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Abstract

Developing autonomous vehicles raises many challenging issues. Localization is an
essential basic capability for vehicles to be able to navigate autonomously on the
road. It is critical for safety reasons that the localization system provides an accu-
rate and reliable localization. This can be achieved through already available sensors
(e.g. yaw rate gyro, wheel encoders, GNSS receivers) used for ADAS and basic nav-
igation, and new technologies (e.g. lidars, smart cameras) that provide valuable
information on the vehicle surroundings. These sensors combined with highly ac-
curate maps result in greater accuracy for localization. Localization consists of
estimating the vehicle state based on previously obtained measurements either in a
sequential manner or by batches. In this work, the benefits of storing and reusing
information in memory (in data buffers) are explored.

Localization systems need to perform several tasks like high-frequency estimation,
map matching, calibration and error detection. These tasks do not need to be
performed at the same time and are not equally expensive to run. To address all
issues, a generic framework composed of several processing layers is proposed and
studied. A main filtering layer estimates the vehicle pose while other layers address
the more complex problems. In particular, a layer running in parallel performs map
matching of detected features and a post-processing layer does calibration and map
error detection.

High-frequency state estimation relies on proprioceptive measurements combined
with GNSS observations. These measurements can not only be delayed or arrive
out of sequence, but also be affected by biases due to the limitations of the sensors.
Calibration is therefore essential to obtain an accurate pose. By keeping state esti-
mates and observations in a buffer, the observation models of these sensors can be
calibrated. This is achieved using smoothed estimates in place of a ground truth as
it would not be available in commercial vehicles.

Dead-reckoning and GNSS can provide a high frequency estimation, but are not
accurate enough for autonomous driving applications. Lidars and smart cameras
provide measurements of features of the environment that can be used for localiza-
tion when combined with prior knowledge (stored in a map) of their position. Using
such observations raises matching issues as correct matches with the map features
have to be obtained. Matching can be difficult due to state estimation errors and
the limited number of measurements available in real time. Moreover, it needs to be
robust to missing features and sensors miss detection. In this work, the matching
problem is addressed on a spatio-temporal window. Thus, matching is done with a
buffer of observations, resulting in a more detailed picture of the environment. To
limit the effect of state errors on matching, the state buffer is adjusted using the
observations and all possible matches.
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Although using mapped features for localization enables to reach greater accuracy,
this is only true if the map can be trusted. Road networks do not appear to change
often, but a small change can have disastrous effects on localization. Roads repainted
slightly off and road signs moving by a few decimeters either involuntarily (e.g.
accidents) or on purpose (e.g. modification of an intersection) are very common.
An approach using the post smoothing residuals has been studied to detect changes
and either mitigate or reject the affected features.

The thesis relies heavily on experimental data acquired with vehicles equipped with
lidar sensors and smart cameras. High Definition (HD) maps have also been used
in the framework of the SIVALab joint laboratory between Renault and Heudiasyc
CNRS-UTC.
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Résumé

Le développement des véhicules autonomes soulève de nombreux problèmes. La lo-
calisation constitue une brique essentielle permettant aux véhicules de naviguer de
manière autonome sur la route. Pour des raisons évidentes de sureté, le système de
localisation doit fournir une information précise et fiable. Cela peut être atteint à
travers les capteurs déjà existants (par exemple, gyros, roues codeuses, récepteurs
GNSS) utilisés pour les systèmes de navigation et les ADAS; et de nouvelles tech-
nologies (par exemple, lidars, caméras intelligentes) qui fournissent des informa-
tions riches sur l’environnement avoisinant du véhicule. Ces capteurs combinés
avec des cartes routières haute définition permettent d’atteindre un plus haut degré
de précision. La localisation consiste à estimer l’état du véhicule en utilisant les
mesures passées soit de manière séquentielle soit de manière groupée. Dans ce tra-
vail, l’intérêt d’enregistrer et réutiliser des informations sauvegardées en mémoire
est exploré.

Les systèmes de localisation doivent réaliser plusieurs tâches comme une estimation
à haute fréquence, des associations de données, de la calibration et de la détection
d’erreurs. Ces tâches n’ont pas besoin d’être effectuées au même moment et n’ont
pas le même coût en temps de calcul. Pour résoudre ces problèmes, une architecture
générique composée de plusieurs couches de traitement est proposée et étudiée. Une
couche principale de filtrage estime la pose du véhicule tandis que les autres abordent
les problèmes plus complexes. En particulier, une couche réalise en parallèle la tâche
d’association des éléments détectés avec les amers d’une carte haute définition et une
étape de post-traitement traite la calibration du système et la détection des erreurs
de carte.

L’estimation d’état haute fréquence repose sur des mesures proprioceptives com-
binées à des observations GNSS. Ces mesures peuvent non seulement avoir du délai
ou être arrivées dans le désordre, mais aussi être affectées par des biais de mesure
dus aux limitations des capteurs. La calibration du système est ainsi essentielle
afin d’obtenir une pose précise. En gardant les états estimés et les observations en
mémoire, les modèles d’observation des capteurs peuvent être calibrés. Pour cela,
des estimations lissées sont utilisées à la place des vérités terrain, qui ne peuvent
pas être disponibles sur les véhicules du commerce.

La navigation à l’estime et les systèmes GNSS permettent d’avoir une estimation
à haute fréquence, mais ne sont pas suffisamment précis pour les applications de
conduite autonome. Les lidars et les caméras intelligentes fournissent des mesures
d’éléments de l’environnement qui peuvent être utilisés pour la localisation lorsqu’ils
sont combinés avec des informations a priori (contenues dans une carte) sur leur po-
sition. Utiliser de telles observations nécessite de devoir les associer à la carte. Cette
association peut être difficile à cause des erreurs d’estimation et du nombre limité de
mesures disponibles en temps réel. Dans cette thèse, le problème d’association est
abordé à travers une fenêtre spatio-temporelle. Ainsi, l’association est faite avec un
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buffer d’observations, amenant une image plus détaillée de l’environnement. Pour
limiter l’effet des erreurs d’état sur l’association, le buffer d’états est ajusté avec les
observations et toutes les associations possibles.

Bien que l’utilisation d’amers cartographiés permette d’améliorer la localisation, cela
n’est possible que si la carte est fiable. Le réseau routier ne change pas souvent,
mais de petites modifications peuvent avoir des effets désastreux sur la localisation.
Des routes repeintes de manière légèrement décalée et des panneaux routiers qui ont
été bougés de quelques dizaines de centimètres soit involontairement (par accident)
ou volontairement (par exemple, modification d’une intersection) sont relativement
fréquentes. Une approche utilisant des résidus lissés a posteriori est étudiée pour
détecter ces changements de carte et affaiblir et rejeter ces éléments pour les passages
futurs.

Cette thèse repose grandement sur des données expérimentales acquises avec des
véhicules équipés de capteurs lidars et de caméras intelligentes. Des cartes haute
définition ont également été utilisées dans le cadre du laboratoire commun SIVALab
entre Renault et le laboratoire Heudiasyc CNRS-UTC.
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1.1. Localization for Intelligent Autonomous Vehicles

Performance improvements and size reduction of electronics makes possible embed-
ding complex functions in vehicles. Passenger cars can now help the driver by
providing advice such as route guidance or executing tasks such as keeping lane,
speed or suddenly break in case of immediate hazard. Those functions are known as
Advanced Driver-Assistant Systems (ADAS). Effort is also made to make passenger
and public transport vehicles able to achieve complete driving with no human inter-
vention (i.e. autonomous vehicles). To reach this goal, vehicles need to understand
where it is in the environment in order to take the convenient actions at any time.

Localization has always been a critical issue for intelligent transportation systems.
Even when the system is driven manually, the driver needs to know where the
vehicle is to reach the destination. This is not a problem for small distances but
as road networks develop, localization systems become an essential part of vehicles.
Nowadays, drivers are most familiar with the Global Positioning System (GPS)
accessible for navigation from any smartphone and available in most vehicles. But
automobile manufacturers have not waited for satellite-based positioning to develop
localization systems.

Already in 1966, General Motors imagined a localization system relying on magnets
embedded in the road, the Driver-Aid Information and Routing (DAIR) system. The
magnets would be placed at regular intervals on highways and main axis enabling
vehicles to know which road section they were traveling on. Although the system
did not have a map, the driver could be guided using prerecorded routes saved on
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1. General Introduction

punch cards. The cost associated with outfitting roads with the systems made it
impractical for automobiles. However, similar systems are now used to track trains
on rail networks. A system closer to what we now use for navigation came in 1981,
with Japanese car manufacturers being able to use dead-reckoning to track the
movement of the vehicle thanks to new automotive grade gyrometers. Such systems
were able to track the vehicle movement from its starting position by integrating the
vehicle displacements. The vehicle position could then be displayed on maps printed
on a transparent film. With this system the driver could see the road network and
the vehicle position and take decision accordingly to reach a destination. As with
all Dead Reckoning (DR) systems, the estimation drifts away from the true position
with time and distance. It is therefore not applicable for long travels. The system
was later improved by Etak which replaced the transparent physical maps by numeric
maps saved on cassette tapes. The improved system also performed map matching
to prevent drift for dead-reckoning only localization. The maps and vehicle position
were displayed using a cathode-ray tube screen. The Etak system was the earliest
example of map-aided localization for commercial automobiles. Through a series
of acquisition it ended up part of the now ubiquitous vehicle navigation company
TomTom.

Automotive localization took a major leap forward with the completion of the GPS
constellation in 1995. Although initially intended for military use, the system had
been opened to civil applications a few years earlier. The improvement in accuracy
from the removal of Selective Availability in 2000, made GPS the ideal localization
system for automotive applications. To this day GPS, and more generally Global
Navigation Satellite Systems (GNSSs), are the main localization systems for con-
sumer applications. Combined with dead-reckoning and map matching to handle
tunnels and areas where GNSSs are inaccurate, it forms the main localization tech-
nology used for commercial applications.

Solutions used for navigation to this day do not provide sufficient accuracy to safely
drive autonomously. At this point, the driver has always been in control of the
vehicle and errors in localization could not result in significant danger. To achieve
fully autonomous vehicles, the localization system needs to be accurate and reliable
enough to enable the vehicle to drive safely.

The early prototypes of autonomous vehicles used accurate GNSSs. Although con-
ventional GNSSs are not accurate enough, using Real-Time Kinematic (RTK) meth-
ods that compensate errors using a static receiver with known position, the accuracy
can be greatly improved. Additionally, using expensive fiber optic gyrometers, early
autonomous vehicle prototypes were able to accurately position themselves. To com-
plete one of the earliest autonomous driving challenges, the 2005 DARPA Grand
Challenge, all successful teams used high accuracy GPS positioning as their main
localization solution. Additionally some teams used lidars to build maps for local
navigation in satellite denied environments. Because of their cost, such systems are
not planned to be available for commercial vehicles. However, they are still a vital
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component of experimental vehicles as they provide the best localization available.
They are used as ground truth to evaluate cheaper localization solutions.

To develop localization systems not relying on expensive high accuracy GNSS solu-
tions, the use of maps has shown some success [Tsuchiya et al., 2019, Wang et al.,
2020, Vivacqua et al., 2018]. As creating maps can be itself costly, localization
with maps has often been studied in the context of Simultaneous Localization And
Mapping (SLAM). SLAM strategies have enabled robots with perception sensors to
localize themselves without relying on global positioning systems. These systems
build a local map of the observed environment around the robot and use this map to
localize it. Cameras and lidars are, in this approach, the localization sensors. SLAM
was initially introduced thanks to the seminal work by [Smith and Cheeseman, 1986]
and [Durrant-Whyte, 1988] that set the foundation of the modeling of landmark un-
certainties. Initially, these techniques built feature maps of specific features detected
using perception sensors which were then used to estimate the vehicle state. The
problem was initially addressed using Kalman filtering techniques by considering
landmarks as part of the state of the system to be estimated. Later FastSLAM
[Montemerlo, 2003] was developed using a particle filtering strategy which better
modeled non-Gaussian error distributions and increased the robustness of SLAM
to wrong data associations. FastSLAM has been used with both feature maps and
dense maps (e.g. occupancy grid maps, evidential maps). More recently SLAM
strategies using multi-layer lidar sensors have been developed. Scan matching tech-
niques are used to estimate the relative displacement between two scans. The maps
are built by accumulating the scan into a single point cloud. In such maps the vehi-
cle location is found by fitting observed points to a map point cloud using techniques
such as Iterative Closest Point (ICP). Using point cloud maps is computer intensive
because of the amount of data to go through. Methods approximating the map by a
series of Gaussian distribution have been proposed [Magnusson, 2013, Wolcott and
Eustice, 2015]. Because of the high level of detail contained in point cloud maps, the
localization accuracy that can be reached is suitable for autonomous driving appli-
cations. However, using such maps at large scales create problems as those maps are
heavy. Feature-based SLAM methods usually consist of a feature detection system
(front-end) and an estimation system using the detection to build the map and lo-
calize the robot (back-end). Methods to solve the SLAM problem initially relied on
Kalman filter estimation as a back-end [Leonard and Durrant-Whyte, 1991]. More
recently, global optimization strategies have become more widely used thanks to
new efficient graph representation of the estimation [Kaess et al., 2012].

Recently, new types of maps have started being used for autonomous driving appli-
cations: High Definition maps. While traditional maps built using SLAM can be
very detailed and are locally accurate, they can be affected by drifts if no outside lo-
calization system is used. High Definition maps exist in different formats but share
characteristics such as global accuracy and contain much more information than
traditional maps. Building such maps either relies on SLAM with added anchor-
ing points used to guarantee the global accuracy of the map, or on high accuracy
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localization systems. Two main types of HD maps are distinguished: dense maps,
containing point clouds or raster images, and features maps, containing specific in-
teresting objects. Even when the final map is composed of features, the building
process usually involves building a dense map and extracting features from it. Al-
though at this stage HD maps are usually built directly by the user, third party
providers are starting to offer such maps. Historic map providers such as TomTom
and Here already offer commercial HD map services, mainly for highways. New
providers are also appearing. The Nvidia Drive platform enables users to use third-
party maps while also enabling HD maps to be built and updated by the user.

To achieve accurate localization, autonomous vehicles are equipped with several
types of sensors. All vehicles sold are already equipped with sensors providing
information about the vehicle kinematics since they are required for mandatory
systems. Inertial Measurement Units (IMUs) equip vehicles to provide a source of
information unaffected by skidding, while wheel encoders provide the actual wheel
rotation. ADAS use these sensors along with steering wheel angle measurements
and accelerometers to detect and correct when the vehicle is not performing the
driver’s intent. Electronic Stability Control (ESC) prevents the vehicle from under
and over steering. Anti-lock Braking System (ABS) Systems prevent wheels to lock
when the driver brakes hard. Increasingly vehicles are also being equipped with
a camera. Using this sensor, measurements of distances to lane-markings can be
obtained, enabling car manufacturers to provide Lane Departure Warning (LDW)
system and more recently lane keeping systems. Lidars have not yet reached prices
acceptable to be installed on commercial vehicles (although some high-end models
are equipped) but have been used extensively in research applications. Lidars came
down in price significantly in the last few years. Therefore, it is probable that the
first autonomous vehicles would be equipped with lidars.

1.2. Motivation & Problem Statement

Localization for intelligent vehicles is challenging because it needs to address several
problems that can affect the quality of the estimation. Moreover, solution to these
problems are not necessarily mutually compatible.

Localization relies on input measurements to produce a localization solution. After
the raw measurement is obtained by the sensor, it usually requires some processing
and can then be transmitted to the localization process. Each step takes time and
leads to delays that need to be accounted for before producing an estimate. The
localization process itself can also introduce processing delays. Measurement delays
will result in measurements received after the corresponding state has been estimated
or will affect the computation of expected observations.
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Measurement delays also result in additional problems. As measurement delays can
vary from one sensor to another, the sensor observations are not guaranteed to be
received or processed in the correct order.

Once measurements are received and the delays are managed, the measurements
need to be linked to the vehicle state. This step is not trivial as even simple mea-
surements (e.g. gyro measurement) are affected by errors (biases, scaling factors,
etc.). The localization system therefore needs to be able to calibrate the observa-
tion models to limit these errors. This is difficult as commercial vehicles do not
have an independent high accuracy localization system (ground truth) to perform
calibration.

While the aforementioned constraints are not specific to intelligent vehicles, this type
of robot leads to additional problems. Maps are a natural tool to improve vehicle
localization, however matching measurements to mapped features is challenging in
environments where the number of features can be high (cities, intersections, etc.).

Moreover the localization system has to be able to detect and reject errors in the
map. The road network changes gradually, thus constant monitoring is required to
avoid localization error.

Intelligent vehicles are subject to similar issues as robotic exploration but also differ
in a major way. While robotic exploration visits the same location multiple times,
vehicle are only expected to go from A to B without looping. Hence, intelligent vehi-
cles will not encounter loop closures and therefore cannot use loop closure techniques
to improve localization.

1.3. Objectives

While solving the aforementioned problems, the localization system also needs to
satisfy several requirements.

Localization is critical to several components of intelligent vehicles such as control.
Therefore, it needs to satisfy temporal constraints. To properly control the vehicle,
a high frequency (≥ 50 Hz) estimation is needed. However, high frequency is not
enough. An estimate is only useful if it is accurate at the time it is received. Hence,
estimation needs to be done with little delay. Estimation delays can have significant
effect. In 10 ms, the vehicle travels several decimeters and can rotate by about
0.3 degrees.

Intelligent vehicles require accurate pose estimates. Conventional GNSS receivers
might be able to localize a vehicle anywhere on Earth but do not reach the accuracy
level required for safe autonomous travel. Although the accuracy requirement de-
pends on driving task, errors need to be less than one meter in general and down to
10 cm can be required. A vehicle needs among others to be able to identify on which
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lane it is driving which requires good enough accuracy (lane-level accuracy). Defin-
ing accuracy requirements for intelligent vehicle is not straight forward as it highly
depends on the driving situation and the task to perform. Driving typically requires
lateral accuracy to be able to maintain a trajectory within a lane. Longitudinal
accuracy requirements are not as strict. Except near intersections or crosswalks, a
one meter error in the longitudinal direction is far less risky than the same error
in the lateral direction. Also some situations require high longitudinal accuracy
(e.g. around crosswalks, to park, etc.), in most cases the vehicle is driving on roads
without any obstacle thus the accuracy requirement should not be as strict. This
separation of localization requirements in longitudinal and lateral dimensions is in
itself flawed as roads are curved and lateral errors can turn into longitudinal errors
and vice versa.

The localization system needs not only to be accurate but also reliable. The system
consistency is essential as an overconfident system will lead to more risks which
cannot be tolerated is safety-critical situations. The system therefore is allowed
to only exceed the set consistency bound in extremely rare cases. For instance,
a wrong match used in the estimation process can cause the system to become
incorrectly localized but confident in the localization (because new observation can
only reduce the uncertainty of the estimate). Such occurrences have to be contained
to a minimum.

Moreover, the localization system needs to be able to deal with new problems.
Often part of the localization problem, e.g. matching or calibration, involve adding
computational cost to the state estimation itself. To be able to cope with the high-
frequency estimation requirement while still performing all necessary tasks of the
localization, the architecture has to enable matching, calibration and other processes
to be run without charging the state estimation. It must be generic in the sense that
it is not structurally made to solve one problem but rather can be easily expanded
to solve any new problem that may arise. This thesis studies in particular those last
three problems.

The architecture also needs to be modular. Intelligent vehicles being still largely
in development, the sensors and algorithms used are not settled. The localization
system needs to be agnostic to specific input to be easily expanded as research within
Renault and SIVALab brings new developments.

While most localization systems process input data and then discard it, this work
aims at discovering additional uses that data can have by storing it instead of directly
processing it. Storing measurements in buffers has obvious uses such as dealing with
delays but it can also help in other tasks such as calibration, map matching and error
detection.
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1.4. Contributions

The main contributions of this work are summarized as follows.

• A generic framework for localization using Kalman filtering is proposed. The
framework enables localization while being agnostic to the type of inputs. It
is expandable with parallel processes to preform additional tasks required by
specific measurements, e.g. matching for map feature measurements. This
framework enables high-frequency (50 Hz) localization while accounting for
known delays to provide the best possible estimate to the rest of the vehicle
systems.

• An odometric model using commercial vehicle standard sensor suite is pro-
posed as well as a strategy to calibrate parameters of the model [Welte et al.,
2019a]. The proposed calibration method relying on Kalman smoothing en-
ables parameter tuning with ground truth. With this calibration strategy the
odometric model drift is reduced enabling localization to rely more on odom-
etry.

• A matching technique is proposed to match measurements globally over a
measurement window [Welte et al., 2019b, Welte et al., 2020]. Using Kalman
smoothing and an optimization step, the system can match more measure-
ments while simultaneously reducing the risk of mismatches. This results in
greater localization accuracy.

• An error detection and mitigation method using post-smoothing residuals.
The observation residuals are either used to compute a confidence factor used
to weight observations [Welte et al., 2019b] or fused across multiple trajectories
to decide whether or not to eliminate a feature.

• Practical evaluation of the proposed methods. Methods are all tested on real
data recorded using an experimental vehicle on public roads. Sensor sets
involved in methods’ implementation are close to those used in intelligent
transportation systems.

1.5. Manuscript Organization

This manuscript starts in Chapter 2 with a presentation of the estimation framework
developed in this work. It introduces the general architecture and the interaction
between the different layers. The three layers of the current architecture: filtering,
matching and post-processing form a sensor agnostic architecture. Those three layers
will be then detailed in each following chapter.

First the estimation with a high-frequency filtering is introduced. In particular,
Chapter 3 presents the dead-reckoning system and its calibration. DR is essential
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as it is the only system available in any situation. An accurate DR not only enables
localization for emergency situations but also enables to take more time to handle
other measurements. Calibration of such systems is required to limit drifts. This is
also addressed thanks to a smoothing strategy and a least square estimation.

While DR is essential for short term localization, it is not sufficient for the accuracy
requirements of intelligent vehicles. Chapter 4 addresses this issue by introducing
map-aided localization with the detection of geo-referenced map features. Using
such features require matching which has to be accurate to ensure the localization
integrity. A global matching over a measurement window is therefore presented.
It uses Kalman smoothing and a trajectory adjustment step to improve matching,
leading to a better localization.

The final chapter, Chapter 5, addresses the main issue with using maps: map er-
rors. The environment changing regularly, maps are not always entirely accurate.
Detecting, managing and correcting such errors are therefore essential for the map
to be useful for localization.

Experimental evaluation of the proposed methods are provided in each chapter.
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2.1. Introduction

The localization problem can be formalized as a problem of estimating a state xk
representing the system at the current time k. The states always contain the po-
sition of the system and can additionally contain its orientations, velocities, etc.
To estimate the state, observations are used. Observations z1, . . . ,zk depend on
the state and can thus be used to estimate it. The localization task consists in
estimating the state xk knowing observations z1, . . . ,zk.

This is done by finding the most likely state knowing the observations (by solving
Equation 2.1).

x̂k = arg max
xk

p (xk | z1, . . . ,zk) (2.1)

The method chosen to perform the localization task needs to be tailored to the
requirements of the considered system. In the context of autonomous vehicles, sev-
eral criteria need to be fulfilled for the system to be acceptable. Other subsystems
(control, trajectory planning) rely on this estimate to work properly. The localiza-
tion has to provide a state estimate at high frequencies with minimal delay. The
localization has to be accurate enough to enable safe autonomous driving. This is
required to drive in environments where obstacles can be close to the road and where
the traffic is dense (urban area). Beyond the system accuracy, it also needs to be
reliable. The state estimate cannot be believed to be more accurate than it is as
this would lead other components to take decision they should not. An estimate on
the wrong lane might lead the vehicle control to behave incoherently. If the system
is confident to be on a specific lane, it cannot be on an adjacent one. Hence, beyond
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simply being accurate, the integrity of the system needs to be verified. The system
needs to reliably predict its accuracy and fail only in extremely rare instances.

State estimation at high frequency rarely uses significant memory. The observa-
tions and states are discarded as they are not used anymore. However, many of the
problems mentioned in Section 1.2 can be addressed using some memory. Keeping
both states and measurements in buffers has classically been used to address delays
but can also benefit other aspects of localization. Matching measurements to map
features works best the more information is available. Strategies of post process-
ing could also be applied using buffers to tune parameters and evaluate the map.
Hence, in this chapter, an architecture relying on buffers is developed to address the
challenges of localization for intelligent vehicles.

2.2. Buffer State of the Art

Localization using buffers of data is not new. Simultaneous Localization and Map-
ping problems requiring maps to be built use some memory to record states. Buffers
have also long been used in filtering strategies to deal with delays.

State estimation using buffers can be separated into two main families. Some esti-
mation frameworks rely on buffers entirely and aim at estimating buffers of states
using buffers of measurements. Such global approaches optimize the state estimates
iteratively. Other methods extend well known filtering strategies to take advantage
of buffers. The estimation is then done sequentially rather than as a batch.

2.2.1. Filtering and Smoothing Estimation Schemes

Sequential estimation schemes are often based on Kalman filtering. Most commercial
GNSS receivers rely on it to estimate the vehicle position and velocity from the
pseudoranges and doppler measurements. It is also often used in combination with
sensors such as Inertial Measurement Unit (IMU) to produce state estimations at
high frequency.

Kalman filtering is able to produce a state estimation at relatively low computational
cost while simultaneously estimating the uncertainty of the state estimate. This
makes Kalman filtering ideal for applications that require high frequency estimation
with low delay.

Kalman filtering (and other similar estimation strategies) uses two types of rela-
tion linking the unknown states and the observations. First the states evolve in a
predictable manner. Using an evolution model f (.), the state xk can be predicted
using the previous state xk−1 as such

xk = f (xk−1,uk) +wk (2.2)

10



2.2. Buffer State of the Art

where wk is an unknown error often modeled as a Gaussian noise and uk is the
input of the system coming from the control system. In this work the input will be
ignored, the localization system is studied on its own without a control system. In
the rest of this thesis, f (·) will be referred as only a function of the state.

A state is related to an observation using an observation model h (.). The observation
model enables to predict expected observations given the state

zk = h (xk) + vk (2.3)

Observations are rarely perfect, either the model is somewhat unknown or the mea-
surement itself is noisy. An unknown error vk therefore exists.

Kalman filtering relies on several assumptions. The evolution and the observation
models need to be linear for the estimation to be optimal. Several variations have
been proposed to deal with non-linear systems. The Extented Kalman Filter (EKF)
solves the problem by linearizing the models. The Unscented Kalman Filter propa-
gates sigma point using the non-linear model instead of propagating the covariance
matrix of the state estimate. Another assumption made by Kalman filtering is that
the noises of the system can be represented by zero-mean uncorrelated Gaussian
white noises. This assumption can be challenging as sensors often have internal
filters making their outputs temporally correlated. For instance, automotive grade
GNSS receivers highly filter pose estimates such that the final estimate already in-
cludes information of past measurements. This is useful when the receiver returns
the final pose that will be used by the vehicle navigation system for instance. How-
ever, it is a problem for localization systems that need to integrate other sensors to
the estimation. The pre-filtered GNSS estimations result in time-correlated obser-
vations making them non-trivial to use for localization.

Using Equation 2.2 and Equation 2.3, and by modeling each model error by un-
correlated Gaussian White noises with respective covariance matrices Qk and Rk,
Kalman filtering enables the estimation of the state at each time. This estimation
process also assumes that an initial guess x̂0|0 (no matter how uncertain) can be
obtained with its corresponding covariance matrix P0|0.

With these parameters, each state can be estimated sequentially by first predicting
the state at time k (x̂k|k−1) based on the previously filtered state at k−1 (x̂k−1|k−1).
This is done using the evolution model as described by the following equations,

x̂k|k−1 = f
(
x̂k−1|k−1

)
(2.4)

P k|k−1 = F kP k−1|k−1F
>
k +Qk (2.5)

where F k is the Jacobian of the evolution model f (·) linearized around x̂k|k−1.

The state estimate x̂k|k−1 is the best estimate obtainable without using the obser-
vations from time k. If at time k observations are available, they are used to update
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the estimate using the observation model.

ỹk = zk − hk
(
x̂k|k−1

)
(2.6)

Sk = HkP k|k−1H
>
k +Rk (2.7)

Kk = P k|k−1H
>
k S
−1
k (2.8)

x̂k|k = x̂k|k−1 +Kkỹk (2.9)

P k|k = (I −KkHk)P k|k−1 (I −KkHk)
> +KkRkK

>
k (2.10)

where Hk is the Jacobian of the observation model h (·) linearized around x̂k|k−1.

Different formulations for the Kalman update exist. Here the Joseph form is used
as it is more numerically stable than the standard Kalman update formation.

Using this process the states can be estimated iteratively in real time. The covariance
matrices Pi|j associated with the states x̂i|j are estimated simultaneously.

2.2.1.1. Augmented State

Kalman filtering as stated previously does not, in its standard form, use buffers. It
estimates states using available observations and then forget past state estimates
and observations.

Kalman filtering has been extended to include a memory of past states [Anderson
and Moore, 1979]. Fixed lag smoothing consists of a Kalman filter with the difference
being that it uses an augmented state vector containing not only the most recent
state information but also the S previous states. Hence in fixed lag smoothing, the
estimated state is

X̂ k|k =
[
x̂k|k . . . x̂k−S|k

]>
(2.11)

The evolution model of such an augmented state is trivial, the most recent state
evolves using the robot evolution model f (·) and the other states, having their
future values already stored in the vector can simply take this value. The augmented
evolution model is therefore described by the evolution model Jacobian Fk and the
model noise covariance matrix Qk as defined in Equation 2.12 and Equation 2.13.

Fk =


F k 0 · · · 0
I 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 I 0

 (2.12) Qk =


Qk 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 (2.13)
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This way of performing filtering has two consequences, when an observation is added
the entire buffer of states stored in the vector are improved (thus the name fixed-
lag smoothing). Also observations do not need to be related to the most recent
state. Indeed, because previous states are also contained in the estimated vector,
an observation can be related to any of them. This enables fixed lag smoothing to
easily deal with delayed and out of sequence measurements [Challa et al., 2002] and
loop closures [Garcia et al., 2002]. Because all states become correlated with each
other during the filtering, an observation on a past state also improves the most
recent state. A delayed observation can therefore be used to update the estimation
along with other non-delayed observations using the Jacobian of the non-delayed
observation model Hk and delayed observation model H?

k combined to form the
augmented observation matrix in Equation 2.14.

Hk =
[
Hk 0 · · · 0 H?

k 0 · · · 0
]

(2.14)

The main drawback of this approach is its use of resources. The more states are
contained in the estimated vector, the larger the size of the involved matrices. All
states have to be updated at each iteration even if no observation directly affects
the state. Even though Kalman filtering does not invert the state space matrices,
the size of the matrix can make the computation costly.

2.2.1.2. Estimation using a Predicted Observation Buffer

Another approach to deal with delayed measurements is to store the predicted obser-
vation h?

(
x̂k|k−1

)
of the delayed observation in the state vector. Instead of storing

the states thus enabling the Kalman update to compute the innovation and correct
the appropriate state, this method store the expected observation for a measure-
ment. The state contains the current state x̂k|k and the predicted observation of
potentially delayed measurements for each S previous time [Gopalakrishnan et al.,
2011].

X k =
[
x̂k|k h?

(
x̂k|k−1

)
. . . h?

(
x̂k−S|k−S−1

)]>
(2.15)

At each iteration, the current state is used to predict the next one and the most
recent expected observation is computed as h?

(
x̂k|k−1

)
. Equation 2.16 and Equa-

tion 2.17 are used to compute the predicted state and covariance matrix using the
standard Kalman filtering equations.
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Fk =


F k 0 · · · 0
H?F k 0 · · · 0

0 I
. . .

...
...

. . . . . . 0
0 · · · 0 I 0


(2.16)

Qk =


Qk 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 (2.17)

Observations received on time can be used to update the estimation directly. The
delayed observations do not relate to the current state but will relate to an expected
observation contained in the augmented state. The observation model for such
observation is simply the identity matrix as the predicted observation is already
stored in the state. The observation matrix can thus be written as in Equation 2.18,
where the first row of the matrix is used to update the state based on observations
received without delays, whereas in the second row the identity matrix is placed
appropriately depending on the delay of the observation.

Hk =

[
Hk 0 · · · 0 0 0 · · · 0
0 0 · · · 0 I 0 · · · 0

]
(2.18)

By comparison with fixed-lag smoothing, this method has the advantage of resulting
in a smaller state if the observation dimension is smaller than the state and a single
measurement is affected by delays. If multiple measurements are affected by delays,
each expected measurement will have to be included in the state in order to be
used.

