétique avait précédemment été 

développé au sein de l’équipe. Dans un premier temps, l’introduction de la cysteamine, portant un thiol 

non-protégé, à l’extrémité réductrice a été tentée sur le maltose sans succès. Avec le maltoheptaose, un 

mélange de trois produits a été obtenu dont deux espèces où le thiol s’est oxydé. A partir de ces 

observations, les groupements thiols ont dû être introduits sous forme protégée à cause la réactivité des 

thiols sous forme libre, qui tendent à s’oxyder sous forme de dimères disulfures. La fonction thiol a donc 

été protégée sous forme de pont disulfure. Un échange thiol-disulfure a été envisagé pour la cysteamine 

à l’aide du disulfure de pyridyl, composé aromatique et donc UV-actif. Ceci aurait permis un meilleur 

suivi et une identification rapide des produits thiol-fonctionnalisés. Cependant, cette stratégie s’est 
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révélée inefficace. Le greffage de la cystamine sur les maltooligosaccharides a ensuite été tenté via une 

amination réductrice ou par amination de Kochetkov. Une nouvelle fois, aucune de ces deux méthodes 

n’a pu être efficace sur le maltose. D’autres stratégies développées en parallèle de la 

cystamine/cysteamine (HTL) semblaient par ailleurs mieux fonctionner. 

La deuxième stratégie consistait en l’utilisation de l’homocysteine thiolactone (HTL) qui est donc une 

thiolactone (thiol protégé) portant une amine primaire. L’HTL a dans un premier temps été greffée par 

amination réductrice au maltoheptaose et au maltose sur de petites quantités. Nous nous sommes ensuite 

exposés à des difficultés de montée en échelle pour la fonctionnalisation du maltose (destiné à être utilisé 

pour l’optimisation des conditions de couplage thiol-ène). Sur grosses quantités, un sous-produit 

contenant un thiol protégé et un thiol libre (correspondant à l’autocondensation de l’HTL à l’extrémité 

réductrice des chaines) a été observé à hauteur de 30-50% (calculé à partir du spectre de masse des 

mélanges obtenu), avec le risque que les thiols libres soient la source de réactions indésirables. Etant 

donné que les deux produits ne pouvaient que difficilement être séparés en raison de leur similarité 

structurale, nous avons tenté d’adoucir les conditions de l’amination réductrice en modulant la 

stœchiométrie des réactifs, les temps de réaction, les solvants, la température et les méthodes de 

purification. Le pourcentage de sous-produit a pu être diminué à 7% sur une échelle de 4 grammes. 

La condensation de Knoevenagel et la fabrication de dérivés d’acide barbiturique est une thématique 

développée depuis quelques années au sein de l’équipe. Elle a permis de former toute sorte de dérivés 

(symétriques et asymétriques, portant des fonctions hydrophobes/hydrophiles/« clickables ») pouvant 

avoir des nombreuses applications. Cette méthodologie a été utilisée pour l’introduction d’une ou deux 

molécules d’HTL à l’extrémité réductrice des sucres. Nous avons d’abord tenté de synthétiser un dérivé 

barbiturique symétrique portant deux HTL, sans succès. Par la suite, nous nous sommes penchés sur la 

préparation d’un dérivé asymétrique portant un éthyle d’une part et un HTL d’autre part. Le composé a 

enfin été couplé au maltoheptaose et au maltose par condensation de Knoevenagel (dans des conditions 

légèrement modifiées). 

Lors de stades avancés de la thèse et après avoir tenté les couplages thiol-ène avec les composés issus 

de la stratégie HTL, une troisième et dernière stratégie basée sur les dérivés anthraniliques a rapidement 

été développée. Ces composés étant UV-actifs et fluorescents, ils permettent un bon suivi des dérivés 

fonctionnalisés pour les chimistes et les biologistes. Dans un premier temps, nous avons tenté de 

synthétiser un composé ayant un thiol non-protégé afin d’effectuer des tests de la réaction thiol-ène sans 

étape préliminaire de déprotection du thiol. Le maltoheptaose a ainsi été couplé à un dérivé anthranilique 

portant une cysteamine et a été obtenu sous forme de mélange (formation de ponts disulfures) qui a 

ensuite été réduit par ajout de tributylphosphine et conservé dans des conditions inertes. Dans un 

deuxième temps, l’anhydride isatoique a été utilisé en combinaison avec la cystamine pour synthétiser 
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deux dérivés anthraniliques : un symétrique et un asymétrique. Le dérivé symétrique a ensuite été couplé 

au maltoheptaose et au maltose par amination réductrice. 

Deux des dérivés maltoheptaose thiol-fonctionnalisés (par HTL) ont été soumis à la sulfatation aléatoire 

pour former, après couplage thiol-ène, un mime de PG. En raison de la faible stabilité de l’HTL en 

conditions acides et basiques, le protocole de sulfatation développé dans le chapitre 2 a été revu : un 

piégeur d’acide a été introduit et un seul solvant, le DMF, a été utilisé pour la réaction. Des degrés de 

sulfatation globalement plus faibles ont été obtenus, probablement en raison du mélange hétérogène 

entre le piégeur d’acide, le solvant et l’agent sulfatant. 

Après plusieurs essais de thiol-ène sur du maltose thiol-modifié non-sulfaté, il s’est avéré que le 

couplage n’était que peu efficace. Très tardivement dans la thèse, la stratégie a donc été changée pour 

un couplage amide avec un polymère portant des acides carboxyliques. Ainsi, le maltoheptaose a été 

fonctionnalisé par une fonction amine. 

La préparation d’un linker bis-fonctionnalisé a d’abord été envisagée en faisant réagir l’anhydride 

isatoique avec de l’éthylène diamine. La réaction a conduit à une panoplie de produits très similaires 

s’expliquant par la présence de deux carbonyles électrophiles dans l’anhydride isatoique et de deux 

amines dans l’éthylène diamine. Pour pallier à ce problème, le para-nitrophenyl anthranilate, réactif 

commercial, a plutôt été directement introduit sur le maltoheptaose par amination réductrice, et son ester 

activé possédant un groupement partant (nitrophénol) a été déplacé à l’aide de l’éthylène diamine. 

Aucun sous-produit n’a été observé. 

Chapitre 5 : Couplage des maltooligosaccharides fonctionnalisés 

Le chapitre 5 traite des réactions de couplage thiol-ène et amide entre le sucre et soit la biotine, soit le 

polymère PHOU. La biotine a ici été utilisée pour deux raisons : une fois transformée en biotine-allyle, 

elle constitue un composé modèle du polymère PHOU permettant d’optimiser les conditions de la 

réaction de couplage pour limiter le gaspillage de PHOU ; de plus les adduits maltoheptaose-biotine, 

une fois sulfatés, peuvent permettre d’effectuer des analyses d’interaction par SPR en tant que mimes 

potentiels de GAGs (collaborateurs IBS, Grenoble). De son côté, le PHOU est un polyester bactérien 

biodégradable hydrophobe et possédant des chaines pendantes d’alcènes terminaux. Ces fonctions 

peuvent par ailleurs être transformées en acide carboxylique par couplage thiol-ène (collaborateurs 

ICMPE, Thiais). Le couplage des chaines de sucre au polymère permettrait d’obtenir des mimes 

potentiels de PG qui seraient biologiquement évalués. 

Afin de mettre en œuvre un couplage thiol-ène radicalaire et photoinitié, la biotine-allyle a été 

synthétisée en deux étapes en one-pot via l’intermédiaire biotine-NHS. Ensuite, la biotine-allyle et le 

maltose thiol-fonctionnalisé avec du HTL (préparé au chapitre 4) ont été mis à réagir ensemble dans une 

réaction en deux étapes (et one-pot) : une première étape consiste à ouvrir la thiolactone par aminolyse 
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pour libérer la fonction thiol et une seconde étape de réaction du thiol avec la fonction alcène de la 

biotine. Malgré de nombreuses tentatives en faisant varier des paramètres tels que l’ajout séquentiel des 

réactifs, les temps de réaction, les conditions inertes, le photoinitiateur ou encore la présence d’agent 

réducteur, le produit n’a pas pu être isolé. Nous n’avons observé que des mélanges réactionnels incluant 

une majorité de produit aminolysé et son dimère soufré, ou bien encore un sous-produit qui n’a pas pu 

être identifié (sur la base du spectre de masse). Les réactifs ont alors été confiés à nos partenaires 

(ICMPE, Thiais) ayant une expertise en chimie thiol-ène. Ces derniers n’ayant pas non plus réussi la 

thiol-ène en « one pot – two steps », ils se sont d’abord chargés de l’aminolyse du produit à l’aide de la 

n-butylamine, puis ont ensuite procédé à la thiol-ène à proprement parlé. Ils n’ont malheureusement pu 

isoler aucun produit à l’issu de leurs essais. 

Le couplage thiol-ène a également été tenté sur le polymère PHOU toujours en utilisant le maltose HTL-

fonctionnalisé. De même, aucun produit n’a pu être isolé en one pot. D’autres problèmes sont survenus 

lorsque le couplage a été effectué avec le produit aminolysé isolé précédemment : le PHOU étant 

hydrophobe et le sucre hydrophile, il a été difficile de trouver un système de solvant permettant de 

solubiliser les deux. Des sortes de gel impossibles à caractériser ont été formés à l’issu des réactions. La 

thiol-ène dans le DMSO n’a pu être envisagée qu’avec un dérivé du PHOU, le PHOU-sulfonate (ces 

fonctions étant censées augmenter la solubilité du polymère dans le DMSO). Seul un petit pourcentage 

de sucre a pu être greffé au polymère d’après la RMN 1H. Des essais avec d’autres réactifs tels que la 

glucosamine et la N-acétyl-HTL n’ont pas non plus abouti. La différence de solubilité, l’utilisation d’un 

thiol protégé, ou encore le système alcène utilisé pourraient expliquer ces échecs. 

Le couplage thiol-ène a donc été mis de côté pour se focaliser sur le couplage amide. Les 

maltooligosaccharides ont préalablement été fonctionnalisés par une amine (chapitre 4). D’abord le 

maltoheptaose amine-fonctionnalisé a été mis en réaction avec de la biotine-NHS pour former très 

facilement et rapidement des adduits maltoheptaose-biotine, qui ont été sulfatés à deux degrés de 

sulfatation (moyen et haut) pour leur future évaluation biologique (tests SPR à l’IBS, Grenoble). Ensuite, 

les fonctions alcènes du PHOU natif furent entièrement remplacées par des fonctions acides 

carboxyliques et le PHOU-carboxylate ainsi formé a pu réagir avec le maltoheptaose aminé pour un 

couplage amide en présence de l’agent de couplage HBTU. Malheureusement, l’adduit maltoheptaose-

PHOU n’a pas pu être sulfaté aléatoirement par manque de quantités et de temps. 

Conclusions et perspectives 

Nous avons dans un premier temps accompli la sulfatation aléatoire des (cyclo)maltooligosaccharides. 

Après caractérisation, les dérivés sulfatés ont été soumis à des tests biologiques, qui sont encore en 

cours. Globalement, les dérivés moyennement et hautement sulfatés ont semblé avoir une meilleure 

affinité pour les facteurs de croissance testés et ont induit des réponses biologiques plus intenses. La 
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taille minimale de chaîne requise pour l’interaction semblait être de six unités de sucre et la conformation 

semblait jouer un rôle sur les propriétés biologiques des composés. 

La chimie sélective sur les β-cyclodextrines a permis de synthétiser des composes régiosélectivement 

sulfatés qui sont actuellement en cours d’essais biologiques. Il serait intéressant par la suite d’ouvrir les 

β-cyclodextrines sulfatées par acétolyse afin d’obtenir des dérivés maltoheptaose sélectivement sulfatés 

qui pourraient être comparés à ceux sulfatés aléatoirement. 

Dans le but de préparer des mimes de protéoglycanes, les chaines de maltooligosaccharides ont été thiol- 

ou amine-fonctionnalisées par différentes méthodes. Les essais thiol-ène de ces chaines avec le PHOU 

ou la biotine n’ont pas abouti, alors un couplage amide a été adopté. Les chaines couplées à la biotine 

ont été sulfatées à différents degrés pour être soumises à des analyses SPR (collaboration IBS, Grenoble) 

tandis que les chaines couplées au polymère PHOU sont actuellement en cours de sulfatation pour être 

in fine évaluées biologiquement en tant que mimes de protéoglycanes. 
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Abstract 

Osteoarthritis (OA) is the most common joint disease, characterized by gradual loss of articular cartilage 

due to abnormal extracellular matrix (ECM) and changes in chondrocyte morphology and metabolism, 

associated to sub-endochondral bone remodeling and local synovitis. The burden of this disease has 

been gradually gaining importance in the last few decades with the aging of the population and the 

obesity epidemic. Beyond the huge healthcare costs for treatment of OA affecting 70 million individuals 

in Europe, there is no treatment that can repair the cartilage and stop the progress of OA. Existing 

therapies, based on hyaluronic acid and chondroitin sulfate injections, are symptomatic and pursue only 

pain alleviation with no effect on slowing disease progression and on restoring cartilage and 

chondrocytes functions. In parallel, new therapeutic strategies are currently based on stem cells, but 

these fragile cells are injected in an inflammatory microenvironment detrimental to their survival and 

clinical efficacy. Therefore, a more suitable middle is highly mandatory. Our project is born from the 

observation that OA is closely related to a loss of proteoglycans (PGs), one of the largest components 

of the ECM. These PGs are not only structural components, but regulators of cell functions also since 

they interact with growth factors, cytokines, proteinases, adhesion receptors and extracellular matrix 

components through their sulfated glycosaminoglycan (GAGs) chains. As a consequence, these 

polysaccharides are new important classes of molecular targets in the fields of biochemistry, pathology 

and pharmacology. However, due to the natural extractive source of PGs and GAGs and their inherent 

complexity in terms of relative molecular mass, charge density, sulfation patterns, the relationship with 

functions are difficult to elucidate and their therapeutic and commercial use is complicated according to 

their poorly defined structures. Use of well-defined biomimetic structures are therefore the valuable 

alternatives for therapeutic strategies. Attemps have relied on the idea that a limited number of anionic 

groups (e.g., sulfate, carboxylate, phosphate) on a smaller oligosaccharide scaffold may overcome the 

difficulties of working with GAGs or PGs. Examples of these include GAG related polysaccharides of 

non-mammal origin that have shown to stimulate healing of tissues with similar or higher efficiency 

than natural GAGs or PGs. And, very recently, glycopolymers based on oligosaccharide repeating units 

constituting GAG structures have been reported and revealed fascinating ability to recapitulate 

biological features of natural PGs. Even if only GAGs oligomers (di- up to penta-saccharides) were 

targeted, their syntheses still pose significant challenges. These shortcomings can be remedied by 

designing readily accessible GAG oligosaccharide mimetics in order to tune their 3-D structure and to 

fit the biological binding sites. Additionally, as for natural PGs, multi-presentation of GAG mimetics is 

an essential task to evaluate the significance of this parameter. Up to date, these approaches have never 

been investigated, especially in order to promote the articular cartilage homeostasis. Our project aims 

to develop PG-like biopolymers made of architecturally defined grafted polyesters having simplified 

sulfated GAG mimetics. These glycomimetics will be assessed for their abilities to interact with growth 

factors binding to natural GAGs by stimulating cell growth. Forces aligned within this consortium 
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combined crucial expertise in chemical modification of oligosaccharides (CERMAV, Grenoble), in the 

preparation of functional polyesters (ICMPE, Paris Est), and in the study of GAGs on the mesenchymal 

stem cells properties (Gly-CRRET, Paris Est & IBS-Grenoble). 
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1.1 Osteoarthritis 

Osteoarthritis is a common disease occurring on body’s joints. A joint is a structure where two bones 

are adjoining (Figure 2). The end of these bones is covered with a protective tissue called cartilage. 

Articular cartilage is an avascular connective tissue whose functional properties of mechanical support 

and joint lubrication depend on its extracellular matrix (ECM). ECM is rich in fibrillar collagens, 

proteoglycans (PGs) and glycosaminoglycans (GAGs).1 Only one cell-type exists in cartilage, 

chondrocytes, that are responsible of the synthesis and degradation of ECM components, thereby 

modulating the structural and functional integrity of the tissue.1,2 A schematic illustration of all cartilage 

components is presented on the Figure 1 below. 

 

Figure 1. Schematic representation of articular cartilage depicting the chondrocyte surrounded by 

collagen, proteoglycans and associated matrix components. Reproduced from Chen et al.3 

When the delicate balance maintained by chondrocytes in the cartilage is disrupted, the cartilage starts 

to break down : this degenerative joint disease is called osteoarthritis (OA). OA is characterized by the 

gradual loss of articular cartilage, chondrocytes death (by apoptosis and autophagy)4,5 and synovial 

inflammation. This causes swelling, pain, joint stiffness and loss of mobility.5 In early stages, the 

cartilage degeneration is offset by the local production of ECM components while in later stages, 

cartilage destruction considerably exceeds its repair.6 In response to the increased destruction of 

cartilage, chondrocytes produce more ECM components such as proteoglycans, but these latter are 

structurally altered and may be unable to form healthy ECM.7 The Figure 2 8 presents the comparison 

between two knees, one healthy (a) and one suffering from osteoarthritis (b). In the unhealthy one, the 

exposure of rough bone is due to cartilage destruction, which may no longer protect it. The resulting 

direct bone-on-bone contact induces the erosion of meniscus as well as the development of osteophytes 

(or bone spurs). All these deteriorations cause pain and inflammation in the joint region.  
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Figure 2. Comparison between a healthy knee joint (a) and one suffering from osteoarthritis (b). 

Reproduced from 8 

Two causes of osteoarthritis may be distinguished : primary osteoarthritis 9,10 resulting from gene 

predisposition and secondary osteoarthritis that frequently occurs after an injury.5 The resulting 

pathology is nevertheless the same : a degenerative process. 

Besides affecting physical health, osteoarthritis may impact people’s mental health with symptoms of 

depression, as demonstrated by a study of Osteoarthritis Initiative.11,12 

Osteoarthritis is currently by far the most common rheumatic disorder 13 and is recognized as a global 

public health burden 14. It is considered as a leading cause of chronic pain 15 and one of the most 

significant causes of physical disability in the world.5 The number of patients suffering from this disease 

is growing day by day due to the increasing prevalence of obesity 16 and the aging of the population 17. 

OA currently affects at least 40 million people in Europe and accounts for more than a third of chronic 

moderate to severe pain. It is strongly age-related, prompting further concerns as population projections 

suggest that by 2025 there will be over 210 million people in Europe. The National Health Interview 

Survey estimated that 14 million people in the United States of America were affected by symptomatic 

knee osteoarthritis in 2018, which represents 4% of the American population. Other studies measured 

the prevalence of this disease in different joints and different communities around the world.18–23 

The large number of people suffering from osteoarthritis leads to healthcare costs that is currently 

estimated in Europe at 0.5% of gross national product, reflecting the direct and indirect costs. In a 2003 

French macroeconomic study, which involved an estimated 3–4.6 million people with osteoarthitis, the 

direct costs surpassed €1.6 billion.24 Compared with a similar study led 10 years earlier, the population 

of patients with osteoarthritis in France increased by 54%. 

Current symptomatic therapies rely on the use of anti-inflammatory drugs to relieve patient’s pain.25 

Cartilage being avascular, alymphatic and constituted by only one cell-type, the most innovative 

 (b) 
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approaches to cure osteoarthritis focus on tissue engineering strategies, where a combination of cells, 

materials and engineering associated with biochemical and physiochemical factors would be used in the 

aim of improving or replace biological functions. Chondrocytes and mesenchymal stem cells could be 

applied in a tissue modeling healthy cartilage, leading to cell differentiation into chondrocytes and 

production of “healthy” ECM components that would result in the repair of cartilaginous tissue.26 This 

strategy is ultimately in our project perspectives with the creation of a micro-environment of GAG and 

PG mimetics that would act as a scaffold for mesenchymal stem cells to differentiate into chondrocytes 

and produce normal GAGs and PGs in injured cartilage. 

1.2 Glycosaminoglycans and proteoglycans 

1.2.1 Proteoglycans 

Proteoglycans (PGs) are large biomolecules found ubiquitously in the organism mainly attached to the 

cell surface or in the ECM.27 The protein core usually determines the tissue localization of the PG and 

may in some cases take part in recognition processes.28,29 Depending on their localization, multiple 

classes of PGs may be distinguished. For example, serglycin is found intracellularly while syndecan and 

glypican are cell-surface PGs interacting with different extracellular proteins for recognition processes. 

Extracellular matrix PGs include decorin, perlecan and aggrecan. Decorin belongs to the family of small 

leucine-rich PGs that have ordering functions in tissues (regular structure of cornea for example). 

Perlecan, located at the basement membrane and in pericellular space, may act as an extracellular storage 

for growth factors such as FGF and interacts with VEGF in angiogenesis processes.30 Finally, aggrecan 

is the most abundant PG in ECM-rich tissues such as cartilage where it forms large aggregates with 

hyaluronan (a non-sulfated GAG). 

PGs may also be classified according to their GAG chain contents where those containing heparan 

sulfate chains, HSPG (heparan sulfate proteoglycan), are the most important and studied class of 

compounds. 

Structurally, PGs are composed of a core protein linked with a number of GAG chains varying from one 

(e.g. decorin) to more than a hundred (e.g. aggrecan) 31, that may not be of the same type neither bearing 

the same sulfation pattern between them (see Figure 3). For example, glypicans contain only one chain 

type (heparan sulfate) whereas syndecan-1, a family of mammalian syndecan, features two GAG chain 

types : heparan sulfate and chondroitin sulfate.32 GAG chains’ length varies from 20 to 60 kDa in 

proteoglycans which represents around 40-120 disaccharidic units.33 They are covalently linked to serine 

residues of the protein core through their reducing end via a motif composed of four monosaccharides : 

xylose, galactose, galactose and glucuronic acid.34 The presence of a local high concentration of GAG 

chains allows to create a multivalent (or cluster) effect 35–37 in recognition processes. 
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Figure 3. Schematic representation of a proteoglycan 

1.2.2 Structure of glycosaminoglycans 

GAGs are unbranched polysaccharides with molecular masses ranging from few kDa to over a hundred 

kDa.27 Each chain consists of a repeating disaccharide unit composed of a hexosamine and a 

hexose/hexuronic acid and each monosaccharide may be modified heterogeneously : hexosamines may 

be acetylated, hexuronic acids epimerized and both of them may be sulfated on different positions. The 

nature, the extent and the position of sulfate groups among the chain are the source of GAGs extensive 

structural diversity. They are commonly found in the form of proteoglycans (except for hyaluronan). 

GAGs may be considered as semi-rigid polymers adopting a helical conformation.38,39 These 

heterogeneous negatively charged polysaccharides may be categorized into five big families according 

to their saccharide composition and sulfation pattern 34, heparin/heparan sulfate, chondroitin sulfate, 

dermatan sulfate, keratan sulfate & hyaluronan, illustrated in the Table 1. 

Heparin and heparan sulfate are both composed of a glucosamine monosaccharide but are different by 

their iduronic and glucuronic acid contents : heparin is mainly composed of iduronic acid while heparan 

sulfate comprises both glucuronic and iduronic acids. The glucosamine may be N-acetylated or N-

sulfated, and sulfated on OH-3 and -6 positions. The iduronic (and more rarely glucuronic) acid may be 

sulfated on their OH-2 position. The distinction between heparin and heparan sulfate is not only based 

on their carbohydrate structure but also on their PG type and distribution. While HSPG may be covering 

virtually all cells, heparin proteoglycans (serglycin) are found intracellularly in mast cells.40 Heparan 

sulfate and heparin are the most structurally and functionally diversified GAGs. In addition to the 

molecular diversity discussed above, they are composed of variable domains 41–44 : S-domains, which 

consist of 5-10 highly sulfated disaccharides that are very variable and are, with their high and local 

degree of sulfation, the usual binding sites of proteins. They are interspaced with A-domains being 
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poorly sulfated regions. This structural configuration is well observed of heparan sulfate while heparin 

is more homogeneously highly sulfated among the chain.45 Having on average 2.7 sulfate groups per 

disaccharide units, heparin possesses the highest negative charge density known in Nature.46 

Chondroitin sulfate repeating unit is composed of N-acetyl galactosamine that may bear two sulfate 

moieties on OH-4 and -6, and of a glucuronic-acid that can be sulfated on OH-2 position. The only 

difference between chondroitin sulfate and dermatan sulfate is the epimerization at C5 of glucuronic 

acid into an iduronic acid. A galactose and a N-acetyl glucosamine, both possibly sulfated on OH-6, 

constitute keratan sulfate’s disaccharide repeating unit. Finally, hyaluronan is composed of N-acetyl 

glucosamine and a glucuronic acid. It is the only non-sulfated GAG and the only one to be found under 

free form, i.e., not associated to a PG protein core. 

Family of GAG Chemical structure 
Symbol Nomenclature for Glycans 

(without sulfation pattern) 

Heparin 

& 

Heparan sulfate 

 

 

 

Chondroitin sulfate 

  

Dermatan sulfate 

  

Keratan sulfate 

  

Hyaluronan 

  

 R1 = H or SO3
− ; R2 = Ac or SO3

−
 

 
Table 1. Chemical structure and representation by SNFG (Symbol Nomenclature for Glycans) 

symbols 47 of the disaccharide building block of five families of glycosaminoglycans 
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GAGs are secreted by the organism, and the molecular structures of GAGs in different cells or even in 

the same cells at different growth stages is highly variable.48 Thus, during aging or in case of pathology, 

the composition of heparan sulfate for example can vary with important consequences on its protein 

binding properties.49 

1.2.3 Glycosaminoglycans and proteoglycans activities 

The activity of PGs mainly depends upon their GAG chains 50 by playing the role of co-receptor for an 

optimal orientation of signaling proteins towards their receptor, or binding to biomolecules.51–53 

Each tissue produces specific structures of GAGs that have different properties. GAGs have numerous 

roles including cell proliferation and differentiation, cell signalling 54,55, regulating the bioactivity of 

growth factors and mitogenic factors 56,57, or inflammation 31,53.  

The binding activity of GAGs is determined by its type, degree of sulfation, position of sulfation, local 

concentration 58 as well as the domain organization cited above 44,59,60. For example, heparan sulfate is 

able to bind to more than a thousand of heparin binding proteins (HBPs) via specifically sulfated 

domains. The binding usually involves electrostatic interactions 29,61–64 although hydrogen bonding and 

van der Waals interactions exist with non-charged amino-acids of proteins 64,29. Among proteins that 

interact with GAGs figure chemokines, cytokines, growth factors, morphogens, enzymes, extracellular 

matrix or adhesion molecules.45 

The two most studied examples of proteins interactions with specific domains of GAGs are the 

formation of heparin/antithrombin III (AT III) & HSPG/FGF-R/FGF-2 complexes. 

AT III plays a central role in blood coagulation for its ability to inhibit coagulant factors. Its activity 

depends upon its binding to a specific sequence of heparin or heparan sulfate: a pentasaccharide motif 

where the glucosamine on the center is 3-O-sulfated, which is crucial for the binding and leads to the 

activation of the protein through conformational changes which allows binding and inhibition of 

coagulation factors X.65–67 This motif and in particular this 3-O-sulfate group are very rare and specific 

patterns that may only be found in particular domains of heparan sulfate and heparin, indicating the 

essential role of GAGs in coagulation processes. 

The second example deals with FGF-2 and its cell-surface receptor. Heparan sulfate chains (of HSPG) 

facilitate and stabilize the binding of FGF-2 to its membrane receptor FGF-R by forming a ternary 

complex.68 The minimal motif required for binding to FGF-2 is a hexamer bearing N- and 2-O-sulfated 

units. However, promotion of the growth factor activity through the formation of functional FGF-

2/FGFR/HS ternary complex is only mediated by longer HS fragments (decamer) composed of N-, 2-

O- and limited 6-O-sulfated units (1 or 2).69–71 These longer HS fragments may bind both the growth 

factor and its cell surface receptor, resulting in a stabilized ternary complex able to elicit cell 
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proliferation. The positioning of sulfate groups may therefore be critical for inducing a specific 

biological response (here, FGF-2 mediated cell proliferation) indicating that both chain length and 

sulfation pattern are essential parameters for efficient GAG-protein interactions. It is noteworthy to 

mention that this structural motif is only appliable to FGF-2 and one specific receptor isoform. For other 

FGFs and other isoforms receptor, different minimal chain length and sulfation pattern may be needed.  

These two examples illustrate the complexity of GAGs interactions with biomolecules, that often require 

specific sequences with well-defined sulfation patterns. GAGs may bind to proteins to activate their 

signaling pathway or may simply form complexes to protect them from proteolytic degradation for 

example.72,36 

1.2.4 Use of glycosaminoglycans and proteoglycans for therapeutic purposes 

GAGs and PGs are involved in many physiological processes thanks to their biological, mechanical and 

chemical properties, and are therefore known to have a great therapeutic potential, in tissue engineering 

for example.73 Many examples of GAG-containing matrices have shown the possibility of growing skin, 

heart valve, cartilage, vascular grafts and other soft tissues.74 Among them, heparin has been the most 

exploited for clinic applications, yet the only source of heparin are animal tissues 46 which may expose 

to contamination risks (pathogens for example) and thus adverse effects. Sulfated GAGs are usually 

extracted from porcine or bovine trachea, shark cartilage 75 and rooster combs 76. Their composition 

being time- and site-specific (sulfation degree and pattern in constant change), no extracted sample may 

be biologically identical (batch to batch variability). 

Another method to obtain sulfated GAGs and PGs include the preparation of recombinant PGs through 

genetic engineering.29 Although they constitute a promising alternative for tissue engineering purposes 

77–79 in the goal of forming matrices for cell growth and differentiation in cartilage for example, their 

cost, scalability and control of GAG structure limits their use. 

Chemical synthesis of GAGs with defined sulfation pattern was also considered. However, due to their 

structural complexity (molecular mass, degree and position of sulfation, disaccharide composition) 

GAG synthesis is time-consuming, laborious, very complex and may lead to the preparation of only one 

specific chain.80–82 On the other side, enzymatic or chemical depolymerizarion of GAGs provides limited 

quantities of heterogeneous mixtures.83 

The extreme structural diversity of GAGs and PGs therefore limits their therapeutic applications.84 To 

address this issue, scientists investigated the preparation of GAG and PG mimetics, so-called 

glycomimetics. 
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1.3 Glycosaminoglycan- and proteoglycan-related glycomimetics 

As previously mentioned (see 1.2.4), GAGs and PGs are biomolecules of interest for therapeutic issues 

as they are involved in many physiological and pathological processes. Understanding their structure-

activity relationships is therefore critical. However, their structural diversity hampers their extraction 

from animal resources and their (bio)synthesis. To address these limitations, scientists started to develop 

the preparation of synthetic glycomimetics of GAGs and PGs, so-called neo-glycoconjugates. These 

mimetics are reported to be more stable than natural GAGs and PGs because they resist to glycanase 

activity.85,86 Here, we focused on the chemical approaches of their synthesis. It is noteworthy to mention 

that PGs being composed of a protein core on which GAG chains are attached, PG mimetics may be 

considered as the assembly of a polymeric scaffold on which saccharide chains (from mono- to poly-) 

are attached. Therefore, glycopolymers may be considered as PG mimetics. 

Some parameters seem to be important for the preparation of relevant glycomimetics such as the type 

of GAG chain used, its length and its degree of sulfation. A few examples of each parameter are 

developed in the following. 

1.3.1 Based on polysaccharides and oligosaccharides 

In the aim of preparing glycomimetics with readily accessible structures, the modification of natural 

polysaccharides such as dextran, alginate, cellulose and chitosan was explored 87–94 mostly for 

mimicking heparin. The interest of such approach is that structural nature of polysaccharides is 

necessarily similar to GAGs. Moreover, most of these natural polysaccharides include bioactivity, 

biocompatibility, biodegradability, anti-bacterial activity, non-antigenicity, non-immunogenicity as 

well as non-cytotoxicity. Of course, functional groups incorporation has to be done, and especially, 

sulfation to closely mimic GAGs. Additionally, polysaccharides are readily available from various 

resources, abundant and renewable. 

Among them, chitin is one of the most abundant polysaccharides on Earth. Chitin is usually extracted 

from cuticles of various crustaceans (shrimps, crabs) and is composed of linear N-acetylated 

glucosamine. Its variation, chitosan, is partially N-deacetylated and provides the possibility of selective 

sulfation.94 Selectively sulfated chitosans were therefore prepared as shown on the Figure 4. Basic 

conditions allow selective N-sulfation of chitosans while acidic ones may allow selective 6-O-sulfation. 

and their anticoagulant activities were assessed. While N-sulfated chitosan had no significant 

anticoagulant activity, 3,6-O-disulfated chitosan was highly active in accordance with previous 

publications.95–97 In addition, it was observed that the bioactivity of sulfated chitosan was dependent on 

the degree of sulfation and molecular weight of the polysaccharide. 
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Figure 4. Structure of GAG-mimicking polymer based on chitosan. Reproduced from Liu et al.98 

Besides their anticoagulant properties, sulfated chitosans exhibited high affinities for specific growth 

factors.99–103 However, structural heterogeneity is observed on natural polysaccharides (chain length for 

example), and their chemical modification on specific positions of each monomer might not be possible. 

Other polysaccharides of non-animal origin were used for tissue engineering purposes as they were 

reported to be more efficient to stimulate healing of tissues than natural GAGs, including fucoidan 104,105, 

or sulfated dextran 82,106–108. 

 

Dextran was widely used as polymeric scaffold to create GAG mimetics partly thanks to its approved 

use in clinics as plasma volume expander and its ease of modification. The most well-known class of 

semi-synthetic heparin mimetic reported is carboxymethyl benzylamide sulfonate dextrans. These 

polymers were extensively developed by the Gly-CRRET group (Créteil, France).82,109–112 They bear 

benzylsulfonate and carboxymethyl groups along the linear chain whose respective ratios allow their 

anticoagulant/antithrombotic activities.82 Moreover, they are suggested to replace GAGs and PGs in 

injured tissues by forming a scaffold supporting the activity of HBPs.110,112–116 Their efficiency is well 

recognized as they are currently used for the treatment of skin and eye ulcer.117 

Albanese et al. 110 reported the comparison between two different dextran-based GAG mimetics 

(structure on Figure 5) that had the same molecular weight and the same degree of substitution of 

carboxymethyl and sulfate groups.111 They differed only by the presence or absence of acetyl groups. 
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Figure 5. Structure of GAG-mimicking polymer by Gly-CRRET group (Créteil, France). Reproduced 

from Ikeda et al.109 

They compared their ability to induce mobilization of hematopoietic stem and progenitor cells in mice 

as GAG mimetics with fucoidan (naturally sulfated polysaccharide known to induce it).118,119 The group 

found out that the mimetics, that had a superior sulfate content than Fucoidan, were less efficient for 

mobilization, suggesting that an optimal but not maximal degree of sulfation is required for biological 

activity. In addition, they reported a better affinity of the acetylated GAG mimetic compared to the 

unacetylated one, suggesting that acetylation of GAGs might be important for interaction with proteins. 

On the other side, the extraction of a marine branched exopolysaccharide by Jouault et al. 120 that was 

later modified by depolymerization and sulfation presented some structure similarities with heparin 

(presence of oversulfated domains and of uronic acid). Oversulfated fractions were found to possess a 

lower anticoagulant activity than heparin, but they could induce angiogenesis and cell proliferation by 

interacting with FGF-2 and VEGF.121 They later demonstrated that the mimetic could also interact with 

TGF-β1, which is known for its positive effects on driving the chondrogenic differentiation of 

mesenchymal stem cells in cartilage.1 

Polysaccharides are polydisperse high molecular weight bio-sourced materials which make the perfect 

control and reproducibility of their modification difficult. Low molecular weight polysaccharides, so-

called oligosaccharides, as GAG mimetics may be more advantageous because of structurally defined 

molecules with reduced side-effects. The potential advantages and drawbacks of such compounds are 

summarized in the Table 2. 

Advantages Drawbacks 

Better pharmacokinetics Potential toxicity 

Better bioavailability High cost 

Synthetic or semi-synthetic source Weaker avidities for GAG-binding proteins 

Better dose control monitoring Binding selectivity issues 

Table 2. Potential advantages and drawbacks of oligosaccharides 
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Driven by the success story of GlaxoSmithKline in 2001, that registered fondaparinux as a new 

antithrombin drug called Arixtra® 122, a glycomimetic which was designed using the natural 

pentasaccharide sequence responsible for the activity of heparin as template, many researchers looked 

for various sulfated oligosaccharides as GAG-mimetics. 

Maltooligosaccharides were investigated as GAG mimetics because of well-defined structures. Wall et 

al. prepared 17 sulfated oligosaccharides and assessed their anticoagulant activities as heparin 

mimetics.123 They found out that the influence of chain length was particularly evident with the 

maltooligosaccharide series. While sulfated di-, tri-, and tetra-saccharides displayed almost no 

anticoagulant activity, malto-pentaose, -hexaose and -heptaose were much more effective. From 

maltotetraose to maltopentaose, a 19-fold increase of anticoagulant activity was observed. The group 

pointed out the interesting features of maltooligosaccharides as heparin mimetics even though their 

activities were about two times lower to low molecular weight heparin. 

More recently, Köhling et al. 63 prepared a library of defined oligohyaluronan in order to elucidate the 

effect of chain length, sulfation pattern and anomeric substitution effects on GAG recognition by 

regulatory proteins (cytokines, growth factors etc.). They found out that the oligosaccharides’ length 

had a strong impact on binding affinities. Elongation of chains (from tetra- to hexa-saccharides) resulted 

in a general increase in binding affinities. They suggested, in accordance with Hsieh-Wilson group 124, 

that tetramers represented the minimum length required for GAG-protein interaction. Additionally, the 

absence of negatively charged groups on GAG mimetics showed no binding with regulatory proteins 

while an increase of sulfation degree was in favor of binding. Electrostatic interactions were essential 

to promote GAG binding with biomolecules. 

Foxall et al. 125 prepared randomly sulfated maltooligosaccharides with chain lengths varying from one 

to seven units that were almost completely sulfated. For maltoheptaose, five derivatives containing 

increasing number of sulfates were prepared. The compounds were tested for their ability to block the 

interaction between FGF-2 and biotinylated heparan sulfate. They found out that maltohexaose was the 

minimum size required for significant activity. Whether the reducing end of maltooligosaccharides was 

left unchanged or was reduced, similar activities were observed. Maltoheptaose was the most potent, 

even more than heparin itself. The more maltoheptaose was sulfated, the more FGF-2 – heparan sulfate 

interaction was inhibited. Highly sulfated maltoheptaose was found to also inhibit endothelial cell 

growth. This inhibition was dependent on the sulfation level. Maltoheptaose with intermediate sulfation 

degrees stimulated cell growth but this latter decreased with higher sulfation degrees. However, sulfated 

maltoheptaose was not cytotoxic as its presence in a medium of endothelial cells did not induce cell 

deaths.  

Later, Parish et al. 126 investigated sulfated oligosaccharides including maltooligosaccharides as heparan 

sulfate mimetics to inhibit angiogenesis and heparanase activity (anticancer applications). They found 
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that maltohexaose was the most potent inhibitor of in vitro human angiogenesis. More than four 

saccharide units in length were important for antiangiogenic activity. In addition, increasing chain length 

of maltooligosaccharides (until seven units) resulted in the increase of FGF – membrane heparan sulfate 

interaction inhibition which was in accordance with previous studies.125 Saccharides from five to seven 

units were comparable heparanase inhibitors. Moreover, maltohexaose exhibited increased inhibition of 

heparanase activity with the degree of sulfation until a plateau, while antiangiogenic activity was 

observed on highly sulfated derivatives. 

To summarize, maltooligosaccharides with a minimum size of tetrasaccharide and moderate sulfation 

degree were able to induce biological activity. 

1.3.2 Based on glycopolymers 

The preparation of polymers bearing glycans (glycopolymers) as side-chains was extensively developed 

in the aim of preparing glycomimetics with more controlled structures, especially sulfation patterns. 

Linear polymers bearing pendant N-acetyl glucosamine end-functionalized with phenyl acrylamide and 

selectively sulfated on different hydroxyls were prepared by Miura group as shown on the Figure 6.127 

To do that, they selectively sulfated the monosaccharide on OH-6, -4, -3, or -3,4,6 positions prior to the 

copolymerization step with acrylamide. Polymers with different molecular weights sugar contents were 

obtained (from 10 to 100%). Later, they focused on the polymer bearing 6-sulfo N-acetyl glucosamine 

for biological tests.128,129 The addition of sulfated glycopolymers inhibited the aggregation of amyloid β 

peptides, which is detrimental in the case of Alzheimer amyloidosis. This inhibition depended on the 

percentage of sugar content in the polymer and low molecular weight glycopolymers exhibited stronger 

inhibition because of their greater mobility. 

 

Figure 6. Structure of glycomimetic polymer by Miura group. Reproduced from Miura et al.127 

Still aiming to decipher the role of the multivalent architecture found in GAG or PG structures, Hsieh-

Wilson et al. proposed to investigate ring-opening metathesis polymerization of protected sulfated di- 

or tetra-saccharides monomers, representative of repetitive building blocks of native GAGs (like 

chondroitin sulfate, heparin and heparan sulfate) that were next fully deprotected 130–133 (Figure 7). 
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Figure 7. Structure of glycomimetic polymer by Hsieh-Wilson group. Reproduced from Liu et al.98 

These kind of GAG glycomimetic polymers showed biological activities similar to natural GAG 

polysaccharides. Chondroitin sulfate mimicking polymer displayed both neurite outgrowth and growth 

cone collapse assays, heparin mimetic exhibited potent antifactory Xa and antithrombin activity and 

heparan sulfate mimicking glycopolymers showed strong avidities to the proinflammatory chemokines 

RANTES. These bioinspired glycopolymers recapitulating the biological activities of GAGs are very 

encouraging and promising even if the main drawback of this strategy relies on the synthesis of complex 

oligosaccharide building blocks. 

A simpler strategy was reported by Chaikof group on the preparation of glycopolymers bearing per-

sulfated N-acetyl glucosamine or lactose.134–137 The structure of the glycomimetic with lactose is 

displayed on the Figure 8. They found out that the glycopolymers could interact with FGF-2 and exhibit 

anti-coagulant activity as a function of molecular weight of the polymers, sugar ratios and sulfation 

degree. They later demonstrated that the glycopolymer with a controlled molecular weight of 9.3 kDa 
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and a lactose content of 57% could protect FGF-2 from proteolysis, acid- and heat-induced 

degradation.138 

 

Figure 8. Structure of glycomimetic polymer by Chaikof group. Reproduced from Sun et al.137 

Glycopolymers are certainly the most readily accessible glycomimetics. Their synthesis can be achieved 

by multiple polymerization techniques and their molecular weight may be more or less controlled. 

Pendant saccharides can be modified with sulfate groups either before or after polymerization. However, 

in spite of breakthrough advances in polymer science, the precise control of the composition, molecular 

weight and chain sequence of GAG mimicking polymers is still difficult. In addition, they may be 

desulfated under acidic conditions, and the preparation of glycomonomers may still be challenging.46 

1.3.3 Based on non-carbohydrate synthetic polymers 

In view of the difficulty to properly design carbohydrate leads that generally require multistep routes, 

non-carbohydrate glycomimetics are an appealing alternative. Non-carbohydrate GAG-related mimetics 

are usually anionic polymers recapitulating the negative charge displayed along the sulfated GAG 

polysaccharide backbone. 

