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Abstract

Software-intensive embedded systems, such as automotive systems, are increasingly
built from highly-variable applications targeting evermore configurable hardware plat-
forms. Moreover, there are often various ways to implement a given application on
a specific platform. This threefold variability leads to an immense number of system
design alternatives. The notorious problem is to establish, at early stages of develop-
ment, which designs fulfill and optimize functional and non-functional requirements.
Traditional system design frameworks capture system requirements and specifications
to derive and evaluate every design automatically. However, they use enumeration-
based techniques and offer poor scalability at both modelling and analysis stages. On
the other hand, variability modelling approaches exploit commonalities between dif-
ferent but related products to efficiently evaluate the whole product line. Yet, given
system specifications, they lack to automatically derive the design space while only
specific facets of the problem are evaluated in isolation. We propose a model-driven
framework that combines and extends both approaches. It captures requirements and
specifications in the form of variable data-flows and configurable hardware platforms,
with non-functional constraints and a cost function. An original mapping algorithm
then derives the design space automatically and generates it in the form of a variability-
aware model of computation, which encodes every system design. Novel verification
algorithms then pinpoint suitable designs efficiently. The benefits of our approach are
evaluated through a real-world case study from the automotive industry.

Keywords: Model-Based embedded-system design, Feasibility analysis,
Optimization, Model of computation, Behavioral Product Line, Quantita-
tive properties, Variability-aware model-checking



Résumé

Les systèmes embarqués sont implémentés à partir d’applications variables ciblant des
plateformes matérielles configurables. De plus, une application peut être implémentée
de plusieurs façons sur une plateforme. Cette triple variabilité engendre un nombre as-
tronomique de conceptions système alternatives. Le problème crucial est alors d’établir,
au plus tôt, quelles sont les conceptions système qui satisfont et optimisent les exi-
gences fonctionnelles et non-fonctionnelles. Généralement, les approches de conception
de systèmes capturent les exigences et spécifications pour automatiquement dériver et
évaluer toutes les alternatives. Cependant, ces outils sont énumératifs, ce qui peut les
rendre inapplicables à grande échelle. D’un autre côté, les approches de modélisation
de la variabilité exploitent les points communs entre les différents produits pour évaluer
efficacement toute la ligne de produits. Pourtant, ces approches ne traitent que cer-
taines parties du problème et ne fournissent aucun moyen de dériver l’espace de concep-
tion automatiquement. Nous proposons une approche qui combine et étend ces deux
méthodes. Après avoir capturé les exigences et spécifications sous la forme d’un flot de
donnés variables, d’une plateforme matérielle configurable, d’une fonction de cout et de
contraintes non-fonctionnelles, nous dérivons un espace de conception encodé par une
ligne de produit comportementale. Finalement, un algorithme de vérification permet
d’identifier efficacement les conceptions de système les plus adaptées. Les avantages
de notre approche sont évalués à travers un cas d’étude industriel automobile.

Mots-clés : Conception de système embarqué, Analyse de faisabilité, Op-
timisation, Modèle de calculabilité, Ligne de produits comportementale,
Propriétés quantitatives, Vérification de modèle variable
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pement de tableau de bords automobiles, mais aussi un mentor, m’a proposé un sujet
de recherche passionnant, issu d’une simple question “quelles plateformes matérielles
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Chapter 1

Introduction

1.1 Context

Scale and complexity of software-intensive systems such as cyber-physical and large
scale embedded systems have reached historic levels. While the Gartner Group expects
more than twenty billion of connected objects [Eddy, 2015], automotive systems are
developed with several millions of lines of code driving hundreds of electronic hard-
ware [Charette, 2009]. In many of these systems, requirements engineering and design
activities are of utmost importance in industry to reduce a wide range of risks at early
stages of development. However, these development steps are tightly intertwined and
involve complex multi-criteria design decision-making over various concerns.

As an example, let us consider an infotainment service in an automotive system.
Specifying such service entails defining functional and non-functional (a.k.a. qual-
ity) requirements. Functional requirements would specify what and how the Human-
Machine Interface (HMI) content should be displayed into the car display. This em-
bedded HMI-rendering is constrained by the hardware platform at the functional level,
such as not exceeding the available memory or not misusing processing pipelines. While
typical examples of non-functional requirements are constraints on manufacturing cost,
execution time, or even rendering quality. The notoriously difficult problem is to es-
tablish, at early stage of development, whether such requirements are feasible and
what is the best system design to implement it with more confidence. That requires
either to prototype or to have massive knowledge of a lot, if not all, of the possible
design alternatives. This is unrealistic in a context of high-level competition where
companies must deliver better solutions from more complex requirements and do so
timely [Broy et al., 2011].

Basically, a data-flow oriented automotive embedded-system is developed in order
to fulfill these requirements. The system consists of i) a data-flow processing appli-
cation (i.e., a data-flow graph capturing what and how the HMI content should be
process) driving and feeding a ii) resource-limited hardware platform (i.e., heteroge-
neous hardware components like non-programmable processors and data storage units)
to provide efficient and high-quality graphics rendering at the lowest cost. This sepa-
ration of concerns between the applications “what do we have to do” and the platforms
“what can we do” is not specific to automotive embedded system. Internet of Things,
grid computing, and even production plans also have to consider platform limitations
to meet and optimize requirements.
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1.2 Problem

There are various ways to implement a given application on a specific platform. Known
as the famous application mapping and scheduling problem [Sigdel et al., 2009], e.g.,
choose a specific processor to process a given task or select a specific memory unit to
store a given data. Therefore, in addition to scheduling problem and mapping variabil-
ity, other extensive variation points are growing at the requirements and specifications
levels. Since platforms and applications are more and more developed as a product
line to target multiple ranges of systems1. There are two additional main sources of
extensive variability. First, at the application level, multiple data-flow variants can be
engineered from requirements, differing in, e.g., the size of the flowing data chunks,
the ordering of the processing tasks, or the choice between alternative, functionally-
equivalent tasks. Second, there exists a diversity of configurable hardware platforms
that can differ, e.g., in memory capacities and processing pipelines. This threefold
variability is typical in embedded systems [Pretschner et al., 2007].

The number of system variants (i.e., a specific mapping of a specific application
variant to a specific platform variant) growths exponentially in terms of design varia-
tion point from multiple sources (e.g., requirements, application, platform, mapping,
software, hardware, protocol). Yet, each system variant may exhibit multiple execu-
tions due to the different scheduling opportunities (e.g., tasks can be executed onto
resources in different orders). Unfortunately, it often leads to a large number of vari-
ants from a million (106) to a billiard 1015, while every single variant could exhibit up to
a trillion (1012) different possible executions for a large scale embedded systems [Sigdel
et al., 2009].

A system design alternative (or design for short) is then composed of a system vari-
ant (i.e., design structure) and a scheduling execution (i.e., design behavior). Both
elements are mandatory in order to implement the design in latter stages of devel-
opment. Among these design alternatives, not all are able to realize the functional
requirements due to hardware functional limitations. The same holds for the non-
functional requirements due to limited hardware capacities. Given these numbers, a
systematic consideration of all design alternatives is unfeasible for the system engi-
neers, whereas the high level of competition in industry puts high pressure on them
to deliver optimal solutions and do so timely [Broy et al., 2011]. Efficient automation
to assist engineers, therefore, appear as a necessity.

Examples of questions the engineers need to answer are:

� Which designs can properly render the specified HMI to the screen?

� Which feasible designs can be manufactured with a budget of 100$ or less?

� Which feasible designs can render the HMI in less than 16 ms?

� Which feasible designs, with a high-definition rendering quality and a manufac-
turing cost lower than 50$, exhibit the fastest execution time?

� Which feasible designs reach the best trade-off between rendering quality, manu-
facturing cost and execution time?

1Contrary to application-specific hardware platform where the hardware is synthesized for a spe-
cific application logic.
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1.3 Industrial Practices

In industry, quick and approximated prototyping methods are still largely adopted to
answer to those questions. This methodology has the advantage of getting a system
running in front of customers. However, while a successful implementation assesses
the functional and non-functional feasibility of a particular system design, optimality
cannot be demonstrated. Worst still, finding functional or performance problems
at late system development stages could lead to major risks (e.g., significant delay,
economical cost, project failure). Besides, having a good picture of promising designs
with such methods requires to find and implement a lot of, if not all, designs. This
means dealing manually with variability concerns, which is not humanly possible in our
class of problems. Nevertheless, even if proactive system experts find and implement
nearly optimal designs thanks to decades of experience in system engineering, no one
can formally prove their design choices to customers or third-party teams.

To reduce these gaps, a plethora of model-based system design methods are used
in industry as well. Instead of prototyping designs, a model-based design framework
captures and reasons formally on all designs through model abstractions (i.e., system
specifications, design space and model of computations). This approach reduces ma-
jor risks of system prototyping methods. Making possible relevant design choices at
early stages of development. Furthermore, prototyping only promising designs is thus
enough to answer to those questions with more confidence. The key factors of this
approach are the quality of models abstractions (i.e., relevance, accuracy, expressivity)
and quality of reasoning (i.e., analysis time, correctness).

Analytical methods give quick results but often turn out largely suboptimal, if
not completely wrong. On the contrary, low-level simulators provided by platform
suppliers are highly accurate, but analyzing all system variants requires implement-
ing fine-grained simulations for all of them, which is unrealistic. System-level design
frameworks2 seem appropriate in terms of model abstraction and reasoning quality,
but lack of capturing to three variability levels. Where the number of variants could
increase exponentially according to the amount of design variations, the modeling and
assessing time of every variant could lead to scalability issues. Making thus a signifi-
cant obstacle for any industry adoption. In the end, current practice is deemed very
unsatisfactory. Our industry partner made these observations, Visteon Electronics, an
international leader in automotive systems, and are also corroborated by surveys such
as [Broy, 2006].

1.4 Challenges

The most appropriate frameworks used in industry lack to capture to three levels of
variability and present scalability issues. Nevertheless, answering those questions re-
quires not only a way to deal efficiently with three levels (i.e., application, mapping,
platform) variability-induced combinatorial explosion but also a method to reason
simultaneously and efficiently about various facets of the design engineering prob-
lem emerging from different types of concerns: feasibility/satisfiability and optimal-
ity; functional and non-functional requirements; and different types of aspects: be-
havioural and structural aspects of the system. Concretely, thus requires solving all

2System level-design is a trade-off between low-level electronic system and high-level analytical
methodologies to maximize the results accuracy while minimizing the analysis time.
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combinations of concerns on aspects (multifaceted problems) efficiently. The different
facets can be classified by concern as follow:

� The design satisfies the functional requirements, that is, checking both the FC
requirements that depend on the structure of the design (system variant); can be
implemented? and checking FC requirements that also depend on its behaviour
(system execution); is the HMI properly rendered?.

� The design satisfies the non-functional requirements, that is, checking both the
structure: can be manufactured within this budget? and also the behaviour of
the design; is the HMI rendered at a minimum of 30 frames per second?

� The design optimizes quality attributes. This facet requires considering both
structural and behavioral quality attributes simultaneously. Optimizing only
those that depend on the structure; is the cheapest? or only those that depend
on the behavior; is the fastest? can lead to suboptimal solutions.3.

System Design Engineering approaches used in industry efficiently capture system
requirements and specifications (i.e., application, platform) with domain specific lan-
guages. An application mapping algorithm then derives the resulting design space.
Finally, the design space is transformed into models of computations in order to eval-
uate all facets of the problem. While some specific techniques attempt to handle and
manage either platform variability [Sima and Bertels, 2009,Sigdel et al., 2009,Palermo
et al., 2009] or application variability [Schor et al., 2012, Van Stralen and Pimentel,
2010, Wildermann et al., 2011a, Palermo et al., 2008], none of these approaches allow
engineers to capture variability present in both application and platform specifications.
This entails modeling and assessing each variant iteratively, which could lead to major
scalability issues.

On the other hand, Product Line Engineering approaches capture behaviors of vari-
able systems through behavioral product line formal models. Such formalisms exploit
commonalities between different but related variants to efficiently assess the whole set
of products in a single run. However, these approaches only assess specific facets of
the problem in isolation4. Moreover, given application and platform specifications,
these frameworks are not capable of automatically map these specifications in order
to derive the resulting design space. This would imply to manually derive the design
space5, which is tedious, time-consuming, and error-prone.

To solve all facets of the problem efficiently, we determine three challenges to be
tackled in our context :

1. Capturing functional and non-functional variable requirements and specifications
that can vary at both the application and platform levels; applications being
represented by alternative data flows supporting concurrent behaviour, while
platforms are described as configurable hardware components;

3This facet falls into a multi-objective optimization problem as the cheapest system that exhibits
the fastest execution may not be the fastest system that exhibits the cheapest cost.

4Structural and behavioral aspects, as well as functional and non-functional concerns, are mainly
addressed in isolation by state of the art frameworks.

5More precisely, the various ways of mapping every application variant on every platform config-
uration in order to derive the design space.
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2. Deriving, from the application and platform models, the resulting design space
(i.e., all possible design alternatives) capturing all the structural, behavioural,
functional and non-functional properties and variations of each design alterna-
tive;

3. Evaluating simultaneously and efficiently all facets of the problem; the functional
feasibility, the non-functional satisfiability, and optimality at both structural and
behavioral aspects of each design alternative;

1.5 Contributions

In this thesis, we propose an original approach that combines and extends embedded
system design engineering and product line engineering domains to provide the first
tooled framework able to solve, formally, the three challenges described in the above
paragraphs. Finally giving the means to make appropriate design decisions at early
stages of development.

The proposed framework is model-driven and i) captures requirements, variable
data-flow and platform specifications with domain-specific languages extended with
variability concerns (in a Y-Chart form), ii) uses a novel variability-aware mapping
algorithm to map variable data-flow application onto a description of the targeted
configurable hardware platform, so to derive a variability-intensive embedded system
design space in a behavioral product line form in order to, iii) reuses and extends auto-
mated reasoning techniques from both research domains (i.e. variability-aware model
checking and cost-optimal reachability analysis) to explore and assess efficiently the
functional feasibility, non-functional statisfiability and optimality at both structural
and behavioural aspects of the whole design space in a single run.

1. A modeling method, extending application and platform model with variability
concerns. Formal models extensions have been proposed; applications model
extends data-flows supporting concurrent behaviour with possible flow variations
and alternative values for properties (e.g., data size, rendering quality) while
platform model extends components-based systems with optional component
and configurable properties (e.g., memory capacity, clock frequency).

2. A mapping algorithm to derive from the application and platform models the
resulting design space by mapping application elements into platform resources
while capturing all the structural, behavioural, functional and non-functional
properties and variations of each design alternative;

3. A reasoning tool chain unifying state-of-the-art techniques on product line rea-
soning with novel variability-aware model-checking algorithms capable of eval-
uating efficiently and simultaneously some or all problem facets of the whole
design space at once;

4. A qualitative evaluation of the approach based on a lightweight real mid-end
instrument cluster system from our industry partner. Functional and non-
functional requirements were properly captured and assessed by our framework.
Optimal system designs were correctly identified. Even on small data-flow and
platform models, the optimal models were non-trivial to devise for industrial
experts, showing the practical relevance of the proposed approach.
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5. A quantitative evaluation assesses the scalability of our approach. It gives us
confidence that our framework could be applied to the majority of systems (low-
end and mid-end instrument cluster) developed by our industrial partner and
similar systems developed elsewhere in industry. This evaluation shows possible
new research opportunities to improve traditional system design engineering by
considering system design spaces as behavioral product lines.

1.6 Outline

The remainder of the thesis is organized as follows.

� Part I provides details on our industrial case study, the expected outcomes of
our framework with identified challenges (see Chap. 2). It then discusses state
of the art (see Chap. 3).

� Part II proposes en end-to-end framework. The framework is firstly elaborated
and applied to functional assessment to validate the approach (see Chap. 4, 5
and 6). The next Chapter (see Chap. 7) proposes a non-functional extension
that allows to solve the entire multifaceted problem.

� Part III describes our implementation (see Chap. 8), qualitative and quantitative
industrial evaluations (see Chap. 9), with identified threats to validity.

� Finally, the last chapter gives final remarks and presents the main perspectives
of this thesis (see Chap. 10).

The research work done during this PhD has led to the following peer-reviewed
publications.

Lazreg, Sami and Collet, Philippe and Mosser, Sébastien “Assessing the functional
feasibility of variability-intensive data flow-oriented systems” Best Paper Award in the
Proceedings of the 33rd Annual ACM Symposium on Applied Computing6. This paper
proposes a new approach to assess, in early design phases, the functional feasibility of
embedded system design alternatives. Rather than enumerating and iteratively assess-
ing all designs, the proposed framework reasons on behavioral product line to assess
the whole design space in a single variability-aware model-checking run (see Chap. 4,
5 and 6). The experiments (see Sec. 9.2) show that this approach exploits behav-
ioral commonalities between system designs to speed-up remarkably the verification
process.

Lazreg, Sami and Cordy, Maxime and Collet, Philippe and Heymans, Patrick and
Mosser, Sébastien “Multifaceted automated analyses for variability-intensive embed-
ded systems” 2019 IEEE/ACM 41st International Conference on Software Engineer-
ing (ICSE)7. This paper proposes to extend our framework in order to capture and
assess efficiently the non functional satisfiability and optimality of the whole design
space. (see Chap. 7). The family-based experiments 9.4 characterize the efficiency our
variability-aware system design approach compared to a traditional product-by-product
ones.

6https://hal.archives-ouvertes.fr/hal-01660057/document
7https://hal.archives-ouvertes.fr/hal-02061251/document
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Chapter 2

Motivations

2.1 Industrial Case Study

In this research, we collaborate with Visteon Electronics, a leading company devel-
oping solutions for the automotive industry such as instrument clusters, infotainment
and connected vehicles. We introduce a pedagogical excerpt from a mid-end instru-
ment cluster system developed by Visteon. We will use a pedagogical sample as a
running example throughout this thesis to further illustrate and justify our approach.
An instrument cluster is a speedometer and other instrumentation which, unlike tradi-
tional analog gauges, appear on an electronic visual display (see Fig. 2.1). By applying
graphical processing effects on information related to the vehicle (e.g., 2D/3D gauges,
3D view of the car), an instrument cluster improves the driver experience.

The case study we present is an important module of a mid-end instrument cluster
developed without using any model-based design methods during the 2015-2016 period.
Our industrial collaborator proposed this particular module as it was surprisingly
difficult to develop, while the complexity of application (number of task and data,
etc.) and platform (number of processor and memories) was standard regarding other
related modules. Thanks to decades of experience, system engineers finally delivered
a system that satisfies every functional and non-functional requirement. However, as
usual, such complex development requires multiple iterations and step back. Moreover,
the performance and quality generally of the prototypes were differing from engineers’

Figure 2.1: Our instrument cluster system case study
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expectations. Still, while the final implementation was exhibiting suitable performance
and quality, none of the engineers could assert formally that the final implementation
was optimal for the customer expectations.

2.1.1 Running example

To develop such systems, customers (i.e., automakers) specify their functional require-
ments, “what and how they want the system does”, usually illustrated by a desktop
demonstration of the HMI. Non-functional requirements, such as rendering quality,
budget, and responsiveness, are also defined. The role of a company such as Visteon is
to implement the customer HMI in a data-flow-oriented automotive embedded system
that i) reach functional requirements by rendering the requested HMI correctly and ii)
reach the non-functional requirements by satisfying the customer quality and budget
expectations.

The data-flow-oriented embedded system is a given data-flow application (i.e.,
engineered from the HMI specified by the customer) driving and feeding a specific
hardware platform (i.e., assembled by Visteon and third-party hardware manufac-
turers). The data-flow-oriented embedded system thus consists of two specifications,
i.e., application and platform, and two implementation matters, i.e., mapping and
execution of these specifications (engineered by system engineers). Finding the most
suitable mapping and execution of an application variant on a platform configuration
determines the project’s success or failure. We now illustrate these elements:

� The data-flow processing application: the processing flow that fulfill the HMI’s
functional requirements is captured by a data-flow oriented application support-
ing concurrent behaviour. Fig. 2.3(a) illustrates a data-flow specification with
functional properties (e.g., image size, task), non functional properties (e.g., im-
age and task rendering quality) and quality attributes (e.g., overall quality).
Images are processed by graphical tasks1. Image D1 is processed by tasks A and
image D2 is processed by task D. The image produced by A, and the image pro-
duced by D, are then processed by task C, which delivers the final result onto the
display.

� A resource-constrained hardware platform: The hardware platform, Fig. 2.3(b),
is described by a set of interconnected hardware components with functional
properties (e.g., memory capacity, processor functions), non-functional proper-
ties (e.g., memory and processor bandwidth, cost, frequency) and quality at-
tributes (e.g., overall cost). Image processing functions A, C, D are provided by
a non-programmable Display Controller Unit (DCU). Within the DCU, there is a
processing pipeline composed of three functions A, D and C, which finally render
the result onto the vehicle display. A processing pipeline is composed of several
hardware-implemented processing functions that may differ in processing band-
width (i.e., different byte per cycle performance). Directed edges denote the
processing flows followed by data that transit through the processing pipeline of
processors using internal FIFO-buffers, while functions may be applied or not2.

1Other data parameters than image sizes, compression or scale factors, such as transformation
matrix, masks etc. can be ignored as they do not interfere with the finding of the suitable designs.

2Bus systems, memory controllers, memory banks and cache memories can be ignored as they do
not interfere with the finding of the suitable designs.
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� A mapping of the application on the platform: (Fig. 2.3(a)), illustrates a mapping
(i.e., software implementation) of the application onto the platform. Images
D1 and D2 are, respectively, stored onto ROM and RAM. The data-flow processing
application, composed of tasks A, D and C, is implemented using the DCU hardware
pipeline. There are various ways of mapping this application on this platform
as the images D1 and D2 can be stored on RAM or ROM. This mapping variant
(Fig. 2.3(a)) is one of the 4 possible mappings (so called mapping space).

� A run-time execution of the mapping: Fig. 2.3(b) sketches a system execution3.
Images are fetched from the memories and processed by the hardware functions
at different processing bandwidths (i.e., RAM bandwidth is higher than ROM one,
byte per cycle processing capabilities of C hardware function of the DCU is twice
faster than A and D ones). Bandwidth and latency of the hardware components
and their interactions determine the overall execution time. A system variant
may have multiple executions (execution space) according to scheduling opportu-
nities of the application elements (task and images) over the platform resources
(processor and memories).

Variability-intensive applications

In the instrument cluster domain, multiple dataflow variants can achieve the func-
tional requirements (cf. Fig. 2.4). In our example, image D1 can be processed
by functionally-equivalent tasks A or B, while D2 has three different possible resolu-
tions. The task and image resolution impacts the HMI rendering quality. In our case,
performing B instead of A improves the rendering quality significantly. Also, as the
resolution of D2 increases, the overall quality raises as well. Such variability is mainly
due to the fact that instrument clusters are more and more developed as product lines.

Fig. 2.4 specifies six alternative data-flows (application space), i.e., application
variants. The highest rendering quality is achieved by the application variant that
processes the image D1 by the task B while the data D2 has the highest resolution (i.e.,
1024KB). On the contrary, the variant where D2 is at the lowest resolution and D1 is
processed by the task A has the lowest rendering quality. The image resolution impacts
the overall system quality but also the total amount of bytes of data to process, which
can influence the rendering time.

Highly-configurable platforms

At the platform level (Fig. 2.5), hardware providers generally offer adapted platform
product lines for each range of infotainment services. Thus, multiple platform configu-
rations (platform space) are possible at hardware manufacturing time. in our example,
some configurations propose an additional RAM storage and/or a graphical processing
unit GPU to increase functional capacities and processing bandwidth of the platform
(e.g., GPU provides two parallel processing pipelines). The first is composed of A and
B processing functions. The second is focusing on high-speed processing of task D4.

GPU and RAM are optional as some basic applications only store input images in ROM

and use DCU to process and render them directly to the display. Yet, they improve the

3Memory accesses optimization such as prefetching and burst modes are not detailed as it is a
low-level system concern. Engineers can determine such details in late development stages.

4The D function of the GPU is implemented with more transistors and is thus 4 times faster than
the D function of the DCU
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Figure 2.4: Alternative data-flow variants

platform processing and storage capacity for a higher manufacturing cost. Note that
there is a presence condition between RAM and GPU as RAM acts as a dedicated cache
memory for GPU. Whereas RAM can be used without GPU, e.g., to store more data or
larger images. In our example, RAM comes in three alternative capacities (at different
costs). On the other hand, RAM, GPU and ROM have alternative frequencies acting as a
scale factor for data processing/transfer bandwidth for processors and memories witch
could influence the execution time.

As a result, this configurable hardware platform is a product line of 19 electronic
targets. Each electronic target is a platform configuration of heterogeneous hardware
components like non-programmable processors and data storage units with a deter-
mined cost, functionality, and capacity. The cheapest platform configurations, limited
to 4096KB of storage, are those providing only the mandatory hardware components
(ROM and DCU). Configurations with a GPU and the highest-capacity RAM are 2.42 times
more expensive, but can store up to 6144KB. Also, processing task D is up to 8 times
faster using GPU rather than DCU. To the same extent, the transfer bandwidth of RAM

is much higher than ROM (4 times higher).

Variability-Intensive Embedded System Design Space

A system variant result from a specific mapping variant that implements a specific
application variant onto a specific platform variant. This threefold variability we
observed in the instrument cluster is typical of embedded systems [Pretschner et al.,
2007]. The variant space grows exponentially in terms of design variations, and two
different system variants thus present design variations at (one or many of) these
three variability dimensions. Besides, a system variant may exhibit multiple possible
executions (execution space) that can differ from scheduling of the application elements
over the platform resources (e.g., tasks can be executed onto resources in different
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orders). A system design alternative (or design for short) is composed of a system
variant (design structure) with a particular system execution (design behavior).

The resulting Variability-Intensive Embedded System Design Space is the set of
every possible system designs. Among these design alternatives, not all fulfill the
functional requirements due to hardware limitations on the functional level. The same
holds for the non-functional requirements as the cost of the platform configuration,
the quality of the given data-flow application variant, or the run-time execution of the
system may not reach the expectations due to limited hardware capacities.

Functional requirements

To guarantee that a design is capable of rendering the HMI without any problems, the
design should first exhibit a consistent structure (a compatible triplet of application,
mapping, and platform variants). “Any task and data of the data-flow variant are
mapped to, respectively, processors and memories of the platform configuration.” i.e.,
which tasks must be processed, which tasks exchange data with others, which memory
storage is accessible by processors, and how tasks (resp. data) can be mapped onto
processors (resp. memory storage).

The design structure (system variant) could also be inconsistent as it exhibits a
platform variant with the GPU without the RAM (violating thus the platform con-
sistency) or an application variant with both tasks A and B (application consistency
violated). Also, if the mapping variant exhibits the task B mapped on GPU without
a platform variant with GPU, or a data mapped into a non selected RAM (violating
thus mapping to platform consistency) as well as a data mapped on an unreachable
memory for the processor that implements the task, i.e., processor where the task is
mapped (which violates the mapping consistency).

Secondly, the design should also exhibit an error-free execution as a behavior.
Graphical processors (e.g., GPU and DCU) have limited hardware functions, and
memories (e.g., RAM and ROM) have limited storage capacities. The execution of the
tasks must terminate without bugs (e.g., such as deadlock) or violation of platform
capabilities (i.e., misusing hardware pipelines or communication paths between compo-
nents, exceeding the available memory). This termination property not only depends
on the structure of the design but mostly on its behaviour, as particular scheduling of
tasks and data transfers may cause deadlocks or memory overflow. Some other tradi-
tional behavioral properties, such as safety or liveness checking, may also be required.

Non Functional requirements

In addition to functional (FC) Requirements, the design must also meet Non-Functional
(NF) requirements. In our example, these commonly include a maximal manufacturing
cost, a minimal rendering quality, and responsiveness (i.e. time to render graphics on
the visual display from which frame per second is determined), called NF constraints.
Not all designs can meet the whole set of NF constraints. A higher-quality data-flow
variant may increase the total amount of bytes the platform should store and process.
A platform configuration with more memory storage and processing performances gen-
erally comes at a higher manufacturing cost. Finally, the rendering time depends on
the application variant workload/platform configuration capacities association but also
their mapping and scheduling.

Manufacturing cost and rendering quality are quality attributes depending only
on the design structure. Execution time, however, depends on both structure (e.g.,
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data size, processor frequency) but emerges from the design behavior execution (i.e.,
scheduling of tasks, processing bandwidths, and memory access operations). However,
as market competition forces engineers to deliver the best system to each specific cus-
tomer. Among many designs, they must find those offering the best trade-off between
the quality attributes (i.e., multi-objective optimization NF requirements).

2.1.2 Suitable Designs

Given such requirements and specifications, system engineers need to find some suit-
able designs that fulfill functional requirements but also meet (and even optimize)
multiple quality attributes (manufacturing cost, rendering quality, execution time,
etc.). This may involve making complex design choices at both application, platform,
mapping, and scheduling levels. In the instrument cluster industry, general questions
engineers have to answer are:

1. Which designs can properly render the customer HMI to the vehicle display? :
The first step is usually to identify designs that meet at least the customer
functional requirements.

2. Which feasible designs, with an execution time less than 30.0 ms, have the cheap-
est manufacturing cost : Responsiveness is important, and to make economies,
part of the quality can be neglected.

3. Which feasible designs, with an execution time less than 30.0 ms, expose the
highest rendering quality? : To propose an instrument cluster with high-grade
quality, the focus can be on rendering quality.

4. Which feasible designs, with a rendering quality score of, at least5, 1 (low-quality
grade) and a manufacturing cost lower than 20.0$, exhibit the fastest execution
time?6: The focus is on responsiveness, but minimal quality and maximal budget
are also defined.

5. Which feasible designs reach the best trade-off between rendering quality, manu-
facturing cost and execution time? : While no clear expectations are defined, one
can arbitrary select design by trade-off on multiple quality attributes.

To answer those questions, let us consider some suitable designs on our example (see
Fig. 2.6). These designs present different design choices having complex influences on
their functional feasibility, non-functional satisfiability, or even their optimality w.r.t.
non-functional requirements. The designs presented fulfill the functional requirements
except for the design (d), which exceed memory capacity. Design (d) is not feasible in
practice; trying to prototype it is a waste of time and effort.

