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Abstract
Developing efficient algorithms to learn appropriate representations of structured data,
including sequences or graphs, is a major and central challenge in machine learning. To
this end, deep learning has become popular in structured data modeling. Deep neural
networks have drawn particular attention in various scientific fields such as computer
vision, natural language understanding or biology. For instance, they provide compu-
tational tools for biologists to possibly understand and uncover biological properties
or relationships among macromolecules within living organisms. However, most of the
success of deep learning methods in these fields essentially relies on the guidance of em-
pirical insights as well as huge amounts of annotated data. Exploiting more data-efficient
models is necessary as labeled data is often scarce.

Another line of research is kernel methods, which provide a systematic and principled
approach for learning non-linear models from data of arbitrary structure. In addition to
their simplicity, they exhibit a natural way to control regularization and thus to avoid
overfitting. However, the data representations provided by traditional kernel methods
are only defined by simply designed hand-crafted features, which makes them perform
worse than neural networks when enough labeled data are available. More complex
kernels inspired by prior knowledge used in neural networks have thus been developed
to build richer representations and thus bridge this gap. Yet, they are less scalable.
By contrast, neural networks are able to learn a compact representation for a specific
learning task, which allows them to retain the expressivity of the representation while
scaling to large sample size. Incorporating complementary views of kernel methods and
deep neural networks to build new frameworks is therefore useful to benefit from both
worlds. In this thesis, we build a general kernel-based framework for modeling structured
data by leveraging prior knowledge from classical kernel methods and deep networks.
Our framework provides efficient algorithmic tools for learning representations without
annotations as well as for learning more compact representations in a task-driven way.
The first contribution consists of introducing a new convolutional kernel for biological

sequences. The proposed kernel is aimed at tackling motif discovery, an important
problem in sequence analysis, by assuming genetic determinants to be contiguous. Our
method allows efficient prediction from relatively short sequences while providing simple
interpretation, through the lens of kernel approximation methods. It is shown to be
effective on transcription factor binding prediction and protein homology recognition
tasks.
The next contribution presents a natural extension of the above kernel to further mod-

eling sequence gaps, another type of prior knowledge in biological sequences, based on
substring kernels. In this work, the above contiguous assumption on motifs is relaxed to
allowing gaps, which can be helpful for many bioinformatics tasks such as protein homol-
ogy recognition. Indeed, our model achieves better performance in this task, especially
for predicting remote homologies. Furthermore, our model can be viewed as a new type
of recurrent neural networks (RNNs), which uncovers links between many existing deep
models and kernel methods. Consequently, it opens the door to better regularization
and architecture design of RNNs.
We then consider graph-structured data and give a general view of many existing

graph kernels based on substructure counting. We introduce a new multilayer kernel

i



based on fixed-length paths in the graphs. Rather than neighbor feature aggregation
used in graph neural networks, our approach relies on aggregating path features, which
makes it more expressive. By leveraging kernel approximation techniques, the resulting
graph representations can be learned without supervision, or in a task-driven way as
graph neural networks. Moreover, controlling the length of paths in our model allows
compromising computational complexity and expressiveness. Our work gives a novel
view to designing more expressive kernels or deep networks for graph-structured data.
Most of the kernels or deep networks so far for structured data can be decoupled

into two components: local feature extraction and feature aggregation. While the above
works were focused on the former component (generally combined with simple feature
aggregation such as average pooling), our last contribution is devoted to feature ag-
gregation. We introduce a kernel for sets based on Wasserstein distance, along with
an explicit parametrized embedding function. Our approach addresses the problem of
feature aggregation for sets with positional information that exhibit long-range depen-
dencies between their members, which is of high importance for modeling long genetic
sequences. We propose both supervised and unsupervised methods to learn the param-
eters in the embedding function. Empirically, our embedding combined with the above
proposed kernels brings further improvement on protein homology recognition. We also
provide an implementation of our embedding that can be used as a module in deep
networks, which is shown to be very effective in the detection of chromatin profiles for
genetic sequences.
All these contributions have led to the development of an open-source software pack-

age.

Keywords: machine learning, kernel methods, bioinformatics, deep learning, convolu-
tional neural networks, kernels for structured data, string kernels, graph kernels, feature
aggregation.
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Résumé
Le développement d’algorithmes efficaces pour apprendre des représentations appropriées
des données structurées, telles des sequences ou des graphes, est un défi majeur et central
de l’apprentissage automatique. Pour atteindre cet objectif, l’apprentissage profond est
devenu populaire pour modéliser des données structurées. Les réseaux de neurones pro-
fonds ont attiré une attention particulière dans divers domaines scientifiques tels que la
vision par ordinateur, la compréhension du langage naturel ou la biologie. Par exemple,
ils fournissent aux biologistes des outils de calcul qui leur permettent de comprendre et
de découvrir les propriétés biologiques ou les relations entre les macromolécules des or-
ganismes vivants. Toutefois, leur succès dans ces domaines repose essentiellement sur des
connaissances empiriques ainsi que d’énormes quantités de données annotées. Exploiter
des modèles plus efficaces est nécessaire car les données annotées sont souvent rares.

Un autre axe de recherche est celui des méthodes à noyaux, qui fournissent une ap-
proche systématique et fondée sur des principes théoriquement solides pour l’appren-
tissage de modèles non linéaires à partir de données de structure arbitraire. Outre leur
simplicité, elles présentent une manière naturelle de contrôler la régularisation et ainsi
d’éviter le surapprentissage. Cependant, les représentations de données fournies par les
méthodes à noyaux ne sont définies que par des caractéristiques artisanales simplement
conçues, ce qui les rend moins performantes que les réseaux de neurones lorsque suffisam-
ment de données étiquetées sont disponibles. Des noyaux plus complexes, inspirés des
connaissances préalables utilisées dans les réseaux de neurones, ont ainsi été développés
pour construire des représentations plus riches et ainsi combler cette lacune. Pourtant,
ils sont moins adaptatifs. Par comparaison, les réseaux de neurones sont capables d’ap-
prendre une représentation compacte pour une tâche d’apprentissage spécifique, ce qui
leur permet de conserver l’expressivité de la représentation tout en s’adaptant à une
grande taille d’échantillon. Il est donc utile d’intégrer les vues complémentaires des mé-
thodes à noyaux et des réseaux de neurones profonds pour construire de nouveaux cadres
afin de bénéficier du meilleur des deux mondes. Dans cette thèse, nous construisons un
cadre général basé sur les noyaux pour la modélisation des données structurées en ti-
rant parti des connaissances préalables des méthodes à noyaux classiques et des réseaux
profonds. Notre cadre fournit des outils algorithmiques efficaces pour l’apprentissage de
représentations sans annotations ainsi que pour l’apprentissage de représentations plus
compactes de manière supervisée par les tâches.
La première contribution consiste à introduire un nouveau noyau convolutif pour les

séquences biologiques. Le noyau proposé vise à aborder la découverte de motifs, un pro-
blème important dans l’analyse de séquence, en supposant que les déterminants géné-
tiques sont contigus. Notre méthode permet une prédiction efficace à partir de séquences
relativement courtes tout en fournissant une interprétation simple, à travers le prisme
des méthodes d’approximation du noyau. Elle s’est avérée efficace pour la prédiction de
liaison de facteurs de transcription et les tâches de reconnaissance de l’homologie des
protéines.
La contribution suivante présente une extension naturelle du noyau ci-dessus pour

modéliser davantage les sauts génétiques, un autre type de connaissances a priori sur les
séquences biologiques, basé sur des noyaux de sous-chaînes. Dans ce travail, l’hypothèse
contiguë ci-dessus sur les motifs est assouplie pour permettre des sauts, ce qui peut
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être utile pour de nombreuses tâches bio-informatiques telles que la reconnaissance de
l’homologie des protéines. En effet, notre modèle atteint de meilleures performances dans
cette tâche, notamment pour la prédiction d’homologies à distance. De plus, notre modèle
peut être considéré comme un nouveau type de réseaux de neurones récurrents (RNN),
qui permet de découvrir des liens entre de nombreux modèles profonds existants et des
méthodes à noyaux. Par conséquent, il ouvre la porte à une meilleure régularisation et
à une meilleure conception de l’architecture des RNN.
Nous considérons ensuite les données structurées en graphes et donnons une vue géné-

rale de nombreux noyaux de graphes existants basés sur le comptage de sous-structures.
Nous introduisons un nouveau noyau à multicouche basé sur des chemins de longueur
fixe dans les graphes. Plutôt que l’agrégation des caractéristiques dans un voisinage uti-
lisée dans les réseaux de neurones de graphes, notre approche repose sur l’agrégation des
caractéristiques des chemins, ce qui la rend plus expressive. En exploitant des techniques
d’approximation du noyau, les représentations de graphes résultantes peuvent être ap-
prises sans supervision, ou de manière supervisée par les tâches comme dans les réseaux
de neurones de graphes. De plus, contrôler la longueur des chemins dans notre modèle
permet de compromettre la complexité de calcul et l’expressivité. Notre travail donne
une nouvelle vision de la conception de noyaux plus expressifs ou de réseaux profonds
pour des données structurées en graphes.
Jusqu’à présent, la plupart des noyaux ou réseaux profonds pour les données structu-

rées peuvent être découplés en deux composants : l’extraction de caractéristiques locales
et l’agrégation de caractéristiques. Alors que les travaux ci-dessus se sont concentrés sur
la première composante (généralement combinée avec une simple agrégation de carac-
téristiques), notre dernière contribution est consacrée à l’agrégation de caractéristiques.
Nous introduisons un noyau pour les ensembles basé sur la distance de Wasserstein,
ainsi qu’une fonction de description explicitement paramétrée. Notre approche aborde le
problème de l’agrégation de caractéristiques pour les ensembles avec des informations de
position qui présentent des dépendances à longue distance entre leurs membres, ce qui
est d’une grande importance pour la modélisation de longues séquences génétiques. Nous
proposons des méthodes à la fois supervisées et non supervisées pour l’apprentissage des
paramètres de la fonction de description. Empiriquement, notre fonction de description
combinée avec les noyaux proposés ci-dessus apporte une amélioration supplémentaire
sur la reconnaissance de l’homologie des protéines. Nous fournissons également une im-
plémentation de notre intégration qui peut être utilisée comme module dans des réseaux
profonds, ce qui s’avère très efficace dans la détection des profils de chromatine pour les
séquences génétiques.
Chacun de ces travaux a fait l’objet du développement d’un logiciel open source.
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With the advancements in technology, today’s real-world data comes from various fields
and with diverse modalities. Examples include images and videos in computer vision
or biological sequences and molecules in bioinformatics. One of the major problems in
machine learning is then to build a general framework for finding good representations
of data with arbitrary complex structure. Such good representations are expected to
be predictive for a specific task or more generally for multiple tasks at the same time,
which is challenging.

To that effect, deep learning models have become the most popular methods for learn-
ing representations of high-dimensional structured data in computer vision, natural lan-
guage understanding, and have also drawn increasing attention in bioinformatics. For
instance, they have shown good performance for making predictions from genomic se-
quences about their chromatin profiles (Alipanahi et al., 2015; Zhou and Troyanskaya,
2015), splicing outcome (Jha et al., 2017), gene expression profiling (Chen et al., 2016)
or from protein sequences about their homology (Hochreiter et al., 2007; Asgari and
Mofrad, 2015), secondary structure (Wang et al., 2016) or more recently from molecular
graphs about their chemical properties (Duvenaud et al., 2015; Kearnes et al., 2016).
Nevertheless, most of these successes essentially rely on the guidance of empirical insights
(possibly from other fields) and huge amounts of annotated data. The links between net-
work architectures and prior knowledge implemented in classical statistical and machine
learning methods have not been well established yet.
A priori smoothness assumptions are generally required to make learning models

achieve good generalization performance (ability to predict on unseen data), especially
in the small-data regime which is often the case for many biological applications. In
deep learning models, these assumptions have led to various heuristics, such as weight
decay (Hanson and Pratt, 1989), early stopping (Prechelt, 1998) or Dropout (Srivas-
tava et al., 2014). While these algorithmic techniques for deep networks were mostly
designed with practical insights, more natural and systematical assumptions were for-
malized in statistics and classical machine learning methods, often referred to as the term
regularization. Among them, Tikhonov (Tikhonov and Arsenin, 1977) and Lasso (Tib-
shirani, 1996) regularizations are the most typical ones. With the widespread use of
deep neural networks in many scientific fields, bridging the gap between the traditional
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regularization formalism and smoothness assumptions on deep models to make models
more data-efficient is of growing importance. Several contributions in the thesis are thus
aimed at this.
Interpretability is another important concept for learning models in scientific appli-

cations. A good prediction model should not only perform well but also be able to
explain its predictions. This concept has been considered as a major limitation in many
machine learning models and many efforts have been made to learn more interpretable
models. For instance in deep learning, the space of functions described by a network
is only characterized by its architecture design. Hence, the subsequent analysis and
interpretation is often difficult and possibly only accessible for models with simple ar-
chitectures (Alipanahi et al., 2015; Shrikumar et al., 2017a; Lanchantin et al., 2017).
Learning models that perform well while being interpretable is becoming the central
topic of a large amount of work.

Kernel methods were widely used to represent structured data before the deep learning
revolution. Their algorithms and statistical properties are typically well founded on con-
vex optimization and statistical theory (Hofmann et al., 2008). They provide a system-
atic and principled approach for learning non-linear predictors from data with arbitrary
structure by simply defining a pairwise similarity function on input data named kernel.
For instance, many kernels have been proposed to handle data of different modalities
in biology, including string kernels (Leslie et al., 2001, 2004) and alignment-based ker-
nels (Saigo et al., 2004) for sequence data, substructure-counting-based kernels (Gärtner
et al., 2003; Borgwardt and Kriegel, 2005; Shervashidze et al., 2011) for graph data.
Besides their versatility to diverse data structures, kernel methods also exhibit a natural
way to control regularization and thus to avoid overfitting. In fact, each kernel defines a
Hilbert space of functions (called reproducing kernel Hilbert space) in which the predic-
tion function is learned and its smoothness can be controlled through the penalization
of the norm. Despite these fruitful properties of kernel methods, the data representa-
tions are only defined by simply designed hand-crafted kernels, which has become the
main limitation of many traditional kernels. For this reason, more complex kernels that
leverage the multi-scale and hierarchical structure inspired by the operations in deep
convolutional networks have been proposed to build richer representations and thus alle-
viate this limitation, especially for image data (Daniely et al., 2016; Mairal et al., 2014;
Mairal, 2016). Yet, computing exact kernels is not scalable. By contrast, neural net-
works are able to learn a more compact representation for a specific learning task, which
allows them to retain the expressivity of the representation while scaling to large sample
size. Moreover, the performance gap between kernel methods and deep networks is still
important for other data types, such as sequences and graphs. Hence, incorporating
their complementary views to develop a general kernel framework for handling various
data structures is helpful for benefitting from both worlds.
In this thesis, we present the work following the above lines of research, with a par-

ticular focus on biological applications. We build a general kernel-based framework for
learning representations of structured data such as sequences and graphs, by leveraging
the prior domain knowledge from classical kernel methods. In our framework, efficient
algorithmic tools are provided for learning representations without labels as in classical
kernel methods. More compact data representations can also be learned in a task-driven
way just as deep networks, which pronouncedly reduces the gap between kernel methods
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and deep networks. We apply our models to various important applications in com-
putational biology, including transcription factor binding prediction, protein homology
detection and several molecular classification tasks. These contributions are presented
in more detail in Section 1.1. The other sections of the chapter provide an overview of
the key elements involved in the next chapters. Specifically, we review the basic notions
of kernel methods in Section 1.2 and present some widely-used kernels for structured
data in Section 1.3. Section 1.4 considers deep neural networks for structured data. And
finally some background on molecular biology will be presented in Section 1.5.

1.1. Contributions of the Thesis
This thesis brings several contributions to the fields of structured data modeling, espe-
cially for sequence- and graph-structured data in computational biology. These contri-
butions are organized as follows, and each of them has led to the development of an
open-source software package.

• Chapter 2 introduces a new convolutional kernel, called CKN-seq, for biological se-
quences, by extending the previous work (Mairal, 2016) for images. Our kernel was
built to tackle the important problem in sequence analysis called motif discovery,
or more generally to model the genotype-phenotype relationship, with the assump-
tion that genetic determinants take the form of contiguous sequence motifs, i.e.,
subsequences without gaps. Our approach allows efficiently making predictions
from relatively short sequences while providing simple kernel-based interpretation,
through the lens of kernel approximation methods. It is shown to be effective on
transcription factor binding prediction and protein homology recognition tasks. In
the large-data setting, it substantially reduces the gap between classical string ker-
nels (Leslie et al., 2001, 2004) and deep convolutional networks (Alipanahi et al.,
2015). On the other hand, it outperforms convolutional networks in the small-data
regime.

D. Chen, L. Jacob, and J. Mairal. Biological sequence modeling with con-
volutional kernel networks. In Research in Computational Molecular Biology
(RECOMB), 2019c
D. Chen, L. Jacob, and J. Mairal. Biological sequence modeling with convo-
lutional kernel networks. Bioinformatics, 35(18):3294–3302, 2019a

• Chapter 3 presents an extension of the above work to modeling sequence gaps in bi-
ological sequences, based on substring kernels. In this work, the above contiguous
assumption on motifs is relaxed to allow gaps, which can be helpful for many bioin-
formatics tasks such as protein homology recognition. Indeed, our model achieves
better performance in this task, especially for predicting remote homologies. Fur-
thermore, our model can be viewed as a new type of recurrent neural networks
(RNNs), which establishes connections between many existing deep models and
kernel methods. Consequently, it opens the door to better regularization and ar-
chitecture design of RNNs.
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D. Chen, L. Jacob, and J. Mairal. Recurrent kernel networks. In Advances in
Neural Information Processing Systems (NeurIPS), 2019b

• Chapter 4 is focused on another ubiquitous data modality in biology, which is graph
with node attributes. It provides a general view of many existing graph kernels
based on substructure counting and introduces a new multilayer kernel based on
fixed-length paths in the graphs. By leveraging the above kernel approximation
techniques, the resulting graph representations can similarly be learned without
supervision, or in a task-driven way. Moreover, controlling the length of paths
in our model allows compromising computational complexity and expressiveness.
Our work gives a novel view to designing more expressive kernels or deep networks
for graphs.

D. Chen, L. Jacob, and J. Mairal. Convolutional kernel networks for graph-
structured data. In International Conference on Machine Learning (ICML),
2020

• Chapter 5 considers a more general circumstance where each data example is ex-
pressed as an arbitrary set of features, including biological sequences (set of char-
acters), sentences (set of words), images (set of pixels) and graphs (set of nodes).
On the one hand, we propose a valid kernel operation that simulates max pooling
to aggregate the local features of such data in the RKHS. On the other hand,
we introduce a kernel for these kinds of data based on an optimal transport dis-
tance, along with a parametrized embedding function. Our approach addresses
the problem of feature aggregation for sets with positional information that ex-
hibit long-range dependencies between their members, which is of high importance
for long genetic sequences. According to applications, we propose both supervised
and unsupervised methods to learn the parameters in the embedding function.
Empirically, our embedding combined with the above CKN-seq brings further im-
provement on protein homology recognition. We also provide an implementation
of our embedding that can be used as a module in deep networks, which shows
effective in the detection of chromatin profiles.

G. Mialon*, D. Chen*, A. d’Aspremont, and J. Mairal. A trainable optimal
transport embedding for feature aggregation. In International Conference on
Learning Representations (ICLR)

(*equal contributions)

• Another contribution of the thesis consists of the following work on kernel-based
regularization methods, with the collaboration of Alberto Bietti and Grégoire Mi-
alon.

A. Bietti, G. Mialon, D. Chen, and J. Mairal. A kernel perspective for regular-
izing deep neural networks. In International Conference on Machine Learning
(ICML), 2019
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The paper proposes an algorithmic framework for regularization and robustness of
neural networks by leveraging regularization techniques from kernel methods. By
assuming neural networks are elements of an RKHS, we provide practical strategies
to approximate the RKHS norm of a neural network and explicitly control it. Our
methods are shown to be effective in practice when learning on small datasets,
including the protein homology detection. Our methods can also learn models that
are robust to adversarial perturbation. This work is not included in the thesis, as
my contribution was essentially the application of these kernel-based regularization
techniques to the problem of protein homology detection.

1.2. Kernel Methods and Large-Scale Learning with Kernels
Kernel methods were among the most popular methods in machine learning two decades
ago. They provide a systematic and well-founded approach for learning from structured
data. In this section, we review some useful elements of kernel methods. A more
thorough introduction to the topic can be found in, e.g., Scholkopf and Smola (2001);
Shawe-Taylor et al. (2004); Schölkopf et al. (2004).

1.2.1. Positive Definite Kernels
In machine learning, kernel methods represent a class of algorithms to learn non-linear
models from data through a pairwise similarity measure. This similarity measure, called
kernel, is defined as a function over the data space K : X ×X → R, where X can be any
non-empty set that includes the input examples. Most of the algorithms and theories in
kernel methods are developed by restricting the kernel to be positive definite that carries
nice properties for analysis. A positive definite kernel is defined as a symmetric kernel
K : X × X → R that satisfies for any subset of samples x1, . . . ,xn ∈ X and real-valued
coefficients a1, . . . , an ∈ R that

n∑
i,j=1

aiajK(xi,xj) ≥ 0.

Such kernels are also referred to as valid kernels. Then any linear models (either super-
vised or unsupervised) only relying on pairwise dot products between data points, such
as linear support vector machine (SVM), can easily be transformed to a non-linear model
by replacing the dot product with a kernel. And the resulting algorithm only requires
manipulating the positive semidefinite Gram matrix K ∈ Rn×n with respect to the input
examples {x1, . . . ,xn}, where Kij = K(xi,xj). This non-linearity is illustrated in the
following theorem through the mapping Φ, which was proved in Aronszajn (1950).

Theorem 1.1 (Aronszajn, 1950). K is a positive definite kernel on the set X if and
only if there exists a Hilbert space H and a mapping

Φ : X → H,

such that for any x,x′ ∈ X ,

K(x,x′) =
〈
Φ(x),Φ(x′)

〉
H . (1.1)
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An associated space H may be high or even infinite-dimensional, in which the trans-
formed representations lend themselves to the learning tasks. In particular, any explic-
itly defined finite-dimensional feature map Φ : X → Rd defines a positive definite kernel,
which is often the case for most kernels used in bioinformatics such as string kernels.
Some simple examples are given in Section 1.3.1.

1.2.2. Reproducing Kernel Hilbert Spaces
Among the Hilbert spaces mentioned in Aronszajn’s theorem, the reproducing kernel
Hilbert space (RKHS) is of the most interest, which is uniquely defined by a kernel and
fully characterizes the functions we learn from. Formally, it is defined as follows.

Definition 1.1. A Hilbert space H ⊂ RX is a RKHS if there exists a kernel K : X×X →
R such that

• H contains all functions of the form Φ(x) := K(x, ·) for any x ∈ X .

• for any x ∈ X and f ∈ H, the reproducing property holds

f(x) = 〈f,Φ(x)〉H. (1.2)

If such K exists, then it is unique and known as the reproducing kernel of H. And
its corresponding feature map Φ is called the canonical feature map of kernel mapping.
Conversely, it is also possible to show that a positive definite kernel defines a unique
RKHS. As the positive definite kernel and its RKHS entirely characterize each other,
the kernel is mostly used for computation while the RKHS is useful for understanding
the statistical properties of the functional space described by the kernel.
Interestingly, the reproducing property provides a natural way to control the smooth-

ness of the functions described by the kernel. Specifically, applying Cauchy-Schwarz in-
equality to (1.2) simply implies that the variation of a function f in H is upper bounded
by its norm in the RKHS

|f(x)− f(x′)| ≤ ‖f‖H‖Φ(x)− Φ(x′)‖H.

Another important remark is that the choice of feature map does not affect the geometry
of the kernel since the distance between Φ(x) and Φ(x′) remains constant for any feature
map Φ. However, the norm of f is directly affected by the choice of the feature map
and one can reconstruct the RKHS from any explicit mapping to a Hilbert space. This
is shown in the following theorem (see, e.g., Saitoh, 1997, §2.1).

Theorem 1.2. Let φ : X → F be a mapping from a data space X to a Hilbert space F ,
and let K(x,x′) := 〈φ(x), φ(x′)〉F for x,x′ in X . Consider the Hilbert space

H := {fz : z ∈ F} s.t. fz : x 7→ 〈z, φ(x)〉F ,

endowed with the norm

‖f‖2H := inf
z∈F

{
‖z‖2F s.t. f = fz

}
.

Then, H is the reproducing kernel Hilbert space associated to kernel K.
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1.2.3. Learning Algorithms
As mentioned above, a linear model (either classifier or regressor) can be easily trans-
formed to a non-linear model by replacing the inner product with a kernel function. In
this way, the linear model implicitly operates on the high or even infinite-dimensional
feature vectors in the RKHS associated to the kernel. This process is known as the
kernel trick. In this section, we will review the general supervised learning problem and
see how it works in the context of kernel methods.

Supervised learning problem with empirical risk minimization. In supervised learning
setting, we observe some measurement (random variable) x ∈ X and y ∈ Y following
some unknown distribution (x, y) ∼ P. The goal is to find a predictive function (often
called hypothesis) f : X → Y minimizing the risk

R(f) = E(x,y)∼P[`(f(x), y)],

where ` : Y × Y → R is a (convex) loss function that measures the goodness of the
prediction. For instance, `(ŷ, y) = 1ŷ 6=y for classification and `(ŷ, y) = (ŷ − y)2 for
regression.
In practice, we do not know the data distribution P but only have access to its ap-

proximation on a known set of training data. Specifically, we observe n independent
and identically distributed training pairs (x1, y1), . . . , (xn, yn) ∈ X × Y following the
distribution P, and the empirical risk is computed by averaging the loss function on the
training set

Remp(f) = 1
n

n∑
i=1

`(f(xi), yi).

However, there are some issues concerning this formulation. On the one hand, search-
ing the predictive function in the entire functional space YX is generally infeasible,
restricting the search space to an easier-to-characterize one is thus needed. On the other
hand, replacing the risk with the empirical risk could cause overfitting (Tsybakov, 2008;
Wainwright, 2019), which motivates us to impose some smoothness constraint on the
predictive function to control the model complexity. Taking both considerations into
account leads to the following optimization problem, known as the regularized empirical
risk minimization (ERM)

min
f∈F

1
n

n∑
i=1

`(f(xi), yi) + λΩ(f), (1.3)

where F ⊂ YX is a predefined functional space based on some prior knowledge about the
problem, and Ω denotes a regularization function to control the smoothness of predictive
function f and λ is a regularization parameter, which can be selected for example by
cross validation (Stone, 1974).

Supervised learning with kernels. In the context of kernel methods, the hypothesis
space is an RKHS associated with a kernel K and the above regularized ERM problem
becomes

min
f∈H

1
n

n∑
i=1

`(f(xi), yi) + λ‖f‖2H. (1.4)
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At the first glance, this problem seems still difficult to solve as H can potentially be
infinite-dimensional and is not explicitly expressed. Here we will see that this problem
can indeed be transformed to a problem in Rn only dependent of the pairwise kernel
values thanks to the representer theorem (Kimeldorf and Wahba, 1971). The problem
can then be solved using convex optimization techniques when the loss function is con-
vex. The representer theorem states that the solution lives in a finite-dimensional space
spanned by the embeddings of the input examples:

f(x) =
n∑
i=1

αiK(xi,x), for some α1, . . . , αn ∈ R,

by using a simple geometric argument. Now, if we denote by K the Gram matrix with
entries Kij = K(xi,xj) and α = (α1, . . . , αn)> ∈ Rn, the problem is equivalent to

min
α∈Rn

1
n

n∑
i=1

`([Kα]i, yi) + λα>Kα.

In the case of regression, the loss function is the squared loss `(ŷ, y) = (ŷ − y)2 and the
problem is known as the kernel ridge regression, which admits an explicit solution that
equals to

α = (K + nλI)−1y with y = (y1, . . . , yn) ∈ Rn.

Despite its nice formulation, the main bottleneck of this approach is scalability to large-
scale datasets. Indeed, the complexity of computing the kernel matrix is quadratic of
the number of examples and solving the ERM is even cubic. This drives us to perform
approximations to reduce time complexity while preserving prediction performance, as
presented in the following section.

1.2.4. Large-Scale Learning with Kernels
Recent advances in stochastic convex optimization enables us to deal with large-scale
linear problems (see, e.g., Bottou, 2010; Mairal, 2019). This success provides us the
basic elements for boosting the computation of kernel methods. In this section, we will
revisit two well-known approximation techniques for kernels, namely Nyström method
and random features. These techniques can make kernel methods scale well to very large
datasets, while retaining their prediction performance.

Nyström method. The Nyström method essentially performs low rank approximations
of the kernel matrix to accelerate its computation. The emergence of this idea dates back
to Scholkopf and Smola (2001); Williams and Seeger (2001). Let us consider here a kernel
K : X × X → R and its associated kernel mapping Φ : X → H and RKHS H. For any
x ∈ X , the basic idea of the Nyström method is to replace Φ(x) in H by its orthogonal
projection onto a finite-dimensional subspace ofH. In most cases, this subspace is chosen
as

E = span(Φ(z1), . . . ,Φ(zp)),
with some pre-selected set of anchor points Z = {z1, . . . , zp}. And we define the p-
dimensional vector

Ψ(x) = K
− 1

2
ZZKZ(x) ∈ Rp, for any x ∈ X ,
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Φ(z1)
Φ(z2)

Hilbert space H

E

Φ(x)

ΠΦ(x)
Φ(x′)

ΠΦ(x′)

Figure 1.1.: Nyström approximation method. The feature map Φ(x) is replaced by its
orthogonal projection onto the finite-dimensional subspace of H defined by
E = span(Φ(z1), . . . ,Φ(zp)). Then this projection ΠΦ(x) ∈ E can be re-
parametrized by Ψ(x) ∈ Rp such that 〈Φ(x),Φ(x′)〉H ≈ 〈Ψ(x),Ψ(x′)〉 for
any x,x′ in X .

where KZZ denotes the p×p Gram matrix of K restricted to the anchor points z1, . . . , zp
and KZ(x) ∈ Rp carries the kernel values K(x, zj) for j = 1, . . . , p. Then the kernel
evaluation between two data points x and x′ in X can be approximated by the inner-
product between Ψ(x) and Ψ(x′) in Rp:

K(x,x′) = 〈Φ(x),Φ(x′)〉H ≈ 〈Ψ(x),Ψ(x′)〉,

since the inner-product 〈Ψ(x),Ψ(x′)〉 is exactly the inner-product between the orthog-
onal projections of Φ(x) and Φ(x′) onto E . This is illustrated in Figure 1.1. A useful
remark is that these projections onto E still remain in the original RKHS H so that any
linear operations on the mapping still transform them in the RKHS. Finally, the Gram
matrix computed with Ψ(x) with respect to the full data examples is supposed to be a
low-rank approximation of the exact Gram matrix for proper choice of anchor points.
Then Ψ(x) can be fed to a linear model to handle supervised learning problems or to a
clustering model for unsupervised learning.

In practice, the set of anchor points can be chosen in various ways. Random sam-
pling or greedy selection from training examples are the most typical ones (Williams
and Seeger, 2001; Smola and Bartlett, 2001; Fine and Scheinberg, 2001). More recent
data-dependent approach via clustering (Zhang et al., 2008; Mairal, 2016) provides sig-
nificantly better performance. On the other hand, the anchor points can also be learned,
but not necessarily at the aim of approximating the kernel, end-to-end with a gradient
descent method when the kernel is differentiable and combined with a linear model such
as SVM, presented usually in the context of reduced-set selection (Burges et al., 1996;
Scholkopf and Smola, 2001; Wu et al., 2005) or more recently in deep kernels (Mairal,
2016).

Throughout the thesis, we use the (spherical) K-means algorithm to learn the set of
anchors (Zhang et al., 2008). The approximation error of such algorithm is guaranteed
by the following theorem, adapted from Zhang et al. (2008).
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Theorem 1.3 (adapted from Zhang et al. (2008)). Given a set of training data x1, . . . ,xn,
the approximation error (in terms of Frobenius norm) between the exact kernel matrix
and the approximate kernel matrix given by the Nyström method is defined by

E2 :=
n∑

i,j=1
[K(xi,xj)− 〈Ψ(xi),Ψ(xj)〉]2 = ‖K−K>ZXK−1

ZZKZX‖2F ,

where KZX ∈ Rp×n denotes the matrix with columns KZ(xi) for i = 1, . . . , p. If K is
bounded such that K(x,x) ≤ C for any x ∈ X , this approximation error is then bounded
by

E ≤ 4T
√
pCeT + pCeT‖K−1

ZZ‖F ,
where T ≤ n denotes the number of samples of the largest cluster of the data, e describes
the quantization error of the data in H given by

e :=
n∑
i=1
‖Φ(xi)− Φ(zs(i))‖2H,

with s(i) ∈ {1, . . . , p} the index function that maps each sample xi to the closest anchor
point zs(i) in H.
In particular, if the kernel mapping Φ is L-Lipschitz such that

‖Φ(x)− Φ(x′)‖H ≤ L‖x− x′‖ for any x,x′ ∈ X ,

which includes Gaussian kernels, polynomial kernels, dot-product kernels an so on, then
e is bounded by the quantization error in the input space. Therefore, controlling the
quantization error in the input space allows to control the approximation error, which
justifies the validity of K-means algorithm that minimizes the quantization error.

Random features. Another class of approximations are based on random features,
which are relevant for a large family of kernel functions admitting the following decom-
position

K(x,x′) = Ew∼p(w)[ϕ(w,x)ϕ(w,x′)], (1.5)
where ϕ is a continuous and bounded function and each ϕ(x,w) is known as a random
feature (Bach, 2017), and p(w) is a probability distribution. This family includes many
commonly used kernels such as shift-invariant and rotation-invariant kernels. These ker-
nels are of the respective form κ(x−x′) and κ(〈x,x′〉) with κ : R→ R some appropriate
function and can be expressed as the above form respectively using the Fourier trans-
form (Rahimi and Recht, 2008) and spherical harmonics (Schoenberg, 1942). A natural
approximation for the kernels of the form 1.5 makes use of the standard Monte Carlo
sampling scheme to construct an inner-product between p-dimensional vectors:

K(x,x′) ≈ 〈ψ(x), ψ(x′)〉,

where ψ(x) = [ϕ(w1,x), . . . , ϕ(wp,x)]> ∈ Rp and w1, . . . ,wp are i.i.d. sampled from
p(w). Unlike the anchor points (also called basis functions) used by the Nyström method
that are sampled in a data dependent fashion, basis functions used here are sampled
from a distribution independent from the data. Thus, approaches based on the Nyström
method can generally yield better generalization error bound than random features based
approaches (Yang et al., 2012). A more detailed survey on this topic can be found in Liu
et al. (2020).

10



1.3. Kernels for Structured Data

1.3. Kernels for Structured Data
There are various kernels introduced with different prior knowledge and for different data
modalities. Good kernels should be appropriate for the learning task while being positive
definite. In this section, we will review some of them, especially those for structured
data like sequences and graphs.

1.3.1. Kernels for Real-Valued Vectors
We begin with some simple yet widely used kernels for vectors. Here all the kernels are
defined over X = Rd.

Linear kernel. The simplest one should be linear kernel. This kernel is defined as

K(x,x′) = 〈x,x′〉 = x>x′, for any x,x′ ∈ Rd.

It is not hard to show the corresponding RKHS is

H = {fw : x→ x>w |w ∈ Rd},

endowed with the the inner-product

〈fw, fw′〉H = w>w′, for any fw, fw′ ∈ H.

Thus using this kernel with the regularized ERM problem 1.4 amounts to solving the
linear problem

min
w∈Rd

1
n

n∑
i=1

`(x>i w, yi) + λ‖w‖2.

This reparametrization can be quite useful for approximated kernels provided by Nys-
tröm or random features in Section 1.2.4.

Polynomial kernels. The polynomial kernel with degree k is defined as

K(x,x′) = (x>x′ + c)k,

where c ≥ 0 is a free parameter. In particular when c = 0, the kernel is called homoge-
neous. Intuitively, this kernel not only takes into accounts the input features but also
their higher order polynomial combinations. The advantage is that it does not require
explicitly adding these higher-order features thus exploding the number of parameters
to be learned. This kernel is quite popular in natural language processing (Chang et al.,
2010).

Histogram intersection kernel. In contrast to the distance induced by the linear kernel
which is an `2-norm in Rd, here we present the histogram intersection kernel which
induces an `1-norm in the input space. Specifically, the kernel is defined as

K(x,x′) =
d∑
i=1

min(xi,x′i) for any x,x′ ∈ Rd+.

11
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It is not hard to show the positive definiteness of the kernel by noticing

min(u, v) =
∫ ∞

0
1t≤u(t)1t≤v(t) dt for any u, v ∈ R,

and using the definition of the p.d. kernel. This kernel is mostly used with histograms
and show better performance than linear or RBF kernels in computer vision (Barla et al.,
2003). The induced distance defined by d2

K(x,x′) := K(x,x)− 2K(x,x′) +K(x′,x′) is
given by

d2
K(x,x′) = ‖x− x′‖1 :=

d∑
i=1
|xi − x′i|.

Gaussian kernel. The most popular kernel must be the Gaussian kernel, or radial basis
function (RBF) kernel. It is defined as

K(x,x′) = e−
‖x−x′‖2

2
σ2 for any x,x′ ∈ R,

where σ > 0 is called the bandwidth parameter. This kernel is transition-invariant or
shift-invariant such that it depends only on the difference between its arguments

K(x,x′) = ϕ(x− x′) with ϕ(u) = e−‖u‖
2/σ2

.

Thus the random Fourier features presented in Section 1.2.4 can be applied to this kernel
to speed up the kernel computation. We can also characterize its corresponding RKHS
for each σ > 0:

Hσ =
{
f ∈ L2(Rd)

∣∣∣ ∫
Rd
|f̂(w)|2e

σ2‖w‖22
2 dw <∞

}
,

endowed with the right term as its norm up to a constant factor. In particular, all the
functions in Hσ are infinitely differentiable with all derivatives in L2(R2) owing to the
exponential decay. Note that the RKHS Hσ increases when decreasing σ, and contains
less smooth functions.

Homogenous dot-product kernels. A large class of commonly used kernels are homoge-
nous dot-product kernels, which have been found useful particularly for understanding
deep networks (Cho and Saul, 2009). These kernels, which can be efficiently described
by the dot-product, are of the form

K(x,x′) = ‖x‖‖x′‖κ
(〈 x
‖x‖ ,

x′

‖x′‖

〉)
,

with κ : [−1; 1]→ R some arbitrary function. In order to ensure the positive definiteness,
The Taylor series expansion of κ admits only non-negative coefficients (Schoenberg, 1942;
Scholkopf and Smola, 2001). There are various of kernels satisfying this condition, more
discussions on these examples and also on the eigenvector decomposition can be found
in Scholkopf and Smola (2001). In particular, when κ(u) = eα(u−1), we recover the
Gaussian kernel on the sphere Sd−1

K(x,x′) = eα(〈x,x′〉−1) = e−
α
2 ‖x−x′‖2

2 for any x,x′ ∈ Sd−1.
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As mentioned before, this class also includes kernels derived from deep learning such
as the arc-cosine kernel. We briefly review here this connection with two-layer networks.
The connection between kernels and neural networks can be dated back to late 1990s
in the limit of infinitely wide networks (Neal, 1996; Williams, 1998). Let us consider a
two-layer network of the form

f(x) = 1
√
p

p∑
j=1

vjϕ(x>wj),

where vj ∈ R denotes the neurons (parameters) at second layer and ϕ(x>wj) are hidden
units that depends on the hidden weights wj ∈ Rd and an activation function ϕ. Now
let vj ’s have independent Gaussian distribution N (0, 1) and wj for each hidden unit
be i.i.d. following some distribution, then we have the kernel for any x,x′ ∈ Rd in the
finite-width limit

KNN(x,x′) := lim
p→∞

f(x)f(x′) = Ew[ϕ(x>w)ϕ(x′>w)],

which takes the form of random features in Section 1.2.4. In particular when ϕ is the
rectified linear unit (ReLU) function such that ϕ(u) = max(u, 0) and w ∼ N (0, 2I), then
KNN is a dot-product kernel (Cho and Saul, 2009) with

κ(u) = 1
π

(
u(π − arccos(u)) +

√
1− u2

)
.