Maynard group 139 investigated the preparation of heparin-mimicking neo-GAG based on poly(styrene 

sulfonic acid-co-(poly(ethylene glycol) methacrylate) polymer. They found out that this polymer was 

able to bind to fragments of FGF and VEGF thanks to the acidity generated by sulfonic acid-bearing 

polymer. Then, they conjugated the polymer to FGF-2 through disulfide bond 140 as shown in the Figure 

9 to see whether the polymer could act as a GAG by stabilizing FGF-2, which is positively charged. The 

group found out that the growth factor had indeed a higher stability under high and low temperature, 

acidic conditions and in the presence of a protease. The co-polymer also enhanced cell growth. 

 

Figure 9. Structure of GAG-mimicking polymer by Maynard group. Reproduced from Miura et al.127 

Zhao’s group proposed the preparation of heparin mimetics with a polymer bearing negative charges 

coming from sulfonate and carboxylic groups, poly(styrene sodium sulfonate co-sodium methacrylate). 

Protein
(FGF-2 etc.)
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The structure, displayed on the Figure 10, demonstrated a decreased protein adsorption and platelet 

adhesion compared to unmodified surfaces.141 

 

Figure 10. Structure of GAG-mimicking polymer by Zhao group. Reproduced from Liu et al.98 

In spite of their ease of synthesis, these anionic polymers as non-carbohydrate GAG mimetics are usually 

polydisperse and not degradable (petro-sourced materials). More importantly, their activities were found 

to be lower than natural GAGs, natural sulfated polysaccharides or glycopolymers.46 

Other seminal works have been done based on multi-display of sulfated carbohydrates on nanostructured 

materials due to their high surface-area-to-volume ratio, which can support high concentrations of 

bioactive GAG mimetics that can ultimately enhance their activity. There a few exciting examples of 

GAG mimetic functionalized nanomaterials that will not be developed here.142–144 

In conclusion, the monosaccharide composition, the amount and positions of the sulfate groups, the 

molecular weight and the overall conformation are all recognized to influence the bioactivity of a GAG. 

While natural polysaccharides seem as promising as glycopolymers, their polydisperse nature and 

structural complexity might hinder their use for structure-activity relationships. Chain length superior 

to four units and moderate to high degrees of sulfation were generally found to be important factors for 

biological activity. Finally, maltooligosaccharides seem to be a good compromise as they are plant-

sourced oligosaccharides (no possible contamination compared to animal source) that were found to 

take part in several biological processes implying GAGs and PGs. Glycomimetic satisfying these criteria 

were investigated in our project. 
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1.4 Overview of the project 

In the context of osteoarthritis, the strategy of the project is to propose a favorable environment for 

mesenchymal stem cells to reconstruct the articular matrix by preparing structurally simplified GAG 

and PG mimetics (see 1.3)1. The aim of the study was to understand the role of chain length, 

conformation, charge density, sulfate position and multivalency for the interaction of newly synthesized 

glycomimetics with proteins involved in osteaoarthritis. All these parameters could be assessed with one 

class of molecules : (cyclo)maltoligosaccharides. 

(Cyclo)maltooligosaccharides were chosen as promising compounds for many reasons : (i) they are 

naturally occurring oligosaccharides presenting a defined structure considering chain length and 

conformation, (ii) they are composed of glucose units, which is among ten of the most abundant 

monosaccharides found in mammalian tissues (2.5% of total monosaccharides found)145,146 so no 

immune response may be elicited by their use in organism, (iii) they are quite stable in the joints as only 

one class of enzyme, α-amylases 147, may cleave their glycosidic linkage in the digestive system of living 

organisms, (iv) their sulfated derivatives present interesting biological properties (see 1.3.1), (v) 

regioselective modification of cyclomaltooligosaccharides can be performed at different hydroxyl 

positions for extracting important data on structure/biological interactions relationships. 

In practice, our multidisciplinary project was developed between four laboratories : mainly the 

CERMAV (Grenoble) for their expertise in glycochemistry, Gly-CRRET (Créteil) for biological assays 

in vitro and ex vivo skills, ICMPE (Thiais) for their knowledge in polymer chemistry, and a team at IBS 

(Grenoble) for their competence on GAG structure and activity. 

The strategy was based on (cyclo)maltooligosaccharides of defined length, six and seven sugar units, 

that already proved their biological activities (see 1.3.1). The first part of the project consisted in random 

sulfation of potential GAG mimetics. Linear malto-hexaose & -heptaose and β-cyclodextrin (the cyclic 

equivalent of maltoheptaose) were randomly sulfated at different degrees (low, medium, high) and 

assayed to estimate the degree of sulfation and the importance of structural conformation needed to elicit 

biological activity as potential monovalent GAG mimetics (performed by our collaborators of Gly-

CRRET, Créteil). Then, regioselective sulfation on β-cyclodextrin was achieved by using the chemistry 

of cyclomaltooligosaccharides, known for their Cn symmetry. Selectively sulfated cyclodextrins were 

later biologically assayed to understand the role of sulfate position on their biological activity. 

In order to get a multivalent structure able to potentially mimic PGs, linear maltooligosaccharides were 

also end-functionalized for their future coupling performed by ICMPE collaborators with a 

biodegradable bacterial polyester polymer, PHOU (poly(3-hydroxyoctanoate-co-3-

hydroxyundecenoate). 
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The project was structured around four main tasks, that will be developed in the following chapters and 

that are illustrated on the Figure 11 :  

1) Random sulfation of (cyclo)maltooligosaccharides and their biological evaluation (chapter 2); 

2) Preparation of potential cyclic GAG mimetics by regioselective sulfation and their biological 

evaluation (chapter 3); 

3) Thiol- and amine-end-functionalization of potential linear GAG mimetics, and their random 

sulfation, for their future grafting by thiol-ene or amide coupling respectively (chapter 4); 

4) Preparation of potential PG mimetics by grafting of potential linear GAG mimetics on a 

biodegradable polymer scaffold and their random sulfation (chapter 5). 

 

 

Figure 11. Simplified strategy of the project with the different tasks 
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2.1 Introduction 

Heparin binding proteins interact with heparin and heparan sulfate chains at cell surface or in the 

extracellular matrix to mediate physiological activities. Among HBPs figure FGF-2 and VEGF.  

FGF-2 (or bFGF for basic fibroblast growth factor) is part of a large family of polypeptide growth factors 

148 and VEGF represents a family of glycoproteins involved in vasculogenesis, lymphangiogenesis and 

angiogenesis 149. Their important feature is their binding to heparin/heparan sulfate.150,151,152 These 

interactions stabilize the growth factors (especially FGF-2) to thermal denaturation and proteolysis 153 

but also regulate their biological activities 56,154,155. They also allow (through HSPG or free-form 

HS/heparin) growth factors to activate their receptors on cells.152,156,157  

FGF-2 and VEGF were found to be implicated in osteoarthritis. While FGF-2 has a controversial role 

by being associated to anabolic and catabolic events 158, VEGF mediates mainly destructive and 

inflammatory reactions 159,160. 

Studies suggested that linear sulfated maltooligosaccharides could potentially mimic the role of 

heparin/heparan sulfate (see 1.3.1 & 161). On the other side, sulfated cyclic maltooligosaccharides and 

more precisely β-cyclodextrins were found to have interesting properties as heparin mimetics, for the 

binding of FGF-2 or for antiangiogenic activity.162–164 They required a minimum of 10 sulfate groups 

(representing a moderate degree of sulfation) and higher doses than those needed for heparin for binding. 

β-cyclodextrins could also exert these effects under polymeric forms.163,164 

 As preliminary studies for evaluating the biological effects of sulfated (cyclo)maltooligosaccharides in 

the context of osteoarthritis, the binding and activity of such compounds was measured with FGF-2 and 

VEGF. (Cyclo)maltooligosaccharides were in this chapter randomly sulfated to determine whether an 

interaction of the prepared glycomimetics with biomolecules could be established or not, and if the 

sulfation degree had an influence on this interaction. Structural configuration of glycomimetics for their 

potential biological activity was evaluated by using linear and cyclic sulfated oligosaccharides: malto-

hexaose/-heptaose vs β-cyclodextrin. Also, the effect of chain length on the interaction was assayed by 

comparing sulfated maltoheptaose (DP 7) and maltohexaose (DP 6). 

2.2 Results and discussion 

2.2.1 Synthesis and characterization of randomly sulfated (cyclo)maltooligosaccharides 

Natural and unmodified oligosaccharides (M6 1, M7 2 and BCD 3) were sulfated at three degrees of 

sulfation (DS) by changing the stoichiometry of the sulfation reagent. Typically, three degrees of 

sulfation per monosaccharide (DS) were targeted by controlling the stoichiometry of sulfur 

trioxide•pyridine complex per hydroxyl (equiv./OH): 0,5 equivalents of sulfur trioxide pyridine complex 

per hydroxyl for the lightly sulfated (M6/7L, BCDL), 1 eq./OH for the moderately sulfated (M6/7M, 
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BCDM) and 2 to 5 eq./OH for the highly sulfated one (M6/7H, BCDH). Randomly sulfated 

(cyclo)maltooligosaccharides were obtained as shown on the Scheme 1. The sulfation procedure was 

optimized with maltoheptaose 2 by varying different reaction parameters (solvent, temperature, reaction 

time and purification). 

 

Scheme 1. Synthesis of randomly sulfated (cyclo)maltooligosaccharides 

First, the oligosaccharides were sulfated according to the procedure described by Parish et al. 126 in a 

mixture of solvents (DMF/pyridine 2/3 v/v) for two hours at 80°C. However, the long workup procedure 

did not allow to afford pure products because of the contamination with pyridinium salts and solvents 

(observed by 1H NMR). Sulfated maltohexaose (M6L, M6M and M6H) being prepared only once due to 

their availability, their sulfation procedure and work-up was carried out in early stages of the project 

according to this procedure. Another simpler work-up reported by Papy-Garcia et al. 111 was adopted for 

maltoheptaose that required, after completion of the reaction, a simple step of pH neutralization followed 

by dialysis purification affording almost pure products. Pyridinium salts were also observed in some 

cases. To overcome this problem, a modified procedure of Chaikof and co-workers 137 was approved for 

maltoheptaose and cyclodextrin: the reaction was carried out in inert conditions in DMF at a lower 

temperature of 60°C resulting in more homogeneous mixture of products (see sulfated cyclodextrins). 

As our products were aimed to be biologically assayed, a purification by gel permeation chromatography 

(GPC) was opted instead of the dialysis for maltoheptaose and cyclodextrin derivatives, providing very 

pure products yet containing small traces of ammonium carbonate, that is used in its aqueous solution 

as the solvent for GPC purification. 

After purification, the lyophilized products, obtained as complex mixtures, were characterized by 

different methods (1H NMR, SEC-MALS, FT-IR & elemental analysis). 

Based on the overall look of the spectra, the nuclear magnetic resonance 1H allowed to have an idea of 

the degree of sulfation of the different derivatives along with their purity (contamination with salts or 

solvents). As an example, a superposition of 1H NMR spectra of native maltoheptaose (M7, black) with 

lightly (M7L, green), moderately (M7M, orange) and highly (M7H, red) sulfated maltoheptaose is 

presented on the Figure 12.  
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Figure 12. 1H NMR spectra superposition of M7 and its randomly sulfated derivatives in D2O at 298K 

The peak attributed to anomeric protons (H1’), that usually appeared as a doublet around 5.40 ppm in 

native carbohydrates (M7 spectrum in black), was after sulfation seen as a multiplet in every sample (see 

green, orange and red spectra), indicating that the chemical environment of each anomeric proton 

changed depending on the position that was sulfated. The more the polysaccharide was sulfated, the less 

the original H1’ peak was observed. Furthermore, after sulfation, a big peak appeared around 4.30 ppm 

corresponding to the methylene of the primary hydroxyl once this position was sulfated (see gray zone 

on each spectra). As expected, this peak tended to gain in intensity when the degree of sulfation of the 

oligosaccharides increased. It is well-known that sulfation of hydroxyl group in glycosyl residues causes 

a significant deshielding of geminal and vicinal proton resonance. A geminal proton is deshielded by 

about 0.6 ppm, some variations with axial or equatorial orientation being apparent. The effect of sulfate 

group on a vicinal proton is also dependant on the relative orientations of the two groups the, being the 

largest when the both groups are equatorial in the pyranoside ring.165 The formation of 1,6-anhydro 

bridge motif in reducing monomers of sulfated (cyclo)maltooligosaccharides as suggested by Yeh et al. 

161 could not be confirmed by HMBC experiment (no spot between H1’ and C6 observed) due to the 

complex attribution of 1H NMR spectra obtained. 

Another method to have an idea of the degree of sulfation is size exclusion chromatography coupled 

with a light scattering detector, a refractometer and a UV detector (SEC/MALS). This method allows to 

calculate the molecular weight of macromolecules based on their refractive index value (RI) that can be 
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calculated for each molecule for more accurate measurements. Here we used the RI of dextran sulfate 

(dn/dc=0.142) as a reference for our samples, that are complex mixtures of products. Only M7 and BCD 

derivatives could be analyzed (not enough quantities of sulfated M6). SEC/MALS measurements were 

conducted on triplicates and retention times of products are presented in Figure 13. 

 

 
Figure 13. (a) Superposition of sulfated M7 SEC-MALS retention times ; (b) Superposition of sulfated 

BCD SEC-MALS retention times 

M7 derivatives (Figure 13a) and sulfated BCD (Figure 13b) showed clear gaussian curves for retention 

times suggesting homogeneous mixtures. Sulfation seemed to have effectively occurred as GPC peaks 

shifted to lower retention times with the increase of molecular weight. It is noteworthy to mention that 

moderately and highly sulfated derivatives (red and orange, Figure 13) showed more similar retention 

times compared to lightly sulfated ones. This phenomenon is well-observed on Figure 13a (even though 

for both graphs, the difference of retention times does not exceed 100 min between highly and lightly 

sulfated products) and indicates more structural similarity in terms of number of sulfate groups between 

them. 
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SEC-MALS data of sulfated derivatives are summarized on the Table 3. The polydispersity indexes PDI 

observed were greater than 1 for all the sulfated products, confirming that each batch is composed of a 

plethora of similar products, and this index seemed to globally increase with the degree of sulfation. 

Sample 
Mw Mn PDI (Mw/Mn) 

Mean ± Mean ± Mean ± 

M7 

Low 1722 53 1281 28 1.344 0.012 

Medium 2415 31 1320 15 1.830 0.025 

High 2910 167 1649 57 1.765 0.066 

BCD 

Low 1665 3 1241 37 1.342 0.044 

Medium* 2274 19 1477 14 1.540 0.003 

High 2543 39 1559 17 1.632 0.022 

Table 3. Mw, Mn and PDI of sulfated M7 and BCD derivatives. *commercially available 

The data showed an increase of weight average molecular weight Mw with the degree of sulfation from 

1722 to 2910 g.mol-1 for M7 derivatives and from 1665 to 2543 g.mol-1 for sulfated BCD. This confirmed 

that the number of grafted sulfate moieties increased between lightly and highly sulfated products. The 

number average molecular weight Mn was in each case lower than Mw, which was typical for 

polydisperse polymers and evolve in the same manner as Mw and PDI. Figure 14 summarized Mw, PDI 

and DS values of each sulfated derivatives. 

 

Figure 14. Graph of Mw, PDI values extracted from SEC-MALS analysis and DS values from 

elemental analysis of sulfated (cyclo)maltooligosaccharides 

Mw and PDI values increased accordingly to DS for sulfated M7 (dark blue) and BCD (lighter blue).  

Further analysis on sulfated (cyclo)maltooligosaccharides using elemental analysis were carried out. 

This method allowed for the evaluation the average degree of sulfation per unit (DS) of all sulfated 

products. The results are presented in Table 4. As expected, the DS increased from 0.5 sulfate moiety 
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per sugar unit to 3 for sulfated M7 and from 1 to 2.8 for BCD derivatives. Concerning the M6 batches, 

the DS increased from 0.8 to 2.1 between the lightly and moderately sulfated derivatives, but the highly 

sulfated one showed a DS of only 0.6. Due to a lack of starting material, the sulfation reaction experiment 

could not be reproduced. 

Sample 
C H N S 

DS 
[wt%] [wt%] [wt%] [wt%] 

M7 

Low 30.844 5.999 3.152 7.003 0.5 

Medium 20.532 5.475 5.826 14.444 1.6 

High 14.832 4.716 8.473 21.009 3.2 

M6 

Low 25.451 4.496 0.016 9.259 0.8 

Medium 17.696 5.466 6.870 16.618 2.1 

High 28.680 5.905 3.034 7.968 0.6 

BCD Low 25.144  5.754 5.192 11.790 1.0 

Medium* 17.498  3.421 0.000 14.680 1.9 

High 15.441  5.074 7.936 19.007 2.8 

Table 4. Degree of sulfation per saccharidic unit of the sulfated (cyclo)maltooligosaccharides 

(calculated by elemental analysis). 

A qualitative analysis of sulfated (cyclo)maltooligosaccharides could be obtained from Fourier-

transform infrared spectroscopy (FT-IR). As an example, infrared spectra superposition of M7 and its 

lightly, moderately, and highly sulfated derivatives is presented on the Figure 15. The broad hydroxyl 

stretching vibration band O-H around 3300 cm-1 seemed to decline with the increase of the degree of 

sulfation. The band at 2900 cm-1, corresponding to carbon-hydrogen stretching, was present before and 

after sulfation as well as the strong band at 990 cm-1, corresponding to carbon-oxygen stretching and 

carbon-carbon bending. This may show that no hydrolysis occurred during the reactions. More 

importantly, a strong band appeared after sulfation : the sulfur-oxygen double-bond stretching band S=O 

at 1200 cm-1, whose intensity varied as a function of the degree of sulfation, attesting that sulfation did 

succeed. 
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Figure 15. FT-IT spectra superposition of M7 and its sulfated derivatives 

After being characterized, the sulfated (cyclo)maltooligosaccharides were submitted to biological assays 

performed by our collaborators (Gly-CRRET, Créteil). 

2.2.2 Biological assays on randomly sulfated maltooligosaccharides 

2.2.2.1 Principle of biological assays 

2.2.2.1.1 Competitive ELISA test 

Our collaborators first measured the relative affinity of our randomly sulfated 

(cyclo)maltooligosaccharides being potential GAG mimetics for a given growth factor by competitive 

ELISA (Enzyme-Linked Immunosorbent Assay) test, which is explained and illustrated on the Figure 

16. 
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Figure 16. Principle of competitive ELISA test 

In this assay, each well of a plate was coated with heparin by using the heparin-BSA complex. The 

heparin being fixed, a known and constant mass concentration of HPB and a concentration of “GAG 

mimetics” was added to the well. Our “GAG mimetics” in solution acted as competitors of surface 

immobilized heparin for binding to the HBP. After incubation, a washing step eliminated all free HBP 

and “GAG mimetics” bound or not to HBPs. A primary antibody anti-HBP was then added and bound 

to all the heparin immobilized HBP left in the well. After a washing step to eliminate the excess of 

unbound antibody, a secondary labelled antibody recognizing specifically the first antibody was added 

to the well. Finally, after a last washing step to eliminate excess of labelled secondary antibody, the 

quantity of HBP bound to heparin was measured as a function of the fluorescence intensity of each well. 

The less the signal, the more HBP were fixed to our “GAG mimetics”, proving a significant interaction 

between sulfated maltooligosaccharides and these HBPs. 

This assay was carried out on a 96-well plate, with different concentrations of “GAG mimetics” in wells 

where each concentration of “GAG mimetic” was tested at least two times. Two positive controls were 

used for the experiment : heparin and a heparin mimetic (a randomly sulfated polysaccharide known to 

efficiently bind both HBPs). The IC50 value of the heparin mimetic was fixed as 100% and the relative 

affinity of our “GAG mimetics” compounds was compared to this reference. 

From the fluorescence measurement of all the wells with different concentrations of “GAG mimetics”, 

the IC50 values (concentration of “GAG mimetics” for which 50% of HBP remain bound to the 

immobilized heparin) of our compounds were calculated. 

2.2.2.1.2 Mitogenic assay on BAF32 or HUVEC cells 

Binding and signalling of the mitogenic growth factor FGF-2 by our sulfated maltooligosaccharides was 

analyzed using BAF32 cell assay. BAF32 cells are a model system developed to identify heparan sulfate 

and heparin structures that interact with FGFs and their receptors 166. They consist of transfected 

lymphocytes that express FGF receptors at their surface but lack cell-surface heparan sulfate chains that 

stabilize the interaction between FGF-2 and its receptor (see 1.2.3). To proliferate, these cells thus 

require the presence of FGF-2 as well as addition of exogenous heparin/heparan sulfate in the medium 

Heparin-BSA

« GAG mimetics »

HBP (FGF-2 or VEGF)

Antibody anti-HBP

Secondary labelled antibody

Read
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to form biologically active ternary complexes between cell surface FGF receptors, FGF-2 and 

heparin/heparan sulfate 167. In our case, this assay was realized to test if randomly sulfated malto-

oligosaccharides are efficient promoters of FGF-depending proliferation, and thus mimicking 

heparin/heparan sulfate. 

HUVEC cells present VEGF receptors as well as heparan sulfate on their cell surface. VEGF and its 

receptor require the presence of cell-surface or free-form heparin/heparan sulfate to induce biological 

response. However, higher concentrations of heparin/heparan sulfate or their mimetics induce an 

inhibition of the fixation of VEGF to its cell receptor thus inhibiting cell growth. In this assay, we tested 

the ability of sulfated (cyclo)maltooligosaccharides to inhibit cell growth by mimicking free-form GAG 

mimetics. 

The principle of the method is explained in the following and illustrated in the Figure 17. 

 
Figure 17. Principle of mitogenic assay on BAF32 or HUVEC cells 

BAF32/HUVEC cells were cultured in similar conditions. Here, the cell culture of BAF32 cells is 

detailed. BAF32 cells were grown for 24 hours at 37°C in a serum-free culture medium with 5% CO2 

(fixed parameter of the incubator allowing cell growth). This serum deficiency is necessary for all cells 

to reach the quiescent stage. Each well of a 96-well plate was differently filled with a constant 

concentration of dormant BAF32 cells and FGF-2, and variable concentrations of potential GAG 

mimetics. The plate was then incubated for 72 hours at 37°C. After that, Prestoblue®, a reagent 

permitting cell viability quantification by fluorescence 168, was added to each well and cells were 

incubated for 4 more hours at 37°C. Finally, the fluorescence was read on the plate, and alive cells in 

wells were quantified. 

On the 96-well plate, positive and negative control tests were also realized to assess the validity of the 

assay.  

2.2.2.2 Biological assays with FGF-2 

Our collaborators realised their biological assays with two HBPs. The one presented here is FGF-2. 

Thanks to their competitive ELISA assays (preliminary results), they calculated the mean IC50 value of 

sulfated (cyclo)maltooligosaccharides when they were acting as competitors of heparin for binding with 

FGF-2 (triplicate measurements, n=3, were performed for each compound except for M7M, M7H & 

BCDM where n=6). The mean IC50 values are presented with their standard deviation on the Table 5. 
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Table 5. Mean IC50 values with standard deviation for sulfated (cyclo)maltooligosaccharides with 

FGF-2.  

As can be seen on the table, no competition (NC) was observed for sulfated M6 and for lightly sulfated 

M7. Moreover, the IC50 values were considerably high for β-cyclodextrin lightly and highly derivatives. 

Moderately sulfated M7 and BCD and highly sulfated M7 seem to be the most competitive components 

against heparin. 

Using the mean IC50 values presented on Table 5, a graph presenting the relative affinity of different 

“GAG mimetics” with FGF-2 compared to the value of the heparin mimetic, fixed as the reference, was 

traced and presented on the Figure 18. 

 

Figure 18. Graphic presenting the relative affinity of sulfated (cyclo)maltooligosaccharides for FGF-

2. The IC50 value of Heparin mimetic was used as reference of 100% of binding affinity, to calculate 

the % of binding affinity of all other tested molecules for FGF-2. 

Lightly sulfated (cyclo)maltooligosaccharides seemed to exhibit no inhibition with heparin for FGF-2. 

We observed an increasing tendency of M7 derivatives to compete with heparin with the degree of 

sulfation. Interestingly, highly sulfated M7 revealed a relative affinity up to 10%, while the one of BCDH 

drastically dropped to 0.2%. However, M6 derivatives did not seem to interact with FGF-2 no matter 

their degree of sulfation. 

The compounds were then submitted to the mitogenic assay on BAF32 cells. The figure 19 summarizes 

the effect of sulfated (cyclo)maltooligosaccharides (at different concentrations) on BAF32 cell 
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proliferation. Positive controls were evaluated with heparin and heparin mimetic and negative controls 

were performed for all “GAG mimetics” (two first assay of each graph, black and grey). 

 

Figure 19. Proliferation tests of sulfated (cyclo)maltooligosaccharides on BAF32 cells in synergy with 

FGF-2. Effect of increasing doses (from 10-2 to 102 µg/ml) of (cyclo)maltooligosaccharides with FGF-

2 were tested and compared as fold change of proliferation rate of the cells alone. Independent 

experiments were performed with at least duplicate wells per condition, and graphs represent the 

values obtained by conditions, means and standard deviations. P values were calculated using an 

ordinary Kruskal Wallis test followed by pairwise comparisons using the Dunnett test compared to CT 

conditions with FGF-2 alone (NS no significance; * <0.05; ** <0.01; *** <0.001; **** <0.0001). 

Cells alone exhibited a fluorescence set at one, the base value of proliferation (without induction or 

inhibition of cell proliferation). As expected, the absence and the presence of FGF-2 alone did not 

influence the proliferation rate of cells (negative controls, NS). The concomitant presence of FGF-2 with 

a natural GAG or a GAG mimetic (heparin and heparin mimetic, positive controls) allowed the 

significant increase of proliferation by 2-3-fold change for mass concentration around 1-10 µg/mL. 

No induction of cell growth was noticed for M6 derivatives with this assay. As observed previously with 

the ELISA test, no binding seemed to occur with FGF-2 while this step is required for the activation of 
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a receptor. M7L did not significantly increase cell proliferation. M7M and M7H both allowed BAF32 

cell growth at comparable rates of proliferation but at higher concentrations than positive controls (2-4-

fold changes). The rate of cell proliferation then decreased when higher concentrations of “GAG 

mimetics” were added as can be seen with M7H derivative. BCD derivatives globally did not modulate 

cell proliferation (although BCDH seemed to slightly induce cell growth). 

2.2.2.3 Biological assays with VEGF 

The second HBP tested by our collaborators was VEGF. As for FGF-2, the ELISA tests allowed to 

calculate the mean IC50 value of sulfated (cyclo)maltooligosaccharides when they were acting as 

competitors of heparin for VEGF. Their mean IC50 values are presented with their standard deviation 

on the Table 6. 

Table 6. Mean IC50 values of sulfated (cyclo)maltooligosaccharides and their standard deviations 

with VEGF. Measures were conducted in triplicates (n=3) for compounds except for M7M, M7H & 
BCDM where n=6 

As for FGF-2, no competition was observed for sulfated M6. Compared to the other IC50 values, those 

of lightly sulfated compounds were the highest. More interesting values were obtained with sulfated M7 

and BCD in the order of some µg/mL. 

As previously, a graph representing the relative affinity of each “GAG mimetics” with VEGF and with 

a heparin mimetic as the reference value is presented on the Figure 20 by using the mean IC50 values 

presented on the Table 6 (preliminary results). 

 

Figure 20. Graphic presenting the relative affinity of sulfated (cyclo)maltooligosaccharides for VEGF. 

The IC50 value of Heparin mimetic was used as reference of 100% of binding affinity, to calculate the 

% of binding affinity of all other tested molecules for VEGF.  
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While M7L, & BCDL seem to have relative affinity values of about 0.3%, no competition with heparin 

was observed for M6L and M6M. As for FGF-2, M6 derivatives did not seem to interact with VEGF. 

Moderately sulfated seven-unit compounds (M7M & BCDM) had similar relative affinities of about 10-

15%. And highly sulfated M7 and BCD exhibited relative affinities of about 30%. We therefore observed 

an increasing inhibition tendency for sulfated M7 and BCD with the degree of sulfation. 

Sulfated (cyclo)maltooligosaccharides were then submitted to the mitogenic assay on HUVEC cells in 

synergy with VEGF, as illustrated on the figure 21. 

 
Figure 21. Proliferation tests of sulfated (cyclo)maltooligosaccharides on HUVEC cells in synergy 

with VEGF. Effect of increasing doses (from 10-2 to 102 µg/ml) of (cyclo)maltooligosaccharides with 

VEGF were tested and compared as fold change of proliferation rate of the cells alone. Independent 

experiments were performed with at least duplicate wells per condition, and graphs represent the 

values obtained by conditions, means and standard deviations. P values were calculated using an 

ordinary Kruskal Wallis test followed by pairwise comparisons using the Dunnett test compared to CT 

conditions with VEGF alone (NS no significance; * <0.05; ** <0.01; *** <0.001; **** <0.0001). 

The proliferative rate of cells alone was reported as one, and was slightly increased 1.2 times when 

VEGF alone was added to the culture media (activation of the receptor by formation of the ternary 

complex HSPG/VEGF-R/VEGF). The concomitant presence of VEGF with a natural GAG (heparin) at 

high doses seemed to inhibit cell growth. On the opposite, the heparin mimetic did not seem to have any 

effect on cell growth.  

Heparin

0.0

0.5

1.0

1.5

VEGF - + + + + + + 

Hep 0 0 10-2 10-1 100 101 102 

 µg/mL

F
o

ld
 C

h
a
n

g
e

*
NS NS

NS NS

Hep. mim.

0.0

0.5

1.0

1.5

VEGF - + + + + + + 

Hep. Mim. 0 0 10-2 10-1 100 101 102 

 µg/mL

F
o

ld
 C

h
a
n

g
e

*
NS

NS
NS

NS

M6L

0.0

0.5

1.0

1.5

VEGF - + + + + + + 

M6L 0 0 10-2 10-1 100 101 102 

 µg/mL

F
o

ld
 C

h
a
n

g
e

NS NS NSNS

NS

M7L

0.0

0.5

1.0

1.5

VEGF - + + + + + + 

M7L 0 0 10-2 10-1 100 101 102 

 µg/mL

F
o

ld
 C

h
a
n

g
e

NS NS * ** ***

M7M

0.0

0.5

1.0

1.5

VEGF - + + + + + + 

M7M 0 0 10-2 10-1 100 101 102 

 µg/mL

F
o

ld
 C

h
a
n

g
e

NS
NS NS

NS NS

M7H

0.0

0.5

1.0

1.5

VEGF - + + + + + + 

M7H 0 0 10-2 10-1 100 101 102 

 µg/mL

F
o

ld
 C

h
a
n

g
e

******NSNSNS

BCDL

0.0

0.5

1.0

1.5

VEGF - + + + + + + 

βCDL 0 0 10-2 10-1 100 101 102 

 µg/mL

F
o

ld
 C

h
a
n

g
e

NS* NS NS *

BCDM

0.0

0.5

1.0

1.5

VEGF - + + + + + + 

βCDM 0 0 10-2 10-1 100 101 102 

 µg/mL

F
o

ld
 C

h
a
n

g
e

NSNS NS ** ****

BCDH

0.0

0.5

1.0

1.5

VEGF - + + + + + + 

βCDH 0 0 10-2 10-1 100 101 102 

 µg/mL

F
o

ld
 C

h
a
n

g
e

NS ******NS



 
 

 
59 

M6 did not elicit cell growth inhibition, which may be explained by the absence of binding of M6 to 

VEGF (observed with the ELISA assay on VEGF). All M7 derivatives exhibited cell growth profiles 

similar to heparin. At low doses, no significant effect was observed but M7L and M7H seemed to inhibit 

significantly cell proliferation by 1/3 at high concentration (p<0.001 for M7L and p<0.0001 for M7H at 

102 µg/mL). Similar profiles (as for heparin and sulfated M7) for BCD derivatives were observed. It is 

noteworthy to mention that the inhibition seemed to increase as a function of the sulfation degree of 

BCD derivatives. On the contrary to mitogenic assays on BAF32 for FGF-2, here no effect of the 

structural conformation was observed : cell proliferation was modulated similarly by seven-unit linear 

and cyclic compounds. 

2.2.2.4 Interpretation of the results obtained with FGF-2 and VEGF 

Two growth factors belonging to the family of HBPs, FGF-2 and VEGF, were used to evaluate the 

potential biological effects of sulfated (cyclo)maltooligosaccharides previously synthetized and 

characterized (see 2.2.1).  

The preliminary ELISA tests allowed to determine the mean IC50 values of each compounds and then 

to evaluate their relative competition with heparin for each growth factor. For some compounds, only 

two or three values could be measured, explaining the absence of statistical analysis for these tests. More 

assays are currently being performed. 

The mitogenic assay of BAF32 or HUVEC cells allowed to evaluate the effect of sulfated compounds 

at various concentrations on the cell proliferation. Preliminary results of the assays may allow to observe 

interesting features and dress hypotheses with the furnished data. 

First, the M6 series did not seem to compete with heparin for binding of each growth factor (to be 

confirmed) and did not have any effect on neither on BAF32 and HUVEC cell growth. This 

demonstrates that these compounds may not be able to efficiently mimic biologically active GAG 

structures for the tested growth factors. On the contrary, the M7 series elicited biological properties while 

only bearing one more glucose unit and having similar sulfation degrees. It may be speculated that if the 

binding does not depend on the sulfate density present on the compounds, this one-sugar-unit difference 

between maltohexaose and maltoheptaose derivatives is necessary for the binding for FGF-2 and VEGF, 

and that the minimal length for recognition and binding to these growth factors is seven units. 

Then, the proliferation tests on BAF32 and HUVEC cells allowed to emphasize the importance of the 

concentration of GAGs and their mimetics to mediate biological processes. For the ones that elicited a 

response in synergy with FGF-2, BAF32 cell growth increased with the concentration of “GAG 

mimetics” until a maximum accordingly to heparin and heparin mimetic profiles. Passed this point, the 

proliferation decreases. This might be due to the excess of “GAG mimetics” in the medium which could 

limit the FGF-2 recognition by its receptor. Some “GAG mimetics” therefore mediated BAF32 cell 
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growth in a dose-dependent manner. For the “GAG mimetics” that elicited a response in synergy with 

VEGF, no significant inhibition was observed at low doses, but a strong inhibition rapidly emerged at 

higher doses. This effect has previously been documented in literature.154,157 Cell growth could therefore 

be inhibited by some “GAG mimetics” also in a dose-dependent manner. It is noteworthy to mention 

that an effect of the degree of sulfation (for M7 and BCD derivatives) on the modulation of cell 

proliferation was observed. Interestingly, an effect of structural conformation (sulfated M7 vs BCD) was 

observed for BAF32 mitogenic assay but not in the case of HUVEC cell proliferation. 

It is known that BAF32 cell growth can only be enhanced by the presence of free-form heparin/heparan 

sulfate or their mimetics (as abundant chondroitin sulfate was shown to have no effect on the 

proliferation of cell deficient in HSPGs)60. Some of M7 derivatives allowing significant cell 

proliferation, it may be postulated that such compounds act specifically as mimetics of heparin or 

heparan sulfate type GAGs.  

In addition, some compounds such as BCDL for VEGF and BCDM for FGF-2 seemed to be able to bind 

to the corresponding growth factors but did not elicit biological response by modulating cell 

proliferation. This illustrates the fact that the effect of GAG mimetics on both ligands and receptors may 

depend on two events: the affinity of GAG mimetics for the ligand and/or receptor (binding) and the 

ability to induce a biological response (activation). In other terms, to be recognized as GAGs for the cell 

surface receptor, our sulfated compound must bind to it and elicit a response. 

Finally, the effect of cyclomaltooligosaccharides was observed to drastically change between FGF-2 

and VEGF (no significant effect vs inhibition of cell growth respectively). BCD derivatives had almost 

no binding with FGF-2 and no significant effect on cell proliferation, but strongly interacted with VEGF 

by inhibiting cell growth as much as sulfated M7. This may illustrate the difference of binding motif 

needed for each growth factor. 

More generally, highly sulfated maltooligosaccharides exhibited higher binding for HBPs and elicited 

more intense biological responses (cell proliferation) than lightly sulfated ones. The reason for that is 

for the moment unclear. It may be thanks to the presence of more sulfate groups on glycans or because 

for higher sulfation degrees, more sulfating reagent was introduced allowing the sulfation of less 

accessible positions on sugars that might be important for the binding with these growth factors 

(difference between sulfation degree and sulfation pattern). 

These preliminary hypotheses and tendencies are still to be confirmed by more studies. In particular, 

our compounds remain to be tested for their synergistic effects with other FGFs members such as FGF-

8 and FGF-18 (that contribute to cartilage homeostasis). For example, the role of FGF-8 has been 

identified as a catabolic mediator in rat and rabbit articular cartilage, but its precise biological impact 

on human adult articular cartilage remains unknown.158 
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2.3 Conclusion 

We performed and optimized the protocol for randomly sulfated (cyclo)maltooligosaccharides whose 

structures are presented on the figure 22 below. 

 

Figure 22. Structures of sulfated (cyclo)maltooligosaccharides 

After being characterized by 1H NMR, SEC-MALS, FT-IR and elemental analysis, the compounds were 

submitted to biological assays. Two tests were carried out to evaluate their ability to mimic natural 

GAGs by using FGF-2 and VEGF as HPBs. The ELISA tests allowed to measure the relative affinity of 

sulfated (cyclo)maltooligosaccharides for growth factors, and thereby their binding abilities. The 

mitogenic assay on BAF32 and HUVEC cells allowed to attest their efficacy by eliciting cell growth. 

Globally, moderately and highly sulfated exhibited more affinity and elicited more intense responses 

than lightly sulfated derivatives. The minimal chain length required for biological activity was estimated 

at seven sugar units. Binding affinities and cell growth were different depending on the linear of cyclic 

conformation of oligosaccharides. More biological tests still remain to be carried out to confirm these 

assumptions. 

Selective chemistry on β-cyclodextrins may allow us to confirm the role of sulfate groups position and 

DS with the preparation of selectively sulfated maltooligosaccharides.
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3.1 Introduction 

3.1.1 General 

Cyclodextrins (or cyclomaltooligosaccharides) are a series of non-reducing cyclic oligomers composed 

of α-1,4-linked D-glucopyranosyl units in 4C1 conformation, a 'chair' conformation where the superscript 

number indicates the carbon atom located above the reference plane of the chair and the subscript 

number the one located below, this plane being made up by C–2, C–3, C–5 and the ring oxygen. Their 

natural production is realized by enzymatic degradation of starch by cyclodextrin glycosyl 

transferases.169 

The most common cyclodextrins are formed of six, seven or eight repetitive units (respectively α-, β- 

and γ-cyclodextrins). Their Cn-symmetry (n being the number of glucose units)170 allows them to possess 

two structural rims formed by primary hydroxyls (OH-6) and secondary hydroxyls (OH-2 & -3). 

β-cyclodextrins (BCD) are the most commonly employed for chemical modification. Their structure, 

presented on the figure 23, is particularly rigid because of intramolecular hydrogen bonding between 

OH-2 and OH-3, explaining their poor solubility in water 171. 

 

Figure 23. Structure of β-cyclodextrin (cyclomaltoheptaose) 

These cyclic macromolecular structures bear abundant hydroxyls (18, 24 or 31 in α-, β- and γ-

cyclodextrins respectively), that may nonetheless be categorized. Primary hydroxyls (OH-6) are the 

most accessible and the most nucleophilic. OH-2 are the most acidic (pKa=12.2)172 because the hydrogen 

of the hydroxyl is involved in a hydrogen bonding with the anomeric oxygen, and finally OH-3 are the 

least reactive. In spite of that, preparation of regioselectively modified cyclodextrin derivatives still 

needs strategies based on protecting groups. Their modification remains a challenge for organic chemists 

due to statistical factors imposed by the great number of hydroxyls but was nevertheless reviewed.173,174 

Cyclodextrins being versatile molecules, they find applications in a plethora of fields ranging from drug-

delivery systems 175–177 to supramolecular chemistry 178,179. 
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In our project, we were interested in the synthesis of selectively per-modified cyclodextrin derivatives 

in the goal of preparing well-defined and biologically active GAG and PG mimetics. Moreover, 

structural analysis of such compounds by 1H & 13C NMR may be easier thanks to their Cn symmetry. 

3.1.2 Per-modification on primary hydroxyls (OH-6) 

Primary hydroxyls (OH-6) may be directly modified selectively in the presence of electrophiles such as 

alkyl or silyl halides. To do so, the use of a weak base or a basic solvent allows to neutralize the formed 

acid and to avoid cyclodextrin degradation, which is less stable in acidic conditions. 

Thanks to their nucleophilicity, they may be may be more selectively functionalized than their secondary 

counterparts. Some examples of modified α- and β- cyclodextrins will be provided in the following, as 

shown on the Table 7 below. 

 

 OR Yield for n=6 Yield for n=7 

(a) OTs 12% / 

(b) 
Br 93% 80% 

I / 88% 

(c) OTBDMS 75% 83% 

(d) OTr 62% 55% 

Table 7. Selective functionalization of primary hydroxyls of cyclodextrins 

Direct per-tosylation of primary hydroxyls of α-cyclodextrin in pyridine by Umezawa provided a poor 

yield of 12% (Table 7a)180. Per-halogenation is also a popular way to modify the primary rim of 

cyclodextrins. The conversion of native cyclodextrin into its per-bromo or -iodo derivative may be 

carried out in DMF in the presence of triphenylphosphine with bromine or iodine, and affords high 

yields from 80 to 93% (Table 7b)181. 6-halogenated and -tosylated derivatives are a class of important 

precursors as they render carbon 6 particularly electrophile. 

More commonly employed per-silylation is usually employed with the widely used tert-

butyldimethylsilyl chloride. The reaction leads to high yields of 75% of product for α-cyclodextrin and 

83% for β-cyclodextrin (Table 7c)182,183. 
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The introduction of trityl group on OH-6 positions was achieved by Zhang et al. 184 under harsh 

conditions: native cyclodextrins were reacted with trityl chloride at 80°C, and extra portions of reagent 

were added each day for five days. Moderate yields of compounds were obtained (Table 7d). 

Selective per-methylation182,183 or per-azidation185 of the primary rim of cyclodextrin could however not 

be obtained starting from native cyclodextrins. 

3.1.3 Per-modification on secondary hydroxyls (OH-2) 

Selective functionalization of secondary hydroxyls of cyclodextrins seems way more challenging than 

for primary hydroxyls. This is caused by the steric hindrance of this rim (twice more hydroxyls than 

primary rim) and hydrogen bonding between OH-2 and -3 allowing less flexibility for the structure. The 

modification of OH-2 relies on their acidic properties. 

Per-methylation and -tosylation of OH-2 positions was achieved by reactive native cyclodextrins with 

sodium hydride and methyl iodide or tosyl chloride 186 providing per-2-methylated and per-2-tosylated 

β-cyclodextrin with 83% and 27% respectively, as shown on the Scheme 2. 

 

Scheme 2. Selective functionalization of secondary hydroxyls OH-2 of β-cyclodextrin 

However, per-2-O-modifications are often accompanied by modifications on OH-6 as well. To solve 

this problem, primary alcohols are masked in advance in most of the synthetic strategies. As an example, 

the primary rim is often protected by TBDMS groups. Next, OH-2 may be selectively methylated using 

a strong base. By doing so, Takeo et al. obtained 42% of per-6-O-tert-butyldimethylsilyl-per-2-O-methyl 

α and β cyclodextrins with 42 and 61% respectively 182,183, as displayed on the Scheme 3. 

