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Résumé

La symétrie est omniprésente dans la science et l’art. Dans cette thèse, on con-
sidère les symétries décrites par la représentation d’un groupe fini pour aborder trois
problèmes algébriques dans lesquels la symétrie apparait naturellement : l’interpola-
tion multivariée, l’interpolation idéale et le calcul des invariants et équivariants
fondamentaux. Les bases adaptées à la symétrie des anneaux polynomiaux sont
essentielles afin de préserver et d’exploiter la symétrie dans ces calculs algébriques.
On les utilise pour réduire les calculs d’un facteur qui dépend de la taille du groupe,
refléter les symétries initiales sur les solutions fournies, et calculer des ensemble
générateurs d’équivariants.

L’interpolation est un outil de premier ordre en calcul algébrique tandis que
la symétrie est une caractéristique qualitative qui peut être plus pertinente pour
un modèle mathématique que la précision numérique des paramètres. On montre
comment préserver exactement la symétrie dans l’interpolation multivariée tout en
l’exploitant pour alléger le coût de calcul. On revisite l’interpolation de degré min-
imal et la moindre interpolation avec des bases adaptées à la symétrie, plutôt que
la base monomiale. Cela permet de construire des bases d’espaces d’interpolation
invariants par blocs et qui capturent la redondance des calculs dûs à la symétrie. On
montre que les bases d’interpolation adaptées à la symétrie ainsi construites allègent
le coût de calcul de tout problème d’interpolation et préservent automatiquement
toute équivariance que celui-ci pourrait avoir.

Les interpolations multivariées de Lagrange et Hermite sont des exemples d’inter-
polation idéale. Plus généralement, un problème d’interpolation idéal est défini par
un ensemble de formes sur l’anneau polynomial, dont les noyaux se croisent en un
idéal. Pour un problème d’interpolation idéal avec symétrie, on aborde le calcul
d’une base adaptée à la symétrie du moindre espace d’interpolation et d’une H-base
l’idéal adaptée à la symétrie. Outre sa présence manifeste dans la sortie, la symétrie
est exploitée à toutes les étapes de l’algorithme.

Les bases adaptées à la symétrie sont constituées d’équivariants fondamentaux
et ceux-ci forment des modules sur l’anneau des invariants. Dans cette thèse, on
propose trois algorithmes pour calculer des ensembles générateurs pertinents de ces
modules, ainsi que des ensembles générateurs pour l’anneau des invariants.

On montre comment la théorie de l’interpolation idéale qu’on a développée
peut-être appliquée pour calculer les invariants et les équivariants générateurs d’un
groupe de réflexion. Etant donné un ensemble d’invariants primaires pour toute
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représentation d’un groupe fini, on applique les algorithmes des Chapitres 3 et 4
pour calculer en même temps un ensemble d’invariants secondaires et des bases
libres pour tous les modules équivariants fondamentaux. On propose un nouvel
algorithme pour calculer un ensemble d’invariants générateurs simultanément aux
équivariants générateurs.

Mots Clés : Interpolation, Symétrie, Théorie des représentations, Action de
groupe, H-base, Matrice de Macaulay, Matrice de Vandermonde, Théorie des invari-
ants



Abstract

Symmetry is ubiquitous in science and art. In this thesis we consider symmetries
described by the representation of a finite group. Symmetry adapted bases of poly-
nomial rings are essential in order to preserve and exploit symmetry in algebraic
computations. In this work we address three algebraic problems in which symmetry
is naturally embedded: multivariate interpolation, ideal interpolation and gener-
ation of fundamental equivariants. We make use of symmetry adapted bases to
reduce the computations by a factor depending on the size of the group, to reflect
the initial symmetries on the provided solutions, and to compute generating sets of
equivariants.

Interpolation is a prime tool in algebraic computation while symmetry is a quali-
tative feature that can be more relevant to a mathematical model than the numerical
accuracy of the parameters. We show how to exactly preserve symmetry in multivari-
ate interpolation while exploiting it to alleviate the computational cost. We revisit
minimal degree and least interpolation with symmetry adapted bases, rather than
monomial bases. This allows to construct bases of invariant interpolation spaces in
blocks, capturing the inherent redundancy in the computations. We show that the
so constructed symmetry adapted interpolation bases alleviate the computational
cost of any interpolation problem and automatically preserve any equivariance of
this interpolation problem might have.

Multivariate Lagrange and Hermite interpolation are examples of ideal interpo-
lation. More generally, an ideal interpolation problem is defined by a set of linear
forms, on the polynomial ring, whose kernels intersect into an ideal.

For an ideal interpolation problem with symmetry, we address the simultaneous
computation of a symmetry adapted basis of the least interpolation space and the
symmetry adapted H-basis of the ideal. Beside its manifest presence in the output,
symmetry is exploited computationally at all stages of the algorithm.

Symmetry adapted bases are indeed made of fundamental equivariants and these
form finitely generated modules over the invariant ring. In this work we offers
algorithms to compute relevant sets of generators of these modules, together with
generators for the ring of invariants.

We show how the ideal interpolation theory that we developed can be applied
to compute the generating invariants and equivariants of a reflection group. Given
a set of primary invariants for any representation of a finite group, we apply the
algorithms in Chapters 3 and 4 to compute both a set of secondary invariants; and
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free bases of all fundamental equivariant modules. We propose a new algorithm to
compute a set of generating invariants simultaneously to the generating equivariants.

Keywords : Interpolation, Symmetry, Representation Theory, Group Action,H-
basis, Macaulay matrix, Vandermonde matrix, Invariant Theory.
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Chapter 1

General introduction

This introductory chapter provides an overview of the contributions in this thesis.
Since we kept the chapters of this thesis as close as possible to their original publi-
cations, more discussion on the state of the art can be found within the individual
chapters.

Preserving and exploiting symmetry in algebraic computations is a challenge
that has been addressed within a few topics and, mostly, for specific groups of
symmetry; for instance interpolation and symmetric group (Krick et al., 2017),
cubature (Collowald and Hubert, 2015), (Gatermann, 1992), global optimisation
(Gatermann and Parrilo, 2004; Riener et al., 2013), equivariant dynamical systems
(Gatermann, 2000; Hubert and Labahn, 2013) and solving systems of polynomial
equations (Faugere and Svartz, 2013; Gatermann, 1990; Gatermann and Guyard,
1999; Hubert and Labahn, 2012, 2016; Riener and Safey El Din, 2018; Verschelde
and Gatermann, 1995). Our objective in this thesis is to solve algebraic problems so
that the initial symmetries are reflected in the provided solutions. In addition to be
manifested in the output, we want symmetry to be exploited all along our algorithms
to reduce the size of the matrices involved, and avoid sizable redundancies. We are
also interested in the computation of generating sets of fundamentals invariants and
equivarinats, which play a key role in a large number of applications in different
mathematical disciplines.

We focus on three problems: Multivariate interpolation, ideal interpolation and
computation of fundamental equivariants. However, the theory developed in this
work can be used as a framework for different algebraic problems in the presence of
symmetries.

Multivariate Interpolation.

Due to its relevance in approximation theory and geometrical modeling, interpo-
lation is a prime topic in algebraic computation. Polynomial interpolation in n
variables has been widely studied, see (Gasca and Sauer, 2000; Lorentz, 2000) for
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good surveys in the area. Unlike univariate interpolation in which there is a unique
interpolation space of polynomials of degree less or equal to k for any given set of
(k + 1) points in R, there is no such corresponding space in the multivariate case.
Then the structure of the input data needs to be taken into account.

Lagrange interpolation is what comes to mind when we speak of interpolation.
For a set of r points ξ1, . . . , ξr in n-space, and r values η1, . . . , ηr, Lagrange interpo-
lation consists in finding a n-variate polynomial function p such that p(ξi) = ηi, for
1 ≤ i ≤ r. The evaluations at the points ξi form a basic example of linear forms. The
space they generate is invariant under a group action as soon as the set of points is
a union of orbits of this group action. The above interpolation problem is invariant
if ηi = ηj whenever ξi and ξj belong to the same orbit. It is then natural to expect
an invariant polynomial as interpolant. Yet, contrary to the univariate case, there
is no unique interpolant of minimal degree and the symmetry of the interpolation
problem may very well be violated in the computed solution (compare Figure 1.1c
and 1.1b).

(a) interpolation data (b) invariant interpolant of
minimal degree (c) interpolant obtained

from a monomial basis

Figure 1.1: Invariant Lagrange interpolation problem

Among the several problems in multivariate interpolation, we focus on the con-
struction of a polynomial interpolation space for a given set of linear forms. An
interpolation space for a set of linear forms is a subspace of the polynomial ring
that has a unique interpolant for each instantiated interpolation problem. Along
this thesis we consider an interpolation problem as a pair (Λ, φ) where Λ is a fi-
nite dimensional linear subspace of K[x]∗ and φ ∶ Λ Ð→ K is a K-linear map. An
interpolant, i.e., a solution to the interpolation problem, is a polynomial p such that

λ(p) = φ(λ) for any λ ∈ Λ.

In Chapter 3 we consider general sets of linear forms; instead of, or in addition
to, fixing the values at the nodes, we could also impose the values of some deriva-
tives, moment functionals, or coefficients in a given basis of functions. The new



11 CHAPTER 1. GENERAL INTRODUCTION

angle on the above problems that is offered in Chapter 3 is to consider general sets
of linear forms invariant under a group action and seek to compute interpolants that
respect the symmetry of the interpolation problem. We mentioned invariance as an
instance of symmetry, but equivariance is the more general concept. We show that
the unique interpolants automatically inherit the symmetry of the problem when
the interpolation space is invariant. We need to point out that an invariant inter-
polation space is generally not spanned by monomials, when much of the literature
on algebraic computation restricts to monomial bases.

For a space of linear forms Λ, a canonical interpolation space Λ↓ also known as the
least interpolation space, was introduced by De Boor and Ron (1990, 1992a,b). It has
a desirable set of properties. We shall observe that it is invariant as soon as the space
of linear forms is. In floating point arithmetics though, the computed interpolation
space might fail to be exactly invariant. Yet, in mathematical modeling, symmetry is
often more relevant than numerical accuracy. We shall remedy this flaw and further
exploit symmetry to mitigate the cost and numerical sensitivity of computing a
minimal degree or least interpolation space.

Ideal Interpolation and H-Basis.