1.3.2. Combining Kernels
In order to build novel and more expressive kernels, a natural strategy is to combine
existing kernels. This is possible thanks to the closure properties of the class of kernel
functions by a few commonly used operations. In fact, the class of kernel functions on
the data space X is a convex cone, i.e. for any two valid kernels K1 and K2, their linear
combination

λ1K1 + λ2K2

is still a valid kernel for any λ1, λ2 ≥ 0. Another useful property consists of closure under
the pointwise multiplication, also referred to as Hadamard product or Schur product. It
has been proven in Schur (1911) that for any two valid kernels K1 and K2, the kernel
defined as

K(x,x′) = K1(x,x′)K2(x,x′) for any x,x′ ∈ X

is also a valid kernel. Moreover, the pointwise limit of a sequence of valid kernels is
also a valid kernel. Concretely, if (Kn)n≥1 is a sequence of valid kernels that converges
pointwisely to a function

∀(x,x′) ∈ X 2, K(x,x′) = lim
n→∞

Kn(x,x′),

then K is also a valid kernel. These closure properties are useful to show the positive
definiteness of most of the above kernels, such as the Gaussian kernel. However, other
operations are generally not guaranteed to generate valid kernels.
In practice, when a family of valid kernels are available, taking the sum of them to

build a new kernel provides a simple way to combine the heterogeneous information
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and thus improve performance. The RKHS of the resulting kernel can be interpreted
as the direct sum of the RKHS of the basic kernels and its feature map can be seen
as the concatenation of the basic kernels’ feature maps. This approach has been shown
useful in many contexts such as in functional genomics (Pavlidis et al., 2002) and protein
network (Yamanishi et al., 2004). A generalization of this approach is to learn to weight
each kernel in the summation such that the resulting kernel takes the form of the convex
combination of n basic kernels

K =
n∑
i=1

µiKi with µ ∈
{
µi ≥ 0,

n∑
i=1

µi = 1
}
,

and the weights µi can be jointly optimized with the predictor parameters. This approach
is known as multiple kernel learning (MKL) (Lanckriet et al., 2004a). Its relationships
to group Lasso have been further explored in Bach et al. (2004) and an efficient opti-
mization algorithm has been subsequently proposed in Rakotomamonjy et al. (2008).
This approach has been shown to boost performance in protein annotation (Lanckriet
et al., 2004b) and image recognition (Harchaoui and Bach, 2007).

1.3.3. Kernels for Biological Sequences
As kernels can be flexibly defined on arbitrary data structures, computational biology
has thus been one of the first and major application fields for them due to the diversity
of its data modalities. One of the most common data types in computational biology
is sequence data, such as protein and DNA sequences. A biological sequence generally
is a string of characters defined over a relatively small-size alphabet A. For instance,
the alphabet of DNA sequences consists of four characters {A,C,G,T} while it has 20
characters for protein sequences, corresponding to different amino acids. Despite the
simple structure of the sequence, many efforts have been made to design and engineer
valid, expressive and computationally efficient kernels for sequences since two decades
ago. Though these kernels may be out-of-date to deal with today’s genome-scale data, it
is still worth revisiting them to understand the development history and their potential
hidden connections. Chapter 2 and Chapter 3 essentially are devoted to finding the
relationships between these classical kernels and eventually to proposing new kernels
that are more flexible and scale well to large datasets.
Relying on the construction strategy of the kernel, kernels for biological sequences

can be divided into three classes: kernels derived from large feature descriptors, from
a similarity score or from a generative model. However, most of the kernels have tight
connections, despite the different construction strategies.

Kernels from large feature descriptors. The first class of kernels are constructed from
large feature descriptors. In this case, the mapping Φ in (1.1) embeds each data point
x to a real-valued vector Φ(x) ∈ Rp, with possibly high dimensions. A typical subclass
includes the string kernels, given in the following form

Φ(x) := (Φu(x))u∈Ak ,

where the right term represents the vector with entries Φu(x) and Φu(x) denotes some
statistics of u in x. For instance, Leslie et al. (2001) describes Φu(x) by the number
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of occurrences of each contiguous subsequence of k characters u, which is called a k-
mer, in sequence x. This kernel, called spectrum kernel, has been shown to be relevant
in protein homology detection or transcription factor binding prediction (Elmas et al.,
2017), where short motifs that could determine the biological properties of interest occur
recurrently in the sequences.
Computing this kernel by naively enumerating all the k-mers is intractable since its

number (which equals to |A|k) grows exponentially with k. Fortunately, one only needs
to count the k-mers present in the sequences thanks to the kernel trick, which only
depends on the sum of the sequence lengths instead of the number of all k-mers. Since
then, many extensions and variants have been proposed, making the use of such kernels
more flexible in various circumstances. A natural extension is to allow a few mismatches
when counting u in the sequences, which is achieved by the mismatch kernel (Leslie et al.,
2004). This prior information is fairly relevant as it makes the kernel invariant to the
substitution mutation, which is a common phenomenon in genetics. Interestingly, Kuksa
et al. (2009) have shown that the mismatch kernel can be rewritten in the following form

K(x,x′) =
m−k+1∑
i=1

m′−k+1∑
j=1

δa(xi:i+k−1,x′j:j+k−1), (1.6)

where m = |x| and m′ = |x′| denote the sequence lengths and δa denotes the Dirac
kernel up to a ∈ N mismatches, defined on k-mers as

δa(u, v) =
{

1 if Hamming(u, v) ≤ a,
0 otherwise,

where Hamming denotes the Hamming distance that is the number of distinct characters.
These kernels can be interpreted as the sum of the similarities between each pair of k-
mers. Consequently, they can also be seen as cases in the second class which are derived
from a similarity measure.
Other relevant biological priors than substitutions can also be incorporated into the

kernel by properly defining the descriptors, such as gaps (Lodhi et al., 2002; Leslie and
Kuang, 2004) or even protein profiles (Kuang et al., 2005; Rangwala and Karypis, 2005).
An alternative approach is to leverage supplementary informations about the amino
acids or nucleotides by using numerical features instead of characters that represent
their physico-chemical properties or secondary structure information. Then, general
signal processing techniques or kernels for sequences of vectors can be performed on
the resulting numerical time series to extract meaningful features (Zhang et al., 2003;
Wang et al., 2004). These kernels are shown to be useful to predict certain properties
such as classifying membrane proteins. However, they are of less interest when these
supplementary informations are expensive to obtain, such as when dealing with large-
scale raw sequences.
The final subclass consists in “projecting” the sequences onto a predefined dictionary,

based on a similarity function. This idea is very similar to the Nyström method, though
the similarity function is not required to be a valid kernel. Examples include the motif
kernel (Ben-Hur and Brutlag, 2003) using as dictionary a set of motifs and the pairwise
kernel (Liao and Noble, 2003) using as dictionary a fixed set of sequences. As an im-
portant consequence, these choices of the dictionary shed light on how to choose and
interpret the anchor points in the Nyström method, which will be detailed in Chapter 2.
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Kernels from a similarity score. Another construction strategy consists in building
kernels from a similarity score, by e.g. using existing similarity scores between biological
sequences. This concept was first explored by Haussler (1999), which introduced a class
of kernels for a wide range of data that can be represented as sets whose elements are
discrete structures, named convolution kernels. By combining some kernels adapted to
the comparison of the local elements, convolution kernels provide a general framework
for defining valid kernels. In particular, the above presented mismatch kernel is also
a convolution kernel thanks to the form of (1.6), though its original construction was
based on large feature descriptors. Since then, it has led to a couple of applications
in natural language processing such as Lodhi et al. (2002); Collins and Duffy (2002);
Suzuki et al. (2004) and also in bioinformatics. A typical example of convolution kernels
in bioinformatics is the local alignment kernel (Saigo et al., 2004), introduced in the
context of protein homology detection. This kernel is built upon the well-known Smith-
Waterman score (Smith et al., 1981) that performs local sequence alignment. Since both
the above presented substring kernel (Lodhi et al., 2002) and the local alignment kernel
are convolution kernels and encode prior knowledge about gaps, they have indeed a close
relationship as shown in Chapter 3.
The local alignment kernel was later extended to further making use of protein se-

quence profiles (Kuang et al., 2005), which shows substantial improvement in perfor-
mance yet requires much more computations to obtain the sequence profiles. Though
this kernel has been shown very effective in many sequence classification tasks such as
the recognition of protein remote homologies, the reason for its success over other ker-
nels such as the mismatch or substring kernels has hardly been understood. This will
be demystified by using our general kernel framework introduced in Chapter 3. We will
see later that many other kernels have been proposed for sets based on the alignment
of their elements or more generally on the optimal transport between two sets seen as
point clouds, in the context of other application fields such as computer vision.

Kernels from a generative model. The third class of kernels for biological sequences
is less related to the previous ones. The construction of these kernels is based on proba-
bilistic models, which have even longer history than kernel methods. Before the surge of
various string kernels, several probabilistic models had been put forward and proven suc-
cessful for characterizing families of biological sequences. Typical examples include hid-
den Markov models (HMM) for DNA or protein sequences and later stochastic context-
free grammars for RNA sequences (Bishop and Thompson, 1986; Durbin et al., 1998),
though both of them were first introduced in computational linguistics. In order to ben-
efit from the adaptivity of these models to the data, many attempts have been made to
build valid kernels upon such models. The pioneering work must be the Fisher kernel
introduced by Jaakkola et al. (2000). This kernel makes use of a parametric probabilistic
model to define the feature vector of each sequence. The feature vector is built upon
the Fisher score vector that describes the local contribution of each parameter in the
probabilistic model, and the Fisher information matrix that can is related to the co-
variance matrix. In Tsuda et al. (2002a), a variant of the Fisher kernel was proposed
derived from tangent vectors of posterior log-odds. These kernels have also offered the
possibility to the aggregation of local visual descriptors in image recognition, when used
with a probabilistic Gaussian mixture model (Perronnin and Dance, 2007).
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A parallel line of research wasmutual information kernels introduced by Seeger (2002).
In contrast to the Fisher kernel, the mutual information kernels do not explicitly provide
a finite-dimensional feature vector but involve an integration over all the parameters.
Thus probabilistic models that allow tractable computation of this integration is required
in practice, which was achieved for instance by Cuturi and Vert (2005). These kernels
essentially quantify how much information shared by two sequences, from a information
theory viewpoint.
A third line of research consists in building kernels from probabilistic models with la-

tent variables such as HMMs, named marginalized kernels (Tsuda et al., 2002b). Latent
variables are often biologically interpretable and may encode meaningful prior knowledge
such as the local structure of a sequence. The construction of such kernels is to marginal-
ize another kernel defined over the complete data (i.e. latent and observed variables),
weighted by the conditional distribution. Later a similar idea was put forward by Jebara
et al. (2004), involving a joint distribution instead of the conditional distribution. The
marginalized kernels have led to many well performing kernels from various probabilistic
models, including Kin et al. (2002) for RNA sequences, Vert et al. (2006) for multiple
alignments and so on. Though this class of kernels will be little involved in this thesis,
the beautiful concept behind them and their data-adaptive representations still make
them worthwhile to discuss.

1.3.4. Kernels for Graphs

Graph is another ubiquitous data type occurring in many scientific fields. Most informa-
tion in the world is connected and their relations cannot simply be described by vectors or
fixed grids. Graphs provide a natural and generic data structure for representating such
relational information. Specific examples of graph-structured data include molecules,
social networks, chemical pathways, gene regulatory networks and so on. Learning from
graph-structured data is a challenging task as good algorithms should exploit the rich
information inherent to the graphs’ structure while being computationally fast. Thus
developing effective and fast learning techniques for graph-structured data has still been
an active research area. A classical but powerful approach to representing such kind
of data is graph kernels. By properly defining a valid kernel on the space of graphs,
we can apply any models that can be expressed in terms of pairwise dot products to
dealing with graphs. In contrast to the flat 1D structure of biological sequences above
as a special case of graph data, graphs have a more complex structure generally defined
as a pair G = (V, E), where V denotes the set of vertices or nodes and E denotes the
set of edges. Optional informations can also be offered including node attributes repre-
sented as a function a : V → Rd associating each node to a real-valued vector, and edge
attributes represented as a function b : E → Rp.
Similar to kernels for sequences, a large class of successful graph kernels are constructed

from large feature descriptors, by representing graphs as high-dimensional feature vec-
tors that enumerate and count the occurrences of particular graph substructures. How-
ever, detecting the presence of such substructures can be computationally intractable
(i.e. NP-hard), even for simple substructures such as all paths (Gärtner et al., 2003;
Borgwardt and Kriegel, 2005) defined as a sequence of edges without nodes repeated.
Hence, a good kernel should be polynomial-time computable while still being expres-
sive, i.e. able to distinguish graphs with different topological properties (Kriege et al.,
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2018). The first work that has formally discussed this trade-off between computation
and expressiveness is Gärtner et al. (2003), who showed the computational intractability
of several natural kernels including complete graph kernels (that is able to distinguish
non-isomorphic graphs), subgraph kernels and path kernels. They strongly expressed
the necessity of restricting the set of substructures or alternatively the feature space
and thus proposed to consider walks or random walks instead of paths that allow nodes
to be repeated in the feature vector, which can be enumerated efficiently in a recur-
sive way. Since then, a couple of graph kernels have been put forward by considering
different sets of substructures. These substructures include shortest paths (Borgwardt
and Kriegel, 2005), non-tottering walks (Mahé et al., 2005), all frequent subgraphs in a
database (Helma et al., 2004), subtree patterns (Ramon and Gärtner, 2003; Mahé et al.,
2005) and graphlets (Shervashidze et al., 2009). Later, a node label (i.e. discrete node
attribute) enrichment algorithm has been exploited in the computation of the Weisfeiler-
Lehman (WL) subtree kernel (Shervashidze et al., 2011), which provides a very efficient
way to evaluate a subtree kernel up to a fixed height. Moreover, this label enrichment
technique has also been shown effective when combined with other kernels like the short-
est path kernel (Borgwardt and Kriegel, 2005). As this technique can only be applied
to graphs with discrete node attributes, it has recently been extended to graphs with
continuous attributes (Orsini et al., 2015; Togninalli et al., 2019). Other kernels based
on comparisons of shortest paths (Feragen et al., 2013) or hashing (Morris et al., 2016)
have also been proposed to handle continuous node attributes. In Chapter 4, we will
introduce a new hierarchical kernel based on paths that compromise the expressiveness
and computation, which may shed light on new architectures of graph neural networks
that will be presented below.
While this line of work is focused on the exploitation of the local features from graphs,

an orthogonal line of research is devoted to the aggregation of these local features, or
the best matching of the local features making up the entire graphs from a kernel point
of view. This problem is not limited to graphs but related to any objects made up of
local features, which will be discussed in more detail in the next section. Another class
of kernels (Du et al., 2019) derived from deep neural networks have recently drawn much
attention and will be discussed in Section 1.3.6.

1.3.5. Kernels for Feature Aggregation
Most of the kernels seen previously for structured data, including string kernels, con-
volution kernels and many graph kernels, can be decoupled into two components: local
feature extraction and feature aggregation. Specifically, a local kernel is first performed
on some local patterns of the data example such as k-mers of a sequence or node neigh-
bors of a graph, which embeds the data example to an unordered set of features in the
RKHS associated to the local kernel. Then, a global kernel for set of features is applied
to aggregate these local features in order to summarize local information and potentially
capture dependencies between the local features. In this section, we will concentrate
on the latter that performs feature aggregation on sets of features. Let us consider the
space composed of sets of vectors drawn from F ⊆ Rd:

X =
{
x |x = {x1, . . . ,xm} with x1, . . . ,xm ∈ F and n ≥ 1

}
,

whose elements are typically vectorial representations of local data structures.
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Summation kernel. The most natural kernel for aggregation that arises in string ker-
nels (Leslie et al., 2001, 2004) and histogram comparison based kernels in computer
vision (Lyu, 2005) should be the summation kernel, which can be simply written as

K(x,x′) = 1
m

1
m′

m∑
i=1

m′∑
j=1

κ(xi,x′j) =
〈

1
m

m∑
i=1

ϕ(xi),
1
m′

m′∑
j=1

ϕ(x′j)
〉
H

,

where m,m′ denotes the respective size of x and x′, κ is a local kernel and ϕ : Rd → H
denotes the corresponding kernel mapping. Interestingly, when κ is a linear kernel,
K amounts to performing a global average pooling across local features from a neural
network viewpoint. This kernel also exhibits a close connection to the dot-product
between histograms. When κ is the Dirac kernel as defined in Section 1.3.3, which
is suitable to compare elements in a (finite) discrete space F , then K is equal to the
spectrum kernel, expressed as the dot-product between the normalized histograms of the
local features:

K(x,x′) = 〈H(x),H(x′)〉,
where H(x) = (Hu(x)/m)u∈F denotes the vector representing the normalized histogram
of x and Hu(x) denotes the number of occurrences of u in x. In particular, the induced
distance in the RKHS is the `2-norm of the difference between the normalized histograms
given by

dK(x,x′) =
√
K(x,x) +K(x′,x′)− 2K(x,x′) = ‖H(x)−H(x′)‖2.

This connection can be further extended to the mismatch kernel presented in Sec-
tion 1.3.3 by considering the Dirac kernel up to 2a mismatches for κ and histograms
with bin sizes a for some a ∈ N, as detailed in Kuksa et al. (2009).

Match and optimal assignment kernel. While the summation kernel takes a simple
average of the local features, another line of work focused on matching and re-weighting
local features before averaging. Several attempts have been made to define a kernel
based on the optimal matching between components of pairs of examples, in the context
of images (Wallraven et al., 2003), graphs (Fröhlich et al., 2005; Kriege et al., 2016;
Togninalli et al., 2019) and so on. However, these kernels have later been proven to
be non positive definite (Lyu, 2005; Vert, 2008). Despite these failure cases, there are
also some valid kernels including the exponent kernel (Lyu, 2005) by introducing an
exponent in the summation kernel to control the matching level, or the intermediate
kernels (Boughorbel et al., 2005; Johansson and Dubhashi, 2015) by introducing some
prototypes to be compared with, or the Pyramid match kernel (Grauman and Darrell,
2007) by creating and comparing multi-resolution histograms etc. Among them, the
most typical one should be the histogram intersection kernel (Barla et al., 2003), which
is tightly related to the summation kernel. Specifically, the histogram intersection kernel
is defined as the sum of the minima between histograms’ bins:

K(x,x′) = 1
m

1
m′

∑
u∈F

min(Hu(x),Hu(x′)).

We have shown in Section 1.3.1 that its induced distance in the RKHS is the square
root of `1-norm of the difference between the normalized histograms in contrast to the
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`2-norm in the summation kernel. At the first glance, this kernel is hardly related to
matching of optimal assignment. It can indeed be interpreted as a kind of match kernels
by the following theorem

Theorem 1.4. The above histogram intersection kernel K can be rewritten as

K(x,x′) = max
P∈U(m,m′)

m∑
i=1

m′∑
j=1

Pijδ(xi,x′j),

where P represents a matching matrix obeying the following constraint

U(m,m′) :=
{
P ∈ Rm×m

′
+

∣∣∣P1m′ ≤
1
m

and P>1m ≤
1
m′

}
.

The proof can be found in Gardner et al. (2017) or in Chapter 5. This connection
between matchings and histogram comparisons offers a way to define a more general p.d.
kernel based on optimal transport, which will be explored in Chapter 5.

Fisher kernel. As presented in Section 1.3.3, the Fisher kernel can be used to perform
aggregation of local features when combined with a Gaussian mixture model (Perronnin
and Dance, 2007; Sánchez et al., 2013). Based on the Fisher vector, some variants have
been proposed including VLAD representations (Jégou et al., 2010; Jegou et al., 2011),
which can be more efficiently computed as a simplified version of Fisher kernels.

1.3.6. Kernels Derived from Deep Neural Networks
In recent years, some classes of kernels have been derived from deep neural networks
and have drawn increasing attention as they brought possibility to theoretically under-
stand deep networks. The correspondence between kernel methods and neural networks
was first observed by Neal (1996); Williams (1998), who proved that infinitely wide
two-layer networks are equivalent to a dot-product kernel as detailed in Section 1.3.1.
More recently, this Gaussian process behavior has been extended to most common over-
parametrized (large or infinitely-wide) deep convolutional neural networks (Lee et al.,
2018; Matthews et al., 2018; Garriga-Alonso et al., 2019; Novak et al., 2019). These
kernels may take advantage of the local stationarity and shift invariance captured by
CNNs as presented in Section 1.4.
While these kernels correspond to neural networks where only the last layer is trained

and the other layers are kept fixed at random initialization, a different line of work has
studied such over-parametrized networks where all layers are trained. In this case, the
evolution of the over-parametrized networks during the training by gradient descent has
been shown to be fully described by an another kernel known as the neural tangent
kernel (NTK), which converges in the large width limit to a deterministic and constant
kernel only dependent of the network architecture (Jacot et al., 2018; Arora et al., 2019).
This kernel admits a close form as the infinite-width limit of the kernel associated to the
feature map given by the gradient of the model with respect to its parameters. From a
theoretical viewpoint, the NTK provides a rigorous connection between neural networks
and kernel methods, and shed light on understanding deep learning through theoretical
tools from kernel methods. For example, the positive definitiveness of the NTK guar-
antees that large-width neural networks converge to a global minimum when trained
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with a convex empirical loss (Jacot et al., 2018; Allen-Zhu et al., 2019). Empirically,
this approach also offers a practical and systematic way to define kernels from neural
networks. They have shown good performance in image classification (Arora et al., 2019)
and graph classification (Du et al., 2019). Nevertheless, while these kernels may enjoy
the expressiveness provided by the hierarchical structure of the deep networks, they still
suffer from the computational bottleneck of the classical kernels.

1.3.7. Hierarchical Kernels and Convolutional Kernel Networks for Images

Another line of research consists in building hierarchical kernels relying on successful
architectures of neural networks. As we will see in Section 1.4, most of these successful
architectures involve multiple layers, which have motivated extensions of simple kernels
to incorporate some concept of hierarchy. A natural approach is to compose kernel
mappings to construct richer kernels, which remain positive definite. This approach was
first investigated in Cho and Saul (2009) by composing homogenous dot-product kernels,
and later extended to more sophisticated architectures borrowed from deep learning (Bo
et al., 2011; Mairal et al., 2014; Mairal, 2016; Daniely et al., 2016). While simply com-
posing kernel mappings does not seem to uncover benefits of the hierarchy, hierarchical
kernels relying on deep learning architectures such as convolutional architectures have
proven to be effective for modeling images. In particular, convolutional kernel networks
(CKNs) (Mairal et al., 2014; Mairal, 2016) achieved very good performance for natural
image classification, even though using a layer-by-layer Nyström approximation method
to speed up the computation. The construction of one layer of CKNs for images prin-
cipally consists of three steps: patch extraction, kernel mapping and linear pooling, as
illustrated in Figure 1.2 where the image is represented on continuous domain for sim-
plicity. More recently, Shankar et al. (2020) have shown that computing the exact kernel
built upon a particular convolutional architecture outperforms the approximate kernel
as well as the above NTKs, which further reduces the gap between kernel methods and
deep CNNs. The theoretical aspects of CKNs such as their invariance to translations or
more general groups of transformations, stability to deformations and model complexity
have also been comprehensively studied in Bietti and Mairal (2019).

1.4. Deep Neural Networks for Structured Data

Deep learning has brought remarkable advancements in structured data modeling across
many fields since its revolution (Krizhevsky et al., 2012). This work introduces a con-
volutional neural network (CNN) to deal with the image classification task and achieves
a major breakthrough in computer vision research. In contrast to the classical kernel
methods that decouple the hand-crafted data representation and learning algorithms,
this approach merges the two steps into one and jointly optimizes them with respect to
the final task which results in a single system able to predict the class directly from a
raw image. In this way, the learned representations are learned from the task and may
thus be task-adaptive and more compact.

However, the cost for such success in image classification is the necessity of huge
amounts of annotated data and large quantities of computational resources. Since then,
CNNs have achieved state-of-the-art in almost all vision tasks and also in bioinformatics
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xk−1 : Ω → Hk−1xk−1(u) ∈ Hk−1

Pkxk−1(v) ∈ Pk (patch extraction)

kernel mapping

x̃k−1(v) = ϕk(Pkxk−1(v)) ∈ Hk
x̃k−1 : Ω → Hk

xk : Ω → Hk

linear pooling
xk(w) = Akx̃k−1(w) ∈ Hk

Figure 1.2.: Construction of one layer of a CKN. Figure adapted from (Bietti and Mairal,
2019). From a two-dimensional signal xk−1 : Ω → Hk−1 are first extracted
patches Pkxk−1(v) at each pixel v. Then the patch features are embedded
to a new RKHS Hk via a kernel mapping ϕk. This step results in an
intermediate representation x̃k−1 : Ω → Hk. Finally, a linear pooling Ak
transforms x̃k−1 to the new representation xk : Ω→ Hk.

on biological sequence prediction tasks (Alipanahi et al., 2015). Other deep models
such as recurrent neural networks (RNNs) have also been explored for predicting from
sequences (Hochreiter et al., 2007). More recently, deep models for other data structures
such as graphs have also drawn growing attention, with applications in bioinformatics
or chemoinformatics (Kipf and Welling, 2017; Gilmer et al., 2017; Xu et al., 2019). This
class of deep models is often referred to as graph neural network (GNN). In this section,
we will review some of the typical deep neural networks for modeling sequences and
graphs.

1.4.1. Deep Neural Networks for Sequences

Just like kernel methods, neural networks solve the same ERM problem in (1.3). The
major difference is the choice of the hypothesis space F . In neural networks (LeCun
et al., 1989), the functions in F perform sequentially a linear transformation followed
by a point-wise non-linearity in a multilayer fashion. Such hierarchical structure makes
up of functions that can be represented as a composition of simple non-linear functions,
where each function usually named a fully connected layer is parametrized independently
by

fi(x) = σ(Wix + bi) for i = 1, . . . , n,

where x represents the output vector of the (i − 1)-th layer or the input vector when
i = 0, σ denotes a non-linear function that typically is a ReLU, and Wi and bi are
parameters for the linear transformation at i-th layer. Then training a neural network
parametrized in this way is not much different from training any other machine learning
models with (stochastic) gradient descent, by differentiating the objective function. In
particular, the computation of the gradient is efficiently achieved by the back-propagation
algorithm (Goodfellow et al., 2016). However, the major difference here from learning
with kernel methods is the non-convexity of the objective function, caused by the non-
linearity and multilayer structure. Despite the fact that there is no convergence guar-
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Figure 1.3.: An example of CNNs architecture. Figure from LeCun et al. (1998).

antee of such gradient-based method applied to non-convex objective functions, training
neural networks is shown to converge well in practice when parameters are properly
initialized.

Convolutional neural networks. Based on the construction of neural networks, a more
adapted framework for image data was proposed a few years later by LeCun et al. (1998),
named convolutional neural networks. CNNs adopt an idea similar to neural networks
to build a multilayer model, but using different operations at each layer. In contrast to
the simple linear transformations and non-linearities used in neural networks, CNNs also
involve convolutions and subsampling (sometimes also referred to as pooling), as shown
in Figure 1.3. These operations have proved to effectively exploit the local stationarity
of natural images as well as provide translation invariance (Zeiler and Fergus, 2014).
As a result, Krizhevsky et al. (2012) have put forward a novel architecture of CNN,
that is deeper than LeCun et al. (1998), and have achieved breakthrough gains over the
existing machine learning models in image classification. Its success in such large-scale
learning task is also inseparable from the big advance of computing resources, as all
the operations in CNNs can be computed in a parallel fashion. However, in contrast to
kernel-based methods, one should be very careful to train a CNN model as it involves
non-smooth operations and a non-convex loss function. Correctly regularizing the CNNs
to avoid overfitting is still an open and central issue, though a few heuristics have been
proposed.
Inspired by the significant improvement brought by CNNs in computer vision, re-

searchers have also gradually exploited and applied them to other fields, including com-
putational biology. The pioneering task successfully applied should be the transcription
factor binding prediction or more generally the chromatin profile detection, which in-
volves millions of annotated DNA sequences provided by the ENCODE project (Dunham
et al., 2012). The seminal work of Alipanahi et al. (2015) proposed a shallow CNN ar-
chitecture (with only one hidden-layer) called DeepBind that predicts the transcription
factor binding from short (101 base pairs) DNA sequences and outperforms all the exist-
ing string kernels in terms of both classification accuracy and computational time. Unlike
the real-valued vector representation of image data, biological sequences are strings and
must be converted to vectors to be fed to CNNs. To achieve this, DeepBind first rep-
resents four DNA characters and possibly an unknown character (describing missing or
padded character) respectively as the vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 1, 0),
(0.25, 0.25, 0.25, 0.25), such that each sequence x of length m is represented as a 4×m
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Figure 1.4.: Architecture of the DeepBind model. Figure from Alipanahi et al. (2015).

vector. It then performs a standard one-dimensional convolution of the full sequence
x ∈ R4×m with p convolution filters (of some predefined filter size), followed by a ReLU
and a max pooling operation along the sequence. T step produce an intermediate rep-
resentation ψ(x) in Rq, whose dimension is invariant to the sequence length. A linear
prediction layer is applied to ψ(x) to send the final outcome and the loss is computed
based on the outcomes and the true labels.
The optimization of the parameters follows the same as the standard CNNs for image

classification, by jointly learning the intermediate representations ψ(x) and the linear
classifier over the representations. All the steps are illustrated in Figure 1.4, where mul-
tiple models are trained in parallel for time efficiency reason. However, DNA sequences
are double stranded and it is generally unknown whether the input strand or its oppo-
site strand is associated with the label. DeepBind thus slightly modifies the objective
function in (1.3) to enforce an invariance to reverse complement of the sequence. If we
denote by x̄ the reverse complement of x, the ERM (1.3) is replaced by

min
f∈F

1
n

n∑
i=1

`(max(f(xi), f(x̄i)), yi) + λΩ(f).

Since then, several variants have been proposed to work on the same dataset in Zeng
et al. (2016), such as by using more hidden layers. However, they did not really perform
better than the shallow counterpart as for image classification. When predicting from
longer sequences (e.g. 600-bp), multilayer models (Zhou and Troyanskaya, 2015; Kelley
et al., 2016) seem to improve the performance as they take into account the positional
relationships between sequence signals. More recently, dilated convolutions have been
found useful when dealing very long sequences (131-kb) (Kelley et al., 2018). In contrast,
positional information generally is missing in string kernels or becomes computationally
intractable when imposing such information into the kernel. Understanding and devising
such positional relationships between sequence signals into a kernel is becoming a central
problem.

Interpretation of convolutional neural networks. In order to understand what CNNs
have learned from sequence classification tasks, several methods have been developed
to interpret and visualize CNNs for transcription factor binding prediction. Alipanahi
et al. (2015) interpret each convolutional filter as a sequence motif and visualize them
by extracting and merging k-mers sufficiently close to each filter from a validation set
of sequences. Later, in contrast to the separate visualization of each filter in CNN
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models, Shrikumar et al. (2017a) proposed to simultaneously score the contribution of
all nucleotides in an input sequence to a prediction, with the help of back-propagation
based techniques. These approaches are critical as the resulting visualizations rely on
some specific sequences. For this reason, Lanchantin et al. (2017) proposed a class-
specific approach to generate a motif by maximizing its prediction score, such that it
does not depend on any input sequence. This approach generates only one motif for a
specific class, which is opposed to the fact that several motifs may be associated to a
specific biological property. More interpretation techniques are needed to understand
the biologically meaningful patterns captured by deep learning models in shallow or even
deeper layers.

Recurrent neural networks for sequences. While convolutions are only able to ex-
ploit contiguous correlations but not dependencies between nonadjacent components or
tokens in a sequence, recurrent neural networks offer the possibility to capture such
dependencies by successively transforming the input tokens and updating the temporal
intermediate representations, called hidden states. Each state value is produced by feed-
ing the old ones and the current input token to an RNN unit, which is a parametrized
function shared by all the positions. Hence, the hidden state at a certain time t provide
an intermediate representation of the entire sequence until the t-th token, in contrast
to the decoupling of feature extraction (convolution) and aggregation (pooling) in CNN
models. The price to pay for such a joint performance of extraction and aggregation is
much more computational time as the hidden states have to be computed recursively but
not in parallel. Early works that used simple linear transformation as the RNN unit failed
to perform well, due to vanishing or exploding gradient problems. Lately, more advanced
architectures have been developed such as long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and have been shown useful for certain sequence prediction
tasks, such as the detection of remote protein homologies (Hochreiter et al., 2007) or the
detection of multiple chromatin profiles (Quang and Xie, 2016). Despite these successes,
the role of each component in RNNs and their relationship to string kernels have barely
been studied and understood (Lei et al., 2017). To this end, Chapter 3 will make an
attempt to bridge this gap.

1.4.2. Graph Neural Networks

Similar to kernel methods, deep neural networks also exhibit typical architectures for
learning with graph-structured data, namely graph neural networks (GNNs). GNNs bor-
row central ideas from CNNs to obtain task-adaptive representations for graphs. They
provide a simple framework for making use of the graph structure and node attributes to
learn a representation of the graph. The latest GNN models (Niepert et al., 2016; Kipf
and Welling, 2017; Xu et al., 2019) are built upon a multilayer structure, where each
layer updates the representation of a node by aggregating and transforming its neighbor
features at the previous layer as illustrated in Figure 1.5 compared to a 2D convolution
in CNNs. If we use the same notation as in Section 1.2 for graph kernels, and suppose
that we are given a graph with node attributes G = (V, E , h : V → Rd). Then the
operations of the k-th layer of a GNN can be described as follows (Xu et al., 2019)

hk(u) = σ(Wk · f({hk−1(v) | v ∈ N (u) ∪ {u}}) + bk) for any u ∈ V,
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(a) 2D Convolution. Analogous
to a graph, each pixel in an image
is taken as a node where neigh-
bors are determined by the filter
size. The 2D convolution takes
the weighted average of pixel val-
ues of the red node along with
its neighbors. The neighbors of a
node are ordered and have a fixed
size.

(b) Graph Convolution. To get a
hidden representation of the red
node, one simple solution of the
graph convolutional operation is
to take the average value of the
node features of the red node
along with its neighbors. Differ-
ent from image data, the neigh-
bors of a node are unordered and
variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

for learning from relational data, reviewing part of GNNs
under a unified framework. Lee et al. [12] conduct a partial
survey of GNNs which apply different attention mechanisms.
In summary, existing surveys only include some of the GNNs
and examine a limited number of works, thereby missing
the most recent development of GNNs. Our survey provides
a comprehensive overview of GNNs, for both interested re-
searchers who want to enter this rapidly developing field and
experts who would like to compare GNN models. To cover a
broader range of methods, this survey considers GNNs as all
deep learning approaches for graph data.

Our contributions Our paper makes notable contributions
summarized as follows:

• New taxonomy We propose a new taxonomy of graph
neural networks. Graph neural networks are categorized
into four groups: recurrent graph neural networks, convo-
lutional graph neural networks, graph autoencoders, and
spatial-temporal graph neural networks.

• Comprehensive review We provide the most compre-
hensive overview of modern deep learning techniques for
graph data. For each type of graph neural network, we
provide detailed descriptions on representative models,
make the necessary comparison, and summarise the cor-
responding algorithms.

• Abundant resources We collect abundant resources on
graph neural networks, including state-of-the-art models,
benchmark data sets, open-source codes, and practical
applications. This survey can be used as a hands-on guide
for understanding, using, and developing different deep
learning approaches for various real-life applications.

• Future directions We discuss theoretical aspects of
graph neural networks, analyze the limitations of exist-
ing methods, and suggest four possible future research
directions in terms of model depth, scalability trade-off,
heterogeneity, and dynamicity.

Organization of our survey The rest of this survey is

organized as follows. Section II outlines the background of
graph neural networks, lists commonly used notations, and
defines graph-related concepts. Section III clarifies the cate-
gorization of graph neural networks. Section IV-VII provides
an overview of graph neural network models. Section VIII
presents a collection of applications across various domains.
Section IX discusses the current challenges and suggests future
directions. Section X summarizes the paper.

II. BACKGROUND & DEFINITION

In this section, we outline the background of graph neural
networks, list commonly used notations, and define graph-
related concepts.

A. Background

A brief history of graph neural networks (GNNs) Sper-
duti et al. (1997) [13] first applied neural networks to directed
acyclic graphs, which motivated early studies on GNNs. The
notion of graph neural networks was initially outlined in Gori
et al. (2005) [14] and further elaborated in Scarselli et al.
(2009) [15], and Gallicchio et al. (2010) [16]. These early stud-
ies fall into the category of recurrent graph neural networks
(RecGNNs). They learn a target node’s representation by
propagating neighbor information in an iterative manner until
a stable fixed point is reached. This process is computationally
expensive, and recently there have been increasing efforts to
overcome these challenges [17], [18].

Encouraged by the success of CNNs in the computer
vision domain, a large number of methods that re-define the
notion of convolution for graph data are developed in parallel.
These approaches are under the umbrella of convolutional
graph neural networks (ConvGNNs). ConvGNNs are divided
into two main streams, the spectral-based approaches and
the spatial-based approaches. The first prominent research
on spectral-based ConvGNNs was presented by Bruna et al.
(2013) [19], which developed a graph convolution based on
the spectral graph theory. Since this time, there have been
increasing improvements, extensions, and approximations on
spectral-based ConvGNNs [20], [21], [22], [23]. The research
of spatial-based ConvGNNs started much earlier than spectral-
based ConvGNNs. In 2009, Micheli et al. [24] first addressed
graph mutual dependency by architecturally composite non-
recursive layers while inheriting ideas of message passing
from RecGNNs. However, the importance of this work was
overlooked. Until recently, many spatial-based ConvGNNs
(e.g., [25], [26], [27]) emerged. The timeline of representative
RecGNNs and ConvGNNs is shown in the first column of Ta-
ble II. Apart from RecGNNs and ConvGNNs, many alternative
GNNs have been developed in the past few years, including
graph autoencoders (GAEs) and spatial-temporal graph neural
networks (STGNNs). These learning frameworks can be built
on RecGNNs, ConvGNNs, or other neural architectures for
graph modeling. Details on the categorization of these methods
are given in Section III.

Graph neural networks vs. network embedding The
research on GNNs is closely related to graph embedding or

Figure 1.5.: Comparison of 2D convolution and graph convolution. Figure from Wu
et al. (2020). 2D convolution in CNNs on the left: each image pixel is taken
as a node and its neighbors are determined by the filter size. The neighbors
of a node are ordered and have a fixed size. Graph convolution on the right:
the neighbors of a node are unordered and variable in size. Thus in contrast
to different filter values used at each neighbor position in 2D convolution,
the neighbors are “convolved” with the same filter.

where σ is a non-linear function such as ReLU, Wk and bk represents the parameters
for the linear transformation and f denotes an element-wise pooling function operating
on a set of features, typically average, sum or max pooling. Finally, a global pooling
operation is applied to the node representations to obtain the representation of the graph
after n layers:

hn(G) = g({hn(u) |u ∈ V}),

where g denotes some permutation-invariant function such as average or max pooling,
or more sophisticated aggregation operators (Ying et al., 2018). Then a classification
block is used to operate on this representation to produce the final prediction. The
optimization procedure follows the same as CNNs using back-propagation.
In practice, the graph representations usually are concatenated across all layers to

improve the performance, analogous to the idea of the WL subtree kernel that accounts
for subtree patterns up to a fixed height. With the empirical development of GNNs, a
few work on the theoretical aspects of GNNs have been put forward. Xu et al. (2019)
have studied the expressiveness of GNNs and proved that GNNs in the above form such
as Kipf and Welling (2017); Hamilton et al. (2017) are at most as powerful as WL graph
isomorphism test, on which WL kernels (Shervashidze et al., 2011) are based. They
also show that GNNs as above are not universal approximators of continuous functions
defined on multisets. Maron et al. (2018) have studied the equivariance and invariance to
node permutation for GNNs and given a full characterization of such a linear layer. These
works suggest that other types of architectures than simple neighborhood aggregation
are needed to capture more complex topological properties of graphs. In this respect,
Chapter 4 introduces a new class of GNNs that rely on paths rather than neighbors for
the aggregation step, which are more expressive.

Interpretation of graph neural networks. While the empirical and theoretical aspects
of GNNs are rapidly growing, understanding and visualizing GNNs have hardly been
tackled and are becoming an important task. Ying et al. (2019) propose a generic
approach to provide interpretable explanations for predictions made by any GNNs. By
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solving a non-convex mutual information maximization problem, their method allows
to identify a compact subgraph from a given instance that plays crucial role in the
prediction. Empirical experiments showed that their method managed to extract some
known graph structures that are determinant in a couple of tasks. In Chapter 4, we
adapt similar ideas to our framework and manage to identify several known graph motifs
as well. This line of work could pave the way to efficiently uncover structural design
principles of complex networks in bioinformatics or chemoinformatics.

1.5. Background on Molecular Biology

Molecular biology is a branch of biology that studies the molecules which make up and
control living organisms. It attempts to explain the phenomena of life, including com-
mon biological processes within and between cells (the smallest unit of life), through
the macromolecular properties that produce them (Alberts et al., 2014). Two categories
of macromolecules are of particular importance to molecular biology: nucleic acids in-
cluding deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), and proteins. The
central scope of molecular biology is therefore to characterize the structure, function and
relationships between these two types of macromolecules. In this section, we will give a
brief overview of these macromolecules. We will see that these macromolecules can be
represented as sequences, whose order can be efficiently determined by sequencing tech-
nologies. The fast development of these sequencing technologies provides rich datasets of
DNA, RNA and proteins, which enables modeling and analyzing these macromolecules
through machining learning for sequences. We will particularly focus on two specific
supervised learning tasks that are tackled in the thesis.

1.5.1. Macromolecules of the Cell

As mentioned above, nucleic acids and proteins are of particular importance to molecular
biology as they form the molecular basis of cells.

