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ABSTRACT 

 

The battery models used in system studies are generally based on one-tank OCV models 

coupled with semi-empirical aging models predicting the evolution of the tank's capacity. In 

these models, the state-of-health of a cell is therefore represented by a single value, which is 

too limiting. Dual-tank OCV models are another type of models used in the literature. These 

models are useful to consider the modification of the OCV signature depending on the battery 

degradation path. Coupling dual-tank OCV models with aging models allows to predict 

variables related to the electrodes for the prognosis of the battery SOH. In this work, semi-

empirical models and aging model used to describe the influence of SEI layer are coupled with 

a dual-tank OCV model. The semi-empirical approach aims to directly predict the evolution 

electrodes capacities along with aging electrodes. The approach, inspired by physics, 

introduces the notion of parasitic current at the origin of the loss of lithium inventory and aims 

to predict the offset between the electrode potentials signals. These different approaches are 

implemented with the experimental results of the MOBICUS project, a French national project 

on aging modeling of a production graphite-NMC/LMO battery. 

Keywords: Lithium-ion batteries, calendar aging model, prognostic model, loss of lithium inventory, loss 

of active material, SEI growth, open-circuit voltage model, electrodes aging, dual-tank model, Physics-

based model. 

 

 

 

 

 

 

 

 



1 
 

 

Table des matières 
GENERAL INTRODUCTION .......................................................................................................................................................... 4 

CHAPTER 1: STATE-OF-THE-ART AND OBJECTIVES OF THE STUDY ............................................................................................. 6 

Introduction ............................................................................................................................................................................... 7 

I.1. Lithium-ion battery presentation................................................................................................................................. 7 

I.2. Aging of Li-ion batteries ............................................................................................................................................... 8 

I.2.1. Aging mechanisms on the negative and positive electrode .................................................................................... 8 

I.2.2. Degradation modes on the electrodes.................................................................................................................. 10 

I.2.3. Aging modes ......................................................................................................................................................... 10 

I.2.4. OCV measurements at different aging states ....................................................................................................... 11 

I.3. Prognosis of lithium-ion batteries SOH and OCV ....................................................................................................... 13 

I.3.1. One-tank OCV and aging models .......................................................................................................................... 13 

I.3.1.1. One-tank OCV model ................................................................................................................................... 13 

I.3.1.2. One-tank capacity aging model ................................................................................................................... 14 

I.3.1.3. One-tank aging models limitation ............................................................................................................... 18 

I.3.2. Dual-tank OCV and aging models .......................................................................................................................... 18 

I.3.2.1. Dual-tank OCV model .................................................................................................................................. 18 

I.3.2.2. Dual-tank aging model ................................................................................................................................ 20 

I.4. Purpose of this thesis ................................................................................................................................................. 22 

CHAPTER 2: MOBICUS PROJECT PRESENTATION AND EXPERIMENTAL AGING RESULTS ......................................................... 23 

INTRODUCTION ........................................................................................................................................................................ 24 

II.1. MOBICUS PROJECT..................................................................................................................................................... 24 

II.1.1. Presentation and aims of the project.................................................................................................................... 24 

II.1.2. Production Gr/NMC-LMO cell and coin cells manufacture ................................................................................... 24 

II.1.2.1. Production cell characteristics .................................................................................................................... 24 

II.1.2.2. Coin cells manufacture ................................................................................................................................ 25 

II.2. Protocol of check-up on 43 Ah Gr/NMC-LMO for aging tests .................................................................................... 26 

II.3. Aging campaign and experimental results ................................................................................................................. 27 

II.3.1. Experimental measurements of the cell SOH ....................................................................................................... 28 

II.3.1.1. Fixed calendar conditions ............................................................................................................................ 28 

II.3.1.2. Thermal cycling, fixed SOC .......................................................................................................................... 30 

II.3.1.3. Variable SOC, fixed temperature ................................................................................................................. 32 

II.3.2. Experimental measurements of the cell voltage at C-10 ...................................................................................... 33 

CHAPTER 3: ONE-TANK AGING MODEL .................................................................................................................................... 34 

Introduction ............................................................................................................................................................................. 35 

III.1. MOBICUS aging model ............................................................................................................................................... 35 

III.1.1. MOBICUS aging laws ........................................................................................................................................ 35 

III.1.1.1. Degradation rate 𝐽𝑐𝑎𝑙 ................................................................................................................................. 35 

III.1.1.2. Degradation loss function 𝑓𝑑𝑒𝑔 .................................................................................................................. 36 

III.1.2. Identification of the parameters of the MOBICUS aging model ....................................................................... 36 



2 
 

III.1.2.1. Identification method and results ............................................................................................................... 36 

III.1.2.2. Experimental and simulated cell SOH from the MOBICUS aging model...................................................... 38 

III.1.2.3. MOBICUS aging model error ....................................................................................................................... 40 

III.1.3. Model validation .............................................................................................................................................. 41 

III.2. One-tank aging model................................................................................................................................................ 42 

III.2.1. One-tank aging model laws .............................................................................................................................. 42 

III.2.1.1. Degradation rate 𝐽𝑐𝑎𝑙 ................................................................................................................................. 42 

III.2.1.2. Degradation loss function 𝑓𝑑𝑒𝑔 .................................................................................................................. 43 

III.2.2. One-tank aging model parameters identification ............................................................................................ 43 

III.2.2.1. Identification method and results ............................................................................................................... 43 

III.2.2.2. Experimental and simulated cell SOH from the one-tank aging model ....................................................... 47 

III.2.2.3. One-tank aging model error ........................................................................................................................ 48 

III.2.3. Validation of the one-tank aging model ........................................................................................................... 49 

III.3. Comparison of the MOBICUS aging model prediction versus One- tank aging model .............................................. 50 

III.3.1. Identification process at 60°C and 65% of SOC ................................................................................................ 50 

III.3.2. Validation process for the thermal cycling condition at SOC 65% ................................................................... 51 

Conclusion ................................................................................................................................................................................ 53 

CHAPTER 4: STUDY OF A COUPLING BETWEEN A DUAL-TANK OCV MODEL AND CALENDAR EMPIRICAL AGING MODEL ....... 54 

Introduction ............................................................................................................................................................................. 55 

IV.1. Dual-tank OCV model ................................................................................................................................................ 55 

IV.1.1. Model presentation ......................................................................................................................................... 55 

IV.1.2. Parameter’s identification of the dual-tank model .......................................................................................... 57 

IV.1.2.1. Identification method .................................................................................................................................. 57 

IV.1.2.2. Dual-tank parameters evolution with aging ................................................................................................ 58 

IV.1.2.3. Validation from the literature ..................................................................................................................... 61 

IV.1.2.4. Influence of the degradation path............................................................................................................... 62 

IV.2. Dual-tank aging model ............................................................................................................................................... 64 

IV.2.1. Dual-tank aging model equations .................................................................................................................... 64 

IV.2.2. Parameters identification ................................................................................................................................. 64 

IV.2.2.1.  𝐶𝑝𝑜𝑠 aging model parameters identification ............................................................................................. 65 

IV.2.2.2. 𝐶𝑛𝑒𝑔 aging model parameters identification ............................................................................................. 68 

IV.2.2.3. 𝑂𝐹𝑆 aging model parameters identification ............................................................................................... 71 

IV.2.3. Aging model validation ..................................................................................................................................... 74 

IV.3. Evolution of the dual-tank model parameters with aging ......................................................................................... 76 

IV.3.1. Simulation of the calendar aging condition at T=45°C and SOC=65%: reference case ..................................... 76 

IV.3.1.1. Aging evolution of the dual-tank OCV parameters and full cell capacity. ................................................... 76 

IV.3.1.2. Evolution of the positive and negative electrode potential signals ............................................................. 77 

IV.3.1.3. Evolution of the maximum and minimum lithium content ......................................................................... 78 

IV.3.2. Influence of the degradation rate on the electrode lithium contents ............................................................. 79 

IV.3.2.1. Acceleration of the positive electrode capacity 𝐶𝑝𝑜𝑠 aging parameter ..................................................... 79 

IV.3.2.2. Acceleration of the electrode capacity 𝐶𝑛𝑒𝑔 aging parameter .................................................................. 80 



3 
 

IV.3.2.3. Acceleration of OFS aging ............................................................................................................................ 81 

IV.3.3. Influence of the electrodes sizing on the electrode potential signals and lithium content ............................. 82 

IV.3.3.1. Positive electrode undersized ..................................................................................................................... 82 

IV.3.3.2. Positive electrode oversized ........................................................................................................................ 83 

Conclusion ................................................................................................................................................................................ 85 

CHAPTER 5: DUAL-TANK PHYSIC BASED AGING MODEL .......................................................................................................... 87 

Introduction ............................................................................................................................................................................. 88 

V.1. SEI modeling .............................................................................................................................................................. 89 

V.1.1. Full cell representation ......................................................................................................................................... 89 

V.1.2. SEI mechanisms and equations ............................................................................................................................. 90 

V.1.2.1. Kinetic of intercalation of the lithium-ion : ................................................................................................. 90 

V.1.2.2. SEI growth model and the parasitic reaction of lithium-ions consumption ................................................ 91 

V.2. Physics-based aging model ........................................................................................................................................ 94 

V.2.1. 𝑂𝐹𝑆 aging law ....................................................................................................................................................... 94 

V.2.2. Influence of degradation modes on the offset aging ............................................................................................ 96 

V.2.2.1. Influence of 𝐿𝐿𝐼 on the offset parameter ................................................................................................... 96 

V.2.2.2. Influence of the loss of active mass 𝐿𝐴𝑀𝑝𝑜𝑠 on the offset parameter ...................................................... 97 

V.2.2.3. Influence of the loss of active mass 𝐿𝐴𝑀𝑛𝑒𝑔 on the offset parameter...................................................... 98 

V.2.3. Identification of the parameters of the physics-based aging model ..................................................................... 99 

V.2.3.1. Identification method and results ............................................................................................................. 100 

V.2.3.2. SEI thickness growth .................................................................................................................................. 103 

V.2.4. Aging evolution of the parameters of the physics-based aging model ............................................................... 104 

V.2.4.1. Evolution of the electrode potential signals with aging ............................................................................ 104 

V.2.4.2. Evolution of the cell voltage and capacity with aging ............................................................................... 106 

V.2.5. Validation of the physics-based aging model and comparison with the one-tank aging model ......................... 107 

Conclusion: ............................................................................................................................................................................. 109 

GENERAL CONCLUSION AND PERSPECTIVES .......................................................................................................................... 110 

VI.1. General conclusion .................................................................................................................................................. 110 

VI.2. Perspectives ............................................................................................................................................................. 111 

VI.2.1. Dual-tank OCV model: hysteresis effect and validation of the identification process ................................... 111 

VI.2.2. Dual-tank aging model: Effect of temperature and state-of-charge .............................................................. 111 

VI.2.3. Physics-based aging model: modeling of the active mass loss on the electrodes .......................................... 112 

VI.2.4. Physics-based aging model: Introduction of other mechanisms for the SEI .................................................. 112 

REFERENCES ........................................................................................................................................................................... 112 

 

 

  



4 
 

GENERAL INTRODUCTION 
Lithium-ion (Li-ion) batteries are widely used for applications in electric vehicles (EVs) and 
hybrid electric vehicles (HEVs) due to their high energy and power density [1]. The challenge 
for operators and managers of electric-vehicle fleets is to ensure the profitability of their 
vehicle rental business models. One of their levers is to promote the reliability of batteries by 
optimizing vehicle usage. Compromises must be determined between available autonomy, 
battery durability, and for the recharge: the frequency, the duration, and power level. For this, 
robust models representing the aging of batteries according to actual conditions of use are 
essential. Over the past years, several projects including the French national project MOBICUS 
[2] had been launched for the prognosis of Li-ion batteries aging. The main objectives of this 
project were to understand the coupling between calendar and cycling aging but also to design 
and validate strategies enabling to extend battery life according to real vehicle usage. 
 
To increase the lifetime of Li-ion batteries, the prediction of the battery End-Of-Life (EOL) is 
an important task. The prognosis of internal states such as the State Of Health (SOH) and the 
estimation of the loss of performances due to aging are necessary to ensure reliable operating 
batteries. The SOH represents the ratio between the total cell capacity at a given aging state 
and the total capacity at the Beginning-Of-Life (BOL). The prediction of the SOH of the battery 
must be inferred from models depending on the usage and operating conditions such as 
temperature, State of Charge (SOC), or current flowing through the battery. The SOC traduces 
the level of charge of the battery and represents the ratio between the available cell capacity 
measured at a given C-rate and nominal capacity at a given aging state. 
 
Some recent works propose semi-empirical and physics-based aging models to forecast the 
cell capacity change during battery aging. The Open-Circuit Voltage (OCV), which is the 
difference of potential between the positive and negative electrodes when no current flows, 
is related to the cell capacity. Indeed, these electrode potential signals are modified due to 
various parasitic mechanisms. Therefore, the understanding of the aging mechanisms of 
lithium-ion batteries plays an important role in the prediction of the OCV and cell capacity 
evolution along with aging. As the battery capacity decreases along with aging (SOH fading), 
the OCV-SOC signal is modified. The works proposed in the literature develop two sorts of OCV 
models to update the OCV-SOC signal along with aging: the one-tank OCV model and the dual-
tank OCV one. The one-tank OCV model modifies the OCV-SOC signal knowing the battery SOH 
while the dual-tank OCV model considers the evolution of the electrode capacities and the 
offset between the electrode potential signals. 
  
The research work, presented in this thesis, explores issues related to the evolutions of the 
electrode potential signals during aging and how they impact the prediction of the cell capacity 
through aging as well as the battery OCV. The aim is to develop new aging models considering 
the operating conditions of the battery to improve the prediction of the cell capacity. Based 
on calendar aging tests, a semi-empirical aging model will be proposed to predict the aging of 
electrode capacities and the evolution of the offset between electrode potential signals. 
Besides, a physics-based aging model, based on existing models in the literature, will be 
proposed to have a better understanding of the contributions of the aging mechanisms on the 
battery prognosis. 
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This thesis manuscript is divided into five chapters corresponding to the different lines of 
research developed during this work. 
 
The first chapter presents the operating principles of the production lithium-ion battery used 
during this thesis work. This chapter focuses on the aging mechanisms and degradation modes 
reducing the performance of the battery. The state-of-art prognosis of battery capacity using 
aging models is depicted at the end of the first chapter. 
 
The second chapter is devoted to the MOBICUS project and experimental setup. The 
specification of the cells used during the project and protocols of check-up used during the 
aging campaign are described. Also, the experimental results of the SOH evolution for various 
calendar conditions are detailed in the last section of the chapter. 
 
The third chapter begins with the presentation of the MOBICUS aging model developed during 
the project by CEA team. Moreover, a new one-tank aging model also based on the cell 
capacity prognosis is developed in this thesis, with different aging factor expressions. In both 
cases, the two aging models are identified and validated using the experimental aging 
conditions detailed in chapter 2. Finally, the MOBICUS aging model and the new one-tank 
aging models are compared. 
 
In the fourth chapter, a dual-tank OCV model is developed, and its parameters are identified 
for different aging states, i.e., the positive electrode capacity 𝐶𝑝𝑜𝑠, the negative electrode 

capacity 𝐶𝑛𝑒𝑔 and the offset (𝑂𝐹𝑆). This dual-tank OCV model is then coupled to three semi-

empirical aging models aiming at predicting the evolution of these three parameters. This 
model has been evaluated, validated, and compared to the one-tank aging model.  
 
In the fifth chapter, a physics-based aging model for the offset parameter (OFS) is proposed, 
focusing on the modeling of the SEI growth at graphite/SEI interface. The evolution of the SEI 
growth and lithium contents in the electrodes are studied through this physics-based aging 
model. Finally, the physics-based aging model and the one-tank aging model are compared 
for the prognosis of the cell SOH. 
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CHAPTER 1: STATE-OF-THE-ART AND OBJECTIVES OF THE STUDY 
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Introduction 
This first chapter addresses the state-of-the-art of aging mechanisms and prognosis models 
used in the literature to predict the evolution of the cell SOH and OCV.  
The first part of this chapter presents the principle of operation of the lithium-ion cell and the 

battery technology used in the MOBICUS project [2] with its different compounds. 

The second part proposes a bibliographic study on the main aging mechanisms, degradation 

modes, and types of aging studied in the framework of the thesis. These mechanisms are 

responsible for the degradation of the battery SOH and the evolution of the open-circuit 

voltage OCV shape.  

The state-of-the-art aging models proposed in the literature for the prognosis of the battery 

SOH and OCV are presented in the third part of the chapter. Two types of models are 

described: the one-tank and the dual-tank aging models. These models are used to predict the 

evolution of the performances of the production cell depending on the operating conditions 

applied to the battery. 

Finally, the objectives of this thesis are presented in the fourth part. 

I.1. Lithium-ion battery presentation 
 

Lithium-ion batteries are composed of a succession of cells in series and/or in parallel. A single 

cell contains two electrodes (negative and positive electrodes) separated by a separator; the 

whole system filled with electrolyte. Both electrodes are composed of an active material 

deposited on a current collector. Typical current collectors are made with copper for the 

negative electrode and aluminum for the positive electrode. The representation of a lithium-

ion cell is illustrated in FIGURE I-1.  

 

Figure I-1: Li-ion battery presentation. 

For the scope of this thesis, the battery technology uses graphite for the negative electrode 

and a blend of lithium Nickel Manganese Cobalt Oxide and Lithium Manganese Oxide 

materials (NMC/LMO) for the positive electrode. 
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● Reactions at the graphite electrode: 

 

𝐶6 + 𝑥𝐿𝑖+ + 𝑥𝑒− ⇿ 𝐿𝑖𝑥𝐶6 (1.1) 
 

● Reactions at the NMC-LMO electrode: 

 

𝐿𝑖1−𝑥𝑁𝑖1/3𝑀𝑛1/3𝐶𝑜1/3𝑂2 ⇿ 𝐿𝑖𝑁𝑖1/3𝑀𝑛1/3𝐶𝑜1/3𝑂2 + 𝑥𝐿𝑖+ + 𝑥𝑒− (1.2) 

 

𝐿𝑖1−𝑥𝑀𝑛𝑂2 ⇿ 𝐿𝑖𝑀𝑛𝑂2 + 𝑥𝐿𝑖+ + 𝑥𝑒− (1.3) 
 

The electrolyte used in the Li-ion battery is composed of a mixture of solvents. This mixture 

comprises alkyl carbonates (Ethylene Carbonate (EC), Dimethyl Carbonate (DMC)). The salt, 

most used, is the lithium hexafluorophosphate (𝐿𝑖𝑃𝐹6). Some additives are combined to the 

mixture by 5 % either by weight or by volume of the battery, which significantly improves the 

cycle life of the Li-ion battery. These additives also reduce the irreversible capacity and 

enhance 𝐿𝑖𝑃𝐹6 thermal stability against the organic electrolyte solvents. 

The separator is an electrically insulating material, which prevents the electrons from flowing 

from one electrode to another. 

I.2. Aging of Li-ion batteries  
The study of aging mechanisms (see FIGURE I-2) on the electrodes is a key issue as aging depends 
on the type of materials used for the electrodes and the operating conditions. It has been 
reviewed by Vetter et al. [3] who evaluated the aging on carbonaceous negative electrode, 
lithium manganese oxides (𝐿𝑖𝑀𝑛2𝑂4) with spinel structure and lithium nickel cobalt mixed 
oxides [𝐿𝑖(𝑁𝑖, 𝐶𝑜)𝑂2] with layered structures. All those aging mechanisms lead to the loss of 
battery performance in terms of capacity decay. The stress factors (temperature, current, 
state-of-charge) applied to the battery highly impact the battery loss of performance [4]. 
 

I.2.1. Aging mechanisms on the negative and positive electrode 

One of the most documented phenomena in the literature is the growth of a passivation layer 
called SEI [5]–[8] (Solid Electrolyte Interphase) as shown in FIGURE I-2. The SEI is formed during 
the first charge cycle of the battery. Its formation leads to an irreversible loss of capacity within 
the cell. The SEI layer formed during the first charge reduces the SEI growth by slowing down 
the diffusion of the molecules of solvents towards the interface between graphite and SEI. 
Also, the SEI layer protects the graphite from the intercalation of the molecules of solvents in 
the layers of the negative electrode that may cause its deformation (graphite exfoliation). 
On the positive electrode, a passivation layer may also appear due to the decomposition of 
the electrolyte on the positive electrode/electrolyte surface [9]. 
Another mechanism often mentioned in the literature is lithium plating [10], which 
corresponds to the deposition of Li-ions on the surface of the negative electrode. Part of the 
plated lithium will be consumed irreversibly due to either the reaction with electrolyte to form 
new SEI film or the formation of “dead” lithium which is electrically isolated with anode [11]. 
The rest of plated lithium is considered as a reversible part. The reversible part of plated 
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lithium can re-intercalate in the negative electrode known as ‘‘lithium stripping’’. Finally, this 
accumulation of lithium can promote the formation of dendrites [12] and thereby cause a 
short circuit between the two electrodes leading to a possible thermal runaway of the battery. 
 
Another type of aging mechanism on the electrodes is the deactivation of the material 
particles, which are electrically insulated from the current collectors. On the negative 
electrode, the graphite exfoliation due to the solvent intercalation, the material delamination 
as well as the particle cracking due to the intercalation/extraction of the lithium are 
considered as a cause of graphite particle deactivation. On the positive electrode, the particles 
cracking, and active material dissolutions are also considered as deactivation of the active 
material. 
 
Some studies in the literature evoke the influence of the positive electrode on the negative 
electrode during cycling, in particular the positive electrode materials based on Manganese 
(𝑀𝑛2+ ions) which can contaminate the negative electrode [13] or be found in the SEI [14]. 
The main hypothesis evoked in the literature is that these 𝑀𝑛2+ ions can diffuse into the SEI 
layer and destabilize it. This can possibly create cracks in this layer during cycling and increase 
the SEI formation. Another hypothesis different from the latter is proposed by Wang et al. [15] 
which associated the destabilization of the SEI layer due to acid impurities (HF) as the only 
cause of capacity fade. However, this hypothesis has been contradicted by Charles Delacourt 
et al. [16] who demonstrated that delamination of the LMO material is also a cause of capacity 
loss as it produces 𝑀𝑛2+ ions which are trapped on the SEI layer. The capacity loss is even 
higher when the 𝑀𝑛2+ are trapped in the SEI layer compared to when they simply diffuse into 
the SEI layer and intercalate in the graphite electrode because they provoke more structural 
change of the SEI.  
 

 
Figure I- 2 : Aging mechanism on the negative and positive electrodes [3]. 
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I.2.2. Degradation modes on the electrodes 
The degradation modes are the direct consequence of the degradation mechanisms. From 
what we mentioned previously, they can be categorized into two groups: Loss of Lithium 
Inventory (LLI) and Loss of Active Material (LAM).  
The definition of loss of lithium inventory diverges in the literature. It can account for either 
the loss of Li ions only due to the parasitic reaction of SEI formation ([8], [17]) or the total Li 
loss included the Li trapped in the active material ([18], [19]). The loss of active mass occurs 
when Li can no longer be inserted in (or extracted from) active material due to the electrode 
deterioration.  
Some factors such as current, temperature, and state of charge can accentuate the physical 
and chemical interactions within the battery. The degradation modes listed in the literature 
are summed up in FIGURE I- 3 [19].  
 

 

Figure I- 3: CAUSES AND EFFECTS OF DEGRADATION MECHANISMS AND ASSOCIATED DEGRADATION MODES [19] 

 

I.2.3. Aging modes 
There are generally two modes of aging for Li-ion batteries, calendar and cycling aging: 
 
• Calendar aging represents the capacity loss of the battery during storage. There are generally 
two types of capacity losses: reversible capacity losses and irreversible losses. Reversible 
capacity losses correspond to the self-discharge of the battery. The quantity of Ah that failed 
to be fully charged is called the irreversible part [4]. The temperature and state of charge 
stress factors are important during calendar aging. Li-ion cells generally undergo higher aging 
at high temperatures and states of charge, but often the effect of temperature is 
predominant. 
 
• Aging during cycling is synonymous with deterioration of battery performance following a 
charge/discharge sequence. It depends on the temperature, current, and depth of discharge 
profiles applied to the cell. 
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I.2.4. OCV measurements at different aging states 
The SOH is defined by: 

𝑆𝑂𝐻(%) =
𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑡)

𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑡 = 0)
∗ 100 

 

(1.4) 

𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑡) being the current total capacity and 𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑡 = 0) the total capacity measured 
at the Beginning-Of-Life (BOL), expressed in Ah.  
The SOC is calculated as the ratio between remaining capacity 𝑄𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔(𝑡) and the nominal 

one 𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑡) as follows: 
 

𝑆𝑂𝐶(%) =
𝑄𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔(𝑡)

𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑡)
∗ 100 

(1.5) 

 
The OCV, at a given battery SOH, is commonly characterized versus the SOC.  
Experimentally, the OCV-SOC signal is measured using two methods:  
The first method is the Galvanostatic Intermittent Titration Technique (GITT). This is the most 
common method used. This method is performed by successive charge (or discharge) the 
battery at different SOCs followed by a resting time. This resting time allows the battery to 
reach the equilibrium state. The OCV is then measured at that equilibrium state. Following 
this step, we can deduct the OCV-SOC curve.  
 
The second method is the continuous OCV measurement at a low rate (≤ C/10). Initially, the 
battery is fully discharged (or charged). Then a constant current I is applied until the battery 
reaches the SOC 100% (or 0%). The same current is applied to completely discharge the 
battery to reach 0% of SOC (or completely charge to reach the SOC 100%). The main advantage 
of this method is that it required less time than the GITT method. Between the two phases 
(complete charge and discharge), a resting time is applied to stabilize the cell voltage as shown 
FIGURE I- 4 [20]. In fact, the OCV signal in FIGURE I- 5 is considered as a pseudo-OCV. Even at low 
current, the battery is still influenced by the polarization effect.  
 
