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Abstract 

Defects in copper (Cu) homeostasis have been linked to Alzheimer’s disease (AD) and Cancer. In 

AD, Cu has been found to bind to Aβ-peptides in extracellular amyloid-plaques, and it has been 

proposed to impact the peptide aggregation process and mediate the production of reactive oxygen 

species (ROS). Increased Cu levels have also been implicated in tumor growth. This has led to the 

development of Cu-based therapeutics. Particularly, the use of pro-oxidant Cu-complexes, that can 

be harnessed to induce oxidative stress, appears to be a promising strategy in cancer. On the other 

hand, in AD, redox silencing chelators are warranted. In a biological environment, the kinetic and 

thermodynamic stability of a Cu-complex against physiological competitors, is a key aspect to 

consider. In particular, the role of Cu-binding and/or reducing biomolecules (including 

metallothioneins, gluathione, cystein and ascorbate) is of pivotal importance. Within this context, 

this thesis aims to investigate the impact of these molecules on the reactivity (redox-activity and 

stability) of several medicinal Cu-complexes. The studies carried out show that these molecules 

are key players for the fate of a Cu-complex, as they could lead to reactions of dissociation and 

transmetallation, abolishing also the Cu-dependent ROS production.   

Key words: Copper, Metallothioneins, Thiols, Amyloid-β, Cu-based drug, redox-activity, 

Alzheimer’s disease, Cancer, Spectroscopy.  

Les dérèglements dans l'homéostasie du cuivre (Cu) ont été liés à la maladie d'Alzheimer et au 

cancer. Dans la maladie d'Alzheimer, il a été découvert que Cu se lie au peptide Aβ dans les 

plaques amyloïdes extracellulaires, ce qui a un impact sur le processus d'agrégation du peptide et 

sur la production d'espèces oxygénées réactives (ROS). L'augmentation de la présence de Cu a 

également été impliquée dans la croissance tumorale. Ceci a conduit au développement de 

thérapies à base de Cu. En particulier, l'utilisation de complexes de Cu pro-oxydants, qui peuvent 

être exploités pour induire un stress oxydant, semble être une stratégie prometteuse. A l’inverse, 

dans la maladie d'Alzheimer, des chélateurs qui bloquent l’activité redox du Cu sont nécessaires. 

Dans le cadre d’un environnement biologique, la stabilité cinétique et thermodynamique d’un 

complex de Cu par rapport à ses concurrents physiologiques, est un aspect essentiel à prendre en 

compte. En particulier, le rôle des biomolécules liant le Cu et/ou réductrices de Cu (telles que les 

métallothioneines, le gluathion, la cystéine et l’ascorbate) est d’ une importance capitale. Dans ce 

contexte, cette thèse vise à étudier l’ impact  de ces molécules sur la réactivité (activité redox/ 

stabilité) de plusieurs complexes de Cu médicinaux. Les études réalisées montrent que ces 

molécules sont des acteurs essentiels du devenir d'un complex de Cu, car elles peuvent conduire à 

des réactions de dissociation et transmétallation, supprimant ainsi la production de ROS 

dépendantes du Cu. 

Mots-clés: Cuivre, Métallothionéines, Thiols, Amyloïde-β, Médicament à base de Cu, Activité 

rédox, Maladie d’Alzheimer, Cancer, Spectroscopie. 
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Summary of the thesis in French 

Le Cu, ainsi que le Zn, le Fe, le Mn, le Co et le Mo, est reconnu comme un micro-élément 

essentiel pour l’homme, même si la teneur totale dans le corps est plutôt faible, c'est-à-dire de 

l’ordre de 100 mg pour un adulte de 70 kg. Le Cu est un cofacteur catalytique indispensable, qui 

pilote un large éventail de processus biochimiques essentiels, nécessaires à la vie. Sa configuration 

électronique lui confère une grande capacité à accepter et à donner des électrons, en alternant entre 

les états rédox de Cu(I) ([Ar] 4s0, 3d10) et de Cu(II) ([Ar] 4s0, 3d9). Cette propriété redox convient 

au transfert d'électrons lors de réactions enzymatiques, mais elle permet également la production 

d'espèces oxygénées réactives (ROS) en présence d'un agent réducteur et O2.  

Pour cette raison, le fonctionnement physiologique de nos cellules nécessite un système 

métabolique très bien orchestré pour maintenir le niveau de Cu étroitement régulé. Le Cu sous 

forme hydraté n'existe pas à l'intérieur et à l'extérieur des cellules et un réseau de petites 

molécules/protéines a évolué pour l’apporter aux différentes enzymes dépendantes du Cu. 

L’incapacité du corps à contrôler l’homéostasie en Cu est directement responsable de deux 

troubles génétiques humains (à savoir les maladies de Wilson et de Menkes), mais elle est 

également liée à la maladie d’Alzheimer et à la progression du cancer. Chez les patients atteints 

de la maladie d'Alzheimer, il s'est avéré que le Cu était lié aux peptides β-Amyloïde (les plus 

abondants identifiés à ce jour: Aβ1-40/42, Aβ4-42) qui s'accumulent dans des plaques amyloïdes 

extracellulaires. Le Cu influe sur le processus d'agrégation des peptides et engendre la production 

de ROS. Le rôle du Cu dans la croissance des tumeurs et son métabolisme modifié dans le cancer 

a été démontré. Les données suggèrent fortement que l'augmentation des quantités de Cu favorise 

i) la prolifération cellulaire, ii) la production de ROS, iii) l'angiogenèse et iv) les métastases. 

Différents médicaments visant à cibler l'homéostasie du Cu ont été développés. Ceux-ci 

comprennent i) les ligands (chélateurs) de Cu, habituellement, utilisés pour éliminer cet ion 

métallique du corps en cas de surcharge en Cu, ii) les ligands de Cu capables de renverser les 

interactions anormales Cu-protéines et de redistribuer le Cu à travers les membranes biologiques 

et iii) les ligands de Cu qui favorisent la génération de ROS lors de la formation du complexe 

métallique. Dans ce dernier cas, le ligand peut déjà être injecté sous forme de complexe de Cu ou 

être injecté tel quel, et il est capable après de complexe le Cu. La production de ROS catalysée par 

le Cu est un mécanisme impliquant le couple redox Cu(II)/Cu(I), elle requiert un agent réducteur 

comme l’ascorbate (AscH-) et un oxydant, tel que O2 ou H2O2 (Image 1a). 

Les effets d’un complexe de Cu au niveau physiopathologique et/ou thérapeutique sont fortement 

influencés par la cinétique et la thermodynamique des réactions d'échange métal/ligand entre le 

complexe et les compétiteurs physiologiques. Parmi ceux-ci, par exemple, la métallothionéine 

(MT) et d’autres molécules plus petites contenant des thiols (par exemple, glutathionne, GSH, 

cystéine, Cys) sont très importantes car elles sont strictement impliquées dans la complexation et 

la régulation de Cu(I) dans le corps humain. Les MT sont des chélateurs de métaux et/ou des 

antioxydants bien connus avec une teneur élevée en Cys (20 Cys pour 60/68 AA en fonction de 

l'isoforme) qui interviennent dans la manipulation du Zn et du Cu. La liaison aux ions métalliques 

entraîne le repliement de la protéine dans une structure 3D (exemplifiée par la structure de 

Zn(II)7MT-2), caractérisée par deux domaines en forme d'haltère, chacun contenant un groupe 

métal-thiolate (Image 1b). De plus, la complexation au Cu(I) résulte dans la formation d’un 
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complexe rédox-silencieux, protégeant ainsi la cellule de la production de ROS. Enfin, les MTs 

étant en général liées aux ions Zn(II) dans les conditions physiologiques, elles pourraient 

également effectuer un échange de métal avec un complexe de Cu, conduisant ainsi à la 

transmétallation entre le Cu et le Zn.  

GSH et Cys sont des chélateurs plus faibles pour le Cu(I) par rapport aux MTs (Kd (MT) ~ 10-19 

M, Kd (GSH) ~ 10-17 M), mais étant plus concentrés à l’intérieur et à l’extérieur des cellules, ils 

peuvent moduler leur interaction avec le Cu grâce à leur capacité à réduire le Cu(II) et à se lier 

fortement au Cu(I), via leur chaîne latérale (Cys). Ils peuvent donc devenir de sérieux concurrents 

des complexes de Cu d’intérêt médicinal et faire de médiateurs pour le transport de Cu(I) vers le 

MT. 

 

Image 1 - a) Mécanisme de production de ROS catalysé par le Cu en présence de AscH- et de O2; b) Structure 3D des 

clusters de métaux divalents-thiolates dans les MT de mammifères (illustré par Zn(II)7MT-2). 

Dans ce contexte, ma thèse visait à étudier, au niveau moléculaire, la réactivité de complexes de 

Cu d’intérêt médicinal, d’un point de vue de leur activité redox et de leur stabilité, en présence de 

molécules physiologiques se liant au Cu et/ou réductrices (y compris la MT, le GSH, la Cys, 

l’AscH- et le Glutamate (Glu)). Deux études de cas seront présentées: i) pour un complexe 

physiopathologique du peptide Aβ dans le contexte de la maladie d'Alzheimer et ii) pour des 

complexes de Cu dans le contexte de traitements médicamenteux (agents anticancéreux, par 

exemple). 

Dans la première partie de la thèse, nous discuterons des principaux résultats de l’étude de cas I 

concernant l’influence des biomolécules, GSH, Cys, Glu sur les réactions de transfert de Cu à 

partir de différentes espèces de peptides Aβ vers Zn(II)7MT-3 (isoforme assez spécifique du 

cerveau). Les principaux problèmes que nous avons essayé de résoudre sont les suivants: 

- Quel est l'impact de Cys et GSH sur la réaction? Pourraient-ils jouer le rôle d'agents réducteurs 

de Cu(II) et de navette pour le Cu(I) entre les deux biomolécules? 

- Quelle est l'influence du neurotransmetteur Glutamate (Glu)? Comment la teneur en Zn(II) de 

MT-3 affecte-t-elle le taux de transfert de Cu? Plusieurs mécanismes peuvent-ils agir de 

manière coopérative? 

Dans la deuxième partie, nous présenterons les principaux résultats de l’étude de cas II, qui traitent 

de la réactivité de différents médicaments à base de Cu (développés pour le traitement de diverses 

maladies, dont le cancer) dans i) la production catalytique de ROS et ii) avec leur stabilité (et, par 

conséquent, désactivation possible) en présence de Zn(II)7MT-1 (isoforme exprimée de manière 

ubiquitaire) et GSH, dans les conditions trouvées dans le cytosol et le noyau. Les principales 

questions auxquelles nous avons essayé de répondre sont les suivantes: 

- Quelle est l'activité des peptides Cu(II)-(Xxx-Zzz-His) (ATCUN) dans la production de ROS? 

Pourraient-ils jouer le rôle d’enzymes de Cu artificielles pour dégrader des biomolécules? 
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- Quelle est la réactivité des médicaments anticancéreux Cu(II)-Thiosemicarbazone avec GSH 

/Zn(II)7MT dans des conditions physiologiques présentes dans le cytosol/noyau? Le Zn(II)7MT 

peut-il être un désactivateur de ces médicaments? 

- Serait-il possible d'avoir un médicament à base de Cu redox-actif en présence de concentrations 

physiologiques de GSH/Zn(II)7MT, telles que celles trouvées dans le cytosol/noyau? 

Nous avons commencé notre étude sur l'influence des biomolécules capables de se lier et/ou de 

réduire le Cu sur la réaction de transfert de Cu(II) de Aβ4-16 (un peptide modèle de Aβ4-42) vers 

Zn(II)7MT-3, en présence de GSH et Cys. Des études antérieures, visant à étudier le rôle 

neuroprotecteur possible du Zn(II)7MT-3 contre le complexe cytotoxique Cu(II)-Aβ1-16/40, ont 

montré que le Zn(II)7MT-3 pourrait retirer le Cu du complexe Cu(II)-Aβ1-16/40, via la réduction de 

Cu(II) en Cu(I) et sa chélation ultérieure, avec la formation du complexe redox-silencieux, 

Cu(I)4Zn(II)4MT-3. Ce n'était pas le cas pour le composé Cu(II)-Aβ4-16, qui était stable vis-à-vis 

de la réactivité de Zn(II)7MT-3 et, par conséquent, aucun échange Cu/Zn n'avait eu lieu. Dans le 

cadre de cette thèse, nous avons exploré l’influence possible des ligands Cys et de GSH sur la 

réaction de transfert en considérant i) leurs propriétés mentionnées dans l’introduction et ii) que 

des fluctuations dans leur concentration pourraient se produire (par exemple, des dépôts 

extracellulaires de peptide Aβ auraient augmenté la concentration extracellulaire de Cys réduite).  

 

Image 2 - Effet de Cys/GSH sur la cinétique de transfert de Cu du complexe Cu(II)-Aβ4-16 vers Zn(II)7MT-3 dans un 

tampon phosphate 50 mM, pH 7,4. Dans a) schéma de la réaction; en b) les données sont exprimées en A525 (bande 

λmax d-d de Cu (II)-Aβ4-16 en fonction du temps). Encadré: spectres UV-Vis correspondants pour la réaction avec Cys. 

Conditions expérimentales: 500 µM Aβ4-16, 450 µM Cu (II), 100 µM de Zn(II)7MT-3 (1:0.9:0.2), 3 mM de Cys/GSH 

dans du PB 100 mM, pH 7,4. c) Spectre CD de la formation du Cu(I)4Zn(II)4MT-3 espèces des mélanges 

Cu(II)/Zn(II)7MT-3, Cu(II)-Aβ4-16/Zn(II)7MT-3/GSH, Cu(II)-Aβ4-16 /Zn(II)7MT-3/Cys. Conditions expérimentales: 

100 uM d'Aβ4-16, 90 µM de Cu (II), 20 µM de Zn(II)7MT-3, 3 mM de L-Cys ou GSH dans du PB 100 mM, pH 7.4. 

En utilisant différentes méthodes spectroscopiques telles que l'absorbance, le dichroïsme circulaire 

et la 1H-RMN, nous avons montré que Cys et GSH sont capables de déclencher le l’échange Cu/Zn 

entre Cu-Aβ4-16 et Zn(II)7MT-3 (Image 2a) via (i) la réduction de Cu(II) en Cu(I) (Image 2b), (ii) 

la complexation et le transfert de Cu(I) vers MT-3, avec la formation de Cu(I)4Zn(II)4MT-3 (Image 

2c) et (iii) la libération de Zn(II) par MT-3, avec une liaison conséquente au peptide Aβ4-16. Alors 

que Cys est capable de réduire quantitativement le Cu (II) et de transférer le Cu (I) sur Zn(II)7MT-

3, la réaction avec le GSH est plus lente et n'est pas terminée après 4 heures de réaction. 
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Considérant que les thiols déprotonés de Cys/GSH sont les formes susceptibles de subir une 

oxydation en cystine/ GSSG, ainsi que de se lier à des ions métalliques, la valeur de pKa du groupe 

thiol dans Cys (pKa ~ 8.2) est inférieure à celle dans GSH (pKa ~ 9.2) et pourrait être un facteur 

déterminant pour leur activité. 

Ensuite, nous avons exploré le rôle potentiel du neurotransmetteur Glu et comment la charge en 

Zn de MT-3 pourrait affecter cette réaction de transfert de Cu. Glu pourrait jouer un rôle important 

en étant stocké à une concentration d'environ 100 mM dans les vésicules des neurones 

glutamatergiques et libéré lors de la neurotransmission dans la fente synaptique, où les peptides 

Aβ et MT-3 sont souvent localisés dans l'espace extracellulaire. La charge en Zn de MT-3 peut au 

contraire affecter la vitesse de la réaction, étant donné que des espèces partiellement appauvries 

en Zn(II) (à savoir Zn(II)6MT-3, Zn(II)5MT-3 et Zn(II)4MT-3) sont présentes dans des conditions 

physiologiques en même temps que Zn(II)7MT-3, qui peuvent contenir des thiols Cys non 

coordonnés qui pourraient réduire davantage le Cu(II) que les thiolates liés au Zn(II). La présence 

de telles espèces partiellement chargées de Zn dépend de la quantité de Zn présente dans la cellule, 

de l'expression de la protéine et de la présence de potentiels compétiteurs du Zn(II) (biomolécules 

se liant au Zn(II)). 

Par conséquent, nous avons utilisé l'EDTA comme imitateur, après avoir prouvé par 1H-RMN que 

son addition en quantité stoechiométrique conduit à l'élimination quantitative de Zn(II) de 

Zn(II)7MT-3, dans le temps de mélange, formant ainsi les especes Zn(II)7-xMT-3 souhaité. Comme 

le montre le Tableau 1, Glu et l'EDTA ont tous deux étés en mesure d'accélérer le taux de transfert 

de Cu de Aβ4-16 à MT-3. 

Concernant la réaction avec Glu, nous avons démontré que, même si sa contribution à la répartition 

à l’équilibre des complexes Cu(II)-Aβ4-16 et Zn(II)7MT-3 est négligeable, elle pourrait néanmoins 

accélérer le transfert de Cu via un mécanisme associatif du complexe ternaire [Glu-Cu(II)-Aβ4-

16]). Concernant la réaction avec l'EDTA, les temps nécessaires pour le transfert obtenu, à savoir 

Zn(II)4MT-3 > Zn(II)5MT-3 > Zn(II)6MT-3, a confirmé que la réaction était d’autant plus rapide 

que le nombre de groupes Cys-thiol pour la réduction/extraction de Cu(II). 

Enfin, nous avons montré que leur effet était additif (Tableau 1), confirmant que Glu et EDTA 

agissent selon des mécanismes différents. 

Tableau 1 - Valeurs t1/2 représentatives des différentes réactions étudiées avec Glu et EDTA, calculées à partir de la 

cinétique expérimentale de disparition de la bande d-d de Cu (II)-Aβ4-16. Les facteurs d'accélération (AF), rapportés 

avec les écarts types, ont été calculés en fonction de la réaction Cu(II)-Aβ4-16 + Zn(II)7MT-3. 

Reaction t1/2 (min x 102) AF 
Cu(II)Aβ4-16  + Zn(II)7MT-3 7.94 1 

Cu(II)Aβ4-16  + Zn(II)7MT-3 + Glu 4.06 2.15 ± 0.21 

Cu(II)Aβ4-16  + Zn(II)7MT-3 + EDTA (3eq) 4.95 1.60 ± 0.04 

Cu(II)Aβ4-16  + Zn(II)7MT-3 + EDTA (2eq) 6.44 1.21 ± 0.03 

Cu(II)Aβ4-16  + Zn(II)7MT-3 + EDTA (1eq) 7.66 1.12 ± 0.09 

Cu(II)Aβ4-16  + Zn(II)7MT-3 + EDTA (3eq) + Glu 2.15 3.27 ± 0.36 

Sachant que de petites biomolécules physiologiques telles que GSH, Cys et Glu, ainsi que des 

molécules plus grosses telles que MT, peuvent jouer un rôle majeur dans le devenir des complexes 

physiopathologiques au Cu, nous avons étendu notre intérêt à la réactivité de différents 

médicaments à base de Cu (étude de cas II) représente en Image 3, qui ont été explorés pour 

plusieurs applications en médecine (par exemple dans le traitement du cancer, l’imagerie, le 

clivage ADN/ARN). Le GSH et les MTs pourraient en particulier être des modulateurs importants 
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pour ces médicaments, conduisant soit à la dissociation du complexe de Cu, soit à des réactions de 

transmétallation Cu/Zn. En plus de cela, comme expliqué dans l'introduction, la complexation de 

Cu(I) à la MT pourrait conduire à la désactivation complète du médicament à base de Cu, car le 

complexe Cu(I)4Zn(II)4MT-3 est inerte vis-à-vis de l'oxydo-réduction. 

 

Image 3 - Liste des chélateurs de Cu étudiés dans cette thèse. 

Parmi les différentes familles de ligands étudiées, la première est un simple motif peptidique H2N-

XxxZzzHis (XZH) (ligand 1, Image 3), appelé motif de liaison au Cu et au Ni (ATCUN) à 

l'extrémité amino-terminale, qui se lie fortement au Cu(II) dans un complexe plan carré (4N). Ce 

motif simple a été largement utilisé par plusieurs groupes de recherche pour équiper des 

peptides/protéines d’un de ce site de liaison au Cu(II), par des approches synthétiques ou 

recombinantes. D'une part, le motif ACTUN a été introduit pour ajouter une unité catalytique de 

ROS afin de dégrader les biomolécules, jouant ainsi le rôle de métalloenzyme artificielle. D'autre 

part, le même motif a été utilisé pour réduire ou pour rendre le Cu inactif dans l’activité redox ou 

le rendre redox-silencieux, par ex. en thérapie de chélation ou pour l'imagerie 64Cu. 

Pour éclaircir cette divergence, nous avons étudié l’activité rédox et la production de ROS de trois 

variantes communes de XZH (DAHK, le motif peptidique naturel issu de l’albumine du sérum, 

KGHK, l’un des motifs les plus efficaces pour la production de ROS et FRHD, le motif retrouvé 

dans Aβ4-42) avec O2, AscH- et/ou H2O2, en présence d’un chélateur de Cu(I), la 

bathocuproinedisulfonate, BCS (mimique de chélateurs de Cu(I) intracellulaires tels que les MT). 

En mesurant i) la consommation du substrat, AscH-, par spectroscopie d'absorbance à λmax = 265 

nm (Image 4a) et ii) la production de HO• par le suivi de la fluorescence du 7-HO-CCA (7-

hydroxycoumaring-acide 3-carboxylique), nous avons montré que les activités complexes Cu(II)-

XZH dans la production de ROS sont très faibles, c'est-à-dire inférieures à 0,7 turn-over par heure, 

dans nos conditions expérimentales. Comme le montre la Image 4a, d'autres complexes de Cu (II), 
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bien connus tels que Cu(II)-(DmBipy)2, Cu (II)-(Phen)2 et Cu (II)-(His)2 (composés 8, 9 et 10, 

Image 3) ou de Cu(II) libre, étaient deux ordres de grandeur plus actifs que Cu(II)-XZH. 

De plus, en utilisant le chélateur BCS, nous avons prouvé que la production lente de ROS avec 

Cu(II)-XZH se produit par un cycle redox entre Cu(II)/Cu(I) et qu'une telle faible activité peut être 

arrêtée par la chélation de Cu(I), comme le montre le piégeage de spin par RPE sur la Image 4b, 

limitant ainsi son application en tant qu'enzyme de Cu artificielle pour dégrader des biomolécules. 

 

Image 4 - a) Évolution dans le temps de l’absorption de AscH- à λmax = 265 nm, après addition au temps t =10 min de 

Cu(II) libre ou de complexes de Cu(II). Les concentrations initiales en Cu(II), peptide/ligands, AscH- et H2O2 étaient 

respectivement de 10 µM, 12 µM/24 µM, 100 µM et 100 µM dans du PB 50 mM, pH 7.4. b) Mesure indirecte de la 

production de HO• par RPE avec piégeage de spin, en utilisant POBN comme premier piègeur de spin, en présence 

(panneau de droite) et en absence (panneau de gauche) de BCS. Conditions expérimentales: KGHK 120 μM, Cu(II) 

100 μM (1.2:1), AscH- 1 mM, H2O2 1 mM, PB 100 mM, pH 7.4, POBN 50 mM, ETOH 5%, BCS 300 μM. 

La deuxième classe de ligands que nous avons examinés est celle des thiosemicarbazones (TSCs, 

ligands 2, 3, 4, Image 3). Les TSCs ont été explorés cliniquement pour diverses activités 

biologiques, mais principalement comme agents anticancéreux. Même si leur mécanisme d’action 

et leurs cibles biologiques sont encore flous, les métaux essentiels que sont le Cu, le Zn et le Fe 

semblent jouer un rôle central dans leur activité antitumorale. Un aspect négligé de leur l’activité 

des TSC avec ces métaux concerne leur stabilité en présence de GSH/Zn(II)7MT-1 (isoforme de 

MT exprimée de manière omniprésente) dans des conditions trouvées dans le cytosol/noyau. 

Nous avons donc étudié la réactivité des complexes Cu(II)/Zn(II)Fe(II) de trois TSC (à savoir PT, 

3-AP et Dp44mT), en présence de GSH/Zn(II)7MT-1 à des concentrations physiologiques 

pertinentes pour le cytosol/noyau, pour élucider leur stabilité face aux réactions de dissociation et 

de transmétallation. 

Grâce aux spectroscopies d’absorbance, de dichroïsme circulaire, et de RPE (collaboration avec 

Dr. B. Vileno) et à la spectrométrie de masse ESI-MS (collaboration avec Prof. O. Placios), nous 

avons démontré que le GSH/Zn(II)7MT-1 est un modulateur très important des médicaments à 

base de Cu(II)-TSC. Dans le cas de PT et de 3-AP (ligands 2 et 3, Image 5), après la formation 

rapide d’un adduit ternaire avec GSH, [PT/3-AP-Cu(II)-(SH)GSH], le complexe était rapidement 

réduit et dissocié et le Cu(I) était transféré sur MT-1, avec formation du complexe 

Cu(I)4Zn(II)4MT-1. Ainsi, comme montré avec l’étude du piégeage de spin par RPE, la production 

de ROS en présence de Cu, c’est-à-dire l’un des mécanismes proposés pour l’activité 

anticancéreuse de ces ligands, a été supprimée. 
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Avec Dp44mT (ligand 4, Image 5), une transmétallation est observée, ce qui indique que 

Zn(II)7MT-3 pourrait transformer un le complexe de Cu(II) de départ en un complexe de Zn(II) 

correspondant. 

De plus, nous avons étudié la réactivité des complexes Zn(II)/Fe(II) avec les trois ligands TSC et 

montré que seuls les complexes Fe(II)-PT/3-AP/Dp44mT pouvaient être stables en présence de 

concentrations physiologiques cytosoliques de GSH/Zn(II)7MT-1, ce qui indique que Fe pourrait 

être le métal le plus important pour l’activité biologique des TSC. 

 

Image 5 - Spectres UV-Vis permettant le suivi de la réaction de a) Cu(II)-PT, b) Cu(II)-3-AP et c) Cu(II)-Dp44mT 

avec GSH/Zn(II)7MT-1 à 0 et 120 min après addition de GSH et de Zn(II)7MT-1 aux complexes Cu(II)-TSC 

préformés. Conditions expérimentales: L 30 μM, Cu(II) 27 μM (1.1:1), GSH 3 mM, Zn(II)7MT-1 6 μM, tampon 

HEPES 100 mM, pH 7.4. 

Dans la dernière partie de cette étude concernant la réactivité des médicaments à base de Cu, nous 

avons exploré et étudié la corrélation entre la stabilité vis-à-vis du GSH/Zn(II)7MT-1, dans les 

conditions rencontrées dans le cytosol/noyau, et la consommation d’AscH- avec certains des 

complexes de Cu utilisés et étudiés pour le traitement du cancer (voir Image 3 et Tableau 2), afin 

de savoir si un médicament à base de Cu pourrait exister et être actif en tant que complexe de Cu 

on catalyse redox dans des conditions trouvées dans le cytosol/noyau. 

Tableau 2 - Valeurs t1/2 (min ou s) du transfert de Cu des différents complexes de Cu étudiés dans ce travail, calculées 

à partir de la cinétique expérimentale de disparition des bandes CT de Cu (II) ou de Cu (I), observée par spectroscopie 

d'absorbance; les taux molaires d’oxydation de AscH- (µM/min) et les potentiels rédox (mV).  

Cu-complex 
t1/2 transfer to MT-1 

(with GSH) 

robs AscH- oxidation 

(µM min-1) 

Redox Potential 

(mV) [NHE] 

Background  / 0.11 ± 0.06 / 

Cu(II) < 30 sec 9.5 ± 1.4 160 

Cu(II)-ATSM (6) ✗ 0.05 ± 0.01 -403 

Cu(II)-Cyclam (7) ✗ 0.05 ± 0,02 -736 (Epc) 

Cu(II)-Bleomycin (11) ✗ 0.06 ± 0.02 - 

Cu(II)-(CQ)2 (13) ~ 20 min 0.16 ± 0.04 - 

Cu(II)-(APDTC)2 (12) ~ 5 min / - 

Cu(II)-GTSM (5) ~ 50 min 0.49 ± 0.10 -241 

Cu(II)-Dp44mT (4) ~ 4 min 0.92 ± 0.11 -210 

Cu(II)-(5,5’-DmBipy)2 (8)  < 30 sec 10.1 ± 1.0 120 

Cu(II)-(Phen)2 (9) < 30 sec 12.4 ± 1.7 
188 

170 

Cu(I)-(BCS)2 (10) < 30 sec 0.07 ± 0.01 618 

Pour cela, nous avons mesuré l'activité catalytique des complexes de Cu dans la production de 

ROS via la consommation du substrat AscH- (hypothèse basée sur le schéma Image 1a), par 

spectroscopie d'absorbance à 265 nm et nous avons étudié leur stabilité vis-à-vis du GSH/ 
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Zn(II)7MT-1 par spectroscopies d'absorbance, de dichroïsme circulaire et de fluorescence à basse 

température. 

Nous avons montré que la capacité d'un complexe de Cu ayant une activité pro-oxydante, en 

présence d'une concentration élevée de GSH/Zn(II)7MT-1, telle que trouvée dans le cytosol et le 

noyau, dépend non seulement de la possibilité du complexe de Cu d’avoir une cyclage voir rédox 

rapide entre les états rédox Cu(I) et Cu(II) (E optimal ~ 200 mV vs NHE), mais aussi de l'affinité 

du ligand pour le Cu(I) (Kd optimal < 10-19, soit < Kd (MT), voir ci-dessus). Une réaction de 

dissociation réductrice pourrait se produire, compte tenu de leur fort pouvoir réducteur et de leur 

affinité pour Cu (I). Par exemple, comme le montre le Tableau 2, les complexes Cu-(5,5'-

DmBipy)2 et Cu-(Phen)2 oxydent AscH- très rapidement et sont donc très actifs dans la production 

de ROS, mais ils sont très rapidement dissociés par réduction avec le GSH/Zn(II)7MT-1, qui sont 

des agents de chélation du Cu (I) plus faibles. 

En conclusion, le but de la thèse était d’étudier l’impact des MT et de biomolécules plus petites, 

telles que GSH, Cys, AscH et Glu, sur la stabilité thermodynamique et cinétique de complexes de 

Cu. Les complexes de Cu ont été sélectionnés pour leur activité physiopathologique, ou pour leur 

potentiel médical à base de Cu, développés et étudiés en tant que produits thérapeutiques pour 

diverses maladies liées au dysmétabolisme du Cu. 

Dans l’ensemble, nos résultats indiquent que ces biomolécules ont un impact majeur sur le devenir 

d’un complexe médicamenteux à base de Cu, qu’elles jouent un rôle neuroprotecteur contre les 

complexes de Cu toxiques, tels que le Cu(II)-Aβ, ou qu’elles sont modulatrices et désactivantes 

des médicaments à base de Cu. En effet, nos données montrent que ces molécules fonctionnent 

ensemble et peuvent conduire à la dissociation réductrice rapide d'un complexe de Cu(II), avec 

une complexation résultante de Cu (I) à la MT et à une inhibition de la production de ROS, 

dépendant de Cu. 

Les réactions du transfert de Cu du complexe Cu(II)-Aβ4-16 au Zn(II)7-MT-3, étudiées dans ce 

travail, soulignent l’importance de prendre également en compte l’impact de biomolécules plus 

petites d’intérêt physiologique. Par exemple, Cys et GSH, malgré leurs capacités réductrice et 

chélatrice de Cu(I) inférieures, ont été en mesure d’accélérer le taux de transfert de Cu vers Zn(II)7-

MT-3, influant ainsi sur l’obtention d’un complexe rédox-silencieux Cu(I)4Zn(II)4-MT-3. 

La compréhension des mécanismes d’échange d’ions métalliques (Cu/Zn) entre peptides Aβ, 

protéines et autres biomolécules, liées à la maladie d'Alzheimer, est extrêmement importante et 

devrait contribuer à répondre à la question de savoir pourquoi Cu/Zn est lié aux peptides Aβ dans 

les conditions de la maladie d’Alzheimer, mais pas dans les conditions physiologiques cérébrales 

normales. 

L’étude de cas II sur la réactivité de plusieurs médicaments à base de Cu avec des agents de 

réduction et des réducteurs de Cu (I) intracellulaires pertinents, tels que le Zn(II)7-MT-1 (ou BCS, 

un modèle de celui-ci), GSH et AscH-, souligne le défi de concevoir un complexe de Cu pro-

oxydant, dans les conditions rencontrées dans le cytosol/noyau. Ainsi, le Zn(II)7-MT-1 et le GSH 

peuvent être considérés comme des modulateurs et des partenaires importants des médicaments à 

base de Cu. Globalement, ce type de chimie avec des molécules contenant des thiols pourrait être 

intéressant pour la conception de complexes de métaux et en particulier de Cu pour toutes les 

applications étendues de la biologie et de la médecine. 
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CHAPTER 1 

 

Introduction to Cu at the crossroad of chemistry, biology and 

medicine 

Even though approximately 97 % of the elemental composition of the human body by 

weight consists of only 6 non-metallic elements, i.e. C, O, H, N, P, S, a wide array of key 

biochemical processes would not occur without metal ions, e.g. ATP production, the cell's main 

energy source.   

Metals are indispensable to ensure life and employed for normal metabolic processes. Some of 

them are required in quite large concentrations (bulk-elements, e.g. K, Na, Ca, Mg), whereas some 

others are only needed in very low amount (trace elements, e.g. Cu, Fe, Mn, Zn). Essential trace 

elements are usually required as catalytic or structural components of larger molecules, where they 

have specific functions.  

In the next chapters of this thesis, we will mostly deal with the chemistry of one of the trace 

elements essential for our organism, i.e. Cu, at the interface with biology and medicine.  

1.1 Cu, an essential metal in humans with unique chemical properties 

1.1.1 Cu in the human body 

As a trace element, an average adult male of 70 Kg contains only 100 mg of Cu.1,2 Cu needs 

to be taken and absorbed from dietary sources, as it cannot be synthetized de novo. The average 

safe daily intake of Cu recommended by the Food and Nutrition Board (FNB) is of 1.5–3.0 mg, as 

only part of it is absorbed.3,4 Dietary Cu absorption is affected by several parameters, such as age, 

sex, type of food (i.e. plant versus animal proteins), the amount of Cu in the diet, and the use of 

oral contraceptives.5,6  

Although present in very small amount, Cu is an essential element for humans. Indeed, Cu is 

required for the activity of numerous enzymes involved in a broad spectrum of fundamental 

biological processes such as cell signaling, cellular respiration, free-radical defense, 

neurotransmitters and neuropeptides synthesis, iron metabolism, mostly by serving as catalytic 

and/or structural cofactor.7–9 A list of the most studied Cu-dependent mammalian enzymes, with 

the corresponding catalyzed reaction, is reported in Table 1.10–12 
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Table 1 - Most studied human Cu-dependent enzymes, localization and corresponding catalyzed reaction. 

Cu-Enzyme Localization Catalyzed reaction 

Cu-Zn SOD (SOD 1) Cytosol, nucleus 
Disproportionation of superoxide to hydrogen 

peroxide and dioxygen Cu-Zn SOD (SOD 3) 
Secretory pathway/ 

Extracellular environment 

Cytochrome c oxidase (CCO) Mitochondria Dioxygen reduction to water 

Dopamine β-hydroxylase (DBH) 
Secretory pathway/ 

Extracellular environment 
Conversion of dopamine to noradrenaline 

Tyrosinase (TYR) 
Secretory pathway/ 

Extracellular environment 

Hydroxylation of tyrosine to DOPA (3,4-

dihydroxyphenylalanine) and DOPA to 

DOPA-quinone 

Peptidylglycine-α-amidating 

monooxygenase (PAM) 

Secretory pathway/ 

Extracellular environment 

Conversion of peptidyl-glycine substrates into 

α-amidated products 

Lysyl oxidase (LOX, LOXL1-4) 
Secretory pathway/ 

Extracellular environment 

Formation of aldehydes from lysine in collagen 

and elastin precursors 

Amine oxidase (AOC1-3) 
Secretory pathway/ 

Extracellular environment 

Oxidation of primary amines to aldehydes in 

catecholamine  

Ceruloplasmin (Cp) 
Secretory pathway/ 

Extracellular environment 
Oxidation of Fe2+ to Fe3+ 

A tight regulation of Cu metabolism in a characteristic range of concentrations is vital for our 

life.11,13,14 A deficit of Cu would decrease the biosynthesis and activity of the aforementioned Cu-

dependent enzymes and hence be detrimental to the organism. Likewise, an overload of Cu would 

be harmful, because of its inherent redox activity. Indeed, by catalyzing the production of high 

levels of ROS, Cu can trigger the non-specific oxidation of lipids, proteins and nucleic acids, 

ultimately resulting in cell death.  

This important concept was mathematically formalized in 1912 by the French nutritionist Gabriel 

Bertrand, into the ‘Bertrand’s rule’, represented in Fig 1. It shows that the dose-response curve of 

Cu (valid for all the essential micronutrients) varies non-monotonically with the concentration, i.e. 

increasing intake of Cu has an initial stage of increasing benefits (phase I), towards an optimal 

plateau (phase II), beyond which ingested excesses become toxic, because of the increasing costs 

of the corresponding regulatory mechanisms (phase III).15  

 

Fig 1 - Bertrand’s rule: dependence of the biological function from the concentration or intake of Cu. A tight regulation 

of Cu concentration or intake is needed to maintain life. 
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1.1.2 Chemical properties of Cu important in biology 

Among the essential metal ions, Cu has peculiar chemical properties, which make it 

essential for almost all living organisms.   

In biological systems Cu ions are mainly found in two relatively stable valence states, i.e. the 

oxidized form Cu(II) (electronic configuration: [Ar]4s0, 3d9) and the reduced one Cu(I) (electronic 

configuration: [Ar]4s0, 3d10). Typically, under the oxidizing extracellular environment, Cu is 

present as Cu(II), but in the reducing conditions inside the cell, it mainly exists in the reduced 

Cu(I) oxidation state.16  

The ability to exist in multiple valence states, makes Cu a redox-active metal, i.e. it can easily 

undergo reversible valency changes, between the reduced, Cu(I), and oxidized, Cu(II), states by 

accepting and/or donating electrons. By virtue of this electronic property, Cu is exploited as 

catalytic cofactor for the functioning of numerous enzymes (already reported in Table 1), mainly 

involved in oxidation-reduction (redox) reactions and oxygen activation.   

Nevertheless, the essential redox-chemistry Cu(II)/Cu(I) makes Cu ions dangerous, if not handled 

properly by the cell (i.e. when free or loosely bound), as they become available for the catalytic 

production of ROS, including the Fenton type reaction. Cu-catalyzed ROS production requires the 

presence of an oxygen species (e.g. O2 or H2O2), as well as of a reducing agent (e.g. AscH-). Cu 

undergoes redox cycling, classically between reduction of Cu(II) to Cu(I), through the oxidation 

of AscH- to AscH•-. Then, O2 is reduced by Cu(I) in one electron events to superoxide (O2
•-), 

hydrogen peroxide (H2O2) and finally hydroxyl radicals (HO•) (Fig 2).  