Nucleic acids. DNA is a chain molecule composed of linearly linked monomers, called
nucleotides, carrying the major part of the heritable information of a cell. Each nu-
cleotide is a simple chemical compound essentially consisting of one of four different
nucleobases namely adenine [A], cytosine [C], guanine [G] and thymine [T]. The nu-
cleotides are joined to one another in a chain by covalent bonds. This chain has a
direction as its two ends are chemically different. By consequence, each DNA molecule
can be described by a string defined over a four-letter alphabet composed of A, C, G
and T.
In cells, the genomic DNA generally is double stranded, where the two strands coil

around each other to form a double helix, as illustrated in Figure 1.6. The nucleobases
of the two separate strands are bound together, following the base pairing rules, with
hydrogen bonds. The rules state that the nucleotides A and T can bind to each other
and they are said to be complementary, so do G and C. Following such rules, the two
strands of a DNA are complementary to each other as well and one strand is the reverse
complement of another as each of its bases is complementary to the base of another, but
read in the reverse direction. Such complementary strands can bind to each tightly by
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Figure 1.6.: DNA building blocks and its double helix structure. Figure from Alberts
et al. (2014). A DNA molecule is composed of two DNA strands held to-
gether by hydrogen bonds between the paired bases. The arrowheads at the
ends of the DNA strands indicate the polarities of the two strands, which
run antiparallel to each other in the DNA molecule. At the bottom left
of the figure, the DNA molecule is shown straightened out; in reality, it is
twisted into a double helix, as shown on the right.

forming a double helix structure, which makes DNA very stable. Besides, this brings two
positive effects as the two complementary strands carry the same biological information.
First, erroneous changes, insertions or deletions of a single nucleotide base, known as
a point mutation, can accordingly be identified and corrected. Second, the information
carried by a DNA is replicated as and when the two strands separate, which provides a
natural way to duplicate the genome, which represents the sum total of an organism’s
DNA. Then each strand serves as a template for synthesizing its complement and results
in two reliable copies of the original DNA. Despite the simple basic units making up
genomes, the size of them can be surprisingly huge. For instance, the human genome
consists of more than 3 billion nucleotides. Thus super computers are usually required
to analyze genomes of such scale.
RNA is another type of nucleic acids composed of nucleotides linked in a chain, very

similar to DNA. While there are four different nucleotide bases including A, C, G, T
that occur in DNA, the nucleobase T is replaced with the uracil [U] in RNA. This
substitution along with some other chemical differences in the nucleotides make RNA
molecules generally single-stranded and folded onto itself to form various 3D structures
which adapt to performing complex tasks. Such RNAs are called ribozymes. Despite the
large size of a genome, a large proportion of DNA known as non-coding DNA do not
encode proteins. For instance, this proportion is more than 98% for humans (Elgar and
Vavouri, 2008). The rest of DNA sequences contain genes, where each gene is defined as
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DNA RNA Protein
transcription translation

replication

Figure 1.7.: The flow of genetic information from DNA to protein.

a subsequence that encodes the synthesis of one or a couple of RNA or protein molecules.
During the process of gene expression, the DNA is first copied into RNA, which is the
complement of a part of its template DNA. Then, the synthesized RNA can be directly
functional as ribozymes or be the intermediate template for a protein that performs a
function for the majority of genes. Such RNA molecules are known as messenger RNAs
(mRNAs). This process from DNA to protein describes the flow of genetic information,
often stated as DNA is transcribed into RNA then translated into protein, is referred to
as the central dogma of molecular biology (Crick, 1970) as illustrated in Figure 1.7.

Proteins. Proteins are macromolecules composed of amino acid residues or simply
residues. A linear chain of amino acid residues is called polypeptide which forms a protein.
Short polypeptides, consisting of a few amino acids are commonly called oligopeptides or
simply peptides. Two adjacent amino acids in a protein are linked with a peptide bond,
a special type of covalent bond. As mentioned above, the sequence of amino acids in a
protein is determined by the sequence of a gene. In general, there are 20 different types
of standard amino acids for protein synthesis.
Proteins differ from one to another primarily in their sequence of amino acids which

usually folds into an elaborate 3D structure (called tertiary structure) that determines
its activity. This spatial structure is mostly assumed to be uniquely determined by
the sequence through the chemical properties of their amino acids. However, these are
still some other proteins that require the guide of chaperones to accomplish the folding
process.
The functions of proteins are diverse within organisms to order to perform almost all

the tasks occurred within and between cells. These functions include but not limited
to catalyzing metabolic reactions, carrying energy, protein synthesis (transcription or
translation), transporting molecules, communication and DNA replication.

1.5.2. Transcription Factors
A transcription factor (TF) is a protein that modulates the activation and repression of
gene transcription from DNA to mRNA, by binding to regulatory DNA in a sequence-
specific manner. Identifying TF-DNA binding specificities is a crucial step for under-
standing the regulatory processes and has not been resolved. Current knowledge on this
problem is mainly based on two complementary lines of research, namely genomics and
structural biology (Slattery et al., 2014). Recent studies suggest that the TF-DNA bind-
ing specificity is determined by several features, such as the DNA sequence, 3D structure
and flexibility of TFs and their binding sites, cooperation and competition between TFs,
chromatin accessibility and nucleosome occupancy etc (Slattery et al., 2014). However,
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due to the existing interactions between all these factors and to the lack of measure-
ments of relevant features and DNA binding, building models based on these features to
predict the TF-DNA binding specificities is a very challenging task.
With the recent development of experimental high-throughput DNA binding assays,

it has become more feasible to predict TF-DNA binding specificity through machine
learning. The rich datasets provided by these high-throughput technologies have en-
abled many recent models in large-scale machine learning to perform well and thus have
made a step towards a complete understanding of the determinants of binding speci-
ficity. In particular, the in vivo high-throughput assays such as genome-wide chromatin
immunoprecipitation combined with sequencing (ChIP-seq) have been developed to offer
the possibility to annotate genomic regulatory regions (Slattery et al., 2014). A large
dataset of ChIP-seq data is now available for a large collection of TFs in humans (Dun-
ham et al., 2012). Nevertheless, due to fundamental material and cost constraints, it is
infeasible to perform these assays for all TFs in every possible cellular state and species.
Building large-scale machine learning models on this dataset provides a natural way to
understand and predict binding specificities in various cellular contexts.
In practice, the continuous signals offered by ChIP-seq, that are used to identify

locations of TF binding, are usually converted to binary labels through signal peak
detection. Then a classification model can be learned to predict one or multiple TF
binding specificities. Typical models include k-mer based string kernels (Ghandi et al.,
2014) or deep learning models (Alipanahi et al., 2015).

1.5.3. Protein Homology
Protein homology is the biological homology between protein sequences defined in terms
of shared ancestry during evolution. Searching to identifying homologous sequences is a
fundamental step in any analysis of newly obtained sequences from, e.g., poorly studied
species. Based on the homologous sequences of a given protein, it is possible to predict
its structure and function and thus perform further analysis of the protein. A larger
similarity level should be protein fold. Proteins belong to the same fold if they exhibit
the same folding but are not necessarily homologous, which is generally sufficient to
determine their structure and function.
The most commonly used dataset for protein homology detection should be the Struc-

tural Classification of Proteins (SCOP) database (Andreeva et al., 2014). SCOP database
was created in 1994 and has been continuously developed until today. It consists of a
manual classification of homologous protein sequences on multiple levels, including for
instance class, fold, superfamily, family, protein domain, species and domain in SCOP
version 1.75. Several typical models have been evaluated on this dataset, including string
kernels (Leslie et al., 2001, 2004) and deep learning models (Hochreiter and Schmidhuber,
1997; Hou et al., 2018).
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Chapter abstract: The growing number of annotated biological sequences avail-
able makes it possible to learn genotype-phenotype relationships from data with
increasingly high accuracy. When large quantities of labeled samples are available
for training a model, convolutional neural networks can be used to predict the phe-
notype of unannotated sequences with good accuracy. Unfortunately, their perfor-
mance with medium- or small-scale datasets is mitigated, which requires inventing
new data-efficient approaches. In this chapter, we introduce a hybrid approach
between convolutional neural networks and kernel methods to model biological se-
quences. Our method enjoys the ability of convolutional neural networks to learn
data representations that are adapted to a specific task, while the kernel point of
view yields algorithms that perform significantly better when the amount of training
data is small. We illustrate these advantages for transcription factor binding pre-
diction and protein homology detection, and we demonstrate that our model is also
simple to interpret, which is crucial for discovering predictive motifs in sequences.
The source code is freely available at https://gitlab.inria.fr/dchen/CKN-seq.

The chapter is based on the following publications:

D. Chen, L. Jacob, and J. Mairal. Biological sequence modeling with convolutional
kernel networks. In Research in Computational Molecular Biology (RECOMB),
2019c
D. Chen, L. Jacob, and J. Mairal. Biological sequence modeling with convolutional
kernel networks. Bioinformatics, 35(18):3294–3302, 2019a
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2. Biological Sequence Modeling with Convolutional Kernel Networks

2.1. Introduction

Understanding the relationship between biological sequences and the associated pheno-
types is a fundamental problem in molecular biology. Accordingly, machine learning
techniques have been developed to exploit the growing number of phenotypic sequences
in automatic annotation tools. Typical applications include classifying protein domains
into superfamilies (Leslie et al., 2003; Saigo et al., 2004), predicting whether a DNA
or RNA sequence binds to a protein (Alipanahi et al., 2015), its splicing outcome (Jha
et al., 2017), or its chromatin accessibility (Kelley et al., 2016), predicting the resistance
of a bacterial strain to a drug (Drouin et al., 2016), or denoising a ChIP-seq signal (Koh
et al., 2017).
Choosing how to represent biological sequences is a critical part of methods that

predict phenotypes from genotypes. Kernel-based methods (Scholkopf and Smola, 2001)
have often been used for this task. Biological sequences are represented by a large set
of descriptors, constructed for instance by Fisher score (Jaakkola et al., 2000), k-mer
spectrum up to some mismatches (Leslie et al., 2003), or local alignment score (Saigo
et al., 2004). By using the so-called kernel trick, these huge-dimensional descriptors
never need to be explicitly computed as long as the inner-products between pairs of such
vectors can be efficiently computed. A major limitation of traditional kernel methods is
their use of fixed representations of data, as opposed to optimizing representations for
a specific task. Another issue is their poor scalability since they require computing a
n× n Gram matrix where n is the number of data points.

By contrast, methods based on convolutional neural networks (CNN) are more scalable
and are able to optimize data representations for a specific prediction problem (LeCun
et al., 1989). Even though their predictive performance was first demonstrated for two-
dimensional images, they have been recently successfully adopted for DNA sequence
modeling (Alipanahi et al., 2015; Zhou and Troyanskaya, 2015). When sufficient an-
notated data is available, they can lead to good prediction accuracy, though they still
suffer from some known limitations. An important one is their lack of interpretability:
the set of functions described by the network is only characterized by its algorithmic
construction, which makes both the subsequent analysis and interpretation difficult.
CNNs for DNA sequences typically involve much fewer layers than CNNs for images,
and lend themselves to some level of interpretation (Alipanahi et al., 2015; Lanchantin
et al., 2017; Shrikumar et al., 2017a). However, a systematic approach is still lacking as
existing methods rely on specific sequences to interpret trained filters (Alipanahi et al.,
2015; Shrikumar et al., 2017a) or output a single feature per class (Lanchantin et al.,
2017, (3.3)). Correctly regularizing neural networks to avoid overfitting is another open
issue and involves various heuristics such as dropout (Srivastava et al., 2014), weight
decay (Hanson and Pratt, 1989), and early stopping. Finally, training neural networks
generally requires large amounts of labeled data. When few training samples are avail-
able, training CNNs is challenging, motivating us for proposing a more data-efficient
approach.
In this chapter we introduce CKN-seq, a strategy combining kernel methods and deep

neural networks for sequence modeling, by adapting the convolutional kernel network
(CKN) model originally developed for image data (Mairal, 2016). CKN-seq relies on a
continuous relaxation of the mismatch kernel (Leslie and Kuang, 2004). The relaxation
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makes it possible to learn the kernel from data, and we provide an unsupervised and a
supervised algorithm to do so – the latter being a special case of CNNs. On the datasets
we consider, both approaches show better performance than DeepBind, another existing
CNN (Alipanahi et al., 2015), especially when the amount of training data is small. On
the other hand, the supervised algorithm produces task-specific and small-dimensional
sequence representations while the unsupervised version dominates all other methods
on small-scale problems but leads to higher dimensional representations. Consequently,
we introduce a hybrid approach which enjoys the benefits of both supervised and un-
supervised variants, namely the ability of learning low-dimensional models with good
prediction performance in all data size regimes. Finally, the kernel point of view of
our method provides us simple ways to visualize and interpret our models, and obtain
sequence logos.

We investigate the performance of CKN-seq on a transcription factor binding pre-
diction task as well as on a protein remote homology detection. We provide a free
implementation of CKN-seq for learning from biological sequences, which can easily be
adapted to other sequence prediction tasks.

2.2. Method
In this section, we introduce our approach to learning sequence representations. We first
review CNNs and kernel methods over which our convolutional kernel network is built.
Then, we present the construction of CKN followed by the learning method. We finish
the section with discussions on the interpretation and visualization of a trained CKN.

2.2.1. Supervised Learning Problem
Let us consider n sequence samples x1,x2, . . . ,xn in a set X of variable-length biological
sequences. The sequences are assumed to be over an alphabet A. Each sequence xi is
associated to a measurement yi in Y denoting some biological property of the sequence.
For instance, Y may be binary labels {−1, 1} (e.g., whether the sequence is bound by
a particular transcription factor or not) or R for continuous traits (e.g., the expression
of a gene). The goal of supervised learning is to use these n examples {xi, yi}i=1,...,n to
learn a function f : X 7→ Y which accurately predicts the label of a new, unobserved
sequence. Learning is typically achieved by minimizing the following objective:

min
f∈F

1
n

n∑
i=1

L(yi, f(xi)) + λΩ(f), (2.1)

where L is a loss function measuring how well the prediction f(xi) fits the true label
yi, and Ω measures the smoothness of f . F is a set of candidate functions over which
the optimization is performed. Both CNNs and kernel methods can be thought of as
manners to design this set.

Convolutional neural networks. In neural networks, the functions in F perform a se-
quence of linear and nonlinear operations that are interleaved in a multilayer fashion.
Specifically, the CNN DeepBind (Alipanahi et al., 2015) represents the four DNA char-
acters respectively as the vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), such that
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2. Biological Sequence Modeling with Convolutional Kernel Networks

an input sequence x of length m is represented as a 4 × m matrix. DeepBind then
produces an intermediate representation obtained by one-dimensional convolution of the
full sequence x with p convolution filters, followed by a pointwise non-linear function
and a max pooling operation along each sequence, yielding a representation x̃ in Rp of
the sequence. A final linear prediction layer is applied to x̃. The optimization in (2.1)
acts on both the weights of this linear function and the convolution filters. Therefore,
DeepBind simultaneously learns a representation x̃ and a linear prediction function over
this representation.
DeepBind additionally modifies the objective function (2.1) to enforce an invariance to

reverse complementation of x. The loss term is replaced with L (yi,max (f(xi), f(x̄i)))
where x̄ denotes the reverse complement of x. Using this formulation is reported by Ali-
panahi et al. (2015) to improve the prediction performance. Other versions have been
then considered, by using a fully connected layer that allows mixing information from
the two DNA strands (Shrikumar et al., 2017b), or by considering several hidden layers
instead of a single one (Zeng et al., 2016). Overall, across several versions, the perfor-
mance of DeepBind with a single hidden layer turned out to be the best on average on
ChIP-seq experiments from ENCODE (Zeng et al., 2016).

Kernel methods. Like in CNNs, the main principle of kernel methods is to implicitly
map each training point xi to a feature space in which simpler predictive functions are
applied. For kernel methods, these feature spaces are generally high- (or even infinite-
) dimensional vector spaces. This is achieved indirectly, by defining a kernel function
K : X × X → R which acts as a similarity measure between input data. When the
kernel function is symmetric and positive definite, a classical result (see Scholkopf and
Smola, 2001) states that there exists a Hilbert space F of functions from X to R, called
reproducing kernel Hilbert space (RKHS), along with a mapping ϕ : X → F , such that
〈ϕ(x), ϕ(x′)〉F = K(x,x′) for all (x,x′) in X 2, where 〈., .〉F is the Hilbertian inner-
product associated with F . In other words, there exists a mapping of sequences into
a Hilbert space, such that the kernel value between any sequence pairs is equal to the
inner-product between their maps in the Hilbert space. Besides, any function f in F
may be interpreted as a linear form f(x) = 〈ϕ(x), f〉F for all x in X . A large number
of kernels have been specifically designed for biological sequences (see Ben-Hur et al.,
2008, and references therein).
In the context of supervised learning (2.1), training points xi can be mapped into

ϕ(xi) in F , and we look for a prediction function f in F . Interestingly, regularization
is also convenient in the context of kernel methods, which is crucial for learning when
few labeled samples are available. By choosing the regularization function Ω(f) = ‖f‖2F ,
it is indeed possible to control the regularity of the prediction function f : for any two
points x,x′ in X , the variations of the predictions are bounded by |f(x) − f(x′)| ≤
‖f‖F‖ϕ(x) − ϕ(x′)‖F . Hence, a small norm ‖f‖F implies that f(x) will be close to
f(x′) whenever x and x′ are close to each other according to the geometry induced by
the kernel.
Kernel methods have several assets: (i) they are generic and can be directly applied

to any type of data – e.g., sequences or graphs – as long as a relevant positive definite
kernel is available; (ii) they are easy to regularize. However, as alluded earlier, naive
implementations lack scalability. A typical workaround is the Nyström approximation
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(Williams and Seeger, 2001), which builds an explicit q-dimensional mapping ψ : X → Rq
for a reasonably small q approximating the kernel, i.e., such that 〈ψ(x), ψ(x′)〉Rq '
K(x,x′). Then, solving the regularized problem (2.1) under this approximation amounts
to learning a linear model with q dimensions. We will discuss how CKNs circumvent the
scalability problem, while being capable to produce task-adapted data representations.

2.2.2. Convolutional Kernel Networks for Sequences

We introduce convolutional kernel networks for sequences, and show their link with
mismatch kernels (Leslie and Kuang, 2004).

Convolutional kernel for sequences

Given two sequences x and x′ of respective lengths m and m′, we consider a window size
k, and we define the following kernel, which compares pairwise subsequences of length
k (k-mers) within x and x′:

K(x,x′) = 1
mm′

m∑
i=1

m′∑
j=1

K0(Pi(x), Pj(x′)), (2.2)

where Pi(x) is a k-mer of x centered at position i, represented as a one-hot encoded
vector of size p = |A|k and K0 is a positive definite kernel used to compare k-mers.1
We follow Mairal (2016) and use a homogeneous dot-product kernel such that for two
vectors z and z′ in Rp,

K0(z, z′) = ‖z‖‖z′‖κ
(〈 z
‖z‖ ,

z′

‖z′‖

〉)
, (2.3)

and κ : u → e
1
σ2 (u−1). Note that when z and z′ are one-hot encoded vectors of subse-

quences, K0(z, z′) = ke−
1

2σ2k
‖z−z′‖2

(more details can be found in Section 2.A), and we
recover a Gaussian kernel that involves the Hamming distance ‖z− z′‖2/2 between the
two subsequences. Up to the normalization factors, this choice leads to the same kernel
used by Morrow et al. (2017). Yet, the algorithms we will present next are significantly
different. While Morrow et al. (2017) use random features (Rahimi and Recht, 2008) to
find a finite-dimensional mapping ψ : X → Rq that approximates the kernel map, our
approach relies on the Nyström approximation (Williams and Seeger, 2001). A major ad-
vantage of the Nyström method is that it may be extended to produce lower-dimensional
task-dependent mappings (Mairal, 2016) and it admits a model interpretation in terms
of sequence logos (see Section 2.3).

Learning sequence representation

The positive definite kernel K0 defined in (2.3) implicitly defines a reproducing kernel
Hilbert space F over k-mers, along with a mapping ϕ0 : X → F . The convolutional

1It is also possible to introduce a concept of zero-padding for sequences, such that Pi(x) may contain
characters outside of the original sequence, when i is close to the sequence boundary, see Section 2.3.
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kernel network model uses the Nyström method to approximate any point in F onto its
projection on a finite-dimensional subspace E defined as the span of some anchor points

E = Span (ϕ0(z1), . . . , ϕ0(zp)) ,

where the zi’s are the anchor points in R|A|k. Subsequently, it is possible to define a
coordinate system in E such that the orthogonal projection of ϕ0(z) onto E may be
represented by a p-dimensional vector ψ0(z). Assume for now that the anchor points zi
are given. Then, a finite-dimensional embedding (see Mairal, 2016, for details) is given
by

ψ0(z) := K−
1
2

ZZKZ(z),

where K−
1
2

ZZ is the inverse (or pseudo inverse) square root of the p × p Gram ma-
trix [K0(zi, zj)]ij and KZ(z) = (K0(z1, z), . . . ,K0(zp, z))>. It is indeed possible to
show that this vector preserves the Hilbertian inner-product in F after projection:
〈Πϕ0(z),Πϕ0(z′)〉F = 〈ψ0(z), ψ0(z′)〉Rp for any z, z′ in R|A|k, where Π denotes the or-
thogonal projection onto E . Assuming Pi(x) and Pj(x′) map close enough to E , a
reasonable approximation is therefore K0(Pi(x), Pj(x′)) ≈ 〈ψ0(Pi(x)), ψ0(Pj(x′))〉Rp for
all i, j in (2.2), and then

K(x,x′) ≈ 〈ψ(x), ψ(x′)〉Rp with ψ(x) = 1
m

m∑
i=1

ψ0(Pi(x)).

Finally, the original optimization problem (2.1) can be approximated by

min
w∈Rp

1
n

n∑
i=1

L(yi, 〈w, ψ(xi)〉) + λ‖w‖2. (2.4)

We have assumed so far that the anchor points zi, i = 1 . . . , p were given – i.e., that
the sequence representation ψ(x) was fixed in advance. We now present two methods
to learn this representation. The overall approximation scheme is illustrated in the left
panel of Figure 2.1.

Unsupervised learning of the anchor points. The first strategy consists in running
a clustering algorithm such as K-means in order to find p centroids zi in R|A|k that
“span” well the data. This is achieved by extracting a large number of k-mers from
the training sequences and by clustering them. The method is simple, performs well in
practice as shown in Section 2.3, and can also be used to initialize the training of the
following supervised variant. However, the main drawback is that it generally requires
a large number of anchor points (see Section 2.3) to achieve good prediction, which can
be problematic for model interpretation.

Supervised learning of the anchor points. The other strategy consists in jointly opti-
mizing (2.4) with respect to the vector w in Rp and to the anchor points that parametrize
the representation ψ.

In practice, we adopt an optimization scheme that alternates between two steps:
(a) we fix the anchor points (zi)i=1,...,p, compute the finite-dimensional representations
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x ∈ X
x(u) ∈ APi(x) k-mer
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ZZKZ(Pi(x))

global pooling

ψ(x) = 1
mψ0(Pi(x))

ψ(x) ∈ F y
prediction layer

〈w, ψ(x)〉

Pi(x) k-mer

ψ0(Pi(x)) ∈ F0

x1 ∈ F0

pooling

x1(w) ∈ F0Pi(x
1)

ψ1(Pi(x
1)) ∈ F1

ψ(x) ∈ F
prediction layer

Figure 2.1.: Construction of single-layer (left) and multilayer (right) CKN-seq. For
a single-layer model, each k-mer Pi(x) is mapped to ϕ0(Pi(x)) in F
and projected to Πϕ0(Pi(x)) parametrized by ψ0(Pi(x)). Then, the fi-
nal finite-dimensional sequence is obtained by the global pooling, ψ(x) =
1
m

∑m
i=0 ψ0(Pi(x)). The multilayer construction is similar, but relies on in-

termediate maps, obtained by local pooling, see main text for details.

ψ(x1), . . . , ψ(xn) of all data points, and minimize function (2.4) with respect to w,
which is convex if L is convex; (b) We fix w and update all the (zi)i=1,...,p using one
pass of a projected stochastic gradient descent (SGD) algorithm while fixing w, at a
similar computational cost per iteration as a classical CNN. The optimization for the
reverse-complement formulation can be done in the same way except that it is no more
convex with respect to w, but we can still apply a fast optimization method such as
L-BFGS (Liu and Nocedal, 1989). We find this alternating scheme more efficient and
more stable than using an SGD algorithm jointly on w and the anchor points.

Multilayer construction

We have presented CKNs with a single layer for simplicity, but the extension to mul-
tiple layers is straightforward. Instead of reducing the intermediate representation in
the left panel of Figure 2.1 to a single point, the pooling operation may simply reduce
the sequence length by a constant factor (right panel of Figure 2.1), in a similar way
as pooling reduces image resolution in CNN. This leads to an intermediate sequence
representation x1 and we can define a valid kernel K1, the same as K0 in (2.3), but
on subsequences of x1. Then the same approximation described in Section 2.2.2 can be
applied to K1. In this way, the previous process can be repeated and stacked several
times, by defining a sequence of kernels K1,K2, . . . on subsequences from the previous
respective layer representations, along with Hilbert spaces F1,F2, . . . and mapping func-
tions ϕ1, ϕ2, . . . (see Mairal, 2016). Going up in the hierarchy, each point would carries
information from a larger sequence neighborhood with more invariance due to the effect
of pooling layers (Bietti and Mairal, 2017). The training strategy is the same as for
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single-layer models.
Multilayer networks can potentially model larger motifs, with larger receptive fields,

and possibly discover more interesting nonlinear relations between input variables than
single-layer models. However, for the transcription factor binding prediction task under
the setting of DeepBind or Zeng et al. (2016), we have observed that increasing the
number of convolutional layers for CKN-seq did not improve the predictive performance
(Appendix Figure 2.C.4), as also observed by Zeng et al. (2016) for CNNs. The use
of multiple layers may be however important when processing very long sequences, as
observed for instance by Kelley et al. (2018), who also use dilated convolutions to model
even larger receptive fields than what regular CNNs can achieve.

Difference between supervised CKNs and CNNs

The main differences between CKN and CNN models are the choice of activation func-
tion (we used an exponential function in our experiments: κ(x) = eα(x−1)) and the
transformation by the inverse square root of the Gram matrix. From a kernel point of
view, the inverse square root of the Gram matrix allows us to interpret the operation
as a projection onto a finite-dimensional subspace of an RKHS. From a neural network
point of view, this operation decorrelates the channel entries. This can be observed when
using a linear activation function κ(u) = u. In such a case, the approximated mapping
is then ψ0(x) = (Z>Z)−

1
2 Z>x = Z̃>x, where Z̃> = (Z>Z)−

1
2 Z> is an orthogonal ma-

trix. Encouraging orthogonality of the filters has been shown useful to regularize deep
networks (Cisse et al., 2017), and may provide intuition why our models perform better
when small amounts of labeled data are available.

2.2.3. Data-Augmented and Hybrid CKN
As shown in our experiments, the unsupervised variant is sometimes more effective than
the supervised one when there are only few training samples. In this section, we present
a hybrid approach that can achieve similar performance as the unsupervised variant,
while keeping a low-dimensional sequence representation that is easier to interpret. Be-
fore introducing this approach, we first present a classical data augmentation method for
sequences, which consists in artificially generating additional training data, by perturb-
ing the existing training samples. Formally, we consider random perturbations δ, such
that given a sequence represented by a one-hot encoded vector x, we denote by x + δ
the one-hot encoding vector of a perturbed sequence obtained by randomly changing
some characters. Each character is switched to a different one, randomly chosen from
the alphabet, with some probability p. With such a data augmentation strategy, the
objective (2.1) then becomes

min
f∈F

1
n

n∑
i=1

Eδ∼∆[L(yi, f(xi + δ))] + λΩ(f), (2.5)

where ∆ is a probability distribution of the variables δ corresponding to the perturbation
process described above. The main assumption is that a perturbed sequence xi+δ should
have the same phenotype yi when the perturbation δ is small enough. Whereas such
an assumption may not be justified in general from a biological point of view, it led
to significant improvements in terms of predictive accuracy. One possible explanation
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may be that for the tasks we consider, determining sequences may be short compared
to the entire sequence: changing a few uniformly sample positions is therefore unlikely
to perturb key bases.

As we show in Section 2.3, data-augmented CKN performs significantly better than
its unaugmented counterpart when the amount of data is small. Yet, the unsupervised
variant of CKN appears to be easier to regularize, and sometimes outperform all other
approaches in such a low-data regime. This observation motivates us to introduce the
following hybrid variant. In a first step, we learn a prediction function fu based on the
unsupervised variant of CKN, which leads to a high-dimensional sequence representation
with good predictive performance. Then, we learn a low-dimensional model fs, whose
purpose is to mimic the prediction of fu, by minimizing the cost function

min
f∈F

1
n

n∑
i=1

Eδ∼∆[L(ŷi(xi + δ), f(xi + δ))] + λΩ(f), (2.6)

where ŷi(xi + δ) = yi if δ = 0 and fu(xi + δ) otherwise. Typically, the amount of
perturbation that formulation (2.6) can afford is much larger than (2.5), as shown in our
experiments, since it does not require to make the assumption that the sequence xi + δ
should have exactly label yi, which is a wrong assumption when δ is large.

2.2.4. Model Interpretation and Visualization

As observed by Morrow et al. (2017), the mismatch kernel (Leslie and Kuang, 2004)
for modeling sequences may be written as Eq. (2.2) when replacing K0 with a discrete
function I0 that assesses whether the two k-mers are identical up to some mismatches.
Thus, the convolutional kernel (2.2) can be viewed as a continuous relaxation of the
mismatch kernel. Such a relaxation allows us to characterize the approximated convolu-
tional kernel by the learned anchor points (the variables z1, . . . , zp in Section 2.2.2) that
can be written as matrices in R|A|×k.
To transform these optimized anchor points zi into position weight matrices (PWMs)

which can then be visualized as sequence logos, we identify the closest PWM to each
zi: the kernel K0 implicitly defines a distance between one-hot-encoded sequences of
length k, which is approximated by the Euclidean norm after mapping with ψ0. Given
an anchor point zi, the closest PWM µ according to the geometry induced by the kernel
is therefore obtained by solving

min
µ∈M

‖ψ0(µ)− ψ0(zi)‖2,

where M is the set of matrices in RA×k whose columns sum to one. This projection
problem can be solved using a projected gradient descent algorithm. The simplicial
constraints induce some sparsity to the resulting PWM, yielding more informative logos.
As opposed to the approach of Alipanahi et al. (2015) which has relied on extracting
k-mers sufficiently close to the filters in a validation set of sequences, the results obtained
by our method do not depend on a particular dataset.
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2.3. Application

We now study the effectiveness of CKN-seq on a transcription factor (TF) binding pre-
diction and a protein homology detection problem.

2.3.1. Prediction of Transcription Factor Binding Sites
The problem of predicting TF binding sites has been extensively studied in the recent
years with the continuously growing number of TF-binding datasets. This problem
can be modeled as a classification task where the input is some short DNA sequence,
and the label indicates whether the sequence can be bound by a TF of interest. It
has recently been pointed out that incorporating non-sequence-based data modalities
such as chromatin state can improve TF binding prediction (Karimzadeh and Hoffman,
2018). However, since our method is focused on the modeling of biological sequences,
our experiments are limited to sequence data only.

Datasets and evaluation metric

In our experiments, we consider the datasets used by Alipanahi et al. (2015), consisting
of fragment peaks in 506 different ENCODE ChIP-seq experiments. While negative
sequences are originally generated by random dinucleotide shuffling, we also train our
models with real negative sequences not bound by the TF, a task called motif occupancy
by Zeng et al. (2016). Both datasets have a balanced number of positive and negative
samples, and we therefore measure performances by the area under the ROC curve
(auROC). As noted by Karimzadeh and Hoffman (2018), even though classical, this
setting may lead to overoptimistic performance: the real detection problem is more
difficult as it involves a few binding sites and a huge number of non-binding sites.

Hyperparameter tuning

We discuss here the choice of different hyperparameters used in CKN and DeepBind-
based CNN models.

Hyperparameter tuning for CNNs. In DeepBind (Alipanahi et al., 2015), the search
for hyperparameters (learning rate, momentum, initialization, weight decay, DropOut) is
computationally expensive. We observe that training with the initialization mechanism
proposed by Glorot and Bengio (2010) and the Adam optimization algorithm (Kingma
and Ba, 2015) leads to a set of canonical hyper-parameters that perform well across
datasets, and to get rid of such an expensive dataset-specific calibration step. The
results we obtain in such a setting are consistent with those reported by Alipanahi
et al. (2015) (and produced by their software package) and by Zeng et al. (2016) (see
Appendix Figure 2.D.1 and 2.D.2). Overall, this simplified strategy comes with great
practical benefits in terms of speed.
Specifically, to choose the remaining parameters such as weight decay, we randomly

select 100 datasets from DeepBind’s datasets, and we use one quarter of the training
samples as validation set, on which the error is used as a proxy of the generalization
error. We observe that neither DropOut (Srivastava et al., 2014), nor fully connected
layers bring significant improvements, which leads to an even simpler model.
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Figure 2.2.: Performance comparison of CNN and CKN-seq on the DeepBind (left) and
Zeng et al. (2016) (right) datasets. Number of filters for CNN and CKN-seq
was set to 128 while it was 4096 for unsupervised CKN-seq. The average
auROCs for CNN, CKN-seq and unsupervised CKN-seq are 0.931, 0.936,
0.937 on the DeepBind datasets and 0.803, 0.807, 0.804 on the Zeng et al.
(2016) datasets. The pink and black lines respectively represent mean and
median. P-values are from one-sided Wilcoxon signed-rank test. All the
following figures are obtained in the same way.

Hyperparameter tuning for CKNs. The hyperparameters of CKNs are also fixed across
datasets, and we select them using the same methodology described above for CNNs.
Specifically, this strategy is used to select the bandwidth parameter σ and the regular-
ization parameter λ (see Appendix Figure 2.B.2 and 2.B.3), which is then fixed for all
the versions of CKN and on either the DeepBind’s or Zeng et al. (2016) datasets. For
unsupervised CKN, the regularization parameter is dataset-specific and is obtained by a
five-fold cross validation. To train CKN-seq, we initialize the supervised CKN-seq with
the unsupervised method (which is parameter-free) and use the alternating optimization
update presented in section 2.2.2. We use the Adam algorithm (Kingma and Ba, 2015)
to update the filters and the L-BFGS algorithm (Zhu et al., 1997) to optimize the pre-
diction layer. The learning rate is fixed to 0.01 for both CNN and CKN. The logistic loss
is chosen to be the loss function for both this and the next protein homology detection
task. All the models only use one layer. The choice of filter size, number of filters, and
number of layers are also discussed in Section 2.3.3.

Performance benchmark

We compare here the auROC scores on test datasets between different CKN and DeepBind-
based CNN models.

Performance on entire datasets. Both supervised and unsupervised versions of CKN-
seq show performance similar to DeepBind-based CNN models (Figure 2.2), on either
the DeepBind or Zeng et al. (2016) datasets.
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Performance on small-scale datasets. When few labeled samples are available, unsu-
pervised CKNs achieve better predictive performance than fully supervised approaches
that are hard to regularize. Specifically, we have selected all the datasets with less than
5000 training samples and reevaluated the above models. The results are presented in
the top part of Figure 2.3. As expected, we observe that the data-augmented version
outperform the corresponding unaugmented version for all the models, while the super-
vised CKN is still dominated by the unsupervised CKN. Finally, the hybrid version of
CKN-seq presented in section 2.2.3 performs nearly as well as the unsupervised one while
only using 32 times fewer (only 128) filters. It is also more robust to the perturbation
intensity used in augmentation than the data-augmented version (detailed choice and
study of perturbation intensity can be found in Appendix Figure 2.B.4 and 2.B.5).
We obtain similar results on the Zeng et al. (2016) datasets as shown in the middle

part of Figure 2.3, except that the data-augmented unsupervised CKN-seq does not
improve performance over its unaugmented counterpart.

2.3.2. Protein Homology Detection

Protein homology detection is a fundamental problem in computational biology to un-
derstand and analyze the structure and function similarity between protein sequences.
String kernels, see, e.g., Leslie et al. (2002b, 2004); Saigo et al. (2004); Rangwala and
Karypis (2005), have shown state-of-the-art prediction performance but are computa-
tionally expensive, which restricts their use to small-scale datasets. In comparison,
CKN-seq and CNN models are much more computationally efficient and also turn out
to achieve better performance, which we show in the rest of this section. Specifically,
we consider the remote homology detection problem and benchmark different methods
on the widely-used SCOP 1.67 dataset from Hochreiter et al. (2007), including 102 su-
perfamily recognition tasks and extending the positive training samples with Uniref50.
The number of training protein samples for each task is around 5000, whose length
varies from tens to thousands of amino acids. Under our formulation, positive protein
sequences are taken from one superfamily from which one family is withheld to serve as
test samples, while negative sequences are chosen from outside the target family’s fold.

Regarding the training of CNN and CKN-seq, we adopt the same setting as for the TF
binding prediction task and the same methodology for the selection of hyper-parameters.
A larger bandwidth parameter σ = 0.6 is selected (in contrast to σ = 0.3 in Section 2.3.1)
due to the larger number of (20) characters in protein sequences. Further details about
the validation scores obtained for various parameters are presented in Appendix Figure
2.B.1-2.B.3. We also use max pooling in CKN-seq to aggregate feature vectors instead
of mean pooling, which shows better performance in this problem. We fix the filter
size to be 10 which seems computationally intractable for the exact algorithms, such as
trie-based algorithm, for computing mismatch kernels (Kuksa et al., 2009).
Profile-based methods (Kuang et al., 2005; Rangwala and Karypis, 2005) have shown

very good performance on this task but suffer a few limitations as pointed out by (Hochre-
iter et al., 2007), including computation time and interpretability. Nevertheless, we pro-
pose an approach which integrates profiles with CKN models. Specifically, we compute
the position-specific probability matrix (PSPM) using PSI-BLAST for all the sequences
in SCOP 1.67 dataset, following the same protocols as Rangwala and Karypis (2005).
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PSI-BLAST is performed against Uniparc2 filtering out all the sequences after 2015,
which leads to a database similar to the NCBI non-redundant database used by Rang-
wala and Karypis (2005). We encode the sequences in Uniref50 using the BLOSUM62
position-independent probability matrix (Henikoff and Henikoff, 1992) by replacing each
character with its corresponding substitution probability in BLOSUM62. Finally, we
train CKN models by replacing each sequence in our kernel (2.2) with the square root
of its corresponding PSPM (or BLOSUM62). The training and hyperparameters remain
unchanged.

Performance on entire datasets. Besides auROC, we also use auROC50 (area under
the ROC up to 50 false positives) as evaluation metric, which is extensively used in the
literature (Leslie et al., 2004; Saigo et al., 2004). Table 2.1 shows that unsupervised CKN-
seq and CNN achieve similar performance and supervised CKN-seq achieves even better
performance while they outperform all typical string kernels including local alignment
kernel. They also outperform the LSTM model proposed by Hochreiter et al. (2007).
Finally, training CKN-seq is much faster than using string kernel-based methods. While
training string kernel-based models requires hours or days (Hochreiter et al., 2007),
training CNN or CKN-seq are done in a few minutes. In our experiments, the average
training time for CNN and supervised CKN-seq is less than 3 minutes on a single cluster
with a GTX1080_TI GPU and 8 CPU cores of 2.4 GHz, while training an unsupervised
CKN-seq with 16384 filters (which seems to be the maximal size that can be fit to
GPU memory and gives 0.956 and 0.792 respectively for auROC and auROC50) needs
30 minutes in average. We also notice that using a random sampling instead of K-
means in unsupervised CKN-seq reduces the training time to 6 minutes without loss
of performance. By contrast, the training time for a local alignment kernel is about 4
hours.
Profile-based CKN-seq models show substantial improvements over their non-profile

counterparts, including the BLOSUM62-based CKN-seq which uses the position-independent
BLOSUM62 probability matrix instead of one-hot encoding to encode sequence charac-
ters. Supervised CKN-seq shows comparable results to the best performing methods.
The performance may be further improved by computing the profiles for the extended
sequences in Uniref50.

Performance on subsampled datasets. We simulate situations where few training sam-
ples are available by subsampling only 500 class-balanced training samples for each
dataset. We reevaluate the above CNN and CKN models, the data-augmented versions
and also the hybrid method. The results (bottom part of Figure 2.3) are similar to the
ones obtained for the TF binding prediction problem except that supervised version of
CKN-seq performs remarkably well in this task. We also notice that CKN-seq versions
trained with only 500 samples outperform the best string kernel trained with all training
samples.

2https://www.uniprot.org
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Figure 2.3.: Performance comparison on small-scale datasets (top: DeepBind datasets,
middle: Zeng et al. (2016) datasets, bottom: SCOP 1.67); CKN-seq+ (re-
spectively uCKN-seq+) represents training CKN-seq (respectively uCKN-
seq) with perturbation while CKN-seq++ means the hybrid model intro-
duced in section 2.2.3 that combines supervised and unsupervised versions:
all the models use 128 convolutional filters except that unsupervised CKN-
seq (uCKN-seq) and uCKN-seq+ use 4096 filters for DeepBind’s dataset
and 8192 for SCOP 1.67. The perturbation amount used in CKN-seq+,
uCKN-seq+ and CKN-seq++ are respectively 0.2, 0.1 and 0.2 (0.3 for SCOP
1.67) for both tasks. The average auROC(50) for CNN+, CKN-seq++ and
uCKN-seq(+) are 0.873, 0.908, 0.914 on the DeepBind datasets and 0.834,
0.839, 0.845 on the Zeng et al. (2016) datasets and 0.663, 0.715, 0.705 on
SCOP 1.67.
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Table 2.1.: Average auROC and auROC50 for SCOP 1.67 benchmark.
Method auROC auROC50

GPkernel (Håndstad et al., 2007) 0.902 0.591
SVM-pairwise (Liao and Noble, 2003) 0.849 0.555
Mismatch (Leslie et al., 2004) 0.878 0.543
LA-kernel (Saigo et al., 2004) 0.919 0.686

LSTM (Hochreiter et al., 2007) 0.942 0.773

CNN (128 filters) 0.960 0.799
CKN-seq (128 filters) 0.965 0.819
CKN-seq (128 filters) + BLOSUM62 0.973 0.835
unsup CKN-seq (32768 filters) 0.958 0.806

Profile-based methods
Mismatch-profile on SCOP 1.53 (Kuang et al., 2005) 0.980 0.794
SW-PSSM on SCOP 1.53 (Rangwala and Karypis, 2005) 0.982 0.904
CKN-seq (128 filters) + profile 0.986 0.906
unsup CKN-seq (4096 filters) + profile 0.968 0.863

2.3.3. Hyperparameter Study

We now study the effect of hyperparameters and focus on the supervised version of CKN,
which is more interpretable than the unsupervised one.