 

 

Figure I- 4: Measurement of a galvanostatic charge signal [20] 
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So, to build the real cell OCV (𝑂𝐶𝑉𝑎𝑣 ), the pseudo-OCV charge signal (𝑂𝐶𝑉𝑢𝑝 ) and discharge 

signal (𝑂𝐶𝑉𝑙𝑤 ) are averaged as illustrated in FIGURE I- 5.  

 
Figure I- 5: OCV AND CHARGE/DISCHARGE PSEUDO-OCV [20] 

The OCV-SOC change is dependent upon the operating conditions and aging stages and must 

be experimentally characterized depending on the cell SOH [21]. An example is given in FIGURE 

I- 6 where the OCV has been characterized at different SOH for the cell battery. The data come 

from an internal project conducted at the French Atomic Energy and Alternative Energies 

Commission (CEA).  

 

FIGURE I- 6: PSEUDO-OCV CURVE VERSUS SOC AT DIFFERENT SOH [CEA INTERNAL PROJECT]. 
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I.3. Prognosis of lithium-ion batteries SOH and OCV 
 

The prognosis of the battery SOH and OCV can be performed using data-driven methods. 

These data-driven methods correspond to prognosis models such as aging models [22] or 

machine learning methods [23]. In this thesis work, we will only focus on aging models for the 

prognosis of the battery SOH and OCV. Two types of models are studied in this section: the 

one-tank and the dual-tank aging models. 

I.3.1. One-tank OCV and aging models 
The one-tank aging models developed in the literature predict the evolution of the cell SOH 

(or capacity), which is used to update the OCV versus SOC signal during aging, as illustrated in 

FIGURE I- 7. 

 
 

I.3.1.1. One-tank OCV model 

In the literature, the OCV-SOC signal along with aging is updated using three approaches. 
In the first approach, the OCV-SOC (or OCV-Q) signal is measured at the BOL. Then the OCV 
curve is transversely shrunk knowing the cell SOH. Wang et al. [24] studied the characteristic 
of OCV-Q for LiFePO4 by transversely shrinking the OCV curve when the battery loses a certain 
amount of capacity, as shown in FIGURE I- 8. This shrinking is equivalent to multiply the remaining 
Q abscissa by a constant ratio (SOH). As a result, the shape of the OCV curve is kept constant 
but it is simply shifted to the left during aging.  
 

 
 

FIGURE I- 8: V-Q curve with different aging state [24] 

FIGURE I- 7: PROGNOSIS OF THE CELL PERFORMANCES WITH THE ONE-TANK AGING MODEL 



14 
 

In fact, the shape of the OCV curve can also be distorted with aging as illustrated in FIGURE I- 6. 
The second and third methods used in the literature to update the OCV are model-based 
approaches: 

● The second approach used for the correction of the OCV signal consists of using a look-
up table OCV function of SOC and SOH and performing a linear interpolation at a given 
SOH to determine the OCV-SOC signal [25].  

● The third approach is based on the mathematical functions of OCV versus SOC. Yu et 
al. [26] reviewed a total of eighteens OCV-SOC functions models in the literature. 
Those mathematical models include polynomial, exponential, and logarithmic 
functions. The OCV-SOC signal along with aging is updated by performing an 
optimization process[27]. 
 

I.3.1.2. One-tank capacity aging model 

The prediction of the battery SOH is done using either semi-empirical or physics-based aging 
models. 
 

I.3.1.2.1. Semi-Empirical approaches  

In the literature, semi-empirical aging models assess the capacity loss variation 
𝜕𝑄𝑙𝑜𝑠𝑠

𝜕𝑡
 as follows 

[28]: 
𝜕𝑄𝑙𝑜𝑠𝑠

𝜕𝑡
= 𝜑(𝑄𝑙𝑜𝑠𝑠, 𝑠𝑡𝑟𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟𝑠) 

 

(1.6) 

Where 𝜑 is a mathematical function linking the stress factors (current, temperature, state-of-
charge) with the capacity loss 𝑄𝑙𝑜𝑠𝑠. 
 
For respecting the principle of cumulative damage as reported by M. T. Todinov et al.[29], the 

capacity loss variation 
𝜕𝑄𝑙𝑜𝑠𝑠

𝜕𝑡
 must be defined by: 

 
𝜕𝑄𝑙𝑜𝑠𝑠

𝜕𝑡
= 𝜑𝑎(𝑠𝑡𝑟𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟𝑠) ∗ 𝜑𝑏(𝑄𝑙𝑜𝑠𝑠) 

 

(1.7) 

Where 𝜑𝑎 represents the accelerating factors of the degradation while 𝜑𝑏 is a function 

depending on the capacity loss 𝑄𝑙𝑜𝑠𝑠.  
I.3.1.2.1.1. Accelerating factors 

The accelerating factors are used to describe the influence of the operating conditions applied 
to the battery along with aging. In calendar aging, the accelerating factors depend on the 
temperature T and state-of-charge SOC. In cycling aging, the contributions of the charge 
current 𝐼𝑐ℎ𝑎, the discharge current 𝐼𝑑𝑐ℎ are added while the SOC is replaced by the average 
state-of-charge 𝑆𝑂𝐶𝑎𝑣 (cycling being carried out around 𝑆𝑂𝐶𝑎𝑣) and the depth of discharge 
𝐷𝑜𝐷.  
Bagdhdadi et al.[28] highlighted the fact that the choice of the adequate accelerating factor 
for the aging model is highly dependent on the experimental set-up. They studied the calendar 
aging of production li-ion batteries in the SIMCAL project [30] and cycling aging for two 
technologies (SAFT, LG) in the SIMSTOCK project [31]. The aging was carried out for 
different 𝐷𝑜𝐷, 𝑇, I, and 𝑆𝑂𝐶. A list of equations proposed in the literature to define 
accelerating factors can be found in TABLE I- 1:  
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Stress factors Accelerating factor References 

Temperature 
𝜑𝑇 = 𝑎 𝑒𝑥𝑝 (

−𝐸𝑎

𝑅𝑇
) 

Grolleau[32], 
Wang[33],bloom[29] 

𝜑𝑇 = 𝑎 + 𝑏𝑇 + 𝑐𝑇2 Hoog[35] 

Voltage 

𝜑𝑉 = 𝑎 ∗ 𝑉𝑛 Makdessi[36] 

𝜑𝑉 = 𝑎 + 𝑏𝑉 + 𝑐𝑉2 
Schmalstieg[37], 
Marongiu [38] 

SOC 
𝜑𝑆𝑂𝐶 = 𝑒𝑥𝑝(𝑎 ∗ 𝑆𝑂𝐶) Baghdadi [28] 

𝜑𝑆𝑂𝐶 = 𝑎 + 𝑏𝑆𝑂𝐶 + 𝑐𝑆𝑂𝐶2 Hoog[35], Petit [22] 

Current 
𝜑𝐼 = 𝑎 ∗ 𝑒𝑥𝑝(

𝑏(𝐼)𝐼

𝑅𝑇
) Petit [22] 

𝜑𝐼 = 𝑎 ∗ 𝑒𝑥𝑝(𝑏(𝑇) ∗ 𝐼) Baghdadi [28] 

DoD 
𝜑𝐷𝑜𝐷 = 𝑎 𝑒𝑝𝑥(𝑏 ∗ 𝐷𝑜𝐷) + 𝑐 𝑒𝑥𝑝 (𝑑 ∗ 𝐷𝑜𝐷) 

E. Sarasketa-Zabala[8] 
𝜑𝐷𝑜𝐷 = 𝑎 + 𝑏𝐷𝑜𝐷 + 𝑐𝐷𝑜𝐷2 

Temperature & 

SOC 
𝜑𝑇,𝑆𝑂𝐶 = 𝐴(𝑆𝑂𝐶) 𝑒𝑥𝑝 (

−𝐸𝑎(𝑆𝑂𝐶)

𝑅𝑇
) E.Rodondo[74] 

TABLE I- 1: A LIST OF STRESS FACTORS IN SEMI-EMPIRICAL AGING MODELS 

From TABLE I- 1, we can understand that many accelerating factors are proposed in the 
literature to establish a semi-empirical aging model. In their model, Wang et al. [39] only 
considered the effect of the temperature in calendar aging using an Arrhenius law, 
however, the SOC and other parameters may also have an influence on the battery aging. 
This influence is highlighted by E.Redondo et al. [74] who generalized an Arrhenius law to 
other factors than temperature to tackle down this issue. 
As pointed out by Baghdadi et al. [28], the accelerating factors mentioned in TABLE I- 1 can 
be mathematically associated in various ways that diverge in the literature. Usually, each 
accelerating contribution can be separately added to the total degradation rate in Eq. (1.6) 
by multiplying them, as shown in TABLE I- 2 
 

Aging mode  Accelerating factors 
association 

References 

Calendar  𝜑𝑇 ∗ 𝜑𝑆𝑂𝐶  Petit [22], Hoog[35] 

Cycling 𝜑𝑇 ∗ 𝜑𝑆𝑂𝐶 ∗ 𝜑𝐼 Baghdadi [28] 
TABLE I- 2: stress factors association 

I.3.1.2.1.2. Degradation function  

Various semi-empirical models are proposed in the literature and deducted from experimental 
data obtained at constant stress factors. Grolleau et al. [32] highlighted the fact that in EV 
application, the stress factors are usually variable over time. Grolleau et al. [32] proposed a 
semi-empirical aging model under non-constant stress application:  

𝜕𝑄𝑜𝑠𝑠

𝜕𝑡
= 𝑘(𝑇, 𝑆𝑂𝐶) (1 +

𝑄𝑙𝑜𝑠𝑠

𝐶𝑛𝑜𝑚
)

−𝛼(𝑇)

 

With the cell capacity Q defined by: 

(1.8) 

𝑄(𝑡) = 𝐶𝑛𝑜𝑚 − 𝑄𝑙𝑜𝑠𝑠(𝑡) 
 

(1.9) 



16 
 

𝑘(𝑇, 𝑆𝑂𝐶) being the accelerating factor for T and SOC, 𝐶𝑛𝑜𝑚 the nominal capacity of the cell. 
The accelerating factor 𝑘(𝑇, 𝑆𝑂𝐶) follows a linear dependence with SOC: 

 
𝑘(𝑇, 𝑆𝑂𝐶) = 𝐴(𝑇). 𝑆𝑂𝐶 + 𝐵(𝑇) (1.10) 

While the degradation loss function in Eq. (1.8) is expressed by: 

𝜑𝑏(𝑄𝑙𝑜𝑠𝑠 = (1 +
𝑄𝑙𝑜𝑠𝑠

𝐶𝑛𝑜𝑚
)

−𝛼(𝑇)

 

 

(1.11) 

The individual temperature factors A(T) and B(T) are expressed with an Arrhenius law which 
is commonly used in the literature to describe the impact of temperature on cell aging unlike 
the polynomial law proposed by Hoog et al. [35]. This equation established by Grolleau et al. 
[32] is similar to the empirical aging model proposed by Broussely et al.[40]. 
 

I.3.1.2.2. Physics-based approach 

I.3.1.2.2.1. SEI representation 

There are generally two types of representation for the SEI layer [41]. The first category 
considers that the SEI is composed of two layers: a compact layer and a porous one. The 
electrons and lithium ions can tunnel through the compact layer and react with the solvent at 
the interface between compact/porous layers leading to the continuous growth of the SEI 
[42], [43]. This first assumption is schematically illustrated in Figure I- 9 for a graphite/LFP cell.  

 
Figure I- 9: SCHEMATIC REPRESENTATION OF A C6/LIFEPO4 BATTERY, SHOWING THE FORMATION OF THE INNER- AND OUTER SEI LAYER [44] 

For the second assumption, the SEI is assumed to be a single porous layer that is not admissible 
to the electrons. The SEI formation is due to the solvent diffusion through the porous to be 
reduced at the interface between the negative electrode surface and SEI [45], [46].  
 

I.3.1.2.2.2. SEI modeling 

Concerning the SEI modeling, some studies consider the SEI formation to be controlled by 
either the kinetic of solvent reduction at the graphite/SEI interface [47] or diffusion transport 
of the solvent through the SEI [48]. Few studies develop a mixed-growth model taking into 
account simultaneously kinetic and diffusion control[49]. In these models, the equations 
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traducing the kinetic of the solvent reduction at the interface graphite/SEI diverge in the 
literature. 
 
Safari et al. [50] proposed a mixed growth model to conclude that the SEI formation is more 
under diffusion control because the kinetic limited model simulation is far from experimental 
data. The current density for side reactions is defined by a Tafel-like equation: 
 

𝑖𝑠 = −𝐹𝑘𝑓,𝑠𝑐𝐸𝐶𝑒𝑥𝑝 [−
𝛽𝑠𝐹

𝑅𝑇
(𝜙1(𝑆𝑂𝐶) − 𝑅𝑆𝐸𝐼𝑖𝑡)] 

(1.12) 

 
𝐹(𝐶 𝑚𝑜𝑙−1) being the Faraday constant, 𝑘𝑓,𝑠 (m/s) the rate constant of side reactions, 

𝑐𝐸𝐶(𝑚𝑜𝑙. 𝑚−3) the concentration of solvent in the SEI film, 𝛽
𝑠
 the cathodic charge-transfer 

coefficient for the side reaction, 𝑅(𝐽 𝑚𝑜𝑙−1𝐾) the gas constant, 𝑇(𝐾) the temperature, 𝜙1(𝑉) 

the potential of the graphite, 𝑅𝑆𝐸𝐼(𝛺 𝑚2) the SEI film resistance referred to the interfacial 

surface area of anode and 𝑖𝑡(𝐴 𝑚2) the total current density referred to the interfacial surface 

area of the anode. The pre-exponential factor (−𝐹𝑘𝑓,𝑠𝑐𝐸𝐶) represents the exchange current 

density.  

Later, Delacourt et al. [51] proposed an alternative expression for the kinetic reduction of the 

solvent from safari et al. model [50]. The particularity of Delacourt et al. model [51] is that it 

addressed the SEI growth phenomena on the negative electrode and a mechanism to account 

for possible growth of a passivation layer on the positive electrode. The current density for 

side reactions on the negative electrode was defined similarly by: 

𝑖𝑠 = −𝐹𝑘𝑓,𝑠𝑐𝐸𝐶𝑒𝑥𝑝 [−
𝛽𝑠𝐹

𝑅𝑇
(𝜙1(𝑆𝑂𝐶))] 

 

(1.13) 

The SEI film resistance is not considered by Delacourt et al. [51].  
 
Pinson et al.[52] developed a mixed growth model, which takes into account the local 
potential close to the interface between SEI/electrolyte and the equilibrium potential of the 
SEI. However, the induced SEI overpotential 𝜂𝑆𝐸𝐼  does not depend on the SOC [52]: 

𝑖𝑠 = 2 𝑖0 𝑠𝑖𝑛ℎ (
𝑒 𝜂𝑆𝐸𝐼

2 𝑘𝐵𝑇
) (1.14) 

 
𝑖0 (𝐴 𝑚−2) being the exchange current density and depends on the solvent concentration, 
𝜂𝑆𝐸𝐼  is the overpotential driving the SEI formation and 𝑘𝐵 the Boltzmann constant. The 

overpotential 𝜂𝑆𝐸𝐼  is expressed by:  

𝜂𝑆𝐸𝐼 = 𝜙1 − 𝜙𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 − 𝑅𝑆𝐸𝐼𝑖𝑡 − ∆𝜙𝑆𝐸𝐼  

 

(1.15) 

𝜙𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 being the local potential close to the interface between SEI/electrolyte and ∆𝜙𝑆𝐸𝐼  

the equilibrium potential of the SEI. 
 
In literature, some parameters are omitted in the kinetic equation (1.13) such as the influence 
of SOC. In addition, different pre-exponential factors are expressed depending or not on the 
lithium and solvent concentrations ([6], [50], [52]). Finally, different values of equilibrium 
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potential for the SEI are proposed in literature varying from 0.4 to 0.8V ([53], [54]) when it is 
not omitted by the authors [55].  
 
For the prognosis of the Li-ion batteries SOH, the physics-based aging models developed in 
the literature related to the SEI often link the capacity drop of the production cells to the 
consumption of Li-ions due to the SEI growth. For instance, Ekström et al. [56] developed a 
prognosis model for the cell capacity 𝐶𝑏𝑎𝑡𝑡 based on the capacity loss 𝑄𝑠𝑒𝑖 due to SEI layer 
growth on the negative electrode as follows:  
 

𝐶𝑏𝑎𝑡𝑡(𝑡) =
𝐶𝑏𝑎𝑡𝑡(𝑡 = 0) − 𝑄𝑠𝑒𝑖(𝑡)

𝐶𝑏𝑎𝑡𝑡(𝑡 = 0)
 

 

(1.16) 

𝐶𝑏𝑎𝑡𝑡(𝑡 = 0) being the nominal cell capacity at Beginning-Of-Life (BOL). 
 
The degradation rate of the capacity loss due to the SEI is expressed by: 

𝑑𝑄𝑠𝑒𝑖

𝑑𝑡
= −𝐼𝑠𝑒𝑖 

 

(1.17) 

𝐼𝑠𝑒𝑖 (A) being the current of the parasitic SEI forming reactions. An aging model for 𝐼𝑠𝑒𝑖 is 
developed by Ekström et al. [56]. 
 

I.3.1.3. One-tank aging models limitation 

 
Semi-empirical and physics-based aging models are widely used in the literature for the 

prognosis of the Li-ion batteries SOH and OCV. However, production lithium-ion batteries are 

subjected to complex degradation mechanisms that lead to loss of lithium inventory and 

active mass losses on both electrodes. These degradation modes can affect differently the 

electrode potential signals and therefore modify the OCV signal in many possible ways. Using 

the single value of SOH associated with a one-tank OCV model to update the OCV during aging 

does not allow to consider many degradation paths of the battery and is not enough to define 

properly the aged cell OCV.  

I.3.2. Dual-tank OCV and aging models 
Dual-tank OCV models consist of battery models allowing to determine the cell OCV and 

capacity. They are developed in the literature to consider the degradation paths of the 

production batteries for a better accurate modification of the OCV along with aging and 

prediction of the cell capacity.  

I.3.2.1. Dual-tank OCV model 

Dual-tank OCV models are defined using the electrode potential signals of the cell battery. In 
the literature, some authors also consider the cell resistance (due to polarization effect) as an 
additional parameter of the dual-tank OCV model, but some authors do not.  
 
Dubarry et al.[57] was the first to introduce this kind of model which can simulate various 
scenarios of degradation modes leading to different ways of voltage fading, as shown in FIGURE 

I- 10. Five terms of degradation modes were identified to describe the cell SOH: Loss of lithium 
inventory (LLI), loss of lithiated active mass on the negative electrode, loss of delithiated active 
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mass on the negative electrode, loss of lithiated active mass on the positive electrode and loss 
of delithiated active mass on the positive electrode. The authors made a hypothesis whether 
the loss of active mass on the electrodes occurs at a fully lithiated or delithiated state. The 
loss of active mass can occur at any state of lithiation. The authors added the cell resistance 
as an additional input parameter of the dual-tank OCV model to define the cell voltage aging. 

 

FIGURE I- 10: SCHEMATIC OF THE MODELING APPROACH OF DUBARRY ET AL.[57] 

 

Conversely to Dubarry et al. [57], Zeyu Ma et al.[58] built a dual-tank OCV model where the 
cell SOH is defined by the internal resistance as well as both electrodes capacities ( 𝑄𝑃𝐸 , 𝑄𝑁𝐸) 
and the initial SOC (SOC at the cell end-of-discharge) for both electrodes ( 𝑆𝑂𝐶𝑃𝐸0 , 𝑆𝑂𝐶𝑁𝐸0) 
as shown in FIGURE I- 11.  
 

 
FIGURE I- 11: ZEYU MA ET AL. DUAL TANK MODEL [33] 
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Han et al. [59]) developed the same model as Zeyu Ma et al. [58]. However, the authors linked 
the initial SOC of the electrodes (𝑆𝑂𝐶𝑃𝐸0 , 𝑆𝑂𝐶𝑁𝐸0) with a variable called offset (OFS) which 
represents the decay between electrode potential signals: 
 

𝑂𝐹𝑆 = (𝑄𝑝𝑒𝑆𝑂𝐶𝑃𝐸0 − 𝑄𝑛𝑒𝑆𝑂𝐶𝑁𝐸0) 

 

(1.18) 

Some authors developed dual-tank OCV models neglecting the cell resistance as the OCV is 

measured at low current either in charge or discharge mode. Schindler et al. [60] used voltage 

measurements at very low current (C/20) and they only considered the charge signals. Feng 

et al.[61] also performed galvanostatic voltage measurements but only in discharge mode. 

These authors did not consider a possible overpotential (voltage drop) that might occur due 

to the hysteresis effect [62]. This overpotential was introduced in a pseudo-OCV model by Lu 

et al. [63] during the discharge signal. 

 
Finally, some authors developed a dual-tank OCV model without an overpotential parameter 
and where the OCV was experimentally measured by GITT tests or by averaging the 
charge/discharge signals. Marongiu et al.[64] proposed a methodology to track offline the 
actual capacity of a battery used in a vehicle collecting online data from a BMS. Their method 
was based on a plateau detection of the OCV curve which is changing during aging due to 
degradation mechanisms [64].  
In their paper, Birkl et al.[19] also developed a dual-tank OCV model by performing GITT tests 
for the OCV measurements. They were able to diagnose some degradation mechanisms 
induced to form the cell capacity fade on production Kokam 740 mAh pouch cells. They were 
the first to perform experiments on Li-ion cells to prove evidence of possible degradation 
mechanisms depicted by Dubarry et al. [57]. Recently Mergo Mbeya et al. [65] showed that 
using both pseudo-OCV signals in charge and discharge at C/50 and averaging them is a good 
strategy while using a dual-tank OCV model. The authors highlighted that contribution of the 
overpotential signals in charge and discharge can be neglected compared to the average of 
pseudo-OCV signals. 

 

I.3.2.2. Dual-tank aging model 

The prognosis of the battery SOH using a dual-tank aging model is poorly addressed in the 
literature. Two ways of predicted the cell capacity have been listed in the literature:  
 

I.3.2.2.1. Direct prognosis of the cell capacity  

Some authors assumed that the parameters of the dual-tank OCV model, 𝐿𝐿𝐼 or 𝐿𝐴𝑀 for 

instance, follow a certain aging law in calendar aging as illustrated in Figure I- 12. The OCV is built 

up using the electrode potential signals (𝑉𝑝𝑜𝑠, 𝑉𝑛𝑒𝑔) and the parameters 𝐿𝐿𝐼 / 𝐿𝐴𝑀. In this 

approach (53], [63]), the authors do not consider the influence of the operating conditions on 

the battery SOH fading. Dubarry et al. [57] assumed that the loss of lithium inventory (𝐿𝐿𝐼) 

and loss of active mass (𝐿𝐴𝑀) follow respectively a linear and an exponential trend function 

of the cell resting time. However, those trends are only based on assumptions. Unfortunately, 

they did not consider the influence of operating conditions during calendar aging on the 

degradation of the cell capacity. The prognosis of the evolution of the battery SOH using a 

dual-tank OCV model was also performed by T.Lu et al [63] during calendar aging. However, 
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the authors did not build an empirical aging model depending on the operating conditions. 

The authors assumed that their aging models for LLI and LAM were directly a function of time 

without any law depending on the temperature or state-of-charge. 

 
Figure I- 12: Prognosis of the cell capacity without considering the operating conditions. 

 

I.3.2.2.2. Indirect prognosis of the cell capacity  

A more elaborate way of predicting the cell capacity consists in developing a semi-empirical 
law for each parameter of the dual-tank OCV model depending on the operating conditions. 
Then, the cell capacity is simulated using the dual-tank OCV model as illustrated in Figure I- 13.  
 
In his thesis, Jens groot [66], built a similar semi-empirical aging model but only for the 
negative electrode capacity. The authors consider the effect of the temperature, state-of-
charge and current to link the anode to the cell degradation: 

𝐶 = 𝐶𝐵𝑂𝐿 (1 − 𝑘𝑙𝑜𝑠𝑠(𝑇, 𝐼, 𝑆𝑂𝐶))𝐶𝑇 
 

(1.19) 

Where 𝐶 is anode capacity, 𝐶𝐵𝑂𝐿 the anode capacity at BOL, 𝑘𝑙𝑜𝑠𝑠 a loss function depending 
on the current, temperature, and state-of-charge and 𝐶𝑇 the capacity throughput. However, 
in his work, Jens Groot did not build an empirical model for each parameter of the dual-tank 
OCV model to predict the cell capacity aging. 
 

 
Figure I- 13: PROGNOSIS OF THE CELL CAPACITY TAKING INTO ACCOUNT THE OPERATING CONDITIONS 
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I.4. Purpose of this thesis  
 
Several points can be highlighted from the literature review: 

 

⮚ Semi-empirical aging models predicting the cell SOH are useful tools to predict the cell 
OCV aging. However, these latter do not consider the degradation path of the battery. 
In other words, these models omit the aging contributions of both electrodes 
separately and other physical phenomena (e.g., SEI growth) which can modify the OCV 
shape signals in various ways. A single semi-empirical aging model giving the value of 
cell SOH is therefore not enough to correctly update the cell OCV.  
 

⮚ The development of a dual-tank OCV model is relevant as it allows to define the cell 
SOH with more parameters and to consider the degradation path of the battery. 
Predicting the evolution of the parameters of the dual-tank OCV model along with 
aging also seems more reliable to predict the SOH and modification of the OCV signal. 
However, the semi-empirical aging models used in the literature are based on 
assumptions of LLI/LAM evolution. Indeed, they do not consider the influence of the 
operating conditions to predict the cell SOH, or do not predict the evolution of all 
parameters of the dual-tank OCV model along with aging.  
 