 

Scheme 3. Selective methylation of secondary hydroxyls OH-2 of silylated β-cyclodextrin 

Instead of methylation, Ward et al. 187 realized a selective benzylation, allylation or ethylation of OH-2 

positions after TBDMS group protection of primary rim with low to moderate yields (52%, 43% and 

30% respectively after column purification). 
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For our project, we were inspired by many multi-step synthesis strategies described in literature for the 

preparation of a library of regioselectively sulfated glycomimetics based on 

(cyclo)maltooligosaccharides. 

3.1.4 Some examples of regioselectively sulfated β-cyclodextrins preparation 

We were interested in the synthesis of regioselectively sulfated per-(2 and/or 3 and/or 6)-O-sulfo β-

cyclodextrin derivatives. Such compounds were extensively developed by Vigh group for capillary 

electrophoresis. Some usual synthetic pathways extracted from literature will be showed in the 

following. 

Synthesis of per-6-O-sulfo β-cyclodextrin was reported as shown on the Scheme 4 by his group.188 First, 

they per-functionalized OH-6 positions with TBDMS groups thanks to Takeo & co-workers’ 

procedure.183 Secondary alcohols were then per-acetylated and silyl groups were removed with boron 

trifluoride diethyl etherate in DCM. Next, primary alcohols were selectively sulfated with sulfur trioxide 

pyridine complex in DMF and finally, acetate groups were removed. The compound was then used in 

capillary electrophoresis for separation purposes thanks to its differential complexation properties. 

Later, the compound was reused as a reference to compare randomly highly sulfated cyclodextrin 

between them.189 

 

Scheme 4. Preparation of per-6-O-sulfo β-cyclodextrin by Vincent et al.188 

The group also reported the synthesis, one year later, of per-2,3-O-dimethyl-6-O-sulfo β-cyclodextrin 

by a similar approach involving protection of secondary hydroxyls by methyl groups instead of acetates 

for better enantioselectivity.190 

Bols group191 prepared a cyclodextrin-based artificial enzyme by synthesizing mono-, di- and hepta-

modified cyclodextrin derivatives. Similarly to the previous strategy developed above (Scheme 4), per-

2,3-O-diacetate β-cyclodextrin was prepared according to Takeo group procedure.183 The intermediate 

was then sulfated with sulfur trioxide pyridine complex in pyridine with 92% yield, and was finally 
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deprotected by using sodium methoxide in methanol to provide the final per-6-O-sulfo β-cyclodextrin 

with 88% yield. 

Parrot-Lopez group192 reported the synthesis of less common derivatives with the preparation of 

amphiphilic acyl-sulfated β-cyclodextrins as shown on the Scheme 5 below. The pathway used for these 

derivatives was similar to previous reported strategies. 

 

Scheme 5. Preparation of per-6-O-sulfo-2,3-O-acyl β-cyclodextrin by Parrot-Lopez and col.192 

Other than 6-sulfo β-cyclodextrins, other positions could be sulfated. As an example, Tutu & Vigh 193 

prepared a per-2-sulfo β-cyclodextrin derivative as shown on the Scheme 6 below still for capillary 

electrophoresis. The strategy began by the classic tert-butyldimethylsilylation. A selective benzylation 

on OH-2 and subsequent methylation of OH-3 were carried out. The TBDMS groups were then replaced 

by acetate groups, being more stable in the acidic conditions used for sulfation that took place right after 

deprotection of OH-2. 

 

Scheme 6. Preparation of per-2-O-sulfo β-cyclodextrin by Vigh group 193 
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In the continuity of preparing chiral resolving agents, the same group investigated the preparation of 

per-3,6 cyclodextrin sulfates.194 They explored the tert-butyldimethylsilylation of OH-6 and -2 as 

reported earlier.195,196 In methylating conditions, silyl groups of OH-2 migrated on OH-3, allowing OH-

2 to be per-methylated. Next, desilylation and subsequent sulfation afforded the compound per-3,6-O-

sulfo-3-O-methyl β-cyclodextrin as shown on the Scheme 7. 

 

Scheme 7. Preparation of per-3,6-O-sulfo-3-O-methyl β-cyclodextrin by Vigh group194 

To the best of our knowledge, preparation of a library of selectively sulfated β-cyclodextrins was only 

reported once by Baumann & Rys 197 in the goal of conceiving heparin mimics. In this paper, the authors 

tested the ability of compounds to bind with cationic dyes. They prepared six regioselectively sulfated 

derivatives still containing their hydroxyl protecting groups (structures on Figure 24). The synthesis of 

the orthogonally protected intermediates has not been described and full sulfation could only be achieved 

for per-2-O-sulfo and per-6-O-sulfo cyclodextrins. 

 

Figure 24. Scope of regioselectively modified β-cyclodextrin sulfates by Baumann & Rys 197 

In our project, we also targeted the preparation of six regioselectively sulfated β-cyclodextrin derivatives 

fully deprotected as glycosaminoglycan mimetics in order to evaluate the influence of the position of 

sulfation, the charge density and the cyclic conformation of the maltooligosaccharide on its interaction 

with GAG-binding proteins. 
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3.2 Results and discussion 

3.2.1 Preparation of regioselectively sulfated β-cyclodextrins 

The starting point of the whole synthesis consisted in selectively targeting the primary hydroxyls of β-

cyclodextrin. The very first idea was to protect all hydroxyls, and realise a subsequent selective reaction 

on primary ones as illustrated on the Scheme 8. Per-benzylation was carried out according to Lecourt et 

al. procedure 198 with sodium hydride and benzyl chloride in DMSO. Liquid chromatography on silica 

gel afforded 83% of pure compound 4 on a 10-gram scale whose 1H NMR spectrum was in accordance 

with literature. Next, the goal was to replace benzyl groups on position 6 (OH-6) by acetate groups with 

TMSOTf in acidic conditions as reported in literature.187,199 Despite multiple tries, the reaction afforded 

a plethora of products impossible to isolate. 

 

Scheme 8. Per-benzylation of β-cyclodextrin and subsequent per-6-O-acetylation 

A direct per-acetylation on OH-6 200 was later tried with ethyldiisopropylamine and acetyl chloride in 

DMF as shown on Scheme 9. Almost no conversion was observed by TLC plates after one night. 

 

 

 

Scheme 9. Selective per-6-O-acetylation of native β-cyclodextrin 

Finally, the preparation of per-6-O-tert-butyldimethylsilyl β-cyclodextrin 7 was investigated as starting 

point of all products. This crucial step was achieved by reacting β-cyclodextrin with tert-

butyldimethylsilyl chloride at room temperature as shown on the Table 8. 
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Entry Equiv. TBDMSCl Base Solvent Scale Result 

(a) 8 Pyridine 100 mg No reaction or mixture 

(b) 8 Imidazole DMF 100 mg No reaction 

(c) 12 Pyridine 100 mg Mixture 

(d) 8.4 Pyridine 100 mg Mixture 

(e) 8.4 Pyridine 1 g 18-34% yield 

(f) 8.4 Pyridine 13 g 83% yield 

Table 8. Selective per-6-O-tert-butyldimethylsilylation of native β-cyclodextrin 

The first trial (Table 8a) was carried out accordingly to Fügedi’s procedure 196 by dissolving 100 mg of 

previously lyophilized β-cyclodextrin in dry pyridine and adding the silylating reagent (8 equiv. diluted 

in pyridine) dropwise to the reaction mixture. No transformation was observed based on TLC plates. 

Addition of activated molecular sieves 4 Å and of extra portions of TBDMSCl and applying very inert 

conditions resulted in a mixture of silylated products, including a minority of targeted product 7 and 

under-silylated derivatives no matter the reaction time (from one night to four days). Conditions reported 

by Takeo et al. 182 were then tested (Table 8b), still on a 100-milligram scale, by mixing β-cyclodextrin 

and imidazole in DMF, and adding TBDMSCl dropwise. According to the TLC plate, almost no reaction 

was observed. The procedure of Ashton 201 that is very similar to Fügedi’s 196 yet requiring 12 equivalents 

of TBDMSCl was also carried out (Table 8c). A mixture of products was still observed on TLC plates, 

but the addition of extra portions of silylating reagent did not allow any evolution of the reaction and 

the targeted compound 7 could not be separated from under-silylated products by liquid chromatography 

on silica gel. Finally, a last protocol reported by Vogel & Murphy 202 was tried. β-cyclodextrin was 

dissolved in pyridine during half an hour, then TBDMSCl was added in one portion without prior 

dilution in pyridine at room temperature. The reaction, ineffective on small scale (100 mg, Table 8d), 

showed three spots on the TLC plate after one night on a 1-gram scale (Table 8e). As suggested by the 

procedure, one extra portion of TBDMSCl was added in the reaction mixture to convert the more polar 

spot (minor) into an apolar one for better column separation. Purification by liquid chromatography on 

silica gel provided 18-34% of pure targeted product 7. Surprisingly, the same reaction carried out on 

multi-gram scale (Table 8f) provided 83% of pure product, whose 1H NMR spectrum in CDCl3 displayed 

on the figure 25 was in accordance with literature. The two additional peaks at 1.24 and 3.72 ppm were 

attributed to residual ethanol (part of the solvent system used for chromatography purification). 
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Figure 25. 1H NMR spectrum of compound 7 in CDCl3 with its peak integration and attribution 

Starting from the key intermediate per-6-O-tert-butyldimethylsilyl β-cyclodextrin 7, the following 

synthetic routes for obtaining each selectively sulfated derivative were undertaken (Scheme 10). 

 
Scheme 10. Synthesis strategy employed for selectively sulfated derivatives (6S; 2S; 2,3S; 2,6S; 3,6S) 

starting from β-cyclodextrin (also see Appendix) 



 
 

 
72 

In the following, the preparation of each sulfated derivative of β-cyclodextrin will be developed. 

3.2.1.1 Synthesis of per-6S-β-cyclodextrin 13 

The preparation of per-6S-β-cyclodextrin 13, selectively sulfated on OH-6, was first carried out as 

illustrated on the Scheme 11.  

 

Scheme 11. Preparation of per-6S-β-cyclodextrin starting from β-cyclodextrin via acetate protection 

Silylated intermediate 7 was per-acetylated on OH-2 and -3 by classical conditions, i.e. acetic anhydride 

in pyridine at 70°C 203 providing 88% yield of intermediate 8 after chromatography purification. Next, 

TBDMS groups were selectively deprotected by using boron trifluoride diethyl etherate in DCM 203 and 

the intermediate 9 was obtained after chromatography on silica gel with 81% yield. This latter underwent 

sulfation on OH-6 positions with sulfur trioxide pyridine complex in DMF at 40°C.111,191 A column 

purification followed by 1H NMR analysis suggested that the product was not fully sulfated, and leaving 

the reaction longer with or without 2-methyl-2-butene (2M2B), an acid scavenger supposed to capture 

free protons formed in the medium, led to partial deacetylation according to 1H NMR analysis. Acidic 

and non-anhydrous conditions employed for sulfation may have caused hydrolysis of acetate esters.204 

In parallel of sulfation trials with acetate groups, another pathway (illustrated on the Scheme 12) was 

investigated implying the protection of OH-2 and -3 of β-cyclodextrin derivatives by benzyl groups, 

supposed to be one of the most stable protecting group in acidic and basic conditions, but harder to 

remove compared to acetyl groups. 

 

Scheme 12. Preparation of per-6S-β-cyclodextrin starting from β-cyclodextrin 
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Intermediate 7 was thereby submitted to per-2,3-O-benzylation according to the procedure of McKee & 

Green 205,206 with sodium hydride, benzyl bromide and tetrabutylammonium iodide as catalyst in THF 

at reflux. A mixture of products was observed on TLC plate. Other protocols 198,207 led to similar 

mixtures. The reactions did not evolve after extra additions of BnBr and NaH as suggested by Bálint et 

al. 208 In their paper, they reported procedures appliable on large scale. Their protocol was then carried 

out on a 2-gram scale with the use of KOH as base and drying agent and benzyl bromide in THF at 

10°C. In this reaction, methyltriphenylphosphonium bromide was also used as phase transfer catalyst 209 

between the gel formed at 10°C and THF. A mixture of under-benzylated products was also observed 

on TLC plates (based on the expected retardation factor of the product). However, on the contrary to the 

previous procedure, extra additions of reagents could make the reaction evolve. Additional portions of 

KOH and BnBr were therefore added until one main spot on TLC plate was left. The reaction was finally 

treated after 10 days and 5 additions of reagents. Interestingly, the three very close spots observed in the 

classic eluent system petroleum ether/ethyl acetate (9/1 v/v) could be efficiently separated in petroleum 

ether/dichloromethane (5/5 v/v) by liquid chromatography on silica gel. Pure intermediate 11 was 

afforded with 74% yield. TBDMS groups of this intermediate were then removed with 

tetrabutylammonium fluoride trihydrate in THF at room temperature over one night.208 A precipitation 

in water afforded a quantitative yield of intermediate 12, with no trace of residual TBAF salts based on 

the 1H NMR spectrum. Per-6-O-sulfation of compound 12 was carried out with sulfur trioxide pyridine 

complex in pyridine at 60°C as reported by Parrot-Lopez & co-workers.192 After one weekend, the 

product was purified by chromatography affording compound 10b with a quantitative yield. 

Surprisingly, the procedure applied to the acetylated intermediate 9 also provided compound 10a with 

a quantitative yield with no removal of acetate groups. Pyridine solvent was found to be a better choice 

for sulfation. Finally, a deprotection of acetate groups, being more easily removable than benzyl groups, 

was achieved accordingly to Uccello-Barretta procedure 210 with freshly prepared sodium methoxide in 

methanol. The final compound per-6-O-sulfated 13 was provided pure with 79% yield after GPC 

purification and was fully characterized (1H NMR on Figure 26). Final compound per-6S-β-cyclodextrin 

was obtained with an overall yield of 47-48% over 5 steps (depending on the pathway used). It is 

noteworthy to mention that mass spectrometry of cycodextrin sulfates was carried out using electrospray 

ionization although multi-charged compounds were obtained because MALDI ionization caused 

desulfation of compounds.211 
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Figure 26. 1H NMR of compound 13 in D2O with its peak integration and attribution 

3.2.1.2  Synthesis of per-2,3S-β-cyclodextrin 17 

The synthesis strategy of per-2,3S-β-cyclodextrin followed is illustrated on the Scheme 13. In the goal 

of saving synthesis steps, the intermediate per-6-O-tert-butyldimethylsilyl β-cyclodextrin 7 was 

submitted to sulfation in different conditions previously employed in pyridine or DMF 111,191,192 with and 

without acid scavenger 2M2B to afford 14. Unfortunately, silyl groups were each time partially 

hydrolyzed due to the acidic medium necessary for sulfation.  

 

Scheme 13. Preparation of per-2,3S-β-cyclodextrin 17 via silylation of 7 

A longer synthesis strategy starting from intermediate 9 previously synthesized (see 3.2.1.1) was 

investigated where a per-6-O-benzylation of this intermediate followed by acetate group removal and 

sulfation of OH-2 and -3, and subsequent benzyl group deprotection would finally provide per-2,3S-β-

cyclodextrin 17 (Scheme 14). 
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Scheme 14. Preparation of per-2,3S-β-cyclodextrin 17 via benzylation of 9 

The first step consisting in per-6-O-benzylation of 9 was carried out according to a modified procedure 

of Meppen et al. 212. Benzyl chloride, silver oxide (I) and sodium bicarbonate were mixed together with 

compound 9 and activated molecular sieves 4 Å in anhydrous Tol/DCM (3/1 v/v). A total conversion of 

starting material into four products was observed on TLC plates, however small quantities were isolated 

after liquid chromatography on silica gel. Another method based on the in situ preparation of benzyl 

triflate (Oike et al. 213) and its subsequent reaction with compound 9 according to a modified procedure 

of Uemura group 183 was tested with no conclusive result as well. 

As the benzylation reaction seemed to cause problem for β-cyclodextrin derivatives, a similar pathway 

than above was investigated starting from the intermediate 12, already benzylated. A per-6-O-

acetylation of this compound, debenzylation and subsequent sulfation of OH-2 and -3 and a final 

deacetylation would afford per-2,3S-β-cyclodextrin (Scheme 15). 

 

Scheme 15. Preparation of per-2,3S-β-cyclodextrin via acetylation of 12 

Compound 12 was per-6-O-acetylated in classic conditions with anhydride acetic and DMAP in pyridine 

at 70°C. MALDI analysis of product 5, obtained with a quantitative yield, displayed a major peak 

corresponding to the product [M+Na]+ at m/z=2713.469 and a minor peak that would correspond to the 

product with one missing benzyl group at m/z=2623.400. This second and unsymmetrical product not 

being observed on the 1H NMR spectrum, it was suggested to be formed by mass fragmentation. Next, 

debenzylation of secondary alcohols was carried out by catalytic hydrogenation with palladium on 

carbon in EtOAc/MeOH (3/5 v/v) in an atmosphere of hydrogen. No conversion was observed based on 

TLC plates. The reaction was relaunched at 5 atm of H2 in anhydrous MeOH and a minimum of DCM 

for one night and afforded the intermediate 6 with a 100% yield after a simple filtration on celite. The 

sulfation step of this intermediate was conducted in previously described conditions with sulfur trioxide 

pyridine complex in pyridine at 60°C. After one night, the reaction was treated showing an incomplete 

sulfation according to the mixture observed on 1H NMR spectrum. The mixture was then resubmitted to 

sulfation in the same conditions. After two night, no notable change was observed on 1H NMR spectrum. 
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Less accessible OH-3 positions and steric hindrance of sulfate groups on the secondary rim might 

explain this incomplete sulfation. Baumann & Rys 197 had also encountered difficulties in preparing 

some of their per-3-O-sulfated derivatives : the mass spectrum (ESI-) indicated the presence of multiple 

under-sulfated products. The crude 16’ was treated as is, and was deacetylated with sodium methoxide 

in methanol. Purification by GPC provided compound 17’, whose average sulfation degree was 

estimated to be of 1.2, meaning that an average of 1.2 sulfate group are present per unit. According to 

these results, almost half of the hydroxyls could not be sulfated and the presence of residual ammonium 

carbonate (GPC eluent) was observed in the lyophilized sample. The results of elemental analysis are 

presented on the Table 9 below. 

Sample 
C H N S 

DS 
[wt%] [wt%] [wt%] [wt%] 

Per-2,3S-β-cyclodextrin 17 23.975 5.460 5.637 12.912 1.2 

Table 9. Degree of sulfation per saccharidic unit of per-2,3S-β-cyclodextrin 17 (calculated by 

elemental analysis). 

Although the product was obtained as a mixture, SEC-MALS analysis showed a nice gaussian curve for 

the retention time of the product (Figure 27), indicating a homogeneous sulfation of the product. 

 

Figure 27. SEC-MALS retention time of per-2,3S-β-cyclodextrin 17 

3.2.1.3 Synthesis of per-2,6S-β-cyclodextrin 24 

Preparation of per-2,6S-β-cyclodextrin 24 was first envisioned by synthesizing per-2,6-O-di-tert-

butyldimethylsilyl β-cyclodextrin 18 (scheme 16). After protection of OH-3 and subsequent removal of 

TBDMS groups, sulfation and a final deprotection would afford compound 24. 
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Scheme 16. Preparation of per-2,6S-β-cyclodextrin 24 via silylation of 7 or native β-cyclodextrin 

The silylation of OH-6 and -2 was first carried out according to Fügedi procedure.196 Native β-

cyclodextrin was mixed with TBDMSCl and imidazole in DMF at 80°C. After one day, a mixture of 

products was observed on the TLC plate. Similarly, the protocol described by Ashton 214 with DMAP in 

DMF/pyridine at 100°C led to a mixture of under-silylated products. Optimized conditions used for the 

synthesis of per-6-O-tert-butyldimethysilyl β-cyclodextrin (see 3.2.1 202) were finally tried, with no 

success. They were also applied directly on per-6-O-tert-butyldimethysilyl β-cyclodextrin 7, but led to 

the addition of only one more TBDMS group. Faced with the difficulty of obtaining compound 18, 

another synthesis strategy was investigated (Scheme 17).  

 

Scheme 17. Synthesis strategy for the preparation of per-2,6S-β-cyclodextrin 24 

Starting from intermediate 7, a regioselective benzylation on OH-2 was carried out with barium oxide, 

barium hydroxide octahydrate and benzyl bromide either in DMF (Takeo et al.183) or in H2O/THF 

(Hamelin et al.215). In both solvent systems, a mixture of products was observed based on TLC plates. 

More classical conditions reported by Ward et al. 187 using sodium hydride (7.7 equiv.) and benzyl 

bromide (7 equiv.) in DMF were tried, leading to a mixture of under-benzylated products as well. When 
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10 equivalents of reagents were mixed in THF with per-6-O-tert-butyldimethysilyl β-cyclodextrin, the 

targeted product 19 could be isolated from one very similar product (TLC plate) after column 

purification with 52% yield. Intermediate 19 was then per-3-O-acetylated with acetic anhydride, DMAP 

in pyridine at 70°C with a quantitative yield. Next, a desilylation of compound 20 was carried out with 

TBAF in THF as reported by Bálint et al.208 According to its mass spectrum, the targeted compound 21 

(m/z=2081.841) was accompanied by a side-product missing one acetate group (m/z=2039.842) likely 

stemming by the basicity of TBAF. To palliate this problem, boron trifluoride diethyl etherate in DCM 

203 was used. Surprisingly, the targeted compound 21 was minor while partially debenzylated derivatives 

were observed. This mixture of products, named 21’, submitted to catalytic hydrogenation at 7 atm of 

H2 in MeOH with traces of H2O led to the formation of native β-cyclodextrin 3. The same result was 

observed in MeOH with minimum DCM at 5 atm of H2. 

The intermediate 21 (after desilylation) could not be obtained pure and the synthesis could not be 

finished due to a lack of time. 

3.2.1.4 Synthesis of per-2S-β-cyclodextrin 29 

Preparation of per-2S-β-cyclodextrin 29 was investigated from the intermediate 19 previously 

synthesized (see 3.2.1.3) as illustrated on the Scheme 19.  

 

Scheme 18. Synthesis strategy for the preparation of per-2S-β-cyclodextrin 29 

Compound 19 was desilylated according to Bálint et al. procedure 208 with TBAF in THF overnight, 

affording intermediate 25 with a quantitative yield which was per-acetylated on OH-6 and -3 with 

anhydride acetic and DMAP in pyridine at 70°C. Compound 26 was obtained with a quantitative yield 

as well and was then debenzylated with palladium on carbon in MeOH with minimum EtOAc under 5 

atm of H2 providing intermediate 27 with a quantitative yield. This latter was then sulfated on OH-2 

using sulfur trioxide pyridine complex in pyridine at 60°C and (compound 28) was subsequently 

deacetylated with sodium methoxide in MeOH. The crude was then purified by GPC yielding 58% of 

product 29 over two steps yet slightly accompanied by partially sulfated derivatives (see peaks and 
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integrations of 1H spectrum). The symmetry observed of the 1H NMR spectrum of this final compound 

29 displayed on Figure 28 is a proof that the compound was regioselectively sulfated on OH-2 position. 

The HRMS (ESI-) showed the product at m/z=422.50959 corresponding to the [M+3H-7Na]- form of 

compound 29. 

 

Figure 28. 1H NMR of compound 29 in D2O with its peak integration and attribution 

3.2.1.5 Synthesis of per-3,6S-β-cyclodextrin 31 

Synthesis of per-3,6S-β-cyclodextrin 31 could be achieved within two steps starting from intermediate 

25 previously synthesized as illustrated by the Scheme 20 below. 

 

Scheme 19. Synthesis strategy for the preparation of per-3,6S-β-cyclodextrin 31 

Compound 25, benzylated on OH-2, was sulfated with sulfur trioxide pyridine complex in pyridine at 

60°C, and the product 30, obtained with a quantitative yield, was debenzylated. The first trials of 

catalytic hydrogenation were performed in MeOH at atmospheric pressure of H2 as reported by 
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Angibeaud & Utille.199 No conversion was observed on TLC plate. The protocol of Bálint et al. 208 using 

hydrazine carbonate was not effective either: according to TLC plate, slightly more polar and more 

apolar products were formed during the reaction, suggesting partial debenzylation as well as desulfation. 

Finally, the procedure requiring palladium on carbon in MeOH under 5 atm of H2 afforded 56% of 

compound 31. The product was purified by HLPC chromatography and sent to biologist collaborators 

(Gly-CRRET, Créteil). The 1H NMR spectrum with attribution of this final compound is presented on 

the Figure 29. Due to the large peak of NMR solvent D2O, peaks attributed to OH-3 and OH-6b are not 

clearly visible and all peaks integration are not exact. 

 

Figure 29. 1H NMR of compound 31 in D2O with its peak integration and attribution 

3.2.1.6 Synthesis of per-3S-β-cyclodextrin 33 

The preparation of per-3S-β-cyclodextrin 33 was first investigated with the preparation of per-2,6-O-

tert-butyldimethylsilyl β-cyclodextrin 18. However, as this compound could not be prepared, a longer 

pathway was then envisioned with the sulfation on OH-3 of the intermediate 19 (Scheme 21). However, 

as observed in part 3.2.1.2 with the sulfation of intermediate 7, TBDMSCl groups were found not to be 

stable enough under the acidic conditions required for sulfation even in pyridine with the addition of 

acid scavenger. This compound 33 could therefore not be prepared.  
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Scheme 20. Synthesis strategy for the synthesis of per-3S-β-cyclodextrin 33 

3.2.2 Biological assays of regioselectively sulfated β-cyclodextrins 

As for randomly sulfated (cyclo)maltooligosaccharides, regioselectively sulfated β-cyclodextrins 

(structure on figure 30) were submitted to biological assays in order to evaluate the potential effect of 

the position of sulfation on the biological activity of such compounds. 

 

βCD6 (13) βCD3,6 (31) βCD2 (29) βCD2,3 (17’) 

Figure 30. Structure and name of regioselectively sulfated β-cyclodextrins prepared 

Preliminary assays were carried out and are presented. Only competitive ELISA tests could be 

performed (see 2.2.2.1.1 for the principle). The IC50 values of all β-cyclodextrin derivatives were 

calculated for FGF-2 and VEGF, and are presented on the table 10 below. The values were compared 

with previously prepared randomly sulfated β-cyclodextrins (see 2.2.1). 

(µg/mL) BCDL BCDM BCDH βCD6 βCD3,6 βCD2 βCD2,3 

IC50 for FGF-2 1634 ± 767 88 ± 14 465 ± 114 8200 ± 2650 1301 ± 1644 6309 ± 5391 6830 ± 2970 

IC50 for VEGF 132 ± 25 3 ± 0 2 ± 1 198 ± 166 166 ± 154 328 ± 44 7 ± 4 

Table 10. IC50 values of randomly and selectively sulfated β-cyclodextrins with FGF-2 and VEGF 

The IC50 values for FGF-2 binding were very high and polydisperse regarding to their standard 

deviation (especially for βCD3,6 and βCD2). For VEGF, IC50s were in the same range order as those of 

randomly sulfated ones. 
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The relative affinity of selectively sulfated compounds compared with a heparin mimetic, whose affinity 

was set as the reference, and randomly sulfated β-cyclodextrin BCDM (used in CHAPTER 2) are 

presented on the figure 31 (preliminary results). 

  

Figure 31. Relative affinity of selectively sulfated β-cyclodextrins with FGF-2 (a) and VEGF (b) 

No relative affinity for FGF-2 was greater than 1% for randomly and selectively sulfated βCDs. 

Concerning VEGF, a negligible relative affinity was observed for βCD6 and βCD3,6. Interestingly, 

partially sulfated compound 2,3S-β-cyclodextrin (βCD2,3) may seem to exhibit a relative competition of 

about 12%, which is similar to the one of BCDM.  

For the moment, no hypotheses neither statistical analysis (enormous error bar & only duplicate 

measures for some of the compounds) can be made based on these preliminary results. More assays need 

to be performed to accumulate significant data. In addition, a study of all regioselectively compounds 

could give a more comprehensive view on the positions interesting for the interaction with FGF-2 and 

VEGF. 

3.3 Conclusion 

Six regioselectively sulfated β-cyclodextrin derivatives were targeted in the goal of obtaining cyclic 

maltooligosaccharides with well-defined sulfation patterns. Starting from a key intermediate, heptakis-

(6-O-tert-butyldimethylsilyl)-β-cyclodextrin 7, multiple pathways were investigated. To resume, three 

cyclic derivatives were successfully obtained (6S (13), 2S (29), and 3,6S (31)), one compound could 

only be partially sulfated (2,3S (17’)) and two compounds could not be prepared due to incompatible 

protecting groups and a lack of time (2,6S (24) and 3S (33)). The structures of all the products are 

presented on the Figure 32. 

Partially sulfated 2,3S (17’), 6S-, 2S- and 3,6S-β-cyclodextrins (13, 29 and 31 respectively) were sent 

to our biologist collaborators (Gly-CRRET, Créteil) for early-stage assays. Depending on the growth 

factor tested, very different range orders of IC50 were obtained for the compounds. More biological 
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assays remain to be performed to make assumptions on the role of the position of sulfate groups and the 

DS. 

Regarding the low bindings observed for these cyclic compounds, one of the perspectives would be to 

open the cyclodextrins by acetolysis to obtain linear maltoheptaoses with well-defined sulfation patterns. 

These selectively sulfated maltoheptaose may later be compared with the randomly sulfated one to 

assess the effect of sulfate position on the biological properties of these potential GAG mimetics. 

An interesting perspective would be to perform an acetolysis of regioselectively sulfated β-

cyclodextrins. By doing so, linear maltoheptaoses with defined sulfation patterns would be obtained, 

and their biological properties could also be compared to those of randomly sulfated maltoheptaoses. 

 

Figure 32. Structure of prepared (top) and unachieved (bottom) regioselectively sulfated β-

cyclodextrins 

 

Achieved

Unachieved
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CHAPTER 4 Reducing-end 

modification of maltooligosaccharides 

CHAPTER 4 

Reducing-end modification of 

maltooligosaccharides 
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4.1 Introduction 

All carbohydrates, with few exceptions, possess a reducing end at the extremity of their chains. This 

reducing end is characterized by the presence a hemiacetal moiety at the anomeric position of the ending 

closed-form saccharide that is in equilibrium with the opened-ring form generating an aldehyde moiety 

(“masked” aldehyde). The reducing end anomeric position of each carbohydrate chain is therefore prone 

to react with nucleophiles, and can be chemoselectively functionalized. It is naturally the target of choice 

for producing (neo)glycoconjugates. Amine and thiol functions are usually chemically introduced for 

their ability to react with well-known electrophiles such as activated carboxylic acid, -halogeno-

ketone, activated alkenes and so on. Therefore, glycochemists developed different methods to 

incorporate an amine or a thiol function at the reducing end of glycans, for which two main pathways 

can be distinguished, as shown on the figure 33 below. 

 

Figure 33. End-functionalization of glycans by two methods 

The transformation of the hemi-acetal alcohol into an amine or a thiol affording respectively N- and S-

glycosyl derivatives is presented by the pathway A (figure 33). This transformation usually passes 

through a key step of activation of the anomeric position with an activating group. A prior protection of 

all positions is sometimes performed to activate the anomeric position and protect the other functions. 

In rare cases, the activation is realized prior to the protection of all other positions. The promoting group 

is further replaced by the desired function (for all possible methods to form 1-thioglycosides, see review 

216). This method is well-known for glycosylation reactions of native & non-native glycans. In the cases 

where no activation is needed, a protection of all other positions is still required.217 

Besides, the type of glycan end-functionalization might have an effect on the future linkage in the goal 

of forming (neo)glycoproteins as the proximity between the glycan and the future aglycon seems to be 

an important point. In Nature, glycans are spaced from protein by the mean of four monosaccharides. 

Pathway A Pathway B

direct 

functionalization

1. (protection)

2. activation

3. functionalization

4. (deprotection)
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While using the pathway A, no spacing is added during the coupling between the N- or S-glycosyls and 

the polymeric structure mimicking a protein core. These disadvantages along with the 2-or-more step 

procedure to provide these types of compounds limit their use to form complex glycoconjugates.  

The pathway B (figure 33) consists in the direct attack of a nucleophile onto the anomeric position of 

unprotected carbohydrate. The nucleophiles commonly used are part of a bis-functionalized linker and 

are generally introduced at early stages of carbohydrate modification. The introduced linker must 

thereby be stable enough to withstand the later synthesis steps and its bearing functionality enables the 

carbohydrate conjugation with a variety of carbohydrates or aglycons. This single-step method does not 

need any activation and can be performed on unprotected carbohydrates. Along with the conjugation 

feature, the linker can in some cases provide new functionalities such as UV absorbance, fluorescence 

or temporary function protection that can easily be removed. Among linker functionalities figure classic 

functions such as amines, alcohols or activated ester. Other “clickable” groups such as alkene and azide 

were extensively developed starting from the 90’s due to their biological orthogonality and various 

applications.218 

Only direct end-modifications on unprotected carbohydrates were developed in our project, and will be 

discussed further. 

4.1.1 Thiol end-modification of unprotected carbohydrates 

Thiols display a high reactivity toward various substrates as they are more acidic than alcohols, pKa of 

10-11 vs 15-16 for alcohols, and more nucleophilic especially in basic solutions.219 They can undergo a 

wide range of reactions from nucleophilic substitution to radical addition.220 Regardless of their high 

reactivity and versatility, thiols suffer from a lack of selectivity when multiple functional groups are 

present. In addition to their common malodorous and volatile properties, thiol reagents are commercially 

less available compared to other reagents such as alcohols and amines.221,222 More importantly, they are 

sensitive to oxidation as they can form disulfide bonds.222 Avoiding side-reactions involving thiol 

functions including their undesirable sulfation right after their introduction on glycans relies on their 

protection. But the possibilities for thiol protecting groups are lowered compared to those for alcohols 

or amines. Some conditions are required for the protecting group to be efficient: (i) it must be easily 

introduced at the beginning of the synthesis and removed prior to conjugation step, and (ii) it must be 

tolerant to the other steps.223 Various thiol protecting group have been reported especially for solid-

phase peptide synthesis, but their introduction or removal needs to be performed in strongly basic, acidic 

or reductive conditions, which limits their use. Along with the lack of orthogonality, these reactions 

might be low yielding. 

Preparing thiol-glycosides from unprotected carbohydrates have been reported by many groups. In the 

following, examples from literature to synthesize such challenging compounds were developed. 
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Yanase & Funabashi 224 developed methods for preparing tert-butyl 1-thio- functionalized carbohydrates 

from unprotected mono-and di-saccharides in trifluoroacetic acid. The thiol-modified products were 

subsequently per-acetylated. They then evaluated the α:β ratio of each compound by 1H NMR, affirming 

a main 1,2-cis selectivity. However, no thiol-functionalized carbohydrate was obtained as one anomer 

(9:1 ratio of 1,2-cis:1,2-trans in the best case), and the yields were relatively low (34% of one anomer 

in the best case). 

Funabashi et al. also succeeded in preparing diphenyl- and trimethylenethio-dithioacetals of saccharides 

in trifluoroacetic acid from seven unmodified mono- to tri-saccharides in an effort to provide a generally 

applicable and versatile approach.225 The dithio-modified carbohydrates were blocked in their open form 

configuration, and cleavage of interglycosidic linkages could not be completely avoided. Once again, 

the products were subsequently per-acetylated after thiol-modified carbohydrate formation. 

Later, Davis group 217 reported the use of the Lawesson reagent with monosaccharides such as D-glucose, 

D-mannose and D-galactose as presented on the Table 13. The reagent was used as an electrophile and 

source of sulfur allowing the replacement of anomeric alcohol by a thiol function. A subsequent 

reduction of unwanted disulfide formation was carried out with tributylphosphine yielding 63-71% of 

pure S-glycoside after chromatographic separation. However, this method required extensive heating 

and long reaction times, and as for previous methods, the final products were obtained as anomeric 

mixtures. They also needed a careful storage under reductive conditions. 

 

Substrate Yield α:β ratio 

D-glucose 71% 1:6 

D-mannose 63% α anomer 

D-galactose 70% 1:4 

Table 11. Synthesis of glycosyl thiols from unprotected monosaccharides with Lawesson reagent  

Shoda and co-workers developed the formation of S-aryl glycosides from unprotected mono- and di-

saccharides by using 2-chloro-dimethylimidazolinium (DMC) reagent in basic medium.226 S-aryl 

glycosides are commonly used as glycosyl donors for glycosylation 227,228 or as precursors of glycosyl 

halides or sulfoxides 229–231. The aryl 1-thioglycosides were obtained within one hour of reaction with 

excellent yields (from 90% to quantitative) and main or exclusive β-selectivity (Table 14). 
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Entry Substrate 
v/v H2O/MeCN, 

temperature (°C) 
R2-SH (equiv.) Yield (%), β:α 

1 D-glucose 1/1, -15 
 

(5) Quant., 6.7:1 

2 D-glucose 

1/1, 0 
 

(7) 93, 4.5:1 

3 D-glucose 
 

(3) 90, 10:1 

4 D-glucose 1/1, r.t. 
 

(5) 90, β 

5 D-glucose 1/1, 0 

 
(5) 

91, β 

6 Cellobiose 

4/1, 0 Quant., β 
7 Lactose 

8 Laminaribiose 

9 Melibiose 

Table 12. Synthesis of aryl 1-thioglycosides from unprotected monosaccharides with DMC reagent 

They later demonstrated the DMC-mediated synthesis of fluorescently labelled carbohydrates, once 

again starting from unprotected oligosaccharides in aqueous medium by grafting the 4-methyl-7-

sulfanylumbelliferone (MUSH) fluorophore 232 (for more information about DMC-assisted formation of 

S-aryl and S-alkylglycosides see review 37). 

Instead of transforming the hemi-acetal, another method for the preparation of thiol end-modified 

carbohydrates consists in the direct introduction of a spacer bearing a thiol function onto unprotected 

carbohydrates. The thiol is either present from the beginning in a masked state or introduced in the final 

step of synthesis. In polymer chemistry, efforts have been put to efficiently utilize thiol chemistry 

without using tedious protection/deprotection strategy. In order to limit purification steps and quicken 

polymer preparation, byproduct-free processes were developed for macromolecular structure synthesis. 

Some thiol moieties have been integrated, mostly in cyclic forms to mask the sulfhydryl function, such 

as cyclic dithiocarbonates, ethylene sulfide, 2-iminothiolane (also known as Traut’s reagent) or 

thiolactones (for more information, see review 233). 
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Aside from the classical and widely used glycosylation, which was presented by the pathway A (Figure 

33), few methods exist to introduce a spacer on the reducing end of unprotected carbohydrate. It was 

demonstrated that the spacer and the linkage method might have an effect on the biological properties 

of the neo-glycoconjugate and must be wisely chosen. Prasanphanich et al. 234 studied this effect on a 

small glycan, lacto-N-neotetraose, that was linked by two different methods shown in the scheme 22 : 

one that leaves the reducing end in its opened form, and the other one that leaves the ring closed. Despite 

their similarities, the immune response elicited by the two different neoglycoconjugates was divergent, 

indicating that the reducing end linker and linkage type might be crucial for immune response. 

 

Scheme 21. Preparation of two neoglycoconjugates starting from lacto-N-tetraose by two means: 

open-ring method (top) and closed-ring method (bottom) 

The most common reaction to end-functionalize a carbohydrate is reductive amination.235 The amine-

bearing compound reacts with the anomeric latent aldehyde of the glycan in a condensation reaction, 

providing an imine species that is reduced by a hydride source (usually sodium cyanoborohydride) to 

yield a 1-amino-1-deoxyglycitol, also named glycamine.236 This method presents several advantages : 

one amine-bearing compound is grafted per glycan chain allowing an easy quantification, the grafting 

is performed on glycans in a single step without prior activation of the anomeric position and the process 

is usually high-yielding. It however also presents disadvantages: large excess of the amine-bearing 

compound and of reducing agent are often necessary and the open-ring form of the reducing end might 

alter protein interaction 236 and glycan antigenicity 233 although most protein-carbohydrate interactions 

occur at the non-reducing end. 

Reductive amination possesses a wide range of application: it was used to graft fluorescent tags on 

carbohydrate chains for analysis 238–240 , but mostly used to attach carbohydrate chains to carbohydrates 

or proteins/aglycons as illustrated on the following example. 

Breitenbach et al. 241 end-functionalized a dextran polymer with 4-aminothiophenol by reductive 

amination and ensured that all thiols were free by reducing the potential disulfides formed. They 

subsequently protected the free thiol with dipyridyl disulfide in order to realize a further thiol-disulfide 

exchange forming a block-co-polymer that would later assemble to constitute glyconanoparticles, as 

shown on the Scheme 23. 
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Scheme 22. Preparation of thiol-end functionalized dextran and its modification for further self-

assembly into glyconanoparticles 

The introduction of an arylamine as part of the spacer allows a better detection and analysis of 

functionalized adducts thanks to the additional UV and fluorescent properties as suggested Guerry et al. 

242. 

On the contrary to reductive amination, the formation of end-functionamized glycans by Kochetkov 

amination leaves the reducing end in a close-form ring, and predominantly in a β configuration 243. 

Usually, the reaction is carried out with ammonium carbonate to synthesize the corresponding 

glycosylamine. Nevertheless, a modified procedure of this reaction enables the formation of thiolated 

glycans by using a substituted amine carrying a thiol moiety. Thiol-end functionalization strategy using 

cystamine is a chemistry that was previously developed and published in the team 244. The multi-step 

functionalization based on amination was performed onto three products: maltose, maltoheptaose and 

xyloglucan oligosaccharides, as presented in the Scheme 24. Kochetkov amination of the anomeric 

carbon of the carbohydrate with cystamine was first performed. Without purification, the introduced 

secondary amine was chemoselectively acetylated in methanol with acetic anhydride for stability 

reasons. Some O-acetylations that might occur were later selectively deprotected with sodium 

methoxide in methanol. Finally, the disulfide bridge was reduced by using tributylphosphine providing 

cysteamine-functionalized oligosaccharides. 

 

Scheme 23. Obtention of thiol-end-functionalized oligosaccharides by Kochetkov amination with 

cystamine 
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Kochetkov amination however presents some disadvantages such as slow speed of the reaction and the 

use of large excess of amine derivatives. 

To address these problems, oxime and hydrazide-based strategies were developed. It allows the facile 

introduction of a variety of linkers in aqueous conditions 245. Oxime bonds form rapidly and in high 

yields from the reaction between aldehydes and hydroxylamine derivatives. However, the formed 

neoglycosides are blocked in their open configuration. On the contrary, end-modification of glycans 

with hydrazide groups lead predominantly to closed-form configuration. Zhi et al. 246 prepared 

carbohydrate microarrays on gold surface by attaching unprotected glycans on their surface via a 

hydrazide linker, illustrated on the Scheme 25. 16-mercaptohexadecanoic acid was first self-assembled 

to gold-coated glass slides thanks to its free thiol, the homobifunctional spacer adipic dihydrazide was 

then attached on the carboxylic acid on one extremity and the second one was grafted on the 

oligosaccharides. It is noteworthy that hydrazide linker reacted with the open-form glycan providing a 

hydrazone, which cyclized to predominantly form the corresponding β-pyranose form.247 

 

Scheme 24. Thiol-functionalization of glycan via hydrazide linker by Zhi et al. 

