
HAL Id: tel-03193266
https://theses.hal.science/tel-03193266

Submitted on 8 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep learning for Internet of Things (IoT) network
security

Mustafizur Rahman Shahid

To cite this version:
Mustafizur Rahman Shahid. Deep learning for Internet of Things (IoT) network security. Artificial
Intelligence [cs.AI]. Institut Polytechnique de Paris, 2021. English. �NNT : 2021IPPAS003�. �tel-
03193266�

https://theses.hal.science/tel-03193266
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
1I

P
PA

S
00

3

Deep Learning for Internet of Things
(IoT) Network Security

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom SudParis

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 22 Mars 2021, par

MUSTAFIZUR RAHMAN SHAHID

Composition du Jury :

Thomas Clausen
Professeur, École Polytechnique - IP Paris Président

Sébastien Tixeuil
Professeur, Sorbonne Université Rapporteur

Eric Totel
Professeur, IMT Atlantique Rapporteur

Youki Kadobayashi
Professeur, Nara Institute of Science and Technology Examinateur

Cristel Pelsser
Professeure, Université de Strasbourg Examinatrice

Urko Zurutuza
Maı̂tre de conférences, Mondragon University Examinateur

Hervé Debar
Professeur, Télécom SudParis - IP Paris Directeur de thèse

Gregory Blanc
Maı̂tre de conférences, Télécom SudParis - IP Paris Co-encadrant de thèse

Zonghua Zhang
Professeur, IMT Lille Douai Invité



Deep Learning for Internet of

Things (IoT) Network Security

Mustafizur Rahman SHAHID

A thesis submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

Télécom SudParis

Institut Polytechnique de Paris

France

March, 2021



Abstract

The growing Internet of Things (IoT) introduces new security challenges for network

activity monitoring. Most IoT devices are vulnerable because of a lack of security

awareness from device manufacturers and end users. As a consequence, they have

become prime targets for malware developers who want to turn them into bots and

use them to perform large scale attacks.

Contrary to general-purpose devices, an IoT device is designed to perform very

specific tasks. Hence, its networking behavior is very stable and predictable making

it well suited for data analysis techniques. Therefore, the first part of this thesis

focuses on leveraging recent advances in the field of deep learning to develop network

monitoring tools for the IoT. Two types of network monitoring tools are explored:

IoT device type recognition systems and IoT Network Intrusion Detection Systems

(NIDS). For IoT device type recognition, supervised machine learning algorithms

are trained to perform network traffic classification and determine what IoT device

the traffic belongs to. The IoT NIDS consists of a set of autoencoders, each trained

for a different IoT device type. The autoencoders learn the legitimate networking

behavior profile and detect any deviation from it. Experiments using network traf-

fic data produced by a smart home show that the proposed models achieve high

performance.

Despite yielding promising results, training and testing machine learning based

network monitoring systems requires tremendous amount of IoT network traffic data.

But, very few IoT network traffic datasets are publicly available. Physically operat-

ing thousands of real IoT devices can be very costly and can rise privacy concerns.

In the second part of this thesis, we propose to leverage Generative Adversarial

Networks (GAN) to generate synthetic bidirectional flows that look like they were

produced by a real IoT device. Generated bidirectional flows consist of a sequence

of individual packet sizes along with a duration value. Hence, in addition to gener-

ating packet-level features which are the sizes of individual packets, our developed

i



generator implicitly learns to comply with flow-level characteristics, such as the or-

dering of the packets, the total number of packets and bytes in a bidirectional flow

or the total duration of the flow. Experimental results using data produced by a

smart speaker show that our method allows us to generate high quality and realistic

looking synthetic bidirectional flows.

ii



Résumé

L’internet des objets (IoT) introduit de nouveaux défis de sécurité pour la surveil-

lance des réseaux. La plupart des appareils IoT sont vulnérables en raison d’un

manque de sensibilisation à la sécurité des fabricants d’appareils et des consomma-

teurs. En conséquence, ces appareils sont devenus des cibles privilégiées pour les

développeurs de malware qui veulent les transformer en bots (appareils infectés ou

”zombies” contrôlés par un acteur malveillant) pour ensuite pouvoir les utiliser pour

mener des attaques à grandes échelles.

Contrairement à un ordinateur de bureau, un objet IoT est conçu pour ac-

complir des tâches très spécifiques. Par conséquent, son comportement réseau est

très stable et prévisible, ce qui le rend bien adapté aux techniques d’analyse de

données. Ainsi, la première partie de cette thèse tire profit des algorithmes de deep

learning pour développer des outils de surveillance des réseaux IoT. Deux types

d’outils de surveillance réseau sont explorés: Les systèmes de reconnaissance de

type d’objets IoT et les systèmes de détection d’intrusion réseau IoT. Des données

réseau produites par une maison connectée sont utilisées pour évaluer la performance

des solutions développées. Pour développer le système de reconnaissance de types

d’objets IoT, nous avons d’abord défini un ensemble de caractéristiques (features)

appropriées pour décrire les flux réseaux bidirectionnels. Il s’agit de la taille des

N premiers paquets envoyés et reçus ainsi que le temps interarrivé entre ces pa-

quets. Nous avons procédé à la visualisation des données à l’aide de l’algorithme

t-SNE (t-Distributed Stochastic Neighbor Embedding) pour mettre en évidence la

capacité des features sélectionnées à bien distinguer les flux bidirectionnels produits

par les différents type d’objets IoT. Nous avons ensuite entrâıné et testé différents

algorithmes d’apprentissage supervisés pour classer les flux bidirectionnels en fonc-

tion du type d’objet IoT auquel ils appartiennent. L’algorithme Random Forest a

atteint une exactitude globale de 99,9%. Pour le système de détection d’intrusion

réseau IoT, les features utilisés pour décrire les flux réseaux bidirectionnels sont

iii



des statistiques (moyenne, écart type, maximum, minimum, etc) sur la taille des N

premiers paquets envoyés et reçus, ainsi que des statistiques sur le temps interar-

rivé entre ces paquets. Le système de détection d’intrusion consiste en un ensemble

d’autoencoders, chacun étant entrâıné pour un type d’objet IoT différent. Les au-

toencoders sont des réseaux de neurones non supervisés qui apprennent le profil du

comportement réseau légitime et détectent tout écart par rapport à celui-ci. Les

résultats expérimentaux montrent que notre méthode permet d’obtenir un taux de

vrais positifs élevé pour un faible taux de faux positifs.

Bien que permettant d’obtenir des résultats prometteurs, l’entrâınement et l’éval-

uation des modèles de deep learning nécessitent une quantité énorme de données

réseau IoT. Or, très peu de jeux de données de trafic réseau IoT sont accessibles au

public. Le déploiement physique de milliers d’objets IoT réels peut être très coûteux

et peut poser problème quant au respect de la vie privée. Ainsi, dans la deuxième

partie de cette thèse, nous proposons d’exploiter des GAN (Generative Adversarial

Networks) pour générer des flux bidirectionnels qui ressemblent à ceux produits par

un véritable objet IoT. Un flux bidirectionnel est représenté par la séquence des

tailles des paquets ainsi que de la durée (duration) du flux. Par conséquent, en plus

de générer des caractéristiques au niveau des paquets, tel que la taille de chaque

paquet, notre générateur apprend implicitement à se conformer aux caractéristiques

au niveau du flux, comme le nombre total de paquets et d’octets dans un flux ou

sa durée totale. Les séquences de tailles de paquets ont été modélisées comme

étant des séquences de données catégorielles. Ainsi, pour surmonter le problème

de l’utilisation des GAN pour la génération de séquences de données catégorielles,

nous avons décidé de combiner GAN (plus précisément un Wasserstein GAN ou

WGAN ) et autoencoder. Tout d’abord, l’autoencoder est entrâıné pour apprendre

à convertir des séquences de données catégorielles, à savoir la séquence des tailles

des paquets, en un vecteur latent dans un espace continu. Ensuite, un WGAN est

entrâıné dans l’espace latent continue pour apprendre à générer des vecteurs la-

tents qui pourront être décodés en séquences réalistes, grâce à la partie décodeur

de l’autoencodeur. Pour chaque séquence de tailles de paquets générée, nous avons

également déterminé sa durée totale. La durée étant une variable contenant du

bruit aléatoire (en raison de la congestion du réseau par exemple), sa valeur a été

déterminée à l’aide d’un Mixture Density Network (MDN), un type de réseau de neu-

rones capable de produire des distributions de probabilité permettant de modéliser

l’incertitude. Des résultats expérimentaux utilisant des données produites par un

haut-parleur intelligent montrent que notre méthode permet de générer des flux

bidirectionnels synthétiques réalistes et de haute qualité.

iv



Acknowledgements

I would like to thank my PhD supervisor Prof. Hervé Debar, as well as co-supervisors

Prof. Gregory Blanc and Prof. Zonghua Zhang. They guided and encouraged me

throughout this long journey. Without their help, the goal of this project could not

have been realized.

I would also like to express my deepest gratitude to Institut Mines-Télécom’s Fu-

tur & Ruptures program, the Fondation Mines-Télécom and the Carnot Télécom &

Société numérique for providing the necessary funding for the successful completion

of this project.

I would also like to thank all the people who supported me throughout this

project and made life easier. They are so many that I will certainly miss most of

them if I had to mention them name by name. They are colleagues, lab members,

technical personnel, support staff, family or friends. Without their support this

project could not have reached its goal.

v



Contents

Abstract i

Résumé iii

Acknowledgements v

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 IoT Ecosystem Characteristics . . . . . . . . . . . . . . . . . . . . . 1

1.2 Vulnerabilities in the IoT . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 IoT Botnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 IoT Security Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.2 Limitations of Existing Works . . . . . . . . . . . . . . . . . . 16

1.5.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 State of the Art 19

2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 A Sub-field of Machine Learning . . . . . . . . . . . . . . . . 20

2.1.2 Neural Network Training . . . . . . . . . . . . . . . . . . . . 22

2.1.3 Metrics for Model Assessment . . . . . . . . . . . . . . . . . . 25

2.1.4 Neural Network Architectures . . . . . . . . . . . . . . . . . . 28

2.1.5 Deep Learning Applications in Cybersecurity . . . . . . . . . 31

2.2 IoT Network Traffic Classification . . . . . . . . . . . . . . . . . . . . 33

vi



2.2.1 IoT Device Type Identification . . . . . . . . . . . . . . . . . 33

2.2.2 IoT Device State Determination . . . . . . . . . . . . . . . . 37

2.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 IoT Network Intrusion Detection . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Supervised NIDS . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2 Unsupervised NIDS/ Anomaly Detection . . . . . . . . . . . 46

2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 IoT Network Traffic Generation . . . . . . . . . . . . . . . . . . . . . 50

2.4.1 Flow-level Network Traffic Generation . . . . . . . . . . . . . 50

2.4.2 Network Packets Generation . . . . . . . . . . . . . . . . . . 54

2.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 IoT Network Traffic Monitoring 58

3.1 IoT Device Recognition through Network Traffic Classification . . . 59

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.2 Features Description . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.3 Smart Home Dataset Description . . . . . . . . . . . . . . . . 61

3.1.4 Experimental Results - Network Traffic Visualization . . . . . 63

3.1.5 Experimental Results - Classification . . . . . . . . . . . . . . 64

3.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 IoT Network Anomaly Detection . . . . . . . . . . . . . . . . . . . . 68

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.2 Features Description . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.3 Sparse Autoencoder for Anomaly Detection . . . . . . . . . . 70

3.2.4 Individual Autoencoders vs Set of Autoencoders . . . . . . . 73

3.2.5 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.6 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . 75

3.2.7 Experimental Results: Performance of Individual Autoencoders 76

3.2.8 Experimental Results: Performance of the Set of Autoencoders 77

3.2.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 General Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 IoT Network Traffic Generation 84

4.1 Generating Sequences of Packet Sizes . . . . . . . . . . . . . . . . . . 86

4.1.1 Modeling Sequences of Packet Sizes . . . . . . . . . . . . . . 86

4.1.2 Generative Models for Sequences of Categorical Data Generation 89

4.1.3 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . 93

4.1.4 Smart Speaker Dataset . . . . . . . . . . . . . . . . . . . . . 93

4.1.5 Experimental Results - Simplified Packet Ordering . . . . . . 94

4.1.6 Experimental Results - Realistic Packet Ordering . . . . . . . 100

4.1.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vii



4.1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Determining the Duration of a Generated Bidirectional Flow . . . . 104

4.2.1 Duration as a Random Variable . . . . . . . . . . . . . . . . . 105

4.2.2 Mixture Density Networks . . . . . . . . . . . . . . . . . . . . 105

4.2.3 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . 107

4.2.4 Duration Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 108

4.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 General Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Conclusion 112

List of Publications 116

Bibliography 117

viii



List of Figures

1.1 IoT ecosystem characteristics . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Attack example resulting from interdependence between devices by

W. Zhou et al. [Zho+18b] . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview of Mirai botnet communication and basic components . . . 9

1.4 IoT network architecture . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Detailed representation of how the output of a neuron is computed

and its corresponding simplified representation . . . . . . . . . . . . 22

2.2 Example of an artificial neural network architecture . . . . . . . . . 22

2.3 K-fold cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Neural Network Training . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 I. Goodfellow et al. [GBC16]: Typical relationship between a model’s

capacity and the training and generalization errors . . . . . . . . . . 25

2.6 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 ROC curve example [Sci20] . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.10 Variational Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . 31

2.12 Y. Meidan et al. [Mei+17a]: Overview of proposed method for IoT

white listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.13 A. Sivanathan et al. [Siv+18]: Architecture of the multi-stage classifier 35

2.14 S. Marchal et al. [Mar+19]: Overview of device type identification . 36

2.15 A. Acar et al. [Aca+18]: Overview of the multi-stage privacy attack 38

2.16 N. Apthorpe et al. [ARF17]: Network traffic send/receive rates of

selected IP streams from 4 commercial IoT devices during controlled

experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ix



2.17 R. Doshi et al. [DAF18]: IoT DDoS detection pipeline . . . . . . . . 44

2.18 H. H. Pajouh et al. [Paj+16]: Two-tier classification module . . . . . 45

2.19 Y. Mirsky et al. [Mir+18]: An illustration of Kitsune’s Architecture 47

2.20 T. Luo et al. [LN18]: Architecture of a WSN that uses autoencoders

for anomaly detection . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.21 M. Rigaki et al. [RG18]: Network experiments setup. The GAN

is implemented independently and communicates with the malware

through a web service. The malware gets the parameters and modifies

its traffic in real time. The C2 channel should be maintained and

should be operational. The IPS blocks all the traffic that does not

look like Facebook chat . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.22 Q. Yan et al. [Yan+19]: Overview of DoS-WGAN architecture . . . . 53

2.23 Z. Lin et al. [Lin+19]: CGAN training mechanism . . . . . . . . . . 55

2.24 A. Cheng [Che19]: Conversion and one-to-multi mapping process . . 56

3.1 Network traffic classification pipeline . . . . . . . . . . . . . . . . . . 60

3.2 Experimental smart home network . . . . . . . . . . . . . . . . . . . 62

3.3 Dataset visualization using t-SNE . . . . . . . . . . . . . . . . . . . . 64

3.4 Overall accuracy achieved by Random Forest classifier for different

values of N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Sparse Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 Proposed anomalous communications detection architecture using a

set of sparse autoencoders (SAE) when the type of device producing

the network traffic is unknown . . . . . . . . . . . . . . . . . . . . . 73

3.7 ROC curves of the different sparse autoencoders in the case of N=10 76

3.8 AUC of the different sparse autoencoders and for different values of N 77

3.9 False positive rate (FPR) and True Positive Rate (TPR) of the in-

dividual sparse autoencoders (each trained for a specific device) for

different threshold values. . . . . . . . . . . . . . . . . . . . . . . . . 78

3.10 False positive rate (FPR) and True Positive Rate (TPR) of the set of

sparse autoencoders (SAE) for different threshold values. The perfor-

mance of the set of SAE is also compared to other machine learning

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Motivation for IoT network traffic generation: Scenario (a): realistic

network traffic generation for NIDS performance evaluation; Scenario

(b): data augmentation to train machine learning based NIDS; Sce-

nario (c): mimicry attack generation for data exfiltration purpose. . 85

4.2 Bidirectional flow generation pipeline: the sequence of packet sizes

generation module is followed by the duration determination module 86

x



4.3 Word by word text generation: When generating the next word of the

sequence, the generator actually provides a probability distribution

over the vocabulary. The actual sequence is constructed by picking

the next word from this probability distribution. . . . . . . . . . . . 90

4.4 Combining an autoencoder with a GAN to generate sequences of cat-

egorical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Cumulative distribution function of the total number of packets per

bidirectional flows produced by the Google Home Mini (a partial view

is presented for better clarity). 90% of the flows contain 42 packets

or less. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Architecture of the autoencoder used for the experiment . . . . . . . 95

4.7 Architecture of the WGAN used for the experiment . . . . . . . . . 96

4.8 Simplified packet ordering - Comparison of the distribution of packet

sizes (a, b, c), the number of packets per bidirectional flow (d, e,

f), the number of bytes per bidirectional flows (g, h, i) for different

models (autoencoder/WGAN-GP, autoencoder/WGAN-C, VAE) . . 97

4.9 Realistic packet ordering - Comparison of the distribution of packet

sizes (a, b, c), the number of packets per bidirectional flow (d, e,

f), the number of bytes per bidirectional flows (g, h, i) for different

models (autoencoder/WGAN-GP, autoencoder/WGAN-C, VAE) . . 102

4.10 Duration distribution for the bidirectional flow F1 . . . . . . . . . . 106

4.11 The mixture density network can represent general conditional prob-

ability densities p(t|x) by considering a parametric mixture model for

the distribution of t whose parameters are determined by the outputs

of a neural network that takes x as its input vector [Bis06] . . . . . . 106

4.12 MDN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.13 Simplified packet ordering - Comparison of real duration values with

durations generated by the MDN trained using sequences of packet

sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.14 Realistic packet ordering - Comparison of real duration values with

durations generated by the MDN trained using sequences of (size,

direction) tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xi



List of Tables

1.1 Top user names and passwords used in IoT attacks according to

Symantec [Sym20] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 A. Costin et al. [CZ18]: delays between IoT malware sample discovery,

capture and analysis, and public release of the corresponding IDS rules 7

2.1 Examples of shallow learning algorithms . . . . . . . . . . . . . . . . 21

2.2 Summary of works on IoT network traffic classification for device type

or device state determination . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Limitations of existing works on IoT network traffic classification for

device type or state determination . . . . . . . . . . . . . . . . . . . 42

2.4 Summary of works on intrusion detection in IoT networks . . . . . . 49

2.5 Limitations of existing works on intrusion detection in IoT networks 50

2.6 Summary of works on network traffic generation using generative deep

learning models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.7 Limitations of works on network traffic generation using generative

deep learning models . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Functionalities provided by each device and explored during the net-

work traffic collection phase . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Total number of bidirectional flows per device . . . . . . . . . . . . . 63

3.3 Best hyperparameter values for the different classifiers . . . . . . . . 65

3.4 Overall performance on the test set of the different classifiers . . . . 65

3.5 Precision on the test set of the different classifiers and for specific

devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Recall on the test set of the different classifiers and for specific devices 66

3.7 F1 score on the test set of the different classifiers and for specific devices 66

3.8 Features used to describe bidirectional TCP flows . . . . . . . . . . . 70

xii



3.9 Total number of bidirectional flows per device . . . . . . . . . . . . . 75

4.1 Simplified packet ordering - Earth mover’s distance (10−4) between

the real and generated traffic histograms of Figure 4.8. WGAN-C

based model achieves the smallest distance. . . . . . . . . . . . . . . 98

4.2 Simplified packet ordering - TPR and FPR on the test set achieved

by the trained anomaly detectors . . . . . . . . . . . . . . . . . . . . 99

4.3 Simplified packet ordering - FNR when the anomaly detectors are fed

with synthetic flows (FNRsynthetic) compared to the FNR and TNR

on the test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Realistic packet ordering - Earth mover’s distance (10−4) between the

real and generated traffic histograms of Figure 4.9 WGAN-C based

model achieves the smallest distance. The EMD obtained under the

simplified ordering assumption are shown in brackets. . . . . . . . . 103

4.5 Realistic packet ordering - TPR and FPR on the test set achieved by

the trained anomaly detectors . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Realistic packet ordering - FNR when the anomaly detectors are fed

with synthetic flows (FNRsynthetic) compared to the FNR and TNR

on the test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xiii



1

Introduction

”Once you learn to read, you will be forever free.”

– Frederick Douglass

The total number of Internet of Things (IoT) devices is expected to reach 75

billion by 2030 [Lou]. The IoT will encompass all aspects of our life, covering a

wide range of applications, such as home automation, smart transportation, smart

agriculture, wearable devices or e-Health. The vulnerable nature of IoT devices

make them easy targets for botnet developers. The raise of IoT malware introduces

new security challenges for network administrators. In this section, we first start

by describing the inherent characteristics of IoT ecosystems that make them very

challenging to secure. Then, we present the most common types of vulnerabilities

encountered in IoT ecosystems and how IoT botnets operates. We then describe a

number of solutions proposed to secure the IoT along with their limitations. Finally,

we present the objective of this thesis putting special emphasis on the limitations

of existing works and how our contributions are going to overcome them.

1.1 IoT Ecosystem Characteristics

IoT systems are designed for diverse purposes (smart home, smart transportation,

e-health, etc.), different from traditional computer systems such as personal com-

puters or smartphones. They differ in many aspects from traditional systems in

that their inherent characteristics, such as their heterogeneity, pervasiveness, mobil-

ity and resource constraints, make them very challenging to secure. Those specific

characteristics are extensively described in [Zho+18b; Zha+14; Cha+19a; Ala+17;

Fru+17; Mah+15] and are presented in Figure 1.1. Below, we propose to describe

1



Figure 1.1: IoT ecosystem characteristics

each of them:

• Heterogeneous/Diverse: the IoT ecosystem is very diverse in many ways.

It consists of a wide variety of application fields, communication protocols and

hardware platforms. The fields of application of the IoT are endless. They

include intelligent transportation systems, smart homes, smart cities, smart

grids, connected health, wearables, smart industries and many more. More-

over, within each field of application, the IoT is used for a number of different

use cases. For example, a smart home consists of devices as diverse as refrig-

erators, thermostats, bulbs, plugs or motion sensors. The IoT is also hetero-

geneous in terms of the communication protocols it employs. Communication

protocols used by IoT devices can be as diverse as Bluetooth, WiFi, ZigBee or

Z-Wave. Heterogeneity of the IoT also refers to the diversity of hardware plat-

forms used: x86, ARM, MIPS, etc. The diversity of the IoT ecosystem makes

it difficult to define general best practice rules for programmers or network

administrators. It is also not possible to develop a one-size-fits-all security so-

lution as the security requirements might vary depending on the application,

communication protocol or hardware platform used.

• Pervasive: it describes the fact that IoT devices are becoming part of every

aspect of our lives. In the literature, this characteristic is also sometimes

referred to as the ubiquitous nature of the IoT. In the near future, IoT devices

will be everywhere around us. They will become essential to our daily life

and we will rely more and more on them. Devices will no longer need human

intervention to function properly, such as a bulb connected to a motion sensor

that turn on or off automatically. Most people will not even realize how

dependent on IoT they are until an attack occurs. Despite its ubiquitous

nature, most people usually ignore the security implications of the IoT.

• Mobile: this refers to the fact that IoT devices move from one network to

another. For example, a smart car that moves from one place to another might

connect to a number of different networks along the way. Once connected

to a new network, a smart device might need to communicate with other

2



Figure 1.2: Attack example resulting from interdependence between devices by W.
Zhou et al. [Zho+18b]

devices present in the same network. For example, a smart car might exchange

information with the other cars present nearby or with roadside units. This

ability of IoT devices to hop from one network to another make them targets

of choice for malware. First, it makes them vulnerable as it increases the

likelihood of them being connected to a compromised network and getting

infected by a malware. Then, as the device moves from one network to another,

it may facilitate the propagation of the malware.

• Constrained: IoT devices are resource-constrained. Some smart devices,

such as sensors, agricultural devices or medical implants, need to be lightweight

and able to work for a long period of time without the need for charging.

Hence, those devices have very limited memory and computation capabilities.

They do not have a Memory Management Unit (MMU), and proper memory

safety measures, like address space layout randomization (ASLR), are not im-

plemented. Those devices cannot implement complex resource-intensive cryp-

tographic operations either. Hence, advanced encryption or authentication

algorithms cannot be used to protect them. The use of an antivirus is also not

possible as it requires a fair-amount of computational power.

• Interdependent: it describes the situation of a device controlling the state

of another device. IoT devices can communicate with each other to self-adapt

to their environment without resorting to human intervention. For example,

if a thermometer detects a room temperature that exceeds a certain thresh-

old, the air conditioner is turned on or the windows are opened as illustrated

in Figure 1.2. An attacker can bypass the defense mechanisms of a targeted

device by, first, compromising a poorly configured device that has interdepen-

dent relationships with the targeted device. Hence, a highly protected device

can become vulnerable if it has a single interdependent relationship with a

vulnerable device.

• Intrusive: some IoT devices might collect sensitive personal information rais-

3



ing privacy concerns. For example, medical devices or wearables might monitor

information about your heart rate, your blood pressure, your location or your

daily physical activities. In a smart home, motion sensors or security cam-

eras also collect sensitive personal information. Most of the time, the data

collected by those devices are made available to the user through a smart-

phone application. Hence, the sensitive personal data can be leaked if the

device, the application or the communication channel between the device and

the application are not sufficiently secured.

• Critical: some sensitive IoT applications are highly critical, such as medi-

cal applications, autonomous vehicles or industrial control infrastructures de-

ployed in nuclear power plants. In such cases, device availability might be very

important and any compromise of the device can lead to severe physical and

human damages. For example, the possibility for criminals to take control of

cars to cause deliberate accidents will be a serious security issue in the near

future [Ind20].

• Unattended: some devices such as smart meters, medical implants or indus-

trial sensors need to operate for a long period of time without the possibility of

physical access. Authors in [Zho+18b] refer to this characteristic as the long

time unattended status of an IoT device. As those devices are not physically

accessible, it is very difficult to monitor their states and detect any compro-

mise.

• Abundant: the data generated by IoT devices are abundant. As IoT de-

vices are proliferating rapidly, they will soon generate huge amounts of data.

In [IDC20], it is estimated that there will be 41.6 billion connected IoT de-

vices, generating 79.4 zettabytes (ZB) of data by 2025. Most of these data will

be generated by video surveillance applications. Because IoT devices are not

as much protected as laptops or smartphones, a malware can rapidly infect

a significant number of them. The malware can then leverage the abundant

data generation capability of the compromised IoT network to perform large

scale Distributed Denial of Service attacks (DDoS).

• Closed: in [Fru+17], the authors point out the fact that most IoT devices are

“closed” because they do not provide any way to install additional software

once the device has been manufactured at the factory. Hence, the customers

cannot easily install an antivirus or any additional security software on the

device.

Characteristics such as heterogeneity, pervasiveness, mobility, resource-scarcity,

interdependency, intrusiveness, criticality, abundance, autonomy (the fact that IoT

devices can be left unattended) and closed nature make IoT systems particularly

challenging to secure. Those characteristics coupled with the fact that IoT devices

are full of vulnerabilities make an IoT environment a target of choice for an attacker.

4



Table 1.1: Top user names and passwords used in IoT attacks according to Syman-
tec [Sym20]

user names percent passwords percent

root 38.1 123456 24.6

admin 22.8 [BLANK] 17.0

enable 4.5 system 4.3

shell 4.2 sh 4.0

sh 1.9 shell 1.9

[BLANK] 1.7 admin 1.3

system 1.1 1234 1.0

>/var/tmp/.ptmx && cd /var/tmp/ 0.9 password 1.0

>/var/.ptmx && cd /var/ 0.9 enable 1.0

1.2 Vulnerabilities in the IoT

In addition to the previously mentioned inherent characteristics, a general lack of

security awareness, from both the manufacturers and the consumers, contributes

to the vulnerability of IoT devices. Since manufacturers require a short time to

market, they see security as an unnecessary additional cost. On the other hand,

customers are completely unaware of the security issues related to IoT devices and

usually ignore simple security best practices, such as changing the default password

of a device. Here, we present the most common types of security vulnerabilities

encountered in IoT systems:

• Weak credentials [Wan+17; BI17; KKS17]: weak, guessable, or hardcoded

passwords have been reported [OWA20] as being the most common vulnera-

bility in the IoT. Most IoT devices are shipped with weak default passwords.

The end users rarely change the default user name and password, and when

they do, the new credentials are often easily guessable for lack of password

security literacy. Moreover, most manufacturers do not enforce the use of

a strong password. Sometimes, the password is hardcoded and there is no

possibility for the user to change it. The use of weak credentials make IoT

devices vulnerable to brute-force attacks. A malware, such as GoScanSSH per-

forms brute-force attacks using dictionaries containing more than 7,000 unique

credential pairs [CZ18]. Table 1.1 shows the top user names and passwords

used in IoT attacks in 2018 according to Symantec’s Internet Security Threat

Report [Sym20].

• Backdoors [Nes+19; Zha+14; KKS17; Sac+17]: very common among IoT

devices, they are deliberately inserted by vendors for management and testing

purposes. This includes unnecessary open ports running services such as Tel-

net, SSH or FTP. Examining a device before deployment is not sufficient, as

backdoors can be inserted during system upgrades or when the device receives

patches for security updates. Those backdoors can be discovered through port

scanning. An attacker can leverage those backdoors to get active remote ad-

5



min capabilities and get full control of the device. The infected device might

then be used as a pivot to launch attacks against other devices. Moreover, de-

vices with ports running vulnerable services are susceptible to buffer overflow

or DDoS attacks that can render them unavailable.

• Software vulnerabilities [Nes+19; Zha+14]: IoT devices often contain a

plethora of software vulnerabilities such as buffer overflow or authentication

bypass. Software vulnerabilities, especially 0-day vulnerabilities, are exploited

by malware to take full control of a device. Because of the heterogeneity of the

IoT (diverse hardware platforms, protocols and applications), it is very difficult

to define best practice rules for programmers [Zha+14; Nes+19]. Moreover,

because of the wide variety of architectures involved (different from personal

computers that run predominantly on x86 architecture), most IoT devices use

a Linux-based OS [Coz+18]. However, smart devices such as fridges, bulbs or

plugs do not really need all the functionality provided by a Linux OS. The use

of a Linux OS increases the attack surface and makes the devices vulnerable

to legacy attacks found in the desktop world [KKS17]. Because of their long

term unattended nature, lots of IoT devices often use legacy OS or outdated

components that are no longer maintained. According to Palo Alto [Alt20],

83% of medical imaging devices run on unsupported operating systems. This

is mainly due to Windows 7 reaching end of life.

• Poor software update policy [CZ18; Nes+19; KKS17]: because of a poor

software update policy, most discovered vulnerabilities are not even properly

patched. In [CZ18], the authors also point out the significant delay between

the first malware sample discovery and the public release of a security solution.

As shown in Table 1.2, once a new IoT malware has been identified, it can

take from tens to hundreds of days for a first security solution to be publicly

available. Whereas the majority of malware spread the most within the first

hours or few days of their existence. In [Nes+19], the authors report the fact

that many manufacturers do not have an automated patch-update mechanism

(mechanism that ensures that as soon as a patch-update is available, it is

sent automatically to all the devices without requiring the end user to ask

for it). They also report cases of lack of integrity guarantee of the available

security updates, making them susceptible to malicious modifications. For

some devices, the software update process is neither signed nor protected by

end-to-end encryption [KK16; BW20; OWA20].

• Insecure interfaces [KS18; BI17]: Web and mobile application interfaces

used to manage and configure IoT devices are often insecure and poorly de-

signed. Most of the time, those interfaces are vulnerable to attacks such as

SQL injection or Cross-site Scripting (XSS) that can lead to sensitive infor-

mation leakage. In [BW20], the authors reported to have found 10 security

issues in 15 web portals used to control IoT devices, including serious issues

6



Table 1.2: A. Costin et al. [CZ18]: delays between IoT malware sample discovery,
capture and analysis, and public release of the corresponding IDS rules

Mean (days) Median (days)

Delay between the first seen in the wild sample
of malware family and corresponding IDS rule
first public release

675 166

Delay between the first submitted for analysis
sample of malware family and corresponding
IDS rule first public release

241 63

Delay between the first technical analysis of
malware family and corresponding IDS rule first
public release

32 25

that can lead to unauthorized access to the backend systems. Sometimes, the

interface may not offer the possibility to change the default password. Robust

password recovery mechanism can also be absent [BI17; OWA20]. Interfaces

might not implement account lockout mechanism making them vulnerable to

brute-force attacks. They might also be susceptible to account enumeration

attacks.

• Lack of proper encryption [Nes+19; Ala+17; BW20; BI17; RS16]: most

IoT devices fail to implement a proper encryption mechanism to protect the

data transmitted over the local network or to the Internet. This allows the

data to be viewed while traveling over the network rising serious privacy issues.

The problem is exacerbated because most IoT devices communicate through

wireless networks making them even more vulnerable to eavesdropping attacks.

In [RS16], the authors pointed out that, during the installation phase of certain

smart bulbs, the WiFi passwords are transmitted unencrypted. In [BW20],

the researchers report that 19% of the IoT device control mobile apps they

tested were not using SSL connections to connect to the cloud. Moreover,

the resource limitation of smart devices reduce robustness and effectiveness of

cryptographic algorithms making it possible for an attacker to circumvent the

deployed encryption system [Nes+19].

• Insufficient authentication and authorization mechanism [Nes+19; Fru+17;

KS18; Ala+17; BI17; BW20]: because of constrained resources, smart devices

often do not implement sufficient authentication mechanism. In [BW20], the

authors report that, at the time of writing, the Belkin WeMo connected switch

did not require the user to authenticate to connect to it. Hence, an attacker

located in the same network as the device can send any command to it. They

also reported that the LightwaveRF smart hub communicated with a TFTP

server on the Internet without requiring any authentication, allowing an in-

truder to perform Man-in-the-Middle (MitM) attacks. IoT devices also do not

provide any granular role-based access control mechanism making it possible

for the collected data to be shared with unauthorized entities [Ala+17].

7



• Poor physical security [Nes+19; Fru+17; KS18; BI17]: because most IoT

devices are deployed in the nature in an unattended way, it is easier for an

attacker to get physical access to them. IoT devices rarely implement physical

hardening measures making them vulnerable to attackers with physical access.

Most devices often provide debugging or USB ports that can be used to extract

sensitive information from the device or modify the memory and the configu-

ration settings of the device. This includes unveiling employed cryptographic

schemes, issuing a new device pairing request, configuring a new password,

or installing a forged SSL certificate [BW20; Nes+19]. A skilled attacker can

even read the firmware of a device to understand how the device works, find

vulnerabilities in it, or forge a malicious version of the firmware. Second-hand

IoT device markets are also great places for attackers to sell intentionally com-

promised devices.

IoT devices are subject to a tremendous number of vulnerabilities: the use of

weak passwords, the presence of backdoors and software vulnerabilities, an inefficient

software update policy, insecure web and mobile interfaces, lack of proper encryption

and authorization mechanisms, or a poor physical security. Most of those vulnera-

bilities are the result of a lack of security awareness from both the manufacturers

and the customers.

1.3 IoT Botnets

As it is established that IoT devices are particularly vulnerable, they have become

low-hanging fruits for attackers who want to turn them into bots. Bots are compro-

mised devices that can be used to launch large scale and coordinated attacks.