⮚ Physics-based aging models are mainly developed in the literature for SEI formation 
and growth, and for the associated lithium consumption. These models could be 
appropriate to study the influence of the degradation mode depicted in the literature 
for the prognosis of the cell capacity. The degradation mechanisms of the Li-ion 
batteries play an important role in the SOH prognosis. Dual-tank aging models 
developed in the literature lack physics-based assets to account for some phenomena 
such as the SEI formation. Using a physics-based aging model coupled to a dual-tank 
OCV model may be a reliable method. 

 
From the literature review mentioned in the previous sections, we have noticed that 
combining aging models and OCV models is crucial to have a proper prediction of the battery 
capacity and OCV.  
During this thesis, a dual-tank OCV model is used to study OCV aging. This model is then 

coupled to three semi-empirical aging models for each parameter of the dual-tank model: the 

positive electrode capacity 𝐶𝑝𝑜𝑠, the negative electrode capacity 𝐶𝑛𝑒𝑔 and the offset (𝑂𝐹𝑆). A 

new solution to predict the evolution of the battery SOH over time is presented while 

considering the operating conditions applied to the Li-ion cell. In addition, a physics-based 

aging model is used to analyze the SEI growth and the evolution of the lithium contents in the 

electrodes during aging. 
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CHAPTER 2: MOBICUS PROJECT PRESENTATION AND EXPERIMENTAL 

AGING RESULTS  
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INTRODUCTION 
The development of electric vehicles (EVs) encourages the use of lithium-ion batteries due to 

the many advantages they offer (high specific energy, high voltage, low maintenance) [67]. 

Nevertheless, they are very sensitive to the usage (a charge, distance traveled…) and 

environmental conditions (temperature…) affecting their performances over time. Therefore, 

there is a need to develop aging models during real usage of a vehicle to promote the 

expansion of the battery lifespan. In the literature, some projects studied the aging prognosis 

of Li-ion batteries during calendar (SIMCAL project [30]) or cycling aging (SIMSTOCK project 

[68]). The main objective of the SIMSTOCK project focused on the coupling between calendar 

and cycling aging during usage. For this reason, the experience plan was divided into three 

parts: calendar, cycling, and a mixed one. Major parts of partners from SIMCAL and SIMSTOCK 

projects were mobilized in the MOBICUS project [2]. The experimental results on calendar 

aging are presented in the following sections and will be later used for the development of 

the aging models described in chapters 3, 4, and 5. 

II.1. MOBICUS PROJECT 

II.1.1. Presentation and aims of the project 
The MOBICUS project is a French national project that involves in total 16 partners combining 

five industrial companies (RENAULT, VALEO, EDF, SIEMENS, and ENEDIS), five research 

laboratories (CEA, IFPEN, IFFSTAR, IMS and EIGSI), two SMEs (CONTROLSYS and DBT-CEV) and 

four invited partners (LA POSTE, PSA, SAFT and UTC). This collaboration allowed to perform 

many aging tests split between each partner. The main objectives of the project are to [69]: 

● Perform a huge test campaign in calendar and cycling aging for two technologies of 

battery. 

● Develop an empirical aging model to understand the coupling between calendar and 

cycling aging. 

● Design and validate strategies enabling to extend battery life according to real vehicle 

usage. 

 

II.1.2. Production Gr/NMC-LMO cell and coin cells manufacture 

II.1.2.1. Production cell characteristics 

Two technologies of batteries were tested in the project. A 43Ah pouch cell (Graphite/NMC-

LMO) used in the Renault Twizy (see FIGURE II- 1) for EV application and 26Ah prismatic cell (Gr/ 

NMC-Ni rich) for Plug-in Hybrid EV application [70]. The pouch cell voltage thresholds are 3V-

4.2V. The configuration of the module (association of three pouch cells) is 3P2S. For the scope 

of this thesis, we will only recap the experimentation performed on the 43Ah pouch cell 

battery in this chapter captured in FIGURE II- 1:  
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FIGURE II- 1: RENAULT TWIZY VEHICLE AND 43AH POUCH CELL. 

 

All the technical information is summed up in TABLE II- 1 below:  

Characteristics at 25 °C    

Nominal capacity Ah 43 

Format   Pouch 

Electrochemistry  NMC-LMO 

End of discharge voltage V 3.00 

End of charge voltage V 4.20 

End of charge current under floating voltage A 2.2 (~C/20) 

TABLE II- 1: POUCH CELL TECHNICAL SPECIFICATION SHEET 

 

II.1.2.2. Coin cells manufacture 

To build a dual-tank OCV model, electrochemical tests to characterize the positive and 
negative electrode potential signals need to be performed. The pouch cell used during the 
MOBICUS project was disassembled at beginning-of-life during an internal project involving 
the CEA. The anode and cathode active materials harvested from the disassembled full cell 
were used to build coin cells with an active material surface of 1.53 𝑐𝑚2. A cellgard 2400 
propylene membrane was used as a separator; the counter electrode consisted of a Li metal 
material. The coin cells were then filled with LPX electrolyte (1 M Lithium 
hexafluorophosphate (𝐿𝑖𝑃𝐹6) in 1:1:3 weight proportion of ethylene carbonate (EC), ethyl 
methyl carbonate (EMC), and dimethyl carbonate (DMC)). 
 
Then, electrochemical characterizations were performed at 25 °C, at rate of C/10 in lithiation 

and delithiation state, to extract the potential and the specific capacity of both electrodes 

(4.25 mAh for the negative electrode and 3.51 mAh for the positive electrode). The electrode 

potentials were measured versus Li+/Li. The Open Circuit Potential (OCP) of both electrodes 

is deducted by averaging the electrode potential signals in lithiation and delithiation state as 

shown in FIGURE II- 2.  
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FIGURE II- 2: POTENTIAL SIGNALS VERSUS SPECIFIC CAPACITIES FOR THE A) NEGATIVE ELECTRODE AND B) POSITIVE ELECTRODE C/10. 

 

II.2. Protocol of check-up on 43 Ah Gr/NMC-LMO for aging tests 
 

A periodical characterization (also known as ‘check-up’) was performed on the cells to record 

their capacity and internal resistance evolution during aging. First, for the capacity 

measurement, the cell was charged with a constant current (CC) at a rate of C/10 until it 

reached the maximum voltage of 4.2V and then at constant voltage (CV) with a floating voltage 

of 4.2 V until the current drops to the minimum admissible current 2.2 A (C/20). Following the 

charge mode, the cell was discharged at constant current at C/10 until the minimum voltage 

of 3 V and then at constant voltage (3V) until the current reaches the value of 2.2 A (C/20). 

We notice a difference between galvanostatic charge and discharge curves approximatively 

equal to 40 mV. The charge and discharge galvanostatic responses at C/10 carried out from 

this protocol can be averaged to estimate the cell open-circuit voltage (OCV) as illustrated in 

FIGURE II- 3. 
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FIGURE II- 3: OCV PERIODICAL MEASUREMENTS ON THE PRODUCTION CELL 

 

II.3. Aging campaign and experimental results 
 

The aging tests presented in this following chapter are applied on a module compound of 

three cells.  

The temperature and SOC profile (value of Temperature and SOC during the whole aging 

process) are respectively set at T=25°C and SOC=100% during the check-up measurements 

period for the simulation of the MOBICUS aging model that will be described in the next 

chapter.  

Calendar aging is influenced by temperature and state-of-charge. Three different aging 

conditions are studied in the storage mode: fixed calendar (fixed SOC and temperature), 

Thermal cycling (variable temperature at fixed SOC) and variable SOC aging (variable SOC at 

fixed temperature). For this test campaign, the target SOC is reached by discharging a fixed 

charge quantity defined as a ratio of nominal capacity. Depending on the capacity 

degradation, this protocol may present a drift of SOC relative to actual capacity during 

calendar aging tests. An example is shown FIGURE II- 4 below for the calendar condition at 

temperature 60°C and SOC 65%. 
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FIGURE II- 4: SOC PROFILE FOR CALENDAR CONDITION AT TEMPERATURE 45°C AND 60°C, SOC=65%. 

 

Three calendar aging conditions were studied during the project: the fixed calendar, thermal 
cycling, and variable SOC aging tests. The experimental measurements of the cell SOH along 
with aging are presented in the following sections for the three aging tests. In addition, 
experimental measurements of the galvanostatic charge and discharge signals at C-10 rate are 
illustrated for the thermal cycling conditions. The average of the charge and discharge signals 
is used for the measurements of the cell SOH described in § 3.1. 

 

II.3.1. Experimental measurements of the cell SOH 

II.3.1.1. Fixed calendar conditions 

Fixed calendar aging was applied for more than one year of resting mode. The production 

modules were stored at 4 different temperatures namely 0 °C, 25 °C, 45 °C and 60 °C and 5 

different states of charge (SOC), namely 0%, 30%, 65 %, 80 % and 100 % as summed up in TABLE 

II- 2.  

 SOC 0% SOC 30% SOC 65% SOC 80% SOC 100% 

T 0°C  x  x X 

T 25°C    x  

T 45°C x x x x X 
T 60°C   x x X 

TABLE II- 2: FIXED CALENDAR AGING CONDITIONS. 

During the resting time, periodical characterization of the cell capacity was measured every 

12 weeks to quantify the battery SOH.  

To study the influence of the SOC, FIGURE II- 5(a) below shows the evolution of cell SOH at 

temperature 45°C at five resting SOC namely 0%,30%, 65%, 80% and 100%. At SOC 0% the 

degradation of the cell capacity is very low. We can observe a higher degradation rate at SOC 

30% but above all at higher SOC (65%, 80%, 100%). The SOH fading is more important at SOC 

80% compared to SOC 100%. Surprisingly, the calendar condition at 65% is the most damaging 
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test and shows a very peculiar trend as well with a slope discontinuity after 79% of SOH 

representing a sudden cell capacity drop.  

FIGURE II- 5(b) illustrates the cell degradation at temperature 60°C for three storage SOC, namely 

65%, 80% and 100%. We observe the same trend at 45°C and 60°C for the capacity evolution: 

the cell SOH is more affected by the storage at SOC 65% than 80%. The cell capacity is still less 

influenced with a resting condition at SOC 100%. 

 

FIGURE II- 5: SOH DEGRADATION AT T=45°C (A) AND AT T=60°C (B). 

 

The influence of the resting temperature is shown FIGURE II- 6, which presents the capacity loss 

at SOC 80% for four temperatures namely 0°C, 25°C, 45°C and 60°C. The temperature has a 

large impact on the cell degradation, which increases at a higher temperature. For instance, 

at 0°C, 25°C and 45°C, the cell SOH is still higher than 80% after 400 days of storage. However, 

it falls below 70% within 120 days for calendar aging at 60°C. Comparing the overall evolution 

of the cell capacity at temperature 60°C, we can notice a much larger degradation rate during 

the first phase of the battery lifetime (<80 days). 

  

(a) 

(b) 
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FIGURE II- 6: SOH DEGRADATION AT S0C 80%. 

 

II.3.1.2. Thermal cycling, fixed SOC 

The thermal cycling is more representative of real usage when the storage temperature can 

vary due to environmental conditions. Performing such a test allows evaluating if thermal 

variations, here at day scale, can occur additional aging comparing to static calendar 

conditions.  

The cells were stored at a fixed SOC, i.e. 65% or SOC 100%. Thermal cycling was then executed 

by alternately changing the temperature between 0°C and 30°C with a frequency of one 

thermal cycle per day for 11 weeks, followed by 1 week of capacity measurement (check-up). 

After that, the temperature is daily by turns set from 30°C to 60°C for another 11 weeks 

followed by 1 week of check-up for the capacity measurement. The SOC profile for the thermal 

cycling at SOC 65% is shown in FIGURE II- 7 and presents a SOC drift from SOC 65% to 30% at the 

end of aging. 
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FIGURE II- 7: TEMPERATURE AND SOC USAGE PROFILE FOR THERMAL CYCLING AT SOC 65%. 

 

FIGURE II- 8 shows the evolution of the cell SOH during these thermal cycling aging tests. Analyzing 

the usage profile in FIGURE II- 7 and the experimental results on the cell SOH in FIGURE II- 8, we can 

notice that the thermal cycling between [30°C-60°C] is more damaging than cycling between 

[0°C-30°C]. This result highlights the influence of higher temperature storage on the 

acceleration of the cell SOH fading. For the SOC dependence on thermal cycling, the 

degradation rate is overall more important at 65% of SOC compared to the SOC 100% as 

illustrated in FIGURE II- 8. 
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FIGURE II- 8: SOH DEGRADATION IN THERMAL CYCLING AGING (SOH 65% AND 100%). 

 

II.3.1.3. Variable SOC, fixed temperature 

For vehicle usage, the battery SOC during the parking period will vary depending on the charge 

and drive phase sequences. Hence, specific aging tests have been performed to represent this 

usage. It consists of performing a calendar tests at a fixed temperature of 45°C meanwhile, 

the SOC is set for 2 months alternatively at two levels: 30% and 80%. Due to low expected 

degradation at SOC 30%, only one check-up is made after the 2 months of storage. However, 

this frequency has been increased to 1 month during storage at SOC 80%. FIGURE II- 9 shows 

recombined SOC evolution during this aging test. Periods at SOC 100% are representative of 

the check-up phase. 

 

FIGURE II- 9: USAGE PROFILE FOR VARIABLE SOC AGING. 

 

We can also notice a SOC drift in FIGURE II- 9 since the SOC update before storage is carried out 

with an Ah criterion proportional to the nominal capacity which decades with aging due to the 

battery self-discharge. 
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The periodical measurement of the capacity shows that the variation of the SOC from 30% to 

80% also affects the cell SOH. As shown in FIGURE II- 10, lower SOCs (SOC 30%) decrease the 

battery SOH fading but higher resting SOCs (SOC 80%) lead to an important decrease of the 

cell SOH. 

 

FIGURE II- 10: SOH DEGRADATION DUE TO VARIABLE SOC AGING. 

 

II.3.2. Experimental measurements of the cell voltage at C-10 
The galvanostatic charge and discharge voltages, measured on one cell at C/10, at different 

aging states are shown in Figure II- 11. The two calendar aging conditions illustrated in Figure II-2 

are the thermal cycling conditions at SOC 65% and 100%. The voltage gap between the charge 

and discharge signals increases along with aging due to the hysteresis effect.  

 

 

FIGURE II- 11: GALVANOSTATIC CHARGE AND DISCHARGE MEASUREMENTS OF THE CELL VOLTAGE AT C/10 
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CHAPTER 3: ONE-TANK AGING MODEL 
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Introduction  
This chapter gives on the one hand, a description of the semi-empirical aging models built 

during the MOBICUS project and, on the other hand, addresses the development of the one 

tank model aging proposed in this thesis work. Both aging model results are compared to the 

calendar experimental aging campaign presented in the previous chapter (§. II.3).  

The semi-empirical aging model developed during the MOBICUS project for the prognosis of 

the production graphite-NMC/LMO capacity is detailed in the first section of this chapter. 

The second part addresses the development of another semi-empirical aging model, the one-

tank aging model. The one-tank and MOBICUS aging models have the same aging laws, and 

the study is performed only on calendar aging. However, the accelerating factors of the one-

tank aging law consider the coupling effect between SOC and temperature along with aging. 

In the third part of this chapter, a comparison is made between the MOBICUS and the one-

tank aging models to analyze the precision of the prognosis. 

III.1. MOBICUS aging model  

 

III.1.1. MOBICUS aging laws 

The MOBICUS aging model, initially developed during the project by CEA team1, is a semi-

empirical aging model based on the evolution of the cell capacity. The model allows following 

the degradation rate of the capacity loss depending on the usage profile on calendar aging 

(temperature, state-of-charge). This approach based on Broussely et al. [40] and fully detailed 

by PILIPILI Matadi et al. [71] expressed the capacity loss by:  

𝑑𝑄𝑙𝑜𝑠𝑠

𝑑𝑡
= 𝐽𝑐𝑎𝑙(𝑇, 𝑆𝑂𝐶) ∗ 𝑓𝑑𝑒𝑔(𝑄𝑙𝑜𝑠𝑠) (3.1) 

 

Where 𝐽𝑐𝑎𝑙(𝑇, 𝑆𝑂𝐶) is the degradation rate that depicts the influence of the temperature and 

state-of-charge on the cell aging and 𝑓𝑑𝑒𝑔(𝑄𝑙𝑜𝑠𝑠), the degradation loss function. 

III.1.1.1. Degradation rate 𝐽𝑐𝑎𝑙  

𝐽𝑐𝑎𝑙(𝑇, 𝑆𝑂𝐶) considers the temperature and SOC accelerating factors: 

𝐽𝑐𝑎𝑙(𝑇, 𝑆𝑂𝐶) = 𝐽𝑐𝑎𝑙𝑟𝑒𝑓
∗ 𝐹𝑎𝑆𝑂𝐶(𝑆𝑂𝐶) ∗ 𝐹𝑎𝑇(𝑇) (3.2) 

 

𝐽𝑐𝑎𝑙𝑟𝑒𝑓
 being a proportional constant corresponding to the degradation rate at reference 

temperature and SOC(𝑇𝑟𝑒𝑓, 𝑆𝑂𝐶𝑟𝑒𝑓). 𝐹𝑎𝑆𝑂𝐶(𝑆𝑂𝐶) is the SOC accelerating factor which 

depends only on the SOC while 𝐹𝑎𝑇(𝑇) is the temperature accelerating factor which depends 
exclusively on the temperature. 
 

 
1 K. Mergo-Mbeya, M. Montaru 
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III.1.1.1.1 SOC accelerating factor 

𝐹𝑎𝑆𝑂𝐶, the SOC accelerating factor is expressed as the polynomial function:  

𝐹𝑎𝑠𝑜𝑐(𝑆𝑂𝐶) =

𝑎𝑐𝑎𝑙.0 + 𝑎1.𝑐𝑎𝑙 . (
𝑆𝑂𝐶

𝑆𝑂𝐶𝑟𝑒𝑓
) + 𝑎2.𝑐𝑎𝑙 . (

𝑆𝑂𝐶
𝑆𝑂𝐶𝑟𝑒𝑓

)
2

− 𝑎𝑐𝑎𝑙.3.𝑒𝑥𝑝 (𝑎𝑐𝑎𝑙.4.
𝑆𝑂𝐶

𝑆𝑂𝐶𝑟𝑒𝑓
) 

𝑎𝑐𝑎𝑙.0 + 𝑎𝑐𝑎𝑙.1 + 𝑎𝑐𝑎𝑙.2 − 𝑎𝑐𝑎𝑙.3. 𝑒𝑥𝑝 (𝑎𝑐𝑎𝑙.4) 
 

(3.3) 

 

Where (𝑎𝑐𝑎𝑙.0 …, 𝑎𝑐𝑎𝑙.4) are some constant parameters, 𝑆𝑂𝐶 the state of charge (in %) and 

𝑆𝑂𝐶𝑟𝑒𝑓 the reference SOC (in %).  

 

III.1.1.1.2 Temperature accelerating factor 

𝐹𝑎𝑇, the temperature accelerating factor is based on an Arrhenius function: 

𝐹𝑎𝑇(𝑇) =𝑒𝑥𝑝 (−
𝐸𝑎.𝑐𝑎𝑙.(𝑇)

𝑅
. (

1

𝑇 + 𝑇0
−

1

𝑇𝑟𝑒𝑓 + 𝑇0
))  (3.4) 

 

Where T is the temperature during storage in kelvin (K), 𝑇0 equal to 273.15 K, 𝑇𝑟𝑒𝑓 the 

reference temperature, R the universal gas constant and 𝐸𝑎.𝑐𝑎𝑙.(𝑇) the activation energy, 

which is considered as an affine function of the temperature: 

𝐸𝑐𝑎𝑙.𝑎(𝑇) =  𝛼𝑐𝑎𝑙 . (𝑇 − 𝑇𝑟𝑒𝑓) + 𝐸𝑎𝑟𝑒𝑓_𝑐𝑎𝑙 (3.5) 

 

where, 𝛼𝑐𝑎𝑙  and 𝐸𝑎𝑟𝑒𝑓_𝑐𝑎𝑙 are some constant parameters. 

III.1.1.2. Degradation loss function 𝑓𝑑𝑒𝑔 

𝑓𝑑𝑒𝑔(𝑄𝑙𝑜𝑠𝑠) is a degradation function based on broussely et al. [72] approach:  

𝑓𝑑𝑒𝑔(𝑄𝑙𝑜𝑠𝑠) =
1

1 + 𝐴 ∗ 𝑄𝑙𝑜𝑠𝑠
 (3.6) 

 

Where A is a constant parameter and 𝑄𝑙𝑜𝑠𝑠 the cell capacity loss. 

 

III.1.2. Identification of the parameters of the MOBICUS aging model 

III.1.2.1. Identification method and results 

During the MOBICUS project, all the calendar conditions listed in chapter 2 (TABLE II- 2), except 

the calendar condition at temperature 60°C and SOC 65% & 100%, were used from the 

MOBICUS aging model development. These two conditions were not forecasted initially and 

were started 2 years after the beginning of the rest of the tests campaign. In this section, all 

the calendar aging conditions included the temperature 60°C and SOC 65% & 100% are used 

for the identification process.  
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The identification process consists of identifying 𝐽𝑐𝑎𝑙(𝑇, 𝑆𝑂𝐶), which depends on 𝐽𝑐𝑎𝑙𝑟𝑒𝑓
 and 

the acceleration factors (𝐹𝑎𝑇 , 𝐹𝑎𝑆𝑂𝐶). The parameter A in equation (3.6) is also identified. To 

do so, an optimization method is carried out via MATLAB/Simulink software using the function 

‘lsqcurvefit’ to find the optimal solution for 𝐽𝑐𝑎𝑙(𝑇, 𝑆𝑂𝐶) and A. This optimal solution is found 

by minimizing the root mean square error (RMSE) between the simulated cell capacity from 

the MOBICUS aging model and experimental capacity data (in chapter 2). 

The SOC accelerating factor 𝐹𝑎𝑆𝑂𝐶  is identified via(𝑎𝑐𝑎𝑙.0…….𝑎𝑐𝑎𝑙.4) at four different 

breakpoints of SOC namely 0%, 30%, 65%, 80%.The reference condition, where the SOC 

accelerating factor 𝐹𝑎𝑆𝑂𝐶  is equal to 1, corresponds to SOC breakpoint 𝑆𝑂𝐶𝑟𝑒𝑓 = 100%. To 

identify the 𝐹𝑎𝑆𝑂𝐶  between these five SOC breakpoints, the analytic expression of 𝐹𝑎𝑆𝑂𝐶  

described in Eq. (3.3) is used.  

The temperature accelerating factor is identified via 𝛼𝑐𝑎𝑙  and 𝐸𝑎𝑟𝑒𝑓_𝑐𝑎𝑙  at four breakpoints of 

temperature namely 0°C, 25°C, 45°C, and 60°C. The reference condition, where the T 

accelerating factor 𝐹𝑎𝑇 is equal to 1, corresponds to 𝑇 = 𝑇𝑟𝑒𝑓 = 45°𝐶. To obtain the 

accelerating factor 𝐹𝑎𝑇  between the breakpoints of T, the analytical equation of 𝐹𝑎𝑇  

described in Eq. (3.4) is used. 

The results of the optimization process are given in TABLE III- 1 below: 

Parameters Unit 

𝐽𝑐𝑎𝑙𝑟𝑒𝑓 0.12 Ah/days 

𝛼𝑐𝑎𝑙  868 J/(mol.K) 

𝐸𝑎𝑟𝑒𝑓_𝑐𝑎𝑙  87 KJ/mol 

𝑎𝑐𝑎𝑙.0 1.73 w.u. 

𝑎𝑐𝑎𝑙.1 0.34 w.u. 

𝑎𝑐𝑎𝑙.2 0.02 w.u. 

𝑎𝑐𝑎𝑙.3 1.73 w.u. 

𝑎𝑐𝑎𝑙.4 0.19 w.u. 

A 0.80 𝐴ℎ−1 

TABLE III- 1: IDENTIFICATION OF THE MOBICUS AGING MODEL PARAMETERS. 

Using the values from TABLE III- 1, the evolution of temperature and SOC accelerating factors 

(𝐹𝑎𝑠𝑜𝑐(𝑆𝑂𝐶) and 𝐹𝑎𝑇(𝑇)) are represented in FIGURE III- 1. As shown in FIGURE III- 1, the degradation 

rate of cell capacity is higher at SOC 65%. The calendar aging at high temperatures impacts 

the most the cell SOH, especially at 60°C. 
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FIGURE III- 1: SOC AND TEMPERATURE ACCELERATING FACTORS. 

 

III.1.2.2. Experimental and simulated cell SOH from the MOBICUS aging model 

The results from the identification process allow us to superimpose the experimental cell SOH 

data (in chapter 2, §. II.3) and the simulated cell SOH from the MOBICUS aging model as 

illustrated in FIGURE III- 2. 

At temperature 0°C, the MOBICUS aging model overestimates the cell aging at SOC 30% and 

100% but fits well the experimental data at temperature 0°C and SOC 80%. The model is 

accurate as well at a temperature of 25°C and 80% of SOC.  

At temperature 45°C and SOC 0%&30%, the MOBICUS aging model still overestimates the cell 

aging. At temperature 45°C and 65% of SOC, the estimation is acceptable except after 600 

days of calendar aging where the model is unable to predict the break of SOH slope. 

Nevertheless, the SOH prognosis is good at temperature 45°C and high SOC 80%&100 where 

the model success to match closely the experimental data. 