Similarly to hydrazides and oximes, the oxyamine group allows the grafting of a variety of linkers, but 

may also be cleaved by acidic hydrolysis to provide native carbohydrates. Two general strategies ((A) 

and (B)) may be used for the preparation and conjugation of oxyamine linkers to carbohydrates, as 

shown on the Scheme 26 below. But in practice, the majority of glycoconjugates are from type (A) rather 

than type (B).248 

 

Scheme 25. General method for the coupling of type (A) and type (B) oxyamine linkers on 

carbohydrates 
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Such as reductive amination and oxime conjugation, attachment of glycans with oxyamine spacers leads 

to predominantly open-form carbohydrates 249,250. This may be overcome by using N-methylated amino-

oxy linkers 251–253 which promotes the formation of exclusively β-linked glycoconjugates. Leung et al. 

254 described the conjugation between PIA polysaccharide (polysaccharide intercellular adhesin) and a 

heterobifunctional linker bearing a disulfide, as illustrated on the Scheme 27 below. Prior to the 

conjugation, the disulfide of N-alkyloxyamine was reduced to the free thiol. The conjugation with mild 

acid catalysis (catalytic amount of acetic acid) provided a β-oriented thiol-functionalized 

oligosaccharide with 50-70% yield after isolation by size exclusion chromatography. 

 

Scheme 26. Coupling of PIA oligosaccharide with N-alkyloxyamine bearing a free thiol 

To resume, as documented in the literature and above, many thiol-functionalization methods exist with 

and without linkers. In addition to the type of linker, the method for its conjugation onto glycans may 

vary. Amine-functionalization may be more documented as it is a common linkage found in Nature. 

4.1.2 Amine end-modification of unprotected carbohydrates 

Amines are widely found in Nature in amino acids, plant alkaloids, or glycans. They may undergo 

different reactions to be introduced on the reducing end of carbohydrates. There are two main drawbacks 

related to the preparation of glycosylamines: their low stability due to the rapid hydrolysis in neutral or 

acidic solutions (fast hydrolysis occurs at pH 1.5 to 9 255–259) and the formation of N-glycosylcarbamate 

and diglycosylamine as secondary reaction products 243,256–258,260. In addition, simple glycosylamine, N-

alkyl and -aryl glycosides can freely undergo mutarotation similarly to unsubstituted hemiacetal of 

native carbohydrates, which renders them less stable than O-glycosides for example, this latter being 

blocked in one configuration 37. 

Lobry de Bruyn 261,262 was the first to prepare aminated derivatives of monosaccharides (glucose, 

fructose, mannose, sorbose and galactose) by mixing them preferably in methanol with ammonia. He 

had already discovered the formation of diglycosylamines as side-products for some of the 

monosaccharides, which was then fully characterized by Isbell group 263. 

Later, Mitts and Hixon introduced the condensation reaction between different amines and D-glucose 

under reflux 264. Kochetkov and co-workers later optimized the reaction to form glycosylamines but the 

slow speed and excess of ammonium hydrogen carbonate rendered the purification laborious. This 
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reaction, called the Kochetkov amination, has been widely used in the purpose of optimizing it and for 

efficient glycan derivatization. However, even though N-glycosides are generally more stable in the β-

anomer configuration, a mixture of anomers is often observed 265. 

Some upgrades of the synthesis were provided by Likhosherstov et al. 255 with the use of mixtures of 

ammonium carbamate and aqueous ammonia. The procedure tested with a range of mono- and di-

saccharides including 2-acetamido-2-deoxy-hexoses provided more stable glycosylammonium 

carbamates that could be converted to corresponding glycosylamine with high yields and globally 

lowered reaction times. 

As an emerging technique, microwave irradiation has been used for the preparation of glycosylamines 

by Kochetkov amination. Liu et al. 266 described the glycosylamine transformation of maltoheptaose in 

non-aqueous DMSO to prevent glycosylamine from degradation, as shown on the Scheme 28. The 

glycosylamine prepared within 30 minutes at 45°C required only 5-fold excess (w/w) of ammonium 

carbonate over maltoheptaose and was used for further labelling with tris(2,4,6-

trimethoxyphenyl)phosphonium acetic acid N-hydroxysuccinimide ester (TMPP-Ac-Osu)267–269. This 

conjugation step was performed to introduce a charged group onto maltoheptaose for a simpler MALDI 

analysis. 

 

Scheme 27. Preparation of maltoheptaose glycosylamine by microwave-assisted Kochetkov amination 

With the growing interest for environmentally friendly approaches with green chemistry, solvent-free 

procedure for glycosylamine preparation was developed by Wadouachi group 270. Their 

mechanosynthesis using high speed ball milling enabled the preparation of a scope of amine-

functionalized carbohydrates via linkers. For example, the reaction of L-rhamnose with diamines to 

obtain monosubstituted saccharide yielded 95-96% of product without waste as one equivalent of each 

reactant was used, as shown on the Table 15 below. This innovative procedure yet requires specific 

equipment and a good knowledge of mechanosynthesis. 
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Entry Sugar Amine 
Time 

(h) 
Product 

α:β 

ratio 

Yield 

(%) 

1 

 

(L-rhamnose) 

H2N(CH2)8NH2 

1.5 

 

87:13 96 

2 H2N(CH2)10NH2 

 

90:10 95 

3 H2N(CH2)12NH2 

 

96:4 96 

4 

 
 

85:15 95 

 

Table 13. Preparation of amine-terminated rhamnose by mechanosynthesis 

As developed previously (see 4.1.1), a popularly-used method for the end-functionalization of 

carbohydrates is reductive amination. Using bisfunctionalized linkers enables the preparation of amine- 

-modified glycans that are stable, yet present only in open-ring form. Parekh and co-workers 239 

described the preparation of fluorescently and radio-labelled glycans with more than 80% yield by 

reductive amination with using 2-aminobenzamide. This methodology was also more recently 

developed by Cummings groups (see 4.2.3). 

Hydrazide linkers may be used for the derivatization of unprotected carbohydrates through the formation 

of hydrazones. The one-step preparation of glycosylhydrazide was reported by Flinn et al. 247, leaving 

the reducing end structure intact. Mono-, di- and tetra-saccharides were reacted with the bifunctional 

spacer adipic dihydrazide as shown on the Scheme 29 below. Although mild conditions were used with 

no aggressive activating agent, no general methodology could be applied due to the variation of yields 

depending on glycan types and length. Moreover, reaction times were found to be longer for 

tetrasaccharides. 
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Scheme 28. One-step preparation of glycosylhydrazides starting from mono-, di- and tetra-saccharides 

A last commonly used method for the preparation of amine-functionalized carbohydrates in a protected 

form relies on the azide chemistry. Many protecting groups were described for amine functions, in which 

the tert-butyloxycarbonyl (Boc), acetate (Ac) and carboxybenzyl (Cbz) are the most employed in 

carbohydrate and peptidic chemistry. Similarly to thiols, a few of them can be introduced and removed 

very easily. However, azides were found to be convenient amine protecting groups. In addition to their 

orthogonal applicability in copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions and their 

stability, they can be reduced into amines in later stages of carbohydrate modification (for more 

information about azides, see 271). The reduction of unprotected glycosylazide to form the corresponding 

amine was demonstrated by de Barros et al. 272 Catalytic hydrogenation was performed onto a β-oriented 

1-azido-1deoxy-glucose, which yielded 100% of pure glycosylamine as shown on the Scheme 30 below. 

 

Scheme 29. Preparation of glycosylamine by reduction of azide-end functionalized glucose 

As a more complex example, Griffey group 273 prepared neomycin B related aminoglycosides by using 

azido-protecting group. As shown on the scheme 31, the amines were converted into azides by diazo 

transfer on compound A and reduced back into amines after glycosylation by Staudinger reduction using 

phosphine complex in mild conditions to provide compound B. 
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Scheme 30. Preparation of neomycin B related aminoglycoside by using azido-protecting group 

Although azides are widespread in carbohydrate chemistry, their use includes two additional steps 

(protection/deprotection) in the synthesis, for which the yields vary from 60-100%. 

The strategy adopted in our project consisted in introducing a linker bearing an activated ester with a 

leaving group stable enough to endure all steps before its substitution by a free amine. By this means, 

no protection was needed as the free amine was introduced at the last stage of carbohydrate modification, 

right before its coupling to the polymer backbone. Carbohydrates were therefore functionalized via a 

linker bearing an amine, 4-nitrophenyl anthranilate, which was grafted by reductive amination similarly 

to Cumming group strategy (see 4.2.3). 

In the goal of obtaining glycosaminoglycan mimetics, linear maltooligosaccharides were reducing end 

functionalized by a sulfhydryl or an amine moiety. As a reminder, several chains of these monovalent 

structures were planned to be grafted to a polymeric skeleton in order to obtain proteoglycan mimetics, 

that have the advantage to be multivalent. The polymeric structure chosen, PHOU, being a 

biodegradable polyester bearing pendant terminal alkene functions, the grafting was first conceived to 

be realized by a thiol-ene chemistry. For such ligation, the GAG mimetics have to be thiol-functionalized 

at their extremity, but under a protected form. Three main strategies were used to end-functionalize 

maltooligosaccharides with a protected thiol moiety. Since maltoheptaose (from natural source or 

synthetically obtained from β-cyclodextrin) is an expensive oligosaccharide, maltose (DP2) was used in 

most cases to fine-tune the experimental conditions, this latter being readily available. After obtention 

of thiol end-functionalized maltoheptaose, two of them were chosen to be randomly sulfated at different 

degrees for their future coupling to PHOU polymer in order to obtain PG mimetics.  

In a later stage of the project, it was found that the thiol-ene coupling was a real challenge. An amide 

coupling between carboxylated PHOU and an amine-functionalized maltoheptaose was therefore 

proposed. Only one strategy was developed, based on the similar thiol-functionalization developed 

lately. 
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4.2 Results and discussions 

4.2.1 Thiol end-functionalization 

4.2.1.1  Thiol end-functionalization by using cystamine derivatives 

4.2.1.1.1 Introduction 

Cystamine (34) is a symmetrical molecule consisting of two primary amines linked by a short alkyl 

chain and a disulfide bridge. Breaking the disulfide bond releases two cysteamine molecules 35, the 

reduced form of cystamine with a free thiol. Their structures are presented below (Figure 34). The aim 

of this part was to react the amine on the terminal anomeric position of carbohydrates through an 

amination reaction. 

 
Figure 34. Structures of cystamine 34 and cysteamine 35 

The thiol-end functionalization strategy using cystamine is a chemistry that was developed and 

published in the team 244. The multi-step functionalization starting from a Kochetkov amination was 

described above (see 4.1.1). 

Reductive amination was also conceived for the introduction of cystamine. In the approach of van der 

Vlist et al. 274, reductive amination was used to synthesize a variety of mono-, di-, or tri-amine-

functionalized products starting from maltoheptaose. The structures are presented in the figure 35. 

Similarly to Gauche et al. 275 procedure, the reagents were reacted in an incubator at high temperature. 

However, the reaction times were significatively longer. 

 

Figure 35. Structure of mono-, di-, or tri-functionalized structures prepared by reductive amination by 

Vlist et al. 

To attach cystamine or its reduced form cysteamine to the anomeric position of saccharides, four ways 

were investigated. 
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4.2.1.1.2 Grafting of cysteamine onto maltooligosaccharides through reductive amination 

The first way investigated to graft a thiol function onto maltooligosaccharides was done without thiol 

protection. The goal of this reaction was to evaluate the need of thiol protection. If the product was 

effectively functionalized with a free thiol, it could be readily accessible for the further thiol-ene 

coupling. On the contrary, if the product was obtained as a mixture of free thiol and dimerized thiol, 

protection of this function would be necessary. For this purpose, a reductive amination of maltose 36 

was carried out by using cysteamine 35 as shown in the scheme 32.  

 
Scheme 31. Reductive amination of maltose with cysteamine 

The reductive amination was conducted with an equimolar ratio of maltose and cysteamine 

hydrochloride, and eight equivalents of sodium cyanoborohydride reducing agent at 65°C in a mixture 

of DMSO/AcOH. After twenty-two hours of reaction, the starting material seemed to disappear on TLC 

plate to give a very polar product. The 1H NMR analysis of the isolated product showed neither the 

expected product, neither the starting material, but a mixture of saccharides where the peaks assigned to 

anomeric protons was seen as a multiplet instead of the initial doublets. It was hypothesized that a 

mixture of products was present, including one issued from reduction and possibly one from hydrolysis 

of maltose. The reaction was tried a second time in different conditions described by Gauche et al. 275. 

In this way, one equivalent of maltose was mixed with two equivalents of cysteamine and of sodium 

cyanoborohydride in a mixture water/methanol acidified with acetic acid at 80°C. The TLC plate showed 

that no reaction had occurred within three hours. Reductive amination, which is usually a quick reaction, 

did not work with maltose in two different conditions although all reactants were well-characterized and 

pure. As maltoheptaose was the definitive carbohydrate to be thiol-functionalized, the reductive 

amination was later tried on this oligosaccharide. 

A trial of reductive amination onto maltoheptaose 2 was carried out, as shown in the scheme 33, but in 

harsher conditions than previously: one equivalent of sugar, ten equivalents of cysteamine 

hydrochloride, and thirty equivalents of sodium cyanoborohydride were solubilized in a mixture of 

DMSO/acetic acid at 65°C. 

 

Scheme 32. Reductive amination of maltoheptaose with cysteamine 
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Interestingly, the TLC plate showed a total conversion of the starting material into a slightly more polar 

product and the 1H NMR analysis indicated that the doublets assigned to reducing end anomeric proton 

were still present. However, the aspect of the spectrum suggested a mixture of a major and a minor 

product as well as the presence of salts. The mass spectrometry analysis displayed the presence of three 

products: the targeted product M7-cysteamine 38 at m/z=1214.32, an oxidized side-product M7-

cystamine 38a at m/z=1289.39 where the free thiol was oxidized into a disulfide bond due to the excess 

of cysteamine in the medium, and the dimer product M7-cystamine-M7 38b at m/z=816.47 also obtained 

by oxidative dimerization. The structures of these three products and the mass spectrum of the reaction 

are presented in the figure 36. 

 

 

 

Figure 36. (a) Products obtained from the reductive amination of maltoheptaose with cysteamine ;  

(b) Mass spectrum from reductive amination of maltoheptaose with cysteamine 

This evidenced that our thiolated product suffered from oxidation into disulfide bond. In these 

conditions, the thiol was not stable enough to be recovered in the form of a single product. The mixture 

of products was not further purified by breaking this bridge allowing us to reach the pure targeted 

product for the reason that the product should have been stored and manipulated for further reactions or 

characterizations very carefully. 

This group of reactions proved the necessity to protect the sulfhydryl function in order to obtain well-

defined products. The protection was envisioned to be realized in the form of a disulfide bond. 

38a 

(a) 

(b) 

38 

2 

38b 
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To do so, the free thiol of cysteamine 35 was intended to be protected by a disulfide bond thanks to a 

thiol-disulfide exchange using pyridyl disulfide 39 to avoid its dimerization, as presented in the Scheme 

34. This reagent is commonly used for this type of reaction and has the advantage to provide a UV-

active product. Once coupled to the saccharide, it allows the easy identification of the product during 

further reactions, by TLC for example. In the same way, the removal of this UV-active moiety providing 

a non-UV-active saccharide with a free thiol can be easily assessed. 

 

Scheme 33. Thiol-disulfide exchange of cysteamine with 2,2'-dipyridyldisulfide 

A thiol-disulfide exchange was carried out 276 by mixing 1.2 equivalents of cysteamine hydrochloride 

with one equivalent of 2,2'-dipyridyldisulfide 39 in aqueous solution, but only led to the breakage of the 

initial disulfide bond. Different conditions 277,278,279 were then tested by reacting one equivalent of 

cysteamine hydrochloride with two equivalents of 2,2'-dipyridyldisulfide in a mixture of 

methanol/acetic acid. After one night, cysteamine was no longer visible on TLC plate, but three other 

spots appeared in addition to the UV-active starting material. The references claimed to obtain the pure 

product by precipitating the reaction mixture in diethyl ether. However, by doing so, none of the four 

products were separated. 

Considering that no cysteamine-grafted product was obtained, another similar strategy was built up to 

protect this thiol function as a disulfide bond by using cystamine. 

4.2.1.1.3 Grafting of cystamine onto maltooligosaccharides through reductive and Kochetkov 

amination 

To graft a protected thiol on the anomeric position of glycans, two types of amination were developed 

simultaneously, Kochetkov and reductive amination. In both cases, the grafted products of this reaction 

were aimed to possess a thiol that would, after disulfide bond breakage of cystamine, be readily 

accessible for the further thiol-ene coupling. 

The Kochetkov amination previously published in the team and described above (4.1.1) was tried onto 

maltose using cystamine dihydrochloride, as presented in the Scheme 35.  
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Scheme 34. Kochetkov amination of maltose with cystamine 

Prior to the reaction, cystamine dihydrochloride was converted into its salt-free form with sodium 

hydroxide. Then, maltose and cystamine free-base in a 1/10 molar ratio were reacted together in 

methanol until maltose was fully converted into a very polar product on TLC plate. After a rapid 

precipitation to remove the excess of cystamine, an acetylation of the secondary amine newly introduced 

was achieved by reacting the crude with acetic anhydride in methanol. The formed acetic acid was then 

removed by azeotropic evaporation. The product was taken back in methanol and the eventual hydroxyls 

that were acetylated during the previous step were selectively removed with sodium methoxide in 

methanol. The crude product was then neutralized with Amberlite H+ form. Finally, the disulfide bond 

was reduced by using tributylphosphine in a mixture of dichloromethane/water, and the side-products 

were removed thanks to an extraction. However, this lengthy five-step procedure afforded a very small 

quantity of a brown residue that did not seem to be the product according to the TLC. 

In parallel of Kochetkov amination, cystamine was introduced by reductive amination. Two sets of 

products could be obtained thanks to the presence of two amines on cystamine, whose structures are 

presented on the Scheme 36 below: (i) glycan-cystamine-glycan 42, leading to a symmetrical product 

that after disulfide bond breakage, would give two identical products, (ii) glycan-cystamine 43, by using 

a modified procedure of van der Vlist et al. 274.  

 

Scheme 35. Structures of the two products possible after reductive amination of maltose with 

cysteamine 

To obtain the symmetrical product 44 (Scheme 37), maltose was mixed with cystamine dihydrochloride 

in a 2/1 molar ratio and sodium cyanoborohydrate (eight equivalents) in a mixture of DMSO/acetic acid 

at 65°C. No reaction was observed even after addition of maltose and reducing agent extra portions. It 

was hypothesized that the reaction would be more efficient if cystamine was salt-freed, as for the 

reaction presented above. So, a step of converting cystamine dihydrochloride into its salt-free form was 

added prior to the reaction. By doing so, maltose was converted into a very polar product (according to 

TLC), similarly to reductive aminations with cysteamine. As previously, the 1H NMR analysis of this 

product was not conclusive: the peak corresponding to anomeric protons was seen as a multiplet, and 
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the aspect of the spectrum suggested a mixture of products probably coming from reduction of maltose 

and hydrolysis. The reaction was also carried out in the conditions described in Gauche et al. 275. 

However, once again, no conversion of maltose was observed based on TLC plate. Despite many tries, 

the symmetrical product has never been obtained. 

 

Scheme 36. Obtention of a symmetrical product by reductive amination of maltose with cystamine 

An attempt to synthesize the unsymmetrical glycan-cystamine 45 product was carried out in the 

conditions described by Gauche et al. 275 (Scheme 38). One equivalent of maltose was mixed with two 

equivalents of cystamine dihydrochloride and sodium cyanoborohydride in a mixture of water/acetic 

acid at 80°C. After one night, maltose was fully converted to a very polar product according to TLC 

plate (no elution), which was assumed to be a failure as the retardation factor of the product was expected 

to be similar than the one of maltose. 

 
Scheme 37. Obtention of an unsymmetrical product by reductive amination of maltose with cystamine 

Unfortunately, none of the symmetrical neither unsymmetrical product could be obtained with the 

protocols used on maltose. Faced with the difficulty of obtaining the targeted products, efforts were put 

into grafting a protected thiol function by another strategy that was developed in parallel. 

4.2.1.2 Thiol end-functionalization by using homocysteine thiolactone derivatives 

4.2.1.2.1 Introduction 

Thiolactones are four-, five-, or six-membered cyclic thioesters (respectively β-, γ- and δ-thiolactone). 

In this family of compounds, γ-thiolactone, and especially homocysteine-γ-thiolactone (HTL, 46), is 

predominant for its availability and synthetic applicability. HTL is a small yet very functional molecule, 

whose structure is presented on the Figure 37. 

 

Figure 37. Structure of homocysteine thiolactone hydrochloride (HTL) 



 
 

 
103 

The thiolactone chemistry has been extensively developed by Du Prez group who used the reagent and 

its derivatives in order to create multi-thiol bearing polymers 280. Concerning its properties, HTL is 

commercially available in its hydrochloride salt form (for amine stability problems) as a bulk chemical. 

Its amine possesses a particularly low pKa of 6.67 because of the electron-withdrawing effect of the 

sulfur atom. Ring opening of thiolactone can be achieved by hydrolysis and alcoholysis in basic medium, 

or by simple aminolysis. The amine can be transformed into a very reactive isocyanate by phosgene 

treatment 281, which may be hazardous. The main drawback of HTL is its instability because of possible 

self-condensation due to the presence of a primary amine capable of aminolysis. On the other hand, this 

small molecule allows double functionalization in addition to its UV activity: a wide variety of amines 

can be employed to open the ring, and the subsequently released thiol can undergo many reactions such 

as nucleophilic attack, thiol-ene or disulfide bond formation. In the following example, Du Prez group 

282,283 prepared polymers bearing HTL moieties along the chain, that are opened by the action of an 

amine (to note that additional groups can be introduced by the amine, leading to additional properties). 

Next, the liberated thiol underwent to thiol-X reactions, as displayed on the following Scheme 39. 

 
Scheme 38. Preparation of a polymer bearing pendant homocysteine thiolactone moieties, that 

undergoes aminolysis for further thiol-X coupling 

They also studied the effect of the amine used for the aminolysis on the efficiency of ring opening, 

suggesting that aliphatic amines were the most rapid and efficient.  

The primary amine present on α of the carbonyl can undergo different reactions. It can be transformed 

into an isocyanate for further coupling reactions 281,284,285 or be protected by acetylation to take advantage 

of the thiolactone chemistry 286. This amine can also be subjected to grafting via amidation 287,288 or 

amination. 

Our approach consisted in coupling HTL to carbohydrates through a chemoselective reaction on the 

anomeric position according to two routes : reductive amination and Knoevenagel condensation. 
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4.2.1.2.2 Grafting of HTL onto maltooligosaccharides though reductive amination 

Reductive amination was first considered since HTL could be directly introduced at the anomeric 

position of maltooligosaccharides. As for cysteamine-grafted maltoheptaose (see 4.2.1.1.2), modified 

conditions of van der Vlist et al.274 protocol were used as shown in the Scheme 40. The reaction of 

maltoheptaose 2 with ten equivalents of homocysteine thiolactone hydrochloride 46 and thirty 

equivalents of sodium cyanoborohydride at 65°C was completed within two hours in a mixture of 

DMSO/acetic acid.  

 

 

Scheme 39. Reductive amination of maltoheptaose with homocysteine thiolactone hydrochloride 

The pure product 47 was obtained after four precipitation-centrifugation cycles in acetonitrile with a 

quantitative yield. As shown on the Figure 38a, the 1H NMR spectrum of compound 47 displayed the 

peaks corresponding to carbohydrate protons between 3.25 and 5.51 ppm, as well as those corresponding 

to HTL between 2.2 and 4.4 ppm. The superposition of spectra offers a good indication that no starting 

material was left, and that HTL was successfully grafted onto maltoheptaose. The mass spectrum 

presented on the figure 38b shows one predominant peak at m/z=1276.288 corresponding to the product 

in the [M+Na]+ form. One residual peak of maltoheptaose in the form of [M7+Na]+ also appears, but can 

be considered as a side-product of mass fragmentation as the TLC plates and 1H NMR spectrum did not 

show any signs of residual maltoheptaose.  
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Figure 38. (a) 1H NMR spectra superposition of compound 47 with native maltoheptaose and HTL in 

D2O ; (b) Mass spectrum of compound 47 

To further perform some trials of the thiol-ene coupling and optimize this critical reaction, a smaller and 

cheaper saccharide, maltose, was selected to be HTL-functionalized. To do so, maltose was submitted 

to a reductive amination with HTL hydrochloride (Scheme 41) in the same conditions as for 

maltoheptaose. 

(a) 

(b) 
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Scheme 40. Reductive amination of maltose with homocysteine thiolactone hydrochloride 

The reaction on small quantities provided the product 48 with a quantitative yield. However, when 

changing the scale, although the 1H NMR spectra were very similar on small and large quantities, the 

product 48 could not be obtained pure. This was evidenced by the appearance of a peak on mass 

spectrometry analysis (see Figure 39 below) at m/z=561.15, whose intensity varied from 30 to 50% 

compared to the targeted product (m/z=444.09 [M+H]+). This new peak corresponded to a side-product 

where the thiolactone moiety of the newly formed product, maltose-HTL, was opened by the amine of 

a second HTL molecule (self-condensation, compound 48a). 

 

Figure 39. Mass spectrum of the mixture obtained after reductive amination of maltose with HTL on a 

1-gram scale using 10 equivalents of HTL and 30 equivalents of NaBH3CN 

The compound named di-HTL side-product 48a, whose structure is shown on figure 40, was thereby 

composed of a free thiol and a protected thiol. This side-reaction was considered to be due to the excess 

di-HTL side-product 48a 

Compound 48 
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of HTL used for reductive amination. It was estimated that the isolation of compound 48 would be 

challenging due to the similarity of structures and polarity (no difference of frontal elution on TLC). 

To avoid the phenomenon, many conditions as the temperature, the solvents, the equivalents of reagents 

and the purification methods were changed. First, the number of equivalents of HTL/sodium 

cyanoborohydride were decreased to 5/15 then to 2.5/8 when performing the reaction on a 1-gram scale: 

this allowed to decrease the amount of side-product to 20%. When 2/8 molar ratios of HTL/reducing 

agent were reacted with maltose, this percentage was reduced to 17%. On a small scale, the ratio of 1.5/8 

equivalents provided only 9% of side-product, and when equimolar ratios of maltose and HTL were 

mixed with eight equivalents of reducing agent, no side-product was observed. However, on a 4-gram 

scale, the purification process became troublesome: the precipitation-centrifugation cycles did not 

separate salts and solvents from the product, neither did the size exclusion chromatography that followed 

these cycles. To limit the number of precipitation-centrifugation cycles necessary to eliminate DMSO, 

another mixture of solvents was tested: water/acetic acid. Equimolar ratios of maltose and HTL were 

reacted with eight equivalents of reducing agent in this new system of solvent at 65°C. The work-up 

procedure was lightened and almost no side-product was observed, however a second peak appeared on 

mass spectrum at m/z=367.22 : reduced maltose 48b (figure 40). 

 

Figure 40. Structures of the side products formed during reductive amination of maltose with 

homocysteine thiolactone hydrochloride 

To avoid this second side-product, the quantity of reducing agent was decreased to four equivalents, but 

this ended to a uncomplete conversion of maltose. A last solvent system, water/methanol, was tested at 

a higher temperature of 80°C for a variety of molar ratios of HTL/reducing agent. Also, the pH variation 

was tested by changing the quantities of acetic acid added. All these conditions led to bigger quantities 

of side-products (including reduced maltose, di-HTL-maltose, and N-acetylated maltose-HTL). Thus, 

these choices were all set aside. The first conditions using a mixture of DMSO/acetic acid at 65°C were 

found to be the best on large scale. Reacting one equivalent of maltose and two of HTL with eight 

equivalents of reducing agent yielded 68% of product 48 including 7% of di-HTL side-product. The 

mass spectrum is presented on the figure 41.  
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Figure 41. Mass spectrum of the product obtained after reductive amination of maltose with HTL on a 

4-gram scale with 2 equivalents of HTL and 8 equivalents of NaBH3CN 

In parallel of the reductive amination, another approach based on the barbituric acid chemistry was 

conceived in order to incorporate one or two homocysteine thiolactone moieties at the extremity of 

maltooligosaccharides. 

4.2.1.2.3 Grafting of HTL onto maltooligosaccharides through Knoevenagel condensation 

Barbituric acids are symmetrical cyclic compounds possessing two imides, three carbonyl functions and 

an active methylene. These compounds are very interesting in term of structure as they can be the source 

of various derivatives, as presented in the figure 42. 

 

Figure 42. Structure of barbituric acid and its possible derivatives 

Barbituric acids can be amine-functionalized on their imides with diverse moieties in a symmetrical or 

unsymmetrical way.  Biltz & Wittek 289 were among the firsts to explore this chemistry by synthesizing 

a range of barbituric acid derivatives. More recently, Silverman and col. produced a collection of 

symmetrical and unsymmetrical barbituric acids either starting from S,S-dimethyl carbonodithioate 290, 

either starting from an isocyanate 291,292 as depicted in the scheme 42 below. 

di-HTL side-product 

48a 

Compound 48 

[M+H]+ and 

[M+Na]+ 
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Scheme 41. Obtention of symmetrical and unsymmetrical barbituric acid derivatives starting from S,S-

dimethyl carbonodithioate or an isocyanate 

The active methylene of barbituric acids can be easily deprotonated due to the acidity of the hydrogen 

(which has a pKa around 4-5 depending on the barbituric acid derivative). The formed carbanion, 

stabilized by carbonyl groups, can undergo reactions such as attachment with the anomeric carbon of 

carbohydrates. This coupling involving the anomeric carbonyl group and a carbanion is called the 

Knoevenagel condensation. The formation of C-glycosides was extensively developed by Galbis Perez 

and coll. 293,294 that reported the one-step preparation of C-glycosylbarbiturates and C-glycosylbarbituric 

acids with good yields and without any prior protection step. They functionalized a collection of 

monosaccharides with di-methylbarbiturate (D-glucose, D-galactose, D-mannose, D-xylose, D-ribose, 

and D-arabinose). Examples of some C-glycosylbarbiturate prepared are illustrated in the figure 43 

below. 

 

Figure 43. Examples of C-glycosylbarbiturates prepared by Knoevenagel condensation 

This Knoevenagel coupling was more recently performed by Critchley and Clarkson 295 with usual di-

methylbarbituric acid on mono- or di-saccharides such as galactose, lactose, cellobiose and maltose. 

Recently, in our team, Portier et al. 296 promoted this chemistry with a set of mono- and disaccharides 

and of barbituratic acid derivatives to create series of interesting “clickable” C-glycoconjugates from 

protecting-group free carbohydrates. 
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Similarly, the barbituric acid chemistry offers the possibility to graft either one or two HTL moieties 

onto oligosaccharides’ reducing end. Attaching two HTL moieties was envisioned to latter give the 

opportunity of cross-linking between carbohydrate chains and alkene-bearing polymer during the thiol-

ene step. 

In this regard, a barbituric acid bearing two HTLs was targeted (compound 50). The retrosynthesis, 

described in the figure 44, was inspired from Silverman and coll. 291,292. Starting from HTL 

hydrochloride 46, a symmetrical urea (49) could be obtained, and this latter could be cyclized using 

malonyl chloride. After being prepared, the barbituric derivative could be grafted to the anomeric 

position of saccharides through Knoevenagel condensation. 

 
Figure 44. Retrosynthesis of symmetrical barbituric acid bearing two HTL moieties 

To obtain the symmetrical urea derivative 49, a first try was carried out by employing 

carbonyldiimidazole/homocysteine thiolactone hydrochloride in a ½ molar ratio in the presence of the 

base DBU in tert-butanol at 40°C 297. The mixture led, after one night, to a mixture of products including 

the starting material. A second try by changing the base to triethylamine provided a mixture of products. 

Replacing tert-butanol by dry dichloromethane did not improve the reaction regardless of the base 

employed, neither did the change of temperature (from 40°C to room temperature). The other approach 

inspired from Silverman et col. 290 was thereby investigated. S,S’-dimethyldithiocarbonate and HTL 

were reacted in a ½ molar ratio in water at 60°C. This trial showed a TLC plate where the starting 

material was converted into a very polar product, that was assumed to come from side-reactions (self-

condensation and/or hydrolysis).  

Another strategy was to transform the amine of HTL into an isocyanate (compound 51) as described by 

Knölker et al. 298, and to latter attach it to an HTL molecule to form the symmetrical urea (49). The 

synthesis strategy is illustrated in the scheme 43. However, the isocyanate could not be obtained. More 

harsh conditions could be employed to form the isocyanate by the mean of triphosgene 284 but this 

protocol was considered too hazardous to be tried. The preparation of a symmetrical urea was left out, 

and efforts were put to synthesize a urea bearing only one HTL moiety.  

 
Scheme 42. Synthesis of a symmetrical urea bearing two HTL moieties via an isocyanate 
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The barbituric derivative 53 bearing one HTL was obtained by two steps illustrated on the Scheme 44. 

Starting from homocysteine thiolactone hydrochloride 46 and ethyl isocyanate in dry dichloromethane 

in the presence of triethylamine, the unsymmetrical urea 52 was provided with 99% yield. Next, a 

cyclisation of the urea with malonyl chloride in dry dichloromethane afforded the pure barbituric 

derivative 53 with 90% yield 292. The procedure could be performed in a one-pot reaction yielding 96% 

of compound 53 after column purification, whose 1H NMR spectrum, with some minor ethylacetate 

contamination, is presented on the figure 45. 

 
Scheme 43. Synthesis of an unsymmetrical urea 52 bearing one HTL moiety via an isocyanate 

 

Figure 45. 1H NMR spectrum of unsymmetrical barbituric derivative 53 in CDCl3 with its peak 

integration and attribution (at 318 K) 

After that, the Knoevenagel condensation of the unsymmetrical barbituric acid 53 and maltoheptaose 2 

was carried out (Scheme 45). In the first experiment, an equimolar ratio of maltoheptaose and the 

barbituric acid derivative were mixed at 80°C in water in the presence of the weak base sodium 

bicarbonate (NaHCO3) to reach pH 7. According to TLC, the conversion was not total, and the product 

was accompanied by a sugar side-product a bit less polar. The product could not be completely separated 
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by liquid chromatography on silica gel from this impurity. It was observed by mass spectrometry that 

maltoheptaose had been hydrolysed into maltohexaose, maltopentaose, etc. Lowering the temperature 

to 60°C allowed to decrease the quantity of hydrolysed product but did not enable the reaction to be 

total. To have more control on the pH of the medium, the reaction was then carried out in a phosphate 

buffer (0,1M; pH=7,2) at 60°C. No hydrolysed product was observed, and the conversion evolved for 

an almost-total reaction. 77% of pure C-glycosylbarbiturate 54 were obtained after column purification. 

The reaction was scaled-up to afford 83% of pure product. Temperature and mostly pH were found out 

to be important for this reaction to avoid hydrolysis of maltooligosaccharides. 

 

Scheme 44. Knoevenagel condensation of the HTL-bearing barbituric acid with maltoheptaose 

The 1H NMR superposed spectra of compound 54 with native maltoheptaose 2 and unsymmetrical 

barbituric acid 53 is presented on the figure 46. From 3.25 to 5.46 ppm, the intense peaks attributed to 

maltoheptaose protons seem unchanged and more importantly, the reducing end anomer proton at 4.67 

ppm (β-anomer) and 5.25 ppm (α-anomer) disappeared which confirmed the substitution on this 

position. The coupling constant of the anomeric proton with H-2 indicates that the glycoconjugate 54 is 

in β-configuration. Peaks from compound 53 are also present although their bad resolution. The 

superposition of 1H NMR spectra, the 13C NMR and HRMS spectra, indicate that both maltoheptaose 

and barbituric derivative successfully grafted together. 
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Figure 46. 1H NMR spectra superposition of compound 54 (black, in D2O) with native maltoheptaose 

(blue, in D2O) and compound 53 (green, in CDCl3)  

The same reaction was carried out on D-glucose and D-maltose in order to perform some sulfation and 

thiol-ene trials. Yields of 63% and 68% were obtained respectively (compounds 54bis and 54tris). 

However, the small mono- and di-saccharides encountered stability and purification problems. 

HTL-functionalized maltoses were submitted to thiol-ene optimization tests while HTL-funtionalized 

maltoheptaoses were randomly sulfated to prepare glycosaminoglycan mimetics. It was shown that HTL 

was a acid- and base-labile moiety that could hardly withstand sulfation conditions (see 4.2.2). To 

overcome this problem, another strategy to thiol-end-functionalize maltooligosaccharides was 

developed lately. This last method allowed to afford UV-active product by discovering the chemistry of 

anthranilic derivatives. 

4.2.1.3 Thiol end-functionalization by using anthranilic derivatives 

4.2.1.3.1 Introduction 

Anthranilic acid is an aromatic compound bearing a primary amine in ortho position of a carboxylic 

acid. Being able to act as a base or as an acid, this compound is therefore amphoteric. It has many 

commercial derivatives including methyl anthranilate, that is widely used in perfume industry or as a 

flavor additive, and isatoic anhydride, a versatile starting material for synthesis 299. Their structures are 

presented on the figure 47 below. 
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Figure 47. Structure of anthranilic acid, methyl anthranilate and isatoic anhydride (from the left to the 

right) 

Isatoic anhydride (compound 55) is the source of a wide range of transformations, leading to a variety 

of applications from pharmaceuticals to fragances 300. For example, starting from it, five-, six- and seven-

membered heterocycles can be prepared (for more information see review 301). 

Among these transformations was developed the benzoxazine dione ring opening by the action of a 

nucleophile, providing a free amine and subsequent loss of carbon dioxide, also called anthranoylation. 

This reaction was first performed with ammonium hydroxide by Kolbe 302, who discovered by accident 

the formation of anthranilamide, as illustrated on the scheme 46 below. 

 

Scheme 45. Anthranoylation of isatoic anhydride with ammonium hydroxide 

The anthranoylation was performed using different nucleophiles, but the best yields were obtained with 

amines. However, a second side-product resulting from a different ring cleavage was observed by 

Sheibley 303,304 with halogenated isatoic anhydride derivatives. It implied the nucleophilic attack on the 

carbonyl on α of the amine and subsequent loss of water allowing the ring to recyclize as explained by 

Staiger & Wagner 305 in the Scheme 47. It was found that the second product formation depended on the 

solvent of the reaction 306, the molar ratio of the amine, its concentration but also its bulkiness 307. 

 

Scheme 46. Side-product formation during anthranoylation of isatoic anhydride with ammonium 

hydroxide 

The solvent was found to be critical to suppress this side-reaction, and a variety of anthranilamides could 

be prepared by changing the amine in solvents such as DMF, DMAc or DMSO 308. The prepared 

derivatives were biologically assayed and some of them were found to possess anti-inflammatory or 
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antitumor activities. The preparation of anthranilamides for biological applications was more recently 

developed by Cummings et col. 237 in order to graft the synthesized entities on the reducing end of 

carbohydrates. Anthranilic derivatives have the advantage to provide fluorescent and UV active 

compounds. These features allow the compounds to be easily identified by chemists, but also by 

biologists. In one step, they easily prepared a fluorescent anthranilic derivative starting from methyl 

anthranilate and they grafted it on a pentasaccharide by reductive amination. The employed strategy is 

illustrated in scheme 48. 

 

Scheme 47. Synthesis and grafting of anthranilic derivative on the reducing end of carbohydrates 

Lately, this grafting was promoted by the synthesis of functionalized maltoheptaose with anthranilic 

derivatives bearing clickable functions in our team (work not published). Starting from isatoic 

anhydride, they first prepared functionalized anthranilic derivatives with good yields (more than 80%), 

and they performed the reductive amination with maltoheptaose with a 100% of yield. 

The anthranilic derivative chemistry was carried out in the same conditions as previously. A two-step 

strategy was conceived to introduce cystamine or its oxidized form cysteamine on the reducing end of 

carbohydrates. 

4.2.1.3.2 Grafting of cysteamine onto maltooligosaccharides through reductive amination 

In order to reproduce the synthesis previously developed in our team, maltoheptaose was planned to be 

end-functionalized by an anthranilic derivative bearing a cysteamine moiety. This reaction was carried 

out to obtain a free thiol, readily accessible for thiol-ene coupling. To do so, isatoic anhydride 55 and 

cysteamine 35 were grafted in tetrahydrofuran at 60°C. The product, obtained in the form of a monomer 

or a dimer (formation of a disulfide bond), was submitted to reduction by using tributyl phosphine in a 

mixture of tetrahydrofuran and water according to the procedure of Ayers & Anderson 309, and kept 

without further purification in inert atmosphere in the fridge, affording 67% of product 56. This reaction 

crude was then submitted to a reductive amination with maltoheptaose in the same conditions as 

4.2.1.1.2, as shown on the Scheme 49. Briefly, the starting material was reacted with ten equivalents of 

cysteamine-bearing anthranilic derivative 56 and thirty of sodium cyanoborohydride in DMSO/acetic 

acid at 65°C under inert atmosphere. A hardly characterizable mixture of products including oxidized 

dimer was obtained according to mass spectrometry. This latter was expected as the work-up of the 

reaction could not be done in inert conditions. 
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Scheme 48. Preparation of thiol-functionalized maltoheptaose 57 by reductive amination with 

cysteamine-bearing anthranilic derivative 56 

The storage and manipulation of free thiolated product was observed to add steps in the synthesis, 

leading to low yields and problems of purification. So, this strategy was put aside to concentrate on thiol 

protection with the use of cystamine with anthranilic derivatives. 

4.2.1.3.3 Grafting of cystamine onto maltooligosaccharides through reductive amination 

As previously said, cystamine contains two equivalent amines thanks to its symmetry, meaning that 

either symmetrical or unsymmetrical anthranilic derivatives can be synthetized starting from it, as 

illustrated on the scheme 50 below. 

 

Scheme 49. Obtention of thiol-functionalized maltoheptaose with cystamine-bearing anthranilic 

derivative 

Starting from isatoic anhydride 55, a symmetrical anthranilic intermediate 58 could be obtained via the 

pathway a. This entity bearing two equivalent arylamines could undergo reductive amination 

symmetricalally to obtain a dimer (path a1, compound 60) or unsymmetrically (path a2, compound 61), 

leading in both cases to a thiol protected by a disulfide bond. The other possibility would be to graft 

only one of cystamine’s amines on isatoic anhydride in order to obtain the unsymmetrical anthranilic 

derivative 59 via the pathway b. This latter, reacted with maltoheptaose, would similarly lead to a 

protected thiol (compound 62). The first approach (pathway a) involving the preparation of a 

symmetrical anthranilic intermediate was investigated. 
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Prior to the reaction, cystamine dihydrochloride was freed from its salts with sodium hydroxide. Free-

base cystamine was then reacted with isatoic anhydride in a ½ molar ratio in tetrahydrofuran at 60°C. 

The brown product 58 obtained could either be purified by chromatography to afford 81% of a white 

pure product, or be used without further purification with a quantitative yield. The 1H NMR analysis 

shown on figure 48 did not show any significant difference between the two products (peak at 3.31 ppm 

corresponding to water traces in DMSO-d6 & same peak integration (not shown)), and the purification 

of this intermediate did not affect the effectiveness of further steps. 

 

Figure 48. 1H NMR spectra superposition of compound 58 before (blue) and after (green) column 

purification in DMSO-d6 and its peak attribution 

The symmetrical anthranilic derivative could be further attached to one or two maltoheptaose moieties 

as previously mentioned (Scheme 50, pathways a1 and a2). 