2.2.1.3. Kalman Smoothing

Kalman filtering enables to estimate each state based on the current observations and
the previous state (estimated using past observations). Therefore a state at time k
has been estimated with the knowledge of all observations from time 1 to k. Kalman
filtering only tries to estimate the most recent state. Therefore, if new observations
become available, they will be used to estimate future states and not the state at time
k. In some cases it can be useful to obtain a complete trajectory

{
x̂k|N

}
k∈J0,NK from

the initialization to the last time N estimated with all the observations {zk}k∈J1,NK
available. This is a smoothing problem. Extensions of the Kalman filter have been
proposed to solve it. Rauch-Tung-Striebel (RTS) smoothing (or Kalman Smoothing)
[Rauch et al., 1965] builds upon Kalman filtering to address this problem. While
Kalman filtering only performs a forward sequential estimation, Kalman smoothing
performs an additional backward sequential smoothing. Once the filtering from
epoch 1 to N has been done, the states are smoothed starting from x̂k|k down to
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Figure 2.1.: Comparison of the filtered (blue) and smoothed (red) estimates. While
the filtered trajectory is corrected at each GNSS updates and then drifts,
the smooth trajectory is fully corrected.

state x̂0|0. As shown in Figure 2.1, filtering only corrects the real time estimates and
does not improve past estimates. Using smoothing, the improved accuracy obtained
from future observations is propagated backward leading to better estimates. Since
the last state estimate x̂N |N has already been estimated using all observations, it
is not improved. However, using Kalman smoothing, all previous state estimates
benefit from observations received after their estimation.

To smooth the states, Kalman smoothing uses not only the filtered state estimates{
x̂k|k

}
k∈J0,NK but also the predicted states

{
x̂k|k−1

}
k∈J1,NK. After the filtering, when

smoothing is performed, these states are used to compute the smoothed states{
x̂k|N

}
k∈J0,NK in a backward manner using Equation 2.19 and Equation 2.20. The

smoothing process starts with the estimate x̂N |N (the last state obtained with filter-
ing), and improves on the estimation of state xN−1 using the predicted state x̂N |N−1

and the last smoothed state x̂N |N . The process repeats from back to front. At each
step the estimation of the state xk is improved on using the predicted state x̂k+1|k
and the smoothed state from the previous step x̂k+1|N .

x̂k|N = x̂k|k + Jk
(
x̂k+1|N − x̂k+1|k

)
(2.19)

P k|N = P k|k + Jk
(
P k+1|N − P k+1|k

)
J>k (2.20)

with
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Table 2.1.: Equivalences between variables used for Kalman updates and Kalman
smoothing

Kalman update Kalman smoothing
Updated State x̂k|k x̂k|N
Gain Kk Jk
Observation zk x̂k+1|N
Observation Model Hk F k

Observation Covariance Rk Qk

Jk = P k|kF
>
k+1P

−1
k+1|k (2.21)

As it can be seen from the previous equation, the smoothing step is similar to the
filter itself. In the filtering, the state is corrected based on the difference between
observations and predicted observations ỹk weighted by the Kalman gain (Kk). Here
the state is corrected based on the difference between the next state estimate x̂k+1|N
and our prediction of that state x̂k+1|k weighted by a gain Jk. The state x̂k+1|N at
k+1 can be interpreted as an observation of the state at k with the observation model
being the evolution model. Equivalence between the variables used for Kalman
update and for Kalman smoothing is shown in Table 2.1. The main difference is
that in the filtering case, the measurement uncertainty is often uncorrelated with
the state estimate uncertainty whereas in smoothing the next estimated state x̂k+1|N
uncertainty is correlated with the predicted state x̂k+1|k uncertainty. The detailed
derivation of the Kalman smoothing equations is provided in Appendix B.

These equations show that to perform smoothing, the evolution model does not
need to be inverted. However, the matrix P k+1|k has to be inverted which can be
computationally expensive. Despite this step, our testing shows that, on the problem
considered in this thesis, the smoothing step is much faster than the filtering which
requires to invert a matrix the size of the dimension of the measurement space.

It is important to note that since the smoothing starts from the last estimate and
update previous estimates, the last estimate at epoch N is not improved in any
way. This makes sense since the Kalman filter computes the optimal state estimate
x̂N |N using the measurements {zk}k∈J1:NK. It is therefore already computed using
all available information.

The aforementioned equations are applicable for a linear system with Gaussian cen-
tered noises. However, Kalman filtering has many variations (extended / unscented
[Gong et al., 2013] / cubature [Arasaratnam and Haykin, 2011] / etc.) that can
account for non-linearity and non-Gaussian noises. The same is true for Kalman
smoothing, for instance the Extended Kalman smoother can be achieved by replac-
ing the matrix F k+1 of a linear evolution model by the Jacobian of the non-linear
model (as it is done to obtain the Extended Kalman filter).
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2.2.2. Global Optimization Schemes

While filtering techniques are widely used for real-time state estimation, they assume
that a state only depends on the previous state and on the current measurements.
Also, filtering schemes are typically reliant on a linear description of the problem.
When the system is not linear, it is linearized around a point. This does not result
in optimal estimates. Optimization schemes process measurements as a batch to
estimate every state simultaneously. These methods iteratively minimize a cost
function. The function can be re-linearized at each iteration resulting in a better
handling of non-linearity. Because all states are estimated using all measurements
simultaneously, measurements do not need to depend on a single state. This enables
such methods to introduce loop closure strategies, thus improving localization in
areas traversed multiple times.

For these reasons, optimization schemes are used for mapping and, when high-
frequency localization is not required. In particular, Simultaneous Localization And
Mapping (SLAM) problems are often addressed using optimization techniques.

Their main drawback is the processing time which can vary widely depending on
the type of measurements received and if loop-closure constraints are introduced.

2.2.2.1. iSAM

One family of such techniques is the iterative smoothing and mapping (iSAM) tech-
niques [Kaess et al., 2008]. The SAM problem can be formulated by a minimization
problem with the residuals of the evolution and observation models. iSAM aims at
finding the states {xk}k∈J0:NK and landmark positions {mi}i∈J1:MK that are the most
likely knowing the observations {zj}j∈J1:JK. The problem can be written as

x̂0|N . . . x̂N |N , m̂1 . . . m̂M = arg max
x0...xN ,m1...mM

p (x0 . . .xN ,m1 . . .mM , z1, . . . ,zJ)

(2.22)

The probability density function p can be decomposed using the evolution and ob-
servation models (defined as for Kalman filtering)

p (x0 . . .xN | z1, . . . ,zN) = p (x0)
N∏
k=1

p (xk | xk−1)
J∏
j=1

p
(
zj | xkj ,mij

)
(2.23)

where p (xk | xk−1) is defined by the evolution model and p
(
zj | xkj ,mij

)
is de-

fined by the observation model assuming the observation zj observed at time kj is
associated to the map feature mij .
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Assuming the models are affected by Gaussian noises, solving Equation 2.22 is equiv-
alent to solving

x̂0|N . . . x̂N |N , m̂1 . . . m̂M = arg min
x0...xN ,m1...mM

N∑
k=1

‖f (xk−1)− xk‖2
Qk

+
J∑
j=1

∥∥h (xkj ,mik

)
− zj

∥∥2

Rj
(2.24)

where ‖e‖2
E = e>E−1e is the squared Mahalanobis norm of e, with covariance

matrix E.

As ‖e‖2
E =

∥∥∥E>1/2
e
∥∥∥2

, the Global Optimization problem is in fact a Least Square

Estimation problem. It can therefore be solved using traditional resolution strate-

gies. The problem becomes finding θ =
[
x0 . . . xN m1 . . . mM

]>
as,

θ̂ = arg min
θ
‖Aθ − b‖2 (2.25)

where A and b are the result of linearizing Equation 2.24.

It is important to note that unlike in filtering schemes, iSAM does not treat the
evolution model and the observation model any differently. Instead, both provide
a factor that will influence the minimization. The two models only differ in the
type of underlying variables of the state they link. The evolution model produces
equations that link components of the state vector concerning the robot actual state
with other components also concerning the robot state (but at a different time).
On the other hand, the observation model produces equations that link components
of the state vector concerning the robot state with components concerning features
of the environment being mapped. The minimization does not treat one type of
equation differently than the other.

Equation 2.25 can be solved by classic least squares resolution techniques. However,
as new observations are received, the entire resolution has to be redone entirely.
This is fine for small state dimensions but becomes quickly cumbersome when the
dimension increases. To remedy to this effect, iSAM introduces a new way to add a
new observation to an already solved system.

iSAM uses a QR decomposition of the matrix A, where Q is an orthogonal matrix
and R is an upper triangular matrix. Q being orthogonal, Equation 2.25 can be
rewritten using the equivalence

‖Aθ − b‖2 =

∥∥∥∥Q [R0
]
θ − b

∥∥∥∥2

=

∥∥∥∥[R0
]
θ −Q>b

∥∥∥∥2

(2.26)
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the system can them be solved by back-substitution since R is upper triangular.
The last variable can be directly estimated as it only depends on a single element.
Knowing the last variable, the second to last can be estimated as it depends only
on the last two variables, and so on.

In a typical resolution scheme, the decomposition would have to be recomputed
entirely every time a new state or observation is added. iSAM proposes to add the
new information not to the original matrix but to the already decomposed system.
The new measurements might depend on some variables in the middle of the state
vector, thus introducing non-zero terms in the lower part of the triangular matrix
R. The decomposition can then be done only on the square block of R affected by
the new information. It is done using the known rotation strategy that iteratively
zero-out elements of R until it is triangular. The rotations needed to make the
matrix triangular are added to Q (Q being built by aggregating rotations, it is
a rotation matrix in this QR decomposition). The QR decomposition is therefore
achieved not by recomputing it from scratch but leveraging the work previously done.
This step alone enables to iteratively decompose the problem as new observations
arrive. One significant problem left is that the resulting matrix R will not be sparse,
which is preferred for large systems. To improve the matrix sparsity, iSAM uses a
reordering step which moves variables that are related (by a measurement) closer to
each other. Thus, the portion of the matrix that will be affected by measurements
linking variables located in the original states at different locations will be much
smaller because these variables have been moved closer to each other in the new
state.

2.2.2.2. iSAM2

iSAM has been improved to better deal with variable reordering, partial estimation
and re-linearization. Variable reordering can be a burden when the matrix is stored
in its sparse form as the index references cannot simply be switched. iSAM2 [Kaess
et al., 2012] introduces a representation of the matrix as a Bayes tree where each
node corresponds to a block of the matrix and each leaf of this block corresponds
to other blocks depending on the root. In a tree structure, the order in which the
leaves are referenced is irrelevant, thus reordering can be done at almost no cost.
Also iSAM2 enables partial estimation as inference is done from the root to the
leaves, inference can be stopped before it reaches some leaves. If the evolution of
a part of the tree is small enough, the leaves of this section do not need to be
updated.

2.2.2.3. Concurrent Filtering and Smoothing

iSAM2 still has the issue that the estimation time is not constant and therefore
real-time applications are not suited to this method. An evolution of the method
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has been proposed to deal with this issue [Williams et al., 2014]. A solution is to
force the root of the tree to correspond to the variables needed to estimate future
variables. Thus future variables only depend on this root and are thus part of an
isolated leaves series rooted at the main root of the tree. Inference on this isolated
branch can be done very quickly. Periodically, the branch is included in the main
tree where loop closure information can be added and a new root is chosen with
which the process can repeat. Hence the isolated branch can be estimated quickly
while in parallel the rest of the tree can be updated and take the time it needs.

Although this smoothing method enables to guarantee real-time estimation, the
accuracy of real-time estimation is not improved over the Kalman estimation [Lange
et al., 2013]. It would, however, be interesting if the studied problem had to integrate
loop closures.

2.2.3. Bounded Error Schemes

The methods presented to this point, use modeling of the uncertainties through
probability distributions, both Kalman filtering and iSAM assume that the errors
can be modeled by known distributions. The localization solution is therefore a point
with associated distribution. Knowing the distribution of the solution enables the
users to evaluate the confidence intervals for different risks. Depending on the risk
tolerance of the system, different intervals can be computed to check if the vehicle
can safely operate. One of the main drawbacks of the aforementioned methods
is their difficulty with dealing with non-linear systems. Non-linearity is addressed
using local linearizations of the system. These cannot accurately describe how error
distributions are affected.

Another type of method to solve the localization problem is set-membership state
estimation. Here, the errors are not described by distributions but rather by sets
(intervals). The error is known to be within a set with probability 1. Starting from a
large set of possible values, each observation adds a constraint to the solution set. As
more observations are obtained the solution set becomes smaller and smaller. This
method is well suited for problems with non-linear observation models (e.g. range
only localization [Jaulin, 2011]). The solution sets can be any part of the considered
space. They do not even need to be connected sets making set-membership state
estimation naturally able to deal with multi-hypothesis solutions.

Another advantage of set-membership is that the true value can be guaranteed to be
in the solution set as long as the bounded error assumptions (with known bounds)
are valid. While probabilistic methods can be used to compute confidence intervals
for small risks, there is never a guarantee that the solution falls within that interval.
For probability distributions with non-bounded support, e.g. Gaussian distributions,
a non-zero risk always remains. Assuming the sets used to model observation errors
are accurate and correct, interval resolution methods can estimate the solution set

20



2.2. Buffer State of the Art

for the vehicle state in a guaranteed fashion. This feature of interval analysis makes
such methods well suited to safety-critical applications where the solution needs to
be guaranteed. In cases where some constraints can be broken, q-relaxation methods
have been developed to allow q constraints not to be satisfied. This enables these
methods to deal with some potentially unreliable observations.

Such methods have been used for autonomous vehicle applications. [Wang and
Lambert, 2018] have solved the localization problem using low-cost sensors combined
with a map of the environment. The map is an interval map in which features are
referenced directly as sets. One of the main advantages of interval analysis and
constraint programming is the ability to add highly non-linear constraints. [Drevelle
and Bonnifait, 2013] used this feature of interval methods to solve the localization
problem in urban canyons. Using a map of the drivable space, the authors added
constraints to limit the solution set to points on the road. Using q-relaxation, they
were also able to deal with spurious observations caused by multipath and non
line-of-sight measurements.

Localization and SLAM do not require past estimates to be conserved. The current
interval states are simply updated. Some applications (e.g. surveying) require past
states to also be estimated. The interval representation of space can be extended
to time to create tubes, interval functions over time. Constraints over the time
dimension can then be introduced to perform tasks such as loop closures [Aubry
et al., 2013, Rohou et al., 2018].

Interval analysis has several drawbacks. If the sets used to model the observa-
tion are not accurate, no solution can be found. This problem is addressed by
q-relaxation techniques but this increases computational cost significantly if a lot of
observations have to be considered. Hence, the methods are best suited for use with
accurate sensors for which observation set can be defined accurately. Also unlike
with probabilistic approaches, interval methods do not benefit from receiving the
same observation multiple times. With probabilistic methods, receiving the same
information twice result in an increased confidence in the solution. Because interval
methods are guaranteed methods, receiving the same set twice does not bring more
information.

Probabilistic and interval methods are not mutually exclusive. Both Kalman filtering
[Tran et al., 2017] and particle filtering [Abdallah et al., 2008, Merlinge et al., 2016]
have been extended to use intervals. The state vectors (and covariance matrices for
Kalman) are then modeled using intervals rather than single values.
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2.3. Proposed Architecture

2.3.1. Motivation And General Outline

Autonomous vehicles require the localization system to perform several tasks in order
to provide a good enough solution. Indeed, the localization system is subject to many
potential error sources that need to be considered in the estimation to produce an
accurate solution. It is therefore required to develop a generic architecture able
to cope with all the error sources while maintaining the strict requirements of an
autonomous vehicle localization system.

Real world measurements are not perfect measurements that can be used naively to
estimate the vehicle state. Measurements suffer from delays that can be caused by
transmission delays or by the computational time required to produce the measure-
ment. Moreover these delays being different for every sensor (and not necessarily
constant) the measurements can be received by the localization system in a different
order that they were produced.

Measurements can also be ambiguous. Measurements of geo-referenced features are
particularly prone to ambiguities as matching detection to map features is hard.
Dealing with such ambiguities is detrimental to the accuracy and integrity of the
localization system.

Even if accurate matches can be found, the observations can have errors due to
inaccurate prior information. Indeed, maps are static snapshots of the environment
that are only valid at the time the mapping is done. It is therefore essential for
the localization system to include or enable the inclusion of mechanisms to either
mitigate or eliminate such faults.

Localization systems are also affected by longer-term problems. As the vehicle ages,
parameters that might have been assumed static are found to change slightly. Tires
wear out, and sensor biases slowly change over time.

While all the aforementioned problems need to be considered, the localization system
needs to succeed in its main goal, to provide an accurate and high frequency real-
time localization solution.

To address these problems while satisfying the requirements of an autonomous ve-
hicle localization system, a layered architecture is presented. Each layer runs at a
different rate to perform different tasks aimed at improving localization. The layers
are depicted on Figure 2.2 with the functions they perform and each function is
detailed in the following subsections. This framework relies mostly on the Filtering
Layer which is in charge of computing the current localization solution in real-time.
The other layers are there to assist the main layer for tasks that are not achievable
in real time. Two supporting layers are included in this framework to perform tasks
aimed at either helping the real time localization (matching layer) or future drives
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Figure 2.2.: Buffered Localization Architecture

(post processing layer). The main layer is independent of the supporting ones and is
only aware of the observations it has available. The supporting layers help the local-
ization either by affecting the observation available for localization or by updating
parameters used by the main localization layer. The following section explains in
more details this structure and the sharing of information between layers.

2.3.2. Observation vs Measurements

The localization system uses several types of sensors to estimate the vehicle state.
In this work a distinction is made between measurements and observations.

Some sensor outputs are ready to be used for state estimation. They do not require
further processing. These sensors include proprioceptive sensors, pose from GNSS
receivers, etc. These particular sensor outputs will be referred to as observations.
Observations are measurements for which the observations vector z, the observation
model x 7−→ h (x) (with its Jacobian H) and the covariance matrix R (such that
z − h (x) ∼ N (0,R)) are known. Observations are therefore ready to be used in a
filtering scheme.

Some sensor outputs received by the localization system are not considered as obser-
vations. These include lane markings and road signs. The measurement (distance
to lane marking or road sign position) might be available but the observation model
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of such measurements cannot be directly known. The measurements need to be
matched to mapped features in order to be able to predict the expected observa-
tion. Once the matches of the measurements have been found, the measurements
are considered to be observations as they can be used for state estimation.

In Figure 2.2, measurements are represented by empty circles. The observations
are filled circles. The system has several buffers containing these measurements.
All buffers are sensor buffers that can contain both observations and simple mea-
surements. Thus the buffers contain measurements that are not yet usable in the
estimation process. The main estimation process does not try to turn measurements
into observations, this is left to the parallel Matching Layer to do.

Measurements do not necessarily become observations in the localization system.
Some measurements might not have corresponding map features. These measure-
ments will thus never be used to estimate the vehicle state. However, these measure-
ments are not useless as they can be used in post-processing strategies to improve
the map.

It is important to note that some measurements of map features can be directly
observations. For instance, this is the case for map-aided detection systems. When
the detection system actively searches for a specific map feature, there is no matching
needed and the outcome of the detection system is directly an observation that can
be used. In Appendix E a map-aided crosswalk detection system is presented. The
system searches for crosswalks based on areas of interest stored in the map. If a
crosswalk is detected no association is needed as the detected crosswalk is assumed
to be the crosswalk referenced in the map in the area of interest. This detector
therefore directly outputs an observation.

2.3.3. Real-Time Filtering Layer

The main layer is aimed at providing the actual localization solution. It performs
the fusion of observations to estimate the vehicle state in real-time. This layer is
agnostic to the type of observations available, it simply estimates the state based on
the given observations. Although it is affected by tuning parameters (biases, etc.),
the variables that most affect it are the observations.

This layer has to provide high frequency estimates in real-time, thus it does not
perform computationally expensive tasks. Matching measurements to features and
parameter tuning are delegated to the two other layers of the localization system.

2.3.3.1. Handling delays

This layer does solve some of the problems when performing state estimation for real
systems. In particular observation delays can be dealt with efficiency in real-time.
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Figure 2.3.: Comparison of buffer updates with and without observation delays.
When observations have no delays (a), the new state estimates are ob-
tained with a single update (b). However, when observations are delayed
(c) or updated, previous states have to be recomputed (d).

Instead of using augmented states, this layer deals with delays by recomputing the
states. To do this, the observations are not used directly as they are received. In-
stead, the observations are stored in an observation buffer. The observations are
added to the buffer at the appropriate place such that they are correctly ordered
by measurement times instead of arrival times. The observation buffer therefore
describes the available observations as if the system had no delays (of course the
observations that have not been received yet cannot be known in advance). Ad-
ditionally, the state estimates are also stored in a buffer such that the estimation
can be restarted from an earlier time and to provide the other processes with the
states that have been estimated with observations from the sensor buffer. In the
general case, new observations are received without delays and added to the end of
the measurement buffer (as shown in Figure 2.3 (a)). These observations are used
to estimate the next state (Figure 2.3 (b)). However, if observations are received
with delay, the last state estimates have to be recomputed to include the delayed
observation at the appropriate time in the estimation (Figure 2.3 (c, d)).

Storing measurements in a buffer in the correct order compensates the effect of
reception delays. However, it does nothing to solve for the difference between mea-
surement timestamps and estimation timestamps. Indeed, the states are estimated
at a regular pace regardless of the times of the received measurements. The processes
are asynchronous. Therefore the measurement timestamp will never be exactly the
same as the estimation timestamp. Some measurements will not be influenced much
by this difference. Speed, yaw rates or distances to lane markings do not vary sig-
nificantly in an estimation period Te. Thus these observations can be used without
further consideration. Some measurements can be very sensitive to this. In par-
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(a) (b) (c)

Figure 2.4.: Effect of unhandled delays on state estimation. (a) shows the true situ-
ation at measurement time, (b) shows the visible situation at estimation
time, (c) shows the result of estimation without accounting for delays

ticular, road signs measurements need to be carefully used. Indeed, as road sign
measurements can influence the vehicle estimated orientation. At common vehicle
speeds, the predicted observation can vary in the order of decimeters. As Figure 2.4
illustrates, this can result in the apparition of biases in the estimation of the vehi-
cle yaw that have disastrous influence on future state estimation. At 10 m/s not
accounting for the difference between observation times and estimation times can
result in errors of 20 cm. Such errors on a road sign observed 10 m away from the
vehicle results in errors of over one degree. To prevent this problem, the observation
needs to be fused at the proper time. To handle such small delays, the observation
model h (·) is slightly changed. Since the observation is not related to the state at
time k but to a state at time k − ε (where ε < 1), the observation model has to be
modified to relate the delayed observation at time k − ε to the computed state at
time k. This is done using the standard evolution model f (·) applied on a negative
time step −ε (noted f−ε) as shown in Equation 2.27.

zk−ε = h (f−ε (xk)) (2.27)

The linearized version of this observation model is

Hk = Hk−ε · F k (2.28)

where Hk−ε is the Jacobian of h (·) linearized around f−ε
(
x̂k|k−1

)
and F k is the

Jacobian of f−ε (·) linearized around x̂k|k−1.

With this approximation, the difference between the measurement timestamp and
the estimation timestamp can be compensated without having to compute an inter-
mediate state separately for the delayed measurement.
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2.3.3.2. Gating

Another task performed by this layer is a simple gating before the fusion is per-
formed. Some observations provided to the localization systems might be noticeably
wrong. To remove such observations, a gating step is used. The gating step checks
the likelihood of the innovations yk given the predicted state x̂k|k−1. If obtaining
the innovation is too unlikely, the system rejects the observation and does not use
it. The observations that do not satisfy Equation 2.29

y>k S
−1
k yk ≤ G (2.29)

where the innovation ỹ is defined as in Equation 2.6.

The threshold G is chosen using a χ2 distribution as shown in Equation 2.30. It
depends on the dimension of the observation space dzk and of the risk α of rejecting
good observations.

G = F−1
χ2 (1− α, dzk) (2.30)

where Fχ2 is the cumulative distribution function of a χ2 distribution.

2.3.3.3. Interaction with Other Layers

Measurements are added to the sensor buffer whatever source they come from. How-
ever not all measurements are used for state estimation. Some measurements require
additional processing (e.g. matching) to be used. These measurements stay in the
buffer and will be used when these processings have been performed (for instance
by the low frequency layer).

This process continuously estimates the vehicle state. At each new time k, a new
state is estimated. To estimate the states, Kalman filtering is used as it enables
high-frequency estimation and provides uncertainty estimates. The filter can be run
from time k−1 to time k to estimate the new state based on the new observations. In
this framework, the filter is not simply run for one time step. New observations are
not necessarily added at the head of the measurement buffer. Therefore, the filter is
run from the most recent unaffected state. For instance, if a new observation (either
a new observation or an existing measurement that has been matched) has been
added to the buffer at time k−5, the filtering is run starting from the state estimate
x̂k−6|k−6 all the way forward to time k (thus 6 filtering steps). This process is done
to ensure that the state estimates buffer always accurately depicts the observation
buffer available at the time.

This process does not directly communicate with the low frequency and post-processing
layers. It is only affected by the sensor buffer and the tuning parameters. The state
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Figure 2.5.: Buffers updates performed by the matching layer. The state and sensor
windows (a) obtained from the Filtering Layer are used to find matches.
The states are first smoothed (b) to be used to find matches. Once
matches have been found some measurements become observations (c).

estimates are not corrected directly by the other processes. Instead the measurement
and state buffers are regularly extracted by the other layers, used to produce new
observations or tune parameters, the observation buffer and parameters are then
updated to reflect the new information. An update in an existing observation in the
sensor buffer will be treated as an entirely new observation and the filter runs from
a previous time to accurately account for the change.

Because of the limitation imposed to this estimation layer, few observations can
be used directly when they are added to the buffer. Only GNSS pose observations
and observations used for dead-reckoning do not need matches and can be used in
the estimation without intervention from the other processes (although tuning the
observation models of DR sensors is also essential).

2.3.4. Parallel Matching Layer over a Window of Data

The matching layer is here to assist the high frequency estimator. Since the high
frequency estimator needs to provide real-time localization, it cannot perform com-
puter intensive tasks. The matching layer runs in parallel at low frequency to per-
form those tasks and provides its result to the main estimator.

One of such tasks is the matching of detections to map features. While there are
fast matching methods that could be run at high frequency, the accuracy and relia-
bility needed for autonomous driving applications require the use of more advanced
matching strategies. These more computationally expensive methods are run at a
lower frequency to turn detected features into observations that can be used for state
estimation. The sensor buffer is updated to include the new observations. These
observations will be used in the next filter iteration to estimate the states.

This process is not a state estimator running in parallel with the high-frequency
estimator. It uses the state and sensor buffers saved by the main layer. Periodically
the top layer buffers are copied to the low frequency layer. The main estimator can
thus keep updating its buffer while the other process performs its tasks. Using the
state estimate buffers and the sensor buffer, the matches are found using the method
presented in Chapter 4. Some of the more dynamic parameters (the yaw rate bias
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Figure 2.6.: Recording of states and observations for post processing. The oldest
states and observations from the filtering layer (red) are not discarded
but rather moved to the end of buffers saved in the post-processing layer
(greed).

for instance) of the odometric model can also be tuned by the method described in
Chapter 3.

This layer only affects the main estimation through the matches and parameters it
provides. It does not directly update the states of the main layer. Once the buffers
are finished to be processed, they are discarded. The buffers from the main layer
are again copied and the process repeats.

Because the chosen estimation scheme is a Kalman filtering scheme, only the most
recent state xk is estimated using all available observations. The older states are
estimated using the observations available at their estimation time. Hence each
state in the state buffer is not estimated with the same information. Some processes
require an accurate estimate of all states in the buffer. To achieve this result with a
Kalman filtering scheme, a smoothing step is used. The first step of most algorithms
run by this layer is therefore to apply the Kalman smoothing step to improve the
states of the entire buffer as shown in Figure 2.5.

2.3.5. Post Processing over All Recorded Data

The final layer of the localization system is the post-processing layer. Although
once the end of the drive is reached, there is no point in improving the localization
itself, there are still processes that can be run to improve future drives. To perform
these tasks, all states and observations of the entire drive are recorded. When the
states and observations are purged (and therefore will not be updated) from the
filtering layer buffers (Figure 2.6 (b)), they are saved in long term buffers. These
buffers contain every filtered and predicted states as well as every observation used
to generate these states. The measurements that were not successfully matched
are also stored. The post-processing buffers will therefore grow indefinitely until
the post-processing tasks are run. This might happen at the end of a drive if the

29



2. Buffered Estimation Framework

available memory is sufficient to store all this data or happen periodically on long
sequences. In any case, the filtering layer does not consider these states and can
keep estimating the real-time state while only keeping a limited length buffer.

2.3.5.1. Calibration

Calibration is essential for the system to handle parameters that can vary. Odomet-
ric models involve several parameters that need to be regularly calibrated in order
to limit the natural drift of the estimate. Some parameters vary somewhat rapidly,
e.g. yaw rate bias, and therefore would need to be calibrated during the drive but
others vary much more slowly and can thus be calibrated using one drive for the
next. In particular, this is the case of wheel circumferences that will decrease as the
tires age and get used up. Slowly varying parameters can thus be estimated using
the information of an entire trajectory without requiring highly accurate ground
truth systems.

2.3.5.2. Map Errors

Map-aided localization is reliant on the accuracy of the map to provide accurate
localization. Maps are known to change and therefore the system needs a way
to detect errors in mapped features such that it can avoid using such features and
hopefully correct the error. The map matching will prevent obvious errors detectable
in real-time but post-processing offers the possibility of detecting more subtle errors
and to modify the map accordingly.

2.4. Conclusion

Several approaches aim at solving the localization problem using buffer of states
and/or observations. Some methods try to estimate the poses as a batch while other
uses sequential processing to achieve the same result. While global optimization
strategies should generally produce better estimates, they are hard to use for real-
time state estimation. Sequential schemes are very efficient and are already used
for time-sensitive applications but can have difficulties to cope with erroneous data
and non-linear systems.

The proposed framework, relies on a sequential strategy (Kalman Filter) to ensure
the real-time constraint of localization for autonomous driving are met. To cope
with the drawback of such methods, state and sensor buffers are used. Using a
multi-layer architecture, the buffers can be processed, at high-frequency to provide
the state estimate, at lower frequency for matching and parameter tuning, and
in post processing to detect map errors and further tune vehicle parameters. This
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structure enables the main estimation layer to benefit from more advance processing
while always being able to achieve its mission of providing high frequency real-time
state estimates. With this framework the problems of delayed, out-of sequence,
ambiguous measurements can be addressed without penalizing the time performance
of the estimation.

The next chapters will cover aspects of each layer starting with Chapter 3 on the
dead-reckoning and its calibration which is essential to the Filtering Layer. Chap-
ter 4 details the Matching Layer and Chapter 5 covers the map error detection
performed by the Post Processing Layer.
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3.1. Introduction

A strong Dead Reckoning (DR) system is essential for autonomous driving. As such
systems rely only on proprioceptive sensors, they are a system that works in most
situations as it is minimally affected by environmental factors. Dead-reckoning is
essential for safety as the vehicle always needs to be able to drive to safety areas
(emergency lane) in case of critical failures of the rest of the system.

The accuracy of dead reckoning system depends widely on the application. Ranging
from small robot odometry that drifts quickly to orbital launchers that rely heavily
on dead-reckoning and inertial measurements to navigate. Localization using DR
systems is subject to an unavoidable drift. This drift is firstly caused by the random-
walk phenomenon that emerges from the integration of proprioceptive measurements
over time and, secondly, by inaccuracies in the modeling of both the displacement
of the mobile frame and the observation models of the sensors. The proprioceptive
measurement errors are all the more significant that DR sensors are affected by
systematic errors (biases/scaling factors), which increase the drift of the localization
system. These parameters have to be tuned before the DR system can be used.

Commercial vehicles are already equipped with sensors enabling dead-reckoning esti-
mation. These sensors are used for Anti-lock Braking System (ABS) and Electronic
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Figure 3.1.: Graphic of a vehicle following the Ackermann steering geometry

Stability Control (ESC). Using such sensors and assuming that the vehicle follows
the Ackermann steering geometry (see Figure 3.1), the relative movement of the
vehicle can be inferred. Regular calibration is required as automotive grade sen-
sors have to be affordable [Harr and Schaefer, 2018] (and therefore prone to errors).
Vehicles have wheel speed sensors from which the vehicle speed and yaw rate can
be inferred. This can only be done by accurately knowing the wheel circumferences
ρXX

1. These parameters change slowly as the wheels are used. Vehicles also directly
provide an estimation of the vehicle longitudinal speed. This observation is affected
by a scaling factor av. The steering wheel angle is also measured by the ESC system
to know the driver’s intent. A yaw rate sensor is also used to provide measurements
of the vehicle rotation unaffected by environmental factors but subject to a bias
bω.