Multivariate Lagrange and Hermite, interpolation are examples of the encompassing
notion of ideal interpolation, introduced in (Birkhoff, 1979). They are defined by
linear forms consisting of evaluation at some nodes, and possibly composed with
differential operators, without gaps. More generally, a space of linear forms Λ on
the polynomial ring K[x] = K[x1, . . . , xn] is an ideal interpolation scheme if

I = ⋂
λ∈Λ

ker λ = {p ∈ K[x] ∶ λ(p) = 0, for all λ in Λ}

is an ideal in K[x]. In the case of Lagrange interpolation, I is the ideal of the nodes
and is thus a radical ideal.

An interpolation space for Λ identifies with the quotient space K[x]/I. Hence,
a number of operations related to I can already be performed with a basis of an
interpolation space for Λ: decide of membership to I, determine normal forms of
polynomials modulo I and compute matrices of multiplication maps in K[x]/I.
Given a Gröbner basis of I, its corresponding set of reduced monomials span an
interpolation space. The relation between the reduction module a Gröbner basis
and multivariate interpolation is exploited in (Sauer, 1998; De Boor, 2004).

Initiated in (Möller and Buchberger, 1982), for a set Λ of point evaluations, com-
puting a Gröbner basis of I found applications in the design of experiments (Pistone
and Wynn, 1996; Pistone et al., 2000). As pointed out in (Marinari et al., 1991),
one can furthermore interpret the FGLM algorithm (Faugere et al., 1993) as an in-
stance of this problem. The linear forms are the coefficients, in the normal forms, of
the reduced monomials. The alternative approach in (Faugère and Mou, 2017) can
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be understood similarly. The resulting algorithm then pertains to the Berlekamp-
Massey-Sakata algorithm and is related the multivariate version of Prony’s problem
to compute Gröbner bases, or border bases or H-basis (Berthomieu et al., 2017;
Mourrain, 2017; Sauer, 2017, 2018).

All, the above mentioned algorithms and complexity analyses heavily depend
on a term order and basis of monomials. These are notoriously not suited for
preserving symmetry. Our ambition in Chapter 4 is to showcase how symmetry can
be embedded in the representation of both the interpolation space and the repre-
sentation of the ideal. This is a marker for the more canonical representations.

In the case of ideal interpolation, the least interpolation space is a canonical
representation of the quotient of the polynomial algebra by the ideal. It is the
orthogonal complement of the space of leading forms of the defined ideal. It has
great properties, even beyond symmetry, that cannot be achieved by a space spanned
by monomials. These latter are the object of focus for using H-bases as an alternative
approach in interpolation. The least interpolation space can be seen as the space
induced by the reduction process module an orthogonal H-basis (Sauer, 2001). H-
bases connection with multivariate polynomial interpolation has been approached
in the literature (De Boor, 1994; Möller and Sauer, 2000; Sauer, 2002, 2006)

Introduced by Macaulay (1916), H-bases are more intrinsically tied to the ideal.
Their computation from generators of the ideal is challenging though holds promises
in a symbolic-numeric setting (Möller and Sauer, 2000; Javanbakht and Sauer, 2019).
By providing the computation of a symmetry adapted H-basis, in the case of ideal
interpolation, we demonstrate that symmetry can be naturally preserved and repre-
sented in H-bases, as well as exploited in the course of their computation (compare
Figure 1.2c and 1.2b).

(a) invariant set of points

(b) Variety of the minimal
degree invariant recovered
from a symmetry adapted
H-basis

(c) Variety of a minimal
degree polynomial recov-
ered from Gröbner basis

Figure 1.2: Lowest degree algebraic surface through an invariant set of the points

In Chapter 4 we provide an algorithm to compute simultaneously a symmetry
adapted basis of the least interpolation space and a symmetry adapted H-basis of
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the associated ideal. Based on QR-decomposition, the algorithm also lends itself to
numerical computations. Our algorithm somehow fits in the loose sketch proposed in
(De Boor, 1994). Yet we are now in a position to incorporate symmetry in a natural
way, refining the algorithm to exploit it. Symmetry is preserved and exploited thanks
to the block diagonal structure of the matrices at play in the algorithms.

Computation of fundamental equivariants and invariants.

The computation of invariants of group action has been an active subject since the
19th century. Celebrated mathematicians have left their mark on the subject and
textbooks reporting major progress still appeared recently (Derksen and Kemper,
2015; Sturmfels, 2007).

Invariant theory has a wide range of applications. Many of these depend on
computing generating set of rings of invariants. Below we mention some relevant
applications in different mathematical disciplines.

In computer vision invariants are useful for classifying objects up to the action
of a group of transformation. The objects are described in terms of invariants
and these invariants are used to provide all the essential information related to
the object. A good survey in the area can be found in (Mundy et al., 1992). In
(Palmer et al., 2020) the invariants of the octahedral group are used to cut the
variety of frame fields that are used to construct hexahedral meshes of volumes
in computer graphics. In graph theory the computation of generating invariants
for permutation representation has been used to show whether or not two given
graphs are isomorphic (Aslaksen et al., 1996; Thiéry, 2000). In code theory, once
a code is converted in polynomials constrains, invariant theory is used to restrict
the polynomials that satisfy the constraints (Sloane, 1977; Bannai et al., 1999; Nebe
et al., 2006). In quantum computing generating invariants of density operators are
computed to determine whether or not two quantum systems are locally equivalent
(Makhlin, 2002; Albeverio et al., 2005; King et al., 2007). Classical application for
solving systems of algebraic equations and for studying the behavior of dynamical
systems can be found in (Gatermann, 1990) and (Gatermann, 2000) respectively.

Several algorithms have been proposed for computing generating invariants of
finite groups. Algorithms to compute sets of primary and secondary invariants can
be found in (Kemper, 1999; Kemper and Steel, 1999; Gatermann, 2000; Sturmfels,
2007). For the computation of fundamental invariant we refer to (King, 2013). In
Chapter 5 we give a brief overview of these different algorithms. For a complete
overview of the subject as well as a more extensive comparison among the different
existing techniques we refer to (Derksen and Kemper, 2015).

Semi-invariants and equivariants, sometimes called covariants, appear frequently
in different mathematical models. Equivariants appear for the study of dynamical
systems and their bifurcations (Chossat and Lauterbach, 2000; Gatermann, 2000;
Golubitsky and Schaeffer, 1985; Golubitsky et al., 1988), mechanics (Olive et al.,
2018), and cryptography (Lercier et al., 2016; Mestre, 1991). Despite their relevance
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though, the few algorithms to compute equivariants (Stanley, 1979; Worfolk, 1994;
Gatermann, 1996) are not as advanced.

Any polynomial equivariant can be written in terms of fundamental equivariants,
i.e., equivariants for the irreducible representations of the group, the algorithms
presented in this thesis thus fill a void in the subject.

In Chapter 5 we show the existing link between symmetry adapted basis and
fundamental equivariants. Symmetry adapted bases are indeed made of fundamental
equivariants and these form finitely generated modules over the invariant ring. We
propose algorithms to simultaneously compute sets of generators of these modules,
together with generators for the ring of invariants. We show how ideal interpolation
can be used to compute the generating invariants and equivariants of a reflection
group. We also show how to obtain a set of secondary invariants; and free bases of
all fundamental equivariant for a set of primary invariants for any representation of
a finite group.

SyCo (Symmetry and Computations)

Our research results and algorithms are implemented into a Maple library. We pro-
vide generic representations of linear actions over vector spaces and linear forms. In
this way our library is flexible, to add new linear forms and groups, it is only nec-
essary to inherit the provided structure. We offer procedures with multiple options
to compute symmetry adapted bases, interpolation spaces, H-basis, fundamental
invariants and equivariants. Our methods preserve and exploit symmetry at each
step.

Much of the content of this work has been published and presented in the fol-
lowing papers and venues:

Multivariate Interpolation:

• Rodriguez Bazan, E., Hubert, E., 2019. Symmetry Preserving Interpolation.
In: ISSAC’19. ACM, Beijing, China, pp. 34–41

• Presented in SIAM Conference on Applied Algebraic Geometry. July 11-15,
2019, Bern, Switzerland.

• Poster presentation in Summer School on Numerical Computing in Algebraic
Geometry. August 13-17, 2018, Leipzig, Germany.

Ideal Interpolation:

• Rodriguez Bazan, E., Hubert, E., 2020. Ideal Interpolation, H-basis and Sym-
metry. In: ISSAC’20. ACM, Kalamata, Greece

• Presented in Journées nationales de calcul formel. March 2-6, 2020, CIRM,
Marseille, France.
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Equivariants

• Hubert, E., Rodriguez Bazan, E., Algorithms for fundamental equivariants
and invariants.

This manuscript is structured as follows. We start in Chapter 2 by introducing
the relevant mathematical concepts and results that will be used in our work. In
Chapter 3 we show how to exactly preserve symmetry in multivariate interpolation.
In Chapter 4 we address the simultaneous computation of a symmetry adapted basis
of the least interpolation space and the symmetry adapted H-basis of the ideal. In
Chapter 5 we offer algorithms to compute relevant sets fundamental equivariants,
together with generators for the ring of invariants. Finally, in Chapter 6, we present
the library we developed with the implementations of the methods and algorithms
from chapters 3 to 5. We concluded with some general overviews and comments on
future development.
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Chapter 2

Preliminaries

2.1 Notations

In this section we introduce some of the notation we use throughout the thesis. Let
K be either C or R. K[x] = K[x1, . . . , xn] denotes the ring of polynomials in the
variables x1, . . . , xn with coefficients in K; K[x]≤d and K[x]d the K−vector spaces of
polynomials of degree at most d and the space of homogeneous polynomials of degree
d respectively. The dual of K[x], the set of K−linear forms on K[x], is denoted by
K[x]∗. By K[x]m we denote the space of polynomials maps with m− components.

2.2 Duality

K[x]∗ can be identified with the ring of formal power series K[[∂]] = K[[∂1, . . . , ∂r]]
through the isomorphism Φ ∶ K[[∂]] Ð→ K[x]∗, where for p = ∑α pαx

α ∈ K[x] and
f = ∑α∈Nn fα∂

α ∈ K[[∂]]

Φ(f)(p) ∶= ∑
α∈Nn

fα
∂αp

∂xα
(0) = ∑

α∈N
α!fαpα.

For instance, the evaluation eξ at a point ξ ∈ Kn is represented by e(ξ,∂) =∑
k∈N

(ξ, ∂)k
k!