Extensive study has been conducted to characterize IoT Botnets [Kol+17; Ang17;

KKS17; Ant+17; Pa+15; Wan+17; Jer17; CZ18]. Most studies focus on Mirai or

Bashlite as most IoT malware are highly inspired from them and present similar

behavior. As illustrated in Figure 1.3, the Mirai botnet is composed of four types

of components: the bots, the command and control server (C&C), the loader and

the report server. A bot is a compromised device that is waiting to receive com-

mands from the botmaster (the attacker controlling the botnet) in order to scan for

vulnerable devices or launch DDoS attacks against designated targets. The C&C

provides a centralized management interface for the botmaster to control the botnet

and launch attacks. The loader contains malware executables for different architec-

tures (ARM, MIPS, x86, . . . ) and is used to infect new devices. The report server

contains a database with details about all devices being part of the botnet.

The behavior of a Mirai-like malware can be split into two phases: the propa-

gation phase and the attack (or monetization) phase (some work further split the

propagation phase into a reconnaissance phase and an infection phase [Pa+15]):

• Propagation phase: first, a bot scans the network searching for vulnerable

devices running the Telnet service on TCP ports 23 or 2323. Once a weakly

8



Figure 1.3: Overview of Mirai botnet communication and basic components
from [KKS17]

configured device has been identified, brute forcing is used to find out the

correct credentials of the device. There are 62 possible username/password

pairs hardcoded in Mirai. Upon successful first login, the IP address of the

victim, the associated credentials and information about various characteristics

of the device are sent to the report server. The C&C is used by the botmaster

to regularly check the status of the report server. And when a new vulnerable

device is available, the C&C issues an “infection” command to the loader with

all the necessary information about the device to infect. The loader then logs

into the targeted device, determines its underlying environment and instructs it

to download and execute the architecture-specific malicious binary. To hide its

presence, Mirai deletes the downloaded binary file. Any other processes bound

to TCP ports 22 or 23, as well as processes associated with competing malware

are killed. The newly infected device is now waiting for attack commands from

the C&C while scanning the network for new vulnerable devices.

• Attack phase: to launch an attack, the botmaster sends an attack command,

through the C&C, to designated bots, specifying the targeted server and the

type of attack to be carried out. Mirai can launch various attack types in-

cluding UDP flood, SYN flood, DNS water torture or GRE IP flood. Upon

reception of the attack command, the selected bots will start to launch the

specified attack against the designated target. Mirai was mainly involved in

large scale DDoS attacks like the one that took place in October 2016 against

the servers of Dyn, a large DNS provider, and brought down large parts of the

Internet [Gua20].

9



Mirai primarily infected cameras, DVRs and home routers [Ang17]. At its peak,

Mirai infected more than 600,000 devices worldwide [Ant+17]. The most affected

countries were Brazil, Vietnam, China and Columbia. Since Mirai, IoT malware

have considerably evolved and are getting more and more sophisticated. Below we

list a few other notable IoT botnets that operate differently than Mirai:

• Hajime [EP16; Kol+17] (2016) infects devices that have their Telnet port open,

similarly to Mirai. But instead of relying on a centralized architecture, it is

built on a P2P network. Bots act as both a command server and a client which

receives commands. Contrary to centralized botnets, P2P botnets are more

resilient as they avoid any single point of failure. It uses BitTorrent’s DHT

protocol for peer discovery and uTorrent Transport Protocol (uTP) for data

exchange. Messages are encrypted and signed using an RC4 cryptographic

scheme. Hajime has never been involved in any attack so far.

• Reaper [Rad20b] (2017) is an IoT botnet that, instead of performing credentials

brute-forcing, leverages HTTP-based exploits of known IoT vulnerabilities to

infect devices.

• BrickerBot [Rad20a; Kol+17] (2017) targets Linux/BusyBox-based IoT de-

vices and performs permanent denial-of-service (PDoS) attacks against them.

It does not try to upload any binary to infect a device. Rather, it performs

a set of commands to render the device unusable. It uses various methods

such as altering the firmware of a device, erasing all files from its memory or

reconfiguring its network parameters.

• Persirai [Mic20; Kol+17] (2017) is built upon the open-sourced Mirai code

and targets over 1,000 IP Camera models. IP Cameras often use Universal

Plug and Play (UPnP), a network protocol that allows devices to open a port

on the router and act like a server exposing them to the Internet. Persirai gets

access to the IP Camera’s web interface through TCP port 81 and performs

a command injection to force the IP Camera to download and execute a ma-

licious shell script. Persirai does not use brute forcing to get the credentials,

rather it exploits a 0-day vulnerability to directly obtain the password file.

• HideNSeek [Bit20; Ava20; Har19] (2018) is an IoT malware that uses a home-

made P2P protocol for communications, and relies on both known IoT vul-

nerabilities exploitation and credentials brute forcing to infect devices. New

versions of HideNSeek achieve persistency (are capable of surviving a device

reboot).

• BlackIoT is described by S. Soltan et al. [SMP18] as a possible new type of

botnets in the near future made of vulnerable high wattage IoT devices (such

as air-conditioners and heaters) that can attack power grids. They define a

new type of attack called Manipulation of demand via IoT (MadIoT). Through

10



simulations, they show that such attacks can result in local outages or large

blackouts in the power grid.

Because of their vulnerable nature, IoT devices are prime targets for botnet

developers. IoT botnets are rapidly evolving and are getting more and more sophis-

ticated. They are primarily used to perform large-scale DDoS attacks. But with

more and more smart appliances with the ability to connect to the Internet, other

types of threats are emerging such as MadIoT attacks against power grids. A num-

ber of solutions have been proposed to secure the IoT ecosystems and are described

in the next Section.

1.4 IoT Security Solutions

In this Section we briefly describe a number of solutions that have been proposed

to secure the IoT. We also point out their limitations. User level solutions, software

level solutions, cryptographic solutions and network level solutions are discussed.

User Level Solutions

Given that a large number of IoT botnets infect devices by performing brute-force

attacks, one simple solution is for the consumer to set strong credentials. Manu-

facturers can force the user to set a strong password during the setup phase of a

device. However, such a solution assumes that both the end user and the manufac-

turer are aware of the security issues related to the IoT and are willing to funda-

mentally change their habits. Moreover, enforcing the use of strong credentials will

not prevent a botnet from infecting devices by exploiting software vulnerabilities or

backdoors inserted by the manufacturer for management and testing purposes.

Software Level Solutions

Because IoT devices are closed in nature, no additional software such as antivirus

can be installed by the end users. Therefore, they must be secure-by-design. Ven-

dors must evolve their security concept from traditional “add-on-security” (security

can be added later) that is appropriate for laptops or smartphones, to “built-in-

security” [Fru+17]. For example, instead of using a Linux OS that increases the

attack surface, lightweight OSs like RIOT OS or Google’s Brillo are much safer op-

tions for IoT devices [KKS17]. Those lightweight OSs provide enough functionalities

for a smart device to perform its specific task. Although reducing the attack surface,

lightweight OSs are limited in that they can still contain software vulnerabilities.

To overcome this shortcoming, cybersecurity-oriented distributions such as RIOT-

fp [20c] are emerging. However, strong software level security do not prevent the

use of weak credentials or the insertion of backdoors by manufacturers.

11



Cryptographic Solutions

As IoT devices have very limited memory and computation capabilities, widely used

cryptographic algorithms, such as RSA, DES, 3DES and AES are not appropriate.

Designing resource efficient lightweight cryptographic scheme for the IoT is an active

research area [Sin+17; CGP18; SNB18].

Cryptographic algorithms are used for three main security purposes: confiden-

tiality, authentication and integrity. Symmetric algorithms (like AES) are used to

ensure confidentiality while asymmetric algorithms (like RSA) are mainly used for

authentication purposes or to exchange symmetric keys. Hash functions are often

used to ensure data integrity. Hence studies focus on the development of three

types of lightweight cryptographic algorithms: symmetric algorithms, asymmetric

algorithms and hash functions.

A. Bogdanov et al. [Bog+07] proposed PRESENT, a lightweight symmetric block

cipher. It offers high level of security with a 64-bit block size and an 80-bit key.

Hardware implementation of PRESENT requires 1570 GE (Gate Equivalence) which

is competitive when compared to the 3400 GE required by AES-128 or 2309 GE

required by DES. G. Leander et al. [Lea+07] proposed DESL, a lightweight variant of

classical DES algorithms. They replaced the eight original S-boxes in classical DES

by a single but cryptographically stronger S-box repeated eight times. Hardware

implementation of DESL requires 1848 GE.

Asymmetric lightweight algorithms are mostly based on Elliptic Curve Cryp-

tography (ECC). ECC is based on the difficulty to solve the elliptic curve discrete

logarithm problem. It provides the same level of security as RSA but with a smaller

key size. As a consequence, it has a fast processing speed and requires less mem-

ory making it well suited for IoT devices. Several works have proposed ECC based

cryptographic schemes for authentication in an IoT environment [KS15; Kum+18;

HZ14].

J. Guo et al. [GPP11] proposed PHOTON, a lightweight hash-function based

on the AES design strategy and with performance very close to the theoretical

optimum (in terms of the minimal internal state memory size). Another example of

lightweight hash functions is QUARK (JP. Aumasson et al.) [Aum+10].

To secure the IoT ecosystem, many research works focus on designing secure

lightweight cryptographic algorithms. It is obvious that encrypting the transmitted

data will protect against eavesdropping attacks; authenticating devices can pre-

vent MitM attacks; and data integrity verification will prevent from malicious data

tampering. However not all malicious activities can be countered by the use of

cryptographic means. For example, a poorly configured IoT device that uses weak

credentials can be infected by a botnet through brute-force attacks despite its com-

munication being secured with cryptographic means. Network traffic encryption can

even make the work of intrusion detection systems harder as they are no longer able

to access certain headers or payloads.

12



Network Level Solutions

At the network level, traditional tools to enforce security are firewalls and Network

Intrusion Detection Systems (NIDS).

A firewall is software or hardware used to enforce a network security policy. It

consists of a set of network security rules used to monitor and control incoming and

outgoing network traffic. It is used to partition the network into safe and unsafe

zones. There exists two type of firewalls: host-based firewalls and network-based

firewalls. A host-based firewall runs on a device and filters the network traffic sent

or received by the device. A network-based firewall runs on a network hardware like

a router and filters the traffic between two or more networks. A major limitation of

host-based firewalls is that they require a lot of computational power from the host

to analyze, monitor and filter the network traffic. Because IoT devices are resource-

constrained in nature, the use of a host-based firewall is not a viable solution. A

network-based firewall can be used to secure a private IoT network by filtering its

communication with the Internet. It will prevent the smart devices of the private

network from being infected by a botnet located in the external network. However,

IoT devices are characterized by their heterogeneity and mobility limiting the effi-

ciency of a network-based firewall. Indeed, the heterogeneity of network protocols

for example (Bluetooth, WiFi, ZigBee or Z-Wave, etc.) induces the deployment

of multiple firewalls each dedicated to a particular protocol. Because of its mobile

nature, an IoT device can also connect to an unsecure external network, and get

infected by a malware. Moreover, network-based firewalls are ideal when the com-

munications of all the devices in the network are centralized, which is not necessarily

the case with IoT devices, as interdependent devices might communicate with each

other directly. Some devices like security cameras run web services on specific ports

to provide web interfaces that can be accessed from the Internet (if the user is not

at home for example). Hence, the firewall must be configured to allow connections

coming from the Internet to connect to the security cameras. In such case, the fire-

wall is of no use to block malware like Persirai that exploit vulnerabilities present

in the exposed Web interface of a device.

NIDSs are hardware or software based systems that inspect the network traffic

looking for malicious activities. They are usually placed at strategic points within a

network so that they can monitor traffic to and from all the devices on the network.

Once an attack is identified, or an abnormal behavior is detected, an alert is sent to

the administrator. When the NIDS has a response capability, it is referred to as a

Network Intrusion Prevention System (NIPS). An NIPS differs from an NIDS in that

it is capable of altering flows of network traffic to block an ongoing attack for exam-

ple. An NIDS can be either signature-based or anomaly-based. In signature-based

NIDSs, a specific pattern (sequence of TCP flags, sequence of bytes, sequence of in-

structions, TTL value, etc.), also called a signature, is indicative of a specific attack.

Each attack type, such as SYN flood or TCP half-open port scan, has its specific

signature that needs to be stored in the database of the NIDS. The main limitation

13



Figure 1.4: IoT network architecture

of signature-based NIDSs is that they can only detect attacks for which a signature

exists. Hence, they completely fail to detect new attacks such as attacks exploiting

zero-day vulnerabilities. An anomaly-based NIDS learns the profile of legitimate

networking behavior. When the network traffic does not comply with the learnt le-

gitimate behavior profile, an alert is triggered. Contrary to signature-based NIDSs,

anomaly-based NIDSs can detect previously unknown attacks. However, they are

susceptible to higher false positive rates because legitimate traffic can sometimes

deviate from the learnt profile, triggering false alarms.

As IoT devices are intended to perform very specific tasks, tasks that remain the

same over time, it makes their behavior very stable and predictable. For example, a

smart plug can only be switched on or off. However, it is not supposed to send emails

or click on ads. The network traffic produced by IoT devices being very predictable,

it is well suited for machine learning techniques. Therefore, developing machine

learning based NIDSs and network monitoring tools seems to be a promising way to

secure IoT networks. In contrast, applying machine learning techniques for intrusion

detection in the case of general purpose devices, such as desktop computers, laptops

or smartphones, has often proved difficult due to the great variability and diversity

of the generated network traffic [SP10]. Recent advances in the field of machine

learning, especially the emergence of efficient deep learning models can be leveraged

to develop new IoT network monitoring solutions. Deep learning algorithms however

require huge amount of data to be trained on. Hence, one needs to find new cost-

efficient ways to generate IoT network traffic data.

In this thesis, we attempt to leverage recent advances in the field of machine

learning to secure IoT networks and seek to answer the following questions:

• How can deep learning help to monitor IoT networks?

• How can deep learning help to overcome the lack of IoT network traffic data?

14



1.5 Objectives of the Thesis

1.5.1 Context

Figure 1.4 shows the main components of a machine learning based network security

solution for the IoT. The IoT devices connect to the local network through a wire-

less access point. The IoT gateway connects the local IoT network to the Internet.

By IoT gateway, we refer to a router in a traditional network or an SDN switch in

an SDN-based network. The IoT gateway can be used to filter the network traffic

based on predefined rules. The features extractor operates between the wireless ac-

cess point and the IoT gateway. Its role is to extract specific features from the raw

network traffic and send them to the monitoring applications. Features are used

to describe the raw network traffic. Examples of features include the number of

packets per flow, the number of bytes per flow, the duration of the flow, and so on.

The monitoring applications are IoT device identification tools, IDS or IPS. They

consist of trained machine learning models that take as input the features provided

by the features extractor. Depending on the output of the models, the monitor-

ing applications can push new filtering rules to the IoT gateway. In a traditional

network, the features extractor is a device with enough memory and computational

resources. The monitoring applications can run on a server within the local network

or even on the same device as the features extractor. In an SDN environment, the

IoT gateway will be an SDN switch and the monitoring applications will be hosted

by controller applications. Thanks to protocols, such as OpenFlow, communications

between the controller and the IoT gateway can be easily supported. As for the fea-

tures extractor, it can be integrated into the SDN switch by programming the packet

forwarding plane using languages such as P4. This thesis focuses primarily on the

development of monitoring applications, specifically for IoT device type recognition

and IoT network intrusion detection. The study of the other components of the

architecture such as the features extractor are let as future work.

Determining the type of an IoT device connected to the network allows to spec-

ify device-specific filtering rules that prevent the device from doing anything else

than what it is expected to do. It also allows to prevent certain types of device,

considered to be vulnerable, from accessing the network. Given the great diversity

of IoT devices, it is difficult to come up with a specific network signature for each

existing IoT device type. As a consequence, most existing works on IoT device

fingerprinting [Mei+17b; Mei+17a; Mie+17; Bez+18] take advantage of machine

learning algorithms to learn patterns in network traffic data that can help to de-

termine the type of devices connected to the network. Indeed, contrary to general

purpose devices like personal computers, an IoT device is intended to perform very

specific tasks that remain the same over time, making its networking behavior very

stable and predictable. Hence, data analysis techniques are well suited to model

the networking behavior of IoT devices. For this same reason, most existing works

on IoT NIDS differentiate malicious activities from legitimate ones using machine

15



learning algorithms [Mei+18; Mir+18; Ngu+19; DAF18].

However, developing IoT network monitoring tools such as NIDSs requires tremen-

dous amount of IoT network traffic data. The data is primarily used to train and

test the developed models. However, very few IoT network traffic datasets are

publicly available. Physically deploying thousands of real IoT devices to produce

network traffic can be very costly. Moreover, companies or institutions that operate

IoT devices are reluctant to share network traffic data because of privacy concerns.

Therefore, generating synthetic IoT network traffic data is an alternative. Advances

in the field of generative deep learning has prompted a recent interest in leveraging

models such as Generative Adversarial Networks (GANs) to generate real-looking

synthetic network traffic. Existing works attempt to generate both legitimate and

malicious network traffic data [RG18; Rin+19; Lin+19; Che19].

1.5.2 Limitations of Existing Works

Most existing works on IoT device type recognition through network traffic analy-

sis have limitations. Some of them are not delay-free, meaning that the proposed

approach require the user to wait for a long period of time before being able to

determine the type of a device. Other proposed methods are not phase-independent.

That is, they focus on a specific phase of a device life cycle (like the setup phase) or a

specific packet type. Hence, the device type can only be determined under some spe-

cific conditions. Some works are limited in that they fail to be non-intrusive. They

require to look at application level data and hence cannot be used when network

traffic is encrypted.

As for IoT NIDSs, a number of them have been proposed in the literature but

have some major limitations. Some of them are limited in that they are based

on supervised machine learning algorithms, and hence cannot detect new attacks

not seen during the training phase. Some works are limited because the type of

the device that is generating the network traffic needs to be known beforehand.

As a consequence, the developed model must be placed inside the local network

because local information like the MAC address or the local port numbers of a

device are often needed to determine the type of a device. Other works use local

network information to derive features. In case the local IoT network is connected

to the Internet through a NAT (which is often the case), local information like MAC

addresses or ports used by the device are no longer available beyond the NAT.

Existing works on network traffic generation, either focus on flow-level features

or packet-level features generation, but not both at the same time. The resulting

traffic is incomplete since a flow and the individual packets composing it are closely

related. For example, the number of bytes exchanged for the duration of a flow

usually amounts to the sum of the sizes of each packet that composes the flow. Traffic

generation based only on flow-level features will fail to fool network monitoring tools

that perform packet-level analysis, while traffic generation based only on packet-

level features will fail to fool tools that perform flow-level analysis. Moreover, all

16



existing works on network traffic generation uses non IoT data, often collected from

networks composed exclusively of general purpose devices such as PCs, laptops or

smartphones.

1.5.3 Contributions

We make the following contributions in this thesis:

• We propose to leverage machine learning to develop IoT network monitoring

tools that overcome the limitations of existing works. Two types of moni-

toring tools will be explored: IoT device type recognition system and IoT

network intrusion detection system (NIDS). For the device type recognition

system, we will first determine an appropriate set of features. Those features

can be extracted from any type of network communication and do not require

to look at application layer data, allowing the model to be phase-independent

and non-intrusive. Moreover, they can be determined by observing only a few

number of network packets making the model delay-free. To get an insight

of the selected set of features and assess its representational power, data vi-

sualization will be performed. Then, supervised machine learning algorithm

will be used to perform network traffic classification and determine the type

of the IoT device the traffic belongs to. As for the IoT NIDS, it must be

able to detect new types of attack and not require prior knowledge about the

type of the device that is generating the network traffic. To this purpose, we

will take advantage of autoencoders, an unsupervised neural network to learn

the legitimate networking behavior profile and detect any deviation from it.

During the training phase, one different autoencoder will be trained for each

IoT device type. During the testing phase, we will explore both possibilities:

either it is possible to determine the type of the device that is generating the

network traffic or it is not (for example when the NIDS is deployed outside

the local network).

• We propose to leverage generative deep learning to generate synthetic bidirec-

tional flows that look like they were produced by a real IoT device. To over-

come the shortcomings of existing works, we aim at generating both packet-

level and flow-level features at the same time. To this purpose, we propose to

generate sequences of packet sizes representing bidirectional flows along with

duration values. Hence, in addition to generating packet-level features which

are the sizes of individual packets, our developed generator implicitly learns

to comply with flow-level characteristics, such as the ordering of the packets,

the total number of packets and bytes in a bidirectional flow or the total du-

ration of the flow. As a sequence of packet sizes is a sequence of categorical

data, our problem is similar to word by word text generation. Inspired by

the solutions proposed in the field of Natural Language Processing, we pro-

pose to combine Generative Adversarial Networks (GAN) with autoencoders

17



to generate sequences of packet sizes. As for the duration, its noisy nature is

modeled using Mixture Density Networks (MDN), a type of neural networks

that output probability distributions allowing to model uncertainty.

The rest of the thesis is organized as follows: Chapter 2 first introduces deep

learning and the related concepts that are essential to understand the rest of this

thesis. Then, it describes existing works in IoT network traffic classification, IoT

NIDSs and network traffic generation, putting special emphasis on their limitations.

Chapter 3 describes our proposed IoT network monitoring systems, namely an IoT

device type recognition system and an IoT network anomaly detection system. In

Chapter 4 is presented our proposed approach for synthetic IoT network traffic data

generation. Chapter 5 concludes with possible future work.

18



2

State of the Art

”Books serve to show a man that those original thoughts of his aren’t very

new after all.”

– Abraham Lincoln

Before going deeper into the description of our contributions, we first need to

define key machine learning concepts and have a look at existing solutions. In this

chapter, we start by describing what deep learning is and how it can be used to

secure IoT networks. We define deep learning concepts and algorithms that will be

extensively used in the rest of this thesis. Then, we present a literature review of

existing works on IoT network traffic classification, IoT network intrusion detection

and deep learning based network traffic generation.

2.1 Deep Learning

In this section, we introduce basic deep learning concepts. We first define what

deep learning is and its relation to machine learning. Then, we describe different

types of neural network architectures. We also present how deep learning models

are trained. Different metrics commonly used to assess the performance of a model

are also described. Finally, we end by giving examples of deep learning application

in the field of cybersecurity. Note that this section does not exhaustively cover all

deep learning concepts but focuses mainly on concepts and methodology that will

be important to understand the rest of this thesis.

19



2.1.1 A Sub-field of Machine Learning

Machine Learning

In classical computer programming, to perform a specific task, the input data is

processed through hard-coded rules defined by a programmer. An example of a

hard-coded rule for a spam filter can be: if the email contains the word “sale” or

“discount”, then flag it as a spam. But is it possible to let the computer learn those

rules from the data? This is the question that machine learning [Alp20; Gér19;

Bis06] tries to answer. Machine Learning is the science of making computers learn

from data. A formal definition of learning is given by Tom Mitchell in 1997 [Mit97]:

“A computer program is said to learn from experience E with respect to some

task T and some performance measure P, if its performance on T, as measured by

P, improves with experience E.”

Instead of hard-coded rules, the idea is to let the learning algorithms find the

underlying statistical patterns in the input data that can be used to perform a

specific task. For example, if a learning algorithm is fed with a sufficient number of

spam and non-spam emails, it will find statistical patterns, like emails containing

the words “sale” or “discount” being more likely spams.

Depending on the type of supervision they get during training, machine learn-

ing algorithms can be categorized into four categories [Gér19]: supervised learning,

unsupervised learning, semi-supervised learning or reinforcement learning :

• in supervised learning, each instance in the training set includes its desired

solution also called its label or target value. Supervised learning is used for

tasks such as classification or regression. For example, during training, a

spam detector classifier is fed with emails along with their labels (spam or

not). After training, the classifier can be fed with new emails to determine

if they are spams or not. In regression tasks, the model does not attempt to

predict a class but a number like predicting the price of a house. The main

drawback of supervised learning is that labeled data is not always available

and labelling huge amount of data can be a daunting task.

• in unsupervised learning, the training set is unlabeled and the model tries

to learn without supervision. Unsupervised learning tasks include clustering,

dimensionality reduction, anomaly detection or data generation. Clustering

aims at grouping instances in a way that similar instances end up in the same

group, while dissimilar instances are assigned to different groups. Dimension-

ality reduction is often used for data visualization purposes. During training,

an anomaly detection model is fed only with normal instances and it learns

the profile of the legitimate or expected behavior. After training, it detects

whether or not a new instance comply with the learned legitimate profile. For

data generation, models are trained to learn to generate new data that follows

the same statistical patterns as the data of the training set.

20



Table 2.1: Examples of shallow learning algorithms

supervised learning unsupervised learning

Linear regression, Support Vector Machine
(SVM), Decision Tree, Random Forest,
k-Nearest Neigbors (kNN)

k-means, Isolation Forest,
One-Class SVM, Elliptic Envelope,
Principal Component Analysis (PCA)

• in semi-supervised learning, algorithms are able to deal with partially labeled

data. Usually a small amount of labeled data and a huge amount of unla-

beled data. Semi-supervised learning algorithms are often combinations of

unsupervised and supervised learning algorithms.

• reinforcement learning is very different from the other categories. In reinforce-

ment learning, an agent learns by interacting with its environment. It observe

the environment, decides to take an action and get a reward in return. The

aim of the agent is to find the best strategy to maximize the rewards it get

over time.

Deep Learning vs Shallow Learning

Machine learning algorithms can be divided into shallow learning and deep learning

algorithms [GBC16; LBH15; Fra17]. Shallow learning models can only learn one or

two layers of representation of the input data [Fra17]. Hence, they have very limited

representational capacity and cannot learn complex dependencies between features

of the input data. This is why feature engineering is an important step when using

shallow learning algorithms. Feature engineering is the process of finding features

that contains meaningful information about the representation of the input. For

example, instead of feeding the algorithm with raw pixel values of an image, it

is better to provide high level features such as the number of circles, the number

of vertical and horizontal lines in the image, etc. Table 2.1 shows examples of

supervised and unsupervised shallow learning algorithms.

Deep learning is a sub-field of machine learning that focuses on learning succes-

sive layers of increasingly meaningful representations of the input data. The learning

is performed using artificial neural networks (ANN) composed of multiple layers. A

layer consists of neurons, also called units. Figure 2.1 shows how the output of a

neuron is calculated when the input is a 2-dimensional vector. Let (x1, x2) be the

input vector, the output of the neuron is given by:

output = f(x1w1 + x2w2 + b)

where w1 and w2 are the connections weights, and b a bias term. f is an activa-

tion function. Its role is to introduce non-linearity and make the model capable

of learning complex non-linear function. When schematically representing neural

networks, a simplified representation is preferred as shown in Figure 2.1. All the

connection weights of all the units of a layer can be represented in a matrix. Hence,

21



Figure 2.1: Detailed representation of how the output of a neuron is computed and
its corresponding simplified representation

Figure 2.2: Example of an artificial neural network architecture

a layer consists basically of a matrix multiplication followed by an activation func-

tion. The depth of a model refers to the number of layers of the model. As shown

in Figure 2.2, an ANN typically consists of an input layer, multiple hidden layers

and an output layer. Feature engineering is no longer required as successive layers

allow deep neural networks to learn very complex dependencies between the input

features by themselves. In fact, a neural network can approximate any function of

the input data provided that it is sufficiently large.

2.1.2 Neural Network Training

Dataset Partitioning

To train and evaluate a model it is important to split the dataset into three sets: the

training set, the validation set and the test set [Gér19; Fra17]. The training set is

used to learn the weights, also called the parameters, of the model (see Section 2.1.1).

The validation set is used to fine-tune the hyperparameters of the model. The

hyperparameters of a neural network can be the number of layers, the number of

units per layer or the total number of training iterations. Multiple models, each with

a different configuration of the hyperparameters are trained and then evaluated on

the validation set to find out the hyperparameters configuration that yields the best

result. The test set is only used to assess the performance of the final model. It is

used to assess how well the model performs on previously unseen data.

However, when the dataset is small, splitting it might drastically reduce the

22



Figure 2.3: K-fold cross-validation

number of samples available either for training or testing. An advanced technique

to assess the performance of a model is to use k-fold cross-validation. The idea is

to partition the dataset into k folds as illustrated in Figure 2.3. The model is learnt

using k − 1 folds (that contains the training and the validation set) and assessed

using the remaining folds as the test set. The process is repeated k times with each

of the k folds used exactly once as the test set. The performances measured for each

fold used as the test set can be averaged to obtain the overall performance of the

model. Note that a nested k-fold cross validation can be performed to further split

the k − 1 folds used for learning the model into a training set and a validation set.

Gradient Descent

As explained in Section 2.1.1, each layer of a neural network is parameterized by a

weights matrix. The purpose of training is to find the value of the weights such that

the neural network will correctly map the input instances to their corresponding

targets (the actual value that we expect the model to predict). A loss function

(also called cost function) is defined to measure for each training instance the error

between the output predicted by the model and the actual target we expect. It

measures how well the model is doing in predicting the target value for a specific

input instance. The gradient of the loss function is then used to slightly update

the weights of the model in the direction that minimizes the loss. This is called a

gradient descent step. The magnitude of each gradient descent step is controlled

through the learning rate which is a hyperparameter of the model. If the learning

rate is too small, it will take a long time for the algorithm to converge. While, if it

is too big, the algorithm will diverge.

Instead of computing the loss and the corresponding gradient over the whole

training set, it is usually computed over a small number of random training instances

called a batch of training instances. One epoch is completed when the learning

algorithm has worked through all the training instances once. The batch size as well

as the total number of training epochs are hyperparameters of the model.

The loss function minimization through gradient descent steps is performed by

an optimizer as shown in Figure 2.4. A number of different optimizers have been

proposed such as RMSProp [TH12] or Adam [KB14]. The optimizer takes advantage

of the backpropagation algorithm [GBC16; Gér19]: it first uses the model to make

predictions (forward pass) on a batch of training instances, it measures the error

23



Figure 2.4: Neural Network Training

between the predictions and the actual targets through the loss function, then it

goes through each layer in reverse to measure the contribution to the error of each

weight of each layer (backward pass), and finally updates the weights to reduce the

error. At the beginning of the training process, the weights are randomly initialized,

then they are iteratively updated so that after a number of gradient descent steps,

they converge toward an optimal solution.

Overfitting and Underfitting

The training of a model is an optimization problem: the parameters are updated

so that the model better fits the training set. However, performing well on the

training set does not imply that the model will generalize well on new unseen data

(test set). Hence, a model training is not only an optimization problem but also

a generalization problem: make the training error small (optimization) and make

the difference between the training error and the test error small (generalization).

To avoid information leak, the test set is only used at the very end of a project to

assess the performance of the final model. The generalization error is rather mon-

itored during the training phase using the validation set. The validation set plays

the role of new unseen data. The ability of a model to learn complex patterns is

called its capacity. The capacity of a model can be increased by adding more neu-

rons or layers, or even training the model for a longer period of time (giving it more

time to learn). Figure 2.5 illustrates the relationship between a model’s capacity

and the training and generalization errors. As the capacity of a model increases,

both training and validation (also called the generalization error) error decrease,

since the model is learning patterns that are common to both sets. After a certain

capacity is reached, the validation error starts increasing while the training error

keeps decreasing. The model is starting to learn patterns that are specific to the

24



Figure 2.5: I. Goodfellow et al. [GBC16]: Typical relationship between a model’s
capacity and the training and generalization errors

training set, such as random noises, but are irrelevant when it comes to new data.

The model is said to overfit the training set: it performs well on the training set but

generalizes poorly on new data. One solution to reduce overfitting is to get more

training examples. Another solution is to perform model regularization. Regular-

ization consists of adding constraints to the model so as to reduce its capacity to

learn complex function. When it comes to neural networks, common regularization

techniques include early stopping [GBC16; Gér19](stop model training after a fixed

number of epochs), dropout [Sri+14; Hin+12] or weight regularization. The oppo-

site of overfitting is called underfitting. A model is said to underfit the data if it

performs poorly on both the training set and the validation set. Both the training

error and the generalization error are high. The model is not able to capture any

relevant pattern present in the training set. Solutions to avoid underfitting include

increasing the capacity of the model (increase the number of layers or neurons),

remove constraints from the model, or add new features.

2.1.3 Metrics for Model Assessment

In this subsection, we present the most common metrics used to measure the per-

formance of a machine learning model.

Regression Task

For a regression task the model attempts to predict a numerical value as close as

possible to the true target value. The most common metric used to assess the

performance of a regression task is the Mean Squared Error (MSE). Let m be the

total number of samples in the test set used to compute the MSE. Let ŷi and yi be

respectively the prediction and the target value for the ith instance in the test set.

The MSE is given by:

MSE = 1
m

∑m
i=1(yi − ŷi)2

25



Figure 2.6: Confusion matrix

For classification tasks, we will first introduce metrics for binary classification

then show how they can be generalized for multiclass classification.

Binary Classification/ Anomaly Detection

A binary classification problem is composed of a positive class and a negative class.

In the specific case of a detection problem, the positive class corresponds to what

we want to detect. For example in an attack detection problem, the positive class

contains instances that correspond to attacks while the negative class contains in-

stances that can be labeled as ‘no attack’ or legitimate. Note that all the metrics

used for binary classification problem can also be used to assess anomaly detection

model. Indeed, performance evaluation is performed on the test set, and for an

anomaly detection problem, the test set usually contains both positive and negative

class instances. The main difference between a binary classification model and an

anomaly detection model is the data used during the training phase. A binary clas-

sifier is trained using both negative and positive instances while an anomaly detector

is trained on negative instances only.

The performance on the test set of a binary classifier can be summarized using

a confusion matrix as shown in Figure 2.6. A confusion matrix shows the number of

true positives (TP), the number of true negatives (TN), the number of false positives

(FP) and the number of false negatives (FN).

The number of TP, TN, FP and FN are used to compute different performance

metrics such as the accuracy, the precision, the recall and the False Positive Rate

(FPR).

The accuracy is the ratio of correctly predicted classes and is given by:

accuracy = TP+TN
TP+TN+FP+FN

The precision is the proportion of instances predicted as positive that are actually

positive and is given by:

precision = TP
TP+FP

26



The recall, also called the True Positive Rate (TPR) or attack detection rate (in

intrusion detection problems), is the proportion of actual positive instances that are

correctly predicted as positive and is given by:

recall = TP
TP+FN

The FPR is the proportion of actual negative instances that are incorrectly

predicted as positive and is given by:

FPR = FP
FP+TN

To compare two models, it is often convenient to combine the precision and the

recall into a single metric called the F1 score. It is given by:

F1 = 2×precision×recall
precision+recall

Another method to assess the performance of a binary classifier or an anomaly

detector is to plot a Receiver Operating Characteristic (ROC) curve and compute

the Area Under the Curve (AUC). To predict the class of an instance some model

computes a score. If the score is greater than a certain threshold, the instance is

assigned to the positive class. Otherwise, it is assigned to the negative class. The

ROC curve plots the TPR against the FPR for various detection threshold values

as shown in Figure 2.7. The AUC represents a measure of the separability between

negative and positive classes. It can be interpreted as follows: consider the situation

in which all the instances are already correctly classified, then we randomly pick one

instance from the negative class and one instance from the positive class; we use

the model to predict the score for both instances and decide that the one with the

highest score belongs to the positive class. The AUC is the percentage of randomly

drawn pairs for which we will be right. The closer the AUC is to 1 the better the

model separates the two classes. An AUC close to 0.5 indicates that the model is

performing no better than random guessing.

Similar to ROC curve is the Precision-Recall (PR) curve which plots precision

versus recall. The area under the PR curve is referred to as the average precision

(AP).

Multiclass Classification

For multi-class classification problems, macro-averaging, weighted-averaging or micro-

averaging can be performed to assess the performance of the classifier [Shm20].