To obtain the symmetrical thiol-functionalized maltoheptaose (pathway a1), reductive amination was 

first carried out with four equivalents of maltoheptaose, one equivalent of anthranilic derivative 58 and 

thirty of reducing agent. As a result, a mixture of three unpurifiable products was obtained according to 

mass spectrum: unreacted and/or reduced maltoheptaose [M7+Na]+ at m/z=1175.372, M7-A-cysteamine 

57 as a sodium salt at m/z=1355.448 where the disulfide bond was broken, and M7-A-cystamine-A-M7 

60 at m/z=2686.902 [M+Na]+, the targeted product. To get rid of the excess of maltoheptaose, two 

equivalents instead of four were reacted with the cystamine-bearing anthranilic derivative 58 in the same 

conditions as above. However, another product was observed in addition to the three previous: M7-A-

cystamine-A 61 at m/z=1549.500 in its sodium salt form, the unsymmetrical thiol-functionalized 
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maltoheptaose (pathway a2). The structures of all products obtained are presented on the figure 49. 

Faced with the difficulty to obtain the pure product with a good yield, the symmetrical maltoheptaose 

derivative 60 was shelved while the preparation of the unsymmetrical derivative 61 was carried out. 

 
Figure 49. Product obtained after reductive amination of maltoheptaose with cystamine-bearing 

anthranilic derivative 58 

To obtain the unsymmetrical thiol-functionalized maltoheptaose (pathway a2), previous conditions of 

reductive amination (see 4.2.1.1.2) were applied as shown on scheme 51. The product was obtained with 

a quantitative yield. 

 
Scheme 50. Reductive amination of maltoheptaose with symmetrical cystamine-bearing anthranilic 

intermediate 58 

The reductive amination of maltoheptaose with the symmetrical anthranilic intermediate seemed to work 

well on maltoheptaose. As previously, the reaction was tested on maltose in order to optimize the further 

thiol-ene coupling with this cheaper and more accessible carbohydrate. Same conditions as above were 

applied on maltose 36. However, a minority of symmetrical dimer M2-A-cystamine-A-M2 64 as well as 

a minority of reduced maltose were observed as side-products (according to 1H NMR and MS), as 

illustrated on the Scheme 52. 

 

Scheme 51. Reductive amination of maltose with symmetrical cystamine-bearing anthranilic 

intermediate 58 
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In the aim of preparing carbohydrate-polymers mimicking natural PGs, some thiol-functionalized 

maltoheptaose were randomly sulfated for a future coupling with the PHOU polymer provided by our 

ICMPE collaborators (Thiais). 

4.2.2 Random sulfation of thiol-end-functionalized maltoheptaose derivatives 

As a reminder, three thiol-end-functionalized maltoheptaose were synthesized. Two of them, that were 

developed in early stages of the project, were submitted to random sulfation in the goal of preparing 

sulfated glycopolymers with native PHOU. Structures of these two thiol-terminated maltoheptaose are 

presented in the Figure 50. 

 
M7-rHTL (47) 

 
M7-bHTL (54) 

 

Figure 50. Structure of two thiol-end-functionalized maltoheptaose 47 and 54, chosen to be randomly 

sulfated 

Both structures were submitted to sulfation at three different degrees (lightly, moderately and highly 

sulfated) in conditions being beforehand optimized with M7-bHTL derivatives.  

4.2.2.1 Optimization of sulfation conditions and synthesis of randomly sulfated M7-bHTL 

To obtain randomly sulfated end-functionalized maltoheptaose derivatives, many procedures were tried 

varying solvent, temperature and reactants. Optimizations of the reaction conditions were performed on 

M7-bHTL (54) as illustrated on the Scheme 53. 

 

Scheme 52. General scheme of the random sulfation performed on M7-bHTL (54) 

The procedure previously reported for random sulfation of unmodified M7 and BCD (see CHAPTER 1) 

was first tested. Briefly, M7-bHTL (54) and sulfur trioxide pyridine complex (stoichiometry depending 

on the degree of sulfation targeted) were reacted together in a mixture of DMF/pyridine at 80°C. The 

1H NMR spectrum of obtained mixture (Figure 51) was superposed with the spectrum of a successful 

attempt (see later, blue) and the one of a sulfated native maltoheptaose, that were all aimed to be lightly 

sulfated derivatives. The 1H NMR spectra resulting from such procedure showed almost no peak of 
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reducing end aglycon, HTL, and the general aspect of the spectrum seemed a bit different from the one 

of natural maltooligosaccharides (see highlighted zone on figure 51).  

 

Figure 51. 1H NMR spectra superposition of an attempt of lightly sulfated M7-bHTL in conditions 

previously described (black) with a successfully prepared lightly sulfated M7-bHTL (blue) and lightly 

sulfated maltoheptaose (green) in D2O 

The product obtained was then analyzed by SEC-MALS to assess the obtention of one homogeneously 

sulfated mixture of products. However, two or three populations having either very low either high to 

very high Mw (calculated on the basis of their elution time) that could not be possible in both extreme 

cases (no sulfation and complete sulfation) were observed. The FI-IR analysis showed almost no peak 

corresponding to sulfate esters around 1200 cm-1, and the broad hydroxyl vibration peak at 3300 cm-1 

and carbonyl group of HTL were also almost inexistent. All these data together suggested that the 

reaction led to undistinguished mixture of product, being partially sulfated with a clear hydrolysis of 

HTL. Decrease of the reaction temperature to 50°C in DMF/pyridine solvent system did not show any 

change. 

Pyridine alone was tested as solvent for the reaction at 80°C, surprisingly leading to greater mixture of 

products including not negligible quantities of starting material (assessed by 1H NMR by superposing 

spectra of the crude and of M7-bHTL (54)). This was likely due to the insolubility of product in the 

solvent resulting in the formation of gummy residues from the beginning of the reaction.  
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Then, DMF alone was tested as solvent providing similar mixtures of products as DMF/pyridine solvent 

system at 80°C, but leading very lightly sulfated maltoheptaose derivatives without hydrolysis of HTL 

for the lowest degrees of sulfation. 

To overcome hydrolysis of HTL, 2-methyl-2-butene (2M2B), a volatile acid scavenger reported by Papy 

Garcia et al. 111 was added to the reaction mixture in a 8/1 2M2B/SO3.Pyr ratio, and temperature was 

decreased to 30°C to avoid its evaporation. In DMF/pyridine (2/3 v/v) solvent, HTL was not hydrolyzed 

anymore but a mixture of unreacted starting material along with final products was observed. Changing 

the solvent for DMF alone allowed to obtain lightly and moderately sulfated M7-bHTL derivatives 

(Figure 51 below). Methyl protons of the barbiturate at 1.17 ppm and peaks attributed to HTL methylene 

between 2.40 and 2.80 ppm in addition to the slight shift towards low field confirms the presence of 

sulfated carbohydrate without HTL hydrolysis. 

Concerning the highest degree of sulfation, larger quantities of unsoluble 2M2B necessary for the 

reaction to proceed without hydrolysis induced poorly sulfated products, diminishing the 2M2B/SO3.Pyr 

ratio from 8/1 to 2/1 proved to be ineffective. The reaction conditions were no longer optimized although 

the targeted highly sulfated M7-bHTL derivative seemed to have a similar degree of sulfation to the 

lightly one (Figure 52 below). Additionnal peaks between those attributed to methylene at position 6’ 

after sulfation (big peak around 4.35 ppm) and those attributed to position 2’ from 5’ (between 3.39-

4.10 ppm) were observed. Moreover, peaks between 2.40 and 2.90 ppm attributed to HTL protons were 

less defined. All these observations indicated possible partial degradation of sample as previously 

observed without acid scavenger 2M2B. The 1H NMR spectra superposition of all three sulfated 

derivatives after dialysis purification is presented on the Figure 52 below. 
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Figure 52. 1H NMR spectra superposition of lightly (black), moderately (blue) and highly (green) 

sulfated M7-bHTL in D2O 

As for sulfated (cyclo)maltooligosaccharides, SEC-MALS analysis of three sulfated derivatives was 

carried out. Lightly sulfated M7-bHTL was characterized by a Mw of 2233 g.mol-1, the moderately by a 

Mw of 2560 g.mol-1. As expected with 1H NMR, many populations including the targeted one were 

observed for highly sulfated M7-bHTL with Mw varying from 1746 to 1844 g.mol-1. 

For a precise determination of the average degree of sulfation, elemental analysis was performed (Table 

16). Lightly and moderately sulfated maltoheptaose derivatives presented a degree of sulfation of 0.8 

and 1.4 respectively, in accordance with previous data. The mixture composing “highly sulfated” M7-

bHTL exhibited a degree of sulfation of 1.1, accordingly to previous 1H NMR data. 

Sample 
C H N S 

DS 
[wt%] [wt%] [wt%] [wt%] 

M7-bHTL 

Low 25.019 4.183 0.837 9.368 0.8 

Medium 20.098 3.479 0.490 12.657 1.4 

High 23.746 4.096 0.864 11.295 1.1 

Table 14. Degree of sulfation per saccharidic unit of the sulfated M7-bHTL derivatives (calculated by 

elemental analysis). 

To summarize, conditions previously developed for the synthesis of sulfated maltoheptaose derivatives 

were slightly modified. DMF was chosen as unique solvent for complete sulfation of products, and an 

acid scavenger, 2M2B, was added in order to avoid partial hydrolysis of products. These conditions 
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allowed to successfully prepare lightly and moderately sulfated M7-bHTL derivatives, while the highly 

sulfated one could not be obtained pure and efficiently sulfated. 

4.2.2.2 Synthesis of randomly sulfated M7-rHTL 

Conditions described above for the preparation of sulfated M7-bHTL derivatives were applied for the 

preparation of M7-rHTL derivatives as shown on the Scheme 54 below. 

 

Scheme 53. Random sulfation of M7-rHTL (47) 

Similarly to M7-bHTL, the obtention of lightly and moderately sulfated derivatives could be easily 

obtained. The preparation of highly sulfated derivative demanded more time for partially efficient 

sulfation: reaction time was increased from 2 hours to 2 nights, resulting in the obtention of a product 

who seemed more sulfated than other samples according to 1H NMR (higher peak at 4.42 ppm and 

spectrum more shifted towards low field). Only the lightly sulfated derivative was purified by dialysis 

(the two other samples by GPC). The 1H NMR spectra superposition of all three products is presented 

on the Figure 53. 

 

Figure 53. 1H NMR spectra superposition of lightly (black), moderately (blue) and highly (green) 

sulfated M7-rHTL in D2O 
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SEC-MALS analysis of sulfated maltoheptaose indicated two populations for the lightly sulfated one 

with a Mw of 2822 and 3033 g.mol-1. Moderately sulfated M7-rHTL was characterized by two 

populations as well with a Mw of 2550 and 3042 g.mol-1. The population observed at 3000 g.mol-1 was 

present in both samples, suggesting the presence of a possible side-product in the starting material. 

However, the decrease of Mw between lightly sulfated sample and the moderately one was not 

concomitant with the data of other analysis (see 1H NMR and elemental analysis). No conclusive data 

could be collected although many trials. Highly sulfated M7-rHTL was characterized by one unique 

population with a Mw of 2516 g.mol-1, which was in accordance with the 1H NMR spectrum. 

Elemental analysis of samples was conducted as previously. Data are displayed on the Table 17 below. 

The degree of sulfation increased from 1.1 to 2.8 sulfate moiety per unit, which was in accordance with 

theory. 

Sample 
C H N S 

DS 
[wt%] [wt%] [wt%] [wt%] 

M7-rHTL 

Low 23.048 4.127 0.483 11.597 1.1 

Medium 17.850 5.229 7.778 18.269 2.3 

High 15.563 5.035 8.351 19.641 2.8 

Table 15. Degree of sulfation per saccharidic unit of the sulfated M7-rHTL derivatives (calculated by 

elemental analysis). 

The preparation of sulfated M7-rHTL derivatives seemed to be successful although SEC-MALS analysis 

was not conclusive for lightly and moderately sulfated ones. M7-rHTL and M7-rHTL derivatives were 

not biologically assayed because the only difference with native maltooligosaccharides resided in their 

functionalized reducing end, which was not supposed to change the interaction (later grafted to PHOU 

polymer). 

The thiol-functionalized maltoses prepared in part 4.2.1 were used to test the challenging thiol-ene 

coupling. Due to the difficulty to efficiently perform this photoinitiated reaction (see 5.2.1), a second 

more classical type of grafting was proposed to get around the thiol-ene chemistry: amidation. To do so, 

carbohydrates have to be amine-end-functionalized. 

4.2.3 Amine end-functionalization 

4.2.3.1 Introduction 

Amine-end functionalization of carbohydrates was developed in the late stage of the project due to the 

difficulty of performing the challenging thiol-ene coupling of thiol-end functionalized 

maltooligosaccharides with the PHOU polymer. Therefore, only one functionalization was investigated 

with an anthranilic derivative bearing ethylenediamine. 



 
 

 
125 

This approach was developed by Cummings and col.237 Starting from methyl anthranilate and 

ethylenediamine, they prepared an anthranilic derivative possessing two free amines: an aromatic one 

(pKa 4-5) and an aliphatic one (pKa 9-10). The presence of these two amines could lead to two different 

products after reductive amination (A and B). To achieve a chemoselective reductive amination, they 

converted the anthranilic derivative into its salt and an acidic medium was used to decrease the 

nucleophilicity of the aliphatic amine. By doing so, they dramatically dropped off the amount of product 

B, which was observed as traces. Their strategy is illustrated on the scheme 55. 

 

Scheme 54. Preparation of amine-end functionalized carbohydrates via the synthesis of an 

anthranilamide by Cumming and col. 

In the same paper, they also developed the reverse strategy. To completely avoid the formation of the 

compound B, they carried out reductive amination of their glycan with methyl anthranilate, and they 

then achieved the aminolysis of the anthranilic ester to afford the product A. 

In another paper, Cummings and col.310 described the two-step conjugation of carbohydrate reducing 

end to proteins with a fluorescent linker. This latter, para-nitrophenyl anthranilate, was chosen for its 

aryl amine, used for the reductive amination, and active para-nitrophenyl ester, that could be 

transformed into an amide by nucleophilic attack of protein’s amino groups. Interestingly, the two 

opposite functional groups (amine and ester) were known to be tolerant. The aminolysis of the active 

ester was first tested with ethylenediamine and showed a total conversion at room temperature within 

thirty minutes. Applying it to protein at 37°C in a buffer showed an efficient carbohydrate-protein 

conjugation where the two entities were linked by a small fluorescent moiety. This approach is illustrated 

on the scheme 56. 

 
Scheme 55. Preparation of amine-end functionalized carbohydrates via the synthesis of a glycol-

conjugate 

In both papers, the use of anthranilic derivatives for biological systems was expected to be safe as 

anthranilic acid is the precursor of the amino acid tryptophane in the organism. 

To amine-end functionalize maltoheptaose with anthranilic derivatives, both approaches were carried 

out. 
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4.2.3.2 Amine end-functionalization starting from isatoic anhydride 

The first way investigated to amine-functionalize the reducing end of carbohydrates was inspired from 

Cummings and col. 237 An ethylenediamine-bearing anthranilamide was conceived to be obtained from 

isatoic anhydride 55 instead of methyl anthranilate. The synthesis is shown on the scheme 57.  

 

Scheme 56. Preparation of an ethylenediamine-bearing anthranilamide starting from isatoic anhydride 

First, the reaction was performed at 60°C in tetrahydrofuran (conditions previously developed in the 

team, not published). To avoid the obtention of di-substituted ethylenediamine forming a symmetrical 

dimer, 0.5 equivalents of isatoic anhydride were added dropwise at room temperature in the reaction 

mixture, and then the heating proceeded. It was observed unsoluble isatoic anhydride at room 

temperature became almost soluble at 60°C. At the end of the reaction, the 1H NMR showed what 

seemed to be a mixture of product. According to mass spectrometry, the majority product was the 

targeted one 65, but many side-products were also observed (Figure 54 below, 65 in blue). The same 

reaction was carried out with equimolar ratio of isatoic anhydride and ethylenediamine in a more diluted 

medium for the amine. The major product, was this time the di-substituted amine 67, and the targeted 

anthranilamide 65 was present as traces. When the reaction was performed with 1.2 equivalents of amine 

and with a slower addition of isatoic anhydride, the same result was observed. It was hypothesized that 

the insolubility of isatoic anhydride in tetrahydrofuran during its addition might affect the reaction. The 

solvent was changed for dimethylformamide as recommended by Heindel et al. 308 and the reaction was 

conducted with one, 1.2 and five equivalents of ethylenediamine. According to their mass spectrum, 

more side-products were observed. Higher intensities of targeted product 65 were however observed 

when adding great excess of ethylenediamine. The product could never be obtained pure, but many of 

the side-products could be identified by MS. Their structures, also described by Fadda et al.,311 are shown 

on the figure 54.  

 

Figure 54. Products obtained from the anthranoylation of isatoic anhydride with ethylenediamine  
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The products 65, 66 and 67 were issued from the nucleophilic attack of ethylenediamine on the benzoyl 

of isatoic anhydride (pathway a) while compounds 68, 69, 70 and 71 from the attack of ethylenediamine 

on the carbonyl on α of the amine (pathway b). The targeted product 65, could undergo a cyclization 

leading to the compound 66. Issued from the pathway b, the side-product 68 issued could cyclize by an 

intramolecular attack of the secondary newly introduced amine on the carboxylic acid (69). Similarly to 

compound 65 (targeted product), this formed product could cyclize by the action of the primary amine, 

forming the product 70. Compound 71, was obtained by di-substitution of ethylenediamine by the two 

pathways b then a on isatoic anhydride. Di-substituted 67, was done by the pathway a. No di-substituted 

product only from pathway b was observed. Finally, product 72, was obtained by a simple hydrolysis 

of isatoic anhydride and forms anthranilic acid. 

All these side-products, obtained from the same reaction mixture, could very hardly be separated from 

the targeted product by chromatography because of the structure similarities. To bypass this problem, 

isatoic anhydride was put aside, and the other approach developed by Cumming and col. was conceived 

with an anthranilic derivative possessing a leaving group stable enough to endure reductive amination.  

4.2.3.3 Amine end-functionalization starting from para-nitrophenyl anthranilate 

Instead of preparing the anthranilic derivative with ethylenediamine and then grafting it onto 

carbohydrates, the reverse steps were envisioned as previously described by Cummings and col.237 A 

reductive amination of carbohydrates with an anthranilic derivative bearing a leaving group was 

accomplished, although the conversion was not total (more than 80%) and later this leaving group was 

replaced by ethylenediamine. The anthranilic derivative chosen for this approach was para-nitrophenyl 

anthranilate (PNPA). This compound owns a nitrophenyl as leaving group, which was assumed to be 

stable enough to undergo reductive amination. 

The introduction of PNPA onto carbohydrates was first tested on maltose. The conditions of reductive 

amination used were the same as previously described for homocysteine thiolactone, as shown on the 

scheme 58. 

 

Scheme 57. Reductive amination of maltose with para-nitrophenyl anthranilate 

Briefly, maltose 36 was either mixed with two equivalents of PNPA and eight of sodium 

cyanoborohydride, either ten equivalents of PNPA and thirty of reducing agent. In the first case, almost 

no conversion of maltose was observed according to TLC plates. And in the second case, a less polar 
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product was observed but also a non-UV active sugar compound more polar than maltose, which could 

not be isolated and identified. 

Reductive amination of maltoheptaose 2 was carried out in the same conditions, as illustrated on the 

scheme 59. 

 
Scheme 58. Reductive amination of maltoheptaose with para-nitrophenyl anthranilate 

After 6h30, although maltoheptaose did not seem to be totally consumed according to the TLC plate, 

the reaction was treated by precipitation-centrifugation cycles. It was observed that after a while PNPA 

crystallizes in the supernatant providing yellow longitudinal crystals. A column was carried out in order 

to remove unreacted or reduced maltoheptaose. It was found that the product was very difficult to 

concentrate under reduced pressure because of its amphiphilic properties. These complications 

decreased the yield to 59%. The 1H NMR spectrum of compound 74 is presented on the figure 55 below. 

Peaks attributed to maltoheptaose protons between 3.25 and 5.46 ppm and those attributed to PNPA 

between 6.71 and 8.41 ppm are effectively present on the spectrum of compound 74. In addition, peak 

integration and the slight change of anomeric protons peak (4.70, 5.10 and 5.40 ppm) along with mass 

spectrum prove that reductive amination of PNPA onto maltoheptaose was successful. 

 

Figure 55. 1H NMR spectra superposition of compound 74 (black, in D2O) with native maltoheptaose 

(blue, in D2O) and PNPA (green, in CDCl3)  
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To replace the leaving group of the newly end-functionalized maltoheptaose 74, a nucleophilic attack 

of ethylenediamine on the activated ester of 74 was achieved in dimethylformamide at 60°C, as shown 

on the scheme 60 below. 

 

Scheme 59. Preparation of amine-end functionalized maltoheptaose with ethylenediamine 

The reaction, after completion within 2h30, was precipitated in acetone and filtered. This simple 

procedure afforded a pure amine-end functionalized maltoheptaose with a quantitative yield, that was 

fully characterized. The 1H NMR spectrum of compound 75 is presented on the figure 56 below. Half 

of PNPA signals disappeared, and two triplets corresponding to ethylenediamine methylene appeared at 

3.20 and 3.45 ppm. Amine-functionalized maltoheptaose 75 was thereby successfully obtained and 

could be further coupled by amidation to the polymer (see 5.2.2). 

 

Figure 56. 1H NMR spectra superposition of compound 75 with its precursor compound 74 (blue) in 

D2O 
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4.3 Conclusion 

Linear maltooligosaccharides were reducing end functionalized with a linker bearing a thiol or an amine 

moiety. For thiol-modified glycans, three strategies were investigated on maltose and maltoheptaose: 

cysteamine-cystamine method for which no product could be obtained, homocysteine thiolactone 

method for which four products could be isolated, and anthranilic derivative method for which two 

products were achieved. By doing so, six compounds could be synthesized whose structures are 

presented on the Figure 57. 

 
M7-rHTL (47)  

M2-rHTL (48) 

 
M7-bHTL (54) 

 
M2-bHTL (54tris) 

 
M7-rASSA (61) 

 
M2-rASSA (63) 

 
M7-rPNPA (74) 

 
M7-rANH2 (75) 

Figure 57. Scope of thiolated and aminated maltooligosaccharides that were successfully synthesized 

As a final goal, several sulfated maltoheptaose (thiol- or amine-functionalized) chains were envisioned 

to be grafted to a polymeric skeleton (natural PHOU bearing pendant alkene functions, or PHOU-COOH 

bearing pendant acid carboxylic functions) in order to obtain proteoglycan mimetics.  

For the next step of the project, some thiol-end-functionalized maltoheptaoses were randomly sulfated 

for their future coupling with PHOU, while thiol-modified maltoses were used to optimize the thiol-ene 

coupling. 

Concerning the amine-modification that was developed in late stages of the project, only one strategy 

was investigated directly on maltoheptaose: the anthranilic derivative method. Two modified 

maltoheptaoses could be obtained including the final amine-bearing glycan 75. Their structures are 
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presented on the figure 56 above. M7-rPNPA (74) was submitted to random sulfation (for the future 

formation of PG mimetics) but PNPA was found not to be stable enough for sulfation conditions (even 

in the presence of acid scavenger 2M2B), and M7-rANH2 (75) to an amide coupling with biotin and a 

variant of PHOU bearing pendant carboxylic acids (see 5.2.2). 
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CHAPTER 5 Coupling of 

functionalized maltooligosaccharides 

CHAPTER 5 

Coupling of functionalized 

maltooligosaccharides 
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5.1 Introduction 

As a reminder, in Nature, many glycosaminoglycan chains can be found attached to a protein core 

forming a proteoglycan. This complex structure of oligosaccharides might be relevant for molecular 

recognition : the presence of many oligosaccharide chains that each have low affinity with carbohydrate-

binding proteins or others carbohydrates might generate a “cluster” effect by increasing the local 

concentration 36 and thus the activity 312–315 : this phenomenon is defined as multivalency. As an example, 

the carbohydrate-lectin interaction is characterized by a weak dissociation constant (Kd) in the order of 

millimolars. According to Davis group,35 this weak and undiscriminating interaction is caused by the 

shallow, solvent-exposed binding sites of lectin, that enables few direct ligand contacts. When multiple 

glycan chains are well-oriented, a consequent increase of affinity and specificity are observed due to the 

multivalent effect.316 

The vast majority of glycans are N- or O-linked to protein amino-acids in Nature.317 In order to produce 

proteoglycan mimetics, many groups have investigated the preparation of sulfated oligosaccharides 

chains (from mono- to poly-saccharide) grafted onto a polymer or protein core either by direct coupling 

either via a linker or spacer. Many parameters have to be taken into account for the preparation of 

glycoconjugates such as the terminal linkage, the density or the length of saccharide chains in the case 

of vaccines.317 For example, the group of Roy reported that a spacer between oligosaccharide chains and 

polymer or protein might give conformational freedom and more accessibility for glycan recognition.312–

314 

Different strategies may be employed for the construction of glycan-aglycon conjugates, herein, the 

aglycon being defined as a polymer or a protein. As reported by Davis 317 on the Scheme 61 below, 

glycans can be end-functionalized with a small portion of aglycon that would be further grafted to the 

rest of this aglycon (pathway A, one glycan per aglycon in that case) ; the strategy illustrated on the 

pathway C consists in preparing an aglycon bearing a portion of glycan that is then glycosylated to 

obtain longer glycan chains (long procedure) ; and the last strategy (pathway B) relies on the 

functionalization of the glycan on the one hand, and of the aglycon on the other hand with reactive 

groups that react together to form the final glycoconjugate. In this last strategy, the functional groups 

introduced are biorthogonal with the other functionalities of both aglycon and saccharides, and provide 

high yields of products. This methodology also provides the possibility of multivalency by attaching 

multiple glycan chains ; it was therefore used in our context. 
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Scheme 60. General strategies for preparing glycan-aglycon conjugates 

A variety of coupling reactions with or without metal catalysts exist to create glycan-aglycon linkages 

such as amide, thioether, urea, oxime, hydrazide, alkene and so on. Among them, thiol-ene and amide 

coupling were chosen according to available chemical functions in PHOU polymers provided by ICMPE 

collaborators. 

PHOU (poly(3-hydroxyoctanoate-co-3-hydroxyundecenoate) 76) is a bacterial functionalized polymer 

belonging to the class of polyhydroxyalkanoates. This polyester is a statistical copolymer functionalized 

on its side chains by pendant pentyl and oct-1-ene chains in a 69/31 molar ratio. This alkene ratio 

depends on the initial bacterial feeding ratio with octanoic acid and 10-undecanoic acid.319 

PHOU is characterized by a molecular mass of 124000 g/mol (determined by SEC in THF, polystyrene 

equivalents). Size-defined oligomers of PHOU can be synthesized from native PHOU by methanolysis. 

This reaction, previously developed by ICMPE group 320, enables the controlled depolymerization of 

PHOU as a function of reaction time without affecting the percentage of alkene functions. 

These alkene functions allow post-polymerization such as transformation into epoxides 321, chlorine 322, 

bromine 323,324,  hydroxyl 325–327, carboxylic acid groups 328,329 or thioether 324  allowing an enhancement 

of water solubility and thus improving the hydrophilic character of such polymer.330 The introduced 

functional groups may be used for further reactions to create conjugates.331 

In our project, glycan-aglycon conjugates were envisioned in the goal of forming proteoglycan 

mimetics. As previously described, proteoglycans (PGs) are featured by a core protein where are 

attached multiple GAG chains. Likewise, a single PHOU chain acting like a scaffold would be attached 

to multiple glycan chains to create a multivalent platform capable of biological activity. PHOU 

oligomers (provided by ICMPE collaborators) were thereby envisioned to be coupled with end-
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functionalized maltooligosaccharides previously synthesized (see CHAPTER 4) according to two 

strategies : thiol-ene and amide couplings that will be developed in the following chapter. 

In order to limit the waste of the alkene-bearing polymer PHOU and to optimize the conditions necessary 

for an improved thiol-ene and amide coupling of modified maltooligosaccharides, a low molecular 

weight model compound was selected: D-(+)-biotin. This reagent allows for a better following of the 

reaction by TLC and NMR as it can be well characterized. Moreover, once attached to 

maltooligosaccharides, it enables to measure the glycoconjugate affinity with biomolecules via Surface 

Plasmon Resonance biological analysis (performed at IBS, Grenoble). In our case, sulfated 

maltooligosaccharides, acting as glycosaminoglycan mimetics, can be immobilized on the surface by 

forming glycan-biotin-streptavidin complexes and their interaction with analytes such as protein and 

growth factor can be assayed. 

Initially, a thiol-ene coupling between native PHOU and maltooligosaccharides was investigated. To do 

so, an alkene-bearing biotin was synthesized. This latter was reacted with thiol-terminated maltose, a 

disaccharide model compound, in a photo-initiated thiol-ene reaction. As a result of inefficiency, an 

amide coupling between NHS-bearing biotin and amine-functionalized maltoheptaose was lately 

developed. The coupled adducts were then submitted to random sulfation. Maltoheptaose-biotin adducts 

were sulfated for the future SPR analysis, and maltoheptaose-PHOU adducts were sulfated in the goal 

of mimicking PGs. 

5.2 Results and discussion 

5.2.1 Thiol-ene coupling 

5.2.1.1 Introduction 

The addition of a thiol to a double bond is known as the thiol-ene reaction. Such fast and high yielding 

reaction usually requires mild conditions. However, the reactivity of thiols constitutes a limitation as 

these functional groups can undergo many simultaneous reactions, limiting their chemoselectivity and 

orthogonality to a broad range of reagents. As a consequence, thiol-ene couplings do not meet all 

requirements necessary for click chemistry and are therefore referred to as “thiol-inspired” reactions.332 

Their metal-free characteristic allows their extensive use for bioconjugation and biomedical applications 

rather than CuAAC because no toxic metal catalyst that could be detrimental for further in vivo and/or 

in vitro studies is employed.333,334 

Metal-free thiol-ene couplings may be subdivided into two classes depending on the nature of 

unsaturated substrate. An electron-rich double bond might be thiolated by a radical mechanism while an 

electron deficient one by a nucleophilic mechanism, so-called thiol-Michael addition. This latter requires 

a strong base but can proceed at room temperature without the need of UV irradiation.335 In this chapter, 
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only radical thiol-ene reactions were performed and will be discussed. Such couplings, initiated 

thermally or photochemically, are achieved through a free-radical chain mechanism allowing the 

formation of robust, flexible and sterically non-demanding thioethers.333  

On the other hand, one main disadvantage of radical thiol-ene reactions is the formation of disulfides 

stemming from oxidative dimerization of free thiols. Many reagents may cause this side-reaction besides 

atmospheric oxygen such as halogens, sulfoxides (DMSO solvent), metal ions, etc.336,337 In the case of 

photochemically induced radical thiol-ene couplings, the second case of disulfide formation is photo-

oxidation (where thiols undergo a photolytic cleavage resulting in disulfide formation by radical 

recombination).332 Disulfides may nevertheless be avoided by the addition of reducing agents: 

phosphines (tributyl-, triphenyl- and tris(2-carboxyethyl)-phosphines being the most common ones) or 

thiols (β-mercaptoethanol, dithiothreitol or glutathione). 

Although thiol-ene reaction is an old reaction discovered in 1905 by Posner 338, its application in the 

field of glycosciences started in the last decade with the emergence of click chemistry. From there, thiol-

ene reactions allowed for the preparation of wide range of glycoconjugates such as S-linked 

oligosaccharides, calix[4]arene- or silsesquioxanes-based glycoclusters, glycodendrimers, and amino-

acid-, peptide- and more interestingly protein-based glycoconjugates (for more information see 333,339). 

As an example, Floyd et al. 340 carried out the preparation of a S-linked glycoconjugate protein in 

aqueous and mild conditions (Scheme 62). To do so, they functionalized proteins with a non-natural 

amino-acid bearing an olefinic side-chain, L-homoallylglycine (L-Hag), that further reacted in a free-

radical thiol-ene coupling with various 1-thioglycosyls. They further used a self-assembled multimeric 

virus-like particle Qβ displaying 180 L-Hag moieties (Qβ-(Hag16)180) for photo-initiated 

glycoconjugation with β-1-thioglucosyl and obtained within 2-3 hours (depending on the pH 4 or 6) 

more than 95% yield of a fully glycoconjugated product on all 180 sites. 

 

Sugar Olefinic « protein » pH Time (h) Yield (%) 

 
Qβ-(Hag16)180 

4 2 
>95 

6 3 

 

Scheme 61. Glycoconjugation of virus-like Qβ-Hag16 with β-1-thioglucosyl by radical thiol-ene 

coupling 
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The radical thiol-ene coupling can also be applied to polysaccharidic structures as described by An et 

al.341 They prepared thiol-incorporated cellulose nanofibers by esterification between 3,3’-

dithiodipropionic acid and hydroxyl functions of glycosyl units. Next, the created disulfide bridges were 

cleaved releasing free thiol functions that reacted in a radical thiol-ene reaction with a complex random 

polymer, poly(VBC-r-VBDMH-r-AMA), bearing among others allyl groups. The coupling of both 

polymers was carried out using 2,2-dimethoxy-2-phenylacetophenone (DMPA) as photoinitiator in 

DMF under UV irradiation for three hours. The scheme of the strategy is presented on the figure 58 

below. 

 

Figure 58. Thiol-ene coupling of thiol-functionalized cellulose nanofibers with the polymer 

poly(VBC-r-VBDMH-r-AMA) 

Taking consideration of the availability of PHOU polymer bearing pendant electron-rich alkene 

functions and our prepared HTL-functionalized maltooligosaccharides (CHAPTER 4) for our project, 

an amine-thiol-ene coupling was proposed. This variant of the original radical reaction developed by du 

Prez and coll. 342–344 with HTL-carrying polymers consists in opening the thiolactone ring of HTL by 

aminolysis for its further “thiol-X” chemistry in a one-pot reaction (scheme 39 illustrating the strategy 

in 4.2.1.2.1). The amine used for the ring opening step should be saturated (no double or triple bond, no 

aromatic ring etc.) in view of the further radical thiol-ene coupling. The advantage of the strategy is its 

byproduct-free nature as no small molecules are liberated during the two steps, which facilitates 

purification steps. 

Mainly one thiol-functionalized maltooligosaccharide was used for the amine-thiol-ene coupling, M2-

rHTL (48), over the two prepared that are presented on the figure 59. 
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M2-rHTL (48) 

 
M7-rASH (57) 

Figure 59. Structure and name of thiol-functionalized maltooligosaccharides used as model 

compounds for thiol-ene coupling trials 

5.2.1.2  Synthesis of an alkene-bearing biotin 

As previously cited, D-(+)-biotin 77 was chosen as a low molecular weight model compound to be 

grafted onto thiol-functionalized maltooligosaccharides for two reasons: (i) this reagent allows for a 

better characterization of the reaction, (ii) it enables to measure the affinity of the formed potential GAG 

mimetics with biomolecules such as heparin binding growth factors via Surface Plasmon Resonance 

biological analysis (performed at IBS, Grenoble). Biotin was derivatized with an alkene group for the 

future thiol-ene coupling. 

The alkene-modified biotin (79) was prepared within two steps according to the procedure of Waldmann 

et al. 345, as shown on the scheme 63 below. The carboxylic acid of biotin 77 was activated using N-

hydroxysuccinimide (NHS) in the presence of dicyclohexylcarbodiimide (DCC) in DMF, forming the 

reactive biotin-NHS intermediate (78). After removal by filtration of unsoluble N,N’-dicyclohexylurea 

formed during the reaction 346, the NHS leaving group was replaced by allylamine in basic medium with 

triethylamine, creating biotin-allyl (79) with a quantitative yield over two steps.  

 

Scheme 62. Synthesis of biotin-allyl 79 via biotin-NHS 78 

The final product 79, whose 1H NMR spectrum with peak attribution is presented on the Figure 60, did 

not require further purification and matches perfectly with literature data 345,346.  
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Figure 60. 1H NMR spectrum with of compound 79 its peak attribution in DMSO-d6 

A second alkene-bearing biotin possessing an electron-deficient maleimide instead of an allyl was 

synthetized that could undergo a Michael-type nucleophilic thiol-ene reaction. To do so, the biotin-NHS 

(78) intermediate previously synthesized was reacted with commercially available 2-aminoethyl 

maleimide hydrochloride in DMF in the presence of triethylamine, as shown on the scheme 64 below347. 

Biotin-maleimide (80) was purified by reverse phase chromatography yielding 43% of pure product. 

 

Scheme 63. Synthesis of biotin-maleimide 80 via biotin-NHS 78 

However, due to the cost of 2-aminoethyl maleimide reagent and the moderate effectiveness of the 

reaction, the thiol-ene coupling with this reagent was put aside to focus on biotin-allyl reaction with 

thiol-end functionalized maltooligosaccharides. 

5.2.1.3 Preliminary tests of the thiol-ene coupling 

5.2.1.3.1 Thiol-ene reaction of end-functionalized maltose with biotin-allyl 

After preparation of the first thiol-end functionalized maltose 48 (see 4.2.1.2.2) and biotin-allyl (79, see 

5.2.1.2), trials of thiol-ene coupling were started. M2-rHTL (48) and biotin-allyl (79) were chosen as 

reaction models because of their accessibility and availability. They should react together in a radical 

amine-thiol-ene reaction 342,344,348 described as follows and illustrated on the scheme 65. The latent thiol 
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protected in the form of a thiolactone on maltose will first be released by aminolysis with ethanolamine 

(compound 81). Besides its use for ring-opening, ethanolamine was chosen to bring more water-

solubility to the final compound. The subsequently liberated thiol should react with the alkene moiety 

of modified biotin (79) in a radical-initiated thiol-ene reaction under UV irradiation to provide 82. 

 

Scheme 64. Radical amine-thiol-ene reaction of M2-rHTL 48 and biotin-allyl 79 

Equimolar ratios of M2-rHTL 48 and biotin-allyl 79 were reacted together with ethanolamine (two 

equivalents) and DMAP (nucleophilic catalyst) in DMF under UV-light (at 365 nm). No photoinitiator 

was used at the beginning of our tests due to possible side-reaction of the radical fragment of 

photoinitiator with the amine.342 The reaction crude was each time analyzed by mass spectrometry to 

have an idea of the species present. The first trials showed a majority of aminolyzed sugar 81 and 

disulfide dimers. It was assessed that the aminolysis is a very quick reaction compared to the second 

step (photoinduced radical thiol-ene coupling). Thereby, the released thiols tended to form dimers, 

hampering the second step. The lengthening of reaction times (from 2 hours to 7 hours) caused the 

formation of more dimers, and on the contrary the portionwise addition of ethanolamine allowed for a 

bit less side-products. The mass spectrum displayed in figure 61 is representative of the most “efficient” 

trial that we obtained. 
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Figure 61. Mass spectrum of a thiol-ene reaction trial between M2-rHTL 48 and biotin-allyl 79 

A large majority of intermediate 81 at m/z=505.32 is present, dimers at m/z=1007.55 and targeted 

compound 82 at m/z=788.44 seem to be almost equally obtained, and a minority of residual biotin-allyl 

79 at m/z=306.19 is observed. Considering the peak intensities on the mass spectrum, still a minority of 

targeted product was formed. Instead of the amine, the thiol-functionalized maltose was added 

portionwise which resulted in a large majority of side-products. It was hypothesized that the slow rate 

of thiol-ene step might be due to the absence of photoinitiator. So, the nucleophilic catalyst DMAP was 

replaced by the photoinitiator DMPA (2,2-dimethoxy-2-phenylacetophenone) in stoichiometric amount. 

No pic of M2-rHTL 48 was observed, but a new pic at m/z=589.4 that could not be attributed appeared. 

The mass spectrum is presented in the figure 62. 

Compound 79 

Dimer of intermediate 81 

Compound 82, targeted 

Intermediate 81 
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Figure 62. Mass spectrum of the thiol-ene crude after reaction between M2-rHTL 48 and biotin-allyl 

79 in the presence of DMPA photoinitiator 

When the quantities of DMPA were then drastically decreased to 6% weight, more product 82 was 

formed compared to dimers but the unidentifiable product was still major. Adding more quantities of 

functionalized maltose (2.5 equivalents) along with decreasing DMPA ratio to 3% weight did not 

optimize the reaction. Finally, when TCEP reducing agent was added, no dimer was formed but the 

targeted product 82 was present as traces as the major product was the unknown one. To resume, many 

parameters were modulated to avoid the disulfide as well as side-product formation such as partitioned 

additions of ethanolamine or of functionalized maltose, reaction times, inert conditions, photoinitiator 

or addition of a reducing agent. Despite all trials, the product could not be isolated with an acceptable 

yield. In addition, reaction times were extremely long compared to classic thiol-ene couplings (3-7 h). 

As a consequence, starting materials M2-rHTL 48 and biotin-allyl 79 were sent to our collaborators 

(ICMPE, Thiais), that have an expertise in radical-mediated thiol-ene chemistry on polymers.  

Based on their trials with PHOU (see 5.2.1.3.2), they also observed that the aminolysis step was very 

quick compared to the thiol-ene step. To improve the rate of the second step, they realised the ring 

opening of M2-rHTL (48) prior to the thiol-ene reaction. The aminolysis (first step) was performed by 

mixing n-butylamine with M2-rHTL (48) in the presence of the base DMAP either in DMF either in 

water, this latter solvent being more easily removable. The reaction is illustrated on the Scheme 66 

below. 

 

Scheme 65. Aminolysis of maltose-rHTL (48) with n-butylamine 

The purification step yielded about 95% of pure product 83 when the reaction was carried out in DMF 

and 80% in water, that was characterized by Raman spectroscopy to assess the presence of free thiols 

Compound 79 

Unknown side-product 
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and amide linkage (data not shown) and by 1H NMR to observe the successful attachment of n-

butylamine (Figure 63 below). 

 

Figure 63. 1H NMR spectra superposition of compound 83 (after aminolysis, black) and 48 (before 

aminolysis, blue) in D2O 

Both M2-rHTL-SH 83 and biotin-allyl 79 were dissolved in DMSO, DMPA initiator was added in 

methanol and the reaction mixture was irradiated during 2*5min under UV light, as illustrated on the 

Scheme 67.  

 

Scheme 66. Radical amine-thiol-ene reaction of M2-rHTL-SH 83 and biotin-allyl 79 

Few quantities of product were recovered after dialysis purification, but a mixture of products was 

supposedly formed according to the 1H NMR spectrum. In a second trial, TCEP was dissolved with free-

thiol maltose (83) overnight prior to the reaction in the same conditions. However, once again, no pure 

product could be isolated after purification according to the 1H NMR spectrum. 
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The thiolactone system was hypothesized to cause problem because of the rapid ring opening step 

releasing the sulfhydryl moiety. To check this theory, another thiol-functionalized maltooligosaccharide 

was tested. The trial was directly attempted on modified maltoheptaose instead of maltose to save time. 

Previously prepared and impure M7-rASH (57), that was conserved under inert atmosphere in the 

presence of tributylphosphine, was reacted with biotin-allyl 79 and DMPA in dry DMF, as showed on 

the scheme 58. After one hour and by following the reaction with TLC plates, nothing occurred 

suggesting that the problem might come from the conditions used or the alkene system. 

 

Scheme 67. Radical thiol-ene reaction of M7-rASH 57 and biotin-allyl 79 

In parallel of these preliminary tests of amine-thiol-ene coupling on low-molecular weight compound 

biotin-allyl 49, some tests were performed directly on PHOU polymer by our ICMPE collaborators. 