Both CNN and CKN-seq with one layer achieve better performance with a filter size
of 12 for every fixed number of filters (Appendix Figure 2.C.2). Since this optimal value
is only slightly larger than the typical length of the motifs for TFs (Stewart et al., 2012),
we deduce that the prediction mainly relies on a canonical motif while the nearby content
has little contribution.
Increasing the number of filters improves the auROCs for both models regardless

of the filter size, in line with the observation in Zeng et al. (2016) for CNNs. This
improvement saturates when more than 128 filters are deployed, sometimes leading to
overfitting (Appendix Figure 2.C.1). We observe the same behavior for the unsupervised
version of CKN-seq (Appendix Figure 2.C.1), but usually with much larger saturation bar
(larger than 4096 for TF binding prediction and 32768 for protein homology detection).
When using only 16 filters, CKN-seq shows better performance than DeepBind-based
CNNs. This is an advantage as large numbers of filters make the model redundant and
harder to interpret.

2.3.4. Model Interpretation and Visualization

In this section, we study the ability of a trained CKN-seq model to capture motifs and
generate accurate and informative sequence logos. We use here simulated data since the
true motifs are generally not known in practice. To simulate sequences containing some
given motifs represented by a PWM, we follow the methodology adopted by Shrikumar
et al. (2017a) and generate 500 training and 100 test samples. We train a 1-layer CKN-
seq and CNN on two tasks of the respective motif FOXA1 and GATA1 (Kheradpour and
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Figure 2.4.: Motifs recovered by CKN-seq (middle row) and by CNN (bottom row) com-
pared to the true motifs (top row)

Table 2.2.: Tomtom motif p-value comparison of CKN-seq and CNN for different dis-
tance functions, see Gupta et al. (2007).

FOXA1 GATA1
Distance CKN-seq CNN CKN-seq CNN

KL 8.79e-13 3.22e-03 9.94e-10 2.43e-03
Euclidean 1.90e-12 3.12e-04 6.25e-09 4.35e-04
SW 1.48e-12 3.83e-04 1.77e-09 4.66e-04
Pearson 1.29e-08 6.02e-05 1.37e-09 2.88e-04
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Kellis, 2013), using the same hyperparameter settings as previously. We fix the filter size
and number of filters to 12 and 16 to avoid capturing too many redundant features. Both
models achieve about 0.99 for the auROC on test set. The trained CNN is visualized by
using the approach introduced by Alipanahi et al. (2015). Specifically, all sequences from
the test set are fed through the convolutional and rectification stages of the CNN, and
only the k-mers that passed the activation threshold (which is 0 by default) were aligned
to generate a PWM and the trained CKN is visualized by using the approach presented
in section 2.2.4, i.e., solving minµ∈M ‖ψ0(µ)−ψ0(zi)‖2 with a projected gradient descent
method. The best recovered motifs (in the sense of information content) are compared
to the true motifs using Tomtom (Gupta et al., 2007).
Motifs recovered by CKN-seq and CNN are both aligned to the true motifs (Figure

4.1). The logos given by CKN-seq are more informative and match better with the
ground truth in terms of any distance measures (Table 2.2). This suggests that CKN-
seq may be able to find more accurate motifs. We also perform the same experiments
with more training samples (see Appendix Figure 4.B.2). We observe that CKN-seq
achieves small p-values in both data regimes while p-values for CNN are larger when few
training samples are available.

2.4. Discussion and Conclusion
We have introduced a convolutional kernel for sequences which combines advantages
of CNNs and string kernels. The resulting CKN-seq is a special case of CNN which
generalizes the mismatch kernel to motifs – instead of discrete k-mers – and makes it
task-adaptive and scalable.
CKN-seq retains the ability of CNNs to learn sequence representations from large

datasets, leading to slightly better performance than classical CNNs on a TF binding
site prediction task and on a protein homology detection task. The unsupervised ver-
sion of CKN-seq keeps the kernel formalism, which makes it easier to regularize and thus
leads to good performance on small-scale datasets despite the use of a huge number of
convolutional filters. A hybrid version of CKN-seq performs equally well as its unsuper-
vised version but with much fewer filters. Finally, the kernel interpretation also makes
the learned model more interpretable and thus recovers more accurate motifs.
The fact that CKNs retain the ability of CNNs to learn feature spaces from large

training sets of data while enjoying a RKHS structure has other uncharted applications
which we would like to explore in future work. First, it will allow us to leverage the
existing literature on kernels for biological sequences to define the bottom kernel K0,
possibly capturing other aspects than contiguous sequence motifs, such as genetic gaps
as presented in the next chapter. More generally, it provides a straightforward way to
build models for non-vector objects such as graphs, taking as input molecules or protein
structures, which will be presented in Chapter 4. Finally, it paves the way for making
deep networks amenable to statistical analysis, in particular to hypothesis testing. This
important step would be complementary to the interpretability aspect, and necessary to
make deep networks a powerful tool for molecular biology beyond prediction.
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Appendix
In the Appendix, we present details and additional experiments mentioned in the chapter.

2.A. Details about the Convolutional Kernel

In the definition of convolutional kernel, a bottom kernel K0 was defined, for any z, z′
in Rd, as

K0(z, z′) = ‖z‖‖z′‖κ
(〈 z
‖z‖ ,

z′

‖z′‖

〉)
,

where κ : u→ e
1
σ2 (u−1). When z and z′ are one-hot encoded vectors of k-mers, we have

‖z‖ = ‖z′‖ =
√
k and thus

K0(z, z′) = ke
1
σ2 ( 1

k
〈z,z′〉−1)

= ke−
1

2σ2k
(2k−2〈z,z′〉)

= ke−
1

2σ2k
(‖z‖2+‖z′‖2−2〈z,z′〉)

= ke−
1

2σ2k
‖z−z′‖2

,

which recovers a Gaussian kernel.

2.B. Choice of Model Hyperparameters
We justify here the choice of the hyperparameters used in our experiments, including
weight decay for CNNs, regularization parameter, bandwidth parameter in exponential
kernel and perturbation intensity used in data-augmented CNN, CKN and hybrid model.
We denote respectively by k the filter size and p the number of filters.
The scores for the following experiments are computed on a validation set, which is

taken from one quarter of the training samples for each dataset and the models are
trained on the rest of the training samples. For DeepBind’s datasets, we only perform
validation on 100 randomly sampled datasets, which save a lot of computation time and
should give similar results when using all datasets.

Weight decay for CNN. The choice of weight decay is validated on the validation set
as shown in Figure 2.B.1.

Bandwidth parameter in exponential kernel. The choice of the bandwidth parameter
is only validated for supervised CKN-seq and the same value is used for the unsupervised
variant. Figure 2.B.2 shows the scores on the validation set when the other hyperpa-
rameters are fixed. The same choice as DeepBind’s dataset is applied to Zeng’s dataset.

Regularization parameter. The choice of the regularization parameter is validated fol-
lowing the same protocol as the bandwidth parameter. Figure 2.B.3 shows the scores on
the validation set.
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Figure 2.B.1.: Validation of weight decay in CNNs for DeepBind’s datasets (left) and
SCOP 1.67 and its subsampled datasets (middle and right); k = 12 and
10 respectively for each task; p = 128 for both tasks.
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Figure 2.B.2.: Validation of the bandwidth parameter σ for DeepBind’s datasets (left)
and SCOP 1.67 (right). The regularization parameter is fixed to 1e-6 and
1.0 and k = 12 and 10 respectively for each task; p = 128 for both tasks.

Perturbation intensity in data-augmented and hybrid model. The perturbation amount
used in the data-augmented CNN, CKN and the hybrid variant of CKN are also validated
on the corresponding validation set. The scores are shown in Figure 2.B.5.

2.C. Hyperparameter Study

We discuss here in more detail the effect of the number and size of convolutional filters
and number of layers on CNN and CKN performances. We also present the discussions
on the perturbation intensity in data-augmented and hybrid variants of CKN-seq.
For some of the following comparisons, we also include the oracle model, which repre-

sents the best performance achievable by choosing the optimal parameter in comparison
for each dataset (whereas parameters used in our experiments are fixed across datasets).
The experiment shows that a dataset-dependent parameter calibration step could pos-
sibly improve the performance, but that the potential gain would be relatively small.

Number of filters, filter size and number of layers. We show in Figure 2.C.1 that
increasing the number of filters improved the performance for both supervised and un-
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Figure 2.B.3.: Validation of the regularization λ for DeepBind’s datasets (left) and
SCOP 1.67 (right). The bandwith parameter is fixed to 0.3 and 0.6 and
k = 12 and 10 respectively for each task; p = 128 for both tasks.
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Figure 2.B.4.: Validation of the perturbation intensity for data-augmented CNN on
DeepBind’s small-scale datasets and (left) and subsampled SCOP 1.67
(right); k = 12 and 10 respectively for each task and p = 128 for both
tasks.
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Figure 2.B.5.: Validation of the perturbation intensity for CKN on DeepBind’s small-
scale datasets (left) and subsampled SCOP 1.67 (right); each line cor-
responds to data-augmented supervised (top), data-augmented unsuper-
vised (middle) and hybrid (bottom) variants of CKN-seq. The bandwith
parameter is fixed to 0.3 and 0.6, the regularization parameter is fixed to
1e-6 and 1.0, and k = 12 and 10 respectively for each task; p = 128 for
both tasks.
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Figure 2.C.1.: Influence of the number of filters for supervised and unsupervised CKN-
seq: left supervised variant with k = 12 on DeepBind’s datasets; right
unsupervised variant with k = 10 on SCOP 1.67 datasets.

supervised variants of CKN-seq. Furthermore, the improvement of prediction perfor-
mance of the supervised one was saturated when more than 128 convolutional filters
were deployed.
Both CNN and CKN-seq with one layer achieve better performance with a filter size of

12 for every fixed number of filters (Figure 2.C.2). Since this optimal value is only slightly
larger than the typical length of the motifs for TFs, we deduce that the prediction mainly
relies on a canonical motif while the nearby content has little contribution. However if
one is interested in motif discovery only, running the algorithm with larger filter size
may be of interest whenever one believes that some TF binding sites are explained by
larger motifs.
Increasing the number of convolutional layers in CNNs has been shown to decrease its

performance. By contrast, it does not affect the performance of CKN-seq when using a
sufficient number of convolutional filters (Figure 2.C.3). Multilayer architectures allow
to learn richer or more complex descriptors such as co-motifs, but may require a larger
amount of data. They would also make the interpretation of the trained models more
difficult. When training with 2-layer CKN models, we also notice that increasing the
number of filters from 64 to 128 at the first layer or that from 16 to 64 at the second
layer does not improve performance (Figure 2.C.4).

Perturbation intensity in data-augmented and hybrid CKN. We have shown that data
augmentation improves both supervised and unsupervised CKN-seq. The hybrid ap-
proach has further improved data-augmented CKN-seq. We study here how the amount
of perturbation used in augmenting training samples impacts performance. Specifically,
we characterize the perturbation intensity by the percentage of changed characters in
a sequence and show in Figure 2.C.6 the behavior of CKN-seq when increasing the
amount of perturbation. By leveraging the best data-augmented unsupervised model
on validation set, we train our hybrid variant and show its performance when increas-
ing the amount of perturbation (Figure 2.C.5). We observe that the hybrid variant
is more robust to larger amount of perturbation applied in the training samples than
simply data-augmented one. Note that the results are consistent to those obtained on
validation set (Section 2.B).
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Figure 2.C.2.: auROC scores on test datasets of DeepBind (left) and Zeng et al. (2016)
(right) for single-layer CKN-seq and DeepBind-based CNNs with number
of filters varying between 16, 64, 128 and filter size between 12, 18, 24;
The pink and black line respectively represent mean and median.
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CKN64-16 has nearly the same number of parameters as CKN128.
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Figure 2.C.5.: Effect of perturbation intensity on supervised and unsupervised CKN-seq:
top: data-augmented supervised CKN-seq; bottom: data-augmented un-
supervised CKN-seq; left: on DeepBind’s datasets; right: on SCOP 1.67.
The number after + indicates the percentage of perturbation amount ap-
plied to the training samples.
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Figure 2.C.6.: Effect of perturbation intensity on hybrid CKN-seq: left: on DeepBind’s
datasets; right: on SCOP 1.67. All the hybrid models are trained us-
ing uCKN-seq+0.1. The number after ++ indicates the percentage of
perturbation amount applied to the training samples.
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Figure 2.D.1.: Comparison of calibrated CNN and universal models; left: DeepBind’s
dataset and right: SCOP 1.67 dataset

2.D. Effect of Hyperparameter Calibration in CNN

We study here how hyperparameter calibration as used in DeepBind could affect per-
formance and training time for CNNs. For the calibrated variant of CNN, we used the
same hyperparameter search scheme used in DeepBind for the CNN, with 30 randomly
chosen calibration settings and 6 training trials across the data sets.
The calibrated variant slightly outperformed hyperparameter-fixed CNN and showed

similar performance to CKN-seq in the TF binding prediction task while it didn’t achieve
better performance in the protein homology detection task (Figure 2.D.1).
On the other hand, training a calibrated CNN is much slower compared to hyperparameter-

fixed CNN or CKN-seq. To make a fair comparison, we reimplemented and evaluated
both DeepBind and CKN-seq in Pytorch. Our reimplemented model achieved almost
identical performance to the original DeepBind (left panel of Figure 2.D.2) in DeepBind’s
Datasets. In order to quantify the gain in training time for hyperparameter-fixed models,
we measured the average training time on 50 different datasets for original DeepBind,
our reimplemented DeepBind and CKN-seq on a Geforce GTX Titan Black GPU. The
right panel of Figure 2.D.2 shows that training a CKN-seq model is about 25 times faster
than training the original DeepBind model and 5 times faster than our reimplemented
version.

2.E. Influence of Fully Connected Layer in CNN

The authors of DeepBind have used a fully connected layer in their model. However, we
found that there was no significant gain with this supplementary layer in our experiments,
as shown in Figure 2.E.1.

2.F. Pairwise Comparison of CKN and CNN

We include here some scatter plots to illustrate the pairwise comparison on each indi-
vidual dataset of DeepBind and Zeng. The results are shown in 2.F.1.
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Figure 2.F.1.: Pairwise comparison of CKN-seq and CNN on DeepBind, Zeng and SCOP
1.67 datasets. The metric is auROC for the two earlier datasets and
auROC50 for the latter. The middle and bottom lines show performance
of models trained on small-scale datasets.
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Figure 2.G.1.: Motifs recovered by CKN-seq (middle row) and by CNN (bottom row)
compared to the true motifs (top row)

Table 2.G.1.: Tomtom motif p-value comparison of CKN-seq and CNN for different dis-
tance functions.

FOXA1 GATA1
Distance CKN-seq CNN CKN-seq CNN

KL 9.77e-14 1.78e-08 3.61e-11 3.73e-08
Euclidean 1.10e-12 6.62e-10 6.49e-12 1.07e-07
SW 6.75e-11 4.65e-10 1.93e-11 2.71e-08
Pearson 2.63e-07 3.59e-09 1.72e-08 5.32e-07

2.G. Model Interpretation and Visualization
We perform the same experiments as in section 2.3.4 of the chapter but on a larger
datasets, with 9000 training samples and 1000 test samples. Motifs recovered by CKN-
seq and CNN were aligned to the true motifs (Figure 4.B.2) while the logos given by
CKN-seq are more informative and match better with the ground truth in terms of
any distance measures (Table 2.G.1). The same conclusions can be drawn as in the
small-scale case.
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Chapter abstract: Substring kernels are classical tools for representing biological
sequences or text. However, when large amounts of annotated data are available,
models that allow end-to-end training such as neural networks are often preferred.
Links between recurrent neural networks (RNNs) and substring kernels have recently
been drawn, by formally showing that RNNs with specific activation functions were
points in a reproducing kernel Hilbert space (RKHS). In this chapter, we revisit this
link by generalizing convolutional kernel networks—originally related to a relaxation
of the mismatch kernel—to model gaps in sequences. It results in a new type of
recurrent neural network which can be trained end-to-end with back-propagation, or
without supervision by using kernel approximation techniques. We experimentally
show that our approach is well suited to biological sequences, where it outperforms
existing methods for protein classification tasks.

The chapter is based on the following publication. The work was also presented at
Machine Learning in Computational Biology (MLCB) conference 2019.

D. Chen, L. Jacob, and J. Mairal. Recurrent kernel networks. In Advances in Neural
Information Processing Systems (NeurIPS), 2019b

3.1. Introduction

Learning from biological sequences is important for a variety of scientific fields such
as evolution (Flagel et al., 2019) or human health (J. Topol, 2019). In order to use
classical statistical models, a first step is often to map sequences to vectors of fixed
size, while retaining relevant features for the considered learning task. For a long time,
such features have been extracted from sequence alignment, either against a reference
or between each others (Auton et al., 2015). The resulting features are appropriate for
sequences that are similar enough, but they become ill-defined when sequences are not
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3. Recurrent Kernel Networks

suited to alignment. This includes important cases such as microbial genomes, distant
species, or human diseases, and calls for alternative representations (Consortium, 2016).
String kernels provide generic representations for biological sequences, most of which

do not require global alignment (Schölkopf et al., 2004). In particular, a classical ap-
proach maps sequences to a huge-dimensional feature space by enumerating statistics
about all occuring subsequences. These subsequences may be simple classical k-mers
leading to the spectrum kernel (Leslie et al., 2001), k-mers up to mismatches (Leslie
et al., 2004), or gap-allowing subsequences (Lodhi et al., 2002). Other approaches in-
volve kernels based on a generative model (Jaakkola et al., 1999; Tsuda et al., 2002b), or
based on local alignments between sequences (Vert et al., 2004) inspired by convolution
kernels (Haussler, 1999; Watkins, 1999).
The goal of kernel design is then to encode prior knowledge in the learning process.

For instance, modeling gaps in biological sequences is important since it allows taking
into account short insertion and deletion events, a common source of genetic variation.
However, even though kernel methods are good at encoding prior knowledge, they pro-
vide fixed task-independent representations. When large amounts of data are available,
approaches that optimize the data representation for the prediction task are now often
preferred. For instance, convolutional neural networks (LeCun et al., 1989) are com-
monly used for DNA sequence modeling (Alipanahi et al., 2015; Angermueller et al.,
2016; Zhou and Troyanskaya, 2015), and have been successful for natural language pro-
cessing (Kalchbrenner et al., 2014). While convolution filters learned over images are
interpreted as image patches, those learned over sequences are viewed as sequence motifs.
RNNs such as long short-term memory networks (LSTMs) (Hochreiter and Schmidhu-
ber, 1997) are also commonly used in both biological (Hochreiter et al., 2007) and natural
language processing contexts (Cho et al., 2014; Merity et al., 2018).
Motivated by the regularization mechanisms of kernel methods, which are useful when

the amount of data is small and are yet imperfect in neural networks, hybrid approaches
have been developed between the kernel and neural networks paradigms (Cho and Saul,
2009; Morrow et al., 2017; Zhang et al., 2017). Closely related to our work, the convolu-
tional kernel network (CKN) model originally developed for images (Mairal, 2016) was
successfully adapted to biological sequences in Chen et al. (2019a). CKNs for sequences
consist in a continuous relaxation of the mismatch kernel: while the latter represents a
sequence by its content in k-mers up to a few discrete errors, the former considers a con-
tinuous relaxation, leading to an infinite-dimensional sequence representation. Finally,
a kernel approximation relying on the Nyström method (Williams and Seeger, 2001)
projects the mapped sequences to a linear subspace of the RKHS, spanned by a finite
number of motifs. When these motifs are learned end-to-end with back-propagation,
learning with CKNs can also be thought of as performing feature selection in the—
infinite dimensional—RKHS.
In this chapter, we generalize CKNs for sequences by allowing gaps in motifs, mo-

tivated by genomics applications. The kernel map retains the convolutional structure
of CKNs but the kernel approximation that we introduce can be computed using a re-
current network, which we call recurrent kernel network (RKN). This RNN arises from
the dynamic programming structure used to compute efficiently the substring kernel
of Lodhi et al. (2002), a link already exploited by Lei et al. (2017) to derive their se-
quence neural network, which was a source of inspiration for our work. Both our kernels
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rely on a RNN to build a representation of an input sequence by computing a string ker-
nel between this sequence and a set of learnable filters. Yet, our model exhibits several
differences with Lei et al. (2017), who use the regular substring kernel of Lodhi et al.
(2002) and compose this representation with another non-linear map—by applying an
activation function to the output of the RNN. By contrast, we obtain a different RKHS
directly by relaxing the substring kernel to allow for inexact matching at the compared
positions, and embed the Nyström approximation within the RNN. The resulting feature
space can be interpreted as a continuous neighborhood around all substrings (with gaps)
of the described sequence. Furthermore, our RNN provides a finite-dimensional approx-
imation of the relaxed kernel, relying on the Nyström approximation method (Williams
and Seeger, 2001). As a consequence, RKNs may be learned in an unsupervised man-
ner (in such a case, the goal is to approximate the kernel map), and with supervision
with back-propagation, which may be interpreted as performing feature selection in the
RKHS.

Contributions. In this chapter, we make the following contributions:
• We generalize convolutional kernel networks for sequences (Chen et al., 2019a) to
allow gaps, an important option for biological data. As in Chen et al. (2019a), we
observe that the kernel formulation brings practical benefits over traditional CNNs or
RNNs (Hochreiter et al., 2007) when the amount of labeled data is small or moderate.
•We provide a kernel point of view on recurrent neural networks with new unsupervised
and supervised learning algorithms. The resulting feature map can be interpreted in
terms of gappy motifs, and end-to-end learning amounts to performing feature selection.

3.2. Background on Kernel Methods and String Kernels

Kernel methods consist in mapping data points living in a set X to a possibly infinite-
dimensional Hilbert space H, through a mapping function Φ : X → H, before learn-
ing a simple predictive model in H (Scholkopf and Smola, 2001). The so-called kernel
trick allows to perform learning without explicitly computing this mapping, as long as
the inner-product K(x,x′) = 〈Φ(x),Φ(x′)〉H between two points x,x′ can be efficiently
computed. Whereas kernel methods traditionally lack scalability since they require com-
puting an n×n Gram matrix, where n is the amount of training data, recent approaches
based on approximations have managed to make kernel methods work at large scale in
many cases (Rahimi and Recht, 2008; Williams and Seeger, 2001).
For sequences in X = A∗, which is the set of sequences of any possible length over

an alphabet A, the mapping Φ often enumerates subsequence content. For instance, the
spectrum kernel maps sequences to a fixed-length vector Φ(x) = (φu(x))u∈Ak , where
Ak is the set of k-mers—length-k sequence of characters in A for some k in N, and
φu(x) counts the number of occurrences of u in x (Leslie et al., 2001). The mismatch
kernel (Leslie et al., 2004) operates similarly, but φu(x) counts the occurrences of u up
to a few mismatched letters, which is useful when k is large and exact occurrences are
rare.
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3.2.1. Substring Kernels
As Lei et al. (2017), we consider the substring kernel introduced in Lodhi et al. (2002),
which allows to model the presence of gaps when trying to match a substring u to a
sequence x. Modeling gaps requires introducing the following notation: Ix,k denotes the
set of indices of sequence x with k elements (i1, . . . , ik) satisfying 1 ≤ i1 < · · · < ik ≤ |x|,
where |x| is the length of x. For an index set i in Ix,k, we may now consider the
subsequence xi = (xi1 , . . . ,xik) of x indexed by i. Then, the substring kernel takes the
same form as the mismatch and spectrum kernels, but φu(x) counts all—consecutive or
not—subsequences of x equal to u, and weights them by the number of gaps. Formally,
we consider a parameter λ in [0, 1], and φu(x) =

∑
i∈Ix,k

λgaps(i)δ(u,xi), where δ(u, v) = 1
if and only if u = v, and 0 otherwise, and gaps(i) := ik− i1−k+ 1 is the number of gaps
in the index set i. When λ is small, gaps are heavily penalized, whereas a value close
to 1 gives similar weights to all occurrences. Ultimately, the resulting kernel between
two sequences x and x′ is

Ks(x,x′) :=
∑

i∈Ix,k

∑
j∈Ix′,k

λgaps(i)λgaps(j)δ
(
xi,x′j

)
. (3.1)

As we will see in Section 3.3, our RKN model relies on (3.1), but unlike Lei et al. (2017),
we replace the quantity δ(xi,x′j) that matches exact occurrences by a relaxation, allowing
more subtle comparisons. Then, we will show that the model can be interpreted as a
gap-allowed extension of CKNs for sequences. We also note that even though Ks seems
computationally expensive at first sight, it was shown in Lodhi et al. (2002) that (3.1)
admits a dynamic programming structure leading to efficient computations.

3.2.2. The Nyström Method
When computing the Gram matrix is infeasible, it is typical to use kernel approxima-
tions (Rahimi and Recht, 2008; Williams and Seeger, 2001), consisting in finding a
q-dimensional mapping ψ : X → Rq such that the kernel K(x,x′) can be approximated
by a Euclidean inner-product 〈ψ(x), ψ(x′)〉Rq . Then, kernel methods can be simulated
by a linear model operating on ψ(x), which does not raise scalability issues if q is reason-
ably small. Among kernel approximations, the Nyström method consists in projecting
points of the RKHS onto a q-dimensional subspace, allowing to represent points into a
q-dimensional coordinate system.

Specifically, consider a collection of Z = {z1, . . . , zq} points in X and consider the
subspace

E = Span(Φ(z1), . . . ,Φ(zq)) and define ψ(x) = K
− 1

2
ZZKZ(x),

where KZZ is the q×q Gram matrix of K restricted to the samples z1, . . . , zq and KZ(x)
in Rq carries the kernel values K(x, zj), j = 1, . . . , q. This approximation only requires
q kernel evaluations and often retains good performance for learning. Interestingly as
noted in Mairal (2016), 〈ψ(x), ψ(x′)〉Rq is exactly the inner-product in H between the
projections of Φ(x) and Φ(x′) onto E , which remain in H.
When X is a Euclidean space—this can be the case for sequences when using a one-hot

encoding representation, as discussed later— a good set of anchor points zj can be ob-
tained by simply clustering the data and choosing the centroids as anchor points (Zhang
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et al., 2008). The goal is then to obtain a subspace E that spans data as best as possible.
Otherwise, previous works on kernel networks (Chen et al., 2019a; Mairal, 2016) have
also developed procedures to learn the set of anchor points end-to-end by optimizing over
the learning objective. This approach can then be seen as performing feature selection
in the RKHS.

3.3. Recurrent Kernel Networks
With the previous tools in hand, we now introduce RKNs. We show that it admits
variants of CKNs, substring and local alignment kernels as special cases, and we discuss
its relation with RNNs.

3.3.1. A Continuous Relaxation of the Substring Kernel Allowing
Mismatches

From now on, and with an abuse of notation, we represent characters in A as vectors
in Rd. For instance, when using one-hot encoding, a DNA sequence x = (x1, . . . ,xm)
of length m can be seen as a 4-dimensional sequence where each xj in {0, 1}4 has a
unique non-zero entry indicating which of {A,C,G, T} is present at the j-th position,
and we denote by X the set of such sequences. We now define the single-layer RKN as
a generalized substring kernel (3.1) in which the indicator function δ(xi,x′j) is replaced
by a kernel for k-mers:

Kk(x,x′) :=
∑

i∈Ix,k

∑
j∈Ix′,k

λx,iλx,je
−α2 ‖xi−x′j‖

2
, (3.2)

where we assume that the vectors representing characters have unit `2-norm, such that
e−

α
2 ‖xi−x′j‖

2
= eα(〈xi,x′j〉−k) =

∏k
t=1 e

α
(
〈xit ,x

′
jt
〉−1
)
is a dot-product kernel, and λx,i =

λgaps(i) if we follow (3.1).
For λ = 0 and using the convention 00 = 1, all the terms in these sums are zero except

those for k-mers with no gap, and we recover the kernel of the CKN model of Chen
et al. (2019a) with a convolutional structure—up to the normalization, which is done
k-mer-wise in CKN instead of position-wise.

Compared to (3.1), the relaxed version (3.2) accommodates inexact k-mer matching.
This is important for protein sequences, where it is common to consider different simi-
larities between amino acids in terms of substitution frequency along evolution (Henikoff
and Henikoff, 1992). This is also reflected in the underlying sequence representation in
the RKHS illustrated in Figure 3.1: by considering ϕ(.) the kernel mapping and RKHSH
such that K(xi,x′j) = e−

α
2 ‖xi−x′j‖

2
= 〈ϕ(xi), ϕ(x′j)〉H, we have

Kk(x,x′) =
〈 ∑

i∈Ix,k

λx,iϕ(xi),
∑

j∈Ix′,k

λx,jϕ(x′j)
〉
H

. (3.3)

A natural feature map for a sequence x is therefore Φk(x) =
∑

i∈Ix,k
λx,iϕ(xi): using the

RKN amounts to representing x by a mixture of continuous neighborhoods ϕ(xi) : z 7→
e−

α
2 ‖xi−z‖2 centered on all its k-subsequences xi , each weighted by the corresponding

λx,i (e.g., λx,i = λgaps(i)). As a particular case, a feature map of CKN (Chen et al.,
2019a) is the sum of the kernel mapping of all the k-mers without gap.
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k-mer kernel embedding

one 4-mer of x
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∑
i λ

gap(i)ϕ(xi)

Figure 3.1.: Representation of sequences in a RKHS based on Kk with k = 4 and λx,i =
λgaps(i).

3.3.2. Extension to All k-mers and Relation to the Local Alignment Kernel
Dependency in the hyperparameter k can be removed by summing Kk over all possible
values:

Ksum(x,x′) :=
∞∑
k=1
Kk(x,x′) =

max(|x|,|x′|)∑
k=1

Kk(x,x′).

Interestingly, we note that Ksum admits the local alignment kernel of Vert et al. (2004)
as a special case. More precisely, local alignments are defined via the tensor product set
Ak(x,x′) := Ix,k × Ix′,k, which contains all possible alignments of k positions between
a pair of sequences (x,x′). The local alignment score of each such alignment π =
(i, j) in Ak(x,x′) is defined, by Vert et al. (2004), as S(x,x′, π) :=

∑k
t=1 s(xit ,x′jt) −∑k−1

t=1 [g(it+1 − it − 1) + g(jt+1 − jt − 1)], where s is a symmetric substitution function
and g is a gap penalty function. The local alignment kernel in Vert et al. (2004) can
then be expressed in terms of the above local alignment scores (Thrm. 1.7 in Vert et al.
(2004)):

KLA(x,x′) =
∞∑
k=1

Kk
LA(x,x′) :=

∞∑
k=1

∑
π∈Ak(x,x′)

exp(βS(x,x′, π)) for some β > 0. (3.4)

When the gap penalty function is linear—that is, g(x) = cx with c > 0, Kk
LA becomes

Kk
LA(x,x′) =

∑
π∈Ak(x,x′)

exp(βS(x,x′, π))

=
∑

(i,j)∈Ak(x,x′)
e−cβgaps(i)e−cβgaps(j)

k∏
t=1

e
βs(xit ,x

′
jt

)
.

When s(xit ,x′jt) can be written as an inner-product 〈ψs(xit), ψs(x′jt)〉 between normal-
ized vectors, we see that KLA becomes a special case of (3.2)—up to a constant factor—
with λx,i = e−cβgaps(i), α = β.

This observation sheds new lights on the relation between the substring and local
alignment kernels, which will inspire new algorithms in the sequel. To the best of our
knowledge, the link we will provide between RNNs and local alignment kernels is also
new.
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3.3.3. Nyström Approximation and Recurrent Neural Networks

As in CKNs, we now use the Nyström approximation method as a building block to
make the above kernels tractable. According to (3.3), we may first use the Nyström
method described in Section 3.2.2 to find an approximate embedding for the quantities
ϕ(xi), where xi is one of the k-mers represented as a matrix in Rk×d. This is achieved
by choosing a set Z = {z1, . . . , zq} of anchor points in Rk×d, and by encoding ϕ(xi) as
K
−1/2
ZZ KZ(xi)—where K is the kernel of H. Such an approximation for k-mers yields

the q-dimensional embedding for the sequence x:

ψk(x) =
∑

i∈Ix,k

λx,iK
− 1

2
ZZKZ(xi) = K

− 1
2

ZZ

∑
i∈Ix,k

λx,iKZ(xi). (3.5)

Then, an approximate feature map ψsum(x) for the kernel Ksum can be obtained by
concatenating the embeddings ψ1(x), . . . , ψk(x) for k large enough.

The anchor points as motifs. The continuous relaxation of the substring kernel pre-
sented in (3.2) allows us to learn anchor points that can be interpreted as sequence
motifs, where each position can encode a mixture of letters. This can lead to more rele-
vant representations than k-mers for learning on biological sequences. For example, the
fact that a DNA sequence is bound by a particular transcription factor can be associated
with the presence of a T followed by either a G or an A, followed by another T, would
require two k-mers but a single motif (Chen et al., 2019a). Our kernel is able to perform
such a comparison.

Efficient computations of Kk and Ksum approximation via RNNs. A naive computa-
tion of ψk(x) would require enumerating all substrings present in the sequence, which
may be exponentially large when allowing gaps. For this reason, we use the classical dy-
namic programming approach of substring kernels (Lei et al., 2017; Lodhi et al., 2002).
Consider then the computation of ψj(x) defined in (3.5) for j = 1, . . . , k as well as a
set of anchor points Zk = {z1, . . . , zq} with the zi’s in Rd×k. We also denote by Zj
the set obtained when keeping only j-th first positions (columns) of the zj ’s, leading to
Zj = {[z1]1:j , . . . , [zq]1:j}, which will serve as anchor points for the kernel Kj to compute
ψj(x). Finally, we denote by zji in Rd the j-th column of zi such that zi = [z1

i , . . . , zki ].
Then, the embeddings ψ1(x), . . . , ψk(x) can be computed recursively by using the fol-
lowing theorem:

Theorem 3.1. For any j ∈ {1, . . . , k} and t ∈ {1, . . . , |x|},

ψj(x1:t) = K
− 1

2
ZjZj

{
cj [t] if λx,i = λ|x|−i1−j+1,

hj [t] if λx,i = λgaps(i),
(3.6)

where cj [t] and hj [t] form a sequence of vectors in Rq indexed by t such that cj [1] =
hj [1] = 0, and c0[t] is a vector that contains only ones, while the sequence obeys the
recursion

cj [t] = λcj [t− 1] + cj−1[t− 1]� bj [t] 1 ≤ j ≤ k,
hj [t] = hj [t− 1] + cj−1[t− 1]� bj [t] 1 ≤ j ≤ k,

(3.7)
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3. Recurrent Kernel Networks

where � is the elementwise multiplication operator and bj [t] is a vector in Rq whose
entry i in {1, . . . , q} is e−

α
2 ‖xt−zij‖

2
= eα(〈xt,zij〉−1) and xt is the t-th character of x.

A proof is provided in Appendix 3.A and is based on classical recursions for computing
the substring kernel, which were interpreted as RNNs by Lei et al. (2017). The main
difference in the RNN structure we obtain is that their non-linearity is applied over
the outcome of the network, leading to a feature map formed by composing the feature
map of the substring kernel of Lodhi et al. (2002) and another one from a RKHS that
contains their non-linearity. By contrast, our non-linearities are built explicitly in the
substring kernel, by relaxing the indicator function used to compare characters. The
resulting feature map is a continuous neighborhood around all substrings of the described
sequence. In addition, the Nyström method yields an orthogonalization factor K−1/2

ZZ

to the output KZ(x) of the network to compute our approximation, which is perhaps
the only non-standard component of our RNN. This factor provides an interpretation
of ψ(x) as a kernel approximation. As discussed next, it makes it possible to learn the
anchor points by k-means, see Chen et al. (2019a), which also makes the initialization
of the supervised learning procedure simple without having to deal with the scaling of
the initial motifs/filters zj .

Learning the anchor points Z. We now turn to the application of RKNs to supervised
learning. Given n sequences x1, . . . ,xn in X and their associated labels y1, . . . , yn in Y,
e.g., Y = {−1, 1} for binary classification or Y = R for regression, our objective is to
learn a function in the RKHS H of Kk by minimizing

min
f∈H

1
n

n∑
i=1

L(f(xi), yi) + µ

2 ‖f‖
2
H,

where L : R× R→ R is a convex loss function that measures the fitness of a prediction
f(xi) to the true label yi and µ controls the smoothness of the predictive function. After
injecting our kernel approximation Kk(x,x′) ' 〈ψk(x), ψk(x′)〉Rq , the problem becomes

min
w∈Rq

1
n

n∑
i=1

L
(
〈ψk(xi),w〉, yi

)
+ µ

2 ‖w‖
2. (3.8)

Following Chen et al. (2019a); Mairal (2016), we can learn the anchor points Z without
exploiting training labels, by applying a k-means algorithm to all (or a subset of) the
k-mers extracted from the database and using the obtained centroids as anchor points.
Importantly, once Z has been obtained, the linear function parametrized by w is still
optimized with respect to the supervised objective (3.8). This procedure can be thought
of as learning a general representation of the sequences disregarding the supervised task,
which can lead to a relevant description while limiting overfitting.
Another strategy consists in optimizing (3.8) jointly over (Z,w), after observing that

ψk(x) = K
−1/2
ZZ

∑
i∈Ix,k

λx,iKZ(xi) is a smooth function of Z. Learning can be achieved
by using back-propagation over (Z,w), or by using an alternating minimization strategy
between Z and w. It leads to an end-to-end scheme where both the representation and
the function defined over this representation are learned with respect to the supervised
objective (3.8). Back-propagation rules for most operations are classical, except for the
matrix inverse square root function, which is detailed in Appendix 3.B. Initialization is
also parameter-free since the unsupervised learning approach may be used for that.
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3.3.4. Extensions

Multilayer construction. In order to account for long-range dependencies, it is possi-
ble to construct a multilayer model based on kernel compositions similar to Lei et al.
(2017). Assume that K(n)

k is the n-th layer kernel and Φ(n)
k its mapping function. The

corresponding (n+ 1)-th layer kernel is defined as

K(n+1)
k (x,x′) =

∑
i∈Ix,k,j∈Ix′,k

λ
(n+1)
x,i λ

(n+1)
x′,j

k∏
t=1

Kn+1(Φ(n)
k (x1:it),Φ

(n)
k (x′1:jt)), (3.9)

where Kn+1 will be defined in the sequel and the choice of weights λ(n)
x,i slightly differs

from the single-layer model. We choose indeed λ(N)
x,i = λgaps(i) only for the last layer N of

the kernel, which depends on the number of gaps in the index set i but not on the index
positions. Since (3.9) involves a kernel Kn+1 operating on the representation of prefix
sequences Φ(n)

k (x1:t) from layer n, the representation makes sense only if Φ(n)
k (x1:t) carries

mostly local information close to position t. Otherwise, information from the beginning
of the sequence would be overrepresented. Ideally, we would like the range-dependency
of Φ(n)

k (x1:t) (the size of the window of indices before t that influences the representation,
akin to receptive fields in CNNs) to grow with the number of layers in a controllable
manner. This can be achieved by choosing λ(n)

x,i = λ|x|−i1−k+1 for n < N , which assigns
exponentially more weights to the k-mers close to the end of the sequence.
For the first layer, we recover the single-layer network Kk defined in (3.2) by defining

Φ(0)
k (x1:ik)=xik and K1(xik ,x′jk) = e

α(〈xik ,x
′
jk
〉−1). For n > 1, it remains to define Kn+1

to be a homogeneous dot-product kernel, as used for instance in CKNs (Mairal, 2016):

Kn+1(u,u′) = ‖u‖Hn‖u‖Hnκn

(〈 u
‖u‖Hn

,
u′

‖u′‖Hn

〉
Hn

)
with κn(t) = eαn(t−1).

(3.10)
Note that the Gaussian kernel K1 used for 1st layer may also be written as (3.10) since
characters are normalized. As for CKNs, the goal of homogenization is to prevent norms
to grow/vanish exponentially fast with n, while dot-product kernels lend themselves well
to neural network interpretations.
As detailed in Appendix 3.C, extending the Nyström approximation scheme for the

multilayer construction may be achieved in the same manner as with CKNs—that is,
we learn one approximate embedding ψ(n)

k at each layer, allowing to replace the inner-
products 〈Φ(n)

k (x1:it),Φ
(n)
k (x′1:jt)〉 by their approximations 〈ψ(n)

k (x1:it), ψ
(n)
k (x′1:jt)〉, and

it is easy to show that the interpretation in terms of RNNs is still valid since K(n)
k has

the same sum structure as (3.2).