In the macro-average method, the performance is obtained by averaging over

the individual performances obtained for each class. Let C be the total number of

classes, and precisioni be the precision obtained for class i. Then, the macro-average

of precision is given by:

macro avg precision = 1
C

∑C
i=1 precisioni

27



Figure 2.7: ROC curve example [Sci20]

In the weighted-average method, class imbalance is taken into account and the

contribution of each class is weighted with the number of instances in that class. Let

C be the total number of classes. Let N be the total number of instances and Ni

be the number of instances belonging to class i. The weighted-average of precision

is given by:

weighted avg precision = 1
N

∑C
i=1Ni × precisioni

In the micro-average method, the number of TP, FP, FN and TN obtained for

each class are summed up to obtain the overall number of TP, FP, FN and TN. Let

C be the total number of classes. Let TPi, TNi, FPi and FNi be the number of TP,

TN, FP, and FN respectively for class i. And Let TPo, TNo, FPo and FNo be the

model’s overall number of TP, TN, FP, and FN respectively, computed as follows:

TPo =
∑C

i=1 TPi

TNo =
∑C

i=1 TNi

FPo =
∑C

i=1 FPi

FNo =
∑C

i=1 FNi

The micro-average of precision is then given by:

micro avg precision = TPo
TPo+FPo

=
∑C

i=1 TPi∑C
i=1 TPi+FPi

2.1.4 Neural Network Architectures

Multiple ANN architectures have been proposed in the literature. We propose to

briefly describe some of them, especially the ones that will be extensively used in

this thesis:

28



Figure 2.8: Recurrent Neural Network

• Feedforward Neural Networks (FNN) are a category of neural networks in

which the information flows only in the forward direction from the input,

though the hidden layers, to the output. There are no feedback connections in

which the output of a layer is fed back into itself. Fully connected Neural Net-

works (FCNN), also called Multilayers Perceptron (MLP), are a type of FNN

composed exclusively of densely connected layers as illustrated in Figure 2.2.

A densely connected layer (also called fully-connected layer) is a layer in which

each unit is connected to all the units of the previous layer.

• Convolutional Neural Networks (CNN) [GBC16; LeC+98] are a type of FNN

specialized in the processing of grid-like data such as an image (2D grid) or

a time series (1D grid). A CNN uses convolution in place of general matrix

multiplication in at least one of its layers. A convolution layer is based on a

shared-weights architecture and translation-invariance characteristics, making

it a good choice to process image-like data. CNN are extensively used in

Computer Vison, whether it is for image classification, object detection or

image segmentation.

• Recurrent Neural Networks (RNN) [GBC16; Fra17] are specialized in the pro-

cessing of sequential data such as time series or texts. As illustrated in Fig-

ure 2.8, at each time step, a recurrent layer receives the input that corresponds

to that time step as well as its own output from the previous time step. As

a consequence, the output at a given time step is a function of all the inputs

from the previous time steps. Hence, the network is said to have a mem-

ory. Widely used variants of RNN that provide better long-term memory in-

clude Long Short-Term Memory (LSTMs) [HS97] and Gated Recurrent Units

(GRU) [Cho+14] networks.

• Autoencoders [Gér19; GBC16] are unsupervised neural networks that learn to

copy their inputs to their outputs under some constraints. For example, in

vanilla autoencoders, the constraint is the limited size of the hidden layer that

contains less neurons than the total number of input neurons. An autoen-

coder is also said to be composed of an encoder and a decoder. As shown in

Figure 2.9, the encoder compresses the input to obtain a latent representa-

tion of it. The role of the decoder is to reconstruct the original input from

its compressed latent representation. The difference between the input and

29



Figure 2.9: Autoencoder

Figure 2.10: Variational Autoencoder

the output is called the reconstruction error. An autoencoder is trained to

minimize the reconstruction error on a given dataset. Autoencoders can be

used for anomaly detection. Indeed, once trained an autoencoder is good at

compressing and reconstructing instances that are similar to the data used

during training. However it is very bad at reconstructing new instances that

were not seen during the training phase.

• Variational Autoencoders (VAE) [KW13; Gér19] are special types of autoen-

coders composed of an encoder that maps the input to a multivariate normal

distribution around a point in the latent space. Actually, as illustrated in

Figure 2.10, the encoder of a VAE maps each input instance to a mean vector

µ and a variance vector σ2 in the latent space. The mean and variance vec-

tors are then used as the parameters of the multivariate normal distribution

from which the latent vector is sampled. This introduces stochasticity in the

process, as a same input might result in different latent vectors. A VAE can

be used as a generative model. In fact, the loss function of a VAE contains an

additional term which is the Kullback-Leibler (KL) divergence. The role of the

KL loss is to force the mean and variance vectors generated by the encoder to

be close to the parameters of a standard normal distribution (zero mean and

unit variance). Hence, once trained using the original dataset, one only needs

to sample a latent vector from the standard normal distribution and feed it to

the decoder of the VAE to generate new instances.

• Generative Adversarial Networks (GAN) proposed by I. Goodfellow et al. [Goo+14]

are composed of two competing neural networks, a discriminator and a gener-

ator (see Figure 2.11). The role of the generator is to generate observations as

similar as possible to the instances present in the training set in order to fool

30



Figure 2.11: Generative Adversarial Networks

the discriminator. The role of the discriminator is to predict whether a given

instance comes from the training set or has been generated by the generator.

The GAN is trained by alternatively training the generator and the discrim-

inator. After a sufficient number of training iterations the generator is good

enough to generate instances that the discriminator cannot discriminate from

real instances anymore.

2.1.5 Deep Learning Applications in Cybersecurity

Machine learning and especially deep learning models have been applied in differ-

ent sub-fields of cybersecurity such as malware classification [Ye+17], vulnerability

discovery [GS17] or network intrusion detection [BG15].

Malware Classification

B. Kolosnjaji et al. [Kol+16] leverage deep learning for malware system call se-

quences classification. They perform dynamic malware analysis: the malware is

executed in a controlled environment to extract the sequence of system calls it per-

forms. As system calls are categorical data, they are represented using one-hot

encoded vectors. Malware samples are labeled using services provided by VirusTo-

tal [20h]. They train a neural network composed of a recurrent layer stacked on top

of a convolution layer. They report a classification precision of 85.6% and a recall

of 89.4%. R. Pascanu et al. [Pas+15] propose to detect malware using a special

type of RNN called Echo State Network (ESN). They also use sequences of system

calls as features. The RNN is trained in an unsupervised fashion. It is followed by

a FNN that is trained to classify malicious and benign sequences of system calls.

They report a TPR of 98.3% and a FPR of 0.1%. J. Saxe et al. [SB15] propose to

use deep neural networks to detect malicious binaries in Windows systems. To this

purpose, they extract features from static benign and malicious binaries. Features

include PE (Portable Executable) file’s metadata and the list of DLL (Dynamic Link

31



Library) imports. They train a FFN to distinguish malicious binaries from benign

ones. They reported a TPR of 95% and an FPR of 0.1%.

Vulnerability Discovery

Z. Li et al. [Li+18] describe a framework for vulnerability detection in C/C++ pro-

grams at source code level using deep learning. Vulnerable pieces of codes along

with their patched version are obtained from different vulnerability databases such

as the National Vulnerability Database (NVD). The code is tokenized before be-

ing fed to a bidirectional LSTM classifier. F. Yamaguchi et al. [YLR11] present a

vulnerability extrapolation method using dominant API usage patterns. First, the

source code is parsed into individual functions. Then API symbols for each function

are extracted. Each function is embedded in a vector space using the extracted

API symbols. Principal Component Analysis is then applied to infer the descriptive

directions in the vector space. Finally, each function is expressed using dominant

API usage patterns. Knowing the API usage pattern of a vulnerable function help

us to identify other functions that share a similar API usage and possibly contain

similar vulnerability.

Network Intrusion Detection

In the field of network intrusion detection, the KDD99 and the NSL-KDD datasets

have been widely used to train and test machine learning based NIDS [BG15; 20e].

Those datasets describe TCP/IP communications using 41 features, including basic

features such as the duration, the total number of bytes received and sent, and

more advanced content-level features such as the number of incorrect logins or the

number of operations performed as root. They contain two basic classes: normal and

attack network traffic. The network attacks are further divided into four different

categories: DoS, R2L (Remote to Local), U2R (User to Root) and probes. A.

Javaid et al. [Jav+16] train and test a deep learning based NIDS on the NSL-

KDD dataset. They propose a neural network architecture composed of two stages:

an unsupervised pretrained component followed by a FCNN that plays the role of

a classifier. Unsupervised pretraining of the lower layers is used to learn useful

representation of the input data. They report an F1 score of 98.84% for the binary

classification problem (normal or attack) and an F1 score of 75.76% for the 5-class

classification problem (normal or one of the four attack types). Other notable works

include RNN based NIDS by C. Yin et al. [Yin+17] and the NIDS proposed by N.

Shone et al. [Sho+18] that consists of stacked autoencoders followed by a Random

Forest classifier.

More recently, with the rapid development of IoT networks, works taking ad-

vantage of data analysis techniques for IoT network traffic monitoring are emerging.

Those works specifically focus on IoT network traffic classification and IoT network

intrusion detection and will be thoroughly described in the following sections.

32



2.2 IoT Network Traffic Classification

In this section, we present works that focus on IoT network traffic classification.

Existing works on IoT network traffic classification can be divided into two cate-

gories depending on their purpose: IoT device type identification and IoT device

state determination. In IoT device type identification (or fingerprinting), network

traffic classification is performed to identify the IoT device type that is generating a

given network traffic. In IoT device state determination, the purpose of traffic clas-

sification is to determine what action a device is currently performing (and hence

guess what the user is doing) just by analyzing its network traffic.

2.2.1 IoT Device Type Identification

Y. Meidan et al. [Mei+17a; Mei+17b] propose to identify IoT device type to

prevent unauthorized devices from connecting to the network (see Figure 2.12).

To this purpose, a white list of trustworthy devices is created. A Random Forest

algorithm is trained to learn to identify IoT device types from the white list based

on network traffic data. The dataset consists of full TCP sessions from SYN to FIN,

identified by source and destination IP addresses and ports. The TCP sessions are

described using 274 features extracted using a tool presented in [Bek+15], along

with, 60 new features designed by the authors. The authors do not provide lot of

information about the used features. Only the top features, the ones found to be the

most influential in identifying device type, are described. Most of them are statistics

(minimum, average, quartiles, etc.) on the TTL (time-to-live) value of the packets

in the TCP session. For experimental evaluation, 9 types of IoT devices are used:

baby-monitor, motion-sensor, refrigerator, security camera, smoke detector, socket,

thermostat, TV, watch. For empirical evaluation of the method, 9 experiments were

performed. In each experiment, one IoT device type is left out of the white list, to

represent an unauthorized device. For each experiment a multiclass Random Forest

classifier is trained using TCP sessions data from the 8 devices that compose the

white list. When fed with the feature vector describing a TCP session, the classifier

outputs a probability distribution over all possible device classes. A threshold tr

is used, so that if the probability is higher than tr for a given class the session

is classified as belonging to that device class. Otherwise, if the probability is less

than tr for every device class, the session is classified as “unknown”. Performance

evaluation shows that, on average, 94% of unknown IoT device types were detected

and 97% of the white-listed devices were correctly classified by their actual types.

The authors propose to improve the performance by performing majority voting

over several consecutive TCP sessions. Based on 20 consecutive TCP sessions and

majority voting rule, on average, 96% of the unknown IoT devices were detected

and 99% of the white-listed devices were correctly classified.

M. Miettinen et al. [Mie+17] present IoT SENTINEL, a system capable of

fingerprinting the type of an IoT device thanks to the network traffic it generates

33



Figure 2.12: Y. Meidan et al. [Mei+17a]: Overview of proposed method for IoT
white listing

during the setup phase. The aim is to constrain the communications of vulnerable

devices. Once a new device, identified by a new MAC address, is being connected

to the network, the network packets sent during the setup phase are collected. The

end of the setup phase is identified by a decrease in the number of packets sent.

Each network packet is described using a total of 23 features obtained after one-hot

encoding of the categorical variables. Examples of categorical features are the link

layer protocol, the network layer protocol, the transport layer protocol or the appli-

cation layer protocol. Other features are integers, such as the number of different

destination IP addresses or the packet size. The final fingerprint is a feature vector

of size 23 × number of packets sent during the setup phase. One Random Forest

classifier per device is trained. If a device fingerprint matches several device types,

it is compared to a subset of fingerprints from each device type it got a match for.

The dissimilarity score is computed using the Damerau-Levenshtein edit distance.

The lowest dissimilarity score gives the final predicted device type. The authors

report an overall accuracy of 81.5% for their method.

B. Bezawada et al. [Bez+18] describe IoTSense, a system to fingerprint IoT

device type from the analysis of a sequence of packets. A network packet is described

using a total of 20 features, after one-hot encoding of categorical variables. They

reuse 17 of the binary features used in IoTSENTINEL [Mie+17], such as the different

protocols used from network to application layers. The 3 other features are the

Shannon entropy of the payload, the TCP payload length and the TCP window

size. A fingerprint is represented using 5 session packets, which leads to a final

feature vector of size 5 × 20 = 100. They tested 4 different classifier, namely, kNN,

Decision trees, Gradient boosting and Majority voting. The Gradient boosting

classifier achieved the best results with a mean accuracy of 99%.

34



Figure 2.13: A. Sivanathan et al. [Siv+18]: Architecture of the multi-stage classifier

A. Sivanathan et al. [Siv+18] present a method to perform IoT network traf-

fic classification for device type identification using a multi-stage machine learning

classifier. The network traffic is described using 9 different statistical attributes.

This includes 3 nominal attributes, namely the set of domain names requested by

the device, the set of remote port numbers the device communicates with and the

set of TLS/SSL cipher suites supported by the device. The remaining attributes are

numerical and include the total number of bytes exchanged, the mean flow duration,

the average flow rate, the device sleep time (time interval over which the device has

no active flow), the DNS interval (average time interval between two consecutive

DNS request) and the NTP interval. Those statistical attributes are derived from

one hour of active network traffic data. That is, if a device does not spend much time

online, the duration one have to wait to collect one hour of active network traffic

data might last longer. As described in Figure 2.13, the first stage of the machine

learning process is to convert the 3 nominal attributes into numerical attributes. To

this purpose, each of the 3 nominal attributes are fed to a Näıve Bayes classifier that

outputs a tentative class and a confidence interval for each of the attributes. The

6 newly obtained numerical attributes are then combined with the other numerical

attributes leading to a final feature vector of size 12. The final stage consists of a

Random Forest classifier. The authors report an accuracy of 99% in identifying the

type of IoT device.

S. Marchal et al. [Mar+19] propose AuDI, an autonomous distributed system

trained to learn to identify the type of IoT devices connected to the network based

on the temporal periodicity of IoT network communications. It can be used as a

first step before performing anomaly detection. First, AuDI is used to identify the

type of device connected to the network. Then the appropriate legitimate behavior

profile (the one that corresponds to the identified device) can be used to monitor the

device. The network traffic is described using flows. A flow is defined as a sequence

of network packets originating from the same MAC address and having the same

communication protocol (e.g., NTP, ARP, RTSP, etc). As shown in Figure 2.14,

35



Figure 2.14: S. Marchal et al. [Mar+19]: Overview of device type identification

the flow is then discretized into a binary time series sampled at one value per sec-

ond, indicating whether the flow contained one or more packets during the 1-second

period (value 1) or not (value 0). Discrete Fourier Transform and discrete autocor-

relation are computed to derive the features. A total of 33 features are obtained.

Those features mainly describe periodic aspect of the network communications. For

experimental purposes, a 30-minute window is used to capture the flows. That is,

30 minutes is required for identifying a device type. A kNN classifier is trained to

identify the devices. The authors reported an overall accuracy of 98.2%.

L. Bai et al. [Bai+18] propose to combine an LSTM network with a CNN to

better classify IoT network traffic. They do so by converting streams of network

packets into time series data: streams of packets generated by a device (devices

are uniquely identified by their MAC addresses) are first sub-divided into segments

of fixed time interval. That way, each obtained segment contains a subset of the

initial stream of packets. The obtained sequences of segments correspond to a time-

series. Each segment is described by features such as the total number of packets

it contains, the protocol of the packets and different statistics on the size of the

packets (mean, standard deviation, minimum, maximum, etc.). The LSTM-CNN

model achieves an accuracy of 74.8% in identifying IoT device type.

V. Thangavelu et al. [Tha+18] present DEFT, a distributed IoT fingerprint-

ing solution. It is composed of a controller and multiple gateways. The controller

is located in the ISP network and its role is to train and maintain classifiers. The

gateways are located closer to the IoT networks, inside homes or enterprises, and

their role is to classify the network traffic. Network traffic data is described using

traffic sessions. A traffic session is defined as an aggregation of connections from

36



and to a particular device for a fixed interval of time. A traffic session is described

through 111 features, including features, such as the number of DNS queries, statis-

tics on the size of the packets and the duration of the connections. For experimental

evaluation, a time interval of 15 minutes is used to define the traffic sessions. Four

machine learning algorithms are tested: kNN, Gaussian and Bernoulli Näıve Bayes,

and Random Forest. Random Forest performs the best with an accuracy of 98%.

F. Le et al. [Le+19] propose to identify IoT device type by analyzing DNS

requests. The DNS names that are queried by each device are collected during a

specified time interval. Then the authors propose to model the set of DNS names

as a set of words representing a document. As a first step, the DNS names help to

determine the vendor of a device. If a device queries DNS names from multiple ven-

dors, majority voting is used to determine the vendor that manufactured the device.

Next, the type of device is determined by applying TF-IDF (term frequency–inverse

document frequency) [JM09] method to the document representation of the DNS

names. TF-IDF is a natural language processing method that can be used to find the

most similar document in a corpus to an input document. The document represen-

tation of the DNS names of the training set are sorted by vendor and device type in a

database. Once a new device is connected to the network, the DNS names it queries

are collected and compared to the training set database to determine its vendor and

type. The experimental testbed consists of 91 IoT devices. A 24h time interval is

used to collect the DNS names queried by each device. The method achieves 99%

accuracy. When the time interval is reduced, the accuracy decreases. When collect-

ing DNS names for only 1 hour, the method is no longer able to differentiate IoT

devices by type.

N. Ammar et al. [ANT19] propose to identify the type of an IoT device newly

connected to the network by collecting data exchanged during its setup phase. The

features used are textual data such as the manufacturer name derived from the MAC

address, device name obtained from DHCP information, model information and

manufacturer friendly name extracted from UPnP messages, device local name and

service names obtained from mDNS records, device OS and model extracted from

HTTP headers. The textual features are used to create a Bag of Words (BoW) vector

representation. The BoW representations of each device is stored in a database. To

determine the type of a new device, its BoW representation is extracted and is

compared to all the inputs in the database to find out the most similar one.

2.2.2 IoT Device State Determination

A. Acar et al. [Aca+18] propose to leverage machine learning to profile the wireless

network traffic of a smart home in order to determine the states of smart devices

and the actions they are performing. This rises serious privacy concerns as one

can determine what is going on inside a smart home just by passively sniffing the

37



Figure 2.15: A. Acar et al. [Aca+18]: Overview of the multi-stage privacy attack

network even if the network traffic is encrypted. The authors refer to their novel

attack as multi-stage privacy attack, which is achieved by passively observing the

wireless network traffic of the smart home devices. Figure 2.15 shows the 4 different

stages of the attack. Three wireless protocols are targeted: WiFi, ZigBee, and

Bluetooth Low Energy (BLE). In the first stage of the attack (stage 1), the attacker’s

goal is to determine the type of each smart home device associated with specific

physical addresses (e.g. MAC address, NwkAddr). This is done by performing

multi-class classification based on the traffic profile of each device. As works on

device type identification already exist, like the ones presented earlier [Mei+17a;

Mie+17; Bez+18], the authors propose to reuse them. At stage 2, the aim of the

attacker is to detect for each individual device whether a state transition is occurring

or not. To this purpose the network traffic is observed for a given time interval and

a feature vector is extracted. The feature vector consists of three variables: mean

packet length, mean inter-arrival time and median absolute deviation of packet size.

For each device type, Random Forest and kNN classifiers are trained to predict its

state transitions. Experiments show an average F1 score of 91% for this stage. At

stage 3, after detecting transitions between device states, the aim is to determine the

specific state to which the device transitioned. To this purpose, the network trace

of a device is split into segments corresponding to different device states (e.g., ON,

OFF). Then multi-class classification is performed with classes representing possible

devices states. For this latter classification, 191 time-series features are extracted

using a tool called tsfresh [Chr+18]. The following classification algorithms are

tested: XGBoost, Adaboost, Random Forest, SVM with RBF kernel, kNN, Logistic

Regression, Näıve Bayes, and Decision Tree. An F1 score of 94% is achieved for this

stage. Finally, at stage 4, using the state information of the devices, the attacker

can guess what activity the user inside the house is doing. This is done by using

the states of the different devices and a Hidden Markov Model. Depending on the

activity, the F1 score varies between 91% and 100% for this stage.

N. Apthorpe et al. [ARF17] present a strategy for a passive network observer

38



to be able to infer consumers behavior from rates of IoT device traffic, even when

the traffic is encrypted. First, the observer needs to separate packet streams for

each device. DNS queries associated with each packet stream allow the observer

to determine the type and vendor of the IoT device that generated the stream.

Then, simply plotting send/receive rates of the streams (bytes per second) can

reveal potentially private user interactions with the device. Four consumer devices

where analyzed in the study: Sense sleep monitor, Nest security camera, WeMo

switch, Amazon Echo (see Figure 2.16). The analysis of the network traffic rate of

the Sense sleep monitor allows the observer to determine the time at which the user

is sleeping. For the Nest security camera, it is possible to determine if the user is

actively viewing the video feed through the web or mobile application. The traffic

rate analysis make it also possible to determine when a WeMo switch is turned on

or off. It also makes it possible to know the time of the day a user is interacting

with an Amazon Echo assistant.

B. Copos et al. [Cop+16] propose to infer if anybody is home by analyzing

network traffic data. They specifically attempt to determine when a device is tran-

sitioning from one mode to another. For example, the Nest thermostat offers 2

modes: Home and Auto-away mode. To this purpose, they identify all the unique

connections defined by a destination IP address and a specific number of bytes sent.

Then an N by N correlation matrix is defined where N is the total number of unique

connections. The idea is to detect connections that are correlated and often occur

simultaneously during mode transition. Experimental results show that, based only

on network traffic originating from the device, it is possible to determine when the

thermostat transitions from the Home to the Auto Away mode and vice versa with

an accuracy of 88% and 67% respectively.

D. Caputo et al. [Cap+20] show that it is possible for an adversary to infer

the state of a smart speaker, such a Google Home Mini, just by analyzing its gen-

erated network traffic. The authors consider 3 states of a Google Home Mini: the

microphone is off (mic off ), the microphone is on but does not receive any stimuli

or noise from its environment (mic on), the microphone is on and is surrounded

of humans speaking to each other (and not to the device) and background noise

(mic on noise). For the experiment, the traffic is collected for 3 days for each of

the states. The features are network traffic statistics collected over specific time

windows. They include statistics such as the number of TCP, UDP and ICMP

packets, the number of different IP addresses and ports, or the IAT between pack-

ets. Decision Tree and Adaptive Boosting (AdaBoost) algorithms are considered for

training. For the first experiment, the classifiers are trained on network traffic data

from 2 states: mic off and mic on. The aim is to determine whether it is possible to

determine if the microphone of the device is on or off just by analyzing its network

traffic data. Both classifiers achieve a reasonable accuracy of about 80% when the

network traffic is collected over a time window of at least 500 seconds or when more

than 500 packets are collected. For the second experiment, the classifiers are trained

39



Figure 2.16: N. Apthorpe et al. [ARF17]: Network traffic send/receive rates of
selected IP streams from 4 commercial IoT devices during controlled experiments

40



Table 2.2: Summary of works on IoT network traffic classification for device type or
device state determination

Reference
Device

type/state
detection?

Algorithms used Example of features used

Y. Meidan et al.
[Mei+17a; Mei+17b]

type Random Forest statistics on TTL values

M. Miettinen et al. [Mie+17] type Random Forest

link, network, transport and
application layers protocols,

number of different destination
IP addresses, packet size

B. Bezawada et al. [Bez+18] type
k-NN, Decision trees,

Gradient boosting
and Majority voting

Shanon entropy of the payload,
the TCP payload length and the

TCP window size

A. Sivanathan et al. [Siv+18] type
NaÏve Bayes,

Random Forest

set of domain names, set of
remote port numbers, set of

supported TLS/SSL cipher suites,
total number of bytes exchanged,

mean flow duration, mean flow rate,
sleep time, DNS and NTP intervals

S. Marchal et al. [Mar+19] type k-NN

discrete Fourier Transform and
discrete autocorrelation derived

from a binary time series
representing the presence (1)

or absence (0) of a packet

L. Bai et al. [Bai+18] type LSTM-CNN
total number of packets, protocol,
statistics on the size of the packets

V. Thangavelu et al. [Tha+18] type
k-NN, Gaussian and

Bernoulli Näıve Bayes,
and Random Forests

number of DNS queries, statistics
on size of the packets and
the duration of the flows

F. Le et al. [Le+19] type TF-IDF DNS names

A. Acar et al. [Aca+18] state
k-NN, Random Forest,
XGBoost, AdaBoost,

Hidden Markov Model

mean packet length, mean
inter-arrival time, median absolute

deviation of packet size

N. Apthorpe et al. [ARF17] state
Visual statistical

analysis
DNS queries, send/receive rates

(bytes per second)

B. Copos et al. [Cop+16] state Correlation matrix NA

D. Caputo et al. [Cap+20] state
Decision Tree,

AdaBoost
number of TCP, UDP and ICMP
packets, number of different IP

on the network traffic data to distinguish between mic on and mic on noise. The

aim is to determine whether or not it is possible to determine if there is noise in the

device’s surroundings just by analyzing its network traffic. The classifiers achieve a

reasonable accuracy of more than 80% when the network traffic is collected over a

time window of at least 15 seconds or when more than 20 packets are collected.

2.2.3 Summary

Table 2.2 summarizes the different works on IoT device type identification and

IoT device state determination through network traffic analysis. It presents the

algorithms and features used in the different works.

As presented in Table 2.3, the existing works lack at least one of the following

characteristics: be delay-free, phase-independent or non-intrusive. Works that do

not require to wait for an unspecified amount of time or use a timeout of less than

15 minutes are said to be delay-free. Approaches that can be used at any moment

of a device’s life cycle (provided that the device is generating network traffic) are

said to be phase-independent. Solutions that do not look at application data and

41



Table 2.3: Limitations of existing works on IoT network traffic classification for
device type or state determination

Reference Delay-free Phase-independent Non-intrusive

Y. Meidan et al.
[Mei+17a; Mei+17b]

No Yes Yes

M. Miettinen et al. [Mie+17] Yes No Yes

B. Bezawada et al. [Bez+18] No Yes No

A. Sivanathan et al. [Siv+18] No Yes No

S. Marchal et al. [Mar+19] No Yes Yes

L. Bai et al. [Bai+18] No Yes Yes

V. Thangavelu et al. [Tha+18] No Yes Yes

F. Le et al. [Le+19] No No No

A. Acar et al. [Aca+18] NA No No

N. Apthorpe et al. [ARF17] Yes No No

B. Copos et al. [Cop+16] No No No

D. Caputo et al. [Cap+20] Yes No No

only use network level features are said to be non-intrusive.

Some works on device type identification extract features from full communica-

tion sessions [Mei+17a; Mei+17b] or even over multiple sessions [Bez+18]. Moreover

no timeout is used, that is, if a session lasts for hours, one has to wait until the end

of the session to be able to determine the type of an IoT device. However, only

the first few packets exchanged at the beginning of a session might already contain

enough information to determine the type of a device. In other works on device type

determination, data is collected for a fixed time interval like 30 minutes [Mar+19],

1 hour [Siv+18] or even 24 hours [Le+19]. However, it is not sure if it is really

necessary to wait for such long fixed time intervals if the data collected within the

first few seconds already provide enough information to determine the type of a de-

vice. When the first few packets already contain enough information to determine

the type of an IoT device, waiting for the end of a session or a fixed time interval

introduce unnecessary latency. Works determining the state of an IoT device try to

minimize unnecessary latency as their purpose is to determine the state of a device

at measurement time and not with hours of delay.

Some works on device type determination are also limited because they focus on a

specific phase of a device life cycle or a specific packet type. Hence, a device type can

be identified only under some conditions. For example, in [Mie+17], the type of an

IoT device is determined at its setup phase. Their proposed method cannot be used

if we have missed the setup phase of a device or if we want to determine the type of

devices that are already connected to the network. The method presented in [Le+19]

exclusively relies on DNS queries data, hence we can only use the approach after we

have collected enough DNS queries data. Works on device state determination are

also subjected to this type of limitation as only network traffics that occur during a

state transition are of importance.

Works can also be separated based on their privacy-compliance level or intrusive-

ness. Obviously, works on device state determination are by essence not meant to be

42



privacy-compliant. Network-based device type determination methods can be cat-

egorized into two categories based on their intrusiveness: approaches that only use

network level features such as packet sizes or the number of bytes, and approaches

that also include application level features such as DNS queries or the entropy of the

payload. Methods looking at application level data cannot be used if the network

traffic is encrypted.

In Chapter 3 of this thesis, we propose an IoT device type recognition system

that is delay-free, phase-independent and non-intrusive.

2.3 IoT Network Intrusion Detection

Machine learning based IoT NIDSs can be categorized as being supervised or unsu-

pervised [BG15]. In supervised learning (also referred to as misuse detection), the

algorithm is provided with a labeled dataset and the attack classe(s) is/are learned

during the training phase, that is, data describing attacks are necessary. Conversely,

in unsupervised learning, which includes the special case of anomaly detection, mod-

els are trained using only data describing legitimate behaviors. Therefore, there is

no need for data labelling. During the training phase, an anomaly detection model

learns the legitimate behavior profile. During the testing phase, the model is applied

to new data to detect any deviation from the learnt legitimate behavior. Anomaly

detection models allow the detection of previously unseen attacks.

2.3.1 Supervised NIDS

R. Doshi et al. [DAF18] propose to leverage classification algorithms for DDoS

attack detection in consumer IoT networks. The detection pipeline is shown in

Figure 2.17. First, the network traffic is captured and processed to records the

source and destination IP addresses, source and destination ports, packet size and

timestamps of each network packet. Source IP addresses are then used to separate

packets by device. The stream of packets from each device is also divided into non-

overlapping time windows. Stateless features, such as the packet size, IAT and the

protocols used, as well as, stateful features, such as the total bandwidth and the total

number of different destination IP addresses, are extracted. For the experiment, 3

IoT devices were used to generate legitimate traffic. DDoS traffic was generated by

simulating TCP SYN flood, UDP flood and HTTP GET flood attacks. Five different

supervised machine learning algorithms were tested: kNN, SVM with linear kernel,

Decision Tree, Random Forest and FCNN. The authors report an F1 score between

0.927 and 0.999 depending on the algorithms.

A. A. Diro et al. [DC18] propose a distributed deep learning based attack de-

tection scheme for the IoT. The fog nodes (gateways, routers, hubs, etc.), located at

the edge of the distributed network are responsible for training and storing the attack

detection models. A coordinating master node ensures parameters sharing between

the models trained at each fog node. They propose to use a FCNN composed of 3

43



Figure 2.17: R. Doshi et al. [DAF18]: IoT DDoS detection pipeline

hidden layers (with a number of neurons per layer of 150, 120, 50 respectively) to

classify the network traffic into either normal or attack. The performance of their

method is not assessed on IoT network traffic but on the NSL-KDD dataset [BG15].

The model achieves an attack detection rate of 99% and a FPR of 0.85%.

K. Yang et al. [Yan+18] propose an active learning approach for wireless IoT

network intrusion detection. Active learning is a sub-field of human-in-the-loop ma-

chine learning that allows to learn from a limited amount of labeled data. In active

learning, the human expert does not label all the training instances which can be a

tedious task if not impossible. Instead, the human expert labels a training instance

upon the learning algorithm’s request. The most common strategy is called uncer-

tainty sampling. First, the model is trained on the labeled instances gathered so far

and is used to make prediction on the unlabeled data. The instances for which the

model is the most uncertain (for binary classification that corresponds to instances

for which the model outputs a class probability close to 0.5) are given to the expert

to be labeled. The process is iterated until it reaches a threshold of performance in

terms of precision and recall. During the experiments, the authors choose to use the

XGBoost [CG16] classification algorithm. The performance of the model is tested

on two datasets: the NSL-KDD dataset [BG15] and the AWID dataset [Kol+15] (a

dataset obtained from a real WiFi environment). Experiments show that the active

learning method (based on uncertainty sampling) reaches the required performance

much quicker than a random-select method (when the instances to be labeled by the

human expert are selected randomly). Also, the total number of labeled instances

required to achieve the same performance is reduced to almost one third.

E. Hodo et al. [Hod+16] present a preliminary work on the use of FCNNs for

DDoS detection in an IoT network. They use an FCNN that consists of only one

hidden layer. For experiments, an IoT network with 5 sensors is set up. Four of

these sensors act as clients and one node acts as a server relay node. The server node

receives information from the client nodes, perform data analytics and respond back

to the client nodes. This allows the sensor nodes to collectively adapt their behavior

and react to occurring events. The DDoS attack traffic was generated using a single

host sending UDP packets to the server node. The authors do not describe the

44



Figure 2.18: H. H. Pajouh et al. [Paj+16]: Two-tier classification module

features used to model the network traffic data. They claim an overall classification

accuracy of 99.4% with a 1.9% FPR.

H. H. Pajouh et al. [Paj+16] propose a supervised intrusion detection method

for IoT networks based on a two-layer dimension reduction module followed by a

two-tier classification module. First, PCA is performed as a first dimensionality

reduction step. This step maps the initial feature space to a lower dimensional

space while preserving as much variance as possible. Next, LDA (Linear Discrimi-

nant Analysis), a supervised dimensionality reduction technique, is used to further

reduce the dimensionality of the PCA-transformed data. The two-layer dimension-

ality reduction module is followed by a two-tier classification module described in

Figure 2.18. The first layer of the classification module is a Näıve Bayes classifier

that determine if a given instance is an attack or normal. If an instance is classified

as normal by the Näıve Bayes classifier, it is fed to a second classifier for a second

verification. The second classifier is a Certainty-Factor version of the k-NN classifier.

Its role is to further refine the results of the first classifier and determine if a given

instance is an attack or not. For experiments, the NSL-KDD dataset is used. The

proposed model achieve an attack detection rate of 84.86% and a FPR of 4.86%.

N. Moustafa et al. [MTC18] propose an ensemble intrusion detection technique

to detect botnet attacks against DNS, HTTP and MQTT protocols utilized in IoT

networks. Connection records are collected and stored in a database. Then, features

that describe statistics are computed over sequences of 100 recorded connections.

The features used are categorized into four categories: flow features, MQTT features,

DNS features, and HTTP features. Flow features include source-destination IP

addresses and ports, as well as, the protocol type and the last time of connection.

MQTT features consist of length of MQTT data, number of connections from the

same source and number of connections to the same destination. DNS features are

attributes, such as, the domain name, query type, length of the query and length of

the answer. The HTTP features consist of the HTTP request method (e.g. GET,

45



POST, HEAD), the URI request, the size of the content, and the URL length. The

model is trained as follows: first, correlation coefficient is applied to select important

features; then, an AdaBoost ensemble learning method is used for classification. For

the experiment, the UNSW-NB15 [MS15] and NIMS botnet [20d] datasets along

with simulated IoT sensors data are used. The IoT sensors network is simulated

with Raspberry Pis. Depending on the data type, the attack detection rate range

from 97% to 99%, with a FPR between 1% and 3%.

P. Shukla et al. [Shu17] propose a hybrid machine learning method that com-

bines unsupervised and supervised learning to detect wormhole attacks in RPL [Win+12]

based 6LoWPAN IoT networks. In a wormhole attack, a tunnel is created between

two compromised routers and is used to modify the routing behavior of the network.