 

Fig 2 - Mechanism of Cu-catalyzed ROS production in the presence of O2 and a reducing agent like AscH-. The 

electron flow goes from AscH- to the O2 species, catalyzed by Cu.  

Cu(II)/Cu(I) redox cycling in Cu-dependent enzymes requires the presence of a Cu-binding donor 

ligand set that is capable of stabilizing both oxidation states. This is challenging as the preference 

of the two ions in coordination chemistry is distinct.  

The different ligand preference of the two ions is well described by the ‘‘Hard and Soft Acids and 

Bases theory’’ (HSAB), developed by Pearson in the 1960s.17 The theory elaborates that soft bases 

react preferentially with soft acids, resulting in adducts with a more covalent character, whereas 

hard acids prefer to bond with hard bases, and the resulting adduct tends to have more ionic 

character in its bonding. In its reduced state, Cu(I) is classified as a soft acid, whereas in its 

oxidized state, Cu(II), as a borderline acid. This depends on the polarizability of the ion, Cu(I) 

being larger with lower charge-density, while Cu(II) smaller with higher charge-density.  

Hence, cupric centers, Cu(II), prefer electrostatic bonding to N and/or O ligands from hard Lewis 

bases (e.g carbonyl and carboxylate O from Asp and Glu, amide N), and borderline bases like 

imidazole N from His, whereas cuprous centers, Cu(I), prefer the more covalent environment of S 

donors from soft Lewis bases (e.g. thiolate or thioether sulfur from Cys and Met).  
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Moreover, based on the different number of valence d electrons, Cu(II) and Cu(I) ions prefer 

different coordination numbers and/or binding geometries. This preference is based on the 

‘‘Ligand Field Stabilization Energy’’ (LFSE), with Cu(II) ions preferring coordination numbers 

of 4, 5, or 6, and Cu(I) ions of 2, 3, or 4. Cu(II) is a d9 system that exhibits geometric preferences 

based in part on LFSE. This means that Cu(II) ions mostly adopt square planar, square pyramidal, 

or axially distorted octahedral geometries, the latter being the result of Jahn-Taller distortion. Cu(I) 

is a d10 system and therefore there is no LFSE from any particular geometry, giving to Cu(I) higher 

freedom to bind in any in geometric arrangement, adopting tetrahedral, trigonal, or even linear 

geometries. 

Another important feature of the ligand set, both in terms of composition and geometric 

arrangement, is its influence on the reduction potential of the metal center. In case of Cu-dependent 

enzymes, this feature is critical as it influences the catalytic redox function. On the other hand, for 

Cu-transport proteins, this feature is critical for avoiding Cu(II)/Cu(I) redox cycling.18–22 

In this respect, one of the most interesting and fascinating aspects of the biochemistry of Cu is to 

understand how it can function in rapid electron-transfer reactions, the two ions having such 

different ligand preference both in terms of donor atoms and binding geometries. Generally, the 

ligand donor groups chosen by the Cu-dependent redox enzymes tend to be a mix of the two classes 

of bases (i.e. hard and soft), with His, Met and Cys dominating. Instead, the binding geometry 

imposed by the protein tends to be finely tuned, so that to impose what Valle and Williams in 1968 

called the ‘entatic state’, i.e. a state closer to a transition state, rather than to a conventional stable 

molecule.23 In other words, the protein is capable of imposing a highly distorted geometry, not too 

unfavorable for both Cu(II)/Cu(I) oxidation states but favorable for rapid electron transfer. In many 

of the redox active Cu-dependent enzymes, the Cu center is predominantly found in a tetrahedral 

environment, in which the high energy Cu(I) geometry imposed to Cu(II), enhances its reactivity 

by increasing the redox potential.22  

The above discussed fundamental chemical properties of Cu must be also considered when 

designing small Cu-coordination compounds to be used either to manipulate cellular Cu status, or 

as Cu-based drugs.  
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1.2 Regulation of Cu homeostasis in the human body  

The essential yet toxic nature of Cu requires uncommon challenges for its transport in 

biology, both intra- and extracellularly.24 Cu needs to be handled in a very carefully controlled 

manner, in order to minimize free Cu and keep its level tightly regulated.25 As a result nature has 

evolved a sophisticated network of small molecular mass ligands and proteins to assist Cu in the 

complex journey of crossing the extracellular and intracellular membranes to reach the Cu-

dependent enzymes.11,26,27 Over the past few decades, intense investigation on the biomolecules 

that govern Cu homeostasis has led to huge progresses in our understanding of the mechanisms 

that allow our organism to acquire, transport, sequester and export Cu, hence preventing 

accumulation of toxic levels. This will be discussed in the following paragraphs.  

1.2.1 Cu absorption and trafficking in the blood  

Cu, taken in through the diet, is predominantly absorbed at the level of small intestine. 

Current physiologic models describe Cu uptake and distribution throughout the body as a biphasic 

process. In phase I, Cu is transported through the portal venous circulation, into the liver. Cu(I)-

transporting P-type ATPase, ATP7A, is responsible for Cu exports from intestinal enterocytes. 

From the liver, Cu is imported into hepatocytes and redistributed throughout the body by excretion 

into the blood (phase II).  Cu in excess is eliminated by the liver into the bile and discarded from 

the body via defecations (Fig 3). Cu excretion involves the Cu(I)-transporting P-type ATPase, 

APT7B.28,29  

 

Fig 3 - Cu homeostasis in the whole body: schematic representation of Cu absorption from dietary sources and 

trafficking in the blood. 

In adults, the reported total concentration of Cu in the blood plasma and serum is ~ 17 µM. Blood 

plasma components have been separated by many different techniques, ranging from native 
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electrophoresis and various kinds of chromatography. The so far identified Cu-binding 

components (proteins and small Cu-carriers) have been recently listed by M.C. Linder.30 Three are 

the most important proteins that account for at least 90% of the total Cu-binding components, i.e. 

Ceruloplasmin (Cp), Albumin (HSA) and α-2-macroglobulin (α2M).31  

- Cp is the main Cu-binding glycoprotein in human blood plasma. ApoCp binds tightly 6 Cu 

atoms with a mixture of His, Cys and Met residues, in a compact 3-D structure.1,32,33 The 

biosynthesis of holoCp occurs predominantly in the liver. Thus, phase II of Cu distribution is 

mostly marked by the excretion of holoCp into the blood. Cu bound to Cp is not easily 

exchangeable under physiological conditions, as buried into its structure. Using cultured 

human and mouse cells, incubated with purified human and mouse 64Cu-radiolabeled Cp, 

respectively, it has been shown that the interaction with the cell surface makes possible holoCp 

conversion to apoCp, mediated by Cu transporter 1 (Ctr1), the main protein responsible for Cu 

import into cells.34,35 Nevertheless, the importance of this interaction is still controversial.  

- HSA is the most abundant protein in human blood plasma (typical concentration ~ 0.6 mM).36 

However, in the presence of Cp, only a small fraction (~ 1%, i.e. 6 µM) of it normally carries 

Cu.37 It is composed of three homologous domains, containing two Cu(II) binding sites. The 

strongest binding site occurs at the N-terminus, where the sequence Asp-Ala-His-Lys provides 

the canonical amino terminal Cu, Ni (ATCUN) coordination sequence that binds Cu with 0.1 

pM affinity at pH 7.4.38 Like for Cp, studies on cell cultures showed that radiolabeled 64Cu(II) 

loaded to HSA can be acquired by cells.34,39 Moreover, recently, E. Stefaniak et al., 

spectroscopically demonstrated, using model peptides, that Ctr1 can collect Cu(II) from 

HSA.40  

- α2M is the third protein that has been found to tightly bind Cu in human blood plasma.34 It is a 

tetrameric protein with 2 Cu binding sites, whose location is unknown yet.41 α2M was shown 

to bind Cu tightly even in the presence of HSA, thus suggesting a greater affinity for Cu.42 

Hence, α2M was shown to exchange 64Cu(II) with HSA and in vitro both α2M and HSA to 

slowly release Cu to various buffers, even in the presence of high concentrations of His.43,44 

Thus, unlike Cp, the two proteins are considered to be part of the exchangeable Cu pool, which 

is present in the portal venous system, before entering the liver (Phase I).  
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1.2.2 Cu import and distribution intracellularly  

The initial step in the intracellular Cu handling is its acquisition from the extracellular 

environment and transport across the plasma membrane. Then, Cu is distributed in several cells’ 

compartments, via different pathways. The exact mechanisms of these processes are yet far from 

clear. A schematic illustration of the so far known major routes of intracellular Cu trafficking is 

presented in Fig 4. 

 

Fig 4  - Intracellular Cu trafficking after Cu uptake from the extracellular carriers via Ctr1/(Ctr2). Upon Cu entry, Cu-

chaperones (CCS, Cox17 and Atox1) distribute it to different locations (i.e. cytosol, mitochondria or lumen of the 

Trans Golgi Network, TGN) for metalation of Cu-dependent enzymes. The GSH pool, present at mM concentrations, 

might transiently bind to Cu(I), as it exits the membrane, and facilitate Cu-dissociation from Ctr1/2. MTs may serve 

as a storage site, receiving excess of Cu directly from Ctr1 or via GSH. 

To date, it is know that Cu enters the cell via the high-affinity mammalian Cu-transporter, Ctr1.45,46 

Ctr1 contains three transmembrane domains that homotrimerizes to form a narrow pore that 

widens on the intracellular side47,48, and multiple Cu-binding sites (predominantly Met, His and 

Cys) with increasing affinity gradient from the entrance (extracellular environment) to the exit 

(intracellular environment).49,50 A recent x-ray structure of the transmembrane domain of Ctr1 

from Salmo salar, determined by Ren et al., revealed that the selectivity filter of Ctr1 is comprised 

by two layers of Met triads, which coordinate two Cu(I) ions close to the extracellular entrance.48  

Ctr2 is a second possible mammalian Cu-transporter, mostly detected in lysosomes and late 

endosomes, but also at the plasma membrane.51,52 Recently, Wezynfeld et al., using model peptides 

of Ctr2, suggested a maximal complementary role between the two transporters in Cu import, 

based on the 4 orders of magnitude lower affinity of Cu(II) to the extracellular N-terminal domain 

of Ctr2, compared to that reported for Ctr1.53  
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From Ctr1/(Ctr2), Cu is then distributed into at least three independent pathways via binding to 

chaperones. Chaperones are small intracellular proteins with high selectivity and affinity for Cu(I), 

that protect Cu along the pathway from the entry into the cell, through the cytoplasm, to its 

intracellular targets, thus preventing unwanted and dangerous oxidizing reactions.54  

Variations in chaperones levels (down-regulation or over-expression) have been demonstrated to 

have little influence on the initial rate of Cu uptake, thus suggesting that a direct protein-protein 

interaction (Ctr1/(Ctr2)-metallochaperone) would not be essential for Cu uptake.55 The GSH pool, 

present at mM concentrations, might transiently bind to Cu(I), as it exits the membrane, thus 

facilitating Cu-dissociation from Ctr1/2.56  

Other Cys-rich proteins of low molecular weight, named Metallothioneins (MTs), occur 

intracellularly and bind Cu(I) with the highest binding affinity (Kd (MT) ~ 10-19 M)57, even though 

for kinetic reasons they cannot remove Cu from enzymes. They may play special roles in the 

regulation of cellular Cu(I) distribution, especially under conditions of cellular Cu excess (a further 

discussion will be given in 1.5.1 Mammalian Metallothioneins (MTs)).58  

Three are the Cu chaperones which have been identified so far in humans, responsible for shuttling 

Cu to various intracellular destinations, i.e. Cu-dependent enzymes in the cytosol, mitochondria, 

and the lumen of secretory pathway: 

- CCS: it shuttles Cu to the radical scavenging enzyme, superoxide dismutase 1 (SOD1), mainly 

present in the cytosol. It is a multi-domain protein consisting of: i) domain I (with a Cu(I)-

binding site, containing a Met-X-Cys-X-Ser-Cys motif), proposed to require Cu(I) from Ctr1 

or GSH59; ii) domain II, required for the heterodimerization with SOD1, that facilitates Cu 

insertion into SOD1; iii) a C-terminal tail (with a Cys-x-Cys motif) which mediates Cu(I) 

transfer from domain I to SOD1 and simultaneously the formation of a disulfide bond within 

SOD1, which helps in the stabilization of the enzyme.60–62 

- Cox17: it is involved in Cu transfer to Sco1 and Cox11, which in turn donate Cu to the CuB 

and CuA sites of cytochrome c oxidase (CcO). CcO is the terminal oxidase of the respiratory 

chain, located within the mitochondrial inner membrane.63 Cox17 is a 62-residue protein, and 

contains 6 Cys residues, two of which (in position C22 and C23) have been proposed to be 

involved in Cu(I) binding, while the others constitute disulfide bridges.64 Sco1 contain two 

essential Cys residues in a fully conserved Cys-X-X-X-Cys metal-binding motif, while Cox11 

is known to form a dimer, where each monomer coordinates one Cu(I) via three Cys residues. 

Interactions of both Sco1 and Cox11 with Cox17 are likely to occur via complementary 

electrostatic surfaces, permitting Cu(I) transfer.11,65  

- Atox1: it delivers Cu(I) to the N-terminus of the Cu(I)-transporting ATPases, ATP7A and 

ATP7B, located in the membranes of trans-Golgi network (TGN), and secretory vesicles. By 

transferring Cu(I) to ATPases, Atox1 assists the metalation of the downstream Cu-dependent 

enzymes, listed in Table 1, located in the lumen of secretory pathway which are then secreted 

in the extracellular environment.10,66 Atox1 features the classic ferredoxin βαββαβ-fold with a 

Met-X-Cys-X-X-Cys motif at the N-terminus edge of α1, acting as a high affinity Cu(I)-binding 

site.67 With this Cu(I)-site, Atox1 directly interact with the Cu(I) binding domains of two Cu 

pumps, ATP7A/B, containing six copies of the Cys-X-X-Cys motif.11,68  
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1.3 Breakdown of Cu homeostasis: interconnection with human diseases 

As seen in the previous paragraphs, a proper regulation of Cu metabolism is critical for our 

health. On the other hand, its mis-regulation can be lethal. The importance of keeping a tight 

regulation of Cu homeostasis, ensuring adequate Cu supplies, without any toxic effect, can be seen 

in the devastating consequences of several human pathologies associated with its breakdown.3,69 

Cu-related pathologies in organs, tissues and cells generally have their molecular foundations in 

defective transport and storage systems that interrupt Cu homeostasis. 

Defects in Cu homeostasis are directly responsible for heritable human disorders, among which 

Wilson’s and Menkes diseases (WD, MD), respectively related to a condition of Cu-overload or 

deficiency. Besides, alterations in Cu balance have been linked, but not causally associated, to 

other pathological states, including several neurodegenerative diseases (e.g. Alzheimer’s, 

Parkinson’s, prion diseases (AD, PD, PrD)), cancer, rheumatoid arthritis, gastrointestinal ulcers, 

epilepsy, diabetes. In the next paragraphs, the pathological role of Cu in WD and MD, as well as 

in AD and Cancer will be discussed. 

1.3.1 Genetic disorders: Wilson’s and Menkes diseases 

The two best studied disorders in Cu regulation, with a genetic inherited component, are 

Wilson’s and Menkes diseases: 

- Wilson’s disease (WD): it is an autosomal recessive disorder characterized by toxic 

accumulation of Cu primarily in the liver and subsequently in the brain and other organs. The 

causative gene ATP7B, encodes for a Cu(I)-transporting P-type ATPase, ATP7B, expressed 

most abundantly in the liver (Fig 3), where disruption of the protein function prevents the 

loading of apoCp with Cu to form holoCp (Cp biosynthesis) and elimination of excess of Cu 

from hepatocyte into the bile. Although missense mutations in ATP7B gene are most frequent, 

deletions, insertions, nonsense, and splice site mutations all occur.70 In 40 to 50% of individuals 

with WD, hepatic dysfunction is the initial clinical manifestation of the disease. Besides, Cu 

accumulation in the brain can lead to neurological and psychiatric abnormalities like tremors, 

dystonia, abnormal behavior, personality changes and depression and ophthalmological 

manifestations such as the Kayser-Fleischer ring.71,72  

- Menkes disease (MD): it is a X-linked disorder of impaired Cu absorption characterized by 

low Cu levels in the blood, affecting the metabolism of most major internal organs and 

ultimately leading to a severe Cu deficiency in the brain. The primary genetic defect occurs in 

the ATP7A gene, which encodes for the transmembrane protein ATP7A, expressed in most 

tissues, other than the liver. As ATP7A protein helps in controlling the absorption of Cu from 

food, as previously described in 1.2.1 Cu absorption and trafficking in the blood, its gene 

modification results in Cu accumulation in intestinal cells. The direct consequence is a reduced 

activity of the numerous Cu-dependent enzymes. Onset of the disease starts in utero and are 

fully manifested during the perinatal period (mainly in boys, because it is X linked). Patients 

affected with MD demonstrate mental retardation and nervous system deterioration, failure to 

thrive, coarse hair, and connective tissue abnormalities and usually do not survive to see their 

third birthday.12,73,74 
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1.3.2 Correlation with Alzheimer’s diseases 

Another disease in which a mis-regulation of Cu homeostasis (together with that of Zn, Fe) 

seems to play a pivotal role is AD.75,76 This is supported by a multitude of in vitro and in vivo 

studies.77–79 Nevertheless, the link between AD progression and Cu imbalance is still controversial.  

AD is the most common form of neurodegenerative disease, currently affecting 47 million people 

worldwide, estimated to increase to 75 million by 2030 and to 131.5 by 2050.80,81 Despite many 

years of intense research and great progresses in the knowledge of the molecular pathogenesis of 

AD, currently no drugs are available to cure or at least to stop the progression of the disease.82 

95 % of all AD cases are sporadic (SAD), but inherited forms of the disease also exist (familial 

AD, FAD). FAD is mainly due to mutations in three major genes, i.e. amyloid precursor protein 

(APP) gene, presenilin1 (PSEN1) gene and presenilin 2 (PSEN2) gene. In contrast, many genetic 

and environmental factors may contribute to determining the SAD form.83 

Patients progressively lose their cognitive function and gradually their short- and long-term 

memory, develop psychiatric disorders and die. Recent studies have shown that the pathology of 

the disease occurs several years before the onset of clinical symptoms, thus making it difficult to 

detect at an early stage.84  

Although the pathophysiology of AD is extremely complex and heterogeneous, one of the 

characteristic hallmarks of the brains of people with AD is the buildup of senile (or amyloid) 

plaques, in the extracellular space of neurons. These proteinaceous deposits are composed of 

insoluble aggregates of the intrinsically disordered peptide Amyloid-β (Aβ).85 According to the 

amyloid cascade hypothesis, formulated in the early 1990s, in AD brains, Aβ peptides aggregate 

first into small soluble oligomers and then in fibrils, consisting of repeating substructures of two 

layers of intermolecular β-sheets that run in the direction of the fiber axis. Fibrils clump together 

and finally form plaques.86,87 Diffused smaller oligomeric aggregates are nowadays suggested to 

have higher neurotoxicity than the fully-grown amyloid fibrils.88,89  

Aβ peptides are also present in heathy brains but in soluble and monomeric form. In this form they 

seem to be indispensable for brain physiology (e.g. for modulation of synaptic function, facilitation 

of neuronal growth), as their removal or reduction also causes dementia.90  

Aβ peptides are proteolytic fragments formed during the amyloidogenic processing pathway of 

hydrolytic degradation of the transmembrane precursor protein (APP) (see Fig 5), whose 

physiological function is only partially understood.91 The cleavage through this pathway 

(accounting for 10-20 %) requires two endoproteases, called β- and γ-secretases, which act in 

sequence and respectively cut at the N and C termini of Aβ. First β-secretase cleaves APP to secrete 

the large product sAPPβ, and CTFβ, which remains membrane bound. Then, CTFβ is cleaved by 

γ-secretase at multiple sites to produce a vast population of Aβ fragments, which undertake further 

hydrolytic and post-translational modifications.92 The most abundant Aβ peptides identified so far 

in the brains of both normal and AD affected people are the full length Aβ1-x (x = 40, 42) and the 

N-truncated peptide, Aβ4-x (x = 42): Aβ4−42 ~ Aβ1−42  > Aβ1−40 ≫ other Aβ peptides.93–95  
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Fig 5 - Cu involvement in the amyloid cascade hypothesis. 

On top of this, there is a large body of evidence that brains of AD victims are exposed to oxidative 

stress during the course of the disease. This is supported by high levels of oxidation of surrounding 

biomolecules, i.e. proteins, lipids, nuclear and mitochondrial DNA.76,96 

Elevated amounts of Cu have been found in senile plaques (0.4 mM) and Raman studies indicate 

that Cu ions in plaques can coordinate Aβ peptides.97–99 In addition, Cu ions have been detected in 

higher concentration in the CNS and in the region of hippocampus, while intra-neuronally Cu(I) 

deficiency has been reported.98 Consequently, a mis-regulation in Cu-homeostasis might play a 

key role and be a key factor in AD. It has been suggested that Cu-coordination to Aβ peptides, 

with formation of Cu-Aβ complexes, can contribute to AD via induced structural changes and 

formation of more neurotoxic soluble oligomers and/or via catalyzing the production of ROS. Cu-

complexes of Aβ1-40/42 peptides have been implicated in both processes.100,101 On the other hand, 

in vitro studies have shown that Cu(II)-Aβ4-42 complex is completely inactive in ROS production 

in the presence of AscH-, thus suggesting its involvement only in  the aggregation process.102 Aβ4-

42 peptide has been shown to aggregate faster than Aβ1−42, forming toxic oligomers. Thus the N-

terminal truncation is believed to render Aβ1-42 peptides more neurotoxic than Aβ1-40/42.
103 

However, even though some studies have reported the effects of Cu(II) on the aggregation of some 

truncated Aβ peptides104, the combination of Cu(II) and Aβ4−42  has not been studied rigorously 

yet. Only preliminary results from Stefaniak et al., carried out with the C-truncated Aβ4−40 peptide, 

are available, which suggest that Cu(II) ions slightly elongate the oligomer formation phase, 

probably by enhancing the oligomers stability, hence reducing fibril formation.95   

As previously stated, a mis-regulation of other metal ions has been observed in AD. In particular 

for Zn, the link between Zn(II) dyshomeostasis and extracellular Aβ deposition has been 

established. Zn(II) ions have been found to accumulate in senile plaques at 1 mM concentration.97  

However, like for Cu, the role of Zn in the etiology of AD is not completely understood yet. 
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Zn(II) ions are redox-inert and thus do not participate directly in ROS production. Several studies 

have reported their involvement in the aggregation process of Aβ peptides, with rapid formation 

of amyloid fibrils.105,106 Zn(II)-induced toxicity in vitro and vivo seems to be highly concentration 

dependent, i.e. only to occur at high concentration. A growing number of reports indicate that 

Zn(II) ions, at lower concentration (stoichiometric amount Zn(II):Aβ1-40/42) lower Aβ-mediated 

cytotoxicity, thus having a neuroprotective role. Garai et al. observed reduced Aβ toxicity in the 

presence of Zn(II) by selectively precipitating aggregation intermediates. Zn(II) ions were found 

to destabilize soluble oligomeric intermediates and accelerate their aggregation kinetics.107 

Moreover, more recently, Zhang et al. showed that Aβ1-42 aggregates found in the presence of 

Zn(II) were smaller in size, non-fibrillary and showed less β-sheet structures than aggregates 

formed in the absence of Zn(II).108,109 

Throughout the years, the coordination of Cu(II), Cu(I) and Zn(II) ions to Aβ peptides (Aβ1-x and 

Aβ4-x) in the monomeric form has been fully studied, even though there is still debate for some 

coordination modes. Here below, only the so far most accepted coordination modes, which have 

reached a consensus from many studies, will be discussed.  

The C-terminally amidated Aβx-16 peptides have become appropriate models for studying the 

interaction with Cu(II), Cu(I) and Zn(II) ions, as they contain all the high affinity metal binding 

sites (except Met35, which is not known to participate in any complex with Aβ peptides). Besides, 

they have the advantages of having a higher solubility (mM range) and to maintain the monomeric 

state, hence allowing physicochemical studies.  

Fig 6 shows the main coordination modes of Aβ1-x and Aβ4-x peptides for Cu(II), Cu(I) and Zn(II), 

at physiological pH: 

- Aβ1-x: two different binding modes can be found for Cu(II), at physiological pH,  known as 

component I (favored at lower pH) and component II (favored at higher pH).  They both present 

a distorted square-planar geometry and the coordination through the terminal amine of the 

Asp1 residue. In Component I, Cu(II) is also bound through the carbonyl from the Asp1-Ala2 

amide bond, and the imidazole nitrogen atoms (Nim) from two histidine residues, His6 and 

His13 or His14 in equilibrium. In component II, the nitrogen atom from the Asp1-Ala2 amide 

bond is deprotonated and binds to Cu(II), together with the CO from the Ala2-Glu3 peptide 

bond and one imidazole nitrogen atom (Nim) with no preference.110–112 The kinetic lability of 

His residues, makes Cu(II)-Aβ1-x complexes prone to form ternary adducts. Until now, two 

types of ternary complexes have been described in the literature: i) with small monodentate 

ligands, such as buffers, which occupy only one site around the Cu(II) center113 or ii) with 

bigger tetradentate ligands, such as 2-(dimethylamino)-methyl-8-hydroxyquinoline), which 

occupy three sites around Cu(II).114,115  

Cu(I) is bound in a linear fashion by the Nim of His6, His13 and His14 in an equilibrium, in 

which His13 and His14 seem to be the preferred ligands.116,117  

According to a recent study performed by Alies et al., by means of 1H-NMR and X-ray 

absorption, Zn(II) is bound to Aβ1-x in a tetrahedral binding with two His residues (His6 and 

His13 or His14) and two carboxylate residues (Glu11 and Asp1 or Glu3 or Asp7, with a 

preference for Asp1).118 

- Aβ4-x: Cu(II) binding sites in Aβ4-x are found within the first three AA. This is due to the 

presence of the Phe-Arg-His sequence, at the N-terminus, corresponding to the specific Cu(II) 
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binding motif, known as ATCUN (amino terminal Cu,Ni-motif), characterized by an His in 3rd 

position. Hence, Aβ4-x binds Cu(II) with the N-terminal amine, the two deprotonated N of the 

amide (between X-Z and Z-H), and the N(Pi) of the imidazole,  forming a 4N complex with a 

square planar geometry. 95,119,120  

 

Fig 6 - Main coordination modes of Aβ1-x and Aβ4-x for Cu(II), Cu(I) and Zn(II), at physiological pH . 

Conditional binding constants at physiological pH (cK7.4) of the above described complexes have 

been determined, using a number of methodologies, such as potentiometry, calorimetry, and 

spectroscopic techniques. Values are gathered together in Table 2. 

Table 2 - Conditional binding constants at pH 7.4 (cK7.4) for the highest affinity binding sites of Aβ1-x and Aβ4-x. 

Peptide Cu(II) Cu(I) Zn(II) 

Aβ1-x 109 - 1010 M−1 107 - 1010 M−1 (121, 122) 105 M−1 (123, 124) 

Aβ4-x 3 × 1014 M−1 (102) - -  

 

1.3.3 Correlation with Cancer 

Mis-regulation of Cu metabolism has long been known to occur in cancer cells.125 

Numerous reports have demonstrated increased Cu levels in several tumor cell types and blood 

serum of cancer patients.126,127 Elevated Cu levels have been observed in a plethora of cancers, 

including stage I multiple myeloma128, acute lymphoblastic leukemia129, lung cancer130, reticulum 

cell sarcoma, bronchogenic and laryngeal squamous cell carcinomas, cervical, breast, stomach.131 

Nevertheless, larger scale studies are needed to validate many other reports on other cancer types. 

Weather Cu dyshomeostasis is cause or a consequence of cancer, like for AD, is still a matter of 

debate, as no clear associations between Cu levels and cancer incidence have been found so far. 

Wilde type mice have been exposed to 20 mM CuSO4 in drinking water for up to 2 years, but no 
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increase in cancer incidence was registered, suggesting a non-carcinogenic role of Cu.132 However, 

it was observed that such Cu concentration is unlikely to increase systemic Cu levels in mice, as 

they are able to eliminate surplus of Cu.133 Thus, a more systemic controlled study would be 

required. 

Data strongly suggest that increased Cu levels are involved in cancer development and 

progression, inducing i) cell proliferation ii) ROS production, with consequent induction of a state 

of oxidative stress and inflammation, iii) angiogenesis and iv) metastasis.131,134,135  

Different studies have shown a relationship between expression of Cu-binding 

proteins/chaperones and cell proliferation. Expression of Cu-transporters such as Ctr1, Atox1, 

ATP7B, Cox 17 was found to be up-regulated in breast cancer, suggesting an increase Cu flow, 

and consequent Cu delivery to Cu-dependent enzymes.136 Besides, Atox1 was proposed to act as 

a Cu-dependent transcription factor, that when activated by Cu, undergoes nuclear translocation, 

DNA binding, and transactivation, thereby contributing to cell proliferation.137 On top of this, Cu 

may be involved in RAS-RAF-MEK-ERK signaling cascade, which is required for cancer 

development, as it may bind to the protein MEK1 (characterized by two Cu(II) binding sites), 

stimulating its interaction with ERK.138   

However, one of the main processes by which Cu may enhance tumor growing is angiogenesis. 

Angiogenesis involves the migration, proliferation and differentiation of endothelial cells to form 

new blood vessels. This process is utilized by tumors to increase the supply of O2 and nutrients, 

hence supporting their growth to a diameter larger than 1-2 millimeters.139 The process is under 

control of multiple angiogenic stimulating factors. The molecular pathways that Cu may influence 

to induce angiogenesis are varied. Different studies have suggested that it may affect the 

angiogenic signaling cascade, both by binding to the proteins involved in the cascade and by 

regulating their expression/release. For instance, Cu has been found to activate angiogenic factors 

like vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), 

transforming growth factor β (TGFβ), and cytokines (interleukin (IL-1, -6 and -8).140 In addition, 

it has been shown to induce the induction of hypoxia-inducible factor 1 (HIF-1), which in turn 

regulate the expression of several angiogenic genes, such as Cp. Cp binds Cu and induces the 

formation of new blood vessels.141 

As well as, a growing number of evidences support Cu direct influence in the ability of cancer 

cells to invade surrounding tissues and to spread to distant organs (metastasis). For instance, the 

activities of both lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) proteins, which contribute 

to remodeling the extracellular matrix and to establishing a pre-metastatic niche, require Cu.142,143 

Additionally, more recently, the Cu-dependent protein MEMO, which requires Cu for its oxidase 

activity, was observed to play a significant role in the migratory capacity of breast cancer cells.144    
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1.4 Targeting Cu dysmetabolism: chemical approaches for Cu manipulation in 

medicine 

Considering the pivotal role played by Cu dysmetabolism in the progression of a range of 

pathological conditions (as seen previously), a variety of chemical approaches and new ligands 

(exogenous compounds), that aim to target and manipulate Cu homeostasis, have been developed 

and explored since the last century.145,146  

Generally, manipulation of the distribution of metal ions in biological systems, in a specific way, 

is a very difficult process, first of all because of the challenge of achieving metal binding 

selectivity. Selectivity is a measure of the ligand affinity for a particular metal ion over others 

(defined as the ratio of the affinity values of a ligand for two different metal ions). For instance, 

when one wants to have a specific Cu chelator to treat Cu-overload conditions, the risk is to bind 

and affect the concentration of another essential metal, such as Zn or Fe, thus inducing deficiencies 

of the latter. On top of this, it is extremely complicated to model and predict the metabolic stability 

and pharmacokinetics of a metal-complex, considering the variety of physiological conditions (e.g. 

pH) and all the biological contributors that might influence the reactivity and distribution 

characteristics of all parts of the coordination complex.  

Cu-binding ligands that have been developed over the years can be split into three categories:  

- traditional Cu-ligands (chelators), originally introduced and exploit for sequestration and 

elimination of endogenous Cu from the body in case of Cu-overload conditions (chelation 

therapy). This type of approach is one of treatment option currently in use for Wilson’s disease. 

Some of the available Cu chelators are Penicillamine (first compound already introduced in 

1956 by Walshe)147, Trientine, and Tetrathiomolybdate. These chelating agents bind directly 

Cu in blood and tissues, thus preventing its accumulation, and facilitate its excretion via the 

stools and urine (Fig 7a).71 

- Cu-ligands able to attenuate and disrupt specific and abnormal Cu-peptide/protein interactions 

(metal protein attenuating compounds, MPACs) additionally enabling Cu-redistribution with 

consequent normalization of its homeostasis. This type of compounds are supposed to work as 

metallophores, forming neutral and lipophilic complexes able to cross biological membranes 

(Fig 7b).148 Different groups, have attempt to rationally design this type of binding agents, to 

be used as therapeutics to target the pathogenic Cu-Aβ peptides interaction in AD. With regard 

to this type of interaction, the ligands have to possess: i) an higher affinity for Cu ions than that 

of Aβ peptides (see Table 2), ii) Cu over Zn selectivity much higher than that of Aβ peptides 

(as Zn ions are much more concentrated in the synaptic cleft of neurons)149 and iii) ability to 

cross the blood-brain barrier (BBB). Among the family of ligands developed in this context 

there are hydroxy- and aminoquinoline ligands and derivatives, tetraazamacrocycles, 

aminophenol-based ligands, aminopyridine-based ligands, phosphines and 

bis(thiosemicarbazonato) ligands (examples for each family are shown in Fig 7b).150  

- Cu pro-oxidant ligands that enhance Cu-reactivity by forming of Cu-complex that promote Cu-

redox cycling and generation of ROS, i.e. a catalytic metallodrug. In this case, the ligand can 

be injected already in form of Cu-complex, delivering exogenous Cu (ionophore), which exists 

extracellularly and then enters the cell, or it is applied as free ligand and is then able to pick up 

the metal inside the cell, thus forming in-situ the Cu-complex. This type of approach is of 

particular interest and has been considered for the development of anti-tumor Cu-based drugs. 
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Examples of select Cu-chelators are thiosemicarbazonato and bis-thiosemicarbazonato ligands, 

dithiocarbamate and analogs, phenanthrolines, bipyridines, which display antineoplastic 

activity in vitro and in mouse models.134,151,152   

 

Fig 7 - Schematic representation of the chemical approaches for Cu-manipulation exploit in medicine. 
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1.5 The interplay between thiols containing biomolecules and medicinal Cu-

complexes  

Among the different factors that can influence the biological outcome of medicinal Cu-

complex (both pathophysiological and/or therapeutic metallodrug), a key aspect to consider is its 

kinetic and thermodynamic stability in both ligand and metal exchange reactions, with potential 

physiological competitors in the biological environment. In this context, thiols containing 

biomolecules are of significant importance and could strongly impact the fate of a medicinal Cu-

complex, as i) they have the potential to reduce Cu(II)-complexes and ii) are good chelators for 

Cu(I). In the next paragraphs, the properties of a group of metalloproteins, named Mammalian 

Metallothioneins (MTs), characterized by a high Cys-content, as well as those of low molecular 

weight thiol(ate) containing biomolecules, e.g. Glutathione (GSH) and Cysteine (Cys), will be 

considered.  

1.5.1 Mammalian Metallothioneins (MTs)  

a. General introduction 

Mammalian MTs are low molecular weight proteins of about 7 KDa, with a characteristic 

amino acid composition, i.e. high Cys-content (~ 30%) and no aromatic amino acids (Fig 8), and 

a high metal ion content, occurring both intracellularly ([MT]in = 3-100 𝜇M) and extracellularly 

([MT]ex = ?).58,153  

MT was first discovered as Cd(II)-containing protein in horse kidney, by Margoshes and Vallee, 

more than 60 years ago154. Quickly, further studies revealed that the most biologically relevant 

metal ions were Zn(II) and Cu(I). Only under environmental exposure, MTs can bind non-essential 

toxic metal ions, in particular Cd(II). These metal ions are coordinated through the thiolate sulfur 

of the Cys residues, resulting in the formation of two thiolates clusters, respectively in the β- and 

α-domains.  

Mammalian MTs are present in four major isoforms, designated MT-1 to MT-4. While MT-1 and 

MT-2 are expressed in almost all tissues, MT-3 and MT-4 appear to be more tissue specific. MT-

3 expression is primarily confined to the central nervous system (CNS), whereas MT-4 seems to 

be expressed exclusively in cornified and stratified squamous epithelia.153  

The expression of MT-1 and MT-2 is under the control of the metal response element binding 

transcription factor 1 (MTF1).155,156 Its activation depends on Zn, i.e. if the Zn concentration rises 

in the cell, Zn binds to MTF1 (which contains 6 Zn-fingers), and induces the transcription of MT 

genes as well as several Zn transporters. The de novo synthesized apo-MT (thionein, T) binds Zn 

in the cell until the Zn concentration drops to the point that Zn is released from at least 2 of the 6 

zinc fingers present in MTF1. On the other hand, MT-3 and MT-4 seem to be relatively 

unresponsive to inducers like metals and a variety of chemical and physical conditions, but to be 

more tissue-specific. MT-4 isoform is the one less studied, whereas MT-3 is highly investigated 

as it possesses biological functions not shared by MT-1/MT-2/MT-4, i.e. extracellular growth 

inhibitory activity in neuronal primary cultures (attributed to the 5TCPCP9 motif157) and 

involvement in neurodegenerative diseases.158  

Nevertheless, the sequences are very similar, consisting of 60-68 amino acids and a conserved 

array of 20 Cys (Fig 8). When compared to the canonical MT-1 and MT-2 isoforms, MT-3 
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sequence contains 7 additional amino acids: a Thr insert at position 5 and a Glu/Ala-rich insert 

towards the C-terminus. In addition, it contains the conserved 6CPCP9 motif, which is absent in all 

other members of the MT family.159 Instead, MT-4 sequence has 62 amino acids with an insert of 

Glu at position 5.  

 

Fig 8 - Amino acid sequences of human MT isoforms (numbering referring to MT-3). Cys residues are highlighted in 

red, the two inserts of MT-3 compared to MT-1/MT-2 in green. The boundary between the α- and β-domain is between 

amino acid 31 and 32. 

b. Coordination chemistry  

Metal ion content and selectivity: MT metalation state seems to be isoform specific. 