,

the power series expansion of the exponential function with frequency ξ.
The dual pairing

K[x]∗ ×K[x] → K
(λ, p) → λ(p)

induces the apolar product on K[x] by associating p ∈ K[x] to p(∂) ∈ K[[∂]]. For
p = ∑α pαx

α and q = ∑α qαx
α the apolar product between p and q is given by

⟨p, q⟩ ∶= p(∂)q =∑
α

α!pαqα ∈ K.

Note that for a linear map a ∶ Kn → Kn, ⟨p, q ○ a⟩ = ⟨p ○ at, q⟩.
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For a set of linearly independent homogeneous polynomials P we define the dual
set P† to be a set of homogeneous polynomials such that ⟨p†

i , pj⟩ = δij. For instance
the dual basis of the monomial basis {xα}α∈Nn is { 1

α!x
α}α∈Nn . Thus any linear form

λ ∈ K[x]∗ can be written as λ = ∑
α∈Nn

1

α!
λ(xα)∂α ∈ K[[∂]]. More generally, any linear

form on ⟨P⟩ can be written as

λ = ∑
p∈P

λ(p)p†(∂) ∈ K[[∂]].

2.3 Linear representations of finite groups

The basic material on representation of finite groups is taken from Serre (1977) and
Fässler and Stiefel (1992). We deal with a finite group G.

2.3.1 Linear representations and characters

A linear representation of the group G on the C−vector space V is a group morphism
from G to the group GL(V ) of isomorphisms from V to itself. V is called the
representation space and n is the dimension (or the degree) of the representation
r. If V has finite dimension n, and r is a linear representation of G on V , upon
introducing a basis P of V the isomorphism r(g) can be described by a non-singular
n × n matrix. This representing matrix is denoted by [r(g)]P . The complex-value
function

χ ∶ G Ð→ C, with χ(g)→ Trace(r(g))

is the character of the representation r.

The dual or contragredient representation of r is the representation r∗ on the
dual vector space V ∗ defined by:

r∗(g)(λ) = λ ○ r(g−1) for any λ ∈ V ∗. (2.3.1)

If P is a basis of V and P∗ its dual basis then [r∗(g)]P∗ = [r(g−1)]tP . It follows that

χr∗(g) = χr(g−1) = χr(g).

A linear representation r of a group G on a space V is irreducible if there is
no proper nonzero subspace W of V with the property that, for every g ∈ G, the
isomorphism r(g) maps every vector of W into W . In this case, its representation
space V is also called irreducible. The contragredient representation r∗ is irreducible
when r is. A finite group has a finite number of inequivalent irreducible representa-
tions. Any representation of a finite group is completely reducible, meaning that it
decomposes into a finite number of irreducible subspaces.
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Let r` (` = 1, . . . ,n) be the irreducible n` dimensional representations of G. The
complete reduction of the representation r and its representation space are denoted
by

r = c1r1 ⊕ ⋅ ⋅ ⋅ ⊕ cnrn and V = V (1) ⊕ ⋅ ⋅ ⋅ ⊕ V (n). (2.3.2)

Each invariant subspace V (`) is the direct sum of c` irreducible subspaces and the
restriction of r to each one is equivalent to r`. The (c`n`)−dimensional subspaces
V (`) of V are the isotypic components.

The decomposition of V into irreducible components is not unique, whereas its
decomposition into a direct sum of isotypic components is unique (Fulton and Harris,
1991, Proposition 1.8) and is called the isotypic decomposition of V .

An element v ∈ V is called invariant, if r(g)(v) = v, for any g ∈ G. The invariant
elements of V form a vector space denoted by V G. The invariant subspace V G is
the isotypic component corresponding to the unit representation r1. The elements
of V (`), with ` > 1, are called semi-invariants (Gatermann, 1996).

A representation with character χ is irreducible if and only if

1

∣G∣∑g∈G
χ(g)χ(g) = 1.

With χ` the character of r` we determine the multiplicity c` and the projection
π` onto the isotypic component V (`)

c` =
1

∣G∣∑g∈G
χ`(g)χ(g), π` =

n`
∣G∣∑g∈G

χ`(g−1)r(g). (2.3.3)

2.3.2 Symmetry adapted bases

A basis that is compatible with the decomposition of a vector space V into isotypic
components is called a symmetry adapted basis. The construction of a symmetry
adapted basis is basically given by (Serre, 1977, Proposition 8) that we reproduce
here for ease of reference.

Proposition 2.3.1 (Serre, 1977, Proposition 8) Consider r`(g) a representing ma-

trix for an irreducible n`−dimensional representation r`. The linear maps π
(`)
αβ ∶ V →

V defined by

π
(`)
αβ (v) =

n`
∣G∣∑g∈G

[r`(g)]βα (g−1) r(g)(v)

satisfy the following properties:

(1) For every 1 ≤ α ≤ n`, the map π
(`)
αα is a projection ; it is zero on the isotypic

components V (k), k ≠ `. Its image V (`,α) is contained in V (`) and

V (`) = V (`,1) ⊕ ⋅ ⋅ ⋅ ⊕ V (`, n`), (2.3.4)

while π(`) =
n`

∑
α=1

π
(`)
αα .
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(2) For every 1 ≤ α,β ≤ n`, the linear map π
(`)
αβ is zero on the isotypic compo-

nents V (k), k ≠ `, as well as on the subspaces V (`, k) for k ≠ ` ; it defines an
isomorphism from V (`, β) to V (`,α).

(3) For any v ∈ V and 1 ≤ γ ≤ n` consider vσ = π(`)
σγ (v) ∈ V (`, σ) for all 1 ≤ σ ≤

n`. If non zero, v1, . . . , vn` are linearly independent and generate an invariant
irreducible subspace of dimension n`. For each g ∈ G, we have

r(g)(vγ) =
n`

∑
σ=1

[r`(g)]σγ (vσ) ∀σ, γ = 1, . . . , n`.

(4) For every 1 ≤ α,β, γ, δ ≤ n`, we have

π
(`)
αβ ○ π

(`)
γδ = { π

(`)
αδ if β = γ

0 otherwise.

Considering {π(`)
11 (v1), . . . , π(`)

11 (vc`)} a basis of the subspace V (`,1) = π(`)
11 (V ), a

symmetry adapted basis P(`) of the isotypic component V (`) is then given by:

P(`) = {π(`)
11 (v1), . . . , π(`)

11 (vc`), . . . , π
(`)
n`1

(v1), . . . , π(`)
n`1

(vc`)} . (2.3.5)

The union P of the P(`) for 1 ≤ ` ≤ n, is a symmetry adapted basis for V . Indeed,

by Proposition 2.3.4, the set {π(`)
α1 (v1), . . . , π(`)

α (vc`)} is a basis of V (`,α) = π(`)
αα (V )

and V (`) = V (`,1) ⊕ ⋅ ⋅ ⋅ ⊕ V (`, n`).
Hereafter we denote by P(`,α) the polynomial map defined by

P(`,α) = (π(`)
α1 (v1), . . . , π(`)

α (vc`)) . (2.3.6)

A symmetry adapted basis P is characterized by the fact that

[r(g)]P = diag (r1(g)⊗ Ic1 , . . . , rn(g)⊗ Icn) .

Then [r∗(g)]P∗ = diag (r−ti (g)⊗ Ici ∣ i = 1..n).
As we can perceive in (2.3.5), a symmetry adapted basis of a vector space V is

not unique, yet it is fully determined by the choice of the bases for the subspaces
V (`,1) with 1 ≤ ` ≤ n.

Proposition 2.3.2 If P = ∪n
i=1P(i) be a symmetry adapted basis of V where P(i)

spans the isotypic component associated to ri then its dual basis P∗ = ∪n
i=1 (P(i))∗ in

V ∗ is a symmetry adapted basis where (P(i))∗ spans the isotypic component associ-
ated to r∗i .

Corollary 2.3.3 If P is a symmetry adapted basis of K[x]≤δ, so is its dual P† with
respect to the apolar product.



21 CHAPTER 2. PRELIMINARIES

Theorem 2.3.4 Let ϑ and θ be representations of G on the vector space V and
W respectively, and P and Q the respective symmetry adapted bases. Consider
φ ∶ V Ð→ W an ϑ − θ equivariant map, i.e., φ ○ ϑ(g) = θ(q) ○ φ for all g ∈ G. The
matrix Φ of φ in the bases P and Q has the following structure

Φ = diag (Ini ⊗Φi ∣ i = 1 . . .n) , (2.3.7)

where Φi is a ci × c′i matrix, ci and c′i being the multiplicities of the i−th irreducible
representation of G in V and W respectively.

This is a consequence of Schur lemma (Serre, 1977, Proposition 4). The proof is
an simple extension of the result for an equivariant endomorphism φ ∶ V Ð→ V in
(Fässler and Stiefel, 1992, Theorem 2.5).

A scalar product is G−invariant with respect to a linear representation r if

⟨v,w⟩ = ⟨r(g)(v), r(g)(w)⟩ for any g ∈ G and v,w ∈ V

If we consider unitary representing matrices r`(g), and an orthonormal basis

{π(`)
11 (v1), . . . , π(`)

11 (vc`)}

of V (`,1) with respect to a G−invariant inner product, then the same process leads
to an orthonormal symmetry adapted basis (Fässler and Stiefel, 1992, Theorem 5.4).

2.3.3 Real symmetry adapted bases

Some group have irreducible representations that have no representing matrices in
R, as is the case for the cyclic group Cm, m > 2. This would lead to symmetry
adapted bases whose components are polynomials in C[x]. This is not desirable for
an interpolation problem over R. Fortunately one can determine a real symmetry
adapted basis by combining the isotypic components related to conjugate irreducible
representations.

Based on (Serre, 1977, Chapter 13.2), we study the linear representations on
a R−vector space from the linear representations on a C−vector space. In fact,
any linear representation r on a R−vector space V can be considered as a linear
representation on the C−vector space V ⊗R C, i.e., the vector space obtained from
V by extending the scalars from the real numbers to the complex numbers.

Three types of irreducible representations on a C−vector space are distinguished
in (Serre, 1977, Chapter 13.2). Let r be an irreducible representation of a finite
group G on a n−dimensional C−vector space V and let χ be its character. The three
mutually exclusive cases are the following:

1. Complex type The character χ is not real-valued. Hence r and its conjugate
r̄ are non equivalent irreducible representations. When restricting the scalars,
r defines an irreducible representation on a R−vector space of dimension 2n
with character χ + χ.
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2. Absolutely irreducible The representation r can be realized by matrices
having coefficients in R. Hence r defines an irreducible representation r on a
R−vector space of dimension n with character χ.