3.4. Experiments

We evaluate RKN and compare it to typical string kernels and RNN for protein fold
recognition. Pytorch code is provided with the submission and additional details given
in Appendix 3.D.
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3.4.1. Protein Fold Recognition on SCOP 1.67

Sequencing technologies provide access to gene and, indirectly, protein sequences for
yet poorly studied species. In order to predict the 3D structure and function from the
linear sequence of these proteins, it is common to search for evolutionary related ones,
a problem known as homology detection. When no evolutionary related protein with
known structure is available, a—more difficult—alternative is to resort to protein fold
recognition. We evaluate our RKN on such a task, where the objective is to predict
which proteins share a 3D structure with the query (Rangwala and Karypis, 2005).
Here we consider the Structural Classification Of Proteins (SCOP) version 1.67 (Murzin

et al., 1995). We follow the preprocessing procedures of Håndstad et al. (2007) and re-
move the sequences that are more than 95% similar, yielding 85 fold recognition tasks.
Each positive training set is then extended with Uniref50 to make the dataset more bal-
anced, as proposed in Hochreiter et al. (2007). The resulting dataset can be downloaded
from http://www.bioinf.jku.at/software/LSTM_protein. The number of training
samples for each task is typically around 9,000 proteins, whose length varies from tens
to thousands of amino-acids. In all our experiments we use logistic loss. We measure
classification performances using auROC and auROC50 scores (area under the ROC
curve and up to 50% false positives).
For CKN and RKN, we evaluate both one-hot encoding of amino-acids by 20-dimensional

binary vectors and an alternative representation relying on the BLOSUM62 substitution
matrix (Henikoff and Henikoff, 1992). Specifically in the latter case, we represent each
amino-acid by the centered and normalized vector of its corresponding substitution prob-
abilities with other amino-acids. The local alignment kernel (3.4), which we include in
our comparison, natively uses BLOSUM62.

Hyperparameters. We follow the training procedure of CKN presented in Chen et al.
(2019a). Specifically, for each of the 85 tasks, we hold out one quarter of the training
samples as a validation set, use it to tune α, gap penalty λ and the regularization
parameter µ in the prediction layer. These parameters are then fixed across datasets.
RKN training also relies on the alternating strategy used for CKN: we use an Adam
algorithm to update anchor points, and the L-BFGS algorithm to optimize the prediction
layer. We train 100 epochs for each dataset: the initial learning rate for Adam is fixed
to 0.05 and is halved as long as there is no decrease of the validation loss for 5 successive
epochs. We fix k to 10, the number of anchor points q to 128 and use single layer CKN
and RKN throughout the experiments.

Implementation details for unsupervised models. The anchor points for CKN and
RKN are learned by k-means on 30,000 extracted k-mers from each dataset. The re-
sulting sequence representations are standardized by removing mean and dividing by
standard deviation and are used within a logistic regression classifier. α in Gaussian
kernel and the parameter λ are chosen based on validation loss and are fixed across the
datasets. µ for regularization is chosen by a 5-fold cross validation on each dataset.
As before, we fix k to 10 and the number of anchor points q to 1024. Note that the
performance could be improved with larger q as observed in Chen et al. (2019a), at a
higher computational cost.
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3.4. Experiments

Table 3.1.: Average auROC and auROC50 for SCOP fold recognition benchmark. LA-
kernel uses BLOSUM62 to compare amino acids which is a little different
from our encoding approach. Details about pairwise statistical tests between
methods can be found in Appendix 3.D.

Method pooling one-hot BLOSUM62
auROC auROC50 auROC auROC50

GPkernel (Håndstad et al., 2007) 0.844 0.514
– –SVM-pairwise (Liao and Noble, 2003) 0.724 0.359

Mismatch (Leslie et al., 2004) 0.814 0.467
LA-kernel (Saigo et al., 2004) – – 0.834 0.504

LSTM (Hochreiter et al., 2007) 0.830 0.566 – –

CKN-seq (Chen et al., 2019a) mean 0.827 0.536 0.843 0.563
CKN-seq (Chen et al., 2019a) max 0.837 0.572 0.866 0.621
CKN-seq (unsup)(Chen et al., 2019a) mean 0.804 0.493 0.827 0.548

RKN (λ = 0) mean 0.829 0.542 0.838 0.563
RKN mean 0.829 0.541 0.840 0.571
RKN (λ = 0) max 0.840 0.575 0.862 0.618
RKN max 0.844 0.587 0.871 0.629
RKN (unsup) mean 0.805 0.504 0.833 0.570

Comparisons and results. The results are shown in Table 3.1. The blosum62 version of
CKN and RKN outperform all other methods. Improvement against the mismatch and
LA kernels is likely caused by end-to-end trained kernel networks learning a task-specific
representation in the form of a sparse set of motifs, whereas data-independent kernels
lead to learning a dense function over the set of descriptors. This difference can have a
regularizing effect akin to the `1-norm in the parametric world, by reducing the dimen-
sion of the learned linear function w while retaining relevant features for the prediction
task. GPkernel also learns motifs, but relies on the exact presence of discrete motifs.
Finally, both LSTM and Lei et al. (2017) are based on RNNs but are outperformed by
kernel networks. The latter was designed and optimized for NLP tasks and yields a 0.4
auROC50 on this task.
RKNs outperform CKNs, albeit not by a large margin. Interestingly, as the two kernels

only differ by their allowing gaps when comparing sequences, this results suggests that
this aspect is not the most important for identifying common foldings in a one versus
all setting: as the learned function discriminates on fold from all others, it may rely on
coarser features and not exploit more subtle ones such as gappy motifs. In particular,
the advantage of the LA-kernel against its mismatch counterpart is more likely caused
by other differences than gap modeling, namely using a max rather than a mean pooling
of k-mer similarities across the sequence, and a general substitution matrix rather than
a Dirac function to quantify mismatches.
Additional details and results, scatter plots, and pairwise tests between methods to

assess the statistical significance of our conclusions are provided in Appendix 3.D. Note
that when k = 14, the auROC and auROC50 further increase to 0.877 and 0.636 respec-
tively.
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Table 3.2.: Classification accuracy for SCOP 2.06. The complete table with error bars
can be found in Appendix 3.D.

Method ]Params Accuracy on SCOP 2.06 Level-stratified accuracy (top1/top5/top10)
top 1 top 5 top 10 family superfamily fold

PSI-BLAST - 84.53 86.48 87.34 82.20/84.50/85.30 86.90/88.40/89.30 18.90/35.10/35.10
DeepSF 920k 73.00 90.25 94.51 75.87/91.77/95.14 72.23/90.08/94.70 51.35/67.57/72.97
CKN (128 filters) 211k 76.30 92.17 95.27 83.30/94.22/96.00 74.03/91.83/95.34 43.78/67.03/77.57
CKN (512 filters) 843k 84.11 94.29 96.36 90.24/95.77/97.21 82.33/94.20/96.35 45.41/69.19/79.73

RKN (128 filters) 211k 77.82 92.89 95.51 76.91/93.13/95.70 78.56/92.98/95.53 60.54/83.78/90.54
RKN (512 filters) 843k 85.29 94.95 96.54 84.31/94.80/96.74 85.99/95.22/96.60 71.35/84.86/89.73

3.4.2. Protein Fold Classification on SCOP 2.06
We further benchmark RKN in a fold classification task, following the protocols used
in Hou et al. (2018). Specifically, the training and validation datasets are composed
of 14699 and 2013 sequences from SCOP 1.75, belonging to 1195 different folds. The
test set consists of 2533 sequences from SCOP 2.06, after removing the sequences with
similarity greater than 40% with SCOP 1.75. The input sequence feature is represented
by a vector of 45 dimensions, consisting of a 20-dimensional one-hot encoding of the
sequence, a 20-dimensional position-specific scoring matrix (PSSM) representing the
profile of amino acids, a 3-class secondary structure represented by a one-hot vector and
a 2-class solvent accessibility. We further normalize each type of the feature vectors to
have unit `2-norm, which is done for each sequence position. More dataset details can be
found in Hou et al. (2018). We use mean pooling for both CKN and RKN models, as it
is more stable during training for multi-class classification. The other hyperparameters
are chosen in the same way as previously. More details about hyperparameter search
grid can be found in Appendix 3.D.
The accuracy results are obtained by averaging 10 different runs and are shown in

Table 3.2, stratified by prediction difficulty (family/superfamily/fold, more details can
be found in Hou et al. (2018)). By contrast to what we observed on SCOP 1.67, RKN
sometimes yields a large improvement on CKN for fold classification, especially for de-
tecting distant homologies. This suggests that accounting for gaps does help in some
fold prediction tasks, at least in a multi-class context where a single function is learned
for each fold.
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Appendix
3.A. Nyström Approximation for Single-Layer RKN
We detail here the Nytröm approximation presented in Section 3.3.3, which we recall
here for a sequence x:

ψk(x) = K
−1/2
ZZ

∑
i∈Ix,k

λx,iKZ(xi). (3.11)

Consider then the computation of ψj(x) defined in (3.11) for j = 1, . . . , k given a set of
anchor points Zk = {z1, . . . , zq} with the zi’s in Rd×k. Given the notations introduced
in Section 3.3.3, we are now in shape to prove Theorem 3.1.

Proof. The proof is based on Theorem 1 of Lei et al. (2017) and definition 2 of Lodhi
et al. (2002). For i ∈ Ix,j , let us denote by i′ = (i1, . . . , ij−1) the j − 1 first entries of
i. We first notice that for the Gaussian kernel K, we have the following factorization
relation for i = 1, . . . , q

K(xi, [zi]1:j) = eα(〈xi,[zi]1:j〉−j)

= eα(〈xi′ ,[zi]1:j−1〉−(j−1))eα(〈xij ,zj〉−1)

= K(xi′ , [zi]1:j−1)eα(〈xij ,zj〉−1).

Thus
KZj (xi) = KZj−1(xi′)� bj [ij ],

with bj [t] defined as in the theorem.
Let us denote

∑
i∈Ix1:t,j

λx1:t,iKZj (xi) by c̃j [t] if λx,i = λ|x|−i1−j+1 and by h̃j [t] if
λx,i = λgaps(i). We want to prove that c̃j [t] = cj [t] and h̃j [t] = hj [t]. First, it is clear
that c̃j [0] = 0 for any j. We show by induction on j that c̃j [t] = cj [t]. When j = 1, we
have

c̃1[t] =
∑

1≤i1≤t
λt−i1KZ1(xi1)

=
∑

1≤i1≤t−1
λt−i1KZ1(xi1) +KZ1(xt),

= λc̃1[t− 1] + b1[t].

c̃1[t] and c1[t] have the same recursion and initial state thus are identical. When j > 1
and suppose that c̃j−1[t] = cj−1[t], then we have

c̃j [t] =
∑

i∈Ix1:t,j

λt−i1−j+1KZj (xi),

=
∑

i∈Ix1:t−1,j

λt−i1−j+1KZj (xi)

︸ ︷︷ ︸
ij<t

+
∑

i′∈Ix1:t−1,j−1

λ(t−1)−s1−(j−1)+1KZj−1(xi′)� bj [t]

︸ ︷︷ ︸
ij=t

,

= λc̃j [t− 1] + c̃j−1[t]� bj [t],
= λc̃j [t− 1] + cj−1[t]� bj [t].
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c̃j [t] and cj [t] have the same recursion and initial state. We have thus proved that
c̃j [t] = cj [t]. Let us move on for proving h̃j [t] = hj [t] by showing that they have the
same initial state and recursion. It is straightforward that h̃j [0] = 0, then for 1 ≤ j ≤ k
we have

h̃j [t] =
∑

i∈Ix1:t,j

λij−i1−j+1KZj (xi),

=
∑

i∈Ix1:t−1,j

λij−i1−j+1KZj (xi) +
∑

i′∈Ix1:t−1,j−1

λ(t−1)−s1−(j−1)+1KZj−1(xi′)� bj [t]

=h̃j [t− 1] + cj−1[t]� bj [t].

Therefore h̃j [t] = hj [t].

3.B. Back-propagation for Matrix Inverse Square Root
In Section 3.3.3, we have described an end-to-end scheme to jointly optimize Z and w.
The back-propagation of Z requires computing that of the matrix inverse square root
operation as it is involved in the approximate feature map of x as shown in (3.11). The
back-propagation formula is given by the following proposition, which is based on an
errata of (Mairal, 2016) and we include it here for completeness.

Proposition 3.1. Given A a symmetric positive definite matrix in Rn×n and the eigen-
composition of A is written as A = U∆U> where U is orthogonal and ∆ is diagonal
with eigenvalues δ1, . . . , δn. Then

d(A−
1
2 ) = −U(F ◦ (U>dAU))U>. (3.12)

Proof. First, let us differentiate with respect to the inverse matrix A−1:

A−1A = I =⇒ A−1dA + d(A−1)A = 0 =⇒ d(A−1) = −A−1dAA−1.

Then, by applying the same (classical) trick,

A−
1
2 A−

1
2 = A−1 =⇒ d(A−

1
2 )A−

1
2 + A−

1
2d(A−

1
2 ) = d(A−1) = −A−1dAA−1.

By multiplying the last relation by U> on the left and by U on the right.

U>d(A−
1
2 )U∆−

1
2 + ∆−

1
2 U>d(A−

1
2 )U = −∆−1U>dAU∆−1.

Note that ∆ is diagonal. By introducing the matrix F such that Fkl = 1√
δk
√
δl(
√
δk+
√
δl)

,
it is then easy to show that

U>d(A−
1
2 )U = −F ◦ (U>dAU),

where ◦ is the Hadamard product between matrices. Then, we are left with

d(A−
1
2 ) = −U(F ◦ (U>dAU))U>.
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Figure 3.C.1.: Multilayer construction of RKN: an example with k = 4.

When doing back-propagation, one is usually interested in computing a quantity Ā
such that given B̄ (with appropriate dimensions), we have

〈B̄, d(A−
1
2 )〉F = 〈Ā, dA〉F ,

see Giles (2008), for instance. Here, 〈, 〉F denotes the Frobenius inner product. Then, it
is easy to show that

Ā = −U(F ◦ (U>B̄U))U>.

3.C. Multilayer Construction of RKN

For multilayer RKN, assume that we have defined K(n) the n-th layer kernel. To simplify
the notation below, we consider that an input sequence x is encoded at layer n as
x(n) := (Φ(n)

k (x1),Φ(n)
k (x1:2), . . . ,Φ(n)

k (x)) where the feature map at position t is x(n)
t =

Φ(n)
k (x1:t). The (n+ 1)-layer kernel is defined by induction by

K(n+1)
k (x,x′) =

∑
i∈Ix,k,j∈Ix′,k

λ
(n)
x,i λ

(n)
x′,j

k∏
t=1

Kn+1(x(n)
it
,x′(n)

jt
), (3.13)

where Kn+1 is defined in (3.10. With the choice of weights described in Section 3.3.4,
the construction scheme for an n-layer RKN is illustrated in Figure 3.C.1 The Nyström
approximation scheme for multilayer RKN is straightforward by inductively applying
the Nytröm method to the kernels K(1), . . . ,K(n) from bottom to top layers. Specifically,
assume that K(n)(x,x′) is approximated by 〈ψ(n)

k (x), ψ(n)
k (x′)〉Rqn such that the approxi-

mate feature map of x(n) at position t is ψ(n)
k (x1:t). Now Consider a set of anchor points

Zk = {z1, . . . , zqn+1} with the zi’s in Rqn×k which have unit norm at each column. We
use the same notations as in single-layer construction. Then very similar to the single-
layer RKN, the embeddings (ψ(n+1)

j (x(n)
1:t ))1=1,...,k,t=1,...,|x(n)| are given by the following

recursion

Theorem 3.2. For any j ∈ {1, . . . , k} and t ∈ {1, . . . , |x(n)|},

ψ
(n+1)
j (x(n)

1:t ) = K
−1/2
ZjZj

cj [t] if λ(n)
x,i = λ|x

(n)|−i1−j+1,

hj [t] if λ(n)
x,i = λgaps(i),
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3. Recurrent Kernel Networks

where cj [t] and hj [t] form a sequence of vectors in Rqn+1 indexed by t such that cj [0] =
hj [0] = 0, and c0[t] is a vector that contains only ones, while the sequence obeys the
recursion

cj [t] = λcj [t− 1] + cj−1[t− 1]� bj [t] 1 ≤ j ≤ k,
hj [t] = hj [t− 1] + cj−1[t− 1]� bj [t] 1 ≤ j ≤ k,

(3.14)

where � is the elementwise multiplication operator and bj [t] whose entry i is Kn+1(zij ,x
(n)
t ) =

‖x(n)
t ‖κn

(〈
zij ,

x(n)
t

‖x(n)
t ‖

〉)
.

Proof. The proof can be obtained by that of Theorem 3.1 by replacing the Gaussian
kernel eα(〈xt,zij) with the kernel Kn+1(x(n)

t , zij).

3.D. Additional Experimental Material

In this section, we provide additional details about experiments and scatter plots with
pairwise statistical tests.

3.D.1. Protein Fold Recognition on SCOP 1.67

Hyperparameter search grids. Here, we first provide the grids used for hyperparameter
search. In our experiments, we use σ instead of α such that α = 1/kσ2. The search
range is specified in Table 3.D.1.

Table 3.D.1.: Hyperparameter search range.
hyperparameter search range

σ (α = 1/kσ2) [0.3;0.4;0.5;0.6]
µ for mean pooling [1e-06;1e-05;1e-04]
µ for max pooling [0.001;0.01;0.1;1.0]
λ integer multipliers of 0.05 in [0;1]

Comparison of unsupervised CKNs and RKNs. Then, we provide an additional table
of results to compare the unsupervised models of CKN and RKN. In this unsupervised
regime, mean pooling perform better than max pooling, which is different than what
we have observed in the supervised case. RKN tend to work better than CKN, while
RKN-sum—that is, using the kernel Ksum instead of Kk, works better than RKN.

Study of filter number q and size k. Here we use max pooling and fix σ to 0.4 and λ
to 0.1. When q varies k is fixed to 10 and q is fixed to 128 when k varies. We show here
the performance of RKN with different choices of q and k. The gap hyperparameter λ
is chosen optimally for each q and k. The results are shown in Figure 3.D.1.
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3.D. Additional Experimental Material

Table 3.D.2.: Comparison of unsupervised CKN and RKN with 1024 anchor points.
Method Pooling one-hot BLOSUM62

auROC auROC50 auROC auROC50

CKN mean 0.804 0.493 0.827 0.548
CKN max 0.795 0.480 0.821 0.545
RKN (λ = 0) mean 0.804 0.500 0.833 0.565
RKN mean 0.805 0.504 0.833 0.570
RKN (λ = 0) max 0.795 0.482 0.824 0.537
RKN max 0.801 0.492 0.824 0.542
RKN-sum (λ = 0) mean 0.820 0.526 0.834 0.567
RKN-sum mean 0.821 0.527 0.834 0.565
RKN-sum (λ = 0) max 0.825 0.526 0.837 0.563
RKN-sum max 0.825 0.528 0.837 0.564
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Figure 3.D.1.: Boxplots when varying filter number q (left) and filter size (right).
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Discussion about complexity. Performing backpropgation with our RKN model has
the same complexity has a performing a similar step within a recurrent neural network,
up to the computation of the inverse square root matrix K−1/2

ZZ , which has complexity
O(q3). When q is reasonably small q = 128 in our experiments, such a complexity is
negligible. For instance, one forward pass with a minibatch of b = 128 sequences of
length m yields a complexity O(k2mbq), which can typically be much greater than q3.

Computing infrastructures. Experiments were conduced by using a shared GPU clus-
ter, in large parts build with Nvidia gamer cards (Titan X, GTX1080TI). About 10 of
these GPUs were used simultaneously to perform the experiments of this chapter.

Scatter plots and statistical testing. Even though each method was run only one time
for each task, the 85 tasks allow us to conduct statistical testing when comparing two
methods. In Figure 3.D.2, we provide pairwise comparisons allowing us to assess the
statistical significance of various conclusions drawn in the chapter. We use a Wilcoxon
signed-rank test to provide p-values.

3.D.2. Protein Fold Classification on SCOP 2.06
Hyperparameter search grids. We provide the grids used for hyperparameter search,
shown in Table 3.D.3.

Table 3.D.3.: Hyperparameter search range for SCOP 2.06.
hyperparameter search range

σ (α = 1/kσ2) [0.3;0.4;0.5;0.6]
µ [0.01;0.03;0.1;0.3;1.0;3.0;10.0]
λ integer multipliers of 0.05 in [0;1]

Complete results with error bars. The classification accuracy for CKNs and RKNs
on protein fold classification on SCOP 2.06 are obtained by averaging on 10 runs with
different seeds. The results are shown in Table 3.D.4 with error bars.
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Figure 3.D.2.: Scatterplots when comparing pairs of methods. In particular, we want to
compare RKN vs CKN (top); , RKN vs RKN (unsup) (middle); RKN vs.
LSTM (bottom).
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Table 3.D.4.: Classification accuracy for SCOP 2.06 on all (top) and level-stratified (bot-
tom) test data. For CKNs and RKNs, the results are obtained over 10
different runs.

Method Params Accuracy on SCOP 2.06
top 1 top 5 top 10

PSI-BLAST - 84.53 86.48 87.34
DeepSF 920k 73.00 90.25 94.51
CKN (128 filters) 211k 76.30±0.70 92.17±0.16 95.27±0.17
CKN (512 filters) 843k 84.11±0.16 94.29±0.20 96.36±0.13

RKN (128 filters) 211k 77.82±0.35 92.89±0.19 95.51±0.20
RKN (512 filters) 843k 85.29±0.27 94.95±0.15 96.54±0.12

Method Level-stratified accuracy (top1/top5/top10)
family superfamily fold

PSI-BLAST 82.20/84.50/85.30 86.90/88.40/89.30 18.90/35.10/35.10
DeepSF 75.87/91.77/95.14 72.23/90.08/94.70 51.35/67.57/72.97
CKN (128 filters) 83.30±0.78/94.22±0.25/96.00±0.26 74.03±0.87/91.83±0.24/95.34±0.20 43.78±3.59/67.03±3.38/77.57±3.64
CKN (512 filters) 90.24±0.16/95.77±0.21/97.21±0.15 82.33±0.19/94.20±0.21/96.35±0.13 45.41±1.62/69.19±1.79/79.73±3.68

RKN (128 filters) 76.91±0.87/93.13±0.17/95.70±0.37 78.56±0.40/92.98±0.22/95.53±0.18 60.54±2.76/83.78±2.96/90.54±1.35
RKN (512 filters) 84.31±0.61/94.80±0.21/96.74±0.29 85.99±0.30/95.22±0.16/96.60±0.12 71.35±1.32/84.86±2.16/89.73±1.08
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We introduce a family of multilayer graph kernels and establish new links between
graph convolutional neural networks and kernel methods. Our approach generalizes
convolutional kernel networks to graph-structured data, by representing graphs as
a sequence of kernel feature maps, where each node carries information about local
graph substructures. On the one hand, the kernel point of view offers an unsuper-
vised, expressive, and easy-to-regularize data representation, which is useful when
limited samples are available. On the other hand, our model can also be trained
end-to-end on large-scale data, leading to new types of graph convolutional neural
networks. We show that our method achieves competitive performance on several
graph classification benchmarks, while offering simple model interpretation. Our
code is freely available at https://github.com/claying/GCKN.

The chapter is based on the following publication:

D. Chen, L. Jacob, and J. Mairal. Convolutional kernel networks for graph-structured
data. In International Conference on Machine Learning (ICML), 2020

4.1. Introduction

Graph kernels are classical tools for representing graph-structured data (see Kriege et al.,
2020, for a survey). Most successful examples represent graphs as very-high-dimensional
feature vectors that enumerate and count occurences of local graph sub-structures. In
order to perform well, a graph kernel should be as expressive as possible, i.e., able
to distinguish graphs with different topological properties (Kriege et al., 2018), while
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admitting polynomial-time algorithms for its evaluation. Common sub-structures in-
clude walks (Gärtner et al., 2003), shortest paths (Borgwardt and Kriegel, 2005), sub-
trees (Shervashidze et al., 2011), or graphlets (Shervashidze et al., 2009).
Graph kernels have shown to be expressive enough to yield good empirical results,

but decouple data representation and model learning. In order to obtain task-adaptive
representations, another line of research based on neural networks has been developed
recently (Niepert et al., 2016; Kipf and Welling, 2017; Xu et al., 2019; Verma et al.,
2018). The resulting tools, called graph neural networks (GNNs), are conceptually sim-
ilar to convolutional neural networks (CNNs) for images; they provide graph-structured
multilayer models, where each layer operates on the previous layer by aggregating lo-
cal neighbor information. Even though harder to regularize than kernel methods, these
models are trained end-to-end and are able to extract features adapted to a specific
task. In a recent work, Xu et al. (2019) have shown that the class of GNNs based on
neighborhood aggregation is at most as powerful as the Weisfeiler-Lehman (WL) graph
isomorphism test, on which the WL kernel is based (Shervashidze et al., 2011), and
other types of network architectures than simple neighborhood aggregation are needed
for more powerful features.
Since GNNs and kernel methods seem to benefit from different characteristics, several

links have been drawn between both worlds in the context of graph modeling. For in-
stance, Lei et al. (2017) introduce a class of GNNs whose output lives in the reproducing
kernel Hilbert space (RKHS) of a WL kernel. In this line of research, the kernel frame-
work is essentially used to design the architecture of the GNN since the final model is
trained as a classical neural network. This is also the approach used by Zhang et al.
(2018a) and Morris et al. (2019). By contrast, Du et al. (2019) adopt an opposite strategy
and leverage a GNN architecture to design new graph kernels, which are equivalent to
infinitely-wide GNNs initialized with random weights and trained with gradient descent.
Other attempts to merge neural networks and graph kernels involve using the metric
induced by graph kernels to initialize a GNN (Navarin et al., 2018), or using graph ker-
nels to obtain continuous embeddings that are plugged to neural networks (Nikolentzos
et al., 2018).
In this chapter, we go a step further in bridging graph neural networks and kernel

methods by proposing an explicit multilayer kernel representation, which can be used
either as a traditional kernel method, or trained end-to-end as a GNN when enough la-
beled data are available. The multilayer construction allows to compute a series of maps
which account for local sub-structures (“receptive fields”) of increasing size. The graph
representation is obtained by pooling the final representations of its nodes. The result-
ing kernel extends to graph-structured data the concept of convolutional kernel networks
(CKNs), which was originally designed for images and sequences (Mairal, 2016; Chen
et al., 2019a). As our representation of nodes is built by iteratively aggregating repre-
sentations of their outgoing paths, our model can also be seen as a multilayer extension
of path kernels. Relying on paths rather than neighbors for the aggregation step makes
our approach more expressive than the GNNs considered in Xu et al. (2019), which
implicitly rely on walks and whose power cannot exceed the Weisfeiler-Lehman (WL)
graph isomorphism test. Even with medium/small path lengths (which leads to reason-
able computational complexity in practice), we show that the resulting representation
outperforms walk or WL kernels.
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Our model called graph convolutional kernel network (GCKN) relies on the successive
uses of the Nyström method (Williams and Seeger, 2001) to approximate the feature
map at each layer, which makes our approach scalable. GCKNs can then be interpreted
as a new type of graph neural network whose filters may be learned without supervision,
by following kernel approximation principles. Such unsupervised graph representation
is known to be particularly effective when small amounts of labeled data are available.
Similar to CKNs, our model can also be trained end-to-end, as a GNN, leading to task-
adaptive representations, with a computational complexity similar to that of a GNN
when the path lengths are small enough.

Notation. A graph G is defined as a triplet (V, E , a), where V is the set of vertices, E
is the set of edges, and a : V → Σ is a function that assigns attributes, either discrete
or continous, from a set Σ to nodes in the graph. A path is a sequence of distinct
vertices linked by edges and we denote by P(G) and Pk(G) the set of paths and paths
of length k in G, respectively. In particular, P0(G) is reduced to V. We also denote by
Pk(G, u) ⊂ Pk(G) the set of paths of length k starting from u in V. For any path p in
P(G), we denote by a(p) in Σ|p|+1 the concatenation of node attributes in this path. We
replace P withW to denote the corresponding sets of walks by allowing repeated nodes.

4.2. Related Work on Graph Kernels

Graph kernels were originally introduced by Gärtner et al. (2003) and Kashima et al.
(2003), and have been the subject of intense research during the last twenty years (see
the reviews of Vishwanathan et al., 2010; Kriege et al., 2020).

In this chapter, we consider graph kernels that represent a graph as a feature vector
counting the number of occurrences of some local connected sub-structure. Enumerat-
ing common local sub-structures between two graphs is unfortunately often intractable;
for instance, enumerating common subgraphs or common paths is known to be NP-
hard (Gärtner et al., 2003). For this reason, the literature on graph kernels has focused
on alternative structures allowing for polynomial-time algorithms, e.g., walks.
More specifically, we consider graph kernels that perform pairwise comparisons be-

tween local sub-structures centered at every node. Given two graphs G = (V, E , a) and
G′ = (V ′, E ′, a′), we consider the kernel

K(G,G′) =
∑
u∈V

∑
u′∈V ′

κbase(lG(u), lG′(u′)), (4.1)

where the base kernel κbase compares a set of local patterns centered at nodes u and
u′, denoted by lG(u) and lG′(u′), respectively. For simplicity, we will omit the notation
lG(u) in the rest of the chapter, and the base kernel will be simply written κbase(u, u′)
with an abuse of notation. As noted by Lei et al. (2017); Kriege et al. (2020), this class
of kernels covers most of the examples mentioned in the introduction.

Walks and path kernels. Since computing all path co-occurences between graphs is
NP-hard, it is possible instead to consider paths of length k, which can be reasonably
enumerated if k is small enough, or the graphs are sparse. Then, we may define the

81



4. Convolutional Kernel Networks for Graph-Structured Data

kernel K(k)
path as (4.1) with

κbase(u, u′) =
∑

p∈Pk(G,u)

∑
p′∈Pk(G′,u′)

δ(a(p), a′(p′)), (4.2)

where a(p) represents the attributes for path p in G, and δ is the Dirac kernel such that
δ(a(p), a′(p′)) = 1 if a(p) = a′(p′) and 0 otherwise.

It is also possible to define a variant that enumerates all paths up to length k, by
simply adding the kernels K(i)

path:

Kpath(G,G′) =
k∑
i=0

K
(i)
path(G,G′). (4.3)

Similarly, one may also consider using walks by simply replacing the notation P by W
in the previous definitions.

Weisfeiler-Lehman subtree kernels. A subtree is a subgraph with a tree structure. It
can be extended to subtree patterns (Shervashidze et al., 2011; Bach, 2008) by allowing
nodes to be repeated, just as the notion of walks extends that of paths. All previ-
ous subtree kernels compare subtree patterns instead of subtrees. Among them, the
Weisfeiler-Lehman (WL) subtree kernel is one of the most widely used graph kernels to
capture such patterns. It is essentially based on a mechanism to augment node attributes
by iteratively aggregating and hashing the attributes of each node’s neighborhoods. Af-
ter i iterations, we denote by ai the new node attributes for graph G = (V, E , a), which
is defined in Algorithm 1 of Shervashidze et al. (2011) and then the WL subtree kernel
after k iterations is defined, for two graphs G = (V, E , a) and G′ = (V ′, E ′, a′), as

KWL(G,G′) =
k∑
i=0

K
(i)
subtree(G,G

′), (4.4)

where
K

(i)
subtree(G,G

′) =
∑
u∈V

∑
u′∈V ′

κ
(i)
subtree(u, u

′), (4.5)

with κ
(i)
subtree(u, u′) = δ(ai(u), a′i(u′)) and the attributes ai(u) capture subtree patterns

of depth i rooted at node u.

4.3. Graph Convolutional Kernel Networks

In this section, we introduce our model, which builds upon the concept of graph-
structured feature maps, following the terminology of convolutional neural networks.

Definition 4.1 (Graph feature map). Given a graph G = (V, E , a) and a RKHS H, a
graph feature map is a mapping ϕ : V → H, which associates to every node a point in H
representing information about local graph substructures.
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We note that the definition matches that of convolutional kernel networks (Mairal,
2016) when the graph is a two-dimensional grid. Generally, the map ϕ depends on the
graph G, and can be seen as a collection of |V| elements of H describing its nodes. The
kernel associated to the feature maps ϕ,ϕ′ for two graphs G,G′, is defined as

K(G,G′)=
∑
u∈V

∑
u′∈V ′
〈ϕ(u), ϕ′(u′)〉H=〈Φ(G),Φ(G′)〉H, (4.6)

with
Φ(G) =

∑
u∈V

ϕ(u) and Φ(G′) =
∑
u∈V ′

ϕ′(u). (4.7)

The RKHS of K can be characterized by using Theorem 4.2 in Appendix 4.A. It is the
space of functions fz : G 7→ 〈z,Φ(G)〉H for all z in H endowed with a particular norm.
Note that even though graph feature maps ϕ,ϕ′ are graph-dependent, learning with

K is possible as long as they all map nodes to the same RKHS H—as Φ will then also
map all graphs to the same space H. We now detail the full construction of the kernel,
starting with a single layer.

4.3.1. Single-Layer Construction of the Feature Map
We propose a single-layer model corresponding to a continuous relaxation of the path ker-
nel. We assume that the input attributes a(u) live in Rq0 , such that a graph G = (V, E , a)
admits a graph feature map ϕ0 : V → H0 with H0 = Rq0 and ϕ0(u) = a(u). Note that
this assumption also allows us to handle discrete labels by using a one-hot encoding
strategy—that is e.g., four labels {A,B,C,D} are represented by four-dimensional vec-
tors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), respectively.

Continuous relaxation of the path kernel. We rely on paths of length k, and introduce
the kernel K1 for graphs G,G′ with feature maps ϕ0, ϕ

′
0 of the form (4.1) with

κbase(u, u′) =
∑

p∈Pk(G,u)

∑
p′∈Pk(G′,u′)

κ1(ϕ0(p), ϕ′0(p′)), (4.8)

where ϕ0(p) = [ϕ0(pi)]ki=0 denotes the concatenation of k + 1 attributes along path p,
which is an element of Hk+1

0 , pi is the i-th node on path p starting from index 0, and κ1
is a Gaussian kernel comparing such attributes:

κ1(ϕ0(p), ϕ′0(p′)) = e
−α1

2
∑k

i=0 ‖ϕ0(pi)−ϕ′0(p′i)‖
2
H0 . (4.9)

This is an extension of the path kernel, obtained by replacing the hard matching func-
tion δ in (4.2) by κ1, as done for instance by Togninalli et al. (2019) for the WL kernel.
This replacement not only allows us to use continuous attributes, but also has important
consequences in the discrete case since it allows to perform inexact matching between
paths. For instance, when the graph is a chain with discrete attributes—in other words,
a string—then, paths are simply k-mers, and the path kernel (with matching function δ)
becomes the spectrum kernel for sequences (Leslie et al., 2001). By using κ1 instead, we
obtain the single-layer CKN kernel of Chen et al. (2019a), which performs inexact match-
ing, as the mismatch kernel does (Leslie et al., 2004), and leads to better performances
in many tasks involving biological sequences.
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From graph feature map ϕ0 to graph feature map ϕ1. The kernel κ1 acts on pairs
of paths in potentially different graphs, but only through their mappings to the same
space Hk+1

0 . Since κ1 is positive definite, we denote by H1 its RKHS and consider its
mapping φpath

1 : Hk+1
0 → H1 such that

κ1(ϕ0(p), ϕ′0(p′)) = 〈φpath
1 (ϕ0(p)) , φpath

1
(
ϕ′0(p′)

)
〉H1 .

For any graph G, we can now define a graph feature map ϕ1 : V → H1, operating on
nodes u in V, as

ϕ1(u) =
∑

p∈Pk(G,u)
φpath

1 (ϕ0(p)) . (4.10)

Then, the continuous relaxation of the path kernel, denoted by K1(G,G′), can also
be written as (4.6) with ϕ = ϕ1, and its underlying kernel representation Φ1 is given
by (4.7). The construction of ϕ1 from ϕ0 is illustrated in Figure 4.1.

u

ϕj(u) ∈ Hj

(V , E , ϕj : V → Hj)

path extraction

kernel mapping

path aggregation

u

u

ϕj+1(u) ∈ Hj+1

u u u

p1 p2 p3

φpath
j+1 (ϕj(p1))

φpath
j+1 (ϕj(p2))

φpath
j+1 (ϕj(p3))

kernel mapping

Hj+1

path aggregation

ϕj+1(u) := φpath
j+1 (ϕj(p1)) + φpath

j+1 (ϕj(p2)) + φpath
j+1 (ϕj(p3))

(V , E , ϕj+1 : V → Hj+1)

Figure 4.1.: Construction of the graph feature map ϕj+1 from ϕj given a graph (V, E).
The first step extracts paths of length k (here colored by red, blue and green)
from node u, then (on the right panel) maps them to a RKHS Hj+1 via the
Gaussian kernel mapping. The new map ϕj+1 at u is obtained by local path
aggregation (pooling) of their representations in Hj+1. The representations
for other nodes can be obtained in the same way. In practice, such a model
is implemented by using finite-dimensional embeddings approximating the
feature maps, see Section 4.3.2.

The graph feature map ϕ0 maps a node (resp a path) to H0 (resp Hk+1
0 ) which

is typically a Euclidean space describing its attributes. By contrast, φpath
1 is the kernel

mapping of the Gaussian kernel κ1, and maps each path p to a Gaussian function centered
at ϕ0(p)—remember indeed that for kernel function K : X ×X → R with RKHS H, the
kernel mapping is of a data point x is the function K(x, .) : X → R. Finally, ϕ1 maps
each node u to a mixture of Gaussians, each Gaussian function corresponding to a path
starting at u.
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4.3.2. Concrete Implementation and GCKNs
We now discuss algorithmic aspects, leading to the graph convolutional kernel network
(GCKN) model, which consists in building a finite-dimensional embedding Ψ(G) that
may be used in various learning tasks without scalability issues. We start here with the
single-layer case.

The Nyström method and the single-layer model. A naive computation of the path
kernelK1 requires comparing all pairs of paths in each pair of graphs. To gain scalability,
a key component of the CKN model is the Nyström method (Williams and Seeger, 2001),
which computes finite-dimensional approximate kernel embeddings. We discuss here the
use of such a technique to define finite-dimensional maps ψ1 : V → Rq1 and ψ′1 : V ′ → Rq1

for graphs G,G′ such that for all pairs of nodes u, u′ in V, V ′, respectively,

〈ϕ1(u), ϕ′1(u′)〉H1 ≈ 〈ψ1(u), ψ′1(u′)〉Rq1 .

The consequence of such an approximation is that it provides a finite-dimensional ap-
proximation Ψ1 of Φ1:

K1(G,G′) ≈ 〈Ψ1(G),Ψ1(G′)〉Rq1

with Ψ1(G) =
∑
u∈V

ψ1(u).

Then, a supervised learning problem with kernel K1 on a dataset (Gi, yi)i=1,...,n, where
yi are labels in R, can be solved by minimizing the regularized empirical risk

min
w∈Rq1

n∑
i=1

L(yi, 〈Ψ1(Gi), w〉) + λ‖w‖2, (4.11)

where L is a convex loss function. Next, we show that using the Nyström method to
approximate the kernel κ1 yields a new type of GNN, represented by Ψ1(G), whose filters
can be obtained without supervision, or, as discussed later, with back-propagation in a
task-adaptive manner.
Specifically, the Nyström method projects points from a given RKHS onto a finite-

dimensional subspace and performs all subsequent operations within that subspace. In
the context of κ1, whose RKHS is H1 with mapping function φpath

1 , we consider a col-
lection Z = {z1, . . . , zq1} of q1 prototype paths represented by attributes in Hk+1

0 , and
we define the subspace E1 = Span(φpath

1 (z1), . . . , φpath
1 (zq1)). Given a new path with

attributes z, it is then possible to show (see Chen et al., 2019a) that the projection of
path attributes z onto E1 leads to the q1-dimensional mapping

ψpath
1 (z) = [κ1(zi, zj)]

− 1
2

ij [κ1(z1, z), . . . , κ1(zq1 , z)]>,

where [κ1(zi, zj)]ij is a q1 × q1 Gram matrix. Then, the approximate graph feature
map ψ1 is obtained by pooling

ψ1(u) =
∑

p∈Pk(G,u)
ψpath

1 (ψ0(p)) for all u ∈ V,

where ψ0 =ϕ0 and ψ0(p) = [ψ0(pi)]i=0,...,k in Rq0(k+1) represents the attributes of path p,
with an abuse of notation.
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Interpretation as a GNN. When input attributes ψ0(u) have unit-norm, which is the
case if we use one-hot encoding on discrete attributes, the Gaussian kernel κ1 between
two path attributes z, z′ in Rq0(k+1) may be written

κ1(z, z′) = e−
α1
2 ‖z−z

′‖2 = eα1(z>z′−k−1) = σ1(z>z′), (4.12)

which is a dot-product kernel with a non-linear function σ1. Then, calling Z in Rq0(k+1)×q1

the matrix of prototype path attributes, we have

ψ1(u) =
∑

p∈Pk(G,u)
σ1(Z>Z)−

1
2σ1(Z>ψ0(p)), (4.13)

where, with an abuse of notation, the non-linear function σ1 is applied pointwise. Then,
the map ψ1 is build from ψ0 with the following steps (i) feature aggregation along the
paths, (ii) encoding of the paths with a linear operation followed by point-wise non-
linearity, (iii) multiplication by the q1 × q1 matrix σ1(Z>Z)−

1
2 , and (iv) linear pooling.