Under normal physiological conditions, MT-1 and MT-2 isoforms are isolated as homometallic 

species, containing seven Zn(II) ions (although some Zn(II) can be easily lost).153,160 Only under 

exposure to high concentrations of other metals, i.e. Cd(II) or Cu(I), these can become the 

dominant ones. On the contrary, MT-3 as isolated from the human brain, presents a mixed Zn(II) 

and Cu(I) content, with about 4 Cu(I) ions in the N-terminal β-domain and 3-4 Zn(II) ions in the 

C-terminal α-domain, Cu(I)4Zn(II)3/4-MT-3.161,162 Whether Cu(I) is bound during purification or 

is present natively is still unclear. According to a classification suggested by Capdevila and co-

workers, MT-3 has a more Cu(I)-binding character compared to MT-1/MT-2, thus suggesting that 

Cu(I) is present natively.163 This would be in agreement with the unique function of MT-3 in the 

CNS in modulating neuronal Zn and Cu metabolism. In general, the preference for discrete species, 

with distinct stoichiometries for Cu(I)-binding, arise from cooperativity, due to the formation of 

Cu(I)4/6–thiolate clusters. In vitro, formation of MTs species with higher Cu(I) stoichiometry has 

been observed, i.e. Cu(I)8, Cu(I)10, up to Cu(I)12 in solution163,164, and up to Cu(I)20 only in gas 

phase165, obtained via thionein metalation or Cu(I) titration in Cu(I)4Zn(II)4MT-3, under reducing 

conditions. Formation of these species, in vivo, seems to be limited only to pathological conditions 

of Cu(I) overload. 166 

For Zn(II) (and also Cd(II)) seven binding sites have been classically described both for MT-1/MT-

2 (both for isolated and in vitro reconstituted forms) and MT-3, although less well defined. In early 

studies it was shown that the seven Zn(II) ions bind to thionein with  the same affinity, in the range 

of 10-12-10-13 M, in terms of average Kd.
167 More recent investigations i) from Krezel and Maret on 

MT-2,with the Zn sensitive fluorescent probes FluoZin-3 and RhodZin-3, and ii) Carpenter et al. 

on MT-3, with ITC experiments, using EDTA as a competitor, revealed that not all the seven Zn(II) 

ions bind to MT-2/MT-3 with the same stability constant.168,169 Conditional Kd calculated on MT-

2 are reported in Table 3. 
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Table 3 - Conditional dissociation constants (at pH 7.4) for Zn(II)/Cd(II)/Cu(I) sites in MT-2.  

Me-MT-2 complex Kd (M) Reference  

Zn(II)7MT-2 (1st-4th sites) 1.6 × 10-12 168 

Zn(II)7MT-2 (5th site) 3.5 × 10-11 168 

Zn(II)7MT-2 (6th site) 1.1 × 10-10 168 

Zn(II)7MT-2 (7th site) 2.0 × 10-8 168 

Cd(II)7MT-2 5 × 10-15 168 

Cu(I)4Zn(II)4MT-2  4.3 × 10-19 170 

From a thermodynamic point of view, all MTs prefer Cu(I) over Zn(II). The MTs selectivity is 

directly linked to the HSAB theory (see 1.1.2 Chemical properties of Cu important in biology), 

i.e. thiolates bind preferentially to Cu(I) > Cd(II) > Zn(II), according to the softness of the overall 

metal ions. Nevertheless, MT bind Zn(II) in vivo, because Zn(II) is more bioavailable than Cu(I).  

Overall, whether MTs bind Zn(II) and/or Cu(I) in vivo depends on the difference in affinity for 

Cu(I) over Zn(II) and on the bioavailability of these metals, which is influenced by its localization 

and physiological conditions. This means that although both MT-1/MT–2 and MT-3 preferentially 

bind Cu(I) over Zn(II), the difference in affinity for Cu(I) over Zn(II) is larger for MT-3 than MT-

1/MT–2 (estimated Kd from Cu(I)4Zn(II)4-MT-3 ~ 10-19)171, and hence in vivo Cu(I)-binding to 

MT-3 is more likely compared to that of MT-1/MT–2, under normal physiological conditions. 

Moreover, depending on the Zn(II) and Cu(I) availability, the metal ion content can be different, 

not only with regard to the nature of the metal but also with regard to stoichiometry, as the affinities 

of each site are, at least for Zn(II), not the same. 

On top of this, also isoform-specific key non-coordinating residues have been recently identified 

to play a significant role in controlling the Cu(I)/Zn(II) selectivity in MT-2 and MT-3 metal 

clusters, giving rise to the corresponding Zn(II)-thionein character to the C-terminal β-domain of 

MT-2 and increasing the Cu(I)-affinity in the N-terminal β-domain of MT-3.170  

Structure: in the apo form, the protein is intrinsically disordered, thus making challenging 

structural studies on it. Upon metal ion binding, MTs acquire a defined 3D structure. Most of the 

current knowledge regarding the structural properties of MTs is based on NMR studies.172,173 Only 

one X-ray structure of MT-2 containing Cd(II) and Zn(II) has been solved but not from humans.174 

For NMR analyses, Zn(II) is usually replaced by Cd(II), as Cd(II)-MTs possess better 

spectroscopic properties (i.e. isotopes with a nuclear spin I = ½), a less dynamic nature and higher 

protein affinity. Overall, the two molecules have been demonstrated to be structurally similar, both 

in terms of cluster geometry and overall shape.175   

The MT-1/MT–2 structure containing Zn(II) or Cd(II) is characterized by two separated domains 

in the form of a dumbbell, linked by a flexible region. Each domain contains a metal-thiolate 

cluster, one with 3 metal ions, Me(II)3-S9, in the N-terminal β-domain, and the other containing 4 

metal ions, Me(II)4-Cys11, in the C-terminal α-domain (Fig 9). Therefore, all the 20 conserved 

cysteines are involved in metal coordination, forming a tetrahedral geometry and a tetrathiolate 

environment around each metal ion, where sulfur donors are bound to one or two (bridging donors) 

metal ions.  
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Fig 9 - Representation of the divalent metal-thiolate clusters in mammalian MTs as exemplified by the structure of 

human Zn(II)7MT-2. Left: Me(II)3-CysS9 cluster in the N-terminal β-domain; right: Me(II)4-CysS11 cluster in the C-

terminal α-domain. Me(II) (goldspheres) is either Zn(II) or Cd(II), and S (yellow spheres) represents the sulphur of 

the thiolate function from Cys residues (side chains in green).  

Besides, Zn(II)-binding to MT-1/MT-2 has been recently demonstrated to follow a non-

cooperative pathway at physiological pH, in which the formation of the Zn(II)-thiolate clusters is 

preceded  by the formation of individual coordination sites, i.e. bead-like structures, where Zn(II) 

is only bound terminally to Cys thiolates.176,177 On the other hand, Cd(II) binding to MT-1/MT-2 

seems to be cooperative, also in the β-cluster, although the coordination dynamics in this cluster 

is more pronounced compared to the α-cluster.178 

Concerning MT-3, the structural features have been investigated both for the recombinant human 

Zn(II)7MT-3 and the native protein, containing Zn(II) and Cu(I), Cu(I)4Zn(II)3/4-MT-3.179  

For Zn(II)7MT-3 only the structure of the C-terminal α-domain, containing Cd(II) has been 

structurally solved by NMR180, whereas the N-terminal β-domain has only been studied by 

absorbance, circular dichroism spectroscopies.181,182 Both domains show similar Me(II)3-Cys9 and 

Me(II)4-Cys11 clusters, Me(II)3-S9 having greater dynamic exchange than that in MT-1/MT–2.183 

This highly dynamic process has been assigned to the presence of the 5TCPCP9 motif, as 

engineering this motif into MT-1 yielded a MT with a similar dynamic to MT-3.157 

Conversely, analysis of the native protein Cu(I)4Zn(II)3/4-MT-3 revealed the presence of two 

homometallic clusters, a Cu(I)4-thiolate cluster in the N-terminal β-domain and a Zn3/4-thiolate 

cluster in the C-terminal α-domain.161,181 The localization of both clusters in the protein structure 

was established both with spectroscopic and immunochemical methods.153 In the β-domain, Cu(I) 

ions are digonally or trigonally coordinated by Cys-thiolates.184   

Generation of Cu(I)4Zn(II)4-MT-3 species in the aerobic reaction between Zn(II)7MT-3 and free 

Cu(II), revealed the presence of a Cu(I)4-Cys5 cluster, containing five reduced thiolates and two 

disulfides. The Cu(I)-thiolate cluster was found to be stable in air oxygen and redox-silent. The 

reason for this in not known. Structural constraints and the short Cu(I)-Cu(I) distances (< 2.8 Å) 

in the Cu(I)4-thiolate cluster, leading to peculiar metal-metal interactions, have been postulated as 

important factors for its stability. Regarding the inability of Cu contained in the Cu(I)4Zn4MT-3 

to catalyze the production of ROS, this has been related to the unfeasible formation of the complex 

between the Cu(I)4-thiolate cluster and oxygen or to the increased redox potential of the Cu(I)4-

thiolate cluster.171,185  

Metal buffering capacity: as highlighted in Table 3, MT-2 affinities for Zn(II) in the β- and α-

domains are not all the same. These values indicate that under physiological conditions MTs 

possess appropriate metal-binding properties for buffering fluctuations in free Zn(II) concentration 

in the cell, considering its natural fluctuations in the range of 10-11 to 10-9 M. Thus, under cellular 
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conditions MT-2 can exist in unsaturated forms ranging from Zn(II)4MT-2 to Zn(II)7MT-2, which 

have been recently characterized for the first time by Drodz et al.177 They can serve as a Zn(II) 

donors and/or acceptors at the same time and regulate cellular Zn(II) free concentration, together 

with other Zn(II) transporters.186,187 Their buffering capacity stems from their capability to 

accommodate a dynamic transition from tetrathiolate coordination in partially metallated MTs (in 

which Zn can be coordinated exclusively by terminal thiolate ligands) to fully metallated forms.  

c. Reactivity 

In general, the reactivity of the two clusters of MTs is similar, in terms of final products, 

although the kinetics of the reactions can be different. As already mentioned, often the β-cluster is 

more reactive, likely due to the higher flexibility and solvent exposure, and the difference is more 

pronounced for MT-3 compared to MT-1/MT-2. For instance, study of the reactivity of Zn(II)7MT-

2 and Zn(II)7MT-3 towards 4 eq. of Cu(II), led in both cases to Cu(I) binding to the β-domain, 

with concomitant release of 3 Zn(II) ions (formation of Cu(I)4Zn4MT-2/3), but with a faster kinetic 

of Cu(I)-binding to MT-3 compared to MT-2.170 

Reactions of exchange of metal ions between the two domains and between two MTs can occur 

and be relatively fast (faster than minutes), despite the high binding affinities. They require 

associative mechanisms, as a dissociative metal ion transfer would be too slow (t1/2 of Cu(I) 

dissociation of days to years, estimated based on a Kd of ~ 10-19 M). Thus, MTs can be considered 

as unique metalloproteins with high thermodynamic stability but with kinetic lability.  

Most of the other reactions involving the thiol(ate) sulfur atoms are redox reactions that result in 

their oxidation (disulfide formation). Thus, despite Zn(II) does not exhibit redox activity, the 

thiolate ligands confer redox activity on the Zn(II) clusters. The redox potential of ~ 0.37 V vs 

Ag/AgCl reported by Maret and Vallee for the Zn(II) clusters is lower than that of other well-

known reducing biomolecules such as GSH, NADH or thioredoxin. This means that Zn(II)-MTs 

can be oxidized by mild cellular oxidants, leading to the release of the coordinated Zn(II) ions. 

This reaction is reversible and is a very important connection, linking metal binding ability to 

redox reactions. Other ways to oxidize Cys, include i) the reaction with Cu(II), as seen above, and 

ii) oxidation triggered by ROS in particular, H2O2, O
•- or HO•.  

Cysteines are good nucleophiles and hence reactions with electrophiles consume the thiol/thiolates 

leading to the release of metal ions. This can apply to several organic reagents such as alkylating 

reagents or NO• and metal ions such as Pt(II), Ag(I), Hg(II).183  

d. Functions  

The chemical properties of MTs, linked to the presence of thiol(ate) sulfur atoms of the 

Cys residues, which have been described in the previous paragraphs, are useful and can be 

exploited by MTs in a variety of physiological processes. Thus, from a functional point of view, 

MTs have been reported to play roles in: 

- regulation of Zn and Cu homeostasis 

- detoxification from excess of toxic metal ions (mostly Cd) 

- cellular defense against oxidative stress 

- modulation of neuronal growth (MT-3)  
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control of aberrant Cu-amyloidogenic peptides interactions, linked to the progression of 

neurodegenerative disorders, e.g. AD and Parkinson disease (MT-3).  

1.5.2 Low molecular weight thiol(ate) containing biomolecules 

Besides MTs, low molecular weight thiol(ate) containing biomolecules, can also play a 

crucial role on the stability and redox activity of medicinal-relevant Cu-complexes. One of the 

most relevant biomolecule for the intracellular environment is the tripeptide GSH (composed of 

Glu, Cys and Gly, with the unusual amide linkage between the γ-carboxylate of Glu and the amine 

of Cys) (Fig 10). GSH, in its reduced form, is present at very high concentrations in the cytosol or 

nucleus, which are often reported in the range of 1-10 mM, and together with corresponding 

oxidized form glutathione disulfide (GSSG), it is considered to be the major thiol-disulfide redox 

buffer of the cell (GSH/GSSG redox couple).188–190 Nevertheless, in the reduced form GSH is also 

present extracellularly where it has been proposed to act as a neurotransmitter. However, in the 

extracellular space the most abundant thiol(ate) containing biomolecule is the amino acid Cys (Fig 

10) Cys occurs also intracellularly but it becomes less relevant considering the high GSH 

concentration.188 

 

Fig 10 - Chemical structure of the two most relevant low molecular weight thiol(ate) containing biomolecules: GSH 

and Cys 

GSH and Cys have two important features, like MTs: i) they are reducing agents, thus can 

potentially reduce a Cu(II)-complex (E°GSH = -240 mV, E°Cys = -220 mV vs Ag/AgCl, in the cell 

as GSH/GSSG and Cys/Cystine ≥ 10000). This can have a major impact on the stability of the 

complex, and hence its fate. ii) They are metal-chelators and can coordinate Cu(I) via their Cys 

side chain. The stability and nature of the Cu(I)-GSH/Cys complexes formed under biological 

relevant conditions are less clear than for MTs. GSH has been reported to form the tetranuclear 

cluster Cu(I)4-(GS)6 with a  Kd(GSH) ~ 10-17 M.56 Besides, GSH complexes have proposed to act 

as Cu(I)-shuttles between proteins, like Ctr1 and Cu-chaperons, and the in vitro studies have 

shown that the Cu(I)–GSH complex can transfer Cu(I) to MT-1.55,191  
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1.6 Aim and objectives of the thesis  

Within this context, the studies carried out in the present thesis aimed to investigate the 

reactivity of medicinal-relevant Cu-complexes, either pathophysiological and/or therapeutic 

metallodrug, in terms of redox activity and stability towards physiological Cu-binding and/or 

reducing molecules (including Zn(II)-MTs, GSH, Cys, AscH-, Glu). 

Indeed, as discussed above, a key aspect to consider for the biological outcome of a Cu-complex 

is its kinetic and thermodynamic stability in both ligand and metal exchange reactions, with 

potential physiological competitors.  

Two case studies will be presented: i) for a pathophysiological Cu-complex of Aβ peptide in the 

context of AD and ii) for Cu-based metallodrugs studied as therapeutics for medicinal applications 

(e.g. anticancer agents).  

The thesis has been organized in the following way. In the first section (chapter II) we will discuss 

the principal findings of the first case study, which concerns the influence of the biomolecules 

GSH, Cys and Glu on Cu transfer reactions from/off the N-truncated Aβ species, Aβ4-42, to 

Zn(II)7MT-3. The main issues we tried to address are stated below. 

❖ Case study 1: pathophysiological Cu(II)-Aβ complex of the N-truncated Aβ peptide, Aβ4-16 

(model for Aβ4-42) 

- What is the impact of Cys and GSH on this transfer? Could they play the role of Cu(II) reducing 

agents and Cu(I)-shuttles between the two biomolecules? 

- What is the influence of the neurotransmitter Glutamate (Glu)? How does the Zn(II) content of 

MT-3 affect the rate of Cu-transfer? May multiple mechanisms act cooperatively?  

Understanding of the mechanisms of Cu (and Zn)-trafficking between Aβ peptides, proteins and 

other biomolecules, related to AD, is extremely important and should contribute to answer the 

question why Cu/Zn are bound to Aβ peptides under AD conditions but not under normal brain 

physiology. 

In the second section (chapter III) we will present the main findings of the second case study, 

dealing with the reactivity of different Cu-based metallodrugs developed for the treatment of 

diverse diseases, including cancer, in i) the catalytic production of ROS and ii) with their stability 

(and consequent possible deactivation) against Zn(II)7MT and GSH, under conditions found in the 

cytosol and nucleus. The main questions we tried to reply are the following stated below. 

❖ Case study 2: Cu-based drugs  

- How active are Cu(II)-Xxx-Zzz-His (ATCUN) peptides in ROS production? Could they be 

applied as artificial Cu-enzymes to degrade biomolecules? 

- What is the reactivity of Cu(II)-Thiosemicarbazone anticancer drugs with GSH/Zn(II)7MT 

under physiological conditions found in the cytosol/nucleus? Is Zn(II)7MT a possible 

deactivator of these drugs?  

- Would it be possible to have a redox-active Cu-drug in the presence of relevant concentrations 

of GSH/Zn(II)7MT as found in the cytosol/nucleus?  

Overall, this type of chemistry with thiols containing molecules could be of interest for the design 

of metal- and in particular Cu-complexes for all the wide applications in biology and medicine. 
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In order to answer the questions above and be able to monitor Cu (and Zn) transfer reactions, 

various spectroscopic and analytical techniques, including absorbance, circular dichroism, low 

temperature fluorescence, 1HNMR, EPR, and ESI-MS have been employed.   
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CHAPTER 2 

 

 Cu transfer reactions from/off Aβ4-16 to Zn(II)7MT-3 in Alzheimer’s 

Disease: the influence of other physiological relevant biomolecules 

2.1 State of the art and aim of the study  

As already discussed in the introduction (1.3.2 Correlation with Alzheimer’s diseases), in 

AD patients Cu and Zn ions have been found to accumulate at high levels in extracellular amyloid 

plaques, bound to Aβ peptides,1 thereby potentially participating in their aggregation and in the 

production of ROS.2,3 Evidence from the literature suggests that Cu might be pumped by the Cu-

transporter ATPase7A into synaptic vesicles and upon stimulation of the glutamate receptor 

NMDA it could be released into the synaptic cleft via vesicle fusion.4 Zn, instead, has been shown 

to be stored in high amounts (mM) in synaptic vesicles of a subset of glutamatergic neurons, where 

it is transported via the ZnT3 transporter. Upon neuronal activation, these vesicles fuse with the 

cell membrane and Zn is released into the synaptic cleft. At the peak of neuronal activity, transient 

concentrations of up to several hundred µM have been detected.5 Even though not demonstrated, 

the Cu and Zn pools bound to Aβ peptides in amyloid plaques, might arise from Cu and Zn released 

into the synaptic cleft.  

One of the key questions still unsolved in studying Cu and Zn involvement in AD is to find out 

when and how various Aβ peptides bind Cu and Zn ions in normal brain physiology and under AD 

conditions.  

Besides its intraneuronal localization, cell culture studies have revealed that also MT-3 occurs in 

comparable amounts extracellularly and hence potentially in the synaptic cleft of neurons.6  

As MTs are major key players in Zn and Cu homeostasis, during the last decades, interest has 

arisen on the interaction of Cu-complexes of Aβ peptides with MTs, since MT-3, the isoform 

highly expressed in the central nervous system, was found to be downregulated under AD 

conditions.7,8 Furthermore, in cell cultures studies, Zn(II)7-MT-3 was shown to protect neurons 

from the toxicity of Aβ species, by an unknown mechanism.9  

As before mentioned, MTs are also well-known antioxidants, being efficient ROS scavengers.10 

Oxidative stress occurs in AD, due to an imbalance between ROS production and defense, leading 

to an accumulation of ROS.11,12 This may also explain the upregulation of MT-3 in AD. However, 

as for Cu, Zn ions and Aβ peptides, whether MT-3 dysregulation in AD is a cause or a consequence 

is unclear. 

Considering what stated above, MT-3 could encounter and interact with synaptic Zn and Cu ions, 

release upon neuronal excitation, as well as with Aβ peptides (Fig 11).13 Here, reaction of Cu/Zn 

exchange between the two biomolecules could occur.   

Very little is known about the exact concentrations of Aβ and MT-3 in the extracellular space, and 

especially in the synaptic cleft. Recently W. Goch et al. have shown that such reacting species 

might have micromolar or even higher concentrations as lower concentrations would be physically 

impossible for this small brain structure, due to volume constraints.14 
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Fig 11 - Schematic representation of the synaptic cleft of some glutamatergic neurons where Aβ peptides, Cu, Zn(II) 

ions, Zn(II)(7-4)-MT-3 and/or other small biomolecules like GSH, Cys, Glu might encounter. Figure adapted from15,16 

Previous studies have already investigated the reactivity in vitro of the Zn(II) saturated form of 

MT, Zn(II)7-MT-3, with the two Cu(II)-complexes of the major species of Aβ peptides found in 

amyloid plaques, i.e. Aβ1-x (x = 40, 42) and the N-truncated peptide, Aβ4-x (x = 42). Spectroscopic 

studies are usually carried out using model peptides Aβx-16 (including x = 1 or 4), which are widely 

accepted to represent the metal binding properties of the whole Aβ peptide sequences as 

monomers, as all the amino acids involved in Cu(II), Cu(I) and Zn(II) binding are located within 

the first 14 residues.17–19  

In case of the full length peptide Aβ1-x, the Cu(II)-complex, Cu(II)-Aβ1-16/40 (for Cu(II) 

coordination to Aβ1-x, see Fig 6), was shown to react rapidly with Zn(II)7-MT-3 by a swap of metal 

ions, that resulted in Cu(I) binding to MT-3 and Zn(II) binding to Aβ1-16/40.
20 During this process, 

Cu(II) contained in Cu(II)-Aβ1-16 is reduced to Cu(I) by the thiolate system of Zn(II)7-MT-3. At 

stoichiometric ratios of 4 Cu(II)-Aβ1-16 per MT-3 the reaction yields a relatively defined species, 

i.e. Cu(I)4Zn(II)4-MT-3, in agreement with the reduction of 4 Cu(II), concomitant release of 3 

Zn(II) ions from Zn(II)7-MT-3. Previously, as mentioned in the introduction (1.5.1 Mammalian 

Metallothioneins (MTs)) only the Zn(II)3S
-
9 cluster in the β-domain was shown to react, leading 

to the formation of a Cu(I)4-(CysS-)5 cluster, with two disulfides (Fig 12a).21  

This molecular mechanism has been suggested to be responsible of the neuroprotective role of 

Zn(II)7-MT-3 from the ROS-related induced cell toxicity of Cu(II)-Aβ1-x. Indeed, Cu(I)-binding 

to the N-terminal β-domain of MT-3, in the heterometallic Cu(I)4Zn(II)4-MT-3 species, results in 

an oxygen stable and redox-stable Cu(I)-thiolate complex (Cu(I)4S
-
5 cluster). The reason for this 

is not known yet but the structural constraints and the short Cu(I)-Cu(I) distances (< 2.8 A˚) in the 

Cu(I)4S
-5 cluster, which lead to peculiar metal-metal interactions, have been proposed to be 

important factors for the observed stability in air.21  

In contrast, Aβ4-16, which binds Cu(II) ions ~ 3000 times more strongly than Aβ1-16 at pH 7.4, due 

to the presence of the Cu(II)-specific H2N-Xxx-Zzz-His motif18,22,23 (for Cu(II) coordination to 

Aβ4-16, see Fig 6), was stable against Zn(II)7-MT-3, as no copper transfer was observed over 30 

min (Fig 12b).24 The reason for this may be ascribed to a lower off rate of Cu(II) from the N-

truncated peptide Aβ4-16, compared to Aβ1-16. Only the addition very high non-physiological 

concentrations of AscH- (i.e. 20 mM) resulted in the complete transfer of Cu from Aβ4-16 to Zn(II)7-
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MT-3. Consequently, Wezynfeld et al. proposed that the full-length peptide, Aβ4-42 might play a 

parallel role with MT-3 as Cu(II)-scavenger into the synaptic cleft, under physiological 

conditions.24 

 

Fig 12 - Reactivity of a) Cu(II)-Aβ1-x  and b) Cu(II)-Aβ4-x complexes with Zn(II)7MT-3. 

Within this context, we were interested in other physiological molecules that might be found in 

the same location as Aβ peptides and Zn(II)7-MT-3, and could influence the rate of Cu transfer 

from/off the Cu(II)-complexes of the N-truncated Aβ species, Aβ4-16, to Zn(II)7-MT-3 and 

consequently their interaction on the level of both Cu/Zn ions. Besides, we studied the reactivity 

of physiological partially depleted Zn(II)7-x-MT-3 species, i.e. Zn(II)4-MT-3, Zn(II)5-MT-3, 

Zn(II)6-MT-3, towards Cu(II)-Aβ4-16 to form Cu(I)4Zn(II)4-MT-3. The physiological existence of 

these species depends on the protein expression, the cellular Zn(II) availability and the presence 

of Zn(II) competitors. Hence, we generated such species using the Zn(II)-chelator EDTA, as mimic 

of Zn(II) binding biomolecules. 

2.2 Influence of Cys and GSH 

2.2.1 Introduction 

We started our investigation by exploring the potential role of GSH and Cys on the 

reactivity between Cu(II)-Aβ4-16 and Zn(II)7-MT-3. Besides their potential influence on the 

physiological stability of Cu(II)-Aβ complexes because of their properties already mentioned in 

the introduction (1.5.2 Low molecular weight thiol(ate) containing biomolecules), the biological 

relevance of Cys and GSH stems from the reported intracellular and extracellular fluctuations in 

their concentration.25 For instance, the extracellular deposition of Aβ peptides has been reported 

to increase the extracellular concentration of reduced Cys.26  

Therefore, the first objective of this thesis was to investigate the impact of Cys and GSH, 

concerning i) their ability to reduce and extract Cu(II) from Cu(II)-Aβ4-16 in the presence of Zn(II)7-

MT-3 and ii) to probe their role as shuttles for the Cu(I)-transfer between the two biomolecules. 
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Thus, we employed different spectroscopic techniques, i.e. absorbance spectroscopy, circular 

dichroism, 1H-NMR, that allowed us to study the different steps of the two reactions.  

2.2.2 Results and discussion 

a. Cu(II) reduction and release from Cu(II)-Aβ4-16 

The ability of Cys and GSH to reduce Cu(II) and extract Cu(I) in the reaction mixture 

Cu(II)-Aβ4-16/Zn(II)7-MT-3 was investigated by i) absorbance spectroscopy and ii) circular 

dichroism, through the characteristic band of Cu(II)-Aβ4-16 at λmax = 525 nm, due to the Cu(II) d-d 

transition. 

First of all, we repeated the reaction between Cu(II)-Aβ4-16 and Zn(II)7-MT-3, to confirm what was 

previously reported. Cu(II)-Aβ4-16 complex was generated in PB, pH 7.4, with a Cu(II) to peptide 

ratio of 0.9:1, to avoid the presence of free Cu. Zn(II)7-MT-3 was then added to the preformed 

Cu(II)-complex and the course of the reaction monitored for 30 min. As shown in Fig 13a/b 

(purple profiles)/d (blue profile) the band was stable, in line with absence of an unassisted Cu-

transfer from Cu(II)-Aβ4-16 to Zn(II)7-MT-3.  

Next, we added Cys or GSH to the mixture Cu(II)-Aβ4-16/Zn(II)7-MT-3 and the d-d band decreased 

in a time dependent manner. In case of Cys (Fig 13a/c/d), the band completely disappeared in 30 

min, meaning that Cys is able to react with Cu(II)-Aβ4-16, by reducing Cu(II) to Cu(I), with 

concomitant release of Cu from the peptide. The ability of Cys to reduce and dissociate the Cu(II)-

Aβ4-16 complex was also confirmed based on the appearance of the characteristic CT absorption 

band of the CysS-Cu(I) species at λmax = 260 nm with shoulder at λmax = 300 nm27, observed when 

Cys alone was added to Cu(II)-Aβ4-16 (FigS 1a/b).  

The analogous experiment with GSH, resulted in a qualitatively similar behavior but the reaction 

was slower and did not reach completion after 260 min (Fig 13b/c/d). The higher reactivity of Cys 

compared to GSH could be mainly related to the lower pKa value of the thiol function in Cys than 

in GSH (pKa (Cys) ~ 8.2, pKa (GSH) ~ 9.2)28, as the deprotonated thiol is the form undergoing the 

oxidation to cystine/GSSG, as well as the form that can bind metal ions.   

Hence, these experiments strongly suggest that Cys and GSH are able to reduce Cu(II) from Cu(II)-

Aβ4-16 to Cu(I) and extract Cu(I). 
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Fig 13 - Evidence of Cu(II) reduction and release from Cu(II)-Aβ4-16 in the presence of Zn(II)7-MT-3. In a) and b) 

absorption spectroscopy for the reaction with Cys and GSH respectively is shown. Each intermediate spectrum was 

collected at 2 min intervals in a) and at 10 min intervals in b). c) Corresponding kinetics for the two reactions with 

Cys and GSH: absorbance at λmax = 525 nm versus time. d) Circular dichroism (Vis-region, 400-700 nm) for the 

reaction with Cys (grey profile) and GSH (green profile). Reaction conditions for Uv-Vis and CD experiments: Aβ4-

16 500 µM, Cu(II) 450 µM, Zn(II)7-MT-3100 µM (ratio Aβ4-16/Cu(II)/Zn(II)7-MT-3, 1:0.9:0.2), a) Cys 3 mM, b) GSH 

3 mM, PB 50 mM, pH 7.4.  

b. Cu(I) shuttling over MT-3 and formation of Cu(I)4Zn(II)4MT-3 species 

In order to elucidate whether the extracted Cu(I) from Cu(II)-Aβ4-16 was transported to 

Zn(II)7MT-3, with consequent generation of the Cu(I)4Zn(II)4-MT-3 complex, we employed i) 

absorbance spectroscopy and ii) circular dichroism.  

First, to confirm the Cys and GSH induced Cu(I) transfer from Cu(II)-Aβ4-16 to Zn(II)7-MT-3 we 

compared the reaction with Cys, with and without Zn(II)7MT-3 in the reaction mixture, (Fig 14a, 

FigS 1). Addition of Cys to preformed Cu(II)-Aβ4-16 complex resulted in the initial disappearance 

of the d-d band of Cu(II)-Aβ4-16, in line with Cu(II) reduction and dissociation from Aβ4-16 (blue 

profile).  

However after ~ 18 min, the re-formation of the Cu(II)-Aβ4-16 complex was observed and after 60 

min the intensity of the d-d band was almost the same as the initial one. This agrees with the 

instability of the generated CysS-Cu(I) complex in the presence of O2. The re-oxidation of CysS-

Cu(I) to Cu(II) and cystine, allowed the complete re-formation of Cu(II)-Aβ4-16 complex, 

indicating that Aβ4-16 was not degraded during the reaction.  
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Fig 14 - Evidence for A) Cu(I) shuttling to MT-3 and B) formation of the Cu(I)4Zn(II)4-MT-3 complex. In a) kinetics 

of Cu(II) release from Cu(II)-Aβ4-16 with Cys in the presence (grey profile) and absence (blue profile) of Zn(II)7-MT-

3 are shown: normalized absorbance at λmax = 525 nm versus time. In b) circular dichroism for the reaction with Cys 

or GSH. CD spectra were respectively recorded after 30 min (grey profile) and 260 min (purple spectra) after their 

addition to the mixture Cu(II)-Aβ4-16/Zn(II)7-MT-3. Reaction conditions for i) UV-Vis experiments: Ab4-16 500 µM, 

Cu(II) 450 µM, Cys 3 mM ± Zn(II)7-MT-3 100 µM, PB 50 mM, pH 7.4; ii) CD experiments: Ab4-16 100 µM, Cu(II) 

90 µM, Zn(II)7-MT-3 20 µM, Cys/GSH 3 mM, PB 50 mM, pH 7.4 (ratio Aβ4-16/Cu(II)/Zn(II)7-MT-3, 1:0.9:0.2). 

In contrast, in the presence of Zn(II)7-MT-3, the reaction was not reversible, suggesting Cu(I) 

binding to MT-3 and formation of the Cu(I)4Zn(II)4-MT-3 complex, which remained stable 

towards air oxidation. 

We can see that the kinetics of disappearance of the d-d band were identical, within experimental 

error, regardless of the presence of Zn(II)7-MT-3. This indicates that the rate limiting step in the 

Cu-transfer reaction from Cu(II)-Aβ4-16 to Zn(II)7-MT-3 is the reduction of Cu(II)-Aβ4-16 by Cys, 

rather than the formation of CysS-Cu(I) complex or the Cu(I) transfer to Zn(II)7-MT-3. In line 

with this, also the kinetic of disappearance of the d–d band of Cu(II)-Aβ4-16 for the reaction with 

GSH was independent on the presence of Zn(II)7-MT-3 (results not shown).  

Furthermore, to confirm the formation of the Cu(I)4Zn(II)4-MT-3 species, we monitored the 

reaction by circular dichroism (Fig 14b).  

Cu(II)-Aβ4-16 complex was again generated in 0.9:1 ratio (blue profile). Then, Zn(II)7-MT-3 was 

added to the mixture and its lack of reactivity monitored for 30 min. Indeed, the CD spectrum 

observed (light blue profile) overlapped with that of Cu(II)-Aβ4-16, except  for the region 250-270 

nm, where the increase in ellipticity is due to the Zn(II)7-MT-3 absorption in this region (FigS 2), 

blue profile). Then, Cys or GSH was added to the mixture Cu(II)-Aβ4-16/Zn(II)7-MT-3.  

After the reaction with Cys was mainly completed, i.e. 30 min, the characteristic CD bands of 

Cu(I)4Zn(II)4-MT-3 complex at about (+) 255 and (-) 285 nm, due to CysS-Cu(I) charge-transfer 

transitions, were detected. The newly developed CD bands were identical in size and position to 

those observed in the reaction of free Cu(II) with Zn(II)7-MT-3 (orange profile) (the CD profile of 

Cys or GSH alone and Cu(II)/Cys, Cu(II)/GSH mixtures are shown in FigS 2) and to those reported 

in the literature for the reaction of free Cu(II) or Cu(II)-Aβ1-16 with Zn(II)7-MT-3.20,21 

By comparison, the CD spectrum obtained after 260 min from GSH addition to Cu(II)-Aβ4-

16/Zn(II)7-MT-3 (purple profile), confirmed that GSH could not quantitatively reduce Cu(II) to 

Cu(I) from Cu(II)-Aβ4-16 and that the Cu-transfer to Zn(II)7-MT-3 was not complete. Thus, Cu was 

still distributed between the biomolecules, as Cu(II) in Aβ4-16 and as Cu(I) in Cu(I)xZn(II)4-MT-3. 
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c. Zn(II) release from Zn(II)7-MT-3 and binding to Aβ4-16 

As already discussed above (2.1 State of the art and aim of the study), Cu(I) binding to the 

β-domain of Zn(II)7-MT-3 results into the release of three Zn(II) ions. Thus, we investigated 

whether Zn(II) was bound or not to Aβ4-16 peptide at the end of the reaction, by employing 1H-

NMR. Indeed, we expected that Zn(II) binding to Aβ4-16 would impact the 1H-NMR signatures of 

the coordinating groups in the peptide, like it was the case for Zn(II)-binding to Aβ1-16/28/40.
19 Zn(II) 

binding to the N-truncated Aβ peptide, Aβ4-x, has not been studied in detail yet but the same 

residues that have been proposed to be involved in Zn(II)-binding to the full length Aβ peptide, 

Aβ1-x, are also present in Aβ4-x.   

Since MT-3 does not have aromatic amino acids in the sequence, whereas Aβ4-16 does (for the 

details of the amino acid residues of Aβ4-16 see Fig 15a), we monitored the overall reaction through 

the aromatic region of the 1H-NMR spectra. As shown in Fig 15, signals from the protons of Aβ4-

16 from His(6,13,14), Phe4 and Tyr10 are present in the spectrum between 6.6-8 ppm (light blue 

line).  

 

Fig 15 - a) Aβ4-16 peptide sequence (FRHDSGYEVHHQK-NH2) with the aromatic amino-acid residues nomenclature. 

b) 1H-NMR displaying the Zn(II) binding to Aβ4-16. Aromatic region of the spectrum of Aβ4-16 (light blue line) and 

after the addiction of (i) Cu(II) (purple line), (ii) Zn(II)7-MT-3 (green line), (iii) Cys (grey line); control of Aβ4-16  after 

the direct addiction of 0.6 eq. of Zn(II) (red line). Reaction conditions: Aβ4-16 300 µM, Cu(II) 270 µM, Zn(II)7-MT-3 

60 µM, Cys 3 mM (ratio Aβ4-16/Cu(II)/Zn(II)7MT-3, 1:0.9:0.2). Spectra were obtained from 10% D2O/90% H2O 

solutions in PB 50 mM, pH 7.4, at ν = 400MHz. 

Addition of paramagnetic Cu(II) to Aβ4-16 resulted in the broadening of His protons and 

disappearance of those from Phe and Tyr, due to the paramagnetic effect of Cu(II)29,30 (purple 

line). As expected, upon Zn(II)7-MT-3 addition to Cu(II)-Aβ4-16, no change in the spectrum was 

observed, in line with the lack of reactivity of Zn(II)7-MT-3 (over 30 min) in the Cu-Zn swap with 

Aβ4-16 (green line). Instead, when Cys was added to the mixture Cu(II)-Aβ4-16/Zn(II)7-MT-3 we 

observed the recovery of the signals of the Aβ4-16 peptide (grey line), in agreement with Cu(II) 
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reduction to diamagnetic Cu(I) and release from Aβ4-16. However, compared to the spectrum of 

Aβ4-16 at the beginning, the signals of the protons of the three His (i.e. His(δ), His (ε)) were slightly 

down shifted. This was assigned to an at least partial binding of Zn(II) to Aβ4-16 peptide, as direct 

addition of Zn(II) into Aβ4-16, gave rise to similar shifts of the His resonances (red line) (Zn(II) 

titration to Aβ4-16 shown in FigS 3. In line with the Zn(II)-related shifts of the His protons of Aβ4-

16, addition of EDTA to the 1:1 complex Zn(II)-Aβ4-16 resulted into the recovery the signature of 

the unbound-peptide.  

It is important to highlight that Cys and cystine, as well as GSH or GSSG, could be possible 

binding sites for Zn(II) released from Zn(II)7-MT-3, hence a partial binding also to these species 

cannot be excluded.31,32   

Overall, the data suggest a Cu-Zn swap between Aβ4-16 and MT-3 triggered by Cys or GSH (1H-

NMR experiment not shown for the reaction with GSH). 