At temperature 60°C, the MOBICUS aging model gives a good estimation of the cell SOH at 

SOC 80% and 100% but fails to correctly predict the cell capacity evolution at SOC 65%. The 

model developed during the MOBICUS project may be inefficient to model the phenomenon 

responsible for the capacity fading for this calendar condition at SOC 65%.  
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FIGURE III- 2: COMPARISON BETWEEN EXPERIMENTAL AND SIMULATED SOH FROM THE MOBICUS AGING MODEL 
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III.1.2.3. MOBICUS aging model error 

The error (Root mean square error calculation) between the experimental and simulated cell 

SOH from the MOBICUS aging model is illustrated in FIGURE III- 3. 

At 0°C and 25°C, there is a very good correspondence between the model and the 

experimental data, the error is less than 1.7%. 

The prediction of the cell SOH aging is also good at 45°C for all SOC with a maximum error 

reaching 4% for the calendar condition at 30% of SOC. The prediction is very good at SOC 100% 

with a maximum error below 0.5%. 

Furthermore, there is a good correspondence between the experimental data and the model 

at 60°C for 80% and 100% of SOC. However, the error is high at SOC 65%, reaching 20%, which 

is the only condition where the MOBICUS aging model struggles to predict the cell SOH aging.  

 

 

FIGURE III- 3: ERROR BETWEEN EXPERIMENTAL AND SIMULATED CELL SOH FROM THE MOBICUS AGING MODEL 
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III.1.3. Model validation 
To validate the MOBICUS aging model, three aging conditions mentioned in chapter 2 are 

simulated by using the values in TABLE II- 2. Those are the calendar condition at 45°C and variable 

SOC (between SOC 30%-80%) and the two-thermal cycling (between 0°C-30°C and 30°C-60°C) 

conditions at SOC 65% and 100%. FIGURE III- 4 compares the simulated cell capacity from the 

MOBICUS project and the experimental data as well as the error between them. 

The prediction of the cell SOH with the MOBICUS aging model is very satisfactory for the 

calendar condition at temperature 45°C when varying the SOC from 30% to 80% of SOC. The 

maximum error reached is below 2.5%. 

It is worth reminding for the thermal cycling conditions at 65% and 100% of SOC that the flat 

plateaus in FIGURE III- 4 correspond to the thermal cycling between 0°C-30°C. The rapid break of 

slope in cell SOH is related to the cycling between 30°C-60°C. The temperature profile for the 

thermal cycling condition is illustrated in FIGURE II- 7 in chapter 2. Concerning the thermal cycling 

at SOC 100%, the MOBICUS aging model can forecast the SOH with a maximum error below 

4%. However, for the thermal cycling at 65% of SOC, the simulated cell SOH from the MOBICUS 

aging model is very far from the cell SOH measured during aging. The model seems insufficient 

to consider the fast cell degradation at SOC 65% when cycling between 30°C-60°C. 

 

 

FIGURE III- 4: VALIDATION AND ERROR FROM THE MOBICUS AGING MODEL FOR THE VARIABLE SOC (A), THERMAL CYCLING AT 65% OF SOC (B) 

AND 100% OF SOC (C). 
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III.2. One-tank aging model  
In the following section, an improvement to consider the SOC influence on the MOBICUS aging 

model is proposed. Another aging model, the one-tank aging model, is built to consider the 

coupling effect of the temperature and SOC. Regarding the previous observations during the 

identification (at temperature 60°C, SOC 65%) and validation process (thermal cycling at SOC 

65%) it appears the SOC accelerating factor 𝐹𝑎𝑆𝑂𝐶  is not sufficient to express the SOC 

influence on aging. 

 

III.2.1. One-tank aging model laws 
The capacity loss is expressed the same way as the MOBICUS aging law described by equation 

(3.1) and depending on the degradation 𝐽𝑐𝑎𝑙(𝑇, 𝑆𝑂𝐶) and the degradation function 𝑓𝑑𝑒𝑔. 

III.2.1.1. Degradation rate 𝐽𝑐𝑎𝑙  

𝐽𝑐𝑎𝑙(𝑇, 𝑆𝑂𝐶) considers the temperature and SOC accelerating factor:  

𝐽𝑐𝑎𝑙(𝑇, 𝑆𝑂𝐶)  =  𝐽𝑐𝑎𝑙𝑟𝑒𝑓 ∗ 𝐹𝑎𝑆𝑂𝐶 ∗ 𝐹𝑎𝑇,𝑆𝑂𝐶  (3.7) 
 

Where 𝐽𝑐𝑎𝑙𝑟𝑒𝑓
 is a constant parameter corresponding to the degradation rate at the reference 

temperature and SOC (𝑇𝑟𝑒𝑓 , 𝑆𝑂𝐶𝑟𝑒𝑓). As in the previous model, 𝐹𝑎𝑆𝑂𝐶(𝑆𝑂𝐶) is the SOC 

accelerating factor which depends only on the SOC while 𝐹𝑎𝑇,𝑆𝑂𝐶(𝑇, 𝑆𝑂𝐶) is the temperature 

accelerating factor which depends on both the temperature and SOC. 

 

III.2.1.1.1 State-of-charge accelerating factor 

𝐹𝑎𝑆𝑂𝐶, illustrated in FIGURE III- 5(a), is the state-of-charge accelerating factor. It is a vector, which 

is a function of a vector of SOC: 

If we consider a SOC vector with a dimension n: 

𝑆𝑂𝐶 = [𝑆𝑂𝐶1 … … … 𝑆𝑂𝐶𝑛]  (3.8) 
 

Thus, the state-of-charge accelerating factor can be expressed by n constants: 

𝐹𝑎𝑠𝑜𝑐 = [𝐹𝑎𝑆𝑂𝐶1
… … … 𝐹𝑎𝑆𝑂𝐶𝑛

]  

 
(3.9) 

III.2.1.1.2 Temperature accelerating factor 

The effect of the temperature is usually expressed with an Arrhenius law [34] by introducing 

the activation energy 𝐸𝑎 parameter [73], [74]. Moreover, to traduce correctly empirical aging 

behavior, the activation energy is assumed different below and above the reference 

temperature 𝑇𝑟𝑒𝑓 fixed at 45°C. For the sake of accounting for a coupling effect between 

temperature and state-of-charge on aging behavior, the activation energy is also considered 

dependent on state-of-charge. The Arrhenius activation energy, 𝐸𝑎𝑇<𝑇𝑟𝑒𝑓
(𝑆𝑂𝐶) and 

𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓
(𝑆𝑂𝐶) are vectors function of SOC illustrated FIGURE III- 5(b). 
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The stress factor, depending on the temperature, is then expressed by:  

 

𝑒𝑥𝑝  (−
𝐸𝑎𝑇<𝑇𝑟𝑒𝑓

(𝑆𝑂𝐶)

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) 𝑖𝑓 𝑇 < 𝑇𝑟𝑒𝑓  

 

(3.10) 

𝑒𝑥𝑝  (−
𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓

(𝑆𝑂𝐶)

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) 𝑖𝑓 𝑇 ≥ 𝑇𝑟𝑒𝑓 

 

(3.11) 

Where T is the temperature during storage, 𝑇𝑟𝑒𝑓 the reference temperature, R the universal 

gas constant, 𝐸𝑎𝑇<𝑇𝑟𝑒𝑓
 and 𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓

 the activation energy for temperature below and above 

the reference temperature. 

 

III.2.1.2. Degradation loss function 𝑓𝑑𝑒𝑔 

As in the previous model, 𝑓𝑑𝑒𝑔(𝑄𝑙𝑜𝑠𝑠) is a degradation function based on broussely et al. [72] 

approach and described by Eq. (3.6). 

III.2.2. One-tank aging model parameters identification 

III.2.2.1. Identification method and results 

The identification process consists of identifying 𝐽𝑐𝑎𝑙(𝑇, 𝑆𝑂𝐶) which depends on 𝐽𝑐𝑎𝑙𝑟𝑒𝑓
, the 

acceleration factors (𝐹𝑎𝑇 , 𝐹𝑎𝑇,𝑆𝑂𝐶) and the parameter 𝐴 . In this section, the parameter A is 

fixed at the same value identified for the MOBICUS aging model to only analyze the influence 

on the change of 𝐽𝑐𝑎𝑙(𝑇, 𝑆𝑂𝐶) expression. 

The accelerating factor 𝐹𝑎𝑆𝑂𝐶  is identified at four breakpoints of SOC namely 0%, 30%, 65%, 
80%. 𝑆𝑂𝐶𝑟𝑒𝑓 = 100%, 𝐹𝑎𝑆𝑂𝐶  is considered equal to 1. The accelerating factor 𝐹𝑎𝑆𝑂𝐶, 

between the breakpoints of SOC, is calculated using linear interpolation.  

 

Looking at the matrix of fixed calendar conditions (in chapter 2), we can notice that the 

parameter 𝐸𝑎 𝑇
(𝑆𝑂𝐶) cannot be identified at all temperature for all SOC breakpoints due to a 

lack of data: 

● For 𝑇 < 𝑇𝑟𝑒𝑓 at SOC 0% and SOC 65% 

● For 𝑇 ≥ 𝑇𝑟𝑒𝑓 at SOC 0%.  

 

Note that there is a SOC deviation on the calendar condition at T=60°C and SOC =65% where 

the SOC 30% is reached after 200 days of storage (illustrated in chapter 2, §. II.3) The activation 

energy 𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓 
(𝑆𝑂𝐶)) can then be identified at SOC 30%. 

For this reason, we have chosen the following assumptions:  

● 𝐸𝑎𝑇<𝑇𝑟𝑒𝑓
(𝑆𝑂𝐶 = 0%) =  𝐸𝑎𝑇<𝑇𝑟𝑒𝑓

(𝑆𝑂𝐶 = 30%)  
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● 𝐸𝑎 𝑇<𝑇𝑟𝑒𝑓
(𝑆𝑂𝐶 = 65%) is calculated using a linear interpolation of 𝐸𝑎𝑇<𝑇𝑟𝑒𝑓

(𝑆𝑂𝐶) 

between SOC 30% and 80%  

● 𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓 
(𝑆𝑂𝐶 = 0%) =  𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓 

(𝑆𝑂𝐶 = 30%)  

The activation energy 𝐸𝑎 𝑇
(𝑆𝑂𝐶) at any temperature is then identified as followed: 

● 𝐸𝑎𝑇<𝑇𝑟𝑒𝑓
(𝑆𝑂𝐶) for 𝑇 < 𝑇𝑟𝑒𝑓: with 4 breakpoints of temperature namely 0°C, 25°C, 

45°C, and 60°C, and three different breakpoints of SOC namely 30%, 80%, and 100%. 

● 𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓
(𝑆𝑂𝐶) for 𝑇 ≥ 𝑇𝑟𝑒𝑓 : with 4 breakpoints of temperature namely 0°C, 25°C, 

45°C, and 60°C, and four different breakpoints of SOC namely 30%,65%, 80%, and 

100%. 

This method is summed-up in TABLE III- 2 below: 

SOC breakpoints (%) 0 30 65 80 100 

𝑬𝒂𝑻<𝑻𝒓𝒆𝒇
(𝑺𝑶𝑪) = 𝐸𝑎 𝑇<𝑇𝑟𝑒𝑓

(30%) identified interpolation identified identified 

𝑬𝒂𝑻≥𝑻𝒓𝒆𝒇 
(𝑺𝑶𝑪) = 𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓 

(30%) identified identified identified identified 

TABLE III- 2: IDENTIFICATION AND ASSUMPTION ON THE ACTIVATION ENERGY (ONE-TANK AGING MODEL) 

Finally, the activation energies (𝐸𝑎𝑇<𝑇𝑟𝑒𝑓
(𝑆𝑂𝐶), 𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓

(𝑆𝑂𝐶)), between the breakpoints of 

SOC, are calculated using linear interpolation. The temperature accelerating factor 

𝐹𝑎 𝑇,𝑆𝑂𝐶
(𝑇, 𝑆𝑂𝐶) is then deducted using its analytic expression at any value of 𝑇 from 0°C to 

60°C. 

The identification results are given in TABLE III- 3 below: 

 Unit Cell parameters 

𝐽𝑐𝑎𝑙𝑟𝑒𝑓
 Ah/days 0.1 

𝐸𝑎𝑇<𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 30%) kJ.mol-1 
109 

 

𝐸𝑎𝑇<𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 80%) kJ.mol-1 60 

𝐸𝑎𝑇<𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 100%) kJ.mol-1 82 

𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 30%) kJ.mol-1 287 

𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 65%)  75 

𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 80%) kJ.mol-1 128 

𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 100%) kJ.mol-1 110 

𝐹𝑎𝑆𝑂𝐶(𝑆𝑂𝐶 = 0%) w.u. 
2.e-14 

 

𝐹𝑎𝑆𝑂𝐶(𝑆𝑂𝐶 = 30%) w.u. 
0.47 

 

𝐹𝑎𝑆𝑂𝐶(𝑆𝑂𝐶 = 65%) w.u. 
1.21 

 

𝐹𝑎𝑆𝑂𝐶(𝑆𝑂𝐶 = 80%) w.u. 
0.96 

 

𝐹𝑎𝑆𝑂𝐶(𝑆𝑂𝐶 = 100%) w.u. 1 

TABLE III- 3: IDENTIFICATION OF THE ONE-TANK AGING MODEL PARAMETERS 
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FIGURE III- 5(a) and FIGURE III- 5(c) represent the temperature and SOC accelerating factors. The 

degradation rate of the cell capacity is more important at SOC 65% with an accelerating factor 

of 𝐹𝑎𝑆𝑂𝐶 (𝑆𝑂𝐶 = 65%) equal to 1.21. 

For 𝑇 < 45°𝐶, the activation energy 𝐸𝑎𝑇<𝑇𝑟𝑒𝑓(𝑆𝑂𝐶) is the lowest at SOC 80% as shown in FIGURE 

III- 5(b). This explains why the degradation rate of 𝐹𝑎𝑇,𝑆𝑂𝐶 is higher at SOC 80% compared to the 
SOC 0% to 65%. It is worth reminding that the activation energy at SOC 65% when 𝑇 < 𝑇𝑟𝑒𝑓 is 

obtained by linear interpolation between SOC 30% and 80% due to lack of data 
measurements. This could potentially favor a less accurate cell SOH estimation at SOC 65%.  
The dependency of the temperature follows an exponential law (Arrhenius law) which is even 
more accentuated at high temperature when ≥ 45°𝐶 . At temperature 60°C and SOC 30%, 
𝐹𝑎𝑇,𝑆𝑂𝐶 is very high due to the energy activation, which is equal to 287.66 KJ/mol shown in 
FIGURE III- 5(b). 
In both cases (𝑇 < 45°𝐶 or 𝑇 ≥ 45°𝐶) the activation energy at SOC 0% is kept constant to 
value at 30% of SOC, as illustrated in FIGURE III- 5(b), according to our hypothesis.  
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FIGURE III- 5: IDENTIFICATION OF TEMPERATURE (A), SOC ACCELERATING (B) FACTORS AND ACTIVATION ENERGY (C) 

(a) (b) 

(c) 

SOC=0% SOC=30% 

SOC=80% 

SOC=100% 

SOC=65% 
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III.2.2.2. Experimental and simulated cell SOH from the one-tank aging model 

Using these parameters previously identified, the cell capacity for all calendar aging conditions 

is simulated. The results are shown in FIGURE III- 6, which compares the experimental cell SOH 

(detailed in chapter 2) with the simulated cell SOH from the one-tank aging model. 

At T=0°C and T=25°C, the one-tank aging model gives a good agreement compared to the 

experimental SOH data for all SOC. There is a slight difference at SOC 100% after 400 days of 

storage, but the difference is very small.  

At 45°C and SOC 0%, simulation results do not agree very well with experimental data. 

Nevertheless, the SOH fading is very small. For the other SOCs at this temperature (30% to 

100%), the fitting is very good except after 500 days (>1.3 years) of storage at SOC 65%.  

At 60°C, the one-tank aging model gives also a very good agreement compared to the 

experimental cell SOH data. At 65% of SOC, the agreement is nevertheless less good than the 

other conditions. 

 

FIGURE III- 6: COMPARISON BETWEEN EXPERIMENTAL CELL SOH AND SIMULATED SOH FROM THE ONE-TANK AGING MODEL 
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III.2.2.3. One-tank aging model error 

The error between the cell SOH simulated from the one-tank aging model and experimental 

data is illustrated in FIGURE III- 7. At BOL, the error is not zero as the FIGURE III- 6 represents the SOH 

evolution starting from the first periodical check-up when the cell capacity has slightly 

decreased. It is important to notice that the one-tank aging model gives some very good 

results in terms of cell SOH prediction. The cell aging is slightly underestimated at low 

temperature (0°C), but the model reaches a maximum error of 1.2% after almost 800 days (2.1 

years) of storage for the calendar condition at SOC 100%.  

At ambient temperature, 25°C, the results are also very good with an error of less than 0.5%. 

The results are very satisfactory at 45°C with the maximum error of 2% except for the calendar 

condition at 65% where the cell aging is overestimated at the cell EOD (error less than 5%). 

At 60°C the model gives a low error especially at SOC 80% and 100% however, at SOC 65%, 

the model underestimates the cell SOH aging with a maximum error of 10%. 

 

 

FIGURE III- 7: ERROR BETWEEN EXPERIMENTAL AND SIMULATED CELL SOH FROM THE ONE-TANK AGING MODEL 
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III.2.3. Validation of the one-tank aging model 
To validate the model aging, we used the same calendar conditions mentioned in the section 

for the MOBICUS aging model validation: the calendar condition at 45°C and variable SOC 

(between SOC 30%-80%) and the two thermal cycling conditions at SOC 65% and 100%. The 

comparison between the simulated cell capacity from the one-tank aging model and the 

experimental data is illustrated in FIGURE III- 8. 

The one-tank aging model gives a good correspondence with the experimental data for the 

variable SOC condition at 45°C. After 600 days, the model slightly underestimates the cell SOH 

aging. The error between experimental and simulated values is less than 4%. 

For the cycling thermal condition at SOC 65%, the model matches the experimental values of 

the cell SOH at the cell BOL (before 200 days) and EOL (after 600 days) as shown in FIGURE III- 8. 

The model can identify the activation energy at those state-of-charges, which explains why 

we have a good agreement between the simulated and experimental data at 60°C and 30% of 

SOC. Between 200 days and 600 days (1.6 years), there is an improvement of the cell SOH 

prediction with a maximum error reached of 15%. The thermal cycling condition at 100% of 

SOC is also well predicted by the model with, the error reached on the cell SOH estimation 

below 4%.  

 

FIGURE III- 8: VALIDATION OF THE ONE-TANK AGING MODEL FOR (A) THE VARIABLE SOC AT 45°C, (B) THERMAL CYCLING AT 65% OF SOC AND (C) 

100% OF SOC. 
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III.3. Comparison of the MOBICUS aging model prediction 

versus One- tank aging model 
 

As described previously, the identification process of the MOBICUS and the one-tank aging 

model parameters predict the simulated cell SOH with low error values at the temperatures 

below 60°C and above 60°C for SOC 80% and 100%. At high temperatures (at 45°C and 60°C), 

it is suspected that the resting SOC is an important factor responsible for cell degradation. The 

one-tank aging model adds a new feature from the MOBICUS aging model by coupling the 

temperature and state-of-charge effect to try to improve the aging prediction. The one-tank 

aging model seems slightly more accurate than the MOBICUS aging model however, the main 

difference between the two models is at 60°C and SOC 65% when the model is not able to give 

a satisfactory result. The maximum error for the MOBICUS and one-tank aging model at this 

condition are respectively 20% and 10%. 

The validation process, which simulates the cell SOH for the thermal cycling at 100% of SOC, 

is good and similar for both models but at SOC 65%, the MOBICUS aging model is farther from 

the experimental data compared to the one-tank aging model. The maximum error found for 

the MOBICUS aging model and one-tank aging model are respectively 30% and 15%. 

In this chapter, a comparison between the MOBICUS and one-tank aging model at 60°C and 

65% of SOC (identification process) and thermal cycling condition at SOC 65% of SOC 

(validation process) is done to analyze how the influence of the SOC is improved. 

III.3.1. Identification process at 60°C and 65% of SOC 
The comparison of the experimental cell SOH at 60°C and 65% of SOC versus the simulated 

cell SOH respectively from the MOBICUS aging model and the one-tank aging model are 

illustrated in FIGURE III- 9(a) and FIGURE III- 9(b).  

The MOBICUS aging model is not able to predict the cell SOH until the cell EOL, as illustrated 

in FIGURE III- 9(a). The correspondence with the experimental data stopped at SOH <70% when 

using the MOBICUS aging model. For this calendar condition, the temperature is fixed at 45°C 

but there is a SOC deviation on the SOC profile used (illustrated in chapter 2, §. II.3). This 

deviation goes from 65% at the BOL to 30% at the cell EOL. The MOBICUS aging model does 

not simulate the SOH fading when the SOC<50% on the SOC profile. At 60°𝐶, the degradation 

rate 𝐽𝑐𝑎𝑙(𝑇, 𝑆𝑂𝐶) of the MOBICUS aging model is mostly dependent on 𝐽𝑐𝑎𝑙𝑟𝑒𝑓
 (0.122Ah/days), 

the SOC accelerating factor 𝐹𝑎𝑆𝑂𝐶  (varying from 0 to 1) and the temperature accelerating 

factor 𝐹𝑎𝑇 (depending on the activation energy). If the activation is fixed for this temperature 

60°C (thus 𝐹𝑎𝑇 fixed) only 𝐹𝑎𝑆𝑂𝐶  is able to take into account, the SOC variation on the 

degradation rate. As the MOBICUS aging model does not simulate the SOH<70%, it means that 

the factor 𝐹𝑎𝑆𝑂𝐶  is not enough to correctly adjust the capacity degradation rate at 60°C.  

 The fact that the one-tank aging model can couple the influence of the SOC on the activation 

energy allows to improve the slope of the cell SOH degradation at high temperature as shown 

in FIGURE III- 9(b).. As the activation energy 𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓 
(𝑆𝑂𝐶) is identified at 65% and 30% at 60°C, 
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the one-tank aging model simulate more accurately the cell SOH evolution when the resting 

SOC is between 30 and 65%.  

 

FIGURE III- 9: IDENTIFICATION AT T=60°C, SOC=65% BETWEEN EXPERIMENTAL AND SIMULATED CELL SOH WITH THE MOBICUS(A) AND ONE-
TANK(B) AGING MODEL 

 

III.3.2. Validation process for the thermal cycling condition at SOC 65% 
The thermal cycling at 65% of SOC is used for the validation of the MOBICUS and one-tank 

aging model. The comparison of the simulated cell SOH versus the experimental data is 

illustrated in FIGURE III- 10(a) using the MOBICUS aging model and FIGURE III- 10(b) the one-tank aging 

model. The three phases in FIGURE III- 10(b) correspond to the range where the one-tank aging 

model correctly predicts the cell SOH (phase 1 and 3) and when the simulation is less accurate 

(phase 2). Those three phases are reported in the same range in FIGURE III- 10 (a) for the MOBICUS 

aging model. 

As seen with the simulation in FIGURE III- 10 (a), the MOBICUS aging model is not able to reach the 

first experimental data of phases 2 and 3 when the cycling between 30°C- 60°C. This lack of 

precision may be related to the identification process of the MOBICUS aging model, which 

shows that the results are not satisfactory at 60°C and 65% of SOC. It has been noticed, during 

the identification process described previously in FIGURE III- 9(a), a SOC drift through aging for the 

SOC profile at 60°C and 65% of SOC. The same observation is made for the SOC profile of the 

thermal cycling at SOC 65% indicating that the battery reaches the SOC 30% at the cell EOL 

(illustrated in chapter 2, §. II.3.1.2). Because the MOBICUS aging model is not able to predict 

correctly the cell aging at 60°C for SOCs below 50% during the identification process, the cell 

SOH is underestimated for the aging model validation. 

Unlike the MOBICUS aging model, the one-tank aging model predicts very well the cell aging 

at the cell BOL during phase 1 and 3 as illustrated in FIGURE III- 10 (b):  
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During the whole phase 1 and 3, the cell is stored respectively at 65% and 30%. The cycling is 

performed between 0°C- 30°C. As the identification process using the one-tank aging model 

correctly optimize the activation energy 𝐸𝑎𝑇
(𝑆𝑂𝐶) at these two SOC levels for < 𝑇𝑟𝑒𝑓, the 

simulation can predict cell aging.  

The beginning and end of phase 2 correspond to a calendar condition at 60°C and SOC 

respectively at 65% and 30%. The identification process optimizes the 𝐸𝑎𝑇
(𝑆𝑂𝐶) at these two 

SOC levels for > 𝑇𝑟𝑒𝑓, the simulation is then able to predict the cell aging at the beginning and 

end of phase 2. However, during phase 2, the one-tank model does not fully estimate the right 

amount of capacity degradation when the cycling between 30°C-60°C. The cell is stored at SOC 

between 30%-65% during phase 2. Note that the calculation of the activation energy when 

𝑇 < 𝑇𝑟𝑒𝑓 is done using a linear interpolation method due to lack of experimental data when 

𝑇 < 𝑇𝑟𝑒𝑓 and SOC 65%. This interpolation could possibly increase the error as the activation 

energy during phase 2 when the cycling is performed between 30°C-60°C. 

 

 

FIGURE III- 10: VALIDATION OF THE THERMAL CYCLING AT SOC=65%, BETWEEN EXPERIMENTAL AND SIMULATED CELL SOH, WITH THE 

MOBICUS(A) AND ONE-TANK(B) AGING MODEL 
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Conclusion  
The one-tank aging model developed in this chapter was compared to the MOBICUS aging 

model. The difference between the two aging models is the capability of the one-tank aging 

model to consider the coupling effect between SOC and temperature. In fact, this coupling 

effect was not noticed during the MOBICUS project due to the lack of experimental SOH 

measurements at temperature 60°C, SOC (65% and 100%).  

