
HAL Id: tel-03194472
https://theses.hal.science/tel-03194472v1

Submitted on 9 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Surviving the massive proliferation of mobile malware
Louison Gitzinger

To cite this version:
Louison Gitzinger. Surviving the massive proliferation of mobile malware. Cryptography and Security
[cs.CR]. Université Rennes 1, 2020. English. �NNT : 2020REN1S058�. �tel-03194472�

https://theses.hal.science/tel-03194472v1
https://hal.archives-ouvertes.fr

Thèse de doctorat de

L’UNIVERSITÉ DE RENNES 1

École Doctorale No 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Louison Gitzinger
Surviving the massive proliferation of mobile malware

Survivre à la prolifération massive des malwares sur mobile

Thèse présentée et soutenue à Rennes (France), le 8 décembre 2020 à 10h
Unité de recherche : Irisa (UMR 6074)

Rapporteurs avant soutenance :

Sonia BEN MOKHTAR Directrice de recherche CNRS Lyon
Romain ROUVOY Professeur des universités Université de Lille

Composition du Jury :
Rapporteurs : Sonia BEN MOKHTAR Directrice de recherche CNRS Lyon

Romain ROUVOY Professeur des universités Université de Lille
Examinateurs : Tegawendé F. BISSYANDE Directeur de recherche Université du Luxembourg

Alain TCHANA Professeur des universités ENS de Lyon
Sophie PINCHINAT Professeur des universités Univ Rennes, CNRS, Inria, IRISA
Gilles MULLER Directeur de recherche Inria

Dir. de thèse : David-Yérom BROMBERG Professeur des universités Univ Rennes, CNRS, Inria, IRISA

Table of Contents

1 Introduction 7
1.1 Context . 7
1.2 Android ecosystem vulnerabilities . 9
1.3 Existing solutions to fight malware profilferation in the ecosystem 10
1.4 Limits of malware defenses in the Android ecosystem 12
1.5 Thesis statement - Contributions . 14

2 State of the Art 17
2.1 Hunting threats in the Android ecosystem 17

2.1.1 Improving privacy on Android . 17
2.1.2 Reducing the attack space on the Android platform 21

2.2 Android Malware detection . 24
2.2.1 Signature-based malware detection. 25
2.2.2 Machine learning-based detection. 26

2.3 Adversarial Attacks to Malware Detection 30
2.3.1 Review of existing studies . 31
2.3.2 Open problems . 35

2.4 Defenses against adversarial attacks . 37
2.5 Conclusion . 39

3 Exploring malware detection tools on Android 41
3.1 Background on the Android ecosystem . 41

3.1.1 Android platform architecture . 41
3.1.2 Android application architecture . 42
3.1.3 Malware infection in the Android ecosystem 44

3.2 Program analysis . 46
3.2.1 Limits of dynamic analysis to malware detection 46
3.2.2 Advantages of static analysis in malware detection 47

3.3 Techniques to perform malware detection at scale 48

3

TABLE OF CONTENTS

3.3.1 Signature based detection . 48
3.3.2 Machine learning assisted detection 49

3.4 Improving existing malware detection systems 50
3.4.1 DroidAutoML: hyper-parameter optimization for ML scanners . 50
3.4.2 DroidAutoML approach . 52
3.4.3 DroidAutoML evaluation . 56
3.4.4 Groom: A feature engineering framework to reach more efficient

ML malware detection models . 60
3.4.5 Groom approach . 63
3.4.6 Groom evaluation . 66

3.5 Conclusion . 68

4 Reaching limits of antivirus leveraging the creation of experimental
datasets 71
4.1 Evolution of Android malware datasets . 71

4.1.1 Obfuscation of Android applications. 72
4.1.2 Review of recent evasion techniques on Android 72

4.2 KillerDroid: Weaving Malicious Payloads with Benign Carriers to Mas-
sively Diversify Experimental Malware Datasets 77
4.2.1 Approach . 78
4.2.2 Experimental Setup . 85
4.2.3 Evaluation . 89

4.3 Conclusion . 105

5 Increasing the quality of ground truth datasets on Android 107
5.1 Limits of antivirus aggregators solutions to build ground truth datasets . . 108
5.2 KillerTotal: Vetting grand public Antivirus products 110

5.2.1 Mobile Antivirus products . 110
5.2.2 Approach . 111
5.2.3 Evaluation . 114

5.3 KillerScreenshot: Improving the quality of malware datasets 119
5.3.1 Approach . 119
5.3.2 Evaluation . 122

5.4 Conclusion . 123

4

TABLE OF CONTENTS

6 Future works 125
6.1 Short term future works . 125

6.1.1 Towards more diversified malware datasets 125
6.1.2 Future of machine learning malware detection 128
6.1.3 Poisoning VirusTotal . 130

6.2 Long term future works . 132
6.2.1 Towards more collaborative efforts 132
6.2.2 Moving applications to the cloud 132

Conclusion 135
6.3 Summary of contributions . 135

7 Résumé en français 141
7.1 Contexte . 141
7.2 Vulnérabilité de l’écosystème Android . 143
7.3 Solutions existantes . 143
7.4 Limites des solutions existantes dans l’écosystème 145
7.5 Contribution de la thèse . 147

Bibliography 149

5

Chapter 1

Introduction

1.1 Context

Nowadays, many of us are surrounded by a fleet of electronic devices, connected to
each other using different network protocols. These devices are often qualified as smart:
smartphones, smart TVs or smart watches, as they seamlessly operate interactively and
autonomously together with multiple services to make our lives more comfortable. For
example, your smartphone can notify you at work that your smart camera detected your
children are back home. When planning a road trip with the help of your smartphone,
your smart car will seamlessly know how to guide you to your final destination. To make
such scenarii possible, smart devices we use every day are part of larger ecosystems,
in which various companies collaborate with each other. From a business perspective,
these ecosystems can be seen as an inter-dependence between supply (companies selling
devices and services) and demand (users). To stay profitable over time and maximize user
retention, companies gain users’ trust by guaranteeing their security and offering them a
good quality of service.

To offer strong and coherent ecosystems, companies, like Google and Apple, have or-
ganised their business around a software platform, such as Android or IOS. Such platforms
(see figure 1.1, ¶) power smart devices (see figure 1.1, ·) and allow users to install pro-
grams called applications (see figure 1.1, ¸). Applications are individual software units
that offer users various services for productivity (sending SMSs and emails, managing
agenda, . . .), entertainment (social medias, videos, . . .) or even gaming. Software plat-
forms come with a Software Development Kit (SDK) which encourages and facilitates the
development of new applications compatible with the overall platform inside the ecosys-
tem. SDKs open up the ecosystem to the developer community (see figure 1.1, ¹) and
allow any third-party company (Airbnb, Facebook, Uber, . . .) to design applications for
smart device users.

Once installed, applications can leverage the many device’s sensors (camera, fingerprint

7

Introduction

scanner, accelerometer, GPS location, . . .) to provide additional functionalities to the user,
such as taking pictures, fingerprint authentication, navigation, etc. With the help of device
communication means (LTE,WiFi, Bluetooth, . . .), applications can further send acquired
data to third-party servers, enabling real time feedback loops, providing developers useful
quality feedbacks on their users. In exchange for these data, users can enjoy additional
features in their applications, such as tailored advertisement, faster ordering, customized
services, or easy payment in just one click.

To commercialize applications created by developers, online platforms, called stores
(see figure 1.1, º), offer users a centralized place to browse and download them. As
digital marketplaces, stores provide mechanisms to vendors (i.e. developers) to upload,
publish and advertise their applications on the service. To help users navigate the millions
of applications published, stores organize them into categories, such as Art & Design,
Entertainment or Food & Drink.

Software platform

Application

Developer

Stores
Application

Smart devices

3

User

OS

Network

Application

Framework

Malware

Attacker

Malware

1

2

4

5

6

7
rootkit

ransomware

eventbot

smspremium

Figure 1.1 – Overview of a smart device ecosystem

Over time, these smart device ecosystems thrived, and became profitable for all stake-

8

Introduction

holders. This virtuous circle between all actors of the ecosystem helped dramatically
increase the business of smart devices. Software platforms account for billions of active
devices around the world, led by Android and Apple IOS which together hold 98% of
the market [1]. They respectively run 2.5 and 1.4 billions of devices [2, 3]. Following this
trend, application stores have naturally seen a tremendous increase in activity. In ten
years, the number of published applications for the two leading stores (namely the Google
Play Store and the Apple App Store) went from a few thousand to several million [4, 5]
(from 38 000 to 3 millions for Google and 218 000 to 4.3 millions for Apple respectively).

To stay profitable in this context, ecosystems must maintain the user’s trust. To do
so, stores must ensure that applications published on their platforms are of good quality,
and do not have bad intentions towards users. However, the growth of these ecosystems
has led bad actors (e.g. attackers, see figure 1.1, ») to take advantage of the system in
an illegitimate manner.

1.2 Android ecosystem vulnerabilities

Malicious people may leverage vulnerabilities at all levels of the ecosystem to target
users with malicious applications (see figure 1.1, ¼), namely malware, that stealthily ex-
ploit users’ data and device vulnerabilities to spy on them or make money off of them. In
this context, due to its popularity, the Android ecosystem is targeted by 98% of attacks
on smart devices [6]. To exploit vulnerabilities in the Android ecosystem, attackers create
many kinds of malware, thereafter categorized into families [7]. These malware applica-
tions are specifically designed to exploit vulnerabilities at several levels of the software
platform to attack smart device users.

— At the operating system level (see figure 1.1, rootkit): attackers can exploit vul-
nerabilities to deploy rootkits, to gain root access on the target device. In 2019 the
xHelper malware infected at least 45 000 devices and obtained root on them by
remotely fetching a malicious payload [8].

— At the framework level (see figure 1.1, ransomware): malware can be granted access
to potentially sensitive users’ data such as their GPS location or their contact list.
Malware can also ask the framework permissions to perform dangerous actions such
as deleting users’ files, taking pictures or displaying sticky overlays. For example,
Ransomware encrypt the users’ filesystem and block the user interface until users
aggree to pay a ransom to obtain the decryption key to recover their files [9].

9

Introduction

— At the application level (see figure 1.1, eventbot): malware can exploit other vul-
nerable applications, for example, to stop the faulty application’s activity or access
sensitive information. The EventBot malware, discovered in 2020, exploit banking
applications to steal users’ financial data [10].

— At the network level (see figure 1.1, smspremium): malware can perform deny of
services on other applications, send SMS or make phone calls. In 2017, Google
removed 50 malware applications from its store that were stealthily sending SMSs
to premium numbers in the background [11].

The worrisome growth of malware threats in the Android ecosystem presents a daunt-
ing challenge: how to keep an ecosystem open to third-party contributors while maintain-
ing security guarantees for users?

1.3 Existing solutions to fight malware profilferation
in the ecosystem

Machine learning

Signature

Application

Perm
issions

SELinux

App sandboxing

Verified boot

Fram
ework

OS

? Is malicious ?

YES Protection layers

Legend:

Oracle
Store

Antivirus product

Unknown
application

Platform

Platform layer

Detection strategy

NO

12

3

4

5

Figure 1.2 – Overview of Android ecosystem defenses against malware threats

To thwart the malware threat, Android security actors, from both research and indus-
try, continuously reinforce their security level with new defenses. The Android platform
leverages its kernel (i.e. Linux) capabilities (see figure 1.2, ¶), such as application sand-
boxing [12], SELinux [13] and verified boot [14] to better isolate running applications
from each other and control access to application data. With its permission model (see
figure 1.2, ·), which has been subject to many improvements in recent years [15], the

10

Introduction

Android framework explicitly asks applications to define the capabilities they need and
will deny any attempt to access unauthorized resources. Therefore, to access functions
such as camera, telephony, sms/mms and network, an application must explicitly ask per-
mission from the user. These platform-level defenses provide a first level of security to
prevent malicious applications from doing too much damage when they manage to infect
a device. However, the growing number of mobile attacks [16] show that these defenses
are not sufficient to stop malware infections.

To slow down the infection of devices by malicious applications upstream, stores (see
figure 1.2, ¸) have put in place validation systems to filter applications submitted on
their platform. These validation processes, employ both manual [17] and automated [18]
techniques to analyse the stream of uploaded applications in order to determine their
legitimacy before publishing them. These protections are not sufficient to suppress ev-
ery malware, which motivates the need for on-device antivirus (see figure 1.2, ¹) that
detect malware threats when a new application is installed. In addition, the research do-
main has shown promising results with novels approaches to improve Android malware
detection [19–22].

Establishing the legitimacy of an application requires analysing it to collect insightful
data that can provide information on its intention and behaviour. To do so, two software
analysis techniques are mainly used: (i) static program analysis, which allow for a quick
analysis of application binaries and resource files without needing to execute it, and (ii)
dynamic analysis, which consists in executing the application with multiple input values
to analyse its runtime behaviour.

Afterwards, to automatically decide whether an unknown application should be con-
sidered legitimate or malicious, detection systems use an oracle (see figure 1.2, º). Oracles
are decision systems that make a choice, i.e. label an application as legitimate or mali-
cious, based on the data collected during application analysis. To operate, oracles mainly
leverage two different strategies:

— Signature-based detection: with signature-based detection, oracles make its deci-
sion by comparing information such as file signature or bytecode patterns with sets
of heuristics and rules generated from previously seen malware.

— Machine learning-based detection: with machine learning-based detection, oracles
use existing malware databases to train classifiers that predict the maliciousness
of an application.

11

Introduction

1.4 Limits of malware defenses in the Android ecosys-
tem

Despite all the solutions put in place, a recent study [23] has shown that at least 10 000
malware belonging to 56 malware families were successfully published on the Google Play
Store between 2014 and 2018. Moreover, security reports from security companies [6, 16,
24] show that the number of Android devices infected by malware is still on the rise. In
fact, attackers become smarter over time and use more and more advanced techniques to
defeat security defenses put in place by Android ecosystem actors.

To defeat static analysis, attackers use complex evasion techniques such as dynamic
code loading [25], reflection [26] or encryption [27] to hide their malicious payload within
the application and make it unreachable to static analysis programs. Regarding dynamic
analysis, detection systems often execute applications within virtual machines instead of
real devices to analyse applications at scale. However, Petsas et al. [28] have shown that
malware can detect when they are running in a virtual environment. To defeat signature-
based detection, attackers use polymorphism [27] and obfuscation [29] that allow them to
completely change the structure of the application’s code without affecting its semantics,
to rapidly craft malware variants with unforeseen signatures. In an attempt to counter
the above phenomenon, machine learning (ML) is massively adopted to improve malware
detection accuracy [19–21, 30]. However, current advances in ML-based malware detection
on Android may suffer from several limitations that we summarize in 3 distinct claims.

Claim 1: limits of existing machine learning solutions. Although it is a first step
toward improving detection, most of machine learning related studies neglect the search
for fine-tuned learning algorithms. Performances of trained machine learning classifiers
depend strongly on several key aspects: (i) learning algorithms, (ii) parameters (i.e. hyper-
parameters) and (iii) feature engineering. As far as our knowledge goes, few attempts
have been made towards optimizing existing Android ML-based detection approaches.
Whether one [20, 21] or several algorithms [19, 31, 32] are evaluated, the evaluations are
always carried out empirically, implying a manual process with few and/or default hyper-
parameter combinations. Besides, features extracted by recently proposed approaches [19,
21] neglect new evasion techniques used by malware such as dynamic code loading or
reflection, that allow attackers to dissimulate the malware’s behaviour.

12

Introduction

Claim 2: limits of publicly available malware datasets. Regarding machine learn-
ing based detection, recent studies [33, 34] have shown that specifically crafted malware,
namely adversarial examples, can successfully evade machine learning classification mod-
els. These studies emphasise the lack of heterogeneous malware datasets that include all
kinds of malware samples to train ML-based detection systems. To train a reliable clas-
sifier, malware datasets need to include a large variety of samples that allow machine
learning model to better generalize the problem and catch corner case samples. Specifi-
cally, existing malware datasets lack malware samples that use complex evasion techniques
such as dynamic code loading, encryption and reflection.

Claim 3: limits of malware samples verification methods. A fundamental step
towards implementing and evaluating novel malware detection methods is the creation
of high quality ground truth datasets used to train those methods. The efficiency of a
malware detection method is directly correlated [35, 36] with the quality of the dataset
used to train and test it. However, the quality of a ground truth dataset can be impeded
by (i) inacurrate sample labelling [36], i.e. legitimate samples labeled as malicious or vice
versa, and (ii) unrealistic samples, i.e. outdated or non-working samples.

The vast majority [21, 22, 37–41] of ML-based malware detection approaches rely on
antivirus aggregators to determine whether an application is legitimate or malicious and
further build training datasets. Antivirus aggregators (such as VirusTotal [42]) are online
platforms that run many antivirus products from third-party security companies to vet
files uploaded by users. However, it has been suggested [23, 43] that such antivirus aggre-
gators may introduce bias in datasets built upon this selection method, due to erroneous
sample scan results. In fact, for commercial or technical reasons, security companies may
provide aggregators with a restrained version of their antivirus engine that may artificially
lower the accuracy of aggregators compared to what could be possible with fully-fledged
engines.

Current malware detection approaches in the Android ecosystem struggle to deal with
ever smarter ill-intentioned people. On one side, traditional signature-based approaches
can not efficiently detect new malware variants generated at a high paced rate by attackers.
On the other side, ML-based approaches are facing problems inherent to the machine
learning domain: they need to be constantly updated and optimized to keep detecting
new malware samples, and the lack of quality malware datasets negatively impacts the

13

Introduction

quality of trained classifiers.

1.5 Thesis statement - Contributions

To address the aforementioned problems, additional efforts are required. Therefore,
we contribute to the research community efforts with the following contributions:

Automating the evaluation of ML detection systems. First off, to address Claim
1, we propose DroidAutoML, a novel approach to automating the evaluation of ma-
chine learning based malware detection systems on Android. DroidAutoML addresses
the problem of ML algorithm selection and hyper-parameter optimization by leveraging
AutoML to improve the accuracy of ML-based malware detection systems. DroidAu-
toML is further built on a dedicated microservice architecture specifically designed to
fulfill the need for genericity and flexibility required by the Android malware detection
domain.

Novel set of features to improve ML detection. As our second contribution to
address Claim 1, we propose Groom, to address the problem of feature engineering
in the context of machine learning based malware detection on Android. Groom is a
framework that leverages a broad static analysis to drastically improve the quality of
features extracted from an application, while being faster than existing approaches. In
particular, Groom extracts specific features that enable detection systems to take into
account the use of recent obfuscation techniques such as reflection, native code execution,
dynamic code loading and encryption.

Toward massively diversifying experimental malware datasets. To addressClaim
2, we propose KillerDroid, a toolchain that enables to craft new malware variants that
use advanced evasion techniques with the aim of creating samples to massively diversify
experimental malware datasets. KillerDroid can generate malware variants at scale to
evaluate the robustness of state-of-the art malware scanners, both from academia and the
industry, against adversarial attacks.

Increasing the quality of ground truth datasets on Android. Finally, to address
Claim 3, we propose two approaches to improve the overall quality of experimental
malware datasets used to train and test malware detection systems.

14

Introduction

We first propose KillerTotal, a novel approach for evaluating individually the pub-
licly available version of the seven most efficient Android antivirus products available on
the Google Play Store. KillerTotal aims at showing that mobile versions of commer-
cial antivirus are more accurate and more robust to detect malware samples than engines
hosted in antivirus aggregators such as VirusTotal [42]. Our system provides a large-
scale deployment platform based on Android Emulators to automate the initialisation and
execution of mobile antivirus products.

Secondly, we propose KillerScreenshot, a framework that automatically certifies
that malware variants synthetically produced by adversarial production toolchains (such
as KillerDroid) are fully functional. KillerScreenshot dynamically verifies that
the behaviour of a crafted malware variant is consistent with the behaviour of the original
malware used to create it by comparing the screen activity of both samples.

Dissertation outline

The remainder of this thesis is structured as follows. In chapter 3, we begin by provid-
ing background regarding the Android platform. Then, we discuss several limits of existing
machine learning-based malware detection solutions in the Android ecosystem. Finally,
we present and evaluate our approaches: DroidAutoML and Groom. In chapter 4, we
discuss the unreliability of public existing malware datasets in the Android research com-
munity. We further provide an extended analysis regarding new evasion techniques used by
malware authors to defeat scanners. Afterwards, we present and evaluate KillerDroid,
our approach to generating new malware variants to improve the overall quality of existing
datasets and challenge scanners. In chapter 5, we discuss the limits of restrained antivirus
aggregators and present our alternative, KillerTotal, based on fully-fledged mobile
antivirus products sold on the Google Play Store. We further present scalable approaches
to verify the correct behaviour of automatically crafted malware variants.

15

Chapter 2

State of the Art

This chapter aims at reviewing the state of research in domains that are closely re-
lated to the problem we are addressing: to globally improve the security of the Android
ecosystem by tackling the invasion of malicious software. First off, we review existing
solutions to mitigate existing vulnerabilities on the Android platform, especially regard-
ing user’s privacy. Secondly we review (i) studies related to Android malware detection,
and (ii) studies specifically addressing the problem of adversarial attacks against malware
detection scanners.

2.1 Hunting threats in the Android ecosystem

More and more privacy-sensitive data are processed on smart devices, namely data
that relate to a person that is not necessarily willing to share. Our devices become a
central location vulnerable to many external threats, such as data leakage or erasure,
third-party surveillance or identity theft. Consequently, securing smart devices involves
a meticulous search of unknown vulnerabilities on which attackers can rely to carry out
their attacks. In addition to security layers put in place on Android (such as SELinux,
application sandboxing, the permission level, etc.) many research works [44–48] proposed
solutions to globally raise the security level of the Android platform. This section presents
the most prevalent approaches and solution for tracking vulnerabilities on the Android
system.

2.1.1 Improving privacy on Android

In the last years, many efforts have been observed to improve the privacy of Android
users, particularly by preventing applications from illegitimately accessing user’s sensitive
data. As such, Android platform developers and maintainers put a lot of efforts to improve
the Android permission model [15] to fight against abusively privileged applications. The

17

Part , Chapter 2 – State of the Art

aim of the permission model is to protect the privacy of an Android user by forcing
applications to request permission to access sensitive data (such as contacts and SMS) or
system features (such as camera or internet).

However, recent studies [45, 49, 50] shown that these improvements are not sufficient
to prevent applications from performing dangerous actions on the device. With Wood-
pecker [50], authors perform a data-flow analysis on running applications to demonstrate
that eight popular Android stock images (i.e. different versions of the Android operat-
ing system) do not properly enforce the Android permission model, thus allowing appli-
cations to access user’s sensitive data without requesting the related permission. With
Axplorer [45], authors show that permission checks in the Android Framework API
internals are sometimes inconsistent, thus allowing applications to call unprotected API
methods to access sensitive resources. In 2019, Reardon et al. [49], analysed the network
traffic of hundreds of applications from the Google Play Store to detect sensitive data
being sent over the network for which the sending application did not have the permis-
sion to access it. By reverse engineering such applications, authors discovered several side
channels in the framework that allow applications to access sensitive data without having
the permission to do so.

Revealing privacy leaks with taint tracking

Study Year Platform level Objective Approach
Lu et al. [47] (Chex) 2012 Application Detect component hijack-

ing vulnerabilities in appli-
cations

static analysis

Artz et al. [51] (FlowDroid) 2014 Application Detect privacy leaks in ap-
plications

static analysis with taint-
tracking

Enck et al. [51] (TaintDroid) 2014 Application Detect privacy leaks in ap-
plications

dynamic analysis with
taint-tracking

Table 2.1 – Overview of studies that aim at detecting privacy leaks on the Android
platform

To solve the problem of sensitive data leakage, several works [47, 51–53] (see table 2.1)
proposed approaches to track potential data leakage in Android applications while taking
into account subtleties of the Android framework such as the lifecycle of an application,
or the permission model. With Chex [47], authors propose a static analysis method to
automatically detect if an application can be hijacked by another and therefore leak sensi-
tive data. In 2014, Artz et al. [51] propose FlowDroid, a static taint-analysis framework

18

2.1. Hunting threats in the Android ecosystem

that analyses the application’s bytecode and configuration files to find potential privacy
leaks, from a source (i.e. where data is collected) to a sink (i.e. where data flows out
of the application). The FlowDroid framework helped to uncover sensitive data leaks
in more than 500 applications from the Google Play Store and 1000 malware applica-
tions. With TaintDroid, authors propose an approach based on a dynamic analysis to
monitor how applications handle user’s data in realtime. More precisely, they use a taint
tracking technique to monitor how sensitive information can flow out of the application
context. TaintDroid allowed to demonstrate that 15 popular applications were actively
sending device’s location to third-party servers. More recently, Exodus [54], proposed a
static analysis tool to determine whether an application embeds trackers, i.e. third-party
libraries meant to collect data about user’s usages. Exodus found that Facebook analytics
is present in 17% of applications on the Google Play Store, Google Analytics on 25% and
Admob on 67%.

Lessons learned. The aforementioned studies provide evidences to the research com-
munity that the leak of user’s privacy sensitive data on the Android platform is a reality,
whether for legitimate or illegitimate reasons. In particular, they show that an attacker
can leverage a broad set of permissions genuinely granted by the user to leak sensitive
information such as user’s contacts, GPS location or SMS messages.

Detecting privacy leaks in inter application communication.

Study Year Platform level Objective Approach
Alhanahnah et al. [55] (DINA) 2019 Framework Detect vulnerable inter-app

communication in dynami-
cally loaded code

static and dynamic analysis

Lee et al. [56] (Sealant) 2017 Application Detect and visualize inter-
app communication vulner-
abilities in applications

static analysis

Octeau et al. [57] (Epicc) 2013 Application Find and map inter-
component communication
in applications

static analysis

Bartel et al. [53] (IccTA) 2015 Application Detect leaks among compo-
nents in Android applica-
tions

static analysis

Hay et al. [58] (IntentDroid) 2015 Framework Dynamic detection of inter-
app communication

dynamic analysis

Table 2.2 – Overview of studies that aim at uncovering vulnerabilities related to Inter-
Component Communication

19

Part , Chapter 2 – State of the Art

Another source of privacy leaks on the Android platform is the communication mech-
anism between installed applications and the underlying framework. Android uses a mes-
saging system that allow applications to communicate with the system or with each other
through Intents [59]. Android components (i.e. pieces of software that make up an appli-
cation) use Intent to communicate with each other (Inter-Component Communication,
ICC), or across applications. As such, third-party applications can use Intents to shutdown
the system, read the device internal storage or send any kind of data to another applica-
tion. While the Android framework already provides a security mechanism to strengthen
Intent security, many studies (see table 2.2) have discovered related vulnerabilities and
proposed approaches to mitigate them.

In 2013, Backes et al. [57] propose a static analysis framework to analyse applications
in the aim of uncovering vulnerable ICC method calls, i.e. that allow to leak sensitive
uers’s data. They found more than 2000 ICC leaks in 15 000 applications from the Google
Play Store. With IntentDroid [58], authors instrument the Android framework with a
custom dynamic analysis that allow to monitor communication between installed appli-
cation at runtime. The approach allowed to reveal 150 privacy related vulnerabilities in
80 top applications from the Google Play Store. In 2015, Li et al. proposed IccTA [53],
a static analysis framework that use a context aware data-flow analysis to detect privacy
leaks between applications, especially between components of different applications in-
stalled on a device. IccTA allowed to discover privacy leaks in 337 application among
15 000 from the Google Play Store. With Sealant [56], authors proposed a static analysis
approach intended for developers which allows to detect and visualize potentially vulner-
able ICC within an application. More recently, Alhanahnah et al. proposed DINA [55], a
static and dynamic analysis framework that detect vulnerable inter-application communi-
cation in dynamically loaded bytecode, thus allowing to uncover new information leakage
vulnerabilities in dissimulated bytecode.

Lessons learned. These studies highlight the fact that security locks put in place by
the Android framework are not invulnerable. Framework properties such as application-
to-system or inter-application interactions can be hijacked by illegitimate applications to
leak user’s privacy sensitive data. The Android framework faces a trade-off between of-
fering features to enhance third-party applications and guaranteeing a sufficient security
level to users.

20

2.1. Hunting threats in the Android ecosystem

While these studies are useful to uncover vulnerabilities in Android applications, they
do not provide mechanisms to actually protect the user. Such studies constitute an im-
portant step towards protecting the user from potential threats, especially regarding the
user’s privacy, but they are not sufficient to counter complex attacks specifically designed
to cause damage. More importantly, the aforementioned approaches cannot determine
if an application is manipulating user’s sensitive data for a legitimate purpose or not.
Therefore, these approaches cannot identify whether the behaviour of an application is
legitimate or fraudulent. In numerous cases, legitimate applications require user’s data to
operate correctly, thus the final choice of keeping or discarding the suspicious application
must be left to the user, thus leading to misinterpretation.

2.1.2 Reducing the attack space on the Android platform

Study Year Platform level Objective Approach
Rasthofer et al. [44] (DroidForce) 2016 Application Reinforce permission model static analysis and applica-

tion instrumentation
Bugiel et al. [60] 2013 Kernel and Framework Enforce mandatory access

control
Implementation of a
system-wide security archi-
tecture

Jing et al. [61] (IntentScope) 2016 Framework Secure inter-app communi-
cation

Framework security exten-
sion

Zhang et al. [62] (AppSealer) 2014 Application Detect and patch inter-app
communication in applica-
tions

static and dynamic analysis

Backes et al. [63] (Boxify) 2015 Application Better application isolation application virtualization
Bianchi et al. [64] (NJAS) 2015 Application Better application isolation application virtualization

using system call interposi-
tion

Yu et al. [65] 2013 Application Secure Webview Instrument application to
protect sensitive call and
ask user to accept or deny
a specific call

Tuncay et al. [66] (Draco) 2016 Application Secure Webview Provide the developer a
DSL to specify access con-
trol policy on resources ex-
posed to Webview

Table 2.3 – Overview of studies that aim at reducing the attack space on the Android
platform

Vulnerabilities in the Android platform are regularly discovered [7, 49, 67–69]. To
mitigate them and reduce the attack space as much as possible, the Android research
community have proposed many approaches (see table 2.3) to address the problem.

21

Part , Chapter 2 – State of the Art

Reinforcing control access to sensitive resources.

To reinforce and control access to sensitive resources, studies [44, 60] explored tech-
niques that allow the user to have a fine-grained control over the flow of data entering
and leaving its device. In 2013, Bugiel et al. [60] proposed a system-wide security archi-
tecture for the Android operating system to enforce resource access control with a custom
security policy both at the kernel and the framework level. The study is at the origin of
the latter integration of SELinux in the Android Open Source Project (AOSP) [70] and
allowed to mitigate root exploits. With DroidForce [44], authors propose a framework,
implemented at the application level, that allow to instrument an Android application to
inject custom checks to enforce sensitive data policies enforced by the user. DroidForce
provides a custom domain specific language that allow the user to set up privacy aware
policies such as “This application is allowed to send 2 SMSs per day maximum”.

Lessons learned. Aforementioned studies restrain access to sensitive resources on the
device while keeping the user in control to allow legitimate applications to do so. Such
studies demonstrate that new security methods can be implemented at several layers of
the Android platform to keep the user in control of its data. However, similarly to the
Android permission model, such security approaches still rely on the capacity of the user
to correctly interpret the intentions of an application and decide whether to trust it or
not.

Application sandboxing

The Android platform leverages on Linux user-based protection to isolate application
resources. In the Linux system, each user is assigned a unique user id (UID), and users are
isolated by the kernel in such a way that one user cannot access the data of another user.
On Android, the system assigns a unique user id to each Android application and runs
it in its own process. This mechanism allows to isolate applications from each other and
protects the system from potential malicious behaviours. The Android sandbox is in the
kernel, thus if one malicious application tries to read the data of another application, this
is not permitted as the malicious application does not have user privileges. Over years,
several works [7, 8, 67] demonstrated that the application sandbox model is not invul-
nerable, which drove the search for a better isolation between running applications. With
Boxify, Backes et al. [63] propose an app sandoxing concept which allows to encapsulate
untrusted applications within a controlled and trusted environment without modifying the

22

2.1. Hunting threats in the Android ecosystem

application framework. In particular, the mechanism provides a better application isola-
tion by revoking by default the permissions for I/0 operations to untrusted applications.
Similarly, Bianchi et al. proposed NJAS [64], another app virtualization approach that
use the ptrace mechanism to perform syscall interposition. Both approaches use auto-
generated generic stub applications that serve as a container to sandbox the untrusted
application.

Lessons learned. These sandboxing methods are hard to maintain because they re-
quire a lot of engineering work to keep the sandbox code compatible with the underlying
framework. These sandboxing mechanisms often rely on Android framework features that
can be protected or removed in future releases of the platform. For example, since An-
droid 8.0, it is not possible anymore for an Android application to use the ptrace tool,
thus making the NJAS approach unusable. Moreover, a malicious application can be
specifically crafted to gather information about its runtime environment and change its
runtime behaviour when being sandboxed. For example, a malware could detect that the
application’s threads are monitored by ptrace when sandboxed by the NJAS approach.
To the best of our knowledge, there is currently no more efficient way than the built-in
Android application sandboxing to fully isolate an application on the platform.

Securing inter-component communication

To protect user from vulnerabilities related to Inter-Component Communication, Jing
et al. [61] proposed IntentScore a static analysis tool along with a security extension
to the Android platform to detect vulnerable ICC methods and propose developers a
patch to prevent information leaks between applications. IntentScope has proven to
be able to detect applications vulnerable to eavesdropping as well as applications that
communicates user’s privacy-sensitive data to under-priviledged applications. Similarly,
authors of AppSealer [62] proposed a static and dynamic analysis framework to detect
vulnerable ICC methods in an application and instrument it to patch found vulnerabilities.

Lesson learned. These studies propose an additional step towards securing the Android
platform by providing application developers insightful tools to develop less vulnerable
applications. However, to avoid hampering legitimate applications, proposed approaches
cannot afford to automatically patch any vulnerability found on applications, as they are
not able to know whether scanned applications are legitimate or not.

23

Part , Chapter 2 – State of the Art

Securing hybrid applications

Hybrid applications are applications designed using the Webkit technology and de-
veloped with Javascript, HTML and CSS. Hybrid applications are more and more used
because they allow developers to build the applications for several platforms (Android,
IOS, Web) by re-using the same codebase. The emergence of hybrid applications raised
concern about web vulnerabilities on Android [71, 72]. Several studies [69, 72] shown that
well known web attacks such as cross-site scripting are applicable on Android within the
Webview context.

Following the discovery of these vulnerabilites, the version 4.3 of Android patched
several Webview related vulnerabilities and several research works [65, 66] proposed ap-
proaches to mitigate such attacks. In 2013, Yu et al. [65] proposed a static analysis frame-
work to instrument applications that use Webview to enforce a security policy on sensitive
API methods called from the context of webview. Later, authors of Draco [66] designed
a domain specific language (DSL) to allow developers to specify specific access control
policies on resources exposed to a Webview context.

All the aforementioned studies have made it possible to greatly strengthen the An-
droid platform over time. However, these new defenses put in place must be done while
leaving the possibility for legitimate applications to take advantage of system’s features
to properly serve the user. Actually, nothing prevents an attacker from building a ma-
licious application that masquerades as legitimate for user’s eyes and stealthily use sys-
tems features to make damages on the device or leak user’s sensitive data. This makes
it particularly difficult to distinguish a legitimate application from a malware by simply
comparing their behaviors. In this thesis, we take a closer look at systems that try to
detect and discard malicious applications while keeping legitimate applications within the
ecosystem.

2.2 Android Malware detection

Despite the efforts of the Android Open Source Project (AOSP) to secure the platform,
the Android ecosystem is, since its emergence on the market, massively attacked [73]. This
rise in cybercrime highlights the need for more effective measures to control the infection
rate of smart devices. Consequently, numerous studies started to address the problem of
malware detection on Android.

24

2.2. Android Malware detection

2.2.1 Signature-based malware detection.

Study Year Application analysis type Features
DroidMOSS [74] 2012 static analysis Dalvik bytecode (opcodes)
Zhou et al. [75] 2013 static analysis API calls, permissions
Kolbitsch et al. [76] 2009 dynamic analysis system calls

Table 2.4 – Overview of studies leveraging a signature-based approach for malware detec-
tion

As a first strategy for malware detection, several studies (see table 2.4) and commer-
cially available Android antivirus rely on signature-based detection approaches. Signature-
based detection consists in collecting, by static or dynamic analysis, a signature from an
unknown application and checking whether this signature corresponds to an identified
malware in a database kept up to date. Hence, this technique is fast to detect already
seen malware but leaves users exposed to new unseen malware until the signature is
available in the underlying database.

In 2009, Kolbitsch et al. [76] proposed a malware detection approach based on dy-
namic analysis that produces a behaviour graph of the analyzed software by monitoring
its system calls. Then the approach looks for similar existing graphs in a database to de-
termine the analyzed software is malicious or not. On mobile devices, several studies [75,
77] proposed frameworks that use application signature to detect repackaged applications
in Android marketplaces (i.e. stores). With DroidMOSS [74], authors used static anal-
ysis to extract opcodes from the application bytecode and compute a signature using a
fuzzy hashing technique. They demonstrated that 5 to 13% of applications on third-party
Android marketplaces are repackaged. Zhou et al. [75] proposed an alternative approach
by computing application signature using framework API calls and application’s permis-
sion. Authors demonstrated that 1% of applications on the official Android marketplace
(currently named Google Play Store) are repackaged.

However, it has been shown that attackers can evade signature-based detection by
quickly generating new malware variants. For example, the use of polymorphism [78] and
obfuscation [79] allows to completely change the structure of the code of an application
without affecting its semantics, thus allowing attackers to quickly craft new malware
variants with unforeseen signatures.

25

Part , Chapter 2 – State of the Art

2.2.2 Machine learning-based detection.

Study Year Learning algorithm Feature extraction Features
Drebin [21] 2014 SVM static analysis permissions, suspicious API

calls, protected API calls,
url strings in bytecode

MaMaDroid [19] 2017 SVM, RF, KNN static analysis Abstracted sequence of API
calls encoded with Markov
Chains

DroidAPIMiner [20] 2013 DT, KNN, SVM static analysis 8375 framework API calls
Peiravian et al. [80] 2013 SVM, DT, bagging

predictors
static analysis 1326 API calls and 130 per-

missions
Andromaly [32] 2012 K-means, logistic

regression, DT,
Bayesian networks,
Naïve Bayes

dynamic analysis CPU load, memory usage,
power, Network traffic

MADAM [81] 2018 KNN dynamic analysis system calls, user activity,
network traffic

MARVIN [82] 2015 Linear classifier, SVM static and dynamic analysis App names, syscalls, net-
work traffic, crypto oper-
ation, manifest metadata,
phone activity, permissions

Table 2.5 – Overview of studies that aim at detecting malware in the Android ecosystem

For these reasons, new malware detection approaches based machine learning (ML)
have emerged [19–21, 30, 80]. ML-based malware detection consists in training a statisti-
cal model using a learning algorithm (such as Random Forest or Support Vector Machine)
able to reason on properties learned from previously seen data to predict the maliciousness
of an unforeseen sample. To perform malware detection, aforementioned studies are based
on supervised machine learning tasks, that said learning a function that maps inputs to
outputs based on previously seen input-output pairs. In the last decade, several studies
(see table 2.5) proposed approaches that achieve good scores and reached over 90% ac-
curacy when classifying malware and benign applications with a very low false positive
rate.

However, as we will see in the next section and throughout this thesis, accuracy of
machine-learning based detection systems depends on the experimental setup used to
evaluate them. In particular, the capacity of these approaches to efficiently distinguish
benign applications from malicious ones depend on (i) the information (i.e. features)
extracted from applications, (ii) the learning algorithm used to train the model, and (iii)
the quality of the training dataset. In this thesis, we will see that an open problem in the
field is to verify that these results can be verified in other experimental setups than those
proposed in original studies.

26

2.2. Android Malware detection

Review of existing approaches

In machine learning, a studied object is often described by features, i.e. individual
and measurable properties of the object. To be able to classify an application as benign
or malicious, a machine learning-based approach relies on a learning algorithm that re-
quire a numerical representation of applications, namely feature vectors, given as input
to facilitate processing. A feature vector is a n-dimensional vector of features that repre-
sent an object. In this context, feature engineering is the action of choosing, extracting
and encoding adequate, informative and discriminative features to build effective machine
learning models. In the field of malware detection, mainly two approaches coexists to ex-
tract features from an Android application: (i) static analysis and (ii) dynamic analysis.
In the two next paragraphs, we review state-of-the-art studies based on these extraction
approaches.

Static analysis feature extraction. In 2014, authors of Drebin [21] used a broad
static analysis to collect a large set of features, both at the bytecode and the resource
level of an application, such as permissions, suspicious api calls, application package name
or component class names. The maliciousness of the application is then expressed by the
presence or the absence of a given feature in the feature vector. Afterwards, authors use a
linear Support Vector Machine algorithm to train a classifier. Authors demonstrated that
Drebin can achieve an accuracy of 94% with their dataset composed of 123 453 benign
applications and 5560 malware.