2.3 Influence of Glu and MT-3 Zn(II)-load states 

2.3.1 Introduction 

After Cys and GSH, we studied if and how Glu and MT-3 at various physiological Zn(II)-

load states (i.e. Zn(II)4-MT-3, Zn(II)5-MT-3, Zn(II)6-MT-3) could affect the rate of Cu transfer 

from/off Cu(II)-Aβ4-16.  

Glu is one of the main neurotransmitters in the brain, stored at ~ 100 mM concentration in the 

vesicles of glutamatergic neurons.33 During neurotransmission, these vesicles fuse with the cell 

membrane and Glu is released into the synaptic cleft (Fig 11). Its concentration in the extracellular 

space of these synapses has been stated to exceed 1 mM.34 As AD pathology initially affects 

glutamatergic synapses, and Glu has already been reported to compete for Cu(II) from Cu(II)-Aβ1-

16
35

 at physiological concentrations, we thought that it might also play an important role in the 

reactivity between Cu(II)-Aβ4-16 and Zn(II)7-MT-3.   

Besides, as already introduced in paragraph 1.5.1 Mammalian Metallothioneins (MTs) a variety 

of partially Zn(II)-depleted MT species, i.e. Zn(II)4-MT-3, Zn(II)5-MT-3 and Zn(II)6-MT-3, could 

be present under physiological cellular conditions together with the zinc saturated Zn(II)7-MT-3, 

depending on the Zn(II) status of the cell.36–38 Since such species may contain un-coordinated Cys 

thiols, that are more reactive than Zn(II)-bound thiolates20,21, we studied whether this could affect 

the reactivity with Cu(II)-Aβ4-16.   

Thus, by means of absorbance spectroscopy, we monitored the kinetics of Cu(II) reduction and 

release from Cu(II)-Aβ4-16 in the presence of i) Glu and Zn(II)7-MT-3 ii) MT-3 at various Zn(II)-

load states (Zn(II)6/5/4-MT-3) and iii) Glu and the partially Zn(II)-depleted, Zn(II)4-MT-3. 

Furthermore, by circular dichroism and 1H-NMR we characterized the eventual Cu(I) binding to 

MT-3 and Zn(II) binding to Aβ4-16.  
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2.3.2 Results and discussion 

a. Effect of Glu 

As discussed so far and reported in a previous study24, Cu(II)-Aβ4-16 was stable in the 

presence of Zn(II)7MT-3, with no Cu transfer occurring over 30 min. However, when the kinetics 

was followed longer (i.e. 800 min, ~ 13 h), we realized that a slow Cu transfer could be observed.  

 

Fig 16 - a) Time course of Cu(II) release from Cu(II)-Aβ4-16 to Zn(II)7-MT-3 in the presence and absence of Glu in 

the reaction mixture, monitored by absorbance spectroscopy at λmax = 525 nm. b) Source of UV-Vis spectra for the 

reaction of Cu(II)-Aβ4-16 with Zn(II)7MT-3 and Glu, added together at t(0m) to the preformed Cu(II)-Aβ4-16 complex 

(purple profile). Reactions conditions: Aβ4-16 250 µM, Cu(II) 225 µM, EDTA 150 µM, ± Glu 5 mM, PB 50 mM, pH 

7.4. 

As shown in Fig 16b, the Cu(II)-Aβ4-16 d-d band at λmax = 525 nm decreased with a t1/2 of ~ 700 

min (FigS 4b and FigS 6a for determination of t1/2), in line with a partial Cu transfer to MT-3, 

which was confirmed by the appearance of new absorption features in the UV-region, above 250 

nm, due to CysS-Cu(I) charge-transfer transitions (FigS 4a).20 Then, to the mixture Cu(II)-Aβ4-

16/Zn(II)7-MT-3 we added Glu and monitored its impact on the kinetic of Cu transfer from Aβ4-16 

to Zn(II)7-MT-3, through the Cu(II)-Aβ4-16 d-d band (Fig 16). Addition of 5 mM Glu (estimated 

Glu concentration in the synapse) accelerated the transfer by a factor of about 2 (FigS 6b, Fig 19, 

TableS 1).  

Cu(I) transfer to Zn(II)7-MT-3 was confirmed by circular dichroism (Fig 17a), whereas Zn(II) 

binding to Aβ4-16, after release from MT-3, by 1H-NMR (Fig 17b), as it was the case of the reaction 

with Cys and GSH (see discussion above).  
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Fig 17 - Reaction between Cu(II)-Aβ4-16 and Zn(II)7-MT-3 with Glu. In a) reaction monitored by circular dichroism 

(UV-region 250-360 nm). After addition of Glu to the mixture Cu(II)-Aβ4-16/Zn(II)7-MT-3 a CD spectrum was 

recorded at t(3h) (purple profile) and t(24h) (green profile). Reactions conditions: Aβ4-16 35 µM, Cu(II) 31.5 µM, 

Zn(II)7-MT-3 7 µM (ratio Aβ4-16/Cu(II)/Zn(II)7-MT-3, 1:0.9:0.2), Glu 5mM. In b) reaction monitored by 1H-NMR, 

through the aromatic region of the spectra. Reactions conditions: Aβ4-16 300 µM, Cu(II) 270 µM, Zn(II)7-MT-3 60 µM 

(ratio Aβ4-16/Cu(II)/Zn(II)7-MT-3, 1:0.9:0.2), Glu 5mM. Spectra were obtained from 10 % D2O/90 % H2O solutions 

in 50 mM PB, ν=400 MHz. 

The acceleration of Cu transfer by Glu was not huge but significant, and raised interesting 

questions concerning the mechanism of the reaction. Three different mechanisms could be 

imagined:  

- Dissociative mechanism via competition for Cu(II) from Cu(II)-Aβ4-16: Cu(II) bound to Glu 

would be faster reduced by Zn(II)7-MT-3 than that bound to Aβ4-16, since Aβ4-16 binds Cu(II) 

in a square planar geometry, disfavoring Cu(II) reduction to Cu(I).23,39 If Glu could intercept 

even a tiny fraction of Cu(II)-bound Aβ4-16, this might be sufficient to support a slow transfer 

and subsequent reduction to Cu(I) by MT-3. The very high affinity of MT-3 for Cu(I) and 

hence the formation of Cu(I)4Zn(II)4-MT-3 complex (stable against oxidation) would in turn 

make irreversible the reaction.40 

- Dissociative mechanism via competition for Zn(II) from Zn(II)7-MT-3: this would lead to the 

generation of the aforementioned partially Zn(II)-loaded species, Zn(II)(7-x)-MT-3, yielding 

non-coordinated thiols. Consequently, MT might have a higher Cu(II) reducing activity that 

could speed up the Cu(II) reduction and transfer from Cu(II)-Aβ4-16 to Zn(II)(7-x)-MT-3.  

- Associative mechanism via formation of a transient ternary complex with Cu(II)-Aβ4-16, i.e.  

[Glu-Cu(II)-Aβ4-16], during the Cu(II) dissociation process. This could change the redox 

potential of the Cu(II)-Aβ4-16 complex, and Cu(II) be easier reduced from [Glu-Cu(II)-Aβ4-16] 

than from Cu(II)-Aβ4-16 and consequently transferred to MT-3.  

We calculated the contribution of Glu to the equilibrium distributions of Cu(II)-Aβ4-16 and Zn(II)7-

MT-3, for concentrations used in the kinetic experiments (TableS 2). We found out that such 

contributions are negligible, as Cu(II)-Glu, Cu(II)-Glu2, Zn(II)-Glu and Zn(II)-Glu2 complexes are 

very weak compared to Cu(II)-Aβ4-16 and Zn(II)7-MT-3 species, respectively. Thus, this excludes 

the two possible dissociative mechanisms via i) competition for Cu(II) from Cu(II)-Aβ4-16 and ii) 

competition for Zn(II) from Zn(II)7-MT-3, and suggests an associative one via transient formation 

of the ternary complex [Glu-Cu(II)-Aβ4-16]. Indeed, a dissociative mechanism where Cu(II)-Aβ4-

16 releases Cu(II) first (or Zn(II)7-MT-3 releases Zn(II)) and then Cu(II) (or Zn(II)) binds to Glu, 
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would not lead to any acceleration on the rate of Cu transfer, as the dissociation process would be 

too slow and hence the rate determining step of the reaction.  

In order to assess possible mechanisms, we also replaced Zn(II)7-MT-3 with EDTA as Cu acceptor 

(Fig 18). EDTA cannot reduce Cu(II) to Cu(I), excluding the redox-dependent mechanism of MT-

3, but its Cu(II) complex is nearly 1000 times stronger at pH 7.4 (log CK (EDTA) = 16.39, vs. log 
CK (Aβ4-16) =13.53), enabling a non-redox transfer.41  

 

Fig 18 - a) Time course of Cu(II) release from Cu(II)-Aβ4-16 to EDTA in the presence (light blue profile) or absence 

(blue profile) of Glu in the reaction mixture, monitored by absorbance spectroscopy at λmax = 525 nm. b) Source of 

UV-Vis spectra for the reaction of Cu(II)-Aβ4-16 with EDTA and Glu, added together at t(0m) to the preformed Cu(II)-

Aβ4-16 complex (purple profile). Reactions conditions: Aβ4-16 250 µM, Cu(II) 225 µM, EDTA 150 µM, ± Glu 5 mM, 

PB 50 mM, pH 7.4. 

In Fig 18a the time courses of the reactions in the absence (blue profile) or presence (light blue 

profile) of EDTA are shown. Addition of Glu and EDTA together to the preformed Cu(II)-Aβ4-16 

complex, accelerated the rate of Cu(II) release to EDTA by ~ 2 times (Fig 19, ,TableS 1). Cu(II) 

binding to EDTA was confirmed by the appearance of the characteristic Cu(II)-EDTA d-d band at 

λmax = 738 nm, coupled with the disappearance of the Cu(II)-Aβ4-16 d-d band (Fig 18b and FigS 

5). 

Therefore, this experiment indicated that, despite its inability to compete Cu(II) out of Cu(II)-Aβ4-

16, Glu can nevertheless influence the rate of Cu transfer to Zn(II)7-MT-3, hence helping in the 

shuttling of Cu. The likely explanation can be found in the kinetic studies of Cu(II) release from 

non-ATCUN peptide complexes by Margerum et al., who demonstrated that amino acid molecules 

could interfere with intermediate species formed transiently during the Cu(II) dissociation process 

via an associative mechanism.42 
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Fig 19 - Acceleration factors (AFs) calculated with respect to the reactions Cu(II)-Aβ4-16 + Zn(II)7-MT-3 (in case of 

the reactions in the presence of Zn(II)7-MT-3) and Cu(II)-Aβ4-16 + EDTA (for the reaction Cu(II)-Aβ4-16  + EDTA + 

Glu). AFs are reported with the corresponding standard deviation error (reactions performed in triplicate). 

b. Effect of MT-3 Zn(II)-load state 

Physiologically relevant partially Zn(II)-loaded species, i.e. Zn(II)4-MT-3, Zn(II)5-MT-3 

and Zn(II)6-MT-3, were generated using the specific Zn(II)-chelator EDTA. 

The correctness of our approach was confirmed by 1H-NMR (Fig 20): EDTA removed Zn(II) from 

Zn(II)7-MT-3 in the mixture Zn(II)7-MT-3 quantitatively and within the sample mixing time, 

yielding the desired partially Zn(II) depleted MT-3 species (In FigS 7, Zn(II) titration experiment  

 

Fig 20 - a) 1H-NMR of the Zn(II) binding to EDTA in the mixture Cu(II)-Aβ4-16/Zn(II)7-MT-3 at t = 5 min: spectra of 

Cu(II)-Aβ4-16/Zn(II)7-MT-3 after the addition of 3 eq. of EDTA/MT-3 (light blue), free EDTA (red) and Zn(II)-EDTA, 

ratio 1:1 (green). Reaction conditions: Aβ4-16 300 µM, Cu(II) 270µM, Zn(II)7-MT-3 60 µM, EDTA 180 µM (3 eq 

EDTA/MT-3). Spectra were obtained from 10 % D2O/90 % H2O solutions in 50 mM PB, ν=400 MHz. b) UV-Vis 

spectra for the reaction of Cu(II)-Aβ4-16 with the preformed complex Zn(II)-EDTA. The reaction was monitored over 

time from t(0-800m). Intermediate spectra were collected at 10 min intervals. Reaction conditions: Aβ4-16 250 µM, 

Cu(II) 225 µM, Zn(II)-EDTA 150 µM, PB 50 mM, pH 7.4.  

of EDTA monitored by 1H-NMR to characterize the changes observed upon generation of the 

Zn(II)-EDTA complex). Then, to study weather partially Zn(II)-loaded species accelerate the rate 

of Cu transfer from Cu(II)-Aβ4-16, we followed the reactions by absorbance spectroscopy. 
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Stoichiometric amounts of EDTA to pull out respectively 1, 2, and 3 mol equiv. of Zn(II) from 

Zn(II)7-MT-3, hence generating the corresponding partially metallated species Zn(II)6-MT-3, 

Zn(II)5MT-3, Zn(II)4-MT-3, were added to the preformed Cu(II)-Aβ4-16 complex at t(0m), together 

with Zn(II)7-MT-3, and the reactions monitored over time for 800 min through the d-d band of 

Cu(II)-Aβ4-16. 

Uv-Vis spectra for the reaction with Zn(II)4-MT-3, Zn(II)5-MT-3 and Zn(II)6-MT-3 are shown in 

Fig 21b and FigS 8, while the corresponding kinetics of disappearance of the Cu(II)-Aβ4-16 d-d 

band in Fig 21.  

The transfer rate order of Cu acquisition by Zn(II)7-X-MT-3 species and the corresponding 

acceleration factors calculated with respect to the reaction Cu(II)-Aβ4-16 + Zn(II)7-MT-3 (Fig 19), 

followed the order Zn(II)4-MT-3 > Zn(II)5-MT-3 > Zn(II)6-MT-3 > Zn(II)7-MT-3. This confirmed 

the expected relationship, i.e. the more thiol groups of MT-3 were available for Cu(II) reduction 

and extraction from Aβ4-16, the fastest the reaction was.  

Cu(II) reduction and release from Aβ4-16 from the mixture Cu(II)-Aβ4-16/Zn(II)7-MT-3/EDTA (3 

eq/MT-3) and the consequent Cu(I) binding to MT-3 was also confirmed by circular dichroism as 

shown in FigS 9.  

 

Fig 21 - a) Time course of Cu(II) release from Cu(II)-Aβ4-16 to Zn(II)7-MT-3 (grey profile), Zn(II)4-MT-3 (cyan 

profile), Zn(II)5-MT-3 (purple profile), Zn(II)6-MT-3 (green profile) monitored by absorbance spectroscopy at λmax = 

525 nm. 3, 2 and 1 eq of EDTA/MT-3 were respectively added together with Zn(II)7-MT-3 to the preformed Cu(II)-

Aβ4-16 complex to generate the desired partially Zn(II)-loaded species. b) Source of UV-Vis spectra for the reaction of 

Cu(II)-Aβ4-16 with Zn(II)7-MT-3 and 3 eq EDTA/MT-3. Reactions conditions: Aβ4-16 250 µM, Cu(II) 225 µM, Zn(II)7-

MT-3 50 µM (ratio Aβ4-16/Cu(II)/Zn(II)7-MT-3, 1:0.9:0.2), EDTA 150 µM (3 eq/MT-3)/EDTA 100 µM (2 eq./MT-

3)/EDTA 50 µM (1 eq./MT-3), PB 50 mM, pH 7.4. 

However, EDTA could also play the role of Cu(II)-shuttle between Cu(II)-Aβ4-16 and Zn(II)7-MT-

3, by competing for Cu(II) from Cu(II)-Aβ4-16. Two arguments were against this: i) upon addition 

of EDTA to the mixture Cu(II)-Aβ4-16/Zn(II)7-MT-3, the characteristic d-d band of Cu(II)-EDTA 

complex at λmax = 738 nm, was not detected during the entire kinetics, showing that only very 

small amounts of Cu could be bound to EDTA; ii) Zn(II)-EDTA, which is formed immediately 

and quantitatively (Fig 20a), was not able to retrieve a significant amount of Cu(II) from Cu(II)-

Aβ4-16 (Fig 20b). Indeed, addition of equimolar Zn(II)-EDTA to Cu(II)-Aβ4-16 yielded no changes 

in the Uv-Vis spectrum of Cu(II)-Aβ4-16 during the 800 min time window of the reaction. 

Besides, we carried out a control experiment for the reaction Cu(II)-Aβ4-16  + Zn(II)7-MT-3 with 3 

eq of EDTA to investigate whether the sequence of additions to the preformed Cu(II)-Aβ4-16  
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complex could interfere with the results obtained. Thus, 3 eq of EDTA where first added to the 

preformed Cu(II)-Aβ4-16 complex and after mixing for 30 sec, Zn(II)7-MT-3 was added. As EDTA 

does not compete significantly with Cu(II) from Cu(II)-Aβ4-16 in the mixing time (not more than 

1%), the same rate of Cu(II) transfer to MT-3 is expected, since after Zn(II)7-MT-3 addition, the 

partially Zn(II)-depleted species, Zn(II)4-MT-3 would be instantaneously generated as well. As 

shown in FigS 10 the sequence of additions did not interfere with the results and Cu(II) was 

reduced and transfer over MT-3 with the same kinetic, within the experimental error.  

Hence, EDTA by lowering the Zn(II) status of Zn(II)7-MT-3 could speed up the rate of Cu transfer 

from Cu(II)-Aβ4-16.   

c. Additive effect of Glu and MT-3 Zn(II)-load state 

To further demonstrate that Glu and Zn(II)-depletion from Zn(II)7-MT-3 (via EDTA 

addition) accelerate the rate of Cu transfer from Cu(II)-Aβ4-16 according to separate mechanisms, 

both compounds were added simultaneously to the preformed Cu(II)-Aβ4-16 complex with Zn(II)7-

MT-3. 

The kinetics of Cu release from Aβ4-16 from the mixture Cu(II)-Aβ4-16/Zn(II)7-MT-3/Glu/EDTA (3 

eq/MT-3) was monitored over 800 min by absorbance spectroscopy through the Cu(II)-Aβ4-16 d-d 

band. As illustrated in Fig 22 and Fig 19, Glu and EDTA (3 eq/MT-3) accelerated the transfer of 

a factor of about 3 (t1/2 ~ 200 min). Thus, their effect was additive meaning that the two 

mechanisms could complement each other (leading to additive effects).   

 

Fig 22 - Additive effect of EDTA and Glu on the Cu transfer from Cu(II)-Aβ4-16 to MT-3. Data are expressed as the 

kinetics of Cu(II)-release from Cu(II)-Aβ4-16 (absorbance of the λmax of the d–d band of Cu(II)-Aβ4-16 as a function of 

time). Experimental conditions: Aβ4-16 250 µM, Cu(II) 225 µM, Zn(II)7-MT-3 50 µM (1:0.9:0.2), Glu 5 mM, EDTA 

150 mM (3 eq/Zn(II)7-MT-3), PB 50 mM, pH 7.4. 
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2.4 Summary of the main findings 

In conclusion, from these experiments, with the complementary use of absorbance and 

circular dichroism spectroscopies we demonstrate that Cu transfer from Cu(II)-Aβ4-16 complex to 

Zn(II)7-MT-3 can be accelerated by a) Cys or GSH b) Glu and/or c) by lowering the Zn(II)-load 

of MT-3 with EDTA (Fig 23). 

 

Fig 23 - Scheme summarizing the reactions of Cu transfer from/off Cu(II)-Aβ4-16 to Zn(II)-MT-3  studied in this thesis. 

Influence of a) Cys or GSH, b) Glu; c) Zn(II)-load state of MT-3 (reaction with Zn4MT-3 reported as example). 

Multiple mechanism may act simultaneously as shown for reaction b) and c), via interaction with Cu(II) from Cu(II)-

Aβ4-16 and by lowering the Zn(II)-status of MT-3 with a Zn(II)-chelator (EDTA).  

Concerning the reaction with the amino acid Cys and the tripeptide GSH, we assessed that, under 

our in vitro conditions, the two molecules can induce i) the reduction (rate limiting step of the 

reaction) and ii) release of Cu(II) from Cu(II)-Aβ4-16 in the presence of Zn(II)7-MT-3. Besides, we 

proved that in the reaction mixture Cu(II)-Aβ4-16/Zn(II)7-MT-3 the extracted Cu(I) ions are shuttled 

to Zn(II)7-MT-3 in form of Cu(I) bound to Cys/GSH, thus generating the species Cu(I)4Zn(II)4-

MT-3, in which an air stable Cu(I)-thiolate cluster is present. The full transfer of Cu(II) bound to 

Aβ4-16 was observed for Cys over a period of 30 min, whereas GSH under the same conditions 
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reacted slower and only a partial transfer could be detected. Even though sluggish under our in 

vitro experimental conditions, the reaction with GSH is noteworthy as it suggests the possibility 

of coupling the Cu(II)-Aβ4-16 biology with physiological processes mediated by GSH 

neurotransmission. 

In case of the reaction with the amino acid and neurotransmitter Glu we demonstrated that despite 

its low affinity for Cu(II) and Zn(II) compared to Aβ4-16 peptide and the metalloprotein Zn(II)7-

MT-3, not sufficient to enable the permanent existence of Cu(II)-Glu or Zn(II)-Glu complexes, 

Glu can nevertheless accelerate the kinetic of Cu transfer to MT-3, via an associative mechanism, 

i.e. transiently forming a ternary complex [Glu-Cu(II)-Aβ4-16]. Thus, this mechanism does not 

depend on the acceptor molecule MT-3. Although the effect is not large, i.e. t1/2 (Cu(II)Aβ4-16  + 

Zn(II)7-MT-3) ~ 700 min,vs t1/2 (Cu(II)Aβ4-16  + Zn(II)7-MT-3 + Glu) ~ 330 min), it paves the way 

for further research, taking into account the multitude of different small molecules in biological 

media, present at high concentration, which may collectively be physiologically relevant.   

Regarding the mechanism of Cu transfer acceleration by lowering the Zn(II)-content in MT-3 with 

the specific Zn(II)-chelator EDTA, this is specific for the acceptor molecule Zn(II)7-x-MT-3: 

proportionally to the extent of Zn(II) depletion, and hence on the amount of unbound-thiol groups, 

partially Zn(II)-loaded species acquires Cu(I) faster, i.e. Zn(II)4-MT-3 > Zn(II)5-MT-3 > Zn(II)6-

MT-3 > Zn(II)7-MT-3.  

Furthermore, by reducing Cu(II) from Cu(II)-Aβ4-16 and shuttling Cu(I) over MT-3 or by 

interacting with Cu(II)-Aβ4-16 via transient formation of the ternary complex [Glu-Cu(II)-Aβ4-16], 

Cys, GSH and Glu indirectly affected the Zn(II) distribution between the two species. Indeed, 1H-

NMR experiments were consistent with the hypothesis that Zn(II) released from Zn(II)7-MT-3 is 

at least partially bound to Aβ4-16 at the end of the reaction. Hence, Cys, GSH and Glu are 

modulators of both the Cu and Zn-distribution between the two biomolecules. 

In the same way, the reaction with EDTA is interesting as it couples Cu and Zn metabolism. 

Indeed, this mechanism will depend on the cellular Zn(II) demand, as on Zn(II)-binding 

biomolecules that can abstract Zn(II) from Zn(II)7-MT-3 MT-3, which might be able to indirectly 

influence Cu trafficking from Cu(II)-Aβ4-16.  

Moreover, the reaction Cu(II)-Aβ4-16  + Zn(II)7-MT-3 + EDTA (3eq) + Glu shows that depending 

on external stimuli or stresses, multiple mechanisms may act together, exemplifying the 

complexity of the metal distribution in a biological environment. 
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CHAPTER 3 

 

Redox-activity and stability of Cu-based drugs with Cu-binding 

and/or reducing biomolecules under conditions found in the 

cytosol/nucleus  

3.1 State of the art and aim of the study  

In the first part of the thesis (case study I), we have seen and proven that physiological 

small molecules such as GSH, Cys and Glu, together with MTs, can have a major role on the fate 

of pathophysiological Cu-complexes. From these results, we extended our interest to the reactivity 

of different Cu-based drugs, which have been explored for a variety of medicinal applications, 

from cancer and AD treatment, to imaging and DNA/RNA cleavage.   

As seen in the introduction, the stability of a metal-complex in vivo is a key factor for its clinical 

application, because an administered metallodrug must reach its target in its active form.  

GSH and MTs in particular, could have a major impact on the reactivity of Cu-containing drugs 

which have targets in the cytosol or nucleus as they can be found in elevated concentrations 

([GSH]in = 1-10 mM, [MT]in = 1-300 µM]. Because they are strong reducing agents and Cu(I)-

chelators, they could lead very fast to the reductive dissociation of a Cu-complex and to its 

complete deactivation, as Cu(I)-binding to MT results in a redox-silent complex. Besides, MTs 

have the potential to perform Cu/Zn transmetallation reactions, thus transforming a Cu-complex 

into the corresponding Zn-complex. In this context, the main issue we wanted to address is 

whether, in the highly reducing environment found inside the cytosol/nucleus, a Cu-complex, 

designed to induce catalytically the production of ROS, might be active and stable in form of 

metallodrug.  

The strategy of using Cu-based drugs able to induce the  catalytic cleavage or modification of a 

target biomolecule has been quite a lot investigated since the pioneering work of Sigman and 

coworkers in the late 70’, when they discovered that [Cu-(Phen)2] (ligand 9, Fig 24) could induce 

oxygen-dependent catalytic cleavage of DNA and RNA by attacking the sugar groups.1,2 

Following this example, over the years a variety of families of Cu-pro-oxidant ligands have been 

investigated.3,4 They have been explored for many applications but mostly for the development of 

antitumor-based drugs.5 Indeed, they are an attractive option, compared to metallodrugs based on 

non-essential metal ions such as Pt, Co, Ru.6 As we have seen Cu and essential metal ions in 

general are tightly regulated by transporters, carriers, binding-proteins, and hence our organism is 

able to deal with fluctuating amounts of them. Thus, they may be less toxic to normal cells, giving 

rise to less toxic effects. Nevertheless, so far Cu-containing drugs have not transitioned into 

clinical use yet. The glycopeptide antibiotic Bleomycin (ligand 11, Fig 24) is the only FDA 

approved drug that has been suggested to chelate essential metal ions (mainly Fe but also Cu has 

been considered), forming a redox-active complex that is capable of cleaving DNA.7 

Different families of Cu-chelators which have been developed in the past years have been chosen 

and studied in this thesis (Fig 24). The redox potentials of the corresponding Cu-complexes, 

associated with the redox couple Cu(II)/Cu(I), vary significantly (~ from -0.8 to 0.5 V vs NHE) 
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and give an indication of the possibility of a Cu-complex to fast redox cycling between Cu(I) and 

Cu(II) redox states, with physiological redox partners. Their reactivities in terms of efficiency in 

ROS production and stability with physiological relevant Cu-binding and/or reducing 

biomolecules, i.e. AscH-, MT, GSH, under conditions found in the cytosol/nucleus, will be 

discussed in the next paragraphs.  

 

Fig 24 - List of the Cu-chelators studied in this thesis and discussed in next paragraphs. 
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3.2 Case study of Cu-XZH (ATCUN) peptides: investigation of their application 

as artificial metalloenzymes 

3.2.1. Introduction 

Among the different families of ligands investigated, the first one is the peptide motif H2N-

Xxx-Zzz-His  (XZH) (ligand 1, Fig 24), known as amino-terminal Cu and Ni-binding motif 

(ATCUN) and already seen at the of N-terminus of Aβ4-x (Fig 6).
8

 This simple motif has been 

widely used by different research groups to add a strong Cu(II)-binding site to peptides, proteins 

or organic ligands, for a vast variety of biological and medicinal applications. Indeed, it can be 

easily inserted by synthetic or recombinant approaches, just by adding the three amino acids or by 

mutating the third amino acid to a His. The binding through the N-terminal amine and the presence 

of an His in third position, which binds with the imidazole nitrogen at the delta ring position, N(δ), 

provide the strongest bond for Cu(II), because they create stable 5- and 6-membered chelate rings 

with the in-between amide nitrogen’s. Instead,  X and Z can be any amino acid except for Pro for 

Z, because it is a secondary amine and its nitrogen would not carry a dissociable H, when involved 

in the peptide bond, that could be replaced by Cu(II).9 However, despite their side chains do not 

directly participate in equatorial Cu(II)-coordination, they can have an impact on the Cu(II)-

affinity and on the reactivity of the resulting Cu(II)-XZH complex. 

Thus, in several studies the concept of the Cu(II)-XZH motif, attached at the N-terminus, has been 

used to introduce a ROS catalytic unit, in the context of nuclease (DNA, RNA cleavage), protease 

(proteins cleavage), glycosidase (sugars cleavage), in cancer research and as antimicrobial agent, 

hence playing the role of an artificial enzyme.4,9,10 As already seen, the cleavage of biomolecules 

catalyzed by Cu is a redox dependent mechanism (Fig 2), generally involving Cu(I) and Cu(II) 

redox states (although the formation of a higher oxidation state of Cu, i.e. Cu(III), has been 

suggested11).4  

More recent research suggests novel biological functions, based on the redox inertness of Cu(II) 

in the ATCUN motif. For instance, peptides and proteins with XZH motif have been used to 

suppress the ROS production induced by Cu-Aβ1-x, in the presence of AscH- and O2. This approach 

is based on the retrieval of Cu from Aβ1-x peptide and strong stabilization of Cu(II) in the 4N square 

planar complex at physiological pH.12 Besides, the motif XZH has been used for 64Cu imaging 

(PET) by Miyamoto et al, with the idea of a redox-inert Cu(II)–XZH. Based on their results, they 

concluded that the structural bulkiness and hydrophobicity of the residues XZ are key parameters 

for the stability of Cu(II)-ATCUN peptides in blood plasma, as they likely contribute to limiting 

the 64Cu-transchelation of the ATCUN peptides with other proteins.13 

Hence, according to what reported in the literature, there is an inherent discrepancy about the redox 

activity of this motif. On the one hand Cu(II)-XZH motif has been used to produce ROS, for which 

an efficient redox cycling of Cu is warranted. On the other hand, the same motif has been used to 

redox silence Cu, based on an arrest of its redox-cycling once Cu is bound to it, in form of Cu(II).   

In order to gain insight into this discrepancy, we selected three canonical variants of XZH motif, 

i.e.: 

- DAHK: the natural motif found in human serum albumin; 

- KGHK: one of the motifs mostly studied and efficient to perform cleavage of biomolecules;  
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- FRHD: the motif found in the N-truncated Aβ peptide, Aβ4-x, and reported to redox silence Cu 

efficiently; 

and quantified the corresponding redox-activity of the three Cu(II)-XZH complexes, under the 

most classical conditions, i.e. with AscH- as reducing agent and O2, and/or H2O2. Moreover, we 

compared their activities to that of other redox active Cu-complexes of organic ligands (i.e. 5,5’-

DmBipy: 5,5’-dimethyl-2,2’-dipyridyl, Phen: 1,10-Phenantroline), which have been used as 

catalytic Cu-based-drugs to produce ROS14, and to that of the natural occurring His containing 

Cu(II)-complex, i.e. Cu(II)-(His)2. Then, we investigated the redox states of Cu that is/are 

eventually involved in the catalytic redox reaction. Finally, we explored the ability of Cu(II)-XZH 

complexes to catalyze the production of ROS in the presence of the Cu(I)-binding ligand BCS  

(ligand 10, Fig 24), used as mimic of abundant intracellular Cu(I) chelators (such as GSH and 

MTs).  
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3.2.2 Results and discussion 

a. Quantification of Cu(II)-XZH redox-catalytic activity with O2, AscH- and H2O2, via HO• 

trapping  

The ability and efficiency of the three Cu(II)-XZH complexes (Cu(II)-DAHK, Cu(II)-

KGHK, Cu(II)-FRHD) to catalyze the production of ROS was first studied with Fluorescence and 

EPR spectroscopies, via HO• trapping.  

To start, Cu(II)-titrations experiments of XZH ATCUN peptides were carried out, to determine 

the exact concentration of the peptides and the ratio Cu(II):peptide. This is extremely important, 

as the presence of non-peptide-bound Cu, would impact the measurements, being very efficient in 

catalyzing the production of ROS. Titrations were monitored by absorbance spectroscopy through 

the characteristic d-d band of the 1:1 complex Cu(II)-ATCUN at λmax = 525 nm. As shown in FigS 

11, titrations experiments confirmed the stoichiometry of the Cu(II) to peptide complexes, with a 

breaking point exactly at 1.  

Then, we monitored the HO• production, catalyzed by the three Cu(II)-XZH complexes, by 

following the kinetics of fluorescence of 7-HO-CCA (7-hydroxycoumarin-3-carboxylic acid). 

Coumarin-3-carboxylic acid (CCA) reacts with HO• to produce 7-HO-CCA, which is fluorescent 

at 450 nm upon excitation at 390 nm (Fig 25). Under the experimental conditions used in the assay 

the intensity of the fluorescence signal is proportional to the number of 7-OH-CCA molecules 

formed. Measurements were performed under three conditions, i.e. in the presence of i) AscH- and 

H2O2, and ii) AscH- or iii) H2O2 only. In the presence of both AscH- and H2O2, the scheme in Fig 

2, is mainly limited to the last part.  

 

Fig 25 - 3-CCA used to detect HO• by fluorescence: HO• reacts with 3-CCA to form 7-HO-CCA, which is fluorescent 

at 450 nm, upon excitation at 390 nm.  

Fig 26 shows the representative kinetics of 7-OH-CCA fluorescence, used to detect the time course 

of HO• production, for Cu(II), Cu(II)-DAHK, Cu(II)-KGHK and Cu(II)-FRHD, with 250 µM a) 

AscH- and H2O2, b) AscH- or c) H2O2, in PB. Control experiments were carried out in the presence 

of the peptides only (i.e. without Cu), in buffer (results not shown). Both for AscH- and H2O2, 

concentrations of hundreds µM were used, which are physiologically relevant for AscH-, whereas 

the concentration of H2O2 is normally much lower.15,16 
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Fig 26 - Evolution of fluorescence of the HO• adduct of CCA, i.e. 7-HO-CCA (excitation: λ = 390 nm; emission λ = 

450 nm) as a function of time in the presence of a) AscH- and H202, b) AscH- and c) H202. Cu(II)-XZH complexes (H-

DAHK-OH, H-KGHK-OH, H-FRHD-NH2) were preformed with a ratio Cu(II):peptide, 1:1.2 (to avoid the presence 

of free Cu), in PB 50 mM, pH 7.4. Reactions were triggered by the addition of a) AscH- and H202, b) AscH- and c) 

H202. Insets in a) and b) are a zoom on the kinetics with the three Cu(II)-XZH complexes. Experimental conditions: 

Cu(II) 25 µM, peptide 30 µM, AscH- 250 µM, H2O2 250 µM and CCA 0.5 mM, in 50 mM pB, pH 7.4. 

The following observations can be made, i.e.:  

- under the three conditions (i.e. AscH- and H2O2, AscH-, H2O2) Cu in buffer was much more 

efficient in HO• production than the three Cu(II)-XZH complexes, by about 2 orders of 

magnitude; 

- HO• production was more efficient in the presence of both AscH- and H2O2 (Fig 25a), about 

twice as fast as with AscH- alone. In case of free Cu(II), also H2O2 alone produced HO•, but 

very slowly, at least an order of magnitude slower than AscH- alone;  

- although Cu-XZH complexes showed very little activity, in all repetitions of the experiments, 

Cu(II)-KGHK was slightly more active than Cu(II)-DAHK and Cu(II)-FRHD (insets in Fig 

26a/b). However, this difference is just around the statistical error, and hence is just a tendency. 

The efficiency in HO• production catalyzed by Cu(II)-XZH ATCUN complexes, with the example 

of  Cu(II)-KGHK, was also confirmed via HO• trapping with the spin-trap POBN (α-[4-pyridyl-1-

oxide]-N-tert-butylnitrone), by EPR spectroscopy (Fig 27). EPR characterization was carried out 

in collaboration with Dr. Vileno Bertrand from University of Strasbourg. 



  

57 

 

POBN was used as a primary spin-trap, while EtOH was added as a secondary one, in order to 

enhance the EPR signal S/N. Decomposition of EtOH with HO• results in the formation of a carbon 

centered radical, which then reacts with the spin-trap POBN, to form the more stable spin-adduct 

POBN-CH3 that gives a signal as the one shown in Fig 27 (green profile, g = 2.0056, AH = 2.7 G, 

AN = 16 G). The activity of Cu(II)-KGHK was measured at different ratios of Cu(II):peptide, i.e. 

1:1, 1.1.2, 1.2, 1.3. The experiments confirmed the much lower efficiency of Cu(II)-KGHK 

complex in HO• production, when compared to Cu in buffer. Besides, it showed that only at 

stoichiometric ratio Cu(II):peptide (i.e. 1:1, purple line) there was still a residual activity of non-

peptide-bound Cu. This is the reason why experiments were carried out at a slight over-

stoichiometry of peptide (Cu(II):XZH, 1:1.2).   

 

Fig 27 - Indirect evidence of HO• generation by Cu(II)-KGHK complexes: EPR spectra of the  POBN-CH3 spin-adduct  

collected for the different Cu:KGHK ratios, i.e. 1:1, 1:1.2, 1:2, 1:3, and for Cu in buffer, after triggering the reaction 

with AscH-. Experimental conditions: Cu(II) 100 µM, KGHK 100 µM (1:1), 120 µM (1:1.2), 200 µM (1:2), 300 µM 

(1:3), AscH- 1 mM, H2O2 1 mM, POBN 50 mM and EtOH 5% v/v, in PB 50 mM, pH 7.4, at room temperature (RT). 

b. Quantification of Cu(II)-XZH redox-catalytic activity with O2, AscH- and H2O2, via 

consumption of the substrate AscH- 

The measurement of HO• production via CCA or POBN used to evaluate the redox activity 

of Cu(II)-XZH complexes are not quantitative. Indeed, they rely on one molecule to trap the 

radical, which is extremely reactive, and could also be quenched or scavenged by other molecules 

in solution, like the peptide itself or buffer. 

For this reason, we also measured the consumption of the substrate, AscH-, by absorption 

spectroscopy. AscH- has an absorption band with λmax = 265 nm (ε = 14500 M-1cm-1), whereas the 

the oxidized form, AscH•-, does not absorb at this wavelength. Hence, it is possible to follow the 

oxidation of AscH-, from the decrease in absorbance at 265 nm (see Fig 28a). 

The activities of Cu(II)-XZH complexes in AscH- oxidation were compared to that of Cu(II) in 

buffer and to those of other Cu(II)-complexes, known to produce ROS via Cu-dependent 

mechanism, i.e. Cu(II)-(5,5’-DmBipy)2, Cu(II)-(Phen)2 and Cu(His)2. Experiments were 

performed with (Fig 28) and without (FigS 12) H2O2 in the reaction mixture.  
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Fig 28 - a) Time course of AscH- oxidation: evolution of the AscH- absorption (λmax = 265 nm) as a function of time, 

after exposure to Cu(II), Cu(II)-XZH, Cu-(His)2, Cu(II)-(5,5’-DmBipy)2, and Cu(II)-(Phen)2 complexes ,with H2O2. 