In this work two vehicles (shown in Figure 3.2) were used to test the method on
experimental data. The two vehicles are both Renault ZOEs but differ slightly.
Because one vehicle is the first generation of Renault ZOE and was modified to
enable autonomous control and the other is a standard production vehicle some
of the available information differ. The old Renault ZOE provides observations of
the steering wheel angle, the wheel encoder ticks, the yaw rate from the gyrometer
and the vehicle speed. The newest model does not provide wheel encoder ticks but
rather wheel rotation speeds. The steering wheel angle is also not available. The

1where XX corresponds to RL: rear left, RR: rear right, FL: front left, FR: front right
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Figure 3.2.: The two vehicles used to obtain experimental data. The gray vehicle
(left) is a first generation Renault ZOE ZE which was modified to enable
autonomous operation, the blue vehicle is a more recent Renault ZOE
ZE which has not been modified for autonomous control.

speed measurement is available but is not used for this vehicle as explained later in
Subsection 3.4.2. Since the available observations differ between the two vehicles, the
calibration parameters that will be estimated also differ. The wheel circumferences
ρXX and the gyrometer bias are needed for both vehicles but the scaling factor
affecting the speed measurement is not needed for the most recent vehicles. Hence,
six parameters, listed in Table 3.1, are estimated for the older vehicle while only five
parameters are estimated for the most recent Renault ZOE.

The next Section presents methods classically used for the calibration of such sys-
tems. The choice of the evolution model used is then detailed, followed by an
overview of the considered observations. Finally, the proposed calibration method
using smoothed state estimates is presented and an experimental evaluation of the
method is shown.

3.2. State of the Art

3.2.1. Zero velocity UPdaTe (ZUPT)

The simplest way to identify the gyro bias is to use the moment when the vehicle
is static. Indeed since the front wheels of vehicles cannot turn at 90 degrees, the
vehicle has to move to turn. Therefore, when the vehicle does not move the true
yaw rate should be zero. In practice, the measured yaw rate is not null and might
vary. For instance, on a Renault Zoe, the typical bias is in the same order of
magnitude as the yaw rate discretization step. The returned value when the vehicle is
stopped alternates between one and two multiplied by the discretization step. ZUPT
estimates the bias by averaging the returned values when the vehicle is stopped
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Table 3.1.: Dead reckoning sensors and parameters affecting their observation mod-
els. On newer vehicles, the speed measurement is not used. Hence, av is
only needed for older generations.

Renault ZOE First generation Second generation
Dead-reckoning data
Steering wheel angle ∆k X –
Wheel encoder ticks ∆XX

k X –
Wheel rotation speed ωXXk – X
Yaw rate ωk X X
Vehicle speed vCANk X X
Calibration parameters
Wheel circumference Rear-Left: ρRL X X
Wheel circumference Rear-Right: ρRR X X
Wheel circumference Front-Left: ρRL X X
Wheel circumference Front-Right: ρRR X X
Gyrometer bias: bω X X
Speed scaling factor: av X –

05:32 07:32 09:32 11:32 13:32 15:32
Time

0.04

0.02

0.00

0.02

0.04

Ya
w 

Ra
te

 E
rro

r (
ra

d/
s)

ZUPT=-0.001180 ZUPT=-0.001127

Yaw rate error
Rolling mean (on 100 values)
ZUPT

Figure 3.3.: Yaw rate error (blue) and estimated bias (red) using ZUPT.
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Forward
Robot

Forward

Figure 3.4.: Trajectories used for calibration. (a) Square calibration trajectory used
in [Borenstein and Liqiang Feng, 1995]. (b) Modified trajectory used in
[Lee and Woojin Chung, 2008] to enable car-like robot calibration.

[Basnayake, 2009]. The wheel encoders can be used to detect when the vehicle is
stopped, at which point the bias bω is computed,

bω =
1

|{k : vk = 0}|
∑
k:vk=0

ωk (3.1)

where vk is the vehicle longitudinal speed estimated using the wheel encoders.

Although ZUPT would appear to be able to estimate the true yaw rate bias, it ap-
pears on real trajectories that the bias cannot be well estimated simply by averaging
the static yaw rates. With Figure 3.3, it is clear that the real error (blue) is different
than the one estimated using ZUPT (red). Even though the ZUPT estimation is
correct when the vehicle is stopped, the bias changes when the vehicle is moving,
making the ZUPT estimate not entirely accurate.

3.2.2. Calibration using objective paths

Odometric systems not properly calibrated will result in large errors accumulated
over time. For a properly calibrated system, the noise affecting the estimate should
be centered. Hence, such systems would result in different estimates even if they
go through the same trajectory, each estimate being random. If the odometry is
not properly calibrated, the resulting estimates will not be completely random. The
estimates will have systematic errors, e.g. the estimates systematically drift left or
right of the expected trajectory.
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[Borenstein and Liqiang Feng, 1995] proposed a method to calibrate a tank-like robot
using a square trajectory. By having the robot perform the trajectory several times,
the authors are able to discern how the odometric system should be calibrated.

[Lee and Woojin Chung, 2008] have extended the approach to car-like robot by
replacing the square trajectory by an oblong shape.

In both cases the trajectory is chosen in order to make the interesting parameters
(wheel base, wheel circumference) easily observable using simply the final state
estimate.

This kind of method is conceivable for manufacturers. Vehicles could be tested on
specific circuits to calibrate vehicles before the sale. Although some parameters
are not expected to change throughout the vehicle operation (wheelbase), others
can change slowly (wheel circumferences) and some can even change within a few
minutes (gyro biases). Hence, a generic calibration method that does not rely on
specific trajectories is still required.

3.2.3. Online Estimation

Calibration can sometimes be done directly as part of the state estimation. Indeed,
calibration parameters can be seen as additional dimensions of the vehicle state.
Given proper measurements, the parameters become observable and can therefore
be estimated through Kalman filtering or other estimation schemes [Xiao et al.,
2019].

[Brunker et al., 2017, Zhao et al., 2016] have calibrated gyro bias and wheel cir-
cumferences using this approach. This strategy is also used with other estimation
schemes. For this application, the augmented state can be

xk =
[
xk yk θk vk ωk bω

]>
(3.2)

where bω is the gyro bias.

The observation model associated to a gyrometrer observation would be

ω =
[
0 0 0 0 1 1

]
xk (3.3)

There would be no difference between the yaw rate and gyro bias for the observation.
The estimation would only be different thanks to the evolution model which links
the yaw rate to the vehicle yaw (θk = θk−1 +Teωk−1) and does not link the gyro bias
to anything.

The yaw rate bias is not directly observable. It only becomes observable thanks to
the evolution model. This results in inaccurate estimation of the yaw rate and gyro
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bias at the start as there are no differences between the two. The gyro observation
would contribute entirely to the yaw rate estimation when the bias is not included.
While including the bias in the state results in the observation contributing to both
the yaw rate and the bias. At the start, the yaw rate is underestimated while the
bias is overestimated.

Adding calibration parameters to the state reduces the observability of the useful
element of the state. This phenomenon only worsen as more parameters are added.

Online parameter estimation has also been done using Marginalized Particle Filter-
ing. In fact [Lundquist et al., 2014] have shown faster convergence when estimating
wheel circumferences using particle filtering rather than Kalman filtering.

3.2.4. Calibration with a Ground Truth

When it is available, a ground truth on the vehicle state can be used for calibra-
tion. Ground truth can be obtained using highly accurate (and expensive) Inertial
Measurement Unit (IMU) and Real-Time Kinematic (RTK) GNSS systems. Since
ground truth provides the true states of a dataset, it can be used to obtain the
expected true observation using the observation models. The parameters can be
estimated in order to make the model best predict the observations actually ob-
tained.

Thus for a set of observations z(k), with the observation model h (xk,p) depending
on both the state and a set of parameters, the parameters can be estimated by
solving,

p = arg min
p

∑
k

(
z(k) − h (x̌k,p)

)2
(3.4)

where x̌k are the ground truth states.

If the observations have different noise models, the problem could also be weighted
by the observations covariance matrices Rk,

p = arg min
p

∑
k

(
z(k) − h (x̌k,p)

)T
R−1
k

(
z(k) − h (x̌k,p)

)
. (3.5)

In most cases, for dead-reckoning sensors, the noise model is the same for all mea-
surements. Therefore only Equation 3.4 needs to be solved in practice.

More recently, approaches using deep learning have been used. [Chong et al., 2016]
have used deep learning to better model temperature fluctuations of the gyrometer
(which affects the measurements). In [Brossard et al., 2020], the authors learned cor-
rections to apply to the measurements to reduce noise. Using this approach results
in lower drifts of the dead reckoning. [Chen et al., 2018] go even further by directly
estimating displacement using raw measurements fed into a neural network.
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3. Dead-Reckoning Model Calibration using Smoothing

3.3. Evolution Model

In order to predict the vehicle position based on internal measurements, an evolution
model needs to be used. The evolution model describes how the vehicle moves
relative to a previous pose. The choice of an evolution model affects the state vector
that needs to be estimated. Several approaches can be found in the literature.

For vehicle control, a dynamic model is often preferred. Modeling the vehicle dy-
namic enables to account for effects such as tire deformation, shock absorbers, which
can be relevant at regular vehicle speeds [Kong et al., 2015].

Localization generally uses, simpler, kinematic models. Although such models can-
not model the various strengths affecting the system, they only require estimating
the first derivatives of the state variables leading to a lighter estimation process.
Kinematic models differ in the hypothesis they make to model the system.

A kinematic point model considers the state xk =
[
xk yk θk ẋk ẏk θ̇k

]T
. The

evolution model is trivial as the derivative of the main variables are already included
in the state. With this model the vehicle movement is not constrained. For this
reason this model is typical of unconstrained GNSS localization. A generic GNSS
receiver is not constrained to move in a particular direction as such this model
is appropriate. Moreover all variables can be observed by the receiver using the
pseudoranges for xk and yk and the Doppler measurements for ẋk and ẏk. Drones
are also a type of robot for which this model is appropriate.

Unlike drones, cars are constrained in the way they can move. A car cannot simply
move in any direction, it is constrained to move along its heading θk. As such,
the two velocity components ẋk and ẏk are functions of the vehicle heading and its
longitudinal speed vk. This model, often referred as the Tank model (or unicycle),

has the state vector xk =
[
xk yk θk vk θ̇k

]T
. A discrete evolution model of

this representation [Fouque et al., 2008] with a time period Te small enough and a
constant speed assumption is:


xk+1

yk+1

θk+1

vk+1

θ̇k+1


︸ ︷︷ ︸
xk+1

=


xk
yk
θk
vk
θ̇k


︸ ︷︷ ︸
xk

+Te


vk cos

(
θk + Te

2
θ̇k

)
vk sin

(
θk + Te

2
θ̇k

)
θ̇k
0
0

 (3.6)

This model does not include all the constraints of a car movement. Indeed, vehicles
are not only constrained in their velocity but also in their rotation. Cars cannot
turn while staying in place. They have to move (forward or backward) in order
to rotate. This effect is considered in the Bicycle model. Instead of modeling the
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vehicle rotation directly using its yaw rate θ̇k, it is modeled instead using its front
wheel angle δk. As explained in the following section, the two front wheels of cars do
not have the same angle. For this reason, the angle of a virtual front wheel is used
instead, the virtual front wheel is placed centered between the actual front wheels
of the vehicle. The change in heading of the vehicle can be expressed using its speed
vk, the virtual front wheel angle δk and its wheelbase (distance between the rear and
front wheels) lRF . An evolution model [Kong et al., 2015, Rajamani, 2006] of the

state xk =
[
xk yk θk vk δk

]T
is derived as

xk+1

yk+1

θk+1

vk+1

δk+1


︸ ︷︷ ︸
xk+1

=


xk
yk
θk
vk
δk


︸ ︷︷ ︸
xk

+Te


vk cos θk
vk sin θk
vk
lRF

tan δk
0
0

 (3.7)

Although this model describes the vehicle possible movement more accurately, it has
not been chosen for the evolution model. Indeed, the predictions obtained using the
evolution model are only as good as the accuracy of the state estimates. Therefore,
the ease with which the variables of the state vector can be estimated needs to
be considered when choosing an evolution model. The yaw rate can be derived
from many observations (gyrometer, rear wheel speeds) with a linear model whereas
the steering wheel angle is only available through a single measurement. Moreover,
observations can rarely be modeled using the steering angle with a linear (or at least
simple) model. For these reasons, the tank model is chosen to model the vehicle
movement in this work.

3.4. Observations

Modern vehicles are equipped with several proprioceptive sensors that can be used
for DR. In this section, the sensors and observations used in this work are presented.
Additionally, the observation from a GNSS receiver is detailed as it is needed to avoid
drifts of the estimation thus enabling a better calibration.

3.4.1. Wheel Speed Sensors

3.4.1.1. Rear Wheels

Wheel speed sensors are installed on all four wheels of most commercial vehicles.
They are not only used to provide the driver with the vehicle speed but are also
used by ABS and ESC to improve the vehicle braking or steering. These sensors
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Figure 3.5.: Comparison of the rear wheel speed measurements (red) and wheel tick
measurements (blue).

Figure 3.6.: Graphic of the wheel speeds on a four-wheel vehicle following the Ack-
ermann steering geometry
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3.4. Observations

are tachometers that consist in two parts: a toothed wheel and a detector. The
detector senses when each tooth of the wheel passes in front of it (a tick). Using
this signal, the speed of the vehicle can be deduced in two ways. By counting
the number of ticks, the rotation of the wheel can be deduced. This measurement
has the advantage of having a fixed measurement noise. Hence, the wheel rotation
can be accurately tracked across a long time span. The only uncertainty of the
system concerns the beginning and end of the measurement window. Since only an
integer number of ticks can be measured, the position of the wheel at the beginning
can only be known within a one tick interval. The same applies to the end of the
measurement. Consequently, the error of a tick differential (equivalent to the wheel
rotation) follows a triangular distribution within the interval

[
−1; 1

]
tick. The

other measurement type is obtained not by counting the ticks within a time interval
but by timing the interval size between two ticks. The angle traveled by the wheel
within a tick being constant, knowing the time it took to happen, the speed of
the wheel is computed. This method provides a measurement of the wheel speed
with some uncertainty which depends on the accuracy of the clock used to time the
interval.

Sensors used on vehicles have few ticks per wheel turns (48 on a Renault ZOE) and
provide measurements at high frequencies (100 Hz). With so few ticks and given
typical vehicle speeds, the counted number of ticks does not change much from one
measurement to the next which results in very noisy estimates of the wheel speeds.
Timing the interval between ticks provides measurements much less noisy.

In both cases the observation model of each sensor can be derived from geometric
considerations [Bonnifait et al., 2001]. From the Ackerman geometry, the speeds of
each of the four wheels can be derived using the vehicle longitudinal speed and its
yaw rate. The rear wheels have the simplest model as they do not turn and are
aligned with the mobile frame center.

Under the assumption that the vehicle body is a rigid body, the speed of the body
at the point of the rear left wheel can be expressed using the vehicle longitudinal
speed vk and its rotation rate θ̇k. Assuming that the wheel is not subject to slipping,
the speed of the wheel at the point of contact with the road expressed in the body
frame (see Appendix A for a complete description of the vehicle frames) will be
equal and opposite to the speed of the wheel center in the global frame. The sensors
used in vehicles are not directly able to measure negative velocities. Therefore, the
speed of the wheel at the contact point is computed simply as the speed of the point
WRL (see Figure 3.6). The speed of the rear left wheel is obtained using the vehicle
longitudinal speed vk and by adding the velocity caused by the lever arm between
the estimation center and the wheel.

d
−−−−→
OWRL

dt
=

d
−−→
OM

dt︸ ︷︷ ︸
longitudinal velocity

+
d
−−−−→
MWRL

dt︸ ︷︷ ︸
velocity due to rotation

(3.8)
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By expressing the vector coordinates in the global frame, the velocity of the wheel
is obtained.

[
ẋRLk
ẏRLk

]
=

[
vk cos θk
vk sin θk

]
+
d

dt

[
− lR

2
sin θk

lR
2

cos θk

]
(3.9)

=

[
vk cos θk
vk sin θk

]
+

[
− lR

2
θ̇k cos θk

− lR
2
θ̇k sin θk

]
(3.10)

=

(vk − lR
2
θ̇k

)
cos θk(

vk − lR
2
θ̇k

)
sin θk

 (3.11)

The measured speed of the vehicle rear left wheel vRLk is the norm of the aforemen-
tioned vector,

vRLk =

√
(ẋRLk )

2
+ (ẏRLk )

2
(3.12)

=vk −
lR
2
θ̇k (3.13)

The velocity of the rear right wheel is obtained from the same reasoning. The
observation model for the tick measurements is

∆RL
k =

Nwheel

ρRL
∗ TWT ∗

(
vk −

lR
2
θ̇k

)
(3.14)

∆RR
k =

Nwheel

ρRR
∗ TWT ∗

(
vk +

lR
2
θ̇k

)
(3.15)

where Nwheel is the number of ticks per turns, ρXX is the circumference of the wheel
XX, TWT is the period of Wheel Top measurements.

For the measurement of the wheel rotation speed, the observation model is

ωRLk =
2π

ρRL
∗
(
vk −

lR
2
θ̇k

)
(3.16)

ωRRk =
2π

ρRR
∗
(
vk +

lR
2
θ̇k

)
(3.17)

Under the assumption of movement without slippage, the only errors affecting wheel
tick measurements are the measurement errors due to the integer nature of tick
measurements. The measurement error for any tick number XXk is described by
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a uniform distribution between 0 and 1. Therefore the measurement error of the
differential ∆XX

k = XXk−XXk−1 is described by a triangular distribution centered
on 0 and ranging from −1 to 1. This error far outweighs other sensor noise that
could occur and is therefore the only observation noise considered in this model.

Since this model is used in a Kalman filtering scheme, the error model needs to
be approximated by a Gaussian distribution. The previous distribution is often
approximated by a zero-mean Gaussian distribution with standard deviation σXXk =
1.0.

Wheel speed measurements are not subject to these discretization errors. These
errors can be modeled by Gaussian distributions. The numerical value for the wheel
speed noise is given in the experimental results.

3.4.1.2. Front Wheels

The front wheel observation model is more complex but can be obtained using
Ackermann steering geometry (see Figure 3.6). Unlike most methods using front
wheel measurements, the angle of the virtual front wheel is not part of the state
vector. The observation model has to be expressed using the yaw rate instead.
Similarly to the rear wheels, the velocity of the front wheels is a combination of the
longitudinal velocity vk of the vehicle and of its yaw rate θ̇k. Expressing Equation 3.8
for the front left wheel in the global reference frame results in,

[
ẋFLk
ẏFLk

]
=

[
vk cos θk
vk sin θk

]
+
d

dt

[
lRF cos θk − lF

2
sin θk

lRF sin θk + lF
2

cos θk

]
(3.18)

=

[
vk cos θk
vk sin θk

]
+

[
−lRF θ̇k sin θk − lF

2
θ̇k cos θk

lRF θ̇k cos θk − lF
2
θ̇k sin θk

]
(3.19)

=

(vk − lF
2
θ̇k

)
cos θk − lRF θ̇k sin θk(

vk − lF
2
θ̇k

)
sin θk + lRF θ̇k cos θk

 (3.20)

Hence, the velocity of the front left wheel is

vFLk =

√
l2RF θ̇

2
k +

(
vk −

lF
2
θ̇k

)2

(3.21)

The observation model of tick measurements is therefore,
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∆FL
k =

Nwheel

ρFR
∗ TWT ∗

√
l2RF θ̇

2
k +

(
vk −

lF
2
θ̇k

)2

(3.22)

∆FR
k =

Nwheel

ρFR
∗ TWT ∗

√
l2RF θ̇

2
k +

(
vk +

lF
2
θ̇k

)2

(3.23)

For the measurement of the wheel rotation speed, the observation model is

ωFLk =
2π

ρFR
∗
√
l2RF θ̇

2
k +

(
vk −

lF
2
θ̇k

)2

(3.24)

ωFRk =
2π

ρFR
∗
√
l2RF θ̇

2
k +

(
vk +

lF
2
θ̇k

)2

(3.25)

It is important to note that the front wheels are more subject to slippage. Hence,
the model is not valid when the vehicle experiences high accelerations. This limi-
tation is acceptable since an autonomous vehicle should drive smoothly and limit
accelerations for the passengers’ comfort.

Also, the wheel tick being highly discretized measurements, it has been observed that
using wheel ticks only for dead-reckoning results in highly unstable estimation of the
vehicle yaw rate. This problem disappears as other observations (e.g. gyrometer and
steering wheel angle) are used for the estimation.

The noise model used for the front wheels is the same as the one used for the rear
wheels.

3.4.2. Speed observation

A measurement of the vehicle speed is also available through the vehicle Controller
Area Network (CAN) bus. The exact source of this measurement is unknown. How-
ever, from the level of discretization, it was deduced that it most likely is an estima-
tion of the vehicle longitudinal speed computed using the wheel rotation speed.

Because this measurement is most likely already computed using wheel rotation
speeds, it will not be used for estimation when wheel rotation speeds are used (it is
not used on the latest Renault ZOE). However, it is useful to have when only wheel
ticks are used. Indeed, even though wheel ticks enable dead-reckoning, they result
in unstable estimations. This is due to the resolution of the wheel encoders used
on commercial vehicles. This is not a problem for localization as the errors due to
the discretization will average out. However, it can be a problem for other systems
(e.g. control) that expect a smooth estimation of the speed. For that reason this
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measurement is used only with wheel tick measurements. Since this observation
almost directly corresponds to the vehicle longitudinal speed, it is only affected by
a scaling factor av. Its observation model is simply,

vCANk =
[
0 0 0 av 0

]
xk (3.26)

3.4.3. Gyrometer

The vehicle is equipped with several MEMS sensors among which is a gyrometer.
The gyrometer provides measurements of the vehicle that, unlike information ob-
tained from wheel speed sensors, are unaffected by slippage issues. However, the
measurements are, as it is the case for every affordable gyrometer, noisy and subject
to biases. The measurement ω of the sensor cannot be directly used as an observa-
tion of the vehicle yaw rate as it would result in an integration of the bias leading to
highly inaccurate estimation of the vehicle heading. This results in the observation
model described by,

ωk = h (xk) = θ̇k + bω (3.27)

where bω is the gyrometer bias that has to be estimated.

The uncertainty attached to this observation has been evaluated by comparing ωk to
h (xk) with xk being the ground truth state. From this analysis, the measurement
uncertainty has been found to be described by a Gaussian noise centered on the bias
bω with standard deviation σωk

= 0.003 rad/s.

3.4.4. Steering Wheel angle

For the ESC to work properly, it needs to know the position of the steering wheel
in order to prevent over or under steering. The steering wheel angle is therefore
measured and available through the vehicle CAN Bus. The steering angle is useful
because it defines fairly directly the angle of the front wheels.

The front left and front right wheels of the vehicles do not follow the same orien-
tation, as shown in Figure 3.7. Indeed, taking the reasonable assumption that the
vehicle is a rigid body, it always rotates around a point (possibly infinitely far away
when there is no rotation). As such, the wheel on the inside of the curve has to
perform a tighter turn than the other wheel. The steering wheel does not control
directly the angles of the real wheels but rather the angle of a virtual wheel located
on the longitudinal axis of the vehicle.

The virtual front wheel angle δk can be found using the longitudinal speed vk and
yaw rate θ̇k. Using ground truth measurements, the virtual front wheel angle is
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Figure 3.7.: Graphic of the virtual front wheel angle obtained assuming the vehicle
is a rigid body.

computed, as shown in Equation 3.28, to find how it relates with the steering wheel
observation.

δk = atan2
(
lRF θ̇k, vk

)
(3.28)

As can be seen on Figure 3.8, the relationship between the measured steering wheel
angle ∆k and the virtual front wheel angle δk is linear depending only of a reduction
factor aδ between the steering wheel and the virtual front wheel angle.

The observation model of the steering wheel angle is,

∆k = aδ atan2
(
lRF θ̇k, vk

)
(3.29)

3.4.5. GNSS

Inertial and odometric sensors are not sufficient for localization. These sensors
produce estimates that inevitably drift with time. Using proper calibration, the
drift can be significantly reduced. This is achievable by estimating the parameters
(bias, scaling factors) that influence the observation models.

The sensors presented up to this point make only two pieces of information observ-
able, the vehicle speed vk and its yaw rate ωk. The gyro provides information about
the yaw rate only. The measurements of the wheel encoders involve both the speed
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Figure 3.8.: Relationship between the measured steering wheel angle and the true
angle of the virtual front wheel (obtained using the ground truth velocity
and yaw rate). The two variable are clearly linearly dependent of each
other.

and yaw rate and the steering wheel angle constraint the estimated yaw rate based
on the vehicle speed. Therefore there is a redundancy in the source of information
for these two variables. This enables partial calibration to be done without new
sensors. For instance, the gyrometer bias can be partially estimated based on the
yaw rate estimated using wheel speeds. However, some amount of bias will remain
as wheel speeds themselves are not perfect measurements. To properly calibrate
the observation models, an additional sensor is required. A sensor preventing the
estimation to drift will result in better calibration. GNSS receivers offer such a
solution.

By measuring the distance from the receiver to orbiting satellites, the positions of
which are known, GNSS receivers are able to provide an estimation of the position
of the receiver. The receivers provide positions obtained from pseudo-distances
but also speed measures thanks to the Doppler effect affecting the satellite signals.
The heading of the vehicle can be obtained from the direction of the speed vector
assuming that the vehicle does not slide (unlike in marine applications).

In this work the GNSS pose is used as an observation. The observation model for the
GNSS pose is obtained by considering the lever arm between the receiver position
and the position of the vehicle reference frame (see Figure 3.9). The model described
by Equation 3.30 only accounts for a lever arm aligned on the vehicle longitudinal
axis.
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Figure 3.9.: Lever arm of the GNSS receiver antenna
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Figure 3.10.: Error of the GNSS position estimation in the East and North direction.
The colors represent the number of satellites available. The data was
obtained using a ublox-M8T receiver in Compiègne.

xGNSSyGNSS
θGNSS

 =

xkyk
θk

+ lGNSS

cos θk
sin θk

0

 (3.30)

As the receiver measures the heading based on the observed speed, the heading
cannot be trusted when the vehicle is static. Indeed, even when the vehicle is
stopped, the receiver will measure small speeds. These small speeds are due to
noise. The direction is therefore entirely a result of the noise and are not related
the vehicle orientation in any way.

The main issue with automotive grade GNSS receivers is their noise model. Indeed
such cheap receivers produce errors highly correlated in time (see Figure 3.10). This
can be interpreted as a slowly moving bias affecting the GNSS estimate. The cause of
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this is twofold, the measured distances to the satellites suffer from correlated noise
themselves (mainly from atmospheric delays) and the estimates produced by the
receiver are not the result of a snapshot estimation (such as Least Square Estimation)
but are rather the result of a filtering scheme. While this enables the estimates to be
generally more accurate, it has the disadvantage of producing time-correlated noise
that will affect further estimations. Because of this, the noise model used in the
experiments is chosen larger than what is claimed by the receiver used. The specific
noise model used is detailed in the experimental section.

3.5. Calibration

The parameters of the observation models change with time. Therefore it is essential
to continuously re-calibrate the parameters. Since commercial vehicles cannot be
expected to have high accuracy sensors able to provide ground truth measurements,
ground truth calibration is not possible. However, autonomous vehicles host a wide
range of sensors that together provide accurate localization for autonomous vehicles.
Hence, the localization solution has to be close to the ground truth. In this work,
the estimated states are used for calibration instead of the ground truth states.
Theses states having been estimated using multiple sensors, the bias of one sensor
is partially corrected by the others.

To further improve the filtered state estimates, Kalman smoothing is used. The
buffer of state estimates is smoothed in order to propagate backward the accuracy
gained from new observations. Once this is done, all states of the buffer have
been estimated using all available measurements of the system. The observations
older than the states have been considered through the filtering and the future
observations have been considered by the smoothing. This is the best state estimate
obtainable based on the available measurements.

The smoothed states x̂k|N are then used as a substitute to the ground truth states
and the parameter calibration problem becomes,

p = arg min
p

∑
k

(
z(k) − h

(
x̂k|N ,p

))2
(3.31)

This minimization problem can be solved in our particular case using Least Squares
because h is linear with respect to p for a given value of x̂k|N . Since each pa-
rameter pi appears in only one equation, the problem can be solved as multiple
one-dimensional problems instead of one 6-dimensional problem.

As such, additive parameters such as the gyro bias is estimated using the mean as
described in Equation 3.32
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Table 3.2.: Standard deviations of the dead reckoning sensors.

Observation Gyrometer Speed Wheel ticks Wheel speeds Steering
Std. Dev. 0.003 rad/s 0.1 m/s 1 0.23 rad/s 0.02 rad

bω =
1

N

N∑
k=1

(
ωk − ˆ̇θk|N

)
(3.32)

Multiplicative parameters such as av are given by

av =
(
V >V

)−1
V >

v
CAN
1
...

vCANN

 (3.33)

with V =
[
v̂1|N . . . v̂N |N

]

3.6. Experimental Results

3.6.1. Experimental Setup

The calibration method has been tested on several trajectories recorded with two
experimental vehicles. A Renault ZOE first edition first recorded some trajectories
in 2018 with data from the gyrometer, wheel encoders, and steering wheels. An-
other Renault ZOE for which measurements from the gyrometer and wheel speeds
are available was later used to record new trajectories in 2020. Both vehicles are
equipped with a low-cost ublox M8T receivers configured to use the Global Position-
ing System (GPS) and Global Navigation Satellite System (GLONASS) constella-
tions. The noise model used for this sensor is not the one provided by the receiver,
as it is too optimistic, but instead a large constant variance noise will be used. The
standard deviation of the model is chosen at 2 meters in both dimensions. This does
not directly solve the problem of the biased noise but will enable more accurate sen-
sors presented in Chapter 4 to influence the estimate more. Hence, the influence, on
the state estimates, of the biased position observations will be reduced. The same
high accuracy localization system (SPAN-CPT) with RTK corrections was also used
to obtain ground truth states.

The standard deviations of the sensors used in these experiments is detailed in
Table 3.2.

The evolution model noise used in the calibration experiments is presented in Ta-
ble 3.3. It is important to note that at this stage the consistency of the estimation
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Table 3.3.: Standard deviations of the evolution model noise. The values for the
speed and yaw rate are chosen large such that their estimation is driven
by the observations.

Dimension Position Orientation Speed Yaw rate
Standard Deviation 10−3 m 10−5 rad 10 m/s 1 rad/s

Figure 3.11.: Trajectories used to calibrate the parameters. (a) was used to calibrate
trajectories recorded in 2018. (b) was used to calibrate trajectories
recorded in 2020.

is not studied. The noise was chosen such that it correctly describes the drift of the
localization starting from an accurate position. Because of the biased GNSS obser-
vations, the estimation would not be consistent with those values. In the following
chapters, to improve the consistency of the estimates the standard deviations set for
the position and yaw are increased respectively to 10−2 m and 10−4 rad.

For each set of experiments a calibration trajectory was used while the other tra-
jectories were only used for evaluation. The two calibration trajectories are shown
in Figure 3.11. More details about the vehicles and datasets can be found in Ap-
pendix A.

3.6.2. Parameter Estimation

The parameters calibration has been performed using the method described in the
previous sections and compared to the well-known Zero Velocity Update (ZUPT)
method. The method described in this work uses the smoothed estimates as sub-
stitutes for the ground truth. We therefore also compare it to a calibration where
the ground truth is available. The ZUPT method estimates the yaw rate bias by
averaging the yaw rate measurements when the vehicle is stopped and therefore not
turning. The other parameters, speed scale factor and wheel circumferences are set
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Table 3.4.: Parameters calibration results (ZUPT is used to calibrate bω only, the
other parameters are the defaults).

Method
bω av ρRL ρRR ρFL ρFR

(rad/s) (m) (m) (m) (m)

GT −0.00298 0.987 1.9166 1.9164 1.9134 1.9129
Ours −0.00279 1.0 1.9198 1.9197 1.9177 1.9159

ZUPT −0.00194 1.0 1.92 1.92 1.92 1.92

Table 3.5.: Dead reckoning drift using different calibration methods.

Method position mean error position error standard deviation

GT 0.79% 0.39%
Our method 0.81% 0.51%

ZUPT 0.93% 0.57%

at their nominal values (1.0 for the speed scale factor, 1.92 m for the wheel cir-
cumferences). Table 3.4 details the parameters estimated using the two methods.
The estimated gyro bias is noticeably different between our method and the ZUPT
technique. It can be noted that estimating the gyro bias by comparing the mea-
surements to those of a high accuracy IMU yield a bias of -0.00298 rad/s on the
calibration trajectory and -0.00269 rad/s on the testing trajectory. This method
therefore manages to estimate the yaw rate bias within a 7% margin of error which
is vastly better than by using the ZUPT technique (error of 35%). Regarding the
speed scale factor and the wheel circumferences, the results are very close to the
default values. This can be explained by the fact that the experimental vehicle is
driven very little compared to personal vehicles. Hence, the wheels are not worn
out.