The major difference with a classical GNN is that the “filtering” operation may be inter-
preted as an orthogonal projection onto a linear subspace, due to the matrix σ1(Z>Z)−

1
2 .

Unlike the Dirac function, the exponential function σ1 is differentiable. A useful con-
sequence is the possibility of optimizing the filters Z with back-propagation as detailed
below. Note that in practice we add a small regularization term to the diagonal for
stability reason: (σ1(Z>Z) + εI)−

1
2 with ε = 0.01.

Learning without supervision. Learning the “filters” Z with Nyström can be achieved
by simply running a K-means algorithm on path attributes extracted from training
data (Zhang et al., 2008). This is the approach adopted for CKNs by Mairal (2016);
Chen et al. (2019a), which proved to be very effective as shown in the experimental
section.

End-to-end learning with back-propagation. While the previous unsupervised learning
strategy consists in finding a good kernel approximation that is independent of labels, it
is also possible to learn the parameters Z end-to-end, by minimizing (4.11) jointly with
respect to Z and w. The main observations from Chen et al. (2019a) in the context of
biological sequences is that such a supervised learning approach may yield good models
with much fewer filters q1 than with the unsupervised learning strategy. We refer the
reader to Chen et al. (2019a,b) for how to perform back-propagation with the inverse
square root matrix σ1(Z>Z)−

1
2 .

Complexity. The complexity for computing the feature map ψ1 is dominated by the
complexity of finding all the paths of length k from each node. This can be done by
simply using a depth first search algorithm, whose worst-case complexity for each graph is
O(|V|dk), where d is the maximum degree of each node, meaning that large k may be used
only for sparse graphs. Then, each path is encoded in O(q1q0(k + 1)) operations; When
learning with back-propagation, each gradient step requires computing the eigenvalue
decomposition of σ1(Z>Z)−

1
2 whose complexity is O(q3

1), which is not a computational
bottleneck when using mini-batches of order O(q1), where typical practical values for q1
are reasonably small, e.g., less than 128.
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Algorithm 1 Forward pass for multilayer GCKN
1: Input: graph G = (V, E , ψ0 : V → Rq0), set of anchor points (filters) Zj ∈

R(k+1)qj−1×qj for j = 1, . . . , J .
2: for j = 1, . . . , J do
3: for u in V do
4: ψj(u) =

∑
p∈Pk(G,u) ψ

path
j (ψj−1(p));

5: end for
6: end for
7: Global pooling: Ψ(G) =

∑
u∈V ψJ(u);

4.3.3. Multilayer Extensions

The mechanism to build the feature map ϕ1 from ϕ0 can be iterated, as illustrated in
Figure 4.1 which shows how to build a feature map ϕj+1 from a previous one ϕj . As
discussed by Mairal (2016) for CKNs, the Nyström method may then be extended to
build a sequence of finite-dimensional maps ψ0, . . . , ψJ , and the final graph representation
is given by

ΨJ(G) =
∑
u∈V

ψJ(u). (4.14)

The computation of ΨJ(G) is illustrated in Algorithm 1. Here we discuss two possible
uses for these additional layers, either to account for more complex structures than
paths, or to extend the receptive field of the representation without resorting to the
enumeration of long paths.We will denote by kj the path length used at layer j.

A simple two-layer model to account for subtrees. As emphasized in (4.7), GCKN
relies on a representation Φ(G) of graphs, which is a sum of node-level representations
provided by a graph feature map ϕ. If ϕ is a sum over paths starting at the represented
node, Φ(G) can simply be written as a sum over all paths in G, consistently with our
observation that (4.6) recovers the path kernel when using a Dirac kernel to compare
paths in κ1. The path kernel often leads to good performances, but it is also blind to
more complex structures. Figure 4.2 provides a simple example of this phenomenon,
using k = 1: G1 and G3 differ by a single edge, while G4 has a different set of nodes and
a rather different structure. Yet P1(G3) = P1(G4), making K1(G1, G3) = K1(G1, G4)
for the path kernel.
Expressing more complex structures requires breaking the succession of linearities

introduced in (4.7) and (4.10)—much like pointwise nonlinearities are used in neural
networks. Concretely, this effect can simply be obtained by using a second layer with
path length k2 = 0—paths are then identified to vertices—which produces the feature
map ϕ2(u) = φpath

2 (ϕ1(u)), where φpath
2 : H1 → H2 is a non-linear kernel mapping. The

resulting kernel is then

K2(G,G′) =
∑
u∈V

∑
u′∈V ′
〈ϕ2(u), ϕ′2(u′)〉H2

=
∑
u∈V

∑
u′∈V ′

κ2(ϕ1(u), ϕ′1(u′)). (4.15)

87



4. Convolutional Kernel Networks for Graph-Structured Data
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(G4)

7 K2(G1, G2) = 0

3 K1(G1, G2) > 0

3 K2(G1, G3) > K2(G1, G4)

7 K1(G1, G3) = K1(G1, G4)

Figure 4.2.: Example cases using κ1 = κ2 = δ, with path lengths k1 = 1 and k2 = 0; The
one-layer kernel K1 counts the number of common edges while the two-layer
K2 counts the number of nodes with the same set of outgoing edges. The
figure suggests using K1 +K2 to gain expressiveness.

When κ1 and κ2 are both Dirac kernels, K2 counts the number of nodes in G and G′

with the exact same set of outgoing paths P(G, u), as illustrated in Figure 4.2.
Theorem 4.1 further illustrates the effect of using a nonlinear φpath

2 on the feature
map ϕ1, by formally linking the walk and WL subtree kernel through our framework.

Theorem 4.1. Let G = (V, E), G′ = (V ′, E ′),M be the set of exact matchings of subsets
of the neighborhoods of two nodes, as defined in Shervashidze et al. (2011), and ϕ defined
as in (4.10) with κ1 = δ and replacing paths by walks. For any u ∈ V and u′ ∈ V ′ such
that |M(u, u′)| = 1,

δ(ϕ1(u), ϕ′1(u′)) = κ
(k)
subtree(u, u′). (4.16)

Recall that when using (4.8) with walks instead of paths and a Dirac kernel for κ1, the
kernel (4.6) with ϕ = ϕ1 is the walk kernel. The condition |M(u, u′)| = 1 indicates that
u and u′ have the same degrees and each of them has distinct neighbors. This can be
always ensured by including degree information and adding noise to node attributes. For
a large class of graphs, both the walk and WL subtree kernels can therefore be written
as (4.6) with the same first layer ϕ1 representing nodes by their walk histogram. While
walk kernels use a single layer, WL subtree kernels rely on a second layer ϕ2 mapping
nodes to the indicator function of ϕ1(u).
Theorem 4.1 also shows that the kernel built in (4.15) is a path-based version of WL

subtree kernels, therefore more expressive as it captures subtrees rather than subtree
patterns. However, the Dirac kernel lacks flexibility, as it only accounts for pairs of
nodes with identical P(G, u). For example, in Figure 4.2, K2(G1, G2) = 0 even though
G1 only differs from G2 by two edges, because these two edges belong to the set P(G, u)
of all nodes in the graph. In order to retain the stratification by node of (4.15) while
allowing for a softer comparison between sets of outgoing paths, we replace δ by the
kernel κ2(ϕ1(u), ϕ′1(u′)) = e

−α2‖ϕ1(u)−ϕ′1(u′)‖2
H1 . Large values of α2 recover the behavior

of the Dirac, while smaller values gives non-zero values for similar P(G, u).

A multilayer model to account for longer paths. In the previous paragraph, we have
seen that adding a second layer could bring some benefits in terms of expressiveness,

88



4.3. Graph Convolutional Kernel Networks

even when using path lengths k2 = 0. Yet, a major limitation of this model is the
exponential complexity of path enumeration, which is required to compute the feature
map ϕ1, preventing us to use large values of k as soon as the graph is dense. Representing
large receptive fields while relying on path enumerations with small k, e.g., k ≤ 3, is
nevertheless possible with a multilayer model. To account for a receptive field of size k,
the previous model requires a path enumeration with complexity O(|V|dk), whereas the
complexity of a multilayer model is linear in k.

4.3.4. Practical Variants

Summing the kernels for different k and different scales. As noted in Section 4.2,
summing the kernels corresponding to different values of k provides a richer represen-
tation. We also adopt such a strategy, which corresponds to concatenating the feature
vectors Ψ(G) obtained for various path lengths k. When considering a multilayer model,
it is also possible to concatenate the feature representations obtained at every layer j,
allowing to obtain a multi-scale feature representation of the graph and gain expressive-
ness.

Use of homogeneous dot-product kernel. Instead of the Gaussian kernel (4.9), it is
possible to use a homogeneous dot-product kernel, as suggested by Mairal (2016) for
CKNs:

κ1(z, z′) = ‖z‖‖z′‖σ1

( 〈z, z′〉
‖z‖‖z′‖

)
,

where σ1 is defined in (4.12). Note that when z, z′ have unit-norm, we recover the Gaus-
sian kernel (4.9). In this chapter, we use such a kernel for upper layers, or for continuous
input attributes when they do not have unit norm. For multilayer models, this homog-
enization is useful for preventing vanishing or exponentially growing representations.
Note that ReLU is also a homogeneous non-linear mapping.

Other types of pooling operations. Another variant consists in replacing the sum
pooling operation in (4.13) and (4.14) by a mean or a max pooling. While using max
pooling as a heuristic seems to be effective on some datasets, it is hard to justify from
a RKHS point of view since max operations typically do not yield positive definite
kernels. Yet, such a heuristic is widely adopted in the kernel literature, e.g., for string
alignment kernels (Saigo et al., 2004). In order to solve such a discrepancy between
theory and practice, Chen et al. (2019b) propose to use the generalized max pooling
operator of Murray and Perronnin (2014), which is compatible with the RKHS point of
view. Applying the same ideas to GCKNs is straightforward.

Using walk kernel instead of path kernel. One can use a relaxed walk kernel instead
of the path kernel in (4.8), at the cost of losing some expressiveness but gaining some
time complexity. Indeed, there exists a very efficient recursive way to enumerate walks
and thus to compute the resulting approximate feature map in (4.13) for the walk kernel.
Specifically, if we denote the k-walk kernel by κ(k)

walk, then its value between two nodes
can be decomposed as the product of the 0-walk kernel between the nodes and the sum
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of the (k − 1)-walk kernel between their neighbors

κ
(k)
walk(u, u′) = κ

(0)
walk(u, u′)

∑
v∈N (u)

∑
v′∈N (u′)

κ
(k−1)
walk (v, v′),

where κ(0)
walk(u, u′) = κ1(ϕ0(u), ϕ′0(u′)). After applying the Nyström method, the approx-

imate feature map of the walk kernel is written, similar to (4.13), as

ψ1(u) = σ1(Z>Z)−
1
2

∑
p∈Wk(G,u)

σ1(Z>ψ0(p))

︸ ︷︷ ︸
ck(u):=

.

Based on the above observation and following similar induction arguments as Chen et al.
(2019b), it is not hard to show that (cj(u))j=1,...,k obeys the following recursion

cj(u) = bj(u)�
∑

v∈N (u)
cj−1(v), 1 ≤ j ≤ k,

where � denotes the element-wise product and bj(u) is a vector in Rq1 whose entry i in
{1, . . . , q1} is κ1(u, z(k+1−j)

i ) and z(k+1−j)
i denotes the k + 1 − j-th column vector of zi

in Rq0 . More details can be found in Appendix 4.C.

4.4. Model Interpretation

Ying et al. (2019) introduced an approach to interpret trained GNN models, by finding
a subgraph of an input graph G maximizing the mutual information with its predicted
label (note that this approach depends on a specific input graph). We show here how to
adapt similar ideas to our framework.

Interpreting GCKN-path and GCKN-subtree. We call GCKN-path our model Ψ1 with
a single layer, and GCKN-subtree our model Ψ2 with two layers but with k2 = 0, which is
the first model presented in Section 4.3.3 that accounts for subtree structures. As these
models are built upon path enumeration, we extend the method of Ying et al. (2019)
by identifying a small subset of paths in an input graph G preserving the prediction.
We then reconstruct a subgraph by merging the selected paths. For simplicity, let us
consider a one-layer model. As Ψ1(G) only depends on G through its set of paths Pk(G),
we note Ψ1(P) with an abuse of notation for any subset of P of paths in G, to emphasize
the dependency in this set of paths. For a trained model (Ψ1, w) and a graph G, our
objective is to solve

min
P ′⊆Pk(G)

L(ŷ, 〈Ψ1(P ′), w〉) + µ|P ′|, (4.17)

where ŷ is the predicted label of G and µ a regularization parameter controlling the
number of paths to select. This problem is combinatorial and can be computationally
intractable when P(G) is large. Following Ying et al. (2019), we relax it by using a mask
M with values in [0; 1] over the set of paths, and replace the number of paths |P ′| by
the `1-norm of M , which is known to have a sparsity-inducing effect (Tibshirani, 1996).
The problem then becomes

min
M∈[0;1]|Pk(G)|

L(ŷ, 〈Ψ1(Pk(G)�M), w〉) + µ‖M‖1, (4.18)
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where Pk(G) �M denotes the use of M(p)a(p) instead of a(p) in the computation of
Ψ1 for all p in Pk(G). Even though the problem is non-convex due to the non-linear
mapping Ψ1, it may still be solved approximately by using projected gradient-based
optimization techniques.

Interpreting multilayer models. By noting that Ψj(G) only depends on the union of
the set of paths Pkl(G), for all layers l ≤ j, we introduce a collection of masks Ml at
each layer, and then optimize the same objective as (4.18) over all masks (Ml)l=1,...,j ,
with the regularization

∑j
l=1 ‖Ml‖1.

4.5. Experiments

Table 4.1.: Classification accuracies on graphs with discrete node attributes. The accu-
racies of other models are taken from Du et al. (2019) except LDP, which
we evaluate on our splits and for which we tune bin size, the regularization
parameter in the SVM and Gaussian kernel bandwidth. Note that RetGK
uses a different protocol, performing 10-fold cross-validation 10 times and
reporting the average accuracy.

Dataset MUTAG PROTEINS PTC NCI1 IMDB-B IMDB-M COLLAB

size 188 1113 344 4110 1000 1500 5000
classes 2 2 2 2 2 3 3
avg ]nodes 18 39 26 30 20 13 74
avg ]edges 20 73 51 32 97 66 2458

LDP 88.9± 9.6 73.3± 5.7 63.8± 6.6 72.0± 2.0 68.5± 4.0 42.9± 3.7 76.1± 1.4

WL subtree 90.4± 5.7 75.0± 3.1 59.9± 4.3 86.0± 1.8 73.8± 3.9 50.9± 3.8 78.9± 1.9
AWL 87.9± 9.8 - - - 74.5± 5.9 51.5± 3.6 73.9± 1.9
RetGK 90.3± 1.1 75.8± 0.6 62.5± 1.6 84.5± 0.2 71.9± 1.0 47.7± 0.3 81.0± 0.3
GNTK 90.0± 8.5 75.6± 4.2 67.9± 6.9 84.2± 1.5 76.9± 3.6 52.8± 4.6 83.6± 1.0

GCN 85.6± 5.8 76.0± 3.2 64.2± 4.3 80.2± 2.0 74.0± 3.4 51.9± 3.8 79.0± 1.8
PatchySAN 92.6± 4.2 75.9± 2.8 60.0± 4.8 78.6± 1.9 71.0± 2.2 45.2± 2.8 72.6± 2.2
GIN 89.4± 5.6 76.2± 2.8 64.6± 7.0 82.7± 1.7 75.1± 5.1 52.3± 2.8 80.2± 1.9

GCKN-walk-unsup 92.8± 6.1 75.7± 4.0 65.9± 2.0 80.1± 1.8 75.9± 3.7 53.4± 4.7 81.7± 1.4
GCKN-path-unsup 92.8± 6.1 76.0± 3.4 67.3± 5.0 81.4± 1.6 75.9± 3.7 53.0± 3.1 82.3± 1.1
GCKN-subtree-unsup 95.0± 5.2 76.4± 3.9 70.8± 4.6 83.9± 1.6 77.8± 2.6 53.5± 4.1 83.2± 1.1
GCKN-3layer-unsup 97.2± 2.8 75.9± 3.2 69.4± 3.5 83.9± 1.2 77.2± 3.8 53.4± 3.6 83.4± 1.5

GCKN-subtree-sup 91.6± 6.7 76.2± 2.5 68.4± 7.4 82.0± 1.2 76.5± 5.7 53.3± 3.9 82.9± 1.6

We evaluate GCKN and compare its variants to state-of-the-art methods, including
GNNs and graph kernels, on several real-world graph classification datasets, involving
either discrete or continuous attributes.

4.5.1. Implementation Details

We follow the same protocols as (Du et al., 2019; Xu et al., 2019), and report the average
accuracy and standard deviation over a 10-fold cross validation on each dataset. We use
the same data splits as Xu et al. (2019), using their code. Note that performing nested
10-fold cross validation would have provided better estimates of test accuracy for all
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models, but it would have unfortunately required 10 times more computation, which we
could not afford for many of the baselines we considered.

Considered models. We consider two single-layer models called GCKN-walk and GCKN-
path, corresponding to the continuous relaxation of the walk and path kernels respec-
tively. We also consider the two-layer model GCKN-subtree introduced in Section 4.3.3
with path length k2 = 0, which accounts for subtrees. Finally, we consider a 3-layer
model GCKN-3layers with path length k2 = 2 (which enumerates paths with three ver-
tices for the second layer), and k3 = 0, which introduces a non-linear mapping before
global pooling, as in GCKN-subtree. We use the same parameters αj and qj (number of
filters) across layers. Our comparisons include state-of-the-art graph kernels such as WL
kernel (Shervashidze et al., 2011), AWL (Ivanov and Burnaev, 2018), RetGK (Zhang
et al., 2018b), GNTK (Du et al., 2019), WWL (Togninalli et al., 2019) and recent GNNs
including GCN (Kipf and Welling, 2017), PatchySAN (Niepert et al., 2016) and GIN (Xu
et al., 2019). We also include a simple baseline method LDP (Cai and Wang, 2018) based
on node degree information and a Gaussian SVM.

Learning unsupervised models. Following Mairal (2016), we learn the anchor points Zj
for each layer by K-means over 300000 extracted paths from each training fold. The re-
sulting graph representations are then mean-centered, standardized, and used within a
linear SVM classifier (4.11) with squared hinge loss. In practice, we use the SVM imple-
mentation of the Cyanure toolbox (Mairal, 2019).1 For each 10-fold cross validation, we
tune the bandwidth of the Gaussian kernel (identical for all layers), pooling operation
(local (4.13) or global (4.14)), path size k1 at the first layer, number of filters (identical
for all layers) and regularization parameter λ in (4.11). More details are provided in
Appendix 4.B, as well as a study of the model robustness to hyperparameters.

Learning supervised models. Following Xu et al. (2019), we use an Adam optimizer (Kingma
and Ba, 2015) with the initial learning rate equal to 0.01 and halved every 50 epochs,
and fix the batch size to 32. We use the unsupervised model based described above
for initialization. We select the best model based on the same hyperparameters as for
unsupervised models, with the number of epochs as an additional hyperparameter as
used in Xu et al. (2019). Note that we do not use DropOut or batch normalization,
which are typically used in GNNs such as Xu et al. (2019). Importantly, the number of
filters needed for supervised models is always much smaller (e.g., 32 vs 512) than that
for unsupervised models to achieve comparable performance.

4.5.2. Results

Graphs with categorical node labels We use the same benchmark datasets as in Du
et al. (2019), including 4 biochemical datasets MUTAG, PROTEINS, PTC and NCI1 and
3 social network datasets IMDB-B, IMDB-MULTI and COLLAB. All the biochemical
datasets have categorical node labels while none of the social network datasets has node
features. We use degrees as node labels for these datasets, following the protocols of
previous works (Du et al., 2019; Xu et al., 2019; Togninalli et al., 2019). Similarly, we

1http://julien.mairal.org/cyanure/
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also transform all the categorical node labels to one-hot representations. The results are
reported in Table 4.1. With a few exceptions, GCKN-walk has a small edge on graph
kernels and GNNs—both implicitly relying on walks too—probably because of the soft
structure comparison allowed by the Gaussian kernel. GCKN-path often brings some
further improvement, which can be explained by its increasing the expressivity. Both
multilayer GCKNs bring a stronger increase, whereas supervising the filter learning of
GCKN-subtree does not help. Yet, the number of filters selected by GCKN-subtree-sup is
smaller than GCKN-subtree-unsup (see Appendix 4.B), allowing for faster classification
at test time. GCKN-3layers-unsup performs in the same ballpark as GCKN-subtree-
unsup, but benefits from lower complexity due to smaller path length k1.

Graphs with continuous node attributes We use 4 real-world graph classification
datasets with continuous node attributes: ENZYMES, PROTEINS_full, BZR, COX2.
All datasets and size information about the graphs can be found in Kersting et al. (2016).
The node attributes are preprocessed with standardization as in Togninalli et al. (2019).
To make a fair comparison, we follow the same protocol as used in Togninalli et al.
(2019). Specifically, we perform 10 different 10-fold cross validations, using the same
hyperparameters that give the best average validation accuracy. The hyperparameter
search grids remain the same as for training graphs with categorical node labels. The re-
sults are shown in Table 4.2. They are comparable to the ones obtained with categorical
attributes, except that in 2/4 datasets, the multilayer versions of GCKN underperform
compared to GCKN-path, but they achieve lower computational complexity. Paths were
indeed presumably predictive enough for these datasets. Besides, the supervised version
of GCKN-subtree outperforms its unsupervised counterpart in 2/4 datasets.

4.5.3. Model Interpretation
We train a supervised GCKN-subtree model on the Mutagenicity dataset (Kersting et al.,
2016), and use our method described in Section 4.4 to identify important subgraphs. Fig-
ure 4.1 shows examples of detected subgraphs. Our method is able to identify chemical
groups known for their mutagenicity such as Polycyclic aromatic hydrocarbon (top row
left), Diphenyl ether (top row middle) or NO2 (top row right), thus admitting simple
model interpretation. We also find some groups whose mutagenicity is not known, such
as polyphenylene sulfide (bottom row middle) and 2-chloroethyl- (bottom row right).
More details and additional results are provided in Appendix 4.B.
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Table 4.2.: Classification accuracies on graphs with continuous attributes. The accura-
cies of other models except GNTK are taken from Togninalli et al. (2019).
The accuracies of GNTK are obtained by running the code of Du et al. (2019)
on a similar setting.

Dataset ENZYMES PROTEINS BZR COX2

size 600 1113 405 467
classes 6 2 2 2
attr. dim. 18 29 3 3
avg ]nodes 32.6 39.0 35.8 41.2
avg ]edges 62.1 72.8 38.3 43.5

RBF-WL 68.4± 1.5 75.4± 0.3 81.0± 1.7 75.5± 1.5
HGK-WL 63.0± 0.7 75.9± 0.2 78.6± 0.6 78.1± 0.5
HGK-SP 66.4± 0.4 75.8± 0.2 76.4± 0.7 72.6± 1.2
WWL 73.3± 0.9 77.9± 0.8 84.4± 2.0 78.3± 0.5
GNTK 69.6± 0.9 75.7± 0.2 85.5± 0.8 79.6± 0.4

GCKN-walk-unsup 73.5± 0.5 76.5± 0.3 85.3± 0.5 80.6± 1.2
GCKN-path-unsup 75.7± 1.1 76.3± 0.5 85.9± 0.5 81.2± 0.8
GCKN-subtree-unsup 74.8± 0.7 77.5± 0.3 85.8± 0.9 81.8± 0.8
GCKN-3layer-unsup 74.6± 0.8 77.5± 0.4 84.7± 1.0 82.0± 0.6

GCKN-subtree-sup 72.8± 1.0 77.6± 0.4 86.4± 0.5 81.7± 0.7
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GCKN

Original

GCKN

Original

Figure 4.1.: Motifs extracted by GCKN on the Mutagenicity dataset.
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Appendix
The appendix provides both theoretical and experimental material and is organized as
follows: Appendix 4.A presents a classical result, allowing us to characterize the RKHS of
the graph kernels we introduce. Appendix 4.B provides additional experimental details
that are useful to reproduce our results and additional experimental results. Then,
Appendix 4.C explains how to accelerate the computation of GCKN when using walks
instead of paths (at the cost of lower expressiveness), and Appendix 4.D presents a proof
of Theorem 4.1 on the expressiveness of WL and walk kernels.

4.A. Useful Result about RKHSs
The following result characterizes the RKHS of a kernel function when an explicit
mapping to a Hilbert space is available. It may be found in classical textbooks (see,
e.g., Saitoh, 1997, §2.1).

Theorem 4.2. Let Φ : X → F be a mapping from a data space X to a Hilbert space F ,
and let K(x, x′) := 〈Φ(x), ψ(x′)〉F for x, x′ in X . Consider the Hilbert space

H := {fz ; z ∈ F} s.t. fz : x 7→ 〈z,Φ(x)〉F ,

endowed with the norm

‖f‖2H := inf
z∈F

{
‖z‖2F s.t. f = fz

}
.

Then, H is the reproducing kernel Hilbert space associated to kernel K.

4.B. Details on Experimental Setup and Additional
Experiments

In this section, we provide additional details and more experimental results. In Sec-
tion 4.B.1, we provide additional experimental details; in Section 4.B.2, we perform a
hyperparameter study for unsupervised GCKN on three datasets, showing that our ap-
proach is relatively robust to the choice of hyperparameters. In particular, the number
of filters controls the quality of Nyström’s kernel approximation: more filters means a
better approximation and better results, at the cost of more computation. This is in
contrast with a traditional (supervised) GNN, where more filters may lead to overfitting.
Finally, Section 4.B.3 provides motif discovery results.

4.B.1. Experimental Setup and Reproducibility
Hyperparameter search grids. In our experiments for supervised models, we use an
Adam optimizer (Kingma and Ba, 2015) for at most 350 epochs with an initial learning
rate equal to 0.01 and halved every 50 epochs with a batch size fixed to 32 throughout
all datasets; the number of epochs is selected using cross validation following Xu et al.
(2019). The full hyperparameter search range is given in Table 4.B.1 for both unsuper-
vised and supervised models on all tasks. Note that we include some large values (1.5
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and 2.0) for σ to simulate the linear kernel as we discussed in Section 4.3.3. In fact, the
function σ1(x) = eα(x−1) defined in (4.12) is upper bounded by e−α + (1 − e−α)x and
lower bounded by 1 +α(x− 1) by its convexity at 0 and 1. Their difference is increasing
with α and converges to zero when α tends to 0. Hence, when α is small, σ1 behaves as
an affine kernel with a small slope.

Table 4.B.1.: Hyperparameter search range
Hyperparameter Search range

σ (α = 1/σ2) [0.3; 0.4; 0.5; 0.6; 1.0; 1.5; 2.0]
local/global pooling [sum, mean, max]
path size k1 integers between 2 and 12
number of filters (unsup) [32; 128; 512; 1024]
number of filters (sup) [32; 64] and 256 for ENZYMES
λ (unsup) 1/n× np.logspace(-3, 4, 60)
λ (sup) [0.01; 0.001; 0.0001; 1e-05; 1e-06; 1e-07]

Computing infrastructure. Experiments for unsupervised models were conducted by
using a shared CPU cluster composed of 2 Intel Xeon E5-2470v2 @2.4GHz CPUs with
16 cores and 192GB of RAM. Supervised models were trained by using a shared GPU
cluster, in large parts built with Nvidia gamer cards (Titan X, GTX1080TI). About 20 of
these CPUs and 10 of these GPUs were used simultaneously to perform the experiments
of this chapter.

4.B.2. Hyperparameter Study
We show here that both unsupervised and supervised models are generally robust to
different hyperparameters, including path size k1, bandwidth parameter σ, regulariza-
tion parameter λ and their performance grows increasingly with the number of filters
q. The accuracies for NCI1, PROTEINS and IMDBMULTI are given in Figure 4.B.1,
by varying respectively the number of filters, the path size, the bandwidth parameter
and regularization parameter when fixing other parameters which give the best accu-
racy. Supervised models generally require fewer number of filters to achieve similar
performance to its unsupervised counterpart. In particular on the NCI1 dataset, the su-
pervised GCKN outperforms its unsupervised counterpart by a significant margin when
using a small number of filters.

4.B.3. Model Interpretation
Implementation details. We use a similar experimental setting as Ying et al. (2019)
to train a supervised GCKN-subtree model on Mutagenicity dataset, consisting of 4337
molecule graphs labeled according to their mutagenic effect. Specifically, we use the
same split for train and validation set and train a GCKN-subtree model with k1 = 3,
which is similar to a 3-layer GNN model. The number of filters is fixed to 20, the same as
Ying et al. (2019). The bandwidth parameter σ is fixed to 0.4, local and global pooling
are fixed to mean pooling, the regularization parameter λ is fixed to 1e-05. We use an
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Figure 4.B.1.: Hyperparamter study: sensibility to different hyperparameters for unsu-
pervised and supervised GCKN-subtree models. The row from top to
bottom respectively corresponds to number of filters q1, path size k1,
bandwidth parameter σ and regularization parameter λ. The column
from left to right corresponds to different datasets: NC11, PROTEINS
and IMDBMULTI.
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Adam optimizer with initial learning equal to 0.01 and halved every 50 epochs, the same
as previously. The accuracy of the trained model is assured to be more than 80% on
the test set as Ying et al. (2019). Then we use the procedure described in Section 4.4
to interpret our trained model. We use an LBFGS optimizer and fixed µ to 0.01. The
final subgraph for each given graph is obtained by extracting the maximal connected
component formed by the selected paths. A contribution score for each edge can also
be obtained by gathering the weights M of all the selected paths that pass through this
edge.

More results. More motifs extracted by GCKN are shown in Figure 4.B.2 for the
Mutagenicity dataset. We recovered some benzene ring or polycyclic aromatic groups
which are known to be mutagenic. We also found some groups whose mutagenicity is
not known, such as polyphenylene sulfide in the fourth subgraph and 2-chloroethyl- in
the last subgraph.

4.C. Fast Computation of GCKN with Walks
Here we discuss an efficient computational variant using walk kernel instead of path
kernel, at the cost of losing some expressive power. Let us consider a relaxed walk kernel
by analogy to (4.8) with

κ
(k)
base(u, u

′) =
∑

p∈Wk(G,u)

∑
p′∈Wk(G′,u′)

κ1(ϕ0(p), ϕ′0(p′)), (4.19)

using walks instead of paths and with κ1 the Gaussian kernel defined in (4.9). As
Gaussian kernel can be decomposed as a product of the Gaussian kernel on pair of nodes
at each position

κ1(ϕ0(p), ϕ′0(p′)) =
k∏
j=1

κ1(ϕ0(pj), ϕ′0(p′j)),

We can obtain similar recursive relation as for the original walk kernel in Lemma 2

κ
(k)
base(u, u

′) = κ1(ϕ0(u), ϕ′0(u′))
∑

v∈N (u)

∑
v′∈N (u′)

κ
(k−1)
base (v, v′). (4.20)

After applying the Nyström method, the approximate feature map in (4.13) becomes

ψ1(u) = σ1(Z>Z)−
1
2 ck(u),

where for any 0 ≤ j ≤ k, cj(u) :=
∑
p∈Wj(G,u) σ1(Z>j ψ0(p)) and Zj in Rq0(j+1)×q1 denotes

the matrix consisting of the j + 1 last columns of q1 anchor points. Using the above
recursive relation (4.20) and similar arguments in e.g. Chen et al. (2019b), we can show
cj obeys the following recursive relation

cj(u) = bj(u)�
∑

v∈N (u)
cj−1(v), 1 ≤ j ≤ k, (4.21)

where � denotes the element-wise product and bj(u) is a vector in Rq1 whose entry i
in {1, . . . , q1} is κ1(u, z(k+1−j)

i ) and z(k+1−j)
i denotes the k + 1 − j-th column vector of

zi in Rq0 . In practice,
∑
v∈N (u) cj−1(v) can be computed efficiently by multiplying the

adjacency matrix with the |V|-dimensional vector with entries cj−1(v) for v ∈ V.
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C O Cl H N F Br S P I Na K Li Ca

Figure 4.B.2.: More motifs extracted by GCKN on Mutagenicity dataset. First and third
rows are original graphs; second and fourth rows are corresponding motifs.
Some benzene ring or polycyclic aromatic groups are identified, which are
known to be mutagenic. In addition, Some chemical groups whose muta-
genicity is not known are also identified, such as polyphenylene sulfide in
the fourth subgraph and 2-chloroethyl- in the last subgraph.

100



4.D. Proof of Theorem 1

4.D. Proof of Theorem 1
Before presenting and proving the link between the WL subtree kernel and the walk
kernel, we start by reminding and showing some useful results about the WL subtree
kernel and the walk kernel.

4.D.1. Useful Results for the WL Subtree Kernel
We first recall a recursive relation of the WL subtree kernel, given in the Theorem 8
of Shervashidze et al. (2011). Let us denote by M(u, u′) the set of exact matchings of
subsets of the neighbors of u and u′, formally given by

M(u, u′) =
{
R ⊆ N (u)×N (u′)

∣∣∣ |R| = |N (u)| = |N (u′)|∧

(∀(v, v′), (w,w′) ∈ R : u = w ⇔ u′ = w′) ∧ (∀(u, u′) ∈ R : a(u) = a′(u′))
}
. (4.22)

Then we have the following recursive relation for κ(k)
subtree(u, u′) := δ(ak(u), a′k(u′))

κ
(k+1)
subtree(u, u

′) =


κ

(k)
subtree(u, u′) max

R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v′), ifM(u, u′) 6= ∅,

0, otherwise.
(4.23)

We can further simply the above recursion using the following Lemma

Lemma 1. IfM(u, u′) 6= ∅, we have

κ
(k+1)
subtree(u, u′) = δ(a(u), a′(u′)) max

R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v′).

Proof. We prove this by induction on k ≥ 0. For k = 0, this is true by the definition of
κ

(0)
subtree. For k ≥ 1, we suppose that

κ
(k)
subtree(u, u

′) = δ(a(u), a′(u′)) max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k−1)
subtree(v, v

′).

We have

κ
(k+1)
subtree(u, u

′) = κ
(k)
subtree(u, u

′) max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v

′)

= δ(a(u), a′(u′)) max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k−1)
subtree(v, v

′) max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v

′).

It suffices to show

max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k−1)
subtree(v, v

′) max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v

′) = max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v

′).

Since the only values can take for κ(k−1)
subtree is 0 and 1, the only values that

max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k−1)
subtree(v, v

′)
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can take is also 0 and 1. Then we can split the proof on these two conditions. It is
obvious if this term is equal to 1. If this term is equal to 0, then

max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v

′) ≤ max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k−1)
subtree(v, v

′) = 0,

as all terms are not negative and κ(k)
subtree(v, v′) is not creasing on k. Then

max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v

′) = 0,

and we have 0 for both sides.

4.D.2. Recursive Relation for the Walk Kernel
We recall that the k-walk kernel is defined as

K(G,G′) =
∑
u∈V

∑
u′∈V ′

κ
(k)
walk(u, u′),

where
κ

(k)
walk(u, u′) =

∑
p∈Wk(G,u)

∑
p′∈Wk(G′,u′)

δ(a(p), a′(p′)).

The feature map of this kernel is given by

ϕ
(k)
walk(u) =

∑
p∈Wk(G,u)

ϕδ(a(p)),

where ϕδ is the feature map associated with δ. We give here a recursive relation for the
walk kernel on the size of walks, thanks to its allowance of nodes to repeat.
Lemma 2. For any k ≥ 0, we have

κ
(k+1)
walk (u, u′) = δ(a(u), a′(u′))

∑
v∈N (u)

∑
v′∈N (u′)

κ
(k)
walk(v, v′). (4.24)

Proof. Noticing that we can always decompose a path p ∈ Wk+1(G, u), with (u, v) the
first edge that it passes and v ∈ N (u), into (u, q) with q ∈ Wk(G, v), then we have

κ
(k+1)
walk (u, u′) =

∑
p∈Wk+1(G,u)

∑
p′∈Wk+1(G′,u′)

δ(a(p), a′(p′))

=
∑

v∈N (u)

∑
p∈Wk(G,v)

∑
v′∈N (u′)

∑
p′∈Wk(G,v′)

δ(a(u), a′(u′))δ(a(p), a′(p′))

= δ(a(u), a′(u′))
∑

v∈N (u)

∑
v′∈N (u′)

∑
p∈Wk(G,v)

∑
p′∈Wk(G′,v′)

δ(a(p), a′(p′))

= δ(a(u), a′(u′))
∑

v∈N (u)

∑
v′∈N (u′)

κ
(k)
walk(v, v′).

This relation also provides us a recursive relation for the feature maps of the walk
kernel

ϕ
(k+1)
walk (u) = ϕδ(a(u))⊗

∑
v∈N (u)

ϕ
(k)
walk(v),

where ⊗ denotes the tensor product.
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4.D.3. Discriminative Power between Walk Kernel and WL Subtree Kernel
Before proving the Theorem 4.1, let us first show that the WL subtree kernel is always
more discriminative than the walk kernel.
Proposition 4.1. For any node u in graph G and u′ in graph G′ and any k ≥ 0, then
d
κ

(k)
subtree

(u, u′) = 0 =⇒ d
κ

(k)
walk

(u, u′) = 0.

This proposition suggests that though both of their feature maps are not injective (see
e.g. Kriege et al. (2018)), the feature map of κ(k)

subtree is more injective in the sense that for
a node u, its collision set {u′ ∈ V |ϕ(u′) = ϕ(u)} for κ(k)

subtree, with ϕ the corresponding
feature map, is included in that for κ(k)

walk. Furthermore, if we denote by κ̂ the normalized
kernel of κ such that κ̂(u, u′) = κ(u, u′)/

√
κ(u, u)κ(u′, u′), then we have

Corollary 1. For any node u in graph G and u′ in graph G′ and any k ≥ 0, d
κ

(k)
subtree

(u, u′) ≥
d
κ̂

(k)
walk

(u, u′).

Proof. We prove by induction on k. It is clear for k = 0 as both kernels are equal to the
Dirac kernel on the node attributes. Let us suppose this is true for k ≥ 0, we will show
this is also true for k + 1. We suppose d

κ
(k+1)
subtree

(u, u′) = 0. Since κ(k+1)
subtree(u, u) = 1, by

equality (4.23) we have

1 = κ
(k+1)
subtree(u, u

′) = κ
(k)
subtree(u, u

′) max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v

′),

which implies that κ(k)
subtree(u, u′) = 1 and maxR∈M(u,u′)

∏
(v,v′)∈R κ

(k)
subtree(v, v′) = 1.

Then δ(a(u), a′(u)) = 1 by the non-growth of κ(k)
subtree(u, u′) on k and it exists an ex-

act matching R? ∈ M(u, u′) such that |N (u)| = |N (u′)| = |R?| and ∀(v, v′) ∈ R?,
κ

(k)
subtree(v, v′) = 1. Therefore, we have d

κ
(k)
walk

(v, v′) = 0 for all (v, v′) ∈ R? by the induc-
tion hypothesis.
On the other hand, by Lemma 2 we have

κ
(k+1)
walk (u, u′) = δ(a(u), a′(u′))

∑
v∈N (u)

∑
v′∈N (u′)

κ
(k)
walk(v, v′)

=
∑

v∈N (u)

∑
v′∈N (u′)

κ
(k)
walk(v, v′),

which suggest that the feature map of κ(k+1)
walk can be written as ϕ(k+1)

walk (u) =
∑
v∈N (u) ϕ

(k)
walk(v).

Then we have

d
κ

(k+1)
walk

(u, u′) =

∥∥∥∥∥∥
∑

v∈N (u)
ϕ

(k)
walk(v)−

∑
v′∈N (u′)

ϕ
(k)
walk(v′)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

(v,v′)∈R?
ϕ

(k)
walk(v)− ϕ(k)

walk(v′)

∥∥∥∥∥∥
≤

∑
(v,v′)∈R?

‖ϕ(k)
walk(v)− ϕ(k)

walk(v′)‖

=
∑

(v,v′)∈R?
d
κ

(k)
walk

(v, v′) = 0.
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We conclude that d
κ

(k+1)
walk

(u, u′) = 0.
Now let us prove the Corollary 1. The only values that d

κ
(k)
subtree

(u, u′) can take are 0 and
1. Since d

κ̂
(k)
walk

(u, u′) is always not larger than 1, we only need to prove d
κ

(k)
subtree

(u, u′) =
0 =⇒ d

κ̂
(k)
walk

(u, u′) = 0, which has been shown above.

4.D.4. Proof of Theorem 4.1

Note that using our notation here, ϕ1 = ϕ
(k)
walk

Proof. We prove by induction on k. For k = 0, we have for any u ∈ V and u′ ∈ V ′

κ
(0)
subtree(u, u

′) = δ(a(u), a′(u′)) = δ(ϕ(0)
walk(u), ϕ(0)

walk(u′)).

Assume that (4.16) is true for k ≥ 0. We want to show this is also true for k+ 1. As the
only values that the δ kernel can take is 0 and 1, it suffices to show the equality between
κ

(k+1)
subtree(u, u′) and δ(ϕ(k+1)

walk (u), ϕ(k+1)
walk (u′)) in these two situations.