� According to its platform variant, the design (a) is one of the cheapest (i.e., de-
sign choices to not select RAM nor GPU reduce the manufacturing cost drastically).
Even if the ROM is the bottleneck, its execution time meets the non-functional
requirements. However, due to its application variant, this design exhibits an
extremely low rendering quality.

5The quality is generally informal and determined through lower or higher resolution, and more or
less advanced graphics technologies increasing the visual quality of the HMI (e.g., advanced filtering
and anti-aliasing, lighting and shading, compression format

6In addition to run-time, other metrics such as processing or memory bandwidths consumption
profiles can also be part of NF constraints.
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� Design (b) presents a small size RAM on which D2 (medium quality selected) is
stored. This allows for fetching images in parallel, removing, thus, memory bot-
tleneck. In addition, this provides a faster and higher rendering quality execution
at an extra cost. Interestingly, design choices that reduce D2 quality or memory
frequency (i.e., from 200 to 100Mhz) do not impact the execution time (i.e.,RAM
memory bandwidth is far from being a run-time bottleneck).

� Design (c) exposes the highest cost, but also a high rendering quality as the
engineers select a data-flow variant with B task and medium D2 quality. However,
this leads to an execution time dangerously close to non-functional constraints,
thus presenting a risk to system responsiveness.

� According to its application variant, design (d) presents the highest rendering
quality as it implements application variant with B processing and the highest D2
resolution. Unfortunately, it seems that the NF constraint on execution time will
definitely be violated. Moreover, RAM maximal storage capacity is also exceeded
as it needs at least 2560KB.
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Figure 2.7: Pareto front with some of the optimum designs.

Fig. 2.7 shows a Pareto front [Hu et al., 2013] with some of the optimum designs.
While some designs are clearly suitable solutions to engineering questions, others can
be proposed as alternatives. For example, regarding question 2. Fig. 2.7 presents two
risky solutions, a low quality design (a) and a close to deadline design (a+). One
could advise the customer to select the design (b) to further developments as quality
and run-time performance increase, respectively, up to 100% and 35% while the cost
increase of 40%.

2.1.3 Discussion

The instrument cluster from which we extract the running example has been designed
and implemented on a real instrument cluster by Visteon engineers. Thanks to decades
in embedded system engineering, they could make - not without difficulties - suitable
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design choices to finally get a prototype that meets and optimize requirements. If the
platform had been still in development, the engineers would not have the possibility
to prototype several designs to get a suitable solution.

Surprisingly, the size and complexity of the data-flows variants and platform con-
figurations were medium to low, according to engineers. The extra difficulty may
have emerged from the variability present in these specifications and their possible
mapping and scheduling opportunities. This instrument cluster development was rela-
tively recent (2016) and tended to corroborate that variability at both system specifica-
tions and implementation levels are constantly growing [Brugali and Hochgeschwender,
2017,Passos et al., 2016] in various software and embedded system industries.

Given 6 application variants and 19 platform configurations, the running example
shows up 1139 feasible system designs can be prototyped, from which 939 meet the
requirements while all the executions of the designs can be encoded in a state machine
with 690 000 different states. In contrast, the majority of mid-end instrument clusters
(systems specifications illustrated in Fig. 2.8), the number of application variants, and
platform configurations could reach several hundreds of alternatives. A state machine
of at least 59 000 000 states is needed to encode all the execution traces of the 34 560
designs (see Chap. 9).

Besides the variant spaces, the complexity of a mid-end instrument cluster is also
much higher. In our example, data-flow variants have (on average), 2 source images,
3 tasks, 4 data-paths, 2218KB of data to process, and platform configurations have of
5 hardware functions, and 4850KB storage capacity provide by 2 storage memories.
Whereas majority of instrument clusters have data-flow variants with 13 source images,
16 tasks processing 6656KB of data through 25 paths and platform configurations have
a storage capacity of 20MB provided by 4 storage memories and 24 hardware functions.

2.2 Detailed Challenges

Finding suitable designs w.r.t requirements requires not only a way to deal efficiently
with a variability-induced combinatorial explosion at the three levels (i.e., application,
mapping, platform), but also a way to reason simultaneously and efficiently about var-
ious facets of the problem emerging from different types of concerns: feasibility/sat-
isfiability and optimality; functional and non-functional requirements; and different
types of aspects: behavioural and structural aspects of the system design. Concretely,
this requires efficiently solving all combinations of concerns on aspects. The different
facets can be classified by concern as follows:

� Satisfying the functional requirements (FC), that is, checking the structure of
the design (i.e., system variant); is it consistent in order to be implemented?
(facet FC-S) and checking its behaviour (i.e., execution); is the HMI rendering
terminate without any error? (facet FC-B).

� Satisfying the non-functional requirements (NF), that is, checking those that
depend only on the structure: can it be implemented within this budget? (facet
NF-S) and those that also depend on the behaviour; is the design behavior
renders the HMI at a minimum of 30 frames per second? (facet NF-B).

� Optimizing multiple quality attributes (facet NFO). This facet requires consid-
ering all quality attributes simultaneously. Optimizing the structure; which ones

26



are the cheapest? (facet NFO-S) and then the behaviour; which ones are the
fastest? (facet NFO-B) or vice-versa may lead to sub-optimal solutions.

Reasoning on all the problem facets requires to analyze both design structure and
behaviour simultaneously in order to check its functional feasibility, non-functional
satisfiability, and optimality. As previously discussed, even for system experts, these
activities are extremely tedious, time-consuming, and error-prone. High system vari-
ability at the three introduced levels (application, platform, and mapping) but also
high complexity in system executions and scheduling prevents any enumeration-based
exhaustive feasibility checking, let alone exhaustive reasoning/optimization on quality
attributes (e.g., cost, rendering quality, run-time). Given the complexity and vari-
ability of the vast majority of instrument cluster systems, systematic consideration of
all design alternatives is unfeasible for system engineers. To proactively assist system
engineers in finding suitable designs faster and with more confidence, efficient methods
giving the means to make appropriate design choices at early stages of development
appear as a necessity.

In this thesis, we propose a model-based system design framework. Instead of man-
ually finding suitable designs, we propose a model-driven framework that captures,
manages, and reasons on designs through model abstractions (i.e., variable system
specifications, mappings, and resulting variability-intensive design space). This ap-
proach reduces system prototyping gaps and makes possible design decisions at early
development stage through model abstractions and simulations. In this approach, we
determine three challenges to be tackled by this framework:

1. Challenge 1: Capturing functional and non-functional high-level variable re-
quirements and specifications of embedded systems that can vary at both appli-
cation and platform levels. The modeling method and languages should allow
engineers to model many data-flow variants and platform configurations effi-
ciently and at the adapted level of details. Imposing them to manually model all
data-flow variant and platform configurations could be a threat to applicability
in industry.

2. Challenge 2: Deriving automatically, from the application and platform mod-
els, the possible ways of mapping and scheduling application variants onto plat-
form configurations (all consistent triplets of application, mapping and platform
variants) and their behaviors. The resulting design space model has to take
into account all variations from the system specifications (i.e., application and
platform) to system implementations levels (i.e., mapping and scheduling) while
capturing all the structural, behavioural, functional and non-functional aspects
of each design alternative efficiently.

3. Challenge 3: Evaluating simultaneously and efficiently all facets of the problem
FC-S, FC-B, NF-S, NF-B, NFO; the functional feasibility, the non-functional
satisfiability, and optimality at both structural and behavioural aspects of each
design alternative. The evaluation method should scale to industrial systems.
Knowing that the design space grows exponentially with the number of design
variation points and scheduling opportunities, exhaustive and enumeration-based
methods may lack of scalability.
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Chapter 3

State of the Art

3.1 Model Based Design of Embedded Systems

“An embedded system is an engineering artefact involving computation that is sub-
ject to physical constraints” [Henzinger and Sifakis, 2007,Henzinger and Sifakis, 2006,
Wymore, 2018]. These constraints emerge from limited hardware capabilities on which
the embedded system is built. It is thus not possible to ignore hardware at both func-
tional and non-functional level when designing embedded systems. Hardware abstrac-
tion that is generally present in software engineering cannot be reused in embedded
system development. On the contrary, hardware and software artifacts are generally
mixed (i.e., hardware/software co-design [Edwards et al., 1997,De Michell and Gupta,
1997]) in order to meet the requirements that require to optimize the quality and per-
formance of such systems while reducing their cost. Consequently, a holistic approach,
combining requirement engineering [Macaulay, 2012], computation [Hopcroft et al.,
2001] control theory [Abdelzaher et al., 2008], software [Van Vliet et al., 2008] and
hardware design [Wescott, 2011] is often necessary.

Instead of directly prototyping designs, a model-based design framework captures
and reasons formally on designs through model abstractions in order to generate system
implementations 1 that fulfill the requirements [Edwards et al., 1997, De Michell and
Gupta, 1997]. Nowadays, the complexity of system requirements and specifications
leads to an immense number of system design alternatives. Such design spaces may
be intractable to engineers. Strategies to support engineers to find the most suitable
designs appear as a necessity.

We study model based-design of embedded systems as it proposes to identify by de-
sign space exploration the most suitable system designs from system specification mod-
els. A plethora of model-based design frameworks exists 2 [Densmore and Passerone,
2006,Sangiovanni-Vincentelli, 2007]. Some are software-centric, aiming to find suitable
software design for a particular hardware architecture. On the other hand, hardware-
centric frameworks help to design for a specific application domain. Finally, system-
centric frameworks focus on the suitable mapping of an application onto hardware
(and software) components. Our class of problems falls into a system-centric design
paradigm.

Besides, a framework is built to model a particular kind of systems from control-
dominant or dataflow-dominant systems (e.g., train/plane controller, scheduling plan,
IoT, data-flow-oriented or distributed system). Alternatively, some frameworks assess

1Process from which specifications are transformed to system is called system synthesis.
2Several hundreds.
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Figure 3.1: Y-Chart Design Space Exploration Pattern

a particular type of requirements or properties (e.g., execution time, quality, energy
consumption, bandwidth/throughput, temperature, reliability, security, robustness,
quality assurance). The key factors of a framework are the quality of input mod-
els abstractions (i.e., modelling time and expressivity) and quality of the evaluation
method (i.e., analysis time and correctness 3). These factors are often intertwined and
domain-dependent, which increases the variety of frameworks.

3.1.1 Y-Chart Pattern Overview

The Y-Chart pattern (see Fig.3.1) is a system-centric model-driven pattern. It offers
a clear separation of concerns between application, platform, mapping, and analysis
concerns based on models and models-transformations. This pattern consists of three
stages. In the first stage, a.k.a. modelling stage, the system requirements and spec-
ifications are modelled by engineers. Platform specification represents the reusable
architecture of hardware and software components. On the other side, the application
specification only describes, independently to any specific platform or programming
language, the functional 4 logic needed to fulfil the functional requirements.

Secondly, given these system specifications and non-functional requirements, the
framework will map 5 the application onto the platform in order to derive a system
design. The third stage is the analysis stage. The designs are generated into an analysis
model such as analytical, computation, or simulation to evaluate the system design
space. There is a profusion of methods to explore the design space [Gries, 2004,Singh
et al., 2013, Singh et al., 2017] such as operational research, formal verification or
simulation techniques. Random sampling, Monte-Carlo, Tabu, or best first search
can optimize the design space exploration. When design space is huge, approximate
exploration techniques such as genetic algorithm, simulated annealing, hill climbing
can be used. At the end, even if impressing exact and approximate design space
exploration techniques have been proposed, scalability is still an open issue [Gries,
2004,Singh et al., 2013,Singh et al., 2017].

3Also called implementation gap, to refer to the difference of performance between the model of
the design and its physical implementation.

4Also called business logic.
5Words such as bind, deploy or implement are used in other domains.
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3.1.2 Modeling and Mapping System Specifications

The expressiveness, semantics and level of details of the specifications models directly
impact the correctness of the analysis results comparing to the real physical system.
For example, to reach cycle-accurate accuracy with a close-to-zero implementation gap
(i.e., accuracy of 1̃00% between the physical and modelled systems), C/C++/SystemC
code and VHDL/VERILOG hardware logic are generally used by engineers to model,
respectively, the application and platform. However, comparably to rapid prototyp-
ing, the time needed to model these low-level specifications and evaluate the entire
design space at a cycle-accurate level is long and can take several months 6. On the
other hand, one can use generic models or domain specification languages (e.g., UML
Marte [Herrera et al., 2014], ADL [Grun et al., 1998]) to model application and plat-
form. Such high-level formalism sacrifice accuracy to reduce the time needed to model
and assess the design space.

Given application and platform specifications, a mapping strategy will automati-
cally derive each system design for latter evaluation stage. Depending on the kind of
applications and platforms, the adapted mapping strategy may differ. For example,
given a data-flow or control-flow oriented application with static or dynamic work-
load and a homogeneous or heterogeneous platform, the mapping strategy may differ.
Furthermore, non-functional requirements we focus on (e.g., execution time, quality,
cost, energy consumption, bandwidth/throughput, temperature, reliability) may also
impact the mapping strategy. In the end, taxonomies have been proposed to classify
hundreds of mapping strategies [Singh et al., 2013,Singh et al., 2017]. Following these
taxonomies, our class of problem fall into design time heterogeneous multi-application
mapping on multi-platform.

3.1.3 Assessing the System Design Alternatives

The evaluation method will assess and explore the resulting design space to find suit-
able designs w.r.t. functional and non-functional requirements. There are three main
classes of evaluation methods; Analytical, computational and simulation-based anal-
ysis. The first class is based on declarative mathematical models. Relying on Integer
Linear Programming (ILP and MILP) and Constraint Satisfaction Problem (CSP) res-
olution. “Constraint programming represents one of the closest approaches computer
science has yet made to the Holy Grail of programming: the user states the problem,
the computer solves it.” [Freuder, 1997]. At the contrary, Model of Computations [Lee
and Sangiovanni-Vincentelli, 1998] (MoC) relying on formal methods [Sgroi et al.,
2000] aims to model and verify computations of the system. Rather than “states the
problem”, the user “model the system” with a computational7 formalism. Each system
process (e.g., task, memory, processor), their possible computations and interactions
are represented by a set (network) of concurrent transition systems. Lastly, meth-
ods that aim to capture and mimic the behaviour of the physical system fall in the
simulators class.

6This level of detail can be used to certify software, hardware or system design before any further
development.

7Generally based on transition system with an execution semantics.
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Design Space as a Constraint Satisfaction Problem

The root of analytical methods, such as CSP [Rossi et al., 2006] and ILP [Schri-
jver, 1998] are mathematical optimization and logic. Methods to maximize/minimize
function objectives and find variable values for which the mathematical formula is sat-
isfiable have been extensively developed since the 1950s. Modern and famous tools are
CPLEX 8 and Gurobi 9. Analytical formalism seems adapted to constraint satisfaction
and constraint optimization problems.

Therefore, analytical models lack to capture concurrent system behaviour. Conse-
quently, guarantee that the system satisfies temporal property [Pnueli, 1977,Alur and
Henzinger, 1994, Bouyer et al., 2007](e.g., such as deadlock-free, safeness, liveness) is
limited. As an example, designing the cheapest railway controller that consume as less
as possible energy is essential. Yet, it is fundamental to guarantee that the railway
controller will always close the barrier (and have the battery to do so) while a train is
crossing to avoid potential collision between trains and other vehicles.

Design Space as a Set of Model of Computations

On the other hand, system design frameworks that use model of computations [Lee
and Sangiovanni-Vincentelli, 1998] allow to formally assess concurrent behavior in
order to guarantee various property [Pnueli, 1977,Alur and Henzinger, 1994] and per-
formance [Alur et al., 2001, Behrmann et al., 2001, Larsen et al., 2001, Behrmann
et al., 2005, Zhang et al., 2017] trough famous model checkers such as UPPAAL and
SPIN 10. The train controller example can be designed and validated through UP-
PAAL [Behrmann et al., 2006] using Weighted Computation Tree Logic [Brihaye et al.,
2004] (WCTL) to find optimal and guaranteed controller behavior.

While the analytical paradigm aims to find feasible and optimal solutions of a
mathematical search space, Model of Computation MoC will simulate the system be-
havior in order to explore the computational state space. The fundamental MoCs are
Automata 1943, Petri Nets 1962, Kahn Process Network 1974, Process calculi 1973,
lambda calculus 1930. With the advent of software and system engineering, formal
methods (e.g., model checking, theorem proving, abstract interpretation) to verify
and guarantee behavioural properties of critical systems (e.g., military, nuclear plant,
train controller, avionics, aerospace, ATM) have been developed. However, contrary
to analytical methods, each system design alternative is encoded in a separate system
model. Consequently, assessing the whole design space implies to evaluate a massive
set of MoCs, which raise a scalability issue.

Multi-level Design Space Exploration

The three classes of evaluations have strength and weaknesses. Modern frameworks
generally combine and mix evaluation methods in order to improve the design space
exploration method [Pimentel et al., 2006,Bakshi et al., 2001] (i.e., multi-level design
space exploration). The exploration generally starts with analytical models to quickly
prune obviously-bad design space regions. MoC can then be used to guarantee/optimize
design behaviour formally. Finally, promising designs are simulated to mimic the “real
system” and have a precise idea of the design’s quality and performance. Yet, as the

8https://www.ibm.com/analytics/cplex-optimizer
9https://www.gurobi.com/

10Limited to functional assessment.
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verification of the design’s behaviour relies on MoC, each design is assessed iteratively.
In contrast, analytical methods lack to verify concurrent systems. In the end, the tree
class of evaluation lack of expressivity or scalability.

3.1.4 Model-Checking Pitfall

Model-checking analyzes state machine (also called transition system) and the state
reachability relation (i.e., which executions are reaching which states?). When a wrong
system execution is detected, for example, a train controller execution that does not
close the gate while the train is crossing the way, an execution trace that violates the
property (i.e., a counter-example reaching a bad state) is generated as a diagnostic.
However, each design alternative is modelled and assessed separately. Moreover, de-
sign space exploration methods that rely on MoC are usually facing some scalability
issues11.

State Space Explosion Problem

Given a i) state-based behaviour of a system and ii) a temporal properties formula
that the system should respect. The model checking algorithm will automatically
explore the system behaviour’s state space to find events over executions that respect
or violate required properties. Unfortunately, they suffer from one big and fundamental
limitation, the state space explosion problem.

Nowadays, any industrial-scale embedded system has potentially a massive number
of states. Often, the size of a state-space tends to grow exponentially in the number of
its variables and processes. A variable of n bits could produce, at most, a state-space of
2n states (i.e., every different value lead to a different system state). With m variables
of n bits, the state space could reach the impressive size of 2n×m different states.
Moreover, interactions between concurrent components can produce a tremendous
amount of states (i.e., also known as processes interleaving). This interleaving also
contains the scheduling aspect over process executions, which results in an enormous
state space size 2p1×p2×...×pn .

Variant Space Explosion Problem

Assessing every possible execution of every system variant seems inefficient. Yet, sys-
tem design frameworks still assess their design space in iterative or enumeration-based
manners. Advanced optimization techniques such as symbolic model checking [Biere
et al., 1999], partial order reduction [Peled, 1998], state abstraction [Clarke et al.,
1994] reduce the time needed to assess the state space of a single system. However,
none of these optimizations aims to exploit structural nor behavioural commonalities
between different but related design alternatives.

Every system state space is assessed independently, even if they exhibit common
states or executions. Furthermore, as the number of system variant could growth
exponentially according to design variation points at both application, mapping or
platform levels, assessing the whole state space of every variant could be seen as
another state space explosion factor 12.

11Heuristics are generally used to speed up the exploration process.
12Let F be the number of design variation points, 2F the maximum number of variants, and S the

average number of states by system variant. In the worst case, the number of states to explore to
assess every variant is determined by 2F × S
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3.2 Software Product Line Engineering

A Software Product Line (SPL) is traditionally defined as “a set of software-intensive
systems that share a common, managed set of features satisfying the specific needs of
a particular market segment or mission. Such features are developed from a common
set of core assets in a prescribed way” [Clements, 2001]. Commonality and differ-
ences can be expressed in terms of features. Features intuitively characterize pieces
of functionality in a software system. In general, not all feature combinations are
considered valid products (e.g., some features might be incompatible, mandatory, op-
tional). To capture the set of valid products, feature diagrams can be used [Krzysztof
and Eisenecker, 2000,Batory, 2005,Schobbens et al., 2007]. By defining hierarchy and
constraints between feature, a feature model specifies the set of valid products product
line.

In the end, the goal is to achieve mass customization [Pohl et al., 2005], i.e., “the
large-scale production of goods tailored to individual customers’ needs” [Davis, 1989].
Rather than developing several similar systems (called products), SPL offer to develop
a single configurable system from which similar system products could be generated
w.r.t. their variations. We firstly study SPL applications to embedded system design
and developments to pinpoints the main results and limitations. Secondly, we present
several behavioral product line formalisms and evaluation methods. A behavioral
product line aims to capture and assess also the behaviors of the whole product line.

3.2.1 Product Line Applications to embedded systems

There exist numerous applications of SPLE paradigm over various product lines of em-
bedded system [Polzer et al., 2009,Botterweck et al., 2010,Liebig et al., 2009,Fischer
et al., 2014,Brink et al., 2014,Streitferdt et al., 2005,Noir et al., 2016,Khalilov et al.,
2016,Ross et al., 2017]. Rather than derives software-intensive systems, these applica-
tions generate consistent embedded system configurations. Systems are described as
a set of configurable blocks that could be functional (e.g., Simulink 13, Scade 14), or
hardware components (e.g., VHDL, Sensors). All these approaches show the useful-
ness to capture all consistent embedded system configurations in a variability model
to automate the implementation and verification of system configurations.

Some approaches [Siegmund et al., 2012, Murashkin et al., 2013, Zulkoski et al.,
2014, Khalilov et al., 2016] extends product line paradigm with non functional at-
tributes. A feature can have a structural cost (e.g., manufacturing cost, reliability,
quality). Only variants that satisfy or even optimize cost are derived for implementa-
tions or further analysis. Some attempts tried to capture also behavioural cost such as
execution time, bandwidth and energy consumption as feature attributes. However,
these costs emerge from behavioural interactions [Siegmund et al., 2015]. Feature
interactions models tried to capture such performance influence but seem limited.
Statistical learning [Valov et al., 2017, Guo et al., 2017, Zhang et al., 2015, Siegmund
et al., 2015, Jamshidi et al., 2017a, Jamshidi et al., 2017b,Kolesnikov et al., 2019, kal,
] can infer performance influence of highly configurable embedded systems. Prototyp-
ing or simulating a subset (sample) of system configurations is necessary to train the
algorithm to predict the performance of the rest of the products.

13https://fr.mathworks.com/products/simulink.html
14https://www.ansys.com/products/embedded-software/ansys-scade-suite
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3.2.2 Behavioral Product Line

A behavioural product line formalism captures not only the structure (i.e., feature con-
figurations) of every product but also their behaviours. Interestingly, the behavioural
commonalities between different system variant are explicitly captured in a single
transition-based system. Using this information, each state is checked once for ev-
ery product that could produce it, leading to a significant speed up in verification
time. Rather than assessing each product iteratively, variability-aware model checking
techniques can assess efficiently every product’s behaviour in a single run.

For instance, Featured Transition System [Classen et al., 2010a] (FTS) formalism
is a transition-based model of computation that relies on states and transitions con-
strained by features to encode and analyzes through a variability-aware model checking
algorithm both variant and state spaces of the entire product line efficiently. Exten-
sions to validate a product line of real-time systems, featured timed automata [Cordy
et al., 2012] have been proposed to capture and validate the whole real-time system
product line efficiently. Thus, schedulability analysis [Boudjadar et al., 2013,Jaghoori
et al., 2008], in terms of timing and deadline satisfaction, could be applied to real-time
product line [Kim et al., 2016,Sabouri et al., 2012].

Other model of computations have been extended to capture and manage vari-
ability concerns such as modal transition system [ter Beek et al., 2016], modal I/O
automata [Larsen et al., 2007], configurable parametric timed automata [Luthmann
et al., 2017], product-line-CCS gruler2008modeling, featured Petri-nets [Muschevici
et al., 2010]. Each formalism has a different syntax and semantics. Modal transition
systems or modal I/O automata use optional “may” transitions enriched with feature
constraints. Similarly, product-line-CSS is a process algebra with alternative choice
operators between two process to model variability.

However, the behaviours are not directly linked to product (i.e., features) which
can be a major limitation. Given a particular product, deriving the possible be-
haviours could be unclear. By comparison, FTS formalism uses a feature model to
capture the different products and a featured-automaton to capture their associated
behaviours. There is no optional “may” transitions in FTS. Either a product could
take the transition or not.

3.3 Discussion

Model-based design of embedded systems allows to derive and evaluate the whole
design space of an embedded system from their system specifications. The Y-Chart
approach offers a clear separation of concerns between specification modelling, map-
ping and analysis stage. Moreover, it is a domain-independent model-driven pattern
that aims to limit coupling between modelling, mapping and analysis stages. There-
fore, this flexible model-driven pattern allows to easily extends specification models or
evaluation methods.

3.3.1 Challenge 1: Capturing Variable System Specifications

Besides the various level of details and formalisms in model-based system design en-
gineering [Gries, 2004,Singh et al., 2013,Singh et al., 2017] no traditional approaches
reach our Challenge 1 as they do not capture our different variability dimensions of
both application and platform specifications. They capture variability in application
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(application space) side with multi-modes running [Negrean et al., 2013] or scenario
awareness [Gheorghita et al., 2008, Palermo et al., 2008, Van Stralen and Pimentel,
2010, Schor et al., 2012]. Such variability is a run-time and dynamic one. Thus,
applications could run in different modes or adapt to different scenarios. A multi-
variant [Graf et al., 2013] or variability-intensive application, is a single application
that has many possible possible realizations. The application variant is usually static
and determined at design time15. However, some variability concerns such as alter-
native data-sizes and qualities are too fine-grained to be captured by a multi-variant
application model.

Some methods allow to capture the platform variability (platform space) as a re-
configurable and flexible hardware architecture composed of FPGA or reconfigurable
processor [Sigdel et al., 2009, Sima and Bertels, 2009, Wildermann et al., 2011a] This
can even be done dynamically at run-time. Yet, these methods do not aim to capture a
platform product line. Other approaches capture generic platforms where components
can be optional and even have a variable multiplicity [Wildermann et al., 2011b,Graf
et al., 2015]. However, fined grained configurable properties such as alternative mem-
ory capacities, hardware frequencies, and costs cannot be captured. Consequently, no
input models capture a variable application efficiently and configurable platform spec-
ifications. In the end, the Challenge 1 is not reached as none of the variability-aware
approaches capture both concurrent behaviors and fined-grained variability aspects.

3.3.2 Challenge 2: Deriving Automatically the Design Space

In model-based system design engineering, a key aspect is to give the means to de-
rive the system design space from higher-level system specifications (Challenge 2).
Imposing the engineers to infer and model each possible system design manually is a
major threat to any industry adoption. In our case, there are no specification models
that capture our variable specifications. Therefore, no mapping strategy is directly
reusable.

However, original approaches [Graf et al., 2013,Graf et al., 2014,Attarzadeh-Niaki
and Sander, 2017] use boolean and multi-valued variables to encode both the vari-
ability of the application, the variability of the platform and the different mapping
opportunities of application elements over platform resources. Mapping opportunities
between application and platform are modeled with a decision tree. More precisely,
the possible mappings of the multi-variant application and the generic platform are
modeled in a CSP problem formulation. Some mapping constraints are added to prune
incompatible mappings, application variant or platform configuration. Still, the map-
pings are not automatically inferred. Moreover, CSP formalism lacks to capture the
concurrent behavioral aspect of a design space that allows checking temporal property.
Consequently, the Challenge 2, is not reached as well.

In product-line engineering, the focus is to automatically model and manage the
possible configurations to find the most suitable one. These frameworks do not cap-
ture embedded system specifications nor derive and explore the design space to find
suitable designs. Deriving all possible mappings to model resulting system designs is
problematic [Bokhari, 1981,Singh et al., 2013], as the activity would be tedious, time-
consuming and error-prone. Consequently, no SPL approaches reach the Challenge
2.

15The variability is fixed before run time execution
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3.3.3 Challenge 3: Evaluating Efficiently the Multifaceted
Problem

The existing design space exploration methods do not efficiently address our mul-
tifaceted problem. Hence they do not reach the Challenge 3 which is Evaluating
Efficiently the Multifaceted Problem. Analytical methods lack to capture concurrent
behaviour [Saraswat et al., 1991,Saraswat et al., 1994]. Consequently, assessing func-
tional or non-functional behavioral properties (facets FC-S, NF-S) are limited. On
the other hand, Model of Computations (MoCs) can capture and assess each sys-
tem variant’s behavioural properties. However, scalability may be an issue [Lee and
Sangiovanni-Vincentelli, 1998,Aho, 2012].

In 2010, [Classen et al., 2010a] combine model checking with software product
line [Classen et al., 2011b]. Resulting in a Featured Transition System (FTS) formal-
ism, a new model of computation that capture the behaviour of the entire product line
(i.e., all behaviours of all products). However, only theoretical works exist to capture
various behavioural resource cost [Fahrenberg and Legay, 2017a, Bauer et al., 2013].
Therefore, optimal resource scheduling can only be done product-by-product.

3.3.4 Conclusion

From decades of research in embedded system design, a plethora of model-based design
frameworks have been developed and successfully applied to various cases. Given high-
level application and platform specifications, such frameworks will automatically infer
mappings from these two specifications to analyze the different design alternatives.

Model-driven Y-Chart pattern is applied to improve the usability and flexibility of
the framework. However, application and platform input models lack to capture vari-
able properties at both application and platform levels. Moreover, analysis methods
are either limited to only structural or behavioral facets while all-in-one techniques
are inefficient. Consequently, no framework allows system engineers to efficiently cap-
ture variability-intensive applications and highly-configurable platforms or analyze all
facets of the resulting system design alternatives.