3. Quaternonian type The character χ is a real-valued function, but the rep-
resentation r cannot be realized by matrices having coefficients in R. By re-
striction of the scalars, r defines an irreducible representation r on a R−vector
space of dimension 2n with character 2χ.

According to (Serre, 1977, Proposition 39), an irreducible representation r is of type
1, 2, 3, if and only if 1

∣G∣ ∑g∈G χ(g2) is equal to 0,+1, or − 1, respectively. We shall
denote M the number of absolutely irreducible representations of the group G and
2L the number of irreducible representations of complex type. They will be denoted
r1, . . . , rM , and rM+1, . . . , rM+L together with their conjugates r̄M+1, . . . , r̄M+L. We
shall make the reasonable asumption that the group considered has no irreducible
representation of quaternion type.

The construction of a real symmetry adapted basis for a real represenation r on a
R-vector space V is based on the construction of a complex symmetry adapted basis
as presented in Section 2.3.1. From a basis of the isotypic component associated
to ri, for 1 ≤ i ≤ M + L we construct a basis for the real irreducible representation
defined by ri.

Absolutely irreducible In this case we can choose representing matrices r`(g)
of the irreducible representation r` with real entries. Taking a real basis

{π(`)
11 (p1) , . . . , π(`)

11 (pc`)}

of the subspace π
(`)
11 (V ⊗R C), the basis

P(`) = {π(`)
11 (p1) , . . . , π(`)

11 (pc`) , . . . , π
(`)
n`1

(p1) , . . . , π(`)
n`1

(pc`)} (2.3.8)

is a real symmetry adapted basis of V (`).

Complex Type Let r` be an irreducible representation of complex type and χ` its
character. Since χ` and χ` are different characters of G, then r` and r` are inequiv-
alent irreducible representations of r, both with multiplicity c`. A real symmetry

adapted basis P(`) of the space V (`) ⊕ V (`)
is given by

P(`) = {p1 + p1,
1
i (p1 − p1) , . . . , pc` + pc` ,

1
i
(pc` − pc`) , . . . ,

π
(`)
n`1

(p1) + π(`)
n`1

(p1) , 1
i (π

(`)
n`1

(p1) − π(`)
n`1

(p1)) , . . . ,

π
(`)
n`1

(pc`) + π
(`)
n`1

(pc`) ,
1
i (π

(`)
n`1

(pc`) − π
(`)
n`1

(pc`))} ,
(2.3.9)
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where {π(`)
11 (p1) , . . . , π(`)

11 (pc`) , . . . , π
(`)
n`1

(p1) , . . . , π(`)
n`1

(pc`)} is a complex symmetry

adapted basis of V (`).

Considering bk =
⎧⎪⎪⎨⎪⎪⎩

pk + p̄k if k mod 2 = 1

1
i (pk − p̄k) otherwise

and π̂
(`)
α1 = π

(`)
α1 + π(`)

α1 we can

write Equation (2.3.9) in a similar fashion than Equation (2.3.8) as follows

P(`) = {b1, . . . , b2c` , . . . , π̂
(`)
n`1

(b1) , . . . , π̂(`)
n`1

(b2c`)} . (2.3.10)

Notice that if p1, . . . , pcj are ordered by degree, so are b1, . . . , b2cj , and if {p1, . . . , pc`}
is an orthonormal basis then:

⟨π(`)
α1 (bk) ± π

(`)
α1 (bk), π

(`)
α1 (bi) ± π

(`)
α1 (bi)⟩ = ∓2δki. (2.3.11)

Hence 1√
2
P(`) is an orthonormal symmetry adapted basis of V .

When the group G admits absolutely irreducible representations and irreducible
representation of complex type, a real symmetry adapted basis for a representation
space V is characterized by the fact that

[r(g)]P = diag (A1(g), . . . , AM+L(g)) ,

and Aj(g) is given by

Aj(g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rj(g)⊗ Icj if 1 ≤ j ≤M

⎛
⎜⎜⎜⎜
⎝

Icj ⊗Bj
11(g) Icj ⊗Bj

12(g) ⋯ Icj ⊗Bj
1nj

(g)
Icj ⊗Bj

21(g) Icj ⊗Bj
21(g) ⋯ Icj ⊗Bj

2nj
(g)

⋯ ⋯ ⋯
Icj ⊗Bj

nj1
(g) Icj ⊗Bj

nj2
(g) ⋯ Icj ⊗Bj

njnj(g)

⎞
⎟⎟⎟⎟
⎠

if M < j ≤M +L

with Bj
αβ(g) = (s

j
αβ(g) −tjαβ(g)
tjαβ(g) sjαβ(g)

) , Sj(g) = 1
2 (rj(g) + rj(g)) and

Tj(g) = i
2 (rj(g) − rj(g)) .

Proposition 2.3.5 Let ϑ and θ be representations of G on the R−vector space V and
W respectively, with real symmetry adapted bases P and Q. Consider ψ ∶ V Ð→W
a ϑ − θ equivariant map. Then the matrix Ψ of ψ in the bases P and Q has the
following structure

Ψ = diag (Ini ⊗Ψi ∣ i = 1 . . .M +L) . (2.3.12)

If P and Q stem from the symmetry adapted bases P̂ and Q̂ of V ⊗RC and W ⊗RC
respectively and Φ = diag (Ini ⊗Φi ∣ i = 1 . . .n) is the matrix in w.r.t P̂ and Q̂ of
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the ϑ − θ equivariant map φ ∶ V ⊗R C Ð→ W ⊗R C, given by φ(zv) → Re(z)ψ(v) +
i Im(z)ψ(v). Then for every 1 ≤ j ≤M +L the matrix Ψj has the following structure

Ψj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φj if 1 ≤ j ≤M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

s j
11 −t j11 . . . s j

1cj
−t j1cj

t j11 s j
11 . . . t j1cj s j

1cj

⋯ ⋯ ⋯ ⋯
s j
c′j1

−t jc′j1 . . . s j
c′jcj

−t jc′jcj
t jc′j1

s j
c′j1

. . . t jc′jcj
s j
c′jcj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

if M < j ≤M +L
,

where ci and c′i are the multiplicities of the i−th irreducible representation of G in V
and W respectively and the matrices Sj = (s j

αβ)1≤α≤cj
1≤β≤c′j

and Tj = (t jαβ)1≤α≤cj
1≤β≤c′j

are defined

by

Sj = 1

2
(Φj +Φj) Tj = i

2
(Φj −Φj) .

proof: For every real vector v we have that ψ(v) = φ(v). We distinguish now
two cases:

• vjαk is an element of a symmetry adapted basis associated to an irreducible

component of absolutely irreducible type. Then ψ(vjαk) = φ(v
j
αk) = ∑

c′j
`=1 Φ

(j)
`α w

j
α`

and the structure of Ψj for 1 ≤ j ≤M follows

• vjαk is an element of a symmetry adapted basis associated to an irreducible
component of complex type. Then the elements of the real symmetry adapted

basis P(j) for V (j)⊕V (j)
are given by Equation (2.3.10). The following qualities

holds

ψ (vjαk + v
j
αk) =

c′j

∑
`=1

Φ
(j)
`α w

j
α`+

c′j

∑
`=1

Φ
(j)
`α w

j
α` =

c′j

∑
`=1

{sj`α (wjα` +w
j
α`) + t

j
`α (w

j
α` −w

j
α`

i
)}

ψ (1

i
(vjαk − v

j
αk)) =

c′j

∑
`=1

{−tj`α (wjα` +w
j
α`) + s

j
`α (w

j
α` −w

j
α`

i
)}

and therefore the structure of Ψj follows for M ≤ j ≤M +L.

◻

Conventions We introduce the following conventions so as to have uniform state-
ments for symmetry adapted bases of both real and complex vectors spaces. In the
complex case N =M + 2L is the number of inequivalent irreducible representations
of the group G and ci is the multiplicity of ri in the representation considered. In the
real case N = M + L is the number of inequivalent real irreducible representations
of the group G and ci is, in the representation considered,
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• the multiplicity of ri if 1 ≤ i ≤M ;

• is twice the multiplicity of ri if M + 1 ≤ i ≤M +L .

In either case we denote a symmetry adapted basis by P = ∪Ni=1P(i) and say that P(i)

is determined by p1, . . . , pci to mean that the basis of P(i) is

In the complex case:

{p1, . . . , pci , . . . , π
(i)
ni1

(p1) , . . . , π(i)
ni1

(pci)}

In the real case and 1 ≤ i ≤M : same as above

In the real case and M + 1 ≤ i ≤M +L :

{p1, . . . , pci , . . . , π̂
(i)
ni1

(pi) , . . . , π̂(i)
ni1

(pci)} .

2.4 Invariant theory

In this section we introduce some basic notions of invariant theory. The litera-
ture on the computation of polynomial invariants is rather extensive, for proof and
more extensive discussion we shall restrict here to the book references (Derksen and
Kemper, 2015; Gatermann, 2000; Sturmfels, 2007; Stanley, 1979).

The symmetries we deal with are given by the linear action of a finite group G
on Kn. It is thus given by a representation ϑ of G on Kn. It induces a representation
ρ of G on K[x] given by

ρ(g)p(x) = p ○ ϑ (g−1) , (2.4.1)

for p ∈ K[x], g ∈ G. For a row vector q = [q1, . . . , qm] ∈ K[x]m of polynomials we write
ρ(g)(q) for the row vector [ρ(g)(q1), . . . , ρ(g)(qm)] ∈ K[x]m. For ξ ∈ Kn, p ∈ K[x]
or q ∈ K[x]m we occasionally write g ⋅ ξ, g ⋅ p, or g ⋅ q instead of ϑ(g)(ξ), ρ(g)(p) or
ρ(g)(q).

The representation ρ ∶ G → GL(K[x]) leaves invariant the finite dimensional
subspace K[x]d spanned by the homogeneous polynomials of degree d. The isotypic

components of K[x]d are denoted K[x](`)d . We write

K[x] =⊕
d∈N

K[x]d =⊕
d∈N

n

⊕
`=1

K[x](`)d , K[x](`) =⊕
d∈N

K[x](`)d , K[x] =
n

⊕
`=1

K[x](`).