• If κ(k+1)
subtree(u, u′) = 1, by Proposition 4.1 we have ϕ(k+1)

walk (u) = ϕ
(k+1)
walk (u′), and thus

δ(ϕ(k+1)
walk (u), ϕ(k+1)

walk (u′)) = 1.

• If κ(k+1)
subtree(u, u′) = 0, by the recursive relation of the feature maps in Lemma 2, we

have

δ(ϕ(k+1)
walk (u), ϕ(k+1)

walk (u′)) = δ(a(u), a′(u′))δ

 ∑
v∈N (u)

ϕ
(k)
walk(v),

∑
v′∈N (u′)

ϕ
(k)
walk(v′)

 .
By Lemma 1, it suffices to show that

max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(u, u

′) = 0 =⇒ δ

 ∑
v∈N (u)

ϕ
(k)
walk(v),

∑
v′∈N (u′)

ϕ
(k)
walk(v′)

 = 0.

The condition |M(u, u′)| = 1 suggests that there exists exactly one matching of
the neighbors of u and u′. Let us denote this matching by R. The left equality
implies that there exists a non-empty subset of neighbor pairs S ⊆ R such that
κ

(k)
subtree(v, v′) = 0 for any (v, v′) ∈ S and κ(k)

subtree(v, v′) = 1 for all (v, v′) /∈ S. Then
by the induction hypothesis, ϕ(k)

walk(v) = ϕ
(k)
walk(v′) for all (v, v′) /∈ S and ϕ(k)

walk(v) 6=
ϕ

(k)
walk(v′) for all (v, v′) ∈ S. Consequently,

∑
(v,v′)/∈S ϕ

(k)
walk(v)− ϕ(k)

walk(v′) = 0. Now
we will show

∑
(v,v′)∈S ϕ

(k)
walk(v)−ϕ(k)

walk(v′) 6= 0 since all neighbors of either u or u′
have distinct attributes. Then

‖
∑

v∈N (u)
ϕ

(k)
walk(v)−

∑
v′∈N (u′)

ϕ
(k)
walk(v′)‖

=‖
∑

(v,v′)∈R
ϕ

(k)
walk(v)− ϕ(k)

walk(v′)‖

=‖
∑

(v,v′)∈S
ϕ

(k)
walk(v)− ϕ(i)

walk(v′)‖ > 0.

Therefore, δ
(∑

v∈N (u) ϕ
(k)
walk(v),

∑
v′∈N (u′) ϕ

(k)
walk(v′)

)
= 0.
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We introduce two valid kernel embeddings for sets of features based on either max
pooling operations or optimal transport distance in RKHS. Our approach addresses
the problem of feature aggregation, or pooling, for sets that exhibit long-range de-
pendencies between their members. More precisely, our first embedding enables
valid max pooling in RKHS, which was barely studied in previous kernel literature.
Our second proposal aggregates the features of a given set according to the transport
plan between the set and a reference shared across the data set. Unlike traditional
hand-crafted kernels, our embedding can be optimized for a specific task or data set.
Our embedding is particularly suited for biological sequence classification tasks and
shows promising results for natural language sequences. We provide an implemen-
tation of our embedding that can be used alone or as a module in larger learning
models. Our code is freely available at https://github.com/claying/OTK.

The chapter is based on the following publications:

D. Chen, L. Jacob, and J. Mairal. Recurrent kernel networks. In Advances in Neural
Information Processing Systems (NeurIPS), 2019b
G. Mialon*, D. Chen*, A. d’Aspremont, and J. Mairal. A trainable optimal trans-
port embedding for feature aggregation. In International Conference on Learning
Representations (ICLR)
(*equal contributions)

The second work presented in this chapter was achieved with the collaboration of
Grégoire Mialon, Alexandre d’Aspremont and Julien Mairal, with equal contribution
between Grégoire Mialon and me.
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5.1. Introduction

In many applications of machine learning, data objects have complex structures that
can be expressed as sets of features with positional information, such as sentences in
natural language processing (NLP), images in computer vision or biological sequences in
bioinformatics. These objects of varying sizes generally exhibit long-range and complex
structural dependencies, which are hard to properly take into account. Kernel meth-
ods are widely used to deal with such data. They allow to embed these structured
data objects to high or infinite-dimensional vectors simply through a pairwise similarity
function, nameed kernel. In general, the construction of most of these kernels can be
decoupled into two steps: local feature extraction and feature aggregation. While the
former step deploys a local kernel to map all the elements of the set to some reproduc-
ing kernel Hilbert space (RKHS), the latter performs aggregation of these local features
to summarize local information and potentially to capture dependencies between them.
Regarding the feature aggregation, a family of kernels classically used in biology and
computer vision that rely on the comparisons of histograms of features (Barla et al.,
2003; Leslie et al., 2002b), can be interpreted as performing indifferent comparisons of
local features without matching them. The feature map of such kernels amounts to
performing a summation of the embeddings of local features. Such a simple aggregation
approach is easy to implement but can be restrictive for capturing complex dependen-
cies, which has thus prompted more flexible and sophisticated kernels, through, e.g.,
the creation of multi-resolution histograms (Grauman and Darrell, 2007), or by comput-
ing correspondences with more complex metrics. Such more complex metrics generally
explore an optimal matching between components of sets before aggregation, through
the earth-mover’s distance (also known as the 1-Wasserstein distance) (Rubner et al.,
2000), alignment scores (Vert et al., 2004) or more general optimal transport based
metrics (Wallraven et al., 2003; Fröhlich et al., 2005) that were introduced in different
contexts. However, the associated kernels are generally non positive definite and cannot
scale to large datasets. Hence, some variants (Boughorbel et al., 2005; Johansson and
Dubhashi, 2015) have been proposed to handle the former issue, but still suffer from
the scalability issue. In this respect, methods that directly work with and optimize the
representation to the task at hand are now more preferred.
Among them, the concept of attention (Bahdanau et al., 2015) was proposed to cope

with sentences in the task of machine translation. This mechanism allows the model to
automatically focus on components of a source sentence that are relevant for predicting
the next word. Recently, a neural network architecture mostly relying on attention mech-
anisms, named transformer (Vaswani et al., 2017), has brought striking improvement in
machine translation task. Lately, its variants also led to pronounced progress in many
other NLP tasks (Wang et al., 2019) and to some extent in other fields such as computer
vision (Ramachandran et al., 2019) and bioinformatics (Rives et al., 2019). However,
the prediction power of attention-based models in classification of long biological se-
quences has barely been studied and compared to typical convolution based models, due
to their possibly prohibitive number of parameters (Baid, 2018; Raffel et al., 2019). On
the other hand, some peculiarities of the transformer architecture, such as the learned
dot-product self-attention or the role of the attention heads are now being questioned
and investigated (Raganato et al., 2020; Voita et al., 2019; Weiqiu et al., 2020).
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In this chapter, we consider proposing valid kernel operations for feature aggregation
in RKHS. We fist introduce a valid kernel embedding that simulates the max pooling
operation commonly used in convolutional networks. It allows to perform valid pool-
ing in RKHS while retaining the good accuracy of max pooling. We then introduce a
new parametrized kernel embedding for feature aggregation based on a by-product of
optimal transport (OT). The parameters can be learned in an unsupervised manner, by
approximating the Wasserstein distance matrix. It can also be optimized for a given task
like the transformer, thus gaining the ability to be task-adaptive while learning more
compact representations. OT has recently drawn growing attention in machine learning
as it enjoys efficient algorithms (Cuturi, 2013) that are compatible with GPU computa-
tion and back-propagation. It has been applied in various contexts, including computer
vision, NLP (Kusner et al., 2015), time series (Bock et al., 2019) and graphs (Togninalli
et al., 2019). More recently, using the transport plan as an attention score was proposed
for network embeddings to align some data modalities (Chen et al., 2019d). Our work
goes beyond this idea and uses transport plans as a principle for feature aggregation, or
pooling. We demonstrate the effectiveness of our kernel with images, sentences and the
transformer architecture. Finally, we provide a simple implementation of our embedding
that can be used alone or as a module in large learning models.

Summary of contributions.

• Based on Murray and Perronnin (2014), we propose a new way to simulate max
pooling in RKHSs, thus leading to a new kernel embedding for feature aggrega-
tion as well as solving a classical discrepancy between theory and practice in the
literature of string kernels, where sums are often replaced by a maximum operator
that does not ensure positive definiteness (Vert et al., 2004).

• We propose a new parametrized kernel embedding for feature aggregation based
on optimal transport. Its parameters can be either learned without supervision
through an approximation of Wasserstein distance matrix, or in a task-driven
fashion. We demonstrate its scalability and effectiveness on images, biological
sequences and sentences using our proposed unsupervised and supervised feature
learning algorithms.

• We provide an implementation of our methods that can be used alone or as a
module in large learning models.

5.2. Background on Feature Aggregation in RKHS

In this section, we revisit classical kernels for feature aggregation and some basic elements
in optimal transport, which will be useful for constructing our kernel embeddings.

5.2.1. Kernel Methods and Summation Kernel

Kernel methods map data living in a space X to a reproducing kernel Hilbert space
(RKHS) H, associated with a positive definite (p.d.) kernel K through a mapping
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function ϕ : X → H, such that K(x,x′) = 〈ϕ(x), ϕ(x′)〉H. In this chapter, we handle
sets of features living in Rd and we define

X =
{
x |x = {x1, . . . ,xn} such that x1, . . . ,xn ∈ Rd for some n ≥ 1

}
.

Members of X are typically vectorial representations of local data structures, such as
patches for natural images, or sentences for text. The length of x denoted by n may
vary, which is not a problem since the methods we introduce may take a sequence of any
size as input, while providing a fixed-size embedding.
The most natural kernel for aggregation that arose in string kernels (Leslie et al.,

2002b, 2004) and histogram comparison based kernels (Lyu, 2004) should be summation
kernel, written as

Kmatch(x,x′) := 1
n

1
n′

n∑
i=1

n′∑
j=1

κ(xi,x′j) =
〈

1
n

n∑
i=1

ϕ(xi),
1
n′

n′∑
j=1

ϕ(x′j)
〉
H

, (5.1)

where κ is a p.d. kernel and ϕ denotes its associated mapping to an RKHS H. A
match kernel simply compares all possible pairs of features of x and x′. The right-hand
term exhibits the feature map of Kmatch, which corresponds to a mean pooling in the
RKHS. In this process, important information may be averaged (e.g., in biology, rare
and relevant patterns may be drowned in useless ones), or artificially strong matches can
be made (Jégou et al., 2009). These issues can be addressed by using a max pooling,
which may however break the kernel interpretation, or more generally weighting each
comparison κ(xi,x′j). The weights are typically independent from the data and may
include domain knowledge (Mairal, 2016). In contrast, we will introduce adaptive weights
reflecting whether a pair (xi,x′j) is aligned before comparison or, put differently, whether
comparing xi and x′j is relevant for the task.

Fast computation via finite-dimensional approximation. In some cases, ϕ(xi) are al-
ready finite-dimensional, which allows to compute the kernel embedding of Kmatch ex-
plicitly. This is particularly useful when dealing with large-scale data, as it allows us
to use our method for supervised learning tasks without computing the Gram matrix,
which grows quadratically with the number of samples. When ϕ is infinite- or high-
dimensional, it is nevertheless possible to use an approximation based on the Nyström
method (Williams and Seeger, 2001), which provides an embedding ψ : Rd → Rk such
that

〈ψ(xi), ψ(x′j)〉Rk ≈ κ(xi,x′j).

Concretely, the Nyström method consists in projecting points from the RKHS H onto a
linear subspace F , which is parametrized by k anchor points F = Span(ϕ(w1), . . . , ϕ(wk)).
The corresponding embedding admits an explicit form ψ(xi) = κ(w,w)−1/2κ(w,xi),
where κ(w,w) is the k × k Gram matrix of κ computed on the set w = {w1, . . . ,wk}
of anchor points and κ(w,xi) is in Rk. Then, there are several ways of learning the
anchor points: (a) they can be chosen as random points from data; (b) they can be
defined as centroids obtained by K-means (Zhang et al., 2008), (c) they can be learned
by back-propagation for a supervised task, see Mairal (2016). Once ϕ is replaced with
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ψ, the approximation of the feature map of Kmatch can also be subsequently obtained
by

Kmatch(x,x′) ≈
〈

1
n

n∑
i=1

ψ(xi),
1
n′

n′∑
j=1

ψ(x′j)
〉

Rk
, (5.2)

5.2.2. Regularized Optimal Transport

Optimal transport provides a natural way to interpretably define the weights between
between two sets x and x′ seen as weighted point clouds or discrete measures, which
is a by-product of the optimal transport problem. OT has indeed been widely used in
alignment problems. Throughout the chapter, we will refer to the Kantorovich relaxation
of OT with entropic regularization, detailed for example in Peyré et al. (2019). Let a in
∆n (probability simplex) and b in ∆n′ be the weights of the discrete measures

∑
i aiδxi

and
∑
j bjδx′j with respective locations x and x′, where δx is the Dirac at position x.

Let C in Rn×n′ be a matrix representing the pairwise costs for aligning the elements of
x and x′. The entropic regularized Kantorovich relaxation of OT from x to x′ is

min
P∈U(a,b)

∑
ij

CijPij − εH(P), (5.3)

where H(P) = −
∑
ij Pij(log(Pij) − 1) is the entropic regularization with parameter

ε that controls the non-sparsity of P as the unregularized OT problem admits sparse
solutions, and U is the space of admissible couplings between a and b:

U(a,b) = {P ∈ Rn×n
′

+ : P1n = a and P>1n′ = b}.

In practice, a and b are uniform measures since we consider the mass to be evenly dis-
tributed between the points. P is called the transport plan, which carries the information
on how to distribute the mass of x in x′ with minimal cost. The objective is ε-strongly
convex, such that (5.3) has a unique solution. It is typically solved using a matrix scaling
procedure known as the Sinkhorn’s algorithm (see, e.g, Peyré et al. (2019)).

5.3. Max Pooling in RKHS

Alignment scores (e.g. Smith-Waterman) in molecular biology rely on a max operation—
over the scores of all possible alignments—to compute similarities between sequences.
However, using maximum instead of summation generally breaks positive definiteness,
even though it seems to perform well in practice. To solve such an issue, sum-exponential
is used as a proxy in Saigo et al. (2004), but it leads to diagonal dominance issue and
makes SVM solvers unable to learn. For the match kernel, the sum in (5.1) can also be
replaced by a max

Kmax
k (x,x′) =

〈
max
i=1,...,n

ψ(xi), max
j=1,...,n′

ψ(x′j)
〉
, (5.4)

which empirically seems to perform well, but breaks the kernel interpretation, as in Saigo
et al. (2004).
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An alternative way to aggregate local features is the generalized max pooling (GMP)
introduced in Murray and Perronnin (2014) for finite-dimensional vectors, which can be
adapted to the context of RKHSs. Assuming that before pooling x is embedded to a set of
n local features (ϕ1, . . . , ϕn) ∈ Hn, GMP searches for a representation ϕgmp whose inner-
product with all the local features ϕi is equal to one: 〈ϕi, ϕgmp〉H = 1, for i = 1, . . . , N .
In particular, ϕgmp coincides with the regular max when each ϕ is an element of the
canonical basis of a finite representation, i.e., assuming that at each position, a single
feature has value 1 and all others are 0.
Now assuming that each ϕi is represented by a vector ψi in Rq, for instance through

the Nyström method in Section 5.2.1, the above problem can be approximately solved
by search an embedding vector ψgmp in Rq such that 〈ψi, ψgmp〉 = 1 for i = 1, . . . , n.
In practice, and to prevent ill-conditioned problems, as shown in Murray and Perronnin
(2014), it is possible to solve a Ridge regression problem:

ψgmp := arg min
ψ∈Rq

‖Ψ>ψ − 1‖2 + γ‖ψ‖2,

where Ψ = [ψ1, . . . , ψn] ∈ Rq×n and 1 denotes the n-dimensional vectors with only 1 as
entries. The solution is simply given by ψgmp = (ΨΨ> + γI)−1Ψ1. It requires inverting
a q × q matrix which is usually tractable when the number of anchor points is small.
In particular, when ψi = κ(w,w)−1/2κ(w,xi) the Nyström approximation of a local
feature map, we have Ψ = κ(w,w)−1/2κ(w,x) where the matrix κ(w,x) ∈ Rq×n has
entries [κ(w,x)]ji = κ(zj ,xi) and thus

ψgmp = κ(w,w)1/2
(
κ(w,x)κ(w,x)> + γκ(w,w)

)−1
κ(w,x)1.

This computation is compatible with the summation kernel introduced in (5.1) but
becomes intractable for RKN presented in Chapter 3 which pools across |Ix,k| positions.
Instead, we heuristically apply GMP over the set ψk(x1:t) for all t with λx,i = λ|x|−i1−k+1,
which can be obtained from the RNN described in Theorem 3.1. This amounts to
composing GMP with mean poolings obtained over each prefix of x. We observe that it
performs well in our experiments.

5.4. An Optimal Transport Based Kernel Embedding for
Feature Aggregation

In this section, we present an optimal transport based kernel, which is interesting but
not positive definite (p.d.). Then, we introduce an alternative parametrized kernel that
is p.d., more scalable and can be optimized for a given task.

5.4.1. An Attractive yet non Positive Definite Kernel
In contrast to the simple averaging used in (5.1), we can leverage the correspondence
provided by the optimal transport plan to adaptively weight the comparisons of features.

Definition 5.1 (Optimal transport match kernel). Let x,x′ in X be two sets of respective
length n and n′. The Optimal Transport Match Kernel is defined as

KOT(x,x′) = 〈Pκ(x,x′), κ(x,x′)〉 :=
∑
i,j

Pκ(x,x′)ijκ(xi,x′j), (5.5)
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where Pκ(x,x′) ∈ U (1/n, 1/n′) is the solution to the regularized optimal transport prob-
lem (5.3) between x and x′, whose cost C ∈ Rn×n′ has entries Cij = −κ(xi,x′j) since κ
is a measure of similarity.
When ε = 0,KOT is equivalent to the 2-Wasserstein distance associated to the distance

dκ induced by κ—defined as d2
κ(u, v) = κ(u, u) − 2κ(u, v) + κ(v, v) for any u, v—in the

following sense:

W 2
2 (x,x′) := min

Pκ∈U( 1
n
, 1
n′)
〈Pκ(x,x′), d2

κ(x,x′)〉

= 1
n

n∑
i=1

κ(xi,xi) + 1
n′

n′∑
j=1

κ(x′j ,x′j)− 2KOT(x,x′).
(5.6)

KOT performs well in practice, as shown in Section 5.5, but principally suffers from three
issues: (i) for small values of ε, it is not positive-definite (experiments exhibit negative
eigenvalues in the Gram matrix); (ii) computing KOT requires solving the transport
problems between all pairs (x,x′) in the data set, which grows quadratically with the
number of samples; (iii) KOT cannot be optimized to the task at hand. We therefore
introduce a positive definite kernel addressing these issues, notably reducing the number
of the transport problems to solve to be linear of the number of samples.

5.4.2. A Parametrized Optimal Transport Based Kernel Embedding
The issue of positive definiteness of the 2-Wasserstein distance, corresponding to KOT
with ε = 0, is well known and has been studied (see Peyré et al. (2019) Section 8.3,
Gardner et al. (2017) and Appendix 5.A). Here, we introduce a surrogate of the above
kernel to address the three issues above at the same time, which is essentially based on
the following observation:

Pκ,z(x,x′) := p×Pκ(x, z)Pκ(x′, z)>,

with x, x′ and z sets of features and p = |z|, is a valid transport plan between x′ and
x thanks to the gluing lemma (see, e.g, Peyré et al. (2019)), and empirically, is a rough
approximation of Pκ(x,x′). Other works explored the idea of computing the transport
with respect to a common reference (Mérigot et al., 2020; Wang et al., 2013) yet for
the non-regularized transport and with minimal use of the resulting embedding. By
replacing the optimal transport plan Pκ(x,x′) in KOT with Pκ,z(x,x′), we obtain a new
kernel parametrized by z that enjoys better properties than KOT.
Definition 5.2 (Optimal Transport Kernel (OTK) and Embedding). The OTK is de-
fined as

Kz(x,x′) := 〈Pκ,z(x,x′), κ(x,x′)〉, (5.7)
and its associated embedding Φz of x = (x1, . . . ,xn) such that Kz(x,x′) = 〈Φz(x),Φz(x′)〉
is

Φz(x) = √p×
(
Pκ(x, z)>1 ϕ(x), . . . ,Pκ(x, z)>p ϕ(x)

)
= √p×Pκ(x, z)>ϕ(x),

where Pκ(x, z)i denotes the i-th column of Pκ(x, z), i.e the couplings between the el-
ements of x and zi, and ϕ(x) := [ϕ(x1), . . . , ϕ(xn)]>, with ϕ : Rd → H the kernel
embedding associated to κ and its RKHS H. We design an element zi of z as a “sup-
port” and p as number of supports.
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x1

x2xn

z1

zp

P11

P2p
Pn1

ϕ(x1) ϕ(x2) . . . ϕ(xn)

Φz(x)1 . . . Φz(x)p

P11 Pn1 P2p

Figure 5.1.: The input point cloud x is transported onto the reference z = (z1, . . . , zp)
(left), yielding the optimal transport plan Pκ(x, z) used to aggregate the
embedded features and form Φz(x) (right).

The OTK Kz solves the issues raised above: (i) it is p.d. since it can be cast as
〈Φz(x),Φz(x′)〉; (ii) computing its Gram matrix requires computing only as many trans-
port plans as samples (all the transports from the samples x to the reference z); (iii)
as we will show later, the parameter z can be adapted to a specific task. Regarding
the interpretation of the embedding Φz(x), the notion of pooling in the RKHS H of κ
arises naturally if p ≤ n. Φz simultaneously embeds x to Hn via ϕ, aligns via Pκ(x, z)
and also pools to Hp. In other words, the elements of x are non-linearly embedded and
then aggregated in “buckets”, one for each element in the reference z, given the values
of Pκ(x, z). This process is illustrated in Figure 5.1.

Fast computation with Nyström method. The computation of this kernel embedding
can be accelerated using the Nyström method presented in Section 5.2.1. Once ϕ is
replaced with ψ, the transport plan Pκ(x, z) with z ∈ Rd in (5.7) can be reparametrized
as P(ψ(x), z′), i.e. a transport whose cost is the opposite of the linear kernel and z′ =
ψ(z) in Rk. By abuse of notation, we still use z for the new parametrization. The OTK
embedding becomes simply

Φz(x) = √p×P(ψ(x), z)>ψ(x) ∈ Rk×p, (5.8)

with k the dimension of the Nyström embedding and p the number of support in z. In
our experiments, we will often use a Gaussian kernel so that (5.8) is the embedding used
in practice. Next, we discuss how to learn the reference set z.

5.4.3. Unsupervised and Supervised Learning of z

Unsupervised learning. Without labels, and in the fashion of the Nyström approxima-
tion, the p elements of z can be defined as the centroids obtained by K-means applied
to features from available training sets in X . The next lemma, proved in Appendix 5.C,
suggests another algorithm
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Lemma 3 (Relation between Pκ(x,x′) and Pκ,z(x,x′) when ε = 0). For any x, x′ and
z in X with lengths n, n′ and p,

|W2(x,x′)− 〈Pκ,z(x,x′), d2
κ(x,x′)〉1/2︸ ︷︷ ︸

W z
2 (x,x′)

| ≤ 2 min(W2(x, z),W2(x′, z)). (5.9)

A corollary is a bound on the error term between W2 and W z
2 for m samples (x1, . . . ,xm)

E2 := 1
m2

m∑
i,j=1
|W2(xi,xj)−W z

2 (xi,xj)|2 ≤ 4
m

m∑
i=1

W 2
2 (xi, z). (5.10)

Equation (5.9) shows that the distanceW z
2 resulting from Kz is related to the Wasser-

stein distanceW2; yet, this relation should not be interpreted as an approximation error,
as our goal is not to approximate W2, but rather to develop a different p.d. kernel with
good computational properties. The right-hand term in Equation (5.10) corresponds
to the objective to minimize in the Wasserstein Barycenter (Cuturi and Doucet, 2013)
problem, which yields the mean of a set of empirical measures (here the x’s) under the
OT metric. The Wasserstein barycenter is therefore an attractive candidate for choosing
z. Both methods yield similar results as will be shown in Section 5.5 and Appendix 5.E.
Wasserstein barycenters are less theoretically grounded for non-linear kernels which fur-
ther justifies our parametrization (5.8). The anchor points w and the references z may
be computed using similar algorithms; however, their mathematical interpretation dif-
fers as exposed above. The task of representing features (learning w in Rd for a specific
κ) is decoupled from the task of aggregating (learning the reference z in Rk), which is
similar to the multilayer structure of neural networks.

Supervised learning. As mentioned in Section 5.2, P(ψ(x), z) is computed using the
Sinkhorn’s algorithm, recalled in Appendix 5.A, which can be easily adapted to batches of
samples x, with possibly varying lengths, leading to GPU-friendly forward computations
of the OTK embedding Φz. More important, all the operations in an iteration of the
Sinkhorn’s algorithm are differentiable, which enables z to be optimized with stochastic
gradient descent through back-propagation in the context of empirical risk minimization
when labels are available. In practice, a small number of Sinkhorn iterations is generally
sufficient to precisely compute P(ψ(x), z). Since the anchor points w in the embedding
layer below can also be learned end-to-end (Mairal, 2016), the OTK is a module that
can be injected into any deep network, as demonstrated in our experiments.

5.4.4. Extensions
Integrating positional information into the OTK. The discussed kernels do not take
the position of the features into account, which may be problematic when dealing with
structured data such as images or sentences. To this end, we borrow the idea of convo-
lutional kernel networks (CKN) (Mairal, 2016; Mairal et al., 2014), i.e. to penalize the
similarity exponentially with the positional distance between a pair of elements in the
sequences. More precisely, we multiply κ by this positional term:

κ′(xi,x′j) = κ(xi,x′j)× e
− 1
σ2

pos
(i/n−j/n′)2

.
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and replace it in the OTK. With similarity weights based both on content and position,
the OTK can be viewed as a generalization of the CKNs (whose similarity weights are
based on position only) with feature alignment based on optimal transport. However, the
resulting embedding function of the new kernel is not obvious to see as approximating
the position term with a dot-product is not trivial. For this reason, we present here an
embedding that works well in practice. After adding the positional term into the OTK,
the kernel becomes

KOT(x,x′) =
n∑
i=1

n′∑
j=1

Pκ′(x,x′)ijκ
′(xi,x′j).

Computing the transport plan against a reference measure Pκ′(x, z)ij is similar to the
OTK without position encoding, by simply replacing the input similarity matrix K
in (5.12) with S�K where S denotes the matrix with entry

Sij = e
− 1
σ2

pos
(i/n−j/p)2

.

Whereas, the kernel mapping of κ′ is no more ϕ (or ψ when ϕ is infinite dimensional)
as there is this additional position term. Yet, we can mimic its effect without adding
further dimensions by multiplying elementwisely Pκ′(x, z) with S. This results in the
following embedding with position information

Φz(x) = √p× [Pκ′(x, z)� S]>ϕ(x).

Note that when dealing with multi-dimensional objects such as images, we just replace
the index scalar i with an index vector of the same spatial dimension as the object,
representing the positions of each dimension.

Using multiple references. A naive reconstruction using different references z1, . . . , zq
in X may yield a better approximation of the transport plan. In this case, the embedding
of x becomes

Φz1,...,zq(x) = 1/√q (Φz1(x), . . . ,Φzq(x)) , (5.11)

with q the number of references (the factor 1/√q comes from the mean). The references
do not necessarily have the same number of supports zi. Using relation (5.9) (see Ap-
pendix 5.C for details), we can obtain an error bound similar to (5.10) for a data set of
m samples (x1, . . . ,xm) and q references. To choose multiple references, we tried a K-
means algorithm with 2-Wasserstein distance for assigning clusters, and we updated the
centroids as in the single-reference case. We observe in Section 5.5 that using multiple
references is particularly useful when optimizing z with supervision.

5.5. Experiments

In this section, we present the experimental results for GMP and OTK respectively.
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Table 5.1.: Average auROC and auROC50 for SCOP fold recognition benchmark. De-
tails about pairwise statistical tests between methods can be found in Ap-
pendix 5.D.
Method pooling one-hot BLOSUM62

auROC auROC50 auROC auROC50

CKN-seq mean 0.827 0.536 0.843 0.563
CKN-seq max 0.837 0.572 0.866 0.621
CKN-seq GMP 0.838 0.561 0.856 0.608

RKN mean 0.829 0.541 0.840 0.571
RKN max 0.844 0.587 0.871 0.629
RKN GMP 0.848 0.570 0.852 0.609

5.5.1. Results for Generalized Max Pooling

Here we consider the Structural Classification Of Proteins (SCOP) version 1.67 (Murzin
et al., 1995). We follow the preprocessing procedures of Håndstad et al. (2007) and
remove the sequences that are more than 95% similar, yielding 85 fold recognition tasks.
Each positive training set is then extended with Uniref50 to make the dataset more bal-
anced, as proposed in Hochreiter et al. (2007). The resulting dataset can be downloaded
from http://www.bioinf.jku.at/software/LSTM_protein. The number of training
samples for each task is typically around 9,000 proteins, whose length varies from tens
to thousands of amino-acids. In all our experiments we use logistic loss. We measure
classification performances using auROC and auROC50 scores (area under the ROC
curve and up to 50% false positives).
For CKN (Chen et al., 2019a) and RKN (Chen et al., 2019b), we evaluate both one-hot

encoding of amino-acids by 20-dimensional binary vectors and an alternative represen-
tation relying on the BLOSUM62 substitution matrix (Henikoff and Henikoff, 1992).
Specifically in the latter case, we represent each amino-acid by the centered and nor-
malized vector of its corresponding substitution probabilities with other amino-acids.
The results for CKN and RKN with different pooling operations are shown in Table 5.1.
Consistently, within kernel networks GMP systematically outperforms mean pooling,
while being slightly behind max pooling.

5.5.2. Results for Optimal Transport Kernel

We demonstrate the effectiveness of the OTK embedding in biology sequence and image
classification tasks in unsupervised and supervised settings. Although KOT in (5.5) and
its surrogate Kz in (5.7) are of interest, their lack of scalability – they require to compute
the Gram matrix, which is quadratic in the number of samples – makes them less suited
to large data sets, unlike our explicit embedding Φz. Nevertheless, a brief study of their
performance can be found in Appendix 5.E. A brief study of OTK in a natural language
processing task can also be found in Appendix 5.E.5 to show the effectiveness of OTK
for another data modality.
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Influence of z on the OTK embedding. The OTK embedding Φz defined in (5.11)
is characterized by the number of references q and the number p of features (supports)
in each reference set. As mentioned in Section 5.4, we investigate several algorithms
for learning the references without supervision. The discussed results can be found in
Appendix 5.E. Using more references and increasing the number of supports generally
yields better results at the expense of a larger computational cost and K-means turned
out to be a simple and effective approach for learning the references.

Protein fold classification on SCOP 1.75 and 2.06. Our protein fold classification
experiments consider the Structural Classification Of Proteins (SCOP) version 1.75 and
2.06. We follow the data preprocessing protocols in Hou et al. (2018), which yields a
training and validation set composed of 14699 and 2013 sequences from SCOP 1.75, and
a test set of 2533 sequences from SCOP 2.06. The resulting protein sequences belong
to 1195 different folds, thus the problem is formulated as a multi-classification task.
The input sequence is represented as a 45-dimensional vector at each amino acid. The
vector consists of a 20-dimensional one-hot encoding of the sequence, a 20-dimensional
position-specific scoring matrix (PSSM) representing the profile of amino acids, a 3-class
secondary structure represented by a one-hot vector and a 2-class solvent accessibility.
The lengths of the sequences are varying from tens to thousands.
The sequences are encoded with a Gaussian kernel as in CKNs (Chen et al., 2019a).

While a global average pooling operation is used to aggregate the kernel embeddings
in CKNs, the OTK embedding (5.8) performs an adaptive pooling. Different numbers
of anchor points (128, 512 and 1024) are considered in the Nyström approximation. In
the unsupervised setting, we benchmark our features against the regular, unsupervised
state-of-the-art CKN features (Chen et al., 2019b). As shown in Table 5.2, the OTK
embedding clearly outperforms the CKN features. In the supervised setting, we com-
pare our optimized features to three state-of-the-art features for this task, obtained by
recurrent kernel networks (RKN) (Chen et al., 2019b) and CKNs, both learned with
supervision, and a more traditional model based on CNNs, DeepSF (Hou et al., 2018).
Our method outperforms all baselines as shown in Table 5.2. Note how our unsupervised
features are as good if not better than the supervised baselines. Complementary results
on the effect of z, and comparison with Wasserstein barycenter for learning z and error
bars can be found in Appendix 5.E.3.

Detection of chromatin profiles. Predicting the functional effects of noncoding vari-
ants from only genomic sequences is a central task in human genetics. A fundamental
step for this task is to simultaneously predict large-scale chromatin features from DNA
sequences (Zhou and Troyanskaya, 2015). We consider here the DeepSEA dataset, which
consists in simultaneously predicting 919 chromatin profiles including 690 transcription
factor (TF) binding profiles for 160 different TFs, 125 DNase I sensitivity profiles and
104 histone-mark profiles. In total, there are 4.4 million, 8000 and 455024 samples
for training, validation and test. Each sample consists of a 1000-bp DNA sequence
from the human GRCh37 reference. Each sequence is represented as a 1000× 4 binary
matrix using one-hot encoding on DNA characters. The dataset is available at http:
//deepsea.princeton.edu/media/code/deepsea_train_bundle.v0.9.tar.gz. Note
that the labels for each profile are very imbalanced in this task with few positive sam-
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Table 5.2.: Classification accuracy (top 1/5/10) on test set for SCOP 1.75 for different
combinations of (number of references q × number of supports p). The
accuracies are averaged from 10 different runs. DeepSF (Hou et al., 2018) is
a CNN with 10 convolutional layers. The OTK outperforms all baselines.

Unsupervised

Nb filters CKN OTK (1× 50) OTK (1× 100)

128 64.7/86.3/91.6 77.5/91.7/94.5 79.4/92.4/94.9
1024 82.2/92.8/95.2 84.6/95.0/97.0 85.7/95.3/96.7

Supervised

Nb filters DeepSF CKN RKN OTK (1 × 50) OTK (5 × 10)

128 73.0/90.3/94.5 76.3/92.2/95.3 77.8/92.9/95.5 82.8/93.9/96.2 84.7/94.7/96.5
512 84.1/94.3/96.4 85.3/95.0/96.5 88.4/95.8/97.1 88.7/95.9/97.3

Table 5.3.: Results for prediction of chromatin profiles on the DeepSEA dataset. The
metrics are area under ROC (auROC) and area under PR curve (auPRC),
averaged over 919 chromatin profiles. The accuracies are averaged from
10 different runs. Armed with the positional encoding (PE) described in
Section 5.4, the OTK outperforms the state-of-the-art model and an OTK
with the PE proposed in Vaswani et al. (2017).

Method DeepSEA (3-layer-CNN) OTK + Sinusoidal PE OTK + Our PE

auROC 0.933 0.917 0.936
auPRC 0.342 0.311 0.360
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Table 5.4.: Unsupervised classification with CIFAR-10 for various features extracted
from 2-layer unsupervised CKNs with different numbers of filters. The ac-
curacies are averaged from 10 different runs. The unsupervised OTK has
one reference with 64 supports learned with K-means, with or without our
position encoding (PE). Our OTK embedding notably improves the base
features.

Dataset Flatten Mean pooling Gaussian pooling (Mairal, 2016) OTK OTK (with PE)

16× 16× 256 73.1 64.9 77.5 77.9 81.4
16× 16× 1024 76.1 73.4 82.0 80.1 83.2

ples. For this reason, learning unsupervised models could be intractable as they may
require an extremely large number of parameters if junk or redundant sequences cannot
be filtered out. We thus use our supervised OTK in (5.8) as an adaptive pooling layer
and inject it into a deep neural network model, between a convolutional layer and a
fully connected layer. We compare it to the state-of-the art model (Zhou and Troyan-
skaya, 2015), a CNN with 3 convolutional layers, in Table 5.3. In contrast to a typical
transformer which would have stored a 1000 × 1000 matrix, our attention score, with
a reference of size 64, is only 1000 × 64. Realizing that position encoding is crucial for
this task, we also compare our encoding to the sinusoidal encoding introduced in the
transformer (Vaswani et al., 2017) and find that ours is more effective here. More details
about model architectures and training can be found in Appendix 5.E.4.

Image classification on CIFAR-10. Here we use CIFAR-10 features, i.e. 60000 images
with 32× 32 pixels and 10 classes encoded using a two-layer CKN (Mairal, 2016), one of
the baseline architectures for unsupervised learning of CIFAR-10, and evaluate on the
standard test set. The very best configuration of the CKN yields a small number (3×3) of
high-dimensional (16384) patches and an accuracy of 85.8%. Because our embedding is
designed for larger sets of features, it is more consistent to illustrate it on a configuration
which performs slightly less but provides more patches (16×16). While the CKN uses a
Gaussian pooling (with pooling size equal to 6) after a 2-layer convolutional kernel, our
OTKs (5.8) performs an adaptive pooling. The results are shown on Table 5.4. Again,
without supervision, the adaptive pooling of the CKN features by the OTK notably
improves their performance. We notice that the position encoding is very important to
this task, which substantially improves the performance of its counterpart without it.
More details can be found in Appendix 5.E.2.

5.6. Discussion
In this chapter, we proposed a few useful and valid kernel operations for feature ag-
gregation in RKHS, namely GMP and OTK. Rather than using simple mean or sum
pooling to aggregate local kernel embeddings, we showed that GMP and OTK can pos-
sibly capture complex dependencies between local features and thus perform better in
applications, such as tasks of biological sequence classification. The experimental results
also suggest the importance of developing efficient algorithms for simultaneously solving
a large number of optimal transport problems, which leads to an orthogonal direction to

120



5.6. Discussion

the large-scale optimal transport problem (Genevay et al., 2016) in the sense of the num-
ber of samples from each distribution. A more thorough study on this problem would
bring more insight into adaptive weighting techniques and attention-based models.
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Appendix
Appendix 5.A provides some background on notions used throughout the chapter; Ap-
pendix 5.B adds details on the implementation and foundation of our OTK; Appendix 5.C
contains the proofs skipped in the chapter; Appendix 5.E provides details on our exper-
imental protocol for reproducibility and additional results.

5.A. Background

This section provides some background on Sinkhorn’s algorithm and on the relationship
between optimal transport based kernels and positive definite histogram kernels.

5.A.1. Sinkhorn’s Algorithm: Fast Computation of Pκ(x, z)

Without loss of generality, we consider here κ the linear kernel. We recall that Pκ(x, z)
is the solution of an optimal transport problem, which can be efficiently solved by
Sinkhorn’s algorithm (Peyré et al., 2019) involving matrix multiplications only. Specifi-
cally, Sinkhorn’s algorithm is an iterative matrix scaling method that takes the opposite
of the pairwise similarity matrix K with entry Kij := 〈xi, zj〉 as input C and outputs
the optimal transport plan Pκ(x, z) = Sinkhorn(K, ε). Each iteration step ` performs
the following updates

u(`+1) = 1/n
Ev(`) and v(`+1) = 1/p

E>u(`) , (5.12)

where E = eK/ε. Then the matrix diag(u(`))Ediag(v(`)) converges to Pκ(x, z) when
` tends to ∞. However when ε becomes too small, some of the elements of a matrix
product Ev or E>u become null and result in a division by 0. To overcome this numerical
stability issue, computing the multipliers u and v is preferred (see e.g. (Peyré et al.,
2019, Remark 4.23)). This algorithm can be easily adapted to a batch of data points x,
and with possibly varying lengths via a mask vector masking on the padding positions
of each data point x, leading to GPU-friendly computation. More importantly, all the
operations above at each step are differentiable, which enables z to be optimized through
back-propagation. Consequently, this module can be injected into any deep networks.

5.A.2. On the Relationship Between Optimal Transport Match Kernel and
Histogram Kernels

When features are living in a discrete set F , it is classical to represent a set of features x as
a histogram H(x) = (Hu(x))u∈F , with Hu(x) the number of occurrences of the pattern
u in x. The spectrum kernel (Leslie et al., 2002a) used in biology computes the dot
product between the normalized histograms Ĥ(x) = H(x)/|x| and Ĥ(x′). Interestingly,
this kernel can be rewritten as (Kuksa et al., 2009)

Kspectrum(x,x′) := 〈Ĥ(x), Ĥ(x′)〉 = 1
n

1
n′

n∑
i=1

n′∑
j=1

δ(xi,x′j),
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where δ denotes the Dirac kernel. As the spectrum kernel performs exact matches
between elements, more flexible variants where then proposed, either by allowing mis-
matches for sequence data (Leslie et al., 2004), or by using a Gaussian kernel for com-
paring features (Chen et al., 2019a). A related version of Kspectrum is the histogram
intersection kernel (Barla et al., 2003), proposed in the context of computer vision,
which computes the minimum of the counts at each bin of the two histograms instead of
the dot product in the spectrum kernel. Interestingly, this kernel exhibits a well-known
relation with optimal transport, see Gardner et al. (2017):

Lemma 4 (Histograms intersection as an optimal match kernel). The histogram inter-
section can be cast as the optimization of a match kernel:

Khist(x,x′) :=
∑
u∈F

min(Ĥu(x), Ĥu(x′)) = max
P∈Ur( 1

n
, 1
n′ )

n∑
i=1

n′∑
j=1

Pijδ(xi,x′j),

where Ur is a relaxed Kantorovich coupling constraint

Ur

( 1
n
,

1
n′

)
=
{
P ∈ Rn×n

′
+ : P1n ≤

1
n

and P>1n′ ≤
1
n′
}
.