From combined researches in model checking and software product lines, Featured
Transition System (FTS), a new model of computation has been developed. This
formalism encodes and analyzes both structure and behavior of the entire product
line efficiently. Interestingly, common states are checked once for multiple products.
Yet, this formalism is limited to analyze the functional facets. Nevertheless, manually
encode every possible design space decisions directly into an FTS is not feasible in
practice. It would require to manually derive system design alternatives from variable
specifications, which is too tedious and error-prone.
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Chapter 4

Framework Overview

In this chapter, we propose the first model-based design framework that combines
Y-Chart pattern from embedded system design engineering and Featured Transition
System (FTS) from product line engineering to capture and assess the functional feasi-
bility, and only the functional feasibility, by capturing and assessing variable properties
at both application and platform levels. The next chapter will extend the proposed
framework to non-functional feasibility, non-functional satisfiability, and optimality
by extending our Y-Chart models and FTS formalism with non-functional concerns.
Extending and closing the gap between these two engineering domains, system design
and product line, our novel framework aims at meeting the three defined challenges,
each challenge being reached by extending a stage of the traditional Y-Chart pattern:

1. Modeling stage: to support variability-intensive application and highly-configu-
rable platform specifications (Functional part of Challenge 1), we will extend
application and platform models with variability concerns.

2. Mapping stage: to automatically infer an adapted system design space from
these specifications (Challenge 2), we will propose a variability-aware mapping
algorithm that maps variable application elements into configurable platform
resources.

3. Reasoning stage: to reason functionally (facets FC-S and FC-B) on the
adapted design space efficiently (Functional part of Challenge 3), we reuse
the FTS behavioral product line formalism as a model of computation, to en-
code and evaluate efficiently functional requirements of the whole design space
at once, determining each consistent variant (facets FC-S) with an execution
that terminate properly (facets FC-B).

Given high-level variable application and configurable platform inputs that notably
captures system specifications, the framework will automatically infer the design space
by mapping each data-flow variant on each platform configuration, generate a FTS
based behavioral product line from the system design space model, i.e., representing
all system designs (see Fig. 4.1) so that they can be directly checked in one run by
a variability-aware model checker to validate the inferred system designs. As shown
on Fig. 4.1, our framework mainly consists of two parts (i.e., front-end and back-end)
organized in three processes (i.e., modeling, mapping and analysis stages) relying on
four models. We give here an overview while the following sections will detail, illustrate
and formalize these elements to show how the framework resolves our class of problem.
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Figure 4.1: Framework Models and Processes

4.1 Modeling and Mapping System Specifications

� Applications as Variable Data-Flows : a functional expert is in charge of captur-
ing the functional requirements of the embedded system through an extended
concurrent data-flow specification (see Sec. 5.1). This model contains the clas-
sic structure and behavior of the data-flow (data, task, data-path, etc.), but
also captures the variability in both structural properties (e.g., data size) and
behavioral properties (e.g., alternative flows).

� Platforms as Variable Resource Graphs : on this side, a platform expert is in
charge of expressing the platform specification as a templated concurrent component-
based system (see Sec. 5.2). This model contains a set of components connected
with each other. Similarly to the application one, the platform model also cap-
tures the variability of the defined components.

� Variability-aware mapping : The mapping algorithm (see Sec. 5.3) consumes the
application and platform input models previously defined. It finds for each task
data and data-path all the possible mappings on appropriate platform processors
and memories; in order to generate the Variability-Intensive Design Space, i.e.,
representing system designs. As the design space contains all the mapping of
every application element on every platform component, the algorithm also gen-
erates constraints to prunes incompatible element mapping combinations w.r.t.
structural, behavioral and variability constraints.

� Variability Intensive System Design Space: The Variability Intensive System
Design Space captures all possible mappings of all application variants on all
platform configurations. However, instead of having explicitly each system design
as a different candidate, the variability intensive system design space has a single
system design with explicit variation points that captures implicitly all system
design variant and their design commonalities. Thus, each system design with
a specific structure and behavior can be derived as an application variant, a
platform configuration and possible mapping implementation between them.
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4.2 Assessing the System Design Space

� Design space as a behavioral product line: From the system design space model,
a Behavioral Product Line representing all system designs is generated (see
Sec. 6.1). This product line is represented as a network of featured automata.
A network of featured automata captures structure, behavior and variability of
system elements (e.g., task, processor, storage), so that we can reuse and adapt
automated reasoning techniques to efficiently analyze automaton executions to
identify valid and invalid system designs.

� Variability-Aware Validation Process : The validation process relies on variability-
aware model-checking to assess structural and behavioral functional feasibility
of the system variants represented by the behavioral product line (see Sec. 6.2).
The network of featured automata, which represents the structure and behavior
of the possible design alternatives, is checked against temporal property such
as end state reachability to ensure that data-flows are correctly scheduled and
executed onto the platform automaton. As a result, the validation solves and
extracts all valid pairs of application variants and platform configuration (i.e.,
respecting all structural, behavioral and variability constraints) in a single run.
Additionally, we can provide the execution traces that satisfy the requirements.
Such a trace shows not only the system variant able to execute it but also the ex-
ecution they exhibit (i.e., how the application tasks are executed and scheduled
onto the platform), thereby helping the upcoming engineering of the designs.

The following Chapters will detail the different part of the framework. In the
Chapter 5 we detail how our framework framework reach the functional part of both
Challenges 1 and 2 by provide i) input models that capture system specifications
and i) a mapping algorithm than consumes these models to derive the system design
space. In the Chapter 6, we detail how our resulting design space is transformed
in a featured transition system in order to reuse a variability-aware model checking
algorithm that assesses the functional requirements efficiently at both structural and
behavioral aspects. Therefore reaching the functional part of the Challenge 3 (i.e.,
FC-S and FC-B). The Chapter 7 integrates the non functional concerns at both
modelling (see Sec. 7.1) and assessing (see Sec. 7.2) stages in order to reach all the
three challenges entirely.
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Chapter 5

Modeling and Mapping System
Specifications

To support variability-intensive application and highly-configurable platform specifi-
cations (Challenge 1), we propose adapted application and platform formal models
extended with variability concerns. A single variability-intensive application model
captures every application variants. Whereas a single highly-configurable platform
model describes every platform configurations. Such models allow to capture system
specifications that can vary at both application and platform levels.

To automatically infer an adapted system design space from these specifications
(Challenge 2), we propose a variability-aware mapping algorithm that maps formally
variable application elements into configurable platform resources. The resulting de-
sign space model has to take into account all variations from the system specifications
(i.e., application and platform) to system implementations levels (i.e., mapping and
scheduling) while capturing all the structural, behavioural and variability aspects.

5.1 Applications as Variable Data-Flows

Application models commonly capture the functional requirements defining “what do
we want to do”. More precisely, they capture the task to execute. Such models rely
on various formalisms such as work-flow, data-flow, process network, Petri-nets, etc.
In our case, Multiple data-flow variants specify the HMI content to be displayed into
the car display. Each variant can differ in, e.g., the size of the flowing data chunks,
the ordering of the operation tasks, or the choice between alternative, functionally-
equivalent, tasks (see Fig. 2.4).

However, none of the application models captures alternative task flows. Yet,
alternative tasks and work-flows can be modeled by the multi-variant model [Graf
et al., 2013]. Nevertheless, this model lack to capture some fine-grained variability
concerns such as alternative data-sizes and qualities. Furthermore, this model is work-
flow oriented. Meaning that the data path and data flows are not properly defined.

On the other hand, traditional data-flow graphs models such as [Kavi et al., 1986]
capture every structural and behavioral aspect of our class of application but not
the variability one. Modeling the different application variants (see Fig. 2.4) requires
modelling each variant separately, which may lead to scalability issues in industry.

In order to capture the variability in our class of application, we propose to extend
data-flow formalism that notably captures structure, behavior (data, task, data-path,
etc.) of the embedded system through an extended concurrent data-flow model with
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variability concerns. In the following, we formalize how each variability dimension,
such as (data size, alternative flows, , etc.), is captured.

Definition 1 A variable data-flow graph is a tuple : V DG = (N, Path, E, Ψsize, χd):

� N = T ∪D is a set of nodes (T are tasks and D are data),

� Path is a set of communication paths by which data flows between producers and
consumers ( i.e., tasks and datums),

� E ⊆ N × Path × T is the set of flow processing between producers and con-
sumers through available paths. Producers can be both input data or tasks while
consumers are only tasks.

I(t ∈ T ) : {p ∈ Path|(x, p, t) ∈ E} I(p ∈ Path) : {prod ∈ N |(prod, p, x) ∈ E}
O(n ∈ N) : {p ∈ Path|(n, p, x) ∈ E} O(p ∈ Path) : {t ∈ T |(x, p, t) ∈ E}

|I(p)|

{
> 1, if p has alternative producers

= 1, if p has a single producer

|O(p)|

{
> 1, if p has alternative consumers

= 1, if p has a single consumer

|I(p)|+ |O(p)|

{
> 2, if p has alternative flows

= 2, if p has not flow variability

According to the flow variability, θalt(n) ⊆ N function returns the alternative
nodes of node n

Θalt(n) : {n′ ∈ N |n′ 6= n,∀i ∈ I(n), n′ ∈ O(i) ∨ ∀o ∈ O(n), n′ ∈ I(o)}

Nodes n are alternatives with Θalt(n). That are, alternative consumers of n input
paths and alternatives producers of n output paths. Then n is in the variable
nodes n ∈ Thetavar if Θalt(n) 6= ∅.

� Ψsize is the datum size property,

� χd : D → (Ψsize → ν) defines the set of values ν that the size property Ψsize of a
data d can take.

|χn(d)(Ψsize)|

{
> 1, if Ψsize property of the data d is variable

= 1, if Ψsize property of the data d is not variable

In our vision, the functional expert captures efficiently the different data-flow vari-
ants in a single variable application model. Fig. 5.1 illustrates the variable data-
flow-oriented application that the functional expert should define. This application
model relies on the formal model previously defined. A single variable data-flow model
represents multiple data-flow variants. To implicitly represent all these variants in a
single model, we follow the same approach as in variable work-flows from [Graf et al.,
2013], adding data-paths and allowing them to have multiple inputs and output tasks
connected.
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Figure 5.1: Variability-Intensive Application Functional Specification

Contrary to traditional data-flow models, a data-path can be connected to multiple
alternatives to capture flow variability. If a path is connected to multiple input tasks
|I(p)| > 1, alternative tasks can be then, at design time, selected to consume the data
that will transit by this path. Similarly, |O(p)| > 1 means that an alternative task can
produce the result that will transit by the path. But, If |I(p)| = 1 ∧ |O(p)| = 1, the
data-path is connected to only one input and output task. In this case, the data-path
has no flow variability.

As data can have alternative sizes, we also allow property to have a the set of
alternative values. Each datum has at least one size |χd(d)(Ψsize)| = 1. But if
|χd(d)(Ψsize)| > 1 the size of d is variable. Finally, in our case study the functional
specification of the variable application V DGuc = (Nuc, Pathuc, Euc, Ψsize, χduc) is
then formalized as:

� Nuc ⊆ Tuc = {a, b, c} ∪Duc = {d1, d2}, Pathuc = {p1, p2, p3},

� Euc = {(d1, p1, a), (a, p2, c), (d1, p1, b), (b, p2, c), (d2, p3, c)},

� I(a) = I(b) = p1, I(c) = {p2, p3}, O(a) = O(b) = p2, O(c) = ∅, O(d1) = p1, O(d2) = p3,

� I(p1) = d1, I(p2) = {a, b}, I(p3) = d2, O(p1) = {a, b}, O(p2) = c,O(p3) = c,

� χnuc(d1)(Ψsize) = 512, χnuc(d2)(Ψsize) = {512, 1024}.

5.2 Platforms as Variable Resource Graphs

Platform models describe a set of hardware components such as memory, multi-pass
processors, streaming processor, read-only memory, read-write memory, write-only
memory, first-in-first-out buffers (FIFO) etc. Transition systems such as automata
or Petri-nets usually capture components behavior. They interact with each other
by communication port, link, connection, channel, etc. By providing algorithms to
implement and execute particular tasks, store and move data etc. such component
system captures the whole platform capabilities and define “what can we do” using
this platform.

Hardware providers generally offer a platform product line for each range of ap-
plications where components can be optional, exclusive, etc. and have configurable
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properties. For example, memory can have alternative storage capacities. Thus, multi-
ple platform configurations are possible at hardware manufacturing time. In industry,
a huge set a platform configurations could result from this variability.

Some methods allow to capture the platform variability as a reconfigurable and
flexible hardware architectures [Sigdel et al., 2009, Sima and Bertels, 2009, Wilder-
mann et al., 2011a]. FPGA or reconfigurable processor focuses on optimizing the
integrated circuits (silicon area) regarding the instruction streams. This can even be
done dynamically at run-time. Yet, these methods do not aim to capture a platform
product line. In our context, each possible manufactured hardware configuration is a
different hardware product.

Other approaches capture generic platforms. Components can be optional and
even have a variable multiplicity [Wildermann et al., 2011b, Graf et al., 2015]. Yet,
configurable properties such as alternative memory capacities, hardware frequencies
and costs cannot be captured. Moreover, these approaches do not capture concurrent
hardware behavior.

In order to capture a platform that can have optional resource components, vari-
ability constraints on components (e.g., dependency, incompatibility) and variability
properties of the component (e.g., memory storage size), we propose a formal archi-
tecture model defined as follows.

Definition 2 A variable resource graph is a tuple V RG = (R, Cs, Θ, Ψcap, χr) where
:

� R = P ∪ S is a set of resources where P is a set of processors and S is a set of
storage memories,

� M = S ∪B is a set of memories where S is a set of storage memories and B is
a set of buffered ( e.g., first-in-first-out) memories,

� P is a set of processors p = (F,B,Cb ⊆ (F ×B)× (B × F )) where :

– F of possible hardware fixed functions,

– B is a set of processor internal first-in-first-out buffers

– Cb ⊆ (F ×B)∪ (B×F ) the connections between the different functions and
buffers representing the possible processing pipelines of the processor.

� C ⊆ (P ×S)∪ (S×P ) is a set of connections between processors and memories,
where:

– (f, s) ∈ C means that the hardware function f can write onto storage mem-
ory s,

– (s, f) ∈ C means that the hardware function f can read from storage mem-
ory s;

The set of, input memories to a, processor I(p), processor function I(f), and
output memories from a, processor O(p), processor function O(f) are denoted
by:

– I(p ∈ P ) : {m ∈ M |(m, p) ∈ Cs}, I(f ∈ F ) : {m ∈ M |p = (F,B,Cb) ∈
P, (m, f) ∈ Cb ∨m ∈ I(p)},
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Figure 5.2: Highly-Configurable Platform Functional Specification

– O(p ∈ P ) : {m ∈ M |(p,m) ∈ Cs}, O(f ∈ F ) : {m ∈ M |p = (F,B,Cb) ∈
P, (f,m) ∈ Cb ∨m ∈ O(p)}.

� Θ ⊆ 2R defines which resources may/must be present together;

– ΘOpt : {r ∈ R|∃R′ ∈ Θ ∧ r /∈ R′}
– ΘReq(r) : {r′ ∈ Opt|∀R′ ∈ Θ =⇒ (r ∈ R′ =⇒ r′ ∈ R′)}
– ΘExc(r) : {r′ ∈ Opt|∀R′ ∈ Θ =⇒ (r ∈ R′ =⇒ r′ /∈ R′)}

� Ψcap is the storage capacity property,

� χr : R → (Ψcap → ν) defines the set of values ν of the storage capacity property
Ψcap that a memory storage s can take.

At this level, a platform expert is envisioned to be in charge of modeling the plat-
form product line provided by the hardware manufacturer (see Fig. 2.5) as a variable
resource graph model. This model can be seen as a templated concurrent hardware
component-based system extended with variability concerns. The Fig. 5.2 illustrates
the variable resource graph model that the platform expert should define in order to
capture the platform product line.

We capture implicitly the platform variability by introducing several functions,
θ manages the optionality of a resource component. If θ(r) = ⊥ the resource is
mandatory, otherwise the resource is optional, φrequires and φexcludes manages con-
strained relations of dependency and incompatibility between resource components.
φrequires(r) = r0 means that if r is implemented then r0 must be implemented too.
r depends on r0. On the contrary φexcludes(r) = r0 means that r and r0 cannot be
implemented on the same platform variant. r and r0 are alternatives.
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As memory storage can have alternative capacities, we introduce the function ξ
which returns the set of alternative capacities C = ξ(s), each memory storage has at
least one size and if |ξ(s)| > 1 the capacity of s is variable.

In our case study the functional specification of the configurable platform V Guc is
then formalized as:

� (Procuc = {DCU,GPU}, Suc = {RAM,ROM},
Csuc = {(RAM,DCU), (ROM,DCU), (RAM,GPU), (ROM,GPU), (GPU,RAM)})
where,

� DCU = (Fdcu = {adcu, cdcu}, Bdcu = r0dcu, Cbdcu = {(adcu, r0dcu), (r0dcu, cdcu)}),
GPU = (Fgpu = {agpu, bgpu}, Bgpu = r0gpu, Cbgpu{(agpu, r0gpu), (r0gpu, bgpu)}), with,

� I(GPU, a) = {ROM,RAM}, O(GPU, a) = {r0gpu, RAM},
I(DCU, c) = {r0dcu, ROM,RAM}, O(DCU, c) = ∅.

� GPU,RAM ∈ θOpt, DCU,ROM ∈ θMand, θReq(GPU) = RAM, θReq(RAM) = ∅

� χruc(ROM)(Ψcap) = 4096, χruc(RAM)(Ψcap) = {512, 1024, 2048},

5.3 Variability-Aware Mapping Strategy

The mapping algorithm takes as inputs the variable data-flow and configurable plat-
form models, previously defined by the domain experts, and generates a mapping
model. Such models aim to capture the possible mappings of the application elements
over the platform resources. Each mapping variant could raise consistency issues.
For instance, a task has been mapped on a non-selectable processor. Worst, a set
of alternatives task have been mapped as thought the platform should process all of
them. To ensure mapping consistency from variable specifications, extra constraints
are needed [Graf et al., 2013,Graf et al., 2014,Attarzadeh-Niaki and Sander, 2017].

We propose a mapping strategy to not only capture the consistent mappings of
a single data-flow into a single platform as traditional frameworks do [Balarin, 1997,
Eker et al., 2003,Bakshi et al., 2001,Davare et al., 2007,Basten et al., 2010,Pimentel
et al., 2006], but to capture the consistent mappings of every data-flow variants onto
every platform configurations. First, we define the mapping model and the required
consistency constraints. Second, we propose a mapping algorithm that derives the
design space from the variable data-flow and configurable platform models previously
defined by the domain experts. We finally illustrate our mapping strategy in our case
study to demonstrate its validity.

Definition 3 A variability-aware data-flow-oriented mapping VM = (Map,Cst) where:

� Map ⊆ (Tm ⊆ T ×F )∪(Dm ⊆ D×S)∪(Pm ⊆ P ×M) is the set of application
element mappings over platform resources where:

– Tm is the set of possible mappings of tasks on processors ∀(t, F ) ∈ Tm, t
can be mapped on processor function f ∈ F because f can implement t, and
the inputs of t can mapped on memories that can be reached by f ,

– Dm is the set of mappings of datum on storage memories,

– Pm is the set of paths mapping on memories by which data can be produced,
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� Cst ⊆ (Cc ⊆ (N × R × P ) × R) ∪ (Pc ⊆ (N × R × P ) × R) is the set of node
mappings to path mappings constraints, where:

– Cc is the set of consistency constraints that limit path mappings according
to the consumer mappings. Map the node n on the resource r restrict the
allowed mappings of the input paths of n, noted i(n) ⊆ Path to reachable
memories of r, noted i(r) ⊆M ⊆ R,

– Cp is the path mapping constraints according to the producer mappings.
Similarly to Cc, Cp constraints the possible mappings of the output-paths
depending on node mappings.

The Variability-Aware Mapping function M = V DG×V RG→ VM sorts the data-
flow topologically and finds appropriate mapping for each data, task and data-paths of
the data-flow using resources of the resource graph. Each valid mapping should respect
some mapping to mapping constraints. These constraints ensure that all the mapped
application over the platform resources are consistent.

(1) All tasks are mapped to, a least, one processor function:

∀t ∈ T,∃(t, F ) ∈ Tm, |F | > 0

(2) All data are mapped to, at least, one memory storage:

∀d ∈ D, ∃(d, S) ∈ Dm, |S| > 0

(3) All data-paths are mapped to at least one appropriate memory. For data-path
starting by a datum, the memory on which the datum is mapped has to be reachable
by a processor function on which the task consuming the datum is mapped.

∀e = (n, p, t) ∈ E,∃(p,M) ∈ Pm,∃(t, F ) ∈ Tm,m ∈M ∧ f ∈ F ∧m ∈ I(f)

For data-path between tasks, the memory on which the output is mapped has to be
reachable by the processor function on which the consumer is mapped.

∀e = (t ∈ T, p, t′) ∈ E,∃(p,M) ∈ Pm,
∃(t, Ft) ∈ Tm,∃(t′, F ′t) ∈ Tm,m ∈ O(f) ∧m ∈ I(f ′)

These mapping to mapping constraints restrict the mapping opportunities to ensure
that any possible mapping respects variable resource graph topology.

For every task mapping on a processor, the input and output data-paths must be
mapped to reachable memory by the processor. Otherwise, the processor may not be
able to fetch or store the required data. Beside mapping to mapping constraints there
are two additional classes of consistency constraints that restrict the allowed mappings
regarding application and platform variabilities. Application to mapping constraints
and mapping to platform constraints. The first is concerning the alternative applica-
tion flows, while the second is depending on optional platform resources. Obviously, if
a resource is absent, the mappings using it are not possible anymore. Similarly, only
elements of the application flow will require to be mapped.

The Algorithm 1 implements the variability-aware Mapping function. Basically,
each input datum can be mapped on a storage memory (Line 1). Paths by which the
datum can be consumed can be then mapped on storage memories (Line 2). Mapping
opportunities are then recorded in the following form, if the data d is mapped on
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Input: app = (N, Path, E, Ψsize, χd)
plt = (R, Cs, Θ, Ψcap, χr)
Output: vm = (Tm,Dm,Pm,Mc,Mp)

1 Dm←
⋃
d∈D

(d, S);

2 Pm←
⋃

d∈D,pout∈O(d)

(pout, S);

3 Mp←
⋃

d∈D,pout∈O(d),s∈S
((d, s, pout), s);

4 Mc← (∅);
5 foreach t ∈ T do
6 Fcts← {f ∈ F |f |= t ∧ ∀pin ∈ I(t), I(f) ∩ {Mpin|(pin,Mpin) ∈ Pm} 6= ∅};
7 Tm← Tm ∪ (t, F cts);
8 Pm← Pm

⋃
pout∈O(t)

(pout,
⋃

f∈Fcts
O(f));

9 Mc←Mc
⋃

f∈Fcts,pin∈I(t)
((t, f, pin), I(f) ∩ {Mpin|(pin,Mpin) ∈ Pm});

10 Mp←Mp
⋃

f∈Fcts,pout∈O(t)

((t, f, pout), O(f));

11 end
12 return vm

Algorithm 1: M(app, plt)

storage s then the output data paths {p0, p1, ..., pn} ⊆ O(d) must be mapped on s
too (Line 3). Next, for all the tasks, the hardware processing functions capable of
implementing the task (Line 6) and capable of grabbing all the inputs (i.e., all the
input paths are, at least, mapped on one reachable memory) are identified (Line 7)
and inserted (Line 8). For this consistency reason, mapping dependencies on the
reachable inputs mappings of every task mappings are recorded (Line 9). Similarly,
the mapping of the output paths (containing processing results) can only be mapped
on every memory reachable by any of these hardware functions (Line 10). These
mapping opportunities are recorded (Line 11) in the form, if the task t are mapped
on the function f then output data paths O(t) must be mapped on reachable (and
writable) memories by f(i.e., O(f)).

The mapping model of the case study VMuc is then illustrated in Fig. 5.3 and
formalized as:

� (Tmuc = {(A, {DCUA, GPUA}), (B,GPUB), (D, {DCUD, GPUD}), (C,CDCU )},

� Dmuc = {(D1, {ROM,RAM}), (D2, {ROM,RAM})},

� Pmuc = {(P1, {ROM,RAM}), (P2, {DCUR0, GPUR0, RAM}),
(P3, {RAM,ROM})}), (P4, {DCUR1, RAM})})

� Mcuc = {((A,DCUA, P1), {ROM,RAM}), ((A,GPUA, P1), {ROM,RAM}),
((B,GPUB, P1), {ROM,RAM}),
((D,DCUD, P3), {ROM,RAM}), ((D,GPUD, P3), {ROM,RAM}),
((C,DCUC , P2), {DCUR0, RAM}), ((C,DCUC , P4), {DCUR1, RAM})}

� Mpuc = {((D1, ROM,P1), ROM), ((D1, RAM,P1), RAM),
((D2, ROM,P3), ROM), ((D2, RAM,P3), RAM),
((A,DCUA, P2), {DCUR0}), ((A,GPUA, P2), {GPUR0, RAM}),
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D1

D2

A

B

C

P1 P2

P3
D

P4

1. Dm U (D1, {ROM, RAM})
Pm U {(P1, {ROM, RAM})}
Mp U {((D1, ROM, P1), ROM),
           ((D1, RAM, P1), RAM)}

2. Dm U (D2, {ROM, RAM})
Pm U {(P3, {ROM, RAM})}
Mp U {((D2, ROM, P3), ROM),
           ((D2, RAM, P3), RAM)}

3. Tm U (A, {dcuA, gpuA})
Pm U {(P2, {dcuR0, gpuR0, RAM})}
Mc U {((A, dcuA, P1), {ROM, RAM}),
           ((A, gpuA, P1), {ROM, RAM}}
Mp U {((A, dcuA, P2),  {dcuR0}),
           ((A, gpuA, P2), {gpuR0, RAM})}

5. Tm U (D, {dcuD, gpuD})
Pm U {(P4, {dcuR1, RAM})}
Mc U {((D, dcuD, P3), {ROM, RAM}),
           ((D, gpuD, P3), {ROM, RAM}}
Mp U {((D, dcuD, P4),  {dcuR1}),
           ((d, gpuD, P4), {RAM})}

4. Tm U (B, {gpuB})
Pm U {(P2, {RAM})}
Mc U {((B, gpuB, P1), {ROM, RAM}}
Mp U {((B, gpuB, P2), {RAM})}

6. Tm U (C, {dcuC})
Mc U {
((C, dcuC, P2), {dcuR0, RAM}),
((C, dcuC, P4), {dcuR1, RAM}}

Figure 5.3: Application Mapping Steps

((B,GPUB, P2), {RAM}),
((D,DCUD, P4), {DCUR1}), ((D,GPUD, P4), {RAM})}

Finally, The design space representing all system designs, called variability-intensive
embedded system design space is then composed of a data-flow, platform and mapping:

V DS = (V DG× V RG× VM)

5.4 Conclusion

In this chapter, we proposed input models to capture variable application (see Sec. 5.1)
and configurable platform (see Sec. 5.2) system specifications. We extended traditional
data-flow and platform component-based system with variability concerns. Therefore,
the proposed models are expressive enough to capture structural, behavioral and vari-
ability aspects. As we discussed in Sec. 3.3.1, traditional models do not capture
variability aspect while some others do not capture concurrent behaviors.

To derive the system design space automatically from the variable specifications,
we developed a mapping algorithm (see Sec. 5.3). Our mapping model is represented
by a decision tree with consistency constraints. Such structure share similarities
with approaches that manually model their mapping space in a CSP formulation (see
Sec. 3.3.2).

In the next Chapter 6, we detail how our design space is transformed in a Featured
Transition System (FTS) in order to assess efficiently functional requirements at both
structural and behavioral aspects.
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Chapter 6

Assessing the System Design
Alternatives

To evaluate simultaneously and efficiently the functional feasibility of our system de-
sign space (functional part of Challenge 3), we transform our design space model
formally, previously defined, into the well known Featured Transition System (FTS).
Firstly, we show that this behavioral product line formalism, composed by a state
transition system and a feature diagram, is suitable for capturing both behavioral and
structural aspects of our design space. Secondly, we illustrate how state-of-the-art
variability-aware model checking techniques can be applied to assess both structural
(FC-S) and behavioral (FC-B) functional requirements of the whole design space at
once.

6.1 Design Space as a Behavioral Product Line

6.1.1 Background

To assess their system design space, traditional frameworks usually transform iter-
atively, for verification purpose, each design into analytical, simulation or computa-
tional models. Automata theory and model-checking techniques have been widely used
to assess behavior of real-time and concurrent embedded systems [Bengtsson et al.,
1996,Clarke et al., 1999]. Basically, the possible executions of a system (i.e., its behav-
ior) are captured through a state machine. Model-checking algorithms are then used
to explore the state space efficiently (i.e., the different states of the system) in order
to validate or invalidate system behavior against functional requirements expressed
as temporal logic properties [Pnueli, 1977] such as the absence of deadlock, end-state
reachability, liveness, safety, etc.

The traditional method for our class of problem is to model each system vari-
ant’s behaviour as two communicating automata. One capturing the behavior of the
application and the other capturing the platform behavior. While the application au-
tomaton represents task and data behaviors, the platform one exhibits the processor
and memories behavior. The application automaton have the responsibility to map
and schedule tasks and transfer data using the platform automaton. The application
and platform automata are usually networks of automata as they require to capture
concurrent and communicating systems. Such systems are consisting of several inter-
acting automata. The automaton capturing the whole state space of the system is
then defined as their parallel composition (see Sec. 6.2). In the end, this state-based
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model is a relatively high-level abstraction of the possible system executions1. Finally,
end-state reachability property is checked [Dalsgaard et al., 2010] to ensure that the
application could execute on the platform without error.

Definition 4 An automaton is a tuple A = (S, s0, Sf , Act, T rans,Ap, L) such that:

� S is a finite set of states, s0 ∈ S, Sf ⊆ S, are, respectively, a set of initial and
final states,

� Act is a set of actions that are possibly composed of variable expressions and af-
fectations, guards in a boolean expression form and rendez-vous communications
through channels,

� Trans ⊆ S×Act×S are state transitions, (s, α, s′) ∈ Trans can be noted s
α−→ s′

� Ap is a set of atomic proposition and L : S → Ap labels states with atomic
propositions such as L(s) ⊆ P(Ap).

Figure 6.1 and 6.2 illustrate how, respectively, the behavior of two suitable system
variants BΨ and DΨ

2. Design B and D of our case study (previously introduced in
Section 2.1.2) can be, respectively, captured into network of automata BΨA and DΨA.
The application automaton is then composed of input datum and task automata, while
the platform automaton is composed of storage and processor automata. For example,
application automaton of BΨA (see Fig. 6.1) exposes 2 input datum automata, captur-
ing respectively the behavior of D1 and D2. Automata TA, TD and TC capture tasks
behavior with one initial, final and possibly multiple progress states. Datum size are
captured through state variables. Paths become handshaked rendez-vous communica-
tion channels [Bengtsson et al., 1996] used by task and input datum to send datum
output completion signals before reaching their final state.