The identification and validation of the two aging models showed some close results except 

for the aging conditions at temperature 60°C, SOC 65% (used for the identification process) 

and variable temperature, SOC 65% (used for the validation process). Due to lack of 

experimental data, the MOBICUS aging was not able to estimate the cell capacity at high 

temperature for the SOCs below 50%, inevitably leading to poorer results compared to the 

one-tank aging model. In addition, at a temperature below 45°C the activation energy was 

calculated by interpolation method at 65% of SOC. This interpolation method could 

underestimate the temperature accelerating factor of the aging laws. This could explain why 

the validation process was not completely satisfactory for either MOBICUS or one-tank aging 

models when cycling between 30°C-60°C.  
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CHAPTER 4: STUDY OF A COUPLING BETWEEN A DUAL-TANK OCV 

MODEL AND CALENDAR EMPIRICAL AGING MODEL 
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Introduction 
The one-tank aging model presented in the previous chapter was used for the prognosis of 
the cell capacity (SOH). With this kind of model, the update of the Open-Circuit Voltage (OCV) 
curve shape along with aging is performed by horizontally shrinking the OCV or using a look-
up table function of the SOC and SOH. Nevertheless, a single semi-empirical aging model, 
giving one value of cell SOH, is not enough to correctly update the cell (OCV) curve using these 
methods. The dual-tank OCV model, considering the degradation path of the battery, offers 
the possibility to account for different internal states of health for both the electrodes of the 
battery cell. By tracking these internal states of health with aging, it gives the opportunity to 
correctly modify the cell OCV function of the capacity, which may evolve in various ways. 
Therefore, using a dual-tank OCV model may be more relevant for the prognosis of the cell 
capacity. In this chapter, the dual-tank model approach is firstly detailed in §.1. Secondly, the 
coupling of a semi-empirical aging model with a dual-tank OCV model is studied in §.2. Then, 
complete model simulations are performed in specific cases to evaluate the potentialities of 
the dual-tank aging model approach in §.3. 

IV.1. Dual-tank OCV model 

IV.1.1. Model presentation 
Electrochemical tests are performed on coin cells made via harvested electrode by applying a 

galvanostatic charge and discharge current at C/10 rate. These tests allow characterizing the 

galvanostatic signals of the positive and negative electrode potentials (𝑉𝑝𝑜𝑠Ɵ,𝑉𝑛𝑒𝑔Ɵ
) versus the 

reachable lithium content (𝛩𝑝𝑜𝑠, 𝛩𝑛𝑒𝑔) of each electrode ranging, by definition, from 0 to 1. 

The Open-Circuit Potential (OCP) signal of each electrode is then achieved by averaging the 

charge and discharge galvanostatic signals measured from the coin cells as presented in 

chapter 2 of this thesis report (FIGURE II- 2). The averaged signals of the positive and negative 

electrodes versus lithium content are shown in FIGURE IV- 1(a). By considering the electrodes 

capacities (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔), it is possible to scale up the electrode potential signals at the cell level 

(𝑉𝑝𝑜𝑠𝐴ℎ,𝑉𝑛𝑒𝑔𝐴ℎ
 ) as illustrated in FIGURE IV- 1(b). 

 

To build the open-circuit voltage signal, we can then introduce the offset parameter (𝑂𝐹𝑆) 

which shifts the negative electrode potential signal 𝑉𝑛𝑒𝑔𝐴ℎ
 to the left, which is now represented 

by 𝑉𝑛𝑒𝑔𝐴ℎ−𝑂𝐹𝑆
, as shown in FIGURE IV- 1(c). These electrodes potential signals (𝑉𝑝𝑜𝑠𝐴ℎ,𝑉𝑛𝑒𝑔𝐴ℎ−𝑂𝐹𝑆

 ) are 

superimposed versus the cumulative capacity to calculate the open-circuit voltage by 

subtracting the positive to the negative electrode potential signals.  

Setting the voltage limits (𝑈𝑚𝑖𝑛, 𝑈𝑚𝑎𝑥) allows calculating the useable open-circuit voltage 

signal (OCV) and capacity (𝑄𝑂𝐶𝑉) as well as the minimum and maximum electrodes potential 

limit (𝑉𝑝𝑜𝑠𝑚𝑖𝑛 , 𝑉𝑝𝑜𝑠𝑚𝑎𝑥 , 𝑉𝑛𝑒𝑔𝑚𝑖𝑛
, 𝑉𝑛𝑒𝑔𝑚𝑎𝑥 ) shown in FIGURE IV- 1(c). The voltages (𝑈𝑚𝑖𝑛, 𝑈𝑚𝑎𝑥) are the 

charge and discharge nominal voltages indicated by the cell manufacturer. The OCV is defined 

such as: 

𝑈𝑚𝑖𝑛 ≤ 𝑂𝐶𝑉 ≤ 𝑈𝑚𝑎𝑥 
 

4.1 
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FIGURE IV- 1 SIMULATION OF CELL CAPACITY WITH THE DUAL-TANK OCV MODEL: (A) OCP’S VERSUS LITHIUM CONTENT, (B) OCP’S VERSUS CAPACITY, 
(C) CELL OCV VERSUS CAPACITY, (D) MINIMUM AND MAXIMUM ELECTRODES LITHIUM CONTENT, (E) DUAL-TANK OCV MODEL. 
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The dual-tank OCV model enables also to determine the reachable lithium content of each 
electrode at 0% and 100% of cell state-of-charge (minimum and maximum values of the OCV). 
At SOC 100%, the positive electrode reaches its minimum lithium content value 𝛩𝑝𝑜𝑠𝑚𝑖𝑛

 while 

the negative electrode reaches its maximum lithium content value 𝛩𝑛𝑒𝑔𝑚𝑎𝑥
 which are shown 

in FIGURE IV- 1(d). At this state, the electrode potential signals are linked by the maximum cell limit:  

𝑈𝑚𝑎𝑥 = 𝑉𝑝𝑜𝑠𝐴ℎ
(𝛩𝑝𝑜𝑠𝑚𝑖𝑛

) − 𝑉𝑛𝑒𝑔
𝐴ℎ−𝑂𝐹𝑆

(𝛩𝑛𝑒𝑔𝑚𝑎𝑥
)  4.2 

 

At 0% of SOC when the cell is fully discharged, the positive electrode reaches its maximum 
value 𝛩𝑝𝑜𝑠𝑚𝑎𝑥

 while the negative electrode reaches its minimum value 𝛩𝑛𝑒𝑔𝑚𝑖𝑛
 (FIGURE IV- 1(d)). 

The minimum voltage threshold links both electrodes potential at this state:  
𝑈𝑚𝑖𝑛 = 𝑉𝑝𝑜𝑠𝐴ℎ

(𝛩𝑝𝑜𝑠𝑚𝑎𝑥
) − 𝑉𝑛𝑒𝑔𝐴ℎ−𝑂𝐹𝑆

(𝛩𝑛𝑒𝑔𝑚𝑖𝑛
)  4.3 

 
For sake of simplicity, the positive and negative electrode signal (𝑉𝑝𝑜𝑠𝐴ℎ,𝑉𝑛𝑒𝑔𝐴ℎ−𝑂𝐹𝑆

 ) in FIGURE IV- 

1(c) are noted (𝑉𝑝𝑜𝑠,𝑉𝑛𝑒𝑔) above. To sum up, using the electrode potential signals characterized 

from coin cells and voltage limits of a li-ion cell, the dual tank OCV model is able to simulate 

the OCV and cell capacity as well as the maximum and minimum electrodes lithium content 

with three inputs parameters: (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔 , 𝑂𝐹𝑆), as illustrated in FIGURE IV- 1(e). The 𝑂𝐹𝑆 

parameter increases when the negative potential curve shifts to the left while (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔) 

when the battery aged. 

 

IV.1.2. Parameter’s identification of the dual-tank model 

IV.1.2.1. Identification method 

The three dual-tank OCV model parameters, 𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔 and 𝑂𝐹𝑆, are identified at each check-

up during aging tests. To do so, an optimization method is applied to find the optimal set of 
parameters. This optimal solution is found by minimizing the root mean square error (RMSE) 
between the simulated cell voltage signal and experimental open-circuit voltage signal. The 
voltage threshold (𝑈𝑚𝑖𝑛, 𝑈𝑚𝑎𝑥) correspond to the maximum and minimum experimental 
open-circuit voltage. The open-circuit voltage signal (OCV) corresponds to the average of the 
charge and discharge voltage signals measured on the cell at a C/10 rate. In this way, we will 
not consider the cell polarization resistance.  
 
An example of optimization results, obtained for each aging state during the calendar 
condition test (T=45°C, SOC = 65%), is shown FIGURE IV- 2. The optimization results of the cell OCV 
signal simulated by the dual-tank OCV model are represented in solid line and the 
experimental OCV signals for each check-up are represented in dashed line. 
 
This method is applied for all aging conditions to analyze the evolution of the dual-tank OCV 
model parameters with cell SOH. 
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FIGURE IV- 2: COMPARISON BETWEEN SIMULATED AND EXPERIMENTAL CELL VOLTAGE AT T=45°C AND SOC=65%. 

 

IV.1.2.2. Dual-tank parameters evolution with aging 

In this part, the evolution of the three parameters 𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔 , 𝑂𝐹𝑆, identified during the cell 

aging are illustrated. Each point corresponds to the periodical characterization of the full cell. 
All the parameters are represented at four temperatures, namely 0°C, 25°C, 45°C, and 60°C, 
and five state-of-charges, namely 0%, 30%, 65%, 80%, and 100%. 
 

IV.1.2.2.1 Positive electrode  

The evolution of the positive electrode capacity during aging is illustrated in FIGURE IV- 3: 
 

● At 0°C, the overall degradation is barely noticeable compared to warmer temperature 

results, with the highest degradation associated to SOC 80% where the positive 

capacity decreases from 48 Ah to ~46.5 Ah within 700 days. At this temperature, the 

active mass loss at the positive electrode can be neglected.  

● At 25°C, the active mass loss at the positive electrode is slightly more important. For 

the corresponding 80% of SOC, the positive capacity reaches ~44.5 Ah within 700 days, 

which corresponds to a loss of 7% of the initial positive electrode capacity.  

● The degradation rate of the positive electrode capacity is higher at 45°C. The 

identification is made for five state-of-charge namely 0%, 30%, 65%, 80% and 100%. 

The most important degradation is attributed to SOC 65% condition with almost 20% 

of capacity loss within 700 days. Comparing to SOC 100% condition, the active mass 

loss is more important at SOC 65% and 80%. 

● At 60°C, the active mass loss at the positive electrode is more noticeable at SOC 65% 

comparing to SOC 80% and 100% as observed at 45°C. In fact, the positive electrode 

capacity loses almost 35% of its capacity at SOC 65% in less than 200 days.  

To sum up, the degradation of the positive electrode is barely noticeable at low temperatures 
(0°C and 25°C). At high temperatures (45°C and 60°C), the positive electrode capacity falls 
rapidly, especially at SOC 65%. 



59 
 

 

 

FIGURE IV- 3: ELECTRODE POSITIVE CAPACITY IDENTIFIED AFTER 700 DAYS OF CELL AGING. 

 

IV.1.2.2.2 Negative electrode 

The evolution of the negative electrode capacity during aging is illustrated in FIGURE IV- 4: 
● At 0°C, the negative electrode capacity fade is very low. A resting SOC at 100% seems 

to have more influence than 30% and 80% of SOC. At SOC 100%, the negative 

electrode capacity decreases from 49 Ah to approximatively 47.3h (3.4% of loss). 

● A resting temperature of 25°C does not really affect the negative electrode capacity 

at 80% of SOC, which reaches 47.5 Ah within 700 days corresponding to an active mass 

loss of 3% of its initial value.  

● It is noticed previously that the positive electrode capacity is more affected at 65% of 

SOC at temperature 45°C. For the negative electrode capacity, the SOC 100% condition 

seems to be the most degradative. The negative electrode capacity decreases from 

48.5 Ah to almost 45.5 Ah within 400 days, corresponding to a total loss of 6%. This 

active mass loss at the negative electrode is a bit higher than the positive electrode at 

45°C.  

● The influence of high temperature is highlighted at 60°C especially at 65% compared 

to the SOC 80% and 100%. The negative electrode encounters a total loss of 

approximately 8% within 200 days. 

To sum up, the degradation of the negative electrode capacity degradation is low at low 

temperatures (0°C and 25°C). The most damaging calendar condition is at temperature 60°C 

and SOC 65%, which is the case as well for the positive electrode. However, at 45°C, the 

negative electrode loses more capacity at SOC 100% (unlike the positive electrode which is at 

SOC 65%). 
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FIGURE IV- 4: NEGATIVE ELECTRODE CAPACITY IDENTIFIED AFTER 700 DAYS OF CELL AGING. 

IV.1.2.2.3 Offset 

The evolution of the offset parameter identified for different calendar aging conditions is 

illustrated in FIGURE IV- 5: 

● At 0°C, the offset evolves slightly more rapidly at SOC 100% compared to the SOC 80% 

and 30%.  

● At 25°C, the ambient temperature at 80% SOC leads to a small evolution of the offset 

parameter of ≈2Ah (almost 50% of gain) within 750 days.  

● The acceleration at 45°C is clearly more important compared to 0°C and 25°C. During 

The identification results from the positive and negative electrode capacities (FIGURE IV- 

3 and FIGURE IV- 4), we have noticed that there is not a continuous evolution of those 

parameters with SOC. However, for the offset parameter, we can notice that there is 

a monotonic effect of SOC. The higher the resting SOC is, the faster the acceleration 

rate of the offset parameter will be.  

● At 60°C, the offset parameter follows the same trend as the positive and negative 

capacities with a rapid evolution at SOC 65% and 100%. At 100% of SOC, the aging 

model predicts the offset to reach ≈9.5 Ah (almost 70% of offset gain) within 150 days.  

To sum up, the offset barely increases at temperature 0°C and 25°C. At 45°C, the offset 
acceleration rate is fastest at SOC 100% as observed for the negative electrode capacity. The 
offset has a monotonous evolution with the increase of storage SOC. At 60°C, it can be noticed 
that the most damaging condition is at SOC 65%, just like the positive and negative electrode. 
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FIGURE IV- 5: OFFSET IDENTIFIED AFTER 700 DAYS OF CALENDAR AGING. 

 

IV.1.2.3. Validation from the literature 

IV.1.2.3.1 Influence of the SOC 

As mentioned in the literature review (chapter 1, §. I.3.2.1), part of the offset aging is 

influenced by the lithium loss inventory (LLI). High SOCs accelerate the SEI growth at the 

interface between the negative electrode and the electrolyte, leading to an increase of lithium 

loss inventory [75]. Therefore, this acceleration of 𝑂𝐹𝑆 parameter at high SOC is consistent 

with what we observed in the literature because of LLI. 

The §. 1.2.2 shows that the electrode capacities aging, associated with active mass loss in 

chapter 1 (§. I.3.2.1) is increased at high SOC. In the literature, some studies show that gas 

formation in the electrode surface leads to active mass loss. Gas can be generated at high 

potential (𝐶𝑂2 , 02) on the positive electrode ([2]-[3]) due to oxidation of the electrolyte at 

the positive electrode. However, according to Barbara Michalak et al. [78], the gas formation 

can appear at both electrodes when considering graphite or LMO materials. Gaseous species, 

associated with decomposition of the electrolyte on the negative electrode, are often 

generated during the first charge cycles of cell formation but also, to a lesser extent, due to 

cell aging [9]. Pillipili Matadi et al. [71] identified the influence of polymerization of biphenyl 

(an additive contained in the electrolyte) which leads to gas formation at 45°C and 60°C for 

100% of SOC. Dry areas due to a gas formation may appear at high SOC, and high temperature, 

advantaging proportional (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔) decrease. Another hypothesis evoked in the literature 

might be the dissolution of the manganese when working with LMO material [16], which can 

contaminate the negative electrode. This could explain the fast degradation of the positive 

electrode possibly accentuated at SOC 65%. 
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IV.1.2.3.2 Influence of the temperature 

According to Broussely et al. [79], the expansion of SEI in calendar aging leads to more 

consumption of Li-ions at the high temperature inside the cell thus increase of 𝑂𝐹𝑆 during 

aging. 

Z. Mao et al. [80], who studies the calendar aging on a 15 Ah Graphite/NMC-LMO pouch cell, 
observes the deterioration of electrode materials and attributed it to electrode dry-out due 
to gas formation. The authors identify nearly 30% of electrode active material losses due to 
gas formation. This observation is especially noticeable at high temperatures, which 
accelerate the degradation of 𝐶𝑝𝑜𝑠 and 𝐶𝑛𝑒𝑔 as shown in §. 1.2.2.  

 

IV.1.2.4. Influence of the degradation path 

To analyze the influence of the degradation path on the dual-tank OCV model parameters, the 

evolutions of  𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔 , 𝑂𝐹𝑆 versus the cell SOH are illustrated in FIGURE IV- 6. 

First, the three parameters evolve with a different amplitude: 

● The positive capacity follows the same degradation path at temperature 0°C, 25°C and 

60°C. At temperature 45°C and SOC 100%, the positive electrode capacity slightly gets 

away from the overall degradation path.  

● The capacity of the negative electrode evolves differently depending on the calendar 

condition. The degradation path is strictly different for all calendar aging conditions. 

This is especially noticeable at 45°C and above all at 60°C. 

● The offset has also a degradation path with a wide amplitude.  

Those phenomena on the negative electrode and the offset might be related to the fact that 

aging mechanisms are more complex at 60°C, leading to various ways of aging.  

The second aspect that is pointed out in FIGURE IV- 6, is the complexity to define the cell SOH. 

Using a one-tank model allows to quantify the cell SOH by a unique criterion with is the cell 

capacity. Using a dual-tank model helps to correlate the cell SOH by a triplet of three 

parameters ( 𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔 , 𝑂𝐹𝑆) which evolve differently depending on the calendar condition.  

For this reason, the choice to build an aging model for each parameter of the dual-tank OCV 

model may be useful to describe more precisely an aging state and, probably, predict more 

precisely the cell SOH.  
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FIGURE IV- 6: EVOLUTION OF THE DUAL-TANK OCV MODEL PARAMETERS VERSUS CELL SOH. 
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IV.2. Dual-tank aging model  
 

This section aims to traduce mathematically the evolution of the dual-tank model parameters 
(𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔 , 𝑂𝐹𝑆) with aging. Hence, by definition, they will be considered as variables in the 

following section. 
 

IV.2.1. Dual-tank aging model equations 
The same exact equations of the one-tank aging model (see chapter 3, §. III.2.1) are used to 

define the dual-tank OCV model.  

The dual-tank aging laws are displayed below: 

𝑑𝑂𝐹𝑆

𝑑𝑡
=

𝐽𝑐𝑎𝑙𝑂𝐹𝑆
(𝑇, 𝑆𝑂𝐶)

1 + 𝐴𝑂𝐹𝑆𝑂𝐹𝑆
  

4.4 

  

𝑑𝐶𝑝𝑜𝑠

𝑑𝑡
=

𝐽𝑐𝑎𝑙𝐶𝑝𝑜𝑠
(𝑇, 𝑆𝑂𝐶)

1 + 𝐴𝐶𝑝𝑜𝑠𝐶𝑝𝑜𝑠
 

 

4.5 

𝑑𝐶𝑛𝑒𝑔

𝑑𝑡
=

𝐽𝑐𝑎𝑙𝐶𝑛𝑒𝑔
(𝑇, 𝑆𝑂𝐶)

1 + 𝐴𝐶𝑛𝑒𝑔𝐶𝑛𝑒𝑔
 ) 

 

4.6 

Where 𝐽𝑐𝑎𝑙𝐶𝑝𝑜𝑠
 , 𝐽𝑐𝑎𝑙𝐶𝑛𝑒𝑔

 and 𝐽𝑐𝑎𝑙𝑂𝐹𝑆
 refer to the degradation rates of the positive and negative 

electrodes during calendar aging. The degradation rate equations, which are dependent on 

the temperature and SOC accelerating factors, are also detailed in chapter 3 (§. III.2.1).  

 

IV.2.2. Parameters identification 
The identification process consists of identifying 𝐽𝑐𝑎𝑙  for each dual-tank aging model. 𝐽𝑐𝑎𝑙 
depends on the acceleration factors (𝐹𝑎𝑇 , 𝐹𝑎𝑆𝑂𝐶) and the parameter 𝐽𝑐𝑎𝑙𝑟𝑒𝑓

. For all conditions, 

we also identify the nominal parameter (𝐶𝑝𝑜𝑠𝑖𝑛𝑖𝑡
, 𝐶𝑛𝑒𝑔𝑖𝑛𝑖𝑡

, 𝑂𝐹𝑆𝑖𝑛𝑖𝑡). The method detailed in 

chapter 3 (§. III.2.2.1) is strictly the same (optimization process to find the dual-tank aging 
model parameters). The parameter A is also optimized. All the results are presented TABLE IV- 1. 
The temperature and SOC accelerating are illustrated later (in FIGURE IV- 8, FIGURE IV- 10and FIGURE IV- 

12). The degradation rate 𝐽𝑐𝑎𝑙  for each dual-tank aging, model is illustrated in Annex 1. 
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 Unit  𝐶𝑝𝑜𝑠 𝐶𝑛𝑒𝑔 𝑂𝐹𝑆 

Initial value Ah 48.50 49.53 2.4 

𝐽𝑐𝑎𝑙𝑟𝑒𝑓
 Ah/days 0.107 0.105 0.17 

𝐸𝑎𝑇<𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 30%) kJ.mol-1 58.9 57.5 43.6 

𝐸𝑎𝑇<𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 80%) kJ.mol-1 48.7 26.2 82.5 

𝐸𝑎𝑇<𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 100%) kJ.mol-1 71.8 34.8 75.1 

𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 30%) kJ.mol-1 282.3 205.4 251.4 

𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 65%) kJ.mol-1 118.2 140.1 10 

𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 80%) kJ.mol-1 115.3 104.4 82.4 

𝐸𝑎𝑇≥𝑇𝑟𝑒𝑓(𝑆𝑂𝐶 = 100%) kJ.mol-1 158.7 228.5 48.8 

𝐹𝑎_𝑆𝑂𝐶(𝑆𝑂𝐶 = 0%) w.u. 2.7e-3 0.47 3e-14 

𝐹𝑎_𝑆𝑂𝐶(𝑆𝑂𝐶 = 30%) w.u. 0.98 0.51 0.28 

𝐹𝑎_𝑆𝑂𝐶(𝑆𝑂𝐶 = 65%) w.u. 2.55 0.33 0.39 

𝐹𝑎_𝑆𝑂𝐶(𝑆𝑂𝐶 = 80%) w.u. 2.23 0.33 0.42 

𝐹𝑎_𝑆𝑂𝐶(𝑆𝑂𝐶 = 100%) w.u. 1 1 1 

A w.u. 4.48 4.24 3.18 
TABLE IV- 1: IDENTIFICATION RESULTS OF THE DUAL-TANK AGING MODEL PARAMETERS. 

 

IV.2.2.1.  𝐶𝑝𝑜𝑠 aging model parameters identification 

The initial positive electrode capacity 𝐶𝑝𝑜𝑠𝑖𝑛𝑖𝑡
 considered in the aging model is equal to 48.5Ah. 

FIGURE IV- 7 compares the evolution of the positive electrode capacity identified via the dual-tank 

OCV model with the positive electrode capacity computed via the  𝐶𝑝𝑜𝑠 aging model. At 0°C, 

25°C, and 45°C, the model gives some good agreement with the positive electrode identified 

previously. The maximum model error is lower than 2% except for all conditions except at 

60°C and SOC 65% where the error between simulated and identified values is more 

important.  

The degradation rate of the positive electrode capacity increases with temperature especially 

at 60°C where the positive electrode capacity fade is the most important. Concerning the 

influence of SOC, the simulated parameter 𝐶𝑝𝑜𝑠 from the aging model shows that the cells are 

more subjected to a higher active mass loss at the positive electrode at SOC 65%. This 

observation is consistent with FIGURE IV- 8, which shows the state-of-charge accelerating factor 

for all SOC breakpoints: the SOC accelerating factor is the highest for SOC 65%. The 

temperature accelerating factor is high at SOC 0% and SOC 30% at 60°C as shown in FIGURE IV- 8. 

This is due to the high value of activation energy EaT>Tref identified at SOC 30% which enables 

tracking the trend of SOC 65% & 60°C condition. The SOC profile at 60°C and SOC 65% 

presented in chapter 2 (FIGURE II- 4) shows that the cell reached the SOC 30% after approximately 

150 days of storage. The identified positive capacity is very low after 150 days of storage at 

60°C and SOC 30%, thus the model identified a high value of activation energy EaT>Tref at SOC 

30% (high degradation rate). 
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FIGURE IV- 7: CALENDAR AGING IDENTIFICATION OF POSITIVE ELECTRODE CAPACITY. 

 

  

T = 0°C 

T = 25°C 

T = 45°C 

T = 60°C 
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FIGURE IV- 8: IDENTIFICATION OF THE STATE-OF-CHARGE AND TEMPERATURE ACCELERATING FACTOR FROM  𝐶𝑝𝑜𝑠  AGING MODEL. 
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IV.2.2.2. 𝐶𝑛𝑒𝑔 aging model parameters identification 

The initial negative electrode capacity 𝐶𝑛𝑒𝑔𝑖𝑛𝑖𝑡
 has been identified using the aging model and 

is considered equal to 49.5 Ah. The simulated negative electrode capacity from the aging 

model compared to the identified values from the dual-tank OCV model at different check-

ups are shown FIGURE IV- 9.  

The aging model for the negative electrode is very accurate at temperatures 0°C, 25°C, and 

45°C with a maximum error lower than 2%. At temperature 60°C, the identification process 

𝐶𝑛𝑒𝑔 give us a peculiar trend at SOC 80%. The simulated 𝐶𝑛𝑒𝑔 from the aging model does not 

follow a √𝑡 trend of capacity loss. At temperature 60°C and SOC 100%, the aging model also 

tend to overestimate the negative capacity loss as shown in FIGURE IV- 9. Nonetheless, the results 

are still good for the calendar condition at 60°C and 65% of SOC with a maximum below 2%. 