First, K-means clustering is used to determine the safe zone of each router in the

network. Safes zones are then used to measure how far a router can communicate.

A decision tree classifier is trained to further refine the results obtained from cluster-

ing. The model is evaluated for different network topologies: random (nodes located

at random coordinates), mesh, ring and star. The model achieves a 71%-75% attack

detection rate. The FPR is not reported.

2.3.2 Unsupervised NIDS/ Anomaly Detection

Y. Meidan et al. [Mei+18] describe N-BaIoT, a network based anomaly detec-

tion method for the IoT. They propose to use stacked autoencoders (autoencoders

with multiple hidden layers) to detect IoT botnets. Whenever a packet arrives, a

behavioral snapshot of the hosts and protocols which communicated the packet is

extracted. It consists of 115 statistics computed over several time windows. The

statistics summarize all of the traffic that has (1) originated from the same IP ad-

dress, (2) originated from both the same source MAC and the same IP address, (3)

been sent between the source and destination IPs, and (4) been sent between the

source and destination TCP/UDP sockets. The statistics are essentially mean and

variance of the packet sizes and the IAT. The time windows are the most recent

100 ms, 500 ms, 1.5 s, 10 s, and 1 mn. Note that those statistics can be computed

only if the anomaly detector is deployed in the local network. One autoencoder is

trained per device. That is, during the testing phase, prior knowledge about what

device has generated the traffic is required. For the experimental evaluation, 9 IoT

devices are used. The malicious traffic is generated by executing Mirai and BASH-

LITE malware in an isolated lab environment. The autoencoders consist of a 4-layer

encoder and 4-layer decoders. The authors claim an attack detection rate of 100%

and a FPR of 0.0070 ± 0.01.

Y. Mirsky et al. [Mir+18] present Kitsune: a plug and play NIDS which can

learn to detect attacks on the local network in an unsupervised way and in an

efficient online manner. Kitsune’s core algorithm uses an ensemble of autoencoders

to collectively differentiate between normal and abnormal traffic patterns. Kitsune

46



Figure 2.19: Y. Mirsky et al. [Mir+18]: An illustration of Kitsune’s Architecture

is composed of 5 components: the Packet Capturer, the Packet Parser, the Feature

Extractor, the Feature Mapper and the Anomaly Detector (see Figure 2.19). The

Packet Capturer acquires each new packet and passes it to the Packet Parser. The

Packet Parser parses the packet and extracts meta-information, such as, the packet

size and arrival time. Kitsune reuses exactly the same 115 statistical features defined

by Y. Meidan et al. [Mei+18] to describe network traffic. The role of the Feature

Extractor is to compute those statistics from the meta-information provided by the

Packet Parser. Then the role of the Feature Mapper is to map the 115-dimensional

feature vector into k smaller sub-instances vector. In other terms, each of the k sub-

instances vector contains a subset of the elements of the original feature vector. Note

that the sum of the size of the k sub-instances vector is not necessarily equal to 115,

as the same element of the original feature vector can be mapped to multiple sub-

instances vector. The Anomaly Detector is composed of two layers: the Ensemble

Layer and the Output Layer. The Ensemble Layer consists of k autoencoders (one

for each of the k sub-instances vector). Each autoencoder of the Ensemble Layer

reports the reconstruction error to the Output Layer. The Output Layer is also an

autoencoder (the term ’Output Layer’ used by the authors is misleading as it does

not correspond to the output layer usually used to describe the output of a neural

network) and its role is to compute the final anomaly score. Kitsune is tested on two

real deployments of IP surveillance camera networks. Each network consists of four

cameras. Attacks, such as, SYN Flood, OS scan and ARP spoofing are performed

to generate malicious traffic. The authors report an AUC that range from 0.8 to 1,

depending on the attack type.

T. D. Nguyen et al. [Ngu+19] present Dı̈ot, an autonomous self-learning sys-

tem for detecting compromised IoT devices. Dı̈ot takes advantage of unsupervised

machine learning techniques. It learns anomaly detection models using unlabeled

crowdsourced data captured in client IoT networks. First, the type of the device

that generated the traffic needs to be identified. The authors propose to reuse

the device type identification techniques developed in [Mar+19]. Then, the normal

communication profile of each device is learned and it can subsequently be used to

detect anomalous deviations in communication patterns. Dı̈ot monitors sequences

of network packets. Each of the packet in the sequence are described using 7 fea-

tures: the direction, the local and remote ports, the packet length, the TCP flags,

47



Figure 2.20: T. Luo et al. [LN18]: Architecture of a WSN that uses autoencoders
for anomaly detection

the protocols and the IAT. The occurrence probability of each packet, given the k

preceding packets is calculated. To compute these occurrence probabilities, a Gated

Recurrent Unit (GRU) network is used. If the occurrence probability estimates of

a sufficient number of consecutive packets fall below a detection threshold, it is

deemed anomalous and an alarm is raised. The authors report that Dı̈ot achieves

an attack detection rate of 94.01% and a FPR of less than 1%.

T. Luo et al. [LN18] propose an autoencoder based anomaly detection method

for Wireless Sensor Network (WSN) data. The method is not based on network

traffic data but on the data collected by the sensors such as the temperatures. As

illustrated in Figure 2.20, the computation-intensive task of model training is han-

dled by the cloud. The trained model is then distributed to the sensors. Hence, the

anomaly detection can be performed at sensor level without the need for commu-

nicating with the other sensors or the cloud. For the experiments, 8 sensors that

monitor temperature and relative humidity are deployed at different locations of an

office building. Each sensor has a sensing frequency of one reading every 2 minutes,

which corresponds to 720 daily readings from a single sensor. Hence, the feature

vector is a 720-dimensionnal vector that describes the data collected by each sensor

on a daily basis. Anomalies are created by adding a Gaussian noise, with mean µ

and variance σ2, to the original data. The AUC is computed for different values of

µ and σ2. The AUC is greater than 0.8 most of the times. It is lower than 0.8 only

when |µ| < 0.07 and σ2 < 0.12. That is, when the Gaussian noise component is too

small to be noticeable by the anomaly detector.

2.3.3 Summary

Table 2.4 summarizes the different works on IoT network intrusion detection. It

presents the algorithms and features used in the different works.

As shown in Table 2.5, the proposed IoT NIDSs lack at least one of the following

capabilities: ability to detect new types of attack, possibility to place the NIDS

48



Table 2.4: Summary of works on intrusion detection in IoT networks

Reference Type Algorithms Features

R. Doshi et al. [DAF18] misuse detection
kNN, SVM with linear
kernel, Decision Tree,

Random Forest and FCNN

packet size, IAT, protocols used,
total bandwidth, number of

different destination IP

A. A. Diro et al. [DC18] misuse detection FCNN

NSL-KDD features: duration,
protocol, source/destination bytes,
number of failed login attempts,
number of operation performs as

root, number of file creation

K. Yang et al. [Yan+18] misuse detection XGBoost, Active Learning NSL-KDD features

E. Hodo et al. [Hod+16] misuse detection FCNN NA

H. H. Pajouh et al. [Paj+16] misuse detection
Näıve Bayes,

Certainty-Factor kNN
NSL-KDD features

N. Moustafa et al. [MTC18] misuse detection AdaBoost

source/destination IP addresses
and ports, protocol type, last time

of connection, length of MQTT
data, number of MQTT connections

from the same source and to the
same destination, DNS names and

query types, HTTP request method
(e.g. GET, POST, HEAD)

P. Shukla et al. [Shu17] misuse detection Decision Tree NA

Y. Meidan et al. [Mei+18] anomaly detection Vanilla Autoencoder
mean and variance of the packet
sizes and the IAT computed over

different time windows

Y. Mirsky et al. [Mir+18] anomaly detection
Ensemble of

Vanilla Autoencoder

mean and variance of the packet
sizes and the IAT computed over

different time windows

T. D. Nguyen et al. [Ngu+19] anomaly detection GRU network
local and remote ports, packet

length, TCP flags, protocols, IAT

T. Luo et al. [LN18] anomaly detection Vanilla Autoencoder
readings from sensors

(temperature, relative humidity)

outside the local network or the use of non-intrusive features.

A major limitation of misuse detection is that the trained model will not be able

to detect attacks unseen during the training phase. The need to label the data is

also another drawback of supervised learning. Indeed, labelling the data as being

legitimate or malicious by a human supervisor is a daunting task. On the contrary,

anomaly detection models do not require data labelling and allow the detection of

previously unseen attacks.

Some works are limited because the type of devices that generate the network

traffic needs to be known in order to redirect the traffic to the appropriate model

(the one trained for that specific device). The developed model must be placed

inside the local network because local information such as the MAC address of a

device or the local port number are needed to determine the device type but also to

derive the features. For example in [Mei+18], network traffic is aggregated using the

MAC address of a device. One anomaly detector per device is trained and during the

testing phase, the MAC address is used to determine what device is generating the

ongoing network traffic in order to redirect it to the appropriate anomaly detector.

In [Ngu+19], the local port number used by a device is used as a feature. In case

the local IoT network is connected to the Internet through a NAT (which is often

the case), information like MAC addresses or port used by the device are no longer

available after the NAT.

IoT NIDSs can be categorized into two categories depending on the level of in-

trusiveness of the features they use: NIDS that only uses network level features such

49



Table 2.5: Limitations of existing works on intrusion detection in IoT networks

Reference Anomaly detection

No need to know the type of the
device that is generating the

traffic/ Possibility to place the
IDS outside the local network

Non-intrusive

R. Doshi et al. [DAF18] No Yes Yes

A. A. Diro et al. [DC18] No Yes Yes

K. Yang et al. [Yan+18] No Yes Yes

E. Hodo et al. [Hod+16] No NA NA

H. H. Pajouh et al. [Paj+16] No Yes Yes

N. Moustafa et al. [MTC18] No No No

P. Shukla et al. [Shu17] No NA NA

Y. Meidan et al. [Mei+18] Yes No Yes

Y. Mirsky et al. [Mir+18] Yes No Yes

T. D. Nguyen et al. [Ngu+19] Yes No Yes

T. Luo et al. [LN18] Yes Yes No

as packets sizes or the number of bytes, and approaches that also include applica-

tion level features such payload content or DNS names. In Table 2.5, approaches

that use only network level features are said to be non-intrusive. Approaches using

application level features cannot be used if the network traffic is encrypted.

In Chapter 3 of this thesis, we propose an IoT NIDS that can detect novel attacks,

can be placed outside the local network and uses only network level features.

2.4 IoT Network Traffic Generation

Works on leveraging generative deep learning models to generate network traffic data

can be categorized into two types: network flow generation and individual network

packet generation.

A network flow is identified by its source IP address, destination IP address,

source port, destination port and transport layer protocol. Features generated to

characterize a flow are usually the duration, the total number of packets sent and

the total number of bytes sent. A bidirectional flow also includes features such as

the total number of packets received and the total number of bytes received. The

features used to describe a packet are the different fields of the network layer (e.g.,

IP) or the transport layer (e.g., TCP or UDP) headers. Approaches addressing flow

generation only generate flow-level features and do not attempt to characterize the

individual packets that constitute the flow. On the other hand, work focusing on the

generation of individual packets ignore the flow-level features and generated packets

are independent from each other.

2.4.1 Flow-level Network Traffic Generation

M. Rigaki et al. [RG18] propose to leverage the power of GAN to create a malware

that self-adapts its networking behavior to evade IPS. To this purpose, they train

a GAN to learn to generate network flows that look like they were generated by

the Facebook chat. The trained generator is then used by a malware to modify its

network traffic and to make it look legitimate and avoid being blocked by an IPS.

50



Figure 2.21: M. Rigaki et al. [RG18]: Network experiments setup. The GAN is
implemented independently and communicates with the malware through a web
service. The malware gets the parameters and modifies its traffic in real time. The
C2 channel should be maintained and should be operational. The IPS blocks all the
traffic that does not look like Facebook chat

Three features are generated: the total number of bytes in the flow, the duration of

the flow and the time between the current flow and the next one. Both the generator

and the discriminator of the GAN consist of one LSTM hidden layer. Once trained

on Facebook chat network flow data, the generator part of the GAN is used to

generate the three flow-level features. For the experiment, an open source remote

access Trojan called Flu [20b] is used. A C&C server is also deployed for Flu to

communicate with it. As illustrated in Figure 2.21, before any communication, Flu

interrogates the GAN through an HTTP API to get the flow-level features. The

features are then used by Flu to adapt its networking behavior. Stratosphere Linux

IPS (SLIPS) system [Gar15] is used to detect whether or not the communication

between Flu and the C&C server gets blocked. SLIPS uses Markov models to learn

the profiles (total bytes size, duration and inter-flow time) of the network flows

generated by a Facebook chat and by the Flu malware. A flow is blocked if it does

not match the Facebook chat profile or if it matches the malicious profile. The

obtained results show that, after 400 training epochs, the percentage of malicious

traffic that is not blocked reaches 63.42%.

M. Ring et al. [Rin+19] propose to generate flow-based network traffic using

GAN. They propose to generate legitimate network flows that can be used to evalu-

ate NIDSs. The flow-level features they attempt to generate are the following: date

first seen, duration of the flow, transport protocol, source/destination IP addresses,

source/destination ports, total bytes in the flow, total number of packets in the flow

and the TCP flags observed in the flow. They use GANs that process continuous

data only. Therefore, they propose 3 different approaches to transform categorical

features (IP addresses, ports, transport protocol, TCP flags) into continuous values.

51



The first method, referred to as numeric transformation, transforms the categorical

variables into a set of continuous variables. For example, each byte of an IP address

is converted to a value in the interval [0, 1]: 192.168.220.14 is transformed to four

continuous attributes: 192/255 = 0.7529, 168/255 = 0.6588, 220/255 = 0.8627 and

14/255 = 0.0549. The second method, referred to as binary transformation, trans-

forms each categorical attribute into a set of binary attributes. For example, each

byte of an IP address is mapped to its 8-bit binary representation: 192.168.220.14 is

transformed into a set of 32 binary attributes 11000000 10101000 11011100 00001110.

The third method, referred to as embedding transformation or IP2Vec, transforms

the original feature vector into an embedding vector in a continuous space, similarly

to the Word2Vec model used in Natural Language Processing [Mik+13]. First, all

the categorical features are one-hot encoded over their vocabulary size (for example

the vocabulary size of the source IP address feature is the total number of unique

source IP addresses present in the training dataset). For a given training instance,

the value of some features are removed and are considered to be missing. Then, an

FCNN with one hidden layer is trained to predict the missing values. The output

of the hidden layer is later used as an embedded representation (in a continuous

space) of the original feature vector. The original dataset is preprocessed using one

of the three described transformation methods. Then a WGAN-GP (Wasserstein

GAN with Gradient Penalty) [Gul+17b] is trained to learn to generate real looking

feature vectors. For the experiment, the CIDDS-001 dataset [VR18] is used. The

quality of the model is assessed by comparing the distributions of the generated ports

and IP addresses to the real ones. The best results are achieved when embedding

transformation is used to turn categorical attributes into continuous values.

Q. Yan et al. [Yan+19] propose to synthetize network flows that represent DoS

attacks that looks legitimate enough to fool an NIDS. To this purpose, a WGAN-

GP is trained on the KDD99Cup dataset [BG15]. The KDD99Cup dataset contains

network flows of legitimate and attack traffic, described by 41 features. Some of

these features are related to DoS attacks and hence cannot be modified. Otherwise,

the generated network traffic will lose its DoS capability. Those are the immutable

features and include the duration, the protocol or the TCP flags. The generator of

the WGAN-GP generates feature vector that correspond to legitimate traffic. Then,

a convertor (see Figure 2.22) is used to add DoS capability to the generated feature

vectors before feeding them to the discriminator. The convertor just replaces the

values of the immutable features so that the feature vector gains DoS capability. To

assess the evasion capability of the synthetized DoS traffic, a CNN based NIDS is

trained to detect DoS attacks using the same KDD99Cup dataset. It achieves an

attack detection rate on real DoS traffic of 97.3%. But when presented with the

synthetized DoS feature vectors, the attack detection rate drops to 47.6%. Hence,

a significant proportion of the synthetized DoS traffic is able to bypass the CNN

based NIDS.

J. Charlier et al. [Cha+19b] suggest to synthetize network flows that represent

52



Figure 2.22: Q. Yan et al. [Yan+19]: Overview of DoS-WGAN architecture

DDoS attacks in order to create malicious datasets that can be used to assess the

attack detection rate of commercial NIDSs. Hence, the synthetized DDoS traffic

must be as realistic as possible. Two types of DDoS attacks are synthetized: Smurf

and GoldenEye attacks. In a Smurf attack, the attacker sends a large number of

ICMP echo request packets using a victim’s spoofed source IP address. In a Golden-

Eye attack, HTTP requests are sent to a web server to open connections rendering

the server unable to process legitimate requests. The NSL-KDD [BG15] and the

CICIDS2017 [SLG18] datasets are used for experiment. The NSL-KDD dataset

contains network flows representing Smurf DDoS attacks described by 41 features.

The CICIDS2017 dataset contains network flows corresponding to GoldenEye at-

tacks and described with 80 different features. A different WGAN-GP is trained for

each of the datasets. A gradient boosting classifier is trained to distinguish between

the real and the synthetized feature vectors. The AUC of the ROC Curve of the

trained classifier is 0.75 (the closer the AUC is to 0.5 the better it is), highlighting

that the classifier is partly unable to distinguish between the real and synthetized

data.

D. Sun et al. [Sun+17] propose to generate DDoS attacks network traffics

that mimic flash crowds to evade NIDS. A flash crowd is an unexpected surge in

the number of legitimate visitors to a website. Network traffics are described by

5 flow-level statistical features: the total number of packets sent, the mean and

standard deviation of the size of packets sent, the mean and standard deviation

of the IAT between packets sent. To generate a feature vector, a Least Squares

GAN (LSGAN) [Mao+17] is used. LSGAN adopts the least square loss function

for the discriminator. For the experiment, CAIDA DDoS Attack 2007 dataset [20f]

provides the DDoS data and the World Cup 1998 dataset [98] is used for the flash

crowds data. The quality of the generated feature vectors is assessed by feeding

them to a Random Forest classifier trained to differentiate between DDoS and flash

53



crowds. The classifier achieves an accuracy of 99% for the real traffic data. The

accuracy drops to 55% when the classifier is presented with the generated DDoS

feature vectors, which is very close to random guessing.

2.4.2 Network Packets Generation

Z. Lin et al. [Lin+19] propose to leverage the capability of GANs for oblivious

network analysis (network analysis without any prior knowledge of the network

protocol used). Indeed, most black-box devices use proprietary network protocols

with unknown format. Two tasks are explored: 1) generating synthetic protocol

compliant messages given only a few number of messages coming from a black-box

device; and 2) generating attack inputs that can impair a black-box device that uses

an unknown network protocol. For the generation of protocol-compliant packets, the

authors first define a custom stateless network protocol. A packet from the custom

protocol has two types of field dependencies: intra-field dependencies (a field can

only take a certain number of valid candidate values) and inter-field dependencies

(a field is a function of one or more other fields). The custom protocol contains

two intra-field dependencies: a multiple of 4 and a printable ASCII character. It

also contains inter-field dependencies commonly found in network protocols, such

as a XOR operation of two other fields, a field that contains the length in bits of

another field or a cyclic redundancy check (CRC). A WGAN-GP is trained to learn

to generate packets that comply with the created custom protocol format. Note

that the GAN has no prior knowledge about the protocol format and hence generate

every single bit that compose a packet from scratch. After training, the generator

has successfully learnt most of the intra and inter field dependencies and is able

to generate protocol compliant packets. The only field that the generator fails to

generate properly is the CRC. The authors think this is because computing a CRC

requires repeated long division by a fixed generator polynomial that is unknown

to the GAN. For the second task of identifying input packets that trigger network

attacks, the authors consider the DNS protocol. They aim to train a GAN that

learns to generate packets that trigger DNS amplification attacks. A generated

malicious DNS packet is considered to be of interest if it triggers a response that is

at least 10 times the size of the request. A packet that triggers a successful attack

is referred to as a positive packet, the rest are negative packets. The main difficulty

is the scarcity of positive packets. To overcome this issue, the authors propose to

use Conditional GAN (CGAN) and a custom training process. The idea is that

since positive and negative samples are complementary, a CGAN can be trained to

jointly learn to generate both positive and negative packets. The CGAN takes a

binary condition (positive or negative) as input that can later be used to specify

to the generator the type of packet we want to generate. The authors also propose

a new training mechanism, as shown in Figure 2.23: packets are generated during

training with condition = positive, they are passed through the system to get their

actual label, and are added to the training data. For 5 fields of the DNS request,

54



Figure 2.23: Z. Lin et al. [Lin+19]: CGAN training mechanism

the CGAN is provided with candidate values to choose from. But the CGAN has no

prior knowledge about 12 other fields of the DNS request and all possible bits are

explored. Hence, this is not really a complete black-box setting. Once trained, the

generator is used to generate 100,000 packets with the condition = positive. 778 out

of these 100,000 packets (0.78%) are actually positive and trigger DNS amplification

attack.

A. Cheng [Che19] presents PAC-GAN, a CNN based GAN trained to generate

network packets. A network packet is converted to an image-like representation.

The value of each byte of a network packet is mapped to a pixel. However, as the

primary use of CNN based GANs is for image generation, they might be prone to

certain types of errors when dealing with raw packet data. First, when generating

images, minor variations of the pixel values is not perceptible with the naked eye

and hence does not degrade image quality. But for network packet generation, a

slight variation of a single byte value might result in an invalid packet. Second, in an

image, pixels located close to each other might share very similar values and CNNs

exploit this specific property of an image. Hence, it is suitable to create clusters of

similar byte values in the image-like representation of a network packet. With those

characteristics of CNN based GANs in mind, the author proposes a specific encoding

scheme to map the byte values of a network packet to the pixels of a grayscale image

as shown in Figure 2.24. In the first step, the hexadecimal representation of a byte

is split into two digits. Each hexadecimal digit is then assigned to a subrange. For

example, the byte value 0x1F is first split into hexadecimal digits 1 and F. The digit

1 is assigned to the subrange 0x10 to 0x1F and “F” is assigned to the subrange 0xF0

to 0xFF. The midpoints of the subranges, 0x18 and 0xF8, are used as the values of

the pixel intensities. This step makes the model robust to small variations of a pixel

value, as any pixel value that lies in the subrange will decode to the same byte value.

In the second step, the converted byte values are duplicated across the rows and the

columns. That is, each converted byte value is mapped to a 2× 2 sub-matrix. This

allows the CNN to effectively exploit clusters of similar pixels. For experiments,

PAC-GAN is trained to generate single packets representing ICMP Ping requests,

DNS queries and HTTP GET requests. All byte fields of a packet are created by

the GAN, except for the checksums. A packet is considered to be a success if when

it has been sent to the Internet a valid network response is received. PAC-GAN

55



Figure 2.24: A. Cheng [Che19]: Conversion and one-to-multi mapping process

achieves the following success rates: 76%-90% for Ping requests, 95%-99% for DNS

queries and 76%-79% for HTTP GET requests.

2.4.3 Summary

Table 2.6 summarizes the different works on generative deep learning based network

traffic generation. For each work, it presents the types of traffic generated, as well

as the algorithms and features used.

As shown in Table 2.7, existing works are limited in that they either focus on

flow-level or packet-level traffic generation, but not a combination of both. The

resulting traffic is incomplete since a flow and the packets composing it are closely

linked. For example, the number of bytes exchanged for the duration of a flow

usually equals the sum of the sizes of each individual packet that composes the flow.

Moreover, none of the existing works focuses on IoT network traffic generation. The

data used in all works come from general-purpose networks composed of devices

such as PCs, laptops or smartphones.

The limitation of existing work on flow-level features generation is that they

do not attempt to characterize individual packets that compose a flow. They do

not consider more fine-grained features, such as the size of the individual packets

composing a flow. For example, if the generated flow-level feature is the total number

of bytes per flow, then any combination of packet sizes that adds up to that value

are considered to be valid. Traffic generation based only on flow-level features is not

realistic enough and will fail to fool network monitoring tools that perform packet-

level analysis. Works focusing on packet generation treat packets individually and

independently from each other, failing to capture the sequential nature of network

communications. Traffic generation based solely on packet-level features will fail to

fool network monitoring tools that perform flow-level analysis.

In Chapter 4 of this thesis, we propose a network traffic data generator for the

IoT that generates both packet-level and flow-level features at the same time.

56



Table 2.6: Summary of works on network traffic generation using generative deep
learning models

Reference Level Traffic Type Algorithms Features

M. Rigaki et al. [RG18] Flow Malicious LSTM-GAN
total number of bytes in the

flow, duration of the flow
and the inter-flow time

M. Ring et al. [Rin+19] Flow Legitimate WGAN-GP

date first seen, duration of
the flow, transport protocol,

source/destination IP
addresses and ports, total

bytes in the flow, total
number of packets in the
flow and the TCP flags

observed in the flow

Q. Yan et al. [Yan+19] Flow DDoS WGAN-GP

NSL-KDD features: duration,
protocol, source/destination

bytes, number of failed
login attempts, number of

operation performs as root,
number of file creation

J. Charlier et al. [Cha+19b] Flow DDoS WGAN-GP NSL-KDD features

D. Sun et al. [Sun+17] Flow DDoS LSGAN

total number of packets sent,
mean and standard deviation

of the size of packets sent,
mean and standard deviation
of the IAT between packets

sent

Z. Lin et al. [Lin+19] Packet
Legitimate and

DNS amplification
attack

WGAN-GP
CGAN

different fields of a packet
using a custom protocol,
different fields of a DNS

request packet

A. Cheng [Che19] Packet
Legitimate (ICMP
Ping, DNS query
and HTTP GET)

CNN-GAN
every single byte composing

a network packet

Table 2.7: Limitations of works on network traffic generation using generative deep
learning models

Reference Flow-level Packet-level IoT dataset

M. Rigaki et al. [RG18] Yes No No

M. Ring et al. [Rin+19] Yes No No

Q. Yan et al. [Yan+19] Yes No No

J. Charlier et al. [Cha+19b] Yes No No

D. Sun et al. [Sun+17] Yes No No

Z. Lin et al. [Lin+19] No Yes No

A. Cheng [Che19] No Yes No

57



3

IoT Network Traffic Monitoring

”Education is the passport to the future, for tomorrow belongs to those who

prepare for it today”

– Malcolm X

The study of the state of the art pointed out the limitations of existing works

in machine learning based IoT network monitoring systems. Works on IoT device

identification fail to be delay-free, phase-independent or non-intrusive. While works

on IoT NIDSs are limited either because they can detect only certain types of at-

tacks or because they require to know the type of the device that is generating the

network traffic (which might not be possible if the NIDS is deployed outside the

local network).

In this chapter, we focus on developing machine learning based IoT network

monitoring tools that overcome the limitations of existing works. The following two

types of monitoring applications are explored:

• IoT device type recognition system (Section 3.1): its purpose is to determine

the type of a connected device by analyzing its network traffic. The developed

system must be delay-free, phase-independent and non-intrusive. First, a set

of features that respect the aforementioned constraints are defined to describe

bidirectional flows. Then, an experimental smart home network composed of

four devices is built to produce real IoT network traffic data. Data visualiza-

tion using t-SNE is performed to get an insight of the collected bidirectional

flows, and to assess the effectiveness of our selected set of features in differen-

tiating the different IoT devices. Next, different machine learning algorithms

are trained to classify bidirectional flows based on the IoT device type they

belong to.

58



• IoT NIDS (Section 3.2): its purpose is to detect malicious activities. It must

be able to detect new types of attack and not require prior knowledge about

the type of the device that is generating the network traffic. To this purpose, a

set of sparse autoencoders is trained. Due to the great diversity of IoT devices

(camera, smart bulb, motion sensor, etc), the network communications behav-

ior can vary greatly from one device to another. Hence, one separate sparse

autoencoder is trained for each IoT device type. During the testing phase, we

will explore two different possibilities: either it is possible to determine the

type of the device that is generating the network traffic (and redirect it to

the appropriate autoencoder) or it is not (we have to feed it to all the trained

autoencoders).

3.1 IoT Device Recognition through Network Traffic

Classification

3.1.1 Overview

Determining the type of device connected to the network will help to better enforce

network security. For example, once it is determined that a device is a security

camera from a specific manufacturer, appropriate filtering rules can be specified so

that the camera will not be allowed to do anything else than what it is expected to

do. Device type recognition can also be used to block access to the network to black-

listed devices. IoT device type recognition can also be used for malicious purposes.

For example, an attacker can discover vulnerable IoT devices by performing passive

network traffic analysis. Given the wireless nature of IoT networks, an attacker can

easily capture the network traffic to perform further analysis with the purpose of

recognizing the type of connected devices. Device fingerprinting through network

traffic analysis can also help malware to identify vulnerable devices passively. In-

stead of actively scanning for a device to infect, passive vulnerable device discovery

will reduce the network signature of the malware making its detection even more

difficult for intrusion detection systems. Device type recognition also raises privacy

concerns. Once the type of a device has been determined, further analysis of the

traffic can allow an intruder to determine the current state of the device. For exam-

ple, in [Aca+18], multi-class classification is performed to associate network traces

of a device to a corresponding device state (see Section 2.2). In the case of a smart

home, such information can help to infer what is happening inside the house, leading

to potential privacy breach.

Given the huge diversity of IoT devices, it is difficult to come up with a specific

network signature for each device type. Therefore, machine learning algorithms are

better suited to learn patterns in the network traffic and differentiate one device type

from another. The state of the art has highlighted the limitations of existing works

on machine learning based IoT network traffic classification. Some of the works

extract features from the full communication without using any timeout, requiring

59



Figure 3.1: Network traffic classification pipeline

the user to wait for a long period of time before being able to determine the type

of a device [Mei+17a; Mei+17b]. Other works are limited because they focus on

specific phase of the life cycle of a device or specific network packets type. For

example, in [Mie+17], the type of an IoT device is determined at its setup phase.

Hence, the proposed method cannot be used if we have missed the setup phase

or if we want to determine the type of devices that are already connected to the

network. A number of works are also limited because they use features extracted

from the application layer [Siv+18], requiring the network traffic not to be encrypted.

Looking at application level information also rises privacy concerns.

We propose to perform IoT device type recognition through network traffic clas-

sification. To overcome the limitations of existing works, we suggest to develop a

method that is:

• delay-free: does not require to wait for an undetermined amount of time.

• phase-independent : can be used at any moment of a device’s life cycle (pro-

vided that the device is generating network traffic).

• non-intrusive/privacy-preserving : does not require to look at application level

data. Network traffic can be encrypted.

First, a set of features that respect the constraints described above is determined.

Visualization techniques allow us to determine if our selected set of features is effec-

tive enough to differentiate between the different IoT device types. By IoT device

type, we refer to a device model from a specific manufacturer. Then, machine learn-

ing based network traffic classifiers are trained to determine the type of IoT devices

connected to a network. Figure 4.2 shows the workflow of the developed model.

Raw network traffic is first preprocessed to extract useful features. The extracted

features are then fed to a classifier to determine the type of the IoT device that

generated the network traffic.

3.1.2 Features Description

The purpose of the described model is to provide a means to recognize devices

based only on their networking behavior. Therefore, we need to define features that

will appropriately describe the network activity. As described in Section 2.2, most

existing works on IoT network traffic classification use features extracted from full

TCP sessions. The issue with this method is that we have to wait until the end of

the session in order to be able to extract all the features. For some IoT devices such

60



as the Nest security camera, a single TCP session can last for days. Other works

focus only on the network activity during the setup phase of a device. However,

this is of no help if we have missed the setup phase of the device, which is the

case if we are sniffing a network in which all devices are already set up. Another

constraint is that the features have to be extractable even if the network traffic is

encrypted. Moreover, we want to avoid looking at application level information for

privacy concerns. Hence, the features must be extractable from link, network or

transport layer of the OSI model.

We propose to work with bidirectional flows identified by their source and des-

tination IP addresses and ports. In the case of long TCP connections, we do not

capture the whole session. Instead, a timeout is used to split long connections into

several bidirectional flows. Each bidirectional flow is described by a feature vector

composed of the following:

• The sizes of the first N packets sent

• The sizes of the first N packets received

• The N − 1 packet inter-arrival times between the first N packets sent

• The N − 1 packet inter-arrival times between the first N packets received

Packets sent and received are from the perspective of the IoT device we want to

identify (usually internal to the network of the monitoring gateway). The sizes of

the packets and the inter-arrival times have already proven their effectiveness in non-

IoT works, especially works on application identification [Qaz+13][Lin+16]. Since all

feature vectors must have the same size, if a bidirectional flow contains less than N

packets, the remaining fields of the vector are set to zero. The more devices we have

to classify the greater N has to be so that the classifier will have enough information

to accurately differentiate the bidirectional flows generated by the different devices.

On the other hand, N has to be small enough to avoid performance related issues.

Unless specified otherwise, the variable N is set to 10 for the rest of this Section.

That is, the total number of features is equal to 38. In Section 3.1.5, we will test

other values of N to examine the impact of the variable N on the overall accuracy of

a classifier. A timeout of 600 seconds is used to split long connections into multiple

bidirectional flows.

3.1.3 Smart Home Dataset Description

Because of the lack of publicly available IoT network traffic data, we propose to build

a small experimental smart home network to generate our own network traffic. It

consists of four IoT devices: a Nest security camera, a D-Link motion sensor, a

TP-Link smart bulb and a TP-Link smart plug. The four devices are managed

using a smartphone. Note that none of the devices send the collected data directly

to the smartphone. Instead, the data is sent to a cloud service provided by the

vendors. The collected data is then transmitted from the cloud services to the

61



Figure 3.2: Experimental smart home network

Table 3.1: Functionalities provided by each device and explored during the network
traffic collection phase

Device Used functionalities

Nest security camera

switching on/off the camera, watching live the recorded video and audio
data, turning on/off the microphone, turning on/off the alert mode (when

the alert mode is turned on, a notification is sent to the mobile app
whenever an unusual sound or motion is detected), sending audio

messages (the camera comes with an integrated speaker that can be used
to send audio messages), changing the quality of the video recording.

TP-Link smart bulb
switching on/off the bulb, changing the brightness and the color of

the light emitted by the bulb

TP-Link smart plug
switching on/off the device remotely via the mobile application

but also physically via the button on the device

D-Link motion sensor switching on/off the sensor, setting its sensitivity.

application running on the smartphone. Similarly, when a command is sent from

the smartphone to a device, it first goes to the cloud service. From there, it is

redirected to the device. During the network traffic collection period, we actively

interacted with the devices doing our best to explore all the functionalities provided

by each device. Exploration of the maximum number of functionalities is important

because, depending on the task performed by a device, its networking behavior

might be different. For experimental reproducibility, we list the different ways we

interacted with each device in Table 3.1.

All the devices connect to the Internet through a wireless access point. The

network traffic is collected thanks to a Raspberry Pi placed between the wireless

access point and the Internet as shown in Figure 3.2. The raw network traffic is

then preprocessed as follows:

1. the MAC addresses of the devices are used to split the network traffic into

different pcap files corresponding to different IoT devices. This will facilitate

the labeling of the dataset.

2. the bidirectional flows along with their timestamp and protocol are extracted

62



Table 3.2: Total number of bidirectional flows per device

train test

D-Link Motion Sensor 867 207

Nest Security Camera 839 216

TP-Link Smart Bulb 821 219

TP-Link Smart Plug 695 163

Total 3222 805

from the different pcap files. Only TCP flows are kept as all of the devices use

HTTP or HTTPS for communications.

3. the bidirectional flows of the different IoT devices are merged to form a single

dataset. The timestamp is used to reorder the flows.