On the platform side, automata RAM and ROM capture the behavior of hardware
storage while DCU captures the processor. Trough handshaked rendez-vous channels,
graphical functions of processors, and fetch store mechanism are based on command (as
a real hardware will do). By sending commands (i.e., message through communication
channels), application automaton is driving and feeding the platform one. Basically,
datum and task automata process will interact with storage and processor automata
process in order to allocate memory on storage or program processors pipeline. In
addition to initial and progress states, storage and processor automata contain an
error state reached if the storage capacity (e.g., RAM.free) is exceeded or the proces-
sor pipeline (e.g., DCU.checkCmdBuffers()3) is misused during an execution (see
Sec. 6.2).

At the mapping level. Images D1 is stored onto ROM and D2 on RAM . At the
run time execution level the images will send a malloc! command through channel
of, respectively, ROM and RAM automata. The data-flow processing, composed of
tasks A, D and C, is implemented using the DCU hardware pipeline as the tasks
automata will send graphical task such as DCUa!, DCUb!, DCUd!, DCUc!, etc.
commands through channel ofDCU automaton. Exploring all executions of the system

1software/hardware executions of a system design
2We denote Ψ the structural aspect of the design, its system variant, while the behavioral one, its

execution, will be denoted π see Sec. 6.2
3This function is highly dependent to the hardware internals and will not be detailed.
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automaton, also called covering the state space, will determine if the system variant
exhibit a behavior that satisfies the functional requirements (see Sec. 6.2).

Between the two state machines capturing, respectively, behavior ofBΨ (see Fig. 6.1)
and DΨ (see Fig. 6.2), we can notice differences, but also commonalities. First, as the
system variant D is using graphical task B rather than A to process datum D1, a TB
automaton is an alternative to TA automaton. The size of D2 also varies between the
two system variants. Secondly, as variant D contains a GPU processor, a processor
automaton GPU is present. RAM capacity also varies between the two system vari-
ants. Thirdly, contrary to variant B, the task TD is mapped on GPU rather than
DCU . Consequently, at automaton level, TD automaton will send the processing
command to the GPU automaton rather than DCU one. Moreover, while outputs of
DCU processing are directly sent to the screen, using GPU requires to store outputs
on RAM . Buffers for outputs are allocated at task automata level (RAMalloc!out at
TB and TD).

Even at automata level, we clearly observe the several variability concerns of our
already introduced case study. The presence or absence of automata (e.g., task, mem-
ory, processor, and datum), a value difference of a state variable (e.g., input data size
and memory storage capacity), a difference of channel communications (e.g., automa-
ton TD sending command to automaton GPU rather than DCU). Unfortunately,
automata-based or simulation approaches are not meant to manage any variability
in application and platform specifications or mapping. Consequently, that require to
assess behavior of each system variant iteratively.

6.1.2 Featured Transition Systems

The featured transition system formalism has been developed from combined research
in automata-based model checking and software product lines to analyze the behaviors
of a set of related system variants called a behavioral product line. As discussed in
Section 6.1, this formalism relies on states and transitions constrained by features
to encode and analyzes through a variability-aware model checking algorithm both
variant and state spaces of the entire product line efficiently. Capturing behavior
and structure of every design alternative as, respectively, a variant space (using a
featured model) and a variability-aware state space (using a featured automaton).
Consequently, this formalism can capture both structural and behavioral aspects of
every variability concern mentioned above in an efficient manner. Thus, the network
of featured automata (see Fig. 6.3) combined with the feature model (see Fig. 6.4)
can be used to assess behavior of (see Sec. 6.2) not a single system but every system
variants of the case study.

Definition 5 A featured automaton is a tuple FA = (S, s0, Sf , Act, T rans,Ap, L, d, γ)
such that:

� where (S, s0, Sf , Act, T rans,Ap, L) ∈ A is an automaton,

� d = (F,Φf ) is a feature model that captures the set of valid products. F is the
set of features, Φf represents relations and constraints on features. DE ⊆ F ×F
are the set of parent/children relations between features and ( e.g., f =⇒ f ′

or f ∧ ¬f ′) are cross cutting constraints between features. The feature model
semantics JdKFD ⊆ P(P(F )) is the set of feature combinations representing valid
product structures such as ∀p ∈ JdKFD, p |= Φf ,
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� λ : trans → B(F ) is a total function that labels transitions with feature expres-
sions and where Jγ(trans)KFD ⊆ JdKFD is the set of products that satisfy the
expression.

Feature expressions work similarly to presence conditions [Czarnecki and Antkiewicz,
2005]. The automaton of a particular system design is obtained by removing all tran-
sitions whose feature expression is not satisfied. This operation is called projection.
The projection of an fa ∈ FA to a product4 p ∈ JdKFD, noted fa|p, is the automaton
a = (S, s0, Sf , Act, T rans

′, Ap, L) with:

Trans′ = {t ∈ Trans|p ∈ Jγ(t)KFD}

The automaton of system variants of, respectively, design B and D, noted BΨA and
DΨA can be obtained by the projections:

BΨ =D2 SIZE 512&TA&¬TB&D1 ON ROM&D2 ON RAM&TA ON DCU&P2 ON DCUr0&

TD ON DCU&P4 ON DCUr1&RAM&RAM SIZE 512&¬GPU

DΨ =D1 ON ROM&D2 ON RAM&D2 SIZE 1024&TB&¬TA&P2 ON RAM&TD ON GPU&

P4 ON RAM&RAM&RAM SIZE 2048&GPU

UC|BΨ
≡ BΨA

UC|DΨ
≡ DΨA

The Role of the Feature Model

Rather than capturing every system variants in an inefficient enumeration-based man-
ner. We focus on capturing system variations in order to derive any system vari-
ant. Design variations at application, platform or mapping concerns are captured
by feature-oriented variation points. A design decision is then captured by mak-
ing a feature selection. A functionally valid system variant is thus a product (or
valid feature configurations) of this product line. The threefold variability dimensions
are captured by a tri-dimensional (i.e., ApplicationV ariability, MappingV ariability,
PlatformV ariability) feature model. Each sub-diagram is capturing a variability
space (i.e., application space, mapping space, platform space) from which one can
derive every variant.

The ApplicationV ariability feature model captures every variability concerns of
the application. Alternative size of the datum D2 is captured by the D2 size XOR
features group. To capture output and input variability of, respectively, P1 and P2,
(i.e., P1 can feed task A or B and P2 is feeded by Task A or B), we add P1 To and
P2 From XOR features group. Task A and B are made optional features as they
are exclusive. On the platform side, PlatformV ariability feature model captures the
platform variability straightforwardly. Finally, every possible mapping choice of every
application element over platform resources (i.e., Datum mapped onto memories, task
over processors) is captured as XOR features group.

4The term product has been introduced in the original definition, in our case, a product is a system
design.
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Application and platform consistency constraints are, respectively, added into
ApplicationV ariability and PlatformV ariability feature models. The first one en-
sures that only valid flow variants are captured by, and thus can be derived from,
the ApplicationV ariability feature model, while the second constraints the platform
space PlatformV ariability to the manufacturable platform product line. Moreover,
we add the three classes of mapping consistency constraints (i.e., mapping to map-
ping, application to mapping and mapping to platform ) into features constraints
through the MappingV ariability feature model. Taking into account by the SAT-
solver (see Sec. 6.2), these various constraints will guarantee that every design will
exhibit a consistent system variant that satisfies the FC-S requirement i.e., a func-
tionally and valid (compatible) triplet of application, mapping and platform variants.
Let the SystemDesignV ariability feature model be the tri-dimensional feature model
composition thus capturing only valid system variants p ∈ JdKFD. The feature selec-
tions that do not represent a system variant that satisfies FC-S requirements are then
denoted by P(F ) \ JdKFD.

The Role of the Featured Automaton

While the featured model captures the structural aspect of the system design space,
the network of featured automata captures every possible execution of every system
variants. To do so, the behavior of each variable application elements such as a task
or a datum are respectively captured in a featured automaton interacting with other
ones. Similarly, the behavior of each variable platform resources such as storage or
processor is respectively captured in an interacting featured automaton. Hence, rather
than capturing executions of a single storage configuration, we capture every execution
of every storage configuration in a featured state space. To rely system variant with
their state space, features transitions are constraining the product allowed to take that
transition by requiring features.

By setting the free variable accordingly, the RAM SIZE 512 feature selection
will allow a memory behavior that can only store 512KB of data (more will lead
to error state) while the RAM SIZE 2048 could exhibit a behavior where 2048KB
of data have been successfully store (without any problem). If the feature TA is
selected rather than TB, the datum completion signal of D1 will be received by TA.
In addition, if the feature TA On GPUa is selected, the task TA will program and
executed on the GPU rather than DCU . However, if the GPU feature is not selected,
the featured state space will not include GPU behaviors.

Taking multiple featured transitions require feature selections representing par-
ticular design decisions. Because not every feature selections, noted P(F ) repre-
sents a valid system variant. The feature model is of fundamental importance as
it capture only the functionally valid system variants (that satisfy FC-S requirement)
JdKFD ⊆ P(F ). Using the feature model, only featured executions that belong to at
least one valid system variant (product) will be explored. For example, executions
where the path P2 is mapped on a DCU internal FIFO buffers (registers) whereas
task TA is mapped on GPU (rather than DCU) do not belong to a valid variant be-
cause KP2 On DCUr0&TA On GPUJFD∩JdKFD ⊆= ∅. However, a variant may only
exhibit executions that do not correctly render the HMI. On the other hand, a system
variant (that satisfies FC-S requirement) that exhibits an execution that renders the
HMI without any error (satisfying thus FC-B) result in a functionally valid system
design.
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Deriving Automatically the Network of Featured Automata

Through a feature model, we show that we can capture the structural aspect of our
design space (i.e., the system variant space). Using a network of featured automata,
we are able to capture the behavioral aspect of our design space (i.e., the systems
execution spaces). Making the removal of invalid system variants straightforward
requires constraining the feature model not to consider those variants.

However, it is too tedious, error prone, and time consuming for engineers to use
directly these formal models (network of featured automata (see Fig. 6.3) and the
feature model (see Fig. 6.4) from specifications and mapping models5. Similarly to
traditional frameworks that usually transform iteratively, each system variant behavior
into analytical, simulation or computational model for behavioral verification purpose.
Our framework also proposes functions to automatically derive formal models (featured
automaton and feature model) from our previously defined variable dataflow VDG,
variable resource graph VRG, and variable mapping models VM. But rather than
transforming and verifying each system variant behavior iteratively, we transform every
variant behavior into one behavioral formal model (i.e., Featured Automaton).

Definition 6 The function that transforms specifications app ∈ V DG, plt ∈ V RG,m ∈
VM models into a network of featured automata nfa ⊆ FAn is defined by genFA :
V DG× V RG× VM where:

1) The function transforms each datum d in an featured automaton fa. Datum
variable sizes are transformed into a COR feature group. While the first transitions
of the Datum automaton set the size and allocate the datum on a storage, the seconds
wait for storage acknowledgment and send the datum over the output paths.

∀d ∈ D,∃fa ∈ nfa, |χn(d)(Ψsize)| > 1 =⇒ ∃Fxor(d, χn(d)(Ψsize)) ⊆ DE∧
d ∈ Nvar =⇒ ∃F(d) ∈ Nopt,∃(d,M) ∈ Dm,∀m ∈M, ∀size ∈ χn(d)(Ψsize),

∃{s0
C(m)!?D(d)−−−−−−−→ s, s

⋃
o∈O(d) C(o)!D(d)
−−−−−−−−−−−→ sf} ⊆ Trans ∧ L(sf ) = d.end∧

γ(s0 → s) = F(d,m) ∧ F(size) ∧

{
d ∈ Nvar F(d)

d /∈ Nvar >

2) Each task t is transformed in featured automaton fa, the first transitions are gath-
ering the inputs and allocating the outputs. The second transitions program the pro-
cessors in order to accomplish the task. After receiving processor acknowledgment, the
resulting outputs are sent over the output paths. Optionality of a datum is captured by
an optional feature.

∀t ∈ T, ∃fa ∈ nfa, t ∈ Nvar =⇒ ∃F(t) ∈ Nopt, ∃(t, P ) ∈ Tm,∀p ∈ P,

∃s0

⋃
i∈I(t) C(i)?D(i)

⋃
o∈O(t),(o,M)∈Pm,m∈M C(m)!?D(o)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s ∈ Trans∧

γ(s0 → s) =
∧

o∈O(t),(o,M)∈Pm,m∈M

F(o,m) ∧

{
t ∈ Nvar F(t)

t /∈ Nvar >
∧

∃{s
C(p)!?{

⋃
i∈I(t)D(i)

⋃
o∈O(t)D(o)}

−−−−−−−−−−−−−−−−−−−−−→ s′,∧s′
⋃
o∈O(t) C(o)!D(o)
−−−−−−−−−−−→ sf} ⊆ Trans
∧ L(sf ) = t.end ∧ γ(s→ s′) = F(t, p)

5An other major difficulty is to infer the valid mapping of the variable application over the con-
figurable platform in order to model the feature model.

While the case study would require few days, more complex use cases would require several weeks.
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3) Feature constraint over data-path and task variability are added to capture only valid
flows variants. Each variable data-path is captured in a XOR feature group of the
ApplicationV ariability feature model (see. Fig. 6.4) In addition to, node/data-path
consistency constraints are formalized into the feature model as features constraints.

∀p ∈ Path, |O(p)| > 1 =⇒ ∃Fxor(p,O(p)) ⊆ DE ∧ ∀n ∈ O(p), ∃(F(p, n) ⇐⇒ F(n)) ∈ Φ

∀p ∈ Path, |I(p)| > 1 =⇒ ∃Fxor(I(p), p) ⊆ DE ∧ ∀n ∈ I(p),∃(F(n, p) ⇐⇒ F(n)) ∈ Φ

4) it creates for each storage s an featured automaton fa that represents basic memory
behavior. The first transitions set the storage capacity. Alternative sizes are captured in
a xor feature group of the feature model d. cons and cap are respectively the consumed
size and the maximal capacity of the storage. Through channels, one can then allocate
memory, and if there is not enough memory, an error is raised.

∀s ∈ S, ∃fa ∈ nfa, |χr(s)(Ψcap)| > 1 =⇒ ∃Fxor(s, χr(s)(Ψcap)) ⊆ DE∧
s ∈ Θopt =⇒ ∃F(s) ∈ Nopt,∀cap ∈ χr(s)(Ψcap),

∃{s0
C(s)?D(d)−−−−−−→ s, s

free≥0,C(s)!D(d)−−−−−−−−−−−→ s0,∃s
free<0−−−−→ serr} ⊆ Trans∧

L(serr) = s.error ∧ γ(s0 → s) = F(cap) ∧

{
s ∈ Θopt F(s)

s /∈ Θopt >

5) It creates for each processor p an featured automaton fa that models basic graphic
processor pipeline behavior. When a processor function is executed, the input and
output are checked against an internal command buffer to verify that the hardware
pipeline, and if it is misused, an error is raised.

∀p ∈ P,∃fa ∈ nfa, p ∈ Θopt =⇒ ∃F(p) ∈ Nopt, ∀f ∈ F,

∃{s0
C(p,f)?D(d0,...,dn)−−−−−−−−−−−→ s, s

CmdBuf |=>,C(p,f)!(d0,...,dn)−−−−−−−−−−−−−−−−−−→ s0, s
CmdBuf 6|=>−−−−−−−−→ serr} ⊆ Trans∧

L(serr) = p.error ∧ γ(s0 → s) =

{
p ∈ Θopt F(p)

p /∈ Θopt >

6) It creates feature constraints into the PlatformV ariability feature model to capture
dependency and incompatibility constraints on resource components of the platform.

∀r ∈ R,Θreq(r) 6= ∅, (F(r) =⇒
∧

r′∈Θreq(r)

F(r′)) ∈ Φ

∀r ∈ R,Θexc(r) 6= ∅, (F(r) =⇒ ¬(
∨

r′∈Θexc(r)

r′)) ∈ Φ

7) It transforms task, data, path mappings and their associated consistency constraints
into features and features constraints the MappingV ariability feature model. The three
classes of mapping constraints are transformed into feature constraints. Mappings to
mappings constraints guarantee that task mapping will imply suitable input and output
path mapping.

∀(n,R) ∈ Tm ∪Dm,∀r ∈ R,

∃(F(n, r) =⇒
∧

i∈I(n)

(
∨

((n,r,i),Mi)∈Mc,mi∈Mi

F(i,mi))
∧

o∈O(n)

(
∨

((n,r,o),Mo)∈Mp,mo∈Mo

F(o,mo))) ∈ Φ

Application to mapping constraints ensures that each selected task will be mapped and
vice versa (for alternative tasks). A mapping of optional task feature ( i.e., that repre-
sents alternative task) will imply to select both task and its mapping feature.

∀e ∈ Nvar,∃(e,R) ∈ Tm ∪ Pm =⇒ (
∨
r∈R
F(e, r) =⇒ F(e)) ∈ Φ.
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Mappings to platform constraints ensure that if a mapping requires an optional platform
resources, this resource will be selected.

∀r ∈ Θopt,∃(e,R) ∈ Tm ∪ Pm =⇒ (F(e, r) =⇒ F(r)) ∈ Φ

6.2 Variability-Aware Validation Process

6.2.1 Background

To assess the behavior of a system, a model-checking algorithm will assess its possible
execution traces against a temporal formula. While an execution trace (or path) is a
list of states and transitions that track a possible execution of the system, the temporal
logic formula is a set of temporal properties that system behavior should respect. End
state reachability property has been extensively used to find a system execution path
that meets the functional requirements such as completing every tasks or protocol
without errors FC-B.

Definition 7 An execution trace π of automaton a = (S, s0, Sf , Act, T rans,Ap, L) is

a list (s1, α1, s2, α2, s3, ..., sn, αn, sn+1) also noted s1
α1−→ s2

α2−→ s3...sn
αn−→ sn+1 and

{(s1, α1, s2)}, ..., (sn, αn, sn+1)} ∈ Trans and where π ∈ paths(a, s1). We define the
semantics6 of automaton such as:

JaKA = paths(a, s0)

A Computation Tree Logic (CTL) formula φ is an expression:

φ : 1|a ∈ Ap|φ1 ∧ φ2|¬φ|E♦φ|E�φ|A♦φ|A�φ

CTL formulas are interpreted over an automaton and a state (a, s) such as:

a, s |= 1

a, s |= a ∈ Ap ⇐⇒ a ∈ L(s)

a, s |= ¬φ ⇐⇒ a, s 6|= φ

a, s |= φ1 ∧ φ2 ⇐⇒ (a, s |= φ1) ∧ (a, s |= φ2)

a, s |= E♦φ ⇐⇒ ∃π ∈ paths(a, s),∃i ≥ 0, a, head(πi) |= φ

Where head(π) denotes the first state of π and πi the tail of the path starting at the
ith state such as π0 = π. a, s0 |= φ notation will be reduced to a |= φ.

Regarding the system variant B in Figure 6.1, the CTL end state reachability
formula to assess that, at least, one execution is capable to render the entire content
that the customer want to be displayed through HMI-rendering without any problems
(FC-B). could be the following:

φB = E♦(D1.end ∧D2.end ∧ TA.end ∧ TD.end∧
TC.end ∧ ¬DCU.error ∧ ¬RAM.error ∧ ¬ROM.error)

6Semantics of automaton can also be defined by logic properties based equivalence [Cordy, 2014]
on paths JaKA = {L(s0), ..., L(sn)|∃s0 → ... → sn ∈ paths(a, s0)}. But as our traces will be also
semantically determined by quantitative properties, the traces based semantics seems more adapted
[Classen, 2011]
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Similarly, regarding the system variant D in Figure 6.2, the CTL formula could be:

φD = E♦(D1.end ∧D2.end ∧ TB.end ∧ TD.end ∧ TC.end∧
¬DCU.error ∧ ¬GPU.error ∧ ¬RAM.error ∧ ¬ROM.error)

These formulae can be expressed in natural language such as “I assume that there exists
a path where every application element has terminated and where no hardware resource
has raised an error.” In other words, it represents a design that satisfies the CTL
formula and thus meets the behavioral functional requirements (FC-B. Therefore, if
implemented on an automotive system, the design will render the HMI correctly and
without errors.

As explained previously, given a i) state-based behavior of a system and ii) a
temporal formula that the system should respect. The model checking algorithm au-
tomatically explores the system behaviour’s state space to find events over executions
that respect or violate required temporal properties. As observed in our case study,
embedded systems exhibit a concurrent behavior and usually consist of several inter-
acting automata.

Basically, to program and execute the HMI-rendering, application automata send
appropriate commands to hardware resources automata. To execute these commands,
hardware resources automata also interact with each other. While each application
element or platform resource automata captures the behavior of a system part, the par-
allel composition of such featured automata results in a network of featured automata
capturing the whole system’s behaviour.

Definition 8 Given two automata a1 and a2 their parallel composition, synchronized
over the set of shared communication actions Act1 ∩ Act2, written a1||a2, is the au-
tomaton (S1 × S2, Act1 ∪ Act2, T rans, I1 × I2, AP1 ∪ AP2, L), where

� L({s1, s2}) = L(s1) ∪ L(s2)

� Trans is the smallest relation satisfying

– for α ∈ Act1 ∩ Act2 (interleaving):
s1

α−→s′1

(s1,s2)
α−→(s′1,s2)

,
s2

α−→s′2

(s1,s2)
α−→(s1,s′2)

– for α ∈ Act1 ∩ Act2 (synchronization):
s1

α!−→s′1∧s2
α?−→s′2

(s1,s2)
α−→(s′1,s

′
2)

The state-space after parallel composition is thus the product of the original state
spaces (another reason for state explosion (see Sec. 3.1.4), so that a process can be in
any state, independently from the other. The parallel composition of two automata
results in an interleaving of their executions. This means that only one process at
a time can fire a transition, after which his part of the global system state changes.
However, processes may synchronize, e.g., when sending/receiving a command or mes-
sage. Parallel composition takes this into account by forcing transitions with the same
action to execute synchronously. In this case, both processes fire their transition at
the same time.

Given this definition, system variant B and D illustrated, respectively, in Fig. 6.1
and 6.2, can be formalized as the parallel composition of their application elements
and platform resources automata:

BA = D1ON ROM ||D2512 ON RAM ||TADCU ||TDDCU ||TC||ROM ||RAM512||DCU
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DA = D1ON ROM ||D21024 ON RAM ||TB||TDGPU ||TC||ROM ||RAM2048||DCU ||GPU

where D1ON ROM is the automaton capturing the behavior of the D1 data application
element where mapped on ROM memory, TDDCU and TDGPU are the automata cap-
turing the behavior TD task where mapped on, respectively, DCU or GPU processors.
Similarly, RAM512 capture the automaton of a 512KB RAM memory.

As an example, Figure 6.5 illustrates two possible executions of the system variant
B (see Fig. 6.1) in an sequence diagram form. Each automaton capturing the behav-
ior of an application element or platform resource of the system variant has its own
local execution trace. Interactions between automata (e.g., input/output completion
signals, hardware command) are indicated by directional messages between automata.
At the initial state of the system (state 1 of BA), all process automata are in their
own local initial state (state 1). Next, in the execution of the Figure 6.5 (a), the
automaton of the data D1 (noted D1A)sends an allocation command to the ROM
automaton (noted ROMA) that receives the allocation command and reduces its free
memory capacity according to the size of D1. Secondly, as their is no ROMoverflow,
sends back an acknowledgment to D1A. Finally, D1A will send a completion signal
to TAA that will allow the start of the task mechanism. Let us formalize this whole
interaction scoped between D1A, TAA and ROMA as:

π = (s1, s1, ..., s1)→ (s2, s1, ..., s2)→ (s3, s2, ..., s1), π ∈ JD1ON ROM ||TA||...||ROMKA

which is an execution trace (or path) of the parallel composition of the network of
automata

D1ON ROM ||TA||...||ROM

The execution continues and TAA will send a command to DCUA. After validating
the command, the DCUA will acknowledge to TAA the completion of the command.
Similarly, D2A will send an allocation command to the RAMA then, TDA will also
send a processing command to the DCU . TCA will finally send the command that
will flush the command buffer of the DCUA in a way that respect (does not violate
functional constraints and limitations) its pipeline. As all application elements have
been processed using hardware resources correctly, the execution satisfies the end state
reachability property. The HMI-rendering is then completed without any error. This
design thus satisfies the FC requirements and can be considered functionally valid.

6.2.2 Model Checking Lots of System Designs

Assessing every possible execution of every system variant seems inefficient, especially
when the number of system variants is huge. Yet, system design frameworks still assess
their design space in iterative or enumeration-based manners (see Sec. 3.1.4). Reusing
variability-aware model checking algorithms [Classen et al., 2010b], we propose to
efficiently assess structural and behavioral functional feasibility of the system design
space represented by a behavioral product line. The network of featured automata
representing the structure and behavior of the possible design alternatives is checked
against end-state reachability temporal property. Products (i.e., system variants) that
do not satisfy the property due to their behavior are then easily identified. As a result,
the validation solves and extracts all valid variants in a single run.

This algorithm consists of verifying all execution paths of all products of the prod-
uct line. There is a fundamental difference between family (or variability-aware)
method and iterative (or product-and-product) techniques. Instead of exploring all
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Figure 6.5: Execution Traces of System Variant of Design B
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Figure 6.6: An execution trace producible by the System Variant of Design D

executions of each system variant, the model-checker explores an execution once for
all variants able to produce this execution by exploiting commonalities between dif-
ferent products. Theoretically, the more the system variants share common behavior,
the more efficient the variability aware model is checking in comparison to iterative
model checking on individual systems [Classen et al., 2011c].

Automata formalism is a highly-tooled standard model of computation to model
and verify concurrent systems. Such systems are generally composed of multiple con-
current processes: software or hardware , etc. Similarly to network of automata, a
network of featured ones captures the state space of an entire product line composed
by concurrent and communicating variable automata (or process). End state reacha-
bility property that captures functional requirements’ satisfaction in a temporal logic
form can be applied to assess the network of featured automata. However, as the end
states can differ from a product to another, the temporal property is enriched with fea-
ture expressions. Similarly to featured automaton, featured Computation Tree Logic
(fCTL) is automatically refined according to the features selection.

Definition 9 An execution trace π of featured automaton fa = (S, s0, sf , Act, T rans,

Ap, d, γ) is a execution π = s0
α0−→ s1

α1−→ s2...sn
αn−→ sn+1. A feature expression

ψ =
∧n
i=0 γ(si

αi−→ si+1) (simply reduced to γ(π)) encodes the set of products JψKFD
that can produce π. On the other hand, {π0, ...πm} = Jfa|pK ∩ Jfa|p′K denotes the set,
possibly empty, of shared executions between two products p, p′. Finally, the semantics
of featured automaton is defined as:

JfaKFA =
⋃

p∈JdKFD

Jfa|pKA

An fCTL property φ is an expression φ := [χ]φ′ where φ is an CTL property and χ ∈ B
a feature expression quantifier. Then,

fa |= φ ⇐⇒ ∀p ∈ JχKFD ∩ JdKFD, fa|p |= φ′

That is, each product p ∈ JχK included in the quantifier exhibits a behavior that satisfies
the CTL property fa|p |= φ′.
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Definition 10 Given two featured automata fa1 and fa2 their parallel composition,
synchronized over the set of shared communication actions Act1∩Act2, written fa1||fa2,
is the automata (S1 × S2, Act1 ∪ Act2, T rans, I1 × I2, AP1 ∪ AP2, L, d, γ), where

� L({s1, s2}) = L(s1) ∪ L(s2)

� Trans is the smallest relation satisfying

– for α ∈ Act1 ∩ Act2 (interleaving):
s1

α−→s′1

(s1,s2)
α−→(s′1,s2)

,
s2

α−→s′2

(s1,s2)
α−→(s1,s′2)

where,

{
λ((s1, s2)

α−→ (s′1, s2)) = λ1(s1
α−→ s′1)

γ((s1, s2)
α−→ (s1, s

′
2)) = λ2(s2

α−→ s′2)

– for α ∈ Act1 ∩ Act2 (synchronization):
s1

α!−→s′1∧s2
α?−→s′2

(s1,s2)
α−→(s′1,s

′
2)

where, λ((s1, s2)
α−→ (s′1, s

′
2)) = λ1(s1

α!−→ s′1) ∧ λ2(s2
α?−→ s′2)

� d = JB(d1) ∧ B(d2)KFD also denoted d1 ⊕ d2, is the inter-product line feature
diagram composition7.

Then, given p1 ∈ Jd1KFD, p2 ∈ Jd2KFD, and, p = p1 ∧ p2, p ∈ d1 ⊕ d2, the projected
systems, fa1|p1

||fa2|p2
and (fa1||fa2)|p are equivalent.
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Figure 6.7: An FTS execution trace producible by system variant B

The featured automaton noted as:

FAuc = D1FA||D2FA||TAFA||TBFA||TDFA||TCFA||GPUFA||RAMFA||ROMFA

is the composition of the network of featured automata. Figure 6.7 illustrates a possible
execution of the featured automaton that captures the system design space of our case

7This definition is suitable in our context as every configurable process have its own independent
feature diagram.
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Figure 6.8: An FTS execution trace producible by system variant D

study (see fig. 6.3). We observe that this execution is indistinguishable from the first
execution of the system variant B in Figure 6.5(a). Both executions are equivalent.
The two figures are identical except that design decisions (represented by features)
such as data size, memory capacity, application mappings over platform resources, etc.
are selected through some state transitions. We can see that while D1 is allocating
on ROM the related feature D1 ON ROM is selected, which represent the design
decision to map D1 on ROM . More formally, as :

π = (s1, ..., s1)→ (s2, ..., s2), π ∈ JD1||...||ROMKFA, γ(π) = D1 ON ROM8

furthermore, in this execution, the D1 completion signal is received by TA (rather
than TB) automaton. This transition require TA feature as:

π = (s2, s1..., s2)→ (s3, s2, ..., s1), π ∈ JD1||TA||...||ROMKFA, γ(π) = TA

.
The complete execution can be denoted as:

π = s1 → s2, ..., s17 → s18, γ(π) and, ψ =D1 ON ROM&TA&...&TC ON DCU c

The required design decisions ψ of ψ are leading to capture the state space of system
variant B noted:

JUC |ψKA = JBKA
At automata level, the automata network of system variant B in Figure 6.1 would be
equivalent to the ψ projected featured automata network capturing the case study.
For example:

TD|{TD ON DCU} = TDON ON DCU

D2|{D2 SIZE 512&D2 ON RAM} = D2SIZE 512 ON RAM

Similarly, the Figure 6.8 illustrates, the invalid execution (previously explained see
Fig. 6.6) of system variant D (see Fig. 6.1) obtained by Dψ projection of the use case
featured automaton.