With DroidAPIMiner [20], Aafer et al. proposed a static analysis technique to detect
the presence or absence of 8375 framework API calls in analysed applications. They train
three different classifiers using DT, KNN and SVM algorithms and demonstrate that
their approach is able to reach an accuracy of 99% on their dataset composed of 16 000
benign applications from the Google Play Store and 3 987 malware from McAfee and the
Malware Genome Project [7]. However, the approach proposed by DroidAPIMiner is
sensitive to the change of API methods in the framework when new versions of the Android
platform are released. To solve this issue, Mariconti et al. proposed MaMaDroid [19],
an approach that uses static analysis to extracts the entire application call graph and
encodes it in an abstract representation by keeping only Java method package names.
MaMaDroid produces feature vectors by calculating the probability for a method to be
called by another in the call graph using Markov chains. To perform malware detection,
authors train three classifiers with a RF, KNN and SVM algorithms and show that all

27

Part , Chapter 2 – State of the Art

classifiers outperform DroidAPIMiner on 6 datasets built for the experiment.
Despite the good results obtained by the aforementioned studies, attackers started

using new evasion techniques to defeat static analysis, such as reflection or dynamic code
loading. Such techniques allow the attacker to dissimulate its malicious payload in places
unreachable by a static analysis program or to make it unreadable. In this thesis we will
focus in more detail on the effects of these new attacks on machine learning detection
systems based on static analysis.

Dynamic analysis feature extraction. Other studies [32, 81, 82] proposed ML-based
malware detection approaches using features collected with dynamic analysis. In 2012,
Shabtai et al. [32] proposed Andromaly, a ML-based approach that use a dynamic
analysis to sample various device metrics such as CPU load, memory usage or power
usage to detect suspicious or abnormal activities. Tested with decision trees (DT), K-
nearest neighbors (KNN) and Support Vector Machine (SVM), the approach allowed to
successfully detect 4 malware among 44 applications tested. With Madam [83], authors
proposed an on-device malware detection framework implemented at the framework level.
The approach dynamically monitors system calls, frameworks API calls and network traffic
of running applications and encode generated traces into a feature vector. Afterwards,
they train a KNN classifier with generated feature vectors and use it to detect malicious
behaviours occurring on the device. Authors of Madam claim to effectively block 96% of
malicious applications on their dataset of 2800 malware. In 2017, Lindorfer et al. proposed
Marvin [82], a ML-based approach that combines static and dynamic analysis to extract
a wide range of features, such as permissions, phone activity, network traffic, crypto
operations, etc. Authors use a SVM algorithm to train a classifier and evaluate it on a
dataset of 135 000 applications including 15000 malware. The trained classifier reached
an accuracy of 98.24%.

While more and more malware detection related works used dynamic analysis to ex-
tract features in recent years, they remain a minority because of the inherent scalability
issues of the approach. The dynamic analysis of an application requires to execute it on
an Android device to observe and monitor its behavior. Therefore, to make such analysis
scale for thousands of applications, applications are often executed in virtual environment.
Unfortunately, recent malware can detect at runtime that they are running in a virtual
environment [28]. For these reasons, static analysis remains the approach mainly used to
extract the features of an application.

28

2.2. Android Malware detection

Limits of machine learning-based detection

Contrary to signature-based approaches, ML-based approaches are more likely to de-
tect malware variants generated by attackers. This is because ML-based approaches train
classifiers able to generalize the malware detection problem from the data used to train
it instead of comparing signatures together. However, recent studies [39, 84] have raised
a number of concerns on the generalizability of reported results in the literature. Perfor-
mance of machine learning based detection systems are highly dependent to the data used
to train them. Unfortunately, publicly available malware datasets are extremely rare [7,
21, 40] and are criticised to be unreliable and unrealistic [23, 35]. In particular, existing
datasets are composed of nonfunctional, outdated samples [7] that do no fit with the
current malware evolution. Moreover, ML-based detection approaches [21, 37–39] often
rely on antivirus aggregators such as VirusTotal [42] to build large malware datasets.
Antivirus aggregators are online platforms that run many antivirus products from third-
party security companies to vet files uploaded by users. This approach may not be accurate
because (i) samples flagged malicious by aggregators are not always truly malicious and
(ii) malicious samples uploaded for the first time on VirusTotal are often wrongly flagged
as benign [23].

To solve the problem, several studies [23, 85, 86] proposed new approaches to build
malware datasets without relying on a third-party oracle. In 2015, Maiorca et al. [86]
used ProGuard [87] to build malware variants by obfuscating malware samples from the
manually curated Contagio dataset [88]. With RmvDroid [23], authors create new mal-
ware datasets by selecting applications that are both flagged malicious by VirusTotal
and removed by Google from the Google Play Store. Unfortunately, the datasets gen-
erated by these studies remain little used because they do not offer sufficient diversity
in the samples they contain to allow a model to generalize malware detection compared
to existing datasets. Moreover, even if samples collected by RmvDroid were removed
from the Google Play Store and vetted by VirusTotal [42], there is still no evidence
that these applications are real malware. Google may have removed theses applications
for other reasons such as non-compliance with Play Store’s terms of use. In this thesis,
we introduce new concepts that will help to increase the quality of application datasets
used to train and test machine learning-based detection systems.

Another problem of existing malware datasets used to train ML-based scanners is that
they lack corner case malware samples that use complex obfuscation techniques to hide

29

Part , Chapter 2 – State of the Art

their malicious payload. For example, malware samples that leverage packing, reflection or
dynamic code loading are problematic for machine learning based approaches because they
prevent them to use feature that truly express the application’s behaviour. The problem
is even more accentuated by the fact that trained model are drifting from reality, as recent
studies show [35, 39]. The concept of model drift highlights the fact that datasets used to
train learning models previously cited studies are not close enough to reality. Firstly, used
datasets suffer from spatial bias, i.e. the proportion malware in datasets is not equal to the
proportion of malware in the wild. With Tesseract [39], authors suggest that 10% of
applications in the wild are malware, whereas most of studies use balanced datasets with
50% of malware. Secondly, used datasets suffer from temporal bias, i.e. in proportion,
the age of samples within datasets do not represent correctly the age of samples found on
stores.

Such limitations have opened a way for a new range of studies towards the generation
of Adversarial Examples for classifiers. The main aims of such studies is (i) to challenge
existing ML based detection systems with corner cas malware samples and (ii) to syn-
thetically create realistic malware variants to increase the size of malware datasets.

2.3 Adversarial Attacks to Malware Detection

Scanners built to detect malicious behaviours are used in various domains such as
Desktop antivirus, spam filters, DoS attacks detection, malicious pdfs or malicious ap-
plications on mobile detection. Over the years, various studies have shed the light on
the vulnerabilities of such detectors and lots of efforts have been made to identify and
taxonomise related attacks [7, 89]. Among them, two major attacks, poisoning and eva-
sion attacks have been practically demonstrated. Poisoning attacks consists of introducing
inaccurate and/or evasive data into the data used as ground truth for a scanner, for ex-
ample to train a machine learning-based classifier. Such attacks have been successful in
several domains such as malicious pdf detection, spam filters and handwritten digits de-
tection [90–92]. Evasion attacks which cause misclassification of new data in the testing
phase, have also been successful against pdf detectors [93] or biometric authentication
systems [94]. Limitations of those attacks is that it requires a deep knowledge of the ad-
versary as well as access to the training set used to train the classifier, or the ground
truth data for signature-based detection. To overcome these limitations, new studies in
the field have proposed more realistic evasion attacks that assume less knowledge about

30

2.3. Adversarial Attacks to Malware Detection

the targeted detection system [95, 96].

2.3.1 Review of existing studies

Evasion attacks on malware scanners can be thought as the action of crafting Ad-
versarial Examples (AE), that said corner case samples specifically created to evade a
targeted classifier. Generation of adversarial examples is discussed in a large body of lit-
erature [33, 97, 98]. Crafting AE has been mostly successful in continuous domains, such
as images [99], where with small perturbations it is possible to change its classification
while being invisible from the human eyes. However, in constrained domains, where the
classification relies on machine learning and domain specific feature vectors, perturba-
tions on feature vectors may lead to corrupted samples. As such, several studies [100,
101] perform attacks on multiple machine learning and deep learning based scanners by
applying perturbations at the feature vector level. While these attacks are theoretically
successful, authors are not able to track those perturbations back to create fully working
adversarial examples. While some success have been recorded for PDF classification [34,
102] few attempts have been made to generate functional Adversarial application samples
for Android malware classification.

The tension between realistic and effective adversarial attacks.

Regarding the Android ecosystem, multiple research works have studied the security
problems of malware detection through adversarial attacks [33, 103–107]. Several of these
approaches are mainly producing AEs using obfuscations techniques on subsidiary files
such as Manifest files (e.g. permissions), or at the bytecode level with method renaming,
method call reordering, package renaming or string encryption. Such obfuscation tech-
niques are sufficient to evade signature-based scanners but fail against more advanced
ones as the behaviour of crafted AEs remain accessible to static analysis tools and there-
fore still interpretable. Nevertheless, in pure academic exercices, researchers have shown
how manipulating feature vectors can lead to samples that can evade detection even by
sophisticated detectors [100, 101, 103, 108]. In general, however, it can be infeasible to
track those changes back to a sensical object. While perturbations at the feature vector
level are theoretically effective, they do not add much value to finding proactive solutions
to the problem of ever-evolving Android malware variants [22, 109].

Results of the aforementioned studies highlight the tension between the realism and

31

Part , Chapter 2 – State of the Art

the effectiveness of adversarial attacks. A realistic attack can be thought as an attack
that tries to imitate a real world attacker with respect of the following conditions:

— Working adversarial examples. An attacker will try to craft working malware
variants that evade detection scanners and trigger their malicious behaviour when
executed on a target device. Hence, attacks that do not allow to create functional
adversarial examples, such as perturbation at the feature vector level, cannot be
considered realistic.

— Attack against a black-box system. An attacker is unlikely to have a deep
knowledge about the targeted detection scanner, such as the algorithm used to
train a ML-based model, or the data used to train it. As such, to be considered
realistic, adversarial attacks must treat the targeted detection systems as a black-
box.

Besides, an attack can be considered effective when samples generated are misclassified
by a targeted detection scanner. In this thesis, we are particularly interested in finding
the right compromise that allows us to highlight the vulnerabilities of Android malware
detection scanners while making attacks practically feasible.

Study Year Vector only Number of generated samples Number of working samples Black-box attack Evaluated approaches
Android HIV [33] 2015 No 4 560 Unknown No Drebin (SVM) [21], MaMaDroid

(RF,SVM,KNN) [19]
Mystique [110] 2016 No 10 000 30 Yes VirusTotal [42], 9 academic solu-

tions [21, 51–53, 111–115]
Mystique-S [104] 2017 No 44 44 Yes 12 mobile antivirus, Taint-

Droid [52]
Yang et al. [106] 2017 No 2 612 Unknown Yes 7 engines from VirusTotal,

AppContext [116],Drebin [21]
Demontis et al. [22] 2017 No 10 500 Unknown Yes Drebin [21], custom improved

SVM
Pierazzi et al. [109] 2019 No 5 330 Unknown Yes Drebin [21], custom improved

SVM proposed in [22]
Grosse et al. [103] 2017 Yes - - No Custom DNN
Grosse et al. [100] 2016 Yes - - No Custom DNN
MalGan [101] 2017 Yes - - Yes Custom DNN
Dillon [108] 2019 Yes - - Yes Custom DNN

Table 2.6 – Overview of studies regarding adversarial attacks on Android antivirus

In this logic, several works (see table 2.6) studied more complex approaches to find
good a trade off between realistic and effective adversarial attacks against Android mal-
ware scanners. These studies can be compared according to several criteria that make
it possible to quantify the realism and the effectiveness of the attack: (i) the number of
adversarial examples generated, (ii) the number of working samples among them, and (iii)
the assumed knowledge about target systems. Over the ten studies listed, six of them pro-
posed an approach that generates real adversarial examples in the form of Android APKs.

32

2.3. Adversarial Attacks to Malware Detection

With Android HIV, authors perform two distinct attacks on the MaMaDroid [19]
and Drebin [21] ML-based detection methods. To perform the attack on MaMaDroid,
they rename classes and add an arbitrary number of method calls in the application byte-
code. To perform the attack on Drebin, they add permissions to the AndroidManifest.xml
files and API calls in the application bytecode. In the experiments, authors successfully
generate 4 560 malware variants from existing malware from which 86% and 99.4% evaded
the MaMaDroid and Drebin approach respectively.

While authors claim to perform a black-box attack on the targeted scanners, they
perform two different attacks specifically tailored for each scanner, suggesting that attacks
have been designed with knowledge of detection systems internals. In addition, authors
do not provide evidence that the attack is still effective when targeted ML scanners are
re-trained with adversarial examples generated by their approach. Finally, authors do
not mention if any experiment has been done to determine if generated malware variants
are functional, which make attacks potentially unrealistic. In this thesis, we present new
approaches that does not target one particular scanner but all at the same time. We further
address the problem of adversarial re-training for machine learning-based scanners. We
finally present new alternatives to automatically ensure that synthetically crafted variants
are fully working.

With Mystique, Meng et al. [110] propose an approach to evaluate the robustness
of VirusTotal, and 9 academic solutions including the Drebin [21] machine learning
scanner by generating malware variants from 4 attacks and 2 evasion techniques found in
existing malware samples. To do so, they generate 10 000 malware variants for each attack
and evasion feature from 1 260 samples randomly selected from the MalwareGenome
dataset [7]. Authors show that several malware variants can bypass academic solutions
and antivirus engines on VirusTotal achieve a detection ratio of 30% on average against
uploaded malware variants. In the paper, authors manually tested 30 malware variants
over the 10 000 generated. Mystique-S [104] is an evolution of Mystique where authors
add a dynamic code loading evasion feature to 44 generated malware variants. Authors
show that all variants created are working by manually vetting them and succeeded to
bypass 9 mobile antivirus products.

Contrary to Android HIV, these two studies show that some of generated malware
variants are fully functional. This verification is however made only on a small sample of all
generated variants (30 over 10 000). Moreover, the 30 samples tested are generated using
a simplified approach of the attack presented by authors, which does not guarantee that

33

Part , Chapter 2 – State of the Art

evading malware variants crafted with the full approach are actually working. Especially,
original malware samples used to create variants come from the MalwareGenome [7]
dataset, which mainly contains outdated and un-working samples. Another drawback of
the study, similar to Android HIV, is that authors do not give evidence that their attack
is still effective after re-training machine learning-based scanners with malware variants
they generated. In our work, to guarantee realistic adversarial attacks, we ensure the
original malware chosen to craft adversarial examples are up to date and fully working.

In 2017, Yang et al. [106] proposed a novel method to generate malware variants by
using the concept of code transplantation. They perform a semantic analysis on existing
applications and generate variants by migrating (i.e. transplanting) portions of code from
one place to another without changing the behaviour of the application. With this ap-
proach they succeed to produce 2 612 malware variants. Over all generated variants, 178
successfully evaded the AppContext [116] scanner, 38 evaded the Drebin [21] scanner,
and 565 evaded 7 antivirus engines chosen on VirusTotal.

While authors succeeded to generate adversarial examples with their approach, most of
generated variants are still detected by one or more detection scanners. Moreover, authors
do not mention if successful adversarial examples are evading only one target scanners or
all of them. Similarly to other studies, authors do not say in their evaluation process of
generated malware variants are functional.

More recently, Demontis et al. [22] proposed a new attack model to defeat the malware
detection method proposed by Arp et al [21] with Drebin. In their approach, they describe
seven different attacks strategies applied on a dataset of 1 500 malware from the Contagio
dataset [88], totalling 10 500 variants:

— Zero effort attack. No manipulation performed (ground truth)
— DexGuard obfuscation attacks. This scenario includes three attacks. Malware are

obfuscated by the dexguard obfuscator tool, performing string encryption, reflec-
tion and class encryption.

— Mimicry attack. This scenario represents an attack where the attacker know in
advance the training dataset and therefore the feature space.

— Limited knownledge attack. This scenario represents an attack where the attacker
know in advance the training dataset and the learning algorithm used by the tar-
geted system.

— Perfect knownledge attack. This scenario represents an attack where the attacker

34

2.3. Adversarial Attacks to Malware Detection

has access to the trained classifier of the targeted system.
Authors performs these seven attacks on two classifiers, a linear SVM similar to the one
used in the Drebin [21] study and a custom secured SVM, supposed to be more robust
to such adversarial attacks. The experimental results show that the Zero effort attack,
DexGuard obfuscation attack did not affect classifiers performances. Authors further show
that the original Drebin classifier is vulnerable to mimicry, limited knowledge and perfect
knowledge attacks and that the custom secured SVM is ten times better.

Following the study of Demontis et al. [22], Pierazzi et al. [109] proposed a new attack,
constrained to fit with the problem-space, that is applying transformations to a malware
while ensuring that the resulting adversarial variant is functional. To do so, they for-
malize an approach that describes the possible perturbations applicable at the resource
and bytecode level without breaking the application. They evaluate their attack on the
Drebin [21] and the custom classifier proposed by Demontis et al. [22]. Authors demon-
strate a misclassification rate of 100% on both trained classifiers for the 5 330 malware
variants generated with their approach.

However, authors are only targeting two detection approaches (Drebin [21] and the
custom secured SVM) and omit to test their approach on detection systems such as
MaMaDroid [19], AppContext [116] or commercial antivirus products. Typically, the
detection method proposed in MaMaDroid [19] is different from Drebin [21]’s as it
encodes call graph features using a markov chain algorithm to infer the application’s
behaviour, instead of raw binary encoded contextual features. It is therefore hard to
know if the attack presented would be effective against other scanners built with different
detection methods. In our work, we claim to be more exhaustive in our experiments
by evaluating different scanners based on different detection methods to show their limits
against our adversarial attack method. Besides, authors test if generated malware variants
are functional after applying perturbations, authors automatically install and run them
on Android emulators.

2.3.2 Open problems

The review of aforementioned studies show that either one or several key problems are
not addressed in the field of adversarial attacks against Android malware scanners.

Attacks against black-box scanners. In several cases [22, 104, 109, 110], adversarial
attacks proposed are performed with partial or full knowledge of the targeted system,

35

Part , Chapter 2 – State of the Art

i.e. with knowledge about the learning algorithm used and/or the datasets used to train
the model. However, it remains unclear [22] how an attacker can evade existing machine
learning detection systems with absolutely no knowledge about the target system. To
address this problem in our work, we investigate the effectiveness of a new adversarial
attacks by crafting adversarial examples in the dark, i.e. by considering each evaluated
scanners as a black-box.

Attacks are effective but not realistic. To the best of our knowledge, no study pro-
posed an adversarial attack scenario for which adversarial examples generated have proven
to be realistic, that said where variants generated conserve the malicious behaviour of the
original malware despite the perturbations operated on it. Most of studies [100, 101, 103,
108] perform only perturbations at the feature vector level, without being able to reflect
them on an application file. Some studies [33, 109] propose an automated mechanism to
install and run malware variants but do not give evidence that the variant effectively
triggers its malicious behaviour and does not crash. Such results suggest that more efforts
are required to find evidence that such adversarial attack are effectively viable in practice.
The review of aforementioned studies highlights a trade-off to consider between the prob-
ability of hitting an adversarial example, i.e. a malware variant that successfully bypass
a detection system, and the likelihood that generated sample is realistic (i.e functional).
In this thesis, to address the lack of realistic adversarial examples we propose Killer-
Screenshot (see chapter 5), a tool that enables to ensure that a crafted malware variant
is triggering its malicious behaviour at runtime by comparing its screen activity with the
original malware.

Few works studied attacks on commercial antivirus. Adversarial attacks against
commercial antivirus remain sought [37, 106, 110] and often target few antivirus engines
empirically chosen. So far, related studies seems unsuccessful in reaching 100% misclassi-
fication against antivirus engines hosted on VirusTotal. Moreover, to the best of our
knowledge, only one study [104] tried to evade fully-fledged mobile antivirus products, but
only with 44 malware variants. We believe that more efforts are needed to find example
of attacks, especially with more complex evasion techniques, that challenge commercial
antivirus in order to strengthen them against future real world attacks. To address this
problem in our work, we thoroughly evaluate our adversarial attack approach against
all commercial antivirus engines running on VirusTotal. Moreover, we propose a new

36

2.4. Defenses against adversarial attacks

tool, namely KillerTotal, to evaluate the robustness of fully-fledged antivirus mobile
applications.

Evasion methods remain simple and predictable. In reviewed studies, methods
to create adversarial variants are often using obfuscation, perturbation at the vector level
or perturbation at the bytecode level but do not investigated more complex attacks lever-
aging on more recent and complex evasion techniques such as dynamic code loading or
bytecode encryption. Only one study [104] actually studied an attack using dynamic code
loading by creating 44 malware variants using this technique. These evasion attacks are
however heavily used by attackers to craft malware [117]. To properly audit malware de-
tection scanners, we believe that adversarial attacks must integrate such more complex
evasion techniques to cover as much corner cases as possible to create effective challenging
datasets. To address this problem in our work, we propose KillerDroid, a toolchain
that combines complex evasion techniques to create adversarial examples.

Despite the remaining open problems, Adversarial attacks against Android malware
detection systems have however proven to be successful under certain circumstances.
To fight against this emergent threat, new works started investigating new methods to
reinforce detection systems against adversarial attacks.

2.4 Defenses against adversarial attacks

To reinforce malware detection scanners, especially machine learning-based, several
research works [22, 100, 108, 118] (see table 2.7) investigated adversary-aware approaches,
that said designed to be more resistant against evasion.

Study Year Attack use real samples Re-Training Secured approach
Dillon [108] 2020 No No Custom DNN
Podschwadt et al. [118] 2019 No Yes Custom DNN
Grosse et al. [100] 2016 No Yes Custom DNN
Demontis et al. [22] 2017 Yes No Drebin (SVM)

Table 2.7 – Overview of studies regarding defenses against adversarial attacks

37

Part , Chapter 2 – State of the Art

Securing deep neural networks

Recently, several studies proposed approaches to secure detection systems built upon
deep neural networks. In 2016, Grosse et al. [100] investigate three techiques to improve
the detection rate of a neural network-based scanner: feature reduction, Distillation and
re-training. Feature reduction consists in considering less features to train the model in
order to decrease the model’s sensitivity to changes in the input. Distillation allows to
transfer knowledge from a large neural network to small ones in order to increase the gen-
eralization performances of smaller networks. Finally re-training consists in re-training the
neural network model with a training dataset that includes adversarial examples. In their
evaluation, Grosse et al. conclude that feature reduction and distillation do not improve
much the malware detection rate of the tested neural network but re-training had a sig-
nificant impact, lowering the missclassification rate from 82% to 67% in best conditions.
In 2019, Podschwadt et al. [118] proposed four defenses methods against twelve different
attacks performed on detection systems based on deep neural networks. The defenses eval-
uated include distillation, adversarial training, ensemble adversarial training and random
feature nullification. In their evaluation, authors found out that the distillation, random
feature nullification, ensemble adversarial training and have almost no positive impact on
adversarial robustness. However, similarly to Grosse et al. [100], authors concluded that
the adversarial training defense, which consists of retraining the classifier with adver-
sarial examples, provided a significant robustness. Finally, Dillon [108] proposed another
adversarial training defense by training a deep neural network with adversarial samples
specifically generated to program the network in order ignore the number of benign fea-
tures and focus on the presence of absence of malicious features. To generate malware
variants, authors randomly add benign features to a malware feature vector. They first
demonstrate that their attack succeeds on a trained deep neural network and then demon-
strate that they can increase the robustness of the network by training it with obfuscated
samples.

The aforementioned studies suggest that re-training a deep neural networks with la-
belled adversarial examples is an efficient way to strengthen a detection approach targeted
by an adversarial attack. Other studies in the domain of PDFs malware suggest that other
machine learning methods may also benefit from adversarial re-training to increase the
robustness of their models. However, as reviewed in the previous section, no study inves-
tigating adversarial attacks on Android malware scanner have evaluated their approach
in case of adversarial re-training of the target systems. In this thesis, we present a new

38

2.5. Conclusion

adversarial attack together with a robust evaluation approach that takes into account the
concept of adversarial re-training for all machine learning-based scanners evaluated.

Securing existing ML-based scanners

Demontis et al. [22] proposed a novel method to increase the robustness of the Drebin [21]
detection system based on a Support Vector Machine (SVM) learning algorithm. To do
so, they formalize an approach that improve the security of a linear classification by en-
forcing a learning on more evenly-distributed features weights. This requires an attacker
to manipulate more features to evade the classifier detection. In their evaluation authors
show that their improved classifier is indeed ten times more efficient than the original
Drebin approach to deal with adversarial attacks they performed. However, their im-
proved approach have been defeated by a new study [109] (see section 2.3.1).

2.5 Conclusion

In this chapter we reviewed many works that propose new approaches to make the
Android platform more secure. These studies show the effectiveness of a number of mech-
anisms to prevent a malicious application from accessing user’s sensitive data without
its consent. Other studies show that a stronger application isolation can prevent a mali-
cious application from gaining excessive privileges on the system. However, this enhanced
security must not come at the expense of the proper functioning of legitimate applica-
tions. Therefore, great control is left to the user: he must choose, particularly through the
permissions system, to grant or deny certain privileges to an application. This can lead
the user to misinterpretation on application’s intentions, and he may accidentally allow a
malware to perform its malicious behavior. This is all the more difficult as malicious and
legitimate applications can look similar in many ways.

To fight this phenomenon, many studies have emerged to try to distinguish a legitimate
application from a malicious one. These studies use static and dynamic analysis to collect
information on tested applications and then mechanisms such as signature verification
or machine learning to classify tested applications as benign or malicious. Over time,
these mechanisms become more and more efficient, with an accuracy that can exceed
99However, the evaluation of these approaches is made under specific conditions, with
predefined datasets, sometimes obsolete which do not reflect reality.

39

Part , Chapter 2 – State of the Art

In order to assess the effectiveness and challenge these detection scanners with more
precision, new studies have been working on adversarial attacks. Adversarial attacks con-
sist in generating malware variants capable of escaping detection systems. Several studies
have shown that this practice is effective and have succeeded in challenging existing de-
tection systems. However, several problems inherent in constructing adversarial examples
threatens the validity of the proposed studies. In fact, there is a tension between the
realism and the effectiveness of an attack. Most studies perform an attack with knowl-
edge of how the targeted system works, and the variants generated are not proven to
be functional, which makes these attack unrealistic. In addition, the attacks carried out
remain simple and predictable and do not take into account the new evasion techniques
used by attackers to build malware today. In the following of this thesis, we will provide
new approaches that aim at addressing the aforementioned open problems, especially by
improving both the realism and the effectiveness of adverarial attacks against Android
detection systems.

40

Chapter 3

Exploring malware detection tools
on Android

In this chapter, we present our works dedicated to improve the performances of ex-
isting machine learning based detection approaches in the Android ecosystem. We begin
the chapter with background knowledge regarding the Android platform and especially
Android applications. Then, we review the techniques used to perform program analysis
on Android applications. We further discuss the limits of existing techniques to perform
malware detection. Finally, we present DroidAutoML and Groom, two frameworks
designed to increase the accuracy of machine learning based detection approaches on
Android.

3.1 Background on the Android ecosystem

In this section, we provide background and definitions related to the Android platform
to contextualize our work. Specifically, we discuss in more details several security limits
of the Android platform.

3.1.1 Android platform architecture

The Android platform is an open-source project built on a linux kernel intended to
run on multiple types of smart devices [119]. The software stack can be roughly divided in
5 distinct layers. The lowest layer is the linux kernel, responsible for managing hardware
resources and allowing the development hardware drivers for different types of devices.
Above the linux kernel is the Hardware Abstraction layer, that exposes device hardware
capabilities to the Java framework API (see below). The third layer is the Android runtime
(ART). Each application running on a device is running in its own instance of ART which
allow to execute dex binary files, a bytecode format specifically designed for Android.

41

Part , Chapter 3 – Exploring malware detection tools on Android

Java source code can be compiled into dex bytecode. The fourth layer is the Java API
framework. All features of the Android operating system are available through a unified
API written in Java. The Java API framework is the main interface used by application
developers to use features and interact with the system. The API framework proposes
groups of Java methods calls to handle services such as: the View and display system,
access to external resources files, manage application activities or access to data from
other applications. The fifth layer represents system and third-party applications running
on the device.

3.1.2 Android application architecture

Android applications consist of specific Java programs executed by the Android op-
erating system. A normal desktop Java program is executed by the runtime environment
as a standalone application and remains independent throughout its execution. On the
contrary, the Android runtime subordinates the apps it executes, which allow the An-
droid operating system to pause and resume the execution of an app at any time. Such
mechanisms are implemented to comply with the restrictions of mobile devices. Smart-
phones are composed of limited shared resources such as storage, memory or power that
must be shared with multiple running processes. As such, the operating system prioritizes
access to resources to the foreground application rather than unused applications in the
background.

Application sandbox. The Android platform leverages on Linux user-based protection
to isolate application resources. In the Linux system, each user is assigned a unique user
id (UID), and users are isolated by the kernel in such a way that one user cannot access
the data of another user. On Android, the system assigns a unique user id to each Android
application and runs it in its own process. This mechanism allows to isolate applications
from each other and protects the system from potential malicious behaviours. The Android
sandbox is in the kernel, thus if one malicious application tries to read the data of another
application, this is not permitted as the malicious application does not have user privileges.

Over years, several works [7, 67] demonstrated that the application sandbox model is
not invulnerable, which drove the support of new security features such as SELinux [13,
60]. Since Android 5.0, SELinux enforces mandatory access control (MAC) over all process,
which allow to better control access to application data and better protect users from
potential vulnerabilities in application’s code.

42

3.1. Background on the Android ecosystem

Components. To develop an application, developers implement Java classes that in-
herit from predefined system classes called Components. Each component has callbacks
that can be overwritten by the developer to allow the application to react to events emit-
ted by the system. The Android documentation defines four types of components that
drive the application lifecycle. The Activity component can be thought as a task coupled
to the graphical user interface. The Service component are used to perform long-running
background tasks that must not interfere with user interactions to preserve user experi-
ence. The Broadcast Receiver component is responsible for listening and react to events
sent by the system or other running applications. Finally, the Content provider compo-
nent provides an interface to the application database to store and access application
specific data. Application components implemented by the developer must be declared in
the AndroidManifest.xml file so that the system is aware of them and can interact with
them. The manifest file acts as a declarative file where the developer must declare the
intentions and capacities of its application.

Android application developers take advantage of these components to use hardware
device capabilities, read and write user data and react to System wide events. These
features give a lot a freedom to the executed application that can affect user privacy
and security. For these reasons, Android has implemented several security locks to have
greater control on app installed on device.

Permissions. To protect the privacy of an Android user, the operating system en-
forces an explicit permission model. An application cannot perform sensitive operation
such as reading user contacts or sending SMSs without having the specific permission
granted by the system. The application must declare all permissions it will ever use in
the AndroidManifest.xml file. Until Android version 5 (Lollipop), permissions requested
the application were presented to the user at installation time. If the user did not wish
to grant permissions to the installed application, he could choose to uninstall it but he
did not have the possibility to grant only part of the requested permissions. Due to this
limited permission model, recent Android versions (from version 6) switched to a more
granular model where the user can grant permissions separately [15]. The new permis-
sion model is runtime based, i.e. whenever the application needs to perform an operation
protected by a permission, a modal is presented to the user to ask him to either allow or
deny the application action.

Recent studies [49, 120] stated that this permission model is insufficient to protect

43

Part , Chapter 3 – Exploring malware detection tools on Android

user privacy and prevent data leakage for several reasons. Firstly, applications are often
over-priviledged, i.e. they request more permissions than required to perform their tasks.
Secondly, users do not always carefully review permission requested by applications for
fear of not being able to use the application correctly. Thirdly, permissions are coarse-
grained, thus for example, if an application requests the permission to read the device
internal storage, this does not restrict the files the app can read. Finally, a recent study [49]
discovered several side channels in the Android framework that allow applications to access
sensitive data without having the permission to do so. While studies [121, 122] proposed
new approaches to refine the permission model and make it more fine-grained, attackers
still take advantage on the aforementioned limitations to successfully execute malicious
behaviours on users devices.

3.1.3 Malware infection in the Android ecosystem

To successfully perform an attack on a device, the attacker must first design a malicious
application capable of taking advantage on vulnerabilities of the device and/or hijack
device’s functionalities for malicious purpose. Then, the attacker must reach the user’s
device by successfully installing his malicious application on it.

How attackers take advantage of the Android platform. By targeting smart
devices with malicious applications, an attacker mainly seeks two goals: extort money
from the user and/or spy on him. Thus, malware can take many forms, depending on
their behaviour, their goal and the device’s capabilities or vulnerabilities they exploit. To
better detect these threats, researchers have characterized and categorised malware into
families [7] and they seek to know how they reach smart devices [123].

For example, ransomwares encrypt the user filesystem and block the user interface
until the user accepts to pay and ransom to obtain the decryption key to recover its files.
To block the user interface, the ransomware can take advantage on the ViewOverlay [124]
feature of the Android platform, which allow an application to display an extra layer
that sits on top of all other views (see 3.1). Another example is malicious applications
that leverage capabilities Service component to send SMSs to premium phone numbers
in the background. Other families of malware leverage vulnerabilities at the kernel level
to deploy rootkits and perform privilege escalation to gain root access on the targeted
device [8].

44

3.1. Background on the Android ecosystem

Figure 3.1 – Example of a Ransomware displaying an un-closable overlay layer on the user
interface (Android 9.0)

How attackers evade detection systems. Mainly, attackers try to design the mal-
ware in such a way that it is difficult to differentiate it from a legitimate application, to
prevent it from being detected before it is executed on the target device. The following
list gives three examples of techniques used by attackers to evade detection systems (an
in depth study of malware evasion techniques is provided in section 4.1.1):

— Obfuscation. Obfuscation consists in making the code of an application difficult
for a human to read and understand, mainly to avoid reverse engineering.

— Packing. Packing is the action of hiding a malicious payload within a host ap-
plication. Attackers may hide their malicious payload into an existing legitimate
application to make the resulting application looks legitimate.

— Dynamic code loading. This technique consists in leveraging a functionality of
the Android runtime to load bytecode payloads at runtime from various locations,
such as device local storage or over network.

To thwart such evasion techniques used by attackers, Android security actors have
developed automated software analysis approaches.

45

Part , Chapter 3 – Exploring malware detection tools on Android

3.2 Program analysis

Program analysis, which consists in automatically analyzing the behaviour of a pro-
gram, is used in a wide range of applications such as correctness [125, 126], robustness [127]
or safety [128, 129]. Since the emergence of malware on mobile devices, program analysis
has become the main method for detecting malicious applications [21, 32, 82, 130]. Regard-
ing malware detection on mobile devices, application analysis can be roughly categorized
into techniques using static and/or dynamic analysis.

A static analysis allows to quickly analyze binaries of an application without having to
execute it, in particular without having an negative impact on devices resources. However,
static analysis is limited to the analysis of the visible part of the application’s bytecode.
Consequently, attackers may use advanced obfuscations techniques such as dynamic code
loading or encryption to put their malicious payload out of range of static analysis. Due
to these limitations, dynamic analysis is often explored as an alternative for analyzing
applications in real time [81, 131]. Dynamic analysis is performed by executing the pro-
gram on a real or a virtual machine. If performed with a sufficient number of test inputs,
dynamic analysis may help to uncover runtime values of an application and defeat ad-
vanced obfuscation techniques. To overcome scalability issues [132], dynamic analyses are
often performed in parallel in virtual environments [133], which make them vulnerable to
evasion attacks [28].

3.2.1 Limits of dynamic analysis to malware detection

Several works [81, 132] demonstrated that dynamic analysis can be very efficient to-
wards detecting malicious behaviours that can not be detected by a static analysis. On
Android, most known works [52, 134] monitor the application runtime in a custom virtual
environment to perform dynamic taint analysis. DroidScope [134] performs the dynamic
taint analysis at machine code level, whereas TaintDroid [52] monitors installed applica-
tions to detect if private-sensitive data is leaving the device. While these studies are not
directly oriented toward detecting malware, they are helpful to shade the light on potential
unwanted behaviours that occur at runtime. More recent studies such as Madam [81] and
Marvin [82] proposed approaches to detect Android malware using heuristics generated
using dynamic analysis such as network operations, file operation or phone events.

Although techniques using dynamic analysis are promising, several limiting factors
prevent them from being deployed at an industrial scale to fight against the high volume

46

3.2. Program analysis

of unforeseen malware in the wild. Typically, to make it scale and for isolation purposes,
such analyses are executed in virtual environments. Unfortunately, recent malware can
detect at runtime that they are running in a virtual environment [28]. Moreover, malware
are known to implement evasion techniques such as logic bombs and time bombs which
allow them to stay inconspicuous during analysis. Logic bombs can be thought asmalicious
application logic that is executed only under certain circumstances. For example, some
malware implement malicious payloads that will only be executed when the device is
located at a given geographic position. Similarly, time bombs are malicious application
logic that enable the malware to trigger its malicious actions only after a certain amount
of time or periodically, at specific hours.

Accordingly, dynamic analysis suffers from scalability issues, and is rarely used due
to its strong requirements both in terms of time and resources. To overcome these limits
and perform malware detection of a large volume of application, static analysis is often
chosen over dynamic analysis.

3.2.2 Advantages of static analysis in malware detection

For the reasons listed above, majority of studies in the field of malware detection prefer
approaches leveraging on static analysis. Static analysis does not require to execute the
application on a device, thus it is less expensive to analyse large volume of applications.
Another important aspect is that static analysis not only to analyse the bytecode of
the application, but also the resources associated with it. Thus, several studies [21, 135]
correlate heuristics from both resources and bytecode to identify potential threats and
improve their detection rate. Finally, static analysis makes it possible to abstract the
execution environment, the interactions with the user as well as the semantics of the
program, which makes it possible to identify problems according to various parameters.
As such, where dynamic analysis can only analyse one execution at a time, static analysis
can perform an exhaustive search on all possible application execution paths.

Although static analysis is the most popular approach regarding malware detection,
it is not without flaws: various obfuscation techniques [105, 136, 137] flourished in the
recent years to escape from it such as class and method renaming, reflection or dynamic
code loading. Code obfuscation is the process of altering an executable so that it is hard
to reverse engineer while remaining fully functional. Code obfuscation is used by both
developers of legitimate applications to protect their intellectual property and by attackers
to dissimulate the malicious intentions of their malware. Such practices makes it harder

47

Part , Chapter 3 – Exploring malware detection tools on Android

to distinguish legitimate applications from malicious ones. Therefore, for static analysis
to remain effective regarding malware detection, more and more information is extracted
from applications [21] and researchers rely on more robust techniques such as machine
learning [19, 20, 138, 139].

3.3 Techniques to perform malware detection at scale

To respond to the dramatic proliferation of malware, the academic domain and the
industry have witnessed a tremendous activity around designing antivirus scanners. Scan-
ners analyse programs or applications and compares patterns found in code with infor-
mation stored in database or submit them to trained machine learning models. After
analysis, scanners gives a binary response by flagging the application either as benign or
malicious, sometimes accompanied by a confidence score. This binary output can be used
by market places or on-device security protections to decide whether to discard or keep
the application.

Traditional detection products based on application signature are omnipresent on the
security market [42, 140]. However, due to the rise of malware, these scanners become
ineffective against emerging threats. Attackers leverage very complex techniques such as
polymorphism [27] to create new malware samples and have their own tooling to verify if
newly created samples are detected. In fact, malware authors can generate new malware
variants with unforeseen signature at a high paced rate to bypass such signature based
antivirus.

This limitation strengthens the need for more intelligent systems to proactively detect
unseen 0-day malware. Machine learning models have then been extensively investigated
to allow the identification of malware features and the scaling of malware variants iden-
tification [19, 21, 141].

3.3.1 Signature based detection

Due to the increasing number of applications published on public application mar-
kets, the need for quickly analyze incoming new applications has been on the rise. To
do so, most of traditional antivirus detect malware by relying on technique known as
signature-based detection. With signature-based detection, the decision whether to label
an application as legitimate or malicious is done by comparing information such as a

48

3.3. Techniques to perform malware detection at scale

computed file hash or bytecode patterns with sets of heuristics and rules generated from
previously seen malware. As soon as a new malware is discovered in the wild, antivirus
software companies put their hands on, compute their related file signature and add it
to their ground truth database. Later on, antivirus compute signatures of files to be ana-
lyzed and compare them with previously stored signatures to perform malware detection.
Consequently, the detection quality (i.e. the accuracy) of such antivirus heavily depends
on the capacity of the software company to keep its ground truth database up to date as
much as possible. If done correctly, the signature based technique remains an efficient and
fast way to catch already known malware. However, keeping the ground truth database
up to date requires a lot of manpower to analyse unknown samples as well as maintaining
centralized platforms such as VirusTotal [42] to continuously collect a large volume of
files. However, with the rise of cybercrime, these methods become unrealistic. Using poly-
morphism [27], attackers create new malware variants at a high paced rate with code
transformations that confuse signature-based scanners. This inability to detect malware
variants with unforeseen signatures pushed the need for novel systems capable of detecting
unseen 0-day malware.