Network traffic has been collected for 7 days. Resulting to a dataset containing a

total of 4027 bidirectional flows. The training set consists of the first 3222 collected

bidirectional flows (80% of the dataset), while the test set consists of the remaining

805 bidirectional flows (20% of the dataset). Table 3.2 shows the number of flows

for each device in the training and test sets.

3.1.4 Experimental Results - Network Traffic Visualization

Data visualization is important to get an insight of our 38-dimensional network

traffic data and to assess the discriminative power of our model. We want to know if

the features we have selected to describe the networking behavior are discriminative

enough to differentiate the network traffic produced by the different IoT devices.

Although, dimensionality reduction results in information loss, it still gives an idea

of the general structure of the dataset.

We present the results of data visualization using t-Distributed Stochastic Neigh-

bor Embedding (t-SNE) [MH08] which is a non-linear dimensionality reduction tech-

nique. t-SNE has no knowledge of the label of the input data. It is an unsupervised

learning algorithm. t-SNE outperforms many other non-parametric data visualiza-

tion and exploration techniques. Another commonly used dimensionality reduction

technique is Principal Component Analysis (PCA). The limitation of PCA is that,

like any other linear dimensionality reduction methods, it only focuses on placing

dissimilar data points far apart in the lower dimension. It does not attempt to place

similar data points close together. Differently, t-SNE attempts to represent similar

data points close to each other while preserving the global structure of the dataset.

Therefore, t-SNE is a much better option for visualization.

The obtained visual representation of the data is shown in Figure 3.3. The data

points form visual clusters corresponding to the network traffic generated by different

IoT devices. Most of the data points corresponding to the same IoT device lie close

to each other whereas data points from different IoT devices lie far apart. The

obtained representation indicates that the features selected to describe the network

63



Figure 3.3: Dataset visualization using t-SNE

traffic are discriminative enough to distinguish between the different IoT devices

present in our dataset.

3.1.5 Experimental Results - Classification

For network traffic data classification, six different classification algorithms are

tested: Random Forest, Decision Tree, Support Vector Machines (with radial basis

function kernel), k-Nearest Neighbors, Artificial Neural Network (ANN) and Gaus-

sian Näıve Bayes.

A Decision Tree is a tree-like structure in which each internal node represents a

”test” on the value of a feature (e.g. is the size of the 3rd packet sent greater than

60 ? ), each branch represents the result of the test (yes or no), and each leaf node

represents a class label. Hence, the paths from root to a leaf node represent a series

of classification rules. Decision Trees tend to overfit the training set. To correct

the tendency of a single Decision Tree to overfit, Random Forest classifiers average

multiple Decision Trees, each trained on different random parts of the training set.

An SVM classifier maps instances to points in a space where instances from separate

categories can be divided by a ”gap” (or margin) as wide as possible. With k-NN

algorithm, the class of a new instance is the class that is the most common among

its k nearest neighbors in the training set. Because k-NN require to store the whole

training set, it requires high memory, is computationally expensive and can be very

slow if the training set is large. Näıve Bayes are simple probabilistic classifiers with

strong (näıve) independence assumptions between the features. The ANN used is a

fully connected feedforward neural network consisting of two hidden layers with 10

64



Table 3.3: Best hyperparameter values for the different classifiers

RF maximum depth: 10, number of estimators: 10

DT maximum depth: 50

SVM C: 1000, gamma: 0.001

KNN number of neighbors: 5

ANN learning rate: 0.01, number of epochs: 40 (early stopping)

GNB None

Table 3.4: Overall performance on the test set of the different classifiers

accuracy
micro-av.
precision

micro-av.
recall

micro-av.
F1 score

RF .999 .999 .999 .999

DT .995 .995 .995 .995

SVM .993 .993 .993 .993

KNN .989 .989 .989 .989

ANN .986 .986 .986 .986

GNB .919 .919 .919 .919

neurons each and using a 0.5 dropout rate (more details on ANNs can be found in

Section 2.1).

Most of the tested algorithms have hyperparameters that need to be appropri-

ately tuned in order to avoid underfitting or overfitting. During the training phase,

a validation set consisting of 25% of the training set is used to fine tune the hyper-

parameters. Once the best parameters have been found, the classifier is retrained

on the whole training set. Table 3.3 shows the obtained best hyperparameter values

for each classifier.

The performance of the different algorithms are measured on the test set. The

metrics used are the accuracy, the precision, the recall and the F1 score. To assess

the overall precision, recall and F1 score, micro-averaging is used (see Section 2.1.3

for more details about the metrics used and micro-averaging).

The precision, recall and F1 score for each device are also calculated individually

as shown in Tables 3.5, 3.6 and 3.7. This is done by simply considering the problem

as if it was a binary classification problem, with the device we are calculating the

performance for, corresponding to the positive class.

Table 3.5: Precision on the test set of the different classifiers and for specific devices

sensor camera bulb plug

RF 1. 1. .995 1.

DT .986 1. .995 1.

SVM 1. .977 .995 1.

KNN 1. .977 .986 .994

ANN .986 .986 .978 1.

GNB 1. .771 1. .993

Gaussian Naive Bayes is the algorithm that performs the worst with an overall

65



Table 3.6: Recall on the test set of the different classifiers and for specific devices

sensor camera bulb plug

RF 1. 1. 1. .994

DT 1. .991 .995 .994

SVM .995 1. 1. .969

KNN .990 1. .986 .975

ANN .995 .986 1. .957

GNB .971 1. .785 .926

Table 3.7: F1 score on the test set of the different classifiers and for specific devices

sensor camera bulb plug

RF 1. 1. .997 .997

DT .993 .995 .995 .997

SVM .997 .988 .997 .984

KNN .995 .988 .986 .984

ANN .990 .986 .989 .978

GNB .985 .871 .880 .958

accuracy of 91.9%. All other algorithms achieve higher performance with an overall

accuracy on the test set ranging from 98.6% to 99.9%. The best performance is

achieved by the Random Forest classifier with equally high overall accuracy, precision

and recall. Despite the relative small size of our dataset, ANN achieves an overall

accuracy of 98.9%. The performance of the ANN can be improved by collecting more

network traffic data to increase the size of the dataset. These positive experimental

results indicate that it is possible to recognize IoT devices with high accuracy by

passively analyzing network traffic characteristics such as the size of the first packets

sent and received along with the inter-arrival times between those packets.

To analyze the impact of the variable N (the number of packets sent and received

that are taken into consideration by a classifier) on the overall accuracy, we only

consider the Random Forest classifier as it is the classifier that achieved the best

performance. We train multiple Random Forest classifiers for different values of N ,

ranging from 2 to 10, to find out the optimal value of N . Figure 3.4 shows the

overall accuracy achieved by the different trained classifiers. The overall accuracy

increases as the value of N goes up. Surprisingly, when N is set to a value as small

as 2 the classifier still achieves a high accuracy of 98.9%. Such a high accuracy

is reached even with a small value of N because our experimental network is very

small and consists of only four different devices. Therefore, the size of the first two

packets sent and received and the inter-arrival times, provide enough information to

the classifier to accurately differentiate between the different IoT devices. Indeed,

the greater the number of different devices connected to the network is, the more

packets the classifier has to consider in order to accurately differentiate the flows

corresponding to the different devices. For our experimental network, the accuracy

reaches the maximum value of 99.9% for N equal to 6 and higher. Hence, if we

take time and resource efficiency into consideration in the case of our network, the

66



Figure 3.4: Overall accuracy achieved by Random Forest classifier for different values
of N

optimal value of N for the Random Forest classifier is 6.

3.1.6 Discussion

One limitation of our work is the small number of IoT devices used. The experi-

mental smart home network consists of only four different devices. The classifiers

should be trained and tested on larger IoT networks containing a wide variety of

devices. However, as the number of different devices connected to the network in-

creases, more resources will be required to train the classifiers. With thousands of

different types of devices available in the market, it can become difficult to train

and maintain up to date a single classifier. If a new device has to be incorporated

to the dataset or if a system update changes the networking behavior of a single

device, the classifier should be retrained on the whole dataset. One solution is to

train one classifier per device type as in [Mie+17]. However, in that case, all the

different classifiers (one for each device type present in the network) have to be run

in parallel, increasing the resource used during the operational use of the model. An

intermediate solution is to train classifiers for groups of devices that share similar

behaviors.

The fact that our experimental network is composed exclusively of IoT devices

is another limitation of our work. In a general-purpose network, most activity will

be generated by smartphones or laptops. Given the wide variety of tasks performed

by a laptop, it is completely possible that some flows it generates share similar

characteristics to the ones generated by a security camera and hence end up being

classified as being generated by a security camera. However, the proposed approach

can be easily adapted to general-purpose networks in which smartphones or laptops

are also connected by adding an extra non-IoT class. During training, the classifier

67



will also be fed with network traffic data generated by non-IoT devices. Then,

during testing, majority voting on a sequence of classified flows, similarly to what is

proposed in [Mei+17a], can be used to determine the type of a device. For example,

if the following sequence is obtained (camera, non-IoT, camera, non-IoT, non-IoT)

then the device is considered as not being an IoT device.

3.1.7 Summary

In this Section, we proposed a machine learning based IoT device type recognition

system that is delay-free, phase-independent and non-intrusive. Bidirectional flows,

extracted from the raw network traffic, were described using features such as the size

of the first N packets sent and received and the inter-arrival times between packets.

Data visualization using t-SNE pointed out the effectiveness of our selected set of

features in distinguishing between the bidirectional flows produced by the different

IoT devices. Different machine learning algorithms were trained to classify the

bidirectional flows based on the IoT device they belong to. An overall accuracy of

99.9% has been achieved by the Random Forest classifier.

3.2 IoT Network Anomaly Detection

3.2.1 Overview

Once the type of a device is known, the next step is to monitor its networking

behavior to detect any malicious activities. The state of the art pointed out the

limitations of existing works on IoT NIDSs. Some proposed approaches based on

supervised machine learning algorithms are only able to detect certain types of mali-

cious activities and do not allow the detection of previously unseen attacks [DAF18;

DC18]. Other works require the type of device that is generating the network traf-

fic to be known in order to redirect the traffic to the appropriate model (the one

trained for that specific device) [Ngu+19; Mei+18]. In some cases it is not possible

to know what device generates the network traffic. This is the case when the IoT

network connects to the Internet through a NAT (Network Address Translator) and

the NIDS is located outside the local network.

To overcome the limitations of existing works, we suggest to develop an intrusion

detection method which is:

• capable to detect novel attack types;

• device-agnostic: i.e, it does not require to know the type of device that gener-

ated the network traffic. Hence, it can be placed outside the local network;

• non-intrusive/privacy-preserving : i.e., it does not require to look at appli-

cation level data. Network traffic can then be encrypted without affecting

analysis;

• delay-free: does not require to wait for an undetermined amount of time.

68



In this section, we develop an IoT NIDS based on unsupervised learning, specif-

ically anomaly detection algorithms. This allow our model to detect new types of

attacks. We also explore two different situations, depending on whether or not it is

possible to know what device is generating the network traffic. To this purpose, we

propose to detect anomalous communications in IoT networks using a set of sparse

autoencoders. Autoencoders are unsupervised neural networks that can be used for

anomaly detection thereby allowing the detection of new types of attacks. First,

network communication data are preprocessed to extract useful features. The pre-

processing step also includes features normalization. The normalized data is then

fed to multiple sparse autoencoders. As an IoT network is composed of very different

IoT device types (a device type is device model from a specific manufacturer), we

train a distinct sparse autoencoder for each IoT device type present in the network.

The autoencoder learns the legitimate communication profile of a given device type.

During the testing phase (or actual deployment phase), the trained sparse autoen-

coders are used to detect any deviation from the learnt legitimate profiles in two

different settings: either it is possible to know the type of the device producing the

ongoing network traffic or it is not.

3.2.2 Features Description

The features used to describe the network traffic must be application agnostic.

Moreover, the features must be extractable even if the application level data are

encrypted. By removing the need to see the content of network packets, our solu-

tion will be less intrusive than other existing solutions (see Section 2.3). For our

model to be delay-free, computing the features should not require to wait for an

undetermined amount of time. To this purpose, timeout value is used.

Similarly to the work on IoT network traffic classification (Section 3.1), network

traffic data are preprocessed in order to extract bidirectional TCP flows identified

by their source and destination IP addresses and ports. The features describing

the bidirectional TCP flows are statistics on the size of the first N packets sent

and received, along with statistics on the corresponding inter-arrival times. The

features are described in Table 3.8. Most of the selected statistics (mean, median,

standard deviation, etc.) have proven to be effective in other works on anomaly

detection [Mei+18] and application identification [Qaz+13; Kum+14]. A timeout

is used to split long TCP connections into multiple bidirectional flows and avoid

waiting indefinitely.

Count stands for the actual number of packets sent or received while waiting

for the first N packets. For example, if the total number of packets sent for the

duration of the timeout is equal to m so that m is lower than N , the corresponding

value of count is equal to m. Otherwise, it is equal to N . For the inter-arrival times

to exist, N should be equal or greater than 2. If a communication contains only one

packet sent or received, the statistics that cannot be calculated, such as, the mean

and standard deviation of the inter-arrival times between packets, are all set to 0.

69



Table 3.8: Features used to describe bidirectional TCP flows

Features

Mean, Median, Min, Max, Standard deviation and Count
of the size of the first N packets sent

Mean, Median, Min, Max, Standard deviation and Count
of the size of the first N packets received

Mean and Standard deviation
of the IAT between the first N packets sent

Mean and Standard deviation
of the IAT between the first N packets received

Note that contrary to the work on IoT network traffic classification, we do not

use the raw values of the first N packet sizes and the inter-arrival times. Instead,

we compute statistics over the sizes of the first N packets and the inter-arrival

times. Computing statistics provide us with smoother values that are more robust

to small variations of the underlying raw values. Robustness to small variation

of the raw values can help to significantly reduce the number of false positive in

anomaly detection based algorithms. For example, if, for any reason, the size of

a single packet of a legitimate communication is unexpectedly large or small, the

computation of statistics over multiple packet sizes will attenuate the impact of that

single packet size.

Our study focuses only on TCP protocols as all the devices used for experiments

use HTTP/HTTPS for communications. This also makes sense as most of the

network communications generated by IoT malware use TCP [Sym20]. However,

the proposed method can be easily extended to UDP communications.

3.2.3 Sparse Autoencoder for Anomaly Detection

To be able to detect new types of attacks, we will use unsupervised learning algo-

rithms that allow to perform anomaly detection. More precisely, autoencoders that

have proven to be successful in other network intrusion detection works [Mei+18;

Mir+18]. In this section, we first define what a sparse autoencoder is, with specific

mathematical notations. We also introduce the concept of reconstruction error and

how it can be used to perform anomaly detection.

Sparse Autoencoder Training

As explained in Section 2.1.4, autoencoders are unsupervised artificial neural net-

works that learn to copy their inputs to their outputs under some constraints. The

constraints are added at the hidden layer. They force the autoencoder to learn an

efficient representation of the input data. Sparsity is such constraint that can be

used to force the autoencoder to learn an efficient representation of the input data.

In sparse autoencoders [Ng+11], the number of neurons in the hidden layer is usu-

ally greater than the number of inputs as shown in Figure 3.5. Sparsity is added

by forcing the autoencoder to reduce the number of active neurons in the hidden

70



Figure 3.5: Sparse Autoencoder

layer. A neuron is considered to be active if its output is close to 1 and inactive if

its output is close to 0. For example, one can constrain the autoencoder to have on

average 1% of significantly active neurons in the hidden layer. To do so, first, the

average activation of each neuron in the hidden layer is computed. Then neurons

that have on average an activation greater than the targeted activation are penalized

by adding a sparsity loss term to the cost function.

Let n be the total number of features of our input vector. Given an input

vector x = (x1, x2, . . . , xn), a neural network can be viewed as a complex non linear

hypothesis function hW,b(x) that can be trained to fit a specific dataset. In the case

of an autoencoder, we want the hypothesis function to output the input under some

constraints hW,b(x) ≈ x. Although an autoencoder can have multiple layers, for our

study, we will consider an autoencoder with one hidden layer. Let layers 1, 2 and 3

be respectively the input, the hidden and the output layers of our autoencoder. Let

a = (a1, a2, . . . , aH) be the vector representing the activation units of the hidden

layer where H is the size of the hidden layer. Our autoencoder has parameters

(W, b) = (W 1, b1,W 2, b2), where W l and bl are respectively the matrix of parameters

(or weights) and the bias vector associated with the connections between the units

of layer l and the units of layer l + 1. For a given input vector x, the output of the

hypothesis function hW,b(x) is computed as follows:

• First, the values of each activation unit of the hidden layer are calculated using

the following formula:

ai = f(
∑n

j=1W
1
ijxj + b1i )

or more compactly

a = f(W 1x+ b1)

71



where f is the exponential linear unit (ELU) function.

• Similarly, the output of the hypothesis function is given by:

hW,b(x) = W 2a+ b2

For an autoencoder, we want to have hW,b(x) ≈ x. To this purpose, a cost

function J(W, b) is defined as follows:

J(W, b) = 1
m

∑m
i=1(

1
2

∥∥hW,b(x
(i))− x(i)

∥∥2)
where m is the number of training examples in the dataset and x(i) is the ith training

example. The purpose of the training phase is to find out values of W and b that

minimize the cost function. In the case of a sparse autoencoder, we need to add an

extra sparsity loss term to the cost function. Finally, we end up with the following

cost function:

JSPARSE(W, b) = J(W, b) + β
∑H

j=1KL(ρ ‖ ρ̂j)

where β controls the weight of the sparsity loss term, KL is the Kullback-Leibler

divergence, ρ is the targeted sparsity (on average the percentage of neurons we want

to activate), ρ̂j is the average activation of the jth unit in the hidden layer given by:

ρ̂j =
∑m

i=1 aj(x
(i))

First, the parameters (W and b) are randomly initialized using the He initialization

strategy [Gér19]. Then, the parameters are updated through gradient descent steps

so as to minimize the cost function JSPARSE(W, b).

The difference between the input and the output is called the reconstruction

error. Let hW,b(x) = (x̂1, x̂2, . . . , x̂n) be the output of the autoencoder when fed

with a specific input x = (x1, x2, . . . , xn). Then the reconstruction error RE is

given by:

RE =
∑

(x̂i − xi)2

During the training phase, the parameters (W , b) of an autoencoder are optimized in

order to minimize the reconstruction error for a particular dataset. Once trained, if

the autoencoder is fed with data that are similar to the data used during the training

phase, the reconstruction error will be small. On the contrary, the reconstruction

error will be large when test data are different from the data used during the training

phase.

Detection Threshold Determination

The reconstruction error RE can be used as a measure of the outlierness of new

samples. To use an autoencoder as an anomaly detector, a detection threshold has

to be decided. The detection threshold is the value of the reconstruction error above

which an instance is considered as being anomalous.

72



Figure 3.6: Proposed anomalous communications detection architecture using a set
of sparse autoencoders (SAE) when the type of device producing the network traffic
is unknown

Due to the base-rate fallacy phenomenon, the false alarm rate is the main limiting

factor of any intrusion detection system (IDS) [Axe00]. For this reason, we propose

to fix the detection threshold based on the false alarm rate we are ready to accept.

It is determined using a validation dataset that is different from the one used for

training. Let FPRdesired be the false positive rate we are ready to accept. First, the

reconstruction errors of the samples in the validation set are calculated. Note that

we have no idea on the distribution of the reconstruction errors. Then, the threshold

is set so as to have a false positive rate on the validation set FPRV al that is equal to

FPRdesired. The final assessment of the performance of the model is performed on

the test set, which is different from the validation set that is used to fix the threshold.

Hence, the false positive rate on the test set can be different from FPRV al. Note

that the validation data set consists only of legitimate communications data of the

specific IoT device for which the autoencoder was trained.

3.2.4 Individual Autoencoders vs Set of Autoencoders

The developed anomalous communications detection model can be used in two differ-

ent settings, depending on whether or not we know what type of device is producing

the ongoing network communications. In the first case, we assume that it is possible

to know what type of IoT device is producing the network traffic. This can be done,

for example, by filtering the network traffic by MAC addresses if the IDS is located

in the same local network as the monitored IoT devices. In this case, it suffices to

redirect the network traffic to the appropriate sparse autoencoder (the one trained

for that specific device).

However, if the IoT network is connected to the internet through a NAT proxy

and the IDS is located somewhere outside the local network, it can be difficult to

filter the traffic based on device types. In this second case, we assume that it is

not possible to determine the type of the device that produced the network com-

munications. Therefore, the feature vectors describing each communication are fed

to all the trained sparse autoencoders as shown in Figure 3.6. A decision module

73



then takes the outputs of all the sparse autoencoders and determine whether or not

a communication is anomalous. A communication is considered as being anomalous

only if all the trained sparse autoencoders consider so. Formally, let us consider a

total of D different IoT device types. Hence, the feature vectors describing network

communications are fed to D different sparse autoencoders. The reconstruction

errors on the output of each autoencoder are calculated and compared to their re-

spective detection thresholds to determine whether the communication is anomalous

or not. Let n be the number of features used to describe a network communica-

tion. {A1, A2, ..., AD} is the set of decisions obtained for the D sparse autoencoders,

with Ai : Rn 7→ {0, 1} the decision of the sparse autoencoder trained to learn the

legitimate network communication profile of the ith device type. It takes as input

a feature vector x from the feature space Rn and outputs 0 if the corresponding

communication is legitimate and 1 if it is anomalous. During testing phase, x is fed

to all the trained sparse autoencoders. The final decision anomaly is given by:

anomaly =
⋂T

i=1Ai(x)

where anomaly is equal to 1 if the communication is anomalous. Note that the

communication is considered to be legitimate if at least one autoencoder considers

so.

3.2.5 Dataset Description

To train and test the model, we need three different datasets: a training set, a

validation set and a test set. The training set is used to optimize the parameters

(W and b described in Section 3.2.3) of the sparse autoencoder. The validation set

is used to fine tune the hyperparameters of the model, namely, the learning rate, the

number of epochs used for training (early stopping) and the decision threshold (see

Section 3.2.3). Both the training and validation sets only contain legitimate network

traffic data as they are used to learn the normal communication profile. The test

set is used to assess the performance of the developed model and it contains both

legitimate and malicious network traffic data.

For the legitimate network traffic data, we reuse the smart home dataset used

for network classification (see Section 3.1.3). Table 3.9 shows the total number of

bidirectional TCP flows extracted for each device. Note that this table is different

from Table 3.2 in that we do not partition the dataset beforehand. Instead, we will

use 5-fold cross-validation.

Malicious bidirectional flows used in the test set are obtained from IoTPOT

[Pa+15], an IoT honeypot designed to get infected by IoT malware. The collected

network traffic data represents network traffic generated by IoT botnets. A total

of 46,796 bidirectional TCP flows are extracted from one day of network traffic

data. Note that the number of malicious bidirectional flows is much larger than the

number of legitimate ones. This is not an issue as the malicious flows are only used

during the testing phase to assess the attack detection rate.

74



Table 3.9: Total number of bidirectional flows per device

Bidirectional flows

D-Link Motion Sensor 1074

Nest Security Camera 1055

TP-Link Smart Bulb 1040

TP-Link Smart Plug 858

Total 4027

3.2.6 Evaluation Methodology

As explained earlier, one sparse autoencoder per device is trained to learn the le-

gitimate communication profile. The architecture of each sparse autoencoder for

our experiment is as follows (for details about the parameters, see Section 3.2.3 and

[Ng+11; Gér19]):

• the size of the input layer is 16 (equal to the number of features)

• the size of the hidden layer is 32

• the target sparsity (ρ) is equal to 0.1 (default value used in [Gér19])

• the sparsity weight (β) is equal to 0.2 (default value used in [Gér19])

• the validation set is used to select the best learning rate from the following set

of values: 0.1, 0.01, 0.001.

• early stopping: training is ended as soon as the validation loss stops improving

for more than 10 epochs.

We train and test the model for different values of N (introduced in Section 3.2.2)

ranging from 2 to 10. For example, if N is equal to 5, the statistics described in

Table 3.8, are calculated over the first 5 packets sent and 5 packets received. To get

the best out of the limited number of legitimate communication samples, we perform

5-fold cross-validation. That is, the set of collected legitimate communications is

split into 5 folds. The sparse autoencoders are trained using 4 folds (that actually

consists of the training set and the validation set) and the remaining fold is used as

the test set. The process is repeated 5 times, with each of the 5 folds used exactly

once as the test set. The average performance over the 5 test folds gives us the

overall performance of the model.

The performance assessment is done in two stages: first, we measure the per-

formance of every single sparse autoencoder separately. Indeed, each autoencoder

can be used separately if it is possible to know what type of device is producing the

network traffic. Then we measure the overall performance obtained for the set of

sparse autoencoders. As explained in Section 3.2.4, when it is not possible to know

what device type a network communication belongs to, one can feed it to all the

trained autoencoders. The true positive rate (TPR) (also referred to as the recall

or the attack detection rate) along with the false positive rate (FPR) are used to

75



Figure 3.7: ROC curves of the different sparse autoencoders in the case of N=10

assess the performance of the model (see Section 2.1.3). Whether using the individ-

ual sparse autoencoders separately or as a set, we show that our proposed model

achieves relatively high TPR while keeping the FPR small.

3.2.7 Experimental Results: Performance of Individual Autoen-

coders

We start by assessing the performance of individual sparse autoencoders, each

trained to learn the profile of the legitimate communications of a specific IoT device

type. Hence, for our experiment, we have four different sparse autoencoders trained

to learn the communication profile of the security camera, the smart bulb, the smart

plug, and the motion sensor, respectively. To assess the performance of one specific

sparse autoencoder, we fed it with both legitimate and malicious communications

and compute the reconstruction error for each communication (legitimate commu-

nications consist only of the communications generated by the specific IoT device

for which the autoencoder was trained). Then, the reconstruction errors are used

to calculate the TPR and FPR for various threshold values. To calculate the Area

Under the Curve (AUC), we first need to plot the Receiver Operating Characteristic

(ROC) curve. The ROC curve plots the TPR against the FPR at various detection

threshold settings as shown in Figure 3.7. We refer the reader to Section 2.1.3 for

more details on ROC curves and AUC. Figure 3.8 shows the obtained AUC for dif-

ferent values of N . Depending on the value of N and the specific device for which

the sparse autoencoder was trained, the AUC oscillates between 0.962 and 1. This

indicates a very high separability between malicious and legitimate communications

for all the trained sparse autoencoders and for any value of N .

As described in Section 3.2.3, the detection threshold of each sparse autoencoder

is set so that FPRV al is equal to a desired value. Note that the value of the

76



Figure 3.8: AUC of the different sparse autoencoders and for different values of N

threshold can be different from one autoencoder to another. In our experiments, the

threshold is set for the following values of FPRV al: 0.002, 0.001, 0.0005, 0.0002. The

performance achieved by the individual sparse autoencoders is shown in Figure 3.10.

As expected, the FPR on the test set oscillates around the FPRV al used to determine

the threshold. For example, the FPR on the test set oscillates around 0.002 when

FPRV al = 0.002, 0.001 when FPRV al = 0.002 and so on. The TPR achieved by

each autoencoder increases with N and plateaus for N greater than 4. That is,

looking at more packets than first 4 packets sent and the first 4 packets received no

longer improves the TPR. For example, the TPR of the autoencoder trained for

the security camera, for the threshold setting FPRV al = 0.0002, stays in the range

92.1%-93.1% for N greater than 4. Similarly, the TPR of the autoencoders trained

for the bulb, the plug and the sensor, for the same threshold setting, plateaus in the

ranges 99.8%-99.9%, 80%-90.6% and 82.5%-86.1%, respectively.

3.2.8 Experimental Results: Performance of the Set of Autoen-

coders

Here, we assess the overall performance of the model. Once the threshold has

been determined based on the validation set, the test data is fed to all the sparse

autoencoders and the final decision is obtained following the method described in

Section 3.2.4. Figure 3.9 shows the achieved FPR and TPR for different values

of N and for different threshold settings (corresponding to the different values of

FPRV al). The TPR of the set of autoencoders achieves a maximum value ranging

from 82% to 87% depending on the value of N and the selected threshold setting.

Unsurprisingly, the TPR increases with N and reaches its maximum for N equal to

4. This was expected as the TPR obtained for the individual autoencoder composing

the set also plateaus for N greater than 4. The FPR is very close to FPRV al for

77



(a) FPR on the test set for FPRV al = 0.002 (b) TPR on the test set for FPRV al = 0.002

(c) FPR on the test set for FPRV al = 0.001 (d) TPR on the test set for FPRV al = 0.001

(e) FPR on the test set for FPRV al = 0.0005(f) TPR on the test set for FPRV al = 0.0005

(g) FPR on the test set for FPRV al = 0.0002(h) TPR on the test set for FPRV al = 0.0002

Figure 3.9: False positive rate (FPR) and True Positive Rate (TPR) of the individual
sparse autoencoders (each trained for a specific device) for different threshold values.

78



(a) FPR on the test set for FPRV al = 0.002 (b) TPR on the test set for FPRV al = 0.002

(c) FPR on the test set for FPRV al = 0.001 (d) TPR on the test set for FPRV al = 0.001

(e) FPR on the test set for FPRV al = 0.0005(f) TPR on the test set for FPRV al = 0.0005

(g) FPR on the test set for FPRV al = 0.0002(h) TPR on the test set for FPRV al = 0.0002

Figure 3.10: False positive rate (FPR) and True Positive Rate (TPR) of the set of
sparse autoencoders (SAE) for different threshold values. The performance of the
set of SAE is also compared to other machine learning models.

79



every threshold setting. For example, when the threshold is selected so as to have

FPRV al equal to 0.02%, FPR on the test set oscillates between 0% and 0.05% for

the different values of N . The only exceptions occurs when N is equal to 8, in which

case the FPR peaks at 0.1%.

The performance of the set of sparse autoencoders is compared to 3 other un-

supervised machine learning models, namely, Isolation Forest, One Class SVM and

Elliptic Envelope. All 3 algorithms provide a contamination parameter that can be

used to control the threshold of the underlying decision function. Similarly to the

case of the set of sparse autoencoders, one different model is trained for each IoT

device type. Then, for testing purpose, the data is fed to all the trained models.

One Class SVM and Elliptic Envelope achieve high TPR, ranging from 87% to 100%

depending on the value of N and the threshold settings. However, they also achieve

a high FPR ranging from 2% to 30%, making them useless in practice. As for

the Isolation Forest algorithm, the FPR and TPR are always equal to 0 for every

value of N and every tested threshold setting. In fact, the TPR achieves reasonable

values, such as 80%, only for thresholds selected so as to have FPRV al greater than

5%. In other words, the TPR for Isolation Forest becomes reasonable only for a

FPR higher than 5%.

3.2.9 Discussion

For our model, we trained one separate autoencoder per device type. But another

possibility is to train one separate autoencoder for a group of devices sharing similar

networking behaviors. For example, if smart devices from a specific manufacturer

produce very similar network traffic, then one single autoencoder can be trained for

all of them. Another possibility is to first run a clustering algorithm to determine

groups of devices sharing similar networking characteristics. Training one autoen-

coder for a group of devices will reduce the size of the final model making it faster

to run and more resource efficient. However, this will reduce the flexibility of the

model. For example if the networking behavior of a device in a group changes (be-

cause of a system update for example), we might have to redefine all the groups and

retrain the autoencoders from scratch using data from all devices.

An important limitation of our work is the limited number of IoT devices used

for the experiments. The obtained experimental results are based on a smart home

network consisting of only four devices. Although, the ability of one autoencoder

to model the legitimate behavior of a single IoT device should remain the same (as

long as the IoT device is not versatile), the performance of the set of autoencoders is

expected to decrease if the number of different IoT devices in the network increases.

Indeed, as described in Section 3.2.4, a communication is considered to be legitimate

if at least one autoencoder in the set considers so. As a consequence the attack

detection rate will always be less than or equal to the attack detection rate of the

worst performing autoencoder in the set.

Another limitation of our method is that a malware may be able to exchange a

80



few number of packets before being blocked. Indeed, every time a new communica-

tion is initiated, the first N packets sent and received are analyzed to determine if

the communication is legitimate or not. Only after a communication has been iden-

tified as being anomalous, it can be blocked or redirected for further analysis. For

example, one can train a model for N equal to 4 (as experimental results show that

attack detection rate reaches its maximum for N equal to 4 and no longer improves

for higher values of N). Once a communication is detected to be anomalous, only

the subsequent packets can be blocked. That is, in our example, a malware may

still be able to exchange 3 packets or less before being detected. However, this issue

can be solved by combining our model with other approaches, such as, blacklisting

IP addresses linked with anomalous activities so that a malware cannot exchange

information using multiple short communications. For certain types of attack, such

as port scanning, very few packets are exchanged and, by the time it is detected,

it might be too late to do anything. One solution is to temporarily block all new

communications that are initiated if an anomalous communication is detected. Only

the existing legitimate connections are maintained. A notification can be sent to the

network administrator in order to alert that a device is behaving suspiciously. In

fact, the developed system might be either automated or under human supervision.

It might be used as a tool to assist network administrators who can further analyze

the detected anomalies to determine whether they correspond to false positives or

not.

Due to the base-rate fallacy phenomenon [Axe00], the FPR is the limiting factor

of the performance of our anomaly detection model. The four IoT devices of our

testbed generated around 4000 bidirectional TCP flows in 7 days. This is equivalent

to about 150 bidirectional flows per device and per day. As a consequence, with

a FPR of 0.02%, the set of autoencoders produces one false alarm per month for

every device. That is, for our testbed of four devices, one false alarm is generated

every week. In the case of a smarthome or a smart building with 100 IoT devices,

the proposed model will yield 3 false alarms every day, which is significant. Further

studies need to be carried out to improve the FPR of our model.

The possibility for IoT devices to get software updates that can change their

networking behavior is another constraint that can hinder the performance of our

model. This can result in a rise in the number of false alarms. One solution to

avoid such an issue is to regularly retrain the models so that the latest changes in

the networking behavior are taken into account. For example, if the original models

were distributed with the devices, then vendors can distribute retrained models

through software updates. However, retraining the models on the whole dataset can

be costly in terms of computational resources. Online learning techniques can be

explored to develop a more resource efficient model retraining pipeline.

Finally, a malware might be able to fool our model if it is able to mimic the

legitimate networking behavior of a device. To this purpose, an attacker might

leverage adversarial machine learning. Once, a device is infected, the first step for the

malware can be to learn the expected networking behavior of the device using built-

81



in machine learning algorithms. Then the malware can initiate communications

that comply with what is considered to be legitimate. Such a technique can be

effective for data exfiltration purposes if sensitive data are accessible through the

infected device. However, complying with what is authorized limits the capability

of the malware. It makes difficult to perform certain types of attack, such as, port

scanning or brute force attacks. Moreover, it might be too costly for a malware to

learn patterns as most IoT devices are resource-constrained.

3.2.10 Summary

We introduced a method to detect anomalous communications in IoT networks using

a set of sparse autoencoders. The features used to describe bidirectional flows are

statistics on the size of the first N packets sent and received, along with statistics

on the inter-arrival times between the packets. During the training phase, for each

IoT device type present in the network one separate sparse autoencoder is trained

to learn the legitimate communication profile. During the testing phase however, it

might not be possible to know the type of device that has produced the bidirectional

flow. In that case, the bidirectional flow is fed to all the trained autoencoders. The

flow is considered to be legitimate if at least one autoencoder considers so. Promising

experimental results show that our proposed method can achieve high TPR with a

reasonable FPR. The proposed approach also outperforms other anomaly detection

algorithms such as one-class SVM, Isolation Forest and Elliptic Envelope.

3.3 General Conclusion

In this chapter we presented two IoT network monitoring solutions that overcome

some of the limitations of existing state of the art works. To experimentally assess

the performance of the proposed solutions, a smart home network composed of four

devices was built.