8More precisely, λ((s1, ..., s1) → (s2, ..., s2)) = γ(s1 → s2) ∧ ... ∧ γ(s1 → s2)) = > ∧ ... ∧
D1 ON ROM
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The property that captures the functional requirement in a temporal logic form
interpreted over the featured automaton can be denoted as:

φfa = E♦(D1.end ∧D2.end ∧ [TA]TA.end ∧ [TB]TB.end ∧ TD.end ∧ TC.end∧
¬DCU.error ∧ [GPU ]¬GPU.error ∧ [RAM ]¬RAM.error ∧ ¬ROM.error)

The end-state reachability is automatically refined according to tasks and resources
presence. Only tasks that are present in the system variant have to complete. Similarly,
only resources of the system variant have to behave without ending in an error state.
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Figure 6.9: The shortest FTS invalid execution trace producible by a huge amount
of system variants

Finally, Figure 6.9 illustrates how such formalism can efficiently assess a huge
amount of system variants. This execution reaches an error state after allocating the
two data D1 and D2. We can observe that the design decisions that lead to this
erroneous execution are only affecting the mappings of D1 and D2 which are allocated
on RAM , the size of D2 (i.e., 1024KB) and the capacity of RAM (i.e., 1024KB).

To be reachable or not to be

We use featured state reachability property to assess our design space represented by
a behavioral product line. The verification of such property can be reduced to the
computation of traditional reachability relations [Classen et al., 2010b]. Rather than
cover all the details of every step of the model checking technique 9, we i) introduce
the concept of reachability relations in featured automaton ii) present the algorithm
that efficiently computes the reachability relations and iii) exemplify the algorithm
with our case study.

Comparing single system and system product line model-checking, the major dif-
ference is the definition of successor state. Successor state is an essential function to
determine the reachability relation in any state transition based system. In an automa-
ton that captures a single system, state s′ is a successor of state s if and only if there a
transition s to s′. In a featured automaton that captures a system product line, each
product of the featured automaton can have a different state space. To this extent, a
transition can be enriched by a feature expression such as a transition only exists for a
subset of the products. Consequently, the model checking algorithm has to keep track
of the successor states according to the products in which they exist. We assume that
a transition si

α−→ si+1 without a feature expression implies that si+1 is a successor
state of si in all products JdKFD as no particular feature is required λ(si

α−→ si+1) = >
9To the interested readers, we recommend this review [Cordy et al., 2019]
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to take the transition. While the products Jγ(si
α−→ si+1)KFD ⊆ JdKFD is the set of

products on which the transition exists and can be taken during executions10.
For a given pair of states (s, s′), the function Post(s)(s′) is the feature expression

encoding the variants JPost(s)(s′)KFD that can reach s′ from s using one from possibly
many transitions that rely s′ to s such as ∃α ∈ Act, s α−→ s′ ∈ Trans. If there is only
one transition from state s to its successor s′, Post(s)(s′) is equal to λ(s

α−→ s′). We
could define the reachability relation from the successor function. Given two states, say
s0 (the initial state) and sn, the reachability relation that return the feature expression
encoding the variants exhibiting, at least, one path s0 → ... → sn from s0 to sn is
given by

∧n−1
i=0 Post(si, si+1) and where ∀p ∈ JdKFD ∧ s0 → ...→ sn ∈ Jfa|pKA.

Definition 11 The reachability relation function R : S → (S → P(P(F )) from states
s0 to state sn in a featured automaton returns the feature selections required to reach
sn from s0 and is defined as

R(s0)(sn) =
∨

s0,...,sn∈JfaKFA

n∧
i=0

Post(si, si+1)

∀p ∈ JR(s0)(sn)KFD ⇐⇒ ∃s0 → ...→ sn ∈ Jfa|pKA

where ∀j, 0 ≤ j < n,∃α ∈ Act, (sj, α, sj+1) ∈ Trans and where The successor function
in a featured automaton is defined as:

Post(si)(si+1) =
∨

si
α−→si+1∈Trans

λ(si
α−→ si+1)

Let us illustrate this reachability relation using the featured automaton capturing
the case study in Fig. 6.3. First, we only focus on the featured automaton formed by
followed the parallel composition (D1||TA||RAM ||ROM ||DCU)FA automata. Other automata
and their possible interactions are voluntarily ignored to avoid adding unnecessary
complexity to the example. The reachability relation of state sn = (s4, s6, s1, s1, s1) D1
data and task TA have reached their end state and RAM , ROM and DCU resources
are at their idle (and initial), from s0 = (s1, s1, s1, s1, s1) the initial state. There exists
two paths in the featured automaton π, π′ ∈ JD1||TA||RAM ||ROM ||DCUKFA that connect sn
from s0. Only differing by D1 allocation mapping behavior i.e., In π the ROM is used
whereas π′) use the RAM. More formally:

π = (s1, s1, s1, s1, s1)→ (s2,−,−, s2,−)→ (s4, s3,−, s1,−)→ (−, s4,−,−, s2)→ (s4, s6, s1, s1, s1)

π′ = (s1, s1, s1, s1, s1)→ (s2,−, s2,−,−)→ (s4, s3, s1,−,−)→ (−, s4,−,−, s2)→ (s4, s6, s1, s1, s1)

R(s1, s1, s1, s1)(s4, s6, s1, s1) = (

|π|−1∧
i=0

Post(πi)(πi+1))
∨

(

|π′|−1∧
i=0

Post(π′i)(π
′
i+1))

= ψ
∨

ψ′

ψ ={D1 ON ROM
∧

(TA&P2 ON DCUr0)
∧
TA ON DCUa

∧
>}

ψ′ ={({D2 ON RAM&RAM&RAM SIZE 512}∨{D2 ON RAM&RAM&RAM SIZE 1024}∨

{D2 ON RAM&RAM&RAM SIZE 2048})
∧

(TA&P2 ON DCUr0)
∧
TA ON DCUa

∧
>}

10Note that if Jγ(si
α−→ si+1)KFD = ∅ then si

α−→ si+1 does not exist in any product and can be
considered as a dead transition.
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According to the reachability relation results, the first path π can be produced by
products that have ψ =D1 ON ROM&TA&P2 ON DCUr0&TA ON DCUa features selection as
design decisions. There are 4 products (system variants) that share such structure
|JψKFD| = 4. The first can be noted p1 =ψ&¬D1 ON RAM&¬RAM while the rest are
differing from the first product by an unused RAM with a different capacity such as
{p2, p3, p4} =p1&(RAM SIZE 512∨RAM SIZE 1024∨RAM SIZE 2048). The 3 products that can
produce π′ (i.e., |Jψ′KFD| = 3) are similar to the one of π mainly differing by the
mapping and allocation of D1 on RAM (with 3 different possible capacities) rather
than ROM .

As said previously, the verification of the end state reachability property expressed
in fCTL is reduced to compute the reachability relation of the required end state. Then,
the fCTL property φ =E�(D1.end∧TA.end∧[RAM ](¬RAM.error)∧¬ROM.error∧¬DCU.error) that de-
termines the functional requirements satisfaction (i.e., complete the HMI-rendering
without any error) are satisfied by the products above as they reach a an end state.
Consequently, every system variant p fulfills the functional requirement as they all
exhibit a execution that reach the end state such as:

p ∈ J(D1||TA||RAM ||ROM ||DCU)FAKFD ∧ p ∈ JR(s0)(send)KFD

Proposed algorithm

We reuse the algorithm that computes the reachability relation of a featured automaton
[Classen et al., 2010b] efficiently. A simpler but inefficient method would be to derive
every product automaton and iteratively compute their reachability relations. On the
contrary, exploiting behavioral commonalities between products as long as they do not
exhibit a behavioural divergence11 will drastically improve the verification process’s
efficiency. To this ambition, the design decisions represented by features have to
remain undetermined as long as they do not impact the execution. This optimization
has been called late splitting [Apel et al., 2013] as we split a group of products in
others by taking a particular design decision (features selection), if and only if it is
requested by the transition to explore.

Algorithm 2, based on the formalization of [Cordy et al., 2019], compute the reach-
ability function of the featured automaton from the initial state s0 to any other state
s ∈ S using a depth-first search. The algorithm consists of a loop that iterates over a
stack of couples (s, γ) where s is a state and γ ∈ F is an associated feature expression
that notably encodes the set of variants JγKFD ⊆ JdKFD. Initially, the stack contains
only the element (s0,B(d)) in order to start the search from the initial s0 while consid-
ering all variants ⊆ JdKFD (the initial state is effectively reachable by every variant).
At each iteration, the algorithm takes the top element (s, γ) of the stack, computes
the successors of s and associates each successor with the featured expression γ′ that
encodes variants that only satisfy current required features γ plus required features to
reach s′ from s noted γ′ = γ ∧ Post(s)(s′) (Lines 4-5). This results in a set couples
(s′, γ′) ∈ S × (P(P(F ))). For each pair, the algorithm first determines whether JγKFD
contains at least one valid product; otherwise, it is not needed to pursue the search
from s′ as the next state cannot be reached by the variants encoded by the feature
expression. This verification is achieved by checking the satisfiability of γ′ (Line 6). If
that is the case, the algorithm enters an inner loop (Lines 7-17).

Likely, the more the products share structural commonalities, the more they share
behavioral commonalities. But behavioral commonalities between totally different

11a state that does not exist in all products.
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Input: fa = (S, s0, sf , trans,Ap, L, d, γ).
Output:

⋃
s∈S R(s0)(s).

1 R← ⊥;
2 Stack ← push((s0,B(d), []);
3 while Stack 6= [] do
4 (s, γ)← pop(Stack);

5 succ←


(s′, γ′)| s′ ∈ dom(Post(s))∧

γ′ = γ ∧ Post(s)(s′)∧
γ′ = γ′¬R(s0)(s′)∧
γ′ 6|= ⊥

6 foreach (s′, γ′) ∈ succ do
7 R(s0)(s′)← R(s0)(s′) ∨ γ′;
8 push((s′, γ′), Stack);

9 end

10 end
11 return R

Algorithm 2: Reachables(fa)

variants could also exist. Formally, JγKFD, Jγ′KFD ⊆ JdKFD, encoding common variants
such as JγKFD∩Jγ′KFD 6= ∅ will likely exhibit common behaviors JfaγKFA∩Jfaγ′KFA 6= ∅
but it could be also true for disjoint variants JγKFD ∩ Jγ′KFD = ∅. Consequently, the
algorithm may visit a given state more than once (Lines 7-13). Whereas, in single-
system model checking, it should not pursue the search since it already knows that the
revisited state is reachable. In our case, however, it may happen that the algorithm
discovers a new path from and to an already visited state s′ which is executable by
variants that were not known to be able to reach s′. Formally, let R(s0)(s′) be the
feature expression encoding the set of variants that were known to reach s′ and γ′

the feature expression encoding the another set of variants able to reach s′ that may
contain variants that were not known. Then γnew = γ′∧¬R(s0)(s′) encodes only the set
of variants JγnewKFD = Jγ′KFD \ JR(s0)(s′)KFD that are newly known to reach s′ (Line
8). If there is at least one valid product satisfying this feature expression JγnewKFD 6= ∅,
the search continues from s′ considering only the new variants encoded by γnew (Lines
9-12). Therefore the paths starting from s are worth re-exploring only for the variants
in γnew. Before pursuing the exploration, the feature expression R(s0)(s′) is updated
accordingly.

Illustration

Let us illustrate this using the scoped featured automaton (D1||D2||RAM)FA, the end state
reachability fCTL property φ =E�(D1.end∧D2.end∧[RAM ]¬RAM.error) is reduced to compute
the reachability relation from s0 = (s1, s1, s1) to send = (s4, s4, s1). Figure 6.10 illus-
trates the depth first search of the whole state space of (D1FA||D2FA||RAMFA). To propose
a more realistic example, we add variable values to semantics of state as their values
could also impact the possible state transitions. For example, given -512 to the value
of the RAM free space RAM.free, the only possible will be transition s2 → s3 while
s3 is the RAM error state. On the contrary, a value of 512 will lead to the idle state
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s2 → s1
12. As variable value are now part of state semantic, the initial state can

be noted syntactically such s1 = (s1, < s1, ψsize >,< s1, ψfree >). Where ψsize and
ψfree represent, respectively, the value of the D2 variable size D2.size and RAM.free.
Initially the value the variables are undetermined ψsize = ∅ meaning that every value
of its domain could be choose ψsize = {256, 512, 1024}.

There are 12 state successors to the initial state (see Fig. 6.10): 3 states where
we allocate D1 on RAM first rather than D2 (blue transitions) and 9 states where
D2 is allocated first (violet transitions). Because the variable RAM.free is used in
an expression free−=D1.size,overflow=free<0 the determination of the value of RAM.free
representing the free space of the RAM is required by transitions reaching any of these
states. For example, s1

α−→s2 where α={(free=2048)−=(D1.size=512),overflow=free<0},s2).
Then, s2=(s4,<s1,ψsize=∅>,<s1,ψfree=2048>) represents the designs where we allocate D1

first (designs behavior) on a 2048KB RAM (designs structure). The state successors
of s2 allocate D2 on RAM . D2 size had to be determined in order to resolve the expres-
sion free−=D2.size,overflow=free<0 such as s2

α−→s3 where α={free−=(D2.size=256),overflow=free<0},s3.
s3 is a final state and the whole execution satisfy the functional requirement expressed
in fCTL logic s1→s2→s3|=φ.

This execution can be produced by variants with ψ ={RAM SIZE 2048&D2 SIZE 256}

design decisions as π ∈ UC|ψ. Finally, The system design (π, ψ) satisfies both struc-
tural requirements JψKFD ⊆ JdKFD and behavioral ones π |= φ13. On the contrary,
designs using a 512KB RAM are not satisfying the behavioral requirements.

For the 9 states where D2 is allocated first (violet transitions), the transition from
s1 to one of these 9 states14 need to determine both RAM capacity and D2 size to
resolve the expression RAM.free−=D2.size,RAM.overflow=RAM.free<0. Whereas s1 → s30

15

are designs on which we try to allocate D2 first on a undersized RAM (a 1024KB
D2 on a 512KB RAM), s1 → s14 are those where 256KB D2 is allocated on 2048KB
RAM .

Comparing to the single system reachability computation, we verify states {s2, s6, s10}
once for every product. Exploiting commonalities between variant reducing thus the
number of states to assess the whole design space from 36 to 30 states16. For example,
s2 would be verified for each variant RAM 2048&(D2 1024 ∨ D2 512 ∨ D2 256) in
a product by product approach necessitates only one verification in our product line
approach. If the state s2 allows to satisfy (or not) the temporal logic property, this
information is generalized to all variants that reach s2.

In the complete case study (see Sec. 9.2), the error states discovered (in red) such
as s30, s29, etc. can be generalized to all variants. s30 is a error state for every variant
that has RAM 512&D2 1024, no matter the other design decisions (mappings of D1,
TD, variant with TA or TB, presence of GPU or not, etc.), as these properties would
still be undetermined at s30.

The framework provide designs as the execution traces (i.e., how the application
tasks are executed and scheduled onto the platform) and associated system variant that
satisfy the requirements. Thereby helping the upcoming engineering of the designs.

12In fact it depends on positive RAM.free ≥ 0 or negative value RAM.free < 0, a observation that
could motivate future works such as symbolic or abstraction optimization techniques (see Sec. 10.3.4).

13More precisely, both executions of ψ {π,s1→s14→s15}=JψKFA satisfy the behavioral requirements
14{s14,s16,s18,s20,s22,s24,s26,s28,s30}.
15s30 = (s1, < s3, ψsize = 1024 >,< s3, ψfree = 512 >).
16Surprisingly, even in this pedagogical example, the gain is up of 16%
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The design space that contains only valid design alternatives is:

{(s1 → s2 → s3, RAM 2048&D2 256), (s1 → s2 → s4, RAM 2048&D2 512),

(s1 → s2 → s5, RAM 2048&D2 1024), (s1 → s6 → s7, RAM 1024&D2 256),

(s1 → s6 → s8, RAM 1024&D2 512), (s1 → s14 → s15, RAM 2048&D2 256),

(s1 → s16 → s17, RAM 1024&D2 256), (s1 → s20 → s21, RAM 2048&D2 512),

(s1 → s22 → s23, RAM 1024&D2 512), (s1 → s26 → s27, RAM 2048&D2 1024)}

6.2.3 Conclusion

So far, we presented an end-to-end framework for system design engineering. In the
chapter 5, we presented the modelling part of the framework and tried to pinpoint
the main contributions. More precisely, we extends traditional specification models
with variability concerns to capture variability at both application (see Sec. 5.1) and
platform levels (see Sec. 5.2). We also developed a mapping strategy (see Sec. 5.3)
that allows mapping these variable specifications to derive the system design space
automatically from its specifications.

In the chapter 6, we present the assessing part of the framework. This part requires
a mind-shift. Rather than assessing the design alternatives in a product by product
method, we propose to capture and assess them as a product line. For this, we generate
an FTS that encode the design space as a product line of system designs (see Sec. 6.1).
FTS formalism can be seen as an automata-based model of computation extended with
variability concerns.

We then reuse the variability-aware model checking algorithm in order to assess
the design space efficiently against functional requirements (see Sec. 6.2). This an-
swers the question Which designs can be properly implemented and can render the
case study HMI properly to the screen?. Such algorithm theoretically exploits struc-
tural and behavioral commonalities between different but related designs to speed up
the verification process. Basically, a common state is checked only once for every
system variant that could reach it.

However, FTS is limited to functional verification. Still, we demonstrate how to
verify efficiently two facets of our problem (FC-S and FC-B). While the valid design
structures are guarantee though the feature model that contains only valid system
variants, each valid design behavior satisfies the end-state temporal property.

To reach entirely the challenges, the designs must also meet non-functional re-
quirements (NF-S, NF-B and NFO). In our case study, these include a maximal
manufacturing cost, a minimal rendering quality, and a system responsiveness. An-
swering thus to questions such as Which feasible designs, with an execution time less
than 30.0ms, expose the highest rendering quality? or even Which feasible designs
reach the best trade-off between rendering quality, manufacturing cost and execution
time?, etc. In the next chapter, we propose to extend our framework to manage also
non-functional concerns. Finally, providing a framework foundation that reaches the
challenges entirely.
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Chapter 7

Toward a Complete Framework

Previously, we proposed a model-based design framework that combines Y-Chart pat-
tern from embedded system design engineering and Featured Transition System (FTS)
formalism from product line engineering. The Y-Chart pattern was extended at mod-
eling stage to capture variable properties at both application and platform levels (see
Chap. 5). At mapping stage, we proposed a new mapping algorithm that infers the
variability-intensive system design space from the mapping of the variable application
onto the configurable platform (see Chap. 5). We show that such design space can
be transformed into FTS to reuse variability-aware model checking techniques, thus
efficiently assessing functional requirements at both structural and behavioral levels
of the entire design space (see Chap. 6).

This chapter extends the proposed framework to non-functional feasibility, non-
functional satisfiability, and optimality through Y-Charts models and FTS formalism
with non-functional concerns. Combining, extending, and closing the gap between
these two engineering philosophies, system design and product line, our novel frame-
work allows us to reach entirely the three challenges defined in this thesis.

Each challenge is reached by extending specification models or reasoning techniques
of our former modeling framework:

1. For specifications models : to capture non functional requirements and non func-
tional properties at both variability-intensive application and highly-configurable
platform specifications (Challenge 1), we extend application and platform mod-
els with non functional concerns. The resulting design space with non-functional
concerns is derived (Challenge 2), reusing the same variability-aware mapping
algorithm.

2. For reasoning techniques : to reason on all facets of the adapted design space
efficiently (Challenge 3), we extend the Featured Transition System formalism
(FTS) with quantitative properties. We also integrate complementary state-
of-the-art reasoning tools such as a product-line multi-objective optimization
framework.

7.1 Modeling Non Functional Concerns

Given non-functional requirements, high-level variable application and configurable
platform inputs (which notably capture non-functional concerns,) the framework au-
tomatically infers the design space by implicitly mapping each data-flow variant on
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each platform configuration, generating a behavioral product line extended with quan-
titative properties. We also extend the variability-aware model checking algorithm to
assess the system design space against non-functional requirements.

At the application level, the functional expert is in charge of capturing, in addition
to functional properties (e.g., image size, task), non-functional properties(e.g., image
and task rendering quality) and quality properties (e.g., overall quality) through an
extended concurrent variable data-flow specification with non-functional concerns. On
the platform side, the expert also captures non-functional properties (e.g., memory
and processor bandwidth, cost, frequency) and quality properties (e.g., overall cost) of
configurable hardware components such as non-programmable graphic processors and
data storage units.

To support variability-intensive application and highly-configurable platform spec-
ifications, we previously proposed application and platform formal models extended
with variability concerns. By mapping these specifications, we automatically infer an
adapted system design space (Challenge 2). We now propose to extend these models
with non functional properties to capture both both functional and non functional
concerns (Challenge 1). In addition to the input specifications models, a model cap-
tures the NF requirements as constraints on quality properties and a cost function
representing trade-offs between quality properties.

7.1.1 System Specifications with Non Functional Properties

Applications as variable data-flows

To capture non functional properties, we simply define additional properties Ψ such
as Ψquality in the Concurrent Variable Data-Flows Graph model V DG. However, the
quality non functional property value of data is directly linked to its size functional
property Ψsize. For example, the 256KB size of D2 leads to a quality of 0, 512 to 1,
and 1024 to 3. As we will see, our definition of χ allows one to define cross-cutting
constraints over a given node’s property values.

Definition 12 A variable data-flow graph with non functional properties is a tuple
V DG∗ = (N, Path, E, Ψ, χ) where (N, Path, E,) is defined as in V DG; Ψ =
{Ψsize,Ψquality} is a set of properties; χ : N → (Ψ →

⋃
ψ∈Ψ ν(ψ)) → {>,⊥} is a

function that associates a node n to the set of values that (all or a subset of) each
property ψ in Ψ can take, where ν(ψ) is the finite set of values that ψ can take.

Basically, χ defines which valuations of the functional and non functional properties
are valid altogether. This flexible definition, akin to the notion of configuration of non-
boolean parameters [Fleischanderl et al., 1998,Sabin and Weigel, 1998,Hubaux et al.,
2012,Cordy et al., 2013b,Felfernig et al., 2014], can express that some property values
are forbidden in n, and that the value of given property in n restricts the values of the
others. For example:

χ(D2)({Ψsize,Ψquality})(256, 0) = >, but, χ(D2)({Ψsize,Ψquality})(256, 1) = ⊥

The system quality emerges from the overall quality property of the application
variant depends on i) the size of D2 and ii) whether A or B consumes D1 which impact
their Ψquality non functional property value. Furthermore, as we will see, the size

of the data (a structural functional property) will also impact the execution time of
the system behavior (a behavioral quality property). In our case study, the property
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value of the system is obtained by summing the property values of its constituents.
We make this assumption in the rest of this thesis without losing generality: one can
use other aggregation functions (e.g., average, maximum) instead.

Platforms as variable resource graphs

Similarly, we simply define additional properties Ψ such as Ψcost, Ψfreq, etc. to give to
the expert the means to capture non functional properties (e.g., memory and processor
bandwidth, cost, frequency) of configurable hardware components. We can see that
Ψcost property value are linked to Ψcap property value.

Definition 13 A variable resource graph with non-functional property is a tuple V RG∗

= (R, C, Θ, Ψ, χ) where (R, C, Θ) is defined as V RG; Ψ = {Ψcap, Ψcost, Ψfreq} is
a set of properties; χ : R → (Ψ →

⋃
ψ∈Ψ ν(ψ)) → {true, false} associates a resource

r to the set of values that the properties in Ψ can take.

The function χ is defined similarly to its counterpart in variable data-flow graphs
and offers the same benefits. For example Ψcap and Ψcost value couples are linked:

χ(RAM)({Ψcap,Ψcost,Ψfreq})(512, 20, 100) = >
χ(RAM)({Ψcap,Ψcost,Ψfreq})(1024, 20, 100) = ⊥

The overall cost quality property of a system variant is the sum of non-functional
property Ψcost of the platform resource components. Moreover, as we will see, the freq
value of the resources (a structural functional property) will also impact the execution
time of the system behavior (a behavioral quality property).

7.1.2 Non Functional Requirements

In addition to the input specifications models, the expert also defines the NF re-
quirements as constraints and a cost function (to minimize or maximize) representing
trade-offs between quality properties. NF constraints are constraints on manufacturing
cost, execution time or even rendering quality and commonly include a maximal man-
ufacturing cost, a minimal rendering quality, and a system responsiveness (i.e. time to
render graphics on the visual display from which frame per seconds are determined).

Besides functional requirements, we have to identify designs that respect and opti-
mize non-functional requirements. Some quality property of the design only depends
on its structure (i.e., structural quality property). Manufacturing cost and render-
ing quality, for example, depend on, respectively, the application variant (e.g. size
of input data, the choice between alternative data-flow tasks) and the platform vari-
ant(e.g., selected components of the platform, memory capacities). To guarantee a
minimal rendering quality and a maximal manufacturing cost, the design should first
of all exhibit a consistent system variant (a compatible triplet of application, mapping
and platform variants to satisfy FC-S requirement) and satisfy both rendering quality
and manufacturing cost constraints (NF-S requirements)1.

At the behavioral aspect, execution time emerges from the particular mapping and
scheduling of a given application over a specific platform. Both structural (e.g. data
size, processor frequency) and behavioral aspects (e.g. scheduling of tasks and memory

1A system variant that satisfies non-functional requirements but not the functional ones is generally
useless as the implementation of such systems fail.

78



access operations) influence2 the resulting execution time. Consequently, every design
should also respect the maximum run-time to complete the HMI-rendering (NF-B
requirements).

Among the designs, we must also identify designs offering the best trade-off between
the quality attributes (i.e., minimize/maximize objectives function, Multi-Objective
Optimization (MOO) NF requirements). However, a MOO NF requirements could
only rely on structural quality properties (NFO-S) or behavioral ones (NFO-B) or
even both (NFO). Optimizing both quality attributes (e.g. cost of manufacturing/ren-
dering quality vs speed of execution) requires to optimize design structure and behavior
simultaneously. Otherwise, this would lead to suboptimal solutions.

We thus propose a simple domain-specific language for the experts to capture such
NF requirements so that the following constraints are expressed as follows:

Which feasible designs, with an execution time less than 30.0ms, have the cheapest
manufacturing cost is capture by :

exec time < 30,minimize(manuf cost)

Which feasible designs, with a execution time less than 30.0ms, expose the highest
rendering quality? :

exec time < 30,maximize(rend quality)

Which feasible designs, with a rendering quality score of, at least, 1 and a manu-
facturing cost lower than 20.0 dollars, exhibit the fastest execution time? :

rend quality time ≥ 1,manuf cost < 20,minimize(exec time)

Which feasible designs reach the best trade-off between rendering quality, manufac-
turing cost and execution time? :

maximize(rend quality),minimize(manuf cost),minimize(exec time)

7.2 Assessing Non Functional Concerns

To assess design alternatives against non-functional concerns, we extend the FTS for-
malism with quantitative properties to be able to capture the whole design space model
with non-functional properties. Firstly, we show how the feature diagram is extended
to capture non-functional properties that only depend on the design’s structure and
how the featured automaton added with weights can track system designs’ run-time
execution.

Secondly, we propose a variability-aware cost-optimal reachability model checking
algorithm. We illustrate how our algorithm can be applied to assess simultaneously
functional feasibility (FC), non-functional satisfiability (NF) and optimality (NFO)
at both structural and behavioral aspect of the whole design space at once, meeting
the Challenge 3 entirely.

2And even directly determine for some class of systems but not in concurrent systems where,
by definition, the computation of behaviors require a behavioral model to capture and assess the
behavioral complexity.
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Figure 7.1: An excerpt of the PFM corresponding to the case study.

7.2.1 Design Space as a Behavioral Product Line with Quan-
titative Properties

To capture and assess formally non-functional concerns from system specifications, we
propose to extend Featured Automaton formalism with quantitative properties. Non-
functional properties that depend on design structure will be captured by the feature
model with priced features so-called Priced Feature Model (PFM) [Cordy et al., 2013b,
Benavides et al., 2007, Khalilov et al., 2016, Ross et al., 2017, Guo et al., 2017, Zhang
et al., 2015,Siegmund et al., 2012,Siegmund et al., 2015,Jamshidi et al., 2017a,Valov
et al., 2017, Olaechea et al., 2012, Zulkoski et al., 2014, Olaechea et al., 2014, Kugele
and Pucea, 2014, Henard et al., 2015, Olaechea et al., 2016]. While execution time of
hardware commands according to processing bandwidths of hardware components are
captured through the featured automaton where a transition can have weights. Called
Weighted Featured Automaton [Asirelli et al., 2011,Chechik et al., 2003,Classen et al.,
2013b, Cordy et al., 2012, Cledou et al., 2017, Luthmann et al., 2017, Nunes et al.,
2012, Rodrigues et al., 2015, Olaechea et al., 2016, Olaechea et al., 2018]. A weight
could represent the cost of a particular behavioral quantitative property required to
execute the transition. For example, the run-time required to process some data.

Priced feature model

Similarly to a feature model, a Priced Feature Model (PFM) naturally describes the
system variant space by capturing possible design variations using features. This
extension allows enriching features with prices. Adding possible prices (or costs) to
features will be used to represent costs of particular design decisions (represented by
the feature selection), such as selecting high-resolution data or high-quality graphical
task, or high-end memory or processor. Furthermore, reasoning on the PFM allows for
determining which design variants satisfy and optimize non-functional requirements
(NF-S and NFO-S.