Similarly

K[x](`) =⊕
d∈N

K[x](`)d =⊕
d∈N

n`

⊕
i=1

K[x](`,i)d , K[x](`,i) =⊕
d∈N

K[x](`,i)d , K[x](`) =
n`

⊕
i=1

K[x](`,i).
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2.4.1 Ring of invariants

An invariant polynomial, or simply invariant, is a polynomial p ∈ K[x] such that

ρ(g)(p) = p for all g ∈ G.

The K-vector space of invariants is the isotypic component of K[x] associated to

the trivial representation i.e. K[x](1). But the invariants also form a ring and we

shall denote this ring K[x]G. The projection π
(1)
11 of K[x] in K[x]G is also known as

the Reynolds operator.
The Hilbert’s finiteness theorem (Sturmfels, 2007, Theorem 2.1.3) states that the

invariant ring is finitely generated. A bound for the number of generating invariants,
as well as for their degrees are given in the following theorem

Theorem 2.4.1 (Noether’s degree bound). The invariant ring of a finite matrix
group G has an algebra basis consisting of at most (n+∣G∣

n
) invariants whose degree is

bounded above by the group order ∣G∣.

The invariant ring is a graded algebra. It is the direct sum of the finite-
dimensional K-vector spaces K[x]Gd , where K[x]Gd denotes the space of homogeneous
invariants of degree d. The Hilbert series of K[x]G defined by the generating function

H (K[x]Gd , t) =
∞
∑
d=0

dim (K[x]Gd ) td

gives the dimension of the vector space of invariants at each degree. An explicit
formula for H (K[x]G, t) in terms of the matrix group G is given in the following
theorem.

Theorem 2.4.2 (Molien’s Theorem). The Hilbert series of the invariant ring K[x]G
is given by

H(K[x]G, t) = 1

∣G∣ ∑Γ∈G
1

det (In − tΓ) .

An estimate of the density of K[x]Gd in K[x]d is given in the following theorem:

Theorem 2.4.3 (Kemper and Steel, 1999, Proposition 1) Let ad = dim (K[x]Gd ) and
bd = dim (K[x]d) . Then

lim
N→∞

∑N
d=0 ad

∑N
d=0 bd

= 1

∣G∣ . (2.4.2)

Equation 2.4.2 will be useful in Chapter 3 to study the complexity of invariant
interpolation.

Let A be a graded K-algebra and let m be the maximal number of algebraically
independent elements of A. A set σ1 . . . , σm of m homogeneous elements of positive
degree is called a homogeneous system of parameters, if A is a finitely generated
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module over K [σ1 . . . , σm]. The invariant ring K[x]G has n algebraically indepen-
dent invariants (Sturmfels, 2007, Theorem 2.2.1). The elements in an homogeneous
system of parameters of K[x]G are called primary invariants. Algorithms to compute
primary invariants can be found in (Derksen and Kemper, 2015; Gatermann, 2000;
Sturmfels, 2007; Stanley, 1979). In section (5.4) we give a more detailed overview
of the existing algorithms for computing primary invariants.

Since the invariant ring is Cohen–Macaulay (Sturmfels, 2007, Theorem 2.2.1),
for each set of primary invariants {σ1 . . . , σn}, there exists homogeneous invariants
η1, . . . , ηr such that

K[x]G =
r

⊕
i=1

ηiK[σ1 . . . , σn],

the ηi are called secondary invariants. The secondary invariants are uniquely deter-
mined by the degrees of their corresponding primary invariants, this is reflected in
the following theorem

Theorem 2.4.4 Let d1, . . . , dn be the degrees of a collection of primary invariants
of a matrix group . The number of secondary invariants is given by

m = d1 . . . dn
∣G∣ .

The degrees (together with their multiplicities) of the secondary invariants are the
exponents of the generating function

H(K[x]G, t) ⋅Πn
i=1 (1 − tdi) = te1 + . . . + tem .

An explicit algorithm to compute secondary invariant can be found in (Kemper and
Steel, 1999).

2.4.2 Modules of equivariant

In this section we discuss about the theory of equivariants, and its relation with
linear representation. We provided the equivariants properties that are analogous
to the results given in the previous section.

Isotypic components.

The infinite dimensional isotypic components K[x](`), and their components

K[x](`,i), are actually K[x]G-modules. Indeed, if p ∈ K[x]G, then π
(`)
ij (p q) = pπ(`)

ij (q)
for any q ∈ K[x]. In fact (Stanley, 1979, Theorem 1.3) asserts that K[x](`) is finitely
generated by polynomials of degree less than ∣G∣. Since K[x] can be decomposed
as a direct sum of its isotypic components it follows that K[x] is finitely generated
over K[x]G.



CHAPTER 2. PRELIMINARIES 28

Theorem 2.4.5 (Stanley, 1979) Let σ1, . . . , σn be a set of primary invariants for

K[x]. Then the isotypic components K[x](`), ` = 2 . . .N are modules finitely-generated
and free over K [σ1, . . . , σn].

Theorem 2.4.6 (Stanley, 1979, Proposition 4.9) Let σ1, . . . , σm be a set of the pri-
mary invariants of K[x]G. Then the group action on K[x]/ ⟨σ1, . . . , σm⟩ is a times
the regular representation.

When G is a reflection group then K[x]/ ⟨σ1, . . . , σm⟩ is isomorphic to the regular
representation (Kane, 2001, Theorem 17.5).

A generalization of the Molien’s formula (Theorem 2.4.2) for any isotypic com-
ponent is given in the following theorem.

Theorem 2.4.7 The Hilbert series of K[x](`) is given by

H(K[x](`), t) = n`
∣G∣ ∑Γ∈G

χ` (Γ)
det (In − tΓ) ,

where χ` is the character of the `−th irreducible representation of G.

Based on Theorem 2.4.7 the following proposition is proposed in (Svartz, 2014,

Proposition 3.83) to estimate the density of K[x](`)≤d in K[x]≤d.

Theorem 2.4.8 Let a
(`)
d = dim (K[x](`)d ) and bd = dim (K[x]d) . Then

lim
N→∞

∑N
d=0 a

(`)
d

∑N
d=0 bd

= n2
`

∣G∣ . (2.4.3)

Equivariant

More generally, if r ∶ G → GLm(K) is a m dimensional matrix representation of G,
an r-equivariant is a row vector q = (q1, . . . , qm) ∈ K[x]m such that ρ(g)(q) = q r(g),
where the left handside is a vector-matrix multiplication. The set of all r-equivariants
forms a K[x]G-module that we denote K[x]Gr .

A projection on K[x]Gr is given by πρ,r ∶ K[x]m → K[x]Gr with

πρ,r(q) =
1

∣G∣∑g∈G
ρ (g−1) (q) ⋅ r(g), q ∈ K[x]m.

The map πρ,r is a projection on the trivial component of the representation

τ ∶ G → GL (K[x]m) , τ(g) = ρ (g−1) (q)r(g).

A set of r-equivariants Q = {q1, . . . ,qm} is generating for K[x]Gr as a K[x]G-module
if any other r-equivariant q can be written as a linear combination of Q over K[x]G:
q = a1 q1 + . . . + am qm, ai ∈ K[x]G.
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Theorem 2.4.9 (Gatermann, 1996, Theorem 2.13) If σ1, . . . , σn are primary in-
variants for K[x], then the module of K[x]Gr -equivariants is finitely generated and
free over K [σ1, . . . , σn].
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Chapter 3

Invariant Interpolation

This chapter is an extended version of:
(Rodriguez Bazan and Hubert, 2019) Rodriguez Bazan, E., Hubert, E., 2019.

Symmetry Preserving Interpolation. In: ISSAC’19. ACM, Beijing, China, pp. 34–41



CHAPTER 3. INVARIANT INTERPOLATION 32

3.1 Introduction

In this chapter, we address how to deal with multivariate interpolation in the pres-
ence of symmetry.

Among the several problems in multivariate interpolation (Gasca and Sauer,
2000; Lorentz, 2000), we focus on the construction of a polynomial interpolation
space for a given set of linear forms. Assuming the space generated by the linear
forms is invariant under a group action, we show how to, not only, preserve exactly
the symmetry, but also, exploit it throughout the computations.

An interpolation space for a set of linear forms is a subspace of the polynomial
ring that has a unique interpolant for each instantiated interpolation problem. We
show that the unique interpolants automatically inherit the symmetry of the problem
when the interpolation space is invariant (Section 3.3). We need to point out that
an invariant interpolation space is generally not spanned by monomials, when much
of the literature on algebraic computation restricts to monomial bases.

A canonical interpolation space, the least interpolation space, was introduced by
De Boor and Ron (1990, 1992a,b). We shall observe that it is invariant as soon as the
space of linear forms is. The least interpolation space can be constructed by Gauss
elimination in a multivariate Vandermonde (or collocation) matrix. A different col-
lection of the terms allows to determine the least interpolation space. The columns
of the Vandermonde matrix are traditionally indexed by monomials. We show how
any other graded basis of the polynomial ring can be used. In particular there is a
two fold gain in using a symmetry adapted basis. On one hand, the computed inter-
polation space will be exactly invariant independently of the accuracy of the data
for the interpolation problem. On the other hand, the new Vandermonde matrix is
block diagonal so that Gauss elimination can be performed independently on smaller
size matrices, with better conditioning. Computational savings are obtained from
identical blocks being repeated according to the dimension of the related irreducible
representations of the group. Symmetry adapted bases also played a prominent role
in (Collowald and Hubert, 2015; Gatermann and Parrilo, 2004; Riener et al., 2013)
where it allowed the block diagonalisation of a multivariate Hankel matrix.

In Section 3.2 we define minimal degree and least interpolation space and review
how to compute a basis of it with Gauss elimination. In Section 3.3 we make explicit
how symmetry is expressed and the main ingredients to preserve it. In Section 3.4 we
review symmetry adapted bases and show how the Vandermonde matrix becomes
block diagonal. This is applied to provide an algorithm for the computation of
invariant interpolation spaces in Section 3.5 together with a selection of relevant
invariant and equivariant interpolation problems.

3.2 Polynomial interpolation

In this section we first review the definitions and constructions of interpolation spaces
of minimal degree. By introducing general dual polynomial bases we generalize the
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construction of least interpolation spaces. We shall then be in a position to work
with adapted bases to preserve and exploit symmetry.

3.2.1 Interpolation space

A typical example of a linear form on K[x] is the evaluation eξ at a point ξ of Kn.
It is defined by

eξ ∶ K[x] → K
p ↦ p(ξ).