The first solution is a system that recognizes the type of an IoT device by

analyzing its networking behavior. It improves the state of the art by being delay-

free, phase-independent and non-intrusive. Features used to describe bidirectional

flows are the size of the first N packets sent and received, along with the inter-

arrival times between packets. Multiple supervised machine learning algorithms

were trained to classify the bidirectional flows based on the device type they belong

to. An overall accuracy as high as 99.9% was achieved by the Random Forest

classifier, pointing out the effectiveness of our approach. Because of the small size

of the dataset, the ANN failed to outperform the Random Forest classifier.

The second solution is an IoT NIDS. It overcomes the limitations of existing

works in that it can be used even when it is not possible to determine the type

of the device that is generating the network traffic (for example if the NIDS is

located outside the local network). Moreover, it is capable of detecting new types of

attack as it leverages anomaly detection algorithms. The features used to describe

82



bidirectional flows are statistics on the size of the first N packets sent and received,

along with statistics on the inter-arrival times between the packets. The proposed

model consist of a set of sparse autoencoders, each trained to learn the legitimate

networking behavior profile for a specific IoT device type. Promising experimental

results show that our method can achieve high TPR with a reasonable FPR.

For future works, we suggest to train and test both models on more data coming

from networks composed of a greater number of different IoT devices. One should

also consider the case of a general purpose network that contains not only IoT

devices but also personal computers or smartphones.

Both proposed IoT network monitoring tools achieved promising experimental

results. However, one major limitation of the experiments was the limited number of

IoT devices used (only 4 devices). Moreover, it is difficult to find publicly available

IoT network traffic data. Because of privacy concerns companies or institutions are

reluctant to share their data. One solution is to generate synthetic IoT network

traffic data. In the next chapter, we propose to leverage recent advances in the field

of generative deep learning to generate synthetic IoT network traffic data.

83



4

IoT Network Traffic Generation

“Live as if you were to die tomorrow. Learn as if you were to live forever.”

– Mahatma Gandhi

Brought into the spotlight by their success in the field of computer vision, GANs

are more and more used for network traffic generation purposes (see Section 2.4).

Generating real-looking synthetic IoT network traffic is of practical interest for both

network defenders as well as attackers. While NIDS developers need network traffic

data to assess their developed products, malware developers want to mimic legiti-

mate networking behavior to evade NIDSs.

To protect IoT networks, NIDSs specifically designed for IoT are being devel-

oped. To assess the ability of those NIDSs to correctly detect intrusions and avoid

false alarms, both legitimate and malicious network traffic data are required. While

malicious network traffic is used to evaluate attack detection rate, legitimate net-

work traffic is necessary to assess the FPR. One main difficulty is that very few IoT

network traffic datasets are publicly available. One solution is to physically deploy

real IoT devices to produce network traffic data. Yet, this can become very costly

if one needs a network with thousands of smart devices. Moreover, due to privacy

concerns, it might not be possible to share real network traffic data. An alternative

is to synthetically generate IoT network traffic. As shown in Figure 4.1.a, the gener-

ated network traffic data can be used to assess the performance of NIDSs. Synthetic

network traffic generation can also be useful for data augmentation purposes (see

Figure 4.1.b). Using data augmentation, a machine learning model can be trained

on both real and synthetic network traffic allowing a faster convergence of the model

and a better achieved performance.

The capability of generating real-looking network traffic can also be leveraged by

84



(a) NIDS performance as-
sessment (b) Model training (c) Data exfiltration

Figure 4.1: Motivation for IoT network traffic generation: Scenario (a): realistic
network traffic generation for NIDS performance evaluation; Scenario (b): data
augmentation to train machine learning based NIDS; Scenario (c): mimicry attack
generation for data exfiltration purpose.

attackers for malicious purposes like data exfiltration. Indeed, contrary to general-

purpose computers, IoT devices perform very specific tasks, hence their networking

behavior is very stable and follows specific patterns. Any network communication

that does not follow the legitimate behavioral pattern can be easily pinpointed as

being anomalous. For example, as illustrated in Figure 4.1.c, the microphone of a

compromised Google Home Mini can be used to spy on and listen to conversations.

However, the network being protected by an NIDS, the attacker needs to find a

way to generate network traffic that looks legitimate in order to bypass detection,

and exfiltrate sensitive data. Hence, prior to data exfiltartion, as a first step, an

adversary who has the ability to sniff the network, may collect legitimate network

traffic; the attacker then proceeds to train generative models from the collected

traffic, so as to learn how to generate network traffic resembling the real, legitimate

one. In order to deceive an NIDS, the trained model may be used to initiate network

communications that mimic the legitimate behavior of the infected device (also

known as mimicry attack).

Network traffic consists of bidirectional flows identified by source and destination

IP addresses and ports, and the transport layer protocol. Bidirectional flows are

represented as a sequence of packets sent and received between an internal source

and an external destination. A bidirectional flow is also characterized by its duration.

Despite the fact that a flow and the packets composing it are closely related (for

example, the number of bytes exchanged for the duration of a flow usually amounts

to the sum of the sizes of each packet that composes the flow), existing works

either focus on the generation of flow-level features [Rin+19; RG18] or packet-level

features [Lin+19; Che19], but not both at the same time. Traffic generation based

only on flow-level features is of no interest for network monitoring tools that perform

packet-level analysis, while traffic generation based only on packet-level features is

not adapted for tools that perform flow-level analysis. Another limitation of existing

works is that none of them focuses on IoT devices.

We aim at generating synthetic sequences of packet sizes that correspond to

bidirectional flows that look like they were generated by a real IoT device. In

addition to generating packet-level features which are the sizes of individual packets,

85



Figure 4.2: Bidirectional flow generation pipeline: the sequence of packet sizes gen-
eration module is followed by the duration determination module

our developed generator implicitly learns to comply with flow-level characteristics,

such as the total number of packets and bytes in a bidirectional flow. For each

generated sequence of packet size, we also determine its total duration. Figure

shows the two steps of our proposed bidirectional flow generation process. First, the

sequence of packet sizes received and sent is generated. The generated sequence is

then fed to another model to determine its duration. The modules for the generation

of a sequence of packet sizes on one hand, and the determination of the sequence

duration on the other hand are independent from each other, and will be addressed

in two different sections (Section 4.1 and Section 4.2 respectively). For the sequence

of packet sizes, two types of ordering of the packet sizes sent and received will be

explored: a simple naive ordering that assumes that each packet sent is followed by

a packet received, and a more realistic ordering where multiple packets can be sent

before receiving any reply or vice versa. For the experimental part of our study,

we use network traffic data produced by a Google Home Mini, a widely used smart

speaker. Comparing the distributions of different network characteristics, such as

the number of packets and bytes per flow, shows that the generated bidirectional

flows exhibit behavioral patterns that are very similar to the real traffic.

4.1 Generating Sequences of Packet Sizes

4.1.1 Modeling Sequences of Packet Sizes

The packet size is a commonly used feature in studies that focus on the develop-

ment of IoT network monitoring systems. Hence, it is an important network traffic

characteristic for both security product developers and malware authors that want

to mimic the legitimate behavior of a device. We intend to generate sequences that

represent the size of the individual packets composing a bidirectional flow. Hence,

while learning to generate packet-level features which are the sizes of individual

packets, our developed model implicitly learn to comply with flow-level character-

istics, such as the ordering of the packets or the total number of packets and bytes

in a bidirectional flow. As for the ordering of the packet sizes, two different models

will be examined: simplified ordering and realistic ordering.

86



Simplified Ordering

A bidirectional flow is identified by a 5-tuple, the source and destination IP addresses

and ports, and the transport layer protocol. A sequence representing a bidirectional

flow contains the sizes of packets sent as well as the sizes of packets received during

a single communication. A communication is a complete TCP session (from SYN

to FIN). Note that a timeout is used to split lengthy communications into multiple

bidirectional flows. Let N be the maximum number of packets that can be sent (or

received) within a single bidirectional flow. That is, a bidirectional flow contains

a maximum of 2 × N packets (N packets sent and N packets received). We use a

separate notation L with L = 2×N to denote the length of a sequence. N might be

device- or application-specific. We have witnessed that some devices never generate

flows with more than a certain number of packets. For experimental purposes, one

could set N and truncate sequences that are too long. This might be useful to

control the cost of the training process, in terms of resources, which increases as N

grows. The simplified ordering model assumes that each packet sent is followed by a

packet received. Let S be a sequence of packet sizes corresponding to a bidirectional

flow, let si be the size of the ith packet sent and ri the size of the ith packet received.

S can therefore be defined as follows:

S = {s1, r1, s2, r2, ..., sN , rN}

The direction of a packet, whether it is a packet sent or received is determined by

its position in the sequence: odd positions correspond to sent packets while even

positions corresponds to received packets. In fact, the sequence S is composed of two

interleaved unidirectional flows: one unidirectional flow for the packets sent and the

other for the packets received. The order of the packet sizes for each unidirectional

flow is correct. However, the ordering of packet sizes for the bidirectional flow might

not be correct, as in real settings one packet sent might trigger the reception of

multiple packets (because of network packet fragmentation for example) and vice

versa. If a bidirectional flow contains less than N packets sent, then the remaining

elements of the sequence are filled with zeros (the same is true for the packets

received). Hence, zero acts as an end of sequence marker.

It is important to notice that we consider S to be a sequence of categorical

data rather than numerical data. For example, let D be a device which produces

sequences of packet sizes (in bytes) of the following form:

{60 60 52 52 123 135 52 52 52}

Considering the dataset of collected sequences, we may notice that the device D

never produces packets of size 61, 53 or 50. If our trained generator generates the

following (approximate) sequence:

{60 61 52 53 123 135 52 50 52}

we may decide that it cannot have been generated by D as it contains packet sizes

that D never produced in its history, namely 61, 53, and 50. The approximate

87



sequence is still very similar to the original one (erroneous packet sizes are close

to real ones, if considered as numerical values). To avoid ending up generating

such close but unrealistic sequences, one needs to consider the packet size as a

categorical variable. Hence, one-hot-encoding over all the possible packet size values

is performed to represent each element of S.

Realistic Ordering

In realistic packet ordering, it is possible to send multiple packets before receiving

any reply and vice versa. It is called realistic because we have witnessed this type

of packet ordering in the real network traffic data produced by our experimental

smarthome devices (see Section 3.1.3). Packet sizes are represented using tuples

that contain the size of the packet and its direction (whether it is a packet sent or

received). Let R be a sequence of packet (size, direction) tuples corresponding to a

bidirectional flow, let sizei and directioni be respectively the size and the direction

of the ith packet in the sequence. R can therefore be defined as follows:

R = {(size1, direction1), (size2, direction2), ..., (sizeL, directionL)}

If a bidirectional flow contains less than L packets then the remaining elements of

the sequence are filled with a zero-padding tuple that also acts as an end of sequence

marker. Using the realistic packet ordering representation, the previous sequence

example becomes:

{(60, sent), (60, received), (52, sent), (123, sent), (52, received), (135, received),

(52, sent), (52, sent), (52, received), (52, sent)}

Note that a packet sent is note necessarily followed by a packet received. Again the

sequence is a sequence of categorical value. The main difference is that (60, sent)

and (60, received) now represent two distinct categories. Hence, the vocabulary size

(total number of distinct categories) is greater for the realistic ordering represen-

tation. After one-hot encoding, the dimension of the one-hot vectors representing

each elements of R is also greater.

An element of the simplified ordering sequence only contains information about

the size of a packet. The direction of the packet depends on the position of the

element in the sequence. Differently, in the realistic ordering sequence, each element

of the sequence contains information on both, the size and direction of a packet.

The advantage of the realistic ordering model is that it is more flexible and closer to

what real traffic looks like. However, as the number of distinct categories is greater,

the dimension of the one-hot encoded representation of each element of the sequence

is larger. As the search space for the learning algorithm is larger and complex (the

algorithm needs to figure out the relationship between packet sizes and directions

by itself), the training process might become more difficult, possibly yielding poor

quality results. Generative models will be trained using both the simplified and the

realistic representation. The obtained results will then be compared to see if the

used representation significantly alters the quality of the generated sequences.

88



Unless specified otherwise, in the rest of this paper S refers to a sequence of

packet sizes under the simplified ordering assumption while R is a sequence of packet

(size, direction) tuples. Both S and R represent a bidirectional flow. Note that,

regardless of using the simplified or realistic representation, our problem is similar

to word by word text data generation in that a bidirectional flow is equivalent to a

sentence (of length L), while packet sizes (or size/direction tuples), as categorical

data, are equivalent to the words that compose the sentence. Hence, to develop our

generative model, we will first have a look at the recent developments in the field of

natural language processing, specially natural language generation.

4.1.2 Generative Models for Sequences of Categorical Data Gener-

ation

On the Difficulty of Generating Sequences of Categorical Data

GANs were introduced by I. Goodfellow et al. [Goo+14] and have been successfully

applied in computer vision to generate realistic images [KLA19]. As illustrated in

Figure 2.11, a GAN consists of a generator and a discriminator. The role of the

generator is to generate observations as similar as possible to the samples present in a

given dataset. To this purpose, the generator transforms random noise into samples

that look as if they have been drawn from the original dataset. The role of the

discriminator is to predict whether a given sample comes from the original dataset

or has been generated by the generator. Both, the discriminator and generator

are neural networks. At the beginning of the training process, their weights are

randomly initialized. The GAN is trained by alternatively training the generator

and the discriminator. The term adversarial refers to the fact that the generator

and the discriminator are competing with each other. As the generator begins to

fool the discriminator, the discriminator must learn new patterns to differentiate

real samples from generated ones. In turn, the generator needs to find new ways

to fool an ever improving discriminator. This cycle continues up to the point the

generator starts generating samples that the discriminator cannot discriminate from

real samples anymore. However, GANs are very hard to train and are prone to mode

collapse. Mode collapse occurs when the generator starts generating one or a small

set of possible observations that always fool the discriminator [Fos19]. In that case,

the generator stops learning anything useful. It raises the issue of how representative

the generated samples are of the diversity of the original dataset. The Wasserstein

GAN (WGAN) proposed by M. Arjovsky et al. [ACB17] improves traditional GANs.

It provides more stable training process and gets rid of mode collapse issues. This

motivates us to use WGAN for our experiments. The loss function of a WGAN is

the Wasserstein loss, given by:

− 1
m

∑m
i=1 yipi

where m is the total number of training instances, yi and pi are respectively the label,

and the prediction of the critic (the discriminator of a WGAN is called the critic),

89



Figure 4.3: Word by word text generation: When generating the next word of
the sequence, the generator actually provides a probability distribution over the
vocabulary. The actual sequence is constructed by picking the next word from this
probability distribution.

corresponding to the ith training instance. The label yi is either equal to 1 (real) or -1

(generated), and the prediction pi is in the range [−∞,+∞]. Hence, by minimizing

the loss function, the critic of a WGAN tries to maximize the difference between

its predictions for real samples and generated samples. Without any additional

constraint, the Wasserstein loss can be very large and become intractable. This is

why the critic of a WGAN must be a 1-Lipschitz continuous function. In the original

paper, the 1-Lipschitz constraint is enforced by clipping the weights (forcing the

weight values to be within a certain range) of the critic. In [Gul+17a], the authors

proposed to enforce the 1-Lipschitz constraint by penalizing the norm of the gradient

of the critic with respect to its input, which is a more natural way to achieve the

1-Lipschitz constraint. We will test both WGAN with weight clipping (WGAN-C)

and WGAN with gradient penalty (WGAN-GP).

Although successful for image generation, GANs have known little success with

the generation of sequences of categorical data, until recently. Indeed, as shown in

Figure 4.3, when generating the next element of a sequence of categorical values,

the generator actually provides a probability distribution over all possibilities (e.g.,

the vocabulary for text data). The actual sequence is constructed by picking the

next element from this probability distribution. This picking operation is not dif-

ferentiable and thereby hard to back-propagate [KH16; Yu+17]. To overcome this

issue, many solutions have been proposed in the context of text generation. Kusner

et al. [KH16] propose to use the Gumbel-softmax distribution as the output of the

generator. Yu et al. [Yu+17] describe how Reinforcement Learning can be used to

bypass the issue. The model we use to generate sequences of packet sizes is highly

inspired from the work of D. Donahue et al. [DR18] who propose to combine a vanilla

autoencoder with a GAN to generate text data. First, the autoencoder is trained to

learn to convert sequences of categorical data (sentences composed of words) into

a latent vector in a continuous space. Then a GAN is trained in the continuous

latent space to learn to generate latent vectors that can be decoded into sequences

90



of categorical data. The advantage of this method over the other approaches, is that

the GAN can be trained on a lower dimensional latent space making the training

process less computationally expensive.

Combining an Autoencoder with a GAN

To generate sequences of packet sizes S and sequences of packet (size, direction)

tuples R, we propose to combine an autoencoder with a GAN as described in Fig-

ure 4.4.

An autoencoder is composed of an encoder and a decoder. The encoder com-

presses the input to obtain a latent representation of it. The role of the decoder is

to reconstruct the original input from its latent representation. Hence, the train-

ing process aims at minimizing the reconstruction error between the input and the

output. For our sequence of one-hot encoded packet size data, this corresponds to

minimizing the cross-entropy loss between the input and the output of the autoen-

coder. Let L be the total length of a sequence. Let V be the vocabulary size, that

is, the number of possible values that an element of a sequence can take: this cor-

responds to the total number of possible packet sizes for S and the total number of

possible packet size and direction combinations for R. Hence, the one-hot encoded

representation of a single element of a sequence is a vector of dimension V . The

sequence of one-hot encoded vectors can be represented with a matrix X:

X =


x11 x12 ... x1L

x21 x22 ... x2L

... ... ...

xV 1 xV 2 ... xV L


where the ith column of X corresponds to the one-hot encoded representation of

the ith element in the sequence. Let X be the matrix representation of the input

of the autoencoder, and X̂ be the equivalent matrix representation of the output of

the autoencoder. Then, the cross-entropy loss LCE between X and X̂ is given by

summing the binary cross-entropies between every single element of X and X̂:

LCE(X, X̂) =
∑L

j=1

∑V
i=1(xijlog(x̂ij) + (1− xij)log(1− x̂ij))

Once the autoencoder has been trained, a GAN is trained on the latent space.

For our model, we will use a WGAN as it provides more stability in the training

stage and is more resilient to mode collapse [ACB17]. Figure 4.4 shows the different

steps from the training phase to the generation phase. Step 1: an autoencoder is

trained to learn to compress and reconstruct real sequences of categorical values

(sizes or sizes/directions). Step 2: the encoder part of the autoencoder is then used

to obtain the continuous latent representation of the real sequences. Next, a WGAN

is trained on the continuous latent space to learn to generate realistic latent vectors.

Step 3: once trained, the generator of the WGAN is used to generate real-looking

latent vectors. The generated latent vectors are then fed to the decoder of the

autoencoder to generate realistic sequences that correspond to bidirectional flows.

91



Figure 4.4: Combining an autoencoder with a GAN to generate sequences of cate-
gorical values

92



4.1.3 Evaluation Methodology

Different methods are used to assess the quality of the generated bidirectional flows.

First, we measure the percentage of generated sequences that are valid. Then, we

compare the distributions of different network characteristics. The purpose of the

comparison is to determine if the generated bidirectional flows are diverse enough

(no mode collapse) and if they behave like the real ones. We plot histograms to

compare the empirical distributions of different network characteristics of the syn-

thetic bidirectional flows with the real ones. The characteristics that are compared

are:

• the distribution of the packets sizes;

• the distribution of the number of packets per bidirectional flow;

• the distribution of the number of bytes per bidirectional flow.

Those network characteristics are widely used to describe bidirectional flows [BG15;

Rin+19; RG18; Wu+19; Yan+19]. Finally, we also assess the proportion of synthetic

bidirectional flows that can evade a potential anomaly detection based NIDS. To

this purpose, we train different anomaly detection algorithms to learn the legitimate

networking behavior profile of a Google Home Mini. Synthetic bidirectional flows are

then fed to the trained anomaly detectors to determine the proportion of synthetic

flows that is able to fool the trained detectors into labeling them as legitimate.

4.1.4 Smart Speaker Dataset

A smart speaker, namely the Google Home Mini was used to produce real network

traffic data. It allows users to speak voice commands to interact with different

services like listening to music, asking for the weather or any other question. For

the experiment, the Google Home Mini was mainly used by lab members to ask

questions. The device was actively used for 7 days. We set the value of N , described

in Section 4.1.1, to 21. That is, we only keep bidirectional flows that contain at most

21 packets sent and 21 packets received, which correspond to sequences of length

L = 42. As explained in Section 4.1.1, if a bidirectional flow contains less than 21

sent packets, the remaining elements are filled with an end of sequence marker (the

same is applied to received packets).

The following is an example of a sequence of packet sizes (after zero padding)

S under the simplified ordering assumption, where 6 packets have been sent and 4

packets have been received:

60 60 52 52 123 135 52 52 52 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

Below, the same bidirectional flow is represented using a sequence R of (size, direc-

tion) tuples. (0, 0) is the end of sequence marker and is used for padding:

93



Figure 4.5: Cumulative distribution function of the total number of packets per
bidirectional flows produced by the Google Home Mini (a partial view is presented
for better clarity). 90% of the flows contain 42 packets or less.

{(60, sent), (60, received), (52, sent), (123, sent), (52, received), (135, received),

(52, sent), (52, sent), (52, received), (52, sent), (0, 0), ...,(0, 0)}

The reason we only keep sequences of maximum length 42 is because they corre-

spond to 90% of the bidirectional flows produced by our hosted Google Home Mini

(see Figure 4.5). The remaining 10% of the bidirectional flows contain a number

of packets exchanged ranging from 43 to 7674 packets. Meaning that if we were

to represent all the bidirectional flows of the Google Home Mini, we would need

sequences of length 7674, which can be computationally expensive. For this reason,

limiting sequences to 42 packets is reasonable. Moreover, in the case of a malware

that want to mimic legitimate behavior, it makes more sense to focus on the 90%

most common flows rather than on the 10% rarest flows. The final dataset contains

12,198 sequences of packet sizes representing bidirectional flows. The duration of

those 12,198 flows is also collected and will be used later in Section 4.2.

4.1.5 Experimental Results - Simplified Packet Ordering

In this section, we present the results obtained when bidirectional flows are described

using the simplified ordering model.

Autoencoder and WGAN Architecture

The total number of possible packet size values produced by the Google Home

Mini is 535, which corresponds to the vocabulary size under the simplified ordering

assumption. Hence, each element of a sequence S is a one-hot encoded vector of

dimension 535. Hence, the shape of the matrix X (defined in Section 4.1.2) when

describing one sequence of packet sizes is (V,L) = (535, 42).

94



(a) Encoder (b) Decoder

Figure 4.6: Architecture of the autoencoder used for the experiment

The architecture used for the autoencoder is given in Figure 4.6. The sequences

of shape (535, 42) are compressed to 16-dimensional latent vectors by the encoder.

The encoder is composed of a time distributed dense layer, followed by two LSTM

layers and two densely connected layers. An LSTM network is a type of recurrent

neural network that can capture temporal dependencies in sequential data. Hence,

LSTM layers are well suited to capture the ordering of the packet sizes in a sequence.

The activation function used in all layers of the encoder is the hyperbolic tangent

(tanh). The decoder consists of a dense layer, followed by two LSTM layers and

one time distributed dense layer. The activation function used for all layers is also

tanh, except for the output layer for which a sigmoid activation is used. Note

that, for dense layers, to avoid vanishing gradient issues that occur when using tanh

and sigmoid activation functions, Batch Normalization [IS15] is performed before

applying the activation function. The loss function used is the cross-entropy loss,

as described in Section 4.1.2. The autoencoder is trained for 300 epochs using the

Adam optimizer. As for the learning rate, if it is too large the weights of the model

will converge to a sub-optimal solution or may even diverge, while if it is too small

the model will take a significantly longer period of time to converge or may even get

stuck in a sub-optimal solution. One strategy is to start with a large learning rate

and then gradually decreases it. Hence, to train the autoencoder, the learning rate

is set to 0.001 for the first 100 epochs, then to 0.0005 for another 100 epochs, finally

to 0.0001 for the last 100 epochs. We stop training at 300 epochs because training

the model for more epochs or further decreasing the learning rate no longer improve

the training loss.

95



(a) Generator (b) Critic

Figure 4.7: Architecture of the WGAN used for the experiment

As for the WGAN used to learn to generate latent vectors that decode into real-

istic features vector, both the generator and the critic are densely connected neural

networks as shown in Figure 4.7. The generator takes as input a noise of dimension

16 drawn from a standard Gaussian distribution. It consists of 4 hidden layers, each

composed of 16 units with tanh activation. As with the autoencoder, to avoid van-

ishing gradient issues, Batch Normalization is performed before applying the tanh

activation function. The output layer of the generator is a densely connected layer

with 16 units and no activation function. The critic consists of 4 hidden layers. Each

composed of 16 units with LeakyReLU (alpha=0.01) activation. The output of the

critic is a single neuron with no activation. As proposed in [ACB17], the RMSprop

optimizer, with learning rate 0.00005, is used for training. The critic is trained 5

times between each generator updates. Both, WGAN-C and WGAN-GP are tested.

As explained in Section 4.1.2, they only differ in the way the 1-Lipschitz constraint

of the critic is enforced.

Percentage of Valid Sequences

The generated sequences are of length 42 and consist of the size of the packets sent

and received. As described in Section 4.1.1, if a sequence has less than 21 packets sent

then the remaining elements must be zeros (because zero act as an end of sequence

marker and is used for padding). As a consequence, if the size of a sent packet in

the sequence is equal to zero then all the subsequent elements of the sequence that

correspond to sent packets must also be equal to zero. The generated sequences that

do not comply with this basic rule are considered invalid. The same reasoning holds

96



(a) Autoencoder/WGAN-GP (b) Autoencoder/WGAN-C (c) VAE

(d) Autoencoder/WGAN-GP (e) Autoencoder/WGAN-C (f) VAE

(g) Autoencoder/WGAN-GP (h) Autoencoder/WGAN-C (i) VAE

Figure 4.8: Simplified packet ordering - Comparison of the distribution of packet
sizes (a, b, c), the number of packets per bidirectional flow (d, e, f), the number of
bytes per bidirectional flows (g, h, i) for different models (autoencoder/WGAN-GP,
autoencoder/WGAN-C, VAE)

for the elements of the sequence that corresponds to the size of packets received.

Our trained autoencoder/WGAN-GP and autoencoder/WGAN-C models generate

99.5% and 99.1% of valid sequences respectively. For the evaluation performed in

the next subsections, invalid sequences are discarded.

Statistical Characteristics Comparison

The distributions of different network characteristics of the generated and real bidi-

rectional flows are compared for both autoencoder/WGAN-GP and autoencoder/WGAN-

C models. The obtained results are also compared to the ones obtained by a baseline

variational autoencoder (VAE) model. A VAE is a special type of autoencoder that

can be used as a generative model [KW13]. The architecture of the VAE used is very

similar to the architecture of the autoencoder described in Figure 4.6. As shown

in Figure 2.10, the only difference is that, for the VAE, the encoder outputs two

parameters: a mean vector and a variance vector. Those two parameters are used to

sample the latent vector. Once trained, to generate new instances, latent vectors are

sampled from the standard normal distribution and fed to the decoder of the VAE.

97



Table 4.1: Simplified packet ordering - Earth mover’s distance (10−4) between the
real and generated traffic histograms of Figure 4.8. WGAN-C based model achieves
the smallest distance.

WGAN-GP WGAN-C VAE

Packet sizes 1.694 1.539 27.439

Packets per
bidirectional flows

10.228 9.799 97.362

Bytes per
bidirectional flows

4.673 3.837 40.597

The aim is to determine if combining an autoencoder with a WGAN is necessary,

or if a VAE model is enough to generate realistic data.

The 12,198 real bidirectional flows produced by the Google Home Mini along with

12,198 synthetic bidirectional flows generated by our trained WGAN/autoencoders

models are used to plot each histogram. Figure 4.8 shows the obtained distributions

of packets sizes, number of packets per bidirectional flow and the number of bytes

per bidirectional flow. The frequency is represented in a logarithmic scale, as the

number of occurrences of rare events is very small compared to the occurrences of

common events. The distribution plots indicate that the bidirectional flows gen-

erated by both autoencoder/WGAN-GP and autoencoder/WGAN-C models share

very close characteristics with the real ones. The similarity is even more emphasized

for occurrences that are very common in the real traffic (more than 10 times). For

example, packet sizes between 40 bytes and 600 bytes, bidirectional flows containing

between 32 and 40 packets, or bidirectional flows containing around 4000 bytes, are

very common in the real traffic and are also very common in the generated traf-

fic. Both the WGAN-GP and the WGAN-C based models outperform the VAE

which suffers from severe mode collapse. Indeed, the flows generated by the VAE

lack diversity and do not cover all the possible flow types that the Google Home

Mini produces. In terms of the diversity of the generated bidirectional flows, the

WGAN-C based model seems to perform better than the WGAN-GP based model.

For example, the WGAN-C based model generates bidirectional flows containing

between 16 and 21 packets, which is not the case for the WGAN-GP based model

(see Figures 4.8.d and 4.8.e).

We use the Earth Mover’s Distance (EMD, also referred as the first Wasserstein

distance) to compare the histograms [20g]: informally, if two distributions are seen

as two masses of earth, the EMD between those two distributions is proportional to

the minimum amount of work required to transform one distribution into the other

(one unit of work is the amount of work necessary to move one unit of weight by

one unit of distance). The EMD is a statistical distance that provides a measure to

quantify the dissimilarity between the histograms of the generated traffic and the

histograms of the real traffic. The smaller the EMD between the generated and

real traffic histograms the closer the generated traffic is to the real one. As the

EMD is used to compare probability distributions, the histograms are normalized

98



Table 4.2: Simplified packet ordering - TPR and FPR on the test set achieved by
the trained anomaly detectors

OCSVM IForest EE

TPR .9504 .8947 .9234

FPR .0238 .0217 .1246

to have a total area equal to 1. Table 4.1 shows the EMD for the histograms

in Figure 4.8. The WGAN-C based model achieves the smallest EMD for every

compared network characteristics. Hence, it is performing slightly better than the

WGAN-GP based model in generating sequences of packet sizes that behaves closely

to the real bidirectional flows.

Evading an Anomaly Detection Based NIDS

In this subsection, the aim is to assess how our proposed generative model can be

used by a malware to mimic legitimate behavior and evade an anomaly detection

based NIDS. In anomaly detection, during the training phase, the model learns the

profile of the legitimate networking behavior of a device. Then during the testing

phase, the model is applied to new data to detect any deviation from the learnt

legitimate behavior profile. We train different anomaly detection algorithms on

real Google Home Mini network data to learn the legitimate behavior profile. The

trained anomaly detectors are tested against legitimate traffic to assess their False

Positive Rate (FPR) and against malicious traffic to assess their True Positive Rate

(TPR) (also referred as the recall or the attack detection rate). Malicious network

traffic is obtained from IoTPOT [Pa+15], an IoT honeypot designed to be infected

by IoT malware. The trained anomaly detectors are also tested against synthetically

generated bidirectional flows to evaluate the proportion of synthetic flows that can

evade them. We assume that the synthetic flows have been generated by a malware

and hence their ground truth label is ’malicious’.

Three anomaly detection algorithms are tested: One-Class SVM (OCSVM),

Isolation Forest (IForest), and Elliptic Envelope (EE). The features used as input

for the anomaly detectors are the normalized packet sizes. As for the datasets, 80%

of the 12,198 real Google Home Mini bidirectional flows are used for training and

20% for testing. 2440 malicious bidirectional flows from IoTPOT are used during

the testing phase to assess the TPR of the trained detectors.

Table 4.2 presents the performance on the test set achieved by the different

anomaly detectors. In terms of the attack detection rate, OCSVM seems to perform

the best with a TPR of 95.04%. While in terms of the FPR, IForest performs the

best with an FPR of 2.17%. EE yields the worst FPR (12.46%).

Table 4.3 shows the False Negative Rate (FNR) on the synthetic bidirectional

flows, denoted FNRsynthetic, which corresponds to the proportion of synthetic bidi-

rectional flows that are predicted as being legitimate despite the fact that those flows

are not coming from the Google Home Mini but potentially from a malware. It is

99



Table 4.3: Simplified packet ordering - FNR when the anomaly detectors are fed
with synthetic flows (FNRsynthetic) compared to the FNR and TNR on the test set

OCSVM IForest EE

FNRsyntheticFNRsyntheticFNRsynthetic

(WGAN-GP)
.9817 .9833 .9047

FNRsyntheticFNRsyntheticFNRsynthetic

(WGAN-C)
.9798 .9886 .8948

FNRtestFNRtestFNRtest .0496 .1053 .0766

TNR .9762 .9783 .8754

compared to the FNR and the True Negative Rate (TNR) on the test set containing

real bidirectional flows. The FNR on the test set (FNRtest) is the proportion of

malicious flows that are incorrectly predicted as being legitimate. While the TNR

on the test set corresponds to the proportion of bidirectional flows actually coming

from the Google Home Mini that are correctly labeled by the anomaly detector as

legitimate.

The FNRsynthetic is very high compared to the FNRtest meaning that if a mal-

ware was to use our trained generative model to mimic the legitimate networking be-

havior, it would considerably improve its evasion capability and the malware would

be able to evade the anomaly detectors most of the time. In fact, the FNRsynthetic

indicates that from 89.48% to 98.86% of the synthetic bidirectional flows (depending

on the type of anomaly detector and the WGAN type used for training the genera-

tor) are able to fool the anomaly detectors into labeling them as legitimate. While

without the use of a generative model, the FNRtest indicates that only 4.96% to

10.53% of the malicious flows are incorrectly predicted as being legitimate. The

FNRsynthetic is also slightly higher than the TNR in most of the cases, indicating

that a synthetic bidirectional flow is more likely to be labeled as legitimate by the

anomaly detectors than a real flow actually coming from a Google Home Mini. This

can be explained by the presence of bidirectional flows coming from the Google

Home Mini that are very rare and end up being wrongly labeled as being malicious

(rare instances that appear in the test set but were not seen during anomaly detec-

tor training). While the generative model tends to generate the rarest bidirectional

flow types less often and give priority to the frequent ones.

4.1.6 Experimental Results - Realistic Packet Ordering

In this subsection, we present the results obtained when bidirectional flows are

described using the realistic ordering model.

Autoencoder and WGAN Architecture

The total number of possible unique (size, direction) tuples produced by the Google

Home Mini is 635, which corresponds to the vocabulary size. Note that this value

is slightly higher than 535, the total number of unique packet size values. Which

100



means that most packet size values are associated with only one packet direction

(sent or received). Each element of a sequence R is a one-hot encoded vector of

dimension 635. Hence, the shape of the matrix X (defined in Section 4.1.2) when

describing one sequence of packet sizes is (V,L) = (635, 42). The architectures of the

autoencoder and the WGAN are the same as the ones described in Figure 4.6 and 4.7,

respectively. Only the dimensions of the input and output of the autoencoder are

adapted to the new vocabulary size.

Percentage of Valid Sequences

The generated sequences are of length 42 and consist of (size, direction) tuples.

As described in Section 4.1.1, if a sequence contains less than 42 packets then the

sequence is padded using a specific token that also acts as an end of sequence marker.

As a consequence, if an element of the sequence is equal to the padding token then

all the subsequent elements of the sequence must also be equal to that token. The

generated sequences that do not comply with this basic rule are considered invalid.

Our trained autoencoder/WGAN-GP and autoencoder/WGAN-C models generate

99.0% and 99.2% of valid sequences respectively. For the evaluation performed in

the next subsections, invalid sequences are discarded.