3.3.2 Machine learning assisted detection

Machine learning has been a breakthrough in the field of malware detection [142, 143].
Machine learning (ML) based scanners leverage a mathematical model built on sample
data (known as training data) to perform prediction and malware detection. Most of ML
scanners [19–21] are based on supervised learning: a set of labelled training samples are
used to teach the model to learn a general rule to map the incoming data to a specific
output. To create training data, human experts examine the code, the structure and the
behaviour of applications to extract valuable information (i.e. features) that differentiate
legitimate from malicious applications. In the literature, many kinds of features exists,
ranging from basic ones such as suspicious API calls or n-grams in the code to more
complex ones describing the entire application behaviour such as control flow graphs.
Historically, the vast majority of Android malware detection systems [20, 21, 138] rely
on static analysis to collect such features without the need to actually execute the sus-
picious software. Nowadays, scanners such as Google Play Protect (previously Bouncer)
with heavy computational power can run Android applications in dynamic analysis envi-
ronment to observe the application’s general behaviour and collect features such as access
control, network traffic or input-output control.

49

Part , Chapter 3 – Exploring malware detection tools on Android

To evaluate the accuracy of a trained ML model, one can ask it to make prediction
on data unseen by the model at training time, and calculate the number of correctly
classified samples. Once trained and assessed, models can be deployed in production to
make prediction on real unforeseen data. However, the accuracy of a ML model depends
on many parameters and correctly evaluating its efficiency is not an easy task [39]. First,
the performances of a ML scanner will depend on its capacity to generalize the malware
detection problem from a fixed ground truth dataset made of benign and malicious ap-
plications. If the training dataset is not adequately chosen for the problem to solve (e.g.
classifying malware from legitimate applications), the model will be unable to achieve
good results on unknown data. Secondly, algorithms used to train the model can be tuned
with a wide range of parameters (namely hyper-parameters) that can greatly influence its
final performances. Finally, model performances are highly dependent to features chosen
to describe and encode training samples. Several studies [22, 35, 39] have highlighted these
limitation and paved the path for more accurate ML based malware detection systems.

3.4 Improving existing malware detection systems

To counter the rise of Android malware, security actors, from both research and indus-
try, massively adopt machine learning techniques to improve detection accuracy. Although
it is a first step towards improving detection, unfortunately, most of related studies ne-
glect key aspects to build efficient detection models [35, 39]. In particular, it is commonly
admitted in the machine learning domain, that performances of trained machine learning
models depend strongly on several key aspects: (i) dataset quality, (ii) learning algorithms
and hyper-parameter optimization and (iii) feature engineering. In this work, we propose
two approaches to solve the aforementioned problems: (i) DroidAutoML, a framework
to address the hyper-parameter optimization problem in ML malware detection and (ii)
Groom, a framework extension of Soot that allow to improve the extraction of exploitable
features for ML based detection methods.

3.4.1 DroidAutoML: hyper-parameter optimization for ML scan-
ners

Hyper-parameter optimization is a well known problem in the machine learning do-
main [144–147]. Accordingly, the key underlying problem, usually referred as Automated

50

3.4. Improving existing malware detection systems

Machine Learning (AutoML) [148], is how to automate the process of finding the best
suitable configuration to solve a given machine learning problem. As of today, no attempts
have been done towards improving Android malware detection systems based on machine
learning algorithms. Whether one [20, 21] or several algorithms [19, 32, 149] are evaluated,
the evaluations are always carried out empirically, implying a manual process with few
and/or default hyper-parameter combinations. Testing various algorithms along with a
large set of hyper-parameters is a daunting task that costs a lot both in terms of time
and resources [150].

To solve this problem, we present DroidAutoML, a new approach that automati-
cally performs an extensive and exhaustive search by training various learning algorithms
with thousands of hyper-parameter combinations to find the highest possible malware
detection rate given two inputs: (i) a malware dataset (2) a feature extraction method.
DroidAutoML is both generic and scalable. Its genericity comes from its ability to be
agnostic to underlying machine learning algorithms used, and its scalability comes from
its ability to scale infinitely horizontally by adding as much as machines as required to
speed up the processing. To achieve this aim, and leveraging our expertise in the field
of Android malware detection, we have defined and deployed a dedicated microservices
architecture.

Our contributions are as follow:
— We propose the very first AutoML approach, named DroidAutoML, to improve

the accuracy of technics based on machine learning algorithms to detect malware
on Android. With DroidAutoML, there is no need anymore to manually perform
empirical study to configure machine learning algorithms.

— We provide a dedicated microservices architecture specifically designed to fulfill the
needs for genericity and flexibility as required by the Android malware detection
domain.

— We thoroughly evaluate our approach, and applied it to the state of the art solutions
such as Drebin [21] and MaMaDroid [19]. We demonstrated that DroidAu-
toML enables to improve significantly their performances: detection accuracy has
been increased up to 11% for Drebin and 10% for MaMaDroid.

Hyper-parameter optimization

Usually, the number of hyper-parameters for a given algorithm is small (≤5), but may
take both continuous and discrete values leading to a very high number of different values

51

Part , Chapter 3 – Exploring malware detection tools on Android

and so of combinations. For instance, common hyper-parameters include the learning rate
for a neural network, the C and sigma for SVM, or the K parameter for KNN algorithms.
The choice of hyper-parameters can have a strong impact on performances, learning time
and resource consumption. As a result, Automated hyper-parameter search is a trending
topic in the machine learning community [151, 152]. Currently, grid search and brute
force approaches remain a widely used strategy for hyper-parameter optimization [153]
but can require time and computational resources to test all possibilities. To deal with
this issue, several frameworks are able to efficiently parallelize grid-searching tasks on a
single machine, but this does not scale with the ever growing search space [154, 155].

3.4.2 DroidAutoML approach

DroidAutoML relies on a microservice architecture that separates concerns between
data processing (feature selection, extraction and encoding) and training optimization ML
models. Such a design enables DroidAutoMLto scale and stay agnostic to the evaluated
scanner.

Microservices dedicated to features operations. Feature extraction and encoding
are both operations specifics to each scanner. As such, each scanner has its own dedicated
microservice for performing these operations (Figure 3.2, n). We define k as the number
of applications to process for a given dataset. For n different scanners, n ∗ k instances
of n(i,j) microservices with i ∈ {1..n} ∧ j ∈ {1..k} will be deployed. Each n(i,j) instance
takes as input an apk to generate its corresponding features vector, interpretable by any
machine learning algorithms. The generated feature vector is then stored into the feature
database microservice (See figure 3.2,H).

Microservices dedicated to model training. ML model training operations are spe-
cific to a classification algorithm and the set of hyper-parameter used to parametrize it.
Therefore, each algorithm has its own dedicated microservice to perform the training and
testing of a model for one hyper-parameter combination (see Figure 3.2,s). For l different
algorithms, l different kinds of m instances of s(i,j) with i ∈ {1..l} ∧ j ∈ {1..m} will
be deployed where m is equals to the number of hyper-parameter combinations to test
for a given algorithm. This allows to scale horizontally by spreading the workload across
the available nodes in the cluster. A s microservice takes two inputs: (i) a feature vector
matrix from the feature database H, and (ii) a set of hyper-parameter values. s microser-

52

3.4. Improving existing malware detection systems

MS Scanner i

MS Scanner 1

MS Scanner n

Testing

Training

MS RF

Testing

Training

MS KNN

Testing

Training

MS SVM

Testing

Training

MS MLP

MS Score aggregator
MS Apk database MS Feature

database

MS Scanner

MS Model training

MS Apk database

MS Feature database

MS Score aggregator

Figure 3.2 – Overview of DroidAutoML

53

Part , Chapter 3 – Exploring malware detection tools on Android

vices leverage Scikit-learn to perform both training, and testing steps. Afterwards, each s

instance parametrizes its ML algorithm according to the input hyper-parameter combina-
tion. All ML models are trained with a 10-cross fold validation process to avoid overfitting
problems. The input data is split according to machine learning ratio standards: 60% of
the data is used to fit the model and 40% to test it. Performances of each model are
assessed in terms of accuracy and F1 score. Finally, trained models are stored within the
database along with the configured hyper-parameter settings so that they can further be
used by the end-user. The obtained results on the testing set are then communicated to
score aggregator microservices (see Figure 3.2,:).

Microservices dedicated to score aggregation. A third set of microservices are
the ones dedicated to the collecting of results from s microservices to identify the pair
{algorithm,hyper-parameters} that gives the best performances for a given scanner. Each
score aggregator microservice is dedicated to a couple {scanner, algorithm} so that it
collects only results related to it for all hyper-parameter combinations tested. Accordingly,
for n scanners and l algorithms, there will be at least n∗l instances of aggregators. Once the
best predictive model have been found for a given scanner, the corresponding algorithm
and hyper-parameters are communicated to the end-user.

Efficient microservice scheduling. DroidAutoML is a system designed to run on
top of a cluster of hardware machines. To optimize resources and efficiently schedule tasks
on such a cluster, DroidAutoML leverages on a bin packing algorithm [156]. As such,
by splitting scanner benchmarking operations into smaller tasks, DroidAutoML can
capitalize on properties offered by microservice architectures. Firstly, DroidAutoML
fully takes advantage of multi node clusters as each microservice can be scheduled inde-
pendently on any node in the cluster. Secondly, as scanner benchmarks are parallelized,
s microservices can run side by side with n microservices as long as they do not work for
the same scanner. Thirdly, if a microservice fails during its execution, only its workload
is lost and it can be automatically rescheduled.

Implementation. DroidAutoML is built on Nomad, an open-source workload or-
chestrator developed by HashiCorp [157], which provides a flexible environment to deploy
applications on top of an abstracted infrastructure. More precisely our Nomad instance
federates a cluster of 6 nodes (see Figure 3.3, ¶) that accounts for 600GB of RAM and

54

3.4. Improving existing malware detection systems

Scheduler

User

- Scanner
- Dataset size
- Algorithms:
 * RF
 * KNN
 * …

2
1

Figure 3.3 – Overview of DroidAutoML implementation

124 cores at 3.0Ghz. We use the bin packing algorithm implemented in Nomad to schedule
(see Figure 3.3, ·) DroidAutoML microservices instances across available nodes in the
cluster as schematized in Figure 3.3.

Each microservice instance is represented as a job managed by the Nomad scheduler.
Hardware resources allocated to each microservice depend on its type: scanner specific
instances take 2 cores and 4GB of RAM each, model training instances take 1 core and
2GB of RAM, and score aggregator instances take 1 CPU and 1 GB or RAM. The time
required for a scanner instance to build a feature vector depends on the size of the input
apk as well as its operating time. It ranges from 6 seconds for a 2MB application to 61
seconds for a 100MB application on average. The apk database of DroidAutoML is
currently composed of 11561 applications, 5285 malware and 6276 benign applications
and the average size of an application is 20.25 MB with a standard deviation of 21.48.

Given the resources required for one instance, our infrastructure can run 61 n mi-
croservice instances in parallel, therefore the entire apk database can be processed in 24
minutes with our current cluster. The time required to train and test a ML model depends
on the algorithm, the set hyper-parameters used, and the size of the input vector matrix.
We provide in table 3.3 the minimum, average and maximum time required to train and
test a model according to an algorithm. As we use a grid-search approach to perform
hyper-parameter tuning, the number of ML models train to evaluate a scanner depends
on the number of hyper-parameter combinations to test. The table 3.3 summarizes the
values tested for each hyper-parameter according to an algorithm as well as the number of

55

Part , Chapter 3 – Exploring malware detection tools on Android

combinations to test them all. For example, given the resource constraints of a ML model
microservice, our cluster can run 123 s microservice instances in parallel, thus testing all
3120 hyper-parameter combinations for the Random Forest takes on average 9 minutes
for an input feature vector matrix of 11561 items.

3.4.3 DroidAutoML evaluation

To evaluate our approach, we propose to apply our microservice architecture to two
state-of-the-art machine learning based malware detection systems in order to improve
learning algorithm selection and training. More precisely, we conduct our experiments on
approaches proposed by Drebin [21] and MaMaDroid [19]. We use the implementations
provided by authors for both Drebin 1 and MaMaDroid 2 We benchmark our approach
against the ground truth of the related work by reusing the same ML algorithms used
by the two approaches: Support Vector Machine (SVM) for Drebin and Random Forest,
SVM and K-Nearest Neighbors for MaMaDroid.

We build a dataset of 11561 applications composed of 5285 benign and 6276 mal-
ware samples. Malicious samples are collected from three malware datasets: the Drebin
dataset [21], the Contagio dataset [88] and a dataset of 200 verified ransomware from
Androzoo [158]. Concerning benign applications, we collect samples from the top 200 of
most downloaded applications for each app category in the Google Play Store. To ensure
that collected samples are really benign, we upload them to VirusTotal, an online plat-
form that makes it possible to have a file analyzed by more than 60 commercial antivirus
products. According to the literature [159], applications can be safely labeled as benign if
less than 5 antivirus detect it as malware, as several antivirus consider adwares as poten-
tially dangerous. Among the 6276 applications downloaded, 95, 04% (5965 samples) have
not been detected as malware at all and 99, 18% (6225 samples) by less than 5 antivirus.
To guarantee the overall dataset quality, we remove all samples with a detection rate over
this threshold.

Ground truth results. As original experiments by Drebin and MaMaDroid au-
thors were made on older data, both approaches may suffer from temporal bias [160, 161].
Temporal bias refers to inconsistent machine learning evaluations with data that do not
correctly represent the reality over time. To take this bias into account, we start our exper-

1. Drebin source code: https://www.dropbox.com/s/ztthwf6ub4mxxc9/feature-extractor.tar.gz
2. MaMaDroid source code: https://bitbucket.org/gianluca_students/mamadroid_code/src/master

56

3.4. Improving existing malware detection systems

Accuracy F1-Score Precision Recall TP TN FP FN
Scanner Algorithm
Drebin SVM 88.91 88.23 84.43 92.39 1833 2087 338 151
MaMaDroid KNN 82.35 81.76 83.25 80.33 1744 1887 427 351

Random Forest 80.54 83.08 72.65 97.01 2106 1445 65 793
SVM 79.22 81.97 71.57 95.90 2082 1411 89 827

Table 3.1 – Baseline results for Drebin and MaMaDroid models trained with original
hyper-parameters settings.

iment by measuring ground truth results for both Drebin and MaMaDroid approaches
using our own dataset. These results will serve as a baseline to evaluate DroidAutoML
performances and compare further results against it. Authors from Drebin use a SVM
algorithm to perform the binary classification of malware and benign applications. As
the original source code of their approach is not available, we develop our own imple-
mentation of their solution using available information in the original paper. While our
implementation of Drebin may slightly differ from the original one, the approach and
the algorithm used (SVM) remain conceptually the same. As no details are given about
hyper-parameters used to parametrize the algorithm, we take common default values sug-
gested by machine learning frameworks to train the algorithm. Regarding MaMaDroid,
authors tested three learning algorithms: Random Forest, SVM and KNN. We calculate
the baseline by using the MaMaDroid’s approach source code, and the same hyper-
parameters set by the authors. The table 3.2 reports the grid of hyper-parameter values

Parameters Mamadroid Drebin

Random Forest

n_estimators
max_depth
min_samples_split
min_samples_leaf
max_features

101
32
2
1

auto

SVM

C
kernel
degree
gamma

1
rbf
3

auto

1
linear
3

auto

KNN

n_neighbors
weights
leaf_size
p

[1,3]
uniform

30
2

Table 3.2 – Default hyper-parameters used to parametrize evaluated algorithms

used to train and test each learning models for both approaches. The table 3.1 reports
the baseline results for each trained model. We observe that the accuracy and F1 scores

57

Part , Chapter 3 – Exploring malware detection tools on Android

Parameters Hyper-parameters # of combinations
to test

time for a single run
(in seconds for 11238 apks)
min avg max

Random Forest

n_estimators
max_depth
min_samples_split
min_samples_leaf
max_features

[200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000]
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 500, 1000,None]

[2, 4, 6, 10]
[2,5,10,20]
[auto,sqrt]

10*13*3*4*2=3120 15 21 35

SVM
C
kernel
gamma

[0.0001,0.001,0.01,0.1,1,10,100,1000,10000]
[linear,rbf,sigmoid,poly]

[0.0001,0.001,0.01,0.1,1,auto,scale]
9*4*7=252 23 25 31

KNN

n_neighbors
weights
leaf_size
p

[1,3,4,5,6,7,8,9,10]
uniform,distance

[1,3,5,10,20,30,50,100]
[1,2]

9*2*8*2=288 23 42 56

MLP

hidden_layer_sizes
activation
solver
alpha
learning_rate

[(50, 50, 50), (50, 100, 50), (100,)]
[tanh, relu]

[sgd, adam, lbfgs]
[0.0001, 0.05]

[constant, adaptative]

3*2*3*2*2=72 123 164 250

Table 3.3 – Grid hyper-parameters used to train models with DroidAutoML

for both approaches decrease compared to the original results. The accuracy score for the
Drebin SVM drops by 5.09% from 94% to 88.91%. Considering MaMaDroid, F1-Scores
are below 84% for all studied algorithms, with a false-positive rate over 5%, which is more
than 15% lower than best results presented originally in terms of F1-Score. As samples in
our dataset are more recent than those used in original experiments, these results confirm
that both Drebin and MaMaDroid approaches are suffering from temporal bias.

Model evaluation with DroidAutoML. In the following of this experiment, we aim
at answering the following questions:

— RQ1: Is DroidAutoML able to find a learning algorithm that performs better
than default algorithms used for studied scanners?

— RQ2: Can DroidAutoML improve the prediction results of studied scanners by
finding an optimal set of hyper-parameters ?

We answer these questions by running DroidAutoML for each studied scanner with a
large grid of hyper-parameters (see Table 3.3) and 4 different learning algorithms for each
scanner: Random Forest, SVM, KNN, and a multi layer perceptron (Neural Network).

The table 3.4 reports the best results obtained for both Drebin and MaMaDroid.
For the Drebin approach, accuracy and F1 scores of the model trained with SVM in-
crease by 10.59% and 11.27% respectively compared to the baseline. Moreover, we observe
that the multi layer perceptron algorithm performs slightly better than the SVM algo-
rithm with +0.11% in accuracy and +0.10% in F1-Score, thus reducing the number of
false negative from 19 to 10. DroidAutoML also succeeds to improve MaMaDroid
baseline results for all three studied algorithms. In details, DroidAutoML increases

58

3.4. Improving existing malware detection systems

Accuracy F1-Score Precision Recall TP TN FP FN
Scanner Algorithm
Drebin KNN 98.82 98.82 99.91 97.75 2169 2188 2 50

Random Forest 98.57 98.56 99.63 97.52 2163 2183 8 55
SVM 99.50 99.50 99.86 99.13 2168 2219 3 19
MLP 99.61 99.60 99.68 99.54 2164 2228 7 10

MaMaDroid KNN 85.48 86.41 93.69 80.17 2034 1735 137 503
Random Forest 87.93 88.57 94.98 82.98 2062 1815 109 423
SVM 88.97 88.49 86.09 91.03 1869 2054 302 184
MLP 84.71 85.36 90.55 80.73 1966 1769 205 469

Table 3.4 – Best results after model training on DroidAutoML

Parameters Mamadroid Drebin

Random Forest

n_estimators
max_depth
min_samples_split
min_samples_leaf
max_features

1600
50
2
2

sqrt

1500
30
4
10
auto

SVM

C
kernel
degree
gamma

1000
linear
3

auto

1000
rbf
3

scale

KNN

n_neighbors
weights
leaf_size
p

6
uniform

50
2

5
uniform

20
2

MLP

hidden_layer_sizes
activation
solver
alpha
learning_rate

100
tanh
adam
0.05
adaptative

50,100,50
tanh
lbfgs
0,0001
constant

Table 3.5 – Hyper-parameters found for best case performance

MaMaDroid’s SVM baseline accuracy by 9.75%, KNN by 3.13% and RF by 7.39%.
These accuracy improvements are accompanied by a significant increase of F1-scores for
all algorithms. It represents a significant decrease of the number of false positives and false
negatives. In their paper, MaMaDroid’s authors discard the SVM algorithm due to poor
performance compared to other algorithms tested. We show here that SVM is actually
better than other algorithms tested by authors when it is parametrized with the adequate
hyper-parameter values as shown in table 3.5. Notice that in machine learning, optimal
hyper-parameters values depends on the problem to solve [145]. Therefore, as the feature
vectors are encoded differently for Drebin and MaMaDroid, optimal hyper-parameter
values may slightly differ from one approach to the other.

We answer RQ1 by showing that DroidAutoML has been able to find a ML al-

59

Part , Chapter 3 – Exploring malware detection tools on Android

gorithm that performs better than those tested empirically with studied scanners. More
precisely, the Multi Layer Perceptron outperforms the SVM algorithm used by Drebin
originally and the MaMaDroid SVM originally discarded by the authors due to poor
results performs better than other algorithms initially retained (i.e. RF and KNN).

Furthermore, we answer RQ2 by showing that DroidAutoML has been able to find
a combination of hyper-parameters in a reasonable amount of time (less than 30 minutes)
that enables to significantly improve prediction results for all machine learning models
trained for studied scanners.

3.4.4 Groom: A feature engineering framework to reach more
efficient ML malware detection models

Like parameter optimization, feature engineering is an essential aspect of classification
problems in machine learning. Feature selection, extraction and encoding are essential
steps towards building efficient ML based malware scanners. Features must be chosen in
such a way that ML algorithms can easily differentiate studied classes in the problem and
thus succeed in generalizing the problem. When poorly chosen, algorithms may be unable
to generalize the problem or suffer from overfitting.

Type Features Static analysis Dynamic analysis Location

Structural

permissions 3 7 manifest
intent-filters 3 7 manifest
components 3 7 manifest
file signatures 3 7 apk level
protected method calls 3 3 bytecode
suspicious method calls 3 3 bytecode

Behavioural
call graph 3 3 bytecode
dynamic code loading 7 3 apk level
network traffic 7 3 OS level
intent messages 7 3 OS level

Table 3.6 – Examples of structural and behavioral features that can be extracted from an
Android application

Manual feature selection. Feature selection consists in automatically or manually
selecting features which contributes the most to correctly classify your incoming data.
Having irrelevant features can decrease the accuracy of the model and makes it unable to
grasp the difference between benign and malicious applications. In the Android ecosys-
tem, several feature selection processes have been explored in the recent years [19–21].
Mainly, we distinguish two types of features: (i) structural and (ii) behavioural features, as

60

3.4. Improving existing malware detection systems

illustrated in Table 3.6. Structural features are pieces of information inherent to an appli-
cation, but which by themselves do not directly encode its corresponding behavior [21]. It
is the correlation of those structural features altogether that allows the model to perform
classification. For instance, the permission READ_CONTACTS can be used by both benign
and malicious applications and does not give much information about intentions of the
application. However, when correlated with the API call url.openConnection(), it may
highlight the intentions of a malicious application to steal user’s contacts. Contrariwise,
behavioural features are information about an application that allows to capture both
intentions and actions of an application [19]. Behavioural features may be meaningless
unless they are interpreted and encoded correctly to reveal a particular behaviour. For
example, this can be done by encoding sequence of calls from the application call graph [19]
or by encoding the network trace of an application during its execution [162].

Feature encoding. Feature vectors are used to represent the characteristics of studied
samples numerically to simplify their analysis and comparison. Most of ML classification
algorithms such as (e.g. Random forest, Support Vector Machine, etc.) use feature vectors
as input to train their model. While it is easy to use pixels of an image as a numerical
feature vector, it is harder to numerically encode more complex features such as basic or
behavioral features of Android applications. For that reason, many studies [19–21, 163]
provide new alternatives for feature encoding. For example, authors of Drebin [21] em-
bed structural extracted features into a feature vector using one-hot encoding to code
the presence, or the absence of a given feature. Contrariwise, MaMaDroid [19] encodes
behavioral extracted features using a Markov chain algorithm, which calculates the prob-
ability for a method to be called by another in a call graph.

Limits of feature engineering approaches in existing studies

For many binary classification problems in the field of machine learning, one of the
biggest challenge resides in the model’s ability to minimise the number of false positives,
i.e legitimate applications labeled as malware and false negatives, i.e. malware labeled
as benign applications. Regarding Android malware detection, a high number of false
positives can negatively impact the business of companies, as legitimate applications will
be wrongly discarded from public market places. In a similar way, a high number of false
negative presents an important security issue because harmful applications can mistakenly
reach public market places and harm end users.

61

Part , Chapter 3 – Exploring malware detection tools on Android

Limits of features used in state-of-the-art ML-based scanners. The set of fea-
tures extracted from applications and used to train the classification model can greatly
influence the performances of the model. As such, studies leveraging machine learning to
perform malware detection [19–21, 81, 164] explored various approaches regarding feature
engineering. Previous works [165] used to rely on dangerous permissions requested by
the application to build learning models. However, this strategy is prone to false positive
since many benign applications make use of these dangerous permissions for legitimate
reasons [166].

Later, authors of DroidAPIMiner [20] build a model relying on the frequency of API
system calls to build their classification model. But such an approach need a constant
retraining given the rapid evolution of malware as well as the Android API. To counter
this phenomenon, authors of MaMaDroid [19] proposed a novel approach which relies on
sequence of abstracted API calls to build a model more robust over time. Unfortunately,
the model proposed by MaMaDroid has proven to be less robust to malware evolution
than claimed originally [39]. This is because its feature engineering approach may capture
relations in the training data that quickly become obsolete at test time to differentiate
malware from benign applications.

In 2014, authors of Drebin [21], proposed an approach based on a broad static analysis
to gather as many features as possible from the application’s bytecode and manifest,
such as suspicious API calls, permissions or application’s component names. Features
are then organised as strings in a joint vector space which allows Drebin to identify
combinations of features that may represent a malicious behaviour. However, the Drebin
static analysis neglects features that can help the model to detect malware using complex
evasion techniques such as dynamic code loading or reflection, that allow attackers to
evade static analysis. Such limitations emphasizes the need for more training classification
models with more sets of features that are more robust to the evolution of malware over
time.

Badly chosen features can introduce overfitting in classification. The Drebin [21]
approach, for existing implementations available publicly, has a severe drawback regard-
ing feature encoding. In the original paper, authors stipulate that a malicious behaviour
can be expressed as specific patterns and combinations of extracted features. For exam-
ple, a malware stealing user contacts may call the API method getContacts() and ask
the PERMISSION.INTERNET permission. To capture the dependency between features, they

62

3.4. Improving existing malware detection systems

map extracted features represented as strings to a numerical joint vector space. To do so,
they first constitute a set that comprises all strings observed in samples from the training
dataset. Then, using this set, they define a |S| − dimensional vector space where each
dimension value is binary: 1 if the application hold a given feature and 0 otherwise.

Consequently, the approach rely on a set of feature observed a time T that may not be
accurate at a time T +1 for making prediction on real data. For example, authors include
application component names (Activities, Services, etc.) into the feature set. While such
features can be very accurate to detect malware variants with the same component names,
as soon as an attacker creates a new variant with different component names, the model
become obsolete and need to be retrained with new samples. The model will only ever
know about features from the training set, hence if features are too discriminative, such as
application package name or unique strings, the model could not be able to generalize for
unforeseen malware variants at prediction time. Therefore, the current implementation of
Drebin needs a constant retraining to stay up to date and will be unlikely to catch 0-day
malware.

This issue suggests that the set of features chosen to train machine learning models
must be carefully chosen a priori in order to build machine learning models that remain
robust over time. For example, with MaMaDroid [19], authors build a fixed-length fea-
ture vector by abstracting the sequence of API calls in the application call graph using java
package names instead of the full method name. Similarly, with DroidAPIMiner [20],
authors carry out a deep analysis of malware behaviours to build a finite feature set com-
posed of 8375 distinct API calls. Choosing a fixed set of features to to be extracted from
an application appears to be a safe and reliable approach to build robust and re-usable
machine learning models.

3.4.5 Groom approach

In this work, we propose an original approach that leverages on a broad static anal-
ysis to improve the quality of features extracted from an application compared to the
Drebin [21] original paper. Our tool, which we call Groom, leverages on the Soot frame-
work [167] to quickly analyse the application’s bytecode, the application’s manifest and
application’s resources. In particular, Groom extracts specific Android API calls that en-
able to take into account the use of recent obfuscation techniques such as reflection, native
code execution or dynamic code loading. In terms of resource consumption, Groom is
less expensive than previous approaches (Drebin and MaMaDroid) while beign more

63

Part , Chapter 3 – Exploring malware detection tools on Android

Features Drebin Groom Location
Permission 3 475 Manifest
Hardware components 3 136 Manifest
Component names 3 7 Manifest
Component count 7 3 Manifest
Intent filters 3 789 Manifest
Restricted API calls 1266 4942 Bytecode
Used permissions 3 3 Bytecode
Suspicious API calls 120 230 Bytecode
Strings URLs only 7 Bytecode
String type count 7 3 Bytecode
Sources 7 18077 Bytecode
Sinks 7 8324 Bytecode
Abis 7 7 APK

Table 3.7 – Details of features extracted by Drebin and Groom during static analysis

efficient. To choose what features Groom should extract, we rely on several key studies
in the field of malware detection and Android vulnerabilities [20, 45, 46, 51]. Extracted
features can roughly be categorized on two subsets: (i) bytecode related features and (ii)
resource related features. Bytecode features are derived from the decompilation of the
apk dex file(s) whereas resource related features are features derived from application
resources and its manifest file. The table 3.7 shows a comparative overview between fea-
tures used by Groom and Drebin. Notice that the implementation of Drebin to which
we compare is more recent than the one used for the original paper and has been used
in recently published papers [168]. As such, features that may evolve over time such as
permissions or API calls has been updated to fit with latest Android versions.

Groom feature selection. We now describe in more depth how we carried out feature
selection for Groom and how it compares to Drebin. Firstly, Groom exploits several
types of features supported by Drebin but bring improvement to them. As such, Groom
greatly increases the number of restricted API calls monitored during static analysis from
1266 to 4942. Restricted api calls describes Java method calls that are protected by an
Android permission. In order to increase the number of monitored restricted calls, we
wrote a script to parse the entire Android documentation base as well as XML mani-
fests in the Android sdk repository to find new links between permissions and method
calls. Groom also increases the number of suspicious API calls up to 450 instead of 120

64

3.4. Improving existing malware detection systems

for Drebin. While several families of suspicious api calls overlaps between Drebin and
Groom (such as crypto, network or native code loading related calls), Groom considers
new families such as reflection and dynamic code loading related methods. Contrary to
Drebin which extracts all networks URLs string from the apk, Groom creates features
by counting occurrences of specific types of strings in the application. Groom counts
the occurrences of phone numbers, encrypted strings, method names passed as argument,
network urls, and so on. Such technique allows Groom to encode suspicious behaviours
based on string patterns, such as method arguments, that can for example used to invoke
methods suspicious through reflection. To successfully extract these strings, Groom im-
plements an Inter-Component and backward analysis on the application call graph that
enables to track string variable in the call graph up to their definition.

In complement to features extracted by both approaches, Groom adds 4 new sets of
features. We leverage the work SuSi [169] to identify sources and sinks used by the appli-
cation. A source represents an Android API call where the application can collect privacy
sensitive data such as getLastKnownLocation() that allows to get the gps location of the
device. A Sink represents an Android API call that allow the application to leak private
data through a channel to an adversary. Finally, to detect the use of native libraries,
Groom extracts the CPU instruction sets that the application support (abis [170]).

Groom feature encoding. Similarly to Drebin, Groom encodes all extracted fea-
tures in a joint vector space. The absence or presence of a particular attribute, such as
a permission, is encoded as a binary feature. Numerical properties such as the number
of Activities are encoded as continuous features. But contrary to Drebin, the final set
of extracted features of Groom is finite and does not depend on the size of the training
set. Groom extracts only features that can be shared by several applications. Groom
has a fixed set of features (of size 33077) which results in a fixed feature vector length
for any application analyzed. Drebin extracts features that are potentially unique for
a given application, such as component names or network urls, the size of the Drebin
vector depends on the number of unique features found when analyzing all samples from
the training set. Thanks to this models trained with the Groom approach are faster to
train and do not need to be constantly retrained to make accurate predictions. As soon
new unknown applications must be tested, Groom can analyse them and build a feature
vector that will be compatible with a model trained previously.

65

Part , Chapter 3 – Exploring malware detection tools on Android

3.4.6 Groom evaluation

For this experiment, we implement a machine learning pipeline for Groom and add
it to DroidAutoML (see section 3.4.1), our scalable architecture that allow to compare
ML based Android malware detection approaches. We begin our evaluation by describing
our experimental setup and evaluation metrics. We then address the following questions:

— How Groom performs compared to state-of-the-art scanners approaches Drebin [21]
and MaMaDroid [19] ?

— Is Groom less expensive than Drebin and MaMaDroid in terms of computational
resources ?

Experimental setup. We evaluate Groom as a binary classifier, that said, its capacity
to correctly classify benign and malicious samples from a dataset. We compare Groom
to two state-of-the-art machine learning malware detection approaches, Drebin [21] and
MaMaDroid [19]. To correctly compare Groom to the state-of-the-art, we rigorously
apply the same experimental settings for all three approaches. As such, all approaches
are tested with the same dataset, the same learning algorithms and the same hyper-
parameters settings. To evaluate each approach in best possible performances, we leverage
DroidAutoML (see section 3.4.1). Thanks to DroidAutoML, each classifier can be
evaluated with a large set of hyper-parameters on three algorithms: Random Forest (RF),
Support Vector Machine (SVM) and K-Nearest Neighbors (KNN). Notice that in the
original paper, Drebin authors only test their approach using an SVM.

For evaluating the classification results, we compare each approach using the accuracy
score, the F1-Score score, the number of false positives and the number of false negative of
each classifier. Notice that the F1-Score is calculated from the precision and recall scores
of the classifier that are both quality metrics used in the field of machine learning. To avoid
overfitting, we follow the guidelines of the machine learning community. All classifiers are
trained with a 10-cross fold validation and we perform a hold-out validation: samples used
to train the model are different from those used to validate it. As such, 60% of samples
are used to train the model and 40% to validate it.

To carry out our experiments, we first generate a balanced dataset D1 composed of
50610 samples: 25305 benign applications and 25305 malware. To collect samples, we
leverage the Androzoo database [158]. We collect benign and malicious found in the wild
between 2017 and 2020. We consider a sample as benign if exactly no antivirus among 60
on the VirusTotal platform detected the sample as malicious. Contrariwise, we consider

66

3.4. Improving existing malware detection systems

a sample as malicious if more than 10 antivirus detected it as malicious. With Tesseract,
authors suggest that the proportion of malware in the dataset can affect the performances
of the classifier. Therefore we follow authors’s recommendation and build a dataset D2

by downsampling the number of malware in the datasets D1. To fit these proportions in
our dataset D2, we sample the datasets D1 by keeping 100% of benign applications and
randomly picking 10% of malware applications. The final dataset is composed of 30000
samples, 25000 benign and 5000 malicious applications.

Accuracy Precision Recall F1-Score FN FP TN TP Train size Test size
Approach Algorithm

Drebin KNN 94.90 96.45 93.22 94.81 686 347 9775 9436 30366 20244
RF 95.64 95.54 95.76 95.65 429 453 9669 9693 30366 20244
SVM 95.71 96.44 94.93 95.68 513 355 9767 9609 30366 20244

Groom KNN 97.39 97.83 96.94 97.38 310 218 9904 9812 30366 20244
RF 97.28 98.25 96.28 97.25 377 174 9948 9745 30366 20244
SVM 96.80 96.86 96.75 96.80 329 318 9804 9793 30366 20244

mamadroid KNN 92.29 91.94 92.72 92.33 737 823 9299 9385 30366 20244
RF 92.94 91.78 94.32 93.03 575 855 9267 9547 30366 20244
SVM 87.59 84.75 91.66 88.07 844 1669 8453 9278 30366 20244

Table 3.8 – Best results obtained by Groom, Drebin and MaMaDroid for each learning
algorithm tested

Experimental results. We now present our experimental evaluation of Groom. Using
the datasetD1 summarized in paragraph 3.4.6, we measure the accuracy of Groom’s clas-
sification on benign and malicious samples and compare it to Drebin and MaMaDroid.
Results are reported in table 3.8. As shown in table 3.8, Groom models obtain an ac-
curacy and a F1-Score superior to all models from Drebin and MaMaDroid. The SVM
algorithm achieves the best results for the Drebin approach with an accuracy of 95.71%
and a F1 score of 95.68%. For MaMaDroid, the Random Forest algorithm obtains the
best results with an accuracy score of 92.95% and a F1 score of 93.03%. Comparatively,
the KNN algorithm with Groom outperforms Drebin and MaMaDroid’s best algorithm
with an accuracy scor of 97.38% and a F1 score of 97.25%. As such, Groom obtains
an accuracy score that is 1.67 percentage point better than Drebin’s SVM and 4.43
percentage point better than MaMaDroid’s RF in the same experimental settings.

We now repeat a similar experiment by changing the number of malware and benign
applications in the dataset to make proportion closer to reality. To do so, we measure the
accuracy classification of the three approaches using the dataset D2. Results obtained are
reported in table 3.9. Similarly to experiment with dataset D1, models trained with the

67

Part , Chapter 3 – Exploring malware detection tools on Android

Accuracy Precision Recall F1-Score FN FP TN TP Train size Test size
Approach Algorithm

Drebin KNN 98.78 96.20 90.12 93.06 100 36 10086 912 16701 11134
RF 98.86 98.57 88.74 93.40 114 13 10109 898 16701 11134
SVM 98.78 95.06 91.30 93.14 88 48 10074 924 16701 11134

Groom KNN 99.04 97.78 91.50 94.54 86 21 10101 926 16701 11134
RF 98.98 98.38 90.22 94.12 99 15 10107 913 16701 11134
SVM 99.03 95.94 93.28 94.59 68 40 10082 944 16701 11134

mamadroid KNN 95.79 77.62 75.40 76.49 249 220 9902 763 16701 11134
RF 95.72 84.45 64.92 73.41 355 121 10001 657 16701 11134
SVM 90.91 0.00 0.00 0.00 1012 0 10122 0 16701 11134

Table 3.9 – Best results obtained by Groom, Drebin and MaMaDroid on an unbalanced
dataset

Groom approach outperform other models trained with both Drebin and MaMaDroid.
The Groom model trained with the KNN algorithm obtains the best results with an
accuracy score of 99.04% and a F1 score of 94.54%. The best performances for Drebin
are achieved with the RF algorithm with an accuracy score of 98.86% and a F1 score
of 93.40% which is 0.18 and 1.14 percentage point lower than the best Groom’s model.
Finally, KNN is the best model for MaMaDroid, with an accuracy score of 95.79% (−3.25
compared to Groom) and a F1 score of 76.49% (−18.05 compared to Groom).

Performances and computational resources required to perform static analysis heavily
depends on the size of the application analyzed. For the same amount of CPU and RAM
allocated and given the same application, Groom is on average 1.5 times faster than
Drebin and 5 times faster than MaMaDroid. This is due to the fact that Groom makes
use of the Soot framework [167] and FlowDroid [51] which are optimized to decompile
Java/Dex bytecode. Moreover, contrarily to MaMaDroid, Groom does not need to extract
the application call graph neither to make calculation on it.

3.5 Conclusion

In this chapter, we have shown that performances existing machine learning based
scanners can be greatly improved using hyper-parameter optimization and algorithm
selection. We see that, in a reasonable amount of time and inexpensive resources, our
microservice architecture, DroidAutoML, can systematically find an optimal set of
hyper-parameters that allow to significantly improve all test learning algorithms. Besides,
we presented Groom, a novel static analysis approach to efficiently extract a fixed set
of features, adequately chosen to discriminate Besides, whit Groom, we presented a new

68

3.5. Conclusion

set Besides with Groom, we present a new sets of features, adequately chosen and ex-
tracted with static analysis, that allow to greatly improve malware detection without any
supplementary cost.

To evaluate both DroidAutoML and Groom, we used publicly available malware
datasets, which are criticised for their poor quality. In the next chapter, we address the
problem of unrealistic malware datasets: we study the creation of synthetic malware vari-
ants that use realistic obfuscation techniques observed in the wild. Crafting corner case
malware variants will help to build challenging datasets for malware scanners.

69

Chapter 4

Reaching limits of antivirus
leveraging the creation of

experimental datasets

To evaluate precision and performances of antivirus scanners, reliable ground truth
datasets is of the utmost importance. While previous studies [19–21] in the last decade
reported promising results regarding malware detection on Android, most of them rely on
small and outdated datasets such as the MalwareGenome dataset [7]. Unfortunately,
it has been proven [39] that such datasets do not reflect the current fast evolving mal-
ware ecosystem. In this chapter, we propose a novel approach that aims to synthetically
build malware variants with recent evasion techniques used by attackers in order to build
challenging datasets for Android malware detection systems. We first discuss the inherent
limitations of existing malware datasets in the Android research community. Then, we
give background knowledge about complex obfuscation techniques used by malware to
evade detection. Finally, we present KillerDroid, a toolchain that enables to generate
new malware variants using complex obfuscation techniques to build challenging malware
datasets.