5.2.1.3.2 Thiol-ene reaction of end-functionalized maltose with PHOU 

While optimizing the thiol-ene coupling of functionalized maltose 48 with biotin-allyl 79, the reaction 

was carried out with native PHOU 76, a polyester bearing terminal alkenes whose percentage among 

the polymer chain varies between %alkene= 31-33 % depending on the batch of PHOU. All thiol-ene trials 

were performed in the presence of the photoinitiator DMPA under UV irradiation (at 365 nm and 200 

watts) and under argon atmosphere. When a ring opening of thiolactone was required, DMAP was used 

as a nucleophilic catalyst. Solvents were particularly critical for the coupling; carbohydrates being 

water-soluble and partially soluble in DMSO while PHOU is a very hydrophobic polymer soluble in 

water-miscible THF. 

For the first trial, PHOU (76) and maltose-rHTL (48) were reacted with n-butylamine in a “one-pot” 

photo-initiated amine-thiol-ene reaction for 5 min in a mixture of THF and water (1/1 v/v), as depicted 

on the Scheme 69 below.  

 

Scheme 68. “One-pot” photo-initiated thiol-ene coupling of maltose-rHTL (48) with PHOU (76) 
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The polymer obtained after UV irradiation precipitated due to the insolubility of PHOU in water, and 

the dialysis against water did not allow to recover enough product for characterization. As hypothesized 

previously, the first step of aminolysis was considered to be very fast compared to the thiol-ene step. 

The dialysis might have eliminated the aminolyzed maltose along with DMPA, DMAP and n-

butylamine. 

The grafting of maltose onto PHOU was then tried within two separate steps instead of a “one-pot”. The 

aminolysis (first step) was performed by mixing n-butylamine with maltose-rHTL (48) as previously 

described (see 5.2.1.3.1). Few thiol-ene couplings were then carried out by varying the solvent as shown 

on the Scheme 70.  

 

Scheme 69. Photo-initiated thiol-ene coupling of maltose-rHTL-SH (83) with PHOU (76) 

PHOU (76) was dissolved with maltose-rHTL-SH (83) in the presence of initiator in deuterated 

chloroform and DMSO for an NMR study of the reaction, showing no evolution of spectrum before and 

after UV irradiation. A single solvent was then used for the reaction, water, where PHOU formed a 

suspension. Some methanol was added with the introduction of DMPA. However, as for the very first 

trial, important loss of product was observed during dialysis and the product could not be characterized. 

Finally, a ternary mixture of solvent was assayed : THF, DMF and water (5/2/minimum v/v/v). Some 

TCEP was added as a reducing agent for eventual disulfide formations. The final product, purified by 

dialysis, could not be analyzed by NMR due to its gel consistency in deuterated chloroform and DMSO. 

To increase the solubility of PHOU in DMSO, the polymer was partially grafted with sulfonate groups 

(anionic functions) by thiol-ene coupling: 14% of sulfonate were attached while 17% of alkene functions 

were left for future thiol-ene with functionalized maltose. The resulting polymer 87 and maltose-rHTL-

SH (83) were then solubilized in DMSO and reacted together under UV irradiation for 2*5 min, as 

shown on the Scheme 71. 
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Scheme 70. Photo-initiated thiol-ene coupling of maltose-rHTL-SH (83) with PHOU-sulfonate (87) 

The purified product was analyzed by 1H NMR, showing small quantities of sugar compared to PHOU. 

It was assumed that a small percentage of maltose-rHTL-SH (83) was grafted onto the polymer.  

As mentioned in the chapter 4 (4.2.1.2.2), maltose-rHTL (48) could not be obtained in big quantities 

and under pure form, ICMPE collaborators therefore carried out thiol-ene reaction tests with other 

maltoses differently thiol-functionalized in parallel to save product and optimize the conditions. 

They assayed two aminated variants of sugar (aminated maltose and glucosamine) with N-acetyl HTL 

illustrated on the Figure 64. However, the thiol-ene reaction tests with these variants were not conclusive 

although many solvents were tried to solubilize both PHOU and modified carbohydrates (THF/water, 

THF/DMSO/water, THF/DMAc/water, DMSO/THF). 

 
  

Aminated maltose Glucosamine N-acetyl HTL 

Figure 64. Structure of the variants of sugar and N-acetyl HTL tested for thiol-ene coupling by 

ICMPE collaborators 

In summary, a wide panel of solvent mixtures was tried for the thiol-ene coupling, but the difference of 

polarity and solubility of carbohydrates and PHOU might explain the inefficiency of the reaction. As 

PHOU was very hard to solubilize in most of the mixtures, the cause of failure might be the 

inaccessibility of its alkene functions by polar thiol-bearing carbohydrates. 

For PHOU as well as for biotin-allyl, it was presumed that the allyl group was not accessible enough for 

this type of reaction and that free thiols might be very reactive and unstable leading to side-products. 

Thus, instead of thiol-ene chemistry, a more classical amide coupling was developed, where amine-

terminated maltooligosaccharides were beforehand prepared. 
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5.2.2 Amide coupling 

5.2.2.1 Introduction 

Glycosyl amide linkages are ubiquitously present in living organisms as part of glycoconjugates 

involving peptides or proteins. In the goal of mimicking native glyco-peptides and -protein, many 

methods were developed to synthesize such linkage from native or functionalized carbohydrates (for 

more information see 37). 

Ritter et al. reported the amide linkage formation from a nitrile and a carbonyl in 1948.349 The so-called 

Ritter reaction was applied to carbohydrate chemistry with little modifications and the mechanism, 

illustrated on the scheme 72, was elucidated by Wang group.350 The anomeric position of native 

carbohydrate was activated by a Lewis acid, providing an oxacarbenium intermediate, which was 

attacked by a nitrile nucleophile to form after hydration an amide linkage with β selectivity. 

 

Scheme 71. Proposed mechanism for the Ritter reaction of unprotected carbohydrate with a nitrile 

Another more recent method starting from native carbohydrate implies the use of a phosphine, an acid 

and a silylated azide. The procedure was developed by Zheng et al. 351 The scope of glycopeptides that 

could be prepared is presented on the Table 22. 
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Product Yield (%) a 

 

76 

 

75 

 

70 

 

61 

Table 16. Scope of glycopeptides prepared by Zheng et al. by reductive glycosylation of native 

carboydrates with azides.a β:α ratio >15:1 

The thioacid-azide ligation results in the coupling between azides and substituted thioacids. The reaction 

reported by Chu and co-workers and thioacetic acid 352 and then exploited by Williams’ group who 

proposed two possible mechanisms for the reaction depending on the azide type (electron-rich or -

deficient)353. Unprotected azide-end-functionalized carbohydrates could be coupled to thioacetic and 

thiobenzoic acids in aqueous conditions with yields up to 80% as shown on the Scheme 73 below 354. 

However, long reaction times were observed (also with per-protected glycosyl azides). 

 

Scheme 72. Preparation of amide-linked glycoconjugate by thioacid-azide ligation 

Also with the use of azide-terminated carbohydrates, traceless Staudinger ligation was developed by 

Raines group 355 and Bertozzi 356 involving phosphine functionalized ester. Nisic et al. 357 prepared a 

variety of N-glycosyl amino acids by this method, as shown on the Scheme 74. Unprotected β-oriented 

glycosyl azides were converted into the corresponding amides with good yields. However, furanosyl 

amides and native glycans were also observed as side-products. 
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Scheme 73. Synthesis of N-glycosyl amino acids by traceless Staudinger ligation with fluorinated 

phosphanes 

The α-ketoacid/hydroxylamine ligation was a method reported in the 00’s by Bode et al 358. Despite the 

β selectivity, poor yields of glycoconjugates were obtained due to possible side-reactions of both 

reactants. As an example illustrated on the Scheme 75, Boas et al. 359 performed the glycoconjugation 

of KDO antigen polysaccharide with oxyamine-functionalized polystyrene beads in mild conditions 

(40°C in water). 

 

Scheme 74. Preparation of glycoconjugate adducts by α-ketoacid/hydroxylamine ligation with KDO 

antigen polysaccharide with polystyrene beads 

The most widely used method for preparing amide linked glycoconjugates is the acylation of 

glycosylamines or amine-functionalized carbohydrates. The procedure usually requires the presence of 

an anhydride, acyl halide or a carboxylic acid to be activated by a coupling reagent. The disadvantage 

of intermediate anomerization and instability with glycosylamines may be overcomed by using 

carbohydrates that were amine-functionalized by a spacer. As an example, Huang et al. 360 synthesized 

truncated Globo H tumor antigen analogs, that were amine-end functionalized in one pot strategies. 
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These derivatives were then immobilized as shown on the figure 65 onto NHS-coated glass slides by 

formation of an amide linkage in aqueous conditions at room temperature for biological purpose 361.  

 

Figure 65. Immobilization of amine-terminated glycans on NHS-coated glass slides 

Regarding the availability of PHOU-carboxylate 89 and amine-terminated maltooligosaccharides, an 

amide coupling by acylation was conceived. Due to the lack of time, the reactions were directly carried 

out with functionalized maltoheptaose M7-rANH2 (75), whose structure is presented on the figure 66 

below. 

 

Figure 66. Structure of M7-rANH2 (75) 

5.2.2.2 Amide coupling of amine-modified maltooligosaccharides with biotin-NHS 

Biotin, as a model compound and useful for strongly interacting with streptavidin, was attached to 

amine-terminated maltooligosaccharides by amide coupling by using the biotin-NHS intermediate (78) 

previously prepared. On the contrary to the thiol strategy, maltose was not used as a model compound 

due to the lack of time. The tests were directly carried out with modified maltoheptaose. M7-rANH2 

(75), in the presence of triethylamine, was reacted with biotin-NHS (78) in a mixture of DMF/water as 

illustrated on the Scheme 76 below to provide the coupled product 90 within thirty minutes with a 69% 

yield after purification. 

 
Scheme 75. Amide coupling of M7-rANH2 75 with biotin-NHS 78 

The 1H NMR spectra superposition of the product and the starting materials is presented on the Figure 

67 below. On the spectrum of the product (black), the peaks attributed to sugar protons between 2.90 

and 5.46 ppm seem intact as well as those attributed to the anthranilic aglycon between 6.76-7.58 ppm 

(blue). Peaks attributed to biotin-NHS (78) may have shifted due to the difference of solvent (DMSO-
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d6 for the green spectrum while D2O for the black and blue ones) but are still present showing a 

successful coupling. 

 

Figure 67. 1H NMR spectra superposition of compound 90 (black, in D2O) with the starting 

compounds 75 (blue, in D2O) and 78 (green, in DMSO-d6)  

Once the product obtained, it was randomly sulfated at different degrees to be further tested as 

glycosaminoglycan mimetic during SPR analysis (IBS, Grenoble). 

5.2.2.3 Random sulfation of biotin-maltoheptaose conjugates 

In the aim of performing surface plasmon resonance analysis (at IBS, Grenoble), compound M7-rANH-

CO-biotin 90 was randomly sulfated at different degrees to produce biotinylated potential GAG 

mimetics as shown on the Scheme 77. Sulfation was carried out in the optimized conditions described 

for maltoheptaose derivatives (see 2.2.1). Briefly, compound 90 was dissolved in dry pyridine and 

reacted with different amounts of sulfur trioxide pyridine complex depending on the targeted DS. The 

products were then purified by GPC. By doing so, purified highly and moderately sulfated derivatives 

could be obtained.  

 

Scheme 76. Random sulfation of M7-rANH-CO-biotin 90 
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Due to a lack of time (lockdown of COVID-19), this part could not be completed : (i) lightly sulfated 

derivative could not be prepared because the starting material was degraded with prolonged conversation 

at room temperature, (ii) the reactions did not afford enough product for complete analysis of sulfated 

derivatives, and they could not be relaunched, (iii) our potential GAG mimetics could not be analyzed 

by our collaborators at IBS (Grenoble). 

The amide route being validated for amine-functionalized maltoheptaose (see 5.2.2.2), the reaction 

between amine-functionalized maltoheptaose 75 and PHOU-carboxylate 89 was performed by our 

collaborators (ICMPE, Thiais). 

5.2.2.4 Amide coupling of amine-modified maltooligosaccharides with PHOU-carboxylate 

ICMPE collaborators beforehand oxidized native PHOU possessing alkene functions (%alkene= 31 %) 

into carboxylates. The percentage of carboxylate functions formed was estimated to be of 31%, assessing 

a complete transformation of alkenes. Next, the grafting reaction between PHOU-carboxylate 89 and 

M7-rANH2 75 was realized in DMSO in the presence of the base DMAP with the coupling reagent 

TBTU (O-(1H-Benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium tetrafluoroborate), an aminium 

reagent known for achieving high coupling rates with few undesirable side reactions 362. The resulting 

by-products of this reagent are water-soluble, allowing an easy purification of the polymer by dialysis 

(mechanism of amide coupling with HBTU 363). The reaction is illustrated on the Scheme 78 below. 

 

Scheme 77. Amide coupling of M7-rANH2 43 with PHOU-carboxylate 56 

The reaction was carried out for 48h, and the purified product was characterized by 1H NMR (figure 68) 

showing a successful coupling of maltoheptaose on PHOU with a grafting rate of 18% (calculated by 

1H NMR), representing on average 19 monomers bearing maltoheptaose among one PHOU-carboxylate 

chain. Apparition of aromatic and N-H peaks between 6.42 and 8.40 ppm, along with sugar peaks from 

2.90 to 5.75 ppm demonstrated the presence of maltoheptaose along with PHOU peaks in DMSO.  
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Figure 68. 1H NMR spectra superposition of product 91 (black) and PHOU-carboxylate 89 (blue) 

The coupled product was then submitted to sulfation at different degrees in order to obtain randomly 

sulfated glycoconjugate polymers, acting as potential proteoglycan mimetics. 

5.2.2.5 Random sulfation of PHOU-maltoheptaose conjugate 

To produce PG mimetics, functionalized maltoheptaose was grafted onto PHOU polymer by amide 

coupling. The resulting compound 91 was submitted to random sulfation. Due to the limited quantities 

of starting material, only one DS, the moderately one, was targeted. Prior to the reaction, solubility of 

compound 91 was tested in the solvents used for sulfation: the product was soluble only in DMSO and 

in pyridine, but not in DMF neither in water. The reaction was therefore carried out in dry pyridine as 

shown on the Scheme 79. 

Compound 91 was solubilized for one night in dry pyridine at room temperature, leading to a clear 

yellowish solution. Next, the sulfating agent was introduced and the temperature was raised to 60°C for 

one night. The crude, not soluble in water, was neutralized with sodium bicarbonate and dialyzed against 

water for four nights. A brown residue was obtained after lyophilization. The 1H NMR spectrum 

obtained suggested that no reaction has occurred, as the peaks were identical to those of the starting 

material 91. Unfortunately, due to a lack of time, the reaction could not be relaunched.  
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Scheme 78. Random sulfation of M7-rANH-CO-biotin 91 

5.3 Conclusion 

In the goal of obtaining potential proteoglycan mimetics, a thiol-ene coupling of thiol-end functionalized 

maltooligosaccharides with the alkene-bearing PHOU polymer was envisioned. The preliminary trials 

were performed on the low-molecular weight model compound maltose for its accessibility and 

availability. Unfortunately, no product could be isolated by amine-thiol-ene reaction of maltose with 

biotin-allyl 79 or PHOU 76. It was hypothesized that the alkene function of these latter was not 

accessible enough because of the difference of solubility of the sugar and aglycon entities. 

To address this problem, a second more classic grafting was performed with amine-terminated 

maltoheptaose and either biotin-NHS 78 or PHOU-carboxylate 89. The amide coupling successfully 

yielded the coupled products, whose structures are presented on the Figure 69 below. Compound 90 was 

then sulfated at two degrees (high and medium) and was aimed to be biologically evaluated as GAG 

mimetic by our IBS collaborators (Grenoble, work to be done). Compound 91 on the other side was 

aimed to be a potential PG mimetic once sulfated, however the sulfation step could not be achieved yet. 

 

 
M7-biotin 90 

 
M7-PHOU 91 

Figure 69. Scope of successfully grafted maltooligosaccharides by amide coupling 
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CHAPTER 6 Conclusions and 

perspectives 
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6.1 Conclusions 

The project, emerged in the context of osteoarthritis, consisted in proposing a favorable environment for 

mesenchymal stem cells to reconstruct the articular matrix by preparing structurally simplified GAG 

and PG mimetics. The aim of the study was to understand the role of chain length, conformation, charge 

density, sulfate position and multivalency for the interaction of newly synthesized glycomimetics with 

proteins involved in osteaoarthritis. 

In practice, our multidisciplinary project was developed between four laboratories : mainly the 

CERMAV (Grenoble) for their expertise in glycochemistry, Gly-CRRET (Créteil) for biological assays 

in vitro and ex vivo skills, ICMPE (Thiais) for their knowledge in polymer chemistry, and a team at IBS 

(Grenoble) for their competence on GAG structure and activity elucidation. 

The strategy was based on (cyclo)maltooligosaccharides of defined length, six or seven sugar units, that 

already proved their biological activities. The first part of the project consisted in random sulfation of 

potential GAG mimetics. Linear malto-hexaose & -heptaose and β-cyclodextrin (the cyclic equivalent 

of maltoheptaose) were randomly sulfated at different degrees (low, medium, high) and assayed to 

estimate the degree of sulfation and the importance of structural conformation needed to elicit biological 

activity as potential monovalent GAG mimetics (performed by our collaborators of Gly-CRRET, 

Créteil). Then, regioselective sulfation was achieved by using the chemistry of 

cyclomaltooligosaccharides, known for their Cn symmetry. Selectively sulfated cyclodextrins were later 

biologically assayed to understand the role of sulfate position on their biological activity. 

Linear maltooligosaccharides were also end-functionalized for their future coupling performed by 

ICMPE collaborators with a biodegradable bacterial polyester polymer, PHOU (poly(3-

hydroxyoctanoate-co-3-hydroxyundecenoate), in order to get a multivalent structure able to potentially 

mimic PGs.  

The project was structured around four main tasks, developed in the different chapters :  

1) Random sulfation of (cyclo)maltooligosaccharides and their biological evaluation (chapter 2); 

2) Preparation of potential cyclic GAG mimetics by regioselective sulfation and their biological 

evaluation (chapter 3); 

3) Thiol- and amine-end-functionalization of potential linear GAG mimetics, and their random 

sulfation, for their future grafting by thiol-ene or amide coupling respectively (chapter 4); 

4) Preparation of potential PG mimetics by grafting of potential linear GAG mimetics on a 

biodegradable polymer scaffold and their random sulfation (chapter 5). 

 

We performed and optimized the protocol for randomly sulfated (cyclo)maltooligosaccharides. After 

being fully characterized by 1H NMR, SEC-MALS, FT-IR and elemental analysis, the compounds were 
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submitted to biological assays. Two tests were carried out to evaluate their ability to mimic natural 

GAGs by using FGF-2 and VEGF as HPBs. The ELISA tests allowed to measure the relative affinity of 

sulfated (cyclo)maltooligosaccharides for growth factors, and thereby their binding abilities. The 

mitogenic assay on BAF32 and HUVEC cells allowed to attest their efficacy by eliciting cell growth. 

Globally, moderately and highly sulfated exhibited more affinity and elicited more intense responses 

than lightly sulfated derivatives. The minimal chain length required for biological activity was estimated 

at seven sugar units. Binding affinities and cell growth were different depending on the linear or cyclic 

conformation of oligosaccharides. 

Selective chemistry on β-cyclodextrins was then used for the preparation of selectively sulfated 

maltooligosaccharides. Six regioselectively sulfated β-cyclodextrin derivatives were targeted in the goal 

of obtaining linear maltooligosaccharides with well-defined sulfation patterns. Starting from a key 

intermediate, heptakis-(6-O-tert-butyldimethylsilyl)-β-cyclodextrin, multiple pathways were 

investigated. Three cyclic derivatives were successfully obtained (6S, 2S, and 3,6S), one compound 

could only be partially sulfated (2,3S) and two compounds could not be prepared due to incompatible 

protecting groups and a lack of time (2,6S and 3S). The sulfated β-cyclodextrins were next sent to our 

biologist collaborators (Gly-CRRET, Créteil) for early stage assays. Unfortunately, no assumptions 

could be made with the preliminary results presented.  

In the goal of evaluating the multivalent presentation of “GAG mimetics” on the biological activity, 

several sulfated maltoheptaose (thiol- or amine-functionalized) chains were envisioned to be grafted to 

a polymeric skeleton (natural PHOU bearing pendant alkene functions, or PHOU-COOH bearing 

pendant acid carboxylic functions) in order to obtain proteoglycan mimetics.  

Linear maltooligosaccharides were reducing end functionalized by a thiol or amine moiety. For thiol-

modified glycans, three strategies were investigated on maltose and maltoheptaose: 

cysteamine/cystamine method for which no product could be obtained, homocysteine thiolactone 

method for which four products could be isolated (two M2 and two M7 derivatives), and anthranilic 

derivative method for which two products were achieved. By doing so, six compounds could be 

synthesized. 

For the next step of the project, some thiol-end-functionalized maltoheptaoses were randomly sulfated 

for their future coupling with PHOU, while thiol-modified maltoses were used to optimize the thiol-ene 

coupling. 

Despite many tries varying the conditions, thiol-ene either on biotin or PHOU could not be achieved 

with acceptable yields. To overcome this problem, an amide coupling was developed in late stages of 

the project. 
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Only one strategy was investigated for the amine-modification directly on maltoheptaose: the anthranilic 

derivative method. Two modified maltoheptaoses could be obtained including the final amine-bearing 

glycan. M7-rANH2 was used for the amide coupling with biotin NHS-functionalized and a variant of 

PHOU bearing pendant carboxylic acid groups. The coupled product M7-biotin was successfully 

obtained and was submitted to random sulfation at different degrees for future SPR analysis (by IBS 

collaborators, Grenoble). The product M7-PHOU was also successfully obtained and remains to be 

sulfated prior to the evaluation of its biological properties as proteoglycan mimetic. 

6.2 Perspectives 

In the continuity of our work, some tasks, mainly biological assays, remain to be completed in each 

chapter. 

More biological assays need to be performed of randomly sulfated (cyclo)maltooligosaccharides to 

assess the role of the DS, chain length and conformation (linear or cyclic) on the biological properties 

of the compounds (work in progress). 

To accurately evaluate the role of sulfate group positions, two compounds remain to be prepared and 

once again, a majority of biological assays are missing (work in progress). Also, an interesting 

perspective would be to perform an acetolysis of regioselectively sulfated β-cyclodextrins. By doing so, 

linear maltoheptaoses with defined sulfation patterns would be obtained, and their biological properties 

could be compared to those of randomly sulfated maltoheptaoses. 

Random sulfation of the coupled product M7-PHOU is in progress, and once sulfated, the product will 

be sent to evaluate its ability to mimic PGs. 
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Experimental section 

Materials and methods 

All reagents were purchased from commercial suppliers and were used as received. N,N’-

Dimethylformamide (DMF) and pyridine were distilled under vacuum and stored over activated 

molecular sieves 4Å. β-cyclodextrin was dried at 60 or 90 °C under reduced pressure in the presence of 

P2O5 and KOH until constant weight.  

Carbohydrate modifications were followed by thin-layer chromatography on silica gel 60F254 (E. 

Merck) visualized by heat staining with sulfuric acid 3% solution in MeOH/H2O (1/1 v/v). Sephadex 

purifications were performed with LH20 Sephadex resin using H2O/MeOH 2/1 v/v eluent. NMR 

analyses were recorded at 25 °C on a Brucker Advance III DRX400 spectrometer. Chemical shifts (δ) 

are given in ppm. The solvent residual peaks of D2O, DMSO-d6, MeOD-d4 and CDCl3 were used as 

internal standards, at 4.78 ppm, 2.50 ppm, 3.31 ppm and 7.26 ppm, respectively for 1H NMR, and at 

39.52 (DMSO-d6), 49.00 (MeOD-d4) and 77.16 (CDCl3) for 2D NMR. Coupling constants (J) values 

are given in Hertz (Hz). Signal multiplicities are described by the following abbreviations: singlet (s), 

broad singlet (bs), doublet (d), broad doublet (bd), doublet of doublets (dd), triplet (t) and triplet of 

doublets (td). 2D NMR, homonuclear correlation spectroscopy (COSY), heteronuclear single quantum 

coherence spectroscopy (HSQC), and heteronuclear multiple-bond correlation spectroscopy (HMBC) 

experiments were used for unequivocal assignment. Matrix-assisted laser desorption ionization time-of-

flight (MALDI–TOF) measurements were performed on a Bruker Daltonics Autoflex Speed apparatus 

using 2,5-dihydroxybenzoic acid (DHB) as a matrix. High resolution mass spectrometry was carried on 

a Thermo Scientific LTQ Orbitrap XL (quadrupole hybrid with orthogonal acceleration time-of-flight) 

mass spectrometer apparatus. Sulfated oligosaccharides were purified by gel permeation 

chromatography (GPC) with the Superdex S30*3 system (polyacrylamide gel, Biogel P2, P4 or 

BIORAD) by using ammonium carbonate (0.1 M) at 1.2 mL/min flow rate. For sulfated 

oligosaccharides, gel permeation chromatography (SEC-MALS) measurements were performed on a 

Shimadzu apparatus using dextran sulfate (dn/dc=0.142) as an internal reference. The infrared 

measurements (FT-IR) were carried on a Perkin Elmer Spectrum Two apparatus. The elemental analysis 

measurements were performed on an Elementar Vario Micro Cube apparatus (Laboratoire de Mesures 

Physiques, Université de Montpellier, France). 

Elemental analysis was performed to determine the sulfur content of each mixture of sulfated 

polysaccharides and to define the degree of sulfation per unit (DS) of each derivative 364. 

𝐷𝑆 =
(

𝑆%
𝑎𝑡𝑜𝑚𝑖𝑐 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑆

)

(
𝐶%

𝑎𝑡𝑜𝑚𝑖𝑐 𝑚𝑎𝑠𝑠 𝑜𝑓 𝐶 × 𝑛𝐶
) × 7

= 2,25 ×
𝑆%

𝐶%
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Synthesis 

Randomly sulfated maltoheptaose (Sulfated M7) 

 

C42H(72-x)NaxO(36+3x)Sx 

[Lightly sulfated] To a stirred solution of maltoheptaose (1 eq., 0.17 mmol, 200 mg) in anhydrous DMF 

(5 mL) under nitrogen atmosphere was added sulfur trioxide pyridine complex (0.5 eq./OH, 2.00 mmol, 

318 mg) portionwise. The reaction mixture was heated at 80°C and was stirred for 2 hours. The reaction 

mixture was then cooled down to room temperature and poured in a 5% NaHCO3(aq) solution (10 mL, 

pH 7-8). The crude was concentrated until dryness and then purified by GPC to afford, after 

lyophilization, a fluffy white solid (195 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.17-4.58 (m, H2’,3’,4’,5’,6’) ; 5.22-6.15 (m, 7H, H1’). 

FT-IR : ν(OH)=3282 cm-1 ; ν(CH)=2913 cm-1 ; ν(S=O)=1199 cm-1 ; ν(C-OH ; C-O & C-C)=990 cm-1 ; 

ν(salts)=568 cm-1. 

SEC-MALS: weight-average molar mass Mw of 1722 ± 53 g/mol. 

[Moderately sulfated] To a stirred solution of maltoheptaose (1 eq., 0.17 mmol, 200 mg) in anhydrous 

DMF (5 mL) under nitrogen atmosphere was added sulfur trioxide pyridine complex (1 eq./OH, 4.00 

mmol, 636 mg) portionwise. The reaction mixture was heated at 80°C and was stirred for 2 hours. The 

reaction mixture was then cooled down to room temperature and poured in a 5% NaHCO3(aq) solution 

(10 mL, pH 7-8). The crude was concentrated until dryness and then purified by GPC to afford, after 

lyophilization, a fluffy white solid (178 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.74-4.68 (m, H2’,3’,4’,5’,6’) ; 5.37-6.11 (m, 7H, H1’). 

FT-IR : ν(OH)=3449 cm-1 ; ν(CH)=2950 cm-1 ; ν(S=O)=1213 cm-1 ; ν(C-OH ; C-O & C-C)=990 cm-1 ; 

ν(salts)=575 cm-1. 

SEC-MALS: weight-average molar mass Mw of 2415 ± 31 g/mol. 

[Highly sulfated] To a stirred solution of maltoheptaose (1 eq., 86.73 µmol, 100 mg) in anhydrous DMF 

(4 mL) under nitrogen atmosphere was added sulfur trioxide pyridine complex (5 eq./OH, 10.01 mmol, 

1.59 g) portionwise. The reaction mixture was heated at 60°C and was stirred overnight. The reaction 

mixture was then cooled down to room temperature and poured in H2O (10 mL). NaHCO3 was added 

until saturation (pH 9-10). The crude was concentrated until dryness and then purified by GPC to afford, 

after lyophilization, a fluffy white solid (212 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.81-5.01 (m, H2’,3’,4’,5’,6’) ; 5.53-5.74 (m, 7H, H1’). 

FT-IR : ν(OH)=3478 cm-1 ; ν(CH)=2921 cm-1 ; ν(S=O)=1218 cm-1 ; ν(C-OH ; C-O & C-C)=990 cm-1 ; 

ν(salts)=582 cm-1. 

SEC-MALS: weight-average molar mass Mw of 2910 ± 167 g/mol. 
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Sample 

 

Mw Mn PDI (Mw/Mn) 

Moy ± Moy ± Moy ± 

M7L 1722 53 1281 28 1.344 0.012 

M7M 2415 31 1320 15 1.830 0.025 

M7H 2910 167 1649 57 1.765 0.066 

Table 17. SEC-MALS analysis of sulfated M7 

Sample C H N S Degree of sulfation (DS) 

 [wt%] [wt%] [wt%] [wt%]  

M7L 30.844 5.999 3.152 7.003 0.5 

M7M 20.532 5.475 5.826 14.444 1.6 

M7H 14.832   4.716 8.473 21.009 3.2 

Table 18. Elemental analysis of sulfated M7 

Randomly sulfated maltohexaose (Sulfated M6) 

 

C36H(62-x)NaxO(31+3x)Sx 

[Lightly sulfated] To a stirred solution of maltohexaose (1 eq., 0.15 mmol, 150 mg) in a mixture of 

DMF/pyridine 2/3 v/v (5 mL) was added sulfur trioxide pyridine complex (0.5 eq./OH, 1.50 mmol, 238 

mg). The reaction mixture was heated at 80°C and was stirred for 2h30. The reaction mixture was then 

cooled down to room temperature and poured in a 5% NaHCO3(aq) solution (10 mL, pH 7-8). The crude 

was concentrated until dryness and then purified by dialysis against H2O to afford, after lyophilization, 

a fluffy white solid (67 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.23-4.72 (m, H2’,3’,4’,5’,6’) ; 5.23 (d, 0.5H, H1’α) ; 5.31-5.81 

(m, 5.5H, H1’). 

FT-IR : ν(OH)=3272 cm-1 ; ν(S=O)=1215 cm-1 ; ν(C-OH ; C-O & C-C)=995 cm-1 ; ν(salts)=576 cm-1. 

[Moderately sulfated] To a stirred solution of maltohexaose (1 eq., 0.15 mmol, 150 mg) in a mixture 

of DMF/pyridine 2/3 v/v (5 mL) was added sulfur trioxide pyridine complex (1 eq./OH, 3.00 mmol, 477 

mg). The reaction mixture was heated at 80°C and was stirred for 2 hours leading to the formation of a 

brown residue in a colorless solvent. The hot solvent was discarded, and the residue was rinced with 

MeOH (10 mL) three times. The residue was then dissolved in H2O (7 mL) by using an ultrasound bath 

and concentrated until dryness. The residue was redissolved in H2O (4 mL) and a solution of barium 

acetate (0.55 mM, 4 mL) was added dropwise until the pH reached a value of 6. The addition of barium 

acetate formed a white precipitate, that was centrifuged at 7000 g for 10 min at 4°C. The precipitate was 

discarded and the supernatant was concentrated. The product was then passed through an ion-exchange 

resin (DOWEX H+). The obtained product was then neutralized with ammonia 1 M (3 mL). Finally, the 

product was purified by dialysis against H2O, and lyophilized to provide a white fluffy solid (288 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.25-4.62 (m, H2’,3’,4’,5’,6’) ; 5.20-6.08 (m, 5.5H, H1’). 

FT-IR : ν(OH)=3204 cm-1 ; ν(S=O)=1188 cm-1 ; ν(C-OH ; C-O & C-C)=993 cm-1 ; ν(salts)=575 cm-1. 
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[Highly sulfated] To a stirred solution of maltohexaose (1 eq., 0.15 mmol, 150 mg) in a mixture of 

DMF/pyridine 2/3 v/v (5 mL) was added sulfur trioxide pyridine complex (2 eq./OH, 6.00 mmol, 955 

mg). The reaction mixture was heated at 80°C and was stirred for 2 hours leading to the formation of a 

brown residue in a colorless solvent. The hot solvent was discarded, and the residue was rinced with 

MeOH (10 mL) in an ultrasound bath 30 min. The brown residue became a white precipitate in 

suspension. The crude was then filtered over a Büchner with MeOH (30 mL). The precipitate was then 

dissolved in H2O (10 mL) and concentrated until dryness. Then, one more time, the product is 

precipitated in MeOH (10 mL) and centrifuged at 7000 g for 10 min at 4°C. The supernatant was 

discarded and the pellet was redissolved in H2O (4 mL) and a solution of barium acetate (0.55 mM, 1 

mL) was added dropwise until the pH reached a value of 6. The addition of barium acetate formed a 

white precipitate, that was centrifuged at 7000 g for 10 min at 4°C. The precipitate was discarded and 

the supernatant was concentrated. The product was then passed through an ion-exchange resin (DOWEX 

H+). The obtained product was then neutralized with 1 M ammonia solution (3 mL). Finally, the product 

was purified by dialysis against H2O, and lyophilized to provide a white fluffy solid (99 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.24-4.70 (m, H2’,3’,4’,5’,6’) ; ; 5.23 (d, 0.5H, H1’α) ; 5.34-5.68 

(m, 5.5H, H1’). 

FT-IR : ν(OH)=3227 cm-1 ; ν(S=O)=1199 cm-1 ; ν(C-OH ; C-O & C-C)=996 cm-1 ; ν(salts)=575 cm-1. 

Sample C H N S Degree of sulfation (DS) 

 [wt%] [wt%] [wt%] [wt%]  

M6L 25.451 4.496 0.016 9.259 0.8 

M6M 17.696 5.466 6.870 16.618 2.1 

M6H 28.680  5.905 3.034 7.968 0.6 

Table 19. Elemental analysis of sulfated M6 

Randomly sulfated β-cyclodextrin (Sulfated BCD) 

 

C42H(70-x)NaxO(35+3x)Sx  

[Lightly sulfated] To a stirred solution of dry β-cyclodextrin (1 eq., 88.10 µmol, 100 mg) in dry DMF 

(4 mL) was added sulfur trioxide pyridine complex (0.5 eq./OH, 0.92 mmol, 147 mg) portionwise under 

nitrogen atmosphere. The reaction mixture was heated at 60°C and was stirred for 2 hours. After being 

cooled down to room temperature, the reaction mixture was poured in H2O (20 mL), and NaHCO3 was 

added until the pH reached a value of 9. The neutralized crude was then concentrated until dryness and 

purified by GPC to provide, after lyophilization, the pure product as a white solid (123 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.47-4.57 (m, H2’,3’,4’,5’,6’) ; 5.06-5.74 (m, H1’). 

SEC-MALS: weight-average molar mass Mw of 1665 ± 3 g/mol.  

[Highly sulfated] To a stirred solution of dry β-cyclodextrin (1 eq., 88.10 µmol, 100 mg) in dry DMF 

(4 mL) was added sulfur trioxide pyridine complex (5 eq./OH, 9.24 mmol, 1.47 g) portionwise under 

nitrogen atmosphere. The reaction mixture was heated at 60°C and was stirred over the weekend. After 

being cooled down to room temperature, the reaction mixture was poured in H2O (20 mL), and NaHCO3 
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was added until the pH reached a value of 9. The neutralized crude was then concentrated until dryness 

and purified by GPC to provide, after lyophilization, the pure product as a white solid (91 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.84-5.23 (m, H2’,3’,4’,5’,6’) ; 5.39-5.74 (m, H1’). 

SEC-MALS: weight-average molar mass Mw of 2543 ± 39 g/mol. 

Sample Mw Mn PDI (Mw/Mn) 

Moy ± Moy ± Moy ± 
BCL 1665 3 1241 37 1.342 0.044 
BCM* 2274 19 1477 14 1.540 0.003 
BCH 2543 39 1559 17 1.632 0.022 

Table 20. SEC-MALS of sulfated BCD. *commercially available 

Sample C H N S Degree of sulfation (DS) 

 [wt%] [wt%] [wt%] [wt%]  
BCL 25.144  5.754 5.192 11.790 1.0 
BCM* 17.498  3.421 0.000 14.680 1.9 
BCH 15.441  5.074 7.936 19.007 2.8 

Table 21. Elemental analysis of sulfated BCD. *commercially available 

Heptakis-(2,3,6-tri-O-benzyl)-β-cyclodextrin 4 

 

M = 3027.61 g.mol-1 

C189H196O35 

 

β-Cyclodextrin was dried at 60°C in vacuo. 

Dried β-Cyclodextrin (1 eq., 3.52 mmol, 4 g) was dissolved in dry DMSO (73 mL) under nitrogen 

atmosphere at room temperature. NaH (60% w/w, 2 eq./OH, 147.84 mmol, 5.92 g) was added 

portionwise under vigourous stirring at room temperature, forming a grey suspension. Benzyl chloride 

(2 eq./OH, 147.84 mmol, 17 mL) was added dropwise over an hour via an addition funnel under 

vigourous stirring. The beige suspension was stirred overnight at room temperature under nitrogen 

atmosphere. The reaction was followed by TLC (eluent 9/1 v/v cHexane/EtOAc). After completion, the 

reaction mixture was cooled down to 0°C. MeOH (100 mL) was carefully added to hydrolyze the 

reaction, followed by H2O (180 mL). The crude was extracted with EtOAc three times. The combined 

organic layers were washed with brine, dried over Na2SO4, filtered and concentrated. The product was 

then purified by chromatography with a gradient of 10/0 to 5/5 v/v EP/EtOAc to provide the pure product 

as a yellowish oil (8.89 g, 2.93 mmol, 83%). 

1H NMR (400 MHz, CDCl3, 298K) δ (ppm) : 3.48 (dd, 7H, 9.3/3.2 Hz, H2) ; 3.55 (d, 7H, 10.6 Hz, H6a) 

; 4.01 (m, 28H, H3, H4, H5 & H6b) ; 4.35 (d, 7H, 12.1 Hz, H7*) ; 4.40 (d, 7H, 12.1 Hz, H7*) ; 4.46 (d, 7H, 

12.8 Hz, H7*) ; 4.50 (d, 7H, 12.8 Hz, H7*) ; 4.77 ((d, 7H, 11.1 Hz, H7*) ; 5.07 (d, 7H, 11.1 Hz, H7*) ; 

5.19 (d, 7H, 3.2 Hz, H1) ; 7.19 (m, 105H, H8). 

*part of 3 AB systems 

MS ESI+ : m/z=3067.36 [M+K+H]2+ ; m/z=3090.39 [M+K+Na+H]3+ ; m/z=3107.32 [M+2K+2H]4+. 
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Heptakis-(6-O-tert-butyldimethylsilyl)-β-cyclodextrin 7 

 

M = 1934.83 g.mol-1 

C84H168O35Si7 

Previously lyophilized β-Cyclodextrin was dried at 90°C in vacuo in the presence of P2O5 until constant 

weight. 

β-Cyclodextrin (1 eq., 11.92 mmol, 13.53 g) was dissolved in dry pyridine (200 mL) at room temperature 

under nitrogen atmosphere and stirred for 1 hour. tert-butyldimethylsilyl chloride (8.4 eq., 100.13 mmol, 

15.09 g) was added in one portion, and the resulting suspension was stirred at room temperature for 12 

hours. The reaction was followed by TLC (eluent 30/5/4 v/v/v EtOAc/EtOH-96%/H2O). To ease the 

chromatography purification, one portion of tert-butyldimethylsilyl chloride (1 eq., 11.92 mmol, 1.80 

g) was added for the most polar product to be consumed. When the reaction was completed, H2O was 

added to the reaction mixture (1 L) and the precipitate was filtered over a Büchner. The precipitate was 

washed with H2O (200 mL), redissolved in toluene (40 mL) and concentrated under reduced pressure. 

The azeotropic drying with toluene was repeated three times. The crude product was then redissolved 

in CH2Cl2 (200 mL) with silica and dried to form a dry sample. The product was purified by 

chromatography by using 40/40/20/4 v/v/v/v CH2Cl2/ACN/EtOH-96%/NH3(aq) to elute the side products 

then 40/40/20/4 v/v/v/v CH2Cl2/ACN/EtOH-96%/H2O. The pure product was obtained as a white 

powder (19.09 g, 9.87 mmol, 83 %). 

1H NMR (400 MHz, CDCl3, 298K) δ(ppm) : 0.03 (s, 21H, H7) ; 0.04 (s, 21H, H8) ; 0.87 (s, 63H, H9) ; 

3.56 (t, 7H, 9.3 Hz, H4) ; 3.61 (bs, 7H, H5) ; 3.64 (dd, 7H, 9.3/3.5 Hz, H2) ; 3.71 (bd, 7H, 10.9 Hz, H6a) 

; 3.90 (dd, 7H, 10.9/2.8 Hz, H6b) ; 4.04 (t, 7H, 9.1 Hz, H3) ; 4.89 (d, 7H, 3.5 Hz, H1). 

13C NMR (100MHz, CDCl3, 298K), δ(ppm) : -5.0 (C7) ; -4.9 (C8) ; 18.4 (CIV) ; 26.1 (C9) ; 61.8 (C6) ; 

72.7 (C5) ; 73.6 (C3) ; 73.7 (C2) ; 81.9 (C4) ; 102.1 (C1). 

FT-IR : ν(Si-alkyl)=775 cm-1 ; ν(C-H sugar + CH2-O-Si)= 1034 cm-1 ; ν(O-H)=3327 cm-1 

MS MALDI+ : m/z=1956.838 [M+Na]+ 

Heptakis-(6-O-tert-butyldimethylsilyl-2,3-di-O-acetyl)-β-cyclodextrin 8 

 

M = 2523.35 g.mol-1 

C112H196O49Si7 

 

A solution of heptakis-(6-O-tert-butyldimethylsilyl)-β-cyclodextrin 7 (1 eq., 2.58 mmol, 5 g) and acetic 

anhydride (excess, 26 mL) in dry pyridine (129 mL) under nitrogen atmosphere was stirred overnight at 
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70°C. The reaction was followed by TLC (eluent EtOAc). If the reaction was not completed, Ac2O (5 

mL) and DMAP (6 mg) were added and the reaction mixture was stirred overnight. When the reaction 

was finished, the reaction mixture was evaporated under reduced pressure and co-evaporated with 

toluene (50 mL) three times to remove pyridine. The dried residue was redissolved in EtOAc (50 mL) 

and washed with HCl(aq) 1 M (50 mL) then H2O (50 mL). The organic layer was dried over Na2SO4, 

filtered and concentrated with silica. The product was finally purified by column chromatography with 

a gradient of 0/10 to 10/0 v/v EtOAc/EP to obtain a colorless solid (5.36 g, 2.12 mmol, 82 %). 