Statistical Characteristics Comparison

Similarly to Section 4.1.5, the distributions of different network characteristics (packet

sizes, packets per bidirectional flows, bytes per bidirectional flows) of the generated

and real bidirectional flows are compared for both autoencoder/WGAN-GP and

autoencoder/WGAN-C models (see Figure 4.9). We refer the reader to Section 4.1.5

for details about the methodology. The obtained results are also compared to the

ones obtained by a baseline variational autoencoder (VAE) model. Table 4.4 presents

the EMD used to measure the dissimilarity between the different distributions. The

values in brackets represent the EMD obtained for the model trained under the sim-

plified ordering assumption. Both the WGAN-GP and the WGAN-C based models

outperform the VAE which suffers from severe mode collapse. In terms of the di-

versity of the generated bidirectional flows, the WGAN-C based model seems to

perform better than the WGAN-GP based model as it achieves a smaller EMD

for every compared network characteristics. Overall the performance achieved by

models trained using sequences of size, direction tuples are not as good as the ones

obtained under the simplified ordering assumption. Indeed, for all compared network

characteristics, the EMD is smaller under the simplified ordering assumption. Im-

plying that the dissimilarity (as measured by the EMD) between the distributions

of real and generated traffic is smaller under the simplified ordering assumption.

Whether training a WGAN-GP or WGAN-C based model, the results obtained us-

ing simplified ordering assumption are always better than the ones obtained using

sequences of size, direction tuples.

101



(a) Autoencoder/WGAN-GP (b) Autoencoder/WGAN-C (c) VAE

(d) Autoencoder/WGAN-GP (e) Autoencoder/WGAN-C (f) VAE

(g) Autoencoder/WGAN-GP (h) Autoencoder/WGAN-C (i) VAE

Figure 4.9: Realistic packet ordering - Comparison of the distribution of packet
sizes (a, b, c), the number of packets per bidirectional flow (d, e, f), the number of
bytes per bidirectional flows (g, h, i) for different models (autoencoder/WGAN-GP,
autoencoder/WGAN-C, VAE)

Evading an Anomaly Detection Based NIDS

In this subsection, we assess how our proposed generative model (generating se-

quences of (size, direction) tuples representing bidirectional flows) can be used by a

malware to mimic legitimate behavior and evade an anomaly detection based NIDS.

For details about the tested anomaly detection algorithms (OCSVM, IForest, EE),

the features and the composition of the training and testing datasets, we refer the

reader to Section 4.1.5.

Table 4.5 presents the performance on the test set achieved by the different

anomaly detectors. In terms of the attack detection rate, IForest seems to perform

the best with a TPR of 88.41%. While in terms of the FPR, OCSVM performs the

best with an FPR of 7.88%. EE yields the worst FPR (19.69%).

Table 4.3 shows the FNR on the synthetic bidirectional flows, denoted FNRsynthetic.

It is compared to the FNR (FNRtest) and the TNR on the test set containing real

bidirectional flows. We refer the reader to Section 4.1.5 for more details about

FNRsynthetic, FNRtest and TNR.

The FNRsynthetic is greater than the FNRtest, implying that if a malware was

102



Table 4.4: Realistic packet ordering - Earth mover’s distance (10−4) between the
real and generated traffic histograms of Figure 4.9 WGAN-C based model achieves
the smallest distance. The EMD obtained under the simplified ordering assumption
are shown in brackets.

WGAN-GP WGAN-C VAE

Packet sizes
3.822

(1.694)
2.899

(1.539)
29.635

(27.439)

Packets per
bidirectional flows

15.417
(10.228)

14.086
(9.799)

201.667
(97.362)

Bytes per
bidirectional flows

6.738
(4.673)

6.672
(3.837)

43.451
(40.597)

Table 4.5: Realistic packet ordering - TPR and FPR on the test set achieved by the
trained anomaly detectors

OCSVM IForest EE

TPR .6416 .8841 .6502

FPR .0788 .1069 .1969

to use our trained generative model to mimic the legitimate networking behavior,

it would improve its evasion capability and would be able to evade the anomaly

detectors most of the time. More precisely, the FNRsynthetic indicates that from

78.91% to 80.91% of the synthetic bidirectional flows are able to fool the anomaly

detectors into labeling them as legitimate. While without the use of a generative

model, the FNRtest indicates that 11.59% to 35.84% of the malicious flows are

incorrectly predicted as being legitimate. Note however that contrary to the results

obtained when generating sequences under the simplified ordering assumption (see

Section 4.1.5), the FNRsynthetic is slightly smaller than the TNR. Meaning that a

synthetic bidirectional flow is still slightly more likely to be labeled as malicious by

the anomaly detectors than a real flow actually coming from a Google Home Mini.

4.1.7 Discussion

Mimicking the legitimate networking behavior of a device is interesting for data ex-

filtration purposes. For example, one can imagine a malware intended for Google

Home Minis that uses the microphone of the compromised device to listen to con-

Table 4.6: Realistic packet ordering - FNR when the anomaly detectors are fed with
synthetic flows (FNRsynthetic) compared to the FNR and TNR on the test set

OCSVM IForest EE

FNRsyntheticFNRsyntheticFNRsynthetic

(WGAN-GP)
.8091 .8091 .8091

FNRsyntheticFNRsyntheticFNRsynthetic

(WGAN-C)
.7891 .7891 .7891

FNRtestFNRtestFNRtest .3584 .1159 .3498

TNR .9212 .8931 .8031

103



versations and exfiltrate the data. However for other types of malware, such as

botnets used to perform large-scale DDoS attacks, complying with the legitimate

networking behavior might be too much of a constraint. In an attempt to comply

with the legitimate behavior, the malware might end up losing its malicious capa-

bility altogether. Further studies need to be carried out on how to find a balance

between complying with legitimate behavior and not loosing malicious capabilities.

The types of sequences of packet sizes generated by the trained generator are

very dependent on the data used during training. The generator will only be able

to generate sequences similar to the sequences it has seen during the training phase.

For our experimental setup, we interacted with the Google Home Mini primarily to

ask simple questions like ”what’s the weather today?” or ”what’s the news today?”.

Hence, our trained generator will generate sequences of packets that are represen-

tative of our interactions with the Google Home Mini like asking questions. Now,

If someone makes a very different use of the Google Home Mini, like asking it to

play music via a Spotify account, then the Google Home Mini might produce very

different types of packet sequences. For the generator to be able to generate these

new types of sequences, it will need to be retrained on the new data.

4.1.8 Summary

In this Section, we presented a method to generate sequences of packet sizes or

sequences of (size, direction) tuples, representing bidirectional flows that look as

if they were generated by a real smart device. Sequences of packet sizes (or (size,

direction) tuples) are sequences of categorical data. To overcome the issue with

the use of GANs for the generation of sequences of categorical data, we decided to

combine an autoencoder with a WGAN. First, the autoencoder is trained to learn

to convert sequences of categorical data into a latent vector in a continuous space.

Then a WGAN is trained on the latent space to learn to generate latent vectors that

can be decoded into realistic sequences, through the decoder of the autoencoder.

Experimental results using a Google Home Mini show that our method allows us

to generate high quality and realistic looking sequences of packet sizes representing

bidirectional flows. The next step is to determine the duration of the generated

bidirectional flows.

4.2 Determining the Duration of a Generated Bidirec-

tional Flow

Once a sequence of packet sizes corresponding to a bidirectional flow has been gener-

ated, the next step is to determine its duration. In this Section, we present a method

leveraging Mixture Density Networks to determine the duration of a bidirectional

flow represented by a sequence of packet sizes (simplified ordering) or by a sequence

of (size, direction) tuples (realistic ordering).

104



4.2.1 Duration as a Random Variable

The duration of a bidirectional flow is the time length the flow lasts from begin-

ning to end. For example, in the case of a bidirectional flow that represents a TCP

connection, the duration is the time that elapses from the establishment of the con-

nection (the moment the client sends a SYN to the server to initiate the connection)

to its termination (when a FIN packet is transmitted). Note that the duration is

not deterministic but rather a random variable. The same bidirectional flow, iden-

tified with the same source and destination addresses/ports, the same protocol, and

consisting of the same sequence of packets, can take a wide range of different dura-

tion values. Network congestion is one of the reason why the duration of identical

bidirectional flows can differ. Let take the example of F1, a very specific bidirec-

tional flow often produced by the Google Home Mini. F1 is the following sequence

of packet sizes:

F1 = {60 60 52 52 123 135 52 52 52}

Figure 4.10 shows the distribution of the durations for F1. The duration of F1 is

not always the same. It can vary from 0.011s to 0.6s. It is often equal to a value

around 0.015s. Now let us imagine that F1 is a bidirectional flow generated by

one of our generator trained in Section 4.1. How do we determine the duration of

the generated sequence of packets F1? Our aim is to train a model that takes a

synthetic bidirectional flow (sequence of packet sizes or sequence of (size, direction)

tuples) as input and determines its duration. If we were to train a deterministic

machine learning model, it would take F1 as input and would always output the

most likely duration value (0.015s in our case). However, when generating synthetic

flows, it is not realistic for a specific bidirectional flow to always have the same

duration. Therefore, we need a machine learning model that takes F1 as input and

outputs p(duration|F1), the entire probability distribution of all possible duration

values for F1 (and not only the duration value with the highest likelihood). Then,

to determine the duration of F1, we can just sample a value from p(duration|F1).

This way, the duration of synthetic bidirectional flows will behave closely to the

duration of real bidirectional flows (taking a wide range of possible values instead

of always taking one specific values). Because duration is a noisy variable that can

vary greatly, it needs to be modeled with probabilistic deep learning algorithms that

output probability distributions. Let Fi be a bidirectional flow generated by one of

our trained model from Section 4.1. To determine p(duration|Fi) (the distribution

of the durations of Fi), we will train Mixture Density Networks (MDN), a particular

type of neural network that output probability distributions.

4.2.2 Mixture Density Networks

A Mixture Density Networks (MDN) is obtained by combining a deep neural network

with a mixture of distributions [Bis06]. An MDN is a neural network that provides

the parameters of multiple distributions that are then combined using some weights.

105



Figure 4.10: Duration distribution for the bidirectional flow F1

The weights are also provided by the neural network. In this subsection, we describe

how MDNs work using specific mathematical notations.

Given a sufficient number of components, a Gaussian mixture is capable of mod-

elling any arbitrary probability density. The conditional probability density p(t|x)

of a Gaussian mixture is given by:

p(t|x) =
∑C

c=1 αc(x)N (t|µc(x), σ2c (x))

where:

• c denotes the index of the corresponding mixture component. C is the total

number of components and is an hyperparameter of the model.

• N denotes a Gaussian distribution.

Figure 4.11: The mixture density network can represent general conditional proba-
bility densities p(t|x) by considering a parametric mixture model for the distribution
of t whose parameters are determined by the outputs of a neural network that takes
x as its input vector [Bis06]

106



• µc(x) is the mean of the Gaussian distribution representing the cth component

of the mixture. it is conditioned on the input x.

• σc(x) is the standard deviation of the Gaussian distribution representing the

cth component of the mixture. it is conditioned on the input x.

• αc(x) is the mixing coefficient. It corresponds to the weight of the cth compo-

nent of the mixture. it is conditioned on the input x.

An MDN is a neural network that takes x as input and provides the parameters

αc(x), µc(x), σc(x) of the Gaussian mixture model as output. Hence, its total

number of outputs is equal to 3 × C. The mixing coefficients must be positive

and sum to one:
∑C

c=1 αc(x) = 1. This ensures that the conditional probability

density p(t|x) integrates to one. In practice, a softmax function is used over the

mixing coefficients to ensure that they respect the constraints. As for the standard

deviations σc(x), they must be positive. To this purpose, a variant of the Exponential

Linear Unit (ELU) activation function with a unit offset can be used. Let W be the

vector of weights and biases of the MDN. The MDN is trained by minimizing the

negative logarithm of the likelihood given by:

E(W ) = −
∑m

i=1 ln
{∑C

c=1 αc(xi,W )N (t|µc(xi,W ), σ2c (xi,W ))
}

where m is the number of training instances.

Note that any neural network architecture (CNN, RNN, etc.) can be extended to

become an MDN. For our duration determination problem, the input x is a bidirec-

tional flow Fi, represented either by a sequence of packet sizes (simplified ordering)

or a sequence of (size, direction) tuples (realistic ordering). The MDN outputs

the parameters αc(x), µc(x), σc(x) of the Gaussian mixture model that represents

the conditional probability density function p(duration|Fi). With p(duration|Fi) in

hands, it is possible to sample a duration value for Fi.

4.2.3 Evaluation Methodology

To assess the quality of the generated duration values, we compare the distribution

of the duration of synthetic bidirectional flows, as determined by the MDN, with the

distribution of the duration of real bidirectional flows. First, synthetic sequences of

packet sizes are generated using the generators trained in Section 4.1. The generators

used are the ones trained using Autoencoder/WGAN-C model, as they yielded the

best results (see Sections 4.1.5 and 4.1.6). Then, the generated packet size sequences

are fed to the trained MDN to determine their duration. More precisely, the MDN

will output a distribution of possible duration values from which a single value will

be sampled. Hence, a generated synthetic bidirectional flow consist of a sequence

of packet sizes along with a duration value. The distribution of the duration of the

synthetic bidirectional flows is compared to the distribution of the duration of real

bidirectional flows in two different ways:

107



• Comparison of the overall duration distribution (obtained from the whole set

of generated and real bidirectional flow).

• Comparison of the duration distribution for a specific bidirectional flow, namely

the bidirectional flow F1 (see Section 4.2.1 for more details about F1)

For the latter comparison, we fed the MDN with the sequence F1 to obtain a duration

distribution which is compared to the real duration distribution for F1.

4.2.4 Duration Dataset

To train the MDNs we use the same Google Home Mini dataset described in Sec-

tion 4.1.4. Indeed, for each bidirectional flow produced by the Google Home Mini we

not only collected the sequence of packet sizes but also its corresponding duration.

The MDNs take as input the sequences of packet sizes and is trained to predict the

duration values.

4.2.5 Experimental Results

In this subsection, we first describe the architecture of the MDN used. Then, we

compare the distribution of the duration of the synthetic bidirectional flows, as

determined by the MDN, with the distribution of the duration of real bidirectional

flows.

MDN Architecture

Whether it is a sequence of packet sizes or a sequence of (size, direction) tuples,

the input of the MDN is a sequence of categorical data. Therefore, the MDN is

composed of two parts (see Figure 4.12): the first part transforms the sequence of

categorical data into a dense vector, the second part computes the parameters αc(x),

µc(x), σc(x) of the conditional probability density p(duration|Fi).

For the first part of the MDN, we reuse the encoder of the autoencoder trained

in Section 4.1. All the layers of the encoder are frozen (the weights are made non-

trainable), so that Gradient Descent will not modify them. Such technique of reusing

pretrained layers as part of a model is also known as transfer learning. This reduces

the computational cost of the training process as we no longer have to train the first

layers of the MDN. It also helps the model to better generalize (avoid overfitting),

as the pretrained encoder was already trained to extract a compressed meaningful

representation of the sequences of packet sizes. The second part of the MDN, is

just a Feedforward Neural Network (FNN) composed of 4 densely connected hidden

layers, each with 100 neurons and using ReLU activation functions. The conditional

probability density p(duration|Fi) is a mixture of 10 Gaussian distributions (C =

10). Hence, the size of the output of the MDN is 3× 10 = 30.

Two separate MDNs are trained: one that takes sequences of packet sizes as input

and another that takes sequence of (size, direction) tuples as input. The MDNs are

trained (more precisely only the weights of the FNN part are trainable) using real

108



Figure 4.12: MDN architecture

bidirectional flows produced by the Google Home Mini. The duration values are

standardized so that they have a zero mean and unit variance. During the training

phase, part of the dataset is used as a validation set to determine the appropriate

number of epochs. Once the best number of epochs has been determined, the MDNs

are retrained on the whole dataset.

Comparison of Synthetic Duration Values with Real Duration Values

Once trained, the MDNs are used to determine the duration of synthetic bidirec-

tional flows. The MDNs take as input synthetic bidirectional flows and output for

each of them a probability distribution of possible duration values. Then, for each

flow, a duration value is sampled. Note that the sampled duration value is con-

strained to vary between the minimum duration value duration mintrain and the

maximum duration value duration maxtrain observed in the training set. If the

sampled duration value is less than duration mintrain, it is rounded up to be equal

to duration mintrain. While if it is greater than duration maxtrain, it is rounded

down to duration maxtrain. We first compare the overall duration distribution of

the synthetic bidirectional flows (as predicted by the MDNs) with the overall du-

ration distribution of real bidirectional flows (Figure 4.13.a and 4.14.a). Then, we

compare the duration distribution predicted by the MDNs for bidirectional flow F1

with the real duration distribution associated with F1 (Figure 4.13.b and 4.14.b).

Figure 4.13 shows the results obtained when bidirectional flows are described us-

ing sequences of packet sizes, while Figure 4.14 shows the results obtained when

bidirectional flows are described using sequences of (size, direction) tuples.

The overall duration of generated bidirectional flows is close to the duration of

real ones. Both distributions present peaks at 0.001s, 240s and 280s. However, the

distribution of generated durations is smoother than the distribution of real dura-

tions. This fact is even more visible when looking at the generated and the real

duration distributions for F1. Both, generated and real duration distributions for

F1 are similar in that both are skewed right. However, the real duration distribution

for F1 is multimodal (with 3 modes), while the generated duration distribution is

unimodal. Moreover, in the case of the MDN trained with sequences of (size, direc-

tion) tuples, the generated duration distribution for F1 is shifted to the right: the

109



(a) Overall duration distribution (b) Duration distribution for F1

Figure 4.13: Simplified packet ordering - Comparison of real duration values with
durations generated by the MDN trained using sequences of packet sizes

(a) Overall duration distribution (b) Duration distribution for F1

Figure 4.14: Realistic packet ordering - Comparison of real duration values with
durations generated by the MDN trained using sequences of (size, direction) tuples

real duration distribution peaks at 0.015s while the generated duration distribution

peaks at 0.1s. Note that overall the duration of real bidirectional flows range from

0.001s to 814s, while the duration of F1 varies from 0.011s to 0.6s. In fact, by look-

ing at the duration distribution for F1, we are zooming in to look at a specific part

(ranging from 0.011s to 0.6s) of the overall duration distribution. Comparison of

the duration distributions for F1 confirms that the generated duration distribution is

smoother than the real one: the 3 peaks that arises in the real duration distribution

are smoothed out to form only one mode in the generated duration distribution.

4.2.6 Summary

We presented a method to determine the duration of the bidirectional flows gener-

ated in Section 4.1. The duration is a noisy variable that can vary greatly because

of external factors, such as network congestion. Therefore, it needs to be mod-

eled with probabilistic deep learning algorithms such as MDN. An MDN takes a

bidirectional flow as input (represented by a sequence of packet sizes for example)

and outputs a probability distribution of possible duration values. Then, a dura-

110



tion value is sampled from that distribution and assigned to the bidirectional flow.

Experimental results show that MDNs are capable to grasp the overall duration dis-

tribution of real bidirectional flows. However, a closer look to specific bidirectional

flows shows that the duration distribution predicted by MDNs are too smooth and

fail to model multiple modes. Further works are required to improve the ability of

the described method to model multimodal duration distributions associated with

specific bidirectional flows .

4.3 General Conclusion

In this chapter, we presented a method to generate realistic IoT network traffic

data. Our proposed method improves the state of the art in that it allows the

generation of both packet-level and flow-level data at the same time. Packet-level

features are the sizes of the individual packets in a bidirectional flow, while flow-level

features are the total number of packets and bytes per flow, the packet sizes ordering

and the duration. We leveraged generative deep learning models to generate ordered

sequences of packet sizes representing bidirectional flows. More precisely, to generate

sequences of categorical data (packet size values or (size, direction) tuples), we

combined an autoencoder with a WGAN. Next, MDNs a type of neural networks that

output probability distributions helped us to determine the corresponding duration

of the generated bidirectional flows. Experimental results using Google Home Mini

data shows that our developed approach achieves promising results.

For future works, we suggest to train and test our model on more data and with

a variety of smart devices. We also suggest to include other packet-level features

such as the status of the TCP flags or the TTL value of each packet in the sequence.

The inter-arrival times between packets in the sequence can also help to have a more

fine-grained definition of the temporal aspect of the flows.

111



5

Conclusion

“There is no good in anything until it is finished.”

– Genghis Khan

The rapid development of the IoT raises security concerns as most smart devices

are vulnerable. IoT devices have become low hanging fruits for botnet creators.

Moreover, the constantly evolving malware landscape makes it challenging to secure

IoT networks. Because IoT devices are task-specific, their networking behaviors

follow a stable and predictable pattern, making them well suited for data analysis

techniques. Advances in the field of machine learning, especially deep learning can

be leveraged to develop IoT network monitoring tools. However, deep learning

algorithms training often require huge amount of data that might not be easily

available. In this thesis, we attempted to answer the following two questions:

• How can deep learning help to monitor IoT networks?

• how can deep learning help to overcome the lack of IoT network traffic data?

The first part of this thesis focused on developing two types of IoT network

monitoring tools: IoT device type recognition systems and IoT NIDS.

Existing works on IoT device type recognition through network traffic analysis

are limited in that they do not satisfy the following requirements: be delay-free (do

not require the user to wait for long periods of time), be phase-independent (do

not focus only on a specific phase of a device life cycle), and be non-intrusive (do

not require to look at application level data and thus allow full data encryption).

We proposed a machine learning based IoT device type recognition system that is

delay-free, phase-independent and non-intrusive. To this purpose, we first defined an

appropriate set of features to describe bidirectional flows. It consists of the size of the

112



first N packets sent and received along with the corresponding IAT between packets.

We performed data visualization using t-SNE to point out the effectiveness of our

selected set of features in distinguishing between the bidirectional flows produced

by the different IoT devices. We trained and tested different machine learning

algorithms to classify the bidirectional flows based on the IoT device they belong

to. An overall accuracy as high as 99.9% was achieved by the Random Forest

classifier. Because of the small size of the dataset the ANN did not outperform the

Random Forest classifier.

Existing works on IoT NIDSs are limited either because they can detect only

certain types of attacks or because they require prior knowledge about the type of the

device that is producing the network traffic (and hence cannot be deployed outside

the local network). To overcome those limitations, we proposed a method to detect

anomalous communications in IoT networks based on a set of sparse autoencoders.

Features used to describe bidirectional flows are statistics on the size of the first

N packets sent and received, along with statistics on the IAT between packets.

During the training phase, separate autoencoders are trained to learn the legitimate

communication profile of the IoT devices present in the network, an autoencoder

for each type. During the testing phase, if for a bidirectional flow it is possible to

know the type of the device it belongs to, then it is redirected to the autoencoder

trained for that particular device type. However, if it is not possible to know the

type of device the bidirectional flow belongs to, then it is fed to all the trained

autoencoders. The flow is considered to be legitimate if at least one autoencoder

considers so. Promising experimental results show that our method can achieve

high TPR with a reasonable FPR. For example, a TPR of 82% is achieved for a

FPR of 0.02%. The set of autoencoders also outperforms other anomaly detection

algorithms such as one-class SVM or Isolation Forest.

The second part of this thesis focused on leveraging recent advances in the field

of generative deep learning to generate real-looking IoT network traffic data. Al-

though a flow and the packets composing it are closely related (for example the

number of bytes exchanged for the duration of a flow amounts to the sum of the

sizes of each packet that composes the flow), existing works on network traffic gen-

eration, either focus on flow-level features or packet-level features generation, but

not both at the same time. Moreover, none of the existing works uses IoT network

data. We proposed to generate sequences of packet sizes representing bidirectional

flows. Hence, while generating packet-level features which are the sizes of individual

packets, our developed generator implicitly learn to comply with flow-level charac-

teristics, such as the ordering of the packets or the total number of packets and bytes

in a bidirectional flow. Sequences of packet sizes were modeled as being sequences

of categorical data. Hence, to overcome the issue with the use of GANs for the

generation of sequences of categorical data, we decided to combine an autoencoder

with a WGAN. First, the autoencoder was trained to learn to convert sequences

of categorical data into a latent vector in a continuous space. Then a WGAN was

trained on the latent space to learn to generate latent vectors that can be decoded

113



into realistic sequences, through the decoder of the autoencoder. For each generated

sequence of packet sizes, we also determined its total duration. The duration being

a noisy variable, its value was determined using MDNs, a type of neural networks

that output probability distributions allowing to model uncertainty. Experimental

results using data collected from a Google Home Mini shows that our developed

approach achieves promising results.

Perspectives for Future Work

In this thesis, we leveraged deep learning to develop IoT network monitoring tools

such as IoT device type recognition system and IoT NIDS. The proposed models

achieved promising results. However, one of the major limitation of the study is

the small size of the dataset used. The experimental smarthome used to produce

the dataset contained only four IoT devices. For future work, we suggest to test

the models proposed in this thesis on larger IoT network traffic datasets containing

more devices. One should also consider how the models can be adapted to general

purpose networks containing not only IoT devices but also personal computers or

smartphones. In this thesis, We also proposed to take advantage of generative deep

learning to produce synthetic IoT network traffic data. We primarily focused on

packets sizes and duration of a bidirectional flow. But those are not the only features

characterizing network traffic data. Variables like the TTL value or the state of the

TCP flags of a network packet should also be considered to generate even more

fine-grained network traffic data. In addition to the aforementioned propositions,

for future work we also suggest the following complementary research perspectives:

• Develop flexible, efficient and scalable features extractor. In this thesis, we fo-

cused on developing IoT network monitoring applications without wondering

how the features fed to the models are extracted from raw network traffic in

an operational setting. As shown in Figure 1.4, a critical part of the whole

system is the features extractor. For large networks, it might have a lot of

data to preprocess and hence must be scalable. Network traffic must be pre-

processed efficiently to avoid introducing extra latency. Currently there is no

tool that can easily be integrated in an operational networking environment

in a scalable manner and without inducing significant latency. Developing

a general features extraction framework for network traffic data will allow to

easily deploy machine learning based network monitoring systems in real world

settings. Such frameworks should give the possibility to select features from a

large number of choices ranging from packet-level features like specific fields of

IP headers (size, TTL, fragmentation flags, etc.) to flow-level features like the

number of bytes per flow or the duration of a flow. The possibilities offered

by Software Defined Networking (SDN) and protocols like OpenFlow might

be leveraged to develop such feature extraction framework. Programming the

data plane of network switches using languages such as P4 might even allow

to extract more customized and fine-grained features.

114



• Leverage machine learning to develop Host based Intrusion Detection Systems

(HIDS) or anti-viruses for the IoT. The trained models must be able to run

on resource-constrained IoT devices. To this purpose, different deep learning

model compression techniques might be explored, such as pruning, quanti-

zation, knowledge distillation[20a]. Pruning involves removing connections

between neurons by zeroing out values in the weights matrix. Quantization

consists of decreasing the size of the weights by using smaller bit-widths: for

example, by mapping weights represented using 32 bits floats to 8-bits inte-

gers. Knowledge distillation is the process of transferring the knowledge from

a large trained model to a smaller model by training it to mimic the larger

model’s output. Compressing techniques will dramatically reduce the num-

ber of parameters of deep learning models making them suitable to run on

resource-constrained environment. Of course, the main challenge is to find the

best trade-off between compressing the model and keeping its performance

reasonable.

• Explore how Graph Neural Networks (GNN)[Zho+18a] can be used to secure

IoT networks. GNNs are a special type of neural network architectures de-

signed to work on graphs. A graph is a set of nodes and a set of edges that

connect related node together. A graph is said to be directed if edges have

orientations. A GNN takes as input a graph and is mainly used for two tasks:

node classification and graph classification. In node classification, the GNN is

used to determine the label of each node composing the input graph. In graph

classification, the GNN outputs a single label for the whole graph. Graphs

are well suited to describe IoT networks: devices can be represented by nodes

while interdependencies between them can be represented by edges. For ex-

ample, if a vocal assistant can be used to switch on/off a bulb then the nodes

representing those two devices are connected. Note that the relationship is

directed, the vocal assistant can change the state of the bulb but the opposite

is not necessarily true. If the networks contains hundreds or even thousands

of interdependent devices, the obtained graph might be very complex. A node

classification problem might be to determine if a device (or node) is com-

promised or safe. For example, assume that we already know the label of a

small number of nodes (semi-supervised setting), then a GNN can be trained

to find out the labels of the remaining nodes. A graph classification problem

might be to determine if an IoT network architecture is secure or not. In this

case, the GNN will take different graphs representing different IoT network

architectures and will output a score determining their security level.

• Develop interpretable network monitoring models. In this thesis, we devel-

oped machine learning based network monitoring tools that were used as

black boxes. Although, they achieved promising performances, they can be

improved. With a black box model, once a prediction has been made, it is

not possible to determine which input features have contributed the most to

115



the final decision. In technical terms, our models are not interpretable. Inter-

pretability refers to the ability to determine the cause-and-effect relationship

of a machine learning model. It reinforces trust in the model. It is also help-

ful for debugging purposes to detect any bias in machine learning models.

Knowing what input features are responsible for the model’s final decision

can also help network administrators to discard false positives. Developing

interpretable neural networks is a hot topic and is seen as the future of deep

learning. We suggest for future work, to explore how existing works to make

models interpretable, such as the use of saliency maps [BF20] and methods

like DeepLIFT [SGK17] or LIME [RSG16], can be adapted to deep learning

based network monitoring tools. Recently brought into the spotlight thanks

to the Transformer [Vas+17] architecture in the field of natural language pro-

cessing, attention-based neural networks also seem to be an interesting option

to achieve interpretability [SS19; WP19].

• Define a set of comprehensive metrics that allow to assess the quality of gen-

erated network traffic. At present, each work uses its own metrics to assess

the realism of the generated network traffic data, making comparison between

works very difficult. In fact, it is worth asking the broader question of what

realism is when generating synthetic network traffic. Given the complex na-

ture of network traffic data, one needs metrics to assess the realism at different

levels of granularity from packet-level to flow-level: what is a realistic network

packet? What is a realistic network flow? One might even needs to describe

realism beyond the only networking considerations by taking into account hu-

man activities. For example, the network traffic in a real smart home might

follow a precise temporal pattern with peak of activities early in the morning

(switching on lights, asking the vocal assistant about the weather, using a

smart coffee machine, etc) and less activities during sleeping time. Applied

deep learning being an empirical subject, defining proper metrics is crucial to

its success. Researchers in the networking community must come with a set

of metrics to assess the realism of synthetic network traffic that they all agree

upon.

116



List of Publications

M. R. Shahid, G. Blanc, H. Jmila, Z. Zhang and H. Debar, ”Generative Deep Learn-

ing for Internet of Things Network Traffic Generation,” 2020 IEEE 25th Pacific

Rim International Symposium on Dependable Computing (PRDC), Perth, Australia,

2020, pp. 70-79, doi: 10.1109/PRDC50213.2020.00018.

M. R. Shahid, G. Blanc, Z. Zhang and H. Debar, ”Anomalous Communications De-

tection in IoT Networks Using Sparse Autoencoders,” 2019 IEEE 18th International

Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA,

2019, pp. 1-5, doi: 10.1109/NCA.2019.8935007.

M. R. Shahid, G. Blanc, Z. Zhang and H. Debar, ”IoT Devices Recognition Through

Network Traffic Analysis,” 2018 IEEE International Conference on Big Data (Big

Data), Seattle, WA, USA, 2018, pp. 5187-5192, doi: 10.1109/BigData.2018.8622243.

117



Bibliography

[20a] An Overview of Model Compression Techniques for Deep Learning in

Space. 2020 (accessed December 19, 2020). url: https://medium.

com / gsi - technology / an - overview - of - model - compression -

techniques-for-deep-learning-in-space-3fd8d4ce84e5.

[20b] Flu project. 2017 (accessed July 6, 2020). url: https://github.com/

fluproject/flu.

[20c] Future-proof IoT with RIOT-fp. 2020 (accessed December 4, 2020).

url: https://future-proof-iot.github.io/RIOT-fp//.

[20d] Network Information Management and Security Group (NIMS). (ac-

cessed July 6, 2020). url: https://projects.cs.dal.ca/projectx/

Download.html.

[20e] NSL-KDD dataset. 2009 (accessed June 30, 2020). url: https://www.

unb.ca/cic/datasets/nsl.html.

[20f] The CAIDA DDoS Attack 2007 Dataset. 2007 (accessed July 6, 2020).

url: https://www.caida.org/data/passive/ddos- 20070804_

dataset.xml.

[20g] The Earth Mover’s Distance (EMD). 2020 (accessed June 24, 2020).

url: http://infolab.stanford.edu/pub/cstr/reports/cs/tr/99/

1620/CS-TR-99-1620.ch4.pdf.

[20h] Virustotal. 2020 (accessed June 29, 2020). url: https://www.virustotal.

com/gui/home/upload.

[98] World cup 1998 dataset. 1998. url: https://ita.ee.lbl.gov/html/

contrib/WorldCup.html.

[Aca+18] Abbas Acar et al. “Peek-a-Boo: I see your smart home activities, even

encrypted!” In: arXiv preprint arXiv:1808.02741 (2018).

118

https://medium.com/gsi-technology/an-overview-of-model-compression-techniques-for-deep-learning-in-space-3fd8d4ce84e5
https://medium.com/gsi-technology/an-overview-of-model-compression-techniques-for-deep-learning-in-space-3fd8d4ce84e5
https://medium.com/gsi-technology/an-overview-of-model-compression-techniques-for-deep-learning-in-space-3fd8d4ce84e5
https://github.com/fluproject/flu
https://github.com/fluproject/flu
https://future-proof-iot.github.io/RIOT-fp//
https://projects.cs.dal.ca/projectx/Download.html
https://projects.cs.dal.ca/projectx/Download.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.caida.org/data/passive/ddos-20070804_dataset.xml
https://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://infolab.stanford.edu/pub/cstr/reports/cs/tr/99/1620/CS-TR-99-1620.ch4.pdf
http://infolab.stanford.edu/pub/cstr/reports/cs/tr/99/1620/CS-TR-99-1620.ch4.pdf
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://ita.ee.lbl.gov/html/contrib/WorldCup.html
https://ita.ee.lbl.gov/html/contrib/WorldCup.html


[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein

gan”. In: arXiv preprint arXiv:1701.07875 (2017).

[Ala+17] Fadele Ayotunde Alaba et al. “Internet of Things security: A survey”.

In: Journal of Network and Computer Applications 88 (2017), pp. 10–

28.

[Alp20] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[Alt20] Palo Alto. 2020 Unit 42 IoT Threat Report. 2020 (accessed June 24,

2020). url: https://start.paloaltonetworks.com/unit-42-iot-

threat-report.

[Ang17] Kishore Angrishi. “Turning internet of things (iot) into internet of vul-

nerabilities (iov): Iot botnets”. In: arXiv preprint arXiv:1702.03681

(2017).

[Ant+17] Manos Antonakakis et al. “Understanding the mirai botnet”. In: 26th

{USENIX} security symposium ({USENIX} Security 17). 2017, pp. 1093–

1110.

[ANT19] Nesrine Ammar, Ludovic Noirie, and Sébastien Tixeuil. “Network-protocol-

based IoT device identification”. In: 2019 Fourth International Con-

ference on Fog and Mobile Edge Computing (FMEC). IEEE. 2019,

pp. 204–209.

[ARF17] Noah Apthorpe, Dillon Reisman, and Nick Feamster. “A smart home

is no castle: Privacy vulnerabilities of encrypted iot traffic”. In: arXiv

preprint arXiv:1705.06805 (2017).

[Aum+10] Jean-Philippe Aumasson et al. “Quark: A lightweight hash”. In: Inter-

national Workshop on Cryptographic Hardware and Embedded Systems.

Springer. 2010, pp. 1–15.

[Ava20] Avast. Let’s play Hide ’N Seek with a botnet. 2018 (accessed June 25,

2020). url: https : / / blog . avast . com / hide - n - seek - botnet -

continues.