FIGURE IV- 10 illustrates the accelerating factor of temperature at SOC 100%, and state-of-charge 

identified from our aging model for negative electrode capacity. The effect of the temperature 

is less important on the negative electrode compared to the positive electrode: the 

temperature accelerating factor 𝐹𝑎𝑇  for the negative electrode shown in FIGURE IV- 10 is smaller 

than the accelerating factor identified for the positive electrode at 60°C and SOC 30% 

illustrated in FIGURE IV- 8. This phenomenon is due to smaller activation energy 𝐸𝑎(𝑆𝑂𝐶) 

identified for the negative electrode aging model. The SOC accelerating factor 𝐹𝑎𝑆𝑂𝐶 has also 

a different behavior compared to those of the positive electrode capacity: the identification 

process shows that the degradation phenomena are clearly more important at SOC 100% for 

the negative electrode and 65% for the positive electrode.  
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FIGURE IV- 9: CALENDAR AGING IDENTIFICATION OF NEGATIVE ELECTRODE CAPACITY. 

  

T = 0°C 

T = 25°C 

T = 45°C 

T = 60°C 
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FIGURE IV- 10: IDENTIFICATION RESULTS OF THE STATE-OF-CHARGE AND TEMPERATURE ACCELERATING FACTOR FROM 𝐶𝑛𝑒𝑔  AGING MODEL. 
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IV.2.2.3. 𝑂𝐹𝑆 aging model parameters identification 

 

Concerning the offset parameter, we have identified an initial offset of 2.4 Ah. This initial 

decay between positive and negative potential signals is mainly due to the formation of SEI 

during cell formation and first cycles. Unlike the other variables, the 𝑂𝐹𝑆 aging model shows 

low precision with maximum model error up to 20% without considering conditions at 60°C 

and SOC 65% where degradations are more important. 

The identification of the 𝑂𝐹𝑆 aging model parameters gives us fewer good results than the 

positive and negative electrode capacity aging model. The results are still acceptable for the 

calendar conditions at 0°C and 25°C. The aging model is still capable of predicting the evolution 

of the 𝑂𝐹𝑆 parameter at 45°C except for the condition at SOC 65% as shown in FIGURE IV- 11. At 

temperature 60°C and SOC (65%, 80%), the offset parameter has a peculiar evolution, as 

noticed in §. IV.1.2.2.3. The aging model still has some problems fitting the data. The physical 

phenomena at 60°C may be very different from those at 45°C which could explain that the 

aging model is not capable of fully predict the parameters aging. 

The evolution of the temperature and state-of-charge accelerating factor identified from the 

offset aging model is presented FIGURE IV- 12. The offset parameter is strongly influenced by 

operational resting conditions at high temperature and high state-of-charge which is 

physically explained by the increase of SEI layer activated at those conditions. The accelerating 

factors have a monotonous effect with temperature and state-of-charge.  
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FIGURE IV- 11: CALENDAR AGING IDENTIFICATION OF 𝑂𝐹𝑆. 

  

T = 0°C 

T = 25°C 

T = 45°C 

T = 60°C 
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FIGURE IV- 12: IDENTIFICATION OF THE STATE-OF-CHARGE AND TEMPERATURE ACCELERATING FACTOR FROM 𝑂𝐹𝑆 AGING MODEL. 
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IV.2.3. Aging model validation 
The simulation of the aging models for the positive and negative electrodes shows a good 

agreement with the parameters identified from the dual-tank OCV model. The overall trend 

follows a square root function of time. However, the selected model is not enough to predict 

the 𝑂𝐹𝑆 evolution at 45°C-SOC 65% or at temperature 60°C. The 𝑂𝐹𝑆 parameter has an 

exponential trend instead of a square root function of time 

The final aim of having three different aging models for every three parameters of our dual-

tank OCV model is to be able to predict the evolution of the full cell capacity over time when 

subjected to different calendar operational conditions (temperature and state-of-charge). To 

validate our aging models, two different conditions described in chapter 2(§. II.3) are used: 

the thermal cycling condition at fixed SOC (65% and 100%) and the variable SOC condition at 

45°C.  

Note that those two conditions are not used for the identification of our three aging model 

parameters. Thus, they can be used to simulate the full cell capacity for the validation process 

in two steps. The method is illustrated FIGURE IV- 13: 

-  Step 1: we use the parameters identified in TABLE IV- 1 to simulate 𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔 and offset 

evolution with aging model. 

-  Step 2: we use the dual-tank OCV model to simulate the full cell capacity. 

 

FIGURE IV- 13: SIMULATION OF THE CELL CAPACITY FROM THE AGING MODEL. 

 

The aim is to compare the cell capacity prediction using either the one-tank aging model 

described in chapter 3 or the dual-tank aging model. Using the parameters identified for 𝐶𝑝𝑜𝑠, 

𝐶𝑛𝑒𝑔, 𝑂𝐹𝑆 aging models (see TABLE IV- 1), the aging of the dual-tank OCV model parameters can 

be simulated (step 1 in FIGURE IV- 13). Following this step, the dual-tank OCV model is used to 

simulate the cell capacity (step 2 in FIGURE IV- 13). 

The results are shown in FIGURE IV- 14 which illustrates the cell SOH evolution from the one-tank 

aging model (dotted lines) and the dual-tank aging models (dashed lines). We can see that the 

two methods give approximatively the same results. From what we can see FIGURE IV- 14, the 
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dual-tank aging model gives better results for the variable SOC condition using the dual-tank 

aging model. There is a good agreement between the experimental cell SOH and the simulated 

cell SOH using the aging models. The thermal cycling condition at SOC 65% is still less well 

predicted with a maximum error of 15%. For the thermal cycling condition at SOC 100% the 

two models are slightly equivalent with a maximum error below 3%. 

 

 

FIGURE IV- 14: COMPARISON BETWEEN ONE TANK AND DUAL-TANK AGING MODELS VALIDATION 
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The comparison between the one-tank aging model and the dual-tank aging model shows that 

the two methods are almost equivalent to predict the cell SOH. The two models give some 

good results.  

In addition of giving a good SOH prediction, the dual-tank aging model allows defining the cell 

SOH with more parameters (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔, 𝑂𝐹𝑆). It may also be relevant to define more precisely 

the cell OCV signature depending on the degradation path of (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔 ,𝑂𝐹𝑆). 

IV.3. Evolution of the dual-tank model parameters with aging 
In this section, the complete model in FIGURE IV- 13 (dual-tank aging models coupled to the dual-

tank OCV model) is used to simulate the evolution of different variables related to the 

electrodes and full cell. These variables gather the parameters of the dual-tank OCV model 

(𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔 ,𝑂𝐹𝑆) and the electrode potential signals (𝑉𝑝𝑜𝑠,𝑉𝑛𝑒𝑔). Setting the cell voltage 

threshold (𝑈𝑚𝑖𝑛, 𝑈𝑚𝑎𝑥) allows following as well the evolution of the maximum and minimum 

lithium content in each electrode (𝛩𝑝𝑜𝑠𝑚𝑎𝑥
, 𝛩𝑛𝑒𝑔𝑚𝑎𝑥

, 𝛩𝑝𝑜𝑠𝑚𝑖𝑛
, 𝛩𝑛𝑒𝑔𝑚𝑖𝑛

along with aging for the 

determination of the evolution of the cell capacity (𝑄𝑠𝑖𝑚). 

The aging profiles used for this approach is the fixed calendar condition at temperature 45°C 

and SOC 65%. The SOC and temperature are fixed during the whole simulation. The study is 

divided into two sections. 

In this first section, the simulation is performed using the dual-tank aging parameters 

identified in TABLE IV- 1 (§. IV.2.2) to see how the variables mentioned above evolve with aging. 

In the second and third sections, a sensitivity analysis is performed on the degradation rate at 

a reference condition 𝐽𝑐𝑎𝑙𝑟𝑒𝑓
 (for each dual-tank aging law in §. IV.2.1) and the electrodes sizing 

(𝐶𝑝𝑜𝑠𝑖𝑛𝑖𝑡
, 𝐶𝑛𝑒𝑔𝑖𝑛𝑖𝑡

). These values are detailed in §. IV.2.2 are changed to analyze their impacts 

on the electrode potential signals and the maximum/minimum lithium contents. 

 

IV.3.1. Simulation of the calendar aging condition at T=45°C and SOC=65%: 

reference case 

IV.3.1.1. Aging evolution of the dual-tank OCV parameters and full cell capacity. 

The simulation of the cell capacity at a fixed temperature (45°C) and SOC (65%), illustrated in 

FIGURE IV- 15, shows that the cell capacity loses almost 33% of its initial capacity within 700 days 

of cell storage (< 2 years). This degradation of the cell SOH is mainly due to the rapid 

acceleration of the offset parameter change from approximatively 2.3 Ah to 7.5 Ah (> 200% of 

the increase). It is also related to the degradation of the positive electrode capacity 

(approximatively 17% of initial capacity loss). The evolution of the negative electrode capacity 

slightly decreases during aging compared to the positive electrode (with 6% of capacity loss 

within 700 days or resting time). 
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FIGURE IV- 15: SIMULATION OF THE CELL CAPACITY 𝑄𝑠𝑖𝑚 , 𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔  AND 𝑂𝐹𝑆 AT T=45°C AND SOC=65%. 

 

IV.3.1.2. Evolution of the positive and negative electrode potential signals 

The evolution of the electrode potential signals simulated from the beginning of life until 700 

days of storage is shown in FIGURE IV- 16. The pink and black dashed lines correspond to the 

minimum and maximum limit of the full cell capacity set by the cell voltage threshold (𝑈𝑚𝑖𝑛 

and 𝑈𝑚𝑎𝑥 in FIGURE IV- 16). The evolutions of (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔,𝑂𝐹𝑆) previously presented in FIGURE IV- 15 

impact the position of the electrode potential signals relative to each other.  

The offset set the relative position of the negative electrode at the fully delithiated (NEGde) 

state to the positive one at the fully lithiated state (POSli) on the capacity abscissa, as 

illustrated in FIGURE IV- 16. Due to the increase of the offset parameter along with aging, the 

distance between the negative electrode NEGde and the positive electrode POSli increases. This 

latter takes place along with the decrease of the length of the positive and negative electrode 

signal due to the degradation of the positive and negative electrode capacity.  

It is worth noting in FIGURE IV-16 that the voltages of the electrodes limits (𝑉𝑝𝑜𝑠𝑚𝑎𝑥
,

𝑉𝑛𝑒𝑔𝑚𝑎𝑥
, 𝑉𝑝𝑜𝑠𝑚𝑖𝑛

, 𝑉𝑛𝑒𝑔𝑚𝑖𝑛
) change along with cell aging because of the electrode capacity and 

OFS evolution. On the negative electrode, the maximum negative potential (𝑉𝑛𝑒𝑔𝑚𝑎𝑥
 in FIGURE 

IV- 16) slightly increases during the 700 days of storage while the minimum negative electrode 

potential (𝑉𝑛𝑒𝑔𝑚𝑖𝑛
) increases more rapidly. On the positive electrode, the maximum positive 

potential 𝑉𝑝𝑜𝑠𝑚𝑎𝑥
 slightly increases as well through aging while the minimum potential 𝑉𝑝𝑜𝑠𝑚𝑖𝑛

 

increases at a higher rate. 
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FIGURE IV- 16: EVOLUTION OF THE ELECTRODE POTENTIAL SIGNALS AFTER 700 DAYS OF CALENDAR AGING 

 

IV.3.1.3. Evolution of the maximum and minimum lithium content 

 

The evolution of the minimum and maximum lithium contents 

(𝛩𝑝𝑜𝑠𝑚𝑎𝑥
, 𝛩𝑛𝑒𝑔𝑚𝑎𝑥

, 𝛩𝑝𝑜𝑠𝑚𝑖𝑛
, 𝛩𝑛𝑒𝑔𝑚𝑖𝑛

) illustrated in FIGURE IV- 17, shows that the four parameters 

decrease in the electrodes through aging. This evolution can be explained based upon the 

description of the electrode potential detailed in §.IV.3.1.2 

- As noticed previously, the negative potential at the cell EOD (𝑉𝑛𝑒𝑔𝑚𝑎𝑥
) and the positive 

potential at the cell EOC (𝑉𝑝𝑜𝑠𝑚𝑎𝑥
) slightly increase after 700 days of storage. Therefore, 

the minimum lithium content at both electrodes barely decreases during aging.  

-  As the minimum electrode voltages 𝑉𝑝𝑜𝑠𝑚𝑖𝑛
 and 𝑉𝑛𝑒𝑔𝑚𝑖𝑛

 increases at a higher rate 

along with aging, the evolution of the maximum lithium content on both electrodes 

show that they decrease fast. From the beginning to the end of the simulation, the 

maximum positive 𝛩𝑝𝑜𝑠𝑚𝑎𝑥
 lithium content decreases by approximatively 10% while 

the maximum negative lithium 𝛩𝑛𝑒𝑔𝑚𝑎𝑥
content decreases by 27% of its initial value.  
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FIGURE IV- 17: SIMULATION OF THE MAXIMUM AND MINIMUM ELECTRODES LITHIUM CONTENT AT T=45°C AND SOC =65%. 

 

IV.3.2. Influence of the degradation rate on the electrode lithium contents 
In this section, the sensitivity analysis of the degradation rate at a reference condition 𝐽𝑐𝑎𝑙𝑟𝑒𝑓

 

for each dual-tank aging, model is performed by multiplying it by a factor equal to 5. The 

evolutions of the electrode potential signals in this section are compared after 700 days of 

calendar storage. The aim is to analyze how accelerating the degradation rate of the dual-tank 

aging models affects the electrode potential signals and maximum/minimum lithium contents 

of the electrodes.  

IV.3.2.1. Acceleration of the positive electrode capacity 𝐶𝑝𝑜𝑠 aging parameter 

The evolution of the electrode potential signals and maximum/minimum lithium contents are 

illustrated in FIGURE IV- 18 after 700 days of storage when accelerating the positive electrode 

capacity 𝐶𝑝𝑜𝑠 aging parameter.  

On the positive electrode signal in FIGURE IV- 18(b), the maximum voltages 𝑉𝑝𝑜𝑠𝑚𝑎𝑥
 barely increases 

while the minimum positive voltage 𝑉𝑝𝑜𝑠𝑚𝑖𝑛
 increases a lot at end of the simulation compared 

to the reference (initial) case shown in FIGURE IV- 18(a). Therefore, the minimum lithium content 

𝛩𝑝𝑜𝑠𝑚𝑖𝑛
 slowly decreases while the maximum lithium content 𝛩𝑝𝑜𝑠𝑚𝑎𝑥

 decreases at a higher 

rate along with aging in FIGURE IV- 18(d) compared to FIGURE IV- 18(c). 

On the negative electrode signal, the acceleration of the positive degradation mostly affect 

the minimum voltage 𝑉𝑛𝑒𝑔𝑚𝑖𝑛
, which increases more rapidly in FIGURE IV- 18(b) than in the 

reference case in FIGURE IV- 18(a). Therefore, the maximum lithium content 𝛩𝑛𝑒𝑔𝑚𝑎𝑥
decreases 

faster as well in FIGURE IV- 18(d) compared to FIGURE IV- 18(c). The maximum voltage 𝑉𝑛𝑒𝑔𝑚𝑎𝑥
 barely 

increases along with aging consequently in FIGURE IV- 18(b) compared to FIGURE IV- 18(a). Thus, 

𝛩𝑛𝑒𝑔𝑚𝑖𝑛
 slowly decreases as shown in FIGURE IV- 18(d). 
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FIGURE IV- 18: EVOLUTION OF THE ELECTRODE POTENTIAL SIGNALS AT 700 DAYS (A, B) AND MINIMUM/MAXIMUM LITHIUM CONTENT (C, D) WHEN 

CHANGING 𝐽𝑐𝑎𝑙𝑟𝑒𝑓
 OF THE POSITIVE ELECTRODE AGING MODEL. 

 

IV.3.2.2. Acceleration of the electrode capacity 𝐶𝑛𝑒𝑔 aging parameter 

The evolution of the electrode potential signals are illustrated in FIGURE IV- 19(a, b) after 700 days 

of storage when accelerating the degradation rate of 𝐶𝑛𝑒𝑔 aging parameter. 

On the negative electrode, the maximum voltage 𝑉𝑛𝑒𝑔𝑚𝑎𝑥
 slightly decreases during the 

simulation shown in FIGURE IV- 19(b) compared to the reference case shown in FIGURE IV- 19(a). 

Therefore, the minimum lithium content 𝛩𝑛𝑒𝑔𝑚𝑖𝑛
 in FIGURE IV- 19(d) slightly increases compared 

to FIGURE IV- 19(c). The minimum voltage 𝑉𝑛𝑒𝑔𝑚𝑖𝑛
 decreases along with aging due to the reduction 

of the negative electrode capacity. Consequently, the maximum lithium content 𝛩𝑛𝑒𝑔𝑚𝑎𝑥
in 

FIGURE IV- 19(d) increases through the simulation compared to the case in FIGURE IV- 19(c). 

On the positive electrode, the maximum positive voltage 𝑉𝑝𝑜𝑠𝑚𝑎𝑥
 slightly decreases therefore 

the minimum lithium content 𝛩𝑝𝑜𝑠𝑚𝑖𝑛
 in FIGURE IV- 19(d) slightly increases compared to the initial 

case shown in FIGURE IV- 19(c).  
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FIGURE IV- 19: EVOLUTION OF THE ELECTRODE POTENTIAL SIGNALS AT 700 DAYS (A, B) AND MINIMUM/MAXIMUM LITHIUM CONTENT (C, D) WHEN 

CHANGING 𝐽𝑐𝑎𝑙𝑟𝑒𝑓
 OF THE NEGATIVE ELECTRODE AGING MODEL. 

 

IV.3.2.3. Acceleration of OFS aging 

The evolution of the electrode potential signals is illustrated in FIGURE IV- 20(a, b) after 700 days of 

storage. When accelerating the degradation rate 𝐽𝑐𝑎𝑙𝑟𝑒𝑓
 of the offset aging model, the negative 

electrode potential signal shifts more and more rapidly to the left. This shift is due to fact that 

fewer lithium-ions are accessible in the system and therefore, the lithium content of the 

negative electrode decreases. 

As shown in FIGURE IV- 20, the offset parameter mostly impacts the minimum voltages 𝑉𝑝𝑜𝑠𝑚𝑖𝑛
 and 

𝑉𝑛𝑒𝑔𝑚𝑖𝑛
 which both increasing in FIGURE IV- 20(b) during the simulation compared to the trend in 

the reference case shown in FIGURE IV- 20(a). The increase of the minimum voltages is associated 

with a lower maximum lithium content for both electrode 𝛩𝑝𝑜𝑠𝑚𝑎𝑥
 and 𝛩𝑛𝑒𝑔𝑚𝑎𝑥

 as presented 

in FIGURE IV- 20(d) compared to FIGURE IV- 20(c).  

As the maximum voltages 𝑉𝑝𝑜𝑠𝑚𝑎𝑥
 and 𝑉𝑛𝑒𝑔𝑚𝑎𝑥

 slightly increase in FIGURE IV- 20(a) after 700 days 

of storage due to the acceleration of offset aging parameter, Thus, the minimum lithium 

contents 𝛩𝑝𝑜𝑠𝑚𝑖𝑛
 and 𝛩𝑛𝑒𝑔𝑚𝑖𝑛

 slightly decrease in FIGURE IV- 20(d) compared to the results in the 

reference case (FIGURE IV- 20(c)). 

 



82 
 

 

FIGURE IV- 20: EVOLUTION OF THE ELECTRODE POTENTIAL SIGNALS AT 700 DAYS (A, B) AND MINIMUM/MAXIMUM LITHIUM CONTENT (C, D) WHEN 

CHANGING 𝐽𝑐𝑎𝑙𝑟𝑒𝑓
 OF THE OFFSET AGING MODEL. 

IV.3.3. Influence of the electrodes sizing on the electrode potential signals and 

lithium content 
In this section, three studied cases are considered where the sizing of the electrodes 

(electrode capacities) are changed to analyze their influence on the electrode potential signals 

as well as the minimum and maximum lithium contents along with aging. The initial positive 

and negative electrode capacity estimated by the aging models are respectively 48.5 Ah and 

49.5 Ah (see TABLE IV- 1). The other parameters identified in TABLE IV- 1 are kept constant for the 

simulation of the complete model. All the results are compared to the initial case studied in 

§3.1. 

In §3.3.1 and §3.3.2, the positive electrode is respectively undersized (40 Ah) and oversized 

(60 Ah) compared to the negative electrode.  

IV.3.3.1. Positive electrode undersized 

The evolution of the electrode potential signals is depicted in FIGURE IV- 21(a, b) at BOL. The full 

cell capacity at BOL will be lower compared to the initial case studied in §3.1.1 due to the 

reduction of the sizing of the positive electrode. 

Reducing the size of the positive electrode mainly affects the value of the minimum voltage 

of the negative one 𝑉𝑛𝑒𝑔𝑚𝑖𝑛
.  
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When setting the cell voltage threshold, the value 𝑉𝑛𝑒𝑔𝑚𝑖𝑛
 at BOL, shown in FIGURE IV- 21(b), is 

higher compared to the initial case (FIGURE IV- 21(a)). Thus, the value of 𝛩𝑛𝑒𝑔𝑚𝑎𝑥
 at BOL is lower in 

FIGURE IV- 21(d) than in the reference case. Consequently, the simulation illustrated in FIGURE IV- 21(d) 

shows that the maximum lithium content on the negative electrode 𝛩𝑛𝑒𝑔𝑚𝑎𝑥
 falls with a lower 

initial value compared to the reference case presented in FIGURE IV- 21(c). The trend of the 

maximum and minimum lithium contents in FIGURE IV- 21(d) is the same compared to FIGURE IV- 21(c). 

 

FIGURE IV- 21: POSITIVE ELECTRODE UNDERSIZED: EVOLUTION OF THE ELECTRODES SIGNALS (A, B) AT BOL AND AFTER 700 DAYS OF STORAGE, 
EVOLUTION OF THE MINIMUM AND MAXIMUM LITHIUM CONTENT (C, D). 

 

IV.3.3.2. Positive electrode oversized  

FIGURE IV- 22 illustrates the evolution of the electrode potential signals at BOL (a, b) in the 

reference case and when the positive electrode is undersized. The value of 𝑉𝑛𝑒𝑔𝑚𝑖𝑛
and 𝑉𝑝𝑜𝑠𝑚𝑎𝑥

 

is lower at BOL as shown in FIGURE IV- 22(b) compared to the reference case in FIGURE IV- 22(a). Thus, 

the maximum lithium content 𝛩𝑛𝑒𝑔𝑚𝑎𝑥
 and the minimum lithium content 𝛩𝑝𝑜𝑠𝑚𝑖𝑛

 increases at 

BOL compared to the reference case.  

The configuration of the electrode potential signals at BOL is very different in both cases. In 

FIGURE IV- 22(b), the negative electrode at the EOC and EOD delimits the cell capacity. The 

evolution of the minimum lithium content 𝛩𝑝𝑜𝑠𝑚𝑖𝑛
 and maximum lithium content 𝛩𝑛𝑒𝑔𝑚𝑎𝑥

 

along with aging are not the same in both cases. As shown in FIGURE IV- 22(d), the maximum lithium 

content 𝛩𝑛𝑒𝑔𝑚𝑎𝑥
= 1 until approximatively 300 days of storage and then decreases along with 

aging. The minimum lithium content decreases along with aging starting from approximatively 

𝛩𝑝𝑜𝑠𝑚𝑖𝑛
= 0.15. 
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FIGURE IV- 22: POSITIVE ELECTRODE OVERSIZED: EVOLUTION OF THE ELECTRODES SIGNALS (A, B) AT BOL AND AFTER 700 DAYS OF STORAGE, 
EVOLUTION OF THE MINIMUM AND MAXIMUM LITHIUM CONTENT (C, D). 

To explain the evolution of 𝛩𝑛𝑒𝑔𝑚𝑎𝑥
 and 𝛩𝑝𝑜𝑠𝑚𝑖𝑛

, the evolution of the electrode potential 

signals at different aging states is illustrated in FIGURE IV- 23: 

● Before 300 days of storage, the negative electrode delimits the cell capacity at the cell 

EOC. Thus, the minimum voltage 𝑉𝑛𝑒𝑔𝑚𝑖𝑛
 does not evolve and correspond to a 

maximum lithium content 𝛩𝑛𝑒𝑔𝑚𝑎𝑥
 equal to 1 as shown in FIGURE IV- 22. The maximum 

voltage 𝑉𝑝𝑜𝑠𝑚𝑎𝑥
 increases between the BOL and 300 days of storage. Thus, the 

corresponding minimum lithium content 𝛩𝑝𝑜𝑠𝑚𝑖𝑛
 decreases along with aging.  

● After 300 days of storage, the positive electrode delimits the cell capacity at the cell 

EOC. The minimum voltage 𝑉𝑛𝑒𝑔𝑚𝑖𝑛
 start to increase after 300 days of storage. 

Therefore, the maximum lithium content 𝛩𝑛𝑒𝑔𝑚𝑎𝑥
 decreases after 300 days of storage. 

On the positive electrode, the maximum voltage 𝑉𝑝𝑜𝑠𝑚𝑎𝑥
 still decreases over time 

corresponding to a minimum lithium content 𝛩𝑝𝑜𝑠𝑚𝑖𝑛
 decreasing along with aging.  
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FIGURE IV- 23: EVOLUTION OF THE ELECTRODE POTENTIAL SIGNALS WHEN THE POSITIVE ELECTRODE IS OVERSIZED. 