AscH- oxidation was started by the addition of free Cu(II) or the preformed Cu(II)-complex after 10 min. Experimental 

conditions: Cu(II) 10 µM, XZH peptide/ligand 12 µM/24 µM, AscH- and H2O2 100 µM, in PB 50 mM, pH 7.4. b) 

Histogram of the corresponding molar AscH- oxidation rates (µM/min). Measurements were performed in triplicate, 

with different solutions at different days, thus average values of robs (µM/min) with standard deviations have been 

calculated. 

The results obtained, overall parallel those of HO• trapping shown above: 

- Cu in buffer oxidizes AscH-
   rapidly (with, Fig 28, or without, FigS 12, H2O2) with an initial 

rate of 12.3 ± 1.9 µM/min under the given conditions. In contrast, Cu bound to the XZH 

ATCUN peptides almost completely blocked the AscH- oxidation, with rates of 0.08-0.11 

µM/min. These values obtained are similar to that of the background of AscH- oxidation, in 

which no Cu and peptide are present.  

- Comparison with the activities of Cu(II)-(5,5’-DmBipy)2, Cu(II)-(Phen)2 (Fig 28) and Cu(II)-

(His)2 confirms that Cu(II)-XZH complexes are very slow catalysts for the production of ROS, 

even under the most favorable conditions, i.e. AscH- and H2O2. Indeed, all three complexes 

were one or two orders of magnitude faster than Cu(II)-XZH, whereas both Cu(II)-(5,5’-

DmBipy)2 and Cu(II)-(Phen)2 were about as active as free Cu(II), under these experimental 

conditions (i.e. at 10 µM Cu(II), 100 µM AscH- and H2O2).   

- Cu(II)-KGHK was slightly more active than Cu(II)-DAHK and Cu(II)-FRHD. Nevertheless, 

less than 7 µM AscH- was consumed over 1 h. This corresponds to a maximal turnover rate of 

about 0.7 per hour with 100 µM AscH- and H2O2. Subtraction of the background of AscH- 

yields even a lower activity.   

- Addition of H2O2 did not increase the rate of AscH- oxidation both in case of free Cu(II) and 

Cu-XZH complexes (FigS 12). This means that the rate determining step of the reaction is not 

O2 reduction to O2
•- (thermodynamically up-hill reaction), but rather the reduction of 

Cu(II)/Cu(II)-XZH complex by AscH-. 

Besides, we measured the oxidation of AscH-, catalysed by Cu(II)-KGHK at different ratios 

Cu(II):peptide, i.e. 1:0, 1:0.4, 1:0.6, 1:0.8, 1:1, 1:1.2, 1:2, 1:3, both in PB and HEPES buffer. 

Results are shown in FigS 13. AscH- oxidation rate of Cu(II)-KGHK at 1:1.2 ratio was comparable 

in the two buffers tested (purple kinetics, FigS 13a/c), although Cu in HEPES was more active 

than in PB (18.9 µM/min vs 12.3 µM/min). Hence, Cu(II)-KGHK was very inefficient in AscH- 

oxidation and hence almost completely stopped the catalytic production of HO• at 1:1 ratio, 
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Cu(II):KGHK. In case of HEPES buffer the rates of AscH- oxidation for the ratios Cu(II):peptide, 

1:1, 1:1.2, 1:2, 1:3 were the same, while in PB, Cu(II)-KGHK at 1:1 ratio was slightly more active 

(0.28 µM/min) compared to the ratios 1:1.2, 1:2 and 1:3 (~0.11 µM/min). This can be assigned to 

a slight competition of PB for Cu during the redox cycling Cu(II)/Cu(I). This is also the reason 

why, in PB, in case of the ratios Cu(II):KGHK, 1:0.4, 1:0.6, 1:0.8, a proportional decrease in the 

rate of AscH- oxidation was not observed.  

The very low reactivity of Cu(II)-KGHK (and in general Cu(II)-XZH complexes) was also 

confirmed by measuring (for 1h) the effect of very high concentrations of AscH- and H2O2 (i.e. 20 

times excess) on the Cu(II) d-d band, by absorbance spectroscopy (Fig 29). In case of a strong 

reactivity with the substrate one would expect the disappearance of the d-d band, either due to 

reduction to Cu(I) by AscH- or oxidation to Cu(III) by H2O2. For Cu(III) the appearance of new d-

d bands could also be expected. As shown in Fig 6, no significant reduction of the d-d band was 

observed, neither in the presence of AscH- and H2O2, nor of AscH- or H2O2 only. 

 

Fig 29 - Uv-Vis spectra for the reaction of Cu(II)-KGHK (ratio 1:1.2, Cu(II):KGHK) with a) AscH- and H2O2 , b) 

AscH- and c) H2O2. Reaction conditions: Cu(II) 250 µM, KGHK 300 µM, AscH- and H2O2 5 mM, in PB 50 mM, pH 

7.4. 

Under the conditions with AscH-, i.e. AscH- and H2O2 (a) and AscH- only (b), a new band around 

370 nm appeared in line with the literature.17 After a longer incubation up to 15h, the band around 

370 nm steadily increase and then decrease (FigS 14a). Thus the tail of the band started to overlap 

with the d-d band of Cu(II)-KGHK and apparently that the d-d band started to decrease. However, 

as shown by a low temperature EPR experiment (FigS 14b), this apparent decrease in the d-d band 

is not due to a reduction or oxidation of Cu(II), but rather to a degradation of the peptide and hence 

a change in the Cu(II)-coordination site. 

c. Investigation of the Cu-redox states involved in the catalytic reaction and of the stability 

against intracellular Cu(I)-chelators 

Next, we investigated the redox state(s) of Cu that is/are involved in the slow catalytic 

reaction of Cu(II)-XZH with AscH- and/or H2O2. In the presence of AscH-
,
 it is generally assumed 

that the ROS production occurs via redox cycling Cu(II)/Cu(I) (according to the scheme reported 

in Fig 2 of paragraph 1.1.2), as AscH- is a reducing agent. However, from electrochemical studies 

it is known that Cu(II)-XZH complex is very difficult to reduce and that XZH motif can support 

the redox couple Cu(II)/Cu(III) but not Cu(I)/Cu(II). Indeed, Cu(I) does not bind to the XZH motif, 

as it is not acidic enough to deprotonate the amides and it prefers a tetrahedral rather than a square 

planar coordination geometry, that instead is well adapted for Cu(III). Thus, the reorganization 

energy for Cu(II)/Cu(III) would be very low and hence the redox activity could be very efficient.18 
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Therefore, we hypothesized that if the HO• production of the Cu(II)-XZH complexes passes via 

Cu(I), this Cu(I) is not strongly bound and could be retrieved from the peptide. To address this, 

we used bathocuproinedisulfonate (BCS), a well-known Cu(I)-ligand/chromophore (logβ2 [Cu(I)-

(BCS)2]
3- = 19.8)19, and monitored the reactions by absorbance spectroscopy (Fig 30, FigS 15) and 

EPR through a spin-trapping experiment (Fig 31). Non-physiological high concentrations of AscH- 

and H2O2 (up to 10 mM) have been used to facilitate the reactions.  

 

Fig 30 - Kinetics representing the tendency of formation of free or loosely bound Cu(I) from Cu(II)-KGHK in the 

presence of (i) AscH- and H2O2 (light blue profile), (ii) AscH-
 (green profile), (iii) H2O2 (yellow profile) and (iv) blank, 

i.e. no AscH-and H2O2 (purple profile), in the presence of the Cu(I) chelator BCS. Corresponding UV-Vis spectra are 

reported in FigS 15. Experimental conditions: Cu(II) 100 µM, KGHK 1200 µM, AscH- and H2O2 10 mM, BCS 200 

µM, in PB 50 mM, pH 7.4  

In FigS 15 and Fig 30, the UV-Vis spectra and corresponding kinetics of formation of the typical 

[Cu(I)-(BCS)2]
3- complex (λmax = 483 nm), for the reaction of Cu(II)-KGHK with i) AscH- and 

H2O2 (ii) AscH-, (iii) H2O2 and (iv) blank, i.e. no AscH-and H2O2, in the presence of BCS, are 

reported. Addition of BCS to Cu(II)-KGHK led to a very small increase of λmax = 483 nm, which 

corresponds to 0.2 µM [Cu(I)-(BCS)2]
3-  complex formed after 1 h. However, after addition of i) 

AscH- and H2O2 and (ii) AscH- only, the band at λmax = 483 nm increased steadily due to the Cu(I)-

binding to BCS. This indicates that the formation of Cu(I) is directly linked to HO• production.    

In the analogous experiment in the presence of H2O2 alone, [Cu(I)-(BCS)2]
3- was also formed, 

clearly more than in the background reaction, and its amount parallel the HO• production 

efficiency, measured with CCA (Fig 26c). This means that also in the case of H2O2 only (i.e. a 

strong oxidant), the HO• production takes place via Cu(I) and not Cu(III). An explanation, in line 

with the very slow kinetic, is that H2O2 is reducing Cu(II)-XZH, in a one electron reaction, thus 

forming O2
•-. This is in line with what shown for Cu in buffer, i.e. H2O2 could slowly and 

inefficiently reduce Cu(II) to Cu(I), with formation of O2
•- (reaction 1). Then O2

•- can reduce Cu(II) 

to Cu(I) much faster, and thus the depletion of the product of reaction 1 slowly drags this reaction. 

Subsequently, the generated Cu(I) can do the Fenton type reaction (reaction 3).20 

- 1) H2O2 + Cu(II) → Cu(I) + O2
•- + 2H+ (slow) 

- 2) O2
•- + Cu(II) → Cu(I) + O2 (fast) 

- 3) Cu(I) + H2O2 → Cu(II) + HO• 

If Cu(III) would be easily reached, a fast reaction of Cu(II) with H2O2 would occur (at least one 

turnover), i.e.:  
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- 4) Cu(II) + H2O2  → Cu(III) + HO• 

Instead, no indication for Cu(III)-KGHK was observed during absorption even at high H2O2 

concentration (see Fig 29). Cu(III) has a d8 electronic configuration, hence it is expected to have 

a much stronger d-d band than the corresponding Cu(II)-complex. Overall, these observations, 

together with the very high redox-potential of the Cu(II)/Cu(III)-XZH redox couple (i.e. 1 V vs 

NHE), much higher than that of H2O2/HO• (i.e. 0.32 V), point to the involvement of Cu(I) in the 

mechanism of ROS production catalyzed by Cu(II)-XZH complexes. 

To confirm the relation of Cu(I) formation to the OH• production, we measured the OH• in the 

presence of BCS. As BCS could interfere with CCA fluorescence because of their absorptions at 

the same spot we used EPR spectroscopy. Thus, if the formed Cu(I) is the key species for the OH• 

formation, in the presence of BCS no OH• should be produced, because it is known that [Cu(I)-

(BCS)2]
3-  is very redox inert and hence does not react with O2 under aerobic conditions.  

Fig 31 (left panel) shows the OH• production catalyzed by Cu(II)-KGHK, measured with POBN 

as primary spin-trap (for the mechanism of OH• trapping with POBN see above). After 4 hours of 

incubation with AscH- and H2O2, a signal originating from POBN-CH3 adduct could be detected. 

In the presence of BCS (right panel), after 4h, no signal was detected, supporting the mechanism 

that the Cu(I)/Cu(II) redox couple (and not Cu(II)/Cu(III)) is involved in the slow catalytic 

reaction. Hence, when the formed Cu(I) from Cu(II)-KGHK is chelated by BCS no OH• is detected 

anymore. 

 

Fig 31 - Indirect evidence of HO• production by Cu(II)-KGHK, measured by EPR spin trapping with POBN in the 

presence (right panel) and absence (left panel) of BCS. The POBN-CH3 spin adduct was observed after 4h of mixing 

Cu(II)–KGHK (at 1 : 1.2 ratio) with AscH- and H2O2. The two lines observed at t=0 are ascribed to the ascorbyl 

radical. Experimental conditions: KGHK 120 µM, Cu(II) 100 µM (1.2 : 1), AscH- 1 mM, H2O2 1 mM, PB 100 mM, 

pH 7.4, POBN 50 mM, ETOH 5%, ± BCS 200 µM. 

Moreover, the experiments in the presence of BCS, mimic of intracellular Cu(I) chelators like 

GSH and MTs, indicate that in the highly reducing environment found in the cytosol/nucleus Cu(I) 

from Cu(II)-XZH is strongly accessible for other Cu(I)-chelators that would be able to retrieve 

Cu(I) during the redox cycle and completely abolish the low ROS production. 
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3.2.2 Summary of the main findings 

In summary, the data presented and discussed indicate that the ROS production of Cu(II)-

XZH ATCUN complexes is very slow and that Cu(II)-KGHK is tentatively the most active 

complex, with 0.7 turnover per hour in the presence of both AscH- and H2O2, under the used 

conditions. Cu in buffer or other well-known redox-active Cu(II)-complexes, i.e. Cu(II)-(5,5’-

DmBipy)2 and Cu(II)-(Phen)2 had two orders of magnitude higher initial turnover rates. Moreover, 

the experiments with BCS suggest that Cu(I) is involved in the catalytic mechanism, indicating 

that the redox couple Cu(I)/Cu(II) is predominant and not Cu(II)/Cu(III). This is also supported by 

the much lower HO• production activity observed in the presence of H2O2 alone.  

Overall, this indicates that the cleavage of biomolecules by Cu(II)-XZH ATCUN complexes with 

AscH- and H2O2 is catalytically not very efficient but possible. However, a real limit for the 

application of the XZH ATCUN motif to produce ROS, could be the fact that a Cu(I) chelator (like 

GSH and MTs) would be able to retrieve Cu(I) during the redox cycle and totally suppress this 

ROS production (mechanism of reductive Cu-dissociation) (Fig 32).  

 

Fig 32 - Schematic representation of the main findings: the catalytic redox activity of Cu(II)-XZH ATCUN motif, 

with AscH- and H2O2/O2, compared to Cu in buffer, is very low and can be stopped via Cu(I)-chelation with BCS. 

Thus, considering the slow rate of ROS production by Cu(II)-XZH ATCUN complexes and the 

reductive Cu-dissociation by physiologically relevant reducing agents, it seems very difficult to 

use the ATCUN motif efficiently in catalysis for targets such as DNA/RNA or proteins in the 

cytosol or nucleus. 

Concerning the other applications, for which a redox inertness of Cu(II) is warranted, the XZH 

motif seems to be quite efficient in keeping Cu(II) redox stable, but not completely, as a small 

activity in ROS production remains. This is line with previous results which have shown that 

DAHK can suppress efficiently, but non completely, the ROS production of Cu(II)-Aβ1-x 

peptides.12 As shown in the above experiments, the ROS production activity of XZH motif might 

be sequence dependent, but maximal in a modest way. Nevertheless, there might be space to 

further improve the redox inertness of Cu(II)-XZH by changing X and Z and the amino acids after 

the His at position 3. 
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3.3 Case study of Cu-Thiosemicarbazone (TSC) anticancer drugs: insight into 

the mechanism of the reaction 

3.3.1. Introduction 

The second class of ligands we studied is the one of thiosemicarbazones (TSCs, ligands 2, 3, 4, 

Fig 24). During the past decades, TSCs have been clinically developed for a variety of diseases, 

including tuberculosis, viral infections, malaria and cancer.5,22 The first clinically approved drug 

belonging to the family of TSC was p-acetamidobenzaldehyde TSC, introduced in the late 1940’ 

and still in use for the treatment of multidrug-resistant tuberculosis.23 The clinical anticancer 

research mainly focused on α-N-heterocyclic TSC (usually containing a pyridyl moiety). 2-

pyridinecarboxaldehyde TSC (PT, ligand  2, Fig 24) was already reported to show activity against 

leukemia in mice in 1956.24 Further optimization led to the development of 3-aminopyridine- 2-

carbaldehyde TSC, commonly named Triapine (3-AP, ligand 3, Fig 24), which has been tested in 

more than 30 clinical phase I and II trials.25,26 Despite the promising activity against hematologic 

tumors, 3-AP proved to be unresponsive against solid tumors. The reason for this is still not fully 

understood but possible explanations are i) the very short plasma half-life (< 1 h in humans), ii) 

the rapid metabolism and extraction and/or the ii) fast development of drug resistance.27 

Nevertheless, it has remained the focus of interest mostly in combination therapy with other drugs, 

such as cisplatin.28 To overcome these issues, the series of di-2-pyridylketone TSC, i.e. di-2-

pyrydilketone 4,4-dimethyl-3-TSC (Dp44mT, ligand 4, Fig 24) and di-2-pyridylketone 4-

cyclohexyl-4-methyl-3-TSC (DpC) have been developed which showed the impressive property 

of being able to overcome drug resistance.5,29  

TSCs are basically bidentate ligands but are often equipped with a further coordinating moiety to 

improve stability via tridentate ligation, like in case of α -N-pyridyl TSCs. In general, α-N-pyridyl 

TSCs possess two dissociable protons, the first one from the pyridinium unit (pK1 ~ 3-4) and the 

second one from the hydrazinic N-H group of the thiosemicarbazide moiety (pK2 ~ 10.5-11.5). 

Based on the pKa values, at physiological pH all α-N-pyridyl TSCs are charged neutral (HL), thus 

enabling an easier passage across the cell membrane. In case of pK2, the resulting negative charge 

in mainly localized on the S atom via the thione-thiol tautomeric equilibrium (Fig 33), overall 

resulting in a N, N, S donor set.  

 

Fig 33 - General scheme of the deprotonation of α-N-pyridyl TSCs like ligands from the form H2TSC existing at 

acidic pH.  

TSCs were initially developed with the aim of targeting the enhanced requirement of cancer cells 

for Fe, but rapidly the complex formation with other biologically relevant metals has been 

suggested (e.g. Cu, Zn), as these compounds have relatively strong metal binding abilities. 

Especially, Cu complexation has been suggested in the mode of action of several α-N-pyridyl 

TSCs as they form more stable 1:1 Cu(II)-complexes compared the corresponding Fe-complexes.30  

In case of some di-2-pyridylketone TSC compounds, the Zn(II)-complex showed generally higher 

antitumor activity, but its toxicity was attributed to the corresponding Cu(II)-complex, formed 
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after the Zn(II)-complex crossed the cytosol and underwent transmetallation in the lysosomal 

compartment.31  

This shows that metal-TSCs could be transformed into apo-TSCs or transmetallated. Thus, apo-

TSC could potentially pick up metals, depending on the availability of different metal ions, which 

is compartment dependent. 

The mechanism responsible for the anticancer activity of TSCs is not fully understood yet and 

different derivatives may have different types of action. In some cases, the TSC alone was found 

to be as active as the metal complex, and in other cases metal complexes showed higher 

activity.32,33 Initially, the activity of TSCs has been attributed only to the inhibition of 

ribonucleotide reductase (RR), an Fe-containing enzyme involved in the rate limiting step of DNA 

synthesis, but whether this involves chelation of Fe in this enzyme or chelation of Fe beforehand 

and inhibition via the preformed redox-active Fe(II)-TSC complex, remains unclear.34,35 Also, a 

non-Fe dependent mechanism has been suggested, involving quenching of the tyrosine radical in 

RR by the non metallated-TSC.36 Moreover other targets have been proposed, such as the 

thioredoxin system.37 Concerning Cu, the major mode of action underlying the anticancer activity 

of Cu(II)-TSC complexes has been related to the intracellular production of ROS.38 The reactivity 

of varies Cu(II)-TSC complexes has been studied mainly with the reducing agent GSH.  It has 

generally been observed that GSH can reduce Cu(II)-TSCs and often Cu(I) is then released when 

an excess of GSH is present. During this process Cu(II)-TSCs can produce ROS.39–41 

A neglected aspect of the activity of TSCs with these essential metal ions (mainly Cu), deals with 

their stability with GSH and MTs under conditions found in the cytosol/nucleus. Indeed, Cu-

complexes of TSCs have not been investigated for their reactivity with MT, with or without GSH, 

in a test tube, despite its potential importance. However, Petering and co-workers showed the 

formation of Cu(I)-MT in cells exposed to the bisTCS called kts (3-ethoxy-2-oxobutyraldehyde 

bis-thiosemicarbazone).42 This shows clearly that MT could also be an important player in the 

reactivity of Cu(II)-TSCs. 

As seen before, GSH and MTs have two important features: i) they are reducing agents, and thus 

can potentially reduce Cu(II) to Cu(I) and Fe(III) to Fe(II); ii) they are metal chelators, having MT 

S thiolate ligands and GSH thiolate S, O (carboxylate) and N (amine). Despite the affinity of the 

metal-complexes formed with GSH, under biological relevant conditions, is general lower 

compared to the respective metalloproteins (Cu(I), Zn(II) and Fe(II) seem to form preferentially 

Cu(I)4-(GS)6, Zn(II)-(GSH)2 and Fe(II)-GSH complexes, respectively)43–45, GSH present in much 

higher concentration in the cytosol and nucleus (~1-10mM).  Hence, it could become a serious 

competitor for metal-binding of exogenous metal-complexes, formed with essential metal ions, 

mediating the transport of these metal ions to or from proteins. 

Therefore, we selected three α-N-pyridyl TSCs, i.e. PT, 3-AP, Dp44mT (ligands 2, 3 and 4, Fig 

24) and studied the reactivity of their Cu(II)-, Zn(II)- and Fe(II)-complexes in the presence of 

physiological relevant i) GSH, ii) Zn(II)7MT and iii) GSH/Zn(II)7MT concentrations for the 

cytosol and nucleus, to evaluate their stability against dissociation and potential transmetallation 

reactions with consequent inhibition of the Cu/Fe-dependent ROS production. Different 

spectroscopic and analytical techniques have been employed, i.e. absorbance, circular dichroism, 

EPR spectroscopies and ESI-MS analysis.   

There are two different schemes to consider: (i) a preformed metal-TSC complex existing 

extracellularly enters the cell. In this case, the oxidized form, Cu(II) and Fe(III) will be the more 

relevant oxidation states; (ii) TSC is applied as a ligand only and enters the cell and is then able to 
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pick up a metal ion. Here, Cu(I) and Fe(II) will be the more relevant forms since they are the most 

prevalent intracellularly. Generally, Fe(III)-TSCs have a much lower affinity compared to the main 

extracellular Fe(III)-binding protein transferrin. Considering that transferrin is only partially 

loaded with Fe(III), it is expected to withdraw Fe(III) from TSCs.46,47 Similarly, TSCs are very 

poor Cu(I)-ligands.48 Hence, we investigated the more likely existing Fe(II) and Cu(II)-TSC 

complexes, which are also the better characterized forms. We chose the Zn(II)7MT-1 isoform of 

MT since it is the one ubiquitously expressed in all cell tissues. Besides, we used the Zn(II)7MT-

2a and Zn(II)7MT-3 isoforms to evaluate potential differences in their behavior. 
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3.3.2 Results and discussion 

a. Reactivity of Cu(II)-TSCs with GSH 

To start our study, we evaluated the reactivity of the three Cu(II)-TSCs complexes with GSH 

alone. Although the interactions of some Cu(II)-TSCs with GSH have been studied in the past, the 

aim was to repeat the reactions to confirm previous results and compare the following experiments 

with Zn(II)7MT-1. As seen, GSH can use its thiol function to reduce Cu(II) to Cu(I), and bind 

Cu(I) quite strongly, thus leading itself to the reductive dissociation of a Cu(II)-complex.  

The reactivity of each Cu(II)-TSC complex (Cu(II)-PT/3-AP/Dp44mT) with GSH was initially 

studied by absorbance spectroscopy through the corresponding characteristic CT and d-d bands.  

First, to elucidate the stoichiometry of the Cu(II)-complexes formed under our experimental 

conditions and to characterized their spectroscopic features, Cu(II)-titration experiments were 

carried out (FigS 16). Cu(II)-complexes with a binding stoichiometry of 1:1 were obtained for the 

three ligands, although in case of the Dp44mT, the formation of a 1:2 (Cu(II):2L) was also 

observed, based on a red-shift of 8 nm of the CT band, after the addition of 0.5 eq of Cu(II) per L.    

Table 4 - Table summarizing the λmax values of absorbance of the different species observed in the reaction of Cu(II)–
PT/3-AP/Dp44mT with GSH (TSC, Cu(II)-TSC, [TSC-Cu(II)-GSH]) 

 

λmax 

TSC 
Cu(II)-TSC GSH-Cu(II)-TSC 

d-d band CT band d-d band CT band 

PT 313 628 382 530 386 

3-AP 359 606 418 528 425 

Dp44mT 328 608 411 526 416 

Then, Cu(II)-TSC complexes were generated in HEPES buffer with a Cu(II) to ligand ratio of 

0.9:1 to avoid the presence of free Cu(II), and GSH in 3 mM concentration was added, monitoring 

the reaction over time. For the three Cu(II)-TSCs exposed to 3 mM GSH, the instantaneous 

formation of a ternary adduct [TSC-Cu(II)-GSH] was detected (Fig 34), based on  a blue shift of 

~80 nm of the d-d band together with a small red shift of the corresponding CT band (Table 4). A 

similar shift in the CT band was already observed for a pyridoxal-TSC upon binding of GSH.49
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Fig 34 - Reaction of a) Cu(II)-PT, b) Cu(II)-3-AP and c) Cu(II)-Dp44mT complexes with GSH monitored over time 

by absorbance spectroscopy. Insets refer to the Vis region of the spectra (450–800 nm), in which the d–d bands are 

present; d) normalized absorbance of the λmax of the CT bands of the [TSC–Cu(II)–GSH] ternary adducts as a function 

of time. Intermediate spectra were collected at 4min intervals. Experimental conditions: 30 µM TSC, 27 µM Cu(II) 

(ratio TSC:Cu(II), 1:0.9), 3 mM GSH, 100 mM HEPES buffer, pH 7.4. 

The formation of ternary adducts was confirmed by EPR spectroscopy at low temperature (100 K) 

with the example of Cu(II)-PT complex (Fig 35). Cu(II)-PT showed a typical axial Cu(II) EPR 

spectrum (orange line). Upon the addition of GSH, a significant shift in the g parallel values was 

observed from ~ 2.205 to 2.142 together with a noticeable change within the superhyperfine 

structure (green line) (simulation parameters are given in TableS 3). 

These changes observed are consistent with the substitution of an equatorial ligand (likely H2O or 

buffer molecule) by a thiolate from GSH.50
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Fig 35 - EPR spectra of snap-frozen solutions of the Cu(II)–PT complex (orange line), at t0 min after the addition of 

GSH (green line) and after the addiction of Zn(II)7MT-1 (light blue line). Experimental conditions: 1 mM PT, 900 

µM Cu(II), 3 mM GSH or 200 µM Zn(II)7MT-1 (ratio PT/Cu(II)/Zn(II)7MT-1 1:0.9:0.2), HEPES buffer 100 mM, pH 

7.4 and T = 100 K. All samples were supplemented by 10% v/v glycerol. 

After the fast formation of a ternary adduct of GSH with all three Cu(II)-TSCs, very marked 

differences in terms of further reactivity could be observed (Fig 34). The addition of GSH to the 

preformed Cu(II)-Dp44mT complex resulted in the immediate binding of GSH to the complex, 

but no changes in the spectrum of the ternary adduct [Dp44mt-Cu(II)-GSH] could be detected over 

a period of 132 min. Thus, the Cu(II)-Dp44mT complex did not dissociate in the presence of GSH. 

On the contrary, the addition of GSH to the preformed Cu(II)-PT and Cu(II)-3-AP complexes 

resulted in the immediate formation of the ternary adduct [TSC-Cu(II)-GSH], from which Cu(II) 

was rapidly (several minutes) reductively dissociated to form the Cu(I)-GSH species. Indeed, a 

decrease in intensity of the CT and d-d bands of the ternary adducts [PT-Cu(II)-GSH] and [3-AP-

Cu(II)-GSH] was observed over time along with an increase in the intensity of the band of the free 

ligands. The kinetic of Cu(II) reduction and release of Cu(I) from the ternary adduct with 3-AP 

was faster compared to that with PT. The reason for this is not known but the assumed limiting 

step of the reaction is the reduction of Cu(II) to Cu(I). Redox potentials reported for Cu(II)-3-AP 

and Cu(II)–PT are respectively -0.19 and -0.14 mV vs NHE;41 thus, Cu(II)-PT should be easier to 

reduce. However, these potentials were obtained in 66% organic solvent and in the absence of the 

relevant ternary complexes with GSH. 

Cu(I)-dissociation from the ligands PT and 3-AP in the ternary adducts [PT/3-AP-Cu(II)-GSH] 

with consequent Cu(I) binding to GSH was confirmed based on the appearance of the characteristic 

CT absorption band of the Cu(I)–GSH species at 265 nm under a saturated argon atmosphere (FigS 

17) and on the disappearance of the EPR signature of the [PT–Cu(II)–GSH] species after 30 min 

from the addition of GSH to the preformed Cu(II)–PT complex at RT (FigS 18). Under an O2 

atmosphere, after around 36 min (PT) and 20 min (3-AP) the slow re-oxidation of Cu(I) to Cu(II) 

and re-formation of the Cu(II)-complex started to be observed (Fig 34). This was not detected in 

the absence of O2, but when O2 was vigorously bubbled through the sample, the oxidation was 

faster with the regeneration of the ternary adducts, [PT/3-AP–Cu(II)–GSH] (FigS 17).  

Afterwards, we tested other physiological relevant GSH concentrations, i.e. 6 and 9 mM (FigS 

19). As expected, at higher concentration of GSH, a faster release of Cu(I) from the Cu(II)–PT 

complex was observed and in line with the higher amount of reduced GSH available in solution, 
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the re-oxidation of Cu(I) to Cu(II) and consequently the re-formation of the Cu(II)–PT complex 

was slower and hence it was not observed over a period of 120 min. 

Overall, the data obtained lead to the proposition of the following reactions: 

- 5) [Cu(II)-TSC]+
 + GSH → [TSC-Cu(II)-GS-] + H+

  

- 6) [TSC-Cu(II)-GS-] + xGSH → Cu(I)-GSx
- + TSC + ½ GSSG + xH+ 

where x is likely 1.5 due to the formation of Cu(I)4-(GS)6 clusters. Thus, PT and 3-AP undergo 

reactions 5) and 6), where 5) is faster than 6). Cu(II)-Dp44mT seems to perform reaction 6) much 

slower than PT and 3-AP. Overall, this suggests that the fate of Cu(II)-TSCs with mM GSH 

concentrations, as encountered in the cytosol/nucleus of cells, is quite different. Cu(II)-Dp44mT 

does not dissociate, and undergoes only a very slow redox cycle with GSH and O2. In contrast, the 

Cu(II)-complexes of PT and 3-AP dissociate with Cu(I)-bound to GSH. This makes Cu(I) available 

for its sequestration by Cu-binding proteins.  

b. Reactivity of Cu(II)-TSCs with Zn(II)7-MT-1 

Before investigating the effect of both GSH and Zn(II)7MT-1, we evaluated the reactivity of 

Cu(II)-PT, 3-AP and Dp44mT, with Zn(II)7MT-1 alone. Like for GSH, MT could reduce Cu(II) 

from Cu(II)-TSCs and form ternary adducts with the complexes. The Cu(II)-complexes were 

exposed to 6 µM Zn(II)7MT-1, which is in the lower range of values reported in the cytosol and 

nucleus. Reactions were followed by absorbance, circular dichroism spectroscopies and ESI-MS.  

Fig 36 shows the UV-Vis spectra for the reactions of the three complexes. All of them, reacted 

very fast with Zn(II)7MT-1 via the formation of a ternary complex, [TSC-Cu(II)-Zn(II)7MT-1], by 

binding of a thiolate from Zn(II)7MT-1 to Cu(II)-TSCs, based on the blue shift of the d-d bands 

(insets in Fig 36 and Table 4).   

This was also supported by EPR spectroscopy (shown for PT), i.e. shift in the g parallel values 

from ~ 2.205 to 2.147, along with changes within the superhyperfine structure, and the loss in the 

EPR intensity (light bue line, Fig 35 and TableS 3 for the EPR simulation parameters).  
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Fig 36 - UV-Vis spectra of the reaction of Zn(II)7MT-1 with a) Cu(II)-PT, b) Cu(II)-3-AP and c) Cu(II)-Dp44mT 

monitored over time after Zn(II)7MT-1 addition to the preformed Cu(II)-TSC complex. Intermediate spectra were 

collected at 4 min intervals. Insets refer to the Vis region of the spectra (450–800 nm) for the corresponding reaction. 

Experimental conditions: 30 µM TSC, 27 µM Cu(II), 3 µM Zn(II)7MT-1 (ratio TSC:Cu(II):Zn(II)7MT-1, 1:0.9:0.2), 

100 mM HEPES buffer, pH 7.4. 

Hence, Zn(II)7MT-1 was able to reduce Cu(II) to Cu(I) via its cysteines and to chelate Cu(I) finally. 

This was supported by circular dichroism spectroscopy (shown for 3-AP in Fig 37), with the 

appearance of the typical spectrum observed for Cu(I)4Zn(II)4MT-1, i.e. CD bands at about (+) 

255 and (-) 285 nm. This CD spectrum has been already observed in the past after reaction of MTs 

with Cu(II) and Cu(II)-compounds (see previous reactions of Cu(II)-Aβ4-16) 

Cu(I) binding to MT-1 was also confirmed by ESI-MS for the reaction of Zn(II)7MT-1 with Cu(II)-

3-AP (Fig 38 and FigS 20a) and Cu(II)–Dp44mT (FigS 20b). Experiments were carried out in 

collaboration with Dr. Oscar Palacios from Autonomous University of Barcelona. 

The main peak in a) of m/z ~ 6610 has the mass expected for Zn(II)7MT-1 at neutral pH; upon the 

addition of Zn(II)7MT-1 to the preformed Cu(II)-3-AP and Cu(II)-Dp44mT complexes (b and c), 

the immediate appearance of the main peak at m/z ~ 6671 (after deconvolution of the spectra), 

which corresponds to the substitution of three Zn(II) ions with four Cu(I) ions, i.e. to the formation 

of Cu(I)4Zn(II)4MT-1 complex.  

Besides, in the experiments monitored by absorbance spectroscopy, a band in the region 360-400 

nm was detected during the reactions, which is typical for the Zn(II)-TSC complexes (Fig 36 and 

see FigS 26 for Zn(II) titration experiments). This is line with the fact that Cu(I)-binding to 
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Zn(II)7MT results in the release of Zn(II), and suggest the possibility of Cu/Zn transmetallation 

reaction.  

 

Fig 37 - CD spectra of 3-AP (light blue line); 3-AP/Cu(II), 1:0.9 (green line); 3-AP/Zn(II), 1:0.6 (purple line); 3-

AP/Cu(II)/Zn(II)7MT-1, 1:0.9:0.2 (red line, spectrum registered after 120 min from the addition of Zn(II)7MT-1 to the 

preformed Cu(II)–3-AP complex), and Cu(II)/Zn(II)7MT-1, 0.9:0.2 (yellow line). Experimental conditions: 100 µM 

PT, 90 µM Cu(II), 20 µM Zn(II)7MT-1 (ratio 3-AP:Cu(II):Zn(II)7MT-1, 1:0.9:0.2), 100 mM HEPES buffer, pH 7.4. 

 

Fig 38 - Deconvoluted ESI-MS spectra a) of Zn(II)7MT-1, b) Cu(II)/Zn(II)7MT-1, 0.9:0.2, and c) 3-

AP/Cu(II)/Zn(II)7MT-1, 1:0.9:0.2 (spectrum registered after 120 min from the addition of Zn(II)7MT-1 to the 

preformed Cu(II)-3-AP complex). Experimental conditions: 50 µM 3-AP, 45 µM Cu(II), 10 mM Zn(II)7MT-1 (ratio 

3-AP:Cu(II):Zn(II)7MT-1, 1:0.9:0.2), 50 mM ammonium acetate, pH 7.4.  
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Overall, for the three complexes the following reaction occurs with Zn(II)7MT-1: 

- 7) 4Cu(II)-TSC + Zn(II)7MT-1 → Cu(I)4Zn(II)4MT-1 + 3Zn(II)-TSC + TSC 

It is important to highlight that with Zn(II)7MT-1, Cu(II)–Dp44mT also reacted, not only Cu(II)–

PT and Cu(II)–3-AP. This is in contrast to GSH, which was not able to withdraw Cu(II) from 

Dp44mT, but only formed a stable ternary complex. The reason for this is not known, but may be 

due to the more reducing potential of MT.  

c. Reactivity with of Cu(II)-TSCs with GSH and Zn(II)7-MT-1 

In the end, the reactivity of the Cu(II)–TSC complexes with GSH and Zn(II)7MT-1 together was 

investigated by absorbance spectroscopy and ESI-MS. The results are shown in Fig 39 and FigS 

21 and are consistent with the previous ones, for GSH and Zn(II)7MT-1 only.  

 

Fig 39 - UV-Vis spectra of the reaction of a) Cu(II)-PT, b) Cu(II)-3-AP, and c) Cu(II)–Dp44mT with GSH/Zn(II)7MT-

1 monitored over time after GSH and Zn(II)7MT-1 additions to the preformed Cu(II)-TSC complexes. Insets refer to 

the Vis region of the spectra (450–800 nm) for the corresponding reactions. d) Kinetics of Cu(II) release from Cu(II)-

PT/3-AP with GSH in the presence (PT: blue profile; 3-AP: violet profile) and absence (PT: light blue profile; 3-AP: 

magenta profile) of Zn(II)7MT-1. Data are expressed as normalized absorbance of the λmax of the CT bands of  [PT/3-

AP-Cu(II)-GSH] ternary adducts as a function of time.  Experimental conditions: 30 µM TSC, 27 µM Cu(II), 3 µM 

Zn(II)7MT-1 (ratio TSC:Cu(II):Zn(II)7MT-1, 1:0.9:0.2), 3 mM GSH, 100 mM HEPES buffer, pH 7.4 

GSH/Zn(II)7MT-1 can reduce Cu(II) to Cu(I) from Cu(II)-TSCs and then Cu(I) is transferred to 

Zn(II)7MT-1, where it is stabilized in the form of Cu(I) by the formation of the Cu(I)4Zn(II)4MT-

1 species. These reactions have a half-time of about 5 and 10 min for 3-AP and PT respectively, 

and for Dp44mT of about 4 min (TableS 4). In the latter case, due to the simultaneous generation 

of the corresponding Zn(II)-(Dp44mT)2 complex (FigS 22), the t1/2 could not be accurately 
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determined. Cu(I) binding to MT-1 was confirmed by ESI-MS for the reaction of Zn(II)7MT-

1/GSH with Cu(II)–3-AP (FigS 21a) and Cu(II)–Dp44mT (FigS 21b).  