Definition 14 A PFM is a tuple pfm = (F,Φf ,Θ, γ↓,Φθ, ) where (F,Φf ) is a feature
model; Θ is a set of positive real-valued quality properties; γ↓ : F → R+

0 is a function
defining how f ∈ F changes the value of quality properties q ∈ Θ; Φθ is a set of
constraints over Θ defining what are the valid aggregated values for a given property q.
given a feature combination F ′, the aggregated value of each property q ∈ Θ satisfies
the constraints F ′ |= Φθ if: γ↓(F

′) |= Φθ; The semantics of a PFM JpfmKPFM : F →
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Rn
≥0 is the set of valid feature combinations with associated quality properties such as
∀p ∈ JdKPFD, p |= Φf ∧ p |= Φθ while JpfmK(p)PFM =

∑
f∈p γ↓(f)

An excerpt of PFM is shown in Fig. 7.1. First, possible frequencies of each plat-
form components are simply transformed into an XOR features group such as other
functional properties (e.g., data size, memory capacity). Cost price captures the as-
sociated manufacturing cost of the component. High-resolution data quality is also
captured by a Rend.Quality price associated to the data resolution. These are derived
from constraints over property values encoded in χn and χr while Φτ correspond to
the NF requirements defined by the engineers.

Featured weighted automata

In chapter 6 we show how featured automaton formalism are able capture every possi-
ble functional executions of every design alternatives. Unfortunately, featured automa-
ton is not able to represent and track behavioral cost consumption such as execution
time. We extend the Featured Automaton formalism with non-functional concerns.
Therefore, we capture not only the functional behavior of every design (i.e., what we
can do) but also the non-functional behavior (i.e., how we can do it).

Non-functional behavioral properties, such as execution time or energy consump-
tion, mainly depend on low-level hardware behavior. Thus, the internal mechanism
of processing hardware commands such as data transfer (memory read/write com-
mands) or data processing (gpu instructions) are modeled. We then propose a Fea-
tured Weighted Automaton, an extension that capture time consumption of hardware
processing commands by adding weight to transitions.

Definition 15 A FWA is a tuple fwa = (S, s0, Sf , Act, T rans,Ap, L, d, γ→,∆,Φδ)
where (S, s0, Sf , Act, T rans,Ap, L, d, γ→) is a featured automaton except that d is a
PFM and γ→ : Trans→ F → Rn

≥0 label a transition with a weighted feature expression.
w = γ→(t) means that taking the transition t ∈ Trans ,available for products Jγ→(t)K,
will cost w ∈ Rn

≥0. ∆ is a set of positive real-valued quality properties; Φδ is a set of
constraints over ∆ defining what is the valid aggregated value for a given property q.
Given a path π, the aggregated value of each property q ∈ ∆ satisfies the constraints
such as π |= Φδ if:

∑
t∈π γ→(t) |= Φδ.

Figure 7.2 illustrates the Featured Weighted Automaton of the hardware platform
enriched with non-functional hardware processing mechanisms and associated concur-
rent cost consumption. The application automaton will be executed over this hardware
platform automaton to explore all executions of all variants, now also considering non-
functional concerns. While a featured application automaton does not need modeling
modification to capture new (possibly weighted) semantic, the platform automaton
becomes more complex as it models hardware processing mechanisms and their cost
in term of execution times.

For example, the featured weighted automaton that captures the RAM storage
not only offers memory allocation mechanism needed to assess functional concerns
but weighted store and fetch data transfer mechanisms are now also provided to cap-
ture the execution time required for these commands. The data transfer performance
will depend on the memory storage technology (latencies and synchronization cycles,
protocol, memory controller, , etc.) and the configuration of its frequency. In our
case, the RAM have two alternative frequencies to be set at design time. The design
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choice between 100Mhz or 200Mhz will impact the storage bandwidth and then the
execution time of the data transfer commands the hardware component will receive
and process.

For the processor, the mechanisms are even more complex. To assess only func-
tional concerns, the processor automaton gathers graphic processing commands into a
buffer and then validates the command buffer consistency. To assess the non-functional
concerns, we need to model the processing bandwidth of each processing stage of the
processor pipeline3.

Similarly to a memory automaton, the possibly variable frequencies will impact
the processing capacity of graphical processors. The interaction between the hardware
components aims to mimic the real executions of the design implementations. The
processor will receive commands from the application automaton that act like software.
To process these commands, the processor will fetch, process data, and then store data.

7.2.2 Variability-aware Validation

We extend feature-model reasoning and model-checking techniques to identify the sys-
tem designs that meet the requirements (FC-S, FC-B, NF-S and NF-B). Among the
designs, the framework also finds those offering the best trade-off between the quality
properties and/or are optimal (NFO). The behavioral product line with Quantita-
tive Properties is checked against variability-aware cost-optimal end-state reachability
temporal property to identify optimal designs i.e., the set of optimal data-flow vari-
ant mapping and scheduling onto platform configuration exhibiting the most suitable
quality properties.

We finally provide the execution traces that optimize the quality properties while
satisfying the requirements. Such a trace shows not only the system variants able
to execute it but also the behaviour they exhibit (i.e., how the application tasks are
executed and scheduled onto the platform), thereby helping the upcoming engineering
of the designs. Identifying the system designs that meet (FC-S, FC-B, NF-S, NF-B
and NFO) is reduced to find the FWA execution traces that exhibit the best trade-off
between structural (system variant quality and manufacturing cost) and behavioral
costs (run-time of the execution trace), and that also satisfy functional and non-
functional constraints.

Behaviorally-Induced System Design

We now show how our Featured Weighted Automaton (FWA) extension can be applied
to evaluate simultaneously and efficiently all facets of the problem FC-S, FC-B, NF-
S, NF-B, NFO-S, NFO-B; the functional feasibility, the non-functional satisfiability
and optimality at both structural and behavioral aspects of each design alternative
while optimizing possibly-antagonistic quality attributes (e.g. cost of manufacturing
vs speed of execution) by finding the most suitable executions of the FWA.

Definition 16 An execution trace π of a weighted featured automaton fwa = (S,
s0, Sf , Act, T rans, Ap, L, d, γ→, ∆, Φδ) has a behavioral cost of

∑
t∈π γ→(t) and a

3Basically, we modeled read/write latency cycles and burst memory transfers in order to capture
non functional behavior of memory and the different computation cycles and parallelism of the pro-
cessing stages of the processor pipelines which was enough to get a precise idea of the execution time
of each design.

83



minimal structural cost of
∑

f∈
⋃
t∈π γ→(t) γ↓(f). The semantics of FWA is defined as:

∀p ∈ JdKPFM , JfwaK(p)FWA =
⋃

π∈Jfwa|pKA

π,
∑
t∈π

γ→(t), JdK(p)PFM

The Figure 7.3 shows an execution trace from the FWA that represent the execution
of the system design C (see Fig. 2.6(c)). Featured transition not only impact the
feature combinations needed to produce the explored execution but also the behavioral
cost of the transition. Moreover, when a feature is taken as it is required to execute a
particular transition, its cost is added to the structural cost of the design structure.

For example, when the system transition s3 → s6 is fired, the start transition s1 →
s2 of TB automaton is taken. The TB feature is selected and the overall rendering
quality of the system design as γ→(s1 → s2) = TB and γ↓(TB) = +2 rendering
quality. The RAM∧RAM SIZE 2048 allocation transition s1 → s2 is also taken thus
increasing the manufacturing cost of the design decisions as γ↓(γ→(s1 → s2)) = +80
manufacturing cost. The structural cost of the entire system transition s3 → s6 is:

γ↓(γ→(s3 → s6)) = γ↓(γ→({s2 → s3||s1 → s2||s1 → s2||s2 → s1}))
= γ↓(TB&P2 ON RAM&RAM&RAM SIZE 2048)

=
∑

f∈TB&P2 ON RAM&RAM&RAM SIZE 2048

γ↓(f)

= ( +2︸︷︷︸
rend.quality

, 0) + (0, 0) + (0, 0) + (0, +80︸︷︷︸
manuf.cost

)

To model the time consumption of the various hardware processing mechanisms,
transitions can also have a behavioral cost, so-called weight. The execution time is
a special behavioral cost as its implementation takes into account the interleaving
and synchronization over the different automata processes. Based on [Cordy et al.,
2012] work, we mimic the time as a simplified featured clock. Each system transition
as a determined time valuation according to the state and transition of the different
automata processes. Figure 7.4 illustrate how run-time consumption is calculated
according to the time valuation of hardware component transitions. However, this
valuation can vary according to selected features. For example, as a higher frequency
will increase the bandwidth of a hardware component, the selected feature representing
frequency configuration will directly impact the cost of processing transitions.

For example, the path s31 → s33 → s35 → s37 → s39 → s41 → s43 → s45 represents
the processing of tasks TB and TD by the hardware pipeline GPU1 and GPU1 of
GPU . To do so, the hardware pipelines will fetch and process D1 and D2 data from
ROM and RAM memory (transition s4 → s5). It will finally store the processing
result onto RAM (transition s5 → s4). GPU fetch and store data on memory storage
using the transition s1 → s1 of the associated storage.

The ∆time cost of a transition is the time needed to reach a state from another.
The main difference between time-weighted and non-weighted transition is that a fired
transition at automaton process level can take several system transitions to be fired
completely. But, at each system transition, the time needed to complete the process
transition is reduced according to the elapsed time during each system transition.

Let us illustrate the time valuation π = s31 → s33 → s35 → s37 → s39. Where
s31 = (4, 4, 1, 1), s33 = (4, 5, 1, 1), s35 = (4, 4, 1, 1), s37 = (4, 5, 1, 1), s39 = (5, 1, 1, 1).
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Figure 7.3: The execution of Design C
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In π the minimum time from a system transition to another is 17 which is the time
that the states of GPUD and RAM evolve4. During π execution, the time elapsed has
increased so that the process transitions that need more time can be completed (e.g.,
GPUB and ROM state transitions, fired at s31, finally effective at s39).

γ→(π) = γ→(s31 → s33)⊗ γ→(s33 → s35)⊗ γ→(s35 → s37)⊗ γ→(s37 → s39)

= γ→(4
[∆time:64]−−−−−−→ 5︸ ︷︷ ︸
GPUB

|| 4 [∆time:16]−−−−−−→ 5︸ ︷︷ ︸
GPUD

|| 1 [∆time:17]−−−−−−→ 1︸ ︷︷ ︸
RAM

|| 1 [∆time:66]−−−−−−→ 1︸ ︷︷ ︸
ROM

)⊗

γ→(4
[∆time:47]−−−−−−→ 5︸ ︷︷ ︸
GPUB

)|| 5 [∆time:0]−−−−−→ 4︸ ︷︷ ︸
GPUD

|| 1 [∆time:17]−−−−−−→ 1︸ ︷︷ ︸
RAM

)|| 1 [∆time:49]−−−−−−→ 1︸ ︷︷ ︸
ROM

)⊗

γ→(4
[∆time:30]−−−−−−→ 5︸ ︷︷ ︸
GPUB

)|| 4 [∆time:16]−−−−−−→ 5︸ ︷︷ ︸
GPUD

|| 1 [∆time:17]−−−−−−→ 1︸ ︷︷ ︸
RAM

)|| 1 [∆time:32]−−−−−−→ 1︸ ︷︷ ︸
ROM

)⊗

γ→(4
[∆time:13]−−−−−−→ 5︸ ︷︷ ︸
GPUB

)|| 5 [∆time:0]−−−−−→ 1︸ ︷︷ ︸
GPUD

|| 1 [∆time:17]−−−−−−→ 1︸ ︷︷ ︸
RAM

)|| 1 [∆time:15]−−−−−−→ 1︸ ︷︷ ︸
ROM

)

= 17 + 17 + 17 + 17

= 68

Finally, by exploring the execution in Figure 6.4 that require a system structure
with a manufacturing cost of 34$, a rendering quality of 3 and has a run-time execution
of 296 cycles, we found one suitable design for the engineering question 3 Which feasible
designs, with an execution time less than 30.0ms, expose the highest rendering quality?

All-in-one verification algorithm

Chapter 6 we show that computing the end-state reachability relation of a featured
automaton allows assessing the functional feasibility of the whole design space. Basi-
cally, for each state, the reachability relation records the design decision required to
reach that particular state. Finally, the design decisions encode products able to reach
that state. But, this reachability relation does not record structural or behavioral cost
of reaching a particular state. To this extent, we now also add the structural cost
of the required design decisions and associated behavioral cost into the reachability
relation.

Definition 17 The reachability relation function from state s0 to state sn in a weighted
featured automaton R : S → (S → (F → Rn

≥0)) returns the costs and the required fea-
ture selections in order to reach sn from s0

Based on our Featured Weighted Automata (FWA) formalism, we design an algo-
rithm to efficiently compute the reachability relation in order to solve all facets of the
problem FC-S, FC-B, NF-S and NF-B for all variants at once. The key idea is to
perform an exploration of the state space of the automaton in search of cost-optimal
paths that can reach the accepting state while satisfying the FC and NF requirements.

The first step filters out variants that do not satisfy constraints from the priced
feature model PFM, Φρ and Φτ , thereby ensuring that the structure of the variants

4In fact, we should have separate (s31 → s33) into 2 transitions as the state of GPUD evolve 1 time
cycle before RAM . But for the sake of readability we simplify to offer a more concise representation.
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does not violate the requirements. We then explore all paths starting from the initial
state s0. As we visit a new state, we retain the set of variants able to execute the
sequence of transitions that led to the state.

We also accumulate the sum of the weights over all executed transitions. We assert
that these values satisfy the NF requirements. In the end, we obtain a set of paths
going from the initial to the accepting final states, together with, for each path π, (a)
the valid variants that can execute π and (b) the values of the quality properties of
each variant p that can execute π.

This first algorithm finds all variants satisfying the requirements. We have to find
the optimal designs that satisfy the requirements while providing the best values for
behavioral and structural quality properties. Since these properties can be antago-
nistic (e.g., manufacturing costs can decrease to the detriment of rendering quality
or rendering quality can increase to the detriment to responsiveness), the problem is
assimilated to a multi-objective optimization.

To drive our search for optima, we derive from non functional requirements a cost
function over all quality properties: let ζ(τ1, . . . , τn) = θ1 × τ1 . . . θn × τn be our cost
function, such that θi ∈ R+ is the coefficient associated to the property τi. Then, our
objective is to discover the designs that minimize ζ. This is achieved by modifying our
exploration algorithm in order to (i) record the optimal property values, and (ii) stop
exploring a path as soon as all quality properties reach a worse (i.e., higher) value.
This latter heuristics require the cost function to be monotonic as more states are
explored along a given path; hence why we assume that all θi and τi are ≥ 0. This,
however, is not mandatory and only allows us to stop exploring sooner.

Algorithm 3 details this exploration procedure. It takes as input a FWA, and a
cost function ζ. It iteratively computes R, the reachability relation that associates
each state s to the γ function encoding variants that can reach s and their associated
property values. At first (Line 1), R contains s0 together with γ0, such that dom(γ0) =
dom(JpfmK) and γ0(F ′) = 0 for any variant F ′. Then, we start the exploration from
s0 (L3) and iterate over the states encountered successively (L4–L18).

At each iteration, we retrieve the state s reached last, together with its associated
γ function (L5). Here, γ encodes the variants that can reach s and associates to each
variant the values of its property values when following the path that led to s. If all
these variants yield a value for ζ greater than the current optimum ζ∗ (L6), we do not
pursue the exploration further from this state. Otherwise, we distinguish between the
cases where s is sf (L7–9) and where it is not (L10–16).

In the first case, we assign ζ∗ to the minimal cost over all variants that can reach
the accepting state. In the second case, we compute the set of successors of (s, γ)
(L12), given by Post(s, γ) = {(s′, γ′)|(s, α, s′) ∈ Trans ∧ γ′ = γ ⊗ γ→(s, s′)} where
dom(γ1 ⊗ γ2) = dom(γ1) ∩ dom(γ2) and ∀F ′ : (γ1 ⊗ γ2)(F ′) = γ1(F ′) + γ2(F ′). This
means that γ′ is defined only for the variants that can reach s and execute the transition
from s to s′, and it sums the property values of each variant in γ with its property
values on the transition (s, s′).

Then, we add each successor iff it improves the reachability relation (L13), that
is, if for at least one variant, there is no element in R that gives a better value for all
properties. This rule is captured by the comparison operator � over weighted feature
expressions, defined as γ1 � γ2 ≡ ∀F ′ ∈ dom(γ1) : γ1(F ′) ≥ γ2(F ′). If R is improved,
we continue the exploration (L14) and add the successor to R (L15) using a particular
union operator t that keeps R as an antichain. This is achieved by a split-and-combine
algorithm along the lines of [Cordy et al., 2012,Fahrenberg and Legay, 2017b]. Finally,
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Input: fwa = (S, s0, sf ,→, γ→);
pfm = (F,Q,Φρ, η,Φτ ); ζ : ζ(τ1, . . . , τn) ∈ R+

Output: F∗, the set of optimal variants that reach sf ∈ Sf
ζ∗, their associated minimal cost

1 R← ⊥;
2 ζ∗ ← +∞;
3 Stack ← push({s0, γ0}, []);
4 while Stack 6= [] do
5 (s, γ)← pop(Stack);
6 if ∃F ′ ∈ dom(γ) : ζ(γ(F ′)) ≤ ζ∗ then
7 if s ∈ Sf then
8 ζ∗ ← min

F ′∈dom(γ)
ζ(γ(F ′));

9 end
10 else

11 succ←



(s′, γ′)| s′ ∈ dom(Post(s))∧
γ′′ ∈ dom(Post(s)(s′))∧
γ′ = γ ⊗ γ′′∧
6 ∃γ′′′ ∈ R(s0)(s′), γ′ � γ′′′∧
γ′ 6|= ⊥

12 foreach (s′, γ′) ∈ succ do
13 R(s0)(s′)← R(s0)(s′) t γ′;
14 push((s′, γ′), Stack);

15 end

16 end

17 end

18 end
19 F∗ ← {F ∗ ⊆ F |(sf , γf ) ∈ R ∧ γf (F ∗) = ζ∗};
20 return (F∗, ζ∗)

Algorithm 3: optima(fwa, pfm, ζ)

we return the set of variants F∗ that can reach sf while minimizing ζ, together with
the optimal cost (L19–20).

Illustration

The Figure 7.5 illustrates this algorithm on our case study. The transition s1 → s2 can
be taken by variants that have a 2048 Byte RAM that cost 8.0$. This is represented
by selecting the RAM 2048 priced feature. Then, dom(γ→(s1 → s2)) =RAM 2048. While
the structural cost of s1 → s2 is the cost vector v↓{0, 80} = γ↓(RAM 2048) the behavioral
cost is the zero vector as the transition does not consume time v→{0} = γ→(s1 → s2)).
v↓∪v→ = {0, 80, 0} and ζ({0, 80, 0}) = τquality×0+τmanuf×80+τtime×0 compute the
global cost taking into account the preferences represented by τ0 · · · τn of the customer
over the different quality attributes. R(s1)(s2) is updated to γa ∈ Post(s1)(s2) defined
for variants JRAM 2048K and equal to the cost vector v = {0,+80, 0}.

Similarly, the transition s2 → s3 is just requiring a low resolution D2 and low
quality TA processing. Consequently the quality loss of that design choices is added
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to the cost of that transition. As Post(s2)(s3) ⊆ γb(D2 512&TA&TA ON DCU&TD ON DCU)

where the function application is equal to {+3, 0, 0} then R(s1)(s2) is updated to
γc = γa ⊗ γb. γc is thus defined (i.e., dom(γ′)) for variants that have the design
decisions Fc =RAM 2048&D2 512&TA&TA ON DCU&TD ON DCU and has for value the cost
vector {+3,+80, 0} = γa(Fa) + γb(Fb), Fc = Fa ∪ Fb.

The transition s3 → s4 has a behavioral cost, but no structural one. It re-
quires the RAM frequency to be configured to 200MhZ and requires also 144ms
of time. R(s1)(s2) is then updated to γd = γc ⊗ γe, γe ∈ Post(s3)(s4), γe(Fe) =
{0, 0,+144}, Fe =RAM 100MhZ. s3 → s5 is similar than s3 → s4 but require a higher
RAM frequency which lead to a lower time consumption to execute the entire appli-
cation. As s4 and s5 are final states, the algorithm computes the associated cost using
the cost function.

Increasing the RAM frequency will not lead to improve the time consumption
of the design execution. A higher D2 resolution s2 → s6 will overload the DCU
and ROM hardware components taking 256ms to execute the application elements
regardless the RAM frequency (i.e., s6 → s7, s6 → s8). In this illustration, this will
violate the time constraint of 200ms. On the other hand, taking a RAM of 512KB
capacity s1 → s9 will lead (i.e., s9 → s10, s9 → s11, s9 → s12) to an overflow. This
shows that the algorithm is still checking functional requirements while checking also
non functional ones.

Finally, taking a 1024KB RAM will exhibit highly efficient paths at a lower price.
The algorithm will return such designs as optimal as the cost function will be mini-
mized by both low-cost system structure and behavior. Regarding the non-functional
constraints over the quality attributes, that forbid, for example to have a 1024KB
RAM and a GPU because it is too costly as the maximum cost is 32.0$. That no-
tably limit designs to only use DCU . Using only this graphical controller unit will
constraint the D1 image processing by the lower quality TA task. This shows that the
different non-functional constraints are interleaved and constrain the design space in
a complex manner. In the end, in this illustration the most promising design is with
respect to time ≤ 200, munuf cost ≤ 320 and rend quality loss ≤ 3 constraints and
the function cost time+munuf cost× 1 + rend quality loss× 100:

(s1 → s13 → s14 → s15, RAM 1024&D2 512&TA ON DCU&TD ON DCU)

7.3 Conclusion

We finally extend our previously framework to model and assess the non-functional
concerns to reach the challenges entirely. We reach the (Challenge 1) through the
modelling part of our framework. We capture the non functional requirements (see
Sec. 7.1.2) and extend our variable application and configurable platform specification
models with non functional properties (see Sec. 7.1.1. Similarly to functional proper-
ties, non-functional ones could also have variable values. The variability extension we
proposed to capture variable functional properties is expressive enough also to man-
age non-functional ones. Although the non-functional properties of the specification
models do not impact their mappings. Application elements and platform resources
exhibit non-functional properties but do not impact their possible mappings. Thus,
we reused our mapping strategy to finally derive the design space that captures both
functional and non-functional properties. (Challenge 2) is then reach.
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Figure 7.5: Depth First Search of Optima(UC) function.
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At the assessing part of the framework, we proposed an FTS extension we called
Featured Weighted Automata (FWA) to capture and assess our system design space
against non-functional concerns. To this extent, we both extend the feature model and
the featured automata with quantitative properties (see Sec. 7.2.1). The priced feature
model allows to assess the non functional requirements at a structural aspect (facet
NF-S). Relying on analytical methods, questions such as Which feasible designs have a
manufacturing cost less than 30$? can be answered through the priced feature model.
On the other hand, our FWA extension adds non-functional attributes to the featured
state space. Consequently, the non-functional attributes of system executions, such as
run-time of each execution can also be checked against non-functional requirements at
a behavioral level (facet NF-B). Which feasible designs exhibit an execution time less
than 30.0 ms?.

We finally proposed an algorithm that efficiently assesses our design space repre-
sented by an FWA against the whole set of requirements. This algorithm can also
identify the designs that optimize a function cost previously defined by the engineers.
Giving the ability to answering to any questions depicted in Section 2.1.2. By eval-
uating simultaneously and efficiently all facets of the problem FC-S, FC-B, NF-S,
NF-B, NFO; the functional feasibility, the non-functional satisfiability, and optimal-
ity at both structural and behavioural aspects of each design alternative, we reach the
Challenge 3.

So far, we presented a formal theoretical framework. The modeling method we
present allows capturing and inferring the design space from variable application and
configurable platform. The assessing part of the framework we present relies on an
extended FTS behavioral product line. Such formalism seems to exploit structural
and behavioral commonalities between products in order to speed up the verification
process. Behavioral commonalities are the states shared by a group of products while
structural commonalities are design choices present on a group of products. To speed-
up the verification process, design choices that do not respect structural constraints
such as manufacturing cost or rendering quality are efficiently pruned. Moreover, each
state is checked once for every system variant that could produce it. In the next
chapter (see Chap. 8), we implement our framework and evaluate its efficiency on our
industrial case study and other instrument clusters.
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Part III
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Chapter 8

Framework Implementation

In order to evaluate our framework, we implemented it as a toolchain. In this chapter,
we detailed our implementation, which can map and capture variable data-flow appli-
cations and configurable platforms to infer the design space and transform the design
space in our Featured Weighted Automaton (FWA) formalism. Our implementation
combines original development with state-of-the-art tools or extensions and returns
the most suitable systems designs.

8.1 Implementation Overview

Separated in two main parts, front-end and back-end (see Fig. 8.1), our implementation
follow the Y-chart model-based design space exploration pattern in order to realize
the three processes, modeling, mapping and analysis. The front end1 is composed of
two modules, each of which implements a process depicted in Fig. 8.1.

The first one allows for specifying a variable data-flow graph (see Listing 8.1) and
a variable resource graph (see Listing 8.2) and non functional requirements via fluent
Java APIs. Java language is used to capture, the variable applications (see Fig. 8.2(a)),
configurable platform (see Fig. 8.2(b)) specifications models, NF requirements and
the variability-aware mapping algorithm. Java meta-models capture variable applica-
tions and configurable platforms so that application elements or platform components
are directly represented by Java objects. The Java mapping algorithm takes a vari-
able application and configurable instance in order to create the mapping model (see
Fig. 8.2(c)) and then represent the whole design space through a Java-based model.

The second one is an FWA generator that consumes inputs, design space and NF

1https://bitbucket.org/SamiLazreg/enlighter

Priced Feature Model,
Featured Weighted

Automata in TVL/PML

Variability-
Aware Mapping

Variability-Intensive
Design Space

Non-Functional Constraints
and Cost Function

Generation of executable
models

Variability-Aware Cost Optimal 
Model Checking (ProVeLines)

Variable
Platform

Variable
Application

Set of Linearly
priced-Timed Automata

Product-By-Product Cost-Optimal 
Reachability Analysis 

(UPPAAL-CORA)

Front-end Back-end(Java) (Model-checkers)

Figure 8.1: Framework Models and Processes
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requirements to generate assessing models to our back-end automated reasoning tools.
We implemented our FWA Algorithm 1 over the ProVeLines model checkers2. We
are also able to generate our design space to a set of UPPAAL-CORA3 model checker
automata.

UPPAAL-CORA [Behrmann et al., 2005] is an established tool to carry out Cost-
Optimal Reachability Analyses (CORA) that we reuse as is. It takes as input a net-
work of Linearly Priced Timed Automata (LPTA) [Behrmann et al., 2001]. LPTA
can be regarded as FWA without variability, can only encode the behaviour of the
variants separately. Our automata generator actually transforms our design space
into a network of LPTAs in the UPPAAL-CORA format. Using SPLOT’s feature
model reasoning library [Mendonca et al., 2009], we also generate an additional au-
tomaton dedicated to configuring the other LPTAs before their execution starts by
setting variables that correspond to the variation points of the design space. We thus
follow the 150% model approach [Thüm et al., 2014]. Then, UPPAAL-CORA can find
an execution of a variant that reaches the accepting state while satisfying all the NF
requirements and optimizing the cost function.

The other model checker is ProVeLines [Cordy et al., 2013a], which can check
variability-intensive systems. We chose this tool because it was extended over the
years, by both its original developers [Cordy et al., 2013a] and others [Olaechea et al.,
2016,Olaechea et al., 2018], to solve multiple model-checking problems including real-
time verification [Cordy et al., 2012]. This gave us confidence that we could extend
ProVeLines to implement our own algorithms. We then fully implemented Alg. 3
in a new version of ProVeLines name ProVeLines-CORA. To achieve this, we first
extended ProVeLines input language Promela [Holzmann, 2004] to associate Promela
statements with weighted feature expressions. Actually, each Promela process encodes
a single FWA. Like UPPAAL-CORA, our ProVeLines extension is able to provide the
execution trace associated to an optimal variant. The difference lies in that weighted
feature expressions allow an all-at-once verification of all variants. To encode the
structural variability, we generate a PFM in the Textual Variability Language (TVL)
format supported by ProVeLines [Classen et al., 2011a,Cordy et al., 2013b].

8.2 System Specifications and Mapping Models

We now detail how we implement the variable application model and the configurable
platform model. We also show how we implement the mapping model and the mapping
application mapping algorithm onto the platform.

8.2.1 Applications as Variable Data-Flows

Listing 8.1: Running Example Application

1 Application app = new Application("WarpWithWhat");

2

3 Path p1 = app.addPath("P1"); Path p2 = ...; Path p3 = ...; Path p4 = ...;

4

5 DataSource d1 = app.addDataSource("D1").addSize(512).connect("o", p1);

6 Task ta = app.addTask("ta", "A").connect(p1, "i").connect("o", p2);

2https://bitbucket.org/maxcordy/provelines-cora
3https://people.cs.aau.dk/~adavid/cora/introduction.html
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(a) Application Meta-model

(b) Platform Meta-model

(c) Mapping Meta-model

Figure 8.2: Meta-models implementations
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7 Task tb = app.addTask("tb", "B").connect(p1, "i").connect("o", p2);

8

9 DataSource d2 = app.addDataSource("D2").addSize(256, 2).addSize(512,

1).addSize(1024).connect("o", p3);

10 Task td = app.addTask("td", "D").connect(p3, "i").connect("o", p4);

11 Task tc = app.addTask("tc", "C").connect(p2, "i0").connect(p4, "i1");

12

13 app.split(p1).to(ta).to(tb);

14 app.join(p2).from(ta).from(tb);

The Java data-flow meta-model implementation (see Fig. 8.2(a)) allows to cap-
ture the functional and non functional properties of a variable application as concur-
rent data-flow model (see Fig. 2.4). Structural and behavioral elements are captured
through java objects. Tasks are represented by Task objects, etc. Alternatives data
size can be captured by allowing Data object to have multiple attached Size objects.
Listing 8.1 illustrates how we capture the functional and non functional requirements
(see Fig. 2.4) of the embedded system through a Java data-flow API. Data are instan-
tiated at lines 5, 9, tasks at line 6, 7, 10, 11 data-path at line 3). This API allows to
capture the variability in both structural (e.g., data sizes at line 5, 9) and behavioral
aspect (e.g., alternative flows by allowing data-paths to have multiple inputs and out-
put tasks connected at line 13, 14). Also, image data D2 resolutions that influence
the overall quality loss are captured at line 9.