4.1 Evolution of Android malware datasets

Recent studies [23, 39] pointed out the inherent limitations of datasets widely used
datasets to train ML-based malware detection models in the Android community. Most
popular datasets [7, 21, 40] have been created six years ago and contain a limited number of
samples. More importantly, many samples in these datasets are out of order or ineffective
because they were designed to work on outdated Android operating system versions.

In this context, to better evaluate existing malware detection approaches, several stud-
ies [23, 33, 107, 110] proposed new approaches to generate more reliable Android malware

71

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

datasets. With RmvDroid [23], authors create new malware datasets by selecting ap-
plications that are both flagged malicious by VirusTotal and removed by Google from
the Google Play Store. Other studies [33, 107, 110] propose to build synthetic malware
datasets by automatically creating malware variants. These techniques make it possible
to evaluate the robustness of existing malware detection scanners by generating highly
obfuscated malware samples.

However, to the best of our knowledge, such studies apply only a small part of existing
evasion techniques used by malware attackers to hide their malicious payload. Moreover,
these studies do not address the combination of multiple obfuscation techniques together
to build malware samples.

4.1.1 Obfuscation of Android applications.

Obfuscation is not reprehensible per se. It helps to protect the key algorithms and
data structures in software from hackers. Unfortunately, obfuscation has been largely
leveraged by malware authors to hide their malicious payloads from analysts’ eyes. Ex-
periments recorded in the literature [37] have further shown that using simple obfuscation
techniques on old (i.e., commonly known) malware samples makes them hard to be de-
tected by traditional antivirus systems, which often use signatures. A recent study [171],
however, has shown that some latent features (e.g., instructions sequence) remain rela-
tively unchanged no matter how morphed the samples become. This assumption has led
to recent successes in machine learning-based malware detection. Unfortunately, normal
obfuscations are easy to detect (through machine learning for example), and the detection
rates may be inflated by the tendency of the approaches to model traits that are actually
irrelevant to maliciousness (e.g., the presence of common library APIs used to implement
piggybacking). As such, malware authors may use more complex obfuscation techniques
that are ignored by machine learning models to successfully bypass detection.

4.1.2 Review of recent evasion techniques on Android

In the following of this section, we propose an overview of four major evasion techniques
used by malware attackers to defeat existing scanners. These techniques are particularly
troublesome because they are used both by benign applications as obfuscation techniques
to protect their intellectual property and by malicious samples to dissimulate their mali-
cious payload. For each obfuscation technique, we detail how both benign and malicious

72

4.1. Evolution of Android malware datasets

samples are using them.
Repackaging. The repackaging technique consists of decompiling an Android application
to make modifications on its bytecode, most often when the application source code is
not accessible. Several off-the-shelf tools [167, 172, 173] exists to ease the decompilation
process and translate the dalvik bytecode into an intermediate representation easier to
manipulate.

Without malicious intentions, this solution can be used for several reasons. For exam-
ple, several studies use application repackaging to enforce privacy rules [44, 121] or to re-
move application ads that monitor user private data [174]. In other cases, repackaging can
be used to fix a bug within an application [175] or optimize application performances [176].

However, the repackaging technique has been diverted as a powerful attack to build
malware [177]. To carry out this attack, attackers modify the content of a legitimate
application by reverse-engineering it to write some malicious procedures directly in the
legitimate bytecode. This technique allows an attacker to keep the overall look of the
application while being able to execute its malicious code. The repackaging attack is in
particular used by phishing attacks targeting applications such as online banking [178].
In such cases, the attacker tricks the user by repackaging a legitimate banking applica-
tion to send the user’s bank credentials to a remote server. In addition, the attacker may
re-upload the modified application to a popular market to trick Android users [77]. This
attack is particularly stealthy as it can be difficult to identify the difference between the
legitimate application and the malicious updated one. In 2011, the DroidDream trojan
has been found in more than 50 applications in the Android official market [179].

Packing. A packed application consists of a fake host Android application in which the
attacker hides a genuine payload in a separate file and use several dissimulation techniques
such as encryption and dynamic code loading to hide it from researchers and detection
scanners. The host application can be an existing benign application, a blank application
or any custom crafted application. Tools such as Bangcle [180] imitates the behaviour of
malware packers to obfuscate legacy application for copyright purposes. In such cases,
the original benign application bytecode is encrypted and packed into a blank application
that can be uploaded on any market place. Yet, researchers know that this technique is
widely used in the Android malware ecosystem [181, 182].

Reflection. Reflection in Java gives the ability to a program to manipulate objects repre-

73

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

senting the state of the program at runtime. While Android is based on the Dalvik virtual
machine, the reflection API is almost the same as of Java. Generally, reflection is used to
manipulate runtime information: access class data, create objects, invoke methods, change
class field values,etc [183]. The reflection API is used for several legitimate usages:

1. Backward compatibility. The Android framework continue to encourage reflec-
tion usage because it is used for backward-compatibility between existing Android
OS versions [184]. In this case, reflection is used to call API methods that have been
marked as private or hidden (with the @hide annotation) in a previous Android
SDK version.

2. Access private methods. The java compiler enforces some rules to prevent access
to class, methods and field that hold the private modifier. However, the reflection
API allows to manipulate these modifiers at runtime, hence giving the possibility
to access private class members.

However, attackers use reflection to dissimulate their intention and bypass static analysis
systems. A reflection attack leverages on the reflection API to create unexpected control
flow paths within the application bytecode. The reflection attack is principally used to
hide a malicious behaviour such as a suspicious method call from static analysis tools.
Reflection allows to call any java method by passing the method’s name as a string ar-
gument to the reflection api. That said static analysis tools must retrieve the argument
passed to the reflection API to know which method will be called at a given point in the
application call graph. Some static analysis based works tried to cope with java reflec-
tion by using intra and inter-procedural bytecode analysis to retrieve string arguments
passed into reflection methods [185, 186]. However, these arguments may be hidden in
other components within the application. For that reason these static analysis approaches
are very expensive as they need to be context aware and they need to deal with ICC
(inter component communication) [53]. ICC is the Android communication mechanism
to communicate information such as strings from a component to another. Each An-
droid component can broadcast intents to other components and can register receivers
to receive intents from other components. For example, a developer can communicate a
method name from an Activity to a Service and call this method using reflection within
the Service. However, each intent sent from a component to another must pass upon
the Android Binder service. It becomes therefore expensive for a static analysis tool to
reconstruct all possible paths between components. Therefore it is difficult to perform
a backward inter-procedural analysis to retrieve a string argument on Android. Finally,

74

4.1. Evolution of Android malware datasets

Benign Malicious
Origin Google Play Store Drebin, Contagio, Androzoo
Dataset size 4491 5376
Reflection
java.lang.reflect 4464 (99.4 %) 3400 (63.24 %)
Native code loading
java.lang.System 2780 (61.9 %) 1077 (20.03 %)
Dynamic code loading
java.lang.ClassLoader 4262 (94.9 %) 749 (13.93 %)
dalvik.system 3502 (77.98 %) 28 (0.52 %)

Table 4.1 – Applications habits

it is possible to completely defeat these systems by encrypting argument string at com-
pilation time and decrypt them only when they need to be passed to the reflection method.

Dynamic code loading Dynamic code loading is a functionality present in both Dalvik
VM and Android runtime (ART) which allows a developer to load at runtime bytecode
payloads from multiple locations (such as internal storage or over network). Our study
on applications habits (see 4.1) shows that benign applications heavily rely on dynamic
code loading (94% of benign applications use class loaders and 77% use dex class loaders)
This functionality is used by benign applications for several reasons:

1. dynamically update an application. A developer can makes use of dynamic
code loading to provide new features to an application without asking the user to
update it through the Google Play Store. The functionality is also used to hot patch
an application when a bug or a security issue is discovered. While it is discouraged
by Google [187], three quarters (77%) of top 100 categories application from the
Google Play Store use this feature (see 4.1).

2. Circumvent the 64 method reference limit. Only 64k methods can be refer-
enced in a single dex file. To overcome this issue, developers can build applications
with using several dex files (multidex), However, multidex significantly increases
the application size on the Google Play Store and can discourage customers to
download the app. To circumvent this limitation, developers upload small applica-
tions with a single dex file to the application market and dynamically load remotely
the missing dex files gradually when needed.

3. Hide sensitive code. Dynamic code loading can be used along with encryption
to hide bytecode payloads. This technique can be leveraged to obfuscate an ap-

75

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

plication to makes it difficult to reverse-engineer with static and dynamic analysis
tools. Several tools [180, 188, 189] provide this feature to protect the intellectual
property of companies.

For Android malware, dynamic code loading is a powerful technique to hide malicious
bytecode from static analysis tool. For example, an attacker could build a malware that
pretend to be a simple news application. When uploading it to Google Bouncer, the static
analyzer would not notice any suspicious behavior because the application only expose
a benign control flow. However, when a user will download and execute the application,
this one will trigger a dynamic code loading procedure to remotely load the malicious
code and perform dangerous actions. In our study we show that the number of malware
that loads code dynamically is not as numerous as one might think (only 28 samples
of a dataset of 5376 applications 4.1). However, there may be more than we think for
two reasons. Firstly, some malicious applications may have used unknown techniques to
dynamically load their malicious payload, thus bypassing our static analysis technique.
Secondly, dynamic code loading is a more recent attack that may not be implemented
in available malware datasets. This issue stresses even more the importance of train-
ing android malware detection systems with recent datasets that represent the current
malware reality. Considering the difficulty to detect this attack using only static analysis,
several studies [190, 191] leveraged on dynamic analysis to catch dynamically loaded code.

Bytecode encryption. Bytecode encryption is a technique using along with dynamic
code loading which consists of encrypting some bytecode and only decrypting it when dy-
namically loaded at runtime. For intellectual property reasons, Android actors are some-
times encrypting the third-party libraries they provide to developers to develop their
application. In such cases, the developer add a small amount of code in their app which
takes care of loading and decrypting the third party library code at runtime. Typically,
encrypted binary code is decrypted using the javax.crypto package which is built-in in
the Android framework.

However, the javax.crypto package is also used by benign applications to encrypt
shared preferences (i.e data stored locally and visible by all installed applications) or
network requests. It is difficult to distinguish the different uses of this package using only
static analysis methods. We are not aware of works that studied the amount of bytecode
encryption in benign applications. However, it has been proven that bytecode encryption
used along dynamic code loading has been used by malware to dissimulate their malicious

76

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

behaviors [192, 193].
Typically, an attacker will use a symmetric encryption algorithm such as AES to encrypt

the file at compilation time. The key is stored in a field in the apk bytecode along with a
decryption method that will take care of decrypting the binary file before being dynami-
cally loaded by the class loader at runtime. In our study, we show that the javax.crypto
package is used by almost all applications in the Google Play Store (89%) whereas it is
not that common for malicious applications (33%) (see 4.1). Consequently, analyzing the
use of this library does not allow to easily differentiate benign from malicious applications.

The study of these four major evasion techniques show how malware detection remains
daunting task. Existing malware datasets lack malware variants implemented with such
evasion techniques, thus preventing machine learning-based scanner to trained appropri-
ately to detect them. Therefore, the observation made in this section emphasize the need
to generate corner case malware variants, that leverage these evasion techniques to hide
their malicious payload, in the aim of diversifying existing malware datasets.

4.2 KillerDroid: Weaving Malicious Payloads with Be-
nign Carriers to Massively Diversify Experimen-
tal Malware Datasets

In this work, we present KillerDroid, a toolchain that enables to generate, in the
dark, Android Adversarial Examples (AAEs) to evaluate the robustness against adversar-
ial attacks of the state of the art malware scanners from both the academia and industry.
Particularly, we consider that AAEs are generated in the dark as targeted malware scan-
ners are seen as black box. Consequently, we consider that KillerDroid has absolutely
no knowledge about both (i) the internal mechanisms/machine learning algorithms, and
(ii) the datasets used to train targeted malware scanners. To produce valid AAEs while be-
ing blind, KillerDroid does not alter directly the bytecode of existing malware samples
to guaranty their maliciousness. KillerDroid relies on well known studied piggyback-
ing techniques [194] to dissimulate a valid malware payload inside a benign application.
Consequently, perturbations are expressed in terms of code modifications over benign
applications to silently inject, hook and hide a malware payload using a random combina-
tion of the latest obfuscation tactics. Then, the adversary sends the resulting piggybacked

77

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

application, considered thereafter as an AAE, to the targeted scanner, to search the ade-
quate perturbations so that the produced AAE misleads the malware classification, and
evades the detection to be finally flagged as benign. The altered benign application is
considered as the attack vector that finally acts as a trojan. Indeed, once executed, the
AAE switches the execution flow of the benign application to the malware payload as
soon as the injected hook is reached.

4.2.1 Approach

To generate AAEs from existing malware, KillerDroid takes three inputs (See Fig-
ure 4.1, step ¶): (i) a benign application that will act as a host, (ii) a malware application
considered as guest to be embedded into the host, and (iii) an obfuscation tactic expressed
as a set of obfuscations operations to stealthily hide the guest malware into the benign
application. KillerDroid leverages both Soot [167] and APKtool [172] to provide a
decompiler (step ·) that extracts all files from the APK given as inputs. Precisely, Soot
is used to extract bytecode whereas APKtool is used to extract all other files such as
resources (step ¸).

Killer*Droid toolchain

APKAPK

APKAPK

APKAPKKiller*Droid
DeCompiler

Killer*Droid
Compiler

Bytecodes

Resources

Be
ni
gn

M
al
w
ar
e

Inputs Output

.xml.xml

.dex.dex

1-
In
st
ru
m
en

ta
tio

n
2-
D
is
si
m
ul
at
io
n

3-
M
er
gi
ng

1

2

3 4

5

Ta
ct
ic
s

4-
Bu

ild
in
g

Figure 4.1 – Approach

Finally, from all the extracted files, the KillerDroid compiler applies a sequence of
four phases: (i) instrumentation, (ii) dissimulation, (iii) resource merging, and (iv) APK
building (steps ¹, º). Each phase is customized according to the obfuscation tactic given
as input.

Instrumentation and dissimulation

The main aim of the instrumentation phase is to instrument the host to short circuit
its legacy bytecode in such a way that at runtime it executes the malicious payload of the
guest instead of its own code instructions (i.e., its bytecode). The short circuit must take

78

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

place as soon as possible to ensure the host does not execute any of its instructions. The
purpose is to keep, as much as possible, the code instructions of the host intact, without
executing it, in order to mislead scanners that are based on static analysis, while avoiding
any interference at runtime with the malware behavior. Consequently, to guarantee that
no host instructions are executed before the malicious payload, KillerDroid seeks the
best place to inject the short circuit code sequence.

As depicted in Figure 4.2, as soon as an Android application is launched, its Activi-
tyThread starts either onCreate (Figure 4.2, ¶) or attachBaseContext (Figure 4.2, ·)
method according to the way the application has been developed. Accordingly, Killer-
Droid instruments adequately one of this method by injecting a specific code sequence
named thereafter the KillerDroid bootstrap sequence to instantiate at runtime the short
circuit (Figure 4.2, ¸).

Custom
class loader

APKAPK

new Application()
Activity Thread

my.package
.MyApplication

attachBaseContext()

my.package
.MainActivity

callActivityOnCreate()

onCreate()

Killer*Droid
Bootstrap
Sequence

optionalMandatory
1 2

3

Bootloader
(Packing

techniques)

Variants

4

Be
ni
gn

.dexM
al
w
ar
e

5

.dex Be
gn

in

Dissimulated

6

Figure 4.2 – Android application startup process

Bootstrap sequence purposes. The bootstrap sequence is a sequence of code instruc-
tions to correctly load, and execute the malware payload via the use of packing tech-
niques [181, 182]. Precisely, this sequence enables: (i) to retrieve/decode the dissimulated
malicious payload from the host APK, (ii) to decrypt the payload if encrypted, (iii) to
save the obtained guest payload to the application local storage as a DEX file, (iv) to
thereafter instantiate a custom classloader to load, from the previously saved DEX file,
the malware classes instead of the host ones (Figure 4.2, º).
Avoiding scanners detection. One possible drawback of the injected bootstrap sequence
is to become by itself a pattern characterizing the malicious intent of our approach, al-
though packing techniques are not by themselves a malicious trait since they are commonly
used by benign applications to protect intellectual property. If the same bootstrap sequence
is injected repeatedly to thousands of benign applications to generate AAEs, the pattern

79

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

could be easily learned, and then recognized (e.g., by machine learning based scanners
such as as a MaMaDroid [19], or Drebin [21]) as a feature that can be associated to
malicious samples. We recall that our purpose is not to avoid unpacking mechanisms [195],
but to avoid suspicions from scanners. Consequently, we leverage the concept of generative
programming to generate thousands bootstrap sequence variants.

Bootstrap sequence variants. To craft unique bootstrap sequences while reducing
suspicions, KillerDroid uses three obfuscation techniques for each generated AAEs:
(i) fake call graph, (ii) methods renaming, and (iii) reflection. KillerDroid generates a
call graph with a random depth, and spans randomly across the overall methods of the
graph the code instructions of the bootstrap sequence. The methods’ names are arbitrary
(but yet plausible) names that come from two dictionaries of strings: one for prefixes, and
another for suffixes. Both dictionaries have been extracted from the source code of the
most popular Android projects on Github. KillerDroid is able to generate a pool of
approximately 40 000 unique fake method names. To further increase the uniqueness of the
sequence, each method call can be also invoked either directly in plain Java, or indirectly
by using the reflection API or a mix of both (See Figure 4.3, ¶). As a result, machine
learning based scanners will be challenged in finding call graph patterns to identify a
malware. Furthermore, static analysis tools struggle to deal with reflection calls as they
are not able to reconstruct a correct control flow [26, 196].

Nonetheless, even if KillerDroid is able to guarantee the uniqueness of the boot-
strap sequence for each generated AAE, its injection directly into either the onCreate or
attachBaseContext methods may still be considered as a suspicious pattern. For exam-
ple, the use of specific methods, such as for example loading a .DEX file, is known to be
a reliable suspicious pattern [190]. To overcome this potential issue, we have isolated the
code related to packing techniques (i.e., adequate mix of obfuscation techniques such as
dynamic code loading, bytecode encryption and reflexion) to what we call a bootloader
sequence to be able to hide it (Figure 4.2, ¹).

Bootloader sequence variants. To hide the bootloader sequence, KillerDroid stores
the bootloader in an external file that is either a .DEX file compiled to be concealed within
the host application (named thereafter external java bootloader, See Figure 4.3, ¶A),
or a .so file, i.e. a native (C/C++) dynamic library (named thereafter external native
bootloader, Figure 4.3, ·C). Finally, as we do not know beforehand the effect of external-
izing the bootloader in a file, KillerDroid also generates a bootloader directly included
into the bootstrap sequence, and named consequently internal java bootloader (See Fig-

80

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

Implementation
Plain java
Reflection
Hybrid

(Cjbusp)
(Cjbusr)
(Cjbush)

N
at

iv
e

Ex
tr

er
na

l

Implementation
Plain java
Reflection
Hybrid

(Cnlp)
(Cnlr)
(Cnlh)

Arguments alteration
Plain java
Encrypt
Hybrid

(Cnsp)
(Cnsr)
(Cnsh)

Encryption
Encrypt
Plain

(Mte)
(Mtp)

Dissimulation
New file
Existing file
Within bytecode
Within meta-data

(Cjbudn)
(Cjbude)
(Cjbudw)
(Cjbudm)

M
al

ic
io

us
 p

ay
lo

ad
 o

bf
us

ca
tio

ns

Ja
va

In
te

rn
al

Implementation
Plain java
Reflection
Hybrid

(Cjbuip)
(Cjbuir)
(Cjbuih)

Dissimulation
New file
Existing file
Within bytecode
Within meta-data

(Cjbudn)
(Cjbude)
(Cjbudw)
(Cjbudm)

Encryption Plain
Encrypt

(Cjbutp)
(Cjbute)

Implementation

Fake call graph
1 method
10 methods
20 methods

(Cjbm1)
(Cjbm10)
(Cjbm20)

Plain java
Reflection
Hybrid

(Cjbip)
(Cjbir)
(Cjbih)

Ja
va

Ex
tr

er
na

l

1

Native compiled code

2
C

A

D

B
B

oo
tlo

ad
er

(A
lte

rn
at

iv
e

2)
(A

lte
rn

at
iv

e
1)

B
oo

ts
tr

ap
 S

eq
ue

nc
e

Figure 4.3 – Bootstrap and bootloader sequences

ure 4.3, ¶B).
External bootloaders, depending on whether they are Java or native based, require

a different bootstrap sequence as specific methods must be used for loading either byte-
code (with the DEXClassLoader method) or native code (with either the System.load or
the System.loadLibrary methods). However, these methods are thoroughly searched by
scanners as they are well known to be sensitive and used by malware [190]. In particular,
based on static analysis techniques, scanners try to collect arguments passed in the afore-
mentioned methods to determine the path of the file to be loaded to retrieve and analyze
it afterwards. To bypass this kind of security checks, if an external bootloader is in Java,
KillerDroid will additionally: (i) encrypt and/or dissimulate the bootloader payload
into the host application, and (ii) generate the corresponding bootstrap sequence to de-
obfuscate it at runtime. In case of a native bootloader, KillerDroid encrypts method
arguments, that are decrypted at runtime via the bootstrap sequence, avoiding any static
analyzers to further extract/scan the native code.

Once the bootloader is loaded, a custom class loader is setup to load first and fore-
most classes from the malicious bytecode (Figure 4.2, º). To avoid malicious bytecode
to be extracted/scanned, it is in turn encrypted or not, and dissimulated into the host
application in a way similar as external java bootloaders (Figure 4.3, D).

Dissimulation. To avoid any suspicion, KillerDroid needs to dissimulate bytecode

81

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

files from java external bootloaders, and/or malware payloads. Accordingly, Killer-
Droid may perform first an AES encryption, to then choosing one among the four
following possible methods to achieve dissimulation (Figure 4.3, D), i.e. injecting byte-
code payload into: (i) a new file with a random name, (ii) in an existing file from the
host’s assets directory, (iii) metadata of host assets’ file images capable of holding meta-
data (e.g. .png files), (iv) application bytecode from the host. In the last two methods (i.e.
metadata and bytecode), to maximize the chances to be as much as possible unsuspicious,
the bytecode payload, intended to be hidden, is translated into a BASE64 string split into
a random number of chunks with a certain length threshold to avoid getting suspicious
repetitive long chunks.

Accordingly, KillerDroid generates the corresponding bootloader to gather the
spread chunks (Figure 4.3 A,B,C), and reconstruct at runtime the hidden bytecode previ-
ously split (Figure 4.2, »). For instance, when the bytecode method is chosen, the boot-
loader tracks the abstract syntax tree from the host to extract chunks, which have been
previously dissimulated by the KillerDroid compiler into the bytecode of the host.

Merging subsidiary files

To run correctly, an Android application needs to execute its Dalvik bytecode along
with subsidiary files such as the AndroidManifest.xml file, compiled and uncompiled re-
source files, Android assets, and native libraries (.so files). Hence, to produce a valid
working AAE, its related application package must contain all files required by the guest
malicious bytecode to be executed correctly, as well as the ones required by the host to
start successfully. An additional challenge is to merge subsidiary files from both the guest
and the host without being suspicious as scanners extract huge amount of metadata from
these subsidiary files. Hence, a well known malware can easily be detected without even
analyzing the application’s bytecode with solely its metadata.

Manifest file role. The AndroidManifest.xml file is a cornerstone element of an An-
droid application. Android applications are built upon basic units called components (e.g.
Activity, Service, BroadcastReceiver, or ContentProvider), which are declared to the un-
derlying Android system via the manifest file. Accordingly, the system and the declared
components may interact altogether through a publish/subscribe mechanism with the
use of intent messages. Each component is a potential entry point to the application,
and components undeclared in the manifest are: (i) discarded from the application, (ii)
unable to interact with anything. Further, any attempts to interact with an undeclared

82

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

Manifest merging

Resource merging Rr
Rm

M
an

ife
st

 o
bf

us
ca

tio
ns replace

append
merge

Mr
Ma
Mm

replace
merge

1

2

Figure 4.4 – subsidiary files obfuscations

component will result to an exception at runtime.
Challenges about updating a manifest. Irrespectively of how efficient KillerDroid
is to dissimulate the bytecode payload of either the bootloader and/or the malware, the
manifest must be updated accordingly to make the malware operational. On the one
hand, dissimulating a guest malware within a host application can not be done without
altering its manifest file. On the other hand, scanners commonly consider the manifest as
a reference to collect application entry points, construct its related application call graph,
and take a preliminary decision about the maliciousness of the application [21, 25, 197].
Updating the manifest (e.g., adding new components or removing existing ones) thus has
an immediate impact on the way the application call graph is constructed and can increase
suspicion. Consequently, the challenge is how to declare the manifest components of the
dissimulated malware without increasing the chances of being detected as malicious.
Manifest obfuscation operations. KillerDroid supports three obfuscation opera-
tions to update manifest files: (i) replace, (ii) append, and finally merge (Figure 4.4 ¶).
The first operation simply replaces the host application’s manifest with the one from the
guest malware, whereas the second operation consists of adding every component from
the guest malware’s manifest into the host ones. However, inside the manifest, declared
components that come initially from the guest malware will not have a direct mapping
with the accessible bytecode (as the payload bytecode from the malware has been hidden).
Hence, if scanners check for consistency, they may suspect a malicious behavior. Finally,
the third operation (merge) tricks the Android system by disguising malicious components
from the guest as if they were components from the host application. KillerDroid col-
lects all the components’ names sorted by component type in both host and guest manifest
files. For each malicious component found, KillerDroid tries to find a component of
the same type in the host manifest and maps them together. If there is not enough benign
components of a given type to be mapped with malicious components, random classes
and names are generated from the host package name. In other terms, KillerDroid
renames all malicious components’ classes with the ones from the host. KillerDroid

83

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

manifest
append

MaRmMteMdnCjbm2CjbirCjbusp
Java internal bootloader

implemented in plain java
Encrypt malicious

bytecode
20 fake method

calls in bootstrap
sequence

Resources
merge

hide malicious
bytecode in new

file

Fake methods
implemented using

reflection

Figure 4.5 – A valid tactic

maintains a corresponding mapping table injected into the bootloader to be used by its
underlying custom class loader to load adequately classes from the malware with their
real names. Finally, KillerDroid always merges guest and host permissions within the
host manifest file.

Merging uncompiled resource files. In a way similar to manifest, KillerDroid
supports two obfuscations operations to deal with APK resources: (i) replace, and (ii)
merge (Figure 4.4 ·). The first one consists of replacing directly the host resources with
those from the guest malware. The second one merges the resource directory from both
APKs into a single one. If two resources have the same name, KillerDroid keeps the
resource from the guest and discards the one from the host. Resources from the host are
only used to fool scanners as bytecode from the host will be short circuited.

Obfuscation tactics

We now explain the generative approach on which we rely to generate massively AAEs
for augmenting experimental datasets.

Obfuscation operations and Tactics. An obfuscation operation is a specific alteration
to the host application during the instrumentation phase of the KillerDroid compiler.
From Figures 4.3 and 4.4, it appears that there are 35 different obfuscation operations
spread over 12 different groups. All obfuscation operations can independently be combined
together to form tactics as long as they do not belong to the same group. As a result, a
tactic corresponds to the list of obfuscation operations that KillerDroid must perform
to silently intertwine a malware within a benign application. For instance, Figure 4.5 is an
example of a valid tactic to be given as input to the KillerDroid toolchain. Further, note
that due to the modular approach of KillerDroid, new obfuscation implementations
can be easily added to enable KillerDroid to generate even more AAE variants.

Adversarial example variability. Given a couple of a malware and a benign appli-
cation, we explore the space of all possible combinations of obfuscation operation, and

84

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

the number of AAEs it is possible to generate. Given the number of groups of possible
obfuscation operations, their respective cardinality, and constraints between bootstrap se-
quences and bootloader (e.g. a native bootloader requires a dedicated bootstrap sequence)
12 096 possible tactics can be expressed to generate 12 096 unique variants.

4.2.2 Experimental Setup

This section explains the methodology used to evaluate KillerDroid against state-
of-the-art Android malware detection scanners: Drebin [21], MaMaDroid [19], Virus-
Total [42], and our own aggregator named KillerTotal to evaluate commercial scan-
ners available directly from the PlayStore.

Dataset spawning with KillerDroid

Studied scanners are considered as black boxes, and hence KillerDroid has no
prior knowledge on how scanners work. As a result, we exhaustively generate all possible
combinations of obfuscation techniques for a couple of one benign host and one malware
guest to generate malware samples.

Ground truth dataset. To asses a baseline for each studied scanner, we constitute a
ground truth dataset (D0), such as D0 = Db

0 ∪ Dm
0 , made of two sub-datasets: (i) one

composed of benign applications from the Google Play Store (Db
0), and another composed

of malware applications from several sources (Dm
0). Unlike several studies [37–39], An-

drozoo [158] is not used to collect benign applications as it relies on VirusTotal [42]
to measure the maliciousness of an application, which is not acceptable as we compare
KillerDroid to VirusTotal in our case studies. In contrast, we assume that most-
downloaded apps in the Google Play official store, can be trusted as benign applications.
Consequently, to build the Db

0 dataset, we consider the top 200 most downloaded apps
in each category among the 33 categories (e.g., games, photography, . . .) of the store. As
Google tends to prevent automatic downloading of its applications by banning authenti-
cated accounts on its platform, we reached only 5 269 applications over 6 600 expected
before being banned. While this number of applications is enough for our case study,
this limitation could be bypassed using techniques described in [158] to download more
applications. We therefore consider a benign dataset Db

0 that contains 5 269 benign appli-
cations from the Google Play Store. Concerning the malware datasetDm

0 , it is composed of
5 953 malicious applications discovered between 2011 and 2019 gathered from: (i) Drebin

85

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

name Guest application Host application # Samples Error rate % Total

D0
Db

0 * * 5269 - 11222
Dm

0 * * 5953 0

D1
Db

1 9574A64AD4 F11F862F69 12096 - 24072
Dm

1 FE666E209E F11F862F69 11856 1.98

D2
Db

2 B2BF1CB046 42B0D3052A 12096 - 23709
Dm

2 FE666E209E 42B0D3052A 11941 1.28

D2′
Db

2′ 401218235B F11F862F69 12096 - 23929
Dm

2′ F809CB4317 F11F862F69 12019 0.63

D3
Db

3 638D8BFA47 4C4ACD530A 12096 - 23959
Dm

3 F7659E8AB9 4C4ACD530A 11983 0.93

Table 4.2 – Overview of datasets generated with KillerDroid

dataset [21] (samples from 2011 to 2013), (ii) Contagio dataset [88] (samples from 2011
to 2019), and (iii) a dataset of 200 manually certified ransomware from Androzoo [158]
(samples from 2014 to 2015).

Adversarial examples datasets. We pick randomly one malware as a guest from Dm
0 ,

and one benign application as a host fromDb
0 to generate via KillerDroid a new dataset

Dm
1 composed of 12 096 variants of the selected malware guest.

Afterwards, to measure the capacity of machine learning scanners to detect malware
variants after being retrained with already generated ones, we generate three new datasets
Dm

2 , Dm
2′ and Dm

3 . The Dm
2 dataset is generated using a different host application whereas,

alternatively, Dm
2′ is generated using a different malware guest but with a same host

compared to Dm
1 . Finally, Dm

3 is generated using both a new host and guest. Our purpose
is to measure the impact on performance of ML based models over these new datasets,
i.e. if we change either the host application only (Dm

2), the guest malware only (Dm
2′), and

both of them (Dm
3). At its worst, KillerDroid generates less than 2% of non-functional

variants (see chapter 5). Correspondingly, we end up with datasets composed of at least
11 856 and at most 12 019 samples as depicted in Table 4.2 and explained thereafter.

Avoiding sampling bias. Sampling bias arises when the distribution of training data
does not reflect the actual environment that the ML model will be running on. If a machine
learning model is trained with a subset of a population that is not representative of the
whole population, the model can learn on features that characterize well a population
subset but poorly the entire population. Therefore, a model trained with a sampling bias

86

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

will either wrongly predict unseen samples or well predict them but for wrong reasons.
Concerning our datasets, sampling bias can occur if we do not take into account that
benign applications also implement obfuscation techniques used in KillerDroid. Indeed,
obfuscation operations used in KillerDroid are used by both: (i) malware to hide their
malicious payload from scanners, but also (ii) benign applications when authors want
to protect their intellectual property. Accordingly, to avoid sampling bias, KillerDroid
generates datasets, named thereafter sibling benign datasets, by embedding existing benign
applications into others, i.e., by replacing the malware guest by a benign application
chosen randomly in Db

0. Correspondingly, we have 4 sibling benign datasets Db
1, Db

2, Db
2′

and Db
3 to balance their malicious counterparts. Hence, their size are aligned on the ones

of their malicious counterparts to ensure well balanced training datasets, which is a strong
requirement for training binary classifiers [198, 199]. Finally, we end up with 5 datasets
Di, i ∈ [1; 4] ∧ 2′ containing up to 24 072 applications each, such as:

{
Di = Db

i ∪Dm
i

}
.

The table 4.2 reports an overview of each generated dataset. To further avoid to introduce
any false positives, sibling benign datasets are first evaluated against models trained with
both datasets that include only non sibling benign applications, and with datasets that
include also sibling ones to make scanners more robust.

Tools and malware detection scanners

Drebin. Drebin [21] uses static analysis to extract basic features from applications (e.g.
permissions, protected API calls . . .). Features are embedded in a feature vector using a
binary encoding to represent the presence or absence of a given feature. A linear Support
Vector Machine (SVM) is then applied to classify applications as either malicious or
benign. In the literature [33, 39], Drebin is still considered as one of the most efficient
machine learning based approach. As Drebin’s authors did not release their source code,
we did our own implementation of their approach according to their paper. More precisely,
we use the Soot framework [167] to extract features, and use the same one-hot-encoding
approach to encode boolean features into a feature vector. However, we improved their
approach by extending it to two other algorithms: Random Forest and KNN.
MaMaDroid. Contrary to Drebin, MaMaDroid [19] is a ML scanner based on behav-
ioral features similar to other past studies [116, 200]. Instead of extracting basic features,
MaMaDroid extracts the entire application call graph using static analysis, and encodes
the latter in an abstract representation by keeping only method package names. After-
wards, MaMaDroid builds Markov chains by calculating the probability for a method

87

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

to be called by another. Finally, calculated probabilities are used to build the application
feature vector, to be used to train 3 different classification models with Random Forest,
KNN and SVM.

VirusTotal. VirusTotal is an online platform, now owned by Google [201], which scans
each file uploaded into the platform using a set of 60 commercial anti-viruses software.
VirusTotal provides a final scores that correspond to the number of antivirus that
flagged the file as malicious over the total number of antivirus. VirusTotal gives us
the opportunity to test each AAE generated from KillerDroid against commercial
scanners.

Performance measurements

A true positive (TP) is defined as a correctly classified malicious application, whereas,
a true negative (TN) is defined as a correctly classified benign application. A false positive
(FP) is defined as an incorrectly classified benign application, whereas a false negative
(FN) is defined as an incorrectly classified malicious application.

Correspondingly, to evaluate scanners’ performances, we use standard machine learn-
ing measures: Accuracy, F1-Score and therefore Precision and Recall. Accuracy is defined
such as :

Accuracy = |TP |+ |TN |
|TP |+ |TN |+ |FP |+ |FN |

where |TP |, |TN |, |FP |, |FP | are the number of predicted samples in each category.
The accuracy corresponds to the number of correctly classified samples over the number
of samples to predict (the total population). As we use balanced datasets, the accuracy
score can be further assessed by the F1-Score:

F1 = 2 ∗ precision ∗ recall
precision+ recall

where precision = |TP |/(|TP |+ |FP |) and recall = |TP |/(|TP |+ |FN |). For a machine
learning model to be accurate and useful, there is a trade-off in the metrics to maximize.
Hence, on one hand, a model with a good recall, and bad precision will classify many
applications as malware, even benign ones. On the other hand, a model with a good
precision score and bad recall will classify many malicious applications as benign thus
involving significant security issues. The F1-Score is a function of precision and recall
that seeks an optimal score for both precision and recall. In case of balanced datasets

88

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

(same number of samples in each class), F-Score allows to assess the accuracy score’s
quality for a binary classifier. When performing model training, we try to maximize both
accuracy and F1-Score. We use a K-fold cross validation with K=10 to reduce the threat
of an overfitting situation. Another issue to solve is to avoid overfitted models. Overfitting
happens when the trained model does not generalize well from the training data to new
unseen data. One way to overcome overfitting effect is to perform K-cross fold validation,
i.e. randomly dividing the training dataset in K equal size random subsets, and train
the model K times using K − 1 subsets for training, and 1 subset for testing. In our
evaluation, we perform a 10-cross fold validation for each model training, which is a good
compromise to spot potential overfitting problems and avoid too small subsets. Also, for
each training run, we shuffle together all samples from input datasets, and select 60% of
samples for training and 40% for testing the trained model. Finally, for each training of a
model, we provide the assessment scores obtained by the best classifier found during the
cross-validation process. Then, we explain scores obtained when asking trained models to
predict new unseen data.

4.2.3 Evaluation

Our evaluation focuses on the following research questions:
— RQ1 - Evasion. Can scanners detect AAEs generated with KillerDroid?
— RQ2 - Adversarial retraining. Can scanners learn to detect AAEs generated

with KillerDroid?
— RQ3 - Vulnerabilities. What are the most efficient obfuscation operations to

defeat scanners ?

RQ1 - Evasion

MaMaDroid, Drebin and VirusTotal are evaluated against the ground truth
dataset D0.

Performance of scanners on the initial malware dataset. MaMaDroid and
Drebin are each evaluated with their Random Forest, SVM and KNN (with k = 1
and k = 3) learners using the best set of hyper-parameters found during the grid search
process. W.r.t. VirusTotal, we have submitted each sample from D0, and have counted
the number of detected samples.

89

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

Scanner Accuracy F1-Score Precision Recall
Drebin
KNN (k=1) 99.38 99.45 98.91 100.00
KNN (k=3) 99.22 99.32 98.64 100.00
RF 99.01 99.14 98.42 99.86
SVM 98.99 99.11 98.33 99.91

MaMaDroid
KNN (k=1) 75.92 77.42 78.98 75.92
KNN (k=3) 78.88 79.96 82.57 77.52
RF 82.22 85.49 76.87 96.29
SVM 83.60 85.79 81.10 91.06

VirusTotal
Detection 97.22 97.45 95.03 99.98

KillerTotal
Detection 99.66 99.67 99.35 100.0

Table 4.3 – Accuracy, F1-Score, precision and recall obtained by MaMaDroid and
Drebin on the D0 dataset (11 222 samples).

1. Drebin: As shown in Table 4.3, all Drebin models trained with D0 obtain an Accu-
racy and a F1-Score above 99% which is 5% more accurate than the model initially
trained in the original paper. This improvement comes from our re-implementation
of Drebin. It collects a larger set of features than the original Drebin (e.g., sources
and sinks [202], and more protected API calls thanks to Axplorer [45]).

Hyper-parameter search for Drebin and MaMaDroid

To get the best baseline, we improved published results obtained by the authors
of both Drebin and MaMaDroid by performing an hyper-parameter optimiza-
tion via a grid search approach for each studied algorithm. Table 3.5 gives the
obtained hyper-parameter values to get the best trained model. Note that our ex-
periments are done with Scikit-learn [154], so hyper-parameter names correspond
to the Scikit-learn API.

Parameters Mamadroid Drebin

Random Forest

n_estimators
max_depth
min_samples_split
min_samples_leaf
max_features

2000
40
10
10
sqrt

1500
30
4
10
auto

SVM
C
kernel
gamma

500
linear
auto

100
rbf
auto

KNN

n_neighbors
weights
leaf_size
p

3
uniform

20
2

3
distance

20
2

Table 4.4 – Best hyper-parameter combinations found for each algorithm with both ap-
proaches: Drebin and MaMaDroid

90

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

Accordingly, in Table 4.3, models trained with a KNN algorithms obtain a F1-Score
of 75.92% for 1-NN and 78.88% for 3-NN, which is 20% less than results obtained
originally. The model trained with the Random Forest algorithm obtains a F1-
Score of 85.49% which is 10% less than the original paper. Notice that although the
authors have disqualified SVM from their experience, we show that this algorithm
performs better than the others when the right combination of hyper-parameters
is used for training. Therefore, our model trained with SVM obtains an accuracy
of 83.60% with a F1-Score of 85.79% which is 4.23% more precise than the model
trained with the Random Forest algorithm, but still 11% less compared to the best
results obtained from the MaMaDroid’s original dataset. Our hyper-parameter
optimization process allows to improve by up to 2% the accuracy primarily reached
with models trained with default hyper-parameter values.