To evaluate the quality of the calibration process and the performance of the dead
reckoning method, we have carried out other experiments using a different, 5 km
long, testing trajectory. The state has been initialized using the ground truth.

3.6.3. Drift Evaluation

We use the following methodology to evaluate the drift. When a DR distance of
100 m has been traveled, the difference between the estimated position and the
ground truth is computed and recorded. The state is then corrected using the ground
truth and the process continues. The quality of the dead reckoning is evaluated as
the average distance drifted per 100 m. The results of the experiments are reported
in Table 3.5 and the error distributions are shown in Figure 3.12.

In the context of autonomous driving it is also useful to know how long one can drive
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Figure 3.12.: Horizontal error distribution after 100 m traveled in DR.
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Figure 3.13.: Distance traveled in DR before reaching an error of one meter.

using DR without going outside of the lane. To evaluate this we apply a similar
strategy than previously but this time the estimation is not corrected every 100 m
but only when the estimation error reaches 1 m. The result of this test is shown in
Figure 3.13. The proposed method increases quite significantly the DR navigation
performance. Based on this experiment, we estimate that the car is able to maintain
a 1-meter accuracy at least during 100 meters and sometimes it can be more than
200 meters. It should be noted that since the estimation is corrected only once the 1
m threshold is reached, the epochs at which the corrections happen are different for
the two methods. This results in DR starting at different epochs and so comparing
the results is difficult.

3.6.4. Dead Reckoning Estimation Results

The trajectories obtained by the different parameter calibration methods are com-
pared in Figure 3.14. Both ZUPT and our method are significantly better than using
standard parameters. This highlight the importance of calibrating the sensors. Our
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Figure 3.14.: Dead-reckoning results with different calibration methods.

method performs slightly better than ZUPT which is most likely due to the better
estimation of the gyro bias.

3.6.5. Iterated estimation

An approach to further improve the parameter estimation is to perform it iteratively
on the same trajectory. Indeed, the parameter estimation can only be as good as
the state estimates it is using. The first estimated parameters are estimated using
a trajectory computed with un-calibrated parameters. It stands to reason that the
same trajectory would be estimated more accurately with calibrated parameters.
That trajectory can then be used to re-estimate the parameters. The parameter es-
timation can therefore be performed iteratively using the same calibration trajectory
to iteratively improve the parameter estimation.

The result of iterative parameter estimation is shown in Table 3.6. It can be seen
that the gyro bias is already well estimated after the first estimation. The follow-
ing iterations barely improve the estimation with the third iteration producing a
slightly worse estimate. While the gyrometer bias was already well estimated, the
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Figure 3.15.: Results of estimated trajectories using dead reckoning on two trajec-
tories

Table 3.6.: Calibration of the parameter using the same trajectory iteratively.

Iteration bω ρRL ρRR ρFL ρFR

1 -0.00245 1.9184 1.9174 1.9212 1.9221
2 -0.00253 1.9185 1.9176 1.9215 1.9223
3 -0.00254 1.9184 1.9175 1.9214 1.9222

Ground truth -0.00250 1.9112 1.91364 1.9150 1.9159

wheel circumferences could be further improved. Across the iterations the wheel
circumferences only change by tenth of a millimeter. There still remains an error of
several millimeters in their estimate. Hence, a single iteration using the smoothed
trajectory already enables to reach the best parameters. To improve calibration
additional more accurate and redundant sensors would be required.

It can also be noted that the estimation of wheel circumferences using the new vehicle
(which provides wheel speeds) is worse than that obtained on the old vehicle (which
provides wheel ticks). In particular, the front wheel circumferences in Table 3.4 are
closer to the ground truth estimates than those of Table 3.6. This could be explained
by the fact that wheel ticks are used in the estimation with a higher amplitude
noise model. Hence, wheel ticks contribute only partially to the estimation of the
vehicle speed (which the wheel circumferences influence most). By providing pose
observation, the GNSS receiver also enables the Kalman filter to estimate the vehicle
speed. The lower noise model of wheel speed measurements might cause the speed
estimates to be too directed by these observations. Using more accurate position
observations might alleviate this problem but more testing is required.
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Table 3.7.: Comparison of parameters estimated using Kalman filtered and Kalman
smoothed trajectories

bω ρRL ρRR ρFL ρFR
Filtering -0.00002 1.9180 1.9178 1.9209 1.9225

Smoothing -0.00245 1.9184 1.9174 1.9212 1.9221

3.6.6. Comparison of Filtering and Smoothing

This work uses trajectories obtained from Kalman smoothing to estimate the cali-
bration parameters. Smoothing the trajectory estimated using Kalman smoothing
has some computational cost, albeit small. The necessity of this step should there-
fore be studied.

Table 3.7 compares the results of parameter estimation using the trajectory esti-
mated with Kalman filtering directly and the ones obtained with the same trajectory
smoothed. The gyrometer bias estimate clearly shows that smoothing produces bet-
ter estimates. Using Kalman filtering only, the gyrometer bias cannot be estimated.
A meaningful bias is only obtained using Kalman Smoothing. Because the speed
and yaw rate have an unknown evolution model, their associated noises are chosen
high such that their values are driven by the observation. Hence, biased observations
result in biased state estimates. With the sensor set used in these experiments, the
GNSS orientations are the only direct observations of the vehicle yaw. Because the
evolution model links the yaw and yaw rate, during the filtering their errors become
correlated. This enables Kalman filtering to improve the yaw rate estimate when
an observation of the yaw is obtained. However, because of the high noise model
put on the yaw rate, this improvement is only effective at the times when GNSS
observations are available. Their contribution on other states is entirely drowned by
the noise model of the evolution. Smoothing addresses this issue. The improved yaw
estimates obtained from the GNSS observation are propagated backward to other
states leading to overall better yaw estimate. This in turn leads to better yaw rate
estimates and therefore results in better parameter calibration.

3.7. Conclusion

Calibration is essential to accurate localization for intelligent vehicles. The system-
atic errors caused by an un-calibrated system are detrimental to the localization
accuracy. Moreover, DR needs to be reliable in emergency situations as it is the
only system relying only on proprioceptive sensors. For that reason, vehicles need
to be calibrated regularly. Wheel circumferences do not change quickly but still
need to be updated regularly. Although gyrometer biases have been found to be
relatively stable, they do change by about 100 µrad/s in a day.
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3.7. Conclusion

Using Kalman smoothing, the proposed approach manages to estimate the cali-
bration parameters affecting the proprioceptive sensor observation model. This
approach does not rely on specific trajectories and does not increase the cost of
localization. Instead, the method works in parallel of the localization system.

Using proper calibration, the drift of the dead reckoning system is reduced. This
enables the localization system to rely more on DR. This in turn enables the local-
ization to be more tolerant to delays and to use processes leading to more delays.

This contribution has been presented at the International Conference on Robotics
and Automation (ICRA) [Welte et al., 2019a].

Further research is needed to evaluate the influence of the length of the calibration
trajectory on the parameter estimation. Parameters, such as the gyrometer bias,
that have a strong influence on the state estimation should be easier to estimate.
These parameters could be estimated with a few seconds of trajectory while others
might require more estimates.

Additionally, it would be interesting to hybridize the estimation with a good IMU.
The vehicle does have accelerometers (from the ESC) but their low accuracy has
made them impractical to use for localization.
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4.1. Introduction

Localization using GNSS has known recent advances (e.g. Precise Point Positioning
[Domı́nguez Tijero et al., 2018]), however, it does not yet yield, on its own, the
accuracy required by intelligent vehicles [Tijero et al., 2019]. Moreover, its accu-
racy can be affected by the environment (multipath and non-line-of-sight measure-
ments) [Jiang et al., 2019]. Adding dead-reckoning to GNSS improves significantly
the performance of the localization but may still not be sufficient for autonomous
driving. To reach a satisfying accuracy, methods using maps have shown some suc-
cess [Tao et al., 2017, Bürki, Mathias et al., 2019, Fouque et al., 2008, Ghallabi
et al., 2019b].

Vehicles are starting to get equipped with cameras and lidars that give the vehicle
the capacity to perceive its environment. Beyond the usefulness of these sensors
to detect moving objects (pedestrian, vehicles), they can also be used to obtain a
local representation of the vehicle surroundings. Hence, by comparing this perceived
representation with mapped information, localization can be achieved.

Using maps for localization brings challenges that other sensors do not suffer from.
Localizing the vehicle within a map, using the observations obtained from percep-
tion sensors, requires a matching step to be performed. Matching, that is, finding

61



4. Map-Aided Localization with a Spatio-Temporal Matching

correspondences between measurements and map features, is challenging. Indeed,
state estimation errors combined with maps numerous candidate features often make
the matching ambiguous. Maps often contain thousands of features that can lead to
measurements. Even in a local vicinity around the vehicle, tens of features are po-
tential matching candidates. The problem is all the more difficult as maps are now
often provided by third parties (e.g. HERE, TomTom, Baidu) rather than self-built
using SLAM techniques.

Several strategies exist to deal with this problem. Using robust estimation schemes,
unreliable matching can be dealt with at the estimation stage. This can be done by
adding a Fault Detection and Exclusion (FDE) step before using the observations
in the estimation [Al Hage et al., 2020]. With this method the matching system
does not have to produce perfect matches. In this work, a different approach is
used. Instead of dealing with errors at the estimation stage, the problem is dealt
with at the matching stage. The matches are chosen carefully to limit the risk of
incorrect matches. The two approaches, are of course, not mutually excursive and
should both be used in a complete localization system.

In this work, the matching problem using traditional matching strategies is improved
using prior processing. The matching relies on buffers of observations and state
estimates to increase the details of the representation of the world available when
matching. Smoothing and adjustment of the state estimates used to perform the
matching is also used to reduce the influence of bad localization.

In the next section, different matching methods used in the literature are presented.
The measurements, lane markings, road signs and crosswalks, used in this work
are then detailed. The matching strategy performing an adjustment step is finally
explained and experimental results of the method are presented.

4.2. State of the Art of Matching Methods

4.2.1. Traditional Matching Strategies

Traditional matching strategies use distances between measurements and features
to choose the correct matches. In this work, the Mahalanobis distance is used as it
accounts for the measurement uncertainty. Three matching strategies are detailed
next and a comparison of matching results is shown in Figure 4.1.

4.2.1.1. Nearest Neighbor (NN)

Nearest neighbor association is widely used to associate high level observations to
map features [Ghallabi et al., 2019a, Tsuchiya et al., 2019, Leonard et al., 1992].
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(a) (b) (c)

Figure 4.1.: Comparison of matches selected using traditional matching methods
(assuming the measurements have similar uncertainties). The two black
lines are the map features (lane markings) and the two red dots corre-
spond to measurements. (a) shows nearest neighbor matching (NN), (b)
shows unique nearest neighbor matching (UNN), (c) shows Hungarian
matching (HG).

To account for the measurement uncertainty and the propagated uncertainty of the
state estimates, the nearest neighbor association is performed using Mahalanobis
distances rather than Euclidean distances. It is also useful for rejecting unlikely
associations.

Hence, an observation z
(k)
j is associated with the map feature mi of the map M

such that

mi = arg min
mi∈M

(√
y>i,jS

−1
i,j yi,j

)
(4.1)

where yi,j is the residual of observation z
(k)
j if matched to feature mi,

yi,j = z
(k)
j − hi (x̂k) (4.2)

and Si,j its covariance matrix,

Si,j = H iP kH
>
i +Rj (4.3)

x̂k is the estimate of the vehicle state at time k, H i the Jacobian of hi, P k and Rj

the covariance matrices of respectively the state estimate and the measurement.

With this method, the measurements are associated with the nearest (uncertainty
weighted) feature. To prevent matches to be too far from each other, a maximum
value for the association is set. As for the gating step seen in Subsubsection 2.3.3.2
on page 27, the maximum distance is set using a χ2 test with a risk α of rejecting
good matches,

y>i,jS
−1
i,j yi,j < F−1

χ2 (1− α, dzk) (4.4)

This test is used in all subsequent matching methods.
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4.2.1.2. Unique Nearest Neighbor (UNN)

The previous matching allows a single feature to be associated with multiple
measurements. This may be useful if the detection system has a tendency to
over-segment. In most applications with state-of-the-art detection systems, over-
segmentation either rarely occurs or is dealt with before providing the measurements.
As such the matching can be performed under the assumption of one-to-one associa-
tions between measurements and features. To achieve this, the previous method can
be modified in order to remove matches that would result in multiple measurements
matched to the same feature.

Thus in the case where several observations are associated with the same feature,
only the one with the shortest Mahalanobis distance is kept. The other matches are
discarded from the matching process. These observations will not have correspond-
ing features and will therefore not be used for the state estimation.

4.2.1.3. Hungarian method (HG)

The Unique Nearest Neighbor can either match an observation with its closest fea-
ture, or not match the observation at all (if the closest feature is closer to another
observation). Munkres algorithm [Munkres, 1957] performs a global matching con-
sidering all observations at time k. Like the UNN method, it only allows features to
be associated with a single observation. However, it does not necessarily associate
an observation with its closest feature. The method finds matches that minimize the
summed Mahalanobis distances of all selected matches [Kaess et al., 2008]. Hence,
at time k for an observation set Z(k) of size J , it will find the subset M k ⊆ M
containing J features so that

M k = arg min
Mk⊆M

( ∑
mi∈Mk

√
y>i,jS

−1
i,j yi,j

)
(4.5)

where mi is the feature associated with the observation z
(k)
j .

As such the Hungarian allows measurements to be associated to any feature if it
decreases the overall matching cost. Although the traditional Hungarian method
always associates every observation to a feature (assuming enough features are avail-
able), in most practical cases a match is considered valid if the matching distance

is small enough. To account for this, the distances
√
y>i,jS

−1
i,j yi,j are saturated to a

maximum value. Doing so results in observations far from all features to have the
same association cost for all features. Therefore such observation can be matched
to any feature. Not accounting for this, an observation far from any feature would
be matched to its closest feature to reduce the overall cost. Saturating the distance
enables this observation to be matched to any feature leaving other observations to
be matched with their corresponding features.
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4.2.2. SLAM-oriented approaches

Simultaneous Localization And Mapping (SLAM) domain led the development of a
variety of approaches pertinent for the matching problem addressed in this work.
Indeed, a mandatory step in SLAM consists in matching current observations with
previously established estimates of environment features.

4.2.2.1. Multi-Hypothesis Estimation

When the matching cannot be performed with enough confidence, one approach is
to compute solutions for all potential matches. When two matching candidates are
possible, the two solutions are computed. The two solutions represent two matching
hypotheses that cannot be discarded at the time of the estimation. With new
observations one of the two hypotheses will become clearly wrong while the other
will hopefully stay relevant. The wrong hypothesis can then be discarded. This
process can happen every time there is a matching ambiguity. Thus, the number of
hypotheses that need to be tracked can grow quickly as a new ambiguity doubles
the number of hypotheses.

[Hsiao and Kaess, 2019] have extended the iSAM estimation strategy to account
for such ambiguous associations. While standard iSAM relies on a factor graph
composed of nodes (variables) linked by factors (function linking the variables).
MH-iSAM adds multi-hypothesis factors. These factors essentially consist of two
potential standard factors. By adding such factors, multi-hypothesis nodes need to
be added as well. Depending on whether the estimation is performed by taking one
hypothesis or the other, the estimates will differ. Nodes therefore become MH-nodes
when multiple solutions need to be stored. Every time a new MH-factor is added,
the number of potential hypothesis doubles. In practice, this is not the case as some
hypothesis can be incompatible with each other. A hypothesis tree is created as
MH-factors are added to track potential hypothesis. The branch of the tree can be
eliminated when hypotheses incompatible with each other are found.

With this strategy, MH-iSAM is able to deal with multiple hypothesis efficiently.
As the computational complexity can double each time a new hypothesis is added,
it is more computationally expensive than the standard iSAM. It is mainly aimed
at handling ambiguous loop closures in SLAM problems rather than ambiguous
matching of specific observations to features.

4.2.2.2. Multimodal Noise Models

In most state estimation strategies, the noises affecting the system are assumed to
follow Gaussian distributions. When there are multiple potential hypothesis, one
way to represent these hypotheses is through multimodal distributions. Researchers
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have extended the standard estimation strategies to non-Gaussian distribution to
deal with heavy tailed distributions or non-symmetric ones [Rosen et al., 2013]. In-
stead of considering multiple hypothesis as different factors following each Gaussian
distribution, they can also be represented as a single factor with a multimodal noise
model.

[Olson and Agarwal, 2013, Doherty et al., 2019] have extended iSAM2 techniques
to multimodal noise models through a clever approximation. Although multimodal
noise models do not enable the same efficient iterative estimation used by iSAM, ap-
proximating a multimodal distribution by whichever mode is maximum, does. With
this approximation, multimodal problem can be solved efficiently with iSAM. The
mode which is not maximal at the current linearization point is not irrelevant as
during the estimation, other measurements might shift the state estimate thus shift-
ing the linearization point where another mode becomes maximal. This, however,
has the disadvantage of resulting in the most recent estimate to heavily depend
on maximal mode. The most recent estimate does not greatly benefit from this
strategy. The main benefit comes to past estimates which have added enough mea-
surements to stabilize their linearization point. Hence this method only accounts for
multiple hypothesis in the long run. For autonomous driving applications where the
real-time estimate is the most important, this method is not suited. Safety critical
applications cannot afford to pick whichever mode is maximum and wait for new
measurements to be added to stabilize the estimate. The matches that are used for
estimation need to be accurate when they are used. It would be safer not to perform
matching and wait for the ambiguity to be resolved.

4.2.3. Combined Constraint Data Association (CCDA)

[Dube et al., 2017] have proposed a matching strategy using graph cliques to find
globally consistent matches. A graph is built by adding a node to the graph for every

pair
(
z

(k)
j ,mi

)
of measurement and feature that are candidates. The candidates are

found using vector descriptors obtained from point cloud clusters. Each node (can-

didate matches) are connected to each other if the distance dz =
∥∥∥z(k)

jX
− z(k)

jY

∥∥∥2

be-

tween the observations of one match X :
(
z

(k)
jX
,miX

)
and the other Y :

(
z

(k)
jY
,miY

)
is the same (within a predefined interval) as the distance dm = ‖miX −miY ‖2 be-
tween the features of one match and the other. Therefore, graph edges are added

for every two pairs
(
z

(k)
jX
,miX

)
and

(
z

(k)
jY
,miY

)
which verify |dz − dm| < ε (with ε

a chosen threshold).

Once the graph is built, the matches are selected by finding the biggest clique (fully
connected nodes). The biggest clique corresponds to the highest number of matches
that are consistent with each other (in terms of measurement and feature distances).
The matches of the clique are finally used for the state estimation.
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This method is applied by the author in a context of place recognition with two-
dimensional measurements. In this work measurements of different dimensions: lane
markings (one-dimensional) and road signs (two-dimensional) are used. The distance
between those two types of features depends on the vehicle orientation. Moreover
as the state estimate uncertainty is not considered, ambiguities would arise as the
width of lanes is fairly similar for all roads and little information is available to filter
out candidate matches (no description vector is available).

This method is interesting for its use of relative distances between a set of obser-
vations and a set of potential features. Indeed, information on relative distance is
usually under-exploited in the matching process, though it can enable discarding
wrong matches.

In the following work, traditional matching strategies are used. The method pre-
sented in this thesis aims at improving the quality of the matches obtained with
these methods.

4.3. Observation Models of Features Georeferenced
in Maps

The concept of map is understood here as prior knowledge about the road network
with georeferenced features. This section details the observation models a vehicle
can use for localization when it is equipped with exteroceptive sensors (e.g. cameras
and lidars) that are able to detect features stored in the map. In this section, we are
interested in painted side markings on pavements and road signs. These are quite
easy to obtain with optical sensors and their information is often recorded in the
map.

We were also interested in the detection of crosswalks with a lidar. The results of
this study are presented in Appendix E. They are not detailed in this chapter as
they provide very infrequently and less accurate measurements than measurements
on road signs.

4.3.1. High Definition Maps

Digital maps become a constitutive element of any vehicle oriented applications,
from almost any passenger car, to autonomous vehicle prototypes, including smart-
phone applications dedicated to navigation.

Data included in maps as well as the format according to which this data is organized
vary substantially depending on the targeted usage. However, in the intelligent
vehicle domain, vector maps are widely adopted. In contrast with raster maps in
which geographical data is organized in geo-referenced grids, vector maps contains
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road features individually described with its position, attributes and relationships
[Buckley, 1992]. Large coverage vector maps commercially available, take the road
as elemental to describe the road network. Attributes are associated to roads (e.g.
number of lanes, speed limits, driving direction). This is well suited for human
guidance and navigation assistance applications, however, highly automated and
autonomous vehicle applications require a more detailed description. So-called High
Definition maps (HD maps) therefore take driving lane as elementary geometry.

Map aided localization requires a map with referenced information. The measure-
ments can then be compared to the map to improve localization. The techniques
used for map-aided localization vary greatly as existing maps are diverse. Using
coarse maps of the road geometry every satellite navigation system can match an
imprecise position to a road. In this instance, the goal is not so much to improve
localization but rather provide the user with a smooth display of the localization.

HD maps are not a clearly defined type of maps in the literature. They themselves
differ greatly depending on their application and building method. Among HD maps,
two categories can be identified. Dense maps record points or pixels irrespective of
what the points represent. These maps represent the world in a low-level represen-
tation with little understanding or consideration for specific features. The size of
such maps make them hard to scale to large areas. Vector maps on the contrary do
not store points but rather specific features that are useful. Each feature can have
attributes describing it in more detail and relational information can also be saved
in the map. Unlike dense maps, vector maps are much lighter therefore do not suffer
from scalability issues. However, they require processing to extract features, that
can often still require human intervention and can result in mapping errors. In both
cases the maps need to be referenced with centimeter levels of accuracy to be useful
for localization. In this work, HD vector maps are used.

Many formats exist to store vector maps. Here, maps are stored in Spatialite
database. Spatialite consists of an SQL database with additional features useful
to retrieve geographic data. Each type of feature is contained in tables which can
be linked with themselves (e.g. lane centers link to next and previous lanes) or with
others (lane markings refer to the lane center along which they are). Spatialite adds
to SQL, a spatial indexing feature that enables quick retrieval of information based
on areas of interest. For instance, Spatialite enables to retrieve data locally within
a given radius around the vehicle.

Spatialite as most vector map databases handles three main types of geometry that
are used to encode the features:

• points: two or three dimensional

• polylines: ordered series of points

• polygons: connected points forming a close shape
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Figure 4.2.: (a) Visualization of the map of the roundabout near the Benjamin
Franklin building of the University of Compiègne. (b) Aerial view of
the same area provided by the Institut géographique national (IGN).

Each element of the map is described using these elements with additional attributes.
Links describe the geometry of each of the lanes of the road with polylines (in green
on Figure 4.2 (a)). They also record attributes such as maximum allowed speed, lane
width, whether the line is within a crosswalk or a speed hump. Link borders describe
using polylines the lane markings, curbs, stop lines, etc. (in black on Figure 4.2 (a)).
They also contain identifiers for the type of feature (full, dashed, curb, etc.).

The road signs are also referenced in the map using points (in red on Figure 4.2
(a)). As for link borders, they also contain identifiers to the type of sign.

Some areas are also referenced in the map. Areas of interest are referenced using
polygons. They identify areas containing pedestrian crossings, speed humps, parking
spaces (in blue on Figure 4.2 (a)). The map contains additional features useful for
the navigation and control systems that are not detailed here.

4.3.2. Side Lane Markings using Vision

The road networks in most parts of the word are delimited by clearly identifiable
features. Roads are typically built out of asphalt which contrasts with the rest of
the ground. Roads are also often delimited by curbs and/or lane markings. Other
lane markings also separate the roads in different lanes or are used to signal stop
lanes, crosswalks, etc. These features provide important information for localization.
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Figure 4.3.: Polynomial representation of detected lane markings returned by a Mo-
bileye camera. The four parameters, C0, C1, C2 and C3, returned for
each marking describe the polynomial Cyj (x) = C0 +C1x+C2x

2 +C3x
3

where x is the distance in front of the vehicle.

Although road features are fairly sporadic along their track, there are numerous
features that can be detected across the road track.

Car manufacturers have started to equip vehicles with sensor able to detect such
features for lane crossing warnings or even lane keeping systems. Cameras provide
an affordable solution to detect these features leading to off the shelves smart camera
systems being installed on vehicles.

4.3.2.1. Camera-based Lane Detection

Smart cameras are nowadays equipping every middle and high grade passenger ve-
hicles. In this thesis, a Mobileye smart camera was used to detect lane markings.
Mounted on the windshield and behind the rear mirror, it takes pictures of the road
in front and provides a description of the road markings thanks to internal image
processing. Lane markings are described using polynomials as illustrated in Fig-
ure 4.3. Up to four polynomials can be transmitted by such a sensor. Additionally,
the sensors provide information on the feature type, width and color (although this
is not relevant for French roads).

The sensors being a black box from which the input image used for the detection
is not even available it raises some challenges. The sensor does not only perform
the detection but also the projection in a vehicle frame. This results in projection
that can be inaccurate as roads are not flat but often curved. Another issue is
that, although it provides the lateral distance to the lane markings, this distance
cannot be seen by the camera. The sensor therefore performs a tracking of the
detection combined with vehicle odometry to provide this information. This results
in observations bound to be temporally correlated which needs to be considered
when the fusion is performed.
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Figure 4.4.: Graphic of a lane marking observation.

4.3.2.2. Observation Model

Despite the sensor providing a third degree polynomial, only the first parameter C0

will be used for localization. C1 is accurate enough in most situations to be used but
it has been observed to have unacceptable errors in particular when turning at an
intersection. It will only be used to filter out potential matches rather than being
directly used in the estimation.

The observation model of C0 can be derived from geometric considerations. Fig-
ure 4.4 illustrates the notations used. RM denotes the vehicle body frame, centered
on M and oriented as the vehicle. The set of vectors−→m, −→n forms a base of this frame,
with −→m pointing to the front of the vehicle and −→n pointing to its left side. RC is
the sensor frame, centered on the front bumper at point C and oriented as RM (see
Subsection A.1.1 for a full description of each frames used). The observed segment is

defined using points A and B whose coordinates
[

0xA
0yA

]>
and

[
0xB

0yB
]>

are obtained from an HD map. The point C ′ represents the point measured on

segment AB such that
−−→
CC ′ = C0 · −→n .

The observation model of C0 can be obtained by realizing that
−−→
OC ′ can be expressed

in two ways, as shown by Equation 4.6 and Equation 4.7, either using a point of the
map (i.e. A) as intermediary or using points of the vehicle (M and C).

−−→
OC ′ =

−→
OA+

−−→
AC ′ (4.6)

−−→
OC ′ =

−−→
OM +

−−→
MC +

−−→
CC ′ (4.7)
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Thus C0 can be found using the scalar product such that,

C0 =
−−→
CC ′ · −→n (4.8)

=
(−→
OA+

−−→
AC ′ −−−→OM −−−→MC

)
· −→n (4.9)

=
−−→
MA · −→n +

−−→
AC ′ · −→n −−−→MC · −→n︸ ︷︷ ︸

=0

=
−−→
MA · −→n +

−−→
AC ′ · −→n (4.10)

When the vehicle is perfectly aligned with the observed marking,
−−→
AC ′ and −→n are

orthogonal therefore the observation model is simply

C0 =

[
xA − xk
yA − yk

]
·
[
− sin (θ)
cos (θ)

]
. (4.11)

In practice, there is always some level of misalignment thus an expression for
−−→
AC ′ ·−→n

is needed. To obtain this expression,
−−→
AC ′ can be expressed relative to

−→
AB such that−−→

AC ′ = λ
−→
AB, with λ a scaling factor. Therefore λ = 0 implies C ′ = A and λ = 1

implies C ′ = B. This variable also enables to discriminate whether or not the
measurements can be associated with a given segment since λ has to belong to [0, 1].
From this definition and by following vector decomposition rules, it follows that

λ
−→
AB =

−−→
AC ′ =

−→
AC +

−−→
CC ′ (4.12)

This expression links λ to
−→
AB and

−→
AC, which can be known from the map and

the vehicle state. However, it also involves
−−→
CC ′ which directly depends on the

observation. To eliminate this term, the scalar product with the vector −→m is used

as −→m is orthogonal to
−−→
CC ′.

λ
−→
AB · −→m =

(−→
AC +

−−→
CC ′

)
· −→m (4.13)

λ
−→
AB · −→m =

−→
AC · −→m (4.14)

λ =

−→
AC · −→m
−→
AB · −→m

(4.15)

Hence, λ only exists when the segment AB and the vehicle are not orthogonal which
is the case in practice as the sensor only provides measurements somewhat aligned
with the vehicle. Using this expression of λ, the observation model obtained in
Equation 4.10 becomes

C0 =
−−→
MA · −→n + λ

−→
AB · −→n (4.16)

=
−−→
MA · −→n +

−→
AC · −→m ×−→AB · −→n

−→
AB · −→m

(4.17)
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Figure 4.5.: Visualization of the terms of the lane marking observation model. The
first term is the lateral distance to the marking not accounting for the
relative angle between the marking and measured segment. The second
term accounts for this relative angle.

By expressing the scalar products using the vector coordinates, we obtain the ob-
servation model,

C0 = hLM (xk) (4.18)

=

[
xA − xk
yA − yk

]
·
[
− sin θk
cos θk

]
+

([
xk − xA
yk − yA

]
·
[
cos θk
sin θk

]
+ lx

)[
xB − xA
yB − yA

]
·
[
− sin θk
cos θk

]
[
xB − xA
yB − yA

]
·
[
cos θk
sin θk

]
(4.19)

This model is equivalent to other forms found in the literature [Tao et al., 2017]. The
aforementioned formulation is preferred as it preserves a geometrical interpretation.
As shown in Figure 4.5, the lane marking observation is composed of two parts. The
first part is the distance to the segment not accounting for misalignment between the
segment and the vehicle. The distance is expressed by the first term of Equation 4.19.
The second distance accounts for the misalignment between the marking and the
vehicle (second term of Equation 4.19).

4.3.2.3. Camera Calibration

Although the smart camera used in this work has been installed and calibrated
by the manufacturer, the experimental nature of such sensors forces us to further
calibrate the sensor output. Despite the camera providing the lateral distances to
markings directly in a horizontal frame bound to the vehicle, theses distances have
not been found to be perfectly calibrated. By comparing the measurements with the
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Figure 4.6.: Comparison of lane marking detection with uncalibrated sensors (a) and
after calibration (b).

map using ground truth positioning, some markings have been found to be further
in reality than their measures would suggest. This would result in a lateral bias
in the estimation which might not be dangerous on straight roads but will become
relevant when nearing intersections. With our sensor, we have found that marking
measurements on the left of the vehicle are systematically shorter than they should
be (see Figure 4.6). Hence, we compensate this effect by applying a linear correction
to left measurements. In our experiments, the left markings have been found to be
about 10% too short. The measurements provided to the localization system are
thus C0 for the right side and 1.1C0 for the left side.

4.3.2.4. Variance of the Noise of the Camera

The noise characteristics of the observation model have been studied by compar-
ing real observations to expected ones computed using the true vehicle pose. The
detections are matched to their closest map feature (within one meter) using the
ground truth states. The observation errors can thus be evaluated by studying the
distribution of these errors. Due to the limited field-of-view of the camera, exter-
nal markings (further on the sides) are detected further away. However the camera
returns a polynomial defined from the end of the vehicle front bumper (as shown
in Figure 4.3). The camera performs tracking of the markings as the vehicle moves
forward to provide the lateral distance to the marking. Since it cannot be directly
observed, uncertainty associated with C0 increases when the lateral distance to the
marking (i.e. |C0|) increases. It is difficult to obtain a continuous view to the error
depending on |C0| because lanes have regular width. Therefore, there are many
measurements for lane markings directly at the left and right sides of the vehicle
that describe the lane in which the vehicle is. There are also measurements of lane
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markings bordering the left lanes (as most lanes in right-side driving countries have
left lanes). However, there is almost no measurement of lane markings in between
those three distances or on the right side (as right lanes are rarer). Nevertheless,
there is a noticeable dependency of the measurement uncertainty with the observed
distances. Although with only three main data point the actual dependency cannot
be obtained, we assume in this work that the uncertainty varies linearly with |C0|.
This assumption is not critical as most measurements will fall near of the three
points anyway. The standard deviation of the lane marking observation is therefore
found to be,

σLM = 0.1C0. (4.20)

4.3.3. Road Signs Measurements using Lidar

Road networks do not only contain unidimensional boundaries, features such as road
signs provide two-dimensional constraints and in some cases an orientation. As such,
road signs should enable to greatly improve the localization accuracy. Road signs
are easily detectable using a lidar thanks to the intensity measurement. Indeed,
road signs are highly retro-reflective as required by European norms [EN 12899-1,
2007]. Therefore, the points hitting a road sign can be isolated using a threshold on
the point intensity.