8.2.2 Platforms as Variable Resource Graphs

Listing 8.2: Running Example Platform

1 Platform plt = new Platform("Kepler");

2

3 Storage rom = plt.addStorage("ROM",

Type.READ_ONLY).addCapacity(4096).setAccessLatency(2).

setBytesPerCycle(4).setFrequency(100).setCost(60);

4

5 Storage ram = plt.addStorage("RAM", Type.READ_AND_WRITE).addCapacity(512,

40).addCapacity(1024, 60).addCapacity(2048,

80).setAccessLatency(2).setBytesPerCycle(8).setFrequencies(100,

200).setOptional("true");

6

7 Component dcu = plt.addComponent("DCU").setFrequency(100).setCost(80);

8 Processor a_dcu = dcu.addProcessor("a", "A").setBytesPerCycle(4);

9 Memory r0_dcu = dcu.addFIFOBuffer("R0");

10 a_dcu.connectToInputPort("i", ram, rom).connectToOutputPort("o", r0_dcu);

11 ...

12 Component gpu = plt.addComponent("GPU").setFrequencies(100,

200).setOptional("true").setCost(120);

13 Processor a_gpu = ...; Memory r0_gpu = ...; Processor b_gpu = ...;

14 gpu.requires(ram);

Listing 8.2 illustrates how we express the configurable platform specification of the
case study (see Fig. 2.5) of the embedded system through our resource component-
based Java API implementation (see Fig. 8.2(b)). This captures functional and non
functional properties of templated resource components such as optional GPU multi-
pass processors with configurable frequency instantiated at line 17-18 and streaming
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DCU processor at line 7-154. Other elements in the processors can be the processors’
hardware processing functions instantiated at line 8, 11, 14, 18 and FIFO buffers at
line 9, 12, 18 relevant elements being connected with each other. Read-only ROM
memory is instantiated at line 3, optional read-write RAM memory with variable
capacity (affecting the RAM manufacturing cost) at line 5. In addition, a platform
can have variability dependency (line 19) on resources.

8.2.3 Non-Functional Requirements

In addition to the input specification models, NF requirements as constraints and the
cost function representing trade-offs between quality properties can also be defined
using our Java API (see Listing 8.3). The non-functional constraint is represented
by a Java object that can capture constraints over quality attributes such as the
rendering quality, manufacturing cost and run time. The cost function also allows to
specify particular weights for each quality attribute to express the quality preferences
or priorities.

Listing 8.3: Non-Functional Requirements

1 NonFunctionalCst nfRequirements =

2 NonFunctionalCst.AND(

3 NonFunctionalCst.QUALITY_LOSS("<=", 2),

4 NonFunctionalCst.COST("<=", 280),

5 NonFunctionalCst.RUN_TIME("<", 840));

6

7 FunctionCost cfct = new FunctionCost().QUALITY(100).COST(10).RUN_TIME(1);

8.2.4 Variability-Aware Mapping Process

The mapping algorithm, implemented in Java (see Listing 8.4) takes as inputs the vari-
able data-flow and configurable platform Java models, and generates the Variability-
Aware Mapping Space(see Fig. 8.2(c) for metamodel). It then represents all mapping
of application elements onto platform resources.

The process is composed of two steps: i) it maps each data source and output data
path on storage memories (line 4-7) ii) it maps each task on appropriate processor
function (i.e., processor function can implement the task while data path inputs can
be mapped on reachable memory) and maps task output on memory (line 8-11). Then,
the algorithm prunes unfeasible mappings w.r.t. structural and variability constraints
at line 12 (e.g., data-path mapping are not reachable by any task mapping or vice
versa), finally adding appropriate consistency constraints to ensure mapping space
consistency (line 13).

Listing 8.4: Mapping Algorithm

1 Mapping mapping = new MappingAlgorithm().map(app, plt);

2 ...

3 public Mapping map(Application app, Platform plt) {

4 for(DataSource ds : app.getDataSources()) {

5 addDataSourceMappings(ds, plt.getStorages())

6 addDataPathMappings(ds);

7 }

4This resource template are linked to FWA implementations
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8 for(Task t : app.getSortedTasks()) {

9 addTaskMappings(t, getProcessors(plt, t));

10 addDataPathMappings(t);

11 }

12 do while(removeUselessMappingChoices());

13 addMappingConstraints();

14 return new Mapping(dms, tms, pms);

15 }

8.3 Assessing the System Design Space

From the system design space model (see listing 8.5), we generate a fPromela FWA
Behavioral Product Line that capture structure, behavior and variability aspects of the
design space. To this extent, we first extended ProVeLines input language Promela [Holz-
mann, 2004] to associate Promela statements with weighted feature expressions. This
extensions allow to capture behavioral costs. While the Weighted Featured Automa-
ton is encoded in fPromela language (see listing 8.7), the Priced Feature Model is
described in TVL (see listing 8.6). Secondly, we fully implemented Alg. 3 in a new
version of ProVeLines name ProVeLines-CORA. Thus, we can use our model checker
ProVelines-CORA to assess the functional feasibility, non functional satisfiability and
even optimality of the whole system design space.

8.3.1 Design Space as a Behavioral Product Line

The PFM variability model expressed in TVL [Classen et al., 2011a, Cordy et al.,
2013b] is a textual representation of the PFM (see Fig. 7.1). The structure of each
system element and its variable properties, functional and non-functional, are captured
through features. For example, at platform level the RAM which is represented by
an optional feature starting at line 19 have alternative capacities and alternatives
frequencies represented by XOR feature groups at, respectively lines 19-24 and 25-
28. The overall manufacturing cost is different for each capacity. Data mapping is
captured in lines 34-37, task mapping 38-41, alternative P1 flow variability 5-8, 14,
15, resource optionality 10, 30, and resource dependency at line 53. Application to
mapping is captured at line 45, mapping to mapping 47-49, and platform to mapping
consistency constraints (line 51) are also represented as featured constraints.

Besides, the FWA (see Fig. 7.2 is captured by an executable network of featured
automata in our extension of fPromela textual language. fPromela is an imperative
language that captures state and transition through instructions. There are several
type of instructions such as statements, message passing/receiving, if and do blocks,
etc. In fPromela each featured automaton that composes the network is a process. For
instance, RAM storage 3-33, D2 image 92-120, task TA 50-72 and DCU processor
35-70 are different and concurrent process. Each line execution is a state transition,
while each process has a respective execution thread. Featured transitions are guarded
by feature selections. For example, to set the initial capacity of RAM to a particular
value, the associated feature selection of the feature guard must be selected.

Listing 8.5: Generate Running Example Formal Models from Design Space

1 DesignSpace ds = new DesignSpace(app, mapping, plt);

2 ToTVL toTVL = new ToTVL().generate(ds);
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3 ToPML tofPML = new TofPML().generate(ds);

Listing 8.6: Part of Running Example Design Space variability in TVL

1 root DesignSpaceVariability{

2 group allOf{

3 ApplicationVariability group allOf{

4 ...

5 P1_to group oneOf{

6 P1_to_TA,

7 P1_to_TB

8 },

9 D2_size group oneOf{

10 D2_size_256 => qualityLoss + 2,

11 D2_size_512 => qualityLoss + 1,

12 D2_size_1024

13 },

14 opt TA => qualityLoss + 2,

15 opt TB

16 }

17 group PlatformVariability{

18 ...

19 opt RAM group allOf{

20 RAM_size group oneOf{

21 RAM_size_512 => cost + 40

22 RAM_size_1024 => cost + 60

23 RAM_size_2048 => cost + 80

24 },

25 RAM_frequency group oneOf{

26 RAM_frequency_100,

27 RAM_frequency_200

28 }

29 },

30 opt GPU => cost + 120

31 }

32 group MappingVariability{

33 ...

34 D2_On group oneOf{

35 D2_On_RAM,

36 D2_On_ROM

37 }

38 opt TA_On group oneOf{

39 TA_On_DCU_a,

40 TA_On_GPU_a

41 },

42 }

43 }

44 ...

45 TA <=> TA_On;

46 ...

47 D2_On_RAM => P3_On_RAM

48 TA_On_SoC_GPU_1_A => (P1_On_SoC_ROM || P1_On_SoC_RAM) && P2_On_SoC_RAM;

49 TA_On_SoC_DCU_A => (P1_On_SoC_ROM || P1_On_SoC_RAM) && P2_On_SoC_DCU_R0;

50 ...

51 D2_On_RAM => RAM;

52 ...

53 GPU => RAM;

54 ...

55 }
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Listing 8.7: Part of Running Example Design Space behavior in fPromela

1 check <> (d1_end && ... && soc_gpu_1_idle) qualityLoss 100 cost 10 time 1

within qualityLoss <= 2 cost <= 280 time < 840

2 ...

3 active proctype Storage_RAM(){ atomic{

4

5 bool ram_idle = true;

6 int cons = 0;

7 Data in;

8

9 gd

10 :: RAM ->

11 ...

12 do

13 :: Malloc[RAM_ID]?in -> cons = cons + in.size;

14 if

15 :: RAM_capacity_512 -> size = 512;

16 :: RAM_capacity_1024 -> size = 1024;

17 :: RAM_capacity_2048 -> size = 2048;

18 fi;

19 assert(cons <= size);

20 Malloc[RAM_ID]!in;

21

22 :: Trans[RAM]?in -> ram_idle = false;

23 if

24 :: RAM_frequency_100 -> freq = 100;

25 :: RAM_frequency_200 -> freq = 200;

26 fi;

27 wait((latency*main_freq/freq)+(burst/bpc*main_freq/freq));

28 Trans[RAM]!in;

29 ram_idle = true;

30 od;

31 :: else -> skip;

32 ...

33 };}

34 ...

35 active proctype processor_DCU(){ atomic{

36

37 bool dcu_idle = true;

38 int freq = 100;

39 command cmd;

40

41 do :: recv[DCU_ID]?cmd -> dcu_idle = false;

42 ...

43 setOutputs() cmd_list_push() is_flush_cmd()

44 ...

45 if

46 :: !_is_flush_cmd -> Recv[DCU_ID]!cmd;

47 :: else -> prog_pipeline()

48 do

49 :: !hasCompleted() ->

50 ...

51 do

52 ::i_ins < cmd.nb_ins ->

Trans[cmd.ins[i_ins].loc]!cmd.ins[i_ins];

53 fetch[i_ins] = fetch[i_ins++] + burst;
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54 ::i_ins == cmd.nb_ins -> checkIns() break;

55 od;

56 ...

57 wait(time_cmds());

58 ...

59 do

60 ::i_outs < cmd.nb_outs ->

Trans[cmd.outs[i_outs].loc]!cmd.outs[i_outs];

61 store[i_outs] = store[i_outs++] + burst;

62 ::i_outs == cmd.nb_outs -> checkOuts() break;

63 od;

64 ...

65 :: else -> Recv[DCU_ID]!cmd; free_cmd_list() -> break;

66 od;

67 fi;

68 soc_dcu_idle = true;

69 od;

70 };}

71 ...

72 active proctype Data_D2(){ atomic{

73 Data out;

74 bool d2_end = false;

75 ...

76 if

77 :: D2_size_256 -> qualityLoss + 2, out.size = 256;

78 :: D2_size_512 -> qualityLoss + 1, out.size = 512;

79 :: D2_size_1024 -> out.size = 1024;

80 fi;

81 if

82 :: D2_On_RAM -> Malloc[RAM_ID]!out;

83 Malloc[RAM_ID]?eval(out);

84 :: D2_On_ROM -> Malloc[ROM_ID]!out;

85 Malloc[ROM_ID]?eval(out);

86 fi;

87 ...

88 P3!out;

89 d2_end = true;

90 };}

91 ...

92 active proctype Task_TA(){ atomic{

93 Data in, out;

94 bool ta_end = false;

95 ...

96 if

97 :: TA -> P1?in;

98 ...

99 if

100 :: TA_On_GPU_a ->

101 ...

102 Malloc[RAM_ID]!out;

103 Malloc[RAM_ID]?eval(out);

104 recv[GPU_1_ID]!cmd("a", in, out);

105 ...

106 recv[GPU_1_ID]?eval(cmd);

107

108 :: TA_On_DCU_a ->

109 ...

110 Recv[DCU_ID]!cmd("a", in, out);

111 ...
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112 Recv[DCU_ID]?eval(cmd);

113 fi;

114 ...

115 P2!out;

116 :: else -> skip;

117 fi;

118 ...

119 ta_end = true;

120 };}

121 ...

8.3.2 Variability-Aware Validation Process

Our generated formal models (fPromela and TVL) are checked through our model-
checker ProVeLines-CORA with specific command lines (see Listing 8.8 line 1). It
returns the system variants that do not exhibit a an execution that respects non
functional requirements. For instance the design (πinv1, ψinv1) (line 3-18):

πinv1 = @0→ ...→ @13418292→ ...→ @15418392→ ...→ @19418392→ ...

ψinv1 = RAM&RAM CAP 512&D2 SIZE 1024

will exceed the RAM storage capacity. Consequently the design does not fulfill the
functional requirements. About the design (πinv2, ψinv2) (line 19-35):

πinv2 = @0→ ...→ ...→ ...→ ...→ ...→ ...→ ...

ψinv2 = D2 size 1024&D2 On ROM&D1 On ROM&

TB On GPU&TD On GPU&GPU&GPU freq 100

will exceed the maximum execution time. Hence, the design does not fulfill the non
functional requirements (time <= 840). Given this output, we can remove the invalid
system variant from the design space by constraining the PFM (see Listing 8.9).

The model-checker output also returns output containing optimal designs satisfying
functional and non functional requirements (line 38 - 50). For instance, the optimal
design (πopt, ψopt):

πopt = @0→ ...→ @13418292→ ...→ @22528392→ ...→ @134189119→ ...

ψopt = D1 ON ROM&RAM&RAM CAP 1024&

D2 SIZE 1024&TA&TA ON DCU&RAM FREQ 200

Listing 8.8: Part of Running Exemple ProVeLines output

1 .\provelines -check -cora -opt running_example.pml

2 ...

3 assertion failled : (assert(cons <= size);) at line... for products:

4 D2_size_1024 && D2_On_RAM && RAM_capacity_512 && ...

5 : of the trace ... :

6 System - Storage_RAM - Processor_DCU - ... - Data_D2 - Task_TA | QualityLoss

- Cost - Time [ Features ]

7 \@00000000 : \@3 - \@35 - ... - \@72 - \@92 | 0 - 140 - 0

103



8 [ NONE ]

9 ...

10 \@19418392 : \@22 - \@41 - ... - \@83 - \@92 | 0 - 180 - 0

11 [ RAM && D2_size_1024 && D2_On_RAM && RAM_capacity_512 ]

12 ...

13

14 assertion failed : (assert(!(time < 840);) at line... for products:

15 D2_size_1024 && D2_On_ROM && D1_On_ROM && TB_On_GPU && TD_On_GPU && GPU &&

GPU_frequency_100

16 \@00000000 : \@3 - \@35 - ... - \@72 - \@92 | 0 - 140 - 0

17 [ NONE ]

18 ...

19 \@10528892 : \@10 - \@52 - ... - \@84 - \@92 | 0 - 140 - 1024

20 [D2_size_1024 && D2_On_ROM && D1_On_ROM && TB_On_GPU && TD_On_GPU && GPU &&

GPU_frequency_100]

21 ...

22

23 optimal product (global cost = 608) : D1_ON_ROM && RAM && RAM_Capacity_1024 &&

D2_Size_1024 && TA && TA_On_DCU && RAM_frequency_200

24 Storage_RAM - Processor_DCU - ... - Data_D2 - Task_TA | QualityLoss - Cost -

Time [ Features ]

25 \@00000000 : \@3 - \@35 - ... - \@72 - \@92 | 0 - 140 - 0

26 [ NONE ]

27 ...

28 \@134189119: \@13 - \@41 - ... - \@89 - \@119 | 2 - 200 - 256

29 [ RAM && D2_Size_1024 && RAM_Capacity_1024 && TA && TA_On_DCU &&

RAM_frequency_200 ]

30 ...

Listing 8.9: Part of Valid Design Space Variability in TVL

1 root DesignSpaceVariability{

2 group allOf{

3 ...

4 }

5 ...

6 //invalid products constraints

7 !(D2_size_1024 && D2_On_RAM && RAM_capacity_1024 && D1_On_RAM && P1_On_RAM);

8 ...

9 }

In this chapter, we proposed an end-to-end implementation of our formal frame-
work. The models and process of the framework have been developed i) to infer the
system design space from a variable data-flow oriented application and a configurable
non-programmable hardware platform and ii) assess the resulting design space effi-
ciently against requirements. We implement the modeling part of the framework in a
Java front-end.

In the next chapter, we use this implementation to model and assess qualitatively
the mid-end Visteon use case. We also generate other mid-end instrument clusters in
a realistic way. This dataset of models will be used to assess the scalability of our
implementation.
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Chapter 9

Industrial Evaluation

We realized three evaluations in collaboration with Visteon Electronics. Our first eval-
uation assesses the functional feasibility and aims to show the relevance of our approach
for practitioners based on our partner’s instrument cluster system (see Chap. 2). The
second evaluation takes into account the non-functional concerns in order to assess
also the non-functional satisfiability and optimality. The third one aims to obverse
the scalability of our approach.

9.1 Case Study

With the assistance of an expert system engineer, a functional and a platform manager,
we successfully modeled this system module’s application and platform specifications
using our framework implementation. The application and the platform were captured
using our variable data-flow graph and variable resource graph model implementation.
The running example presented throughout this thesis is a pedagogical simplification
of this module from which we abstract functional and hardware properties that could
be considered as details for non specialist1.

9.2 Preliminary Experiment

In order to validate our framework implementation and the relevance of our variability-
aware approach, we firstly assess only the functional feasibility (facets FC-S and FC-
B) of the instrument cluster system from their variable specifications. In this first
evaluation, we conduct the modeling and assessing of the module’s system design
space where only functional properties of the variable application and configurable
platform have been modeled. Our framework generates the design space in FA for-
malism of ProVeLines to perform the behavioral analyzes while checking the designs
that do not exhibit a behavior and structure that meet the functional requirements.
Table 9.1 shows the time measurements of the use case analyzes while the different
variability dimensions vary. The metrics we focus on are i) the number of states we
have to explore ii) the time needed to explore every system design alternatives. In

1For example, the complete platform model integrates the memory burst access mechanisms,
which help to get a more precise idea of run-time execution, memory access latency and bandwidth
consumption. The real hardware pipelines of processor s are also more complex as they provide more
concurrent graphical operations.

105



Variability app. plt. Sys. S. S./ Time ms/
var. var. var. (*) expl. (*) var. (in ms)(*) var.

NONE 1 1 78 (1) 2453 (1) 31.48 27 (1) 0.34
data size 8 1 624 (8) 15254 (6.21) 35.97 201 (7.4) 0.32

plt. 1 24 424 (5.4) 5673 (2.31) 13.37 65 (2.4) 0.15
plt.&data size 8 24 3392 (43) 37435 (15) 11.03 602 (22) 0.17

data-path 2 1 150 (1.9) 4727 (1.92) 31.51 74 (2.7) 0.49
data-path&size 16 1 1200 (15) 29066 (11) 24.22 587 (21) 0.48

plt. mult. mem. 1 40 16408 (210) 134941 (55) 8.22 4010 (148) 0.24
plt. mult. proc. 1 80 2848 (36) 19625 (8) 6.89 337 (12) 0.11

Table 9.1: Result for Preliminary Experiment using ProVeLines Family-Based
model checker.

a traditional product by product system design framework, the states and time re-
quired are generally correlated to the sum of the verification of every different design
alternatives.

We propose to compute average states explored per variant and average time
(in ms) required per variant metrics to indicate the scalability improvement of a
variability-oriented system design framework. If these metrics do not drastically de-
crease as the number of variants increases, this experiment will invalidate the efficiency
of our approach. On the contrary, if the states required by variant decrease while
adding more variants, this will give some credits to such approaches as we expect that
our variability-aware algorithm will exploit possible commonalities between system
design alternatives. Benchmarks were run on a Dell Latitude 7400 with a 3,2 GHz
Intel Core i5 processor and 16 GB of DDR3 RAM. To avoid random variations, we
repeated each experiment ten times and computed the average.

Adding the data size variability dimension (row 2 data size) increases the explored
states by a factor of 6.21 while the number of system variants increases by 8. In the
end, the algorithm spends 201 ms (7.4 times more time) to verify 8 times more system
variants encoded in a 6.21 bigger featured state space. Therefore, verification time per
variant is similar. This shows that adding the data size variability to mapping one
does not improve (or decrease) significantly the efficiency of the verification.

In the row 3 plt., we only add the platform variability such as optional hardware
component and variable memory capacities. In this experiment, we observe a sub-
stantial speed-up of the verification process. The number of variants increases by 5.4,
whereas the verification time only increases by 2.4. Adding also the data size variabil-
ity in addition to platform variability (row 4 plt. & data size) will slightly decrease the
performance of the verification. Still, the variability-ware algorithm spend fewer times
(factor of 22) in order to verify much more system variants (factor of 43) compared to
the case were only mapping variability is assessed (row 1).

Concerning the variability of alternative data-path and tasks (row 5 data-path),
this variability is less effective to verify than the other variability dimensions. Adding
the data-path alternatives (the one processing by task A rather than task B) will
increase both the system variant space and the explored state space by 1.92, while the
verification will spend 2.74 more times.

Adding optional hardware memories (row 7) or processors (row 8) to simulate
larger platforms drastically improves the efficiency of the verification process. For
both cases, we observe that the required state space to explore per variant decreases
while the number of variants increases. For instance, in the case 7, the explored
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state space only increases by a factor of 55 to verify 210 times more system variants.
Similarly, for the case 8, the state space increases by a factor 8 to verify 36 times more
variant.

If only mapping variability is present (row 1), verifying a variant takes approxi-
mately 31 states. Whereas, in the case of larger platforms (row 7-8), this metrics falls
to less than 10. This shows that fewer states’ exploration is needed while increasing the
number of platform configurations in our case study. However, our variability-aware
algorithm behaves unfortunately like an iterative product-by-product model checker
while adding application data-flow variability (row 5-6).

We finally observe that each variability dimension impact the verification metrics.
We now try to synthesize these results. Firstly, the size of the state space the algorithm
has to explore to verify the whole design space is the most impacting factor to the
verification time. The most impressive gains have been in the cases where the required
state space to explore was increasing slower than the variant space. This is showing
that in cases 3-4, 7-8, the variability leads to a design space sharing a lot of common-
alities between design alternatives. Whereas the verification data size and data paths
variability (application variability) behaves like an iterative product-by-product model
checker while adding application variants (row 2, 5-6).

9.3 Qualitative Experiment

In this second evaluation, we aim to find the optimal designs that both meet functional
and non-functional requirements of the mid-end instrument cluster module (row 1 in
Table. 9.2 and 9.3). The application and the platform’s functional and non-functional
properties were captured using, respectively, our variable data-flow graph and variable
resource graph formal model implementation.

Some technical simplifications were also made as we aim to facilitate early design
decisions: we do not consider data and parameters that only have a minor impact on
the system run-time; we abstract away from data content and consider data sizes as
the most influential factor for run-time performance; we do not model mechanisms like
internal cache replacement policies, AXI2 bus [Kyung et al., 2010] and internal backup
communication buffers as these implementation details have no fundamental impacts
and are handled by engineers later in the development process. These simplifications
were deemed harmless by our industrial expert and did not endanger the correctness
of our results. This results in an application model with two input data, 16 tasks and
32 flow processing, and in a platform model with one ROM, one RAM, one DCU and two
GPUs.

In total, the variability yields 1,548,288 candidate designs. Our mapping strategy
reduced this number to 1,878. By adding NF properties and requirements rendering
quality ≥ 2 and manufacturing cost ≤ 280, we further diminish this number to 894. By
checking the designs against the constrained state reachability property (i.e., the end
of execution is reached within 840 processing cycles) we obtain 279 variants that satisfy
all requirements. Incorporating the cost function representing trade-offs defined with
the expert (i.e., with θtime = 1, θm.cost = 10, θr.qual. = 100) yielded 6 optimal variants
with time = 642, manufacturing cost = 140 and rendering quality = 2.

Our framework firstly generates the design space in Linear Priced Timed Automata
(LPTA) formalism in order to perform the behavioral analyzes using UPPAAL-CORA

2https://developer.arm.com/documentation/dui0305/c/Glossary

107

https://developer.arm.com/documentation/dui0305/c/Glossary


tool-chain. System expert validated that the six optima returned by UPPAAL-CORA
are the most suitable designs and conform to the best designs that the company pro-
totyped. One of the six designs is actually the final implementation of Visteon, while
one of the six surprised the expert at it was not previously identified3. The quality
attributes values also corresponded to what was observed in the concrete system im-
plementations. There are slight differences regarding execution run-time (cycles) due
to our modelling simplifications (around 15% on average); however, the numbers are
close to reality, and the relative orders between promising variants are preserved.

Our framework secondly generates the design space in fPromela (FWA) in order
to perform the behavioral analyzes using our model variability-aware model checker
ProVeLines-CORA. These two separate verification processes provided the same re-
sults for all variants. This increases our confidence that the transformation of the de-
sign space into LPTA and FWA is consistent. Expert’s confirmation was also needed,
though, as mistakes may originate from the input models themselves. In the end, the
experts validated that our Variability-Oriented approach helps make optimal design
decisions that could provide significant gains at all stages of development.

9.4 Scalability Experiment

The third part of our evaluation focuses on the efficiency and the scalability of our
approach in terms of verification time. This is essential, as the total number of variants
can be high in real-world systems while each variant can exhibit a large state space.
In addition to the instrument cluster case study (row 1), we constituted a dataset of
models that were generated in a realistic way. To do so, our model generator relies
on multivariate Gaussian distributions whose parameters were settled on the basis of
the characteristics of our partner’s industrial systems. Thereby, the characteristics
of our generated data-flow and platform models are similar to real-world cases. For
instance, the number of input data, the number of tasks and their average number of
input/output data paths correspond to the topology of Visteon mid-end instrument
clusters. Moreover, the variability of the data size, data-flow, memory capacities and
optional platform component are built to correspond to real variability ratios in mid-
end instrument cluster specifications.

Among all the models we generated, we selected 11 of them that appropriately
summarize our findings. These models exhibit different state densities (i.e., average
number of system states per variant) and variability intensities (i.e., numbers of system
variants). We carried out three series of experiments presented hereunder. Table 9.1
provides the results, such that double borders separate the results of the different series
of experiments. Benchmarks were run on a MacBook Pro 2014 with a 2,8 GHz Intel
Core i7 processor and 16 GB of DDR3 RAM. To avoid random variations, we repeated
each experiment ten times and computed the average.

9.4.1 Product-Based Versus Family-Based Verification

We firstly evaluate the efficiency of our method to verify that all variants satisfy the
requirements, that is, we consider only the facets FC-S, FC-B, NF-S and NF-B of
the problem to check the functional feasibility and the non functional satisfiability.
To do so, we compare the run-time of our family-based verification algorithm with

3The system design was counter-intuitive.
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FCS + FCB + NFS + NFB

Product-based Family-based
case system time states states/ time states states/

variants (in ms) explored variant (in ms) explored variant

Ins. Cl. #0 1,878 22.60 693,178 369 3.33 305,114 162
Gen. #1 32 0.80 49,952 1,561 0.48 45,681 1,427
Gen. #2 64 2.72 143.968 2,249 2.10 124,004 1,937
Gen. #3 243 22.11 743,823 3,061 80.54 660,348 2,717
Gen. #4 516 16.32 854,996 1,656 10.95 777,616 1,507
Gen. #5 1,152 55.48 2,599,393 2,256 40.17 2,217,593 1,924
Gen. #6 1,280 38.49 1,915,264 1,496 11.81 840,711 656
Gen. #7 2,187 144.48 5,283,792 2,416 120.83 4,593,249 2,104
Gen. #8 2,592 109.96 3,785,940 1,460 35.01 1,032,639 398
Gen. #9 3,168 151.87 7,201,320 2,273 69.14 3,926,395 1,239

Gen. #10 12,288 395.64 19,777,536 1,609 148.71 6,570,642 534
Gen. #11 34,560 1344.23 59,858,304 1,732 227.31 10,871,741 314

Table 9.2: Results for Product-Based Versus Family-Based Verifications.

an alternative, ProVeLines-CORA product-based algorithm that checks each variant
separately.

The results are presented on Table 9.2. It depicts, for each approach and model,
the time needed to check all variants and the total number of states explored by each
algorithm. In the family-based case, fewer states are explored since one state common
to multiple variants is explored only once. For case #0 which is the module of the
studied instrument cluster, the family-based method outperforms the product-based
one, reducing the verification time from 22.60 seconds to 3.33. The gain of the family-
based method tends to show that the design alternatives of an industrial instrument
cluster could exhibit a lot of commonalities at both structural and behavioral aspects.

The generated models allow us to observe that the benefits of the family-based
method tends to grow with the number of variants. When this number is low (#1–3),
our family-based algorithm either brings insignificant improvements (#1 and #2) or
performs way worse than the product-based approach (#3). This could be explained
by the fact that fewer states are shared across the design alternatives. The family-based
version has to explore similar state space to assess the whole product line compared
to product-by-product version. Moreover, there is also an inherent overhead induced
by the verification of the design choices’ consistency (SAT -solving) required while
exploring states.

However, for models with higher variability (#4–11) we obtain reductions in verifi-
cation time of minimum 16% (#6), most often substantial ones. The most impressive
results are obtained for the case with the most variants (#11 – which is also the
case where variants share the most commonalities): our algorithm is 5.9 times faster,
achieving an absolute reduction of 1,116.92 seconds. We also observe that a higher
state density often reduces the gain offered by our algorithm (e.g., cases #5 and #7).
To explain this, we analyzed the models and observed that a small number of variants
exhibit a large state space, while all the others encompass far fewer states. The vari-
ants thus have fewer states in common. In the end, a family-based algorithm performs
better as variants share more commonalities.
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NFO

P.V.L.-CORA UPP.-CORA
case density variants time time

Ins. Cl. #0 360 1,878 2.42 5.64
Gen. #1 1,561 32 0.80 18.61
Gen. #2 2,250 64 1.27 39.59
Gen. #3 3,061 243 75.79 OoM.
Gen. #4 1,656 516 8.23 17.60
Gen. #5 2,256 1,152 29.77 OoM.
Gen. #6 1,496 1,280 8.65 19.89
Gen. #7 2,416 2,187 89.56 OoM.
Gen. #8 1,461 2,592 24.40 OoM.
Gen. #9 2,273 3,168 19.58 OoM.