2. MaMaDroid: MaMaDroid’s models yield F1 scores that are 10 to 19 percentage
points less than those reported in the original paper. This is explained by the fact
that we use a different dataset which include more recent malware and applications
(2019). MaMaDroid is indeed not robust to the evolution of the training dataset
over time, and hence suffers from temporal bias [35, 39, 160].

3. VirusTotal: As the ground truth dataset D0 is composed of known malware, which
have already all been submitted and reported as such to VirusTotal, the plat-
form correctly detected almost every submitted samples. It reaches an accuracy of
97.22%, and a F1-Score of 97.45% (see details in table 4.3). Among the 5 952 mal-
ware submitted to VirusTotal in the D0 dataset, one malware was not detected
at all and 5950 of them were detected by more than five anti-viruses.

4. KillerTotal: All malware is detected. However, only 4207 malware were detected
by more than five anti-viruses. Note that KillerTotal has only 7 anti-viruses
compared to 60 for VirusTotal. However, all malware has been detected by at
least one anti-virus.

Evaluating scanners robustness against KillerDroid. All three scanners are trained
with D0. They are asked then to predict the class, i.e. benign or malicious, of all samples
from dataset D1. Results are given in Table 4.5. Note that the feature extraction processes
of Drebin and MaMaDroid sometimes fail, in particular due to bugs in the Soot
Framework on which both approaches rely. These issues prevent to build the feature
vector of certain samples, which is why the number of samples tested can sometimes be

91

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

Scanner Accuracy F1-Score Precision Recall FN FP TN TP
Drebin over D1
KNN (k=1) 47.95 0.00 0.00 0.00 10620 0 9785 0
KNN (k=3) 47.95 0.00 0.00 0.00 10620 0 9785 0
RF 47.95 0.00 0.00 0.00 10620 0 9785 0
SVM 47.95 0.00 0.00 0.00 10620 0 9785 0

MaMaDroid over D1
KNN (k=1) 48.92 54.08 50.82 57.80 4482 5941 3844 6138
KNN (k=3) 49.12 54.71 50.96 59.06 4348 6035 3750 6272
RF 51.79 62.69 52.49 77.82 2355 7482 2303 8265
SVM 49.22 61.13 50.81 76.72 2472 7889 1896 8148

MaMaDroid over D3
KNN (k=1) 49.59 6.59 60.60 3.48 10056 236 9762 363
KNN (k=3) 50.31 55.21 50.12 60.01 4167 5978 4020 6252
RF 50.71 62.32 51.09 79.87 2097 7966 2032 8322
SVM 50.35 55.18 51.16 59.90 4178 5959 4039 6241

VirusTotal over D1
Threshold=1 67.53 61.05 76.43 50.82 5921 1887 10126 6120
Threshold=2 53.77 9.40 84.30 9.40 10908 211 11802 1133
Threshold=5 49.94 0 0 0 12041 0 12013 0

KillerTotal over D1
Threshold=1 70.24 57.75 99.66 40.65 7179 17 12066 4917
Threshold=2 50.14 0.66 100.00 0.33 12056 0 12083 40
Threshold=5 49.97 0.00 0.00 0.00 12096 0 12083 0

Table 4.5 – Trained with D0, tested with either D1 and D3

lower than the theoretical size of the dataset. For dataset D1, 15.65% of feature vectors
could not be generated for either Drebin or MaMaDroid. However, as it is irrelevant
for VirusTotal, all samples has been successfully uploaded to evaluate VirusTotal.

1. Drebin: All trained models from the Drebin wrongly classify the totality of mali-
cious samples from D1 (10 620 FN), while being able to correctly classify all benign
samples (9 785 TN). Models reach an accuracy of 47.95%, but fail to correctly pre-
dict all malware variants, leading to a precision of 0. Surprisingly, whatever the
obfuscation tactics used, Drebin is unable to detect any AAE. All features col-
lected from the AAE are strongly similar to those extracted from the original host,
and do not reflect the actual behavior of the AAE. Therefore, Drebin is not able
to build feature vectors that differentiate enough variants from the host application
used to build AAEs.

To better understand the outcome of Drebin models, we perform a Principle
Component Analysis (PCA) to obtain a two dimensional representation of fea-
ture vectors calculated by Drebin (Figure 4.6). The objective is to estimate the
proximity of vectors among the host application (~H1), the guest malware (~G1),
and the ones corresponding to AAEs obtained by KillerDroid (∀~x ∈ Dm

1). It
appears that KillerDroid performs a good translation of ~G1 enabling to sys-

92

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

Figure 4.6 – Projections of feature vectors in a 2D space

93

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

tematically bypass Drebin. ∀~x ∈ Dm
1 is clustered around the host ~H1, that itself

is located inside the Db
0 cluster clearly separated from the Dm

0 cluster. It validates
that feature vectors ~x ∈ Dm

1 (AAEs) are both too close to the host ~H1, and too
far from all feature vectors ~y ∈ Dm

0 (malware used to train Drebin) to be classified
as malicious. To further confirm these results, we stress tested Drebin with 3 other
datasets Dm

2 , Dm
2′ and Dm

3 . For each experiment, we get the same result, a cluster
of AAEs centered around the host (either ~H1, ~H2, or ~H3) inside the Db

0 cluster, and
far away from the malware cluster Dm

0 used to train Drebin (whatever the guest
used ~G1, ~G2, or ~G3), leading to malware misclassifications.

We further use a Jaccard similarity metric J(~A, ~B) to get insights about the prox-
imity between two feature vectors ~A and ~B as Drebin’s feature vectors represent
categorical values. Correspondingly, J(~G1, ~H1) = 0.058, whereas the average of the
Jaccard similarity:

JDm
1

=
∑i=|Dm

1 |
i=1 J(~xi, ~H1)
|Dm

1 |
= 0.72

with a standard deviation of 0.040. These numbers corroborate that KillerDroid
produces AAEs that Drebin cannot distinguish from the host application.

2. MaMaDroid: MaMaDroid performs much better than Drebin. At best, when
tested over Dm

1 , MaMaDroid gets a F1-Score around 77%. In other terms, it fails
to detect 2 374 malware over 10 620 in the best case (i.e. 22.35% of malware).
However, this result comes at a high cost, as in return, 7 482 benign applications
have been considered as malware over 9 785 (i.e. 76, 46%). It explains why the
recall reaches at best 77.82%, but only with a precision score of 51.79%. Malware
detection is improved (decrease number of FNs) at the expense of a misclassification
of benign applications (increase number of FPs) and vice versa. To evaluate if the
behavior of MaMaDroid remains constant in terms of results, we repeat the
experiment with another dataset D3 generated using a different guest and host
(see table 4.5). We observe the same phenomenon as previously. The accuracy is
not better, and minimizing the number of FPs drastically increases the number
of FNs. The precision reaches at best 60.60% with 1-NN as there is only 236 FPs.
However, the corresponding recall reaches 3.48% as there is correspondingly 10 056
FNs. Conversely, with the best F1-score at 62.32% with RF, there is only 2 097
FNs (i.e. 19.74% of malware undetected), but it comes with a huge spike of 7 966
FPs (i.e. 81.41% of benign applications misclassified) leading to a precision of only

94

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

Figure 4.7 – Projections of feature vectors in a 2D space

95

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

51.09%.

In a way similar to Drebin, we perform a PCA (see figure 4.7) over feature vectors
calculated by MaMaDroid to get a better understanding of the impact of obfus-
cation tactics. Interestingly, feature vectors ~y ∈ Dm

0 and ~b ∈ Db
0 are not clustered

but spread over the 2D space with an area of overlap, explaining the precision
score that reaches only 81.10% at best with the ground truth dataset D0. It leads
one to think that MaMaDroid may have difficulties to have a good accuracy as
feature vectors from Dm

0 and Db
0 are not clustered but spread and mixed. This is

confirmed with feature vectors ~x ∈ Dm
1 from samples generated by KillerDroid.

They are not clustered either around their host ~H1, but are spread over the 2D
space. Further, they are spread and mixed with either feature vectors ~y ∈ Dm

0 or
~b ∈ Dm

0 used to train MaMaDroid, explaining the bad accuracy and precision
that stay roughly around 50 in average. In this particular case, the Jaccard simi-
larity metric is useless here as there is no observed clusters. Additionally, we stress
tested MaMaDroid with 3 others datasets Dm

2 , Dm
2′ and Dm

3 . For each experi-
ment, we observe the same trend whatever the host (~H1, ~H2, or ~H3) or the guest
(~G1, ~G2, or ~G3) selected. The phenomenon of non-clustering and spreading high-
lights the importance of the impact of obfuscation operations over MaMaDroid.
Some obfuscation tactics operate a translation of the guest that enables to bypass
MaMaDroid, and other do not (See Section 4.2.3 that provides deeper analysis
to determine the most efficient obfuscation operations). Whatever, with both an
accuracy and a precision around 50% MaMaDroid is unusable.

3. VirusTotal: In practice, a high number of benign applications embed adware, which
often lead benign applications to be misclassified as malware by anti-viruses from
VirusTotal. Consequently, several studies [19, 203] consider that a sample is a
malware only if exactly at least 5 anti-viruses over 60 flagged it as malicious. In
contrast, in our studies, we give the results for either at least 1, 3 and 5 anti-viruses
(i.e. with a threshold th = 1, th = 3 or th = 5). Hence, if we take a threshold th = 5
antivirus (as usually observed in the domain) to consider a sample as a malware,
we observe that 100% of samples from Dm

1 bypass the detection, leading to F1-
score, precision and recall to 0% (Table 4.5). The accuracy reaches around 50%
as the number of the TN is equal to the number of benign applications with no
misclassifications (i.e. number of FP is equal to 0). At the opposite, if we are very
conservative, and consider at best a threshold th = 1, F1-score reaches 61.05%

96

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

with a recall of 50.82%. Mostly, the number of FN raised down to 5 921 (i.e. mostly
50% of AAEs have been correctly classified as malware), however it comes at the
price of 1 887 FP. VirusTotal gets a good precision score (76.43%), mainly due
to the number of benign samples correctly classified, but still is unable to detect
50% of malware.

4. KillerTotal: In a way similar to VirusTotal, with a threshold th = 5, we observe
that 100% of malware from Dm

1 bypass the detection, leading to F1-score, precision
and recall to 0%. The accuracy is also of around 50% as no benign applications
has been misclassified. From a more conservative perspective (with th = 1), perfor-
mance of KillerTotal are roughly similar to VirusTotal but with a slightly
better precision as there are less FP compared to VirusTotal. Nevertheless, there
are more malware misclassified; FN increased slightly to reach 7179 compared to
5921 for VirusTotal. To summary, the versions of our selected set of anti-viruses
directly available in the Google PlayStore get roughly similar performances com-
pared to VirusTotal, and are, as well as VirusTotal, vulnerable to AAEs
generated by KillerDroid.

Our experiments revealed that KillerDroid can produce AAEs that evade detection
from state of the art scanners in the literature and antivirus systems. 100% of Killer-
Droid-generated malware variants are not detected by Drebin although the guest and
host in the AEEs were involved in the training data of the scanner. While MamaDroid
fails to detect a relatively lower number (∼19%), it also misclassifies 81% of benign apps.
Commercial antivirus systems hosted at VirusTotal fail to detect 50% of Killer-
Droid-generated AAEs.

RQ2: Adversarial retraining

Models from Drebin and MaMaDroid are now retrained with D0 ∪ D1 (i.e., adding
some AAEs to the initial dataset) to evaluate their robustness, i.e. their ability to de-
tect new unseen AAEs generated by KillerDroid. In this scenario, VirusTotal and
KillerTotal are discarded since we do not have access to their training process.

Estimating performance on ground-truth Results are given in Table 4.6. Both accu-
racy and F1-Scores for Drebin’s models are above 99%. Drebin is able to correctly detect
AAEs that share the same host and guest as the ones used to retrain the models. Re-

97

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

garding MaMaDroid, accuracy scores range from 56.64% to 62.10%, and F1-Scores range
from 59.14% to 62.49% for all retrained models. Unlike Drebin, MaMaDroid struggles to
correctly detect unseen AAEs even if they are generated from the same host and guest
as the ones used to retrain the models. MaMaDroid trained over D0 ∪D1 leads to poorer
performance compared to when it is only trained with D0. Surprisingly, increasing the
number of samples into the training dataset (up to 39 614) has a negative impact.

Scanner Accuracy F1-Score Precision Recall Dataset size
Drebin
KNN (k=1) 99.81 99.82 99.74 99.91 30092
KNN (k=3) 99.76 99.78 99.61 99.94 30092
Random Forest 99.58 99.61 99.34 99.89 30092
SVM 99.62 99.64 99.40 99.89 30092

MaMaDroid
KNN (k=1) 59.08 59.69 60.63 58.78 34852
KNN (k=3) 59.80 59.14 62.12 56.43 34852
Random Forest 62.10 62.49 63.79 61.24 34852
SVM 56.64 60.47 57.04 64.35 34852

Table 4.6 – Performance scores on datasets D0 ∪D1.

Evaluating scanners robustness against KillerDroid. D2 and D2′ datasets, de-
scribed in Section 4.2.2, are used to evaluate the robustness of retrained models. As
all samples from D2 and D2′ share either the host or the guest with the samples from D1,
which has been used to retrained the models, we expect from Drebin and MaMaDroid a
high detection rate. Prediction results are given in table 4.7.

1. Drebin: Drebin models predict all samples from D2 and D2′ as benign, leading to
an accuracy of 48.51% with a F1-Score of 0 as all malicious samples have been
misclassified. As a result, unfortunately, retraining the Drebin’s models has no
effect over the malware detection rate although the new AAEs share either the
host or the guest with the samples included into the training dataset used. As
previously, regardless of obfuscation tactics used by KillerDroid, Drebin has
misclassified systematically AAEs from Dm

2 and Dm
2′ . Vector features calculated by

Drebin do not enable to significantly differentiate malware and benign applications.

2. MaMaDroid: Retraining the MaMaDroid’s models by increasing the number of
samples into the training dataset, passing initially from 11 222 up to 34 852 sam-
ples, leads to counter productive results as performances are worst than previously.
When tested with D2, MaMaDroid gets, at best, a F1-Score around 57.70%. Pre-

98

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

Scanner Accuracy F1-Score Precision Recall FN FP TN TP
Drebin over D2 (same malware as D1)
KNN (k=1) 48.51 0.00 0.00 0.00 10250 0 9657 0
KNN (k=3) 48.51 0.00 0.00 0.00 10250 0 9657 0
Random Forest 48.51 0.00 0.00 0.00 10250 0 9657 0
SVM 48.51 0.00 0.00 0.00 10250 0 9657 0

Drebin over D2′ (same host as D1)
KNN (k=1) 48.97 0.00 0.00 0.00 10419 0 9998 0
KNN (k=3) 48.97 0.00 0.00 0.00 10419 0 9998 0
Random Forest 48.97 0.00 0.00 0.00 10419 0 9998 0
SVM 48.97 0.00 0.00 0.00 10419 0 9998 0

MaMaDroid over D2 (same malware as D1)
KNN (k=1) 38.81 24.68 33.69 19.47 8254 3928 5729 1996
KNN (k=3) 39.12 24.45 33.86 19.13 8289 3830 5827 1961
Random Forest 51.89 57.70 52.71 63.73 3717 5861 3796 6533
SVM 39.57 30.83 37.54 26.15 7569 4461 5196 2681

MaMaDroid over D2′ (same host as D1)
KNN (k=1) 50.26 55.08 51.08 59.77 4192 5964 4034 6227
KNN (k=3) 50.58 55.78 51.33 61.09 4054 6036 3962 6365
Random Forest 50.59 61.83 51.03 78.43 2247 7841 2157 8172
SVM 50.98 62.07 51.28 78.62 2228 7781 2217 8191

Table 4.7 – Performances of MaMaDroid, Drebin on dataset D2 and D2′ when trained
with datasets D0 ∪D1 (39 614 samples).

cisely, it fails to detect 3 717 malware over 10 250 in the best case (i.e. 36.26% of
malware), but with 60.69% of benign applications misclassified. It seems that the
host randomly chosen from Db

0 acts as a better attack vector for the guest. When
tested with D2′, performances are better than with D2: at best 2 228 malware over
10 419 are undetected (i.e. 21.38%), associated with a spike of 77, 82% of benign ap-
plications misclassified. Additionally, changing the malware guest does not seem to
change anything in terms of performances. Overall, although the new AAEs share
either the host or the guest with the samples included into the training dataset
initially used (i.e. D0 ∪D1), it has no positive effects over the malware detection
rate.

Proliferation of new generations of variants. It is well admitted that in the field
of machine learning, it is usually preferable to retrain models with as many samples
as possible to obtain better results [35, 39]. However, so far, in the latest experiments,
MaMaDroid obtains opposite results. To investigate this trend, we retrain all models

99

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

for both Drebin and MaMaDroid with a training dataset made of D0 ∪ D1 ∪ D2 ∪ D2′

accounting for a ground truth dataset of 82 932 samples (i.e., versus 39 614 for D0 ∪D1,
and 11 222 for D0). Results are given in Table 4.8. As previously, concerning the ground
truth, Drebin performed as well as previously observed. However, results from MaMaDroid
are drastically worst. For instance, from a F1-score of 85.79% with an associated recall of
91.06% over D0 (i.e. 11 222 samples), it has been raised down to a F1-score of 54.46% with
an associated recall of 57.90% over D0 ∪D1 ∪D2 ∪D2′ (i.e. 82 932 samples), highlighting
the negative impact of the retraining for MaMaDroid’ models.

Scanner Accuracy F1-Score Precision Recall
Drebin
KNN (k=1) 99.67 99.68 99.56 99.81
KNN (k=3) 99.67 99.68 99.53 99.84
Random Forest 99.67 99.68 99.45 99.92
SVM 99.38 99.40 99.76 99.04

MaMaDroid
KNN (k=1) 55.92 63.46 54.82 75.33
KNN (k=3) 56.08 47.36 60.58 38.88
Random Forest 56.31 54.46 57.90 51.40
SVM 52.60 54.00 53.28 54.74

Table 4.8 – Performance yielded by models trained with datasets D0 ∪ D1 ∪ D2 ∪ D2′
(82 932 samples).

The dataset D3 is used to test the retrained models. Table 4.9 confirmed previous
observed results. Even after being retrained with a high number of variants coming from
several different couple of guest and host, machine learning models are unable to correctly
classify new unseen AAEs generated from a different couple. These results demonstrate
the incapacity of either Drebin or MaMaDroid models to catch up with the massive
generation of new variants by KillerDroid. The more MaMaDroid is trained with new
samples, the worse the results are.

Even retrained with some AAEs, state of the art machine learning based scanners
show their limitations when assessed against KillerDroid-generated datasets. For all
retraining scenarios, Drebin systematically failed to detect 100% of the generated variants.
Concerning MaMaDroid, the performance decreases gradually as the number of samples
in the training dataset increases. These results suggest that these scanners are not as
effective as portrayed in the literature.

RQ3: Weaknesses

Finding best obfuscation operations using simulated annealing. As we consider
studied scanners as black boxes, we use KillerDroid to brute force the solution space

100

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

Scanner Accuracy F1-Score Precision Recall FN FP TN TP
Drebin over D3
KNN (k=1) 50.00 0.00 0.00 0 10604 0 10605 0
KNN (k=3) 50.00 0.00 0.00 0 10604 0 10605 0
Random Forest 50.00 0.00 0.00 0 10604 0 10605 0
SVM 50.00 0.00 0.00 0 10604 0 10605 0

MaMaDroid over D3
KNN (k=1) 48.25 50.74 48.41 53.30 4952 6023 4582 5652
KNN (k=3) 48.55 47.93 48.52 47.35 5583 5328 5277 5021
Random Forest 50.02 59.34 50.01 72.94 2869 7731 2874 7735
SVM 48.53 60.11 49.07 77.56 2379 8537 2068 8225

Table 4.9 – Performances of MaMaDroid and Drebin on dataset D3 (23 959 samples)
when trained with datasets D0 ∪D1 ∪D2 ∪D2′ (trained with 82 932 samples).

by generating AAEs for all possible combinations of obfuscation operations. Accordingly,
we have no clues about which obfuscation tactics can favor the detection of an AAE by a
given scanner. While some combinations of obfuscation operations can facilitate evasion,
other combinations can have the opposite effect and produce easily detectable malware.
Simulated annealing. A simulated annealing algorithm [204] allows to approximate the
global optimum of a given function when the search space is discrete. In our case, we seek

Algorithm 1 Simulated annealing
s← s0
for k = 0 through kmax do

t← temperature(k, kmax)
snew ← mutate_state(s)
e← get_energy(s)
enew ← get_energy(snew)
if P (e, enew, t) ≥ random(0, 1) then s← snew

the combination of obfuscation operations that produce the highest rate of undetected
malware over the total number of malware that have this combination for a given scanner.
We define O = {o0, o1, . . . , oi}, i ∈ [0; 34] as the set of all obfuscation operations. We define
s such as s ⊂ O a state that represents one combination of obfuscation operations and
s0 = ∅ the initial state as an empty set. Then, we define k as a step, and kmax the total
number of steps to be taken to succeed. We define the function mutate_state(s) that
randomly adds or removes an obfuscation operation in state s and returns a new state

101

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

snew. We define a temperature(k) function such as

temperature(x) = α ∗ kmax

k + 1 , α ∈ R

where α is a factor that defines the speed at which the algorithm must converge toward
a solution. We define a function get_energy(s) that calculates the error rate as the
following:

get_energy(s) = # of undetected malware compliant with s
total number of malware

Finally, we define the transition probability function P (e, enew, T) such as:

P (e, enew, T) =

1, if enew ≤ e

e−
(enew−e)

T , otherwise

which rules the probability of moving from one state to another. At each step, the algo-
rithm chooses a new solution snew which is close to the current state s. Then, depending
on the calculated error rate enew for snew, the algorithm decides to move to the new
solution or stay with the current one (s) based on the probability function P . The tem-
perature in the algorithm represents a slow decrease in the probability of choosing worse
solutions during solution space exploration. Combined with a high enough value of kmax,
this property allows to search for the global optimal solution.
Finding most effective obfuscation operations. We run the simulated annealing
algorithm for both VirusTotal and MaMaDroid (trained with D0) on three sub-
datasets Dm

1 ∪Dm
2 ∪Dm

2′ that account for 29 170 AAEs. We omit Drebin as no malware
samples were actually detected as malicious by the scanner.

For VirusTotal, we observe that AAEs solely based on dynamic code loading, i.e.
without additional obfuscation techniques, such as manifest merging (Mm) or malicious
payload encryption (Mte), are easier to detect. As such VirusTotal correctly detected
16.58% of AAEs for Dm

1 (resp. 16.35% for Dm
2 , and 15.17% for Dm

2′) without encryption
(Mtp), and by replacing the host manifest (Mr). Inversely, when AAEs are encrypted
with either a manifest merge or append (Mm,Ma), only 1.22%, 0.77% and 0.57% (resp.
for Dm

1 , Dm
2 , Dm

2′) samples are correctly detected.
According to the algorithm, we find that using obfuscation operations from the set

{Ma,Mm,Mte}, corresponding to manifest append, manifest merge and malicious pay-

102

4.2. KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify
Experimental Malware Datasets

load encryption, gives the lowest error rate for VirusTotal and account for 7928 un-
detected malware over 9725 malware generated with these types of modifications. This
result emphasis the fact that VirusTotal anti-viruses are vulnerable to bytecode en-
cryption and AndroidManifest.xml merging manifests with append or merge techniques.
In other words, chances of creating a variant undetectable by VirusTotal are maximized
if it has been generated with tactics that include couples {Ma,Mte} or {Mm,Mte} (as
Mm and Ma are exclusive). Among AAEs generated using this association of obfuscations
operations, 81.5% of them have been undetected by VirusTotal and account for 27% of
tested samples.

Concerning MaMaDroid, we find that operations on the manifest files are the most
meaningful obfuscations operations to generate undetectable AAEs. More precisely, re-
sults of the simulated annealing algorithm show that {Ma,Mm} are the most effective
operations and 6 417 (13% of tested samples) over 8 718 (29% of tested samples) adver-
sarial examples generated with one of these OOs are not detected. These results confirm
our intuition: when the host manifest keeps host components, the MaMaDroid algorithm
use these entry points to build the call graph with the host application dead code. There-
fore, the resulting feature vector is similar to the benign host application. Among AAEs
generated using eitherMa orMm, 46.00% of them have been undetected by MaMaDroid
and account for 13% of tested samples.

The simulated annealing algorithm emphasis the fact that three obfuscation operations
(Mm, Ma, Mte) are paramount to generate an undetectable AAE. However, weights of
these OOs over detection rates of MaMaDroid and VirusTotal hide the impact of other
OOs that can also be important to bypass detection. Therefore, we also investigate the
correlation between detection results and the presence of an obfuscation operation in tac-
tics used to generate AAEs in Dm

1 ∪Dm
2 ∪Dm

2′ for both MaMaDroid and VirusTotal. The
figure 4.8 shows the correlation between obfuscations operations operated by Killer-
Droid and the prediction of MaMaDroid and VirusTotal on AAEs. The darker the box
(smaller coefficient correlation), the more the obfuscation operation helps the variant to
be undetected. Conversely, the clearer the box (higher coefficient correlation) the more
the obfuscation operation makes the variant easy to detect. Firstly, we observe that OOs
found by the simulated annealing algorithm are highly correlated to undetection. Cor-
relation coefficients (cc) for Mm and Ma are below -0.33 for VirusTotal and -0.38 for
MaMaDroid and coefficient for Mte is equals to -0.31 for VirusTotal. Secondly, we ob-
serve that the place where the malicious payload is hidden (Md, Md) has also an impact

103

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

Figure 4.8 – Correlation between detection prediction and obfuscation operations for
MaMaDroid and VirusTotal on dataset Dm

1

on the VirusTotal detection rate. Thus, hiding the byte code either in pictures meta-data
Mdm (cc -0.14) or within the host application byte code Mdw (cc -0.20) is more corre-
lated to undetection than simply hiding the payload in a random file (Mdn - cc 0.17,Mde

- cc 0.18). Regarding MaMaDroid, we observe that most of obfuscation operation do not
have a strong correlation with detection results except for manifest related obfuscations.

Effectiveness of bootloader strategies. We show that the bootloader strategy used to
generate adversarial examples also has a significant impact on scanners detection rates.
Again, we discard Drebin because the approach did not detect any adversarial exam-
ples from KillerDroid. As presented in figure 4.9, AAEs generated with the native
bootloader are 30% less detected than AAEs with a Java bootloader by the MaMaDroid
approach. This can be explained by the fact that the loading of native code is less verbose
and requires very few modifications to the host application bytecode. Moreover, dynamic
libraries (.so files) are not taken into account by MaMaDroid. Furthermore, we observe
that AAEs generated with a native bootloader are 10% less detected than AAEs with a
Java bootloader by VirusTotal. We make the hypotheses that anti-viruses embedded in
VirusTotal as well as MaMaDroid do not take into account native code loading and do
not statically analyze code in dynamic library files.

MaMaDroid and VirusTotal are especially weak in face of obfuscations that target the
manifest file. VirusTotal antiviruses are very vulnerable to the encryption of the dynam-
ically loaded bytecode. Hiding the malicious payload in either the host byte code or in
picture meta-data also plays a role towards creating undetectable variants for VirusTotal.
Finally, AAEs generated with a native bootloader are 30% less detected by MaMaDroid

104

4.3. Conclusion

external java internal java native
bootloader implementation

0

10

20

30

40

50

60

%
 o

f u
nd

et
ec

te
d

sa
m

pl
es

VirusTotal
MaMaDroid

Figure 4.9 – Percentage of undetected AAEs depending on the bootloader strategy used.

and 10% by VirusTotal compared to AAEs generated with a Java bootloader.

4.3 Conclusion

In this chapter, we have demonstrated that KillerDroid can effectively generate An-
droid adversarial examples at scale. With example datasets created with KillerDroid
we have further proven that the state-of-the-art in Android malware detection, both from
research and industry, are particularly vulnerable to such attacks. Similar toolchains or
adversarial approaches may have already landed in wrong hands, and one can only imag-
ine the disastrous effect it could have on the Android ecosystem security. We designed
KillerDroid to avoid such situation. KillerDroid allow researchers to generate mas-
sive challenging datasets to confront current malware detection scanners to the latest
obfuscation techniques observed in the wild. We believe that such initiative will greatly
improve performances of existing scanners and will help further to detect 0-day malware.

However, to evaluate KillerDroid we make two optimistic assumptions that could
introduce a bias in our experiment. Firstly, we do not take into account the validity
of crafted adversarial examples. While we effectively put in evidence vulnerabilities of
existing scanners, it is of little interest if crafted malware variants are not functional.
In the coming chapter, to overcome this unrealistic hypothesis, we discuss the benefits
of testing the validity of generated malware variant. We further propose an approach
to systematically asses the validity of malware variant crafted from samples of several
malware families.

Secondly, to evaluate the resistance of commercial antivirus to KillerDroid gener-
ated variants, we make use of the VirusTotal platform. While this platform offers a scalable
api to test a large number of sample rapidly, it is known to host lightweight versions of an-

105

Part , Chapter 4 – Reaching limits of antivirus leveraging the creation of experimental datasets

tivirus products with limited capabilities. As such, evaluating antivirus products through
VirusTotal may give an unrealistic snapshot of their performances. In the next chapter,
we first propose a discussion regarding the limits of cloud-based antivirus solutions. Then,
we present a new original approach to evaluate fully-fledged antivirus products directly
on Android devices.

106

Chapter 5

Increasing the quality of ground
truth datasets on Android

An important step towards implementing and evaluating new malware detection ap-
proaches is the creation of ground truths for benign and malicious applications. The
efficiency of a malware detection method is directly correlated [35, 36] with the quality of
the dataset used to train and test it. Nonetheless, at least two factors can influence the
quality of a ground truth dataset:

— Inaccurate labels. Inaccurate labels, i.e. malware samples mislabeled as benign
or vice versa, in the training dataset of a classifier can decrease the accuracy of the
resulting model [36].

— Unrealistic samples. Unrealistic samples, such as non-working or outdated appli-
cations, can artificially increase the accuracy of a model at test time but the model
may suffer from overfitting and be unable to detect new unforeseen malware [35,
39].

One accurate manner to cope with such issues is to manually analyse and label appli-
cation samples. However, the number of samples required to efficiently train a machine
learning-based detection approach makes manual analysis and labeling unfeasible. Such
situation emphasizes the need for (i) more accurate methods to automatically label ap-
plication samples and (ii) an efficient manner to automatically vet application samples
to ensure their quality. In this chapter, we present two novel approaches aim to increase
the quality of ground truth datasets on Android by addressing the two aforementioned
claims. We first present KillerTotal, a novel approach to evaluate individually the
publicly available mobile versions of the seven most efficient scanners from VirusTotal.
Secondly, we present KillerScreenshot, an original technique to automatically cer-
tify that synthetically crafted samples produced by adversarial production toolchains are
actually working.

107

Part , Chapter 5 – Increasing the quality of ground truth datasets on Android

5.1 Limits of antivirus aggregators solutions to build
ground truth datasets

To fight against new malware, considerable efforts are deployed to bring realistic and
efficient malware detection both on online platforms [18, 42, 140] or directly on end de-
vices [21, 81, 205]. Nevertheless, attackers are still able to exploit the vulnerabilities of both
signature-based and ML-based detection methods. Signature-based scanners remain vul-
nerable to 0-day malware and ML-based scanners are targeted by adversarial attacks [33,
107]. Signature and ML-based scanners share a common weakness: their efficiency depend
on the quality and the size of ground truth datasets used to differentiate legitimate and
malicious applications. Traditional signature-based scanners must constantly update their
knowledge database with signatures of the latest malware found in the wild in order to
keep an acceptable detection rate. Besides, ML-based scanners must ensure that datasets
used for model training contain a sufficient number of correctly labeled samples in realistic
proportion to avoid suffering from spatial and temporal bias [35]. Moreover, to cope with
adversarial attacks [33, 107], ML-based approaches must constantly retrain their models
with new data to take into account samples that evade detection.

However, automatically collecting new unforeseen malware is an arduous task and re-
quires human intelligence to manually label new samples found in the wild. To circumvent
this problem and bring freshness to their datasets, several companies such as VirusTo-
tal (owned by Google) [42] leverage crowdsourcing by maintaining collective submission
services that allow individuals to freely upload files. In exchange for the collected data,
these platforms offer the user to quickly diagnose uploaded files with their scanners. For
example, for each file uploaded to VirusTotal, the platform executes more than 60
antivirus engines from third-party vendors as well as several static and dynamic analysis
tool to capture insightful information from the studied content. Such content is stored
as metadata along with the file and publicly available. By default, VirusTotal does
not explicitly label a sample as benign or malicious. Given a file, VirusTotal returns
the prediction (i.e. labels) of the 60 antivirus products, and it is up to platform users
to interpret these results in order label their samples. As such VirusTotal, records
around 1 million distinct new files submissions every day, mainly Windows and Android
executables [206].

This kind of solution is profitable for all antivirus vendors as each of them can receive
a copy of every uploaded file, thus guaranteeing an inexhaustible source of data [207].

108

5.1. Limits of antivirus aggregators solutions to build ground truth datasets

More importantly, VirusTotal helps to rise the global IT security level by sharing its
file corpus with premium cybersecurity customers and research teams worldwide. For ex-
ample, in the research domain, a vast majority of studies proposing an ML-based malawre
detection approach [21, 22, 37–41] rely on VirusTotal to automatically label samples
and build ground truth datasets. However, recent studies [23, 43] raised several Virus-
Total limitations suggesting that such labelling method may introduce a bias in ground
truth datasets built upon it.

Such limitations can be induced by the fact that VirusTotal actually runs restrained
versions of commercial antivirus engine on its platform. Version of scan engines and tools
provided by third party companies to VirusTotal differ from versions used in production
by security companies. As stated by VirusTotal itself [42], scan engines proposed by the
platform are not fully fledged and correspond to engine versions restrained on purpose by
third-party companies for commercial and/or technical reasons. The fully-fledged products
versions of these engines, desktop and mobile programs, are more likely to use behavioural
analysis as well as monitoring system events to get more insights about the analyzed
samples.

Consequently, relying on VirusTotal to label samples and build ground truth datasets
may be not as precise as relying on fully-fledged products sold by commercial security
companies. We believe that building ground truth datasets by labelling samples with
mobile versions of antivirus engines from commercial companies could greatly benefit to
malware detecition methods based on machine learning. In this work we pave the way
for a more accurate approach to (i) evaluate the efficiency of commercial antivirus and
(ii) build more reliable malware datasets. Firstly we show, with a dataset of more than
10000 manually vetted Android application samples, that antivirus products hosted on
VirusTotal are less efficient than their fully-fledged mobile application counterpart. In
particular we show that several mobile version of the antivirus are 10 times more accurate
than the VirusTotal hosted version. Then, we demonstrate that even if fully-fledged
versions of antivirus are not able to defeat adversarial attacks done with KillerDroid,
they are slightly more resistant (see section 4.2).

109

Part , Chapter 5 – Increasing the quality of ground truth datasets on Android

5.2 KillerTotal: Vetting grand public Antivirus prod-
ucts

In this work, we present a novel approach to evaluate individually the publicly available
versions of the seven most efficient scanners from VirusTotal, as the ones aggregated
on VirusTotal are usually constrained and/or lightweight versions compared to their
mobile application counterparts on the Google Play Store. The 7 antivirus have been
selected following a multi-criteria basis from the most to the least important: (i) provid-
ing the best performance on the VirusTotal platform, (ii) having no dependencies on
arm native libraries (as we use x86 cpu), (iii) being the most downloaded on the Google
Play Store. Hence, we are evaluating the following 7 anti-viruses: AegisLab, Bitdefender,
DrWeb, Panda Security, Zoner AntiVirus, G Data, and Malwarebytes. Our system, which
we call KillerTotal, is a framework based on the emulation of the Android operat-
ing system. KillerTotal automates the installation and execution of known antivirus
mobile application products on running emulators. Afterwards, KillerTotal evaluates
the antivirus in terms of precision and accuracy by sequentially installing apk samples on
the underlying emulator. KillerTotal provides a large-scale deployment platform that
can be used to evaluate the performances of antivirus products by testing thousands of
applications in an acceptable amount of time.

5.2.1 Mobile Antivirus products

Mobile antivirus products are Android applications released and distributed by cyber-
security companies through the Google Play Store. Companies sell these applications as
scanners that can detect a new threat on a user’s device in real time. As such, antivirus
products are provided with multiple features such as file system scans or the scan of every
third party application installed on the device. Antivirus products on the market can be
thought as a black box as we have no insight on how the application works to perform
malware detection. However, most of antivirus products have similar approaches to detect
that a new application has been installed on the system. Antivirus applications subscribe
to the ACTION_PACKAGE_ADDED system intent which allow them to be woken up by the
system when a new application is installed on the device. Products use the permission
READ_INTERNAL_STORAGE to have access to the newly installed application file and perform
their detection algorithm. For safety reasons as well as a better user experience, antivirus

110

5.2. KillerTotal: Vetting grand public Antivirus products

products are systematically informing the user when they finished the scan of a newly
installed application by telling him if the application is either safe to use or dangerous.
KillerTotal leverages on this behaviour shared by all antivirus products to evaluate
them at scale.

5.2.2 Approach

KillerTotal can be thought as a framework which makes it possible to generalize
as much as possible the evaluation of a large number of antivirus. Antivirus products are
developed and maintained by independent companies, therefore each antivirus application
has its own behaviour. This prevents to have a generic approach to evaluate all antivirus
products. Instead, KillerTotal is organised around a global API that abstracts all
common steps, as well as several drivers, one per antivirus product. The global API is
responsible for executing tasks such as fetching APKs, installing them on the emulator,
cleaning the emulator environment, communicating with the database, collecting antivirus
responses, etc. Antivirus drivers are responsible for performing specific tasks inherent to
each antivirus such as clicking on user interface buttons, cleaning the antivirus cache,
monitoring antivirus notifications, etc.

KillerTotal is built to be resilient to all external events that can occur on a running
Android operating system. Indeed, many perturbations, such as device notifications, lost
of connectivity, unpredictable application behaviours can prevent or alter the evaluation
of an antivirus or put the emulator in a dead lock state. To prevent such problems,
KillerTotal is designed around a lifecycle with multiple checks to ensure that the
emulator is in the best possible condition to monitor the antivirus response when an apk
is installed. An overview of the KillerTotal lifecycle is presented on figure 5.1.

Initialisation phase

The main aim of the initialisation phase is to prepare the environment to evaluate
the antivirus product in best possible conditions. KillerTotal works in concert with a
virtual machine running the Android operating system. When executed, KillerTotal
begins by starting an Android Emulator and waits for it to be up and ready. The bootstrap
time of the emulator depends on the resources allocated and can be up to 30 seconds.
Then, it checks that the emulator has a working internet connection, which is required
as several antivirus products are using remote servers to perform application analysis.

111

Part , Chapter 5 – Increasing the quality of ground truth datasets on Android

Connect to apk
database

Start Android
Emulator

Connection
error message

[Yes]

[No][Connected ?]

[Is emulator ready ?]

Uninstall apks

Timeout error
message[Is timeout ?]

[No]

[No]

[Yes]

Antivirus:
initialisation

Subscribe to
queue

Pull message Timeout error
message

[Is timeout ?]

[No]

[Yes]

Fetch Apk file

Install Apk

Antivirus:
setup

[Success ?]

[No] [Yes]

Antivirus:
monitoring

Timeout error
message

[Apk malicious: None]
[Is timeout ?] [Yes]

Store Response
to database

Antivirus:
Teardown

[Apk malicious: True/False]

1

2

4

3

Figure 5.1 – KillerTotal lifecycle overview

112

5.2. KillerTotal: Vetting grand public Antivirus products

Afterwards, KillerTotal connects itself to the database in which apks are stored. Once
the Android Emulator is up, KillerTotal cleans the environment and removes all third
party applications that might be installed on the system such as Google play services.
Once the emulator is ready, the side-car program performs a series of checks to ensure
that the device is in an acceptable state to run an experiment on it. Next, KillerTotal
installs the antivirus product to evaluate and applies the initialisation step specific to the
product (see 5.1, step ¶). The initialisation step is responsible for performing all actions
required to put the antivirus product in a suitable state to be correctly monitored when it
analyses a newly installed application. This step is crucial as no antivirus product can work
out of the box by simply installing the application on a device. On the Android operating
system, a permission is only granted to an app at execution time and not a installation
time. As such, no antivirus product can detect newly installed applications without being
executed and initialised at least once. Moreover, antivirus applications may initially ask
the user to sign in or to activate a trial licence before running correctly. Finally, some
antivirus applications products will not work before having performed a scan of the entire
device filesystem. Once the product is initialised, KillerTotal enters in a loop state,
acting as a consumer in a queue management system. KillerTotal pulls messages from
this queue that contains the necessary information to fetch apks files to be tested by the
antivirus. For each received message, KillerTotal performs steps that are specific to
each antivirus product.