4.3.3.1. Observation Model

Road sign measurements and map features are already in Cartesian coordinates.
They only differ by the reference frame in which they are expressed. Road sign

measurements
[
V xjk

V yjk
]>

are obtained in the sensor frame RV , whereas the refer-

enced feature (the road sign position
[

0xi
0yi
]>

) is known in the global frame R0.
Therefore, the observation model for road signs consists of a frame change,[

0xi
0yi

]
=0hRS (xk) (4.21)

=

[
cos θk − sin θk
sin θk cos θk

]([
cosMθV − sinMθV
sinMθV cosMθV

] [
V xjk
V yjk

]
+

[
MxV
MyV

])
︸ ︷︷ ︸Mxjk

Myjk



+

[
xk
yk

]

(4.22)

where
[
MxV

MyV
]>

is the translation between the sensor frame and the mobile
frame (see Figure 4.7) and MθV is the rotation between the two frames.
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Figure 4.7.: Graphic of a road sign observation. The lidar sensor measures the coor-
dinates of the road signs in its sensor frameRV , the road sign referenced
coordinates are in the global frame R0
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The observation model could also be expressed in the sensor frame RV as[
V xRS
V yRS

]
=V hRSi (xk) (4.23)

=

[
cosMθV sinMθV
− sinMθV cosMθV

]([
cos θk sin θk
− sin θk cos θk

] [
0xi − xk
0yi − yk

]
−
[
MxV
MyV

])
(4.24)

The former is preferred as it produces residuals that are expressed in the same ref-
erence frame (the global frame) whereas Equation 4.24 produces residuals expressed
in the mobile frame RM . Hence, the residuals can be compared to each other di-
rectly which will be useful for error detection. This is explained more thoroughly in
Chapter 5.

4.3.3.2. Sign Detector

Most lidars aimed at automotive applications provide a list of Cartesian points
(xi, yi, zi) with additional information (intensity: ii). A lidar scan of N points is
therefore defined as,

Ω = {pi}i∈J1,NK .

where pi =
[
xi yi zi ii

]>
. From this scan the points with intensities above the

selected threshold Imin can be isolated,

ΩRS = {pi ∈ Ω |ii > Imin}

ΩRS contains points of high intensities that correspond to road signs and other highly
reflective surfaces. As such ΩRS also contains points from vehicle license plates and
metallic surfaces that, with the right incidence angle, can be highly reflective. The
remaining points form small clusters. The clusters can be found using the Euclidean
clustering algorithm given in [Rusu, 2010]. Each cluster corresponds to a potential
road sign. The previous algorithm provides clusters as lists of points. The centroids
of these lists of points are estimated to be used as measurements. Therefore for each
cluster we compute [

V xjk
V yjk

]
=


max
pi∈Ωj

xi + min
pi∈Ωj

xi

2
max
pi∈Ωj

yi + min
pi∈Ωj

yi

2


Optionally the orientation of the road sign can be estimated using Principal Com-
ponent Analysis (PCA).
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Figure 4.8.: Graphic of frames in which the road sign measurement error has been
studied. The global frame R0 is the main reference frame in which the
localization solution and ground truth is obtained. The line-of-sight
RLOS frame is oriented in the direction of the line of sight whereas the
road sign frame RRS is oriented in the direction of the road sign (with
its axes orthogonal and along the road sign plate).
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4.3.3.3. Variance of the Noise of Road Signs Measurements

To model the noise of the observation, the ground truth states x̌k have been used
along with the measurements and observation model 0hRS(·). The observation error
is computed as, [

0ejk
0ejk

]
= 0hRS (x̌k)−

[
0xi
0yi

]
(4.25)

where
[

0xi
0yi
]>

are the geo-referenced coordinates of the map feature correspond-

ing to observation zjk. As a reminder, the sensor measurement does not appear
in this equation because it is part of the observation model 0hRS(·) as defined in
Equation 4.22.

Several noise models have been studied, because of the sensor and the type of feature,
one might expect the noise to be affected by the direction of the line of sign (LOS)
or the sign orientations (see Figure 4.8).

The noise model expressed in the global frame is found by computing the covariance
matrix of the observation error. We find

R =

[
(0.1146)2 −0.00045
−0.00045 (0.1073)2

]
(4.26)

The error expressed in the global frame has roughly the same variance along the
east and north direction. Also the two dimensions have almost no correlation.

Most road signs are flat. Because of this the accuracy of the road sign detection
should be better along the depth of the sign rather than along its width. Although
the road sign orientation is not stored in the map, it can be estimated for each
cluster using Principal Component Analysis (PCA). The median is used to find the
best estimated orientation θRSi of each observed road signs. Using these orientations,
the road sign oriented error is computed in the frame of each road sign (RS) as[

RSejk
RSejk

]
=

[
cos θRSi sin θRSi
− sin θRSi cos θRSi

] [
0ejk
0ejk

]
. (4.27)

The distribution of the errors is shown in Figure 4.9. Although there are some points
with higher errors along the road sign direction, this is not the case for most points.
This is confirmed by the covariance matrix obtained in this frame,

RSR =

[
(0.1170)2 0.00009
0.00009 (0.1075)2

]
(4.28)

From the estimated covariance matrix, no significant difference can be found between
the error distribution along the depth of the road sign and across its width. Hence
larger errors are not found in the road sign direction in most cases.
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Figure 4.9.: Distributions of road sign errors in the Road Sign (RS) frame. In black
are represented the 1σ, 2σ and 3σ ellipses.

As the lidar produces points using a rotating laser, one might expect the uncertainty
of the point position to be different in the Line-Of-Sight (LOS) direction and in its
non-LOS direction (see Figure 4.8). Hence the error has also been studied in this
frame by rotating the aforementioned error in the LOS frame (which is different for
every observation). This is achieved using the ground truth estimate of the vehicle
yaw θ̌k and the line-of-sight orientation in the vehicle frame θLOS, as[

LOSejk
LOSejk

]
=

[
cos
(
θ̌k + θLOS

)
sin
(
θ̌k + θLOS

)
− sin

(
θ̌k + θLOS

)
cos
(
θ̌k + θLOS

)] [0ejk
0ejk

]
(4.29)

The error distribution is the Line-of-Sight frame is shown in Figure 4.10. Unlike
in the RS frame, there seem to be some differences between the errors in the LOS
direction and those in the non-LOS direction. This is confirmed by the estimated
covariance matrix,

LOSR =

[
(0.0916)2 −0.00018
−0.00018 (0.1125)2

]
(4.30)

There seem to be a difference, albeit small, between the uncertainties along the LOS
direction and across the LOS direction. This difference can be explained by the
different sources causing the measurement error. The error along the LOS direction
is due to errors in the measurement of distances by the sensor. These errors are
due to errors in the measurement of travel time of the signal (timing errors). Errors
in the non-LOS direction are due to errors in the measurement of the sensor angle.
The two dimensions are affected by different measurement errors which can lead to
different uncertainties.
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Figure 4.10.: Distributions of road sign errors in the Line-of-Sight (LOS) frame. In
black are represented the 1σ, 2σ and 3σ ellipses.

The dependency of the errors to factors such as the distance to the detection has
been studied. As can be seen on Figure 4.11, the distance to detection does not
seem to affect the error. This can be expected in the LOS direction as the lidar
used measure distances based on time of flight whose accuracy is only dependent
on the clock accuracy. However, a dependency could be expected in the non-LOS
direction as the lidar does not produce measurements using pure lasers but rather
spots caused by the divergence of the beams. The horizontal beam divergence for the
VLP-32C lidar is 3.0 mrad which results in a 15 cm wide spot at 50 meters. Despite
this effect, no noticeable dependency has been observed. This is probably due to the
observation not being produced using a single point but rather by averaging several
ones.

The final noise model used in the estimation is chosen to follow the Line-Of-Sight
model. This model is chosen as it is the only one of the three studied ones that
exhibits a difference between the two dimensions. In other frame the dependency
is hidden as each road signs is oriented differently and they are observed with dif-
ferent line-of-sights. Only accounting for the direction of the line-of-sight, can the
dependency be observed. Therefore, the noise model used in the state estimation
is,

R =0 RLOS · LOSR · 0R>LOS (4.31)

where 0RLOS is the rotation matrix from the Line-Of-Sight frame to the global
frame.
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Figure 4.11.: Road sign error distributions in the LOS frame depending on the dis-
tance to the detection. The left boxplot shows the effect of the distance
on the error along the LOS direction, and the right boxplot shows the
error in the non-LOS direction. There is no noticeable influence of the
distance on the observation error.

4.3.3.4. Extrinsinc Calibration of the Lidar

Proper calibration of the sensor relative to the rest of the vehicle is essential for
localization. Bad calibration will result in systematic errors which introduces biases
in the estimation process. Calibration of the sensor position on the vehicle can be
done using high accuracy calibration equipment. This enables to localize the sensor
with millimeter accuracy in the mobile frame. Calibrating the sensor orientation is
more challenging. The Velodyne VLP-32C lidar is a cylinder offering no easy point
of reference of the sensor orientation from the outside. Thankfully the road sign
detector combined with the map and a ground truth positioning provide a simple
way to calibrate the sensor. Indeed, an incorrect calibration of the sensor orientation
will result in an observation error in the non-LOS direction as shown on Figure 4.12.
The best sensor orientation is found by finding the orientation that minimizes this
error. Although this has been done manually as it only needs to be done once per
dataset series and vehicle, it can be easily automated to be applied at larger scales.
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(a) (b)

Figure 4.12.: Effect of a bad calibration on observations of a single road sign. In
green is the geo-referenced road sign, in red are the measurements and
the blue lines represent the direction of line-of-sight of these measure-
ments (the length of the line is proportional to the distance to the
vehicle). (a) shows the result of a badly calibrated lidar, the error is
high when the vehicle is far and decreases as the vehicle gets closer to
the sign. (b) shows a properly calibrated lidar, the measurements are
spread around the sign with little effect of the distance to the vehicle.

4.4. Improving the Matching using an Adjustment
Step over the Parallel Window of Data

As introduced in the previous sections, we aim at taking benefit of detected road
features to improve localization accuracy and integrity. Observations are of two
kinds, namely one-dimensional (i.e. lane markings that provide no information
about the longitudinal position of the vehicle along the line) and multi-dimensional
(i.e. traffic signs and pedestrian crossings for which a position and orientation
can be observed). This section presents the matching processes developed for lane
markings only (one-dimensional) and its extension to any measurements (multi-
dimensional).

4.4.1. One-dimensional Case

Associating an observed lane marking with a map marking is often done using the
smallest distance between observation and map [Schreiber et al., 2013, Tao et al.,
2017]. This method highly relies on an accurate state estimates to prevent miss
matches between observations and map features. When the map contains a large
number of features and when the camera detects several lanes, matching ambiguities
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Figure 4.13.: Cross-section representing the steps used to associate observations with
markings. The top row illustrates the map and the true vehicle po-
sition. The middle row shows the measurement position relative to
the state. The last row shows the result after likelihood maximization
where the associations (dashed lines) are selected.

may become an issue for localization purposes. For that reason, the association is
performed in two steps. The first step is to find the transformation to apply to
the observations so that they best overlap the map. Then, the observations can be
associated with a marking by finding the closest marking after the transformation.
This process is illustrated in Figure 4.13.

4.4.1.1. Lane Markings Observations

As mentioned in Chapter 2, the marking measurements are not matched in real time
but rather are saved in a buffer to be matched in batches. Therefore, at an epoch
K, when the measurements will be matched to map features, a buffer from epoch
K − S to epoch K is available (where S is the size of the buffer). The set of lane
marking measurements is: {

Cj
k

}
j∈Λk,k∈JK−S,KK (4.32)

where Λk is the set of lines observed at time k, K is the end of the buffer and S is
the size of the buffer.

We aim at finding the best overlap between the observations and the map. To do so,
we first convert the measurements to points using the estimated vehicle state. For
each measurement, the two-dimensional points they correspond to are computed in
the global frame R0. These points are computed using X̂K =

{
x̂k|K

}
k∈JK−S,KK the

state estimates smoothed over the buffer as so,
0Xj

k = x̂k|K + lc · cos
(
θ̂k|K

)
− Cj

k · sin
(
θ̂k|K

)
0Y j

k = ŷk|K + lc · sin
(
θ̂k|K

)
+ Cj

k · cos
(
θ̂k|K

) (4.33)
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where lc is the distance between the vehicle frame and the camera frame, and x̂k, ŷk,
θ̂k are respectively the estimated east and north coordinates and heading at time k
of the observations.

The list of points is therefore written as:{[
0Xj

k
0Y j

k

]T}
j∈Λk,k∈JK−S,KK

(4.34)

It corresponds to multiple lane markings measurements. The coordinates of these
points are in the global reference frame. To simplify the rest of the computation,
both the map and the observed points are expressed into the vehicle frame RB (a
buffer frame) which is positioned and oriented based on the most recent state x̂K|K
of the buffer. This is done by applying the transformation:[

BXj
k

BY j
k

]
=

[
cos θK|K sin θK|K
− sin θK|K cos θK|K

] [
0Xj

k − x̂K|K
0Y j

k − ŷK|K

]
(4.35)

In the rest of this section, the observations in this local frame are referenced as:{[
BXj

k
BY j

k

]>}
j∈Λk,k∈JK−S,KK

(4.36)

4.4.1.2. Transformation Definition

To correctly associate the observations to the map markings, an adjustment step
is first performed to best overlap the measurements and the map. Indeed, there is
always a localization error due mainly to dead-reckoning drift.

The aforementioned points are two-dimensional and would therefore require esti-
mating a two-dimensional translation and a rotation. However, since lane markings
can only be properly detected in relatively straight lines, the longitudinal translation
cannot be estimated. Hence, only the lateral translation will be estimated. Also, in
this work, the estimation of the vehicle heading is assumed to be fairly good since
the evolution model used is well calibrated [Welte et al., 2019a]. Therefore, the
rotational component will not be estimated. Finally, only the lateral shift to apply
has to be found. Since the local frame of the vehicle is used, it is the shift along
the y-axis that needs to be estimated. We assume that the lateral correction to be
applied is the same for all points in the buffer. This hypothesis is very much in line
with observations we made experimentally during our first tests. It is valid only for
a buffer of rather short length. Therefore, the measurements will be shifted by δy
resulting in the following measurements at the end of the adjustment stage:{[

BXj
k

BY j
k + δy

]T}
j∈Λk,k∈JK−S,KK

(4.37)
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4.4.1.3. Map Modeling

To find the transformation δy that makes the observed points and the map best
overlap, the value δy that maximizes the likelihood of obtaining the set of points{[

BXj
k

BY j
k + δy

]>}
j∈Λk,k∈JK−S,KK

with the set of lane markings {mi}i∈J1,MK is

searched for.

From the law of total probabilities, the likelihood of measuring a point at the coor-

dinates
[
BXj

k
BY j

k + δy
]>

given a map composed of M markings is

Lx̂k|K

(
δy;

[
BXj

k
BY j

k

])
=p

([
BXj

k
BY j

k

]
; δy

)
= p

([
BXj

k
BY j

k + δy

])
=p

([
BXj

k
BY j

k + δy

]
|
[

BXj
k

BY j
k + δy

]
↔m1

)
P
([

BXj
k

BY j
k + δy

]
↔m1

)
+ . . .+

p

([
BXj

k
BY j

k + δy

]
|
[

BXj
k

BY j
k + δy

]
↔mM

)
P
([

BXj
k

BY j
k + δy

]
↔mM

)
+ C, (4.38)

where
[
BXj

k
BY j

k + δy
]> ↔mi means that the observation

[
BXj

k
BY j

k + δy
]>

cor-
responds to the marking mi, and C is a constant used to account for the case where
the observation does not correspond to any known marking.

Since no prior information is available as to which marking a particular observation

is associated with, P
([

BXj
k

BY j
k + δy

]> ↔mi

)
is considered identical for each

observation and marking and equal to 1
M+1

(C is also taken equal to 1
M+1

).

To simplify notations, we define

Lk,j (δy) = Lx̂k|K

(
δy;

[
BXj

k
BY j

k

])
(4.39)

and

Lk,j,i (δy) = p

([
BXj

k
BY j

k + δy

]
|
[

BXj
k

BY j
k + δy

]
↔mi

)
(4.40)

Lk,j,i is modeled as a Gaussian distribution centered on the marking and spreading
along the y-axis. Hence, for a marking mi the likelihood of measuring the point[
BXj

k
BY j

k + δy
]>

associated with the marking mi is

Lk,j,i (δy) =
1√

2πσ2
exp

(
−
(
Y j
k + δy − yi(BXj

k)
)2

2σ2

)
, (4.41)
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Figure 4.14.: Representation of the observation buffer and its projection on the lane
marking mi. In orange is displayed the measurements j, in black the
map marking and projections of the observations.

where yi(
BXj

k) is the projection along the y-axis of the observation[
BXj

k
BY j

k + δy
]>

on the marking mi (this is illustrated in Figure 4.14), and σ2 is
the variance representing the combined uncertainty of the marking (σ2

m), the mea-
surement (σ2

k,j), and estimated state (σ2
lat),

σ2 = σ2
m + σ2

k,j + σ2
lat (4.42)

The map variance σ2
m corresponds to the uncertainty of the lane marking reference

in the map. It is chosen equal to 0 since the map is supposed to be highly accurate,
σ2
k,j stands for the uncertainty of the measurement and σ2

lat is the lateral uncertainty
of the state estimate.

The likelihood of having a lane marking measurement at the point[
BXj

k
BY j

k + δy
]>

with a map having multiple lane markings is

Lk,j (δy) =
1

M + 1

 ∑
i∈J1,MK

Lk,j,i (δy) + 1

 (4.43)

The likelihood of a single observation is therefore modeled as a multi-modal Gaussian
distribution with M modes (plus a constant).

Figure 4.15 shows an example for three referenced markings with the same σ2 (in
practice σ2 varies for each observation because σ2

k,j depends on the observation).
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Figure 4.15.: The likelihood of an observation with a map referencing three lane
markings. The map contains lane markings at coordinates −5, −2,
2. The likelihood of an observation knowing this map is in blue as
computed by Equation 4.43. The two observations Y 0

0 = −2.5 and
Y 1

0 = 1.5 used in Figure 4.16 are shown in red.

Assuming the measurements are independent of each other, the likelihood of detect-

ing the list of points
{[

BXj
k

BY j
k + δy

]>}
j∈Λk,k∈JK−S,KK

in the buffer knowing M

mapped lane markings is

L (δy) =
∏
j∈Λk,

i∈Jk−S,kK

Lk,j (δy) (4.44)

=
∏
j∈Λk,

i∈JK−S,KK

 1

M + 1

 ∑
i∈J1,MK

Lk,j,i (δy) + 1

 (4.45)

The transformation δy that maximizes this likelihood is the transformation that
enable the measurements to best overlap the map. As shown in Figure 4.16, in the
example of two observations knowing a three lane markings map, L(δy) is maximized
around δy = 0.5 m which corresponds to the gap between the observation positions
and the feature positions (see Figure 4.15). In this work, as in most others where
such a maximization is needed, the log-likelihood is maximized. This is done to
improve the numerical stability of the problem. Products of small values will lead
to even smaller values which are hard to manage by the processor while sum of large
values are still manageable. The best transformation corresponds to the value δy
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Figure 4.16.: Combination of the likelihoods of δy of multiple observations. The
likelihood L0,0 from the first observation (top) and the one (L0,1) from
the second observation (middle) are combined to give the curve of the
lower figure as described by Equation 4.44

that maximizes the log-likelihood, thus

δ̂y = arg max
δy

(log (L (δy))) (4.46)

= arg max
δy

 ∑
j∈Λk,

k∈JK−S,KK

log (Lk,j (δy))

 (4.47)

4.4.1.4. Likelihood Maximization

To solve this problem a gradient descent technique is used. The maximum of the
following function is found by successive iterations along the direction of its gradi-
ent.

d(logL)

dδy
(δy) =

∑
j∈Λk,

k∈JK−S,KK

d log (Lk,j (δy))

dδy
(δy) (4.48)

This method converges after a few iterations, and so more advanced resolution
techniques are unnecessary. The transformation δy is initialized at 0. At each
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iteration, δy is increased by

γ · d (logL)

dδy
(δy) = γ ×

∑
j∈Λk,

k∈JK−S,KK

∑
i∈J1,MK

dLk,j,i

dδy
(δy)∑

i∈J1,MK Lk,j,i (δy) + 1
(4.49)

where γ is chosen empirically. This process stops when the update from an iteration
to the next is smaller than a given threshold η or when the process reaches a given
maximum number of iterations.

4.4.1.5. Association

Once δ̂y has been found, each measurement can be associated with a marking. To do
so, for each measurement, the likelihood that it matches a marking mi is computed
as

Lk,j,i

(
δ̂y

)
=

1√
2πσ2

LM

exp

−
(
Y j
k + δ̂y − yi(BXj

k)
)2

2σ2
LM

 , (4.50)

The measurement j is associated to the marking for which this likelihood is maxi-
mum. Therefore, the measurement j is associated to the marking

m̂i = arg max
mi

Lk,j,i

(
δ̂y

)
(4.51)

4.4.1.6. Outliers Rejection

The associations found previously are not directly used to update the state. Several
outlier rejection steps are performed. Indeed, missing markings in the map, missing
observations or wrong observations can create scenarios where the associations found
previously are not accurate. In particular, in situations where the road only has a
central marking but the map has only the road edges referenced, the camera will
be able to detect the unreferenced marking. Because the detected marking type is
not reliable enough, the referenced road edges have to be considered as potential
association candidates. The likelihood maximization will converge to overlap the
detected central marking with the mapped road edges (see Figure 4.17a). This can
be easily solved by discarding every association where δy is too high. In the current
implementation of the method, the threshold to discard the markings is taken as a
constant:

|δy| > ∆max (4.52)

Also, the previous method will result in every measurement being associated with
a marking regardless of their distance to one another after the gradient descent.
Since multiple markings can be observed at once, the likelihood maximization can
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Association
Map

Gradient descent

ObservationMissing marking

(a)

Association
Map

Gradient descent

ObservationMissing marking

(b)

Figure 4.17.: Graphical representation of cases requiring an outlier rejection step.
Left: The maximization converges on the wrong association because
of a missing marking in the map. Right: The maximization converges
properly thanks to the right observation but the left observation does
not match to any marking.

accurately converge even if one marking has no correct association. The method will
converge so that most measurements overlap a marking but it can happen that some
observations do not overlap any map markings either because the marking is missing
in the map or the camera measurements are erroneous (see Figure 4.17b). The ability
to manage these problematic situations for matching methods is a big strength of
our method which is able to solve them thanks to the global association it achieves.
To account for this, a second threshold is used to remove individual measurements if
their residual yjk = Y j

k +δy−yi
(
Xj
k

)
(computed using the measurements compensated

by δy) is too high: ∣∣yjk (δy)
∣∣ > ε (4.53)

The two thresholds have been chosen empirically in order to correctly reject erro-
neous matches in typical driving situations. The numerical values are provided in
Subsection 4.5.1.

4.4.2. Multi-dimensional Case

Unlike lane markings which offer no information on the vehicle longitudinal position,
road signs offer a two-dimensional information. The previous approach is therefore
extended here to two-dimensional features. When using in real-time high level fea-
tures, such as road markings or signs, the observation set Z(k) at time k is of limited
size (see Figure 4.18 (a)). Having few observations can lead to wrong data associa-
tion as many ambiguities can arise due to a large pose uncertainty. Moreover, if the
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Road SignMarking
/ Border

Missing
Road Sign

(a)

(b)

Figure 4.18.: Available observation set using snapshot matching (a) and by using
observation and state estimate buffers (b). The scene presented here
is a simplification of a real scene. Results for this scene are presented
in Subsection 4.5.3. Blue: measurements, Green: pose estimates, Red:
road signs (dots are mapped, the cross is not)

perception modules are asynchronous, the markings from the camera and the signs
from the lidar are likely to arrive at different times.

The final objective is to use the exteroceptive measures with the best association
in the update of the filter. Consider for instance the real situation of Figure 4.18
(a) where a missing road sign is detected but unfortunately there are other signs
nearby. In order to limit association ambiguities, the observations are not matched
in a snapshot manner. Buffers containing the observations are used with filtered
state estimates (see Figure 4.18 (b)). Hence, the matching is performed using more
observations thus limiting the risk of ambiguous matching. The observation buffer
provides a larger number of measurements and allows a globally consistent matching,
which is known to be more robust.

Thanks to this approach another problem can be addressed. Estimation errors
which are time-correlated can cause incorrect matchings. A Kalman smoothing
is first applied on the buffer to correct the jaggedness of the filtered estimates (see
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(a)

(b)

Figure 4.19.: Effect of the smoothing (a) and trajectory adjustment steps (b) in the
state estimate and observation buffers. Blue: measurements, Green:
pose estimates, Red: road signs (dots are mapped, the cross is not),
Black: markings. Extracted from a real situation encountered in Ram-
bouillet.
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Figure 4.19 (a)). Then, an adjustment of the whole trajectory over the buffer is made
to compensate as much as possible the filter errors to find the best data association.
Figure 4.19 (b) shows the final result. It can be noticed that the faulty road sign
measurement has been sufficiently shifted away such that a wrong matching will be
rejected in the last filter update. The observation buffer is processed in parallel of
the real-time localization at a low frequency (e.g. every 250 ms) since it cannot
always be treated within the filter update period. Measurements for which matches
have been found will become usable as observations by the real-time estimation
layer. At the next estimation time, the filter will re-estimate the states to account
for the new observations. This is explained in more details in Subsection 2.3.3.

Let K be the most recent time of the observation buffer, with which the matching

is solved. Let ZK =
{
Z(k) |k ∈ JK − S,KK

}
be the set of all the observations over

a buffer of size S. The goal is to associate all the elements of ZK simultaneously.
The following sections detail the steps used to achieve this. The vehicle trajectory is
first smoothed. It is then adjusted using the observations. The adjusted trajectory
is finally used to match observations to map features.

4.4.2.1. Pose Smoothing

As for the one-dimensional case, the filtered state estimates are not directly used
for matching. Instead, the smoothed trajectory X̂K =

{
x̂k|K | k ∈ JK − S,KK

}
is

used. Lower uncertainty will be very useful for the data association process.

4.4.2.2. Pose Adjustment

An additional way to improve the state estimation is to maximize the likelihood
of all the states in the buffer given all the observations. Let us first consider this
problem in a deterministic formulation in which the states are unknown but not
random variables:

L
(
xK−S , . . . ,xK ;Z(K−S), . . . ,Z(K)

)
= p

(
Z(K−S), . . . ,Z(K);xK−S , . . . ,xK

)
(4.54)

where p
(
Z(K−S), . . . ,Z(K);xK−S, . . . ,xK

)
is the evaluation of the joint probabil-

ity density function of the observations Z(K−S), . . . ,Z(K) parameterized by a given
buffer of states xK−S, . . . ,xK . This is indicated by the ”;” in the equation.

Maximizing this likelihood function in Equation 4.54 for all the poses in the buffer is
computationally expensive. Moreover, the temporal coherence between the succes-
sive state estimates coming from the evolution model could be degraded. Instead,
we propose to estimate a unique 2D local rigid transformation, i.e., a translation
and a rotation, δ =

[
δx, δy, δθ

]
to all the state estimates x̂k|K so that the likelihood

of the resulting states is maximized.
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Let X̃K(δ) =
{
x̃k|K (δ) |k ∈ JK − S,KK

}
be the δ-adjusted state estimates. These

states are defined by Equation 4.55 from the smoothed state using the global trans-
lation from

[
δx, δy

]
and the rotation δθ around a point chosen arbitrarily as the most

recent state.

x̃k|K (δ) =

x̃k|Kỹk|K
θ̃k|K

 =

cos δθ − sin δθ 0
sin δθ cos δθ 0

0 0 1

x̂k|Kŷk|K
θ̂k|K

+

δxδy
δθ

 (4.55)

A new likelihood function only on δ is defined as

LX̂K
(δ;ZK) =pX̂K

(ZK ; δ) (4.56)

where

pX̂K
(ZK ; δ) =p

(
ZK ; X̃K (δ)

)
(4.57)

which leads to

LX̂K
(δ;ZK) =pX̂K

(
Z(K−S), . . . ,Z(K); δ

)
For all sets of obs in the buffer

=
∏

k∈JK−S,KK

pX̂K

(
Z(k); δ

)
Conditional independence

=
∏

k∈JK−S,KK

p
(
Z(k); x̃K−S|K (δ) , . . . , x̃K|K (δ)

)
Rewriting

=
∏

k∈JK−S,KK

p
(
Z(k); x̃k|K (δ)

)
Markov hypothesis

=
∏

k∈JK−S,KK

px̂k|K

(
Z(k); δ

)
Rewriting

=
∏

k∈JK−S,KK

px̂k|K

(
z

(k)
1 , z

(k)
2 , . . . ; δ

)
For each elementary obs

=
∏

k∈JK−S,KK

∏
z
(k)
j ∈Z

(k)

px̂k|K

(
z

(k)
j ; δ

)
Conditional independence

=
∏

k∈JK−S,KK

∏
z
(k)
j ∈Z

(k)

Lx̂k|K

(
δ; z

(k)
j

)
(4.58)

Let us now consider the data association issues.

The observation z
(k)
j is related to the state estimate x̃k|K via the map features

M = {m1,m2, . . .}. Let us consider the case when z
(k)
j (one of the observations at

time k) is associated to the map feature mi. Then, the corresponding likelihood is
expressed as follows with a Gaussian assumption:

Li,j

(
δ; z

(k)
j

)
=

1√
(2π)d|S̃i,j |

exp

(
−1

2
ỹ>i,jS̃

−1

i,j ỹi,j

)
(4.59)

95



4. Map-Aided Localization with a Spatio-Temporal Matching

with
ỹi,j = z

(k)
j − hi

(
x̃k|K (δ)

)
, S̃i,j = H iP k|KH

>
i +Rj (4.60)

and d = 1 for road markings and d = 2 for road signs. Because the association
between z

(k)
j and mi is not known at this stage, all the map features M in the

vicinity have to be considered.

From the law of total probability, we have

Lx̂k|K

(
δ; z

(k)
j

)
=
∑
mi∈M

Li,j

(
δ; z

(k)
j

)
Pi,j (4.61)

where Pi,j is the probability that z
(k)
j corresponds to mi.

A discrete uniform distribution over Pi,j is chosen, as no additional information such
as appearance or shape cues on the detections or on the features is available. So,
there is no reason to favor one association over another. The likelihood function in
Equation 4.61 does not take into consideration the fact that the sensors may detect
features that either do not exist or have not been mapped. To account for this, we
propose to add a non-association probability P∅,j and a likelihood L∅,j which leads
to

Lx̂k|K

(
δ; z

(k)
j

)
=
∑
mi∈M

Li,j

(
δ; z

(k)
j

)
Pi,j + L∅,jP∅,j (4.62)

In practice, maximizing the likelihood in Equation 4.61 may lead to a large ad-
justment δ, especially when there are some spatial invariance, i.e., along a straight
lane.

In order to constrain the spacial adjustment, we propose to reformulate the
maximum likelihood estimation into a maximum a posteriori (MAP) one in a
Bayesian context. For that purpose, we set the a priori distribution over δ as
δ ∼ N

(
0;PK|K

)
. We chose arbitrarily the most recent covariance matrix estimate

PK|K from the buffer as a representative measure of the pose uncertainty.

The resulting MAP estimation on the whole buffer is then defined as

δ̂ = arg max
δ

(
pX̂K

(ZK |δ) · p (δ)
)

(4.63)

= arg max
δ

(
pX̂K

(ZK |δ) · exp

(
−1

2
δ>P−1

K|Kδ

))
Please note that pX̂K

(ZK |δ) is now a conditional density function.

It is common to write it equivalently as minimizing the negative log-likelihood

δ̂ = arg min
δ

(
− log pX̂K

(ZK |δ)− log p (δ)
)

(4.64)

= arg min
δ

 ∑
k∈JK−S,KK

∑
z
(k)
j ∈Z

(k)

− log px̂k|K

(
z

(k)
j |δ

)
+

1

2
δ>P−1

K|Kδ

 (4.65)
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Figure 4.20.: Negative log-likelihood depending on δx and δy for a single observation
as described in Equation 4.62. (a) and (b) show different scenes at
different moment of an experimental trajectory. (a) shows a scene
where an road sign observation is close to three referenced road signs.
(b) shows a scene where a lane marking observation is obtained on a
road with multiple referenced markings.

To better visualize the effect each observation has on the cost function being mini-
mized, the function has been sampled for several values of δx and δy (δθ is kept null).

Figure 4.20 shows the negative log-likelihood depending on δ for a single observation.
With a single observation, several local minimum exist. When only a road sign
measurement is considered, a local minimum will exist for every road sign referenced
in the map. Similarly when only a single lane marking is considered, there will be
a local minimum (or rather lines of local minimum) for every mapped marking
(although only one is seen in Figure 4.20 (b) as markings are far apart).