Conclusion 
Semi-empirical aging models coupled to a dual-tank OCV model were developed in this 

chapter. The dual-tank OCV model was able to simulate the Open-Circuit Voltage (𝑂𝐶𝑉) and 

cell capacity (𝑄𝑠𝑖𝑚) as well as the minimum/maximum lithium contents 

(𝛩𝑝𝑜𝑠𝑚𝑎𝑥
, 𝛩𝑛𝑒𝑔𝑚𝑎𝑥

, 𝛩𝑝𝑜𝑠𝑚𝑖𝑛
, 𝛩𝑛𝑒𝑔𝑚𝑖𝑛

) on both electrodes at a given aging state using three 

parameters. Those three parameters were: the positive electrode capacity (𝐶𝑝𝑜𝑠), the negative 

electrode capacity (𝐶𝑛𝑒𝑔) and the offset between the electrode potential signals (𝑂𝐹𝑆).  

The identification of the parameters of the dual-tank OCV model for different calendar aging 
conditions showed that the degradation of the positive electrode capacity was more 
important at SOC 65%. The aging of the negative electrode capacity and offset was more 
predominant at SOC 100%. The aging of the three parameters increased at high temperature, 
especially at 60°C. 
The evolution of the three parameters showed that they aged with a different amplitude of 
degradation depending on the calendar aging condition. At a given aging state, the cell SOH 
was defined by (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔, 𝑂𝐹𝑆) parameters which allowed to define the SOH with more 

variables.  
 

This aging model was developed to predict the evolution of (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔, 𝑂𝐹𝑆) and the cell 

capacity. The identification of this dual-tank aging model gave better results for the positive 

electrode (𝐶𝑝𝑜𝑠) and the negative electrode (𝐶𝑛𝑒𝑔) with a maximum error between 2% and 4%. 

The identification of the 𝑂𝐹𝑆 aging model gave poorer results with a maximum error between 

20% and 40%. Nevertheless, the validation of the dual-tank aging model gave some 

satisfactory results for the SOH prognosis. The maximum error between the experimental and 
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simulated cell SOH for the variable SOC and thermal cycling condition at SOC 100% were below 

4%. However, the validation of the thermal cycling condition at SOC 65% was poorer with a 

maximum error reaching 15%. Finally, the comparison between the one-tank aging model 

developed in chapter 3 and the dual-tank aging model showed that results for the prognosis 

of the cell SOH are slightly equivalent.  

To finish, the dual-tank aging model was used to analyze the evolution of its variables with 

aging. A focus was made on the minimum and maximum lithium contents 

(𝛩𝑝𝑜𝑠𝑚𝑎𝑥
, 𝛩𝑛𝑒𝑔𝑚𝑎𝑥

, 𝛩𝑝𝑜𝑠𝑚𝑖𝑛
, 𝛩𝑛𝑒𝑔𝑚𝑖𝑛

) on the negative and positive electrodes. The simulations 

of the reference case, for the calendar aging condition at 45°C and SOC 65%, showed that the 

lithium contents decrease along with aging due to (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔, 𝑂𝐹𝑆) evolution. Moreover, the 

sensitivity analysis performed on the degradation rate 𝐽𝑐𝑎𝑙𝑟𝑒𝑓
 of the aging laws showed that 

the evolution of 𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔 and 𝑂𝐹𝑆 affect the lithium contents 

(𝛩𝑝𝑜𝑠𝑚𝑎𝑥
, 𝛩𝑛𝑒𝑔𝑚𝑎𝑥

, 𝛩𝑝𝑜𝑠𝑚𝑖𝑛
, 𝛩𝑛𝑒𝑔𝑚𝑖𝑛

). 

ANNEX 1  

 

 

FIGURE IV- 24: DEGRADATION RATE (𝐽𝑐𝑎𝑙) OF  𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔  AND 𝑂𝐹𝑆 AGING MODEL. 
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CHAPTER 5: DUAL-TANK PHYSIC BASED AGING MODEL 
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Introduction 
Chapter 4 presented the development of a dual-tank aging model for each parameter of the 

dual-tank OCV model (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔, 𝑂𝐹𝑆). This model can give a good estimation of the cell 

battery SOH. However, empirical models lack physical contributions to highlight the possible 

degradation mechanisms (SEI growth, binder decomposition…) responsible for the cell 

capacity fade. These degradation mechanisms lead to various degradation modes. As 

described in chapter 1, the degradation modes responsible for the battery SOH fading can be 

divided into three main groups: loss of lithium inventory (𝐿𝐿𝐼), loss of active mass at the 

positive electrode (𝐿𝐴𝑀𝑝𝑜𝑠) and loss of active mass at the negative electrode (𝐿𝐴𝑀𝑛𝑒𝑔). The 

𝐿𝐿𝐼 comes from the SEI formation and growth on the negative electrode [8] while the loss of 

active mass on both electrodes is linked to electrode capacity degradation [81]. 

As described in chapter 1, several physics-based aging models are developed in the literature 

to describe the SEI growth responsible for LLI ([41], [82]–[84]). However, there are few existing 

approaches modeling the loss of active mass on the electrodes [51]. The SEI models developed 

in the literature are very suitable for calendar aging as the SEI is an important cause of the 

battery capacity fading. In this chapter, the modeling of SEI growth on production Li-ion 

batteries is developed based on a physics-based model for the offset (𝑂𝐹𝑆) parameter. 

The first section presents the mechanism and equations related to the SEI growth at the 

negative electrode interface for the SEI modeling. A focus is made on the modeling of a 

parasitic current and the reaction of lithium ions consumption at the SEI/graphite interface. 

In the second section, a physics-based aging model for the offset parameter is developed. This 

model dissociates the impact of the parasitic current and the loss of active mass on both 

electrodes on the offset parameter.  

In the third section, the identification process of the physics-based aging model for the 𝑂𝐹𝑆 

parameter is developed. This step allows analyzing the evolution of the SEI thickness growth 

on the production cell batteries as well as the contributions of the degradation modes 

previously mentioned on the offset parameter. 

Finally, the fourth section is entitled to the validation of the physics-based aging model. The 

results are compared to the one-tank aging model developed in chapter 3 (§. III.2.3). 
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V.1. SEI modeling  

V.1.1. Full cell representation 
A representation of the full cell is given in FIGURE V- 1. In this chapter, the Solid Electrolyte 

Interphase (SEI) is represented as a porous layer on the negative electrode. 

At the negative electrode, the principal reaction is the intercalation of the lithium-ions in the 

graphite electrode while the SEI growth is supposed to be related to side reaction at the 

interface graphite/SEI. Namely, the solvent (X) diffuses through the SEI and is reduced at the 

graphite/SEI interface with intercalated lithium and precipitates into a solid product. 

At the graphite/SEI interface, the total current density 𝑖 (𝐴. 𝑚−2) is subdivided into the 

intercalation current density 𝑖𝑛 and the parasitic current density 𝑖𝑝. The intercalation current 

𝑖𝑛 represents the charge transfer leading to Li intercalation in the graphite solid phase while 

the parasitic current 𝑖𝑝 represents the charge transfer rate of the SEI reaction. This latter 

parasitic reaction leads to the growth of SEI (thickness 𝛿𝑆𝐸𝐼). 

In FIGURE V- 1, the local potentials of graphite (at 𝑥 = 0), SEI (at 𝑥 = 0) and electrolyte interface 

(at 𝑥 = 𝛿𝑆𝐸𝐼), are respectively 𝜙𝑛𝑒𝑔, 𝜙𝑆𝐸𝐼  and 𝜙𝑒. The potential difference between the 

graphite/SEI interface and between the graphite and electrolyte is defined as 𝑈𝑛𝑒𝑔 and 𝑉𝑛𝑒𝑔. 

The potential difference 𝑈𝑛𝑒𝑔 is expressed by: 

𝑈𝑛𝑒𝑔 = 𝜙𝑛𝑒𝑔 − 𝜙𝑒  (5.1) 

 
While the potential difference 𝑉𝑛𝑒𝑔 is defined as: 

𝑉𝑛𝑒𝑔 =  𝜙𝑛𝑒𝑔 −  𝜙𝑠𝑒𝑖 

 

(5.2) 

With: 

 𝜙𝑠𝑒𝑖 = 𝜙𝑒 +
𝛿𝑠𝑒𝑖

𝜅𝑆𝐸𝐼
𝑖 

 

(5.3) 

 

δSEI being the SEI thickness and κSEI, its ionic conductivity. 
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FIGURE V- 1: FULL CELL SCHEMATIC REPRESENTATION. 

 

V.1.2. SEI mechanisms and equations 
There are three main mechanisms occurring inside the negative electrode of the battery. The 

principal mechanism is kinetic intercalation of the lithium-ion inside the graphite active 

material. The second and third mechanisms are the SEI growth resulting from the reduction 

of the solvent at the graphite/SEI interface and the parasitic consumption of the lithium-ions 

at the graphite/SEI surface. 

 

V.1.2.1. Kinetic of intercalation of the lithium-ion : 

The intercalation current 𝑖𝑛𝑒𝑔 is expressed using the Butler-Volmer equation [50]: 

𝑖𝑛𝑒𝑔 = 𝑖𝑜 (𝑒𝑥𝑝 (
𝛼𝐹

𝑅𝑇
𝜂)  − 𝑒𝑥𝑝 (−

(1 − 𝛼)𝐹

𝑅𝑇
𝜂) ) 

(5.4) 

 

𝑖𝑜 (𝐴. 𝑚−2) being the exchange current density, 𝛼 the symmetry factor associated with the 

intercalation reaction in the graphite, 𝐹 (𝐶. 𝑚𝑜𝑙−1) faradic constant, 𝑅 (𝐽. 𝐾−1. 𝑚𝑜𝑙−1) 

universal gas constant, 𝑇 (𝐾) the temperature, and 𝜂 (𝑉) the negative electrode 

overpotential.  

This overpotential 𝜂 (which is zero at equilibrium state) is defined as:  

𝜂 = 𝑉𝑛𝑒𝑔 − 𝐸𝑔𝑟
0  (5.5) 

 

where 𝐸𝑔𝑟
0  (V) is the equilibrium potential of the graphite material. 
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Considering East. (5.1) -(5.3), the overpotential 𝜂 can be rewritten as: 

𝜂 =  (𝜙
𝑛𝑒𝑔

− 𝜙
𝑒
) −

𝛿𝑠𝑒𝑖

𝜅𝑆𝐸𝐼

𝑖 − 𝐸𝑔𝑟
0 = 𝑈𝑛𝑒𝑔 −

𝛿𝑠𝑒𝑖

𝜅𝑆𝐸𝐼
𝑖 − 𝐸𝑔𝑟

0  

 

(5.6) 

V.1.2.2. SEI growth model and the parasitic reaction of lithium-ions 

consumption 

V.1.2.2.1 SEI growth model  

The reduction of solvent at the interface graphite/SEI accelerates the growth of the SEI 

thickness, which is proportional to the flux density J (𝑚𝑜𝑙. 𝑚−2. 𝑠−1) of component X, involved 

in a parasitic reaction, through the SEI surface:  

𝜕𝛿𝑆𝐸𝐼

𝜕𝑡
= 𝑛

𝑀𝑠𝑒𝑖

𝜌𝑠𝑒𝑖
 𝐽 

(5.7) 

 

Where n is the quantity of lithium consumed per mole of SEI formed, 𝑀𝑆𝐸𝐼  the molar mass of 

SEI (𝑔. 𝑚𝑜𝑙−1) and 𝜌𝑆𝐸𝐼  the density of SEI (𝑘𝑔. 𝑚−3). 

A linear approximation is assumed for the solvent diffusion as no accumulation is supposed 

on the SEI layer [52]: 

𝐽 = −
𝐷𝑥

𝛿𝑆𝐸𝐼
(𝐶𝑥 − 𝐶𝑥

0) 
(5.8) 

 

Where 𝐷𝑥 (𝑚2. 𝑠−1) is the effective diffusion coefficient of X through the porous structure of 

the SEI, 𝐶𝑥(𝑚𝑜𝑙. 𝑚−3) the concentration of the solvent X at the interface graphite/SEI and 𝐶𝑥
0 

(𝑚𝑜𝑙. 𝑚−3) the concentration of X in the bulk of electrolyte. 

 

V.1.2.2.2 Parasitic reaction of the Lithium-ion consumption 

This reaction is supposed irreversible and the parasitic current density 𝑖𝑝, responsible for 

lithium-ions consumption, is modeled by Tafel’s law [41] which depends on the concentration 

of the solvent X at the graphite/SEI interface: 

𝑖𝑝 = 𝐹𝑘𝑠𝑒𝑖 𝑐𝑥 𝑒𝑥𝑝 (−
𝛼𝑐𝐹

𝑅𝑇
𝜂𝑝) 

(5.9) 

 

The overpotential of the parasitic reaction 𝜂𝑝 is given by:  

𝜂𝑝 = 𝑉𝑛𝑒𝑔 − 𝐸𝑆𝐸𝐼
0  (5.10) 

 

Where 𝐸𝑆𝐸𝐼
0  is the equilibrium potential associated with SEI formation.  

By coupling Eq. (5.5) and Eq.(5.10), the overpotentials of the intercalation (𝜂) and parasitic 
(𝜂𝑝) reactions can then be linked by:  

 

𝜂𝑝 = 𝜂 + 𝐸𝑔𝑟
0 − 𝐸𝑠𝑒𝑖

0  (5.11) 
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For the scope of this thesis, only the calendar aging of the cell battery is studied for which, the 
total electrical current 𝐼 is equal to zero. Thus, the overpotential of the intercalation reaction 
𝜂 is also equal to zero as there is no intercalation of the lithium on the graphite. Using Eq. 
(5.11), the parasitic overpotential in calendar aging is defined by:  

𝜂𝑝 = 𝐸𝑔𝑟
0 − 𝐸𝑠𝑒𝑖

0  (5.12) 

 
The parasitic current density 𝑖𝑝 modeled by Tafel’s law can be expressed by:  

𝑖𝑝 = 𝐹 𝑘𝑠𝑒𝑖 𝐶𝑥 𝑒𝑥𝑝 (−
𝛼𝑐𝐹

𝑅𝑇
(𝐸𝑔𝑟

0 − 𝐸𝑠𝑒𝑖
0 )) 

(5.13) 

 

The flux density J, representing the diffusion flux of the solvent through the SEI layer, can be 

related to the parasitic current (𝑖𝑝) density by: 

𝐽 =
𝑖𝑝

𝑛𝐹
 

(5.14) 

 

Considering the Fick diffusion of solvent Eq. (5.8), Eq. (5.14) becomes: 

𝑖𝑝

𝑛𝐹 
= −

𝐷𝑥

𝛿𝑆𝐸𝐼
(𝐶𝑥 − 𝐶𝑥

0) (5.15) 

 

𝑖𝑝 = −
𝑛 𝐹 𝐷𝑥

𝛿𝑆𝐸𝐼
(𝐶𝑥 − 𝐶𝑥

0) 

(5.16) 

 

The solvent concentration 𝐶𝑥 is deducted from Eq.(5.16): 

𝐶𝑥 = 𝑐𝑥
0 −

𝛿𝑆𝐸𝐼

𝑛𝐹𝐷𝑥
𝑖𝑝  

(5.17) 

 

Combining Eqs. (5.13) and (5.17), the parasitic current 𝑖𝑝 is given by:  

𝑖𝑝 =
𝐹 𝑘𝑠𝑒𝑖 𝑐𝑥

0 𝑒𝑥𝑝 (−
𝛼𝑐𝐹
𝑅𝑇 (𝐸𝑔𝑟

0 − 𝐸𝑠𝑒𝑖
0 ))

1 +
𝑘𝑠𝑒𝑖

𝑛 𝐷𝑥
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

𝛼𝑐𝐹
𝑅𝑇 (𝐸𝑔𝑟

0 − 𝐸𝑠𝑒𝑖
0 ))   𝛿𝑆𝐸𝐼

 

(5.18) 

 

The parasitic electrical current flowing through S, the graphite surface considering during the 

parasitic reaction process, is linked to the parasitic current density by:  

𝐼𝑝 = 𝑆 ∗ 𝑖𝑝 (5.19) 

 

Therefore, the parasitic electrical current can be expressed by:  
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𝐼𝑝 =
𝑆 𝐹 𝑘𝑠𝑒𝑖 𝑐𝑥

0 ∗ 𝑒𝑥𝑝 (−
𝛼𝑐𝐹
𝑅𝑇 (𝐸𝑔𝑟

0 − 𝐸𝑠𝑒𝑖
0 )) ]

1 +
𝑘𝑠𝑒𝑖

𝑛 𝐷𝑥
𝑒𝑥𝑝 (−

𝛼𝑐𝐹
𝑅𝑇 (𝐸𝑔𝑟

0 − 𝐸𝑠𝑒𝑖
0 )) .  𝛿𝑆𝐸𝐼

 

(5.20) 

To find relationships between the parasitic electrical current 𝐼𝑝 and the electrical currents 

flowing through the electrodes (𝐼𝑝𝑜𝑠 , 𝐼𝑛𝑒𝑔), the SEI and negative electrode illustrated in FIGURE 

V- 1 are described by an equivalent electrical circuit (FIGURE V- 2). 𝑅𝑠𝑒𝑖, 𝑅𝑡𝑐 and 𝑅𝑝 are the electrical 

resistances related to the SEI layer, charge transfer, and parasitic reaction of cyclable lithium-

ions consumption, respectively. 

𝐼𝑝𝑜𝑠  and 𝐼𝑛𝑒𝑔 are the electrical currents flowing through the positive and negative electrodes. 

𝐼 is the total electrical current flowing through the cell and 𝐼𝑝 the parasitic electrical current 

due to SEI growth. As illustrated in FIGURE V- 2:  

𝐼 + 𝐼𝑛𝑒𝑔 = 𝐼𝑝 ⇒ 𝐼𝑛𝑒𝑔 = 𝐼𝑝 − 𝐼 (5.21) 

 
𝐼𝑝𝑜𝑠 = 𝐼 

(5.22) 

 

Figure V- 2: Electrical equivalent circuit of the SEI and negative electrode system. 

The electrical current 𝐼𝑛𝑒𝑔 and 𝐼𝑝𝑜𝑠  can be related to the electrode’s lithium contents 𝛩𝑛𝑒𝑔 

and 𝛩𝑝𝑜𝑠: 

𝐼𝑝𝑜𝑠 = −𝐶𝑝𝑜𝑠
𝑑𝛩𝑝𝑜𝑠

𝑑𝑡
  (5.23) 

 

𝐼𝑛𝑒𝑔 = −𝐶𝑛𝑒𝑔

𝑑𝛩𝑛𝑒𝑔

𝑑𝑡
 

 

(5.24) 
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where 𝛩𝑛𝑒𝑔 and 𝛩𝑝𝑜𝑠 are the actual lithium contents corresponding to the amount of lithium 

inside the electrodes at the cell storage SOC (%). During the battery charge (𝐼 > 0), the 

electrical currents 𝐼𝑝𝑜𝑠 and 𝐼𝑛𝑒𝑔 are respectively positive and negative because the positive 

electrode is delithiated (decrease of 𝛩𝑝𝑜𝑠) while the negative electrode is lithiated (an increase 

of 𝛩𝑛𝑒𝑔).  

The minimum and maximum lithium content (𝛩𝑝𝑜𝑠𝑚𝑖𝑛 , 𝛩𝑝𝑜𝑠𝑚𝑎𝑥 , 𝛩𝑛𝑒𝑔𝑚𝑖𝑛
, 𝛩𝑛𝑒𝑔𝑚𝑎𝑥 ) at a given 

aging state can be simulated using (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔, 𝑂𝐹𝑆) via the dual-tank OCV model (chapter 4, 

§. IV.1.1). Knowing the cell storage SOC (%), the actual lithium contents 𝜣𝒏𝒆𝒈 and  𝜣𝒑𝒐𝒔  can 

be calculated by:  

 𝜣𝒏𝒆𝒈 = 𝛩𝑛𝑒𝑔
𝑚𝑖𝑛

+ (𝛩𝑛𝑒𝑔
𝑚𝑎𝑥

 − 𝛩𝑛𝑒𝑔
𝑚𝑖𝑛

 )𝑆𝑂𝐶(%) (5.25) 

 

 𝜣𝒑𝒐𝒔 = 𝛩𝑝𝑜𝑠𝑚𝑎𝑥
− (𝛩𝑝𝑜𝑠

𝑚𝑎𝑥
 − 𝛩𝑝𝑜𝑠

𝑚𝑖𝑛
 )𝑆𝑂𝐶(%) (5.26) 

 

As shown in Figure V- 2 , the parasitic current 𝐼𝑝 is driven by the 𝜂𝑝 and thus by 𝑉𝑛𝑒𝑔. Therefore, 

having access to the negative potential at the graphite/SEI interface is essential to know more 

about parasitic reactions inside the battery. For this reason, using a dual-tank OCV model is 

relevant to study the SEI growth as it allows using the graphite potential. 

 

V.2. Physics-based aging model 
In this chapter, a physics-based aging model for the offset parameter (𝑂𝐹𝑆) is developed. It is 

based on the SEI growth model to consider the influence of loss of lithium inventory during 

calendar aging. The loss of active mass induced by the degradation of the electrodes is still 

considered considering an empirical approach. The same empirical aging laws developed in 

chapter 4 (§. IV.2.1) are considered. 

 

V.2.1. 𝑂𝐹𝑆 aging law 
The electrode potential signals (𝑉𝑝𝑜𝑠,𝑉𝑛𝑒𝑔) at a given state of aging are shown in FIGURE V- 3. The 

terms identified as “(1 − 𝛩𝑝𝑜𝑠)𝐶𝑝𝑜𝑠” and “𝛩𝑛𝑒𝑔𝐶𝑛𝑒𝑔” represent respectively the non-lithiated 

and lithiated capacity of the positive and negative electrode respectively at the cell storage 

SOC(%).  

From this description, the offset parameter is linked to the positive and negative electrode 

capacities as well as the lithium content (𝜣𝒏𝒆𝒈, 𝛩𝑝𝑜𝑠): 

𝑂𝐹𝑆 = (1 − 𝛩𝑝𝑜𝑠)𝐶𝑝𝑜𝑠 − 𝛩𝑛𝑒𝑔𝐶𝑛𝑒𝑔 (5.27) 
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Figure V- 3: Positive and negative electrode potentials at a given state of charge and aging state. 

 

To define the OFS aging law, the derivative of Eq. (5.27) is calculated: 

𝑑𝑂𝐹𝑆

𝑑𝑡
= − (𝛩𝑛𝑒𝑔 

𝑑𝐶𝑛𝑒𝑔

𝑑𝑡
+ 𝐶𝑛𝑒𝑔

𝑑𝛩𝑛𝑒𝑔

𝑑𝑡
) + [(1 − 𝛩𝑝𝑜𝑠 )

𝑑𝐶𝑝𝑜𝑠

𝑑𝑡
− 𝐶𝑝𝑜𝑠

𝑑𝛩𝑝𝑜𝑠

𝑑𝑡
] 

(5.28) 

 

Introducing the current 𝐼𝑛𝑒𝑔 and 𝐼𝑝𝑜𝑠 via Eq.(5.23) and Eq.(5.24), the offset aging law 
𝑑𝑂𝐹𝑆

𝑑𝑡
 in 

Eq.(5.28) can be rewritten as follows:  

𝑑𝑂𝐹𝑆

𝑑𝑡
= − (𝛩𝑛𝑒𝑔 

𝑑𝐶𝑛𝑒𝑔

𝑑𝑡
− 𝐼𝑛𝑒𝑔) + [(1 − 𝛩𝑝𝑜𝑠 )

𝑑𝐶𝑝𝑜𝑠

𝑑𝑡
+  𝐼𝑝𝑜𝑠] 

(5.29) 

 

Considering Eqs. (5.21) and (5.22), the aging law 
𝑑𝑂𝐹𝑆

𝑑𝑡
 becomes:  

𝑑𝑂𝐹𝑆

𝑑𝑡
= − (𝛩𝑛𝑒𝑔

𝑑𝐶𝑛𝑒𝑔

𝑑𝑡
− (𝐼𝑝 − 𝐼)) + [(1 − 𝛩𝑝𝑜𝑠 )

𝑑𝐶𝑝𝑜𝑠

𝑑𝑡
+ 𝐼]  

(5.30) 

 

After simplifying:  

𝑑𝑂𝐹𝑆

𝑑𝑡
 = 𝐼𝑝 −  𝛩𝑛𝑒𝑔 

𝑑𝐶𝑛𝑒𝑔

𝑑𝑡
+ (1 − 𝛩𝑝𝑜𝑠 )

𝑑𝐶𝑝𝑜𝑠

𝑑𝑡
 

(5.31) 
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V.2.2. Influence of degradation modes on the offset aging 
This section details the evolution of the offset parameter between two aging states ‘i’ and 

‘i+1’. Three cases are considered where the cell experiences separately 𝐿𝐿𝐼 , 𝐿𝐴𝑀𝑝𝑜𝑠 and 

𝐿𝐴𝑀𝑛𝑒𝑔 aging mechanisms.  

 

V.2.2.1. Influence of 𝐿𝐿𝐼 on the offset parameter 

The loss of lithium inventory ( 𝐿𝐿𝐼 ) is a shift of the negative electrode potential signal to the 

left as shown in FIGURE V- 4(b). In calendar aging, the SEI formation leads to a decrease of the 

actual lithium content from 𝛩𝑛𝑒𝑔𝑖
 to 𝛩𝑛𝑒𝑔𝑖+1

 due to the lithium consumption at the 

SEI/Graphite interface. As the battery current, I is equal to zero, the actual lithium content at 

aging state ‘i’ for the positive electrode (𝛩𝑝𝑜𝑠𝑖
) remains the same at the aging state ‘i+1’. As 

there is no loss of active mass either on the negative or positive electrode in the simulation 

illustrated in FIGURE V- 4(a), both electrode capacities remain constant between the aging state ‘i’ 

and ‘i+1’. 