For PT and 3-AP, when comparing the kinetics of the reduction of Cu(II) to Cu(I) via the CT band 

(Fig 39d) with (PT: blue; 3-AP: violet) and without Zn(II)7MT-1 (PT: light blue; 3-AP:purple), it 

can be observed that the kinetics at the beginning of the reactions are very similar. This implies 

that GSH reduces Cu(II) to Cu(I) from Cu(II)-PT/3-AP and then shuttles Cu(I) to Zn(II)7MT-1. 

Moreover, it can be observed the Cu(II)-PT/3-AP complexes are not re-formed over time. Hence, 

when Zn(II)7MT-1 is present in solution, the reaction is not reversible, confirming the Cu(I) 

binding to MT-1 and consequent formation of the Cu(I)4Zn(II)4MT-1 species, which is stable 

towards oxidation in air/with dioxygen. However, the spectrum of the Zn(II)-PT/3-AP complex 

was not observed under these conditions, suggesting that Zn(II) released from Zn(II)7MT-1 was 

not bound to PT or 3-AP. Indeed, further experiments showed that 3 mM GSH can withdraw Zn(II) 

from Zn(II)-PT/3-AP (Fig 40 and FigS 27), suggesting that Zn(II) was bound to GSH at the end 

of the reaction.  

Thus, the overall reaction of Cu(II)-PT and Cu(II)-3-AP complexes with GSH/Zn(II)7MT-1 is the 

following: 

- 8) 4Cu(II)-PT/3-AP + xGSH + Zn(II)7MT-1 → Cu(I)4Zn(II)4MT-1 + 4PT/3-AP + 2GSSG + 

3Zn-GS(x-4)/3 + xH+  

In contrast, for Cu(II)-Dp44mT the reactivity was different from PT/3-AP. First, the overall 

reaction leads to the binding of Zn(II) to Dp44mT, as indicated by the presence of the CT band at 

λmax = 398 nm, characteristic of the Zn(II)-(Dp44mT)2 complex. This means that a transmetallation 

reaction occurs, by a swap of metal ions, as follows: 

- 9) 4Cu(II)-Dp44mT + xGSH + Zn(II)7MT-1 → Cu(I)4Zn(II)4MT-1 + 3Zn(II)-Dp44mT2 + 

xGSSG + xH+ 

The higher affinity of Dp44mT for Zn(II) with respect to GSH was confirmed by a direct 

competition experiment. Indeed, 3 mM GSH could not retrieve more than 5% Zn(II) from Zn(II)-

Dp44mT2, and even at 10 mM GSH ~84% of the Zn(II)-Dp44mT2 complex was still present.  

Thus, Cu(II)-Dp44mT was stable in the presence of GSH but when Zn(II)7MT-1 was added, the 

complex dissociated like Cu(II)-PT/3-AP. In terms of mechanism, two possibilities can be 

imagined: (i) Zn(II)7MT-1 plays the role of reducing agent and not GSH, even though it is present 

at much lower concentration (i.e. 6 µM Zn(II)7MT-1 against 3 mM GSH) or ii) GSH can reduce, 

likely slowly, Cu(II) in Dp44mT, but Cu(I) binds stronger to Dp44mT than to GSH or it is 

immediately re-oxidized before dissociation. In the presence of Zn(II)7MT-1, Zn(II)7MT-1 can 

pull out Cu(I) from Dp44mT since it is a stronger ligand than GSH, and/or trap Cu(I) before re-

oxidation to Cu(II) occurs. 

We also tested the same reactivity but with different MT isoforms, i.e. GSH/Zn(II)7MT-2a and 

GSH/Zn(II)7MT-3 isoforms (FigS 23, FigS 24, FigS 25).  The results only differ in terms of their 

kinetics. The half-times for the reactions with Zn(II)7MT-3 were generally more rapid than that 

for Zn(II)7MT-1/2 (3 min for PT and 2 min for 3-AP). This is consistent with the faster kinetics of 

Cu(I)/Zn(II) exchange for MT-3 already reported.51  
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d. Interaction of TSCs with other essential metals (i.e. Zn, Fe) 

As seen above, the three TSCs differed in their capacity to bind Zn(II), released from Zn(II)7MT-

1, in the presence of GSH. To confirm these results and also because different Zn(II)-TSC 

complexes have been considered as anticancer drugs31,52, we investigated the reactivity of the 

Zn(II)-TSC complexes with GSH.  

To start, we characterized via absorbance spectroscopy, with titration experiments, the Zn(II) 

binding behavior to the ligands under our experimental conditions (FigS 26). Only for Dp44mT 

the formation of a complex Zn(II)-(Dp44mT)2 with a distinct 1:2 stoichiometry was detected. 

Fig 40 and FigS 27 show the competition of GSH for Zn(II) from the three Zn(II)-TSC complexes. 

Zn(II)-(Dp44mT)2 complex did not completely dissociate even at 10 mM GSH (only ~16%). In 

contrast, 1 mM GSH was enough to retrieve more than 50% of Zn(II) bound to 3-AP and almost 

half from PT. The reaction was very rapid (<1 min, the mixing time). This indicates that only 

Zn(II)-(Dp44mT)2 complex could be  stable against GSH concentration found in the 

cytosol/nucleus, whereas Zn(II)-PT and Zn(II)-3-AP rapidly dissociate. 

 

Fig 40 - Reaction of Zn(II)-TSC complexes with GSH monitored by absorbance spectroscopy. A concentrated stock 

solution of GSH was titrated into the preformed Zn(II)-TSC complexes ([GSH] = 1-10 mm). In a) data are expressed 

as normalized absorbance of the λmax of the Zn(II)-PT, Zn(II)-3-AP, and Zn(II)-(Dp44mT)2 complexes (at 364 nm, 

395 nm, 398 nm respectively) as a function of GSH concentration (mM). In b) UV-Vis spectra for the reaction of 

Zn(II)-3-AP with GSH are reported. Experimental conditions: 30 µM TSC, 30 µM or 15 µM (in case of Dp44mT) 

Zn(II), HEPES buffer 100 mM, and pH 7.4. 1 µl aliquots of a 100 mM stock solution of GSH were added to obtain 

the desired GSH concentration (from 1 to 10 mM). 

Then, we investigate the reactivity the three Fe(II)-(TSC)2 complexes with Zn(II)7MT-1 and GSH. 

To the preformed Fe(II)-(PT)2, Fe(II)-3-AP2 and Fe(II)-(Dp44mT)2 complexes, Zn(II)7MT-1 was 

first added and the reaction monitored over time. Then, to the Fe(II)-(TSC)2/Zn(II)7MT-1 mixture, 

GSH was added (Fig 41a/b/c for PT, 3-AP and Dp44mT respectively). 

The three Fe(II)-(TSC)2 complexes did not dissociate over time both in the presence of Zn(II)7MT-

1 alone and after the addition of GSH. The absence of reactivity with Zn(II)7MT-1 is consistent 

with the biologically non-relevant Fe binding capacity of the protein. The inability of GSH to 

dissociate Fe(II)-(TSC)2 may be ascribed to the inability of GSH to form ternary adducts with the 

complex and to the lower stability of the Fe(II)-GSH complex compared to Fe(II)-(TSC)2. 
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Fig 41 - Uv-Vis spectra for the reaction of a) Fe(II)-(PT)2, b) Fe(II)-(3-AP)2, c) Fe(II)-(Dp44mT)2 with Zn(II)7-MT-1 

and GSH. To the preformed Fe(II)-(TSC)2 complexes, Zn(II)7-MT-1 and then GSH were added one after the other, 

and the reactions monitored over time. Experimental conditions: 30 µM TSC, 15 µM Fe(III), AscH- 5 mM (formation 

of the Fe(II)– (TSC)2 complex with a ratio TSC:Fe(II), 2:1), 100 mM HEPES buffer, pH 7.4. Addition of Zn(II)7MT-

1 6 µM and GSH 3 µM. 

e. Catalytic-redox activity of Cu-TSC and Fe-TSC2 with O2, GSH and Zn(II)7-MT-1 

As introduced previously, one of the proposed mechanisms of action responsible for the anticancer 

activity of Cu-TSCs and Fe-(TSCs)2 is the intracellular production of ROS, based on the reduction 

of Cu(II) and Fe(III) by reducing agents such as AscH- and GSH.  

Hence, we investigated the ROS production catalyzed by Cu(I)-TSC and Fe(II)-(TSCs)2, with the 

example of PT, with a  EPR spin-trapping investigation (Fig 42), in the absence (left panels) and 

presence (right panels) of Zn(II)7MT-1. Cu(II)-PT was able to induce the production of HO• in the 

presence of only GSH, concomitant with a significant loss in the Cu(II)-PT background (baseline 

left panel of Fig 42a). Both features indicate the reduction of Cu(II) to Cu(I) by GSH followed by 

the reduction of O2 to ROS by Cu(I)-PT or Cu(I)-GSH. In the same way, Fe(III)-PT was also able 

to produce HO•.  

 

Fig 42 - EPR spin-trap experiments (at RT) for the reactions of a) Cu(II)-PT and b) Fe(III)-(PT)2 with GSH (left 

panels), and with GSH and Zn(II)7MT-1 (right panels). 4-POBN was used as primary spin trap and DMSO (from the 

ligand stock solution, ~ 5%) as secondary spin-trap. Experimental conditions a): 1 mM PT (stock solution in DMSO), 

900 µM Cu(II), ± 200 µM Zn(II)7MT-1 (ratio PT:Cu(II):Zn(II)7MT-1 (1:0.9:0.2)), GSH 3 mM, HEPES buffer 50 mM, 

pH 7.4, and POBN 50mM. Experimental conditions b): 1 mM PT (stock solution in DMSO), 500 µM Fe(III), ± 200 

µM Zn(II)7MT-1 (ratio PT:Cu(II):Zn(II)7MT-1 (1:0.9:0.2)), GSH 3 mM, TRIS buffer 50 mM, pH 7.4, and POBN 50 

mM. 
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After addition of GSH and Zn(II)7MT-1 to Cu(II)-PT and Fe(III)-PT no signal above the 

background, originating from HO•, was observed for Cu(II)-PT (right panel, Fig 42a), whereas a 

partial signal was still detected for Fe(III)-(TSC)2.  

This indicates that, Cu(I) transfer to MT-1 completely abolished the Cu(II)-PT mediated ROS 

production observed. In contrast Zn(II)7MT-1 was only able to partially reduce the Fe(III)-(TSC)2 

mediated ROS production in the presence of GSH. This is in line with the fact that Zn(II)7MT-1 

can suppress the metal-catalyzed ROS production via two mechanisms:  

- Mechanism 1): ROS scavenging, i.e. by destruction of the product (antioxidant effect);53  

- Mechanism 2): metal-binding with concomitant redox-silencing of the complex and hence 

complete suppression of the metal-mediated ROS production (neutralization of the catalyst).54  

Thus, Zn(II)7MT-1 is able to completely suppress the production of HO• by Cu(I)-PT via binding 

and redox-silencing of Cu(I) (mechanism 2), but it is only able to inhibit the ROS produced by 

Fe(II)-PT because it cannot withdraw Fe, but is able to scavenge HO• (mechanism 1). This 

indicates that Zn(II)7MT-1 is a more efficient ROS scavenger for Cu(I)-TSCs compared to Fe(II)- 

-TSCs. 
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3.3.3 Summary of the main findings 

The results described above for the reactivity of Cu(II)-Zn(II)-Fe(II)-PT/3-AP/Dp44mT 

complexes are summarized in Table 5. The reactivity depends not only on the type of ligand but 

also on the type of metal ion.  

Table 5 - Table summarizing the reactivity of the Cu(II)/Zn(II)/Fe(II)-PT/3-AP/Dp44mT complexes with i) GSH, ii) 

Zn(II)7MT-1 and ii) GSH in the presence of Zn(II)7MT-1. Stability in the cytosol/nucleus refers to the metal complexes 

existing in the cytosol after reaction with GSH and Zn(II)7MT-1 under physiological-like conditions. 

TSC M 
Resistance to: Stability in the 

cytosol/nucleus GSH Zn(II)7MT-1 GSH/Zn(II)7MT-1 

PT 

Cu(II) ✘ ✘ ✘ 

Fe(II)-(PT)2 Zn(II) ✘ - - 

Fe(II) ✔ ✔ ✔ 

3-AP 

Cu(II) ✘ ✘ ✘ 

Fe(II)-(3-AP)2 Zn(II) ✘ - - 

Fe(II) ✔ ✔ ✔ 

Dp44mT 

Cu(II) ✔ ✘ ✘ 
Zn(II)-Dp44mT 

Fe(II)-(Dp44mT)2 
Zn(II) ✔ - - 

Fe(II) ✔ ✔ ✔ 

All the three Fe(II)-(TSC)2 complexes were i) stable in the presence of GSH/Zn(II)7MT-1, 

indicating that a Fe(II)-(TSC)2 complex could exist for a longer time in the cytosol/nucleus and ii) 

able to catalyze the production of ROS. Indeed, Zn(II)7MT-1 could only partially suppress the 

ROS production catalyzed by Fe(II)-(PT)2 via HO• scavenging. This supports the notion that Fe 

may be the most important metal complex in the biological activity of TSCs, with respect to these 

environments.  

Concerning the Zn(II)-(TSC)2 complexes, their reactivity with GSH was different depending on 

the TSC ligand. Zn(II)-PT and -3-AP dissociate partially within seconds in the presence of mM 

GSH, although not totally from Zn(II)-PT (~ 90%). However, considering that other Zn sites exist 

in a cell, which are often unoccupied, it is well possible that Zn dissociates almost completely and 

rapidly from Zn(II)-PT, entering the cytosol.55 In contrast, Zn(II)-(Dp44mT)2 dissociates very 

little, even at 10 mM GSH concentration (~ 16%). However, this dissociation is very rapid, so 

Zn(II) could be rapidly transferred to stronger Zn-binding sites if available in the cell. 

The most complex behavior was observed for the Cu(II)-TSC complexes (Fig 43). Overall, Cu(II)-

PT and -3-AP have very similar behaviors, where they only differ slightly by their kinetics, with 

3-AP reacting faster than PT. Cu(II)-PT and -3-AP react within a few minutes with GSH and/or 

Zn(II)7MT-1. First, a ternary complex with a thiolate is formed (via the cysteine of GSH or MT-

1), then Cu(II) is reduced and dissociated from PT/3-AP. If Zn(II)7MT-1 is present, Cu(I) ends up 

in MT-1, whereas if only GSH is present, Cu(I) binds to GSH. The fast reductive dissociation of 

Cu(II)-TSCs indicates that the lifetime of Cu(II)-PT/3-AP in the cytosol/nucleus may be quite 

short (couple of minutes), which limits quite significantly the time to produce ROS in these 

environments. Moreover, our data indicate that the ROS production by Cu-TSC is not very 

efficient. Thus, the question that arises is if it is really the complex Cu(II)-PT/3-AP/Dp44mT that 

is responsible for the biological activity or the combination of Cu(II)/Cu(I) on one side and free 

ligand PT/3-AP on the other side. Of course, this is only valid under the conditions found in the 

cytosol and nucleus, where high concentrations of GSH and Zn(II)7MT-1 are present. In other 
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compartments, with less GSH and/or Zn(II)7MT-1, Cu(II)-PT/3-AP may be stable and exhibit 

activity. 

 

Fig 43 - Schematic representation of the reactivity of Cu(II)-TSCs complexes in the presence of physiological 

concentrations of GSH and Zn(II)7MT-1 found in the cytosol and nucleus (pH 7.4).  

On the other hand, Cu(II)-Dp44mT rapidly forms a ternary complex with GSH, [Dp44mT-Cu(II)-

GSH], but this complex is stable and no transfer of Cu(I) to GSH is observed. This can be explained 

by the expected lower redox potential of Cu(II)-Dp44mT compared to 3-AP and PT due to the 

additional electron donating groups (2 methyl groups and one pyridine), stabilizing Cu(II), 

compared to Cu(I). Reduction to Cu(I) is a prerequisite for Cu transfer to GSH. However, 

Zn(II)7MT-1 can react rapidly with Cu(II)-Dp44mT, also via first (i) formation of a ternary 

complex [Dp444mT-Cu(II)- Zn(II)7MT-1], (ii) reduction of Cu(II) to Cu(I) and (iii) its transfer to 

MT-1. This indicates that with GSH and Zn(II)7MT-1 concentrations typically found in cytosol 

and nucleus, Cu(II)–Dp44mT dissociates quite rapidly. The reason why Zn(II)7MT-1 at only 6 µM 

concentration but not GSH at 3 mM can extract Cu(II) from Cu(II)-Dp44mT may be related to the 

lower reduction potential of MT and hence its greater efficiency in reducing Cu(II) to Cu(I) from 

Cu(II)-Dp44mT, and the stronger affinity of MT-1 for Cu(I) compared to GSH.  

Another remarkable point is that after the reaction of Cu(II)-Dp44mT with Zn(II)7MT-1, the 

released Zn(II) from Zn(II)7MT-1 can bind to Dp44mT even when GSH is present. Hence, it is 

possible that in the case of Cu(II)-Dp44mT a transmetallation occurs when entering the cytosol or 

nucleus, with Cu(II)-Dp44mT being transformed into Zn(II)-(Dp44mT)2. Of course the stability 

of the Zn(II)-(Dp44mT)2 complex also depends on other competitors, as discussed above.  

Besides, the EPR spin-trap experiment indicate that the mechanism of reductive dissociation of 

Cu(II)-TSCs with GSH and Zn(II)7MT-1 leads to the complete deactivation of the Cu-based drugs 

as Cu(I)-binding to Zn(II)7MT-1 fully ceases the formation of HO•, induced by Cu(II)-TSCs 

The anticancer activity of some Zn(II)-TSCs has been attributed to the localization of the Zn(II)-

TSC to the lysosome and subsequent transmetallation with Cu(II). From our data, the existence of 

a Zn(II)-TSC complex in the cytosol is possible for Dp44mT, but less likely for Zn(II)-3-AP and 

-PT, which will more likely enter the lysosome without Zn(II). GSH and MT concentrations in the 

lysosome are not well known. However, it is clear that the affinity of GSH and MT for Cu(I) and 

Zn(II) ions at lower pH ~ 5, as found in lysosomes, will dramatically decrease. Also the metal 

affinities of TSCs decrease with a decrease in pH, but to a lesser extent because metal-binding to 
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TSCs is possible for protonated TSCs since the protonated nitrogen is not involved directly in the 

Cu(II)-coordination.27 Hence, from the data presented above, the proposed mechanism of 

formation of Cu(II)-TCS complexes in the lysosome and its induced lysosomal membrane 

permeabilization and cytotoxicity is not contradicted.31 They rather support this view. Moreover, 

they are consistent with the study by Kraker et al., which showed the transfer of Cu(II) to MT from 

the Cu(II)-complex of 3-ethoxy-2-oxobutyraldehyde bis(thiosemicarbazonato) after being taken 

up by cells.42 
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3.4 Cu-based drugs: catalytic redox-activity in ROS generation vs stability 

under cytosol/nucleus like conditions 

3.4.1 Introduction and aim of the study  

As already discussed, Cu metabolism appear to be severely altered in neoplastic diseases and this 

has led to the research, development and investigation of several Cu-based drugs which are able 

to target and kill cancer cells. In this respect, pro-oxidant ligands, that are able to enhance Cu-

reactivity by forming a Cu-complex that promote Cu-redox cycling and generation of ROS, have 

been particularly investigated.  

Therefore, in the last part of this study, we tried to understand whether a Cu-based drug might be 

stable as Cu-complex and at the same time efficiently catalyze the production of ROS, under 

conditions found in the cytosol/nucleus, i.e. in the presence of elevated concentrations of Cu-

binding and/or reducing biomolecules. Hence, we explored and investigated the correlation 

between stability against GSH/Zn(II)7MT-1 and redox-activity in the presence of AscH-, with 

some of the Cu-complexes (containing different families of ligands) which have been developed 

and studied for their anticancer activity.56,57 As the redox-potential of a Cu-complex (associated 

with the redox-couple Cu(II)/Cu(I)) gives an indication of the possibility of a Cu-complex to fast 

redox cycling between Cu(I) and Cu(II) redox states, with physiological redox partners, we 

included in our study several Cu-complexes with redox potentials that vary significantly from ~ -

0.6 to 0.6 V vs NHE. The ligands which have been included in this study are shown in Fig 24: 

- Cyclam (L7), Bleomycin (L11), ATSM (L6), CQ (L13) APDTC (L12) (redox potential Cu-

complexes: < - 400 mV vs NHE); 

- GTSM (L5), Dp44mT (L4) (redox potential Cu-complexes ~ - 200 mV vs NHE)  

- Phen (L9), 5,5’DmBipy (L8) (redox potential Cu-complexes ~ 200 mV vs NHE)  

- BCS (L10) (redox potential Cu-complex ~ 600 mV vs NHE) 

The catalytic activity in ROS production of the Cu-complexes was studied via 

consumption/oxidation of the substrate AscH- by absorbance spectroscopy at λmax = 265 nm, 

whereas their stability with GSH/Zn(II)7MT-1 was investigated by absorbance and luminescence 

spectroscopy at 77K.  
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3.4.2 Results and discussion 

a. Evaluation of the catalytic redox-activity of the Cu-complexes with O2 and AscH- 

To start our investigation, we addressed the question concerning the Cu(II)/Cu(I)-redox-activity 

of all the selected Cu-complexes, in the presence of AscH- as reducing agent, at pH 7.4. AscH- is 

one of the highest concentrated reducing agents, from 100 µM to several mM. Based on the 

reaction scheme reported in Fig 2, the ability of a Cu-complex to fast oxidizing AscH-, correlates 

with an efficiency in redox-cycling between Cu(II) and Cu(I) redox states and hence in catalyzing 

the generation of ROS (pro-oxidant activity).  

Measurements were performed by monitoring the consumption of the substrate AscH- at λmax = 

265 nm (ε = 14500 M-1cm-1), as already shown for Cu(II)-XZH ATCUN complexes. The activities 

of the Cu-complexes were compared to that of free Cu(II) in buffer.  

At first, experiments were carried out triggering the oxidation of AscH- with the preformed Cu-

complexes after 10 min as highlighted by the black arrow (Fig 44a). The histogram in Fig 44b and 

Table 6 show the corresponding initial molar AscH- oxidation rates in µM/min, with the 

corresponding standard deviation errors.  

 

Fig 44 - a) Time course of AscH- oxidation monitored by absorbance spectroscopy at λmax= 265 nm. AscH- oxidation 

was started by the addition of the preformed Cu(II)-complexes after 10 min (black arrow). b) Histogram of the 

corresponding molar AscH- oxidation rates (µM/min). Measurements were performed in triplicate, with different 

solutions at different days, thus average values of robs (µM/min) with standard deviations are reported. Experimental 

conditions: Cu(II) 5 µM, L 6 µM/12 µM or 10 µM (CQ), AscH- 100 µM, in HEPES 50 mM, pH 7.4. 

Based on the efficiency in AscH- oxidation in the presence of O2, under the given experimental 

conditions, i.e. 100 µM AscH- and 5 µM Cu-complex at pH 7.4, the studied Cu-complexes can be 

divided into three groups, i.e.:  

- Group 1: Cu(II)-(Phen)2, Cu(II)-(5,5’DmBipy)2 (light blue bars, Fig 44b): 

They oxidize AscH- slightly more rapidly or as rapidly as free Cu, with initial rates of 12.4 ± 

1.7 and 10.1 ± 1.0 µM/min (see Table 6) respectively. If we assume that the ROS production 

correlates with AscH- consumption (based on scheme reported in Fig 2), Cu(II)-(Phen)2 and 

Cu(II)-(5-5’DmBipy)2 would be much more efficient catalysts for the production of ROS, 

compared to the other Cu-complexes. This correlates with the favourable redox-potentials of 

Cu(II)-(Phen)2 and Cu(II)-(5,5’DmBipy)2 complexes for Cu(II) reduction to Cu(I) (i.e. ~ 0.2 V 

vs NHE) in the presence of AscH- (E° AscH-/AscH•- = 0.28 V).  
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- Group 2: Cu(II)-Dp44mT, Cu(II)-gtsm (green bars, Fig 44b): 

They oxidize AscH- but very slowly with initial rates of about less than one order of magnitude 

than complexes of group 1. This correlates with their more negative redox potentials. Thus, 

reduction of Cu(II)-Dp44mT and Cu(II)-gtsm to Cu(I)-Dp44mT and Cu(I)-gtsm, which 

represents the step 1 to start the Cu(II)-catalysed ROS production in presence of AscH- is 

thermodynamically less favoured. 

- Group 3: Cu(I)-(BCS)2, Cu(II)-(CQ)2, Cu(II)-Cyclam, Cu(II)-Bleomycin (pink bars, Fig 44b) 

They are very inefficient catalysts to produce ROS and thus almost completely block the 

oxidation of AscH-, with values of initial rates even lower or similar in case of Cu(II)-(CQ)2 to 

that of the background of AscH- oxidation, in which no Cu and ligands are present (Table 6). 

The very low catalytic redox-activity of the Cu-complexes of this group relates to their either 

too negative (Cu(II)-(CQ)2, Cu(II)-Cyclam, Cu(II)-Bleomycin) or too positive (Cu(I)-(BCS)2, 

redox-potentials, not accessible for AscH-/AscH•- redox-couple.  

In case of Cu(II)-(APDTC)2 complex it was not possible to measure the activity in AscH- oxidation 

because of solubility issues. Thus, we decided to follow AscH- oxidation catalyzed by all the Cu-

complexes generated in situ, i.e. triggering the reaction with free Cu, after (Fig 45a) or before (Fig 

45b) the addition of the ligand in solution. Experiments were performed at lower concentration 

i.e. 1 µM Cu.  

 

Fig 45 - Time course of AscH- oxidation monitored by absorbance spectroscopy at λmax= 265 nm. AscH- oxidation 

was started by the addition of free Cu(II) a) after or b) before the addition of the ligand  in solution (generation in-situ 

of the Cu-complexes). Experimental conditions: Cu(II) 1 µM, L 1.2 µM/2.4 µM or 2 µM in case of CQ, APDTC  

(ratio 1:1.2/1:2.4, 1:2.0), AscH- 100 µM, in HEPES 50 mM, pH 7.4. 

The following observations can be made: 

- APDTC completely stops the Cu-induced oxidation of AscH-, meaning that Cu(II)/(I)-

(APDTC)2 redox-cycling is very inefficient. This is again in line with the thermodynamically 

unfavorable reduction of Cu(II)-(APDTC)2  to Cu(I)-(APDTC)2.
58 Indeed, although being a 

sulfur-containing ligand,  APDTC does not stabilize well Cu(I). This is likely due to low π-

acceptor character of the ligand.   

- Cyclam does not arrest the oxidation of AscH- immediately. This is in line with the slow kinetic 

of complexation of Cu(II) observed for unsubstituted tetraazamacrocycles.59 Nevertheless, 

once the Cu(II)-Cyclam is formed, it cannot be reduced by AscH- as probed by the absence of 

AscH- oxidation (Fig 44). 
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- At 1 µM concentration, Cu(II)-(Phen)2, Cu(II)-(5,5’DmBipy)2 oxidize AscH- much more 

rapidly than Cu in buffer. This result was confirmed also at lower concentration than 1 µM 

(results not shown). This indicates that at concentration of Cu(II)-(Phen)2, Cu(II)-

(5,5’DmBipy)2 higher than 1 µM, the activity of the catalyst is not kinetically determinant, 

likely because the catalyst is not completely saturated.    

b. Evaluation of the stability of the Cu-complexes with GSH and Zn(II)7MT under 

cytosol/nucleus like conditions 

Next, we investigated the stability of the Cu-complexes in the presence of physiological 

concentrations of GSH and Zn(II)-MT, found in the cytosol and nucleus. As already seen with the 

example of Cu(II)-TSC complexes in the previous study, in the presence of GSH and MT reactions 

of reductive dissociation can occur and lead very fast to the deactivation of the drug. The reactivity 

of the Cu-complexes with GSH/Zn(II)-MT was studied by i) absorbance spectroscopy, in order to 

be able to estimate the t1/2 of Cu transfer to MT-1, and ii) luminescence at 77 K, to confirm Cu(I) 

binding to MT.  

Low temperature luminescence represents a powerful tool in the structural investigation of Cu(I)-

MTs, because of the characteristic luminescence properties of inorganic Cu(I)-thiolate clusters. 

The luminescence emission spectra of tetra-, hexanuclear and other similar clusters in MT have 

been deeply investigated.60–62 In case of the Cu(I)4-thiolate cluster found in Cu(I)4Zn(II)4MT-3 the 

LT emission spectrum is characterized by two emissive bands, one at high energy centered at 425 

nm and one at low energy with maximum between 560-595 nm. The luminescence bands decay 

according to single exponential functions with lifetimes of ~ 40 and 130 ms respectively, which is 

consistent with their origin from two triplet-excited-states. The presence of two emissive bands 

has been correlated with the short internuclear Cu-Cu distances (< 2.8 Å), which allow metal-

metal interactions and hence a d10-d10 orbital.54,63 

The luminescence characterization of Cu(I), Zn(II)MT species was carried out in collaboration 

with Prof. Gabriele Meloni and Jennifer Calvo at University of Texas, Dallas. Experiments 

monitored by absorbance spectroscopy were performed with MT-1 isoform, whereas those by LT 

luminescence with MT-2. Indeed, as shown before, the two isoforms have a similar behavior in 

terms of kinetic of Cu acquisition. Besides, in order to have a better resolution of the emission 

spectra, the concentration of MT used was 4 times higher compared to the conditions employed 

when the reactions were followed by absorbance spectroscopy (i.e. 2.5 µM Zn(II)MT-1 (ratio Cu-

complex, Zn(II)MT-1).  

In Fig 46 the UV-Vis spectra for the reactions of the Cu-complexes with i) GSH and Zn(II)-MT-

1 or ii) only GSH are shown. In Fig 47 the corresponding LT luminescence spectra for the reaction 

with GSH and Zn(II)-MT-2 at t(0.5h) and t(4h) are reported. FigS 28, FigS 29, FigS 30, FigS 31, 

FigS 32, FigS 33, FigS 34, FigS 35, FigS 36, FigS 37 show the LT luminescence spectra for the 

reaction with Zn(II)-MT-2  and GSH/Zn(II)-MT-2 at t(0.5h) and t(4h) for Cu(I)-(BCS)2, Cu(II)-

(APDTC)2, Cu(II)-(5,5’-DmBipy)2, Cu(II)-(Phen)2, Cu(II)-ATSM, Cu(II)-Bleomycin, Cu(II)-

(CQ)2, Cu(II)-Cyclam, Cu(II)-GTSM and Cu(II)-Dp44mT respectively.  
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Fig 46 - Reactivity of the Cu-complexes with GSH/Zn(II)7-MT-1 or GSH only monitored by absorbance spectroscopy. 

Experimental conditions: preformed Cu-complexes at 10 µM concentration were mixed with 2.5 µM Zn(II)7-MT-1/3 

mM GSH (ratio Cu-complex: Zn(II)7-MT-1, 1:0.25), in 50 mM HEPES, pH 7.4, in the presence of 60% DMSO for 

Cu(II)-(CQ)2 and Cu(II)-(APDTC)2.  
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Fig 47 - Reactivity of the Cu-complexes with GSH/Zn(II)7-MT-1 monitored by luminescence. The luminesce emission 

spectra in the region 280-750 nm were recorded on frozen samples at 77 K upon excitation at λ = 320 nm, for the 

reactions at a) t(0.5h) and t(4h). Experimental conditions: preformed Cu-complexes at 10 µM concentration were 

mixed with 2.5 µM Zn(II)7-MT-2 (ratio Cu-complex: Zn(II)7-MT-1, 1:0.25) and 3 mM GSH in 50 mM HEPES, pH 

7.4. As a control, the luminesce spectrum of Cu(I)4Zn(II)4MT-2 complex is presented. c) Histogram displaying the 

values of intensity of the low energy emissive band centered at 550 nm, for the spectra recorded at t(0.5h) (solid bars) 

or t(4h) (striped bars) after the addition of GSH and Zn(II)7MT-2 to the preformed Cu-complexes.  

The following considerations can be made in terms of stability of the studied Cu-complexes with 

physiological concentrations of GSH and Zn(II)7-MT : 

- upon addition of 3 mM GSH/ 2.5 µM Zn(II)7-MT-1, Cu(I)-(BCS)2 at 10 µM dissociates within 

mixing-time and Cu(I) binds to MT finally as proven by i) the disappearance of the CT band 

of Cu(I)-(BCS)2 at λmax = 483 nm (Fig 46e) and the appearance of the   characteristic LT 

luminescence spectrum of Cu(I)4Zn(II)4MT-2 at t(0.5h) (blue spectrum, Fig 47a). Under the 

given experimental conditions Cu(I) binding to MT is thermodynamically favored, thus 

MT/GSH irreversibly dissociates the complex. Only at higher concentration of hundreds µM 

Cu(I)-(BCS)2 could resist to MT.51  

- Cu(II)-(Phen)2 and Cu(II)-(5,5’DmBipy)2 dissociate as well within mixing-time with 3 mM 

GSH/2.5 µM Zn(II)7-MT-1.  This in line with i) their very fast reduction to Cu(I)-(Phen)2 and 

Cu(I)-(5,5’DmBipy)2
64

 and ii) with the much lower thermodynamic stability of the Cu(I)-

complexes compared to Cu(I)-MT complex (log β2 [Cu(I)-(Phen)2] = 15.8; values reported for 

unsubstituted Cu(I)-(Bipy)2 are generally ~ 2 orders of magnitude lower compared to Cu(I)-

(Phen)2.)
65 Thus, as soon as Cu(II)-(Phen)2 and Cu(II)-(5,5’DmBipy)2 are reduced, Cu(I) is 

immediately taken and stabilized into Cu(I)4Zn(II)4MT complex. It is important to highlight 
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that because of the differences between log β1, and log β2, at 10 µM concentration the 1:2 

complexes Cu(I)-(Phen)2 and Cu(I)-(5,5’DmBipy)2 are only partially formed.  

- Reductive dissociation of Cu(II)-Dp44mT and Cu(II)-gtsm with 3 mM GSH/2.5 µM Zn(II)7-

MT-1 is slower compared to Cu(II)-(Phen)2 and Cu(II)-(5,5’DmBipy)2, i.e. at 10 µM 

concentration half of the complexes are dissociated within ~ 4 min and 50 min, respectively. 

This in line with the more negative redox potentials of Cu(II)-Dp44mT and Cu(II)-gtsm, thus 

with their slower reduction.66,67 As seen before, GSH reacts with Cu(II)-Dp44mT with 

formation of a stable ternary complex, [Dp44mT-Cu(II)-GSH], which does not dissociate. 

Nevertheless, in the presence of Zn(II)7MT-1 with or without GSH, Cu(II)-Dp44mT is rapidly 

dissociated and transmetallated, with formation of Zn(II)-(Dp44mT)2. On the other hand, gtsm 

seems not to form a ternary complex neither with GSH nor with Zn(II)7MT-1, in line with the 

complete equatorial coordination sphere. Only the axial positions are available for binding of 

an external ligand, which are much weaker than the equatorial ones. Nevertheless, Cu(II)-gtsm 

reacted with GSH in the absence of Zn(II)7MT-1, and Cu(II) was reduced to Cu(I) but did only 

partially dissociate at 10 µM concentration (~ 20% of the complex within 5h) (Fig 46d). In 

contrast, in the presence of Zn(II)7MT-1 the complex was completely dissociated in 4h/5h with 

Cu(I) irreversibly bound to MT in form of Cu(I)4Zn(II)4MT (violet spectrum, Fig 46, Fig 47). 

Results are in line with the reactivity already reported in the literature for Cu(II)-gtsm with 

GSH and BCS (used as mimic of intracellular Cu(I) binding proteins) and thus  with the 

proposed Cu(II) uptake mechanism mediated by Cu(II)-gtsm, i.e. as it enters the cell it is 

immediately reduced with consequent Cu(I) dissociation from the ligand.  

Hence, the reason why Cu dissociation from Cu(II)-Dp44mT is faster could be to the fact that 

i) it can form a stronger ternary complex with MT and ii) to the higher affinity of the 

corresponding Zn(II)-Dp44mT complex compared to Zn(II)-gtsm. Indeed, as shown in Fig 46d 

after 5h the spectrum characteristic of Zn(II)-gtsm complex (λmax = 434 nm) could not be 

observed, meaning that Zn(II) released from MT was rather bound to GSH.  

- Cu(II)-atsm, Cu(II)-Cyclam and Cu(II)-Bleomycin do not dissociate within 4h/5h in the 

presence of GSH/Zn(II)7MT as shown by absorbance (only for Cu(II)-atsm) and luminescence 

spectroscopies. The stability of the complexes with GSH/Zn(II)7MT correlates with the more 

negative redox potential of the complexes and hence with the fact that they are harder 

reduce.67,68  

- Despite the very negative redox potentials, Cu(II)-(CQ)2 and Cu(II)-(APDTC)2 seem to 

dissociate relatively fast with GSH/Zn(II)7MT-1 (~ 20 and 5 min respectively) as shown by the 

disappearance of the respective CT bands at λmax = 458 nm and 436 nm. However, 60% of 

DMSO had to be included in the reaction mixture, because of solubility issues. This behavior 

would be in line with the lability of the second ligand in both the 1:2 complexes and hence 

with the possibility to be replaced by an external ligand, i.e. GSH or MT (i.e. via associative 

mechanism). On the other hand, when the reactions were monitored by LT luminescence 

(brown and grey spectra Fig 47), the luminescence spectrum of Cu(I)4Zn(II)4MT-2 complex 

was only detected for the reaction with Cu(II)-(APDTC)2 but 60% DMSO was not included in 

the reaction mixture. We are currently repeating the experiments, under the same experimental 

conditions, to confirm the results obtained.  

Finally, we studied the ability of Zn(II)7MT-1 to suppress the Cu(II)-dependent catalyzed ROS 

production of the Cu(II)-(Phen)2, Cu(II)-(5,5’DmBipy)2 complexes, which would result in the 

complete deactivation of the Cu-based drugs. The experiment was carried out adding Zn(II)7MT-
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1/GSH to the Cu-complexes formed in situ during the oxidation of AscH- (which was monitored 

by absorbance spectroscopy from the band of AscH- at λmax = 265 nm), triggered by free Cu (first 

arrow from the left, Fig 48).  

 

Fig 48 - Impact of Zn(II)7-MT-1 and GSH on the time course of AscH- oxidation  catalyzed by free Cu (green profile), 

Cu-(Phen)2 (light blue profile), Cu-(5,5’-Dmbipy)2 (green profile): evolution of AscH- absorption at λmax= 265 nm as 

a function of time. AscH- oxidation was started by the addiction of free Cu (first arrow from the left) and monitored 

for 10 min before the addition of Phen or 5,5’-Dmbipy (generation in-situ of the Cu-complexes). Then, Zn(II)7-MT-1 

and GSH were added and the reaction monitored over time. Experimental conditions: Cu(II) 1 µM, Ligand 1.2 µM/2.4 

µM (ratio 1:1.2/1:2.4), AscH- 100 µM, GSH 2 mM, Zn(II)7-MT-1 2.5 µM, in HEPES 50 mM, pH 7.4. 