Figure 4.21 and Figure 4.22 show how the negative log-likelihood changes as more
observations are added. When all observations of the buffer are added (as described
in Equation 4.58), the significance of local minimums decreases often leading to one
clear solution. In some cases, however, as seen in Figure 4.22 (b), the cost function
is ill-conditioned with a ambiguity along one of the directions. This is the case when
only lane marking measurements are available. In the single dimension case, this
problem did not arise because only the dimension in which there was no ambiguity
was considered. To address this problem, adding the a priori distribution of δ is
useful. Figure 4.23 shows the result for the final cost function. Adding the prior
distribution reduces the spatial invariance. This makes converging to a sensible δ
more likely.

The minimization problem is solved using the Broyden–Fletcher–Goldfarb–Shanno
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Figure 4.21.: Negative log-likelihood for three observations. While in Figure 4.20
(a) it was not possible to identify which minimum was correct, adding
more observation makes one minimum stand out. In (b) there is no
significant difference beyond the scale of the minimum. This is due to
the three measurements probably corresponding to the same feature.

−2 −1 0 1 2
δx

−2

−1

0

1

2

δ y

265

270

275

280

285

290

(a)

−2 −1 0 1 2
δx

−2

−1

0

1

2

δ y

345.0

347.5

350.0

352.5

355.0

357.5

360.0

(b)

Figure 4.22.: Negative log-likelihood for all observations of the buffer. In (a), it can
be seen that adding more measurements enables some of the local min-
imums to disappear leading to a more robust matching. Here, some
local minimums remain due to the scarcity of measurements in that
section of the trajectory. Moreover the minimum in (b) has shifted
down to the right. Therefore, the first lane marking observation prob-
ably does not have a corresponding map feature.
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Figure 4.23.: Negative log-likelihood for all observation and the a priori distribution
of δ. The main purpose of the prior distribution is to avoid a spatial
invariance. While the effect when road signs are used (a) is marginal,
for lane markings (b) it removes the spatial invariance that would have
made finding a maximum difficult.

(BFGS) algorithm [Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970]
which is an approximation of the Newton method. The algorithm converges in fewer
than 10 iterations in two thirds of the cases but a maximum number of iterations is
also set such that the matching step always ends in time to provide matches.

4.4.2.3. Matching and Integration in the Filter

The adjusted trajectory is an improvement over the filtered trajectory. However, as
quantifying the resulting uncertainty attached to it is not easy, it is only used to
improve the matching of features. This matching is then used in the filter. Once the
δ-adjusted trajectory has been found, it can be used to associate observations by
applying methods presented in Subsection 4.2.1. The newly associated observations
can now be used in the filtering scheme. Because the matching cannot always
be performed within the filter update period, it is instead run at a higher period
∆tm. Therefore, when using the buffer pose adjustment method, road sign and
road marking observations are not used directly to estimate the state. The state
is estimated without these observations for some time before they are associated
and can be used. The matching starts at time sample K using observations and
state estimates from time K −S to K. In parallel, the filter keeps estimating states
without map feature observations to always get a real-time estimate. When the
matching is done, the filter might have estimated states beyond time K. The filter
is then run again starting at time K − S up to the current time to account for the
new matches that have been made.
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4.5. Map-Aided Localization Experimental Results

The method has been evaluated on real data. The sensor data was recorded us-
ing an experimental Renault ZOE (see Figure 4.24), equipped with a u-blox M8T
GNSS, an intelligent camera by Mobileye providing up to four simultaneous road-
marking measurements at 3.7 Hz1, and a Velodyne VLP-32C lidar used to detect
road signs at 10 Hz using the threshold Imin = 230 (where diffuse reflectors return
0 for no return, 100 for 100% return and retroreflectors return from 101 to 255, 255
being ideal reflection). The vehicle was also equipped with a Novatel SPAN-CPT
that combines Real-Time Kinematic (RTK) GNSS and high accuracy IMU data to
provide centimeter-level accuracy. This system is only used as a ground truth to
evaluate the localization quality. The sensor data were recorded using the Robot
Operating System (ROS) framework and all sensors except the camera were syn-
chronized to the GNSS time. The non-accurate synchronization of the camera has
not been found to be detrimental to the localization as these lateral measurements
do not change significantly as the vehicle moves.

The data has been recorded on open roads through the commercial district of the
city of Rambouillet, France. The trajectory used to evaluate in detail the method
consists in several stretches of straight roads separated by roundabouts, as shown
in red in Figure 4.24. Further results will be presented in Subsection 4.5.5 on the
yellow trajectory and on trajectories recorded in Compiègne. The Mobileye camera
was able to detect road markings only during the straight portions. The road sign
detector provided measurements along the entire trajectory, although there were
more road signs close to intersections and roundabouts.

The map used in this experiment is an HD map that references road markings as
line segments and road signs as points in two dimensions. The map was built by a
third party map provider and is expected to have centimeter level of accuracy.

Results are first presented for the one-dimensional matching strategy using lane
markings only (no road sign measurements). Then, for the multi-dimensional ap-
proach, several configurations have been tested in these experiments. Results are
presented when the two matching strategies (UNN and HG) are applied in real time.
In this case, measurements are used as they are received and matched directly to be
used in the next filter update. The same matching strategies are also applied after
the method presented in this section has been used (Buffered UNN and Buffered
HG). The observations are not used directly but are saved to be matched every
∆tm. The entire matching step has been found to take 31 ms on average on an Intel
i7-7820HQ processor. ∆tm was chosen high enough (250 ms) such that the matching
always ends within this period. In both cases, the localization is performed at 50 Hz.

1Original frequency is 37 Hz. Only one out of ten measurements is used to limit the effect of the
temporal correlation of these measurement errors.
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(a) (b)

Figure 4.24.: (a) Experimental vehicle with GNSS, lidar and camera. (b) Trajectory
used to test the algorithm (red: Rambouillet 1, yellow: Rambouillet
2).

The buffer length is chosen at 5 s (S = 250), the reason for this choice is explained
in section Subsection 4.5.4.

The following subsection details the availability of observations when the proposed
matching strategy is used. The effect of the matching on the localization consistency
is then presented. Since the matching strategy uses buffers, the influence of the size
of the buffer is studied. Finally, more extensive localization results are presented
using trajectories recorded in Compiègne.

4.5.1. Proportion of correct lane marking matches

The number of correct matches has been studied for the one-dimensional matching
strategy. The approach using the adjustment is compared to the Nearest Neighbor
(NN) matching strategy. This strategy is the most commonly used for such matching
problems [Ghallabi et al., 2019a, Tsuchiya et al., 2019, Leonard et al., 1992].

There is no direct way to obtain the ground truth matches. Here, the matches
obtained using nearest neighbor matching with the ground truth states are used as
ground truth of the association.

For the NN method the maximum matching distance allowed is set as in Equation 4.4
with a risk α = 0.05. For the matching with prior adjustment by δy, the maximum
δy is chosen at ∆max = 1 m and the maximum residual is limited at ε = 0.5 m.
Matches that are rejected by one of the rejection steps are not counted. The scale
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Table 4.1.: Comparison of the numbers of wrong and correct matches by adjusting
the observation and using NN only.

Wrong Correct
Adjusting by δy 66 (33%) 133 (67%)

Nearest Neighbour 84 (43%) 112 (57%)

used for the gradient descent is chosen empirically at γ = 0.2 and the iteration stops
when δy improves by less than ν = 0.001 m.

Table 4.1 shows the numbers of wrong and correct matches for the two compared
methods. These results are obtained using the first drive of the Rambouillet dataset
(see Appendix A). Correct matches are especially hard to get with this trajectory.
The sides of the road have multiple ground features in close proximity. The distances
separating features being of the same order of magnitude as the sensor noise, finding
correct associations is difficult. For that reason, both approaches have a high rate
of wrong matches. Using the δy adjustment, the amount of correct matches is
noticeably improved.

4.5.2. Observations Availability

The number of observations that can be matched to features directly affect the
localization accuracy. As expected, increasing the rejection factor α (defined in
Equation 4.4) results in fewer observations for every configuration. However, our
method performs better as the adjustment step reduces the distances to features
and therefore allows matching more map features that will be used in the filter.
Moreover, since the number of matches remains almost constant until the rejection
rate reaches α = 0.7 (see Figure 4.25), its value can be set high which limits the
chance of bad associations.

The availability of road marking feature matches is similar for every method. The
UNN approach performs slightly worse than the Hungarian association as it only
matches if an observation is closest to the features. When two side-by-side ground
features are detected, the estimation error can cause the UNN approach to only
match a single observation while the Hungarian approach can match both, see Fig-
ure 4.1. Using the proposed method, the advantage of using the Hungarian method
is reduced as the adjustment step compensates for the estimation error.

Please note that the road sign matching is greatly improved using the observation
buffer and the adjustment step. The adjustment step enables to reduce the obser-
vation residuals used for the matching, limiting the effect of the non-linearity of the
model. Also, because all observations contained in the buffer are being matched,
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Figure 4.25.: Localization error and observation availability depending on the rejec-
tion rate α. Results are given for the UNN, Hungarian (HG), Buffered
UNN (BUNN) and Buffered HG (BHG). The solid lines show the local-
ization error. The dashed line (road markings) and dotted lines (road
signs) describe the percentage of matched features.
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Figure 4.26.: Mahalanobis distance for the four configurations during a difficult
matching (scene similar to the one shown in Figure 4.18 and 4.19). It
shows the covariance weighted error (without unit) over a 30 s stretch
of the test trajectory for the four tested configurations. Samples above
the threshold line pose a risk of loosing the consistency of the local-
ization. The results are presented for a rejection rate of α = 0.05 for
every configuration.

observations that could not have been matched earlier might be matched in the fol-
lowing iterations of the matching process. For road signs association, the Hungarian
method does not provide significant improvement compared to UNN.

4.5.3. Localization Accuracy and Consistency

If the matching can be correctly done, a higher number of observations will result
in a greater accuracy. This is true for all configurations, as the rejection rate α is
chosen bigger, the number of matches decreases and the localization error increases.
The observation error increases steadily when the UNN and Hungarian method are
used alone. Because of the adjustment step, the number of matches for the buffered
configurations only starts to decrease for high rejection rates. The localization error
follows a similar pattern: it increases slowly until α = 0.6 at which point the number
of matches drops and the error increases.

When the matching is not buffered, the Hungarian method results in errors smaller
by around 2 cm. Its ability to associate more road markings explains this improve-
ment. However, when matching using an adjusted trajectory, the two methods are
not noticeably different whichever rejection risk is chosen. Hence, the UNN method
is preferred as it is computationally less expensive to run.

Configurations without adjustment are less accurate because of the fewer mea-
surements that can be matched. To increase the number of matches, a solution
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would be to lower the rejection rate. This, however, increases the chance of erro-
neous matching. This has been evaluated by looking at the Mahalanobis distance√(
x̂k|k − xk

)>
P−1
k|k
(
x̂k|k − xk

)
for the different configurations. As shown on Fig-

ure 4.26, for rejection rate lower than 0.05%, a road sign is incorrectly matched
greatly affecting the consistency of the state estimate. Although decreasing the re-
jection rate α should increase the number of observations thus increase the accuracy,
it also results in bad matches for methods UNN (red) and HG (green). Since con-
sistency is very important for the integrity of localization for autonomous vehicle
navigation, we believe that snapshot matching approaches are not well suited in this
context.

Given the localization for different rejection rate, α is chosen at 0.5 such that the
maximum association distance is as small as possible while still keeping a margin
to avoid risking the loss of accuracy occurring for α > 0.6. With this value, the
localization error averages at 0.28 m and has not been found to go beyond 1 m at
any point of the trajectory.

4.5.4. Buffer Size Influence

Our method has two components that contribute to improving matching. The op-
timization step enables to reduce residuals, making matching easier thus increasing
the number of observations. The second component is the use of past observations
in the optimization step. Indeed, the adjustment step is dependent on the number
of available observations. If the optimization is performed in a snapshot fashion
using only the current observations, the optimization converges toward the closest
map feature to the observations. This would not help the matching as when a single
road sign is observed, it would be matched to the closest feature. Hence, erroneous
matchings would occur. Using a buffer of observations provides a more detailed
picture of what is observed, thus constraining the optimization and preventing the
most recent measurements to be the sole influence on the matching.

The length of the buffer affects the number of observations considered. A longer
buffer should therefore result in fewer ambiguous matches. The buffer should, how-
ever, be small enough as the smoother state estimates are transformed in a rigid
manner by the optimization, see Equation 4.55.

Figure 4.27 shows the localization error of the vehicle for different buffer lengths. It
can be seen that buffers shorter than 3 s are not sufficient as outliers start to appear.
This is due to the lack of unambiguous measurements in small buffers to compensate
for ambiguous ones. In this case, the error is due to an erroneous road sign matching
in a situation similar to that described in Figure 4.18. With small buffers, there are
not enough measurements to constrain the adjustment in orientation and laterally
and the observed road sign is matched to the wrong feature (the observed sign was
not referenced in the map).
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Figure 4.27.: Distribution of the localization error depending of the buffer size (the
rejection rate is chosen at α = 0.5). Buffers too short lead to ambiguous
associations thus larger errors. Additionally, a rigid transformation
cannot properly adjust the trajectory leading to fewer matches and
decreased accuracy.

Longer buffers enable to better adjust the trajectory but to a point. For buffers
longer than 10 s, the localization error starts to increase. This is the result of the
assumption made for the adjustment that the trajectory only needs to be moved
rigidly. Hence, too long buffers result in higher residuals after adjustment. This
causes more observations to be rejected, finally affecting the localization error. For
a rejection rate of α = 0.5, a buffer length of 5 s has been found to be sufficient to
enable unambiguous matches while still providing enough measurements.

4.5.5. Evaluation Using Different Datasets

To further evaluate the performance of the proposed approach, it has been tested
on another recording done in Rambouillet and on three other experiments carried
out in Compiègne obtained with a similarly equipped vehicle. The five trajectories
amount to 21 km of roads (50 minutes).

Table 4.2 contains the average localization error for different datasets. It can be
seen that in all cases the proposed method performs better (by 16% on average)
although sometime marginally (Compiègne 3). The parameters used for the buffered
method were kept the same as those identified with the first Rambouillet trajectory.
Even with a low α, the UNN and HG methods rarely achieve accuracy similar to
our approach. These results also show that optimized parameters on a particular
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Table 4.2.: Average localization error (in meters) for each method tested on different
trajectories.

BUNN UNN HG
α 0.5 0.05 0.5 0.05 0.5

Rambouillet 1 0.25 0.31 0.42 0.3 0.43
Rambouillet 2 0.68 1.25 2.75 1.26 2.75
Compiègne 1 0.75 0.94 0.97 0.88 0.96
Compiègne 2 0.57 0.65 0.73 0.60 0.73
Compiègne 3 0.77 0.78 0.83 0.78 0.82

Table 4.3.: Computing times for the tasks of the localization system. The times
are obtained using an Intel c© Core

TM
i7-7820HQ processor with 16GB of

memory.

Mean Min Max 3rd Quartile

High-Frequency Estimation 0.237 ms 0.034 ms 5.672 ms 0.222 ms

Smoothing (Matching Layer) 0.398 ms 0.030 ms 2.057 ms 0.509 ms
Adjustment (Matching Layer) 25.098 ms 0.198 ms 201.311 ms 36.344 ms

trajectory lead to a good accuracy in different environments which shows a good
robustness of the method.

4.5.6. Computational Load of the Localization System

One of the main requirements of the localization system is to operate in real-time
with low delays. The computation times of the most straining tasks of the local-
ization system have been studied. Table 4.3 shows statistics of the filtering task
performed at high frequency, and of the smoothing and adjustment tasks performed
at low frequency.

The program is implemented in C++ using the ROS Noetic framework. The Eigen
library is used to perform matrix operations. The program is running on a laptop
with an Intel c© Core

TM
i7-7820HQ processor (2.9 GhZ, 4 cores, 8 threads). The

system is also equipped with 16 GB of RAM.

The high frequency task being performed at 50 Hz, the estimation has to be done
within 20 ms. Here, the filtering task is performed in the vast majority of cases
within a single millisecond as shown by the third quartile. The most straining
events for the high frequency estimation are when the Matching Layer finishes and
old measurements become observations. In those instances, the high-frequency fil-
tering has to re-compute more states. The maximum duration of the high frequency
estimation is 5.672 ms which is still small. If that delays is detrimental to other
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systems of the autonomous vehicle, the future state could be predicted in advance
to be provided without delay. This would sacrifice some accuracy but would ensure
that the localization solution is provided without delays.

The Matching Layer has two main tasks to perform to be able to find matches. It
first needs to smooth the entire state buffer, then it needs to adjust the trajectory in
order to improve matching. While the filtering step of the Filtering Layer estimate
only a few states at a time, here the smoothing step has to smooth the entire 5 s
buffer. Despite the computational complexity of this step being constant there is
still a lot of variance in the processing time. It is performed in almost no time to
about 2 ms which, considering that the smoothing is done on the entire buffer, is
much faster to do than filtering. The most expensive task that the Matching Layer
has to perform is the computation of the adjustment δ of the trajectory. The length
of this step depends a lot on the number of observations contained in the buffer and
on the number of map features in the local map. The two steps have to be done
within the ∆tm = 250 ms period of this layer. The maximum time taken is below
that threshold. This is a result of the maximum number of iterations allowed to the
BFGS algorithm.

These results show that the architecture that has been studied is very efficient and
that a real-time implementation is very feasible.

4.6. Conclusion

Matching measurements to the right features is an essential step to reach accurate
localization with high integrity. Matching is a difficult process as state estimation
errors and small number of measurements contribute to making matching ambigu-
ous.

The method detailed in this chapter aimed at improving this process by using a
buffered of observations and an adjustment step to address these issues. By matching
measurements in buffers rather than in a snapshot manner, the matching has a better
representation of the environment, limiting ambiguities in matching. Adjusting the
trajectory prevents the state estimation error to result in incorrect matches.

The results have shown that both the number of matches that can be achieved and
the accuracy of the localization are improved. Moreover, matches are more reliable
as cases with ambiguous matches can be prevented with the buffered method.

The matching strategy for the one-dimensional case was presented at the Intelli-
gent Vehicles Symposium (IV) [Welte et al., 2019b]. The extension to the multi-
dimensional case has been published in the Robotics and Automation Letters (RA-
L) [Welte et al., 2020] and presented at the International Conference on Intelligent
Robots and Systems (IROS).
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5.1. Introduction

Even though using maps for localization enables great improvement in terms of lo-
calization accuracy, particular attention is required to prevent sacrificing integrity.
Map features are expected to be accurately referenced when they are used for local-
ization. However the map accuracy cannot be guaranteed in the long term. Indeed,
roads and their surroundings change (albeit slowly). Regardless if the map was built
automatically or by careful surveyors, eventually every map will have errors.

Figure 5.1.: Comparison of Street View images of an intersection in Rambouillet at
the time of mapping (a) to a few months later (b) and the corresponding
HD map of the area (c)
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Road networks change faster than one might expect. In fact the two test sites used
in this thesis, Rambouillet and Compiègne, which had their maps built respectively
in 2018 and 2020, already contain errors at delivery (as shown in Figure 5.1). In
both cases, intersections have been modified right after the mapping was performed.
This has resulted in maps with missing features and others that no longer exist.
In the case of Rambouillet, the mapping was also done while road work was going
on, leading to incorrect referencing of some lane markings. In both maps, some
features have also been found to be incorrectly referenced or moved most likely due
to accidents.

This suggests that the localization system needs to be able to deal with such errors.
Therefore, it either has to be robust to errors during the localization process or be
able to monitor the accuracy of map features.

Map errors can be separated into multiple categories:

• Missing features: not referenced during the mapping or did not yet exist when
the mapping was performed.

• Old features: existed at the time of the mapping but no longer exist.

• Moved features: the reference of the features has changed since mapping, e.g.
road markings redrawn.

• Misclassified features: the type of the feature referenced in the map is not
correct anymore, either because of an error during the mapping, or the type
as changed since then, e.g. yield sign changed to a stop sign.

Although all error types can be detrimental to localization, the change in a feature
reference is the most critical. Indeed missing features will simply not be matched
and therefore will not affect localization (although they could become a problem
if faulty measurements coincide with these errors). Similarly, old features are not
detectable. Misclassified features can make the matching harder. In this work, the
detection system does not provide information on the type of feature or the infor-
mation is not reliable. Hence, the class of the feature is not used in this localization
system. The type of error this work addresses are moved features. Moved features
are particularly harmful to the localization since all vehicles using the faulty map
will have localization error when the faulty feature is detected.

In this work, a post-processing strategy is developed to evaluate map features. Using
estimations and observations obtained during a drive, the map features are evaluated
based on their residuals. Based on these residuals, two approaches have been devel-
oped. The absolute value of the residuals, lane markings will be weighted differently.
Higher residuals will be used to weight down the influence of those lane markings
in the localization. The residuals and their covariance matrix have also been used
to detect errors in road signs. By fusing residuals from multiple trajectories, faulty
road signs are detected to be discarded from the estimation.
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The following section presents an overview of existing map error detection methods.
The two methods using absolute post-smoothing residuals and covariance weighted
residuals are then detailed and experimental results are presented for each.

5.2. State of the Art

The widespread use of maps for intelligent vehicles has led to questions about the
accuracy of these maps [Paul and Wan, 2008] and to the development of methods
to detect and correct map errors. There are different types of map errors leading to
widely different strategies to detect them.

The main element of the map that needs to be accurate for intelligent vehicles is
the general road geometry. The road geometry changes slowly as there is no easy
way to affect it. It can only be affected by road work. Errors on this aspect of the
map would have disastrous effects for control and planning systems.

[Hartmann et al., 2014] have trained a neural network to detect maps errors. To
detect errors, the network is fed with the difference between observed road charac-
teristics (distance to lane markings, curvature, etc.) and characteristics obtained
from a map. With this information, the network outputs a probability of error. The
authors show that this approach is able to detect errors such as missing roundabouts
or intersections. It is also important to note that unlike many map error detection
methods, this approach is able to detect changes before the vehicle goes through
an area using a front-facing camera. As intersections across Europe are increas-
ingly being converted into roundabouts to improve traffic flow, it is important to
detect when an intersection is changed. [Zinoune et al., 2012a] have managed this
by studying a buffer of vehicle pose. Using the trajectory profile on the x and y axis
as a descriptor of the buffer, the authors classify the trajectory within a finite set
of classes (composed of multiple roundabout and non-roundabout classes). After a
new roundabout is detected, parameters of the roundabout are estimated to update
the map. The same authors [Zinoune et al., 2012b] have also developed a method
using a Page test to check whether the road geometry of standard definition maps
has changed or not. For this they use the Page test on the difference between the
map matched vehicle pose and the estimated vehicle pose. This method enables to
detect where the map has changed and to figure out where the change starts and
ends.

Although some have used the general road geometry for localization purposes (e.g.
in [Fouque et al., 2008]), specific accurately referenced features are more useful for
localization. Hence, research has also been done to address this problem.

Point clouds are also used as georeferenced data in so-called dense maps. Even
features maps used in this work have been produced by cartographer using dense
point clouds of the area. Hence, detecting map changes can be made using this
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format. [Hyyppa et al., 2009] compare point cloud maps using a point to point
approach. Points from one map version are classified based on their distance to
points from another map version. New points are far from any points of the old
map and points from the old version no longer existing are too far from any point
in the new map. This method requires the original dense map format to be kept
which, as mentioned in Subsection 4.3.1, is problematic as such maps are heavy.

In this work, the detection of errors in feature maps is studied.

High accuracy feature maps are fairly recent, the literature on changes detection
in those maps is scarce. Nevertheless, similarities can be established with existing
literature on change detection in Simultaneous Localization And Mapping (SLAM)
applications.

[Pannen et al., 2019] have addressed the HD map change detection problem using
a dual particle filtering approach. Two particle filters are used, one estimate the
vehicle state without using the map, the other uses lane marking measurements.
From both sets of particles, descriptors such as the mean lane marking innovation
and the mean particle weights are computed. Features are classified based on these
descriptors using thresholding techniques.

[Nguyen et al., 2016] have also used an estimation with and without map features to
figure out if the map is reliable. They compare estimates obtained using map features
for localization to dead-reckoning estimates. A random forest classifier trained to
classify features as reliable or not is then used to infer the features reliability.

Evaluating map features is not only limited to evaluating the accuracy of its ref-
erence. The existence of the feature might also be in question. Also adding new
features to the map is not straightforward as some feature might not actually be
static, e.g. vehicles license plates are often detected by the method presented in
Subsection 4.3.3 but should not be stored as map features. [Jo et al., 2018] have
proposed an approach using Dempster-Shafer theory to deal with this issue. When
new features are detected, they are initialized with unknown existence. At every
new observation of the feature, its mass shifts toward existence. Inversely, features
that have not been observed in a while will see their mass shifts from existence to
deleted. In this framework, features that have moved will be classified as deleted and
a new feature will be added at the correct position.

While detecting faulty features is important for localization, some have taken the
different approach of detecting features that are valuable for localization, rather
than those that might hinder on localization. In [Berrio et al., 2019b], the authors
use descriptors of landmarks such as the number of measurements, range by which
the feature is visible, the density of features in a particular area, etc., to evaluate the
importance of a particular feature in the map. This enables the authors to reduce
the size of their map to keep only useful features while limiting the inevitable loss of
accuracy. This work is applied to pole and corner features. For intelligent vehicles,
removing features of the map might not be a good idea since features might be needed
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for other applications than localization. Road signs, for instance, are useful features
for localization that cannot simply be removed. However, it is not inconceivable to
include in future maps a usefulness layer indicating if features should be used or
not for particular applications. [Berrio et al., 2019a] have also looked at whether
features are even visible to the sensors. Maps do not need to store information that
cannot be observed by the vehicle sensors from a localization perspective. This was
not a problem when maps were predominantly built using SLAM techniques using
the same sensors set. As third party HD map providers start to develop, it will
become significant.

5.3. Map Features Attenuation using Smoothed
Residuals

5.3.1. Method

The detection of map errors depends on the matching process. Indeed some map er-
rors are large enough to make the matching system ignore the measurement. These
errors will not affect the localization. The map errors leading to errors in the local-
ization are the ones that are small enough to result in measurements being matched
to them thus influencing the localization solution. Such errors are too small to be
detected in real time. To detect such errors, post-processing or multiple trajectories
are required.

Here the proposed approach is to evaluate features based on their residuals. Faulty
features have high residuals. Using residuals the features are not discarded but
rather are weighted down in future estimations.

In the following method, the post-smoothing residuals are used to evaluate lane
markings. The post-smoothing residuals are used to compute a reliability factor for
each observed features that is used to weight the observation in future estimation.

5.3.1.1. Residuals Computation

After a drive, each map feature mi will have a set of Mi observations Zi attributed
to it. For each observation zjk, the post smoothing residuals yjk|N are computed
following Equation 5.1

yjk|N = zjk − hi
(
x̂k|N

)
(5.1)

The residuals obtained from all the observations of Zi are then averaged to obtain
a single value for each map feature
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ȳi =
1

Mi

∑
Zi

yjk|N (5.2)

5.3.1.2. Weighting Factor

In Chapter 4, the uncertainty of a lane marking observation was identified as σLM =
0.1×C0, where C0 is the measured distance to the marking. To account for unreliable
markings, the uncertainty used in the estimation is increased. Previously, the map
was assumed to be perfectly accurate. The accuracy of the map is now taken into
account for the fusion.

The variance of a lane marking measurement is redefined as

σ2
LM = σ2

z + pi · σ2
map + (1− pi) · σ2

bad (5.3)

where σ2
z is the variance of the measurement itself as defined in Chapter 4. Two

extra terms are added to account for the map accuracy. The first term is the nominal
variance of the map σ2

map. When no information on a marking exists, it is assumed
accurate and has a variance of σ2

map. If the marking is found to be unreliable, it
will instead be attributed a variance of σ2

bad (chosen arbitrarily high at 1 m2). The
variance of a marking varies between these two values based on a factor pi ∈ [0, 1].

The factor pi is chosen so that when ȳi = 0.0, the factor tends to 1 and when
ȳi → +∞, the factor tends to 0.0. Hence, as illustrated in Figure 5.2 a lane marking
producing small residuals will be considered as reliable and be used in the estimation
with the nominal map variance. A lane marking producing high residual will be
weighted down in the estimation through an increase of its associated variance.

To achieve the expected result, the value of pm is chosen for each marking using the
following equation,

pi = exp

(
− ȳ

2
i

α2

)
(5.4)

where α is a tuning parameter affecting the size of the errors to consider. Intuitively,
features producing high residuals higher than α will have their effect on the state
estimation reduced.

5.3.2. Experimental Results

This method was tested using drives performed in Rambouillet. Three markings
of the map of Rambouillet used in these experiments are known to be incorrectly
referenced because of road works being done during the mapping. This error is on a
straight road oriented north-south and concerns the marking separating both lanes.
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Figure 5.2.: Attribution of the reliability pi based on ȳi. The top row shows the
observations (orange dots) relative to the smoothed state. The residuals
between observations and the map (black dots) are used to compute the
reliability.

The actual marking is located roughly 0.5 meter west of the mapped marking. To
our knowledge, this is the only marking that is erroneous along the testing path.

In these experiments, the localization system only uses dead-reckoning sensors, lane
marking measurements and GNSS positions. No road sign measurements are used
at this stage. The lane marking measurements are matched to map features using
the matching strategy developed in Subsection 4.4.1.

A first drive is used to estimate the reliability of the lane markings. During this
drive the lane markings are assumed to be accurate (all pm are at 1). Once the
reliability of the observed markings has been obtained, the localization is performed
on a second drive using the computed reliability factors. The tuning parameter α is
chosen equal to 0.3 meter.

5.3.2.1. Reliability Computation

Figure 5.3 shows the map of the estimated reliability of lane markings around the
erroneous section of the map and. The central lane marking known to be inaccurate
is correctly identified as unreliable (red), while most of the other lane markings are
found reliable. Figure 5.4 shows the distribution of the reliability factor pi. Several
correctly referenced lane markings are also found unreliable. The markings mainly
correspond to markings around intersections. This is most likely due to the camera
measurement being unreliable in curves rather than the map being unreliable. In this
work, it is assumed that the error is due to the map rather than the measurements.
To unambiguously identify the source of the error more redundancy is required in
the sensors used which is not available at this stage.
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Figure 5.3.: Representation of marking reliability (black uncategorized, green most
reliable, red least reliable).

Figure 5.4.: Distribution of the reliability factor pi.
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Figure 5.5.: Lateral localization error on the road section with the erroneous lane
marking. No accounting for the lane marking reliability (blue) the lo-
calization error is higher than with the proposed method (red)

5.3.2.2. Effect on Localization Accuracy

After having used a first drive to compute the reliability of lane markings, a second
drive is used to evaluate the localization. Two estimations are performed, an esti-
mation without accounting for lane marking reliability and an estimation weighting
the lane markings uncertainty based on the reliability factor. Because the method is
implemented within the ROS framework, small message transmission delays caused
by ROS lead the estimation to be slightly different when the same program is run
multiple times. The program is therefore run five times for each configuration and
the results are averaged to limit the effect of the ROS framework on the results.

Figure 5.5 shows the lateral localization error when the erroneous lane marking is
being observed. In this section multiple lane markings are observed. Thus, even
when not accounting for the erroneous lane marking, the localization error is not
entirely biased by the 0.5 meter error of the central lane marking. But accounting
for the unreliable lane marking further improves the localization estimate leading to
errors below 20 cm in most cases.

These results have been presented at the Intelligent Vehicles Symposium (IV) [Welte
et al., 2019b] along with the one-dimensional matching strategy of the previous
chapter.
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5.4. Sequential Residuals Update for Maps Error
Characterization

Although the aforementioned method has shown to improve localization, the way
it mitigates observation is purely empirical. The function used to convert residuals
into sensible weights does not derive from theoretical considerations. Weighting
observation is not a simple task. However eliminating map features can be done
with a probabilistic justification.

The feature error detection described here considers residuals as observations of the
feature errors. Residuals are supposed to follow Gaussian distributions centered on
the origin. However, this is only true if the mapped feature is correctly referenced.
If it is wrong, the residuals will be centered on an unknown non-zero value.

With that in mind, the erroneous features will generally have higher residuals than
correct features for the same uncertainty. This can be leveraged by eliminating
features whose residuals have Mahalanobis distances too high. Indeed by performing
a χ2 test on the residuals of a feature, it is possible to detect erroneous features.
While correct features will be rejected with the selected risk factor α, erroneous
features will be rejected at a much higher rate.