Antivirus setup

The setup phase (see 5.1, step ·) is required to put the antivirus product ready to
analyse a new application application sample. Some antivirus are constantly performing
background tasks that alter its cache and local storage so KillerTotal takes care of
cleaning such artifacts before going any further. Moreover, KillerTotal ensures that the
antivirus application is running in the foreground to ensure that it is not idle or disabled
by the Android system. Once done, KillerTotal installs the application sample to be
analysed by the antivirus.

Antivirus monitoring

The monitoring phase (see 5.1, step ¸) consists of observing the Android Emulator
until the antivirus application produces an event telling the user that the sample ap-
plication has been analysed. Such event can have many different forms such as system

113

Part , Chapter 5 – Increasing the quality of ground truth datasets on Android

notifications or Android toasts. KillerTotal observes the emulator’s screen periodically
(the period depends on the antivirus behaviour) until it detects a new event related to
the antivirus product. When such event occurs, KillerTotal parses the content of the
produced event and stores the response to the database before triggering the teardown
phase.

Antivirus teardown

The teardown phase (see 5.1, step ¹) consists of both producing an output for the
tested application sample and cleaning the test environment to make it ready for the next
cycle. When antivirus products scan a newly installed application, they write metadata
into their local database and file storage. They also produce user interface content within
the app itself that can interfere with next scans. KillerDroid takes care of cleaning the
environment as much as possible to avoid altering next cycles with erroneous data.

5.2.3 Evaluation

Implementation details

KillerTotal uses Nomad, an open-source workload orchestrator developed by HashiCorp,
which provides a flexible environment to deploy our samples on top of an abstracted in-
frastructure. More precisely our Nomad instance federates a cluster of 6 Intel(R) Xeon(R)
Gold 6136 CPU nodes that accounts for 600 GB of RAM and 124 cores at 3.0 Ghz. Each
antivirus is installed into a Pixel 2 Emulator with Android 8.1 running itself into a Docker
container. Besides the emulator, the Docker container contains a side-car python process
responsible for initialising and running the lifecycle of the antivirus product. The side-car
program leverages on the Android debug bridge (adb) to communicate with the emulator.
Each emulator has a daemon (adbd) running as a background process which execute com-
mands it receives on the device. Adb is a client-server program that allows a client to send
commands to a server that manages communication between the client and the daemon.
Adb allows to run various commands on the device such as installing applications or get
device information. When an adb client is started, the client first check if an adb server
is running on the machine and starts one otherwise. On startup, the server binds to local
port 5037 and listen for incoming commands from the client. Afterwards, the server also
scans a range of ports on the machine to setup connection with emulators’ adbd daemon
advertised on these ports. When the docker image is instantiated as a container, the en-

114

5.2. KillerTotal: Vetting grand public Antivirus products

trypoint starts the Android emulator in background and the side-car program thereafter.
Then, the side-car program immediately starts an adb server and client and waits for the
emulator to be up and running. Each antivirus product as its own side-car implementa-
tion, levering its own monkeyrunner script. Monkeyrunner is a python library that allows
to control the user interface and events of an Android Emulator through adb.

Antivirus Initialisation time APK test time
DrWeb 23.48 5.81
AegisLab 44.91 5.47
BitDefender 22.53 3.16
GData 52.49 18.71
Zoner 19.11 23.37
Malwarebytes 140.59 14.45
Pandas Security 24.83 4.05

Table 5.1 – Average process time for each KillerTotal supported antivirus

For scalability reasons, Android emulators running in each KillerTotal container
is not restarted after each apk tested. Indeed, the time required to boot the emulator and
initialise the antivirus is incompressible, thus each container do it only once at startup.
An x86 Android Emulator started with 2GB of RAM and 3 cores at 3.0Ghz will take 90
seconds to start. Besides, the average time required to initialise each antivirus is reported
in table 5.1. As such, restarting the emulator for each tested apk could take up to 4
minutes, which makes it unrealistic to test thousands of apks in an acceptable amount of
time. Instead, a KillerTotal container boots the Android emulator once, initialises the
antivirus and then sequentially test apks by cleaning the emulator environment between
each test. The table 5.1 reports time duration statistics for each antivirus supported by
KillerTotal. The time required to test one apk depends on the antivirus: BitDefender,
the fastest one, requires 3.16 seconds to test one apk on average. Zoner, the slowest one,
will take 23.37 seconds on average to test one apk.

KillerTotal leverages on its scalable architecture (see figure 5.2) to compensate
for the time taken by antivirus to analyse an application. There is one docker image per
antivirus product supported by KillerTotal that can be deployed in as many containers
as necessary. KillerTotal uses a publish-subscribe messaging pattern as a message
queue system to advertise to containers apks that must be analysed. To begin with,
the user runs a publisher program (see figure 5.2, step ¶) that is responsible for pushing
messages to topics for all apks to be analysed. A topic is created for each antivirus product

115

Part , Chapter 5 – Increasing the quality of ground truth datasets on Android

Submitter

Database

File server

2
4

3

KillerTotal cluster

Topics

1

Figure 5.2 – KillerTotal infrastructure overview

supported by KillerTotal and user can choose topics to which messages should be
published. When started, KillerTotal containers will act as subscribers by subscribing
themselves to the topic that concerns them. As such containers responsible for evaluating
the BitDefender antivirus will pull messages from the related BitDefender topic. When a
container is ready to analyse a new apk, it pulls a message from its topic (see figure 5.2,
step ·), then fetches the apk on the file server (see figure 5.2, step ¸) and stores results
to the mongo-db database when finished (see figure 5.2, step ¹). The pub-sub messaging
mechanism is setup in a shared mode which ensure that messages will be delivered in
a round robin distribution across subscribers. For a given topic, any given message is
delivered to only one subscriber. If a subscriber fails to correctly process the message
(the apk is not correctly analysed by the antivirus), the message is not acknowledged and
will be redelivered later on. Such architecture allows KillerTotal to scale infinitely
horizontally by adding as much containers as possible within limits of available resources.
Each KillerTotal container is allocated with 2 cores and 4GB of RAM. As such, the
cluster can run 62 containers in parallel. Given these performances, KillerTotal can
test 5.9 applications per second and takes 32 minutes to evaluate a dataset composed of
11222 samples.

VirusTotal vs. KillerTotal

In this experiment, our goal is to compare the effectiveness of the seven antivirus
supported by KillerTotal against their implementation counterpart on VirusTotal.

116

5.2. KillerTotal: Vetting grand public Antivirus products

To do so, we build a dataset of 11222 applications composed of 5269 benign and 5953
malware samples. As we can not rely on neither VirusTotal nor KillerTotal to assert
the maliciousness of a sample, all applications in the dataset are manually vetted. Benign
applications are collected by downloading the top 200 applications of each categories on
the Google Play Store. Malware applications are collected from well known datasets used
by the research community: the contagio dataset [88], the Drebin dataset [21] and 200
ransomwares manually vetted from Androzoo [158].

Accuracy Precision Recall F1-Score
Approach KillerTotal VirusTotal KillerTotal VirusTotal KillerTotal VirusTotal KillerTotal VirusTotal
Antivirus
AegisLab 99.96 97.23 99.93 99.77 100.00 94.99 99.96 97.32
BitDefender 99.10 49.50 99.61 99.66 98.71 4.87 99.16 9.29
DrWeb 99.80 98.29 99.78 99.62 99.89 97.16 99.84 98.37
GData 97.15 55.11 99.86 99.89 94.04 15.46 96.86 26.77
Malwarebytes 98.50 46.92 99.78 0.00 97.80 0.00 98.78 0.00
Panda 99.33 49.02 99.98 100.00 98.85 3.97 99.41 7.63
Zoner 55.53 63.20 100.00 99.67 17.88 30.78 30.34 47.03

Table 5.2 – Detection scores obtained by KillerTotal and VirusTotal on a dataset of
11222 samples

As a first step, a script is responsible for uploading all samples from the dataset to
VirusTotal and collect the results for the seven antivirus selected. Then each sample is
sent to the KillerTotal cluster to be analysed by the seven mobile antivirus executed
on Android emulators. To obtain the detection scores of antivirus for both approaches, we
calculate the number of wrongly classified samples among our dataset of 11222 samples.
The table 5.2 reports results obtained for both platforms. Results show that over seven an-
tivirus evaluated, six of them obtain a better accuracy with KillerTotal than with their
VirusTotal counterparts. AegisLab and DrWeb obtain rather equivalent results for both
platforms: AegisLab reports an accuracy of 99.96% and 97.23% on VirusTotal, DrWeb
reports an accuracy of 99.80% on KillerTotal and 99.29% on VirusTotal. However,
four over seven antivirus obtain far better results on KillerTotal than VirusTotal.
For example, the BitDefender mobile application reports an accuracy of 99.10% while its
VirusTotal counterparts reports an accuracy of only 49.50%, suggesting that half of
submitted samples are misclassified. Indeed, BitDefender obtains a recall score of 4.87%
on VirusTotal which indicates that almost all malicious samples have been undetected
by the antivirus. On the contrary, the recall score of BitDefender on KillerTotal is
98.71%, indicating that almost all malicious samples has been detected by the mobile
application. The antivirus Zoner is the only one to obtain better results on VirusTotal

117

Part , Chapter 5 – Increasing the quality of ground truth datasets on Android

compared to its mobile application on KillerTotal with accuracy scores of 63.20% and
55.53% respectively. However, these scores are much lower than other antivirus tested,
suggesting that the Zoner antivirus (both on mobile or in the cloud) is rather unreliable.

Performances of KillerTotal on KillerDroid adversarial examples

Accuracy Precision Recall F1-Score TN TP FN FP
Antivirus

AegisLab 49.42 0.0 0.00 0.00 11819 0 12096 0
BitDefender 34.99 100.0 3.58 6.91 5843 433 11663 0
DrWeb 50.00 0.0 0.00 0.00 12095 0 12096 0
GData 49.52 0.0 0.00 0.00 11868 0 12096 0
Malwarebytes 66.16 100.0 33.12 49.76 11811 4006 8090 0
Panda 49.95 0.0 0.00 0.00 12067 0 12093 0
Zoner 49.89 0.0 0.00 0.00 12040 0 12094 0

Table 5.3 – Detection scores obtained by KillerTotal on a dataset of adversarial examples
generated by KillerDroid

As a second experiment, we further want to evaluate the capacity of KillerTotal
to detect adversarial examples generated by KillerDroid (see section 4.2). To do so, we
use KillerDroid to generate a new dataset of 24192 samples: 12096 samples generated
by weaving a malicious payload into a benign application and 12096 samples generated
by weaving a benign payload into a benign application. Notice that antivirus sometimes
fail to analyse an application, as such, our final dataset is composed of 23915 samples
instead of 24192. The results obtained are reported in table 5.3. For five over seven an-
tivirus, we observe an accuracy around 50%. This can be explained by the fact that these
antivirus correctly classify all benign samples but fail to detect all malicious samples. We
observe that Malwarebytes obtains slightly better results with an accuracy of 66.17% as
it is able to correctly detect 4006 malicious samples over 12096. To summarise, mobile
versions of our selected set of antivirus get roughly similar performances to VirusTotal
(see section 4.2.3), and are, as well as VirusTotal, vulnerable to adversarial examples
generated by KillerDroid.

118

5.3. KillerScreenshot: Improving the quality of malware datasets

5.3 KillerScreenshot: Improving the quality of mal-
ware datasets

One limitation of many works [33, 97, 98] studying the detection of adversarial ex-
amples on Android is that they do not verify that adversarial examples they create are
actually functional. Instrumenting and altering malware bytecode at large scale most of-
ten leads to nonfunctional samples. There is a negative tradeoff between altering malware
bytecode, and bypassing antivirus/anti-malware scanners [104, 106]. For instance, with
MRV [106], at best, from a dataset of 409 malware, authors are able to generate only 696
working variants. We believe that it is of limited interest to generate challenging datasets
for antivirus systems composed of mostly nonfunctional samples. In this context, we aug-
mented our work on KillerDroid with an approach that allows to systematically assert
the validity of each generated adversarial example. This approach allowed us to demon-
strate that among all adversarial examples generated by KillerDroid so far (48 934
samples), 98% of them are fully working.

5.3.1 Approach

In this work, we propose an original technique to automatically certify that samples
produced by adversarial production toolchains are actually working. To achieve this, we
designed a toolchain, KillerScreenshot, which dynamically verifies that the behaviour
of a crafted adversarial example is consistent with the behaviour of the original malware
used to create it. Android malware in the wild are very diverse and account for thousands
of different behaviour that can sometimes be hard to observe. For this reason, we limit our
approach to visible malware behaviours, that said behaviours that have an impact on the
device user interface, such as done by Ransomware, Scareware or banking trojans. Such
malware families are known to display an overlay or an activity to block the user interface
or encourage the user to enter its banking credentials. KillerScreenshot leverages on
the structural similarity index measure (SSIM) [208] to compare the screen activity of ad-
versarial examples with the original malware. More precisely, the SSIM allows to compare
the structure between two images instead of only performing a pixel-to-pixel difference.
This is required in our approach because several small perturbation can appear on screen
between two screeshot such as the clock ticking, or contextual text displayed. KillerTo-
tal provides a large-scale deployment platform based on Android Emulators that allow

119

Part , Chapter 5 – Increasing the quality of ground truth datasets on Android

to deal with the number of AEs that KillerDroid can generate rapidly.

To certify the validity of an AE with respect to the original malware, KillerScreen-
shot takes to inputs (i) the apk of the original malware and (ii) the apk of the target
AE. Then, KillerScreenshot communicates with the Android Emulator to install and
install applications provided as input. More precisely, KillerScreenshot applies a se-
quence of two phases (i) context initialisation and (ii) AE verification.

Context initialisation.

The main aim of the context initialisation phase is to obtain the screen activity of the
original malware. The pseudo-code in listing 2 shows how KillerScreenshot ensure to
capture the right screenshot corresponding to the malware screen activity. First (line 2 of
listing 2), KillerScreenshot waits for the Android Emulator to be ready. Afterwards,
the program install and execute the original malware and makes sure that the malware
generates an activity on the screen (line 5-15 of listing 2). To do so, KillerScreenshot
compares (using SSIM with a threshold empirically chose at 0.95) screenshots taken at
regular intervals to the original home screen of the emulator until a screenshot is distant
enough. Then, the program must wait for the ongoing motion on screen to finish before
taking a final screenshot of the malware screen activity (line 16-24 of listing 2). This is
required because displaying an overlay or an activity on screen is not instantaneous and
may require up to 2 seconds to completely show up. Finally, when screen seems to be
stabilized, KillerScreenshot returns the last screenshot taken (line 16-24 of listing 2).

Adversarial example verification

Once KillerScreenshot has successfully collected a witness screenshot from the
original malware, it starts testing adversarial examples. In a very similar way to the pro-
cedure described in the listing 2, KillerScreenshot installs and execute the adversarial
example on the emulator and take screenshots at regular intervals (every 100 milliseconds).
The program compares each screenshot with the witness screenshot obtained during con-
text initialisation until the similarity value is above a certain threshold (chosen at 0.95) or
the timeout is reached. If both screenshots are identical, KillerScreenshot successfully
asserted the AE as functional, and otherwise, the AE is considered faulty.

120

5.3. KillerScreenshot: Improving the quality of malware datasets

Algorithm 2 KillerScreenshot: Context initialisation cycle
Require:

apk
1: avdReady ← isAvdReady()
2: while not avdReady do
3: avdReady ← isAvdReady()
4: avd← getRunningAvd()
5: avd.installApk(apk)
6: ssim1← 1
7: timeout← 1000
8: startT ime← getT ime()
9: homeScreenshot← avd.takeScreenshot()

10: tempScreenshot← null
11: avd.execute(apk)
12: while ssim1 > 0.95 and getT ime()− startT ime < timeout do . Checking that the

apk produces a screen activity
13: tempScreenshot← avd.takeScreenshot()
14: ssim1← getSsim(homeScreeshot, tempScreenshot)
15: wait(100)
16: if ssim1 < 0.95 then
17: startT ime← getT ime()
18: finalScreeshot← avd.takeScreenshot()
19: ssim2← getSsim(tempScreenshot, finalScreenshot)
20: while ssim2 <= 0.95 and getT ime()− startT ime < timeout do . Wait for apk

screen activity to stabilize
21: newScreenshot← avd.takeScreenshot()
22: ssim2← getSsim(finalScreenshot, newScreenshot)
23: finalScreenshot← newScreeshot()
24: wait(100)
25: if ssim2 >= 0.95 then
26: return finalScreenshot
27: return null

121

Part , Chapter 5 – Increasing the quality of ground truth datasets on Android

5.3.2 Evaluation

Implementation details

Similarly to KillerTotal (see section 5.2), we uses Nomad as workload orchestrator
to deploy multiple KillerScreenshot instances on to of our infrastructure. Killer-
Screenshot is made of one python program and one Android emulator, running into a
Docker container. As for KillerTotal, the python program is responsible for listening
on a queue to get new apks to test on the Emulator. On average, one KillerScreen-
shot instance takes 6.1 second to test a valid sample and a timeout is set at 30 seconds.
Therefore, the time to process an entire dataset of adversarial examples depends on the
number of functionnal samples in the dataset. Our infrastructure can run 62 Killer-
Screenshot instances in parallel, thus it takes between 20 and 100 minutes to test a
dataset of 12096 applications.

Experimental results

Dataset Error Rate Samples tested
Dm

1 1.99 12096
Dm

2 1.28 12096
Dm

3 0.64 12096
Dm

3 0.95 12096

Table 5.4 – Error rate calculated by KillerScreenshot for all datasets generated by Killer-
Droid

To evaluate the capacity of KillerDroid (see section 4.2) to produce functional
adversarial examples, we submitted all generated samples to KillerScreenshot. In to-
tal, KillerDroid produced 4 datasets of 12096 malware variants. The results obtained
by KillerScreenshot are reported in table 5.4. We notice that KillerScreenshot
has been able to successfully test all samples from the four datasets. More importantly,
KillerScreenshot helped to demonstrate that KillerDroid is able to produce func-
tional adversarial example with an error rate below 2%.

122

5.4. Conclusion

5.4 Conclusion

With KillerTotal, we proposed a scalable platform to evaluate the performance of
fully-fledged antivirus products, available to the public on the Google Play Store. The
proposal demonstrates the ability of KillerTotal to scale infinitely horizontally, thus
allowing for a rapid test of thousands of application samples at a high pace. Many works in
the research community consider VirusTotal as the most reliable platform to validate
malware samples and create ground truth datasets. However, thanks to KillerTotal, we
have been able to prove that fully-fledged antivirus products are way more efficient than
versions of antivirus aggregated on VirusTotal. By improving KillerTotal with new
drivers to support more antivirus, our approach could supplement VirusTotal and help
build ground truth datasets of higher quality with more confidence. Furthermore, we have
shown that although KillerTotal is more effective than VirusTotal, none of the 7
antivirus tested were effective against adversarial examples generated by KillerDroid.
Such findings confirm that most advanced antivirus products on the market are unable
to deal with the newest attacks used by malware authors to bypass detection.

In addition, we proposed KillerScreenshot, an approach to automatically verify
if synthetically crafted malware variants are fully working. KillerScreenshot com-
plements the work done with KillerDroid by enabling research to build challenging
datasets to improve malware detection systems. By combining the two approaches, we
can not only create malware samples that use the most advanced evasion techniques, but
also verify that the behavior of these variant has not been altered during manipulation.

We hope that KillerTotal will help the research community test Android applica-
tions with more confidence with the most advanced antivirus version publicly available.
We think about releasing KillerTotal as an open source project, as the approach would
greatly benefit from the Android security community to support more antivirus products.
Similarly, considering the many recent works on adversarial attack in the Android com-
munity, we believe that KillerScreenshot is a promising proof of concept that can
greatly help researchers to craft high quality malware variants.

123

Chapter 6

Future works

The promising results found during the work carried out in this thesis constitute
an additional step toward improving the Android ecosystem’s global security. However,
attackers are constantly moving forward, finding new methods to bypass security protec-
tions put in place by all actors in the ecosystem. This forces ecosystem actors, both from
academia and industry, to improve existing protection systems and find new solutions to
anticipate new attacks to come. In this chapter, we first present our short term vision
for the work achieved in this thesis. Then, we propose long term perspectives that could
contribute to an Android ecosystem safer for all users.

6.1 Short term future works

With the work carried out during this thesis, we sought to improve existing malware
detection systems. The approaches we proposed have proven to be effective against the
current malware landscape but could quickly become obsolete given the rapid evolution
of new attack techniques. In this section, we first present the incremental improvements
that our work could benefit from to keep the pace against new malware threats. Then,
we present new research directions that could be followed from approaches presented in
this dissertation.

6.1.1 Towards more diversified malware datasets

So far, KillerDroid (see section 4.2) allowed for the production of more than 50 000
malware variants. From a couple of one benign and one malware application, our toolchain
can quickly generate 12 096 variants of the original malware, built using a combination
of recent evasion techniques, such as dynamic code loading and bytecode encryption. Our
evaluation showed that malware variants produced by KillerDroid are already capa-
ble of evading state-of-the-art malware detection methods, both from academia and the

125

industry. KillerDroid is already able to produce a wide variety of malware variants
by combining various evasion techniques. To keep up with the rapid development of the
malware landscape, KillerDroid is implemented with a modular architecture which
makes it simple to add new evasion techniques in order to diversify even more the pos-
sible obfuscation tactics when generating malware variants. Such a modular architecture
will help cover more and more corner cases in generated datasets. We believe that the
research community would greatly benefit from enlarged and more diversified datasets
than those currently offered with KillerDroid. As future works, we have identified new
evasion attacks used by existing malware found by research works and envision to add
them as new mutations in the corpus of tactics used by KillerDroid.

New evasion attacks

Remote code loading. Currently, KillerDroid generates malware variants by dy-
namically loading the malicious payload two different local locations: the assets directory,
and the host application. Recent works [137] show that attackers are creating malware
that use remote code loading to execute a malware payload downloaded from a remote
location, such as the attacker’s server. Such practices makes it harder to detect a ma-
licious behviour with only static analysis as the malicious payload does not exit in the
application file before its execution. Such remote code loading evasion technique could be
implemented as a new tactic in the KillerDroid toolchain to increase the number of
malicious payload dissimulation options.

Leveraging side channel attacks. As a future work, we envision making malware
variants generated by KillerDroid stealthier by leveraging recent works [49] that un-
covered several side channel attacks to access privacy sensitive data without the explicit
permission to do so. As previously demonstrated, permissions requested by an Android
application are particularly relevant in detecting suspicious behaviours. However, mal-
ware often need to request dangerous permissions to correctly execute their malicious
behaviours. A recent study [49] has shown that recent applications, both malicious and
legitimate manage to bypass these permission requirements by leveraging side channel
attacks. For example, applications can infer the device’s unique identifier, or the device’s
MAC address without requesting the related permission by leveraging unprotected native
IOCTL calls in native code. A new version of KillerDroid could implement these side
channel attacks to provide malware variants with an API to get access to the data or the

126

device’s features they need without having to declare the related suspicious permissions
in the variant’s manifest.

Challenging dynamic analysis systems.

As of today, evasion attacks implemented in the KillerDroid toolchain are mainly
focused on challenging malware detection systems that leverage a static analysis approach
to analyse applications. Drebin [21] and MaMaDroid [19] are two malware detection
frameworks based on static analysis and the response time of most antivirus products on
VirusTotal [42] suggests that most engines are also based on static analysis. As such,
we have currently no evidence that malware variants produced by KillerDroid could
effectively challenge malware detection approaches based on dynamic analysis [137, 209].

We therefore envision adding two novel tactics to KillerDroid that would allow the
generation of new malware variants specifically designed to challenge malware detection
systems based on dynamic analysis.

1. Deferred malicious payload execution. The first strategy, namely deferred ma-
licious payload execution, consists in making malware variants created by Killer-
Droid able to defer the execution time of their malicious payload. Currently, the
bootstrap sequence of KillerDroid is implemented in such a way that the ma-
licious payload of a variant will always be executed right after its launch by the
user. This approach could easily be detected by a dynamic analysis tool as start-
ing the application is enough to trigger the malicious behaviour. Similar to time
bombs [210] already used by attackers in their malware, deferred malware payload
execution will allow KillerDroid generated malware variants to load and execute
their malicious payload after a certain amount of time, or at specific hours.

2. Conditional malicious payload execution. The second strategy envisioned is
name conditional malware payload execution and will allow new KillerDroid
generated variants to load and execute the malicious payload under certain con-
ditions. Since the payload of the variant is contained in a legitimate application,
this would allow the variant to behave legitimately until the condition to run the
payload is met. For example, the payload execution could occur only when the
user connects its device to a Wi-Fi network, or when the user executes a legiti-
mate action with the variant, like sharing a photo. Similarly to logic bombs [210],
conditional malware payload execution will be likely to put dynamic analysis scan-
ners in difficulty as it could be hard to meet the conditions required to trigger the

127

malicious payload execution in an automated fashion.

6.1.2 Future of machine learning malware detection

Today, there are more and more studies that leverage machine learning to improve the
performance of malware detection in the Android ecosystem. Over time, machine learn-
ing approaches and conditions used to evaluate them became very heterogeneous. First,
studies design detection systems based on many different learning algorithms, ranging
from linear to deep neural network classifiers. The data used for training these classifiers
have various origins and systematically differ from one study to another. Moreover, as
already suggested in the past [23], there are no convention in the research domain to
decide whether an application sample is legitimate or malicious. Besides, the emergence
of studies that leverage adversarial attacks offers various possibilities to evaluate machine
learning-based detection systems. Recent works have provided multiple ways to create ad-
versarial examples with various obfuscation and evasion techniques, which increase even
more the data that can be used to evaluate detection systems.

Taking machine learning-based detection benchmarks to the next level

Such heterogeneity in ML-based malware detection emphasizes the need for more
systematic and methodical ways to benchmark the performance of machine learning mal-
ware detection approaches. With DroidAutoML, we proposed an approach that partly
solve the problem with a framework that can quickly test several learning algorithms
and hyper-parameter combinations in order to find the best possible configuration to
maximise the detection rate of a given machine learning detection approach. However,
currently, the choice of the data used to train and test algorithms is left to the user.
Moreover, DroidAutoML can only benchmark four learning algorithms.

As a future work, we will explore the possibility of designing a more general and ex-
haustive protocol to benchmark machine learning-based detection systems. By reusing
the concepts presented with DroidAutoML, we envision a platform with the necessary
abstractions to allow for a benchmark of detection systems with more criteria, in a more
controlled manner. First, the platform could allow training and testing classifiers with
various but yet fixed datasets. Thus, it would be possible to evaluate the robustness of a
classifier to datasets created with various adversarial attacks, like the one presented with
KillerDroid (see section 4.2). Secondly, DroidAutoML would benefit from support-

128

ing more learning algorithms and more feature extraction approaches.

To improve the efficiency of DroidAutoML, we are currently looking at replacing
the grid search approach by a bayesian optimization. As more learning algorithms will
be added to DroidAutoML, framework performances will become critical. Currently,
the search for the best combination is done by performing a brute force approach (i.e.
a grid search) among all possible combinations of hyper-parameters. Thus, the compu-
tation resources required to find the best solution grow significantly with the number of
hyper-parameter combinations to test. Unlike a grid search approach, a bayesian optimiza-
tion does not require trying all the hyper-parameter combinations. Instead, the bayesian
optimization searches along the space of hyper-parameters by learning as it tries them.
Implementing such an approach could greatly improve the speed of DroidAutoML as
it reduces the number of hyper-parameter combinations to test for all the learning algo-
rithms tested.

Improving malware detection using parallel machine learning classifiers

To further improve the accuracy of machine learning-based malware detection scanners
on Android, we envision taking advantage of KillerDroid’s ability to generate malware
variants to boost the training of parallel machine learning classifiers.

In recent years, to fight against the proliferation of new heterogeneous malware fam-
ilies, studies [211, 212] have investigated malware detection through multiple machine
learning classifiers. In particular, Google [213] patented a similar approach but has not
publicly released it yet. Such approaches rely on a composite classification models, i.e. a
combination of heterogeneous classifiers based on multiple learning algorithms. Classifiers
are trained using diverse malware datasets and different set of features extracted either
statically or dynamically from samples. Thereafter, trained classifiers are used in parallel
to predict the maliciousness of a sample and a combination function is responsible for
gathering classifiers’ predictions and issuing a final result.

Such an approach can be used to build multiple classifiers specifically trained to detect
a particular malware family or a particular malicious behaviour. Instead of relying on a
single classifier trained to generalize the problem of malware detection globally, these
classifiers can therefore be chained or used in parallel to make predictions. One advantage
of this approach is that each classifier can be trained with a training dataset and a set
of features tailored to detect a specific malware family or behaviour. As new malware

129

families are discovered, such systems can therefore be improved by adding new classifiers
in the chain.

However, one limitation of this approach is the need for a significant number of malware
samples to correctly train each classifier. Splitting existing public malware datasets into
subsets of malware families will significantly decrease the number of samples available for
one classifier. To solve the aforementioned, we envision using KillerDroid to craft a
significant number of malware variants for each malware family. So far, KillerDroid has
been able to generate more than 50 000 malware variants, mostly using malware from the
Ransomware family. To diversify the malware variants that KillerDroid can create, we
plan on improving the KillerDroid toolchain to make it support many more possible
mutations. For example, currently, KillerDroid is only able to create malware variants
where the malicious payload is immediately triggered when the application is launched. A
novel mutation approach could be to craft malware variants where the malicious payload
is triggered either after a certain amount of time, or when a certain condition is met, such
as a system event or a specific user action.

By diversifying both the kind of malware used to craft variants and the number of
mutations supported by the KillerDroid toolchain, we could be able to create datasets
sufficiently large to efficiently train a parallel machine learning classifier. Thus, we further
aim at building a new classifier based on a multilevel architecture that uses both linear and
ensemble learning algorithms to train a sub-classifier for each malware family represented
in previously generated datasets.

6.1.3 Poisoning VirusTotal

As a future work, we envision a novel attack which allows an attacker to irreversibly
corrupt and subvert detection results of antivirus engines running on aggregators such
as VirusTotal. With the help of KillerDroid, which is able to quickly generate
thousands of adversarial examples that look like a chosen legitimate application, we would
show that it is possible to influence detection results of files scanned in the past by
uploading carefully chosen adversarial examples on the aggregator. Such an attack will
allow antivirus vendors to adapt their detection mechanisms to prevent the increase of
false positives (i.e. legitimate samples wrongly detected as malicious) in their system.

As discussed in section 5.1, many research works and security companies still rely on
VirusTotal to determine whether a file sample is malicious or benign. Such centralized
platforms bring freshness to datasets which is necessary to retrain models and update

130

antivirus databases and keep acceptable detection performance over time. Unfortunately,
crowdourcing based solutions are known to suffer from byzantine behaviours as there is
no control on the incoming data. There is little information on how companies enrolled
in the VirusTotal program review the stream of incoming files acquired through user
submissions. While some unseen malware variants may be automatically detected as ma-
licious by some engines, there is probably a lot of human intelligence involved to double
check suspicious samples and effectively label them as malware. An attacker may inten-
tionally feed such crowdsourcing platforms with adversarial examples specifically crafted
to trick scanners that rely on the input data to perform malware detection. Regarding
VirusTotal, a major point of failure is that to improve their software, antivirus vendors
share together newly detected samples across their products to share the knowledge and
improve their detection performance. Thus, if an attacker manages to generate detection
errors on one antivirus, it is a safe bet that the error will spread globally among all the
antivirus aggregated on VirusTotal. Several research studies have already highlighted
attacks on crowdsourcing based systems [214, 215] showing that such attacks are efficient
to disturb decision-making algorithms relying on the input data. In the field of malware
and unwanted software however, no such study has been carried out.

When carrying out our experiments on KillerDroid (see section 4.2), we empiri-
cally noticed that we were able to influence scan results of antivirus on the aggregator.
By generating malware variants specifically crafted to look like existing benign legitimate
Android applications, we have been able to show that after a sufficient number of sub-
missions on VirusTotal, most scanners start considering in turn the original legitimate
application as malware. More precisely, this attack makes antivirus products believe that
an application they considered benign is actually a malware. In a real case example, this
attack can be seen as a denial of service against the mobile application of a business
company. To gain market share in a business competition, a company could carry out this
attack on another company’s application to make it look like a malware on the Virus-
Total platform. Consequently, all antivirus engines running both on VirusTotal and
on end devices will warn users that the application is a malware until users ultimately no
longer trust the attacked company.

131

6.2 Long term future works

In this section, we envision two complementary perspectives to improve the security
of the Android ecosystem. We first propose a shift towards a more collaborative model
to deal with malware detection. Then, we explain how moving mobile applications to the
cloud could improve the Android security platform.

6.2.1 Towards more collaborative efforts

To move towards a safer Android ecosystem, we envision more collaboration between
actors within it. Currently, the Android ecosystem largely depends on Google’s efforts
to guarantee security. The Google Play Store mainly relies on its homemade solution,
Bouncer [216], to prevent malicious applications from being published on the platform.

A new model, built on top of collaborative means could be imagined to ease the
collaboration between security actors in the ecosystem. Such a model could propose an
abstracted API that would allow various entities, including commercial antivirus compa-
nies and research institutes to contribute to the evaluation of applications uploaded to
multiple stores. The premises of such an API have been successfully demonstrated by the
VirusTotal platform [42], where an alliance of more than 60 antivirus vendors can scan
millions of files uploaded on a single platform. Such an API could follow an open source
model, jointly developed and maintained by an alliance of stores, antivirus vendors and
researchers. This collaborative approach would benefit to every parties. Stores could use
the API to verify uploaded applications on both commercial antivirus and implementa-
tions of multiple research projects. In addition, antivirus vendors and research institutes
could profit from data sent on their systems by stores to increase their security-related
datasets and improve their malware detection models.

6.2.2 Moving applications to the cloud

One idea to improve Android security would be to move applications to the cloud in-
stead of asking users to install them. The increase of smart devices’ computation resources
as well as more efficient and reliable networks now makes it possible to move applications
to the cloud. Cloud mobile applications are applications that run on servers external to
the mobile device and are accessed over the Internet with a browser. For example, Google
recently launched Stadia for smartphones [217], a cloud gaming service that allows users

132

to stream video games directly on their smartphone. Instead of executing the game locally
on the smartphone, the game is executed on a remote server and image frames are sent
to the user’s device over the network.

In terms of security, cloud mobile applications could help secure smart devices by
removing the need for users to install applications on their device. As cloud applications
can be accessed in a browser, only a few verified applications could be allowed to be
installed on the user’s smart device. This would make securing the Android platform
easier, as it would drastically reduce the attack surface and the number of applications
to verify.

While this mobile cloud application model can help secure the Android platform, it
does not solve the malware problem and only shifts it towards cloud providers. Indeed,
there will always be a store to allow developers to offer cloud applications to users. At-
tackers will still be able to distribute cloud mobile malware. However, it will be harder
for attacker to escape the sandbox provided by mobile browsers.

133

Conclusion

Nowadays, with the advent of smart devices in our everyday life, smart ecosystems
are threatened by bad actors that illegitimately pervade the system with malicious ap-
plications, namely malware, to cash in on smart device users. As the number of infected
devices continues to rise, the fight against malware has become of the uttermost impor-
tance for all legitimate contributors of smart ecosystems. Despite the multiple security
locks implemented by software platforms and stores to detect malware, attackers use ever
smarter techniques to build malware that evade detection. This situation demonstrate the
need to improve and adapt existing malware detection systems so they can deal with the
next generation of malware.

6.3 Summary of contributions

In this thesis, we have proposed four contributions that seek to progress toward more
robust and more intelligent Android malware detection systems:

DroidAutoML. In chapter 3, we presented DroidAutoML, a generic and scalable
approach based on a microservice architecture that allow for an automatic increasing
of the performance of existing Android machine learning-based malware detection tech-
niques. From two inputs, a malware dataset and a feature extraction method, DroidAu-
toML automatically performs an extensive and exhaustive search by training various
learning algorithms with thousands hyper-parameters combinations to find the highest
possible malware detection rate. DroidAutoML successfully increased the accuracy of
two existing state-of-the-art machine learning detection approaches while not being too
expensive in terms of time and resources consumed. This contribution is based on the
work presented in the following paper:

— Yérom-David Bromberg and Louison Gitzinger, « DroidAutoML: A Microservice
Architecture to Automate the Evaluation of Android Machine Learning Detection
Systems », in: IFIP International Conference on Distributed Applications and In-
teroperable Systems, Springer, 2020, pp. 148–165 [218]

135

Groom. We further presented Groom, a fast static analysis approach which extracts
a novel efficient feature set from Android applications to improve machine learning de-
tection. In particular, Groom extracts specific features that enable detection systems to
take into account the use of recent obfuscation techniques such as reflection, native code
execution, dynamic code loading and encryption. Groom outperformed two state-of-the-
art machine learning approaches in terms of accuracy while being faster in analysing
applications to extract required features.

KillerDroid. In chapter 4, we proposed KillerDroid, an approach that enables
to craft challenging malware variants with the aim of diversifying malware datasets to
evaluate detection scanners. KillerDroid crafts new malware variants by weaving ex-
isting malware applications into benign applications using advanced evasion techniques
such as dynamic code loading or native code execution. State-of-the-art scanners from both
academia and the industry have proven to be vulnerable to adversarial datasets created
by KillerDroid. Datasets created by KillerDroid further helped highlight the vul-
nerabilities of scanners to specific evasion techniques.

KillerTotal. In chapter 5, we presented KillerTotal, a large-scale deployment plat-
form to evaluate individually the publicly available versions of the seven most efficient
Android mobile antivirus products available on the Google Play Store. By deploying mul-
tiple instances of antivirus in parallel, KillerTotal can submit datasets of thousands
of applications to calculate the malware detection rate of these antivirus. KillerTotal
allowed us to demonstrate that publicly available versions of antivirus outperform versions
provided in antivirus aggregators. Results obtained suggest that KillerTotal could re-
place commonly used aggregators like VirusTotal to build ground truth datasets with
more accuracy. KillerTotal further demonstrated that mobile antivirus products re-
main inefficient against datasets generated by KillerDroid.

KillerScreenshot. In chapter 5, we further presented KillerScreenshot, an ap-
proach to automatically vet the correct behaviour of synthetically crafted malware. Killer-
Screenshot complements the work achieved by KillerDroid by automatically verify-
ing that adversarial examples generated by KillerDroid are correctly triggering their
malicious behaviour at runtime. By ensuring the proper execution of malware variantes

136

generated, KillerScreenshot contributes to the increase in quality of malware datasets
generated by adversarial attacks in order to make these attacks more realistic and chal-
lenging for existing malware scanners.

Overall, our work has highlighted several weaknesses of existing Android malware de-
tection systems and proposed concepts and tools to improve them.

This is however, a small step toward making smart ecosystems a safer place. The rising
number of smart devices make such ecosystems an inexhaustible business for attackers.
Can malware detection ever become robust enough to protect users in smart ecosystems
against malware infection without hindering them? We recognize that, a determined at-
tacker will always find ways to dissimulate a malicious behaviour and make it undetectable
to any detection scanner. The only way to prevent such attacks would be to raise security
barriers to such an extent that it would be destructive for legitimate businesses and user
experience. In a nutshell, tension between security and liberty must be thoroughly stud-
ied. We conclude this thesis with the hope that the presented contributions will provide
the Android research community useful insights on how Android malware detection can
be improved while keeping the ecosystem useful for everyone.

137

List of publications

— Yérom-David Bromberg and Louison Gitzinger, « DroidAutoML: A Microservice
Architecture to Automate the Evaluation of Android Machine Learning Detec-
tion Systems », in: IFIP International Conference on Distributed Applications and
Interoperable Systems, Springer, 2020, pp. 148–165 [218]

139

Chapter 7

Résumé en français

7.1 Contexte

De nos jours, nous sommes entourés par une flotte de périphériques intelligents, con-
nectés entre eux par différents protocoles réseaux. Ces périphériques, tels que les smart-
phones, les télévisions connectées ou les montres connectées, sont qualifiés d’intelligents
parce qu’ils fonctionnent ensemble de manière autonome et interactive pour améliorer
notre niveau de vie. Ainsi, votre smartphone peut vous notifier au travail lorsque que
votre caméra connectée détecte que vos enfants sont bien rentrés à la maison. Lorsque vous
planifiez un itinéraire en voiture, votre voiture connectée saura automatiquement com-
ment vous guider jusqu’à votre destination. Pour offrir ces services, les périphériques que
nous utilisons tous les jours font partie d’écosystèmes plus larges, dans lesquels plusieurs
entreprises collaborent. D’un point de vue économique, les écosystèmes peuvent être vus
comme une inter-dépendance entre l’offre, c’est-à-dire les entreprises qui vendent des pé-
riphériques et des services, et la demande: les utilisateurs. Dans ces écosystèmes, les en-
treprises doivent garantir une certaine qualité de service pour assurer une bonne rétention
des utilisateurs et ainsi être rentable.