Other examples of linear forms on K[x] are given by compositions of evaluation and
differentiation

λ ∶ K[x] → K
p ↦ ∑r

j=1 eξj ○ qj(∂)(p),

with ξj ∈ Kn, qj ∈ K[x] and ∂α = ∂

∂xα1
1

. . .
∂

∂xαnn
.

As the most common type, Lagrange interpolation starts with a set of points
ξ1, . . . , ξr in Kn and a set of values η1, . . . ηr ∈ K, and consists in finding, a polynomial
p such that eξj(p) = ηj, 1 ≤ j ≤ r. More generally an interpolation problem is a pair
(Λ, φ) where Λ is a finite dimensional linear subspace of K[x]∗ and φ ∶ Λ Ð→ K is
a K-linear map. An interpolant, i.e., a solution to the interpolation problem, is a
polynomial p such that

λ(p) = φ(λ) for any λ ∈ Λ. (3.2.1)

An interpolation space for Λ is a polynomial subspace P of K[x] such that Equation
(3.2.1) has a unique solution in P for any map φ.

3.2.2 Vandermonde matrix

For a given linear space of linear forms Λ we introduce the Vandermonde operator
ω as

ω ∶ K[x] → Λ∗

p → (⋅ , p) , (3.2.2)

where (⋅ , ⋅) is the dual pairing between Λ and Λ∗, i.e., (λ , p) = λ(p). When Λ
is finite dimensional ω is a surjective map. Indeed, for every φ ∈ Λ∗ let pφ ∈ K[x]
be a solution of the interpolation problem (Λ, φ) . Then φ = (⋅, pφ) and therefore
ω(pφ) = φ.

We denote by ωd ∶ K[x]≤d → Λ∗ the restriction of ω to K[x]≤d. The matrix of ωd in
the bases P = {p1, p2, . . . , pm} of K[x]≤d and the dual of the basis L = {λ1, λ2, . . . , λr}
of Λ is the Vandermonde matrix

WP
L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1(p1) λ1(p2) λ1(p3) . . . λ1(pm)
λ2(p1) λ2(p2) λ2(p3) . . . λ2(pm)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
λr(p1) λr(p2) λr(pr) . . . λr(pm)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (3.2.3)
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As in the univariate case, the Vandermonde matrix appears naturally in the
interpolation problem. Indeed ⟨p1, . . . , pr⟩K is an interpolation space for ⟨λ1, . . . , λr⟩K
if and only if for any φ ∶ Λ→ K there exists a unique a = (a1, . . . , ar)T ∈ Kr such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ1(a1 p1 + . . . am pm) = φ(λ1)
⋮ ⋮

λr(a1 p1 + . . . am pm) = φ(λr)
.

Then a is the solution of the linear system WP
L a = (φ(λ1), . . . , φ(λr))T . Therefore

⟨p1, . . . , pr⟩K is an interpolation space if and only if WP
L is an invertible matrix.

This leads to a straightforward approach to compute an interpolation space for
⟨λ1, . . . , λr⟩K. Since the elements of L are linearly independent, there is δ > 0 such
that WPδ

L has full row rank, where Pδ is a basis of K[x]≤δ. For Lagrange interpolation

δ ≤ ∣L∣. Hence we can choose r linearly independent columns j1, j2, . . . jr of WPδ
L and

the corresponding space P = ⟨pj1 , . . . pjk⟩K is an interpolation space for Λ.
In order to select r linearly independent columns of WPδ

L we can use any rank

revealing decomposition of WPδ
L . Singular value decomposition (SVD) and QR de-

composition provide better numerical accuracy but to obtain a minimal degree inter-
polation space we shall resort to Gauss elimination. It produces a LU factorization
of WPδ

L where L is an invertible matrix and U = [uij] 1≤i≤r
1≤j≤m

is in row echelon form.

This means that there exists an increasing sequence j1, . . . , jr with ji ≥ i, such that
uiji is the first non-zero entry in the i−th row of U. We call j1, . . . , jr the echelon
index sequence of WPδ

L . They index a maximal set of linearly independent columns

of WPδ
L .

3.2.3 Minimal degree

It is desirable to build an interpolation space such that the degree of the interpolating
polynomials be as small as possible. We shall use the definition of minimal degree
solution for an interpolation problem defined by De Boor and Ron (1992a,b) and
Sauer (1998).

Definition 3.2.1 An interpolation space P for Λ is of minimal degree if for any
other interpolation space Q for Λ

dim(Q ∩K[x]≤δ) ≤ dim(P ∩K[x]≤δ),∀δ ∈ N.

Definition 3.2.2 An interpolation space P for Λ is degree reducing if for any p ∈
K[x] the solution of the interpolation problem (Λ, φp) has degree less or equal than
degree of p, where

φp (λ) = λ(p) for any λ ∈ Λ.

Proposition 3.2.3 (De Boor and Ron, 1992a, Proposition 7.1) An interpolation
space P for Λ is of minimal degree if and only if it is degree reducing.
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We say that a countable set of homogeneous polynomials P = {p1, p2, . . .} is
ordered by degree if i ≤ j implies that deg pi ≤ deg pj.

Proposition 3.2.4 Let L be a basis of Λ. Let Pδ, δ > 0, be a homogeneous basis
of K[x]≤δ ordered by degree, such that WPδ

L has full row rank. Let j1, . . . , jr be the

echelon sequence of WPδ
L obtained by Gauss elimination with partial pivoting. Then

P ∶= ⟨pj1 , . . . , pjr⟩ is a minimal degree interpolation space for Λ.

proof: Let Q be another interpolation space for Λ. Let q1, q2 . . . qm be a basis
of Q ∩K[x]≤d with d ≤ δ. Since Pδ is a homogeneous basis of K[x]≤δ, any qi can be
written as a linear combination of elements of Pδ ∩K[x]≤d. Considering qi = ∑j ajipj
we get that λ(qi) = ∑j ajiλ(pj) for any λ ∈ Λ.

Let {pji1 , pji2 , . . . pjin} be the elements of P that form a basis of P ∩K[x]≤d. Gauss

elimination on WPδ
L ensures that λ(b) is a linear combination of λ(pji1), . . . λ(pjin)

for any b ∈ Pδ ∩K[x]≤d and λ ∈ Λ. The latter implies that

λ(qi) =
n

∑
k=1

ckiλ(pjik ) for 1 ≤ i ≤m and cki ∈ K.

If m > n then the matrix C = (cij)1≤i≤m
1≤j≤n

has linearly independent columns, and

therefore there exist d1, d2, . . . dm ∈ K such that

m

∑
i=1

diλ (qi) = λ(
m

∑
i=1

diqi) = 0 for any λ ∈ Λ

which is a contradiction with the fact that Q is an interpolation space of Λ. Then
we can conclude that m ≤ n and P is a minimal degree interpolation space for Λ. ◻

3.2.4 Least interpolation space

For a space of linear forms Λ ⊂ K[x]∗, a canonical interpolation space Λ↓ is intro-
duced by De Boor and Ron (1990). It has a desirable set of properties. An algorithm
to build a basis of Λ↓ based on Gauss elimination on the Vandermonde matrix is
presented in (De Boor and Ron, 1992a). In this algorithm the authors consider the
Vandermonde matrix associated to the monomial basis of K[x]. The notion of dual
bases introduced above allows to extend the algorithm to any graded basis of K[x].

The initial term of a power series λ ∈ K[[∂]], denoted by λ↓ ∈ K[x] in (De Boor
and Ron, 1990, 1992a,b), is the unique homogeneous polynomial for which λ−λ↓(∂)
vanishes to highest possible order at the origin. Given a linear space of linear forms
Λ, we define Λ↓ as the linear span of all λ↓ with λ ∈ Λ.

Proposition 3.2.5 Let P = {p1, p2, . . .} be a homogeneous basis of K[x] ordered
by degree and L = {λ1, . . . , λr} be a basis of Λ. Let LU = WP

L be the factorization
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of WP
L provided by Gauss elimination with partial pivoting with {j1, j2, . . . , jr} as

echelon index sequence. If U = (uij) consider, for 1 ≤ ` ≤ r,

h` = ∑
deg(pk)=deg(pj`)

u`k p
†
k (3.2.4)

where P† = {p†
1, . . . .p

†
j , . . .} is the dual basis of P with respect to the apolar product.

Then H = {h1, . . . hr} is a basis for Λ↓.

proof: Let L−1 = (aij) and consider ς` =∑
j∈N
u`jp

†
j(∂). Since u`j =

r

∑
i=1

aliλi(pj), then

ς` =∑
j∈N

(
r

∑
i=1

aliλi(pj))p†
j(∂) =

r

∑
i=1

ali∑
j∈N
λi(pj)p†

j(∂) =
r

∑
i=1

aliλi ∈ Λ.

Notice that h` = ς`↓ and therefore h` ∈ Λ↓ for 1 ≤ ` ≤ r.
The ji are strictly increasing so that {h1, h2, . . . , hr} ⊂ Λ↓ are linearly indepen-

dent. By (De Boor and Ron, 1992b, Proposition 2.10) we have that r = dim Λ =
dim Λ↓. Thus we conclude that H is a basis of Λ↓. ◻

In the Chapter 3 we provide an alternative construction of the least interpolation
space. We shall compute an orthogonal basis of the least interpolation space by
applying QR decomposition. This provides a better numerical stability then LU
decomposition (Fassino and Möller, 2016) but needs to be done degree by degree.

3.3 Symmetry

We define the concepts of invariant interpolation problem (IIP) and equivariant
interpolation problem (EIP). These interpolation problems have a structure that
we want to be preserved by the interpolant. We show that this is automatically
achieved when choosing the interpolant in an invariant interpolation space. Then
the solution of an IIP is an invariant polynomial and the solution of an EIP is an
equivariant polynomial map. In Section 3.5 we show that the least interpolation
space is invariant and how to better compute an invariant interpolation space of
minimal degree.

The symmetries we shall deal with are given by the linear group action of a finite
group G on Kn. It is thus given by a representation ϑ of G on Kn. It induces a
representation ρ of G on K[x] given by

ρ(g)p(x) = p(ϑ(g−1)x). (3.3.1)

It also induces a linear representation on the space of linear forms, the dual repre-
sentation of ρ :

ρ∗(g)λ(p) = λ(ρ(g−1)p), p ∈ K[x] and λ ∈ K[x]∗. (3.3.2)

We shall deal with an invariant subspace Λ of K[x]∗. Hence the restriction of ρ∗ to
Λ is a linear representation of G in Λ.
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3.3.1 Invariance

An invariant Lagrange interpolation problem can be seen as interpolation at union
of orbits of points with fixed values on their orbits, i.e., given ξ1, . . . , ξm with orbits
O1, . . . ,Om and η1, . . . , ηm ∈ Kn, an interpolant p ∈ K[x] is to satisfy p○ϑ(g) (ξk) = ηk
for any g ∈ G. This is generalized as follow.