5.4.1. Method

5.4.1.1. Computing Residuals

To evaluate map features, residuals are used. Map features can be observed mul-
tiple times. For a single trajectory, multiple residuals are computed. After having
smoothed the state estimates, the residuals of each observation are computed as
in the previous method. Unlike the previous method, here the uncertainties of the
residual are considered. The residuals and their covariance matrix [Gibbs, 2013] are
computed as,

yk|N = zjk − hi
(
x̂k|N

)
(5.5)

Sk|N = Rk −HkP k|NH
>
k (5.6)

with Rk being the covariance matrix of the observation, Hk the Jacobian of the
observation model and Pk|N the covariance matrix of the smoothed state estimate.

It is important to note some observation models are not suited to be used with
this method. This method combines multiple residuals from multiple observations
and multiple drives. This can be done only if the residuals can be compared. In
Chapter 4 the observation model chosen for road sign measurement was chosen such
that the observation (and thus the residuals) are expressed in the global reference
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frame. With this observation model, all residuals can be interpreted as the road sign
error in the global frame. An observation model where the observation is expressed
in each road sign local reference frame (with axes oriented along and orthogonal to
the road sign) would also work as this frame does not change from an observation to
the next. However, an observation model with the observation being the coordinates
of the road sign expressed in the sensor frame would not work. Indeed with such a
model, the residuals would change depending on the point of view of the vehicle. It is
for that reason that this method is not applied to lane markings. The lane marking
observation model as stated in Chapter 4 would result in residuals dependent on the
point of view (e.g. positive residuals when observing a marking driving east to west
but negative residuals when driving west to east).

At the end of a drive, a subset M = {mi}i∈J0,MK of map features have been ob-
served. For every map feature mi, a number of residuals have been obtained{
yk0 ,yk1 , . . . ,yNi

}
(where Ni is the number of residuals for feature mi). These

residuals are correlated. Indeed, they are all computed using smoothed state es-
timates that are themselves correlated. Therefore, the residuals of features of the
same trajectory are correlated.

5.4.1.2. Combining Residuals

To decide whether a feature should be used or not, an aggregate residual is used. Be-
cause the residuals are correlated standard fusion method cannot be used. Instead,
the aggregate residual is obtained using a covariance intersection strategy. Covari-
ance intersection enables fusion of multiple information with unknown correlation.
It consists in a linear interpolation between the different sources of information
weighted to minimize the resulting covariance matrix. In this application, a feature
mi as the Ni following residuals

yk0 ,yk1 , . . . ,yNi
(5.7)

with corresponding covariance matrices

Sk0 ,Sk1 , . . . ,SNi
(5.8)

The aggregate residuals are expressed as

S−1
i =ωk0S

−1
k0

+ ωk1S
−1
k1
, . . . ,+ωNi

S−1
Ni

(5.9)

yi =Si

(
ωk0S

−1
k0
yk0 + ωk1S

−1
k1
yk1 , . . . ,+ωNi

S−1
Ni
ykNi

)
(5.10)

where
∑

k∈{k0,...,Ni} ωk = 1

In the general case, the parameters ωk have to be found using iterative estimation
methods. For small number of dimensions (five dimensions when minimizing det(Si)
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and four dimensions when minimizing trace(Si)) analytic methods exist [Reinhardt
et al., 2012] to find the best parameter ω when intersecting two residuals yk0 and
yk1 . For that reason the covariance intersection is not performed globally using all
residuals at once. Instead the residuals are intersected two by two until all residuals
associated to a map feature have been processed.

Hence the smaller covariance intersection of Equation 5.12 is solved sequentially for
each feature. The residual y is initialized to the first residual yk0 along with its
covariance matrix. The next residuals yk1 . . .ykNi

are sequentially used and update
the aggregate residual.

y ←
(
ωS−1 + (1− ω)S−1

k

)−1 (
ωS−1y + (1− ω)S−1

k yk
)

(5.11)

S ←
(
ωS−1 + (1− ω)S−1

k

)−1
(5.12)

The algorithm used to compute the value of ω is presented in Appendix F.

5.4.1.3. Leveraging Multiple Trajectories

While residuals of the same trajectory are correlated, residuals from different trajec-
tories are not. Indeed, the residuals from the same trajectory are correlated because
all states are correlated through the evolution model. The states from different tra-
jectories are not correlated in any way leading to uncorrelated residuals. Therefore,
multiple trajectories can be used to further reduce the uncertainty of residuals.

A residual ȳ with corresponding covariance matrix S̄ known from previous drives
can be updated using the new residual y (with associated covariance matrix S)
obtained as described in Subsubsection 5.4.1.2 using the following equations,

ȳ ←
(
S̄
−1

+ S−1
)−1 (

S̄
−1
ȳ + S−1y

)
(5.13)

S̄ ←
(
S̄
−1

+ S−1
)−1

(5.14)

The updated residual can finally be used to evaluate the feature.

5.4.1.4. Eliminating Inaccurate Features

As mentioned previously the residuals should be centered. Therefore, as new obser-
vations are obtained and new drives are performed, the residual should tend to 0
as the uncertainty of the residual decreases. However, erroneous features will result
in residuals not converging toward 0 but covariance matrices still getting smaller.
Hence, at some point, the residual will be too high with respect to accuracy that
would be expected from the covariance matrix.
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To detect these cases, a χ2 test is used. After the residuals are computed, the
inequality from Equation 5.15 is performed. Features failing this test are flagged as
erroneous to be ignored in future measurements.

ȳ>S̄
−1
ȳ < F−1

χ2 (1− α, 2) (5.15)

where Fχ2 is the cumulative distribution function of a χ2 distribution.

5.4.2. Experimental Results

5.4.2.1. Experimental Setup

To evaluate the error detection, real drives are used. The drives were recorded using
the experimental vehicle of the Heudiasyc laboratory. Lidar and camera information
are used as in Chapter 4 for localization. Six drives are used which follow three
trajectories. All trajectories start and end at the entrance to the laboratory site.
Every trajectory also covers up to the main university build (eastern most point on
the map). The trajectories are detailed more in Appendix A.

The map used in this experiment accurately references road sign positions. Ignoring
the intersection that was completely redone, few errors have been found in the
referencing on road signs. Therefore to evaluate the error detection system artificial
errors have been added to some road signs. The map used references 2382 road signs
(including lamp posts, traffic lights, bollard, etc.). From all drives performed using
this map, only 432 different road signs have been observed. The first drive covers
roads traveled by all trajectories. Errors have been added to 20 of the more than 200
road signs observed on this trajectory to insure that the erroneous road signs can be
observed by almost all trajectories. The road signs for which an error is added have
been randomly chosen. An error chosen using a uniform distribution between -1
and 1 is added on the road sign reference. Figure 5.6 shows the road signs observed
during the first trajectory and those for which an error has been added (red).

The error detection is performed after each drive. In the current evaluation, the
road signs detected as erroneous are not ignored in future localization. Hence,
flagged road signs will be matched to measurements and re-evaluated in future
drives. Therefore a road sign seeming unreliable can after new drives be considered
reliable again.

5.4.2.2. Error Detection

From Figure 5.7 and Table 5.1, it can be seen that after a single drive few erroneous
features have been found. However, as more drives are done the number of detected
erroneous features increases.
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Figure 5.6.: Observed Road Signs during one drive in Compiègne (France). Road
signs for which a simulated error has been added are shown in red.

Table 5.1.: Evolution of the categorization of road signs. The flagged road signs
have been observed detected as faulty. The first three lines correspond
to road signs with no added error (green dots in Figure 5.6) the last three
lines are the 20 road signs with added errors.
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th
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th

Not observed (ok) 28 16 15 14 14 11
Not flagged (ok) 147 162 161 161 161 159
Flagged (ok) 12 9 13 12 12 17
Not observed (faulty) 10 10 10 9 9 9
Not flagged (faulty) 8 7 4 4 4 3
Flagged (faulty) 2 3 6 7 7 8
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Figure 5.7.: Evolution of erroneous road signs detection trajectory after trajectory.
(a) was obtained after a first drive, (b) after a second drive, etc. The
arrows show changes from the previous drive (the star indicates two
road signs overlapping).
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Figure 5.8.: Real erroneous road sign. (a) shows the mapped road sign (green) com-
pared to the measurements (red), the line of sight directions are shown
as gray lines (the lane markings are shown in black and the lane centers
in blue). (b) photograph of the road sign

The method produces some false positives. One of the false positives, the south-
western most road sign, is actually a real erroneous sign Figure 5.8. The road sign
pole is tilted and the signs are not centered on the pole resulting in a combined
detection error of about 0.5 m. The other false positive are found mostly near
erroneous signs. This is a limitation of the method as it relies on the state esti-
mates to evaluate road signs. Erroneous road signs will affect the state estimates
negatively leading to other, accurate road signs, to manifest higher residuals than
they otherwise would. This problem arises because with the current availability
of measurement to the localization system, single measurements have a significant
importance. As different measurements and more redundancy are added to the lo-
calization system, the effect of single measurements will be lessened and the error
detection will be more robust.

The error added to the road signs being chosen uniformly between −1 and 1 meter
in both dimensions, some road signs have small errors. On Figure 5.9 it is shown
that road signs with errors higher than 0.5 m are either not observed (not matched)
or flagged. The three faulty road signs that remain not flagged are those with
smaller errors. Errors too small would require more drives to be detected. Also,
the number of road signs not observed when the errors are added, even though they
were observed before, shows that the matching is able to discard some erroneous
road signs during localization.
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Figure 5.9.: Distribution of the error added to road signs. The color shows the
classes obtained after the sixth drive.

5.4.3. Discussion on Limitation and Perspectives

5.4.3.1. Reliance on Localization Accuracy

Because the error detection system relies on the estimates from the localization to
evaluate features, it will not be able to detect some map errors. Indeed, if a feature
is providing the only accurate observation on a stretch of road, the localization
solution will be entirely driven by this feature. The residuals of the feature would
be small because no other observation is available in the vicinity. In those cases, the
error of the feature will be undetectable using the proposed approach.

These two problems will become less and less likely to occur as more observations
are provided to the estimation process and redundancy of the observation sources
increases.

5.4.3.2. Map Correction

Removing features from the estimation process is not guaranteed to improve future
localization accuracy. Indeed, even though the feature references might have some
error it might still be smaller than the state estimate error. In those cases, the
estimation might benefit from using the measurement.
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One way to keep using the feature even though it has been flagged would be to
correct the feature reference using the estimated error of this reference. However
this approach needs to be carefully thought out as it could worsen the map. Map
errors are not the only systematic errors that can affect localization. If another
source is affecting the state estimation, the map features might be seen as unreliable.
Correcting them in those cases would only reinforce the confidence of the localization
in the other source.

Another way to deal with the problem would be to dynamically decide whether to
use map features or not depending on the current state estimation accuracy. When
the state estimation accuracy is good, the localization can afford to discard some
observations that might be unreliable. When state estimation becomes less accurate,
it might be preferable to use features with some referencing error over not using any
observations. Such strategies have been used successfully with map features and
odometry systems where map features are used to update the estimates only when
the they bring enough information to improve the state [Delobel, 2018].

5.4.3.3. Risk of Over Cautiousness

In this work any error, no matter how small, is considered as an error that would
justify discarding a road sign from the localization. Hence, it is assumed that the
map claims perfect accuracy and that anything but perfect accuracy should be
considered as erroneous. In practice, no map provider makes such claims and any
map is known to have unavoidable errors. While the uncertainty attributable to
the map can largely be ignored in the localization process as sensor uncertainty
is significantly greater, it cannot be ignored for a process that accumulates the
information of multiple trajectories. Indeed, the fusion performed by Equation 5.14
is only valid if the errors between two trajectories are uncorrelated. This assumption
breaks down not only when the feature has an irregular referencing error but also if
the feature has an acceptable mapping error.

This problem clearly appears in the result Table 5.1. In every drive, some actually
correct road signs are classified as incorrect. If nothing is done, at some point all
road signs will be classified as inaccurate.

In the current method, the uncertainty matrix of the residuals will, after many
drives, tends toward perfect accuracy while the actual residual will never be able
to reach such accuracy because the map never claimed that it could. Solving this
problem could be done by setting a lower bound to the matrix S or including in
Equation 5.14 the level of error correlation that can be expected given accuracy
claimed by the map.
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5.5. Conclusion

In this chapter, methods to detect map errors have been introduced. Studying post
smoothing residuals of map features has been found to enable the detection of error
in the references of map features.

Using lane marking residuals, a real map error has been detected. Using the weight-
ing strategy proposed in this work, the localization accuracy was improved in the
affected area.

Residuals have also been used to detect simulated errors on road signs. By merging
information from the same drive using Covariance Intersection and from multiple
drives, erroneous road signs can be detected. The first results obtained using this
method shows that after six drives, the most prominent errors can be detected
leaving road signs with small errors. The effects eliminating erroneous features will
have on localization will be studied in future work.

From this work it is clear that detecting erroneous features without ground truth
positioning is challenging. Moreover evaluating methods trying to achieve this re-
quires multiple drives through the same areas for smaller errors to be detectable.
Therefore, the recording of more drives and more diverse drives will be essential to
any future work on that subject.
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6.1. Synthesis

This thesis addresses the problem of localization using spatial memory (using maps),
and temporal memory (through buffers). The goal is to improve localization using
the information stored in the buffers and the map. Several key aspects of the lo-
calization process have been studied to achieve it. These aspects spread over three
times scales: a high frequency estimation using Dead Reckoning (DR) (Chapter 3),
a low frequency matching system (Chapter 4) and a post processing layer (Chap-
ter 5).

A framework for performing the localization task has been proposed. The localiza-
tion is built around a Filtering Layer which insures that the estimation is provided
at high frequency and takes care of sensor delays. The intent behind having an
estimation layer that only takes observations as inputs and outputs an estimate
without performing more complex processing has mainly been to guaranty the time
constraint the estimation has to abide. The more resource intensive tasks such as
matching and calibration are performed in parallel so as not to burden the state
estimation. Their effects on the estimation will only be reflected by the updates
they make on the observations. This architecture therefore enables any number of
parallel processes to run to perform tasks that improve localization.

One of the most critical aspects of localization is the quality of the dead-reckoning
system. Early in this thesis, it was identified as a critical component as it is the
system that enables localization to be performed at high frequency. It also has
a great influence on the quality of the post smoothing trajectories which are used
extensively in this work. In this thesis, the calibration is achieved using the estimated
trajectory. This choice is made as a commercial system cannot be expected to rely
on anything but the vehicle on-board sensors. Since the smoothed trajectory uses
all known observations to estimate all states of the system, the choice was made to
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use it for calibration. Using estimated states for calibration can lead to observably
problems on some parameters (e.g. wheel radii) if the localization system does
not have sufficiently accurate observations to correctly estimate the vehicle state.
However, with this strategy, the more observations are used, the more accurate
the estimations will be, leading to a more accurate estimation of the calibration
parameters.

To approach accuracy levels required for autonomous driving, observations of map
features are used in the estimation. The problem of matching measurements to
map features is crucial as wrong matches may have disastrous effects on localization
accuracy and consistency. Using lane markings only and then road signs, a matching
technique relying on an adjustment step was proposed. Global optimization methods
can deal with ambiguous matches using multi-modal distributions. Correct matches
become clearer and unambiguous as estimation progresses. The goal of the proposed
adjustment step is to leverage a similar capacity in a filtering framework. Performing
the adjustment on a trajectory rather than individual states is an approximation
that enables the computation to be performed in a reasonable time frame. This
approach also enables to set stricter matching thresholds enabling to limit wrong
matches further. Since this task is performed in parallel to the estimation, matches
are not obtained in real-time but with a delay. Because of this delay, the last few
states are never estimated with measurements needing to be matched. Hence, this
strategy sacrifices some real-time accuracy to improve the system safety.

Map-aided localization is only as good as the maps used. Repeatedly, errors were
found in the maps used in this work. Even with a strict matching strategy erroneous
features are bound to be matched with some measurements. The detection of map
errors was therefore studied. Again, smoothed state estimates were used to perform
this task. Errors in the reference of the map features manifest on the residuals of
observation of the feature. The proposed method of weighting the accuracy of a
feature observation based on a reliability factor computed using the residuals has
been shown to improve the accuracy of localization when some lane markings are
erroneous. Although errors on lane markings result in lateral error, it is not as critical
as an error introduced on the yaw estimate. Road sign measurements can introduce
such an error. Again, using the residuals has been found to enable the detection of
erroneous road signs. The proposed method also uses multiple trajectory which has
been found to be essential to the detection of such errors. As for the calibration,
the error detection is only as good as the smoothed state estimates are accurate and
map errors are bound to degrade the quality of this estimation. Hence, having a
lot of observations and redundant information will be critical to further improve the
system.

Throughout this thesis, the added value of that buffers and maps for localization has
been clear. Kalman Smoothing has been used as the backbone of the calibration,
matching and error detection. It enables to obtain the entire trajectory estimated
with the information from all observations available. Moreover, it is performed
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following traditional filtering, which is widely used for real-time high-frequency es-
timation tasks. Although all methods presented in this thesis have been tested on
real experimental data, the importance of more extensive testing has been made
clear in particular for map error detection.

6.2. Perspectives

This work has highlighted the interest of using a spatio-temporal approach for map-
aided localization, but there are still many points to explore.

Calibration experiments with additional sensors The dead-reckoning model and
calibration method presented in this thesis was developed at the beginning of this
work to form the basis of the localization system. Since then additional observations
have been added to the localization system. The new observations result in better
state estimates which should lead to better estimation of the calibration parameters.
Also the size of the buffer needed to estimate the parameters should decrease as a
small accurate buffer should yield better results than a longer less accurate one.
Hence, it would be interesting to study how the quality of the calibration changes
with more accurate state estimates. The low cost GNSS receiver used in this work
does not enable accurate estimation of the vehicle position leading to estimates of
the vehicle speed almost entirely dictated by the DR sensors. The wheel circumfer-
ences are therefore hard to estimate. More accurate sensors might enable to better
estimate the vehicle speed leading to a better estimation of wheel circumferences.

Increase the quantity and the variety of the observations Throughout this
thesis, several exteroceptive sensor measurements have been added incrementally to
improve the localization accuracy. Adding lane marking measurements have proven
effective to achieve small lateral errors, while road signs improve both the position
estimate and the yaw estimate. From the experiments performed in Compiègne and
Rambouillet, it is clear that a large number of measurements is essential to accurate
localization. This effect also explains the better accuracy that can sometimes be
reached using dense point cloud maps for localization since the sheer number of
observed points inevitably lead to better accuracy and more robustness to small
map errors. The benefit of having more observations have been noticed in this
work between the two cities. In Compiègne, fewer road signs are observed and
more parked cars are detected (license plates are retroreflective). The localization
accuracy in Compiègne is therefore much worse than in Rambouillet. Thus, adding
new measurements to the localization process is essential. Street lights are numerous
in Compiègne and would be interesting to use. Beyond increasing the number of
observations, it is also important to increase the redundancy of observations. In this
work map errors are detected based on observed residuals. It is assumed that the
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residuals are caused by map errors rather than systematic errors in the observation
of a particular feature. For instance, some road signs might have their pole correctly
referenced at ground level, but a tilted pole results in the actual sign to be detected
slightly next to the referenced position of the pole. Detecting the same feature
through different means should partly limit this effect.

Exploit a better GNSS technology with accurate pseudoranges The GNSS
receiver used in this work used multiple constellations (GPS and Glonass) but did
not use Galileo. This new GNSS, still in its deployment phase to this day, shows very
interesting accuracy characteristics. In particular, with civil codes on two different
carriers, ionospheric errors can be eliminated. Moreover, with PPP corrections, an
accuracy of around 20 cm is expected to be achieved in the coming years. If we
anticipate this type of GNSS systems in the near future, we will either be able
to use very accurate calculated positions (loose coupling approaches) or it will be
possible to use very accurate pseudorange measurements in our proposed framework
(tight coupling approaches). In the latter case, it will be necessary to integrate an
unknown linked to the receiver clock. In both cases, the proposed approach can be
adapted very well.

Validate the localization system integrity The consistency and integrity of the
localization systems are essential for autonomous vehicles. While the current system
is consistent for a risk of 5% (except in cases of faulty matching, see Subsection 4.5.3),
autonomous vehicle applications require much smaller risk levels. The consistency of
the system has not yet been studied for smaller risks. In fact, since the GNSS pose
estimate is biased, we suspect that the consistency of the estimation is not satisfied
for smaller risks. Once better GNSS technology is added to the localization system,
its consistency should be studied for the low risk levels needed for autonomous
driving applications.

Compare the matching strategy with Combined Constraint Data Association
(CCDA) The matching strategy has been compared to traditional nearest neigh-
bor methods and Munkres matching. Another interesting matching strategy is Com-
bined Constraint Data Association (CCDA) which looks at the global compatibility
of associations. In this work, although observation buffers were used to increase the
number of observations used for matching, the number of individual features ob-
served was rather small (about one road sign every five seconds) making the CCDA
method impractical. With more observations, this matching method could be used
and should be compared to the presented approach (although a distance between
the two-dimensional road signs and the one-dimensional lane markings would have
to be defined).
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Adapt association probabilities using feature classification In Chapter 4, the
likelihood functions used to adjust the trajectory, considered all possible matches.
The a priori probabilities of an observation being matched to a feature were chosen
the same for all features. This was done since the sensors used in the experiments
did not provide a reliable classification of the observations. Using a more reliable
classification, the a priori association probabilities could be adapted based on the
observed classes. If a classifier was found to classify stop signs correctly in 90% of
cases and misclassify them as yield signs in 10% of cases, this information could be
used as a priori association probabilities in the matching process. Thus leading to
better matching and better localization.

Effect of Road Sign Error Detection on Localization Accuracy In the latest
results presented in this thesis, it was shown that using post smoothing residuals,
map errors can be detected. The main purpose of detecting such errors is to improve
localization for future drives. The effect of removing faulty features (and some
correct ones) on the accuracy and consistency of the localization has yet to be
studied.

Error detection does not affect localization in a straight forward way. On the plus
side, removing faulty features should improve localization. However, correct features
(false positives) are also bound to be removed. Because of this, the number of
observations used overall is expected to diminish which might lead to worse accuracy
in some areas. As discussed in Subsection 5.4.3, the scale of the errors might also
have to be considered in the estimation process. It might be better for the accuracy
of the localization to use a feature with a small error that no feature at all. Some
errors might be acceptable if the state estimate is not accurate enough.

Application of Road Sign Error Detection to multiple vehicles In Chapter 5, a
road sign error detection strategy was presented. Here, the method was integrated
as part of the localization system. Nothing prevents this method to be applied
remotely by sending computed residuals to a cloud service managing the map. Also,
the method was applied on data recorded using a single vehicle performing multiple
drives. It could also be applied using different vehicles, all contributing to improving
a single map.

Adding Missing features to Improve Localization The errors studied in Chap-
ter 5 concerned incorrectly referenced features. These errors are important as they
can be small enough for the matching system to match the feature but still cause
localization errors. Other types of errors can also be interesting to look at for local-
ization. Adding features that were missing will increase the number of observations
thus leading to better accuracy. This needs to be done carefully as once a feature
is added it will reinforce the confidence of the localization in a trajectory. Hence,
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6. Conclusion

features added based on a biased state estimate (e.g. caused by incorrect matching)
will lead future trajectories to also be biased. This point only reinforces the need
for more observations and more redundancy.

Matching is not equally difficult for all observations and features In this work,
features were treated equally in the matching process. However, some features
should be considered easier to match. Markings separating two lanes are far from any
other feature and could be treated differently. Also some road signs (e.g. right arrows
on the inside of large roundabouts) are fairly isolated and could be matched even
with large innovation. Such features could also be matched using faster techniques
to enable their use in the estimation to be close to real-time. The features easy
to match could be learned for each sensor using several trajectories and looking at
isolated observations matched to isolated features.
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A. Experimental Setup

All methods presented in this thesis have been tested using experimental data. This
data was acquired using two experimental vehicles each with their own specificity.
Two different experimental areas were used: Compiègne and Rambouillet. Three
different dataset series were recorded. This Appendix compiles the information on
the experimental vehicles, the test sites, and the datasets used for the work.

A.1. Vehicles

The Heudiasyc laboratory has several experimental vehicles that can be used to
test autonomous driving features. In recent years, experimentations have almost
exclusively been done with three of them. The three vehicles are all Renault ZOE.

Two vehicles called ZOE gray (see Figure A.1 (a)) and ZOE white, were purchased
by the laboratory in 2013 and 2015 using funds from the Equipex ROBOTEX (ANR-
10-EQPX-44-01). Those vehicles are first generation Renault ZOEs which have been
modified to enable autonomous control.

In 2019 a third vehicle (see Figure A.1 (b)), a third-generation Renault ZOE, was
also purchased. This vehicle is not modified for autonomous use. It is therefore only
dedicated to sensor acquisitions.

The three vehicles are set up to have the closest sensor setup possible. However,
there are some notable differences between the first vehicles and the most recent
one.

A.1.1. Reference frames

To express the sensor measurements and the vehicle poses, several reference frames
are used in this work. Figure A.2 shows each frame and the next paragraphs detail
their definitions.

The first frame R0 is a global reference frame in which the global vehicle pose is
measured. It is an East-North-Up frame meaning that its axes point toward the east,
north, and up. The frame is centered on a point O chosen arbitrarily in the world.
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(a) (b)

Figure A.1.: Experiment vehicles used to record the datasets. (a) is a first generation
Renault ZOE, (b) is a third generation Renault ZOE.

Table A.1.: Available sensors on the two experimental vehicles.

Vehicle 1st generation 3rd generation frequency

Gyrometer 3 3 100 Hz
Speed Measurement 3 3 100 Hz

Steering Angle 3 7 100 Hz
Wheel Ticks 3 7 50 Hz

Wheel Speeds 7 3 50 Hz
ublox M8T 3 3 2 Hz
VLP-32C 3 3 10 Hz

Mobileye camera 3 3 37 Hz

Figure A.2.: Graphic of the frames used to describe information
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A.1. Vehicles

Both the estimated vehicle pose and the ground truth are obtained and compared
in this frame.

For the localization task, the pose (position and orientation) of the vehicle are being
estimated. As such, a vehicle frame RM needs to be defined. The vehicle frame
(also called Mobile frame) is defined to be centered on the point M in the middle
of the vehicle rear wheels axle. The frame is oriented such that it has the same Up
direction as the global frame R0, and its first axis points toward the front of the
vehicle, leaving the second axis pointing toward the left. This frame can be used
to evaluate localization accuracy, as the localization requirements can be defined
more finely in this frame. Whereas in R0 the requirements for localization accuracy
depend completely on the situation, in RM different requirements can be set on the
different axes. Indeed, localization accuracy on the first axis (also called longitudinal
or along track axis) is often not critical. However, on the second axis (also called
transverse or cross-track axis), the localization accuracy is critical as an error in this
direction could result in the vehicle leaving the lane boundaries.

The vehicle is also equipped with two perception sensors, a Velodyne lidar and a
Mobileye camera that each provides measurements in their own frames (respectively
RV and RC). The velodyne frame is centered on the center of measurement V of
the sensor and its orientation is dictated by the sensor internal orientation. The
accurate referencing of this frame with respect to the mobile frame has to be done
by an extrinsic calibration method (described in Subsection A.1.7). The Mobileye
camera, being a smart camera, provides ready-to-use measurements that are not
referenced in the camera frame but rather referenced in a frame similar to the mobile
frame. This frame is oriented exactly as the mobile frame but is instead centered on
the point C at the vehicle front bumper. To provide measurements in this frame the
camera was calibrated by Mobileye engineers after it was installed on the vehicle.

A.1.2. Ground Truth System

All vehicles are equipped with a Novatel SPAN-CPT GNSS receiver. This system
uses a GNSS receiver with Real-Time Kinematic (RTK) capability loosely coupled
with a high-accuracy Inertial Measurement Unit (IMU). This system provides the
ground truth state used to evaluate the localization.

RTK positioning relies on a static receiver at a known position to estimate the er-
rors affecting satellite signals. These errors can then be compensated by the vehicle
receiver to obtain an accurate positioning. Several methods have been used to pro-
duce RTK solutions. The first dataset recorded in 2018 used a static receiver on
top of one of the university buildings. This method enables RTK positioning in
Compiègne. The RTK corrections being only valid close to the static receiver, this
solution was not applicable for datasets recorded in Rambouillet (over 100 km from
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Compiègne). For this dataset, a Network RTK (NRTK) system was used. Tradi-
tional RTK use a single static receiver to provide local corrections. NRTK uses a
network of static receivers covering the entire country. Using this network, correc-
tions anywhere in the covered area can be computed. In the experiments, a SatInfo
NRTK module (provided by Renault) was used. To further improve the accuracy
of the ground truth, the latest dataset was also post-processed with ”Inertial Ex-
plorer” from the Novatel company (this is called Post-Processed Kinematics - PPK).
Real time estimation is limited by the accuracy of the ephemerides and atmospheric
models available. Computing the ground truth by post processing enables to use
more accurate ephemerides and models. Also, the post-processed data is smoothed
leading to better overall accuracy.

A.1.3. CAN Bus

All vehicles provide access to their Controller Area Network (CAN) bus. The vehicle
internal sensors are therefore accessible. Through this bus, the gyrometer, steering
wheel angle, wheel speeds/ticks, and vehicle speed can be obtained. The two gener-
ations of vehicles have some differences. As explained in Chapter 3 and summarized
in Table A.1 the steering wheel angle and the wheel ticks are not available on the
most recent vehicle.

A.1.4. u-blox Receiver

All three vehicles are equipped with the same low-cost GNSS receiver: a u-blox
M8T. This receiver provides estimates of the vehicle pose.

This receiver is a single frequency receiver that can use up to two GNSS constel-
lations. In the experiments, the receiver was set up to use GPS and GLONASS
since the Galileo constellation was not yet complete. More recent tests suggest that
the GALILEO measurements are much better than other constellations. Future
datasets will therefore prefer Galileo over GLONASS.

A.1.5. Mobileye Camera

To obtain lane marking measurements, a Mobileye camera was used. This camera
provides up to four lane marking measurements at 37 Hz. The errors of these
measurements have been found to be correlated in time. For that reason, in the
experiments, only a tenth of the measurements are used. The camera was provided
by Renault as part of the ESCAPE project that studied localization using Precise
Point Positioning (PPP) aided by lane marking measurements.
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Although only a single camera is available, both the Rambouillet 2018 dataset (with
the gray vehicle) and the Compiègne 2020 dataset (with the blue vehicle) have these
measurements. The camera was moved from one vehicle to the other.

A.1.6. Velodyne VLP-32C

All three experimental vehicles are equipped with Velodyne VLP-32C lidar sensors.
In 2018, the sensors were placed at the front of the vehicle (right at the edge between
the windshield and the roof). Now, the lidars on all vehicles are placed centered on
the vehicle slightly elevated above the roof.

The points provided by the sensors are corrected to compensate for the vehicle
motion as described in Appendix D.

A.1.7. Extrinsic Calibration

Calibration of the sensors is essential to correctly model the link between the obser-
vations and the vehicle state. The dead-reckoning sensors only need distances that
can be obtained directly from the vehicle technical specifications. The perception
sensors and the GNSS antenna position still need to be identified.

The Mobileye camera returns measurements in a horizontal frame centered in the
middle of the vehicle front bumper. To return measurements in this frame, the
camera position in the vehicle needs to be known. This calibration was performed
by a Mobileye engineer.

To obtain the lidar extrinsic calibration, a FARO Vantage laser tracker was used. It
enables to measure the position of points of the vehicle with an accuracy below the
millimeter. The position of the center of the rear axle can be found by measuring
points on the rear wheels. The position of the screw with which the sensor is attached
to the vehicle was also measured. The measurement system can then provide the
transformation from the base frame to the sensor frame.

A.2. Maps

The experiments done in this work use two test cities.
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Laboratory

Road Work

Benjamin Franklin University Building

Figure A.3.: HD map of Compiègne

A.2.1. Compiègne

The laboratory being located in Compiègne most experiments are performed there.
The map of Compiègne (see Figure A.3) is the largest High Definition map (HD
map) available to the laboratory. The map contains 57 km of lanes (a road with two
lanes is counted twice) and 164 km of lane markings (including curbs). It references
2382 road signs (including street lights, traffic lights, bollards).

A.2.2. Rambouillet

The laboratory takes part in the Tornado project which aims to demonstrate au-
tonomous vehicles and intelligent infrastructure for mobility. The project is hosted
by the city of Rambouillet and the experiments are done between the commercial
area of the city and the train station of the neighboring town. Renault has provided
the laboratory with an HD map of Rambouillet (see Figure A.4). This map is about
half the size of Compiègne, with 28 km of lanes, 82 km of lane markings and 1127
road signs.
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Figure A.4.: HD map of Rambouillet

Table A.2.: Length and duration of the 2018 datasets recorded in Compiègne.

Name Length Duration
First 4.02 km 9 min 36 s

Second 7.51 km 14 min 44 s

A.3. Datasets

During the course of this thesis, several datasets have been recorded. The datasets
have been recorded with the help of Stéphane Bonnet, Antoine Lima, Stefano Masi,
Thierry Monglon, Correntin Sanchez.