When Zn(II)7MT-1 and GSH were added in solution, AscH- oxidation was immediately arrested, 

indicating that Cu(I) binding to MT completely stopped the ROS production, redox-silencing 

Cu(II)-(Phen)2, Cu(II)-(5,5’DmBipy)2 complexes. 
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3.4.3 Summary of the main findings  

The results discussed above concerning the reactivity of several Cu-based drugs in terms of 

catalytic redox-activity in ROS generation (with AscH- and O2) and stability with thiol-reducing 

molecules such as GSH and Zn(II)7MT are summarized in Table 6. The redox-potentials of the 

Cu-complexes vary significantly depending on the ligand set, and consequently on the geometric 

arrangement around the Cu center.  

Table 6 - Table summarizing the i) t1/2 (min or sec) values of Cu release from the selected Cu(II)-complexes, calculated 

from the experimental kinetics of disappearance of the Cu(II) or Cu(I) CT bands, monitored by absorbance 

spectroscopy; ii) corresponding molar AscH- oxidation rates (µM/min), and ii) redox potentials (mV). 

Cu-complex 
t1/2 transfer to MT-1 

(with GSH) 
robs AscH- oxidation 

(µM min-1) 
Redox Potential 

(mV) [NHE] 

Background  / 0.11 ± 0.06 / 

Cu(II) < 30 sec 9.5 ± 1.4 16069 

Cu(II)-ATSM (6) ✗ 0.05 ± 0.01 -40367 
Cu(II)-Cyclam (7) ✗ 0.05 ± 0,02 -736 (Epc)59 
Cu(II)-Bleomycin (11) ✗ 0.06 ± 0.02 - 

Cu(II)-(CQ)2 (13) ~ 20 min 0.16 ± 0.04 - 
Cu(II)-(APDTC)2 (12) ~ 5 min / - 

Cu(II)-GTSM (5) ~ 50 min 0.49 ± 0.10 -24167 
Cu(II)-Dp44mT (4) ~ 4 min 0.92 ± 0.11 -21066 

Cu(II)-(5,5’-DmBipy)2 (8)  < 30 sec 10.1 ± 1.0 12070 

Cu(II)-(Phen)2 (9) < 30 sec 12.4 ± 1.7 
18864 
17070 

Cu(I)-(BCS)2 (10) < 30 sec 0.07 ± 0.01 61871 

The results obtained show that the potential to have a pro-oxidant Cu-complex, in the presence of 

elevated concentrations of AscH-, GSH and Zn(II)7MT, as found in the cytosol and nucleus, 

depends not only on the ability of the Cu-complex to fast redox cycling between Cu(I) and Cu(II)-

redox states, in the presence of physiological reductants, but also on the affinity of the ligands for 

Cu(I). Indeed, considering the reducing intracellular environment and the strong Cu(I) affinity for 

GSH and MT reaction, reactions of reductive dissociation can be very fast.  

Overall, the experiments presented underline the complexity of having Cu(I)/(II) redox systems 

under conditions encountered in the cytosol/nucleus. Cu(II)-(Phen)2, Cu(II)-(5,5’DmBipy)2 are the 

complexes that show the highest activity in terms of AscH- oxidation. This correlates with their 

favorable redox potential (E° ~ 200 mV vs NHE), that depends on the 2(N,N) Cu-binding donor 

set provided by aromatic diamines ligands, that is capable of stabilizing both Cu(II) and Cu(I) 

oxidation states. Nevertheless, in the presence of GSH and Zn(II)7MT, the thermodynamic stability 

of the Cu(I)-complexes in not high enough to resist to GSH and Zn(II)7MT, resulting in the 

immediate dissociation of the Cu(I)-complexes as soon as the Cu(II)-complexes are reduced.   

The reactivity observed for Cu(II)-ATSM, Cu(II)-Cyclam and Cu(II)-Bleomycin, indicate that Cu-

complexes with very negative redox-potentials (< 400 mV vs NHE)  could be stable under 

conditions found in the cytosol/nucleus, as they are very difficult to reduce with physiological 

reductants. On the other hand, a Cu(I)-complex, will not dissociate in the cytosol/nucleus only if 

it is thermodynamically more stable than Cu(I)-MT complex, i.e. if the affinity is higher than that 

of MT (Ka > 1020). Studies with tetrathiomolybdate suggest that its affinity is sufficient to sequester 

Cu from MTs.72 Besides, more recently, the Cu(I)-complex of PSP-2, a Cu(I) chelator that binds 

Cu(I) with low zeptomolar dissociation constant (logK = 20, 25 °C), has been shown to selectively 

reduce cellular Cu levels and to exhibit a significant anti-angiogenic activity.73,74 
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Considering that a Cu(I)/(II) redox system exist in the cytosol and nucleus, i.e. Cu-Zn SOD 

(SOD1), the question that arises is how nature does it. Once translated the nascent monomeric 

polypeptide of SOD1 binds one Zn ion, providing structural integrity before the direct interaction 

with CCS occurs. CCS delivers Cu ion into the active site and catalyzes the formation of an intra-

subunit disulfide bond and the dimerization of two subunits (active enzyme).75 Thus, Cu is 

kinetically trapped within the positively charged active site of the enzyme, while the rest of the 

surface is negatively charged.69 This charge gradient increases the equilibrium concentration of 

superoxide near the active site channel. Therefore, despite the lower thermodynamic stability of 

the Cu, Zn SOD complex, MT does not retrieve Cu from the enzyme. However, this is difficult to 

obtain with small molecule drugs.  
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CHAPTER 4  

 

 General conclusion 

4.1 Main findings 

 The aim of the work presented in this thesis was to get a better knowledge about the impact 

of MTs and other smaller Cu-binding and reducing biomolecules, such as GSH, Cys, AscH- and 

Glu, on the redox-activity and stability of some medicinal relevant Cu-complexes. We decided to 

focus our study on different groups of complexes, i.e. pathophysiological Cu-complexes of Aβ 

peptides, which are considered to be neurotoxic in AD, and Cu-based drugs, which have been 

devolved and studied for their potential application as therapeutics for a variety of diseases, 

including cancer.  The main findings of two respective parts are stated below.  

❖ Case study I: pathophysiological Cu(II)-Aβ complex of the N-truncated Aβ peptide, Aβ4-16 

(model for Aβ4-42) 

- Cys and GSH accelerate the rate of Cu transfer from Aβ4-16 to Zn(II)7MT-3, via Cu(II) 

reduction to Cu(I) and Cu(I) shuttling over MT-3; 

- Glu accelerate the kinetic of Cu transfer from Aβ4-16 to MT-3, likely via an associative 

mechanism, i.e. transiently forming a ternary complex [Glu-Cu(II)-Aβ4-16]; 

- Partially loaded Zn(II)7-xMT-3 species acquire Cu faster from  Cu(II)-Aβ4-16, proportionally to 

extent of Zn depletion and hence the number of available unbound-thiol groups;  

- GSH, Cys and Glu indirectly affect the Zn distribution between Aβ4-16 and MT-3, being Zn(II) 

bound to Aβ4-16 at the end of the reaction. Thus, they are modulators of the Cu/Zn distribution 

between the two biomolecules;  

- Depending on external stimuli or stress Cu/Zn distribution between Aβ4-16 and MT-3 can be 

influenced by multiple partners which act cooperatively, i.e. a Zn-binding biomolecule could 

abstract Zn from Zn(II)7-x-MT-3 and indirectly influence Cu-trafficking and/or a Cu-binding 

biomolecule could accelerate the rate of Cu transfer to MT-3 and indirectly affect Zn-

trafficking.  

Taken together these results suggest that physiological small biomolecules like Cys, GSH and Glu 

might be implicated in the trafficking of Cu(II)-Aβ4-x complex, by impacting the synthesis of the 

redox-silent complex Cu(I)4Zn(II)4-MT-3. Considering that fluctuations of these molecules can 

occur, they could impact the distribution of Cu/Zn ions between the two biomolecules 

downregulated under AD conditions. Therefore, they are important parameters to be considered. 

Nevertheless, what Cu binding does to Aβ4-x peptide is still not clear. Cu(II)-Aβ4-x complex does 

not produce ROS, so one could argue that Aβ4-x might have a protective role. On the other hand, 

as Cu can influence aggregation, it could potentially increase its toxicity. 

❖ Case study 2: Cu-based drugs   

- The catalytic redox activity of Cu(II) bound to the motif NH2–Xxx-Zzz-His (ATCUN) with 

AscH- and H2O2/O2 is very low and can be stopped via Cu(I)-chelation with BCS. This result 
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strongly impacts its application as an artificial Cu-enzyme to degrade biomolecules via ROS 

production in a Cu(I)-chelator rich environment like the cytosol/nucleus. 

- Cu(II)-TSC complexes are rapidly (minutes) dissociated with physiological concentrations of 

GSH and Zn(II)7-MT, found in the cytosol and nucleus, and Cu(I) is taken up by MT, with 

generation of Cu(I)4Zn(II)4MT species.  

- In case of Cu(II)-Dp44mT, it is also possible that a transmetallation occurs when entering the 

cytosol or nucleus, with Cu(II)-Dp44mT being transformed into Zn(II)-(Dp44mT)2.  

- The mechanism of reductive dissociation of Cu(II)-TSCs leads to the complete deactivation of 

the drugs in terms of the often proposed ROS production, as Cu(I)-binding to Zn(II)7MT 

completely stops the ROS production induced by Cu(II)-TSCs.  

- A redox active Cu(I)/Cu(II)-complex will exist as Cu-complex in the cytosol and nucleus only 

if it resists to GSH/Zn(II)7MT, i.e. if the Cu(I)-affinity of the Cu-complex is higher than that 

of MT (i.e. Ka > 1020). 

In general, the results obtained, concerning the reactivity of several Cu-complexes that display 

antineoplastic activity, indicate that the GSH/MT system is very efficient in withdrawing Cu from 

Cu-complexes at concentrations found in the cytosol and nucleus. Thus, these molecules are very 

important modulators and partners of Cu-based drugs and should be taken into consideration when 

designing a Cu-complex with targets in these environments. Moreover, they underly the 

complexity of designing an efficient pro-oxidant Cu-drug based on small molecules, capable of 

fast redox cycling between Cu(II)/Cu(I) redox states with intracellular physiological reductants 

and in the presence of strong Cu(I)-chelators.  

In conclusion, the results presented in this thesis show that MTs can have a major impact on the 

fate of a medicinal Cu-complex, having either a neuroprotective role against toxic Cu-complexes, 

such as Cu(II)-Aβ under AD conditions, or being modulators and deactivators of Cu-based drugs 

in the cytosol and nucleus. 

4.2 Critical discussion and future directions  

The research work that has been presented in this thesis is a chemical study, showing the 

reactivity of several Cu-complexes under physiological-similar conditions found in cellular and 

extracellular compartments. In my opinion, these studies although carried out under in vitro 

conditions, which of course could be modulated in vivo, are extremely important. Indeed, they can 

help in understanding the fundamental mechanisms of various complex systems and pathways in 

biology at the molecular level. This knowledge is required to be able to control and modulate 

biological processes, especially disease-relevant biological pathways, and thus to develop more 

efficient therapeutics. Hence, I believe that that the results of this thesis pave the long way for 

novel therapies that may challenge global problems like dementia and cancer.  

When conducting this type of research, one of the most important parameters to consider is the in 

vitro concentration of the various components of the reaction-mixture, which should be at least 

comparable to that found in vivo. Exact concentrations of biomolecules (like MTs, GSH, Cys, and 

AscH-) are mostly known for the intracellular environments (especially cytosol and nucleus), but 

much less is known for the extracellular space, and in particular in or around the synaptic cleft, 

where Aβ aggregates are found. Nevertheless, in our studies, we tried to respect, when possible, 

physiological relevant concentrations of the different biomolecules. The main limit is the 
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sensitivity of techniques used (i.e. Uv-Vis, CD, fluorescence 1H-NMR, EPR, ESI-MS) which in 

some cases is not high enough to allow to work in the very low µM range. Nevertheless, we tried 

to respect always at least the relative ratios between the different compounds (e.g. Cys, GSH and 

Glu are more concentrated than Aβ4-x peptide and MT). 

Overall, our studies highlight that the existence of a Cu-complex in a biological medium strongly 

depends on its reactivity with multiple partners. For instance, we were able to show that different 

small physiological molecules, despite their lower Cu(II) reducing power and Cu(I)-binding 

affinity compared to MTs, can accelerate the rate of Cu transfer to MT via different mechanisms. 

Moreover, the reaction with Glu and EDTA is particularly interesting, it shows that multiple 

mechanisms may also act cooperatively (leading to additive effects) or complement each other. 

Hence, considering the multitude of different small molecules that exist together in a biological 

media and are present at high concentration, this thesis paves the way for further research in this 

direction. 

Despite there are still many aspects to clarify concerning the function of MTs in the development 

and progression of AD, it is clear that they play an important role, especially regarding their 

interaction with metal ions and oxidative stress. Considering this, MTs could serve as inspiration 

for metal-based therapeutic strategies, either by mimicking their chemistry for the development of 

new chelators or via control of their expression for the optimal regulation of metal ions in the 

brain.  

Concerning the development of Cu-prooxidant complexes to be used as anticancer therapeutics, 

with our test tube experiments we have shown the challenge to have a redox-active Cu-complex 

able to efficiently catalyze ROS with physiological concentration of GSH and MT, because of 

their strong reducing power and Cu(I)-affinity. Nevertheless, in other organelles where MT is not 

present, like the lysosome or mitochondria, they might be active as Cu-complexes and thus this 

strategy might be exploited to kill cancer cells.  

In collaboration with Dr. Christian Gaiddon, during the preparation of this thesis, we have also 

attempted to see how the MT concentration affects the activities of Cu-TSC complexes in cells. 

Experiments were performed using Hela cells and inducing MT expression with dexamethasone. 

Despite some encouraging results, in which we observed that dexamethasone slightly increases 

the IC50, suggesting that increased MT reduces the toxicity induced by our complexes, the 

variability among the different experiments was too high to ascertain a statistical significance. We 

think that the variability between experiments might be linked to the volatile expression level of 

MT in cancer cells. Therefore, it would be interesting to correlate the intensity of the protective 

effect with the actual levels of MT expression in each experiment. Overall, significantly more 

experiments are needed to be performed to obtain and answer on this interesting question. 

More in general, I believe that despite the challenge, inorganic chemists should continue their 

research in the development of Cu-based drugs. However, there is first an essential need to better 

understand the role that Cu plays in cancer etiology and pathogenesis, and to delineate which 

cancer types are appropriate for treatments that target Cu. Afterwards, efforts have to be made to 

better define the biological features of Cu coordination compounds ideal for their anticancer 

activity.  
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CHAPTER 5 

 

 Supporting material  

5.1 Experimental section  

5.1.1 Experimental section chapter 2 

a. Materials 

Tris base (2-amino-2-(hydroxymethyl)-1,3-propanediol), CuCl2·7H2O, ZnSO4·7H2O, 

TCEP (tris(2-carboxyethyl)phosphine hydrochloride), HCl (trace metal grade), EDTA 

((ethylenedinitrilo)tetraacetic acid), PAR (4-(2-pyridylazo)resorcinol), L-Glutathione reduced, L-

Cysteine  were purchased from Sigma-Aldrich. L-Glutamic acid (Glu) was purchased from Fluka. 

KH2PO4, K2HPO4, HEPES buffer were purchased from Alfa Aesar. Trypton, yeast extract, LB 

Broth, agar, IPTG (agarose, isopropyl-β-D-1 thiogalactopyranoside), SDS (sodium dodecyl 

sulfate) were from Lab Empire, NaCl, NaOH, glycerol, KH2PO4·H2O, K2HPO4 from POCH 

(Gliwice Poland), pTYB21 vector and chitin resin from New England BioLabs. DTNB (5,5'-

dithiobis-(2-nitrobenzoic acid)) from TCI Europe N.V., DTT (DL-dithiothreitol) from Iris 

Biotech. All solutions were prepared with milli-Q water obtained with a deionizing water system 

(Merck Millipore, USA). 

b. Peptide synthesis and quantification 

The N-truncated Aβ4-16 peptide (AA sequence: FRHDSGYEVHHQK-NH2), model for the 

full length Aβ4-42 peptide, was synthesized according to Fmoc strategy and purified by HPLC as 

already described in the literature.1 A stock solution of the Aβ4-16 peptide was prepared by 

dissolving the powder in Milli-Q water (resulting pH = 2). The peptide concentration was 

determined by absorbance spectroscopy from free Tyr10 absorption with Δε(λ276-296) = 1410 M-1 at 

pH 2. This was confirmed by Cu(II) titration in 50 mM PB, pH 7.4, monitored by absorbance 

spectroscopy through the d-d band of the 1:1 complex Cu(II)-Aβ4-16 at λmax = 525 nm. The titration 

was carried out by adding portions of a 10 mM CuCl2 stock solution to Aβ4-16 peptide. 

c. MT-3 preparation and reconstitution with Zn(II) 

Zn(II)7-MT-3 used for the study with Cys and GSH: a pet-3d (Novagen) plasmid encoding 

for human MT-3 sequence was used for recombinant protein expression. Zn(II)7MT-3 was 

expressed in Escherichia coli strain BL21(DE3)pLys and purified as previously described in the 

literature.2 

A stock solution of Zn(II)7MT-3 was prepared by dissolving the powder in 20 mM Tris-HCl, pH 

8.6. In order to remove DTT (previously added to preserve the thiol groups from oxidation), a SEC 

(size exclusion chromatography) column was run, employing a PD mini trap G10 column, 

equilibrated with PB 10 mM, pH 7.4.  

Zn(II)7-MT-3 used for the study with Glu and EDTA: the coding cDNA sequence of human 

metallothionein-3 (MT-3) was purchased from GenScript (USA) and cloned into the pTYB21 
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vector (New England Biolabs). The expression vector was transformed into BL21(DE3)pLysS E. 

coli component cells and the protein was expressed as intein fusion.3 The bacteria were cultured 

(4 × 1L) in rich full growth medium (1.1% tryptone, 2.2% yeast extract, 0.45% glycerol, 1.3% 

K2HPO4, 0.38% KH2PO4) until OD600 reached 0.5 at 37C, then induced with 0.1 mM IPTG and 

incubated overnight at 20C with vigorous shaking. Cells were collected by centrifugation at 4 000 

 g for 10 min at 4C, suspended in 200 ml cold buffer A (20 mM HEPES, pH 8.0, 500 mM NaCl, 

1 mM EDTA, 1 mM TCEP) and sonicated for 30 min followed by centrifugation at 20,000  g for 

45 min at 4C. Clear supernatant was incubated with 10 ml of a chitin resin (New England Biolabs) 

overnight with mild shaking at 4C. The resin was than washed 5-6 times with 25 ml of the same 

buffer and the cleavage reaction was initiated by adding DTT to a final concentration of 100 mM 

in buffer A without TCEP. MT-3 was cleaved from resin for 48 h at room temperature with mild 

mixing. The eluted supernatant containing MT-3 protein was acidified to pH ca. 2.4 using 7% HCl 

and concentrated using Amicon Ultra-4 Centrifugal Filter Units (Millipore). The concentrated apo-

protein was purified using a SEC-70 column (Bio-Rad) equilibrated with 10 mM HCl using Bio-

Rad NGC system. The identity of the protein was confirmed using mass spectrometry, on an API 

2000 ESI-MS instrument (Applied Biosystems). The m/z values found/calculated were 

6925.3/6921.5. Thionein (apo-MT3) was mixed with 10 molar equivalents of ZnSO4 in the 

presence of 2 mM TCEP under anaerobic conditions.4 The pH of the solution was adjusted to 8.6 

using 1 M Tris base. The sample was concentrated similarly as above and purified on SEC-70 

column equilibrated with 20 mM Tris-HCl, pH 8.6. The collected fractions with MT-3 were 

concentrated and used immediately for experiments or stored at -80C.  

The concentrations of Zn(II) ions, thiols and the total protein were determined 

spectrophotometrically using PAR and DTNB assays5,6 or by UV range measurements at 220 nm. 

Accordingly, MT-3 contained 7.06 ± 0.10 Zn(II) ions per molecule. 

d. General procedures and kinetic studies  

A Cu(II) stock solution (100 mM) was prepared in Milli-Q water from CuCl2·2H2O. Its 

concentration was verified by absorbance spectroscopy at λ = 780 nm, pertaining to the Cu(II) 

aqua ion d-d band (ε = 12 M-1cm-1). A Zn(II) stock solution (100 mM) was prepared in Milli-Q 

water from ZnSO4·7H2O.  

Stock solutions of Cys and GSH (100 mM) were freshly prepared daily by dissolving their powders 

in to a 72.4 mM solution of HCl in Milli-Q water. An EDTA stock solution (100 mM) was prepared 

by dissolving the powder in MQ water and increasing the pH up to 8 by adding a 5 M NaOH 

solution. A Glu stock solution (100 mM) was prepared by dissolving the powder in 100 mM PB 

at pH 7.4.  

PB (500 mM), pH 7.4, was prepared by mixing potassium dihydrogen phosphate 99 % (KH2PO4) 

with potassium hydrogen phosphate 98 % (K2HPO4) in Milli-Q water, adjusting the pH with a 5M 

NaOH solution.  

Stock solutions when further diluted to the desired concentration for the following experiments.   

The reactions have been performed in triplicate (experiment 1, 2 and 3) at different days with 

different stock solutions of peptide, protein, Cys or GSH, EDTA and Glu. Kinetics of Cu(II) 

transfer from Aβ4-16 to MT-3 were reproducible and no significant differences were observed. 

Representative measurements (1st experiment) are shown in the Figures. 
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Since the initial kinetic of Cu(II)Aβ4-16 + Zn(II)7MT-3 varies with the stock solution of Zn(II)7MT-

3, we used the acceleration factor for statistical analysis, i.e. the relative value compared to the 

different Zn(II)7MT-3 preparations.  

5.1.2 Experimental section chapter 3 - part 1 

a. Materials 

N-α-Fmoc-protected amino acids for peptide synthesis and coupling reagents were 

obtained from Novabiochem or IrisBiotech. Cu(II) ion source, Cu(Cl)2·2H2O, sodium ascorbate, 

hydrogen peroxide solution 30 % (w/w) in H2O, Bathocuproinedisulfonic acid disodium salt 

(BCS), 3-coumarin carboxylic acid (3-CCA), L-Histidine, POBN spin strap, were purchased from 

Sigma Aldrich and used without further purification. KH2PO4, K2HPO4, HEPES (buffer 

preparation) were purchased from Alfa Aesar. 5,5’-dimethyl-2,2’-dipyridyl (5,5’-DmBipy) and 

1,10-Phenantroline (Phen) were a gift from Dr. Romain Ruppert (UMR7177- Institut de Chimie, 

Strasbourg). 

b. Peptide synthesis  

H-DAHK-OH and H-FRHD-OH were purchased from Genecust (Dudelange, Luxemburg). 

The peptide H-KGHK-NH2 was synthesized according to the Fmoc/tBu strategy, purified by RP-

HPLC and controlled by ESI-MS: observed monoisotopic m/z: [M+H+] = 468.40; calculated 

monoisotopic m/z: [M+H+] = 468.30. 

c. General procedures  

Stock solutions of the peptides were prepared by dissolving the powder in Milli-Q water 

(resulting pH = 2). Concentration of the peptides was determined by Cu(II) titration in 50 mM PB, 

pH 7.4, monitored by absorbance spectroscopy through the d-d band of the 1:1 complex Cu(II)-

XZH at λmax = 525 nm. Titrations (shown in FigS 1) were carried out by adding portions of a 10 

mM CuCl2 stock solution to the peptides.  

A stock solution of His (100 mM) was prepared in Milli-Q water; stock solutions of 5,5 I-DmBipy 

(100 mM) and Phen (100 mM) were prepared in 100 % DMSO and then further diluted in H2O. 

A stock solution of Cu(II) (100 mM) was prepared in Milli-Q water from CuCl2·2H2O and then 

further diluted for the different experiments. Its concentration was verified by absorbance 

spectroscopy from the Cu(II) d-d band at 780 nm (ε = 12 M-1cm-1).  

A stock solution of PB (500 mM, pH 7.4) was prepared by mixing potassium dihydrogen 

phosphate 99 % (KH2PO4) with potassium hydrogen phosphate 98 % (K2HPO4) in Milli-Q water, 

adjusting the pH with a 5 M solution of NaOH. A stock solution of HEPES buffer (500 mM, pH 

7.4) was prepared by dissolving HEPES (free acid) in Milli-Q water, adjusting the pH with a 5 M 

solution of NaOH.  

A stock solution of sodium ascorbate (500 mM) and H2O2 (500 mM) were freshly prepared daily 

in Milli-Q water. A stock solution of BCS (50 mM) was prepared in Milli-Q water. A stock 

solution of the spin-trap POBN (500 mM) was prepared in 500 mM PB, pH 7.4.  

d. AscH- oxidation followed by absorbance spectroscopy 

AscH- oxidation ([AscH-] = 100 μM) was monitored by absorbance spectroscopy at λ = 

265 nm in 50 mM PB/HEPES, pH 7.4 with or without H2O2. After monitoring AscH- oxidation 
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for 5-10 min, free Cu(II) or the preformed Cu(II)-complex was added ([Cu(II)] = 10 μM) and the 

reaction monitored over time. Kinetics of ascorbate oxidation were performed in triplicate at 

different days with different solutions. AscH- solutions were prepared freshly every day. Only 

representative measurements are shown in the figures. The molar AscH- oxidation rate (µM/min) 

was obtained by dividing the slope of the variation in AscH- concentration by the extinction 

coefficient of AscH- (ε = 14500 M-1cm-1).7 The average values of robs (μM/min) with standard 

deviations are reported in Fig 4b.  

e. Fluorescence detection of HO• with CCA assay  

Coumarin-3-carboxylic acid (CCA) was used to detect hydroxyl radicals (HO•). HO• 

generated reacts with CCA to form 7-hydrioxy-coumarin-3-carboxylic acid (7-OH-CCA), which 

upon excitation at λ = 390 nm emits at λ = 450 nm. To a solution containing 0.5 mM CCA, Cu(II) 

25 μM and/or peptide 30 μM (ratio Cu(II):peptide, 1:1.2), and/or H2O2 250 μM in PB 50 mM, pH 

7.4, AscH- was added to trigger the reaction. The final concentration of AscH- in the wells was 250 

μM (stock solution 25 mM). Kinetics of HO•generation via fluorescence of 7-OH-CCA were 

performed at least 3 times at different days with different solutions. No significant differences 

were observed, and hence representative measurements are shown in the figures.  

5.1.3. Experimental section chapter 3 - part 2 

a. Materials 

All solvents and reagents obtained from commercial suppliers were used without further 

purification. Cu(II) and Zn(II) ion sources, respectively the hydrated salts, CuCl2·2H2O and 

ZnSO4·7H2O, L(+)-ascorbic acid sodium salt, L-glutathione reduced (GSH), TCEP (tris(2-

carboxyethyl)phosphine hydrochloride), HCl (trace metal grade),  PAR (4-(2-

pyridylazo)resorcinol), EDTA (ethylenediaminetetraacetic acid), Tris base (Trizma, 2-amino-2-

(hydroxymethyl)-1,3-propanediol), POBN (α-(4-pyridyl N-oxide)-N-tert-butylnitrone), 

tetrakis(acetonitrile)copper(I) hexafluorophosphate (Cu(I) source)  were purchased from Sigma-

Aldrich. The Fe source was an Fe(III) standard solution purchased from Fluka Analytical (1.001 

g/l). Trypton, yeast extract, LB Broth, agar, agarose, IPTG (isopropyl-β-D-1 

thiogalactopyranoside), SDS (sodium dodecyl sulfate), HEPES (N-2-hydroxyethylpiperazine-N'-

2-ethanesulfonic acid) were from Lab Empire, NaCl, NaOH, glycerol, KH2PO4·H2O, K2HPO4 

from POCH (Gliwice Poland), pTYB21 vector and chitin resin from New England BioLabs. 

DTNB (5,5'-dithiobis-(2-nitrobenzoic acid)) from TCI Europe N.V., DTT (DL-dithiothreitol) from 

Iris Biotech. All solutions were prepared with Milli-Q water obtained with a deionizing water 

system (Merck). 

Ligands: 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP), di-2-pyridylketone-4,4,-

dimethyl-3-thiosemicarbazone (Dp44mT) were purchased from Sigma Aldrich (purity ≥ 98%). 

Pyridine-2-carboxaldehyde thiosemicarbazone (PT) was purchased from Enamine Store (purity ≥ 

95 %).  

b. Protein expression and purification 

Two different batches of Zn(II)7MT-1 protein from mouse were used. 1) Zn(II)7MT-1 

overexpressed in Escherichia coli strain BL21(pLysS) which was purified as previously described. 

This batch of protein has been used for the experiments monitored by absorbance and EPR 

spectroscopy.8 2) Zn(II)7MT-1 recombinantly produced in the laboratory of Dr. Ricard Albalat 
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(University of Barcelona) as previously reported.9 This batch of protein has been used for the 

experiments followed by ESI-MS.  

The coding cDNA sequences of metallothionein-2a (MT-2a) and metallothionein-3 (MT-3) were 

purchased from GenScript (USA) and cloned into the pTYB21 vector (New England Biolabs). The 

expression vectors were transformed into BL21(DE3)pLysS E. coli component cells and the 

protein was expressed as intein fusion.10 The bacteria were cultured (depending on isoform 4-6 × 

1 l) in rich full growth medium (1.1% tryptone, 2.2% yeast extract, 0.45% glycerol, 1.3% K2HPO4, 

0.38% KH2PO4) until OD600 reached 0.5 at 37C, then induced with 0.1 mM IPTG and incubated 

overnight at 20C with vigorous shaking.3 Cells were collected by centrifugation at 4 000  g for 

10 min at 4C, suspended in 200 ml cold buffer A (20 mM HEPES, pH 8.0, 500 mM NaCl, 1 mM 

EDTA, 1 mM TCEP) and sonicated for 30 min followed by centrifugation at 20,000  g for 45 

min at 4C. Clear supernatants were incubated with 10 ml of a chitin resin (New England Biolabs) 

overnight with mild shaking at 4C. The resin was than washed 5-6 times with 25 ml of the same 

buffer and the cleavage reaction was initiated by adding DTT to a final concentration of 100 mM 

in buffer A without TCEP. MT proteins were cleaved from resin for 48 h at room temperature with 

mild mixing. The eluted supernatants containing MT-1e, MT-2 and MT-3 were acidified to pH ca. 

2.5 using 7% HCl and concentrated using Amicon Ultra-4 Centrifugal Filter Units (Millipore). 

The concentrated apoproteins were purified using a SEC-70 column (Bio-Rad) equilibrated with 

10 mM HCl using Bio-Rad NGC system. The identity of the protein was confirmed using mass 

spectrometry, on an API 2000 ESI-MS instrument (Applied Biosystems). The averaged molecular 

masses found/calculated were 6014.4/6014.1, 6043.3/6042.2 and 6925.2/6927.0 for MT-1e, MT-

2 and MT-3, respectively. Apoproteins were mixed with 10 molar equivalents of ZnSO4 in the 

presence of 2 mM TCEP under anaerobic conditions (argon atmosphere).4 The pH of the solution 

was adjusted to 8.6 using 1 M Tris base. The sample was concentrated similarly as above and 

purified on SEC-70 column equilibrated with 20 mM Tris-HCl, pH 8.6. The collected fractions 

with MT proteins were concentrated and used immediately for experiments or stored at -80C. The 

concentrations of Zn(II) ions, thiols and the total protein were determined spectrophotometrically 

using PAR and DTNB assays or by UV range measurements at 220 nm.6 Accordingly, MT-1e, 

MT-2 and MT-3 contained 6.95 ± 0.11, 7.12 ± 0.07 and 7.06 ± 0.10 Zn(II) ions per molecule, 

respectively. MT-1e sample was used for the CD measurements. 

c. General procedures  

Stock solutions of the ligands were prepared in anhydrous DMSO (≥99.9%), as well as 

further diluted solutions. Concentration of the ligands were confirmed by titration of a Cu(II) 

solution of known concentration in HEPES buffer 100 mM, pH 7.4, monitored by UV-Visible 

Spectroscopy. A stock solution of Cu(II) (100 mM) was prepared by dissolving the salt in Milli-

Q water. Its concentration was verified by absorbance spectroscopy through the Cu(II) d-d band 

at 780 nm (ε = 12 M-1cm-1). A stock solution of Cu(I) (3 mM) was prepared in CH3CN under 

saturated argon atmosphere. A stock solution of Zn(II) (100 mM) was obtained by dissolving the 

salt in Milli-Q water. A stock solution of HEPES buffer (500 mM, pH 7.4) was prepared by 

dissolving HEPES (free acid) in Milli-Q water, adjusting the pH with a 5 M solution of NaOH. A 

Stock solution GSH (100 mM) was freshly prepared daily by dissolving the powder into a 72.4 

mM solution of HCl in Milli-Q water. A stock solution of sodium ascorbate (100 mM) was freshly 

prepared daily in Milli-Q water. Spin-trap POBN stock solution (500 mM) was prepared in 500 

mM PB, pH 7.4. 
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d. Preparation of the reaction mixtures 

For all the studies deionized Milli-Q water (18 MW) was employed.  

Cu(II)-PT, Cu(II)-3-AP, Cu(II)-Dp44mT complexes were generated by mixing a 30 µM solution 

of PT/3-AP/Dp44mT with a 27 µM solution of Cu(II), in HEPES 100 mM, pH 7.4.   

Zn(II)-PT, Zn(II)-3-AP, Zn(II)-(Dp44mT)2 complexes were generated by mixing a 30 µM solution 

of PT/3-AP/Dp44mT with a 20 µM solution or 15 µM (in case of Dp44mT) solution of Zn(II), in 

HEPES 100 mM, pH 7.4 

Fe(II)-(PT)2, Fe(II)-(3-AP)2  and Fe(II)-(Dp44mT)2 complexes were generated by mixing a 30 µM 

solution of PT/3-AP/Dp44mT with a 15 μM solution of Fe(III) in the presence of AscH- 5 mM 

(ratio (PT/Dp44mT:Fe(II), 1:0.5) in HEPES buffer 100 mM, pH 7.4.  

Fe(III)-PT was generated by mixing a stock solution a 500 μM solution of Fe(III) with a 1 mM 

solution of PT in TRIS 50 mM, pH 7.4. The preformed complex was incubated for 30 min at 40° 

C before its use.  

All the reactions monitored via absorbance spectroscopy and circular dichroism were carried out 

in the presence of HEPES buffer 100 mM, pH 7.4. Stock solutions of all the reactants were mixed 

inside quartz cuvettes (used for spectroscopic characterization) to obtain the final concentration 

desired and the reactions monitored over time. Reactions were carried out at RT, with or without 

O2.  

For Low T EPR experiments all samples were supplemented by 10 % v/v glycerol to ensure 

homogeneous sample distribution. Reaction mixtures were immediately transferred in to a 4 mm 

outer diameter quartz tubes (Wilmad-Labglass) and immediately freeze-quenched with liquid 

nitrogen prior to their introduction into the precooled cavity.  

For EPR spin-trap experiments POBN was used as primary spin-trap and ~5 % of DMSO (from 

the ligand stock solution) was present in all samples and used as secondary spin-trap to enhance 

the EPR signal. Reaction mixtures (containing POBN) were immediately transferred in to a EPR 

capillary after addition of GSH or GSH/Zn(II)7MT-1. 

5.1.4 Experimental section chapter 3 - part 3 

a. Materials 

All solvents and reagents obtained from commercial suppliers were used without further 

purification. CuCl2·2H2O, L(+)-ascorbic acid sodium salt, L-glutathione reduced (GSH), were 

purchased from Sigma-Aldrich. HEPES (buffer preparation) was purchased from Alfa Aesar.  

Ligands: di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT), Clioquinol (CQ), 

Ammonium pyrrolidinedithiocarbamate (APDTC) were purchased from Sigma Aldrich (purity ≥ 

98%); bathocuproinedisulfonic acid disodium salt (BCS) was purchased from Alfa Aesar; 

Bleomycin sulfate was purchased from ETI; glyoxal-bis(N4-methyl-3-thiosemicarbazone) 

(GTSM) and diacetylbis(4-methyl-3-thiosemicarbazone) (ATSM) were prepared as described in 

literature procedures;11,12 5,5’-dimethyl-2,2’-dipyridyl (5,5’-DmBipy) and 1,10-Phenantroline 

(Phen) were a gift from Dr. Romain Ruppert (UMR7177- Institut de Chimie, Strasbourg). 
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b. Preparation of stock solutions and of the Cu-complexes  

A stock solution of Cu(II) (100 mM) was prepared by dissolving the salt in Milli-Q water. 

Its concentration was verified by absorbance spectroscopy through the Cu(II) d-d band at 780 nm 

(ε = 12 M-1cm-1). A stock solution of HEPES buffer (500 mM, pH 7.4) was prepared by dissolving 

HEPES (free acid) in Milli-Q water, adjusting the pH with a 5 M solution of NaOH. A stock 

solution GSH (100 mM) was freshly prepared daily by dissolving the powder into a 72.4 mM 

solution of HCl in Milli-Q water. A stock solution of sodium ascorbate (100 mM) was freshly 

prepared daily in Milli-Q water. 

Stock solutions of the ligands: Dp44mT, CQ, APDTC, GTSM, ATSM, Phen, 5,5’-DmBipy stock 

solutions were prepared in DMSO (≥ 99.9%) as well as further diluted solutions; BCS and 

Bleomycin stock solutions were prepared in H2O. 

Stock solutions of the Cu-complexes for AscH- oxidation were prepared at 500 µM Cu(II), whereas 

for luminescence experiments at 77 K at 100 µM Cu(II). 

Cu(II)-(APDTC)2, Cu(II)-(CQ)2 complexes were generated in 50 mM HEPES, pH 7.4, with 80% 

DMSO, by mixing a 500 µM or 100 µM solution of Cu(II) with a  1 mM or 200 µM solution of 

the ligand (ratio Cu(II):L, 1:2). 

Cu(II)-ATSM was generated in 50 mM HEPES, pH 7.4, with 80% DMSO, by mixing a 500 µM 

or 100 µM solution of Cu(II) with a 600 µM or 120 µM solution of ATSM (ratio Cu(II):L, 1:1.2). 

Cu(II)-GTSM was generated in 50 mM HEPES, pH 7.4, with 60% DMSO, by mixing a 500 µM 

or 100 µM solution of Cu(II) with a  600 µM or 120 µM solution of GTSM (ratio Cu(II):L, 1:1.2). 

Cu(II)-Cyclam, Cu(II)-Bleomycin was generated in 50 mM HEPES, pH 7.4, by mixing a 500 µM 

or 100 µM solution of Cu(II) with a 600 µM or 120 µM solution of GTSM (ratio Cu(II):L, 1:1.2). 