1H NMR (400 MHz, CDCl3, 298K) δ (ppm) : 0.03 (s, 21H, H7) ; 0.04 (s, 21H, H8) ; 0.87 (s, 63H, H9) ; 

2.03 (s, 21H, H10) ; 2.04 (s, 21H, H11) ; 3.71 (d, 7H, 11.0 Hz, H5) ; 3.86 (m, 14H, H6) ; 4.02 (d, 7H, 11.0 

Hz, H4) ; 4.69 (dd, 7H, 3.5/10.0 Hz, H2) ; 5.14 (d, 7H, 3.5 Hz, H1) ; 5.33 (dd, 7H, 7.9/10.0 Hz, H3). 

13C NMR (100MHz, CDCl3, 298K), δ(ppm) : -5.1 (C7) ; -4.9 (C8) ; 18.4 (CIV) ; 20.9 (C10) ; 21.0 (C11) ; 

26.0 (C9) ; 62.0 (C6) ; 71.4 (C2) ; 71.7 (C3) ; 71.9 (C5) ; 75.4 (C4) ; 96.6 (C1) ; 169.6 (CIV3) ; 170.9 (CIV2). 

FT-IR : ν(Si-alkyl)=776 cm-1 ; ν(C-H sugar and CH2-O-Si)=1030 cm-1 ; ν(C-O Ac)=1243 and 1216 cm-

1 ; ν(CH3 Ac)=1370 cm-1 ; ν(C=O Ac)=1749 cm-1 

MS MALDI+ : m/z= 2546.070 [M+Na]+ ; m/z=2562.067 [M+K]+ 

Heptakis-(2,3-di-O-acetyl)-β-cyclodextrin 9 

 

M = 1722.52 g.mol-1 

C70H98O49 

 

To a stirred solution of heptakis-(6-O-tert-butyldimethylsilyl-2,3-di-O-acetyl)-β-cyclodextrin 8 (1 eq., 

0.99 mmol, 2.5 g) in dry CH2Cl2 (80 mL) under nitrogen atmosphere at room temperature was added a 

solution of BF3.OEt2 (46.5% BF3, 8 eq., 7.92 mmol, 2.42 g) in dry CH2Cl2 (22 mL) dropwise. The 

resulting mixture was stirred overnight under nitrogen atmosphere. The reaction was monitored by TLC 

(eluent 95/5 v/v CH2Cl2/MeOH). A solution of saturated NaHCO3 (80 mL) was added and the reaction 

mixture was extracted. The organic phase was washed with H2O (80 mL), dried over Na2SO4, filtered 

and concentrated with silica. The product was then purified by chromatography with a gradient of 10/0 

to 8/2 v/v CH2Cl2/MeOH to obtain a white solid (1.38 g, 0.80 mmol, 81 %). 

1H NMR (400 MHz, CDCl3, 298K) δ(ppm) : 2.00 (s, 21H, H7) ; 2.02 (s, 21H, H8) ; 3.62 (d, 7H, 11.4 Hz, 

H6a) ; 3.78 (m, 21H, 11.4/8.2 Hz, H6b, H5 & H4) ; 4.60 (dd, 7H, 3.4/10.4 Hz, H2) ; 4.77 (bs, 7H, OH6) ; 

5.09 (d, 7H, 3.4 Hz, H1) ; 5.25 (dd, 7H, 8.2/10.4 Hz, H3). 

13C NMR (100MHz, CDCl3, 298K), δ(ppm) : 20.8 (C7) ; 20.9 (C8) ; 61.1 (C6) ; 71.0 (C3) ; 71.1 (C2) ; 

72.2 (C5) ; 77.3 (C4) ; 96.6 (C1) ; 170.9 (CIV3) ; 169.7 (CIV2). 

FT-IR : ν(C-H sugar)=1023 cm-1 ; ν(C-O Ac)=1216 cm-1 ; ν(CH3 Ac)= 1370 cm-1 ; ν((C=O Ac)=1741 

cm-1 ; ν(O-H)=3419 cm-1 

MS MALDI+ : m/z= 1745.55 [M+Na]+ ; m/z=881.32 [M+K]2+ 
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Heptakis-(6-O-sulfo-2,3-di-O-acetyl)-β-cyclodextrin 10a 

 

M = 2437.78 g.mol-1 

C70H91Na7O70S7 

To a stirred solution of heptakis-(2,3-di-O-acetyl)-β-cyclodextrin 9 (1 eq., 0.058 mmol, 100 mg) in dry 

pyridine (5 mL) under nitrogen atmosphere was added sulfur trioxide pyridine complex (35 eq., 2.03 

mmol, 323 mg) in one portion. The reaction mixture was stirred at 60°C overnight and was monitored 

by TLC (TLC eluent 8/2 v/v ACN/H2O). When the reaction was completed, the reaction mixture was 

poured in H2O (20 mL) and NaHCO3 was added until the pH reached ≈9. The crude was then dried with 

silica to form a dry sample. The product was purified by chromatography with a gradient of 10/0 to 8/2 

v/v ACN/H2O and was then lyophilized to afford a yellowish fluffy solid (118 mg, 48.40 µmol, 84%). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 2.15 (s, 21H, H7) ; 2.18 (s, 21H, H8) ; 4.14 (q, 7H, 10.3 Hz, 

H4) ; 4.24 (t, 7H, 10.3 Hz, H5) ; 4.39 (t, 7H, 9.9 Hz, H6a) ; 4.54 (t, 7H, 9.9 Hz, H6b) ; 4.95 (td, 7H, 10.3/3.5 

Hz, H2) ; 5.33 (dd, 7H, 11.5/3.5 Hz, H1) ; 5.42 (q, 7H, 10.3 Hz, H3). 

13C NMR (100MHz, D2O, 298K), δ(ppm) : 20.4 (C7) ; 20.5 (C8) ; 66.5 (C6) ; 70.0 (C5) ; 70.8 (C2) ; 71.3 

(C3) ; 74.7 (C4) ; 96.4 (C1) ; 172.9 (CIV3) ; 173.0 (CIV2). 

FT-IR : ν(C-O aliphatic)=1133 cm-1 ; ν(sulfate)=1210 cm-1 ; ν(C=O ester)=1735 cm-1 ; ν(C-H 

aliphatic)=2958 cm-1 

MS ESI- : m/z=325.02 [M-7Na]- ; m/z=283.03 [M-6Na]- ; m/z=464.23 [M-5Na]- ; m/z=586.03 [M-

4Na]- ; m/z=789.04 [M-3Na]- 

Heptakis-(6-O-tert-butyldimethylsilyl-2,3-di-O-benzyl)-β-cyclodextrin 11 

 

M = 3196.58 g.mol-1 

C182H252O35Si7 

 

heptakis-(6-O-tert-butyldimethylsilyl)-β-cyclodextrin 7 (1 eq., 1.03 mmol, 2 g) was dissolved in dry 

THF (20 mL) in a round-bottom flask under inert atmosphere. The vigourously stirred solution was 

cooled down to a temperature between 0-10°C. Crushed KOH (92 eq., 94.76 mmol, 5.32g) was added 

portionwise. After that, Methyltriphenylphosphonium bromide (0.5 eq., 0.52 mmol, 186 mg) was added 

in one portion. The initially colorless solution became a white gel, and was vigourously stirred for 2 

hours at 0-10°C under inert atmosphere. Then, benzyl bromide (15.5 eq., 15.97 mmol, 1.90 mL) was 

added dropwise at 5-10°C. The reaction mixture was warmed up to room temperature and left overnight. 

The reaction was monitored by TLC (eluent 9/1.5/1.2 v/v/v EtOAc/EtOH/H2O and 9/1 v/v 

Hexane/EtOAc). KOH (49 eq., 50.46 mmol, 2.83 g, crushed) and BnBr (8 eq., 8.41 mmol, 1 mL) were 

added at 10°C until the reaction was completed. The reaction mixture was filtered through a Büchner 
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and the white solid was washed with THF (100 mL). The filtrate was concentrated until about 10 mL 

were left and poured in MeOH (120 mL) vigorously stirred. A yellowish solid precipitated. The solid 

was decantated and the operation was repeated three times. The precipitate was then filtered through a 

Büchner with H2O (50 mL) five times and H2O/MeOH 9/1 v/v (50 mL) once, leading to a very 

hydrophobic white solid. The product was finally isolated by chromatography with a gradient of 10/0 to 

5/5 v/v EP/CH2Cl2 in the form of a white powder (2.44 g, 0.76 mmol, 74%). 

1H NMR (400 MHz, CDCl3, 298K) δ (ppm) : 0.00 (s, 21H, H7); 0.01 (s, 21H, H8); 0.84 (s, 63H, H9) ; 

3.36 (dd, 7H, 9.2/3.0 Hz, H2); 3.70 (m, 14H, H5 & H6a); 4.01 (td, 14H, 21.6/9.2 Hz, H3 & H4); 4.24 (d, 

7H, 10.8 Hz, H6b); 4.46 (d*, 7H, 12.3 Hz, H10a); 4.51 (d*, 7H, 12.3 Hz, H10a); 4.68 (d*, 7H, 10.8 Hz, 

H10b) ; 5.05 (d*, 7H, 10.8 Hz, H10b); 5.29 (d, 7H, 3.0 Hz, H1); 7.11 (m, 70H, H11). 

*part of 2 AB systems 

13C NMR (100MHz, CDCl3, 298K), δ(ppm) : -4.9 (C7) ; -4.6 (C8) ; 18.5 (CIV) ; 26.1 (C9) ; 62.5 (C6) ; 

72.6 (C5) ; 72.7 (C10a) ; 75.6 (C10b) ; 77.8 (C4) ; 79.4 (C2) ; 81.0 (C3) ; 98.1 (C1) ; 126.9, 127.4, 127.7, 

127.8, 128.0, 128.2, 138.5, 139.5 (C11). 

FT-IR : ν(Si-alkyl)=776 cm-1 ; ν(benzyl)=831-694 cm-1 ; ν(C-H sugar and CH2-O-Si)=1028 cm-1 ; 

ν(benzyl)=1454 cm-1 

MS MALDI+ : m/z= 3218.301 [M=Na]+ ; m/z= 3234.276 [M+K]+ 

Heptakis-(2,3-di-O-benzyl)-β-cyclodextrin 12 

 

M = 2396.74 g.mol-1 

C140H154O35 

To a stirred solution of heptakis-(6-O-tert-butyldimethylsilyl-2,3-di-O-benzyl)-β-cyclodextrin 11 (1 eq., 

0.16 mmol, 500 mg) in THF (20 mL) was added tetrabutylammonium fluoride trihydrate (16 eq., 2.56 

mmol, 808 mg) portionwise at room temperature. The colorless solution became yellow during the 

addition, and was stirred at room temperature overnight. The reaction was monitored by TLC (eluent 

9/1 v/v CH2Cl2/MeOH). When the reaction was completed, the reaction mixture was concentrated. 

MeOH (10 mL) was added and the mixture was concentrated three times until dryness. The product was 

suspended in H2O (50 mL), and filtered over a Büchner with H2O (10 mL) six times, then with 

H2O/MeOH 9/1 v/v (10 mL) four times until obtention of an odorless white solid. The precipitate was 

redissolved in EtOAc (30 mL) and collected by filtration through a Büchner. The dried product was 

obtained as a white solid (231 mg, quantitative yield). 

1H NMR (400 MHz, DMSO-d6, 298K) δ (ppm) : 3.41 (dd, 7H, 9.1/2.7 Hz, H2) ; 3.66 (dd, 7H, 11.1/3.6 

Hz, H6a) ; 3.86 (m, 28H, H5, H4, H6b, H3) ; 4.51 (d, 7H, 13.2 Hz, H7*) ; 4.54 (d, 7H, 13.2 Hz, H7*) ; 4.60 

(t, 7H, 5.8 Hz, H6) ; 4.63 (d, 7H, 11.5 Hz, H7) ; 4.93 (d, 7H, 11.5 Hz, H7) ; 5.27 (d, 7H, 2.7 Hz, H1) ; 

7.14 (m, 70H, H8). 

*part of an AB system 

MS MALDI+ : m/z=2419.025 [M+Na]+ ; m/z=2435.017 [M+K]+ 
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Heptakis-(6-O-sulfo-2,3-di-O-benzyl)-β-cyclodextrin 10b 

 

M = 3108.60 g.mol-1 

C147H147Na7O56S7 

To a stirred solution of heptakis-(2,3-di-O-benzyl)-β-cyclodextrin 12 (1 eq., 32.13 µmol, 77 mg) in dry 

pyridine (4 mL) was added sulfur trioxide pyridine complex (35 eq., 1.12 mmol, 169 mg) in one portion. 

The reaction was heated at 60°C and left stirring under nitrogen atmosphere over the weekend. When 

the reaction was completed (TLC eluent 85/15 v/v ACN/H2O), the reaction mixture was poured in H2O 

(20 mL) and treated with NaHCO3 to reach a pH around 9 (to replace the pyridinium salts on sulfate 

moieties by sodium salts). The crude was then dried with silica to be later purified by chromatography 

with a gradient of 10/0 to 8/2 v/v ACN/H2O to provide the pure product in the form of a white solid (319 

mg, quantitative yield). 

1H NMR (400 MHz, DMSO-d6, 298K) δ (ppm) : 3.34 (d, 7H, 2.3 Hz, H2) ; 3.86 (t, 7H, 8.9 Hz, H4) ; 

3.97 (t, 7H, 8.9 Hz, H3) ; 4.01 (d, 7H, 10.0/1.8 Hz, H5) ; 4.12 (d, 7H, 10.8 Hz, H7 or H6) ; 4.36 (d, 7H, 

10.8 Hz, H7 or H6) ; 4.44* (d, 7H, 12.3 Hz, H7 or H6) ; 4.49* (d, 7H, 12.3 Hz, H7 or H6) ; 4.62 (d, 7H, 

11.0 Hz, H7 or H6) ; 4.91 (d, 7H, 11.0 Hz, H7 or H6) ; 5.53 (d, 7H, 2.3 Hz, H1) ; 7.06 (m, 70H, H8). 

13C NMR (100MHz, DMSO-d6, 298K), δ(ppm) : 65.5 (C6 or C7) ; 70.4 (C5) ; 71.2 (C6 or C7) ; 74.4 (C6 

or C7) ; 77.2 (C4) ; 78.7 (C2) ; 80.0 (C3) ; 96.4 (C1) ; 126.7, 127.0, 127.1, 127.3, 127.7, 127.9, 138.3, 

139.2 (C8). 

*part of an AB system 

FT-IR : ν(C-H aromatic)=695 + 730 cm-1 ; ν(C-O aliphatic)=990 cm-1 ; ν(C-O ether aliphatic)=1053 cm-

1 ; ν(sulfate)=1210 cm-1 ; ν(C-H aliphatic)=2895 cm-1 

HRMS-ESI-: calculated for [M+4H-7Na]3- m/z=983.90098, found 983.89633 (one pic for each loss of 

Na) 

Heptakis-(6-O-sulfo)-β-cyclodextrin 13 

 

M = 1849.26 g.mol-1 

C42H63Na7O56S7 

To a stirred solution of heptakis-(6-O-sulfo-2,3-di-O-acetyl)-β-cyclodextrin 10a (1 eq., 0.12 mmol, 292 

mg) in absolute methanol (6 mL) under nitrogen atmosphere was added a solution of freshly prepared 

sodium methoxide (1 M in MeOH, 0.08 eq., 0.01 mmol, 10 µL) dropwise at room temperature. The 

reaction mixture became trouble during the addition. The reaction mixture was stirred overnight and 

was monitored by TLC (8/2 v/v ACN/H2O). When the reaction was completed, water (2 mL) was added 

to quench sodium methoxide, and then NaHCO3 was added until pH 9-10. The crude was then 

concentrated and purified by GPC to afford, after lyophilization, a white solid (176 mg, 79%). 
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1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.56 (dd, 7H, 9.8/3.1 Hz, H2) ; 3.67 (t, 7H, 9.8 Hz, H4) ; 3.96 

(t, 7H, 9.8 Hz, H3) ; 4.09 (d, 7H, 9.8 Hz, H5) ; 4.24 (d, 7H, 10.8 Hz, H6a) ; 4.32 (d, 7H, 10.8 Hz, H6b) ; 

5.15 (d, 7H, 3.1 Hz, H1). 

13C NMR (100 MHz, D2O, 298K), δ(ppm) : 66.6 (C6) ; 69.4 (C5) ; 71.9 (C2) ; 72.8 (C3) ; 78.6 (C4) ; 

100.4 (C1). 

FT-IR : ν(C-O aliphatic)=1055 cm-1 ; ν(S=O sulfate)=1206 cm-1 ; ν(O-H)=3220 cm-1 

HRMS-ESI- : calculated for [M+2H-7Na]5- m/z=337.80622, found 337.80580 

Heptakis-(6-O-acetyl-2,3-di-O-benzyl)-β-cyclodextrin 5 

 

M = 2691.00 g.mol-1 

C154H168O42 

To a stirred solution of heptakis-(2,3-di-O-benzyl)-β-cyclodextrin 12 (1 eq., 93.88 µmol, 225 mg) in dry 

pyridine (4 mL) was added anhydride acetic (excess, 9.96 mmol, 942 µL) and DMAP (cat., 3 mg) at 

room temperature. The reaction mixture was heated and stirred at 70°C overnight. The reaction mixture 

was followed by TLC (2/8 v/v EP/EtOAc). When the reaction was completed, the reaction mixture was 

dried, and pyridine was co-evaporated with toluene (10 mL) three times. The brown residue was 

redissolved in EtOAc (10 mL) and washed with HCl(aq) 1M (10 mL) and H2O (10 mL). The organic 

layer was dried over Na2SO4, filtered and dried providing a brown solid (260 mg, quantitative yield). 

1H NMR (400 MHz, CDCl3, 298K) δ (ppm) : 2.03 (s, 21H, H7) ; 3.46 (dd, 7H, 3.3/8.8 Hz, H2) ; 3.67 (t, 

7H, 8.8 Hz, H4) ; 3.99 (t, 7H, 8.8 Hz, H3) ; 4.05 (dd, 7H, 3.7/8.8 Hz, H5) ; 4.36 (dd, 7H, 3.7/12.3 Hz, 

H6a) ; 4.40 (d, 7H, 12.7 Hz, H8 of C2-Bn) ; 4.44 (dd, 7H, 3.7/12.3 Hz, H6b) ; 4.55 (d, 7H, 12.7 Hz, H8 of 

C2-Bn) ; 4.73 (d, 7H, 11.0 Hz, H8 of C3-Bn) ; 4.93 (d, 7H, 3.3 Hz, H1) ; 5.00 (d, 7H, 11.0 Hz, H8 of C3-

Bn) ; 7.10-7.25 (m, 70H, H9). 

13C NMR (100MHz, CDCl3, 298K), δ(ppm) : 21.5 (C7) ; 64.2 (C6) ; 70.6 (C5) ; 73.8 (C8 of C2-Bn) ; 76.0 

(C8 of C3-Bn) ; 79.3 (C2) ; 80.4 (C4) ; 81.1 (C3) ; 99.7 (C1) ; 127.8, 127.9, 128.4, 128.6, 128.8, 128.9, 

139.0 & 140.0 (C9) ; 171.2 (CIV6). 

FT-IR : ν(C-H aromatic)=695 + 732 cm-1 ; ν(C-O aliphatic)=1023 cm-1 ; ν(C-O ether aliphatic)=1092 

cm-1 ; ν(C=O ester)=1737 cm-1 ; ν(C-H aliphatic)=2908 cm-1 

MALDI+ : m/z=2623.400 [M’+Na]+ corresponding to the product with one loss of Bn ; m/z=2713.469 

[M+Na]+. 

 

 

 

 



 
 

 
170 

Heptakis-(6-O-acetyl)-β-cyclodextrin 6 

 

M = 1429.25 g.mol-1 

C56H84O42 

To a stirred solution of heptakis-(6-O-acetyl-2,3-di-O-benzyl)-β-cyclodextrin 5 (1 eq., 0.037 mmol, 100 

mg) in MeOH/DCM (5.2/0.2 v/v) was carefully added palladium on carbon (10% weight, 1.8 eq., 0.067 

mmol, 71 mg). After three purging cycles, the flask was stirred under 5 atmospheres of H2 overnight. 

The crude was then filtered on celite over a Büchner with MeOH (5 x 10 mL) and EtOH (2 x 10 mL), 

and the filtrate was dried providing a white solid (53 mg, 100%). 

1H NMR (400 MHz, DMSO-d6, 298K) δ (ppm) : 1.99 (s, 21H, H7) ; 3.44 (m, 14H, H2 & H4) ; 3.63 (t, 

7H, 9.3 Hz, H3) ; 3.85 (m, 7H, H5) ; 4.13 (dd, 7H, 11.4/6.2 Hz, H6a) ; 4.35 (d, 7H, 11.4 Hz, H6b) ; 4.89 

(d, 7H, 3.6 Hz, H1) ; 5.89 (sl, 14H, OH). 

13C NMR (100MHz, DMSO-d6, 298K), δ(ppm) : 20.3 (C7) ; 63.1 (C6) ; 69.1 (C5) ; 72.0 (C2) ; 72.8 (C3) 

; 82.1 (C4) ; 102.0 (C1) ; 170.1 (CIV6). 

FT-IR : ν(C-O aliphatic)=1029 cm-1 ; ν(C=O ester)=1742 cm-1 ; ν(C-H aliphatic)=2933 cm-1 ; ν(O-

H)=3323 cm-1. 

Partially 2,3-O-sulfated heptakis-(6-O-acetyl)-β-cyclodextrin 16’ 

 

C56H(84-x)NaxO(42+3x)Sx 

To a stirred solution of heptakis-(6-O-acetyl)-β-cyclodextrin 6 (1 eq., 0.077 mg, 111 mg) in dry pyridine 

(5 mL) was added sulfur trioxide pyridine complex (70 eq., 5.39 mmol, 858 mg) at room temperature. 

The reaction mixture was heated at 60°C for four days. When the reaction was not evolving anymore 

(TLC eluent 8/2 v/v ACN/H2O or 10/2 v/v EtOH/H2O), the crude was purified by size exclusion 

chromatography on Sephadex column then ionic exchange resin Dowex Na+ form (eluent 2/1 v/v 

H2O/MeOH). The lyophilized mixture of products was afforded as a white solid (135 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.36 (s, 21H, H7) ; 3.47-5.60 (m, H1, H2, H3, H4, H5 & H6). 
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Partially 2,3-O-sulfated β-cyclodextrin 17’ 

 

C42H(56-x)NaxO(35+3x)Sx 

To a stirred solution of partially 2,3-O-sulfated heptakis-(6-O-acetyl)-β-cyclodextrin 16’ (1 eq., 135 mg) 

in absolute MeOH (5 mL) was added sodium methoxide (1M in MeOH, 200 µL) under nitrogen 

atmosphere. The reaction mixture was stirred at room temperature under nitrogen atmosphere, and was 

monitored by TLC (eluent 7/3 v/v ACN/H2O). Extra portions of sodium methoxide could be eventually 

added. After 4 days, IR120 H+ form was added in the reaction mixture until the pH reached 7. The crude 

was then filtered over Büchner with MeOH and purified by GPC, affording a white cotonous solid after 

lyophilization (67 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.41-5.69 (m, H1, H2, H3, H4, H5 & H6). 

Sample C H N S Degree of sulfation (DS) 

 [wt%] [wt%] [wt%] [wt%]  

Per-2,3S-β-cyclodextrin 23.975 5.460 5.637 12.912 1.2 

Table 22. Elemental analysis of per-2,3S-β-cyclodextrin 17’ 

Sample 

 

Mw Mn PDI (Mw/Mn) 

Moy ± Moy ± Moy ± 
Per-2,3S-β-cyclodextrin 2103 81 1492 4 1.409 0.055 

Table 23. SEC-MALS of per-2,3S-β-cyclodextrin 17’ 

Heptakis-(6-O-tert-butyldimethylsilyl-2-O-benzyl)-β-cyclodextrin 19 

 

M = 2565.70 g.mol-1 

C133H210O35Si7 

 

In a round-bottom flask was dissolved heptakis-(6-O-tert-butyldimethylsilyl)-β-cyclodextrin 7 (1 eq., 

0.52 mmol, 1g) in dry THF (10 mL) at rt under nitrogen atmosphere. NaH (10 eq., 5.17 mmol, 207 mg) 

was added portionwise and the reaction mixture was stirred for 45 minutes at room temperature. Benzyl 

bromide (10 eq., 5.17 mmol, 615 µL) was added dropwise and the mixture was stirred at room 

temperature over the weekend. The reaction was followed by TLC (eluent 8/2 v/v Hex/EtOAc). When 

the reaction was completed, NaH was neutralized by the addition of EtOAc (100 mL). H2O (100 mL) 

was also added, and the product was extracted from the aqueous phase with EtOAc two times. The 

organic layer was dried over Na2SO4, filtered and concentrated with silica. The product was purified by 

chromatography with a slow gradient of 10/0 to 8/2 v/v Hex/EtOAc. The pure product was obtained in 

the form of a white solid (698 mg, 0.27 mmol, 52%). 

1H NMR (400 MHz, CDCl3, 298K) δ (ppm) : -0.05 (s, 21H, H7) ; -0.04 (s, 21H, H8) ; 0.82 (s, 63H, H9) 

; 3.31 (dd, 7H, 9.3/3.0 Hz, H2) ; 3.42 (dd, 7H, 9.3/9.1 Hz, H4) ; 3.53 (dd, 7H, 9.1/1.4 Hz, H5) ; 3.59 (dd, 



 
 

 
172 

7H, 10.8/1.4 Hz, H6a) ; 3.84 (dd, 7H, 10.8/1.4 Hz, H6b) ; 3.99 (t, 7H, 9.3 Hz, H3) ; 4.70 (d, 7H, 11.6 Hz, 

H10a) ; 4.75 (d, 7H, 3.0 Hz, H1) ; 4.90 (bs, 7H, OH) ; 4.95 (d, 7H, 11.6 Hz, H10b) ; 7.34 (m, 35H, H11). 

13C NMR (100MHz, CDCl3, 298K), δ(ppm) : -5.1 (C7) ; -4.9 (C8) ; 18.4 (CIV) ; 26.1 (C9) ; 61.9 (C6) ; 

71.8 (C5) ; 73.7 (C3) ; 74.1 (C10) ; 79.2 (C2) ; 82.2 (C4) ; 101.4 (C1) ; 128.0, 128.5, 128.9, 137.9 (C11). 

FT-IR : ν(CH2)=746 cm-1 ; ν(Si-alkyl)=777 cm-1 ; ν(C-H aromatic)=696 + 2931 cm-1 ; ν(Si-O-C)=829 + 

1079 cm-1 ; ν(C-O aliphatic)=1042 cm-1 ; ν(Si-CH3)=1248 cm-1 ; ν(C-H sp3)=2879 cm-1 ; ν(O-H)=3419 

cm-1 

MS MALDI+ : m/z= 2588.138 [M+Na]+ ; m/z=2604.107 [M+K]+ (and then one pic for each loss of 

TBDMS, Δ=91). 

Heptakis-(6-O-tert-butyldimethylsilyl-2-O-benzyl-3-O-acetyl)-β-cyclodextrin 20 

 

M = 2859.96 g.mol-1 

C147H224O42Si7 

To a stirred solution of heptakis-(6-O-tert-butyldimethylsilyl-2-O-benzyl)-β-cyclodextrin 19 (1eq., 

77.95 µmol, 200 mg) in dry pyridine (5 mL) was added acetic anhydride (excess, 868 µL) at room 

temperature. The reaction mixture was then heated at 70°C and stirred over the weekend. The reaction 

was monitored by TLC (eluent 7/3 v/v Hex/EtOAc). If needed, DMAP (cat., 5 mg) and Ac2O (500 µL) 

were added. When the reaction was completed, the reaction mixture was dried, and co-evaporated with 

toluene (10 mL) three times to remove traces of pyridine. The obtained almost-red solid was redissolved 

in EtOAc (20 mL) and washed with HCl(aq) 1M (20 mL) and then H2O (20 mL). The organic layer was 

dried over Na2SO4, filtered, and dried to afford a yellow solid (248 mg, quantitative yield). 

1H NMR (400 MHz, CDCl3, 298K) δ (ppm) : -0.01 (s, 21H, H7) ; 0.00 (s, 21H, H8) ; 0.86 (s, 63H, H9) ; 

1.77 (s, 21H, H12) ; 3.31 (dd, 7H, 9.6/3.0 Hz, H2) ; 3.65* (d, 7H, 11.7 Hz, H6a) ; 3.79 (m, 14H, H5 & H4) 

; 4.11* (d, 7H, 11.7 Hz, H6b) ; 4.46 (d, 7H, 12.3 Hz, H10a) ; 4.58 (d, 7H, 12.3 Hz, H10b) ; 5.00 (d, 7H, 3.0 

Hz, H1) ; 5.25 (t, 7H, 9.6 Hz, H3) ; 7.26 (m, 35H, H11). 

*part of an AB system 

13C NMR (100MHz, CDCl3, 298K), δ(ppm) : -5.0 (C7) ; -4.7 (C8) ; 21.0 (C12) ; 26.1 (C9) ; 62.3 (C6) ; 

72.4 (C5) ; 72.6 (C10) ; 73.2 (C3) ; 77.1 (C4) ; 77.9 (C2) ; 98.7 (C1) ; 127.8, 128.1 & 128.5 (C11) ; 138.4 

(CIV C11). 

FT-IR : ν(C-H aromatic)=699 + 748 cm-1 ; ν(Si-alkyl)=778 cm-1 ; ν(Si-O-C)=832 cm-1 ; ν(C-O 

aliphatic)=1032 cm-1 ; ν(Si-CH3)=1233 cm-1 ; ν(C-H aliphatic)=2935 cm-1 ; ν(O-H)=3419 cm-1. 

MS MALDI+: m/z=2880.489 [M+Na]+ 
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Heptakis-(2-O-benzyl)-β-cyclodextrin 25 

 

M = 1765.84 g.mol-1 

C91H112O35 

 To a stirred solution of heptakis-(6-O-tert-butyldimethylsilyl-2-O-benzyl)-β-cyclodextrin 19 (1 eq., 

58.46 µmol, 150 mg) in THF (4 mL) was added tetrabutylammonium fluoride trihydrate (16 eq., 0.93 

mmol, 295 mg) portionwise. The yellowish reaction was stirred at room temperature overnight, and the 

reaction was monitored by TLC (95/5 v/v CH2Cl2/MeOH). When the reaction was completed, the 

reaction mixture was dried and redissolved in the minimum of MeOH. The product was precipitated in 

H2O (60 mL) and filtered over a Büchner with H2O (5 x 20 mL) and with H2O/MeOH 9/1 v/v (3 x 20 

mL). The odorless precipitate was dried at 60°C under vaccuo to provide the pure product as a white 

solid (70 mg, 0.04 mmol, 69%). 

1H NMR (400 MHz, DMSO-d6, 298K) δ (ppm) : 3.33 (m, 7H, 3.0 Hz, H2) ; 3.38 (t, 7H, 9.0 Hz, H4) ; 

3.58 (m, 21H, H5 & H6) ; 3.85 (t, 7H, 9.0 Hz, H3) ; 4.73 (dd, 7H, 11.9/2.5 Hz, H7a) ; 4.83 (dd, 7H, 

11.9/2.6 Hz, H7b) ; 4.90 (d, 7H, 3.0 Hz, H1) ; 7.38 (m, 35H, H9). 

13C NMR (100 MHz, DMSO-d6, 298K), δ(ppm) : 59.7 (C6) ; 71.5 (C5) ; 72.9 (C3) ; 73.0 (C7) ; 79.0 (C2) 

; 82.0 (C4) ; 100.1 (C1) ; 127.7, 128.2 (C8) ; 137.7 (CIV C8). 

FT-IR : ν(C-H aromatic)=697 + 749 cm-1 ; ν(C-O aliphatic)=1035 cm-1 ; ν(C-H aliphatic)=2922 cm-1 ; 

ν(O-H)=3390 cm-1. 

MS MALDI+ : m/z=1787.676 [M+Na]+ ; 1804.677 [M+K]+ 

Heptakis-(3,6-di-O-acetyl-2-O-benzyl)-β-cyclodextrin 26 

 

M = 2352.85 g.mol-1 

C119H140O49 

To a stirred solution of heptakis-(2-O-benzyl)-β-cyclodextrin 25 (1 eq., 0.17 mmol, 300 mg) in dry 

pyridine (7 mL) was added acetic anhydride (excess, 18.01 mmol, 1.7 mL) at room temperature under 

nitrogen atmosphere. The brown solution was heated and stirred at 70°C overnight and the reaction was 

monitored by TLC (eluent 85/15 v/v CH2Cl2/MeOH and 2/8 v/v EP/EtOAc). If needed, DMAP (cat. 3 

mg) was added. When the reaction was finished, the reaction mixture was dried and traces of pyridine 

were co-evaporated with toluene (20 mL) three times. The brown residue was redissolved in EtOAc (10 

mL) and washed with HCl(aq) 1 M (10 mL) and H2O (10 mL). The organic layer was then dried over 

Na2SO4, filtered and evaporated until dryness providing a brown residue (445 mg, quantitative yield). 

1H NMR (400 MHz, CDCl3, 298K) δ (ppm) : 3.40 (dd, 7H, 9.7/3.0 Hz, H2) ; 3.52 (t, 7H, 9.1 Hz, H4) ; 

4.03 (dd, 7H, 9.9/3.6 Hz, H5) ; 4.23* (dd, 7H, 12.3/4.7 Hz, H6a) ; 4.41* (d, 7H, 12.1 Hz, H6b) ; 4.56 (s, 

14H, H8) ; 4.72 (d, 7H, 2.8 Hz, H1) ; 5.28 (t, 7H, 9.1 Hz, H3) ; 7.22-7.34 (m, 35H, H9). 
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*part of an AB system 

13C NMR (100 MHz, CDCl3, 298K), δ(ppm) : 63.2 (C6) ; 69.9 (C5) ; 72.5 (C3) ; 73.2 (C8) ; 77.4 (C2) ; 

78.7 (C4) ; 99.4 (C1) ; 128.1, 128.3, 128.6, 138.1 (C9). 

FT-IR : ν(C-H aromatic)=699 + 743 cm-1 ; ν(C-O aliphatic)=1024 cm-1 ; ν(C=O ester)=1740 cm-1 ; ν(C-

H aliphatic)=2917 cm-1 

HRMS-ESI+ : calculated for [M+Na]+ m/z=2375.83554, found 2375.83435 

Heptakis-(3,6-di-O-acetyl)-β-cyclodextrin 27 

 

M = 1723.51 g.mol-1 

C70H98O49 

To a stirred solution of heptakis-(3,6-di-O-acetyl-2-O-benzyl)-β-cyclodextrin 26 (1 eq., 0.042 mmol, 

100 mg) in MeOH/EtOAc (3/min. v/v) was carefully added palladium on carbon (10% weight, 1eq., 

0.042 mmol, 45 mg). The reaction mixture under 5 atmospheres of H2 at room temperature overnight. 

When the reaction was finished (TLC eluent 9/1 v/v ACN/H2O), the reaction mixture was filtered on 

celite over a Büchner with EtOH (3 x 10 mL) and MeOH (5 x 10 mL), and the filtrate was concentrated 

until dryness affording a white solid (116 mg, quantitative yield). 

1H NMR (400 MHz, MeOD-d4, 298K) δ (ppm) : 2.06 (s, 21H, H10) ; 2.09 (s, 21H, H7) ; 3.54 (dd, 7H, 

9.7/3.2 Hz, H2) ; 3.69 (t, 7H, 9.7 Hz, H4) ; 4.06 (dd, 7H, 9.7/4.5 Hz, H5) ; 4.30 (dd, 7H, 11.9/4.5 Hz, H6a) 

; 4.56 (d, 7H, 11.9 Hz, H6b) ; 4.89 (d, 7H, 3.2 Hz, H1) ; 5.23 (t, 7H, 9.7 Hz, H3). 

13C NMR (100 MHz, MeOD-d4, 298K), δ(ppm) : 21.0 (C7) ; 21.7 (C10) ; 64.8 (C6) ; 71.2 (C5) ; 71.8 (C2) 

; 74.9 (C3) ; 80.5 (C4) ; 102.9 (C1) ; 172.7 (CIV3 & CIV6). 

FT-IR : ν(C-O aliphatic)=1016 cm-1 ; ν(C=O ester)=1743 cm-1 ; ν(C-H aliphatic)=2925 cm-1 ; ν(O-

H)=3274 cm-1 

MS MALDI+ : m/z= 1704.476 [M-1Ac+Na]+ (minor) ; 1746.495 [M+Na]+ (major) 

Heptakis-(3,6-di-O-acetyl-2-O-sulfo)-β-cyclodextrin 28 

 

M = 2437.78 g.mol-1 

C70H91Na7O70S7 

To a stirred solution of heptakis-(3,6-di-O-acetyl)-β-cyclodextrin 27 (1 eq., 0.041 mmol, 71 mg) in dry 

pyridine (5 mL) was added sulfur trioxide pyridine complex (35 eq., 1.442 mmol, 229 mg) under 

nitrogen atmosphere. The reaction mixture was heated at 60°C and the reaction was followed by TLC 

(eluent 8/2 v/v ACN/H2O). After 6h30, the reaction mixture was poured in H2O (15 mL) and NaHCO3 
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was added portionwise until the pH was up to 8. The crude was then concentrated until dryness and used 

without further purification for the next step. 

Heptakis-(2-O-sulfo)-β-cyclodextrin 29 

 

M = 1847.94 g.mol-1 

C42H63Na7O56S7 

To a stirred solution of heptakis-(3,6-di-O-acetyl-2-O-sulfo)-β-cyclodextrin 28 (1 eq., 0.041 mmol, 

crude) in absolute MeOH (5 mL) was added sodium methoxide (1M in MeOH, 0.08 eq., 3 µL) under 

nitrogen atmosphere at room temperature. The reaction was monitored by TLC (eluent 7/3 v/v 

ACN/H2O) and extra portions of sodium methoxide were added until the reaction was finished. Water 

(10 mL) was added and IR120 H+ form was introduced portionwise until the pH reached 7. The crude 

was then filtered over a Büchner with H2O (5 x 10 mL), and the filtrate was concentrated until dryness. 

The pure product was then afforded after GPC purification and lyophilization in the form of a beige 

cotonous solid (44mg, 58%). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.80 (t, 7H, 8.8 Hz, H4) ; 3.92 (m, 21H, H5 & H6) ; 4.13 (dd, 

7H, 10.1/8.8 Hz, H3) ; 4.23 (dd, 7H, 10.1/3.6 Hz, H2) ; 5.53 (d, 7H, 3.6 Hz, H1). 

13C NMR (100 MHz, D2O, 298K), δ(ppm) : 60.3 (C6) ; 70.1 (C3) ; 71.0 (C5) ; 77.4 (C2) ; 78.3 (C4) ; 97.6 

(C1). 

FT-IR : ν(C-O aliphatic)=987 cm-1 ; ν(S=O)=1213 cm-1 ; ν(O-H)=3237 cm-1 

HRMS (ESI-) : calculated for [M+3H-7Na]4- m/z=422.50959, found 422.50959 

Heptakis-(3,6-di-O-sulfo-2-O-benzyl)-β-cyclodextrin 30 

 

M = 3194.47 g.mol-1 

C91H98Na14O77S14 

To a stirred solution of heptakis-(2-O-benzyl)-β-cyclodextrin 25 (1 eq., 36.81 µmol, 65 mg) in dry 

pyridine (3 mL) was added sulfur trioxide pyridine complex (70 eq., 2.58 mmol, 410 mg) portionwise. 

The reaction mixture was heated at 60°C over the weekend, and the reaction was followed by TLC 

(eluent 8/2 v/v ACN/H2O). When the reaction was completed, the reaction mixture was poured in H2O 

(10 mL) and NaHCO3 was added until the pH reached a value of 9. The neutralized solution was 

concentrated until dryness and purified by GPC to provide, after lyophilization, the pure product as a 

white solid (58 mg, 18.16 µmol, 49%). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.91 (dl, 7H, 8.4 Hz, H5) ; 4.00 (sl, 7H, H2) ; 4.19 (dd, 7H, 

8.6/3.8 Hz, H4) ; 4.26 (sl, 14H, H6) ; 4.55 (sl, 14H, H7) ; 4.78 (sl, H3) ; 5.23 (d, 7H, 3.8 Hz, H1) ; 7.22 (t, 

7H, 7.1 Hz, ) ; 7.27-7.38 (m, 35H, H8). 
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13C NMR (100 MHz, D2O, 298K), δ(ppm) : 67.1 (C6) ; 70.0 (C5) ; 73.0 (C7) ; 74.6 (C2) ; 75.7 (C4) ; 97.4 

(C1) ; 127.8 (C8) ; 128.3 (C8) ; 138.4 (CIV C8). 

HRMS-ESI- : calculated for [M+9H-14Na]5- m/z=575.81149, found 575.81105 

Heptakis-(3,6-di-O-sulfo)-β-cyclodextrin 31 

 

M = 2563.53 g.mol-1 

C42H56Na14O77S14 

To a stirred solution of heptakis-(3,6-di-O-sulfo-2-O-benzyl)-β-cyclodextrin 30 (1eq., 0.031 mmol, 100 

mg) in MeOH (3 mL) was carefully added palladium on carbon (10% weight, 0.9 eq., 0.028 mmol, 30 

mg). The reaction mixture was stirred under 5 atmospheres of H2 at room temperature overnight. The 

reaction was monitored by TLC (eluent 8/2 v/v ACN/H2O), and relaunched if not finished. When the 

reaction was finished, the reaction mixture was filtered on celite over a Büchner with H2O (6 x 10 mL) 

and MeOH (3 x 10 mL), and the filtrate was concentrated until dryness affording a white solid (44 mg, 

56%). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.71 (dd, 7H, 8.9/3.5 Hz, H2) ; 3.93 (t, 7H, 8.9 Hz, H4) ; 4.15 

(d, 7H, 8.9 Hz, H5) ; 4.29 (d, 7H, 11.5 Hz, H6a) ; 4.54 (d, 7H, 11.5 Hz, H6b) ; 4.64 (t, 7H, 8.9 Hz, H3) ; 

5.20 (d, 7H, 3.58 Hz, H1). 

13C NMR (100 MHz, D2O, 298K), δ(ppm) :  66.9 (C6) ; 69.2 (C5) ; 70.1 (C2) ; 76.6 (C4) ; 80.0 (C3) ; 

99.5 (C1). 

FT-IR : ν(C-O aliphatic)=1000 cm-1 ; ν(S=O)=1205 cm-1 ; ν(O-H)=3213 cm-1. 

MS ESI- : m/z=764.90 [M+9H-12Na]3- ; m/z=772.23 [M+8H-11Na]3- ; m/z=779.56 [M+7H-10Na]3- ; 

m/z=786.88 [M+6H-9Na]3-. 

M7-rHTL 47 

 

M = 1254,17 g.mol-1 

C46H79NO36S 

To a stirred solution of maltoheptaose (1 eq., 0.17 mmol, 200 mg) and homocysteine thiolactone 

hydrochloride (10 eq., 1.70 mmol, 261 mg) in a mixture of DMSO/AcOH 7/3 v/v (5.2 mL) was added 

sodium cyanoborohydride (30 eq., 5.10 mmol, 320 mg) portionwise at room temperature. The reaction 

mixture was heated and stirred at 65°C and was monitored by TLC (5/3/2 v/v/v EtOH/n-BuOH/H2O). 