A.3.1. Compiègne April 2018

A first dataset was recorded with the gray Renault ZOE in 2018. At the time
the Mobileye camera and Velodyne lidar were not available. Hence this dataset only
contained ground truth positioning, a pose estimate from a u-blox M8T receiver and
the vehicle internal sensors. The dataset was used to evaluate the dead reckoning
model and the calibration technique presented in Chapter 3.

The dataset contains two recordings of two different trajectories. A first trajectory,
shown in Figure A.5 (a), starts at the roundabout in front of the laboratory, loops
around a square roundabout south-east of the map and returns back to the start.
The second trajectory, shown in Figure A.5 (b), consists of three loops around a
commercial center and a part of the university building. Characteristics of the
trajectories are found in Table A.2.
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(a) (b)

Figure A.5.: Trajectories of the dataset recorded in Compiègne in 2018. Both trajec-
tories start at the entrance of the laboratory. The first trajectory goes
up to the roundabout South-East of the map. The second trajectory
loops three times around a commercial center and university buildings.

142



A.3. Datasets

(a) (b)

Figure A.6.: Trajectories performed for the three recordings in Rambouillet 2018.

Table A.3.: Length and duration of the 2018 datasets recorded in Rambouillet.

Name Length Duration
Faulty 1 4.42 km 8 min 29 s
Faulty 2 5.10 km 9 min 47 s

Roundabouts 2.31 km 5 min 30 s

A.3.2. Rambouillet October 2018

Several datasets have also been recorded in Rambouillet. Unlike the previous
datasets, the vehicles were now equipped with a Mobileye camera and a Velodyne
VLP-32C lidar.

Three datasets recorded on two trajectories have been used in this work. The first
two datasets (Faulty 1&2) followed the trajectory shown in Figure A.6 (a). This
trajectory is interesting because it goes through an area of the map that has changed.
Several lane markings are known to be incorrectly referenced and several road signs
have also changed. The second trajectory used for the third dataset traverses four
roundabouts close to each other in the north-east of the map. Table A.3 contains
the length and duration of each dataset.

The first and third trajectory were used in Chapter 4 to evaluate the matching
method. The first two trajectories were used in Chapter 5 to evaluate the marking
reliability and the localization.
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Table A.4.: Length and duration of the 2020 datasets recorded in Compiègne.

Name Length Duration
Between Roundabouts 9.50 km 17 min 30 s

Laboratory to BF 1 7.03 km 11 min 42 s
Laboratory to BF 2 7.03 km 12 min 54 s

Large Loop 1 12.85 km 14 min 43 s
Large Loop 2 12.85 km 14 min 37 s
Large Loop 3 12.84 km 14 min 17 s

A.3.3. Compiègne March 2020

In 2020, more extensive series of datasets were recorded in Compiègne. Follow-
ing the newly received HD map of the city, several datasets covering most of the
new map were recorded. Six datasets were recorded using three trajectories (see
Figure A.7).

The first trajectory goes south to the largest roundabout, then north-east up to
the Benjamin Franklin university building and back to the laboratory. To cover
more ground, a different route was taken on the way back. This trajectory covers
a difficult part of the map where an intersection was being changed during the
recording. This area yields almost no lane marking or road sign measurements. The
roundabout that follows is also difficult as few road signs are visible and one of them
is not correctly referenced.

The next two datasets were recorded using a similar trajectory with the exception
that it does not go through the difficult section of the map.

The last three datasets are the longest at almost 13 km in length each (see Table A.4
for exact figures). This trajectory forms a loop around the Oise river that traverses
Compiègne. Like the first trajectory, it passes through the difficult part of the
map. Additionally, it includes the southwest road on which the vehicle reaches up to
70 km/h and that contains very few road signs. The last three trajectories containing
both the difficult map section and a long stretch of road with few longitudinal
measurements, they were not used to evaluate the matching and localization of
Chapter 4. However, all datasets were used in Chapter 5 to evaluate the fault
detection method.
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Figure A.7.: The three trajectories used for the datasets recorded in Compiègne in
2020.
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B. Kalman Smoothing Derivation

This appendix is based on the book [Radix, 1984].

B.1. Prerequisites [Tong, 1990]

In the following sections, the probability density function of a multivariate Gaussian
distribution with mean a and covariance matrix A is noted

p (x) = N (x;a,A) (B.1)

Joint Gaussian distribution from marginal and conditional
distributions

Theorem 1. If the marginal probability distribution of a random variable x is a
Gaussian distribution, and the conditional probability distribution of a random vari-
able y knowing x is also a Gaussian distribution with a mean being a linear function
of x (i.e. Jx) {

p (x) = N (x;a,A)

p (y | x) = N (y;Jx,R)
(B.2)

then, the joint probability distribution of x and y is a Gaussian distribution described
by

p (x,y) = N
([

x
y

]
;

[
a
Ja

]
,

[
A AJ>

JA JA J>+R

])
(B.3)

Marginal and conditional distributions from the joint Gaussian
distribution.

Theorem 2. If the joint probability of x and y is described by a known Gaussian
distribution

p (x,y) = N
([

x
y

]
;

[
a
b

]
;

[
A C
C> B

])
(B.4)
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Then, the marginal distributions of x and y are described by

p (x) = N (x;a,A) (B.5)

p (y) = N (y; b,B) (B.6)

And the conditional probabilities of x knowing y, and y knowing x are described by

p (x | y) = N
(
x;a+CB−1 (y − b) ,A−CB−1C>

)
(B.7)

p (y | x) = N
(
y; b+C>A−1 (x− a) ,B −C>A−1C

)
(B.8)

B.2. Mathematical Derivation

The objective of smoothing is to find the distribution of p (xk | z1:N) for k ∈ J0;NK
[Radix, 1984]. It is important to note that p (xN | z1:N) is already known at epoch
N using filtering only. Therefore, if we are able to find p (xk | z1:N) based on
p (xk+1 | z1:N), we will be able to find the smoothed estimate at every epoch by
applying a backward update.

The steps of the derivation are listed next. The key is to go from knowing a probabil-
ity knowing z1:k to knowing a probability knowing z1:N . This is achieved by finding
p (xk | xk+1, z1:k) and using the Markov assumption to obtain p (xk | xk+1, z1:N).

The steps that will be used to derive the smoothing equation are listed below, they
are further detailed in the following paragraphs.

1. p (xk+1 | xk, z1:k) and p (xk | z1:k) are known after the filtering

2. p (xk,xk+1 | z1:k) using Theorem 1

3. p (xk | xk+1, z1:k) using Equation B.7 from Theorem 2

4. p (xk | xk+1, z1:N) using the Markov assumption

5. p (xk+1,xk | z1:N) using Theorem 1

6. p (xk | z1:N) using Equation B.6 from Theorem 2

Output from the filtering

After the filtering is performed, the probabilities p (xk | z1:k) are known for k ∈
J0;NK. Moreover, the evolution model provides a relation between xk+1 and xk, we
can therefore deduce p (xk+1 | xk, z1:k) = p (xk+1 | xk) because of Markov assump-
tion.
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Hence, at this stage we know:{
p (xk | z1:k) = N

(
xk; x̂k|k,P k|k

)
p (xk+1 | xk, z1:k) = N (xk+1;Akxk,Qk)

(B.9)

Joint distribution knowing z1:k

Ideally, we would want to obtain p (xk | xk+1, z1:k) since using the Markov assump-
tion, we would then be able to get p (xk | xk+1, z1:N). In other words, finding
p (xk | xk+1, z1:k) would enable us to get from an estimate knowing z1:k to an esti-
mate knowing z1:N .

One way to find the conditional probability p (xk | xk+1, z1:k) is to use the joint
probability p (xk,xk+1 | z1:k). We can see that using Equation B.9, the Theorem 1
directly apply. We therefore obtain:

p (xk,xk+1 | z1:k) = N
([

xk
xk+1

]
;

[
x̂k|k
Akx̂k|k

]
,

[
P k|k P k|kA

>
k

AkP k|k AkP k|kA
>
k +Qk

])
(B.10)

or using intermediate variable from the Kalman filter

p (xk,xk+1 | z1:k) = N
([

xk
xk+1

]
;

[
x̂k|k
x̂k+1|k

]
,

[
P k|k P k|kA

>
k

AkP k|k P k+1|k

])
(B.11)

Conditional distribution knowing z1:k

As mentioned previously, finding the conditional distribution p (xk | xk+1, z1:k) is
the key to obtain a probability knowing z1:N . Using Equation B.7 we have:

p (xk | xk+1, z1:k) = N (xk;m,Pm) (B.12)

with

m = x̂k|k + P k|kA
>
k

(
AkP k|kA

>
k +Qk

)−1 (
xk+1 −Akx̂k|k

)
(B.13)

Pm = P k|k − P k|kA
>
k

(
AkP k|kA

>
k +Qk

)−1 (
P k|kA

>
k

)>
(B.14)

Here the notation can be simplified by introducing the variable Jk =

P k|kA
>
k

(
AkP k|kA

>
k +Qk

)−1
. The previous expressions become:

m = x̂k|k + Jk
(
xk+1 −Akx̂k|k

)
(B.15)

Pm = P k|k − Jk
(
P k|kA

>
k

)>
(B.16)

Furthermore, it would be useful in the following development to have Pm

expressed in the form Pm = A ± JkBJ
>
k . We use the fact that
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(
AkP k|kA

>
k +Qk

) ((
AkP k|kA

>
k +Qk

)−1
)>

= I (because of the properties of sym-

metric invertible matrices) and write:

Pm = P k|k − Jk I
(
P k|kA

>
k

)>
(B.17)

= P k|k − Jk
︷ ︸︸ ︷(
AkP k|kA

>
k +Qk

) ((
AkP k|kA

>
k +Qk

)−1
)> (

P k|kA
>
k

)>
(B.18)

= P k|k − Jk
(
AkP k|kA

>
k +Qk

) (
P k|kA

>
k

(
AkP k|kA

>
k +Qk

)−1
)>

(B.19)

= P k|k − Jk
(
AkP k|kA

>
k +Qk

)
J>k (B.20)

Conditional distribution knowing z1:N

At this stage, we are finally able to write the probability of xk knowing z1:N (and
xk+1). Using the Markov assumption again we obtain,

p (xk | xk+1, z1:N) = p (xk | xk+1, z1:k) (B.21)

= N (xk;m,Pm) (B.22)

with

m = x̂k|k + Jk
(
xk+1 −Akx̂k|k

)
(B.23)

Pm = P k|k − Jk
(
AkP k|kA

>
k +Qk

)
J>k (B.24)

Joint distribution knowing z1:N

We now know p (xk | xk+1, z1:N) from the aforementioned reasoning. And we can
assume that p (xk+1 | z1:N) is known since we are working backward starting from
the only “smoothed” state that we know: x̂N |N . Hence, we have the following
information: {

p (xk | xk+1, z1:N) = N (xk;m,Pm)

p (xk+1 | z1:N) = N
(
xk+1; x̂k+1|N ,P k+1|N

) (B.25)

Therefore, we are in a case where we can apply Theorem 1 and get the joint distri-
bution:

p (xk,xk+1 | z1:N) = (B.26)

N
([

xk+1

xk

]
;

[
x̂k+1|N

x̂k|k + Jk

(
x̂k+1|N −Akx̂k|k

) ] , [ P k+1|N P k+1|NJ
>
k

JkP k+1|N JkP k+1|NJ
>
k + Pm

])
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Marginal distribution knowing z1:N

Finally, from the previous joint distribution we can extract the marginal distribution
p (xk | z1:N) using Equation B.6:

p (xk | z1:N) = (B.27)

N
(
xk; x̂k|k + Jk

(
x̂k+1|N −Akx̂k|k

)
,JkP k+1|NJ

>
k + P k|k − Jk

(
AkP k|kA

>
k +Qk

)
J>

k

)
Or written using the predicted state x̂k+1|k and covariance matrix P k+1|k,

p (xk | z1:N) = (B.28)

N
(
xk; x̂k|k + Jk

(
x̂k+1|N − x̂k+1|k

)
,P k|k + Jk

(
P k+1|N − P k+1|k

)
J>k
)

151





C. Dead-Reckoning sensor Modeling
Analysis

The accuracy of the dead-reckoning depends on the accuracy of sensor models.
The models presented in Chapter 3 have been found to fail in some instances. This
Appendix details the limitations of the dead reckoning sensor models and the reasons
why more accurate models have not been used.

C.1. Speed Observation

The speed measurement is available on all vehicles used for the experiments. It is
used for the estimation only for the first generation Renault ZOE for which wheel
speed measurements were not available. This is done such that the speed estimation
is smoothed which cannot be achieved using the wheel ticks.

Although the exact way the vehicle computes that speed is unknown, it is fair
to assume that it is computed using measurements of the wheel speeds. It was
assumed that to a scaling factor this measurement directly described the speed of
the vehicle.

In Figure C.1, the speed measurement error (vCANk − v̌k) is shown with respect to
the yaw rate measurement. The lateral acceleration is also shown by the color of
the points. In this figure, it can be seen that the speed measurement error has a
dependency to the vehicle yaw rate or lateral acceleration. One explanation of this
effect is tire deformation. At high lateral accelerations, the tire slips more leading
to a vehicle speed slightly slower than what would be expected given the wheel
speeds.

In this work, this effect was not corrected. Figure C.1 was produced using data
recorded with purposefully high rates of rotation. This was done to study this effect
but is not representative of normal driving situations.
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C. Dead-Reckoning sensor Modeling Analysis

Figure C.1.: Error in the speed observation provided by the vehicle CAN bus with
respect to the yaw rate. The color of the points shows the lateral
acceleration of the vehicle measured at the center of the rear axle.

C.2. Steering Wheel Angle Observation

In Chapter 3, the relation between the virtual front wheel (which relates to the
vehicle speed and yaw rate) and the measured steering wheel angle was studied. It
was found that the relation is linear with a factor aδ linking the two. The high angles
often correspond to low vehicle speeds. Hence, the modeling was mainly driven by
low speed values.

On Figure C.2, the effect of the speed on the relationship is shown. The linear model
is recomputed using only data from specific speeds. For low speeds (< 5 m/s), the
relation between the virtual front wheel angle and steering wheel angle is the same
as what was found in Chapter 3. However, at higher speeds, the value found for aδ
changes.

As for the yaw rate influence on the speed error, this effect can be explained by tire
deformations. The virtual front wheel angle cannot be measured (because it does
not really exist). Hence to obtain the angle, the ground truth speed and yaw rate
were used. The assumption was made that the wheel was not skidding so the wheel
angle would be directed by the speed vector at the wheel position. At higher speeds,
this assumption is not guaranteed.

Despite this effect, the coefficient linking steering wheel angle and the virtual front
wheel angle is still chosen constant. The coefficient only seems to change noticeably
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C.2. Steering Wheel Angle Observation

Figure C.2.: Estimation of the relation between the steering wheel angle observation
and the virtual front wheel angle.

at speeds at which the vehicle does not turn significantly. Hence, this simplification
does not have significant consequences on the estimation.
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D. Correction of LiDAR Pointcloud
using Vehicle Motion

D.1. Introduction

Rotating lidars such as Velodyne VLP32C provides information not directly as
Cartesian point clouds but as a list of points in polar coordinates. Conversion from
polar to Cartesian coordinates is not trivial in most cases [Merriaux et al., 2016].
Indeed, lidars typically do not register all points at once because of restriction on
power emission. The 32 lasers from the VLP32C are fired by pairs (16 firing) over a
55.296 µss span. Hence, 32 points are measured every 55.296 µs, which amounts to
57856 points every 0.1 ms (scan length when the lidar is set at 600 RPM). Therefore
each point in the scan is not measured at the same time. Hence when the sensor is
moving, to obtain the true position of each point, the trivial conversion form polar
to Cartesian coordinates is not sufficient. This is particularly important for vehicle
applications where the speed often reaches over 10 m/s which would result in a 1 m
error on point position in the Cartesian scan.

D.2. Cartesian Conversion

The sensor contains ranges ρit and azimuth angles αit where t is the firing time and i
is the laser id (corresponding to which ring the point belongs to). The trivial polar
to Cartesian conversion can be done

xy
z

 =

ρti · cos (ei) · cos (αti + δi)
ρti · cos (ei) · cos (αti + δi)

ρti · sin (ei)

 (D.1)

where ei is the laser elevation, δi is the azimuth offset that needs to be accounted
for since the lasers are not aligned on the same azimuth but shifted on four different
orientations.
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D. Correction of LiDAR Pointcloud using Vehicle Motion

D.3. Compensating Sensor Movement

The point cloud after conversion is provided with a time stamp corresponding to
either the beginning of the firing t0 sequence or the end t1. If the point cloud is
provided with the time stamp of the beginning of the firing sequence, the end of the
point cloud will not be correctly referenced as the sensor might have moved.

Assuming a 2D movement defined by the sensor velocity v and its yaw rate ω, the
pose of the sensor at time t in the sensor frame at t0 is derived from the following
equation: xsys

θs

 =

∆t · v · cos (∆tω)
∆t · v · sin (∆tω)

∆tω

 (D.2)

where ∆t = t− t0.

Using this pose, the transformation from the sensor frame at t to the sensor frame
at t0 can be defined. The polar coordinates can thus be converted using

xy
z

 =

 cos θs sin θs 0 xs
− sin θs cos θs 0 ys

0 0 1 0



ρti · cos (ei) · sin (αti + δi)
ρti · cos (ei) · cos (αti + δi)

ρti · sin (ei)
1

 (D.3)

The resulting point cloud is provided with the timestamp t0.

It is important to note that this correction assumes that the true position of each
point is the same at time t and at time t0 (or any reference time). With this
assumption the points can be returned with any timestamp as long as the sensor
movement has been considered. This assumption does not hold for moving objects.
Indeed, for moving objects, the point true position changes with time and therefore
needs to be accounted for when changing timestamp.

With this correction the lidar points do not form rings anymore as they are usually
depicted. Indeed, if the laser path would actually form rings, it would require to
jump from one ring of a scan to the next. This does not happen in practice. Instead,
the laser forms a continuous path rotating around a possibly moving sensor. The
path is closer to a cycloid than a ring (see Figure D.1).

Here the specific transformation is computed for each point. [Varga et al., 2017]
have proposed approaches using matrix exponential and logarithmic functions. In
those approaches a transformation for a specific delay ∆0 is computed at the start.
To obtain the transformation for a point with delay ∆i the transformation is raised
to the fractional power ∆i

∆0
.
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D.3. Compensating Sensor Movement

(a) (b)

Figure D.1.: Two consecutive lidar scans without accounting for the sensor move-
ment (a) and by correction the polar to Cartesian conversion using the
sensor speed and yaw rate (b). The points of the same color have been
registered by the same laser, in figure (a) the points form rings whereas
in figure (b) the points form a continuous cycloid where the end of a
scan directly follows the beginning of the next.
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E. Crosswalk Measurements

Pedestrian crossings are an interesting type of marking. They are one of the few
markings, along with stop and yield lines, that provide information in the road
longitudinal direction. While the camera can detect such feature relatively easily
because the camera measurements are dense, lidars have more difficulty. Indeed,
lidars providing the most complete representation of the environment still do not
provide a dense representation of the environment. In particular, rotating lidars are
often dense in one direction (thousand points along a ring) and very sparse in another
(at most 64/128 layers). Because of this, it is complicated to accurately detect
features in this direction. Such lidars are often placed on top of the vehicle [Ghallabi
et al., 2018, Levinson and Thrun, 2010, Takeda et al., 2019]. This placement results
in point clouds with high angular resolution around the vehicle but with only a few
rings (16 to 64) where points are measured. Using a single lidar scan, at most three
rings will hit the crosswalks which can make them hard to identify.

The following sections describe the crosswalk observation model and the crosswalk
detector developed during Antoine Lima’s internship. This work has led to the
publication of a conference paper [Lima et al., 2020].

E.1. Observation Model

The measurement
[
MxC

MyC
]>

of the position of a pedestrian crossing can only
be accurate along one direction (the measurement is obtained in the sensor frame,
here the observation model is presented using measurements in the vehicle mobile
frame to make the equations lighter). This is due to two components.

First the map does not reference the center of the crosswalk but contains the seg-

ment of the road traversing the crosswalk. Hence, the point
[

0xR
0yR
]>

that can
be extracted from the map will correspond to points that are centered on a lane.
When multiple lane traverse the same crosswalk, multiple parallel segments will be
referenced.

Secondly, the detector identifies crosswalks based on the strips it detects. Therefore
the position of the detected point is sensitive to the detection (or not) of particular
strips. If strips are missing the resulting point will shift in the direction of the
pedestrian crossings.
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E. Crosswalk Measurements

Figure E.1.: Schema of the observation model of a crosswalk.

For these reasons, the observation used for state estimation is not directly the two-
dimensional point. One solution to deal with this problem could have been to keep
the point as an observation but attribute it a large uncertainty in the direction of the
pedestrian crossing. This solution is not perfect as some strips can be systematically
missed by the detector (because of wear) thus leading to points systematically shifted
in the same direction resulting in observations with correlated noises.

Instead, the detection is simplified in a single distance ρC from the vehicle to the
crosswalk along the crosswalk longitudinal direction. This distance can be obtained
because the orientation of the crosswalk can be measured (θC) and can be obtained
from the map (θR). The observation used for the estimation is therefore,[

ρC
θC

]
=

[
xC cos θC + yC sin θC

θC

]
(E.1)

The first term corresponds to the projection of the detected point on the crosswalk
longitudinal direction. In other words, it corresponds to the distance along the
crosswalk between the vehicle and the crosswalk. The same quantity can be obtained
from the vehicle state by

hCWi (x) =

[
ρR

θR − θ

]
(E.2)

=

[
(0xR − xk) cos θR + (0yR − yk) sin θR

θR − θk

]
(E.3)
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E.2. Crosswalk Detector

Figure E.2.: Comparison of the view of a single 16-layer lidar scan (a) and from an
accumulation of 5 seconds of scans (b). Using a single scan, only two
rings hit the crosswalk which can make it hard to detect. The crosswalk
becomes clear when a buffer is used.

with corresponding Jacobian

HCW
i =

[
− cos θR − sin θR 0 0 0

0 0 −1 0 0

]
(E.4)

The noise model of the detector can be defined by the two standard deviations σρ
and σθC forming the covariance matrix

R =

[
σ2
ρ 0

0 σ2
θ

]
(E.5)

As for the other sensors, the numerical values for these standard deviations have been
estimated by comparing the observation

[
ρC θC

]
with the output of the observation

model hCW (x̌k) where x̌k is the ground truth state.

E.2. Crosswalk Detector

The detection of pedestrian crossings is hard mainly due to the sparsity of the point
cloud in the line-of-sight direction. This issue can be addressed using point cloud
accumulation. Point cloud accumulation using grids has been used to successfully
detect such feature [Yang et al., 2012]. Also dense mapping approaches use accumu-
lation irrespective of the detectable features to perform localization. In this work,
the accumulation is performed specifically to produce an observable and not as a
direct step of the localization strategy.

Point cloud accumulation enables to obtain a denser point cloud in the vehicle travel
direction. Depending on the size of the accumulation, it will have little effects on the
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E. Crosswalk Measurements

vehicle sides, as shown on Figure E.2. Hence, pedestrian crossing located in front
or behind the vehicle will become detectable using the accumulated point cloud.

The point cloud accumulation is performed using the vehicle kinematic state esti-

mate
[
vk θ̇k

]T
. Let Pk be the list of points obtained at time k (expressed in the

mobile frame) and Pk−S:k the accumulated list of points from time k − S to time
k expressed in the mobile frame at time k. Each point is assumed to be described

using its homogeneous coordinates
[
x y z 1

]>
. When a new point cloud Pk+1

is obtained, the points from time N − S are discarded from the buffer resulting in
the point cloud Pk−S+1:k expressed in the mobile frame at time k. This point cloud
needs to be propagated into the most recent mobile frame (at time k + 1). This is
done by using the transformation

k+1Pk−S+1:k =


cos
(
dt · θ̇k+1

)
sin
(
dt · θ̇k+1

)
0 dt · vk+1

− sin
(
dt · θ̇k+1

)
cos
(
dt · θ̇k+1

)
0 0

0 0 1 0
0 0 0 1

 kPk−S+1:k (E.6)

with dt = tk+1 − tk.
The new accumulated point cloud is then obtained by adding the new points to
k+1Pk−S+1:k

k+1Pk−S+1:k+1 = k+1Pk−S+1:k ∪ Pk+1 (E.7)

The accumulated point cloud is estimated in a sliding window fashion every time a
new point cloud is available.

Since modern lidars provide hundred thousands of points every second, the entire
point cloud is not used for lidar detection. Instead, only an area of interest is
processed. These areas of interest can be identified thanks to the map. The map
contains polygons delimiting pedestrian crossing. The points near this polygon
can thus be isolated to detect the crossing. This filtering can be performed using
methods solving the point in polygon problem. With this method each polygon
would need to be enlarged in order to account for the positioning error. Since this
step is only used to reduce the computational complexity of the detection and is
not required to be precise, a simpler method is used. If a point is in a polygon, the
area of the triangles it forms with each segment of the polygon will equal the area of
the entire polygon. However, if the point is outside of the polygon, some triangles
will overlap resulting in a greater area than the polygon. Hence by checking the
area of the triangles and the area of the polygon, one can verify if a point is within
the polygon. This method also offers a simple way to dilate the polygon. Indeed,
instead of requiring the two areas to be equal, by requiring the two surfaces to be
close enough (as a proportion of the polygon surface) the points around the polygon
might become acceptable. Hence the dilatation of the polygon can be controlled
using a single, area proportion, factor.
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E.3. Experimental Results

Figure E.3.: Trajectory (blue) used to evaluate the localization system using cross-
walks. The crosswalks referenced in the map are shown in red.

Once the points are filtered around crossing candidates, the detection can be per-
formed. Since the map only encodes the points where the road enters the crossing
and exit the crossing, the method aims at detecting the middle of these points. To
do so, the crosswalk strips are first isolated using Otsu thresholding [Otsu, 1979]
on the intensity values as road paint is more reflective than asphalt. The resulting
points are clustered and for each cluster (strip) its center and orientation are ob-
tained using PCA. The final observation is then obtained by averaging the strips
pose.

E.3. Experimental Results

To test the method, a trajectory in the city of Rambouillet was chosen (see Fig-
ure E.3). This trajectory was selected as it contained several crosswalks close to
each other.

The vehicle used in these experiments is equipped with a Velodyne VLP-32C lidar
and a ublox M8 GNSS receiver. In these experiments, lane markings and road sign
measurements are not used such that the full influence of crosswalk measurements
is not hidden by other measurements. The experiments are done with a 2 seconds
buffer for the crosswalk detection.

Figure E.4 shows the differences in localization error between the localization with
and without using crosswalk detections. When no crosswalk observations are avail-
able, both estimates tend to the same value as the ublox observations are driving
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E.3. Experimental Results

the estimated positions. Every time crosswalks are observed (light gray area in
Figure E.4), the state uncertainty decreases along the crosswalk direction. In most
cases, the error is also reduced. At t = 30 s, 40 s, 110 s, 145 s and 170 s, sharp
decreases of the error are observed.

From these results, it can also be seen that crosswalks have difficulties improving
the state estimates when they are viewed with a high relative angle (θR − θk). At
t = 45 s, 95 s, 110 s and 130 s, the error is seen tending back toward the GNSS only
error despite crosswalk observations.

The influence of the buffer length and of the dead reckoning accuracy on the accuracy
of the observations has also been studied and can be found in [Lima et al., 2020].

Given that crosswalk detection can only be done using lidar when the road paint is
fairly recent (crosswalks in Compiègne are much harder to detect) and correlation
of observations (as crosswalks are detected using a rolling buffer, therefore, share
points used for detection) still need to be studied. These observations are not yet
integrated in the main localization system. The results shown in the main chapters
of this thesis do not include these observations.
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F. Covariance Intersection

F.1. Problem Statement

Covariance intersection enables the fusion of two sources of information with un-
known correlation. Two observations y1 and y2 with corresponding covariance ma-
trices S1 and S2 are combined into a single vector y and covariance matrix S
using,

S =
(
ωS−1

1 + (1− ω)S−1
2

)−1
(F.1)

y = S
(
ωS−1

1 y1 + (1− ω)S−1
2 y2

)
(F.2)

The factor ω ∈ [0, 1] is chosen to minimize either det (S) or trace (S). In the general
case, it has to be computed using iterative optimization techniques. For small state
dimensions, analytic methods exist [Reinhardt et al., 2012]. In this thesis, covariance
intersection is used with road sign residuals which are two-dimensional. A closed
form solution is therefore useful to speed up the computations. We use here the
determinant.

F.2. Covariance Matrix Transformation

In order to obtain an analytic expression of ω, an expression of det (S) is needed.

det (S) = det
((
ωS−1

1 + (1− ω)S−1
2

)−1
)

(F.3)

To easily compute the determinant of
(
ωS−1

1 + (1− ω)S−1
2

)−1
, a diagonalization of

this expression is computed. This is achieved by first applying the transformation

T 1 =
(
V 1

√
D1

)−1
where the diagonal matrix D1 and orthogonal matrix V 1 are

such that S1 = V 1D1V
>
1 . With this transformation,

T 1S1T
>
1 =

(
V 1

√
D1

)−1

S1

(
V 1

√
D1

)−>
(F.4)

=
√
D1

−1
V −1

1 S1V
−>
1

√
D1

−>
(F.5)

=I (F.6)
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F. Covariance Intersection

det
(
T 1ST

>
1

)
= det

(
T 1

(
ωS−1

1 + (1− ω)S−1
2

)−1
T>1

)
(F.7)

= det
((
ωT−>1 S−1

1 T
−1
1 + (1− ω)T−>1 S−1

2 T
−1
1

)−1
)

(F.8)

= det

((
ω
(
T 1S1T

>
1

)−1
+ (1− ω)

(
T 1S2T

>
1

)−1
)−1
)

(F.9)

= det

((
ωI + (1− ω)

(
T 1S2T

>
1

)−1
)−1
)

(F.10)

A second transformation T 2 is then used to diagonalize the matrix T 1S2T
>
1 , with

T 2 such that T 1S2T
>
1 = T>2D2T 2 (D2 being a diagonal matrix).

det
(
T 2T 1ST

>
1 T
>
2

)
= det

(
T 2

(
ωI + (1− ω)

(
T 1S2T

>
1

)−1
)−1

T>2

)
(F.11)

= det

((
ωI + (1− ω)

(
T 2T 1S2T

>
1 T
>
2

)−1
)−1
)

(F.12)

= det
((
ωI + (1− ω)D−1

2

)−1
)

(F.13)

(F.14)

The values of T 1 and T 2 do not depend on the value of ω. Moreover det (T 1) > 0
and det (T 1) > 0 because these matrices are built from orthogonal matrices and
positive definite matrices. Therefore the minimization problem becomes,

arg min
ω

det (S) = arg min
ω

det
(
T 2T 1ST

>
1 T
>
2

)
det (T 2T 1) det

(
T>1 T

>
2

) (F.15)

= arg min
ω

det
(
T 2T 1ST

>
1 T
>
2

)
(F.16)

= arg min
ω

det
((
ωI + (1− ω)D−1

2

)−1
)

(F.17)

= arg max
ω

det
(
ωI + (1− ω)D−1

2

)
(F.18)

(F.19)

Because D2 is diagonal, a simple expression of the determinant exists

det
(
ωI + (1− ω)D−1

2

)
=(ω +

1− ω
d1

) · (ω +
1− ω
d2

) (F.20)

=
(ω(d1 − 1) + 1) · (ω(d2 − 1) + 1)

d1d2

(F.21)

where d1 and d2 are the diagonal terms of the matrix D2.
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F.3. Algorithm

When the previous expression is maximal, its first derivative is null. Therefore,

0 =
d

dω
det
(
ωI + (1− ω)D−1

2

)
(F.22)

⇐⇒ 0 =
d

dω

(
(ω +

1− ω
d1

) · (ω +
1− ω
d2

)

)
(F.23)

⇐⇒ 0 =
d

dω
((ωd1 + 1− ω) · (ωd2 + 1− ω)) (F.24)

⇐⇒ 0 = 2(d1 − 1)(d2 − 1)ω + (d1 + d2 − 2) (F.25)

⇐⇒ ω =
d1 + d2 − 2

2(d1 − 1)(d2 − 1)
(F.26)

F.3. Algorithm

Algorithm 1 Algorithm to compute ω for two-dimensional vectors.

1: [V 1,D1]← eigen(S1) . Find first diagonalization

2: T 1 =
(
V 1

√
D1

)−1
. Compute the first transformation

3: [V 2,D2]← eigen(T 1S2T
>
1 ) . Compute second diagonalization

4: [d1, d2]← diag(D2)
5: ω = − d1+d2−2

(d1−1)(d2−1)

6: if ω < 0 then
7: ω ← 0
8: else if ω > 1 then
9: ω ← 1

10: end if
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