 

 

Figure V- 4: Influence of LLI on the offset aging. 
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In this aging conditions, the Eq. (5.31) simplifies as:  

𝑑𝑂𝐹𝑆

𝑑𝑡
 = 𝐼𝑝 

(5.32) 

 

Considering Eqs. (5.21) and (5.22): 

𝑑𝑂𝐹𝑆

𝑑𝑡
 = 𝐼𝑛𝑒𝑔 − 𝐼 = 𝐼𝑛𝑒𝑔 − 𝐼𝑝𝑜𝑠 

(5.33) 

 

As Eqs. (5.23) and (5.24) relate 𝐼𝑝𝑜𝑠 and 𝐼𝑛𝑒𝑔 to the actual lithium content 𝛩𝑛𝑒𝑔 and 𝛩𝑝𝑜𝑠, 
𝑑𝑂𝐹𝑆

𝑑𝑡
 

can be rewritten:  

𝑑𝑂𝐹𝑆

𝑑𝑡
 = −𝐶𝑛𝑒𝑔

𝑑𝛩𝑛𝑒𝑔

𝑑𝑡
+ 𝐶𝑛𝑒𝑔

𝑑𝛩𝑝𝑜𝑠

𝑑𝑡
 

(5.34) 

 

It is worth noting that the actual positive lithium content does not change with aging in this 

case, therefore, the derivative 
𝑑𝛩𝑝𝑜𝑠

𝑑𝑡
 is equal to zero and Eq. (5.34) simplifies:  

𝑑𝑂𝐹𝑆

𝑑𝑡
 = −𝐶𝑛𝑒𝑔

𝑑𝛩𝑛𝑒𝑔

𝑑𝑡
 

(5.35) 

 

The discretization of Eq. 5.35 between the aging states ‘i’ and ‘i+1’, considering that the 

capacity 𝐶𝑛𝑒𝑔 is constant (equal to 𝐶𝑛𝑒𝑔𝑖
 ) gives: 

𝑂𝐹𝑆𝑖+1 = 𝑂𝐹𝑆𝑖 + (𝛩𝑛𝑒𝑔𝑖
−𝛩𝑛𝑒𝑔𝑖+1

) ∗ 𝐶𝑛𝑒𝑔𝑖
= 𝑂𝐹𝑆𝑖 + ∆𝐿𝐿𝐼 (5.36) 

 

In this first case, the offset aging is directly related to the increase of the cumulative loss of 

lithium inventory ∆𝐿𝐿𝐼, represented as the loss of lithium-ions during the insertion on the 

negative electrode. 

V.2.2.2. Influence of the loss of active mass 𝐿𝐴𝑀𝑝𝑜𝑠 on the offset parameter 

The loss of active mass on the positive electrode corresponds to a shrinkage of the positive 

electrode potential signal as illustrated in FIGURE V- 5(a). This shrinkage is realized around the 

positive actual lithium content (FIGURE V- 5(b)) which does not change with aging. There is no loss 

of active mass on the negative electrode or 𝐿𝐿𝐼 in the simulation illustrated in FIGURE V- 5(a). 
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Figure V- 5: Influence of 𝐿𝐴𝑀𝑝𝑜𝑠 on the offset aging. 

  

Using equation (5.31), the offset aging rate can be then expressed by:  

𝑑𝑂𝐹𝑆

𝑑𝑡
 = (1 − 𝛩𝑝𝑜𝑠 )

𝑑𝐶𝑝𝑜𝑠

𝑑𝑡
 

(5.37) 

 

As the actual positive lithium content does not evolve: 

𝛩𝑝𝑜𝑠 = 𝛩𝑝𝑜𝑠𝑖
 (5.38) 

 

The discretization of Eq. (5.37) between the states ‘i’ and ‘i+1’ is given by:  

𝑂𝐹𝑆𝑖+1 = 𝑂𝐹𝑆𝑖 − (1 − 𝛩𝑝𝑜𝑠𝑖
)(𝐶𝑝𝑜𝑠𝑖 − 𝐶𝑝𝑜𝑠𝑖+1 ) (5.39) 

 

In this second case, the offset change is directly related to the loss of non-lithiated active mass 

on the positive electrode, which decreases the offset parameter during aging. 

 

V.2.2.3. Influence of the loss of active mass 𝐿𝐴𝑀𝑛𝑒𝑔 on the offset parameter 

As shown in FIGURE V- 6(a), the loss of active mass on the negative electrode corresponds to a 

shrinkage of the negative electrode signal around the negative lithium content 𝛩𝑛𝑒𝑔. There is 

no loss of active mass on the positive electrode or 𝐿𝐿𝐼 in the simulation illustrated FIGURE V- 6(a). 
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Figure V- 6: Influence of the LAM_neg on the offset aging 

Using equation (5.31), the offset aging rate can then be expressed by:  

𝑑𝑂𝐹𝑆

𝑑𝑡
 = −𝛩𝑛𝑒𝑔 

𝑑𝐶𝑛𝑒𝑔

𝑑𝑡
 

(5.40) 

 

As the actual lithium content 𝛩𝑛𝑒𝑔 does not change with aging:  

𝛩𝑛𝑒𝑔 = 𝛩𝑛𝑒𝑔𝑖
 (5.41) 

 

The discretization of Eq. (5.40) between the aging states ‘i’ and ‘i+1’ gives:  

𝑂𝐹𝑆𝑖+1 = 𝑂𝐹𝑆𝑖 + 𝛩𝑛𝑒𝑔𝑖
∗ (𝐶𝑛𝑒𝑔𝑖

− 𝐶𝑛𝑒𝑔𝑖+1
) 

 
In this third case, the offset change is directly related to the loss of lithiated active 
mass on the negative electrode, which increases the offset parameter during aging. 

(5.42) 

 

V.2.3. Identification of the parameters of the physics-based aging model 
The identification process is performed on the OFS parameter using the offset aging law 

described in Eq. (5.31). In this latter equation, the parasitic current  𝐼𝑝 is given by Eq. (5.20). 

The influence of the temperature and SOC on the parasitic current is introduced below:  

𝐼𝑝 =
𝑎0 (𝑇) ∗ 𝑒𝑥𝑝 (−

𝑎1

𝑇 (𝐸𝑔𝑟
0 (𝑆𝑂𝐶) − 𝑎3)) ]

1 + 𝑎2 (𝑇)𝑒𝑥𝑝 (−
𝑎1

𝑇 (𝐸𝑔𝑟
0 (𝑆𝑂𝐶) − 𝑎3)).  𝛿𝑆𝐸𝐼

 
(5.43) 

 

where parameters 𝑎0 , 𝑎2 depend on the temperature and 𝑎1, 𝑎3 and 𝑎4 are some constant 

parameters. 𝐸𝑔𝑟
0 , the equilibrium potential depends on the cell storage SOC and thus the 

actual negative lithium content  𝛩𝑛𝑒𝑔 by using Eq. (5.25):  
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𝑎0 (𝑇) = 𝑆 𝐹 𝑘𝑠𝑒𝑖 (𝑇)𝑐𝑥
0 (5.44) 

 

𝑎1 =
𝛼𝑐𝐹

𝑅
 

(5.45) 

 

𝑎2 (𝑇) =
𝑘𝑠𝑒𝑖(𝑇)

𝑛 𝐷𝑥(𝑇)
 

(5.46) 

 

𝑎3 = 𝐸𝑠𝑒𝑖
0  

(5.47) 

 

Introducing Eqs. (5.14) and (5.19), the SEI growth model (Eq. (5.7)) gives the SEI thickness as 

a function of the parasitic current: 

𝜕𝛿𝑆𝐸𝐼

𝜕𝑡
=

𝑀𝑠𝑒𝑖

𝜌𝑠𝑒𝑖 𝐹 𝑆
 𝐼𝑝 = 𝑎4 ∗ 𝐼𝑝 

(5.48) 

 

V.2.3.1. Identification method and results 

As mentioned in §. 3.1.1, the dual-tank aging model for the positive and negative electrode 

capacities has already been set up in chapter 4 (§. IV.2.2). In this section only the parameters 

(𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4) of 𝐼𝑝 aging law (Eq.(5.43) and the SEI growth Eq.(5.48)) are identified in the 

offset aging law (Eq.(5.31)). This identification is performed by the optimization process as 

already explained in chapter 4 (§. IV.2.2). 

The parameters 𝑎0(𝑇) and 𝑎2(𝑇) are identified at 4 breakpoints of temperature namely 0°C, 
25°C, 45°C, and 60°C. Their values between the breakpoints of temperature are calculated 
using linear interpolation.  

The identification results are summed up in Table V- 1 below:  

Parameter Unit OFS 

Initial value 𝑶𝑭𝑺𝒊𝒏𝒊𝒕 Ah 2.3 

𝒂𝟎(𝑻 = 𝟎°𝑪) 𝐴 1e-10 

𝒂𝟎(𝑻 = 𝟐𝟓°𝑪) 𝐴 9e-9 

𝒂𝟎(𝑻 = 𝟒𝟓°𝑪) 𝐴 2e-8 

𝒂𝟎(𝑻 = 𝟔𝟎°𝑪) 𝐴 5e-8 

𝒂𝟏 𝐶. 𝐽−1. 𝐾 151 

𝒂𝟐(𝑻 = 𝟎°𝑪) 𝑚𝑜𝑙−1. 𝑚−1 9e-5 

𝒂𝟐(𝑻 = 𝟐𝟓°𝑪) 𝑚𝑜𝑙−1. 𝑚−1 1e-5 

𝒂𝟐(𝑻 = 𝟒𝟓°𝑪) 𝑚𝑜𝑙−1. 𝑚−1 4.08 

𝒂𝟐(𝑻 = 𝟔𝟎°𝑪) 𝑚𝑜𝑙−1. 𝑚−1 5.17 

𝒂𝟑 𝑉 0.95 

𝒂𝟒 𝐶. 𝑚𝑚 1.6e-7 

TABLE V- 1: 𝑰𝒑 AND SEI GROWTH AGING MODEL PARAMETERS IDENTIFICATION. 

The parameters 𝑎0 and 𝑎2 increase with temperature as illustrated in FIGURE V- 7. In fact, the 

parasitic current is higher at high temperature as more lithium are consumed on the 

graphite/SEI interface.  
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Figure V- 7: Evolution of aging parameters a0 and a2 with temperature. 

The evolution of the offset with storage time is shown in FIGURE V- 8. The initial value identified 

for the offset is 2.3Ah. The simulated offset is not so far from the offset data identified (in 

chapter 4, §. IV.1.2.2.3 ) especially at 0°C,25°C and 45°C with a maximum error of up to 20%. 

The results are worst at temperature 60°C and SOC 80%, where the identified offset 

parameter (chapter 4, §. IV.1.2.2.3) does not follow a √𝑡 trend. In general, the identification 

has not been improved at temperatures 45°C (SOC 0% and 30%) and 60°C (SOC 80%). This can 

be a hint that all physical reactions at the SEI/electrolyte interface have not been considered. 
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Figure V- 8: Calendar aging identification of the offset (OFS) parameter. 
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V.2.3.2. SEI thickness growth  

The identification of the parameters 𝑎𝑖 allows simulating the SEI thickness growth (Eq. (5.48)) 

as a function of the calendar aging condition. The results are shown in Figure V- 9. The initial 

thickness is not the same for some calendar aging conditions as the cells were not stored at 

the same temperature and SOC conditions before starting the calendar aging campaign (see 

chapter 2, §. II.3).  

The SEI growth at 0°C is not noticeable whatever the SOC. 

At an ambient temperature of 25°C, the rate of SEI growth is like the trend at 0°C with an 

increase of approximately 30% from its initial value to reach ≈ 400nm in less than 2 years of 

storage. This result is physically feasible since the SEI thickness in the literature reaches 

approximately a few hundred nanometers [85]. 

At higher temperatures, the SEI growth accelerates: 

- At 45°C, the SEI thickness increases fast especially at high SOC (65% to 100%). 

- At 60°C, the SEI growth is the highest at SOC 65% and 100% which are the most damaging 

conditions for the cell capacity fade.  

 

In general, the evolution of the SEI thickness growth is mainly linear which means that the SEI 

growth is not limited yet by solvent diffusion.  

 

Figure V- 9: SEI thickness growth on calendar aging. 
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V.2.4. Aging evolution of the parameters of the physics-based aging model  
The physics-based aging model is used to simulate the calendar condition at temperature 45°C 

and SOC 65%, adding some elements to the reference case study in chapter 4 (§. IV.3.1). 

The §V.2.4.1 follows the electrode potential signals (𝑉𝑝𝑜𝑠,𝑉𝑛𝑒𝑔) while the §V.2.4.2 depicts the 

evolution of the actual lithium contents (𝛩𝑛𝑒𝑔, 𝛩𝑝𝑜𝑠) along with aging, when the battery is 

stored at different initial SOCs.  

V.2.4.1. Evolution of the electrode potential signals with aging 

The evolution of the electrode potential signals, at beginning-of-life and after 700 days of 

storage, for a calendar condition at (T= 45°C, SOC=65%), is shown in FIGURE V- 10. The dashed 

lines correspond to a simulation at BOL (state 1) while the solid lines correspond to a 

simulation after 700 days of storage (state 2). 

As shown in FIGURE V- 10, at SOC 65%, the actual negative potential increases along with aging 

from 𝑉𝑛𝑒𝑔Ɵ1
 to 𝑉𝑛𝑒𝑔Ɵ2

 .  

On the positive electrode, the positive signal is shrunk around the actual SOC at 65%. Thus, 

the actual positive potential remains steady (𝑉𝑝𝑜𝑠Ɵ1 = 𝑉𝑝𝑜𝑠Ɵ2
). 

 

Figure V- 10: Evolution of the electrode potential signals after 700 days of pure calendar aging. 
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Storing the battery at different SOCs at BOL (initial SOC), the physics-based aging is used to 

simulate the evolution of the actual lithium contents (𝛩𝑛𝑒𝑔, 𝛩𝑝𝑜𝑠) along with aging, as 

illustrated in Figure V- 11. The actual electrode potentials 𝑉𝑛𝑒𝑔Ɵ
 increases along with aging 

but 𝑉𝑝𝑜𝑠Ɵ
 stays unchanged, as shown in FIGURE V- 10. Therefore, the actual lithium content on the 

negative electrode continuously decreases along with aging while it remains the same on the 

positive electrode through the whole simulation, as illustrated in Figure V- 11. In addition, the 

simulation also shows that the actual content in the negative electrode decreases 

progressively when the initial storage SOC of the battery escalates from 40% to 100%. 

 

 

Figure V- 11: Evolution of the actual electrode lithium contents in the positive and negative electrode, starting from 
different initial SOC s (from 40% to 100%). 
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V.2.4.2. Evolution of the cell voltage and capacity with aging 
 

As shown in Figure V- 12, the cell voltage decreases along with aging due to the evolution of the 

electrode potential signals previously depicted in Figure V- 10. This trend is particularly 

accentuated with the initial storage SOC increases from 40% to 100%. As a result, the 

simulation in Figure V- 12 shows that the cell capacity of the Li-ion battery increasingly falls at 

higher SOC.  

 

Figure V- 12: Evolution of the cell voltage and capacity with aging, starting from different initial SOC s (from 40% to 
100%). 
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V.2.5. Validation of the physics-based aging model and comparison with the 

one-tank aging model  
The same method described in chapter 4 (§. IV.2.3) is used to validate the physics-based aging 

model. The aging conditions used in chapter 4 (§. IV.2.3) for the aging model validation are 

simulated in this chapter: the variable SOC condition at 45°C and the thermal cycling condition 

at SOC 65% and SOC 100%. The validation of the physics-based aging model presented in FIGURE 

V- 13 shows a very good match between the experimental data and simulated ones for variable 

SOC condition (maximum error of 0.6%) and thermal cycling SOC 100% (maximum error of 

1.4%). The thermal cycling prediction at SOC 65% is less good between 200 days and 600 days 

of storage (maximum error of 12%). 

The validation results for the one-tank aging model are presented as well in FIGURE V- 13. It can 

be noticed that the overall error between experimental and simulated values decreases when 

using a physic-based aging model. By considering the influence of SEI thickness growth and 

loss of active mass on the offset parameter, the prognosis with the physic-based aging model 

has been improved compared to the one-tank aging model.  
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FIGURE V- 13: VALIDATION OF THE PHYSICS-BASED AGING MODEL (COMPARISON WITH ONE TANK-AGING MODEL). 
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Conclusion:  
The dual-tank aging model developed in chapter 4 showed satisfactory results for the SOH 

prediction on production lithium-ion batteries. In this chapter, this former dual-tank aging 

model was modified to add a physical approach to the one depicted in chapter 4 for the SOH 

prognosis. This physics-based aging model accounts for the lithium ions consumption due to 

the SEI growth. The lithium-ions consumption is related to the SEI formation/growth at the 

interface graphite/SEI and is represented by a parasitic current 𝑖𝑝 given by a Tafel’s law. This 

latter is used to express the SEI growth along with aging. The aging models for the electrode 

capacity loss had already been described in chapter 4 (§. IV.2.1). 

The identification process of the physics-based aging model showed that the simulated offset 
parameter matches the data identified in chapter 4 (§. IV.1.2.2.3). The maximum error was 
approximatively 20% and the results have not been improved at temperatures 45°C (SOC 0% 
and 30%) and 60°C (SOC 80%). 
The physics-based aging model for the OFS parameter allowed to follow the evolution of the 
SEI thickness growth on the graphite/SEI interface depending on the calendar aging 
conditions. The growth of SEI thickness was barely noticeable at low temperature (0°C and 
25°C) but increased fast at higher temperature 45°C and 60°C especially for the SOC ranging 
from 65% and 100%. The SEI thickness had a linear evolution through aging, showing that the 
SEI growth is not limited by the solvent diffusion yet. 
The study showed as well that the evolution of the parameters of the dual-tank OCV model 
led to the reduction of the lithium content in the negative electrode while the positive lithium 
content did not change. In addition, the evolution of the electrode potential signals led to the 
reduction of the cell voltage (and capacity) above all when the initial storage SOC of the 
battery increased from 40% to 100%. 
 

Finally, the validation of the physics-based aging model showed very good results for two 

calendar aging conditions (variable SOC between 30% and 80% and thermal cycling at SOC 

100%) with a maximum error of 0.6% and 1.4% respectively. The results were less good for 

the thermal cycling at SOC 65% with a maximum error of 12%. Nevertheless, the SOH 

prognosis of the production cell was slightly improved compared to the one-tank aging model. 

This improvement could be explained by the dissociation of the three contributions on the 

offset aging (loss of lithium inventory and loss of active mass on the electrodes).  
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GENERAL CONCLUSION AND PERSPECTIVES 

VI.1. General conclusion 
 

The main objectives of this Ph.D. thesis work were to develop new approaches for the 

prognosis of lithium-ion batteries state-of-health (SOH) while considering the influence of the 

operating conditions applied to the battery. This study was based on semi-empirical and 

physics-based models and aimed at predicting more accurately the Open-Circuit Voltage as 

well as the capacity changes of a production Li-ion battery.  

Based on the state-of-art of the aging of Li-ion batteries, several degradation modes have been 

listed leading to a loss of performance of the battery. Based on this literature review, the one-

tank aging model and especially the dual-tank aging model has been identified as a reliable 

tool for the prognosis of the battery SOH.  

For this Ph.D. thesis work, experimental results from the MOBICUS project, a French national 

project were used. The aim of this latter project was to develop a semi-empirical aging model 

for the prognosis of the battery state-of-health. The experimental results of the aging 

campaign gave the evolution of the cell capacity for various calendar and cycling aging 

conditions. 

A comparison between the aging model developed during the MOBICUS project and the one-

tank aging model, a prognosis model based on the cell capacity, developed during this Ph.D. 

thesis work, was done. The results showed that the developed one-tank aging model was 

enhanced compared to the aging model developed during the MOBICUS project by the CEA 

team. The one-tank aging model was able to consider more precisely the influence of the SOC 

on the capacity aging, especially at high temperature (60°C) and for SOC below 50%.  

To overcome the issue faced with this first approach, the development of the dual-tank aging 

model was performed. This aging model predicted the evolution of the cell capacity using a 

dual-tank OCV model and considering the operating conditions applied to the battery during 

calendar aging. Three parameters are used to define the dual-tank OCV model: the positive 

electrode capacity (𝐶𝑝𝑜𝑠), the negative electrode capacity (𝐶𝑛𝑒𝑔) and the offset between the 

electrode potential signals (𝑂𝐹𝑆). The dual-tank aging model is based on a prognosis of these 

three variables (considered as an independent) for the capacity change. The identification 

results for the positive electrode (𝐶𝑝𝑜𝑠) and the negative electrode (𝐶𝑛𝑒𝑔) aging models agreed 

with the experimental ones with a maximum error of respectively 2% and 4%. The maximum 

error is higher for the offset parameter with a value of 20%. Following the identification 

process, the dual-tank aging model was validated using calendar conditions at variable SOC 

and thermal cycling at SOC 100%. The maximum error was below 4% between the 

experimental and simulated cell capacity. Finally, the dual-tank aging model was used to 

simulate the evolution of the electrode potential signals, parameters of the dual-tank OCV 

model (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔, 𝑂𝐹𝑆) along with aging. A sensitivity analysis was performed and showed 

that the aging of (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔, 𝑂𝐹𝑆) affected the evolution of the maximum and minimum 

lithium contents of both electrodes (𝛩𝑝𝑜𝑠𝑚𝑎𝑥
, 𝛩𝑛𝑒𝑔𝑚𝑎𝑥

, 𝛩𝑝𝑜𝑠𝑚𝑖𝑛
, 𝛩𝑛𝑒𝑔𝑚𝑖𝑛

).  
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Finally, the development of a physics-based aging model for the 𝑂𝐹𝑆 parameter was 
proposed. This physics-based aging model was related to the SEI growth on the graphite 
electrode introducing a parasitic current 𝑖𝑝, given by Tafel’s law and considering the solvent 

diffusion and lithium consumption. The physics-based aging model for the OFS parameter 
allowed to follow the evolution of the SEI thickness and confirmed that the SEI thickness 
increases with temperature. The main advantage of the physics-based model was its capability 
of dissociating the contribution of the degradation modes (𝐿𝐿𝐼, 𝐿𝐴𝑀𝑛𝑒𝑔, 𝐿𝐴𝑀𝑝𝑜𝑠) depicted in 

the literature on the evolution of the 𝑂𝐹𝑆. In fact, the empirical dual-tank aging model 
developed in the Ph.D. thesis was only able to simulate separately the evolution of 𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔, 

𝑂𝐹𝑆. With this latter approach, the physics-based aging model was able to analyze the 
influence of the degradation routes of 𝐶𝑝𝑜𝑠 and 𝐶𝑛𝑒𝑔 and the contribution of loss of lithium 

inventory on the 𝑂𝐹𝑆 parameter. The simulations showed that the lithium loss inventory and 
lithiated loss of active mass on the negative electrode increase the 𝑂𝐹𝑆 while the loss of active 
mass on the positive electrode decreases the 𝑂𝐹𝑆 parameter.  
 

VI.2. Perspectives 

VI.2.1. Dual-tank OCV model: hysteresis effect and validation of the 

identification process 
The dual-tank OCV model presented in chapter 4 (§. IV.1.1) did not consider the hysteresis 

effect highlighted in the literature[86]. The voltage signals at C/10 used for the identification 

of the parameters (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔, 𝑂𝐹𝑆) were considered as OCV signals by averaging the 

measured charge and discharge curves. The dual-tank OCV model was only parametrized with 

three parameters (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔, 𝑂𝐹𝑆) but some authors in the literature have developed a dual-

tank OCV model and considered another term identified as the battery overpotential [65]. 

Additional measurements of Open-Circuit Voltage data measured either by GITT method or 

voltages measurements at lower C-rates (≤ 𝐶/10) should also be performed for the 

identification of (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔) at different aging states. The positive and negative electrodes at 

these aging states should as well be experimentally measured by coin cells made via the 

harvested electrodes at the different aging states. This way, the identification process of the 

parameters of the positive and negative electrodes (𝐶𝑝𝑜𝑠, 𝐶𝑛𝑒𝑔) could be validated depending 

on the method used for measuring the OCV. The influence of the C-rate identification process 

could be verified as well. Possibly for some C-rates, defining an overpotential term in the dual-

tank OCV model would be unnecessary.  

VI.2.2. Dual-tank aging model: Effect of temperature and state-of-charge  
The dual-tank aging model developed in chapter 4 (§. IV.2) considers the influence of the 

coupling effect of the temperature and state-of-charge with an activation energy 𝐸𝑎(𝑆𝑂𝐶) 

depending on the state-of-charge. Some hypotheses were made to calibrate the activation 

energy 𝐸𝑎(𝑆𝑂𝐶) for some state-of-charges due to lack of experimental data especially at SOC 

0% and SOC 65%. Additional aging tests could improve the identification process and the 

prognosis of the battery capacity fade. 
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VI.2.3. Physics-based aging model: modeling of the active mass loss on the 

electrodes 
In this Ph.D. thesis work, a physics-based aging model of the offset parameter was modeled 

via the SEI growth model. It would be interesting to develop a physics-based aging model 

accounting for the active mass on the positive and negative electrodes as there are few models 

presented in the literature [51].  

VI.2.4. Physics-based aging model: Introduction of other mechanisms for the SEI 
The results in in chapter 5 (§. V.2.3.1) show that the physics-based aging model failed to 

correctly predict the evolution of the offset parameter at 45°C (at SOC 0% & 30%) and 60°C 

(at SOC 80%). The reactions at graphite/SEI interface considered for this Ph.D. work might 

not be fully sufficient to model to OFS aging. Other’s mechanisms such as the SEI breakage at 

the SEI/electrolyte side might be interesting to add in this study. This is relevant especially 

using LMO type because of the Manganese dissolution which can contaminate the anode 

side.  
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