Dans ce contexte, des entreprises comme Google et Apple offrent un écosystème fort
et cohérent en organisant leur activité autour d’une plateforme logicielle, comme Android
ou IOS. Ces plateformes s’exécutent sur les périphériques et permettent à l’utilisateur
d’y installer des programmes appelés applications. Les applications sont des programmes
individuels qui offrent à l’utilisateur des services variés pour être productif (envoyer des
mails ou des SMSs, gérer son agenda, . . .), pour se divertir (réseaux sociaux, vidéos,
. . .) ou encore pour jouer. Les plateformes logicielles proposent aussi un kit de développe-
ment logiciel (Software Development Kit, SDK) qui encouragent et facilitent le développe-
ment d’applications compatibles avec la plateforme. Les SDKs ouvrent l’écosystème à la
communauté de développeurs et permettent à des entreprises tierces (comme Facebook,
Airbnb, Uber, . . .) de concevoir des applications pour les utilisateurs de périphériques.

141

Une fois installées, les applications utilisent les capteurs intégrés aux appareils (camera,
détecteur d’empreinte, accéléromètre, localisation GPS, . . .) pour améliorer en continu
la qualité des services proposés. Avec les moyens de communication de l’appareil (LTE,
WiFi, Bluetooth, . . .), les applications peuvent envoyer les données collectées à n’importe
quel serveur tiers, permettant ainsi aux développeurs de récolter des retours précieux sur
les usages des utilisateurs. En échange de ces données, les utilisateurs peuvent profiter
d’applications plus intelligentes, avec des services de qualité comme la publicité ciblée, les
commandes rapides ou encore le paiement en un seul clic.

Pour faciliter l’accès aux applications créées par les développeurs, des services en
lignes, appelés stores, offrent à l’utilisateur un espace centralisé pour les chercher et les
télécharger. À l’instar d’un marché, les stores proposent aux vendeurs (les développeurs)
de téléverser, publier et faire de la publicité leurs applications sur le service. Pour aider les
utilisateurs à naviguer parmi les millions d’applications proposées, les stores les organisent
en catégories, comme Art et culture, Divertissement, Jeux, etc.

Avec le temps, le progrès technologique a permis à ces écosystèmes de prospérer tout
en se révélant rentables pour tous les acteurs. Ce cercle vertueux s’est traduit par une aug-
mentation substantielle du marché des appareils intelligents. Les plateformes logicielles,
dominées par Android et Apple IOS qui détiennent ensemble 98% du marché, comptent
des milliards d’appareils actifs dans le monde. Aujourd’hui, Android est installé sur 2.5
milliards d’appareils actifs dans le monde. En comparaison, la plateforme IOS est installée
sur 1.4 milliards d’appareils. Suivant cette tendance, les stores ont eux aussi observé une
croissante formidable. En dix ans, le nombre d’applications publiées sur les deux stores
principaux (le Google Play Store et l’App Store d’Apple) est passé de quelques milliers à
plusieurs millions.

Pour rester rentable dans ce contexte, les écosystèmes intelligents doivent gagner la
confiance des utilisateurs. Cependant, comme n’importe qui est autorisé à publier de
nouvelles applications, les stores doivent vérifier que les applications publiées sur leur
plateforme sont de bonnes qualité et ne comportent pas de risque pour l’utilisateur. Mal-
heureusement, la croissance de ces écosystèmes a incité des personnes mal intentionnées
(des attaquants) à profiter du système illégalement.

142

7.2 Vulnérabilité de l’écosystème Android

Les attaquants profitent à tous les niveaux des vulnérabilités de l’écosystème pour
cibler les utilisateurs avec des logiciels malveillants, nommés malwares (pour malicious
software), qui exploitent les données de l’utilisateur à son insu pour l’espionner ou se faire
de l’argent sur son dos. Dans ce contexte, en raison de sa popularité, l’écosystème Android
est ciblé par 98% des attaques sur les appareils intelligents. Pour exploiter les failles de
l’écosystème, les attaquant créent différents types de malwares, qui ont été catégorisés en
familles :

— Au niveau du système d’exploitation : les attaquants peuvent exploiter des vul-
nérabilités pour déployer des rootkits, pour obtenir un accès root sur l’appareil
ciblé.

— Au niveau du framework : les malwares peuvent demander la permission d’accéder
à des données sensibles de l’utilisateur telles que sa localisation GPS ou sa liste
de contacts. Les malwares peuvent aussi demander au framework la permission
d’effectuer des actions dangereuses telles que supprimer les fichiers de l’utilisateur
ou prendre des photos.

— Au niveau applicatif : les malwares peuvent exploiter d’autres applications vul-
nérables installées sur l’appareil, par exemple pour arrêter l’application ou accéder
à des informations sensibles manipulées par l’application ciblée.

— Au niveau du réseau : les malwares peuvent effectuer des dénis de service sur
d’autres applications, envoyer des SMSs ou passer des appels téléphoniques à des
numéros surtaxés.

Cette croissance inquiétante de la menace des malwares sur l’écosystème soulève un
défi de taille : comment garder un écosystème ouvert aux contributeurs tierces tout en
garantissant la sécurité des utilisateurs ?

7.3 Solutions existantes

Pour contrecarrer la menace induite par les malwares, les contributeurs travaillant sur
la sécurité d’Android, provenant à la fois de la recherche et de l’industrie, renforcent la
sécurité de l’écosystème avec de nouvelles défenses. La plateforme Android se sert des
capacités du kernel Linux tel que le sandboxing d’applications, SELinux et le démarrage
sécurisé (verified boot) pour mieux isoler les applications entre elles et mieux controller

143

l’accès aux données des applications. Avec son model de permissions, qui a été sujets à de
nombreuses améliorations ces dernières années, la plateforme Android demande explicite-
ment aux applications de déclarer les fonctionnalités dont elle a besoin pour fonctionner
correctement. Toute tentative d’une application d’accéder à des ressources sans y être
autorisée sera refusée par le système. Ainsi, pour accéder à des fonctionnalités telles que
l’appareil photo, les appels téléphoniques ou les sms/mms, une application doit explicite-
ment demander la permission à l’utilisateur.

Pour freiner l’infection des appareils en amont, les stores ont mis en place des sys-
tèmes de validation qui permettent de filtrer les applications soumises sur leur plate-
forme. Ces processus de validation, comme Google Play Protect, utilisent à la fois des
techniques manuelles et automatiques pour analyser le flux d’applications téléversées et
vérifier qu’elles ne sont pas malveillantes. Comme ces protections ne sont pas suffisantes
pour supprimer tous les malwares, des entreprises commerciales ont développé des an-
tivirus à installer sur l’appareil qui analysent les applications lors de leur installation. Par
ailleurs, le domaine de la recherche a montré des résultats prometteurs avec des approches
innovantes pour améliorer la détections de malwares sur la plateforme Android.

Pour garantir la légitimé d’une application, il est nécessaire de collecter des données
qui peuvent renseigner sur ses intentions et son comportement. Pour cela, deux techniques
d’analyses logicielles sont principalement utilisées : l’analyse statique et l’analyse statique,
qui permet de rapidement analyser les fichiers binaires et les resources d’une application
sans avoir à l’exécuter, et l’analyse dynamique, qui permet d’analyser l’application en
l’exécutant pour étudier son comportement.

Ensuite, les systèmes de détection utilisent un oracle pour décider automatiquement si
une application doit être considérée comme malveillante ou légitime. Les oracles sont des
systèmes de décision qui font un choix, à partir des données récupérées lors de l’analyse de
l’application. Les oracles sont en général basés sur deux stratégies de détection différentes
:

— détection par signature : avec la détection par signature, l’oracle prend sa décision
en comparant des informations comme la signature d’un fichier ou certains motifs
dans le code binaire de l’application avec un ensemble d’heuristiques et de règles
générées à partir de logiciels malveillant déjà étudiés auparavant.

— détection par machine learning : avec la détection par machine learning, les oracles
utilisent une base de données de malwares existants pour entrainer un classificateur

144

7.4 Limites des solutions existantes dans l’écosystème

Malgré les solutions mises en place, une étude récente a montré qu’au moins 10 000
malwares appartenant à 56 familles différentes ont été publié sur le Google Play Store
entre 2014 et 2018. De plus, les rapports de sécurité d’entreprises spécialisées montrent
que le nombre d’appareils Android infectés continu d’augmenter en 2020. En réalité, les
attaquants deviennent plus intelligents avec le temps et utilisent des techniques de plus
en plus sophistiquées pour vaincre les défenses mises en place par tous les acteurs de
l’écosystème Android.

Pour vaincre les méthodes d’analyse statique, les attaquants utilisent des techniques
d’évasion avancées telles que le chargement dynamique de code, l’utilisation de la reflection
ou encore le chiffrement de bytecode pour cacher le code malveillant dans l’application
et le rendre inatteignable pour les programmes d’analyse statique. Concernant l’analyse
dynamique, les systèmes de détections exécutent souvent les applications dans des ma-
chines virtuelles plutôt que sur des vrais appareils pour permettre l’analyse d’applications
à grande échelle. Cependant, Petsas et al. [28] ont montré que les malwares sont en mesure
de détecter lorsqu’ils sont exécutés dans un environnement virtuel. Pour vaincre la dé-
tection par signature, les attaquants utilisent le polymorphisme et différentes techniques
d’offuscation qui permettent de changer complètement la structure du code d’une appli-
cation sans affecter sa sémantique. Cela permet à l’attaquant de rapidement créer des
variantes d’un malware avec une signature jamais vue auparavant. Le machine learning
(ML) est massivement adopté pour essayer de contrer ce phénomène. Cependant, les ré-
centes avancées à propos de la détection de malwares par machine learning sont sujettes
à plusieurs limitations, que nous résumons ci-dessous.

Limites des solutions actuelles. Bien qu’il s’agisse d’une première étape vers une
amélioration de la détection, la plupart des études utilisant le machine learning négligent
l’affinage des algorithmes d’apprentissage. Les performances des classificateurs dépen-
dent de plusieurs aspects : l’algorithme d’apprentissage utilisé, les paramètres (hyper-
paramètres) utilisés pour configurer l’algorithme et la recherche de features. Jusqu’à
maintenant, seuls quelques essais ont été mené pour tenter d’optimiser les approches de
détection de malwares basées sur du machine learning. Les évaluations de ces approches
sont pour la plupart effectuées empiriquement, avec un processus manuel en utilisant peu
de combinaisons d’hyper-paramètres ou celles par défaut. De plus, les features extraites
par les approches proposées ne permettent pas de tenir compte des techniques d’évasion

145

récemment employées par les malwares telles que le chargement dynamique de code ou le
chiffrement de bytecode.

Limites des datasets de malwares publics. Des études récentes ont démontré que
les modèles existants de classification basés sur le machine learning peuvent être vaincu
par des malwares spécifiquement conçus dans ce but. Ces études pointent du doigt que
les datasets de malwares employés pour entrainer les classificateurs ne sont pas assez
hétérogènes et manquent d’échantillons de malwares diversifiés. Pour entrainer un clas-
sificateur fiable, les datasets de malware doivent contenir une large variété d’échantillons
qui permettront au modèle de mieux généraliser le problème et de détecter plus de cas
particuliers. Spécifiquement, les datasets de malwares existants manquent d’échantillons
qui utilisent des techniques d’évasion avancées comme le chargement dynamique de code
ou le chiffrement de bytecode.

Limites des méthodes de vérification des échantillons de malwares. La création
de datasets de vérité de terrain de qualité est une étape fondamentale pour implémenter
et évaluer de nouvelles méthodes de détection de malwares. L’efficacité d’un système de
détection est directement lié avec la qualité du dataset utilisé pour entrainer et tester
celui-ci. Cependant, la qualité du dataset de vérité de terrain peu être limitée part (i)
des échantillons mal labellisés, c’est-à-dire des échantillons légitimes labellisés comme
malveillants ou vice versa, et (ii) les échantillons non réalistes, c’est-à-dire dépassés et/ou
non-fonctionnels.

La grande majorité des approches basées sur le machine learning se fient aux agréga-
teurs d’antivirus pour déterminer si une application est légitime ou malveillante et ainsi
construire un dataset d’entrainement. Les agrégateurs d’antivirus, comme VirusTotal
sont des plateformes en ligne qui exécutent les produits de multiples entreprises de sécu-
rité pour examiner les fichiers téléversés par les utilisateurs. Toutefois, il a été suggéré
que ces agrégateurs pourraient introduire un biais dans les datasets conçus avec cette
méthode, en raison de résultats d’analyse erronés. En effet, pour des raisons techniques et
commerciales, les entreprises de sécurité pourraient fournir à l’aggrégateur une version re-
streinte de leur produit. Cela pourrait artificiellement réduire la précision des agrégateurs
comparé à ce qu’il serait possible d’obtenir avec des produits complets.

Les systèmes de détection de malwares actuels dans l’écosystème actuel ont du mal
à lutter contre des gens mal-intentionnés de plus en plus intelligents. D’une part, les

146

solutions traditionnelles qui utilisent la détection par signature ne parviennent pas à effi-
cacement détecter les nouvelles variantes de malwares générées à un rythme élevé par les
attaquants. D’autre part, les approches basées sur le machine learning se retrouvent face
à des problèmes inhérent du domaine : les modèles doivent constamment être ré-entrainés
et optimisés pour être en mesure de continuer à détecter de nouveaux échantillons malveil-
lants. Par ailleurs, le manque de données valides de qualité pour entrainer les modèles
empêchent d’obtenir des modèles robustes et efficace.

7.5 Contribution de la thèse

Des efforts supplémentaire sont requis pour résoudre les problèmes susmentionnés.
Pour contribuer aux efforts de la communauté de recherche, nous proposons les contribu-
tions suivantes :

Automatiser l’évaluation des systèmes de détections basés sur le machine
learning. D’abord, nous proposons DroidAutoML, une plateforme basée sur une
architecture microservice qui automatise l’évaluation de systèmes de détection de mal-
wares sur Android. DroidAutoML résout automatiquement le problème de sélection
de l’algorithme d’apprentissage ainsi que l’optimisation des hyper-paramètres en faisant
effet de levier sur AutoML pour améliorer la précision des systèmes de détection évalués.
DroidAutoML est construit sur une architecture microservice dédiée, spécifiquement
conçue pour répondre aux besoins de générécité et de flexibilité requis par le domaine de
la détection de malwares sur Android.

Un nouvel ensemble de features pour améliorer la détection. Pour améliorer la
précision de détection des systèmes basé sur le machine learning, nous proposons Groom.
Groom est un framework qui utilise l’analyse statique pour améliorer sensiblement la
qualité des features extraites d’une application, tout en étant plus rapide que les ap-
proches existantes. En particulier, Groom extrait des features spécifiques qui permettent
au systèmes de détection de capturer des malwares qui utilisent des techniques d’évasion
récentes comme l’exécution de code natif, ou le chargement dynamique de code.

Vers une diversification massive des datasets de malwares expérimentaux.
Nous proposons KillerDroid, une chaîne d’outils qui permet de fabriquer des vari-

147

antes de malwares qui utilisent des techniques d’évasion avancées dans le but de créer des
échantillons pour diversifier massivement les datasets expérimentaux existants. Killer-
Droid peut générer des variantes à grande échelle, ce qui permet d’évaluer la robustesse
des solutions de détection, venant à la fois du milieu académique et de l’industrie, contre
les attaques adversariales.

Améliorer la qualité des datasets de malware sur Android. Enfin, nous pro-
posons deux approches dans le but d’améliorer globalement la qualité des datasets ex-
périmentaux utilisés pour entrainer et tester les systèmes de détection

D’abord, nous proposons KillerTotal, une nouvelle approche pour évaluer indi-
viduellement les versions mobiles publiques des 7 antivirus Android les plus efficaces
disponibles sur le Google Play Store. KillerTotal a pour objectif de montrer que les
versions mobiles de ces antivirus sont plus précises et plus efficaces que les versions exé-
cutées par les agrégateurs comme VirusTotal. Notre système fourni un déploiement à
large échelle basé sur l’émulation d’Android dans une machine virtuelle pour automatiser
l’initialisation et l’exécution des applications mobile des antivirus évalués.

Ensuite, nous proposons KillerScreenshot, un framework qui permet de certi-
fier que les variantes de malwares produits synthétiquement par des frameworks comme
KillerDroid sont fonctionnels. KillerScreenshot vérifie dynamiquement que le com-
portement d’une variante de malware fabriqué est cohérent avec le comportement du mal-
ware original utilisé pour le fabriquer en comparant l’activité à l’écran des deux échantil-
lons.

148

Bibliography

[1] Android vs iOS over the past 10 years, https://mybroadband.co.za/news/
software/364290-android-vs-ios-over-the-past-10-years.html, (Accessed
on 09/11/2020).

[2] There are now 2.5 billion active Android devices - The Verge, https://www.
theverge.com/2019/5/7/18528297/google-io-2019-android-devices-play-
store-total-number-statistic-keynote, (Accessed on 09/11/2020).

[3] Apple says there are 1.4 billion active Apple devices - The Verge, https://www.
theverge.com/2019/1/29/18202736/apple-devices-ios-earnings-q1-2019,
(Accessed on 09/11/2020).

[4] Google Play Store: number of apps | Statista, https : / / www . statista . com /
statistics/266210/number-of-available-applications-in-the-google-
play-store/, (Accessed on 09/11/2020).

[5] • Number of apps from the Apple App Store 2020 | Statista, https : / / www .
statista.com/statistics/268251/number-of-apps-in-the-itunes-app-
store-since-2008/, (Accessed on 09/11/2020).

[6] Nokia, Nokia Threat Intelligence Report 2019, https : / / pages . nokia . com /
T003B6-Threat-Intelligence-Report-2019.html, (Accessed on 07/29/2020).

[7] Yajin Zhou and Xuxian Jiang, « Dissecting android malware: Characterization
and evolution », in: 2012 IEEE symposium on security and privacy, IEEE, 2012,
pp. 95–109.

[8] New ’unremovable’ xHelper malware has infected 45,000 Android devices | ZDNet,
https://www.zdnet.com/article/new-unremovable-xhelper-malware-has-
infected-45000-android-devices/, (Accessed on 09/10/2020).

[9] This nasty new Android ransomware encrypts your phone – and changes your
PIN | ZDNet, https://www.zdnet.com/article/this-nasty-new-android-
ransomware- encrypts- your- phone- and- changes- your- pin/, (Accessed on
09/10/2020).

149

https://mybroadband.co.za/news/software/364290-android-vs-ios-over-the-past-10-years.html
https://mybroadband.co.za/news/software/364290-android-vs-ios-over-the-past-10-years.html
https://www.theverge.com/2019/5/7/18528297/google-io-2019-android-devices-play-store-total-number-statistic-keynote
https://www.theverge.com/2019/5/7/18528297/google-io-2019-android-devices-play-store-total-number-statistic-keynote
https://www.theverge.com/2019/5/7/18528297/google-io-2019-android-devices-play-store-total-number-statistic-keynote
https://www.theverge.com/2019/1/29/18202736/apple-devices-ios-earnings-q1-2019
https://www.theverge.com/2019/1/29/18202736/apple-devices-ios-earnings-q1-2019
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/268251/number-of-apps-in-the-itunes-app-store-since-2008/
https://www.statista.com/statistics/268251/number-of-apps-in-the-itunes-app-store-since-2008/
https://www.statista.com/statistics/268251/number-of-apps-in-the-itunes-app-store-since-2008/
https://pages.nokia.com/T003B6-Threat-Intelligence-Report-2019.html
https://pages.nokia.com/T003B6-Threat-Intelligence-Report-2019.html
https://www.zdnet.com/article/new-unremovable-xhelper-malware-has-infected-45000-android-devices/
https://www.zdnet.com/article/new-unremovable-xhelper-malware-has-infected-45000-android-devices/
https://www.zdnet.com/article/this-nasty-new-android-ransomware-encrypts-your-phone-and-changes-your-pin/
https://www.zdnet.com/article/this-nasty-new-android-ransomware-encrypts-your-phone-and-changes-your-pin/

[10] EventBot: A New Mobile Banking Trojan is Born, https://www.cybereason.
com/blog/eventbot-a-new-mobile-banking-trojan-is-born, (Accessed on
09/10/2020).

[11] ExpensiveWall: A dangerous ’packed’ malware on Google Play, https://blog.
checkpoint.com/2017/09/14/expensivewall-dangerous-packed-malware-
google-play-will-hit-wallet/, (Accessed on 09/10/2020).

[12] Application Sandbox |Android Open Source Project, https://source.android.
com/security/app-sandbox, (Accessed on 09/10/2020).

[13] Security-Enhanced Linux in Android | Android Open Source Project, https://
source.android.com/security/selinux, (Accessed on 09/06/2020).

[14] Verified boot | Android Open Source Project, https://source.android.com/
security/verifiedboot, (Accessed on 09/10/2020).

[15] Android 6.0 Changes Android Developers, https://developer.android.com/
about/versions/marshmallow/android-6.0-changes, (Accessed on 08/21/2020).

[16] The number of mobile malware attacks doubles in 2018, as cybercriminals sharpen
their distribution strategies | Kaspersky, https://www.kaspersky.com/about/
press-releases/2019_the-number-of-mobile-malware-attacks-doubles-
in- 2018- as- cybercriminals- sharpen- their- distribution - strategies,
(Accessed on 08/22/2020).

[17] Android app reviews may slow to over a week due to COVID-19 impacts, Google
warns developers | TechCrunch, https://techcrunch.com/2020/03/17/android-
app - reviews - may - slow - to - over - a - week - due - to - covid - 19 - impacts -
google-warns-developers/, (Accessed on 08/22/2020).

[18] Android – Google Play Protect, https://www.android.com/play- protect/,
(Accessed on 08/22/2020).

[19] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini, « MaMaDroid: Detecting Android
Malware by Building Markov Chains of Behavioral Models », in: Proceedings 2017
Network and Distributed System Security Symposium, Internet Society, 2017, url:
https : / / www . ndss - symposium . org / ndss2017 / ndss - 2017 - programme /
mamadroid-detecting-android-malware-building-markov-chains-behavioral-
models/.

150

https://www.cybereason.com/blog/eventbot-a-new-mobile-banking-trojan-is-born
https://www.cybereason.com/blog/eventbot-a-new-mobile-banking-trojan-is-born
https://blog.checkpoint.com/2017/09/14/expensivewall-dangerous-packed-malware-google-play-will-hit-wallet/
https://blog.checkpoint.com/2017/09/14/expensivewall-dangerous-packed-malware-google-play-will-hit-wallet/
https://blog.checkpoint.com/2017/09/14/expensivewall-dangerous-packed-malware-google-play-will-hit-wallet/
https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox
https://source.android.com/security/selinux
https://source.android.com/security/selinux
https://source.android.com/security/verifiedboot
https://source.android.com/security/verifiedboot
https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://www.kaspersky.com/about/press-releases/2019_the-number-of-mobile-malware-attacks-doubles-in-2018-as-cybercriminals-sharpen-their-distribution-strategies
https://www.kaspersky.com/about/press-releases/2019_the-number-of-mobile-malware-attacks-doubles-in-2018-as-cybercriminals-sharpen-their-distribution-strategies
https://www.kaspersky.com/about/press-releases/2019_the-number-of-mobile-malware-attacks-doubles-in-2018-as-cybercriminals-sharpen-their-distribution-strategies
https://techcrunch.com/2020/03/17/android-app-reviews-may-slow-to-over-a-week-due-to-covid-19-impacts-google-warns-developers/
https://techcrunch.com/2020/03/17/android-app-reviews-may-slow-to-over-a-week-due-to-covid-19-impacts-google-warns-developers/
https://techcrunch.com/2020/03/17/android-app-reviews-may-slow-to-over-a-week-due-to-covid-19-impacts-google-warns-developers/
https://www.android.com/play-protect/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/mamadroid-detecting-android-malware-building-markov-chains-behavioral-models/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/mamadroid-detecting-android-malware-building-markov-chains-behavioral-models/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/mamadroid-detecting-android-malware-building-markov-chains-behavioral-models/

[20] Yousra Aafer, Wenliang Du, and Heng Yin, « DroidAPIMiner: Mining API-Level
Features for Robust Malware Detection in Android », in: Security and Privacy
in Communication Networks, ed. by Tanveer Zia, Albert Zomaya, Vijay Varad-
harajan, and MorleyEditors Mao, Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, Springer Inter-
national Publishing, 2013, pp. 86–103.

[21] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad
Rieck, « Drebin: Effective and Explainable Detection of Android Malware in Your
Pocket », in: Internet Society, 2014, url: https : / / www . ndss - symposium .
org/ndss2014/programme/drebin-effective-and-explainable-detection-
android-malware-your-pocket/.

[22] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel Arp, Kon-
rad Rieck, Igino Corona, Giorgio Giacinto, and Fabio Roli, « Yes, Machine Learn-
ing Can Be More Secure! A Case Study on Android Malware Detection », in:
arXiv:1704.08996 [cs] (Apr. 2017), url: http://arxiv.org/abs/1704.08996.

[23] Haoyu Wang, Junjun Si, Hao Li, and Yao Guo, « Rmvdroid: towards a reliable
android malware dataset with app metadata », in: 2019 IEEE/ACM 16th Interna-
tional Conference on Mining Software Repositories (MSR), IEEE, 2019, pp. 404–
408.

[24] App Annie State of Mobile 2020 Report - App Annie, https://www.appannie.
com/en/go/state-of-mobile-2020/, (Accessed on 08/20/2020).

[25] Mohannad Alhanahnah, Qiben Yan, Hamid Bagheri, Hao Zhou, Yutaka Tsutano,
Witawas Srisa-an, and Xiapu Luo, « Detecting Vulnerable Android Inter-App Com-
munication in Dynamically Loaded Code », in: Conference on Computer Commu-
nications (INFOCOM), 2019.

[26] Davy Landman, Alexander Serebrenik, and Jurgen J Vinju, « Challenges for static
analysis of java reflection-literature review and empirical study », in: International
Conference on Software Engineering (ICSE), IEEE, 2017.

[27] Babak Bashari Rad, Maslin Masrom, and Suhaimi Ibrahim, « Camouflage in mal-
ware: from encryption to metamorphism », in: International Journal of Computer
Science and Network Security 12.8 (2012), pp. 74–83.

151

https://www.ndss-symposium.org/ndss2014/programme/drebin-effective-and-explainable-detection-android-malware-your-pocket/
https://www.ndss-symposium.org/ndss2014/programme/drebin-effective-and-explainable-detection-android-malware-your-pocket/
https://www.ndss-symposium.org/ndss2014/programme/drebin-effective-and-explainable-detection-android-malware-your-pocket/
http://arxiv.org/abs/1704.08996
https://www.appannie.com/en/go/state-of-mobile-2020/
https://www.appannie.com/en/go/state-of-mobile-2020/

[28] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis,
and Sotiris Ioannidis, « Rage Against the Virtual Machine: Hindering Dynamic
Analysis of Android Malware », in: Proceedings of the Seventh European Workshop
on System Security, 2014.

[29] Jinho Jung, Chanil Jeon, Max Wolotsky, Insu Yun, and Taesoo Kim, « AVPASS:
Leaking and Bypassing Antivirus Detection Model Automatically », in: Black Hat
USA Briefings (Black Hat USA), Las Vegas, NV (2017).

[30] Justin Sahs and Latifur Khan, « A machine learning approach to android malware
detection », in: 2012 European Intelligence and Security Informatics Conference,
IEEE, 2012, pp. 141–147.

[31] Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ahmadi, Johannes Kinder,
Giorgio Giacinto, and Lorenzo Cavallaro, « Droidsieve: Fast and accurate classifi-
cation of obfuscated android malware », in: Proceedings of the Seventh ACM on
Conference on Data and Application Security and Privacy, 2017, pp. 309–320.

[32] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss, « “An-
dromaly”: a behavioral malware detection framework for android devices », in:
Journal of Intelligent Information Systems (2012).

[33] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and K. Ren,
« Android HIV: A Study of Repackaging Malware for Evading Machine-Learning
Detection », in: IEEE Transactions on Information Forensics and Security (2019),
pp. 1–1.

[34] Hung Dang, Yue Huang, and Ee-Chien Chang, « Evading classifiers by morphing
in the dark », in: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017, pp. 119–133.

[35] Roberto Jordaney, Kumar Sharad, Santanu K. Dash, Zhi Wang, Davide Papini, Ilia
Nouretdinov, and Lorenzo Cavallaro, « Transcend: Detecting Concept Drift in Mal-
ware Classification Models », in: 2017, pp. 625–642, url: https://www.usenix.
org / conference / usenixsecurity17 / technical - sessions / presentation /
jordaney.

[36] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, Akinori Ihara,
and Kenichi Matsumoto, « The impact of mislabelling on the performance and

152

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney

interpretation of defect prediction models », in: 2015 IEEE/ACM 37th IEEE In-
ternational Conference on Software Engineering, vol. 1, IEEE, 2015, pp. 812–823.

[37] Mahmoud Hammad, Joshua Garcia, and Sam Malek, « A Large-scale Empirical
Study on the Effects of Code Obfuscations on Android Apps and Anti-malware
Products », in: Proceedings of the 40th International Conference on Software En-
gineering, ICSE ’18, ACM, 2018, pp. 421–431, url: http://doi.acm.org/10.
1145/3180155.3180228.

[38] Mourad Leslous, Val é rie Viet Triem Tong, Jean-Fran ç ois Lalande, and Thomas
Genet, « GPFinder: Tracking the invisible in Android malware », in: International
Conference on Malicious and Unwanted Software (MALWARE), IEEE, 2017.

[39] « TESSERACT: Eliminating Experimental Bias in Malware Classification across
Space and Time », in: 2019, url: https : / / www . usenix . org / conference /
usenixsecurity19/presentation/pendlebury.

[40] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou, « Deep
ground truth analysis of current android malware », in: International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, Springer,
2017, pp. 252–276.

[41] J. Chen, C. Wang, Z. Zhao, K. Chen, R. Du, and G. Ahn, « Uncovering the Face
of Android Ransomware: Characterization and Real-Time Detection », in: IEEE
Transactions on Information Forensics and Security 13.5 (May 2018), pp. 1286–
1300.

[42] VirusTotal, https://www.virustotal.com, (Accessed on 08/10/2020).

[43] Aleieldin Salem, Sebastian Banescu, and Alexander Pretschner, « Maat: Automat-
ically Analyzing VirusTotal for Accurate Labeling and Effective Malware Detec-
tion », in: arXiv e-prints (2020), arXiv–2007.

[44] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden, « DroidForce: Enforcing Complex,
Data-centric, System-wide Policies in Android », in: 2014 Ninth International Con-
ference on Availability, Reliability and Security, Sept. 2014, pp. 40–49.

[45] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and
Sebastian Weisgerber, « On Demystifying the Android Application Framework:
Re-Visiting Android Permission Specification Analysis », in: 2016, pp. 1101–1118,

153

http://doi.acm.org/10.1145/3180155.3180228
http://doi.acm.org/10.1145/3180155.3180228
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.virustotal.com

url: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/backes_android.

[46] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie, « Pscout: analyzing
the android permission specification », in: Proceedings of the 2012 ACM conference
on Computer and communications security, 2012, pp. 217–228.

[47] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang, « CHEX: Stat-
ically Vetting Android Apps for Component Hijacking Vulnerabilities », in: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS ’12, ACM, 2012, pp. 229–240, url: http://doi.acm.org/10.1145/2382196.
2382223.

[48] Mengtao Sun and Gang Tan, « NativeGuard: protecting android applications from
third-party native libraries », in: ACM Press, 2014, pp. 165–176, url: http://
dl.acm.org/citation.cfm?doid=2627393.2627396.

[49] Joel Reardon, Á lvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo
Vallina-Rodriguez, and Serge Egelman, « 50 ways to leak your data: An explo-
ration of apps’ circumvention of the android permissions system », in: USENIX
Security 19), 2019, pp. 603–620.

[50] Michael C. Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang, « Systematic Detec-
tion of Capability Leaks in Stock Android Smartphones », in: NDSS, 2012.

[51] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel, « Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps », in: Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’14, ACM,
2014, pp. 259–269, url: http://doi.acm.org/10.1145/2594291.2594299.

[52] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,
Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth, « Taint-
Droid: An Information-Flow Tracking System for Realtime Privacy Monitoring on
Smartphones », in: ACM Trans. Comput. Syst. 32.2 (June 2014), 5:1–5:29, url:
http://doi.acm.org/10.1145/2619091.

154

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/backes_android
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/backes_android
http://doi.acm.org/10.1145/2382196.2382223
http://doi.acm.org/10.1145/2382196.2382223
http://dl.acm.org/citation.cfm?doid=2627393.2627396
http://dl.acm.org/citation.cfm?doid=2627393.2627396
http://doi.acm.org/10.1145/2594291.2594299
http://doi.acm.org/10.1145/2619091

[53] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel, « IccTA: Detecting Inter-component Privacy Leaks in Android Apps »,
in: Proceedings of the 37th International Conference on Software Engineering -
Volume 1, ICSE ’15, IEEE Press, 2015, pp. 280–291, isbn: 978-1-4799-1934-5.

[54] Exodus Privacy, https://exodus-privacy.eu.org/en/, (Accessed on 08/02/2020).

[55] Mohannad Alhanahnah, Qiben Yan, Hamid Bagheri, Hao Zhou, Yutaka Tsutano,
Witawas Srisa-an, and Xiapu Luo, « Detecting Vulnerable Android Inter-App Com-
munication in Dynamically Loaded Code », in: IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, IEEE, Apr. 2019, pp. 550–558, url:
https://ieeexplore.ieee.org/document/8737637/.

[56] Youn Kyu Lee, Peera Yoodee, Arman Shahbazian, Daye Nam, and Nenad Med-
vidovic, « SEALANT: A Detection and Visualization Tool for Inter-app Security
Vulnerabilities in Android », in: Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, IEEE Press, 2017,
pp. 883–888, url: http://dl.acm.org/citation.cfm?id=3155562.3155672.

[57] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon, « Effective Inter-component Communication
Mapping in Android with Epicc: An Essential Step Towards Holistic Security Anal-
ysis », in: 22nd USENIX Security Symposium - (USENIX Security 2013), SEC’13,
USENIX Association, 2013, pp. 543–558, url: http://dl.acm.org/citation.
cfm?id=2534766.2534813.

[58] Roee Hay, Omer Tripp, and Marco Pistoia, « Dynamic detection of inter-application
communication vulnerabilities in Android », in: Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis, 2015, pp. 118–128.

[59] Intent | Android Developers, https://developer.android.com/reference/
android/content/Intent, (Accessed on 09/13/2020).

[60] Sven Bugiel, Stephen Heuser, and Ahmad-Reza Sadeghi, « Flexible and Fine-
grained Mandatory Access Control on Android for Diverse Security and Privacy
Policies », in: 2013, pp. 131–146, url: https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/presentation/bugiel.

155

https://exodus-privacy.eu.org/en/
https://ieeexplore.ieee.org/document/8737637/
http://dl.acm.org/citation.cfm?id=3155562.3155672
http://dl.acm.org/citation.cfm?id=2534766.2534813
http://dl.acm.org/citation.cfm?id=2534766.2534813
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel

[61] Yiming Jing, Gail-Joon Ahn, Adam Doupé, and Jeong Hyun Yi, « Checking Intent-
based Communication in Android with Intent Space Analysis », in: ACM Press,
2016, pp. 735–746, url: http://dl.acm.org/citation.cfm?doid=2897845.
2897904.

[62] Mu Zhang and Heng Yin, « AppSealer: Automatic Generation of Vulnerability-
Specific Patches for Preventing Component Hijacking Attacks in Android Applica-
tions », in: Proceedings 2014 Network and Distributed System Security Symposium,
Internet Society, 2014, url: https://www.ndss- symposium.org/ndss2014/
programme / appsealer - automatic - generation - vulnerability - specific -
patches-preventing-component-hijacking/.

[63] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von
Styp-Rekowsky, « Boxify: Full-fledged app sandboxing for stock android », in: 24th
USENIX Security Symposium - (USENIX Security 2015), 2015, pp. 691–706.

[64] Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, and Giovanni Vigna,
« NJAS: Sandboxing Unmodified Applications in Non-rooted Devices Running
Stock Android », in: Proceedings of the 5th Annual ACM CCS Workshop on Se-
curity and Privacy in Smartphones and Mobile Devices, SPSM ’15, ACM, 2015,
pp. 27–38, url: http://doi.acm.org/10.1145/2808117.2808122.

[65] Jing Yu and Toshihiro Yamauchi, « Access control to prevent attacks exploit-
ing vulnerabilities of webview in android OS », in: 2013 IEEE 10th International
Conference on High Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Computing, IEEE, 2013,
pp. 1628–1633.

[66] Guliz Seray Tuncay, Soteris Demetriou, and Carl A Gunter, « Draco: A system for
uniform and fine-grained access control for web code on android », in: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
2016, pp. 104–115.

[67] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy,
« Privilege escalation attacks on android », in: international conference on Infor-
mation security, Springer, 2010, pp. 346–360.

156

http://dl.acm.org/citation.cfm?doid=2897845.2897904
http://dl.acm.org/citation.cfm?doid=2897845.2897904
https://www.ndss-symposium.org/ndss2014/programme/appsealer-automatic-generation-vulnerability-specific-patches-preventing-component-hijacking/
https://www.ndss-symposium.org/ndss2014/programme/appsealer-automatic-generation-vulnerability-specific-patches-preventing-component-hijacking/
https://www.ndss-symposium.org/ndss2014/programme/appsealer-automatic-generation-vulnerability-specific-patches-preventing-component-hijacking/
http://doi.acm.org/10.1145/2808117.2808122

[68] Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, and XiaoFeng Wang, « Upgrading
your android, elevating my malware: Privilege escalation through mobile os updat-
ing », in: 2014 IEEE Symposium on Security and Privacy, IEEE, 2014, pp. 393–
408.

[69] Erika Chin and David Wagner, « Bifocals: Analyzing WebView Vulnerabilities in
Android Applications », in: Information Security Applications, Springer, Cham,
Aug. 2013, pp. 138–159, url: https://link.springer.com/chapter/10.1007/
978-3-319-05149-9_9.

[70] Security-Enhanced Linux in Android Android Open Source Project, https : / /
source.android.com/security/selinux, (Accessed on 08/23/2020).

[71] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin, « Attacks on
WebView in the Android system », in: Proceedings of the 27th Annual Computer
Security Applications Conference, 2011, pp. 343–352.

[72] AB Bhavani, « Cross-site scripting attacks on android webview », in: arXiv preprint
arXiv:1304.7451 (2013).

[73] 2011 Mobile Threats Report, https://www.juniper.net/us/en/local/pdf/
additional-resources/jnpr-2011-mobile-threats-report.pdf, (Accessed
on 08/23/2020).

[74] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning, « Detecting repackaged
smartphone applications in third-party android marketplaces », in: Proceedings of
the second ACM conference on Data and Application Security and Privacy, 2012,
pp. 317–326.

[75] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou, « Fast,
scalable detection of" Piggybacked" mobile applications », in: Proceedings of the
third ACM conference on Data and application security and privacy, 2013, pp. 185–
196.

[76] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,
Xiao-yong Zhou, and XiaoFeng Wang, « Effective and efficient malware detection
at the end host. », in: USENIX security symposium, vol. 4, 1, 2009, pp. 351–366.

157

https://link.springer.com/chapter/10.1007/978-3-319-05149-9_9
https://link.springer.com/chapter/10.1007/978-3-319-05149-9_9
https://source.android.com/security/selinux
https://source.android.com/security/selinux
https://www.juniper.net/us/en/local/pdf/additional-resources/jnpr-2011-mobile-threats-report.pdf
https://www.juniper.net/us/en/local/pdf/additional-resources/jnpr-2011-mobile-threats-report.pdf

[77] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning, « Detecting Repackaged
Smartphone Applications in Third-party Android Marketplaces », in: Proceedings
of the Second ACM Conference on Data and Application Security and Privacy,
CODASPY ’12, ACM, 2012, pp. 317–326, isbn: 978-1-4503-1091-8, doi: 10.1145/
2133601.2133640.

[78] Keehyung Kim and Byung-Ro Moon, « Malware detection based on dependency
graph using hybrid genetic algorithm », in: Proceedings of the 12th annual confer-
ence on Genetic and evolutionary computation, 2010, pp. 1211–1218.

[79] Ilsun You and Kangbin Yim, « Malware obfuscation techniques: A brief survey »,
in: 2010 International conference on broadband, wireless computing, communica-
tion and applications, IEEE, 2010, pp. 297–300.

[80] Naser Peiravian and Xingquan Zhu, « Machine learning for android malware detec-
tion using permission and api calls », in: 2013 IEEE 25th international conference
on tools with artificial intelligence, IEEE, 2013, pp. 300–305.

[81] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, « MADAM: Effective and
Efficient Behavior-based Android Malware Detection and Prevention », in: IEEE
Transactions on Dependable and Secure Computing 15.1 (Jan. 2018), pp. 83–97.

[82] Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer, « MAR-
VIN: Efficient and Comprehensive Mobile App Classification through Static and
Dynamic Analysis », in: 2015 IEEE 39th Annual Computer Software and Applica-
tions Conference, IEEE, July 2015, pp. 422–433, url: http://ieeexplore.ieee.
org/document/7273650/.