Cu(II)-(Phen)2, Cu(II)-(5,5’DmBipy)2 complexes were generated in 50 mM HEPES, pH 7.4, by 

mixing a 500 µM or 100 µM solution of Cu(II) with a  1.2 mM or 240 µM solution of the ligand 

(ratio Cu(II):L, 1:2.4). 

Cu(I)-(BCS)2, was generated in 50 mM HEPES, pH 7.4, by mixing a 500 µM or 100 µM solution 

of Cu(II) with a  1.2 mM or 240 µM solution of the ligand (ratio Cu(II):L, 1:2.4). 

Cu(II)-Dp44mT was generated in 50 mM HEPES, pH 7.4, with 20% DMSO, by mixing a 500 µM 

or 100 µM solution of Cu(II) with a 600 µM or 240 µM solution of GTSM (ratio Cu(II):L, 1:1.2). 

c. AscH- oxidation followed by absorbance spectroscopy 

AscH- oxidation ([AscH-] = 100 µM) was monitored by absorbance spectroscopy at 

λmax=265 nm in 50 mM HEPES, pH 7.4. AscH- autoxidation with O2 was measured for 10 min, 

then the reaction was triggered i) by the addition of the preformed Cu(II)-complexes at 5 µM 

concentration or ii) by the addition of free Cu(II) at 1 µM before or after the addition of the ligand 

(ratio Cu:L, 1:1.2 or 1:2.4). The reactions were monitored over time for 100 min. Kinetics of AscH- 

oxidation were performed in triplicate, at different days with different stock solutions. The molar 

ascorbate oxidation rate (µM/min) was obtained by dividing the slope of the first 5 minutes of the 

variation in AscH- concentration by the extinction coefficient of AscH- (ε = 14500 M-1cm-1). 

Average values of robs (μM/min) and the corresponding standard deviation errors have been 

calculated. 
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d. Reactions of Cu-complexes with GSH and Zn(II)7MT followed by absorbance and 

luminescence spectroscopies 

Absorbance spectroscopy: reaction mixtures were prepared inside quartz cuvette with a 

final volume of 100 μl. To preformed Cu(II)-complexes at 10 µM concentration, in 50 mM 

HEPES, pH 7.5 (with 60 DMSO% in case of Cu(II)-(CQ)2 and Cu(II)-(APDTC)2), GSH (100 mM) 

and Zn(II)7MT-1 (160 µM) were added to obtain a final concentration of 3 mM and 2.5 µM 

respectively (ratio Cu(II): Zn(II)7MT-1, 1:0.25).  Reactions were monitored over time collecting 

intermediate spectra at 5 min intervals.  

Luminescence at 77 K: 500 µl samples of 10 µM Cu-L in 50 mM HEPES, pH 7.4 were reacted 

with 2.5 µM Zn(II)7MT-2 with or without 3 mM GSH for 0.5 h or 4 h at 25oC, transferred to quartz 

tubes with 2 mm inner diameter, and immersed in cylindrical quartz Dewar filled with liquid 

nitrogen.  
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5.2 Methods 

a. Absorbance spectroscopy 

UV-Vis measurements were performed on a Cary 60 spectrophotometer at room 

temperature (~25 °C) or on a Clario Star Plate reader (AscH- oxidation). Stock solutions of all the 

reactants were mixed directly inside quartz cuvettes of 1 cm path length or inside a 96 wells 

transparent microplate with a final volume of 100 μl. The obtained spectra are expressed in 

absorbance.  

b. Emission spectroscopy 

Fluorescence measurements with 3-CCA were performed on a Clario Star Plate reader. 

Stock solutions of all the reactants were mixed inside a 384 wells black microplate, with a final 

volume of 100 μl. The obtained spectra are obtained in fluorescence intensity (counts).  

Low-temperature luminescence spectra and decays lifetime were collected using a FluoroMax-4 

spectrofluorometer (Horiba Scientific). 500 µl samples (reaction mixtures) were transferred to 

quartz tubes with 2 mm inner diameter and immersed in cylindrical quartz Dewar filled with liquid 

nitrogen. Emission spectra (380–750 nm, 5 nm slit) were obtained at 77 K with excitation at 320 

nm (5 nm slit), using 10 ms initial delay and 300 ms sample window. Lifetime measurements were 

performed for the emissive bands at 425 nm and 575 nm using 75 ms initial delay and 300 ms 

sample window. 10 ms and 20 ms delay increments and 500 ms and 1000 ms maximum delays 

were used for the 425 nm and 575 nm bands, respectively. 

c. Circular dichroism spectroscopy 

Circular dichroism measurements were carried out on a Jasco J-810 or on a J-815 

sectropolarimeter with a scanning speed of 50 nm/min.  Stock solutions of all the reactants were 

mixed directly inside quartz cuvettes of 1 cm path length (with a final volume of 100 μl). The 

obtained spectra are express as ellipticity (mdeg).  

d. 1H-NMR spectroscopy 

1H-NMR experiments were recorded with a Bruker Avance III 400 MHz spectrometer. All 

spectra were calibrated with respect to the D2O signal (4.79 ppm). NMR spectra were collected at 

298 K in 10% D2O/H2O, 50 mM PB at pH 7.4, using the watergate suppression technique. 

e. EPR spectroscopy  

Both low temperature (100K) and room temperature (294 ± 1K) spin trapping 

investigations were performed on an EMX X-band spectrometer (EMXplus from Bruker Biopsin 

GmbH, Germany), equipped with a high sensitivity resonator (4119HS-W1, Bruker).  

The g factor was calibrated in the experimental conditions using the Bruker strong pitch (g = 

2.0028). Principal spectrometer settings for spin-trapping: Center Field: 3510 G, Sweep Width: 80 

G, Microwave power: 4.5 mW, Modulation Amplitude: 1 G, Gain: 50 dB, Conversion Time: ca 

250 ms, Time Constant: ca. 80 ms, 1 scan/720 pts/180sec. Low temperature was achieved using 

continuous flow liquid nitrogen cryostat. Principal spectrometer settings for low temperature: 

Center Field: 3100 G, Sweep Width: 1500 G, Microwave power: 0.1 mW, Modulation Amplitude: 

5 G, Gain: 30 dB, Conversion Time: ca. 200 ms, Time Constant: ca. 80 ms, 3 scans/1500 

pts/300sec each. 
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The room temperature spin trapping investigations were carried out with α-(4-Pyridyl N-

oxide)-N-tert-butylnitrone (POBN), used as primary spin trap, and EtOH (5% v/v), added as 

hydroxyl scavenger to enhance the detection of the HO• produced. 

f. ESI-MS 

ESI-MS measurements were performed with a MicroTOF-Q (Brucker Daltonics GmbH, 

Bremen, Germany) instrument equipped with an electrospray ionization source (ESI) in positive 

mode, interfaced with a Series 1200 HPLC Agilent pump, equipped with an autosampler. The 

system was controlled by the Compass Software. Conditions used were those optimized for metal-

metallothionein samples analysis: 40 μl/min flow rate, in a spectra collection range 800-2500 m/z. 

The carrier buffer was a 5:95 mixture of acetonitrile:ammonium acetate/ammonia (15 mM, pH 

7.0). 
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5.3 Supplementary figures  

 

FigS 1 - Absorbance spectroscopy (UV-region, 250-400 nm) of Cu(II) reduction and release from Cu(II)-Aβ4-16 with 

Cys in the absence of Zn(II)7-MT-3. In a) (UV-region 250-400 nm) and c) (Vis-region, 400-700 nm) spectra of the 

first 16 min of the reaction after addition of Cys to Cu(II)-Aβ4-16 (light blue spectrum); in b) and d) the corresponding 

spectra from t(18-60m). Each spectrum was recorded at 2 min intervals. Reaction conditions: Aβ4-16 500 µM, Cu(II) 

450 µM (ratio Aβ4-16/Cu(II), 1:0.9), Cys 3 mM, PB 50 mM, pH 7.4.  

 

FigS 2 - CD spectra (Uv-region, 250-360 nm) of Zn(II)7-MT-3 (blue profile), Cys (light blue profile), Cu(II)/Cys 

mixture (purple profile), GSH (green profile), Cu(II)/GSH mixture (grey profile). Final concentration of each 

component in solution: Zn(II)7-MT-3 20 μM, Cys/GSH 3 mM, Cu(II) 90 μM, PB 50 mM, pH 7.4.   
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FigS 3 - Zn(II) titration of Aβ4-16  peptide followed by 1H-NMR, through the aromatic region of the spectra, and 

addition of EDTA to the 1:1 complex Zn(II)-Aβ4-16 (violet profile). Experimental conditions: a 300 µM Aβ4-16 solution 

(600 µl) was titrated with 2 µl aliquots of a 36 mM stock solution of Zn(II) (0.2 eq Zn(II)/Aβ4-16); to the 1:1 complex 

Zn(II)-Aβ4-16 (light pink profile) a concentrated solution of EDTA (50 mM, pH 7.4) was added to reach the final 

concentration of 300 µM.  

 

FigS 4 - a) UV and b) Vis regions of the spectra for the reaction of Cu(II)-Aβ4-16 with Zn(II)7-MT-3 monitored by 

absorbance spectroscopy for 800 min after the addition of Zn(II)7-MT-3 to Cu(II)-Aβ4-16. Intermediate spectra were 

collected at 10 min intervals Experimental conditions: Aβ4-16 250 µM, Cu(II) 225 µM, Zn(II)7-MT-3 50 µM, 

(1:0.9:0.2), PB 50 mM, pH 7.4. 
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FigS 5 - UV-Vis spectra for the reaction of Cu(II)-Aβ4-16 with EDTA monitored by absorbance  spectroscopy for 400 

min after EDTA addiction to Cu(II)-Aβ4-16. Intermediate spectra were collected at 10 min intervals. The corresponding 

kinetic of disappearance of the d-d band is shown in Fig 18a with a blue profile. Experimental conditions: Aβ4-16 250 

µM, Cu(II) 225 µM (1:0.9), EDTA 150 µM, PB 50 mM, pH 7.4. 
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FigS 6 - Experimental kinetics of disappearance of the d-d band of Cu(II)-Aβ4-16 for the reactions: a) Cu(II)A-β4-16 + 

Zn(II)7-MT-3, (b) Cu(II)-Aβ4-16 + Zn(II)7-MT-3 + Glu, c) Cu(II)-Aβ4-16 + Zn(II)7-MT-3 + 3 eq EDTA/ MT-3, d) Cu(II)-

Aβ4-16 + Zn(II)7-MT-3 + 2 eq EDTA/MT-3, e) Cu(II)-Aβ4-16 + Zn(II)7-MT-3 + 1 eq EDTA/MT-3, f) Cu(II)-Aβ4-16 + 

Zn(II)7-MT-3 + 3 eq EDTA/MT-3 + Glu. Kinetics were fitted with the 1st order exponential equation y = W*exp(-

k*x)+A. For the first experimental repetition the value of A (plateau of the reaction) was set to 0.0043 (background 

of the Abs at λmax = 525 nm, due to the Abs of the formed product Cu(I)4Zn(II)4-MT-3 (tail of the band at λmax= 235 

nm). The value of W was calculated as X-A where X was set to 0.023 (1st repetition) (experimental value for the Abs 

at t(0m) from the beginning of the reaction). a) R2 = 0.91, b) R2 = 0.99, c) R2 = 0.91, R2, d) R2 = 0.93, e) R2 = 0.98, f) 

R2 = 0.92. 
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TableS 1 - Table summarizing the t1/2 (min) and AF (acceleration factor) values for the different reactions studied, 

calculated from the experimental kinetics of disappearance of the Cu(II)-Aβ4-x d-d band. Acceleration factors (AFs) 

were calculated with respect to the reactions Cu(II)-Aβ4-16  + Zn(II)7-MT-3 (for the reactions in the presence of Zn(II)7-

MT-3) and Cu(II)-Aβ4-16  + EDTA (for the reaction Cu(II)-Aβ4-16  + EDTA + Glu). Reactions were performed in 

triplicate (experiment 1, 2, 3), with different stock solutions of peptide, protein, EDTA and Glu, at different days. 

Representative measurements from the 1st experiment is shown in the figures of the main text of the thesis, as well as 

in FigS 6.   

Reaction 

Experiment 1 Experiment 2 Experiment 3 

t1/2 

(min x 102) 
AF 

t1/2 

(min x 102) 
AF 

t1/2 

(min x 102) 
AF 

Cu(II)Aβ4-16  + Zn(II)7-MT-3 (i) 7.94 1 7.07 1 5.84 1 

(i) + Glu 4.06 1.95 3.28 2.15 2.47 2.36 

(i) + EDTA (3eq) 4.95 1.60 4.54 1.56 3.59 1.63 

(i) + EDTA (2eq) 6.44 1.23 6.03 1.17 4.77 1.22 

(i) + EDTA (1eq) 7.66 1.04 6.38 1.11 4.82 1.21 

(i) + EDTA (3eq) + Glu 2.15 3.69 2.30 3.07 1.91 3.06 

Cu(II)Aβ4-16  + EDTA (ii) 1.94 1 1.64 1 2.08 1 

(ii) + Glu 0.98 1.98 1.08 1.52 1.07 1.94 

TableS 2 - Calculated molar fractions of Cu(II)-Glu complexes in equilibrium with Aβ4-16 and Zn(II)-Glu complexes 

in equilibrium with the 7th binding site of MT-3 for concentrations used in kinetic experiments. 

Cu(II) species Molar fraction Zn(II) species Molar fraction 

Cu(II) 1.2  10-9 Zn(II)2+ 0.0052 

Cu(II)-HGlu 4.8  10-15 Zn(II)-Glu 0.0064 

Cu(II)-Glu 3.1  10-12 Zn(II)Glu2 0.0012 

Cu(II)-Glu2 5.7  10-17 7th site of MT 0.9872 

Cu(II)2-Aβ4-16 0.0000016   

Cu(II)-Aβ4-16 0.999998   
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FigS 7 - Zn(II) titration experiment of EDTA monitored by 1H-NMR. Spectra were obtained from 10% D2O/90% H2O 

solution in a 50 mM PB, pH 7.4. A concentrated (60 mM) Zn(II) solution was titrated into a 1 mM solution of EDTA, 

up to 1 eq of Zn(II)), thus generating the 1:1 complex Zn(II)-EDTA.  

 

FigS 8 - Source of UV-Vis spectra for the reaction of Cu(II)Aβ4-16 with Zn(II)7-MT-3 and a) 2 eq EDTA/MT-3, b) 1 

eq EDTA/MT-3 c) 3 eq EDTA/MT-3, Glu. The scans were collected at 10 min intervals. Experimental conditions: 

Aβ4-16 250 µM, Cu(II) 225 µM, Zn(II)7-MT-3 50 µM, (1:0.9:0.2), EDTA a) 100 µM (ratio MT-3:EDTA 1:2), b) 50 

µM (ratio MT-3:EDTA, 1:1), c) 150 µM (ratio MT-3:EDTA, 1:3), Glu 5 mM. Reactions were performed in PB 50 

mM, pH 7.4. 
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FigS 9 - Reaction between Cu(II)-Aβ4-16 and Zn(II)4-MT-3 monitored by circular dichroism (UV-region 250-360 nm). 

Zn(II)4-MT-3 was generated by adding 3 eq of EDTA/MT-3 to the mixture Cu(II)-Aβ4-16/Zn(II)4-MT-3. After addition 

of EDTA a CD spectrum was recorded every 30 min for 5 hours. Reactions conditions: Aβ4-16 35 µM, Cu(II) 31.5 µM, 

Zn(II)7-MT-3 7 µM (ratio Aβ4-16/Cu(II)/Zn(II)7-MT-3, 1:0.9:0.2), EDTA 21 µM (3 eq/MT-3), PB 50 mM, pH 7.4 . 

 

FigS 10 - Effect of the sequence of addictions of Zn(II)7-MT-3 and EDTA to the preformed Cu(II)-Aβ4-16 complex on 

the kinetic of Cu transfer (reaction with 3 eq of EDTA/MT-3). The reaction was monitored by absorbance 

spectroscopy and kinetics of disappearance of the d-d band of Cu(II)-Aβ4-16 complex at λmax = 525 nm are reported. 

To the Cu(II)-Aβ4-16 complex Zn(II)7-MT-3 (1st)  and EDTA (2nd) (green profile) or EDTA (1st) and Zn(II)7-MT-3 

(2nd) (purple profile) were respectively added and the reaction monitored over time for 800 min, collecting 

intermediate spectra at 10 min intervals. The second addiction was performed 30 sec after mixing the reaction mixture 

Cu(II)Aβ4-16/Zn(II)7-MT-3 or Cu(II)Aβ4-16/EDTA. Experimental conditions: Aβ4-16 250 µM, Cu(II) 225 µM, Zn(II)7-

MT-3 50 µM (1:0.9:0.2), EDTA 150 µM  (3 eq/MT-3), PB 50 mM, pH 7.4. 
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FigS 11 - Cu(II)-titration experiments of a) DAHK, b) KGHK and c) FRHD, monitored by absorbance spectroscopy. 

In b), d) and e) the corresponding binding curves are reported (A525 nm, i.e. λmax of the d-d band Cu(II)-ATCUN, vs 

[Cu(II) / [XZH] peptide]). Experimental conditions: XZH peptide 1 mM, in PB 50 mM, pH 7.4. Titrations were carried 

out adding 1 µl aliquotes of a 10 mM Cu(II) stock solution.  
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FigS 12 - Evolution of the AscH- absorption (λmax = 265 nm) as a function of time, after exposure to the three Cu(II)-

XZH ATCUN complexes (ratio Cu(II):peptide, 1:1.2) and free Cu(II), with and without H2O2. AscH- oxidation was 

triggered by the addition of free Cu(II) or the preformed Cu(II)-XZH complexes after 10 min. Experimental 

conditions: Cu(II) 10 µM, XZH peptide 12 µM, AscH- and H2O2 100 µM, in PB 50 mM, pH 7.4. Inset: zoom of the 

ascorbate oxidation profile for Cu(II)-XHZ complexes. 
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FigS 13 - Kinetics of AscH- oxidation for Cu(II)-KGHK at different ratios Cu(II):KGHK (1:0, 1:0.4, 1:0.6, 1:0.8, 1:1, 

1:1.2, 1:2, 1:3), monitored by absorbance spectroscopy at λmax = 265 nm, in a) HEPES, c) PB 50 mM pH 7.4. AscH- 

oxidation was started by the addition of the preformed Cu(II)-KGHK complex at t(5min). In b) corresponding plot of 

molar AscH- oxidation rate (µM/min) as a function of KGHK to Cu(II) ratio, for the reactions in HEPES. Experimental 

conditions: Cu(II) 10 µM, XZH peptide 0-30 µM, AscH- 100 µM, in a) HEPES, c) PB 50 mM, pH 7.4. 
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FigS 14 - Partial degradation of KGHK peptide during the reaction of Cu(II)-KGHK (ratio 1:1.2, Cu(II):KGHK) with 

AscH- and H2O2 shown by a) absorbance and b) EPR spectroscopies at low temperature. Experimental conditions a): 

Cu(II) 250 µM, KGH 300 µM, AscH- and H2O2 5 mM, in PB 50 mM, pH 7.4. The reaction was monitored for 15 h, 

collecting intermediate spectra at 10 min intervals. Experimental conditions b): Cu(II) 200 µM, KGH 240 µM, AscH- 

and H2O2 4 mM, in PB 80 mM, pH 7.4. Reaction mixtures were incubated for 24h under aerobic conditions and then 

transferred into a 4 mm outer diameter quartz tubes (Wilmad-Labglass) and freeze-quenched with liquid nitrogen 

before their introduction into the precooled cavity. 
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FigS 15 - Uv-Vis spectra for the reaction of Cu(II)-KGHK (ratio 1:1.2, Cu(II):KGHK) with a) AscH- and H2O2 , b) 

AscH-, c) H2O2, d) blank (i.e. with no AscH- and/or H2O2) in the presence of BCS. Experimental conditions: Cu(II) 

100 µM, KGHK 1200 µM, AscH- and H2O2 10 mM, BCS 200 µM, in PB 50 mM, pH 7.4. Reactions were monitored 

over 1h, collecting intermediate spectra at 2 min intervals. 
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FigS 16 - Cu(II) titration experiments to determine the binding stoichiometry a) Cu(II)/PT, b) Cu(II)/3-AP, c) 

Cu(II)/Dp44mT. Insets: corresponding binding curves at λmax = 411 nm. Experimental conditions: a 30 µM solution 

of PT/3-AP/Dp44mT in HEPES buffer 100 mM, pH 7.4, was titrated with 1 µl aliquots of a 300 µM Cu(II) stock 

solution. 

- Cu(II)-PT: λmax = 382 nm, λmax = 318 nm, λmax = 280 nm, isosbestic points at λ = 338 nm, λ = 287 nm.  

- Cu(II)-3-AP: λmax = 418 nm, λmax = 349 nm, λmax = 283 nm, isosbestic points at λ = 393 nm, λ = 311 nm, λ = 366 

nm. 

- Cu(II)-(Dp44mT)2: λmax = 403 nm, λmax = 310 nm, λmax = 304 nm; Cu(II)-Dp44mT:  λmax = 411 nm, λmax = 298 nm, 

λmax = 253 nm. 

TableS 3 - Principal EPR simulations parameters. [a,b] Simulations were achieved with Easyspin Toolbox under 

Matlab environment (Stoll et al JMR, 178(1), 42-55, 2006). A broad Cu(II) EPR fingerprint was implemented to the 

simulation of the orange and blue spectra to account for the observed baseline, arising from the sample solubility limit. 

[a] field strain and linewidth parameters were used to account for the experimental line-broadening. 
[b] Isotropic superhyperfine coupling constants for accounting for 2 nitrogen atoms of 40±5 MHz were implemented 

to the computation. 
[c] broad Cu(II) EPR fingerprint was implemented to the simulation to account for the observed baseline, arising from 

the solubility limit of our sample. 

 

Species PT, Cu(II) (1:0.9) (i)[c] (i) + GSH (i)  +Zn(II)7MT-1[b] 

g// 2.205 2.142 2.147 

A// (Cu(II)) (MHz) 544 520 515 
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FigS 17 - Reactivity of a) Cu(II)-PT, b) Cu(II)-3-AP complexes with GSH under anaerobic conditions (left panels)  

and after bubbling O2 through the solution (right panels). Left panels: UV-Vis spectra for the reaction between Cu(II)-

PT/3-AP and 1 mM GSH under anaerobic conditions. The reactions were monitored over time from t0 min after GSH 

addition to the preformed Cu(II)-PT/3-AP complexes (ratio PT/3-AP:Cu(II), 1:0.9) to t(120m), collecting intermediate 

spectra at 4 min intervals. The dark arrows indicate the changes observed in the spectra after GSH addition to the 

preformed Cu(II)-PT/3-AP complexes (light blue lines) i.e. the disappearance of the CT bands of the ternary adduct 

[TSC-Cu(II)-GSH] (λmax (PT) = 386 nm, λmax (3-AP) = 425 nm), the appearance of the UV band of the free ligand 

(λmax (PT) = 313 nm, λmax (3-AP) = 359 nm) and of characteristic CT band of the Cu(I)-GSH complex at λmax = 265 

nm. Right panels: corresponding spectra (green lines) obtained after bubbling O2 through the solution. The dark arrows 

indicate the changes from the red spectrum (Cu(II)-PT/3-AP + GSH, t(120m) in anaerobic conditions) to the green 

spectrum. Experimental conditions: reaction mixtures (b) 30 µM PT, 27 µM Cu(I)/15 µM 3-AP, 12 µM Cu(I) (ratio 

TSC:Cu(I), 1:0.9), GSH 1 mM, 100 mM HEPES buffer, pH 7.4) were prepared under saturated argon atmosphere in 

a screw cap cell cuvette equipped with septum, containing 1 ml of solution. After addition of Cu(I) to the ligand 

solution, the characteristic UV spectra of the Cu(II)-PT/3-AP complexes were immediately detected.  

 

FigS 18 - EPR spectrum of the snap-frozen solution of Cu(II)-PT after the addition of GSH (red line) and of the room 

temperature solution after 30 min from GSH addition to Cu(II)-PT complex (red line). Experimental conditions: 1 

mM PT, 900 µM Cu(II) (ratio PT:Cu(II), 1:0.9) in HEPES buffer 100 mM, pH 7.4, GSH 3 mM.  
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FigS 19 - Concentration dependence of Cu(II)-PT complex reactivity with GSH. a) UV-Vis spectra for the reaction 

between Cu(II)-PT and 6 mM GSH, b) 9 mM GSH. The reactions were monitored over time from t0 min after GSH 

addition to the preformed Cu(II)-PT complex (ratio PT:Cu(II), 1:0.9) to t120 min, collecting intermediate spectra at 4 

min intervals. Insets refer to the Vis region of the spectra 450-800 nm. c) Corresponding experimental kinetics for the 

reactions of the Cu(II)-PT complex with different concentrations of GSH, respectively 3 mM (green profile), 6 mM 

(dark blue profile), 9 mM (light blue profile): normalized absorbance at λmax = 386 nm (CT band of the ternary complex 

[PT-Cu(II)-GSH]) versus time. Experimental conditions 30 µM PT, 27 µM Cu(II) (ratio PT:Cu(II), 1:0.9), GSH a) 3 

mM, b) 9 mM, HEPES buffer 100 mM, pH 7.4.  
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FigS 20 - Reactivity of a) Cu(II)-3-AP, b) Cu(II)-Dp44mT with Zn(II)7MT-1. Deconvoluted ESI-MS spectra of 

Zn(II)7MT-1, Cu(II)/Zn(II)7MT-1, 0.9:0.2, 3-AP or 3-AP or Dp44mT/Cu(II)/Zn(II)7MT-1, 1:0.9:0.2, collected at 

t(0m), t(60m)  min and t(120m) min from the addition of Zn(II)7MT-1 to the preformed Cu(II)-3-AP/Dp44mT 

complex. Experimental conditions: 50 μM 3-AP/Dp44mT, 45 μM Cu(II), 10 μM Zn(II)7MT-1, 50 mM ammonium 

acetate, pH 7.4. The main peak in of m/z ~ 6610 has the mass expected for Zn(II)7MT-1 at neutral pH; the main peak 

at m/z ~6671 corresponds to a substitution of three Zn(II) ions with four Cu(I) ions; the peaks at m/z ~6732 and ~6792 

correspond to a substitution of three Zn(II) ions with respectively  five and six Cu(I) ions.  
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FigS 21 - Reactivity of a) Cu(II)-3-AP, b) Cu(II)-Dp44mT with Zn(II)7MT-1/GSH. Deconvoluted ESI-MS spectra of 

Zn(II)7MT-1, Cu(II)/Zn(II)7MT-1, 0.9:0.2, 3-AP or Dp44mT/Cu(II)/Zn(II)7MT-1, 1:0.9:0.2, GSH at t(0m), t(60m)  

min and t(120m) from the addition of Zn(II)7MT-1/GSH to the preformed Cu(II)-3-AP/Dp44mT complex. 

Experimental conditions: 50 μM 3-AP, 45 μM Cu(II) , 10 μM Zn(II)7MT-1 (ratio 3-AP:Cu(II):Zn(II)7MT-1, 1:0.9:0.2), 

3 mM GSH, 50 mM ammonium acetate, pH 7.4. The main peak in a) of m/z ~6610 has the mass expected for 

Zn(II)7MT-1 at neutral pH; the main peak at m/z ~6671 in b, c, d, e) corresponds to a substitution of three Zn(II) ions 

with four Cu(I) ions; the peaks at m/z ~6732 and ~6792 correspond to a substitution of three Zn(II) ions with 

respectively  five and six Cu(I) ions. The peaks at m/z ~6860, ~6880, ~7040 and ~7100 correspond to a substitution 

of seven Zn(II) ions with respectively eleven, thirteen, fourteen, fifteen Cu ions. 

 

FigS 22 - Comparison of the spectra for the reaction of Cu(II)-Dp44mT with GSH (light blue line, t(0m) and for the 

reaction of Cu(II)-Dp44mT with GSH and Zn(II)7MT-1 (yellow line, t0 min, orange line, t(120m)). Experimental 

conditions: Dp44mT 30 µM (grey line), Dp44mT 30 µM, Cu(II) 27 µM (1:0.9) (orange line), Dp44mT 30 µM, Cu(II) 

27 µM, Zn(II)7MT-1 6 µM (1:0.9:0.2) ± GSH 3 mM, HEPES 100 mM, pH 7.4. 
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FigS 23 - Uv-Vis spectra of for the reaction of Cu(II)-PT with a) GSH/Zn(II)7MT-2a, b) GSH/Zn(II)7MT-3 monitored 

over time after GSH/ Zn(II)7MT addition to the preformed Cu(II)-PT complex (for the reaction with Zn(II)7MT-1, see 

Fig 36). c) Corresponding experimental kinetics, i.e. absorbance at λmax = 386 nm (CT band of the ternary complex 

[PT-Cu(II)-GSH]) versus time: Zn(II)7MT-1 isoform (blue profile), Zn(II)7MT-2a isoform (green profile), Zn(II)7MT-

3 isoform (red profile). Experimental conditions: 30 µM PT, 27 µM Cu(II) (ratio PT:Cu(II), 1:0.9) in HEPES buffer 

100 mM, pH 7.4, 3 mM GSH and 6 µM Zn(II)7MT-1/Zn(II)7MT-2a/Zn(II)7MT-3. Intermediate spectra have been 

collected at 4 min intervals. 
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FigS 24 - Uv-Vis spectra of for the reaction of Cu(II)-3-AP with a) GSH/Zn(II)7MT-2a, b) GSH/Zn(II)7MT-3 

monitored over time after GSH/Zn(II)7MT addition to the preformed Cu(II)-3-AP complex (for the reaction with 

Zn(II)7MT-1, see Fig 36). c) Corresponding experimental kinetics, i.e. absorbance at λmax = 425 nm (CT band of the 

ternary complex [3-AP-Cu(II)-GSH]) versus time: Zn(II)7MT-1 isoform (blue profile), Zn(II)7MT-2a isoform (green 

profile), Zn(II)7MT-3 isoform (red profile). Experimental conditions: 30 µM 3-AP, 27 µM Cu(II) (ratio PT:Cu(II), 

1:0.9) in HEPES buffer 100 mM, pH 7.4, 3 mM GSH and 6 µM Zn(II)7MT-1/Zn(II)7MT-2a/Zn(II)7MT-3. 

Intermediate spectra have been collected at 4 min intervals. 
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FigS 25 - Uv-Vis spectra of for the reaction of Cu(II)-Dp44mT with a) GSH/Zn(II)7MT-2a, b) GSH/Zn(II)7MT-3 

monitored over time after GSH/Zn(II)7MT addition to the preformed Cu(II)-Dp44mT complex (for the reaction with 

Zn(II)7MT-1, see Fig 36). Experimental conditions: 30 µM Dp44mT, 27 µM Cu(II) (ratio Dp44mT:Cu(II), 1:0.9) in 

HEPES buffer 100 mM, pH 7.4, 3 mM GSH and 6 µM Zn(II)7MT-1/Zn(II)7MT-2a/Zn(II)7MT-3. Intermediate spectra 

have been collected at 4 min intervals. 

TableS 4 - Table summarizing the t1/2 (min) values for the reactions of Cu(II)-PT and Cu(II)-3-AP with GSH and 

Zn(II)7MT-1/Zn(II)7MT-2a/Zn(II)7MT-3. t1/2 values were calculated from the experimental kinetics of disappearance 

of the of CT bands of the [PT/3-AP- Cu(II)-GSH] complexes  (λmax [PT-Cu(II)-GSH] = 386 nm, λmax [3-AP-Cu(II)-

GSH] = 424 nm). Experimental kinetics were fitted with a 1st order exponential equation y = W*exp(-k*x)+A.  

Reaction t1/2 (min) 

Cu(II)-PT + Zn(II)7MT-1 + GSH 10.4 

Cu(II)-PT + Zn(II)7MT-2a + GSH 8.2 

Cu(II)-PT + Zn(II)7MT-3 + GSH 3.1 

Cu(II)-3-AP + Zn(II)7MT-1 + GSH 5.0 

Cu(II)-3-AP + Zn(II)7MT-2a + GSH 3.8 

Cu(II)-3-AP + Zn(II)7MT-3 + GSH 1.9 
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FigS 26 - Zn(II) titration experiments to determine the binding stoichiometry a) Zn(II)/PT, b) Zn(II)/3-AP, c) 

Zn(II)/Dp44mT. Insets: corresponding binding curves at λmax = 364 nm. Experimental conditions: a solution of 30 µM 

ùof PT/3-AP/Dp44mT in HEPES buffer 100 mM, pH 7.4, was titrated with 1 µl aliquots of a 300 µM Zn(II) stock 

solution. Zn(II)-PT: λmax = 364 nm, λmax = 275 nm, isosbestic point, λ =  337 nm. 

 

FigS 27 - Uv-Vis spectra corresponding to the reaction of a) Zn(II)-PT, b) Zn(II)-(Dp44mT)2 with increasing 

concentration of GSH (up to 10 mM). Experimental conditions: a) 30 µM 3-AP, 30 µM Zn(II), b) 30 µM Dp44mT, 

15 µM Zn(II) in HEPES buffer 100 mM, pH 7.4, GSH (1-10 mM). 
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FigS 28 - a) Low-temperature luminescence spectra obtained after the addition of Zn(II)7-MT-1 with or without GSH 

to the preformed Cu(I)-(BCS)2 complex. b) Emission lifetimes obtained from the decay fits of the emissive bands at 

425 nm (left panel) and at 575 nm (right panel). Experimental conditions: 10 µM Cu(I)-(BCS)2 (ratio 1:2.4), 2.5 µM 

Zn(II)7-MT-1 (ratio Cu-complex: Zn(II)7-MT-1, 1:0.25), 3 mM GSH, HEPES 50 mM, pH 7.4. 

 

FigS 29 - a) Low-temperature luminescence spectra obtained after the addition of Zn(II)7-MT-1 with or without GSH 

to the preformed Cu(II)-(APDTC)2 complex. b) Emission lifetimes obtained from the decay fits of the emissive bands 

at 425 nm (left panel) and at 575 nm (right panel). Experimental conditions: 10 µM Cu(II)-(APDTC)2 (ratio 1:2), 2.5 

µM Zn(II)7-MT-1 (ratio Cu-complex: Zn(II)7-MT-1, 1:0.25), 3 mM GSH in HEPES 50 mM, pH 7.4. 
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FigS 30 - a) Low-temperature luminescence spectra obtained after the addition of Zn(II)7-MT-1 with or without GSH 

to the preformed Cu(II)-(5,5’DmBipy)2 complex. b) Emission lifetimes obtained from the decay fits of the emissive 

bands at 425 nm (left panel) and at 575 nm (right panel). Experimental conditions: 10 µM Cu(II)-(5,5’DmBipy)2 (ratio 

1:2.4), 2.5 µM Zn(II)7-MT-1 (ratio Cu-complex: Zn(II)7-MT-1, 1:0.25), 3 mM GSH, HEPES 50 mM, pH 7.4. 

 

FigS 31 - a) Low-temperature luminescence spectra obtained after the addition of Zn(II)7-MT-1 with or without GSH 

to the preformed Cu(II)-(Phen)2 complex. b) Emission lifetimes obtained from the decay fits of the emissive bands at 

425 nm (left panel) and at 575 nm (right panel). Experimental conditions: 10 µM Cu(II)-(Phen)2 (ratio 1:2.4), 2.5 µM 

Zn(II)7-MT-1 (ratio Cu-complex: Zn(II)7-MT-1, 1:0.25), 3 mM GSH, HEPES 50 mM, pH 7.4. 
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FigS 32 - a) Low-temperature luminescence spectra obtained after the addition of Zn(II)7-MT-1 with or without GSH 

to the preformed Cu(II)-atsm complex. b) Emission lifetimes obtained from the decay fits of the emissive bands at 

425 nm (left panel) and at 575 nm (right panel). Experimental conditions: 10 µM Cu(II)-(Phen)2 (ratio 1:1.2), 2.5 µM 

Zn(II)7-MT-1 (ratio Cu-complex: Zn(II)7-MT-1, 1:0.25), 3 mM GSH in HEPES 50 mM, pH 7.4. 

 

FigS 33 - a) Low-temperature luminescence spectra obtained after the addition of Zn(II)7-MT-1 with or without GSH 

to the preformed Cu(II)-Bleomycin complex. b) Emission lifetimes obtained from the decay fits of the emissive bands 

at 425 nm (left panel) and at 575 nm (right panel). Experimental conditions: 10 µM Cu(II)-Bleomycin (ratio 1:1.2), 

2.5 µM Zn(II)7-MT-1 (ratio Cu-complex: Zn(II)7-MT-1, 1:0.25), 3 mM GSH in HEPES 50 mM NaCl, pH 7.4. 
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FigS 34 - a) Low-temperature luminescence spectra obtained after the addition of Zn(II)7-MT-1 with or without GSH 

to the preformed Cu(II)-(CQ)2 complex. Experimental conditions: 10 µM Cu(II)-CQ (ratio 1:2), 2.5 µM Zn(II)7-MT-

1 (ratio Cu-complex: Zn(II)7-MT-1, 1:0.25), 3 mM GSH in HEPES 50 mM, pH 7.4. 

 

FigS 35 - Low-temperature luminescence spectra obtained after the addition of Zn(II)7-MT-1 with or without GSH to 

the preformed Cu(II)-Cyclam complex. Experimental conditions:10 µM Cu(II)-Cyclam (ratio 1:1.2), 2.5 µM Zn(II)7-

MT-1 (ratio Cu-complex: Zn(II)7-MT-1, 1:0.25), 3 mM GSH in HEPES, 50 mM, pH 7.4. 
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FigS 36 - a) Low-temperature luminescence spectra obtained after the addition of Zn(II)7-MT-1 with or without  GSH 

to the preformed Cu(II)-gtsm complex. b) Emission lifetimes obtained from the decay fits of the emissive bands at 

425 nm (left panel) and at 575 nm (right panel). Experimental conditions: 10 µM Cu(II)-gtsm (ratio 1:1.2), 2.5 µM 

Zn(II)7-MT-1 (ratio Cu-complex: Zn(II)7-MT-1, 1:0.25), 3 mM GSH in HEPES, 50 mM, pH 7.4. 

 

FigS 37 - a) Low-temperature luminescence spectra obtained after the addition of Zn(II)7-MT-1 with or without  GSH 

to the preformed Cu(II)-Dp44mT complex. b) Emission lifetimes obtained from the decay fits of the emissive bands 

at 425 nm (left panel) and at 575 nm (right panel). Experimental conditions: 10 µM Cu(II)-Dp44mT (ratio 1:1.2), 2.5 

µM Zn(II)7-MT-1 (ratio Cu-complex: Zn(II)7-MT-1, 1:0.25), 3 mM GSH in HEPES, 50 mM, pH 7.4. 
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