[Axe00] Stefan Axelsson. “The base-rate fallacy and the difficulty of intrusion

detection”. In: ACM Transactions on Information and System Security

(TISSEC) 3.3 (2000), pp. 186–205.

[Bai+18] Lei Bai et al. “Automatic device classification from network traffic

streams of internet of things”. In: 2018 IEEE 43rd Conference on Local

Computer Networks (LCN). IEEE. 2018, pp. 1–9.

[Bek+15] Dmitri Bekerman et al. “Unknown malware detection using network

traffic classification”. In: 2015 IEEE Conference on Communications

and Network Security (CNS). IEEE. 2015, pp. 134–142.

[Bez+18] Bruhadeshwar Bezawada et al. “Iotsense: Behavioral fingerprinting of

iot devices”. In: arXiv preprint arXiv:1804.03852 (2018).

119

https://start.paloaltonetworks.com/unit-42-iot-threat-report
https://start.paloaltonetworks.com/unit-42-iot-threat-report
https://blog.avast.com/hide-n-seek-botnet-continues
https://blog.avast.com/hide-n-seek-botnet-continues


[BF20] Jasmijn Bastings and Katja Filippova. “The elephant in the inter-

pretability room: Why use attention as explanation when we have

saliency methods?” In: arXiv preprint arXiv:2010.05607 (2020).

[BG15] Anna L Buczak and Erhan Guven. “A survey of data mining and

machine learning methods for cyber security intrusion detection”. In:

IEEE Communications surveys & tutorials 18.2 (2015), pp. 1153–1176.

[BI17] Elisa Bertino and Nayeem Islam. “Botnets and internet of things secu-

rity”. In: Computer 50.2 (2017), pp. 76–79.

[Bis06] Christopher M Bishop. Pattern recognition and machine learning. springer,

2006.

[Bit20] Bitdefender. New Hide ‘N Seek IoT Botnet using custom-built Peer-to-

Peer communication spotted in the wild. 2018 (accessed June 25, 2020).

url: https://labs.bitdefender.com/2018/01/new-hide-n-seek-

iot-botnet-using-custom-built-peer-to-peer-communication-

spotted-in-the-wild/.

[Bog+07] Andrey Bogdanov et al. “PRESENT: An ultra-lightweight block ci-

pher”. In: International workshop on cryptographic hardware and em-

bedded systems. Springer. 2007, pp. 450–466.

[BW20] Mario Ballano Barcena and Candid Wueest. Symantec security re-

sponse: insecurity in the internet of things. 2015 (accessed June 24,

2020). url: https://www.researchgate.net/profile/Hadeel_

Saleh_Haj_Aliwi/post/What_are_the_best_papers_in_IoT_

Security/attachment/59dda4b44cde260ad3cea425/AS:548138643853312@

1507697844002/download/paper1.pdf.

[Cap+20] Davide Caputo et al. “Are you (Google) Home? Detecting Users’ Pres-

ence through Traffic Analysis of Smart Speakers.” In: ITASEC. 2020,

pp. 105–118.

[CG16] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting

system”. In: Proceedings of the 22nd acm sigkdd international confer-

ence on knowledge discovery and data mining. 2016, pp. 785–794.

[CGP18] Kim-Kwang Raymond Choo, Stefanos Gritzalis, and Jong Hyuk Park.

“Cryptographic solutions for industrial Internet-of-Things: Research

challenges and opportunities”. In: IEEE Transactions on Industrial In-

formatics 14.8 (2018), pp. 3567–3569.

[Cha+19a] Nadia Chaabouni et al. “Network intrusion detection for IoT security

based on learning techniques”. In: IEEE Communications Surveys &

Tutorials 21.3 (2019), pp. 2671–2701.

[Cha+19b] Jeremy Charlier et al. “SynGAN: Towards Generating Synthetic Net-

work Attacks using GANs”. In: arXiv preprint arXiv:1908.09899 (2019).

120

https://labs.bitdefender.com/2018/01/new-hide-n-seek-iot-botnet-using-custom-built-peer-to-peer-communication-spotted-in-the-wild/
https://labs.bitdefender.com/2018/01/new-hide-n-seek-iot-botnet-using-custom-built-peer-to-peer-communication-spotted-in-the-wild/
https://labs.bitdefender.com/2018/01/new-hide-n-seek-iot-botnet-using-custom-built-peer-to-peer-communication-spotted-in-the-wild/
https://www.researchgate.net/profile/Hadeel_Saleh_Haj_Aliwi/post/What_are_the_best_papers_in_IoT_Security/attachment/59dda4b44cde260ad3cea425/AS:548138643853312@1507697844002/download/paper1.pdf
https://www.researchgate.net/profile/Hadeel_Saleh_Haj_Aliwi/post/What_are_the_best_papers_in_IoT_Security/attachment/59dda4b44cde260ad3cea425/AS:548138643853312@1507697844002/download/paper1.pdf
https://www.researchgate.net/profile/Hadeel_Saleh_Haj_Aliwi/post/What_are_the_best_papers_in_IoT_Security/attachment/59dda4b44cde260ad3cea425/AS:548138643853312@1507697844002/download/paper1.pdf
https://www.researchgate.net/profile/Hadeel_Saleh_Haj_Aliwi/post/What_are_the_best_papers_in_IoT_Security/attachment/59dda4b44cde260ad3cea425/AS:548138643853312@1507697844002/download/paper1.pdf


[Che19] Adriel Cheng. “PAC-GAN: Packet Generation of Network Traffic using

Generative Adversarial Networks”. In: 2019 IEEE 10th Annual Infor-

mation Technology, Electronics and Mobile Communication Conference

(IEMCON). IEEE. 2019, pp. 0728–0734.

[Cho+14] Kyunghyun Cho et al. “Learning phrase representations using RNN

encoder-decoder for statistical machine translation”. In: arXiv preprint

arXiv:1406.1078 (2014).

[Chr+18] Maximilian Christ et al. “Time series feature extraction on basis of scal-

able hypothesis tests (tsfresh–a python package)”. In: Neurocomputing

307 (2018), pp. 72–77.

[Cop+16] Bogdan Copos et al. “Is anybody home? Inferring activity from smart

home network traffic”. In: 2016 IEEE Security and Privacy Workshops

(SPW). IEEE. 2016, pp. 245–251.

[Coz+18] Emanuele Cozzi et al. “Understanding linux malware”. In: 2018 IEEE

Symposium on Security and Privacy (SP). IEEE. 2018, pp. 161–175.

[CZ18] Andrei Costin and Jonas Zaddach. “Iot malware: Comprehensive sur-

vey, analysis framework and case studies”. In: BlackHat USA (2018).

[DAF18] Rohan Doshi, Noah Apthorpe, and Nick Feamster. “Machine learning

ddos detection for consumer internet of things devices”. In: 2018 IEEE

Security and Privacy Workshops (SPW). IEEE. 2018, pp. 29–35.

[DC18] Abebe Abeshu Diro and Naveen Chilamkurti. “Distributed attack de-

tection scheme using deep learning approach for Internet of Things”.

In: Future Generation Computer Systems 82 (2018), pp. 761–768.

[DR18] David Donahue and Anna Rumshisky. “Adversarial text generation

without reinforcement learning”. In: arXiv preprint arXiv:1810.06640

(2018).

[EP16] Sam Edwards and Ioannis Profetis. “Hajime: Analysis of a decentral-

ized internet worm for IoT devices”. In: Rapidity Networks 16 (2016).

[Fos19] David Foster. Generative deep learning: teaching machines to paint,

write, compose, and play. O’Reilly Media, 2019.

[Fra17] Chollet Francois. Deep learning with Python. 2017.

[Fru+17] Mario Frustaci et al. “Evaluating critical security issues of the IoT

world: Present and future challenges”. In: IEEE Internet of things jour-

nal 5.4 (2017), pp. 2483–2495.

[Gar15] Sebastian Garcia. “Modelling the network behaviour of malware to

block malicious patterns. the stratosphere project: a behavioural ips”.

In: Virus Bulletin (2015), pp. 1–8.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.

MIT press, 2016.

121



[Gér19] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras,

and TensorFlow: Concepts, tools, and techniques to build intelligent

systems. O’Reilly Media, 2019.

[Goo+14] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in

neural information processing systems. 2014, pp. 2672–2680.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. “The PHOTON fam-

ily of lightweight hash functions”. In: Annual Cryptology Conference.

Springer. 2011, pp. 222–239.

[GS17] Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. “Software

vulnerability analysis and discovery using machine-learning and data-

mining techniques: A survey”. In: ACM Computing Surveys (CSUR)

50.4 (2017), pp. 1–36.

[Gua20] The Guardian. DDoS attack that disrupted internet was largest of its

kind in history, experts say. 2016 (accessed June 25, 2020). url: https:

//www.theguardian.com/technology/2016/oct/26/ddos-attack-

dyn-mirai-botnet.

[Gul+17a] Ishaan Gulrajani et al. “Improved Training of Wasserstein GANs”. In:

Advances in Neural Information Processing Systems 30. 2017.

[Gul+17b] Ishaan Gulrajani et al. “Improved training of wasserstein gans”. In:

Advances in neural information processing systems. 2017, pp. 5767–

5777.

[Har19] Sam Haria. “The growth of the hide and seek botnet”. In: Network

Security 2019.3 (2019), pp. 14–17.

[Hin+12] Geoffrey E Hinton et al. “Improving neural networks by preventing co-

adaptation of feature detectors”. In: arXiv preprint arXiv:1207.0580

(2012).

[Hod+16] Elike Hodo et al. “Threat analysis of IoT networks using artificial neural

network intrusion detection system”. In: 2016 International Symposium

on Networks, Computers and Communications (ISNCC). IEEE. 2016,

pp. 1–6.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”.

In: Neural computation 9.8 (1997), pp. 1735–1780.

[HZ14] Debiao He and Sherali Zeadally. “An analysis of RFID authentication

schemes for internet of things in healthcare environment using elliptic

curve cryptography”. In: IEEE internet of things journal 2.1 (2014),

pp. 72–83.

[IDC20] International Data Corporation (IDC). The Growth in Connected IoT

Devices Is Expected to Generate 79.4ZB of Data in 2025, According

to a New IDC Forecast. 2019 (accessed June 24, 2020). url: https:

//www.idc.com/getdoc.jsp?containerId=prUS45213219.

122

https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://www.idc.com/getdoc.jsp?containerId=prUS45213219


[Ind20] The Independent. Hackers Now Able to Take Control of Cars to Cause

Deliberate Accidents, Scientists Warn. 2017 (accessed June 24, 2020).

url: https://www.independent.co.uk/life- style/gadgets-

and- tech/news/computer- hackers- control- car- deliberate-

accidents-national-security-issue-a8066466.html.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerat-

ing Deep Network Training by Reducing Internal Covariate Shift”. In:

International Conference on Machine Learning. 2015.

[Jav+16] Ahmad Javaid et al. “A deep learning approach for network intrusion

detection system”. In: Proceedings of the 9th EAI International Con-

ference on Bio-inspired Information and Communications Technologies

(formerly BIONETICS). 2016, pp. 21–26.

[Jer17] James A Jerkins. “Motivating a market or regulatory solution to IoT

insecurity with the Mirai botnet code”. In: 2017 IEEE 7th annual com-

puting and communication workshop and conference (CCWC). IEEE.

2017, pp. 1–5.

[JM09] Daniel Jurafsky and James H. Martin. Speech and Language Processing

(2nd Edition). USA: Prentice-Hall, Inc., 2009. isbn: 0131873210.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic

optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[KH16] Matt J Kusner and José Miguel Hernández-Lobato. “Gans for sequences

of discrete elements with the gumbel-softmax distribution”. In: arXiv

preprint arXiv:1611.04051 (2016).

[KK16] Dan Klinedinst and Christopher King. “On board diagnostics: Risks

and vulnerabilities of the connected vehicle”. In: Software Engineering

Institute-Carnegie Mellon University 10 (2016).

[KKS17] Georgios Kambourakis, Constantinos Kolias, and Angelos Stavrou. “The

mirai botnet and the iot zombie armies”. In: MILCOM 2017-2017

IEEE Military Communications Conference (MILCOM). IEEE. 2017,

pp. 267–272.

[KLA19] Tero Karras, Samuli Laine, and Timo Aila. “A style-based generator

architecture for generative adversarial networks”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 2019.

[Kol+15] Constantinos Kolias et al. “Intrusion detection in 802.11 networks: em-

pirical evaluation of threats and a public dataset”. In: IEEE Commu-

nications Surveys & Tutorials 18.1 (2015), pp. 184–208.

[Kol+16] Bojan Kolosnjaji et al. “Deep learning for classification of malware

system call sequences”. In: Australasian Joint Conference on Artificial

Intelligence. Springer. 2016, pp. 137–149.

123

https://www.independent.co.uk/life-style/gadgets-and-tech/news/computer-hackers-control-car-deliberate-accidents-national-security-issue-a8066466.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/computer-hackers-control-car-deliberate-accidents-national-security-issue-a8066466.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/computer-hackers-control-car-deliberate-accidents-national-security-issue-a8066466.html


[Kol+17] Constantinos Kolias et al. “DDoS in the IoT: Mirai and other botnets”.

In: Computer 50.7 (2017), pp. 80–84.

[KS15] Sheetal Kalra and Sandeep K Sood. “Secure authentication scheme for

IoT and cloud servers”. In: Pervasive and Mobile Computing 24 (2015),

pp. 210–223.

[KS18] Minhaj Ahmad Khan and Khaled Salah. “IoT security: Review, blockchain

solutions, and open challenges”. In: Future Generation Computer Sys-

tems 82 (2018), pp. 395–411.

[Kum+14] Yuichi Kumano et al. “Towards real-time processing for application

identification of encrypted traffic”. In: 2014 International Conference

on Computing, Networking and Communications (ICNC). IEEE. 2014,

pp. 136–140.

[Kum+18] Saru Kumari et al. “A secure authentication scheme based on ellip-

tic curve cryptography for IoT and cloud servers”. In: The Journal of

Supercomputing 74.12 (2018), pp. 6428–6453.

[KW13] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”.

In: arXiv preprint arXiv:1312.6114 (2013).

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”.

In: nature 521.7553 (2015), pp. 436–444.

[Le+19] Franck Le et al. “Policy-Based Identification of IoT Devices’ Vendor

and Type by DNS Traffic Analysis”. In: Policy-Based Autonomic Data

Governance. Springer, 2019, pp. 180–201.

[Lea+07] Gregor Leander et al. “New lightweight DES variants”. In: Interna-

tional Workshop on Fast Software Encryption. Springer. 2007, pp. 196–

210.

[LeC+98] Yann LeCun et al. “Gradient-based learning applied to document recog-

nition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[Li+18] Zhen Li et al. “Vuldeepecker: A deep learning-based system for vulner-

ability detection”. In: arXiv preprint arXiv:1801.01681 (2018).

[Lin+16] W. Linlin et al. “On the Impact of Packet Inter Arrival Time for Early

Stage Traffic Identification”. In: 2016 IEEE International Conference

on Internet of Things (iThings) and IEEE Green Computing and Com-

munications (GreenCom) and IEEE Cyber, Physical and Social Com-

puting (CPSCom) and IEEE Smart Data (SmartData). 2016.

[Lin+19] Zinan Lin et al. “Towards Oblivious Network Analysis using Generative

Adversarial Networks”. In: Proceedings of the 18th ACM Workshop on

Hot Topics in Networks. 2019, pp. 43–51.

[LN18] Tie Luo and Sai G Nagarajan. “Distributed anomaly detection using

autoencoder neural networks in wsn for iot”. In: 2018 IEEE Interna-

tional Conference on Communications (ICC). IEEE. 2018, pp. 1–6.

124



[Lou] Louis Columbus. Roundup Of Internet Of Things Forecasts And Market

Estimates, 2016. https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-

of-internet-of-things-forecasts-and-market-estimates-2016/.

[Mah+15] Rwan Mahmoud et al. “Internet of things (IoT) security: Current sta-

tus, challenges and prospective measures”. In: 2015 10th International

Conference for Internet Technology and Secured Transactions (ICITST).

IEEE. 2015, pp. 336–341.

[Mao+17] Xudong Mao et al. “Least squares generative adversarial networks”. In:

Proceedings of the IEEE international conference on computer vision.

2017, pp. 2794–2802.

[Mar+19] Samuel Marchal et al. “Audi: Toward autonomous iot device-type iden-

tification using periodic communication”. In: IEEE Journal on Selected

Areas in Communications 37.6 (2019), pp. 1402–1412.

[Mei+17a] Yair Meidan et al. “Detection of unauthorized iot devices using machine

learning techniques”. In: arXiv preprint arXiv:1709.04647 (2017).

[Mei+17b] Yair Meidan et al. “ProfilIoT: a machine learning approach for IoT

device identification based on network traffic analysis”. In: Proceedings

of the symposium on applied computing. 2017, pp. 506–509.

[Mei+18] Yair Meidan et al. “N-baiot—network-based detection of iot botnet

attacks using deep autoencoders”. In: IEEE Pervasive Computing 17.3

(2018), pp. 12–22.

[MH08] Laurens van der Maaten and Geoffrey Hinton. “Viualizing data using

t-SNE”. In: Journal of Machine Learning Research (2008).

[Mic20] Trend Micro. Persirai: New Internet of Things (IoT) Botnet Targets

IP Cameras. 2017 (accessed June 25, 2020). url: https://blog.

trendmicro.com/trendlabs-security-intelligence/persirai-

new-internet-things-iot-botnet-targets-ip-cameras/.

[Mie+17] Markus Miettinen et al. “Iot sentinel: Automated device-type identi-

fication for security enforcement in iot”. In: 2017 IEEE 37th Interna-

tional Conference on Distributed Computing Systems (ICDCS). IEEE.

2017, pp. 2177–2184.

[Mik+13] Tomas Mikolov et al. “Efficient estimation of word representations in

vector space”. In: arXiv preprint arXiv:1301.3781 (2013).

[Mir+18] Yisroel Mirsky et al. “Kitsune: an ensemble of autoencoders for on-

line network intrusion detection”. In: arXiv preprint arXiv:1802.09089

(2018).

[Mit97] TM Mitchell. “Machine Learning, McGraw-Hill Higher Education”. In:

New York (1997).

125

https://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
https://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
https://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/


[MS15] Nour Moustafa and Jill Slay. “UNSW-NB15: a comprehensive data set

for network intrusion detection systems (UNSW-NB15 network data

set)”. In: 2015 military communications and information systems con-

ference (MilCIS). IEEE. 2015, pp. 1–6.

[MTC18] Nour Moustafa, Benjamin Turnbull, and Kim-Kwang Raymond Choo.

“An ensemble intrusion detection technique based on proposed statis-

tical flow features for protecting network traffic of internet of things”.

In: IEEE Internet of Things Journal 6.3 (2018), pp. 4815–4830.

[Nes+19] Nataliia Neshenko et al. “Demystifying IoT security: an exhaustive

survey on IoT vulnerabilities and a first empirical look on internet-

scale IoT exploitations”. In: IEEE Communications Surveys & Tutori-

als 21.3 (2019), pp. 2702–2733.

[Ng+11] Andrew Ng et al. “Sparse autoencoder”. In: CS294A Lecture notes

72.2011 (2011), pp. 1–19.

[Ngu+19] Thien Duc Nguyen et al. “DÏoT: A federated self-learning anomaly de-

tection system for IoT”. In: 2019 IEEE 39th International Conference

on Distributed Computing Systems (ICDCS). IEEE. 2019, pp. 756–767.

[OWA20] OWASP. Owasp Internet of Things Top 10 2018. 2018 (accessed June

24, 2020). url: https://owasp.org/www-pdf-archive/OWASP-IoT-

Top-10-2018-final.pdf.

[Pa+15] Yin Minn Pa Pa et al. “IoTPOT: analysing the rise of IoT compro-

mises”. In: 9th {USENIX}Workshop on Offensive Technologies ({WOOT}
15). 2015.

[Paj+16] Hamed Haddad Pajouh et al. “A two-layer dimension reduction and

two-tier classification model for anomaly-based intrusion detection in

IoT backbone networks”. In: IEEE Transactions on Emerging Topics

in Computing (2016).

[Pas+15] Razvan Pascanu et al. “Malware classification with recurrent networks”.

In: 2015 IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP). IEEE. 2015, pp. 1916–1920.

[Qaz+13] Zafar Ayyub Qazi et al. “Application-awareness in SDN”. In: Proceed-

ings of the ACM SIGCOMM 2013 Conference on SIGCOMM. SIG-

COMM ’13. 2013.

[Rad20a] Radware. ”BrickerBot” Results In PDoS Attack. 2017 (accessed June

25, 2020). url: https://security.radware.com/ddos-threats-

attacks/brickerbot-pdos-permanent-denial-of-service/.

[Rad20b] Radware. Reaper Botnet. 2017 (accessed June 25, 2020). url: https://

security.radware.com/ddos-threats-attacks/threat-advisories-

attack-reports/reaper-botnet/.

126

https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf
https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/reaper-botnet/
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/reaper-botnet/
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/reaper-botnet/


[RG18] Maria Rigaki and Sebastian Garcia. “Bringing a gan to a knife-fight:

Adapting malware communication to avoid detection”. In: 2018 IEEE

Security and Privacy Workshops (SPW). IEEE. 2018, pp. 70–75.

[Rin+19] Markus Ring et al. “Flow-based network traffic generation using gen-

erative adversarial networks”. In: Computers & Security 82 (2019),

pp. 156–172.

[RS16] Eyal Ronen and Adi Shamir. “Extended functionality attacks on IoT

devices: The case of smart lights”. In: 2016 IEEE European Symposium

on Security and Privacy (EuroS&P). IEEE. 2016, pp. 3–12.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “” Why

should I trust you?” Explaining the predictions of any classifier”. In:

Proceedings of the 22nd ACM SIGKDD international conference on

knowledge discovery and data mining. 2016, pp. 1135–1144.

[Sac+17] Vinay Sachidananda et al. “Let the cat out of the bag: A holistic ap-

proach towards security analysis of the internet of things”. In: Proceed-

ings of the 3rd ACM International Workshop on IoT Privacy, Trust,

and Security. 2017, pp. 3–10.

[SB15] Joshua Saxe and Konstantin Berlin. “Deep neural network based mal-

ware detection using two dimensional binary program features”. In:

2015 10th International Conference on Malicious and Unwanted Soft-

ware (MALWARE). IEEE. 2015, pp. 11–20.

[Sci20] Scikit-learn. Receiver Operating Characteristic (ROC). (accessed June

29, 2020). url: https://scikit-learn.org/stable/auto_examples/

model_selection/plot_roc.html.

[SGK17] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning

Important Features Through Propagating Activation Differences”. In:

International Conference on Machine Learning. 2017, pp. 3145–3153.

[Shm20] Boaz Shmueli. Multi-Class Metrics Made Simple, Part II: the F1-score.

2019 (accessed June 29, 2020). url: https://towardsdatascience.

com/multi-class-metrics-made-simple-part-ii-the-f1-score-

ebe8b2c2ca1.

[Sho+18] Nathan Shone et al. “A deep learning approach to network intrusion

detection”. In: IEEE transactions on emerging topics in computational

intelligence 2.1 (2018), pp. 41–50.

[Shu17] Prachi Shukla. “Ml-ids: A machine learning approach to detect worm-

hole attacks in internet of things”. In: 2017 Intelligent Systems Con-

ference (IntelliSys). IEEE. 2017, pp. 234–240.

[Sin+17] Saurabh Singh et al. “Advanced lightweight encryption algorithms for

IoT devices: survey, challenges and solutions”. In: Journal of Ambient

Intelligence and Humanized Computing (2017), pp. 1–18.

127

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1
https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1
https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1


[Siv+18] Arunan Sivanathan et al. “Classifying IoT devices in smart environ-

ments using network traffic characteristics”. In: IEEE Transactions on

Mobile Computing 18.8 (2018), pp. 1745–1759.

[SLG18] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. “To-

ward generating a new intrusion detection dataset and intrusion traffic

characterization.” In: ICISSP. 2018, pp. 108–116.

[SMP18] Saleh Soltan, Prateek Mittal, and H Vincent Poor. “BlackIoT: IoT

botnet of high wattage devices can disrupt the power grid”. In: 27th

{USENIX} Security Symposium ({USENIX} Security 18). 2018, pp. 15–

32.

[SNB18] Susha Surendran, Amira Nassef, and Babak D Beheshti. “A survey

of cryptographic algorithms for IoT devices”. In: 2018 IEEE Long Is-

land Systems, Applications and Technology Conference (LISAT). IEEE.

2018, pp. 1–8.

[SP10] Robin Sommer and Vern Paxson. “Outside the closed world: On us-

ing machine learning for network intrusion detection”. In: 2010 IEEE

symposium on security and privacy. IEEE. 2010, pp. 305–316.

[Sri+14] Nitish Srivastava et al. “Dropout: a simple way to prevent neural net-

works from overfitting”. In: The journal of machine learning research

15.1 (2014), pp. 1929–1958.

[SS19] Sofia Serrano and Noah A Smith. “Is attention interpretable?” In: arXiv

preprint arXiv:1906.03731 (2019).

[Sun+17] Degang Sun et al. “A New Mimicking Attack by LSGAN”. In: 2017

IEEE 29th International Conference on Tools with Artificial Intelli-

gence (ICTAI). IEEE. 2017, pp. 441–447.

[Sym20] Symantec. Internet Security Threat Report 2019. 2019 (accessed June

24, 2020). url: https://docs.broadcom.com/doc/istr-24-2019-en.

[TH12] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop: Divide

the gradient by a running average of its recent magnitude”. In: COURS-

ERA: Neural networks for machine learning 4.2 (2012), pp. 26–31.

[Tha+18] Vijayanand Thangavelu et al. “Deft: A distributed iot fingerprinting

technique”. In: IEEE Internet of Things Journal 6.1 (2018), pp. 940–

952.

[Vas+17] Ashish Vaswani et al. “Attention is all you need”. In: Advances in

neural information processing systems 30 (2017), pp. 5998–6008.

[VR18] Abhishek Verma and Virender Ranga. “Statistical analysis of CIDDS-

001 dataset for network intrusion detection systems using distance-

based machine learning”. In: Procedia Computer Science 125 (2018),

pp. 709–716.

128

https://docs.broadcom.com/doc/istr-24-2019-en


[Wan+17] Aohui Wang et al. “An inside look at IoT malware”. In: International

Conference on Industrial IoT Technologies and Applications. Springer.

2017, pp. 176–186.

[Win+12] Tim Winter et al. “RPL: IPv6 Routing Protocol for Low-Power and

Lossy Networks.” In: rfc 6550 (2012), pp. 1–157.

[WP19] Sarah Wiegreffe and Yuval Pinter. “Attention is not not explanation”.

In: arXiv preprint arXiv:1908.04626 (2019).

[Wu+19] Di Wu et al. “Evading machine learning botnet detection models via

deep reinforcement learning”. In: ICC 2019-2019 IEEE International

Conference on Communications (ICC). IEEE. 2019, pp. 1–6.

[Yan+18] Kai Yang et al. “Active learning for wireless IoT intrusion detection”.

In: IEEE Wireless Communications 25.6 (2018), pp. 19–25.

[Yan+19] Qiao Yan et al. “Automatically synthesizing DoS attack traces using

generative adversarial networks”. In: International Journal of Machine

Learning and Cybernetics 10.12 (2019), pp. 3387–3396.

[Ye+17] Yanfang Ye et al. “A survey on malware detection using data mining

techniques”. In: ACM Computing Surveys (CSUR) 50.3 (2017), pp. 1–

40.

[Yin+17] Chuanlong Yin et al. “A deep learning approach for intrusion detection

using recurrent neural networks”. In: Ieee Access 5 (2017), pp. 21954–

21961.

[YLR11] Fabian Yamaguchi, Felix Lindner, and Konrad Rieck. “Vulnerability

extrapolation: Assisted discovery of vulnerabilities using machine learn-

ing”. In: Proceedings of the 5th USENIX conference on Offensive tech-

nologies. 2011, pp. 13–13.

[Yu+17] Lantao Yu et al. “Seqgan: Sequence generative adversarial nets with

policy gradient”. In: Thirty-First AAAI Conference on Artificial Intel-

ligence. 2017.

[Zha+14] Zhi-Kai Zhang et al. “IoT security: ongoing challenges and research

opportunities”. In: 2014 IEEE 7th international conference on service-

oriented computing and applications. IEEE. 2014, pp. 230–234.

[Zho+18a] Jie Zhou et al. “Graph neural networks: A review of methods and

applications”. In: arXiv preprint arXiv:1812.08434 (2018).

[Zho+18b] Wei Zhou et al. “The effect of iot new features on security and privacy:

New threats, existing solutions, and challenges yet to be solved”. In:

IEEE Internet of Things Journal 6.2 (2018), pp. 1606–1616.

129



Title : Deep Learning for Internet of Things (IoT) Network Security

Keywords : Deep Learning, Internet of Things, Network Security, Autoencoder, GAN

Abstract : The growing Internet of Things (IoT) introduces
new security challenges for network activity monitoring.
Most IoT devices are vulnerable because of a lack of se-
curity awareness from device manufacturers and end users.
As a consequence, they have become prime targets for mal-
ware developers who want to turn them into bots and use
them to perform large scale attacks.
Contrary to general-purpose devices, an IoT device is desi-
gned to perform very specific tasks. Hence, its networking
behavior is very stable and predictable making it well suited
for data analysis techniques. Therefore, the first part of this
thesis focuses on leveraging recent advances in the field
of deep learning to develop network monitoring tools for the
IoT. Two types of network monitoring tools are explored : IoT
device type recognition systems and IoT network Intrusion
Detection Systems (NIDS). For IoT device type recognition,
supervised machine learning algorithms are trained to per-
form network traffic classification and determine what IoT
device the traffic belongs to. The IoT NIDS consists of a set
of autoencoders, each trained for a different IoT device type.
The autoencoders learn the legitimate networking behavior
profile and detect any deviation from it. Experiments using

network traffic data produced by a smart home show that
the proposed models achieve high performance.
Despite yielding promising results, training and testing ma-
chine learning based network monitoring systems requires
tremendous amount of IoT network traffic data. But, very
few IoT network traffic datasets are publicly available. Phy-
sically operating thousands of real IoT devices can be very
costly and can rise privacy concerns. In the second part of
this thesis, we propose to leverage Generative Adversarial
Networks (GAN) to generate bidirectional flows that look like
they were produced by a real IoT device. Generated bidirec-
tional flows consist of a sequence of individual packet sizes
along with a duration value. Hence, in addition to genera-
ting packet-level features which are the sizes of individual
packets, our developed generator implicitly learns to com-
ply with flow-level characteristics, such as the ordering of
the packets, the total number of packets and bytes in a bidi-
rectional flow or the total duration of the flow. Experimental
results using data produced by a smart speaker show that
our method allows us to generate high quality and realistic
looking synthetic bidirectional flows.

Titre : Apprentissage profond (deep learning) pour la sécurité des réseaux d’objets connectés (IoT)

Mots clés : Deep Learning, Internet des Objets, Sécurité Réseau, Autoencoder, GAN

Résumé : L’internet des objets (IoT) introduit de nou-
veaux défis de sécurité pour la surveillance des réseaux.
La plupart des appareils IoT sont vulnérables en raison
d’un manque de sensibilisation à la sécurité des fabri-
cants d’appareils et des consommateurs. En conséquence,
ces appareils sont devenus des cibles privilégiées pour les
développeurs de malware qui veulent les transformer en
bots pour ensuite pouvoir les utiliser pour mener des at-
taques à grandes échelles.
Contrairement à un ordinateur de bureau, un objet IoT
est conçu pour accomplir des tâches très spécifiques. Par
conséquent, son comportement réseau est très stable et
prévisible, ce qui le rend bien adapté aux techniques d’ana-
lyse de données. Ainsi, la première partie de cette thèse
tire profit des algorithmes de deep learning pour développer
des outils de surveillance des réseaux IoT. Deux types d’ou-
tils de surveillance réseau sont explorés : Les systèmes
de reconnaissance de type d’objets IoT et les systèmes
de détection d’intrusion réseau IoT. Pour la reconnaissance
des types d’objets IoT, des algorithmes d’apprentissage su-
pervisés sont entraı̂nés pour classifier le trafic réseau et
déterminer à quel objet IoT le trafic appartient. Le système
de détection d’intrusion réseau IoT consiste en un ensemble
d’autoencoders, chacun étant entraı̂né pour un type d’ob-
jet IoT différent. Les autoencoders apprennent le profil du
comportement réseau légitime et détectent tout écart par

rapport à celui-ci. Les résultats expérimentaux en utilisant
des données réseau produites par une maison connectée
montrent que les modèles proposés atteignent des perfor-
mances élevées.
Bien que permettant d’obtenir des résultats prometteurs,
l’entraı̂nement et l’évaluation des modèles de deep lear-
ning nécessitent une quantité énorme de données réseaux
IoT. Or, très peu de jeux de données de trafic réseau IoT
sont accessibles au public. Le déploiement physique de mil-
liers d’objets IoT réels peut être très coûteux et peut poser
problème quant au respect de la vie privée. Ainsi, dans la
deuxième partie de cette thèse, nous proposons d’exploiter
des GAN (Generative Adversarial Networks) pour générer
des flux bidirectionnels qui ressemblent à ceux produits par
un véritable objet IoT. Un flux bidirectionnel est représenté
par la séquence des tailles des paquets ainsi que de la
durée du flux. Par conséquent, en plus de générer des ca-
ractéristiques au niveau des paquets, tel que la taille de
chaque paquet, notre générateur apprend implicitement à
se conformer aux caractéristiques au niveau du flux, comme
le nombre total de paquets et d’octets dans un flux ou
sa durée totale. Des résultats expérimentaux utilisant des
données produites par un haut-parleur intelligent montrent
que notre méthode permet de générer des flux bidirection-
nels synthétiques réalistes et de haute qualité.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Abstract
	Résumé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	IoT Ecosystem Characteristics
	Vulnerabilities in the IoT
	IoT Botnets
	IoT Security Solutions
	Objectives of the Thesis
	Context
	Limitations of Existing Works
	Contributions


	State of the Art
	Deep Learning
	A Sub-field of Machine Learning
	Neural Network Training
	Metrics for Model Assessment
	Neural Network Architectures
	Deep Learning Applications in Cybersecurity

	IoT Network Traffic Classification
	IoT Device Type Identification
	IoT Device State Determination
	Summary

	IoT Network Intrusion Detection
	Supervised NIDS
	Unsupervised NIDS/ Anomaly Detection
	Summary

	IoT Network Traffic Generation
	Flow-level Network Traffic Generation
	Network Packets Generation
	Summary


	IoT Network Traffic Monitoring
	IoT Device Recognition through Network Traffic Classification
	Overview
	Features Description
	Smart Home Dataset Description
	Experimental Results - Network Traffic Visualization
	Experimental Results - Classification
	Discussion
	Summary

	IoT Network Anomaly Detection
	Overview
	Features Description
	Sparse Autoencoder for Anomaly Detection
	Individual Autoencoders vs Set of Autoencoders
	Dataset Description
	Evaluation Methodology
	Experimental Results: Performance of Individual Autoencoders
	Experimental Results: Performance of the Set of Autoencoders
	Discussion
	Summary

	General Conclusion

	IoT Network Traffic Generation
	Generating Sequences of Packet Sizes
	Modeling Sequences of Packet Sizes
	Generative Models for Sequences of Categorical Data Generation
	Evaluation Methodology
	Smart Speaker Dataset
	Experimental Results - Simplified Packet Ordering
	Experimental Results - Realistic Packet Ordering
	Discussion
	Summary

	Determining the Duration of a Generated Bidirectional Flow
	Duration as a Random Variable
	Mixture Density Networks
	Evaluation Methodology
	Duration Dataset
	Experimental Results
	Summary

	General Conclusion

	Conclusion
	List of Publications
	Bibliography