[83] Andrea Saracino, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli, « Madam:
Effective and efficient behavior-based android malware detection and prevention »,
in: Transactions on Dependable and Secure Computing (2016).

[84] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio Gi-
acinto, Claudia Eckert, and Fabio Roli, « Adversarial malware binaries: Evading
deep learning for malware detection in executables », in: 2018 26th European Signal
Processing Conference (EUSIPCO), IEEE, 2018, pp. 533–537.

[85] Yuping Li, Jiyong Jang, Xin Hu, and Xinming Ou, « Android malware clustering
through malicious payload mining », in: International Symposium on Research in
Attacks, Intrusions, and Defenses, Springer, 2017, pp. 192–214.

158

https://doi.org/10.1145/2133601.2133640
https://doi.org/10.1145/2133601.2133640
http://ieeexplore.ieee.org/document/7273650/
http://ieeexplore.ieee.org/document/7273650/

[86] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto,
« Stealth attacks: An extended insight into the obfuscation effects on android mal-
ware », in: Computers & Security 51 (2015), pp. 16–31.

[87] Java Obfuscator and Android App Optimizer | ProGuard, https://www.guardsquare.
com/en/products/proguard, (Accessed on 09/13/2020).

[88] Contagio dataset, http://contagiodump.blogspot.com/, (Accessed on 09/12/2019).

[89] Darell JJ Tan, Tong-Wei Chua, and Vrizlynn LL Thing, « Securing android: a
survey, taxonomy, and challenges », in: ACM Computing Surveys (CSUR) 47.4
(2015), pp. 1–45.

[90] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D Joseph, Benjamin
IP Rubinstein, Udam Saini, Charles A Sutton, J Doug Tygar, and Kai Xia, « Ex-
ploiting Machine Learning to Subvert Your Spam Filter. », in: LEET 8 (2008),
pp. 1–9.

[91] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing-
hon Lau, Satish Rao, Nina Taft, and J Doug Tygar, « Antidote: understanding
and defending against poisoning of anomaly detectors », in: Proceedings of the 9th
ACM SIGCOMM conference on Internet measurement, 2009, pp. 1–14.

[92] Battista Biggio, Blaine Nelson, and Pavel Laskov, « Poisoning attacks against sup-
port vector machines », in: arXiv preprint arXiv:1206.6389 (2012).

[93] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Š rndi ć,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli, « Evasion attacks against machine
learning at test time », in: Joint European conference on machine learning and
knowledge discovery in databases, Springer, 2013, pp. 387–402.

[94] Ricardo N Rodrigues, Lee Luan Ling, and Venu Govindaraju, « Robustness of
multimodal biometric fusion methods against spoof attacks », in: Journal of Visual
Languages & Computing 20.3 (2009), pp. 169–179.

[95] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and
Fabio Roli, « Is feature selection secure against training data poisoning? », in:
International Conference on Machine Learning, 2015, pp. 1689–1698.

[96] Juan Zheng, Zhimin He, and Zhe Lin, « Hybrid adversarial sample crafting for
black-box evasion attack », in: 2017 International Conference on Wavelet Analysis
and Pattern Recognition (ICWAPR), IEEE, 2017, pp. 236–242.

159

https://www.guardsquare.com/en/products/proguard
https://www.guardsquare.com/en/products/proguard
 http://contagiodump.blogspot.com/

[97] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy, « Explaining and har-
nessing adversarial examples », in: arXiv preprint arXiv:1412.6572 (2014).

[98] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song, « Delving into transferable
adversarial examples and black-box attacks », in: arXiv preprint arXiv:1611.02770
(2016).

[99] Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alexey
Kurakin, Ian Goodfellow, and Jascha Sohl-Dickstein, « Adversarial examples that
fool both computer vision and time-limited humans », in: Advances in Neural
Information Processing Systems, 2018, pp. 3910–3920.

[100] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick
McDaniel, « Adversarial Perturbations Against Deep Neural Networks for Malware
Classification », in: arXiv:1606.04435 [cs] (June 2016), url: http://arxiv.org/
abs/1606.04435.

[101] Weiwei Hu and Ying Tan, « Generating Adversarial Malware Examples for Black-
Box Attacks Based on GAN », in: arXiv:1702.05983 [cs] (Feb. 2017), url: http:
//arxiv.org/abs/1702.05983.

[102] W Xu, Y Qi, and D Evans, Automatically Evading Classifiers: A Case Study on
PDF Malware Classifiers. NDSS, 2016.

[103] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick
McDaniel, « Adversarial Examples for Malware Detection », in: Computer Secu-
rity – ESORICS 2017, ed. by Simon N. Foley, Dieter Gollmann, and EinarEditors
Snekkenes, Lecture Notes in Computer Science, Springer International Publishing,
2017, pp. 62–79.

[104] Yinxing Xue, Guozhu Meng, Yang Liu, Tian Huat Tan, Hongxu Chen, Jun Sun,
and Jie Zhang, « Auditing Anti-Malware Tools by Evolving Android Malware and
Dynamic Loading Technique », in: IEEE Transactions on Information Forensics
and Security 12.7 (July 2017), pp. 1529–1544, url: http://ieeexplore.ieee.
org/document/7837653/.

[105] Khaled Bakour, Halil Murat Ünver, and Razan Ghanem, « A Deep Camouflage:
Evaluating Android’s Anti-malware Systems Robustness Against Hybridization of
Obfuscation Techniques with Injection Attacks », in: Arabian Journal for Science

160

http://arxiv.org/abs/1606.04435
http://arxiv.org/abs/1606.04435
http://arxiv.org/abs/1702.05983
http://arxiv.org/abs/1702.05983
http://ieeexplore.ieee.org/document/7837653/
http://ieeexplore.ieee.org/document/7837653/

and Engineering (Aug. 2019), url: http : / / link . springer . com / 10 . 1007 /
s13369-019-04081-5.

[106] Wei Yang, Deguang Kong, Tao Xie, and Carl A. Gunter, « Malware Detection
in Adversarial Settings: Exploiting Feature Evolutions and Confusions in Android
Apps », in: Proceedings of the 33rd Annual Computer Security Applications Con-
ference, ACSAC 2017, ACM, 2017, pp. 288–302, url: http://doi.acm.org/10.
1145/3134600.3134642.

[107] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang, « DroidChameleon: evaluating
Android anti-malware against transformation attacks », in: Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and communications security
- ASIA CCS ’13, ACM Press, 2013, p. 329, url: http://dl.acm.org/citation.
cfm?doid=2484313.2484355.

[108] Keith Dillon, « Feature-level Malware Obfuscation in Deep Learning », in: arXiv
preprint arXiv:2002.05517 (2020).

[109] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro,
« Intriguing Properties of Adversarial ML Attacks in the Problem Space », in:
arXiv preprint arXiv:1911.02142 (2019).

[110] Guozhu Meng, Yinxing Xue, Chandramohan Mahinthan, Annamalai Narayanan,
Yang Liu, Jie Zhang, and Tieming Chen, « Mystique: Evolving Android Malware
for Auditing Anti-Malware Tools », in: Proceedings of the 11th ACM on Asia Con-
ference on Computer and Communications Security, ASIA CCS ’16, ACM, 2016,
pp. 365–376, url: http://doi.acm.org/10.1145/2897845.2897856.

[111] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck, « Structural
detection of android malware using embedded call graphs », in: Proceedings of the
2013 ACM workshop on Artificial intelligence and security, 2013, pp. 45–54.

[112] Kevin Allix, Tegawendé François D Assise Bissyande, Jacques Klein, and Yves
Le Traon, Machine Learning-Based Malware Detection for Android Applications:
History Matters!, tech. rep., University of Luxembourg, SnT, 2014.

[113] Joshua Garcia, Mahmoud Hammad, Bahman Pedrood, Ali Bagheri-Khaligh, and
Sam Malek, « Obfuscation-resilient, efficient, and accurate detection and family
identification of android malware », in: Department of Computer Science, George
Mason University, Tech. Rep 202 (2015).

161

http://link.springer.com/10.1007/s13369-019-04081-5
http://link.springer.com/10.1007/s13369-019-04081-5
http://doi.acm.org/10.1145/3134600.3134642
http://doi.acm.org/10.1145/3134600.3134642
http://dl.acm.org/citation.cfm?doid=2484313.2484355
http://dl.acm.org/citation.cfm?doid=2484313.2484355
http://doi.acm.org/10.1145/2897845.2897856

[114] Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster, « Scandroid: Automated
security certification of android applications », in: Manuscript, Univ. of Maryland,
http://www. cs. umd. edu/avik/projects/scandroidascaa 2.3 (2009).

[115] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard, « Information flow analysis of android applications in droid-
safe. », in: NDSS, vol. 15, 201, 2015, p. 110.

[116] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck,
« Appcontext: Differentiating malicious and benign mobile app behaviors using
context », in: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1, IEEE, 2015, pp. 303–313.

[117] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna, « Execute this! analyzing unsafe and malicious dynamic code
loading in android applications. », in: NDSS, vol. 14, 2014, pp. 23–26.

[118] Robert Podschwadt and Hassan Takabi, « On Effectiveness of Adversarial Exam-
ples and Defenses for Malware Classification », in: International Conference on
Security and Privacy in Communication Systems, Springer, 2019, pp. 380–393.

[119] Platform Architecture | Android Developers, https://developer.android.com/
guide/platform, (Accessed on 09/14/2020).

[120] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza
Sadeghi, and Bhargava Shastry, « Towards Taming Privilege-Escalation Attacks
on Android. », in: NDSS, vol. 17, 2012, p. 19.

[121] Jinseong Jeon, Kristopher K Micinski, Jeffrey A Vaughan, Ari Fogel, Nikhilesh
Reddy, Jeffrey S Foster, and Todd Millstein, « Dr. Android and Mr. Hide: fine-
grained permissions in android applications », in: Proceedings of the second ACM
workshop on Security and privacy in smartphones and mobile devices, 2012, pp. 3–
14.

[122] Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and Eric Bodden, « Droidforce: En-
forcing complex, data-centric, system-wide policies in android », in: International
Conference on Availability, Reliability and Security, 2014.

162

https://developer.android.com/guide/platform
https://developer.android.com/guide/platform

[123] Kevin Allix, Quentin Jerome, Tegawendé F. Bissyandé, Jacques Klein, Radu State,
and Yves Le Traon, « A Forensic Analysis of Android Malware – How is Malware
Written and How it Could Be Detected? », in: 2014 IEEE 38th Annual Computer
Software and Applications Conference, July 2014, pp. 384–393.

[124] ViewOverlay | Android Developers, https://developer.android.com/reference/
android/view/ViewOverlay, (Accessed on 09/22/2020).

[125] Nick Benton, « Simple relational correctness proofs for static analyses and program
transformations », in: ACM SIGPLAN Notices 39.1 (2004), pp. 14–25.

[126] Heila van der Merwe, Brink van der Merwe, and Willem Visser, « Verifying android
applications using Java PathFinder », in: ACM SIGSOFT Software Engineering
Notes 37.6 (2012), pp. 1–5.

[127] Eric Goubault and Sylvie Putot, « Robustness analysis of finite precision im-
plementations », in: Asian Symposium on Programming Languages and Systems,
Springer, 2013, pp. 50–57.

[128] Brian Chess and Gary McGraw, « Static analysis for security », in: IEEE security
& privacy 2.6 (2004), pp. 76–79.

[129] Guangdong Bai, Quanqi Ye, Yongzheng Wu, Heila Botha, Jun Sun, Yang Liu, Jin
Song Dong, and Willem Visser, « Towards model checking android applications »,
in: IEEE Transactions on Software Engineering 44.6 (2017), pp. 595–612.

[130] Abhijit Bose, Xin Hu, Kang G Shin, and Taejoon Park, « Behavioral detection of
malware on mobile handsets », in: Proceedings of the 6th international conference
on Mobile systems, applications, and services, 2008, pp. 225–238.

[131] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning,
X. Sean Wang, and Binyu Zang, « Vetting Undesirable Behaviors in Android Apps
with Permission Use Analysis », in: Proceedings of the 2013 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’13, ACM, 2013, pp. 611–
622, url: http://doi.acm.org/10.1145/2508859.2516689.

[132] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and G. Vigna,
« TriggerScope: Towards Detecting Logic Bombs in Android Applications », in:
2016 IEEE Symposium on Security and Privacy (SP), May 2016, pp. 377–396.

163

https://developer.android.com/reference/android/view/ViewOverlay
https://developer.android.com/reference/android/view/ViewOverlay
http://doi.acm.org/10.1145/2508859.2516689

[133] Michael Bierma, Eric Gustafson, Jeremy Erickson, David Fritz, and Yung Ryn
Choe, « Andlantis: Large-scale Android dynamic analysis », in: arXiv preprint
arXiv:1410.7751 (2014).

[134] Lok Kwong Yan and Heng Yin, « DroidScope: Seamlessly Reconstructing the OS
and Dalvik Semantic Views for Dynamic Android Malware Analysis », in: 2012,
pp. 569–584, url: https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/yan.

[135] Jonathan Crussell, Clint Gibler, and Hao Chen, « AnDarwin: Scalable Detection of
Semantically Similar Android Applications », in: Computer Security – ESORICS
2013, ed. by Jason Crampton, Sushil Jajodia, and KeithEditors Mayes, Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2013, pp. 182–199.

[136] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao
Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang, « Understanding Android Ob-
fuscation Techniques: A Large-Scale Investigation in theWild », in: arXiv:1801.01633
[cs] (Jan. 2018), url: http://arxiv.org/abs/1801.01633.

[137] Z. Qu, S. Alam, Y. Chen, X. Zhou, W. Hong, and R. Riley, « DyDroid: Measuring
Dynamic Code Loading and Its Security Implications in Android Applications »,
in: 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), June 2017, pp. 415–426.

[138] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang, « RiskRanker:
Scalable and Accurate Zero-day Android Malware Detection », in: Proceedings of
the 10th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’12, ACM, 2012, pp. 281–294, url: http://doi.acm.org/10.1145/
2307636.2307663.

[139] Jin-Young Kim, Seok-Jun Bu, and Sung-Bae Cho, « Zero-day malware detection
using transferred generative adversarial networks based on deep autoencoders », in:
Information Sciences 460–461 (Sept. 2018), pp. 83–102, url: https://linkinghub.
elsevier.com/retrieve/pii/S0020025518303475.

[140] apklab.io, https://www.apklab.io/, (Accessed on 08/23/2020).

[141] Matthew G Schultz, Eleazar Eskin, F Zadok, and Salvatore J Stolfo, « Data mining
methods for detection of new malicious executables », in: Proceedings 2001 IEEE
Symposium on Security and Privacy. S&P 2001, IEEE, 2000, pp. 38–49.

164

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/yan
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/yan
http://arxiv.org/abs/1801.01633
http://doi.acm.org/10.1145/2307636.2307663
http://doi.acm.org/10.1145/2307636.2307663
https://linkinghub.elsevier.com/retrieve/pii/S0020025518303475
https://linkinghub.elsevier.com/retrieve/pii/S0020025518303475
https://www.apklab.io/

[142] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz, « Automatic
analysis of malware behavior using machine learning », in: Journal of Computer
Security 19.4 (2011), pp. 639–668.

[143] Ivan Firdausi, Alva Erwin, Anto Satriyo Nugroho, et al., « Analysis of machine
learning techniques used in behavior-based malware detection », in: 2010 second
international conference on advances in computing, control, and telecommunication
technologies, IEEE, 2010, pp. 201–203.

[144] Philipp Probst, Bernd Bischl, and Anne-Laure Boulesteix, « Tunability: Impor-
tance of hyperparameters of machine learning algorithms », in: arXiv preprint
arXiv:1802.09596 (2018).

[145] Marc Claesen and Bart De Moor, « Hyperparameter search in machine learning »,
in: arXiv preprint arXiv:1502.02127 (2015).

[146] Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee, « Choos-
ing Multiple Parameters for Support Vector Machines », in: arXiv preprint arXiv:1502.02127
(2002).

[147] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl, « Algorithms
for Hyper-Parameter Optimization », in: Advances in Neural Information Process-
ing Systems (NIPS), 2011.

[148] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and
Frank Hutter, « Practical automated machine learning for the automl challenge
2018 », in: International Workshop on Automatic Machine Learning at ICML,
2018.

[149] Andrew Bedford, Sébastien Garvin, Josée Desharnais, Nadia Tawbi, Hana Ajakan,
Frédéric Audet, and Bernard Lebel, « Andrana: Quick and Accurate Malware De-
tection for Android », in: Foundations and Practice of Security, 2017.

[150] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar, « Hyperband: A novel bandit-based approach to hyperparameter optimiza-
tion », in: The Journal of Machine Learning Research (2017).

[151] Shih-Wei Lin, Kuo-Ching Ying, Shih-Chieh Chen, and Zne-Jung Lee, « Particle
swarm optimization for parameter determination and feature selection of support
vector machines », in: Expert systems with applications (2008).

165

[152] Jinn-Tsong Tsai, Jyh-Horng Chou, and Tung-Kuan Liu, « Tuning the structure
and parameters of a neural network by using hybrid Taguchi-genetic algorithm »,
in: Transactions on Neural Networks (2006).

[153] James Bergstra and Yoshua Bengio, « Random search for hyper-parameter opti-
mization », in: Journal of machine learning research (2012).

[154] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al., « Scikit-learn: Machine learning in Python », in: Journal of ma-
chine learning research (2011).

[155] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.,
« Tensorflow: A system for large-scale machine learning », in: Symposium on Op-
erating Systems Design and Implementation (OSDI), 2016.

[156] Edward G Coffman Jr, Michael R Garey, and David S Johnson, « An application
of bin-packing to multiprocessor scheduling », in: SIAM Journal on Computing 7.1
(1978), pp. 1–17.

[157] Nomad by HashiCorp, https://www.nomadproject.io/, (Accessed on 02/10/2020).

[158] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon, « Andro-
Zoo: collecting millions of Android apps for the research community », in: Working
Conference on Mining Software Repositories (MSR), 2016.

[159] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bach-
wani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu,
and et al., « Reviewer Integration and Performance Measurement for Malware De-
tection », in: 2016.

[160] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon, « Are
your training datasets yet relevant? », in: International Symposium on Engineering
Secure Software and Systems, 2015.

[161] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo
Cavallaro, « TESSERACT: Eliminating experimental bias in malware classification
across space and time », in: USENIX Security Symposium, 2019.

166

https://www.nomadproject.io/

[162] Anshul Arora and Sateesh K. Peddoju, « Minimizing Network Traffic Features for
Android Mobile Malware Detection », in: Proceedings of the 18th International
Conference on Distributed Computing and Networking - ICDCN ’17, ACM Press,
2017, pp. 1–10, url: http : / / dl . acm . org / citation . cfm ? doid = 3007748 .
3007763.

[163] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and Dawn Song,
« Networkprofiler: Towards automatic fingerprinting of android apps », in: 2013
Proceedings IEEE INFOCOM, IEEE, 2013, pp. 809–817.

[164] TaeGuen Kim, BooJoong Kang, Mina Rho, Sakir Sezer, and Eul Gyu Im, « A
multimodal deep learning method for android malware detection using various fea-
tures », in: IEEE Transactions on Information Forensics and Security 14.3 (2018),
pp. 773–788.

[165] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju, Cristina Nita-
Rotaru, and Ian Molloy, « Android permissions: a perspective combining risks and
benefits », in: Proceedings of the 17th ACM symposium on Access Control Models
and Technologies, 2012, pp. 13–22.

[166] Paolo Calciati and Alessandra Gorla, « How do apps evolve in their permission re-
quests? a preliminary study », in: 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR), IEEE, 2017, pp. 37–41.

[167] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan, « Soot - a Java Bytecode Optimization Framework », in: Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies on Collabo-
rative Research, CASCON ’99, IBM Press, 1999, pp. 13–, url: http://dl.acm.
org/citation.cfm?id=781995.782008.

[168] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, « Intriguing Properties
of Adversarial ML Attacks in the Problem Space », in: IEEE Symposium on Se-
curity and Privacy, IEEE Computer Society, 2020, pp. 1308–1325, doi: 10.1109/
SP40000.2020.00073, url: https://doi.ieeecomputersociety.org/10.1109/
SP40000.2020.00073.

[169] Steven Arzt, Siegfried Rasthofer, and Eric Bodden, « Susi: A tool for the fully
automated classification and categorization of android sources and sinks », in:
University of Darmstadt, Tech. Rep. TUDCS-2013 114 (2013), p. 108.

167

http://dl.acm.org/citation.cfm?doid=3007748.3007763
http://dl.acm.org/citation.cfm?doid=3007748.3007763
http://dl.acm.org/citation.cfm?id=781995.782008
http://dl.acm.org/citation.cfm?id=781995.782008
https://doi.org/10.1109/SP40000.2020.00073
https://doi.org/10.1109/SP40000.2020.00073
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00073
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00073

[170] Android ABIs | Android NDK | Android Developers, https://developer.android.
com/ndk/guides/abis, (Accessed on 08/29/2020).

[171] Sean Park, Iqbal Gondal, Joarder Kamruzzaman, and Jon Oliver, « Generative
malware outbreak detection », in: IEEE International Conference on Industry
Technology ICIT, Melbourne, 2019.

[172] iBotPeaches/Apktool: A tool for reverse engineering Android apk files, https :
//github.com/iBotPeaches/Apktool, (Accessed on 08/24/2020).

[173] pxb1988/dex2jar: Tools to work with android .dex and java .class files, https:
//github.com/pxb1988/dex2jar, (Accessed on 08/24/2020).

[174] Most Android Apps can easily be decompiled to remove the ads, https://blog.
mmccoo.com/2017/02/28/most-android-apps-can/easily-be-decompiled-
to-remove-the-ads/, (Accessed on 05/27/2019).

[175] Siqi Ma, David Lo, Teng Li, and Robert H. Deng, « CDRep: Automatic Repair of
Cryptographic Misuses in Android Applications », in: ACM, May 2016, pp. 711–
722, isbn: 978-1-4503-4233-9, doi: 10.1145/2897845.2897896.

[176] Ding Li and William G. J. Halfond, « Optimizing energy of HTTP requests in
Android applications », in: ACM, Aug. 2015, pp. 25–28, isbn: 978-1-4503-3815-8,
doi: 10.1145/2804345.2804351.

[177] Lavoisier Wapet, Alain Tchana, Giang Son Tran, and Daniel Hagimont, « Pre-
venting the propagation of a new kind of illegitimate apps », in: Future Gen-
eration Computer Systems 94 (May 2019), pp. 368–380, issn: 0167-739X, doi:
10.1016/j.future.2018.11.051.

[178] Jin-Hyuk Jung, Ju Young Kim, Hyeong-Chan Lee, and Jeong Hyun Yi, « Repack-
aging Attack on Android Banking Applications and Its Countermeasures », in:
Wireless Personal Communications 73.4 (Dec. 2013), pp. 1421–1437, issn: 1572-
834X, doi: 10.1007/s11277-013-1258-x.

[179] Tony Bradley,DroidDream Becomes Android Market Nightmare | PCWorld, https:
//www.pcworld.com/article/221247/droiddream_becomes_android_market_
nightmare.html, (Accessed on 11/11/2019).

[180] woxihuannisja/Bangcle: The second generation Android Hardening Protection, https:
//github.com/woxihuannisja/Bangcle, (Accessed on 08/23/2020).

168

https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://github.com/iBotPeaches/Apktool
https://github.com/iBotPeaches/Apktool
 https://github.com/pxb1988/dex2jar
 https://github.com/pxb1988/dex2jar
 https://blog.mmccoo.com/2017/02/28/most-android-apps-can/easily-be-decompiled-to-remove-the-ads/
 https://blog.mmccoo.com/2017/02/28/most-android-apps-can/easily-be-decompiled-to-remove-the-ads/
 https://blog.mmccoo.com/2017/02/28/most-android-apps-can/easily-be-decompiled-to-remove-the-ads/
https://doi.org/10.1145/2897845.2897896
https://doi.org/10.1145/2804345.2804351
https://doi.org/10.1016/j.future.2018.11.051
https://doi.org/10.1007/s11277-013-1258-x
https://www.pcworld.com/article/221247/droiddream_becomes_android_market_nightmare.html
https://www.pcworld.com/article/221247/droiddream_becomes_android_market_nightmare.html
https://www.pcworld.com/article/221247/droiddream_becomes_android_market_nightmare.html
https://github.com/woxihuannisja/Bangcle
https://github.com/woxihuannisja/Bangcle

[181] Yueqian Zhang, Xiapu Luo, and Haoyang Yin, « Dexhunter: toward extracting hid-
den code from packed android applications », in: European Symposium on Research
in Computer Security, Springer, 2015, pp. 293–311.

[182] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Junliang Shu, Bodong Li, Wenjun Hu,
and Dawu Gu, « Appspear: Bytecode decrypting and dex reassembling for packed
android malware », in: International Symposium on Recent Advances in Intrusion
Detection, Springer, 2015, pp. 359–381.

[183] Erik Ramsgaard Wognsen and Henrik S ø ndberg Karlsen, « Static analysis of
Dalvik bytecode and reflection in Android », in: Master’s thesis, Department of
Computer Science, Aalborg University, Aalborg, Denmark (2012).

[184] Android Developers Blog: Backward compatibility for Android applications, https:
//android-developers.googleblog.com/2009/04/backward-compatibility-
for-android.html, (Accessed on 05/27/2019).

[185] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Feng-
hao Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang, « Understanding Android
obfuscation techniques: A large-scale investigation in the wild », in: International
Conference on Security and Privacy in Communication Systems, Springer, 2018,
pp. 172–192.

[186] P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M. dAmorim, and M. D. Ernst,
« Static Analysis of Implicit Control Flow: Resolving Java Reflection and Android
Intents (T) », in: 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), Nov. 2015, pp. 669–679, doi: 10.1109/ASE.2015.69.

[187] Security tips | Android Developers, https://developer.android.com/training/
articles/security-tips, (Accessed on 05/27/2019).

[188] ijiami/ApkProtect, https : / / github . com / ijiami / ApkProtect, (Accessed on
08/23/2020).

[189] About Qihoo 360 | 360 Total Security, https://www.360totalsecurity.com/en/
about/, (Accessed on 08/23/2020).

[190] Z. Qu, S. Alam, Y. Chen, X. Zhou, W. Hong, and R. Riley, « DyDroid: Measuring
Dynamic Code Loading and Its Security Implications in Android Applications »,
in: International Conference on Dependable Systems and Networks (DSN), June
2017, doi: 10.1109/DSN.2017.14.

169

 https://android-developers.googleblog.com/2009/04/backward-compatibility-for-android.html
 https://android-developers.googleblog.com/2009/04/backward-compatibility-for-android.html
 https://android-developers.googleblog.com/2009/04/backward-compatibility-for-android.html
https://doi.org/10.1109/ASE.2015.69
 https://developer.android.com/training/articles/security-tips
 https://developer.android.com/training/articles/security-tips
https://github.com/ijiami/ApkProtect
https://www.360totalsecurity.com/en/about/
https://www.360totalsecurity.com/en/about/
https://doi.org/10.1109/DSN.2017.14

[191] Yury Zhauniarovich, Maqsood Ahmad, Olga Gadyatskaya, Bruno Crispo, and
Fabio Massacci, « StaDynA: Addressing the Problem of Dynamic Code Updates
in the Security Analysis of Android Applications », in: Conference on Data and
Application Security and Privacy (CODASPY), event-place: San Antonio, Texas,
USA, ACM, 2015, isbn: 978-1-4503-3191-3, doi: 10.1145/2699026.2699105.

[192] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang, « Catch me if you can: Evaluating
android anti-malware against transformation attacks », in: IEEE Transactions on
Information Forensics and Security 9.1 (2013), pp. 99–108.

[193] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Manoj Singh Gaur, Mauro Conti,
and Muttukrishnan Rajarajan, « Evaluation of android anti-malware techniques
against dalvik bytecode obfuscation », in: 2014 IEEE 13th International Confer-
ence on Trust, Security and Privacy in Computing and Communications, IEEE,
2014, pp. 414–421.

[194] Li Li, Tegawendé F. Bissyandé Li Daoyuan, Jacques Klein, Yves Le Traon, David
Lo, and Lorenzo Cavallaro, « Understanding Android App Piggybacking: A Sys-
tematic Study of Malicious Code Grafting », in: Transactions on Information
Forensics and Security (TIFS) (2017).

[195] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin
Li, Xueqiang Wang, and XiaoFeng Wang, « Things You May Not Know About
Android (Un)Packers: A Systematic Study based on Whole-System Emulation »,
in: 25th Annual Network and Distributed System Security Symposium, NDSS 2018,
San Diego, California, USA, February 18-21, 2018, The Internet Society, 2018.

[196] Andreas Moser, Christopher Kruegel, and Engin Kirda, « Limits of static analysis
for malware detection », in: Annual Computer Security Applications Conference
(ACSAC), IEEE, 2007.

[197] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang, « Monet: A User-Oriented
Behavior-Based Malware Variants Detection System for Android », in: Transac-
tions on Information Forensics and Security (TIFS) (2017).

[198] Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kotcz, « Editorial: Special
Issue on Learning from Imbalanced Data Sets », in: ACM SIGKDD explorations
newsletter (2004).

170

https://doi.org/10.1145/2699026.2699105

[199] Qiang Yang and Xindong Wu, « 10 challenging problems in data mining research »,
in: International Journal of Information Technology 38; Decision Making (2006).

[200] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken, « Apposcopy: Semantics-
based detection of android malware through static analysis », in: International
Symposium on Foundations of Software Engineering (FSE), 2014.

[201] Google Acquires Online Virus, Malware and URL Scanner VirusTotal, http://
tcrn.ch/P20EHo, TechChrunch.

[202] Siegfried Rasthofer, Steven Arzt, and Eric Bodden, « AMachine-learning Approach
for Classifying and Categorizing Android Sources and Sinks. », in: Annual Network
and Distributed System Security Symposium (NDSS), 2014.

[203] Min Zheng, Patrick P. C. Lee, and John C. S. Lui, « ADAM: An Automatic and
Extensible Platform to Stress Test Android Anti-virus Systems », in: Detection
of Intrusions and Malware, and Vulnerability Assessment, ed. by Ulrich Flegel,
Evangelos Markatos, and WilliamEditors Robertson, Springer, 2013, isbn: 978-3-
642-37300-8.

[204] Dimitris Bertsimas, John Tsitsiklis, et al., « Simulated annealing », in: Statistical
science (1993).

[205] Kaspersky Antivirus 2020 pour Android | Kaspersky, https://www.kaspersky.
fr/android-security, (Accessed on 09/23/2020).

[206] Statistics - VirusTotal, https://www.virustotal.com/en/statistics/, (Ac-
cessed on 08/25/2020).

[207] How it works – VirusTotal, https://support.virustotal.com/hc/en- us/
articles/115002126889-How-it-works, (Accessed on 08/10/2020).

[208] Zhou Wang, Eero P Simoncelli, and Alan C Bovik, « Multiscale structural simi-
larity for image quality assessment », in: The Thrity-Seventh Asilomar Conference
on Signals, Systems & Computers, 2003, vol. 2, Ieee, 2003, pp. 1398–1402.

[209] Stuart Millar, Niall McLaughlin, Jesus Martinez del Rincon, Paul Miller, and Zim-
ing Zhao, « DANdroid: A Multi-View Discriminative Adversarial Network for Ob-
fuscated Android Malware Detection », in: Proceedings of the Tenth ACM Confer-
ence on Data and Application Security and Privacy, CODASPY ’20, Association
for Computing Machinery, Mar. 2020, pp. 353–364, url: https://doi.org/10.
1145/3374664.3375746.

171

 http://tcrn.ch/P20EHo
 http://tcrn.ch/P20EHo
https://www.kaspersky.fr/android-security
https://www.kaspersky.fr/android-security
https://www.virustotal.com/en/statistics/
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://doi.org/10.1145/3374664.3375746
https://doi.org/10.1145/3374664.3375746

[210] Siegfried Rasthofer, Irfan Asrar, Stephan Huber, and Eric Bodden, « How current
android malware seeks to evade automated code analysis », in: IFIP International
Conference on Information Security Theory and Practice, Springer, 2015, pp. 187–
202.

[211] Suleiman Y Yerima and Sakir Sezer, « DroidFusion: a novel multilevel classifier
fusion approach for android malware detection », in: IEEE transactions on cyber-
netics 49.2 (2018), pp. 453–466.

[212] Suleiman Y Yerima, Sakir Sezer, and Igor Muttik, « Android malware detection
using parallel machine learning classifiers », in: 2014 Eighth International Con-
ference on Next Generation Mobile Apps, Services and Technologies, IEEE, 2014,
pp. 37–42.

[213] Jack W Stokes, John C Platt, Jonathan M Keller, Joseph L Faulhaber, Anil Francis
Thomas, Adrian M Marinescu, Marius G Gheorghescu, and George Chicioreanu,
Malware detection using multiple classifiers, US Patent App. 12/358,246, July 2010.

[214] Saurabh Panjwani and Achintya Prakash, « Crowdsourcing attacks on biometric
systems », in: 10th Symposium On Usable Privacy and Security (SOUPS 2014),
2014, pp. 257–269.

[215] Gang Wang, Tianyi Wang, Haitao Zheng, and Ben Y Zhao, « Man vs. machine:
Practical adversarial detection of malicious crowdsourcing workers », in: 23rd USENIX
Security Symposium (USENIX Security 14), 2014, pp. 239–254.

[216] Jon Oberheide and Charlie Miller, « Dissecting the android bouncer », in: Sum-
merCon2012, New York 95 (2012), p. 110.

[217] Google will now let you play Stadia on any modern Android phone - The Verge,
https://www.theverge.com/2020/6/11/21288175/google-stadia-update-
android-phone-support-cloud-gaming-mobile, (Accessed on 09/28/2020).

[218] Yérom-David Bromberg and Louison Gitzinger, « DroidAutoML: A Microservice
Architecture to Automate the Evaluation of Android Machine Learning Detec-
tion Systems », in: IFIP International Conference on Distributed Applications and
Interoperable Systems, Springer, 2020, pp. 148–165.

172

https://www.theverge.com/2020/6/11/21288175/google-stadia-update-android-phone-support-cloud-gaming-mobile
https://www.theverge.com/2020/6/11/21288175/google-stadia-update-android-phone-support-cloud-gaming-mobile

Acknowledgement

My first thanks go to my parents, my sister and my brothers for finding the words
to support me throughout these three years, and having all been here when I needed to
complain.

A grateful thank to my love, Nine, who stayed by my side at all times, with an unfailing
loyalty. She gave me the comfort I needed and found the patience to wait and endure my
infinite deadlines, I cannot be more grateful.

Thank to Dorothée, Nicolas, Hugo, Clara and their partners, who all contributed to
help me move forward in this work in their own distinctive way. I would specifically like to
thank Charles, my true friend who showed me how cool are computer sciences and helped
me a lot throughout my academic journey.

My two roommates, Lucien and Lola, also deserve their praise for taking care of me as
their own child, for giving me courage every single day, for making me laugh in difficult
times, without asking for anything in return.

Thanks to all my friends, who believed in me since the beginning of this work.
Thanks to all the WIDE’s team, who made everyday life pleasant throughout the three

years spent with the team. Quentin, Adrien, Alex, Loïck, Simon, for these moments of
sharing and these frenzied discussions at lunch. I would specifically thank Quentin, my
office colleague, who took a lot of time to teach me his knowledge, as well as his willing to
make the world a better place. A cheerful thank to Virginie Desroches, our administration
expert many would dream of, who helped me navigate the intricacies of administrative
tasks in a joyful and relaxed atmosphere.

I would further like to thank my PhD advisor, David Bromberg, who trusted me after
graduating from my engineering school and meticulously guided me throughout my thesis.
I am grateful to him for his dedication to me and for offering me so many professional
opportunities. Finally, many thanks to all the jury members who accepted to evaluate my
work, especially Sonia Ben Mokthar and Romain Rouvoy for reporting on it.

173

Titre : Survivre à la prolifération massive des malwares sur mobile

Mot clés : détection de malwares, périphériques intelligents, apprentissage statistique, Android,
Attaques adversariales

Résumé : De nos jours, nous sommes entou-
rés de périphériques intelligents autonomes qui
interagissent avec de nombreux services dans le
but d’améliorer notre niveau de vie. Ces péri-
phériques font partie d’écosystèmes plus larges,
dans lesquels de nombreuses entreprises col-
laborent pour faciliter la distribution d’appli-
cations entre les développeurs et les utilisa-
teurs. Cependant, des personnes malveillantes
en profitent illégalement pour infecter les appa-
reils des utilisateurs avec des application mal-
veillantes. Malgré tous les efforts mis en oeuvre
pour défendre ces écosystèmes, le taux de pé-
riphériques infectés par des malware est tou-
jours en augmentation en 2020. Dans cette
thèse, nous explorons trois axes de recherche
dans le but d’améliorer globalement la détec-

tion de malwares dans l’écosystème Android.
Nous démontrons d’abord que la précision des
systèmes de détection basés sur le machine lear-
ning peuvent être améliorés en automatisant
leur évaluation et en ré-utilisant le concept
d’AutoML pour affiner les paramètres des al-
gorithmes d’apprentissage. Nous proposons une
approche pour créer automatiquement des va-
riantes de malwares à partir de combinaisons de
techniques d’évasion complexes pour diversifier
les datasets de malwares expérimentaux dans le
but de mettre à l’épreuve les systèmes de détec-
tion. Enfin, nous proposons des méthodes pour
améliorer la qualité des datasets expérimentaux
utilisés pour entrainer et tester les systèmes de
détection.

Title: Surviving the massive proliferation of mobile malware

Keywords: malware detection, smart devices, machine learning, Android, Adversarial attacks

Abstract: Nowadays, many of us are sur-
rounded by smart devices that seamlessly op-
erate interactively and autonomously together
with multiple services to make our lives more
confortable. These smart devices are part of
larger ecosystems, in which various companies
collaborate to ease the distribution of applica-
tions between developers and users. However
malicious attackers take advantage of them il-
legitimately to infect users’ smart devices with
malicious applications. Despite all the efforts
made to defend these ecosystems, the rate of
devices infected with malware is still increas-
ing in 2020. In this thesis, we explore three re-
search axes with the aim of globally improv-

ing malware detection in the Android ecosys-
tem. We demonstrate that the accuracy of ma-
chine learning-based detection systems can be
improved by automating their evaluation and
by reusing the concept of AutoML to fine-tune
learning algorithms parameters. We propose
an approach to automatically create malware
variants from combinations of complex evasion
techniques to diversify experimental malware
datasets in order to challenge existing detec-
tion systems. Finally, we propose methods to
globally increase the quality of experimental
datasets used to train and test detection sys-
tems.

	Introduction
	Context
	Android ecosystem vulnerabilities
	Existing solutions to fight malware profilferation in the ecosystem
	Limits of malware defenses in the Android ecosystem
	Thesis statement - Contributions

	State of the Art
	Hunting threats in the Android ecosystem
	Improving privacy on Android
	Reducing the attack space on the Android platform

	Android Malware detection
	Signature-based malware detection.
	Machine learning-based detection.

	Adversarial Attacks to Malware Detection
	Review of existing studies
	Open problems

	Defenses against adversarial attacks
	Conclusion

	Exploring malware detection tools on Android
	Background on the Android ecosystem
	Android platform architecture
	Android application architecture
	Malware infection in the Android ecosystem

	Program analysis
	Limits of dynamic analysis to malware detection
	Advantages of static analysis in malware detection

	Techniques to perform malware detection at scale
	Signature based detection
	Machine learning assisted detection

	Improving existing malware detection systems
	DroidAutoML: hyper-parameter optimization for ML scanners
	DroidAutoML approach
	DroidAutoML evaluation
	Groom: A feature engineering framework to reach more efficient ML malware detection models
	Groom approach
	Groom evaluation

	Conclusion

	Reaching limits of antivirus leveraging the creation of experimental datasets
	Evolution of Android malware datasets
	Obfuscation of Android applications.
	Review of recent evasion techniques on Android

	KillerDroid: Weaving Malicious Payloads with Benign Carriers to Massively Diversify Experimental Malware Datasets
	Approach
	Experimental Setup
	Evaluation

	Conclusion

	Increasing the quality of ground truth datasets on Android
	Limits of antivirus aggregators solutions to build ground truth datasets
	KillerTotal: Vetting grand public Antivirus products
	Mobile Antivirus products
	Approach
	Evaluation

	KillerScreenshot: Improving the quality of malware datasets
	Approach
	Evaluation

	Conclusion

	Future works
	Short term future works
	Towards more diversified malware datasets
	Future of machine learning malware detection
	Poisoning VirusTotal

	Long term future works
	Towards more collaborative efforts
	Moving applications to the cloud

	Conclusion
	Summary of contributions

	Résumé en français
	Contexte
	Vulnérabilité de l'écosystème Android
	Solutions existantes
	Limites des solutions existantes dans l'écosystème
	Contribution de la thèse

	Bibliography