After 5 hours, the reaction mixture was cooled down to room temperature and precipitated in an excess 

of ACN. The white suspension was centrifuged at 9000 g for 10 min at 4°C. The supernatant was 

discarded, and the pellet was triturated in ACN (50 mL), and centrifuged in the same conditions. This 

operation was repeated four times. The residue was redissolved in the minimum of H2O (5 mL), 

precipitated once again in acetonitrile, and centrifuged in the same conditions as above. After 
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concentration and lyophilization of the residue, the pure product was obtained in the form of a white 

fluffy solid (212 mg, 0.17 mmol, 99%). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 2.32 (m, 1H, H3a) ; 2.89 (m, 1H, H3b) ; 3.17-4,37 (m, 60H, 

H4, H1”,3”,4”,5”,6”,2’,3’,4’,5’,6’, OH2, OH3, OH4, OH5 & OH6) 5.16 (bs, 1H, H2”) ; 5.40 (bs, 6H, H1’). 

HRMS-ESI+ : calculated for [M+H]+ m/z=1254.41752, found 1254.41834 

FT-IR : ν(OH)=3297 cm-1 ; ν(C-H)=2926 cm-1 ; ν(C=O)=1691 cm-1 ; ν(C-N)=1148 cm-1 ;   ν(C-O, C-C 

& C-OH)=1015 cm-1. 

SEC-MALS: weight-average molar mass Mw of 1240 ± 65 g/mol. 

M2-rHTL 48 

 

M = 443.47 g.mol-1 

C16H29NO11S 

Three methods possible for the synthesis of 48, method A & B were used for small quantities, and 

method C for the scale-up : 

[Method A] To a stirred solution of D-maltose (1 eq., 0.28 mmol, 100 mg) and homocysteine thiolactone 

hydrochloride (1 eq., 0.28 mmol, 43 mg) in DMSO/AcOH 7/3 v/v (2.7 mL) was added sodium 

cyanoborohydrate (8 eq., 2.24 mmol, 141 mg) in one portion at room temperature. The reaction mixture 

was heated and stirred at 65°C and the reaction was followed by TLC (eluent 7/3 v/v ACN/H2O). After 

2h30, the reaction mixture was cooled down to room temperature and precipitated in ACN (100 mL). 

The white suspension was then centrifuged at 7000 g for 10 min. The supernatant was discarded and the 

pellet was triturated in ACN (50 mL) and centrifuged four times in the same conditions. The white 

precipitate was redissolved in H2O (5 mL), concentrated and lyophilized to provide the pure product as 

a white fluffy solid (99 mg, 0.22 mmol, 80%). 

[Method B] To a stirred solution of D-maltose (1 eq., 0.28 mmol, 100 mg) in a mixture of H2O/MeOH 

1/1 v/v (1 mL) was added AcOH until the pH reached a value of 4-5. Homocysteine thiolactone 

hydrochloride (2 eq., 0.56 mmol, 86 mg) then sodium cyanoborohydrate (2 eq., 0.56 mmol, 35 mg) were 

added in one portion at room temperature. The colorless solution was heated at 80°C and the reaction 

was followed by TLC (7/3 v/v ACN/H2O). After 5 hours, the reaction mixture was cooled down to room 

temperature and precipitated in acetone (100 mL). The white suspension was centrifuged at 9000 g for 

10 min at 4°C. The colorless supernatant was discarded and the pellet was redispersed in acetone (50 

mL) to be centrifuged four times in the same conditions as above. The precipitate was redissolved in 

H2O (5 mL), concentrated and lyophilized to provide the product as a white fluffy solid (122 mg, 0,27 

mmol, 98%). 

[Method C] To a stirred solution of D-maltose (1 eq., 11.1 mmol, 4 g) and homocysteine thiolactone 

hydrochloride (2 eq., 22.20 mmol, 3,41 g) in DMSO/AcOH 7/3 v/v (121 mL) was added sodium 

cyanoborohydrate (8 eq., 88.80 mmol, 5.580 g) in one portion at room temperature. The reaction mixture 

was heated at 65°C and the reaction was followed by TLC (eluent 7/3 v/v ACN/H2O). After 2h30, the 

reaction mixture was cooled down to room temperature and precipitated in an excess of ACN. The white 

suspension was then centrifuged at 9000 g for 10 min. The supernatant was discarded and the pellet was 
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triturated in ACN (250 mL) and centrifuged six times in the same conditions. The white precipitate was 

redissolved in H2O (30 mL), concentrated and lyophilized to provide the pure product as a white fluffy 

solid (3.32 g, 7.50 mmol, 68%). According to SM ESI+, 7% of di-HTL side product 48a present in this 

sample. 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 2.16 (m, 1H, H3a) ; 2.75 (m, 1H, H3b) ; 3.05 (m, 2H, H4) ; 

3.37-4.36 (m, 21H, H2, H3”,4”,5”,6”,2’,3’,4’,5’,6’, OH2,OH3,OH4,OH5 & OH6) ; 4.78 (bs, 1H, H2”) ; 5.14 (bs, 

1H, H1’). 

HRMS-ESI+ : calculated for [M+H]+ m/z=444.15341 ; found 444.15332 

1-ethyl-3-(2-oxotetrahydrothiophen-3-yl)urea (urea-HTL) 52 

 

M = 188.25 g.mol-1 

C7H12N2O2S 

 

To a stirred solution of homocysteine thiolactone hydrochloride (1 eq., 3.25 mmol, 500 mg) in dry 

CH2Cl2 (0.1 M, 32 mL) at room temperature under nitrogen atmosphere was added ethyl isocyanate (1.1 

eq., 3.58 mmol, 283 µL) dropwise and triethylamine (1.5 eq., 4.88 mmol, 678 µL). The reaction mixture 

was stirred overnight under nitrogen atmosphere at room temperature and was followed by TLC plates 

(eluent 95/5 v/v DCM/MeOH). When the reaction was finished, the mixture was washed with brine (30 

mL). And the aqueous layer was extracted three times with CH2Cl2 (30 mL). The organic layers were 

assembled, dried with Na2SO4, filtered and concentrated under reduced pressure to give the urea 

intermediate, which was used without further purification. 

1H NMR (400MHz, CDCl3, 298K), δ(ppm) : 1.12 (t, 3H, 7.2 Hz, H10) ; 1.92 (qd, 1H, 12.4/6.7 Hz, H6b) ; 

2.88 (td x2, 1H, 1.1/12.4 Hz, H6a) ; 3.20 (q, 2H, 7.2 Hz, H9) ; 3.20 (m, 1H, H7b) ; 3.32 (td, 1H, 11.7/5.3 

Hz, H7a) ; 4.42 (td x2, 1H, 12.4/1.1 Hz, H5) ; 4.68 (bs, 1H, NH1) ; 4.98 (d, 1H, 1 Hz, NH3). 

13C NMR  (100MHz, CDCl3, 298K), δ(ppm) : 15.5 (C10) ; 27.7 (C7) ; 33.1 (C6) ; 35.6 (C9) ; 60.7 (C5) ; 

157.9 (C2) ; 207.6 (C4). 

FT-IR : ν(C-S) = 1305 ou 1383 cm-1 ; ν(C=O) = 1692 cm-1 (thin pic) ; ν(CO-NH) = 2959 + 1560 cm-1 ; 

ν(N-H) = 3302 + 1560 cm-1. 

1-ethyl-3-(2-oxotetrahydrothiophen-3-yl)pyrimidine-2-4-6(1H,3H,5H)-trione (barbiturate-HTL) 

53 

 

M = 256.28 g.mol-1 

C10H12N2O4S 

 

To a stirred solution of urea-HTL 52 (1eq., 0.73 mmol, 138 mg) in dry CH2Cl2 (40 mL) at room 

temperature under nitrogen atmosphere was added malonyl chloride (1.1 eq., 0.80 mmol, 78 µL). The 

reaction mixture was stirred overnight and followed by TLC plates (eluent 7/3 v/v EtOAc/EtOH). When 
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the reaction was completed, the reaction mixture was concentrated and the product was purified by 

chromatography with a gradient from 10/0 to 7/3 v/v EtOAc/EtOH to give the final product (90%). 

[Sequential One-Pot Reaction] To a stirred solution of homocysteine thiolactone hydrochloride (1eq., 

6.51 mmol, 1 g) in dry CH2Cl2 (65 mL) at room temperature under nitrogen atmosphere was added ethyl 

isocyanate (1.1 eq, 7.16 mmol, 567 µL) dropwise and triethylamine (1.5 eq., 9.76 mmol, 1.36 mL). The 

reaction mixture was stirred for 2 hours at room temperature under nitrogen atmosphere and was 

followed by TLC (eluent 95/5 v/v CH2Cl2/MeOH). If needed, ethyl isocyanate was added to complete 

the first step of the reaction. Then, malonyl chloride (1.1 eq., 7.16 mmol, 696 µL) and dry CH2Cl2 (290 

mL) were added to the flask. The reaction mixture was stirred for 2 more hours and followed by TLC 

(eluent 7/3 v/v EtOAc/EtOH). When the reaction was completed, the reaction mixture was concentrated 

and the product was purified by chromatography with an isocratic elution of CH2Cl2 with 0.2% of AcOH 

to provide the final product as a yellowish solid (1.61 g, 6.28 mmol, 96%). 

1H NMR (400MHz, CDCl3, 298K), δ(ppm) : 1.71 (t, 3H, 7.1 Hz, H13) ; 2.49 (tdd, 1H, 2.4/12.1 Hz, H10b) 

; 2.74 (ddd, 1H, 1/8.4/11.4/12.0 Hz, H10a) ; 3.36 (m, 2H, 7.6/12.1 Hz, H9) ; 3.67 (s, 2H, H5) ; 3.89 (q, 

2H, 7.1Hz, H12) ; 5.38 (dd, 1H, 7.6/12.1 Hz, H8). 

13C NMR (100MHz, CDCl3, 298K), δ(ppm) : 13.1 (C13) ; 26.8 (C10) ; 27.1 (C9) ; 37.5 (C12) ; 39.7 (C5) ; 

60.3 (C8) ; 164.2 (C2) ; 202.7 (C7). 

FT-IR : ν(C-S) = 1305 ou 1383 cm-1 ; ν(C=O) = 1692 cm-1 ; ν(CO-NH) = 2959 + 1560 cm-1 ; ν(N-H) = 

3302 + 1560 cm-1. 

HRMS - : calculated for [M-H]- m/z=255.04340, found 255.04387.  

M7-bHTL 54 

 

M = 1413.24 g.mol-1 

C52H81N2NaO39S 

To a stirred solution of maltoheptaose (1 eq., 2.70 mmol, 3.11 g) in a phosphate buffer (40 mL, pH 7.2, 

0.1 M) was added barbiturate-HTL 53 (1 eq., 2.70 mmol, 693 mg). The reaction mixture was heated and 

stirred at 60°C to allow the barbiturate derivative to solubilize. The reaction was monitored by TLC 

(eluent 7/3 v/v ACN/H2O). When the reaction was completed (after three days), the reaction mixture 

was concentrated with silica. The product was purified by chromatography with a gradient of 10/0 to 

7/3 v/v ACN/H2O, and was obtained, after lyophilization, in the form of a white solid (3.15 g, 2.23 

mmol, 83%). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 1.13 (m, 3H, H6) ; 2.54 (m, 1H, H3a) ; 2.69 (m, 1H, H3b) ; 

3.37-4.06 (m, 64H, H4,5, H2’,3’,4’,5’,6’,3”,4”,5”,6”, OH2, OH3, OH6, OH4) ; 4.36 (t, 1H, 8.9 Hz, H2”) ;  4.53 

(dd, 1H, 9.6/2.7 Hz, H1”) ; 5.40 (d, 5H, 3.6 Hz, H1’) ; 5.44 (d, 1H, 3.6 Hz, H1’?) ; 5.53 (m, 0.5H, H2) ; 

5.74 (m, 0.5H, H2). 

13C NMR (100 MHz, D2O, 298K), δ(ppm) : 12.8 (C6) ; 27.6 (C3 & C4) ; 60.7 (C2) ; 60.4, 60.5, 69.3, 

71.1, 71.2, 71.5, 71.6, 71.7, 72.7, 72.9, 73.3, 73.4, 76.7, 76.9, 77.1, 78.2, 78.6 (C2’,3’,4’,5’,6’,2”,3”,4”,5”,6”) ; 

99.6 (C1). 

MS MALDI+ : m/z=1413.387 [M+H]+ 
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FT-IR : ν(OH)=3298 cm-1 ; ν(C-H)=2912 cm-1 ; ν(C=O HTL)= 1663 cm-1 ; ν(C=O barbiturate)= 1575 

cm-1 ; ν(C-C, C-O, C-OH)=1021 cm-1. 

SEC-MALS: weight-average molar mass Mw of 1552 ± 61 g/mol. 

Glu-bHTL 54bis 

 

M = 440.40 g.mol-1 

C16H21N2NaO9S 

To a stirred solution of D-glucose (1 eq., 0.96 mmol, 173 mg) in a phosphate buffer (14 mL, pH 7.2, 0.1 

M) was added barbiturate-HTL 53  (1.1 eq., 1.06 mmol, 272 mg). The reaction mixture was heated and 

stirred at 80°C to allow the barbiturate derivative to solubilize. The reaction was monitored by TLC 

(eluent 8/2 v/v ACN/H2O). When the reaction was completed (5 hours), the reaction mixture was 

concentrated with silica. The product was purified by chromatography with a gradient of 10/0 to 7/3 v/v 

ACN/H2O and then by reverse chromatography with a gradient of 10/0 to 0/10 H2O/MeOH, and was 

obtained, after lyophilization, in the form of a white fluffy solid (268 mg, 0.61 mmol, 63%). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 1.12 (m, 3H, H6) ; 2.53 (bs, 1H, H3a) ; 2.68 (m, 1H, H3b) ; 

3.37-3.60 (m, 5H, H4, H3’,4’,6’) ; 3.72-3.93 (m, 4H, H5, H5’,6’) ; 4.32 (t, 1H, 9.5 Hz, H2’) ; 4.51 (dd, 1H, 

9.5/2.6 Hz, H1’) ; 5.53 (m, 0.5H, H2) ; 5.74 (m, 0.5H, H2). 

SM ESI- : m/z=417.0 [M-Na]- 

M2-bHTL 54tris 

 

M = 602.54 g.mol-1 

C22H31N2NaO14S 

To a stirred solution of D-maltose (1 eq., 0.55 mmol, 200 mg) in a phosphate buffer (8 mL, pH 7.2, 0.1 

M) was added barbiturate-HTL 53 (1.1 eq., 0.61 mmol, 156 mg). The reaction mixture was heated and 

stirred at 80°C to allow the barbiturate derivative to solubilize. The reaction was monitored by TLC 

(eluent 7/3 v/v ACN/H2O). When the reaction was completed (overnight), the reaction mixture was 

concentrated with silica. The product was purified by chromatography with a gradient of 10/0 to 7/3 v/v 

ACN/H2O, and was obtained, after lyophilization, in the form of a yellowish fluffy solid (224 mg, 0.37 

mmol, 68%). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 1.10 (m, 3H, H6) ; 2.51 (bs, 1H, H3a) ; 2.66 (m, 1H, H3b) ; 

3.34-3.92 (m, 14H, H4,5, H2’,3’,4’,5’,6’,3”,4”,5”,6”) ; 4.33 (t, 1H, 9.5 Hz, H2”) ; 4.50 (dd, 1H, 9.5/2.0 Hz, H1”) 

; 5.41 (d, 1H, 3.8 Hz, H1’) ; 5.50 (m, 0.5H, H2) ; 5.71 (m, 0.5H, H2). 

SM ESI- : m/z=579.23 [M-Na]- 
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N,N’-(disulfanediylbis(ethane-2,1-diyl))bis(2-aminobenzamide) (ASSA) 58 

 

M = 390.52 g.mol-1 

C18H22N4O2S2 

 

Cystamine dihydrochloride (1 eq., 8.87 mmol, 2 g) was dissolved in H2O (240 mL) and a solution of 

NaOH (2 eq., 17.74 mmol, 709 mg, 0.15 M) in H2O was added. The mixture was stirred for 1 hour and 

was then dried. The crude was dissolved in CH2Cl2 (30 mL) and was filtered through a Büchner with 

CH2Cl2 (100 mL) to remove the unsoluble salts. The filtrate was dried to afford a yellowish liquid, 

cystamine free base, used without further purification. Cystamine free base was dissolved in THF (50 

mL), and isatoic anhydride (2 eq., 17.74 mmol, 2.89 g) was added in one portion to the solution at room 

temperature. The formed brown suspension was heated at 60°C, allowing isatoic anhydride to solubilize, 

and was stirred overnight. The reaction was monitored by TLC (eluent 6/4 v/v EP/EtOAc). When the 

reaction was completed, the reaction mixture was dried to provide a sticky brown solid (3.52 g, 

quantitative yield), that was used without further purification. 

1H NMR (400 MHz, DMSO-d6, 298K) δ (ppm) : 2.91 (t, 4H, 7.0 Hz, H11) ; 3.51 (q, 4H, 6.4 Hz, H10) ; 

6.39 (bs, 4H, NH1) ; 6.50 (td, 2H, 7.5/1.2 Hz, H5) ; 6.68 (dd, 2H, 8.2/1.2 Hz, H3) ; 7.13 (td, 2H, 7.7/1.2 

Hz, H4) ; 7.47 (dd, 2H, 7.8/1.2 Hz, H6) ; 8.36 (t, 2H, 5.5 Hz, NH6). 

HRMS-ESI+:  calculated for [M+H]+ m/z=391.12569, found 391.12575 

FT-IR : ν(C-H aromatic) = 659 + 745 + 3051 cm-1 ; ν(C-S) = 670 cm-1 ; ν(C-N) = 1150 cm-1 ; ν(N-H) = 

1536 cm-1 ; ν(primary amine) = 1539 + 3476 + 3360 cm-1 ; ν(C=O amide) = 1624 cm-1 ; ν(C-H aliphatic) 

= 2904 cm-1 ; ν(substituted amide) = 3275 cm-1. 

M7-rASSA 61 

 

M = 1527.52 g.mol-1 

C60H94N4O37S2 

To a stirred solution of maltoheptaose (1 eq., 86.73 µmol, 100 mg) and ASSA 58 (10 eq., 0.87 mmol, 

338 mg) in DMSO/AcOH 7/3 v/v (5 mL) was added sodium cyanoborohydrate (30 eq., 2.60 mmol, 163 

mg) in one portion at room temperature. The brown suspension was heated to allow the anthranilic 

derivative to solubilize and the formed solution was stirred at 65°C. The reaction was followed by TLC 

(eluent 7/3 v/v ACN/H2O). After 4 hours, the reaction mixture was cooled down to room temperature 

and precipitated in ACN (100 mL). The brown suspension was then centrifuged at 9000 g for 5 min. 

The supernatant was discarded and the pellet was triturated in ACN (40 mL) and centrifuged three times 

in the same conditions. The almost-white precipitate was redissolved in H2O (10 mL), concentrated and 

lyophilized to provide the pure product as a grey fluffy solid (168 mg, 0.11 mmol, quantitative yield). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.02 (m, 6H, H7 & H8?) ; 3.37-4.25 (m, 

H2’,3’,4’,5’,6’,2”,3”,4”,5”,6”) ; 5.03 (m, 1H, H1”?) ; 5.37 (bs, 7H, H1’ & H1” ?) ; 6.85 (m, 4H, H3) ; 7.40 (m, 4H, 

H3).  

HRMS-ESI+: calculated for [M+Na]+ m/z=1549.49305, found 1549.49441 
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M2-rASSA 63 

 

M = 716.82 g.mol-1 

C30H44N4O12S2 

To a stirred solution of D-maltose (1 eq., 0.80 mmol, 288 mg) and ASSA 58 (10 eq., 8.05 mmol, 3.14 

g) in DMSO/AcOH 7/3 v/v (10 mL) was added sodium cyanoborohydrate (30 eq., 24.15 mmol, 1.52 g) 

in one portion at room temperature. The brown suspension was heated and stirred at 65°C and the 

reaction was followed by TLC (eluent 8/2 v/v ACN/H2O). After 2 hours, the reaction mixture was cooled 

down to room temperature and precipitated in ACN (150 mL). The suspension was then centrifuged at 

9000 g for 5 min. The supernatant was discarded and the pellet was triturated in ACN (60 mL) and 

centrifuged three times in the same conditions. The almost-white precipitate was redissolved in H2O (10 

mL), concentrated and lyophilized to provide the pure product as a grey fluffy solid (435 mg, 0.61 mmol, 

76%). 

SM ESI+ : m/z=359.15 [M+2H]2+ ; m/z=541.17 [M’+K]2+ (symmetrical dimer, 15%) ; m/z=598.21 

[maltose+K]+ (starting material, 11%) ; m/z=717.23 [M+H]+ (very major pic) ; m/z=1043.31 [M’+H]+ 

(symmetrical dimer). 

Sulfated M7-bHTL 

 

C52H(81-x)N2Na(1+x)O(39-3x)S(1+x) 

[Lightly sulfated] To a stirred solution of M7-bHTL 54 (1 eq., 0.14 mmol, 200 mg) in DMF (3 mL) was 

added 2-methyl-2-butene (88 eq., 12.32 mmol, 1.3 mL) and sulfur trioxide pyridine complex (0.5 

eq./OH, 1.54 mmol, 245 mg) at room temperature. The reaction mixture was heated at 30°C and stirred 

for 2 hours. After being cooled down, the reaction mixture was poured in a 5% solution of NaHCO3(aq) 

(4 mL) and concentrated until dryness. The product was then purified by dialysis against H2O and 

lyophilized to afford a white fluffy solid (193 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 1.15 (m, 3H, H6) ; 2.56 (m, 1H, H3a) ; 2.71 (m, 1H, H3b) ; 

3.37-4.70 (m, H4,5, H2’,3’,4’,5’,6’,2”,3”,4”,5”,6”) ;  5.33-6.04 (m, 8H, 3.6 Hz, H1’ & H2). 

FT-IR : ν(OH)=3408 cm-1 ; ν(C=O HTL)= 1674 cm-1 ; ν(C=O barbiturate)= 1583 cm-1 ; ν(S=O)= 1216 

cm-1 ; ν(C-C, C-O, C-OH)=996 cm-1. 

SEC-MALS: weight-average molar mass Mw of 2233 ± 12 g/mol. 

[Moderately sulfated] To a stirred solution of M7-bHTL 54 (1 eq., 0.07 mmol, 100 mg) in DMF (2 mL) 

was added 2-methyl-2-butene (176 eq., 12.32 mmol, 1.3 mL) and sulfur trioxide pyridine complex (1 

eq./OH, 1.54 mmol, 245 mg) at room temperature. The reaction mixture was heated at 30°C and stirred 

for 2 hours. After being cooled down, the reaction mixture was poured in a 5% solution of NaHCO3(aq) 
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(4 mL) and concentrated until dryness. The product was then purified by dialysis against H2O and 

lyophilized to afford a fluffy white solid (160 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 1.15 (m, 3H, H6) ; 2.56 (m, 1H, H3a) ; 2.71 (m, 1H, H3b) ; 

3.37-4.66 (m, H4,5, H2’,3’,4’,5’,6’,2”,3”,4”,5”,6”) ;  5.33-6.04 (m, 8H, 3.6 Hz, H1’ & H2). 

FT-IR : ν(OH)=3426 cm-1 ; ν(C=O HTL)= 1677 cm-1 ; ν(C=O barbiturate)= 1586 cm-1 ; ν(S=O)= 1229 

cm-1 ; ν(C-C, C-O, C-OH)=998 cm-1. 

SEC-MALS: weight-average molar mass Mw of 2560 ± 110 g/mol. 

[Highly sulfated] To a stirred solution of M7-bHTL 54 (1 eq., 0.14 mmol, 200 mg) in DMF (6 mL) was 

added 2-methyl-2-butene (352 eq., 49.28 mmol, 5.2 mL) and sulfur trioxide pyridine complex (2 eq./OH, 

6.16 mmol, 980 mg) at room temperature. The reaction mixture was heated at 30°C and stirred for 2h15. 

After being cooled down, the reaction mixture was poured in a 5% solution of NaHCO3(aq) (16 mL) and 

concentrated until dryness. The product was then purified by dialysis against H2O and lyophilized to 

afford a brown solid (117 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 1.20 (bs, 3H, H6) ; 2.69 (m, 2H, H3) ; 3.40-4.72 (m, H4,5, 

H2’,3’,4’,5’,6’,2”,3”,4”,5”,6”) ;  5.36-6.09 (m, 8H, 3.6 Hz, H1’ & H2). 

FT-IR : ν(OH)=3426 cm-1 ; ν(C=O HTL)= 1681 cm-1 ; ν(C=O barbiturate)= 1591 cm-1 ; ν(S=O)= 1223 

cm-1 ; ν(C-C, C-O, C-OH)=996 cm-1.  

SEC-MALS: weight-average molar mass Mw of 2839 ± 17 g/mol. 

Sample 

M7-bHTL 

Mw Mn PDI (Mw/Mn) 

Moy ± Moy ± Moy ± 

Low 2233 12 1693 19 1.319 0.012 

Medium 2560 110 1722 58 1.486 0.017 

High 2839 17 2014 17 1.410 0.007 

Table 24. SEC-MALS of sulfated M7-bHTL. (Mw, Mn and Ip measured on triplicates, here the mean 

value Moy is given. Standard deviation “±” calculated with the triplicate measured values) 

Sample 

M7-bHTL 

C H N S Degree of sulfation (DS) 

[wt%] [wt%] [wt%] [wt%]  

Low 25.019 4.183 0.837 9.368 0.8 

Medium 20.098 3.479 0.490 12.657 1.4 

High 23.746 4.096 0.864 11.295 1.1 

Table 25. Elemental analysis of sulfated M7-bHTL 

Sulfated M7-rHTL 

 

C46H(79-x)NNaxO(36+3x)S(1+x) 

[RUR124 – Low DS] To a stirred solution of M7-rHTL 47 (1 eq., 0.16 mmol, 200 mg) in DMF (2 mL) 

was added 2-methyl-2-butene (88 eq., 14.08 mmol, 1.5 mL) and sulfur trioxide pyridine complex (0.5 

eq./OH, 1.76 mmol, 280 mg) at room temperature. The reaction mixture was heated at 30°C and stirred 

for 2 hours. After being cooled down, the reaction mixture was poured in a 5% solution of NaHCO3(aq) 
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(5 mL) and concentrated until dryness. The product was then purified by dialysis against H2O and 

lyophilized to afford a white fluffy solid (207 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 2.24 (m, 1H, H3a) ; 2.78 (m, 1H, H3b) ; 3.10-4.57 (m, H4, 

H1”,3”,4”,5”,6”,2’,3’,4’,5’,6’) ; 5.13-6.10 (bs, 6H, H1’). 

SEC-MALS: weight-average molar mass Mw of 2822 ± 11 g/mol.  

[RUR292 – Medium DS] To a stirred solution of M7-rHTL 47 (1 eq., 0.08 mmol, 100 mg) in dry DMF 

(5 mL) was added 2-methyl-2-butene (46 eq., 3.68 mmol, 390 µL) and sulfur trioxide pyridine complex 

(1 eq./OH, 1.84 mmol, 293 mg) at room temperature under nitrogen atmosphere. The reaction mixture 

was heated at 30°C and stirred overnight. After being cooled down, the reaction mixture was poured in 

H2O (10 mL) and neutralized with NaHCO3 until the pH reached a value of 9. The crude was then 

concentrated until dryness and purified by GPC to provide, after lyophilization, the pure product as a 

white fluffy solid (96 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 2.34 (m, 1H, H3a) ; 2.82 (m, 1H, H3b) ; 3.45-5.10 (m, H4, 

H1”,3”,4”,5”,6”,2’,3’,4’,5’,6’) ; 5.32-6.10 (bs, 6H, H1’). 

SEC-MALS: weight-average molar mass Mw of 3123 ± 147 g/mol. 

[RUR291 – High DS] To a stirred solution of M7-rHTL 47 (1 eq., 0.08 mmol, 100 mg) in dry DMF (5 

mL) was added 2-methyl-2-butene (167 eq., 13.40 mmol, 1.95 mL) and sulfur trioxide pyridine complex 

(5 eq./OH, 9.20 mmol, 1.46 g) at room temperature under nitrogen atmosphere. The reaction mixture 

was heated at 30°C and stirred over the weekend. After being cooled down, the reaction mixture was 

poured in H2O (10 mL) and neutralized with NaHCO3 until the pH reached a value of 9. The crude was 

then concentrated until dryness and purified by GPC to provide, after lyophilization, the pure product 

as a white fluffy solid (77 mg). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 2.34 (m, 1H, H3a) ; 2.80 (m, 1H, H3b) ; 3.50-5.10 (m, H4, 

H1”,3”,4”,5”,6”,2’,3’,4’,5’,6’) ; 5.43-5.78 (bs, 6H, H1’). 

SEC-MALS: weight-average molar mass Mw of 2516 ± 64 g/mol. 

Sample 

M7-rHTL 

Mw Mn PDI (Mw/Mn) 

Moy ± Moy ± Moy ± 

Low 2822 11 2188 4.9 1.290 0.007 

Medium 3123 147 2471 68 1.264 0.025 

High 2516 64 1937 52 1.299 0.008 

Table 26. SEC-MALS of sulfated M7-rHTL. (Mw, Mn and Ip measured on triplicates, here the mean 

value Moy is given. Standard deviation “±” calculated with the triplicate measured values) 

Sample 

M7-rHTL 

C H N S Degree of sulfation (DS) 

[wt%] [wt%] [wt%] [wt%]  

Low 23.048 4.127 0.483 11.597 1.1 

Medium 17.850  5.229 7.778 18.269 1.9 

High 15.563  5.035 8.351 19.641 2.8 

Table 27. Elemental analysis of sulfated M7-rHTL 
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M7-rAPNP 74 

 

M = 1395.23 g.mol-1 

C55H82N2O39 

To a stirred solution of maltoheptaose (1 eq., 0.87 mmol, 1 g) and 4-nitrophenyl anthranilate (10 eq., 

8.67 mmol, 2.24 g) in DMSO/AcOH 7/3 v/v (26 mL) was added sodium cyanoborohydrate (30 eq., 

26.01 mmol, 1.63 g) in one portion at room temperature. The fluorescent yellow solution was heated 

and stirred at 65°C. The reaction was followed by TLC (eluent 7/3 v/v ACN/H2O). After 6 hours, the 

reaction mixture was cooled down to room temperature and precipitated in ACN (250 mL). The yellow 

suspension was then centrifuged at 9000 g for 5 min at 4°C. The supernatant was discarded and the 

pellet was triturated in ACN (100 mL) and centrifuged two times in the same conditions. The fluorescent 

yellow precipitate was redissolved in H2O (10 mL), concentrated and purified by chromatography with 

a gradient of 10/0 to 7/3 v/v ACN/H2O to remove the residual maltoheptaose. The pure product was 

obtained, after lyophilized, as a yellow solid (884 mg, 0.63 mmol, 84% based on conversion rate (58% 

if the reaction was finished, and conversion rate 69%).  

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 3.33-4.12 (m, H2’,3’,4’,5’,6’,2”,3”,4”,5”,6”) ; 5.12 (d, 2H, 3.8 Hz, 

H1”) ; 5.37 (d, 6H, 3.8 Hz, H1’) ; 6.77 (t, 1H, 7.6 Hz, H4) ; 6.95 (d, 1H, 8.7 Hz, H4) ; 7.43 (d, 2H, 8.7 Hz, 

H8) ; 7.56 (t, 1H, 7.6 Hz, H4) ; 8.10 (d, 1H, 7.6 Hz, H3) ; 8.32 (d, 2H, 8.7 Hz, H8).  

SM ESI+ : m/z=717.19 [M+K]+ ; m/z=956.24 [2M+2K]3+ ; m/z=1066.27 [3M+2H+2K]4+ ; m/z=1414.84 

[2M+K]2+.  

M7-rANH2 75 

 

M = 1316.22 g.mol-1 

C51H85N3O36 

To a stirred solution of M7-rAPNP (1 eq., 71.67 µmol, 100 mg) in dry DMF (1 mL) was added 

ethylenediamine (2 eq., 0.14 mmol, 10 µL) at room temperature. The reaction mixture was heated at 

60°C and the reaction was followed by TLC (eluent 7/3 v/v ACN/H2O). After 2 hours, the reaction was 

dried to obtain a fluorescent yellow residue. The residue was redissolved in H2O, and precipitated in 

acetone (100 mL). The yellow suspension was filtered over a Büchner with acetone. The precipitate was 

recovered with H2O, and the product was obtained, after lyophilization, as a yellow solid (98 mg, 71.67 

µmol, quantitative yield). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 2.91-4.28 (m, H7, H8, H2’,3’,4’,5’,6’,2”,3”,4”,5”,6”) ; 5.13 (d, 2H, 

3.9 Hz, H1”) ; 5.41 (d, 6H, 3.9 Hz, H1’) ; 6.83 (t, 1H, 7.6 Hz, H4) ; 6.95 (d, 1H, 8.4 Hz, H3) ; 7.46 (t, 1H, 

7.6 Hz, H4) ; 7.53 (d, 1H, 7.6 Hz, H3). 

13C NMR (100 MHz, D2O, 298K), δ(ppm) : 37.3 (C7) ; 37.4 (C8) ; 58.1, 58.2, 59.9, 66.9, 67.1, 68.7, 

69.0, 69.2, 69.3, 69.5, 70.2, 70.5, 70.7, 71.1, 74.6 (C2’,3’,4’,5’,6’,2”,3”,4”,5”,6”) ; 97.4 (C1’) ; 98.0 (C1”) ; 110.8 

(C4) ; 114.8 (C3) ; 126.4 (C4) ; 131.0 (C3) ; 170.0 (C6). 
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SM MALDI+ : m/z=1338.514 [M+Na]+ 

N-allyl-5-(2-oxohexahydro-1H-thieno[3,4-d]imidazole-4-yl)pentanamide (biotin-NHS) 78 

 

M = 341.38 g.mol-1 

C14H19N3O5S 

 

D(+)-biotin (1 eq., 16.37 mmol, 4 g) was dissolved in DMF (64 mL) by heating the flask at 80°C and 

was then cooled down to room temperature. N-hydroxysuccinimide (1.3 eq., 21.28 mmol, 2.44 g) and 

N,N'-dicyclohexylcarbodiimide (1.1 eq., 18.00 mmol, 3.71 g) were added, and the trouble solution was 

stirred at room temperature overnight. The reaction was monitored by TLC (eluent 75/25 v/v 

CH2Cl2/MeOH). When the reaction was completed, the mixture was filtered through celite with DMF 

(100 mL), and the filtrate was concentrated. The product was precipitated with the addition of Et2O, and 

filtered over a Büchner with Et2O extensively. The white precipitate was then washed with H2O (2 x 20 

mL), MeOH (2 x 20 mL) and cold i-PrOH (20 mL). The product was finally dried to provide a white 

solid (3.96 g, 11.62 mmol, 71%). 

1H NMR (400 MHz, DMSO-d6, 298K) δ (ppm) : 1.53 (m, 2H, H9, H10 & H11) 2.58 (d, 1H, 12.3 Hz, H2a) 

; 2.67 (t, 2H, 7.4 Hz, H12) ; 2.81 (t, 4H, 31.9 Hz, H17 & H18) ; 2.83 (dd, 1H, 12.3/4.8 Hz, H2b) ; 3.10 (m, 

1H, H8) ; 4.14 (m, 1H, H7) ; 4.31 (m, 1H, H3) ; 6.36 (bs, 1H, NH4) ; 6.42 (bs, 1H, NH6). 

MS ESI+: m/z=342.15 [M+H]+ ; m/z=380.12 [M+K]+ ; m/z=683.37 [2M+H]+ 

FT-IR : ν(C=O) = 654 cm-1 ; ν(C-N) = 1071 cm-1 ; ν(C-O ester) = 1211 cm-1 ; ν(C=O) = 1696 cm-1 ; ν(C-

H) = 2938 cm-1 ; ν(N-H amide) = 3224 cm-1. 

N-allyl-5-(2-oxohexahydro-1H-thieno[3,4-d]imidazole-4-yl)pentanamide (biotin-allyl) 79 

 

M = 283.39 g.mol-1 

C13H21N3O2S 

 

 

D(+)-biotin (1 eq., 4.09 mmol, 1 g) was dissolved in DMF (16 mL) by heating the flask at 80°C and was 

then cooled down to room temperature. N-hydroxysuccinimide (1.3 eq., 5.32 mmol, 612 mg) and N,N'-

dicyclohexylcarbodiimide (1.1 eq., 4.50 mmol, 928 mg) were added, and the trouble solution was stirred 

at room temperature overnight. The reaction was monitored by TLC (eluent 75/25 v/v CH2Cl2/MeOH). 

When the reaction was completed, the mixture was filtered through celite with DMF (80 mL), and the 

filtrate was concentrated until ≈20 mL were left. Then, allylamine (2 eq., 8.18 mmol, 614 µL) and 

triethylamine (3 eq., 12.27 mmol, 1.71 mL) were added to the flask forming a milky solution, and the 

reaction mixture was stirred overnight. The reaction was followed by TLC (eluent 9/1 v/v ACN/H2O). 

When the reaction was finished, the reaction mixture was dried, redissolved in the minimum of MeOH, 

precipitated in Et2O and filtered through a Büchner with Et2O (100 mL). The precipitate, once dried, 

afforded a greyish solid (1.25 g, quantitative yield), that was used without further purification. 
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1H NMR (400 MHz, DMSO-d6, 298K) δ (ppm) : 1.30 (m, 2H, H10) ; 1.51 (m, 2H, H11) ; 1.60 (m, 2H, 

H9) ; 2.09 (t, 2H, 7.0 Hz, H12) ; 2.57 (d, 1H, 12.3 Hz, H2a) ; 2.82 (dd, 1H, 12.3/4.8 Hz, H2b) ; 3.10 (td, 

1H, 7.1/3.4 Hz, H8) ; 3.67 (t, 2H, 5.4 Hz, H15) ; 4.13 (m, 1H, H7) ; 4.30 (t, 1H, 4.8 Hz, H3) ; 5.08 (m, 2H, 

H17) ; 5.78 (tdd, 1H, 10.9/5.4/1.1 Hz, H16) ; 6.36 (bs, 1H, NH4) ; 6.43 (bs, 1H, NH6) ; 7.94 (bs, 1H, NH14). 

MS ESI+: m/z=306.11 [M+Na]+ ; m/z=589.21 [2M+Na]+ 

M7-rANH-CO-biotin 90 

 

M = 1542.51 g.mol-1 

C61H99N5O38S 

To a stirred solution of M7-rANH2 75 (1 eq., 0.18 mmol, 236 mg) in a mixture of DMF/H2O 1/1 v/v (6 

mL) was added triethylamine (1 eq., 0.18 mmol, 25 µL) and biotin-NHS (2 eq., 0.36 mmol, 122 mg). 

The reaction mixture was stirred at room temperature for 30 min, and was monitored by TLC (eluent 

7/3 v/v ACN/H2O). Then, the reaction mixture was mixed with silica and concentrated until dryness. 

The crude was purified by chromatography with a gradient of 10/0 to 7/3 v/v ACN/H2O to afford, after 

lyophilization, the pure product as a white solid (193 mg, 0.13 mmol, 69%). 

1H NMR (400 MHz, D2O, 298K) δ (ppm) : 1.23-1.67 (m, 6H, H11, H12 & H13) ; 2.27 (t, 2H, 6.9 Hz, H10) 

; 2.70 (d, 1H, 12.8 Hz, H18a) ; 2.86 (dd, 1H, 13.3/5.0 Hz, H18b) ; 2.90 (m, 1H, H14) ; 3.26-4.07 (m, 

H2’,3’,4’,5’,6’,2”,3”,4”,5”,6”) ; 4.12 (m, 1H, H15) ; 4.48 (m, 1H, H17) ; 5.13 (d, 2H, 3.7 Hz, H1”) ; 5.39 (d, 6H, 

3.5 Hz, H1’) ; 6.81 (t, 1H, 7.3 Hz, H4) ; 6.92 (d, 1H, 8.3 Hz, H3) ; 7.43 (d, 1H, 7.6 Hz, H4) ; 7.47 (d, 1H, 

7.6 Hz, H3). 

13C NMR (100 MHz, D2O, 298K), δ(ppm) : 25.2 (C11) ; 27.7 (C12 & C13) ; 35.6 (C10) ; 38.6 (C7) ; 38.8 

(C8) ; 39.7 (C18) ; 55.0 (C14) ; 60.2 (C17) ; 61,8 (C15) ; 45.7, 60.3, 60.4, 62.2, 69.1, 69.3, 71.0, 71.2, 71.4, 

71.6, 71.7, 72.4, 72.7, 72.9, 73.3, 76.8, 77.1, 77.2, 77.3, 82.2 (C2’,3’,4’,5’,6’,2”,3”,4”,5”,6”) ; 99.7 (C1’) ; 100.4 

(C1”) ; 112.7 (C3) ; 116.7 (C4) ; 117.4 (C5) ; 128.7 (C4) ; 133.2 (C3) ; 147.9 (C2) ; 165.2 (C16) ; 171.7 (C6) 

; 177.1 (C9). 

HRMS-ESI+ : calculated for [M+H]+ m/z=1542.57615, found 1542.57801 

Sulfated M7-rANH-CO-biotin 

 

C61H(99-x)N5NaxO(38+3x)S(1+x) 

[Moderately sulfated] To a stirred solution of M7-rANH-CO-biotin 90 (1 eq., 0.032 mmol, 50 mg) in 

dry pyridine (2 mL) was added sulfur trioxide pyridine complex (1 eq./OH, 0.746 mmol, 119 mg) in one 

portion under nitrogen atmosphere. The reaction mixture was stirred at 60°C for 24h. The crude was 

poured in water and neutralized with the portionwise addition of NaHCO3 until the pH reached 9. The 

crude was then dried and purified by GPC to afford, after lyophilization, a beige solid (35 mg). 



 
 

 
188 

 1H NMR (400 MHz, D2O, 298K) δ (ppm) : 1.12-1.79 (m, 6H, H11, H12 & H13) ; 2.28 (sl, 2H, H10) ; 

2.66-3.00 (m, 2H, H18) ; 3.32-4.80 (H2’,3’,4’,5’,6’,1”,2”,3”,4”,5”,6”, H15, H17) ; 5.41-6.07 (m, 6H, H1’) ; 6.79 (m, 

1H, H4) ; 7.04 (m, 1H, H3) ; 7.44 (m, 2H, H3 & H4). 

[Highly sulfated] To a stirred solution of M7-rANH-CO-biotin 90 (1 eq., 0.032 mmol, 50 mg) in dry 

pyridine (2 mL) was added sulfur trioxide pyridine complex (5 eq./OH, 3.728 mmol, 593 mg) in one 

portion under nitrogen atmosphere. The reaction mixture was stirred at 60°C for 20h. The crude was 

poured in water and neutralized with the portionwise addition of NaHCO3 until the pH reached 9. The 

crude was then dried and purified by GPC to afford, after lyophilization, a beige solid (70 mg). 

 1H NMR (400 MHz, D2O, 298K) δ (ppm) : 1.09-1.98 (m, 6H, H11, H12 & H13) ; 2.30 (sl, 2H, H10) ; 

2.98-3.30 (m, 2H, H18) ; 3.32-4.80 (H2’,3’,4’,5’,6’,1”,2”,3”,4”,5”,6”, H15, H17) ; 5.41-6.07 (m, 6H, H1’) ; 6.79 (m, 

1H, H4) ; 7.06 (m, 1H, H3) ; 7.46 (m, 2H, H3 & H4). 
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