Gen. #10 1,609 12,288 75.97 OoM.
Gen. #11 1,732 34,560 72.17 OoM.

Table 9.3: Results of ProVeLines-CORA and UPPAAL-CORA for designs
optimizations.

9.4.2 Optimal Design in ProVeLines and UPPAAL

We secondly compare the efficiency of the two model checkers to solve the NFO
problem facet, that is, we compare UPPAAL-CORA against our algorithm 3. The two
model checking tools present clear differences in input syntax and semantics (LPTA vs.
fPromela FWA). Moreover, our ProVeLines-CORA implementation performs family-
based cost-optimal reachability in discrete-time models while UPPAAL-CORA was
developed in order to perform cost-optimal reachability in continuous-time models
in a product-based approach. Consequently, the generated design space models in
fPromela in a behavioral product line are highly optimized compared to LPTA models
of UPPAAL (an automaton capturing all designs).

Results are given in the center of Table 9.3. Like any product-by-product approach,
UPPAAL-CORA suffers from every increase in the number of variants. It systemat-
ically performs worse than ProVeLines-CORA. Even worse, apart from cases #0–2,
#4 and #5, UPPAAL-CORA consumes all the allowed memory and raises a fatal er-
ror. We assume two reasons behind this. First, UPPAAL-CORA does not implement
partial-order reduction [Godefroid, 1996] and thus considers all possible interleaving
between process actions while our fPromela models do not consider unnecessary in-
terleaving4. Second, we use a model that encodes all variants’ behaviour and thus
accumulates all their state space. Yet, applying an alternative, product-based ap-
proach where each variant is turned into a separate model did not solve the problem
and even led to slower times5.

Through these experiments, we also observe that looking only for valid optima in
ProVeLines-CORA, as opposed to verifying all variants, can yield significant reductions
in execution time (up to 68% in case #11). More importantly, computing the optima
without a family-based algorithm boils down to applying the product-based algorithm
used in the first series of experiments in Table 9.2. In this regard, our Algorithm 3
exacerbates the benefits of a family-based algorithm. For the models with the most
variants (#9–11), Algorithm 3 is 5 to 128 times faster than the product-based method.

4One way to circumvent this is to assign priorities over the automata to reduce the state space.
However, in most cases, this will cause to miss better scheduling opportunities and will yield subop-
timal results.

5We stopped the exploration of separated model at one hour of verification time
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Interestingly, it seems to be way less affected by the number of variants or the design
space density than the all-variant verifications. This may be affected by our branch-
and-bound optimization that discard a execution (maybe shared by multiple variants)
as soon as the cost exceed the best solution (see Alg. 3). Contrary to product-by-product
methods, bad executions are explored once and then discarded for all variants.

9.5 Threats to Validity

In this section, we identify and discuss the main threats to the validity of our results.
First, we discuss the internal threats.

We collaborated with Visteon Electronics for two years between 2016 and 2018.
This close collaboration was in place during every step of the elaboration of this thesis
with monthly meetings. We drove our research to assess a real mid-end instrument
cluster. However, we aimed to generalize both the motivations and the contribution to
early design of data-flow-oriented embedded systems. The selection of the case study,
the fact we retro-engineered the case study, and the way we transferred our approach
to system engineers are the main sources of internal threats to validity.

Second, the technical ground on which of the framework is built-on raises some
external validity. First, model checking and SAT -solving are inherently exponential
to problem size. Results are also highly dependent on the level of details of the system
design space model. On the one hand, obtaining a highly detailed model tends to
increase the assessing time. On the other hand, assessing highly abstracted model will
give spurious, or irrelevant results. In our case study, we continuously help engineers
to model the system specification at a level of details that allows to obtain the designs
that effectively meet and optimize the requirements.

9.5.1 Internal validity

The main threat to internal validity is the selection of the case study. Although it was
built, with other case studies, from specification and feedback meetings with system
and platform experts from our partner company, it is a single case. Still, we choose
it as being representative in terms of topology and complexity of the data flow, the
platform and their variability within the company.

We helped the functional and platform experts to model the variable application
and configurable platform specifications. As we also have some expertise in this field,
we have helped experts to fit their system specification models in our model imple-
mentations. We also facilitated the modelling of the platform in a featured weighted
automaton (see Fig. 7.2). Without our help, they might not have been able to do so.
However, the results given by our framework were easily understandable, especially
the structural aspect of the designs (i.e., system variants). Moreover, we conducted
our scalability experiments over large but simulated data sets that were also under-
standable and validated by our industry partner6.

Finally, even if we helped functional and platform experts to model systems spec-
ifications, the results of our variability-aware model checking algorithm easily give
insight to engineers in order to make appropriate design decisions at early stages of
development.

6The data sets respect the structure, behaviour and variability of the potential applications and
platforms of our industrial partner.
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9.5.2 External validity

Several threats to external validity exist. More generally, we also expect the proposed
approach to be applicable to other domains where data flows can be an appropriate
modelling formalism, like image or signal processing in aerospace or underwater sys-
tems. On the platform side, the component-based representation seems generic enough
to cover different forms of deployment architectures. Yet, we do not have any evidence
of this possibility of generalization.

Satisfiability and optimality checking processes depend highly on the level of details
of application and platform models. A not detailed enough platform model could lead
to loss of relevance in the performance metrics and could even produce false optimal
results. At the application level, the system will not reflect what is expected. From the
feedback we got from our industrial partner, the level of details of the generated FWA
is currently sufficient7. Still, in other contexts, some details may be added to have
more precise performance metrics or hidden due to intellectual property management
or confidentiality issues.

The most important threat to validity may be the modelling of the system speci-
fications. This task could be time-consuming, especially when a deep level of detail is
required to get relevant performance metrics. Still, we think that our variability-aware
approach could ease the modelling of different application and platform variants using
variability-aware models. As for applications, they are described with data-flows that
are well mastered by system experts in our case study, but they have been built man-
ually. Reverse engineering from existing application code could be envisaged to build
data-flow or at least templates of them, but their quality would be directly related to
the quality of organization of existing software.

9.5.3 Conclusion Validity

Besides these threats to validity, we now review the two main conclusions from our
industrial evaluation.

First, the modelling of the structure, behaviour and variability aspects the system
specifications could require many efforts. Such efforts could be a significant obstacle
in industry adoption. Still, we argue that it will require less effort than implementing
each design’s software and hardware. Nevertheless, the expertise required to abstract
the system specifications at an appropriate level of detail could be problematic for engi-
neers without knowledge in variability modelling and model-based design methodology.

Mapping the system specifications to derive and transform the design space in
a featured automaton formalism also needs knowledge in formal methods and system
engineering techniques. Moreover, lack of knowledge at platform or even platform part
could lead to irrelevant results at the assessing stage. For instance, some hardware
knowledge may be unavailable due to confidentiality issues. Nevertheless, challenges to
model-based system design adoption in industry is an entire research topic [Vogelsang
et al., 2017, Wu et al., 2018, Amorim et al., 2019, Laing et al., 2020, Chami et al.,
2018, Chami and Bruel, 2018, Huldt and Stenius, 2019]. Yet, investigate how the
variability concern could be efficiently identified and modelled to optimize the design
process of a particular company culture is an interesting perspective of our results.

7As it is at the level they use to specify the platform when selecting suppliers.
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Chapter 10

Conclusion and Perspectives

A tremendous amount of variability can be observed in embedded systems, especially
when they are built from highly variable specifications targeting diverse hardware
platforms configurable in a fine-grained way. Such variability induces a combinatorial
explosion in the number of design alternatives, often intractable for engineers. Further-
more, each system could also exhibit multiple scheduling executions. Consequently,
even for system experts, finding suitable designs w.r.t. functional and non-functional
requirements is very complex in addition to being time-consuming and error-prone.

In this thesis, we aimed to proactively assist system engineers in making appro-
priate design choices at early stages of development. To this aim, we proposed an
end-to-end framework that deals efficiently with a variability-induced combinatorial
explosion and reason efficiently at both structural and behavioural levels.

In this last chapter, we conclude this thesis with a review of the challenges and the
results (see Sec. 10.1). We also share final remarks about the proposed approach in
the Sec. 10.2. Next, we present the short term and long term perspectives opened by
this work. These perspectives reflect the fundamental purpose of our framework by
focusing both on theoretical and industrial aspects.

10.1 Review of the Challenges

Part I presents motivations and challenges raised by our class of problem. Assessing
the design space w.r.t. functional and non-functional requirements in order to find
suitable designs requires not only a way to deal efficiently with a variability-induced
combinatorial explosion but also a way to reason at both structural and behavioural
levels (facets FC-S, FC-B, NF-S, NF-B, NFO). The first challenge C1 was a mod-
elling challenge as it requires models able to ”Capture functional and non-functional
high-level variable requirements and specifications of embedded systems that can vary at
both application and platform levels”. The second challenge C2 was a model trans-
formation challenge as it requires to derive the system design space from system
specifications automatically. Manually deriving the design space is not a viable solu-
tion in industry. The third and last challenge C3 was a reasoning challenge. It
requires to evaluate simultaneously and efficiently the functional feasibility, the non-
functional satisfiability, and optimality at both structural and behavioural levels of
the design alternatives(facets FC-S, FC-B, NF-S, NF-B, NFO).

Part I ended with a review of the state of the art1.It was established that embedded

1References can be found in chapter 3.
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system design engineering methods find the best designs of systems for decades. On
the other hand, approaches that manage variability have been successfully applied to
product line engineering and variability-intensive system development. Variability-
aware approaches manage this combinatorial explosion but are either limited to assess
structural or behavioral concerns. Moreover, they do not directly capture embedded
system specifications, which are traditionally used to derive the design space.

On the contrary, system design approaches capture system specifications in order
to derive the design space. Moreover, they also assess both structural and behavioral
aspects. Still, these approaches do not capture nor manage the variability dimensions
present in our system specifications. Worse, when the design space size is exponential
in terms of design variations, the behaviour of each design alternative is still assessed
iteratively. We then concluded that these previous approaches do not well cover the
three challenges.

Part II presented the original framework we proposed in order to meet all the
challenges. We applied and extended the Y-Chart model pattern for the modelling
stage and the behavioural product line paradigm for the assessing stage. This frame-
work reduces the gap between system design engineering and product line methods.
We proposed a variability-aware modelling method to capture variable system spec-
ifications in order to reach the first challenge C1. More precisely, we extend the
data-flow-oriented application and concurrent component-based platform models with
variability concerns. Hence, in addition, to capture structural and behavioural aspects,
our extended models also capture variability present at both specifications levels. We
are thus giving the means to capture, in a time-efficient way, every data-flow variants
as a variable data-flow model and every platform configurations in a configurable plat-
form model. Alternative data-flows and variable data sizes can be captured at the
application level whereas optional hardware components, variable clock frequencies,
and capacities can be modeled at the platform one.

To reach the second challenge C2, we proposed a mapping algorithm able to map
our variable data-flow model over a configurable platform to infer the resulting design
space automatically. This algorithm maps every application element over platform
resources. Because application elements and platform resources could be optional, the
algorithm generates consistency constraint to only capture valid system variants.

The resulting design space grows exponentially with the number of design varia-
tion points and scheduling opportunities. Hence, evaluating iteratively every design
alternative w.r.t. requirements may hamper scalability. We proposed to reach the rea-
soning challenge C3 by applying and extending behavioural product line formalism.
As a behavioural product line encodes the behaviour of every product of the product
line in a single automaton, it allows exploiting behavioural and structural common-
alities between different but related system design alternatives. Common states are
checked once for every design that reaches it. Common design decisions (data size,
data flow, mapping, memory capacity, hardware resource selection, etc.) are checked
once for every design that contains them.

Our proposed concept of featured weighted automaton extends featured automa-
ton with non-functional concerns. Feature model was extended with priced features
to reason on non-functional requirements that impact the structure of the design such
as manufacturing cost NF-S while automaton was extended with weighted featured
transitions to reason on the behavioral ones (e.g., execution time). In the end, we
proposed a variability-aware model checking algorithm that assesses simultaneously
and efficiently all facets of the problem FC-S, FC-B, NF-S, NF-B, NFO by ex-
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ploiting structural and behavioural commonalities between design alternatives.

� Satisfying the functional requirements, that is, is the design consistent in order to
be implemented? (facet FC-S) and is the design execution satisfies the temporal
properties? (facet FC-B).

� Satisfying the non-functional requirements, that is, can the design be imple-
mented within this budget? (facet NF-S) and is the design executes in less than
30ms? (facet NF-B).

� Optimizing multiple quality attributes, that is, is the design reaches the best trade-
off between both structural and behavioural quality attributes (facet NFO), such
as minimizing the manufacturing cost and the execution time while maximizing
the rendering quality.

In Part III, we reported on the implementation of our framework as a model-driven
tool-chain. We implemented our variability-aware model checking algorithm on top of
ProVeLines. Through our modelling tool-chain, we give the means to capture system
specifications through Java APIs that are then mapped to derive the design space. The
generated behavioural product line that captures the design space is in ProVeLines
input formats. We also reported on the application of the proposed approach to a
real-world industrial use case of an automotive instrument cluster.

The variable specification of the instrument cluster was properly modelled using
our specifications models. Our framework implementation automatically inferred the
correct design space and identified the optimal designs w.r.t. requirements, giving
positive hints on potential applicability. Our experimental validation with large sim-
ulated datasets also shows sufficient scalability of the prototype implementation to
design industrial-scale instrument clusters or systems with similar complexity. We
also observed that our family-based verification process is more efficient than product-
by-product ones.

10.2 Final Discussion

In this final discussion, we conclude about the efficiency of our variability-aware ap-
proach. At the modelling process, we claim that modelling a single variable specifica-
tion is more efficient that model each variant separately. Still, it requires to be able
to clearly identify explicit variability points for both functional and non-functional
property at both structural and behavioural aspect. This activity was possible in
our context, but the characterization of this generalization to other system domains
requires future works (see Sec. 10.3).

At the assessing process, both theoretical and experimental results are aligned.
The amount of states shared among the different system variant behaviours (com-
monalities) are correlated to the speed-up we observed in our variability-aware model
checking algorithm compared to product-by-product ones. However, these commonal-
ities highly depend on the use cases and their variability. As observed in Sec. 9, for
the same kind of systems, application variability reduces the gain as it cause early-
splitting [Classen et al., 2013a] of systems variants (and even behave - at worse -
like the product-by-product version). In contrast, other variability dimensions lead to
substantial verification speed-up.
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The efficiency of our assessing process is correlated to the amount of the shared
states among the variants of the different system. We claim that if all the states are
shared by all systems variant, then our variability-ware methods will be linear in the
number of variant as it will require to only assess a single state space once for every
variants. On the contrary, if no states are shared, our variability-aware model-checking
algorithm will perform similarly (or even worse2) that a product-by-product version.

To overcome this drawback, we present long term perspectives (see Sec. 10.3). The
main idea is to merge similar states. The similarity notion could be diverse. For
example, for variability-aware abstraction methods (see Sec. 10.3.3), an execution is
similar to another one if they share the same (or equivalent) temporal property. For
statistical-model-checking (see Sec. 10.3.3), previous executions can be used to predict
with a high confidence ratio the feasibility of others.

All these optimization techniques aim to the same objective: to assess states or
executions once for multiple products.

10.3 Perspectives

We now discuss the perspectives of this thesis, from short to long term. The short
term perspectives are fundamental in order to validate our framework to other systems
and industrial contexts, while long term perspectives aim to depict future directions
in fundamental research.

10.3.1 Integration to Automotive Industry

Using our framework, we were able to model the variable system specifications of the
case study from Visteon as a variable data-flow and a configurable hardware platform.
The framework then derived the system design space and assessed it to identify the
most suitable designs w.r.t. requirements. This case was part of a mid-end instrument
cluster. Mid-end and low-end instrument clusters are the vast majority of automotive
systems showing potential integration in industry. There are numerous standard HMI
design and development tools for instrument cluster systems, such as Kanzi Studio3,
Altia4, Crank Software5, CGI Studio6, EB Guide7, Qt Automotive8. These tools offer
visual models to capture the embedded HMI of the instrument cluster. The HMI ele-
ments are widgets, FX effects, UI Animations, etc. In order to customize the HMI for
the different range of cars(i.e., from low-end to high-end configurations), UI elements
can be enabled or disabled by engineers. The choice of a particular API platform
configuration, as well as every mapping of each UI element over a specific hardware
resource, must be determined by engineers. In the end, these tools map the selected
UI flow over the platform API chosen to generate and benchmark a C/C++/ASM
system design implementation. However, these tools do not provide support to make
appropriate design choices. Consequently, to optimize the HMI implementation on a

2Due to SAT-Solving overhead
3https://www.rightware.com/kanzi
4https://www.altia.com/
5https://www.cranksoftware.com/industries/automotive
6https://cgistudio.at/
7https://www.elektrobit.com/ebguide/
8https://www.qt.io/qt-automotive-suite/
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particular configurable platform, engineers usually find suitable designs by prototyping
various design candidates.

In these UI designer tools, a design is composed of an HMI variant and a API
platform configuration. First of all, the design space may be derived from the HMI
and API platform models previously defined by the engineers. Such input models
are similar in some points to our application and platform models. Basically, the HMI
widgets are data, while FX effects and UI Animations are tasks. The platform API can
be seen as a declarative description of the platform’s possible hardware functions and
memory storage. This description may lack behavioural information9. The integration
of hardware IP at behavioural level may allow capturing the design space as a variable
automaton to apply our technique. Still, this close collaboration between instrument
cluster HMI design tools and hardware providers such as NXP10, Renesas11, Infineon12,
or STMicroelectronis13 could raise confidentiality issues.

10.3.2 Applications to Other Systems

Even if our framework can efficiently model and assess the Visteon case study, the
need to manage other system design engineering problems in different contexts is fun-
damental to further investigate our framework’s applicability. Our framework captures
data-flow oriented applications and non-programmable platforms and uses variability-
model checking of temporal and quantitative properties to assess embedded and con-
current system designs. We drive our framework development not only to handle the
specific Visteon case but also to handle the whole considered class of problems.

In our vision, the modelling part of the framework can handle other application and
or platform specification models to capture different systems. The mapping algorithm
may also adapt depending on the models to map. The assessing part of the framework
is relying on automata theory. This theory is highly-expressive and has been exten-
sively applied to a vast amount of systems. However, such formalisms either suffer
from scalability or undecidability issues which can limit the verification.

We plan to apply our framework to the design of systems such as aerospace, un-
derwater, medical systems, Internet of Things, grid computing, and even production
plans. These concurrent systems are often highly constrained in terms of hardware
resources and capacities and aim at optimizing their usage. They also may need for-
mal verification of temporal properties to identify potential errors at early stage of
development.

Our goal in these applications to other domains would be to extend the framework
to capture multiple system specifications and derive and generate the resulting design
space in our behavioural product line formalism. Finally, extensions should also be
conducted in order to assess new system properties. For example, aerospace systems
and underwater systems must take into account their environment. Environments
are usually modelled as a stochastic automaton communicating with the embedded
system. Finding the most suitable system design alternatives in certain environmental
stochastic conditions requires assessing stochastic temporal properties.

9The level of detail of the platform behaviour strongly impacts the relevance of the design evalu-
ations.

10https://www.nxp.com
11https://www.renesas.com
12https://www.infineon.com
13https://www.st.com
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10.3.3 Variability-Aware Statistical Model-Checking

The experiments we conducted show that a massive amount of states is shared by
design alternatives. Our variability-aware model checking algorithm allows exploring
a state once for every system variant (or product) that could produce it. Hence,
this optimization speeds-up remarkably the verification process. Nevertheless, the
state space explosion problem could rise for designing larger systems such as high-end
instrument clusters or other embedded systems. In this case, we will lack to assist
engineers in making appropriate design decisions.

Statistical model checking (SMC) [Legay et al., 2010] is an approximate technique
that, rather than covering every execution of a system, verifies a small sample of exe-
cutions. Results are then used to statistically compute the probability that the system
satisfies the property with some degree of confidence. Simulation-based methods are
known to be far less memory time-consuming than exhaustive ones and are sometimes
the only viable option. Over the past years, SMC has been used to, e.g. assess the
absence of errors in various areas from aeronautic to systems biology; measure cost
average and energy consumption for complex applications such as nanosatellites [Heidt
et al., 2000]; detect rare bugs in concurrent systems [Jegourel et al., 2013,Larsen and
Legay, 2018].

Recent works apply variability-aware statistical model-checking [Cordy et al., 2020]
to well known academic configurable systems. They identified all system configurations
that do not fulfil functional requirements with a speed-up of 924% on average compared
to the exhaustive variability-aware model checking method. This shows that verifying
a sampled execution for multiple designs can speed up the verification process, increase
the confidence that a particular system variant satisfies a requirement, or reduce the
number of sampled execution to reach a specific confidence level.

10.3.4 Abstractions of Behavioral Product Line

Another direction to improve the efficiency of our work is through abstractions [Cordy
and Legay, 2019, Dimovski and Wasowski, 2017, Dimovski et al., 2019]. A first ab-
straction consists of reducing the state space by merging similar states. The second
reduces the variant space by joining features expressions. These abstractions reduce
the model’s size to optimize the verification of the behavioural product line that en-
codes our design space.

These reductions often come at the cost of inaccuracies in the model. Therefore,
a design can be spurious as it exists within only the design space’s abstracion. The
spurious design exhibits a system variant that is not in the variant space or execution
that is not in the featured state space, or both. In this case, the abstraction must be
refined to eliminate these false positives. Common methods achieve this refinement
by Counterexample Guided Abstraction Refinement [Cordy et al., 2014] (CEGAR).

Another well-known technique is symbolic model checking [Classen et al., 2011c].
Rather than enumerating every state, states are automatically grouped as long as
they share similar properties. Different algorithms commonly used in symbolic model
checking rely on a fixed-point computation implemented on symbolic data structures
and breadth-first searches. This technique highly differs from our depth-first search
that explores every state individually. However, extending these techniques seems to
be a natural perspective.
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10.3.5 Multi-Level Design Space Exploration

Modern System Design frameworks generally use multiple system models at different
level of details to improve the design space exploration method [Pimentel et al., 2006,
Bakshi et al., 2001]. The exploration starts typically with the most analytical model
to quickly prune the design space by removing obviously-bad design space regions. A
model of computation can then be used to guarantee or optimize the design behaviour
formally. Finally, promising designs are simulated or prototyped to have a precise idea
of the design’s quality and performance.

Statistical learning techniques [Valov et al., 2017, Guo et al., 2017, Zhang et al.,
2015, Siegmund et al., 2015, Jamshidi et al., 2017a, Jamshidi et al., 2017b, Kolesnikov
et al., 2019,kal, ] have been applied to identify the system configurations that exhibit
the best performance. They can derive performance influence of the combinations of
the features. A small sample of configurations performances can be used to predict
the performance of the rest of the configurations. However, the use cases are not
concurrent systems.

Recently, they propose a white-box approach [Velez et al., 2020] using the variable
source code to improve the quality of the predictions. Using such techniques, we
may learn from prototypes or simulations runs to predict outcomes for unexplored
design alternatives. We consider applying such models in a black-box way (the model
predicts the end value of the quality attributes) and a white-box way (the model
predicts execution traces), as the latter is more likely to provide accurate predictions
and guide the design space exploration.

The global contribution of this thesis is the elaboration of an end-to-end framework
to tackle an industrial problem but also to challenge existing methods. Given variable
applications and configurable platforms, we contribute to modelling and assessing the
functional, non-functional and even optimality of the different designs alternatives.
The variability presents in system specifications dramatically increases the size of the
design space. Still, we were able to optimize the verification of the whole design
space by exploiting structural and behavioural commonalities between different but
related designs. We hope that this thesis results encourage the development of further
methods to manage variability in system and software engineering.
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D. (2013). Strategies for product-line verification: case studies and experiments.
In 2013 35th International Conference on Software Engineering (ICSE), pages 482–
491. IEEE.

[Asirelli et al., 2011] Asirelli, P., ter Beek, M. H., Gnesi, S., and Fantechi, A. (2011).
Formal description of variability in product families. In Software Product Line
Conference (SPLC), 2011 15th International, pages 130–139. IEEE.

[Attarzadeh-Niaki and Sander, 2017] Attarzadeh-Niaki, S.-H. and Sander, I. (2017).
Automatic construction of models for analytic system-level design space exploration
problems. In Proceedings of the Conference on Design, Automation & Test in Eu-
rope, pages 670–673. European Design and Automation Association.

[Bakshi et al., 2001] Bakshi, A., Prasanna, V. K., and Ledeczi, A. (2001). Milan: A
model based integrated simulation framework for design of embedded systems. ACM
Sigplan Notices, 36(8):82–93.

[Balarin, 1997] Balarin, F. (1997). Hardware-software co-design of embedded systems:
the POLIS approach. Springer Science & Business Media.

120



[Basten et al., 2010] Basten, T., Van Benthum, E., Geilen, M., Hendriks, M., Houben,
F., Igna, G., Reckers, F., De Smet, S., Somers, L., Teeselink, E., et al. (2010).
Model-driven design-space exploration for embedded systems: The octopus toolset.
Leveraging Applications of Formal Methods, Verification, and Validation, pages 90–
105.

[Batory, 2005] Batory, D. S. (2005). Feature Models, Grammars, and Propositional
Formulas. In SPLC’05, volume 3714 of LNCS, pages 7–20. Springer.

[Bauer et al., 2013] Bauer, S. S., Fahrenberg, U., Juhl, L., Larsen, K. G., Legay, A.,
and Thrane, C. (2013). Weighted modal transition systems. Formal Methods in
System Design, 42(2):193–220.

[Behrmann et al., 2006] Behrmann, G., David, A., and Larsen, K. G. (2006). A tuto-
rial on uppaal 4.0. Department of computer science, Aalborg university.

[Behrmann et al., 2001] Behrmann, G., Fehnker, A., Hune, T., Larsen, K. G., Pet-
tersson, P., Romijn, J., and Vaandrager, F. W. (2001). Minimum-cost reachability
for priced timed automata. In Proceedings of HSCC ’01, pages 147–161.

[Behrmann et al., 2005] Behrmann, G., Larsen, K. G., and Rasmussen, J. I. (2005).
Optimal scheduling using priced timed automata. ACM SIGMETRICS Performance
Evaluation Review, 32(4):34–40.

[Benavides et al., 2007] Benavides, D., Segura, S., Trinidad, P., and Cortés, A. R.
(2007). Fama: Tooling a framework for the automated analysis of feature models.
In VaMoS’07, pages 129–134.

[Bengtsson et al., 1996] Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., and
Yi, W. (1996). Uppaal-a tool suite for automatic verification of real-time systems.
Hybrid Systems III, pages 232–243.

[Biere et al., 1999] Biere, A., Cimatti, A., Clarke, E., and Zhu, Y. (1999). Symbolic
model checking without bdds. In International conference on tools and algorithms
for the construction and analysis of systems, pages 193–207. Springer.

[Bokhari, 1981] Bokhari, S. H. (1981). On the mapping problem. IEEE Transactions
on Computers, (3):207–214.

[Botterweck et al., 2010] Botterweck, G., Polzer, A., and Kowalewski, S. (2010). Vari-
ability and evolution in model-based engineering of embedded systems.

[Boudjadar et al., 2013] Boudjadar, A., David, A., Kim, J. H., Larsen, K. G.,
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Kawthekar, P. (2017b). Transfer learning for improving model predictions in highly
configurable software. In Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), 2017 IEEE/ACM 12th International Symposium on, pages 31–41.
IEEE.

[Jegourel et al., 2013] Jegourel, C., Legay, A., and Sedwards, S. (2013). Importance
splitting for statistical model checking rare properties. In International Conference
on Computer Aided Verification, pages 576–591. Springer.

[Kavi et al., 1986] Kavi, K. M., Buckles, B. P., and Bhat, U. N. (1986). A formal
definition of data flow graph models. IEEE Transactions on computers, (11):940–
948.

[Khalilov et al., 2016] Khalilov, E., Ross, J., Antkiewicz, M., Völter, M., and Czar-
necki, K. (2016). Modeling and optimizing automotive electric/electronic (e/e) ar-
chitectures: Towards making clafer accessible to practitioners. In International
Symposium on Leveraging Applications of Formal Methods, pages 447–464. Springer.

[Kim et al., 2016] Kim, J. H., Legay, A., Traonouez, L.-M., Acher, M., and Kang,
S. (2016). A formal modeling and analysis framework for software product line of
preemptive real-time systems. In Proceedings of the 31st Annual ACM Symposium
on Applied Computing, pages 1562–1565. ACM.

[Kolesnikov et al., 2019] Kolesnikov, S., Siegmund, N., Kästner, C., Grebhahn, A.,
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Performance-influence models for highly configurable systems. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, pages 284–294.
ACM.

[Siegmund et al., 2012] Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner,
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Abstract

Software-intensive embedded systems, such as automotive systems, are increasingly
built from highly-variable applications targeting evermore configurable hardware plat-
forms. Moreover, there are often various ways to implement a given application on
a specific platform. This threefold variability leads to an immense number of system
design alternatives. The notorious problem is to establish, at early stages of develop-
ment, which designs fulfill and optimize functional and non-functional requirements.
Traditional system design frameworks capture system requirements and specifications
to derive and evaluate every design automatically. However, they use enumeration-
based techniques and offer poor scalability at both modelling and analysis stages. On
the other hand, variability modelling approaches exploit commonalities between dif-
ferent but related products to efficiently evaluate the whole product line. Yet, given
system specifications, they lack to automatically derive the design space while only
specific facets of the problem are evaluated in isolation. We propose a model-driven
framework that combines and extends both approaches. It captures requirements and
specifications in the form of variable data-flows and configurable hardware platforms,
with non-functional constraints and a cost function. An original mapping algorithm
then derives the design space automatically and generates it in the form of a variability-
aware model of computation, which encodes every system design. Novel verification
algorithms then pinpoint suitable designs efficiently. The benefits of our approach are
evaluated through a real-world case study from the automotive industry.

Keywords: Model-Based embedded-system design, Feasibility analysis,
Optimization, Model of computation, Behavioral Product Line, Quantita-
tive properties, Variability-aware model-checking
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