Definition 3.3.1 Let Λ be a space of linear forms and φ ∶ Λ Ð→ K a linear map.
The pair (Λ, φ) defines an invariant interpolation problem if

1. Λ is closed under the action of G.

2. φ(ρ∗(g)(λ)) = φ(λ) for any g ∈ G and λ ∈ Λ.

It is natural to expect that the solution to a invariant interpolation problem is
an invariant polynomial. Yet, not all minimal degree interpolants are invariant.

Example 3.3.1 The dihedral group Dm is the group of order 2m that leaves in-
variant the regular m-gon. It thus has a representation in R2 given by the matrices

ϑk =
⎡⎢⎢⎢⎢⎣

⎛
⎝

cos (⌊k2 ⌋2π
m
) − sin (⌊k2 ⌋2π

m
)

sin (⌊k2 ⌋2π
m
) cos (⌊k2 ⌋2π

m
)
⎞
⎠
(1 0

0 −1
)
k⎤⎥⎥⎥⎥⎦
, 0 ≤ k ≤ 2m − 1. (3.3.3)

Consider Ξ ⊂ R2 a set of 1 + 3 × 5 points illustrated on Figure 3.1. They form
four orbits O1,O2,O3,O4 of D5 so that Λ ∶= ⟨eξi ∣ ξi ∈ Ξ⟩K is invariant. An invariant
interpolation problem is given by the pair (Λ, φ) where φ is defined by φ(eξ) = 0.1
if ξ ∈ O1, φ(eξ) = 0 if ξ ∈ O2∪O4, and φ(eξ) = −0.5 if ξ ∈ O3. We show in Figure 3.1a
the graph of the expected interpolant, but in Figure 3.1b we present the graph of
an interpolant of minimal degree from a monomial basis; The D5 symmetry is not
respected.

Proposition 3.3.2 Let (Λ, φ) be an invariant interpolation problem. Let P be an
invariant interpolation space and let p ∈ K[x] be the solution of (Λ, φ) in P . Then
p ∈ K[x]G, the ring of invariant polynomials.

proof: For any λ ∈ Λ and g ∈ G we have that λ(p) = φ(λ) and ρ∗(g)(λ)p =
φ(ρ∗(g)(λ)). Since φ is G−invariant, we get that

λ(ρ(g−1)p) = ρ∗(g)(λ)p = φ(ρ∗(g)(λ)) = λ(p)

for any λ ∈ Λ. The latter implies that ρ(g−1)p − p ∈ ∩λ∈Λ kerλ. As P is closed under
the action of ρ, ρ(g−1)p − p ∈ ∩λ∈Λ kerλ⋂P . As (Λ, P ) is an interpolation space we
have that ∩λ∈Λ kerλ⋂P = ∅ and therefore we can conclude that ρ(g−1)p − p = 0 for
any g ∈ G, i.e., p ∈ K[x]G.◻
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#Nodes A node per orbit
O1 1 ξ1 = (0,0)
O2 5 ξ2 = (0.1934557,0.1405538)
O3 5 ξ7 = (0.4695268,0)
O4 5 ξ12 = (0.6260358,0)

(a) invariant interpolant of
minimal degree

(b) interpolant obtained from a
monomial basis

Figure 3.1: Invariant Lagrange interpolation problem

3.3.2 Equivariance

Let K[x]m be the module of polynomial mappings with m components, and let
θ ∶ G Ð→ Aut(Km) be a linear representation on Km. A polynomial mapping
f = (f1, f2, . . . , fm)t is called ϑ − θ equivariant if f(ϑ(g)x) = θ(g)f(x) for any g ∈ G.
The space of equivariant mappings over K, denoted by K[x]θϑ, is a K[x]G−module.

Equivariant maps define, for instance, dynamical systems that exhibit particu-
larly interesting patterns and are relevant to model physical or biological phenomena
(Chossat and Lauterbach, 2000; Golubitsky et al., 1988). In this context, it is inter-
esting to have a tool to offer equivariant maps that interpolate some observed local
behaviors.

Definition 3.3.3 Let Λ be a space of linear forms on K[x] and φ ∶ Λ Ð→ Km a
linear map. The pair (Λ, φ) defines a ϑ − θ equivariant interpolation problem if

1. Λ is closed under the action of G.
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2. φ(ρ∗(g)(λ)) = θ(g)φ(λ) for any g ∈ G and λ ∈ Λ.

The solution of an EIP (Λ, φ), is a polynomial map f = (f1, . . . , fm)t such that
λ(f) = (λ(f1), . . . , λ(fm))t = φ(λ) for any λ ∈ Λ. It is natural to seek f as an
equivariant map. It is remarkable that any type of equivariance will be respected as
soon as the interpolation space is invariant.

Proposition 3.3.4 Let (Λ, φ) be an equivariant interpolation problem. Let P be an
invariant interpolation space for Λ and let f = (f1, . . . , fm)t be the solution of (Λ, φ)
in P . Then f ∈ K[x]θϑ.

proof: We need to prove that f ○ϑ(g−1) = θ(g)f . As f ∈ P n and P is invariant,
f ○ ϑ(g−1) belongs to P n as does θ(g)f . As P is an interpolation space for Λ, it is
thus enough to prove that λ (f ○ ϑ(g)) = λ (θ(g)f) for all λ ∈ Λ.

On one hand
λ (f ○ ϑ(g)) = (ρ∗(g)λ) (f) = φ(ρ∗(g)λ),

where the first equality is by definition of ρ and the second one stems from f being
a solution of the interpolation problem. On the other hand

λ (θ(g)f) = θ(g)λ (f) = θ(g)φ(λ) = φ (ρ∗(g)λ) ,

where the first equality is by linearity, the second one stems from f being a solution
of the interpolation problem, and the third one comes from the definition of an
equivariant interpolation problem. ◻

Example 3.3.2 We consider two different equivariant problems for the groups D3

and C3. The cyclic group Cm is the group of order m that is generated by a single
element. It has a representation in R2 given by m rotations matrices

τk =
⎡⎢⎢⎢⎢⎣

⎛
⎝

cos (2kπ
m

) − sin (2kπ
m

)
sin (2kπ

m
) cos (2kπ

m
)
⎞
⎠

⎤⎥⎥⎥⎥⎦
, 0 ≤ k ≤m − 1. (3.3.4)

The symmetries are given by the representations of D3 and C3 in Equations (3.3.3)
and (3.3.4) respectively. For D3 we consider the space ΛD of linear forms spanned by

the evaluations at the points of the orbits of ξ1 = (−5
√

3
3 , 1

3)t and ξ2 = (−
√

3, 1
3)t. We

define φD ∶ Λ→ R2 by φD(eϑ(g)ξ1) = ϑ(g)(
v1

v3
) and φD(eϑ(g)ξ2) = ϑ(g)(

v2

v4
) .

For C3 we consider ΛC spanned by the evaluations at the points of the orbits of

ζ1 = (−3
2 ,0)

t
, ζ2 = (0, 5

2
)t and ζ3 = (7

2 ,0)
t
. We define φC ∶ Λ→ R2 by

φC(eτ(g)ζ1) = τ(g)(
u1

u4
) , φC(eτ(g)ζ2) = τ(g)(

u2

u5
) and φC(eτ(g)ζ3) = τ(g)(

u3

u6
) .

The thus defined interpolation problems are clearly equivariant. For each quadruplet
v ∈ R4 and sextuplet u ∈ R6 it is desirable to find interpolants (p1, p2)t ∈ R[x]2 and
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(q1, q2)t ∈ R[x]2 that are an ϑ−ϑ and τ − τ equivariant maps respectively. This will
define the equivariant dynamical systems

{ ẋ1(t) = p1(x1(t), x2(t)),
ẋ2(t) = p2(x1(t), x2(t));

and { ẋ1(t) = q1(x1(t), x2(t)),
ẋ2(t) = q2(x1(t), x2(t)).

whose integral curves, limit cycles and equilibrium points, will all exhibit the D3 and
C3 symmetries respectively. In Figures 3.2a and 3.2b we draw the integral curves of
the equivariant vector fields thus constructed. The data of the interpolation problem
are illustrated by the black arrows

(a) D3 (b) C3

Figure 3.2: Integral curves for the equivariant vector fields interpolating the equiv-
ariant set of vectors shown in black.

3.4 Symmetry reduction

In this section we show how, when the space Λ of linear forms is invariant, the
Vandermonde matrix can be made block diagonal. That happens when making use
of symmetry adapted bases both for K[x]≤δ and Λ. as it appears in representation
theory (Serre, 1977; Fässler and Stiefel, 1992) and then show how to obtain real
symmetry adapted bases. This block diagonalisation of the Vandermonde matrix
indicates how computation can be organized more efficiently, and robustly. It just
draws on the invariance of the space of linear forms. So, when the evaluation points
can be chosen, it makes sense to introduce symmetry among them.

We consider a linear representation ϑ of a finite group G on Kn. It induces the
representations ρ and its dual ρ∗ on the space K[x] and K[x]∗, as made explicit in
(3.3.1) and (3.3.2).

For an invariant subspace Λ of K[x]∗ the restriction of ρ∗ to Λ is a linear repre-
sentation of G, the dual representation of this restriction denoted by θ∗ is a linear
representation of G in Λ∗.
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Proposition 3.4.1 Consider θ the restriction of ρ∗ to the invariant subspace Λ of
K[x]∗, and θ∗ the dual representation on Λ∗. The Vandermonde operator ω ∶ K[x] →
Λ∗ defined in (3.2.2) is ρ − θ∗ equivariant.

proof: This is mostly a matter of unrolling the definitions. We want to show
that ω(ρ(g)(p)) = θ∗(g) (ω(p)). The left hand side applied to any λ ∈ Λ is equal
to λ (ρ(g)(p)) = (ρ∗(g−1)(λ)) (p). The right handside applied to any λ ∈ Λ is equal
to ω(p) (θ(g−1)(λ)) = (θ(g−1)(λ)) (p). The conclusion follows since θ(g−1)(λ) =
ρ∗(g−1)(λ) by definition of θ. ◻

Corollary 3.4.2 Let P = ∪n
i=1P(i) and L = ∪n

i=1L(i) be symmetry adapted bases of
K[x]≤δ and Λ respectively where

• P(i) determined by {p(i)1 , . . . , p
(i)
ci } spans the isotypic component associated with

the irreducible representation ρi

• L(i) determined by {λ(i)
1 , . . . , λ

(i)
ri } spans the isotypic component associated with

the irreducible representation ρ∗i

The Vandermonde matrix WP
L is given by

diag (Inj ⊗ (λ(i)
s (p(i)t ))1≤s≤rj

1≤t≤cj
, i = 1 . . .n) , (3.4.1)

where ⊗ denotes the Kronecker product.

proof: According to Proposition 2.3.2, the dual basis L∗ of L is symmetry
adapted with its i-th component being associated to ρi. The matrix of the Vander-
monde operator ω in P and L is WP

L . Proposition 3.4.1 ensure that ω is equivariant
and thus the result follows from Theorem 2.3.4. ◻

Note that ρi and ρ∗i are not equivalent only when ρi is of complex type. In
particular, when we deal with interpolation over the reals, and thus use a real
symmetry adapted basis, there is no distinction to be made.