Proof. For completeness, a proof can be found in Appendix 5.C.

It is possible to show that the distance induced by Khist is the `1-norm between two
histograms in contrast to the `2-norm in Kspectrum. A similar relation between the
intersection kernel and a variation of optimal transport was also studied in Gardner
et al. (2017). When dealing with discrete feature sets, our kernel KOT differs from
Khist in three aspects: (i) the relaxed Kantorovich constraint becomes exact; (ii) we
add an entropic penalty term H(P), which brings both flexibility as it interpolates
between Khist (when ε = 0) and Kspectrum (when ε gets bigger, we maximize the entropy,
which is equivalent to summing all the pairs with identical weights as in Kspectrum), and
computational scalability as well as differentiability thanks to Sinkhorn’s algorithm; (iii)
we relax δ by a positive definite, differentiable kernel κ allowing mismatches and end-
to-end learning (Chen et al., 2019a), e.g, a Gaussian kernel.

5.B. Additional details
This section provides additional details on the positional encoding in the OTK, and the
reconstruction of the transport plan for Gaussian distributions.

5.B.1. Reconstruction of the Transport for Gaussian Distributions
In the case of Gaussian distributions and Monge formulation of optimal transport, the
reconstruction formula given in 5.4.2 is exact. Before we prove this, we introduce the
notion of Bures-Wasserstein distance and its well-known relationship to optimal trans-
port. Let x, x′ and z be random gaussian vectors in Rn with zero mean and respective
covariance matrices A, B and C. For such distributions, the Bures-Wasserstein distance
between A and B, defined as

d(A,B) :=
[
trA+ trB − 2tr(A1/2BA

1/2)1/2
]1/2

,
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coincides with the 2-Wasserstein distance between x and x′, W2(x, x′). As a result,
Bures-Wasserstein theory (see, e.g, Bhatia et al. (2018)) provides a closed form solution
to the optimal transport problem cast as

W2(x, x′) := inf
γ∈Γ(µ,ν)

 ∫
Rn×Rn

‖x− y‖2dγ(x, y)


1/2

,

where µ and ν are mass distributions: the minimum is indeed attained in x′ = Tx, with

T = A−1#B := A−1(AB)1/2 = (A−1B−1)1/2B.

Lemma 5. Let x, x′ and z be gaussian distributions with covariance matrices A, B and
C. We assume that we know the Monge optimal transport mapping TA→C from x to z
and TB→C from x′ to z. Then, the mapping from x to x′ can be obtained with

T̃A→B := T−1
B→CTA→C .

Proof. If we use the regular transport from x (covariance matrix A) to x′ (covariance
matrix B) the new covariance matrix is

E(TA→Bxx>T>A→B) = TA→BE(xx>)T>A→B
= TA→BATA→B

= A−1(AB)1/2AA−1(AB)1/2

= B.

Now, transporting x to z then z to x′, the reconstructed covariance matrix is

E(TC→BTA→Cxx>T>A→CT>C→B) = TC→BTA→CE(xx>)T>A→CT>C→B
= TC→BTA→CATA→CTC→B

= TC→BTA→CAA
−1(AC)1/2TC→B

= TC→BA
−1ACTC→B

= TC→BCTC→B

= B.

So, transporting x to z before transporting the result to x′ is equivalent to directly
transporting x to x′. The reconstructed transport yields the same distribution. Since
T−1
B→C = TC→B, we can conclude.

Remark 5.1. If x and x′ have non-zero means, one just needs to use the mapping
T̃A→B(x− µx) + µx′.
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5.C. Proofs

5.C.1. Proof of Lemma 4

Proof. For any P ∈ Ur
(

1
n ,

1
n′

)
, we have

n∑
i=1

n′∑
j=1

Pijδ(xi,x′j) =
n∑
i=1

n′∑
j=1

∑
u∈F

Pijδ(xi, u)δ(x′j , u)

=
∑
u∈F

n∑
i=1

n′∑
j=1

Pijδ(xi, u)δ(x′j , u)

︸ ︷︷ ︸
:=fu(x,x′)

.

Then,

fu(x,x′) =
n∑
i=1

δ(xi, u)
n′∑
j=1

Pijδ(x′j , u) ≤
n∑
i=1

δ(xi, u)
n′∑
j=1

Pij︸ ︷︷ ︸
≤1/n

≤ Hu(x)/n = Ĥu(x),

and similarly, fu(x,x′) ≤ Ĥu(x′). Consequently, fu(x,x′) ≤ min(Ĥu(x)Ĥu(x′)). Since
the index sets Iu(x,x′) = {(i, j) ∈ [1, n]× [1, n′] : xi = x′j = u} are disjoint for different
u, we will show that the equality for any u ∈ F can be attained with

Pij = min
(

1
nHxi(x′)

,
1

n′Hx′j (x)

)
δ(xi,x′j).

First,
∑n′
j=1 Pij = min(1/n,Hxi(x′)/n′Hxi(x)) ≤ 1/n and, similarly,

∑n
i=1 Pij ≤ 1/n′.

As a consequence, P ∈ Ur
(

1
n ,

1
n′

)
. Moreover,

fu(x,x′) =
∑

(i,j)∈Iu(x,x′)
Pij

= Hu(x)Hu(x′) min(1/nHu(x′), 1/n′Hu(x))
= min(Ĥu(x), Ĥu(x′)),

so we have an equality case, which concludes the proof.

A direct conclusion from this Lemma is that the optimal match problem 4 defines a
positive definite kernel since the histogram intersection kernel is known to be positive
definite.
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5.C.2. Proof of Lemma 3

Proof. First, since
∑n′
j=1 pP(x′, z)jk = 1 for any k, we have

W2(x, z)2 =
n∑
i=1

p∑
k=1

P(x, z)ikd2
κ(xi, zk)

=
n∑
i=1

p∑
k=1

n′∑
j=1

pP(x′, z)jkP(x, z)ikd2
κ(xi, zk)

= ‖u‖22,

with u a vector in Rnn′p whose entries are
√
pP(x′, z)jkP(x, z)ikdκ(xi, zk) for i =

1, . . . , n, j = 1, . . . , n′ and k = 1, . . . , p. We can also rewriteW z
2 (x,x′) as an `2-norm of a

vector v in Rnn′p whose entries are
√
pP(x′, z)jkP(x, z)ikdκ(xi,x′j). Then by Minkowski

inequality for the `2-norm, we have

|W2(x, z)−W z
2 (x,x′)| = |‖u‖2 − ‖v‖2|

≤ ‖u− v‖2

=

 n∑
i=1

p∑
k=1

n′∑
j=1

pP(x′, z)jkP(x, z)ik(dκ(xi, zk)− dκ(xi,x′j))2

1/2

≤

 n∑
i=1

p∑
k=1

n′∑
j=1

pP(x′, z)jkP(x, z)ikd2
κ(x′j , zk)

1/2

=

 p∑
k=1

n′∑
j=1

P(x′, z)jkd2
κ(x′j , zk)

1/2

= W2(x′, z),

where the second inequality is the triangle inequality for the distance dκ. Finally, we
have

|W2(x,x′)−W z
2 (x,x′)|

≤|W2(x,x′)−W2(x, z)|+ |W2(x, z)−W z
2 (x,x′)|

≤W2(x′, z) +W2(x′, z)
=2W2(x′, z),

where the second inequality is the triangle inequality for the 2-Wasserstein distance.
By symmetry, we also have |W2(x,x′) −W z

2 (x,x′)| ≤ 2W2(x, z), which concludes the
proof.

5.C.3. Relationship between W2 and W z
2 for Multiple References

Using relation (5.9) (see Appendix 5.C for details), we can obtain a bound on the error
term between W2 and W z

2 for a data set of m samples (x1, . . . ,xm) and q references
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(z1, . . . , zq)

E2 := 1
m2

m∑
i,j=1
|W2(xi,xj)−W z1,...,zq

2 (xi,xj)|2 ≤ 4
mq

m∑
i=1

q∑
j=1

W 2
2 (xi, zj). (5.13)

When q = 1, the right-hand term in the inequality is the objective to minimize in the
Wasserstein barycenter problem (Cuturi and Doucet, 2013), which further explains why
we considered it: Once W z

2 is close to the Wasserstein distance W2, Kz will also be close
to KOT thanks to relation (5.6). We extend here the bound given in Lemma 3 in the case
of one reference to the multiple-reference case. The approximate 2-Wasserstein distance
W z

2 (x,x′) thus becomes

W z1,...,zq
2 (x,x′) :=

〈
1
q

q∑
j=1

Pzj (x,x′), d2
κ(x,x′)

〉1/2

=

1
q

q∑
j=1

W zj
2 (x,x′)2

1/2

.

Then by Minkowski inequality for the `2-norm we have

|W2(x,x′)−W z1,...,zq
2 (x,x′)| =

∣∣∣∣∣∣∣
1
q

q∑
j=1

W2(x,x′)2

1/2

−

1
q

q∑
j=1

W zj
2 (x,x′)2

1/2
∣∣∣∣∣∣∣

≤

1
q

q∑
j=1

(W2(x,x′)−W zj
2 (x,x′))2

1/2

,

and by Lemma 3 we have

|W2(x,x′)−W z1,...,zq
2 (x,x′)| ≤

4
q

q∑
j=1

min(W2(x, zj),W2(x′, zj))2

1/2

.

Finally the approximation error in terms of Frobenius is bounded by

E2 := 1
m2

m∑
i,j=1
|W2(xi,xj)−W z1,...,zq

2 (xi,xj)|2 ≤ 4
mq

m∑
i=1

q∑
j=1

W 2
2 (xi, zj).

In particular, when q = 1 that is the case of single reference, we have

E2 ≤ 4
m

m∑
i=1

W 2
2 (xi, z),

where the right term equals to the objective of the Wasserstein barycenter problem,
which justifies the choice of z when learning without supervision.

5.D. Additional Experimental Results for Generalized Max
Pooling

Even though each method was run only one time for each task, the 85 tasks allow
us to conduct statistical testing when comparing two methods. In Figure 5.D.1, we
provide pairwise comparisons allowing us to assess the statistical significance of various
comparisons of pooling operations drawn in the chapter. We use a Wilcoxon signed-rank
test to provide p-values.

127



5. Kernel Embeddings for Feature Aggregation

0.0 0.2 0.4 0.6 0.8 1.0
RKN-GMP (average auROC50 0.598)

0.0

0.2

0.4

0.6

0.8

1.0

RK
N-

m
ax

 (a
ve

ra
ge

 a
uR

OC
50

 0
.6

29
)

P-value=2.2e-02

0.0 0.2 0.4 0.6 0.8 1.0
RKN-GMP (average auROC50 0.57)

0.0

0.2

0.4

0.6

0.8

1.0

RK
N-

m
ax

 (a
ve

ra
ge

 a
uR

OC
50

 0
.5

87
)

P-value=1.1e-01

0.0 0.2 0.4 0.6 0.8 1.0
RKN-mean (average auROC50 0.571)

0.0

0.2

0.4

0.6

0.8

1.0

RK
N-

m
ax

 (a
ve

ra
ge

 a
uR

OC
50

 0
.6

29
)

P-value=1.6e-04

0.0 0.2 0.4 0.6 0.8 1.0
RKN-mean (average auROC50 0.541)

0.0

0.2

0.4

0.6

0.8

1.0

RK
N-

m
ax

 (a
ve

ra
ge

 a
uR

OC
50

 0
.5

87
)

P-value=9.9e-04

Figure 5.D.1.: Scatterplots when comparing pairs of methods. In particular, we want
to compare RKN-gmp vs RKN-max (top); RKN-max vs. RKN-mean
(bottom).
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Table 5.E.1.: Accuracies obtained by computing the kernel matrices on 5000 samples of
CIFAR-10 for various feature size: [(patch × patch), embedding dimen-
sion]. Metric: accuracy on validation set.

Dataset Mean pooling Linear kernel KOT Kz KOT+ Pos. enc. Kz+ Pos. enc.

(3 × 3), 256 0.584 0.649 0.619 0.61 0.661 0.652
(3 × 3), 8192 0.636 0.690 0.652 0.65 0.693 0.694

5.E. Additional Experimental Results for Optimal Transport
Kernel

In this section, we provide details on our experimental protocol for reproducibility, as
well as additional experimental results. The results are generally averaged over different
runs, and the uncertainty is represented with the standard deviation.

5.E.1. Experiments on Kernel Matrices
Here, we study the optimal transport kernel KOT (5.5) and its surrogate Kz (5.7) which
exhibit interesting properties. For Kz, the reference z is learned without supervision.
Although our embedding Φz is scalable, the exact kernel require the computation of
Gram matrices. Therefore, 5000 samples only of CIFAR-10 (images with 32× 32 pixels)
are encoded without supervision using a two-layer convolutional kernel network (Mairal,
2016). The resulting features are 3× 3 patches living in Rd with d = 256 or 8192. Since
the features are already the output of a Gaussian Nyström embedding, the intermediate
kernel κ is linear, which means that KOT and Kz aggregate existing features linearly
given the computed weight matrix P. In that sense, we can say that our kernels work
as an adaptive pooling. We therefore compare it to kernel matrices corresponding to
mean pooling and no pooling at all (linear kernel). A linear classifier is trained from
this matrices. Although we cannot prove that KOT is positive definite, the classifier
trained on the kernel matrix converges when ε is not too small. The results can be
seen on Table 5.E.1. Without positional information, our kernels do better than Mean
pooling. When the positions are encoded, the Linear kernel is also outperformed. Note
that including positions in Mean pooling and Linear kernel means interpolating between
these two kernels: in the Linear kernel, only patches with same index are compared
while in the Mean pooling, all patches are compared. All interpolations did worse than
the Linear kernel.

5.E.2. CIFAR-10
We build our OTK on top of the state-of-the-art unsupervised features for CIFAR-10,
extracted from a 2-layer CKN (Mairal et al., 2014; Mairal, 2016) model with kernel
sizes equal to 3 and 3, and Gaussian pooling size equal to 2 and 1. We consider the
following configurations of the number of filters at each layer, to simulate different input
dimensions for OTKs

• 64 filters at first and 256 at second layer, which yields a 16×16×256 representation
for each image;
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Table 5.E.2.: Hyperparameter search range for CIFAR-10
Hyperparameter Search range

Entropic regularization ε [1.0; 0.1; 0.01; 0.001]
Position encoding bandwidth σpos [0.5; 0.6; 0.7; 0.8; 0.9; 1.0]

Table 5.E.3.: Classification results for CIFAR-10. We consider here OTKs with one
reference with different number of supports, learned with K-means. The
embeddings are computed with or without position encoding (PE).

Method Nb. supports 16× 16× 256 16× 16× 1024

Flatten 73.1 76.1
Mean pooling 64.9 73.4
Gaussian pooling (Mairal, 2016) 77.5 82.0

OTK 9 75.6 79.3
OTK (with PE) 78.0 82.2
OTK 64 77.9 80.1
OTK (with PE) 81.4 83.2
OTK 144 78.4 80.7
OTK (with PE) 81.8 83.4

• 256 filters at first and 1024 at second layer, which yields a 16 × 16 × 1024 repre-
sentation for each image.

We feed to OTKs the output features of a CKN model, which is already a kernel embed-
ding. κ in OTKs will therefore be a linear kernel. The OTK embedding is learned with
one reference using K-means method described in Section 5.4 and compared to several
classical pooling baselines, including the original CKN’s Gaussian pooling with pooling
size equal to 6. The hyperparameters are entropic regularization ε and bandwidth for
position encoding σpos. Their search grids are shown in Table 5.E.2. The results are
shown in Table 5.E.3. We notice that the position encoding is crucial to this task, and
substantially improves the performance of its counterpart without it.

5.E.3. Protein Fold Recognition
Models setting and hyperparameters. We consider here the one-layer models followed
by a global mean pooling for the baseline methods CKN (Chen et al., 2019a) and
RKN (Chen et al., 2019b). We build our OTK on top of the one-layer CKN model,
where κ can be seen as a Gaussian kernel on the k-mers in sequences. The only dif-
ference between our model and CKN is thus the pooling operation, which is given by
our embedding introduced in Section 5.4. The bandwidth parameter of the Gaussian
kernel κ on k-mers is fixed to 0.6 for unsupervised models and 0.5 for supervised models,
the same as used in CKN which were selected by the accuracy on the validation set.
The filter size k is fixed to 10 and different numbers of anchor points in Nyström for
κ are considered in the experiments. The other hyperparameters for OTKs are the en-
tropic regularization parameter ε, the number of supports in a reference p, the number
of references q, the number of iterations for Sinkhorn’s algorithm and the regularization
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Table 5.E.4.: Hyperparameter search grid for SCOP 1.75
Hyperparameter Search range

ε for Sinkhorn [1.0; 0.5; 0.1; 0.05; 0.01]
λ for classifier (unsupervised OTKs) 1/2range(5,20)

λ for classifier (supervised OTKs) [1e-6;1e-5;1e-4;1e-3]

Table 5.E.5.: Classification accuracy (top 1/5/10) results of unsupervised OTKs for
SCOP 1.75. We show the results for different combinations of (number
of references q × number of supports p). The reference measures z are
learned with either K-means or Wasserstein barycenter for updating cen-
troids.

Nb. filters Method q
Embedding size (q × p)

10 50 100 200

128

K-means
1 76.5/91.5/94.4 77.5/91.7/94.5 79.4/92.4/94.9 78.7/92.1/95.1
5 72.8/89.9/93.7 77.8/91.7/94.6 78.6/91.9/94.6 78.1/92.1/94.7
10 62.7/85.8/91.1 76.5/91.0/94.2 78.1/92.2/94.9 78.6/92.2/94.7

Wass. bary.
1 64.0/85.9/91.5 71.6/88.9/93.2 77.2/91.4/94.2 77.5/91.9/94.8
5 70.5/89.1/93.0 76.6/91.3/94.4 78.4/91.7/94.3 77.1/91.9/94.7
10 63.0/85.7/91.0 75.9/91.4/94.3 77.5/91.9/94.6 77.7/92.0/94.7

1024 K-means
1 84.4/95.0/96.6 84.6/95.0/97.0 85.7/95.3/96.7 85.4/95.2/96.7
5 81.1/94.0/96.2 84.9/94.8/96.8 84.7/94.4/96.7 85.2/95.0/96.7
10 79.8/93.5/95.9 83.1/94.6/96.6 84.4/94.7/96.7 84.8/94.9/96.7

parameter λ in the linear classifier. The search grid for ε and λ is shown in Table 5.E.4
and they are selected by the accuracy on validation set. ε plays an important role in
the performance and is observed to be stable for the same dataset. For this dataset, it
is selected to be 0.5 for all the unsupervised and supervised models. The effect of other
hyperparameters will be discussed below.

Learning unsupervised OTKs. The kernel embedding ϕ, which is infinite dimensional
for the Gaussian kernel, is approximated with the Nyström method using K-means on
300000 k-mers extracted from the same training set as in Chen et al. (2019b). The ref-
erence measures are learned by using either K-means or Wasserstein to update centroids
in 2-Wasserstein K-means on 3000 subsampled sequences for RAM-saving reason. We
evaluate OTKs on top of features extracted from CKNs of different dimensions, repre-
senting the number of anchor points used to approximate κ. The number of iterations
for Sinkhorn is fixed to 100 to ensure the convergence. The results for different combi-
nations of q and p are provided in Table 5.E.5. Increasing the number of supports p can
improve the performance and then saturate it when p is too large. On the other hand,
increasing the number of references while keeping the embedding dimension (i.e. p× q)
constant is not significantly helpful in this unsupervised setting. We also notice that
Wasserstein Barycenter for learning the references does not outperform K-means, while
the latter is faster in terms of computation.
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Table 5.E.6.: Classification accuracy (top 1/5/10) of supervised models for SCOP 1.75.
The accuracies obtained by averaging 10 different runs. We show the
results of using either one reference with 50 supports or 5 references with
10 supports. Here DeepSF is a 10-layer CNN model.

Method Top 1/5/10 accuracy on SCOP 2.06

PSI-BLAST (Hou et al., 2018) 84.53/86.48/87.34
DeepSF (Hou et al., 2018) 73.00/90.25/94.51

Number of filters 128 512

CKN (Chen et al., 2019a) 76.30±0.70/92.17±0.16/95.27±0.17 84.11±0.11/94.29±0.20/96.36±0.13
RKN (Chen et al., 2019b) 77.82±0.35/92.89±0.19/95.51±0.20 85.29±0.27/94.95±0.15/96.54±0.12

Ours
OTK (Φz 1 × 50) 82.83±0.41/93.89±0.33/96.23±0.12 88.40±0.22/95.76±0.13/97.10±0.15
OTK (Φz 5 × 10) 84.68±0.50/94.68±0.29/96.49±0.18 88.66±0.25/95.90±0.15/97.33±0.14

Learning supervised OTKs. The supervised OTKs are initialized with the unsuper-
vised method and then trained in an alternating fashion which was also used for CKN:
we use an Adam algorithm to update anchor points in Nyström and reference measures
z, and the L-BFGS algorithm to optimize the classifier. The learning rate for Adam
is initialized with 0.01 and halved as long as there is no decrease of the validation loss
for 5 successive epochs. In practice, we notice that using a small number of Sinkhorn
iterations can achieve similar performance to a large number of iteration, while being
much faster to compute. We thus fix it to 10 throughout the experiments. The accuracy
results are obtained by averaging on 10 runs with different seeds following the setting
in Chen et al. (2019b). The results are shown in Table 5.E.6 with error bars. The effect
of the number of supports q is similar to the unsupervised case, while increasing the
number of references can indeed improve performance.

5.E.4. Detection of Chromatin Profiles

Model architecture and hyperparameters. For the above reason and fair comparison,
we use here the supervised OTK as a module in Deep NNs. The architecture of our
model is shown in Table 5.E.7. We use an Adam optimizer with initial learning rate
equal to 0.01 and halved at epoch 1, 4, 8 for 15 epochs in total. The number of it-
erations for Sinkhorn is fixed to 30. The whole training process takes about 30 hours
on a single GTX2080TI GPU. The dropout rate is selected to be 0.4 from the grid
[0.1; 0.2; 0.3; 0.4; 0.5] and the weight decay is 1e-06, the same as Zhou and Troyanskaya
(2015). The σpos for position encoding is selected to be 0.1, by the validation accuracy
on the grid [0.05; 0.1; 0.2; 0.3; 0.4; 0.5]. The checkpoint with the best validation accu-
racy is used to evaluate on the test set. Area under ROC (auROC) and area under
precision curve (auPRC), averaged over 919 chromatin profiles, are used to measure the
performance. The hidden size d is chosen to be either 1024 or 1536.

Results and importance of position encoding. We compare our model to the state-of-
the-art CNN model DeepSEA (Zhou and Troyanskaya, 2015) with 3 convolutional layers.
Our model outperforms DeepSEA, while requiring fewer layers. The positional informa-
tion is known to be important in this task. To show the efficacy of our position encod-
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Table 5.E.7.: Model architecture for DeepSEA dataset.
Model architecture

Conv1d(in channels=4, out channels=d, kernel size=16) + ReLU
OTKLayer(in channels=d, supports=64, references=1, ε = 1.0, PE=True, σpos = 0.1)
Linear(in channels=d, out channels=d) + ReLU
Dropout(0.4)
Linear(in channels=d× 64, out channels=919) + ReLU
Linear(in channels=919, out channels=919)

Table 5.E.8.: Results for prediction of chromatin profiles on the DeepSEA dataset. The
metrics are area under ROC (auROC) and area under PR curve (auPRC),
averaged over 919 chromatin profiles. The accuracies are averaged from
10 different runs. Armed with the positional encoding (PE) described in
Section 5.4, the OTK outperforms the state-of-the-art model and an OTK
with the PE proposed in Vaswani et al. (2017).

Method DeepSEA Zhou and Troyanskaya (2015) OTK OTK (d = 1024) OTK (d = 1536)
Position encoding - Sinusoidal 200 Ours Ours

auROC 0.933 0.917 0.935 0.936
auPRC 0.342 0.311 0.354 0.360

ing, we compare it to the sinusoidal encoding used in the original transformer (Vaswani
et al., 2017). We observe that our encoding with properly tuned σpos requires fewer
layers, while being interpretable from a kernel point of view. We also find that larger
hidden size d performs better, as shown in Table 5.E.8. ROC and PR curves for all the
chromatin profiles and stratified by transcription factors, DNase I-hypersensitive sites
and histone-marks can also be found in Figure 5.E.1.

5.E.5. SST-2

Dataset description. The data set contains 67349 training samples and 872 validation
samples and can be found at https://gluebenchmark.com/tasks. The test set contains
1821 samples for which the predictions need to be submitted on the GLUE leaderboard,
with limited number of submissions. As a consequence, our training and validation set
are extracted from the original training set (80% of the original training set is used for
our training set and the remaining 20% is used for our validation set), and we report
accuracies on the standard validation set, used as a test set. The reviews are padded
with zeros when their length is shorter than the chosen sequence length (we choose 30
and 66, the latter being the maximum review length in the data set) and the BERT
implementation requires to add special tokens [CLS] and [SEP] at the beginning and the
end of each review.

Model architecture and hyperparameters. In most transformers such as BERT, the
embedding associated to the token [CLS] is used for classification and can be seen in
some sense as an embedding of the review adapted to the task. The features we used
are the word features provided by the BERT base-uncased version, available at https:

133

https://gluebenchmark.com/tasks
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html


5. Kernel Embeddings for Feature Aggregation

Figure 5.E.1.: ROC and PR curves for all the chromatin profiles (first row) and stratified
by transcription factors (left column), DNase I-hypersensitive sites (mid-
dle column) and histone-marks (right column). The profiles with positive
samples fewer than 50 on the test set are not taken into account.
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Table 5.E.9.: Accuracies on standard validation set for SST-2 with unsupervised OTK
features depending on the number of references and supports. The ref-
erences were computed using K-means on samples for multiple references
and K-means on patches for multiple supports. The size of the input
BERT features is (length× dimension). The accuracies are averaged from
10 different runs.

BERT Input Feature Size (30 × 768) (66 × 768)

Features Pre-trained Fine-tuned Pre-trained Fine-tuned

[CLS] 84.6±0.3 90.3±0.1 86.0±0.2 92.8±0.1
Flatten 84.9±0.4 91.0±0.1 85.2±0.3 92.5±0.1
Mean pooling 85.3±0.3 90.8±0.1 85.4±0.3 92.6±0.2

OTK (1 × 3) 85.5±0.1 90.9±0.1 86.5±0.1 92.6±0.1
OTK (1 × 10) 85.1±0.4 90.9±0.1 85.9±0.3 92.6±0.1
OTK (1 × 30) 86.3±0.3 90.8±0.1 86.6±0.5 92.6±0.1
OTK (1 × 100) 85.7±0.7 90.9±0.1 86.6±0.1 92.7±0.1
OTK (1 × 300) 86.8±0.3 90.9±0.1 87.2±0.1 92.7±0.1

//huggingface.co/transformers/pretrained_models.html. For this version, the di-
mension of the word features is 768. In the unsupervised case, the word embeddings
of the reviews are kept as is, i.e we do not embed it using a Gaussian kernel. In this
setting, the OTK linearly recombines the word features based on the transport plan.
The resulting features are used to train a large-scale linear classifier using the Cyanure
library (Mairal, 2019). In the supervised case, the OTK uses a Gaussian Nyström em-
bedding with varying number of filters before the pooling layer, and the parameters of
the two layers, w and z, are optimized end-to-end. In this case, we have to tune the
bandwidth of the Gaussian kernel as well as the learning rate. The classifier is here a
fully-connected layer. In both case, we tune the entropic regularization parameter of
optimal transport and the regularization parameter (or weight decay) of the classifier
so as to get the best accuracy on the standard validation set, which is our test set.
The parameters in the search grid are summed up in Table 5.E.10. The best entropic
regularization and Gaussian kernel bandwidth are typically ans respectively 3.0 and 0.5
for this data set. In BERT models, the positional information is integrated in the initial
word embeddings. As a consequence, we do not use our own positional encoding. The
supervised training process takes between half an hour for smaller models (typically 128
filters in w and 3 supports in z) and a few hours for larger models (256 filters and 100
supports) on a single GTX2080TI GPU.

Results and discussion. As explained in Section 5.5, our unsupervised OTK improves
the BERT pre-trained features while still using a simple linear model as shown in Ta-
ble 5.E.9, and its supervised counterpart enables to get even closer to the state-of-the art
(for the BERT base-uncased model) accuracy, which is usually obtained after fine-tuning
of the BERT model on the whole data set. This can be seen in Table 5.E.11.
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Table 5.E.10.: Hyperparameter search grid for SST-2.
Hyperparameter Search range

Entropic regularization ε [3.0; 1.0; 0.5]
λ for classifier (unsupervised OTKs) 10range(−10,1)

λ for classifier (supervised OTKs) [1e-4;1e-3;1e-2]
Gaussian kernel bandwidth (supervised OTKs) [0.5; 1.0; 1.5]
Learning rate (supervised OTKs) [0.1; 0.01; 0.001]

Table 5.E.11.: Accuracies on standard validation set for SST-2 with supervised OTK
features from pre-trained BERT (30× 768) depending on the number of
supports in the reference. The accuracies are averaged from 10 different
runs, and 30 Sinkhorn iterations were used.

Number of supports p 3 10 30

Nyström filters
128 87.59 87.59 87.53
256 87.45 87.44 87.50
512 87.27 87.16 87.29
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6
Conclusion

In this thesis, we developed a general kernel framework for handling structured data,
notably sequence- and graph-structured data, with several applications in bioinformatics.
On the one hand, our framework provides tools for efficiently learning representations
without supervision as traditional kernels. On the other hand, it also enables supervised
representation learning like deep neural networks, which significantly bridges the gap
between kernel methods and deep learning.

6.1. Summary of Contributions

Here, we summarize the contributions presented in the thesis.

Modeling biological sequences with convolutional and recurrent kernel networks.
Our first and second contributions investigate data-efficient models for biological se-
quences, by leveraging various prior knowledge used in classical string kernels. In Chap-
ter 2, we introduce a new convolutional kernel named CKN-seq to tackle the motif dis-
covery problem, by assuming genetic determinants (sequence motif) to be contiguous.
Our method allows efficiently predicting from relatively short sequences while providing
simple interpretation, through the lens of kernel approximation methods. It is shown to
be effective on transcription factor binding prediction and protein homology recognition
tasks. In the large-data setting, it substantially reduces the gap between classical string
kernels and deep convolutional networks. On the other hand, it outperforms convolu-
tional networks in the small-data regime.

In Chapter 3, we present a natural extension of the above work to modeling sequence
gaps, based on substring kernels, to deal with protein homology recognition. In this work,
the above contiguous assumption on motifs is relaxed to allow gaps, which is shown to
be a helpful prior for this task especially for detecting remote homologies. Furthermore,
our model can be viewed as a new type of recurrent neural networks (RNNs), which
uncovers links between many existing deep models and kernel methods. Consequently,
it opens the door to better regularization and architecture design of RNNs.

Modeling graph-structured data with convolutional kernel networks. The contribu-
tion of Chapter 4 consists in providing a general view of many existing graph kernels
based on substructure counting and introducing a new multilayer kernel relying on fixed-
length paths in the graphs. Rather than the neighbor features aggregation used in graph
neural networks, our approach relies on aggregating path features, which makes it more
expressive. By leveraging kernel approximation techniques, the resulting graph repre-
sentations of our approach can be learned without supervision, or in a task-driven way
as graph neural networks. Moreover, controlling the length of paths in our model allows
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compromising computational complexity and expressiveness. Our work gives a novel
view to designing more expressive kernels or deep networks for graph-structured data.

Feature aggregation in RKHSs. Our last contribution presented in Chapter 5 ad-
dresses the problem of feature aggregation for long sequences or more generally large
sets of features with positional information that exhibit long-range dependencies. To
this end, we introduce two valid kernel embeddings for feature aggregation in RKHSs.
While the first one enables valid max pooling in RKHSs, the second one consists of a
parametrized kernel embedding based on Wasserstein distance, where the parameters
can be adaptively learned in both supervised and unsupervised fashions. Empirically,
our second embedding combined with the above CKN-seq brings further improvement
on protein homology recognition. We also provide an implementation of our embedding
that can be used as a module in deep networks, which is shown to be very effective in
the detection of chromatin profiles for genetic sequences.

6.2. Future Research and Perspectives
Based on the contributions of the thesis, several questions and research directions arise
and would be interesting to investigate in the future. The goal of my research is to
develop a unifying framework for analyzing and interpreting data with arbitrary struc-
ture. This would require several basic ingredients: computationally efficient models for
representing structured data, subsequent models for performing analysis and prediction
from the representations, and interpretation tools that give explanations to the predic-
tion. While in deep learning the two first aspects are generally considered and trained
jointly, I would like to separate them as they play different roles in a learning model
from a kernel perspective. So far, the work presented in the thesis is mostly focused on
the two first aspects, I think all of these aspects are equally important for real-world
applications and advancing in one aspect would be complementary to the other aspects.

Efficient models for representing structured data. Regarding the first aspect on effi-
ciently representing structured data, I think there is still room for improvement on rep-
resenting huge-dimensional data like genome-wide sequences. Since the learning models
considered in Chapter 2, 3 and 5 were designed to handle relatively short sequences,
they may not be adequate to directly work with genome-scale data where a single phe-
notype (e.g., antimicrobial resistance) can be associated to the entire genome of very
large size. For instance, the genome of a bacteria ranges in size from 100 kbp to 10
Mbp. Within such huge-scale genome, yet only few proportions of the sequences are
associated to the phenotype of interest. Predicting these phenotypes from sequences is
thus achieved by introducing intermediate tasks which are tightly related to the pheno-
type while providing precise annotations at sub-region or even base-pair level. However,
obtaining intermediate annotations at such high resolution could be very expensive and
directly working with the original sparse annotations is also infeasible. In this respect,
efficient statistical selection methods that can be used to highlight the most related ge-
nomic areas are promising approaches, such as causal feature selection (Guyon et al.,
2007; Aliferis et al., 2010) or k-mer based selection (Saeys et al., 2007; Aghazadeh et al.,
2018). Once the areas most relevant to the phenotype are marked, applying the models
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studied in this thesis to these areas may result in more precise prediction and more
reliable interpretation. More generally, these approaches can be considered as the possi-
ble preprocessing methods before applying deep neural networks to sequence prediction
tasks.

Another direction to improve the current representations is to improve unsupervised
models to leverage large amounts of unannotated data. While we used in the thesis
a greedy approach for unsupervised feature learning which approximates a hierarchical
kernel layer-by-layer using the Nyström approximation method, some recent work such
as Shankar et al. (2020) has shown that computing the exact hierarchical kernel can pro-
nouncedly improve performance despite the requirement of lots of computing resources.
By consequence, more accurate methods are needed to better approximate such hier-
archical kernels with more compact representations. A possible direction is to directly
approximate the entire hierarchical kernel in the final feature space, rather than in a
layer-by-layer manner, using clustering and back-propagation techniques (Caron et al.,
2018, 2020). Once such unsupervised representations are pre-trained with large amounts
of unannotated data, they can be easily transferred to some downstream tasks where
only few annotations are provided for training.
In order to learn representations for data with complex structure, we presented in

Chapter 5 an optimal transport based feature aggregation that is able to adaptively
aggregate local features exhibiting long-range dependencies. To make full use of opti-
mal transport to deal with large-scale datasets, one needs efficient algorithms to solve
a huge number of optimal transport problems of potentially large-scale discrete distri-
butions. To alleviate the computational burden, one direction is to perform low-rank
approximation of Wasserstein distance matrices. In Chapter 5, we proposed a simple
approach to tackle this problem, though the main focus was to develop models that effi-
ciently capture long-range dependencies in biological sequences. A more thorough study
on the approximation error of our approach is crucial to understand and improve the
method. Besides, other aggregation approaches from kernel literature, such as Fisher
kernels (Perronnin and Dance, 2007; Sánchez et al., 2013), are also of interest to study
and build deep models.

Subsequent models for prediction and analysis. Regarding the second aspect on sub-
sequent models for prediction or analysis, rather than the discriminative models consid-
ered in most of the current work for supervised learning tasks, generative models can
also be of high interest for structured data modeling since they can perform several tasks
that discriminative models cannot tackle. First, generative models can be learned with
unannotated data, which is useful for the tasks where little labeled data is available.
They provide several ways to incorporate information of the unlabeled data to boost
the performance of prediction. Applications include protein function prediction where
functional annotation of proteins is very hard to be experimentally verified while the
number of protein sequences is enormous. Second, generative models may be useful for
learning distributions of structured data and therefore for designing new sequences or
graphs. Examples include DNA or protein sequence design (Gupta and Zou, 2019; Wang
et al., 2020), protein structural modeling (Gao et al., 2020), which offer the possibility
of solving many real problems in biomedicine and material science.
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More interpretable learning models. Regarding the last aspect on interpretability, we
proposed a few interpretation techniques to visualize the sequence or graph motifs for
trained models that could be relevant to the outcome in Chapter 2 and 4. However, the
statistical significance of the association of these motifs with the outcome is harder to
define. Designing proper statistical tests to measure the contributions of different motifs
is crucial for understanding deep learning and its adoption in real-world applications.
In addition to interpreting existing deep models, there still exists a performance gap
between the latest deep residual networks (ResNets) and deep kernels. Some recent
works have even shown that ResNet can perform a kind of feature selection at different
scales while classical kernel methods cannot do (Allen-Zhu and Li, 2019). Fortunately,
more advanced learning techniques involving multiple kernels namely multiple kernel
learning allow to perform selection of kernels. Therefore, incorporating such approaches
into hierarchical kernels may be useful to reduce the gap to the deep ResNets and
eventually explain these models.
Finally, I would like to conclude this thesis by drawing attention to the importance of

exploring both fields of kernel methods and deep learning. Borrowing ideas from one field
to the other would be crucial to understand the inductive bias of existing models and
construct appropriate models for various structured data. Classical tools and concepts
from kernel methods could be used to understand and design more recent deep networks,
while techniques from deep learning would also be useful to enable large scale learning
for classical kernels. Bridging performance gap between state-of-the-art deep models
(e.g. residual networks) and kernel methods would also pave the way for explainable and
interpretable deep learning.
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Along with the contributions described above, several software packages developed dur-
ing the thesis are available online:

• CKN-seq (https://gitlab.inria.fr/dchen/CKN-seq)
CKN-seq is a Pytorch implementation to model biological sequences (DNA, protein
etc.) with convolutional kernel networks developed in Chapter 2. It provides
prediction tool as well as interpretation tools to visualize sequence motifs. A
more user-friendly interface was also implemented by François Gindraud under
“fgindraud” branch.

• CKN-Pytorch-image (https://github.com/claying/CKN-Pytorch-image)
CKN-Pytorch-image is a Pytorch implementation to perform image classification
with convolutional kernel networks. It provides both supervised and unsupervised
representations for images. This implementation is based on the work of Mairal
(2016).

• RKN (https://github.com/claying/RKN)
RKN is a Pytorch implementation to model biological sequences (DNA, protein
etc.) with recurrent kernel networks presented in Chapter 3. It is useful for
prediction tasks where there exist gapped motifs. The code is implemented with a
CUDA-Pytorch interface to have comparable speed as Pytorch’s recurrent neural
networks implementation.

• GCKN (https://github.com/claying/GCKN)
GCKN is a Pytorch implementation to model graphs with node attributes using
graph convolutional kernel networks presented in Chapter 4. It provides both
supervised and unsupervised graph representations. An interpretation tool is also
provided to visualize the most important subgraph for a given graph and a trained
model. Our implementation shows state-of-the-art performances in a couple of
graph classification benchmarks.

• OTK (https://github.com/claying/OTK)
Optimal transport kernel (OTK), presented in Chapter 5, is a Pytorch implemen-
tation for feature aggregation. It allows performing adaptive pooling (attention
+ pooling) for arbitrary structured objects. Principally, it can be useful to model
any data represented as sets of features (sequences, images, graphs etc.). In this
implementation, it can be used as a module in neural networks, or alone as a ker-
nel method. It outperforms many existing pooling operations such as average and
max pooling. And it is shown to be effective for modeling long biological sequences
with potentially long-range dependencies.

141

https://gitlab.inria.fr/dchen/CKN-seq
https://github.com/claying/CKN-Pytorch-image
https://github.com/claying/RKN
https://github.com/claying/GCKN
https://github.com/claying/OTK


A. Software

• Scikit-Learn interface of Cyanure (http://thoth.inrialpes.fr/people/mairal/
cyanure/welcome.html)
Cyanure is an open-source C++ software package with a Python 3 interface. The
goal of Cyanure is to provide state-of-the-art solvers for learning linear models,
based on stochastic variance-reduced stochastic optimization with acceleration
mechanisms and Quasi-Newton principles. The core code was implemented by
Julien Mairal and its Scikit-Learn interface was implemented by me.
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