Example 3.4.1 LetG be the dihedral groupD3 of order 6. A representation ofG on
R2 is given by Equation (3.3.3) with m = 3. D3 has three irreducible representations,
two of dimension 1 and one of dimension 2.

Consider Ξ the orbit of the point ξ1 = (−5
√

3
3 , 1

3)
t

in R2, with ξi = ϑi−1ξ1. Let

Λ = ⟨eξi ○Dξ⃗i
⟩
K

with Dξ⃗i
the directional derivative with direction ξ⃗i. Λ is closed

under the action of G. Indeed for any p ∈ K[x],

ρ∗(g)(eξi ○Dξ⃗i
)(p) = eξi ○Dξ⃗i

(p(ϑ(g−1x)) = eϑ(g−1)ξi ○D ⃗ϑ(g−1)ξi(p(x)).

Since ϑ(g−1)ξi = ξj for some 1 ≤ j ≤ 6 we have ρ∗(g)(eξi ○Dξ⃗i
) = eξj ○Dξ⃗j

. Considering
%i = eξi ○Dξ⃗i

, 1 ≤ i ≤ 6, a symmetry adapted basis of Λ is given by
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L ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{%1 + %2 + %3 + %4 + %5 + %6} ,
{%1 − %2 + %3 − %4 + %5 − %6} ,

{{λ3, λ4} ,{λ5, λ6}}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

with
λ3 = %1 + %2 − %4 − %5 λ5 =

√
3

2 (%2 − %1 + %4 + 2%3 − 2%6 − %5),
λ4 = %3 − %4 − %5 + %6, λ6 =

√
3

2 (2%2 − 2%1 − %4 + %3 − %5 − %6).
A symmetry adapted basis of R[x]≤3 is given by

P ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{1, x2
1 + x2

2, x
3
1 − 3x1x2

2} ,
{x2

1x2 − 1
3x

3
2} ,

{{x1, x2
1 − x2

2, x
3
1 + x1x2

2} ,{x2,−2x1x2, x2
1x2 + x3

2}}

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

The Vandermonde matrix WP
L is block diagonal :

WP
L =

⎛
⎜⎜⎜⎜⎜⎜
⎝

A1

448
9

A3

A3

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

A1 = (0 304
3 −240

√
3)

A3 =
⎛
⎝
−16

√
3

3
128
3 −1216

√
3

9

−2
√

3
3 −40

3 −152
√

3
9

⎞
⎠
.

Example 3.4.2 Let G be the cyclic group C3 of order 3. A representation of G on
R2 is given in (3.3.4). C3 has 3 irreducible representations of dimension 1, one abso-
lutely irreducible representation and a pair of conjugate irreducible representations
of complex type. The real symmetry adapted bases thus have two components. Con-
sider Λ the space spanned by the orbit of the points ζ1 and ζ2 given in Example 3.3.2.
Real symmetry adapted bases of Λ and R[x]≤3 are given by

L ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
√

3
3 (eζ1+eζ2+eζ3) ,

√
3

3 (eζ4+eζ5+eζ6)} ,

{
√

6
6 (2eζ1−eζ2−eζ3) ,

√
6

6 (2eζ4−eζ5−eζ6) ,√
2

2 (eζ2−eζ3) ,
√

2
2 (eζ5−eζ6)

}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
and

P ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{1, x
2

2 +
y2

2 } ,

{x,−y, x2

2 − y2

2 ,−xy}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The Vandermonde matrix WP
L is block diagonal :

WP
L =

⎛
⎝

A1

A2

⎞
⎠
, A1 =

⎛
⎝

√
3 9

√
3

8
√

3 25
√

3
8

⎞
⎠
, A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3
√

6
4 0 9

√
6

16 0

0 −5
√

6
4 −25

√
6

16 0

0 −3
√

6
4 0 −9

√
6

16

−5
√

6
4 0 0 25

√
6

16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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3.5 Equivariant interpolation

In this section we shall first show how to build interpolation spaces of minimal
degree that are invariant. We shall actually build symmetry adapted bases for
these, exploiting the block diagonal structure of the Vandermonde matrix. Doing so
we prove that the least interpolation space is invariant. We then present a selection
of invariant or equivariant interpolation problems. As proved in Section 3.3, the
invariance or equivariance is preserved by the interpolant when the interpolation
space is invariant. The use of the symmetry adapted bases constructed allows this
equivariance to be preserved exactly, independently of the numerical accuracy.

3.5.1 Constructing invariant interpolation spaces

The starting point is a representation ϑ of G on Kn that induces representations ρ
and ρ∗ on K[x] and K[x]∗.

Let Λ be an invariant subspace of K[x]∗. Hereafter L is a symmetry adapted
basis of Λ and P a symmetry adapted basis of K[x]≤δ consisting of homogeneous
polynomials. The elements of P corresponding to the same irreducible component
are ordered by degree.

According to Proposition 3.4.2, WP
L = diag (Ini ⊗Ai). In the factorization LiUi ∶=

Ai provided by Gauss elimination, let j1, j2, . . . , jrj be the echelon index sequence of
Ui; ri is the multiplicity of ρ∗i in Λ. An echelon index sequence for Di = Ini ⊗Ai is
given by

Si =
ci−1

⋃
k=0

{j1 + kni, j2 + kni, . . . , jri + kni}.

An echelon index sequence of WP
L is given by S = ⋃Ni=1 Si. Let P(i)

Λ be the set of
elements of P(i) that are indexed by elements of Si. From (2.3.5) we get that

P(i)
Λ = {bij1 , . . . , bijri , . . . , π

(i)
ni1

(bij1) , . . . , π
(i)
ni1

(bijri)} .

We prove the assertions made on the outputs of Algorithm 1.

Proposition 3.5.1 The set of polynomials PΛ built it in Algorithm 1 spans a min-
imal degree interpolation space for Λ that is invariant under the action of ρ. PΛ is
furthermore a symmetry adapted basis for this space.

proof: Since the elements of PΛ are indexed by the elements of S then WPΛ

L
is invertible and therefore PΛ is an interpolation space for Λ. The elements of
PΛ that correspond to the same blocks of WP

L are ordered by degree. Then as a
direct consequence of Proposition 3.2.4, PΛ is a minimal degree interpolation space.
We prove now that for any p in PΛ, ρ(g)(p) ∈ PΛ. Considering p = π(j)

α1 (b). By

Proposition 2.3.1 we have that ρ(g)(p) =
nj

∑
β=1

r j
βα(g)π

(j)
β1 (b). As π

(j)
β1 (b) ∈ PΛ for any
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Algorithm 1 Invariant interpolation space

In: P and L s.a.b of K[x]≤δ and Λ respectively.
Out: - a s.a.b PΛ of an invariant interpolation space of min. degree

- a symmetry adapted basis HΛ of Λ↓.

1: for i = 1 to n do
2: LiUi ∶= WP(i,1)

L(i,1) ; with Ui = (u(i)
`k )`,k ▷ LU factorization of Ai

3: J ∶= (j1, . . . , jrj); ▷ echelon idex sequence of Ui

4: Si ←
ci−1

⋃
k=0

{j1 + kni, j2 + kni, . . . , jri + kni};

5: P(i)
Λ ← {p` ∶ p` ∈ P(i) and ` ∈ Si} ;

6: H(i)
Λ ←

⎧⎪⎪⎨⎪⎪⎩
∑

d(pk)=d(p`)
u
(i)
`k p

†
k ∶ pk ∈ P i and ` ∈ Si

⎫⎪⎪⎬⎪⎪⎭
;

7: end for

8: PΛ ←
N

⋃
i=1

P(i)
Λ and HΛ ←

N

⋃
i=1

H(i)
Λ ;

9: return (PΛ,HΛ);

1 ≤ β ≤ nj, we conclude that ρ(g)(p) ∈ PΛ. Since PΛ is a basis of PΛ we can conclude
that PΛ is invariant under the action of ρ.◻

Proposition 3.5.2 The set HΛ built it in Algorithm 1 is a symmetry adapted basis
for Λ↓.

proof: By Proposition 3.2.5 we get that HΛ is a basis of Λ↓. Let Hj,αΛ =
{hj1,α, . . . , h

j
mj ,α} = V j,α⋂HΛ with 1 ≤ α ≤ cj. By the block diagonal structure and

Corollary 2.3.3 we have

hj`,α =∑
k

u
(j)
`k π

(j)
α1 (pjk) = π

(j)
α1 (∑

k

u
(j)
`k p

j
k) = π(j)

α1 (hj`,1) .

Therefore HjΛ has the following structure

HjΛ = {hj1,1, . . . , h
j
mj ,1

, . . . , π
(j)
nj1

(hj1,1) , . . . , π
(j)
nj1

(hjmj ,1)} .

Since for any `, h`, π
(j)
21 (h`) , . . . π(j)

nj1
(h`) form a basis of an irreducible representation

of G we can conclude that HΛ is a symmetry adapted basis of Λ. ◻
If ϑ is orthogonal, the apolar product is G−invariant. As pointed out in Sec-

tion 2.3.1, we can construct a symmetry adapted basis P of K[x]δ that is orthonor-
mal. Then P = P† and the basis PΛ built in Algorithm 1 is orthonormal. Moreover if
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in the third step of Algorithm 1 we use Gauss Elimination by segment as in (De Boor
and Ron, 1992a), then HΛ is an orthonormal symmetry adapted basis of Λ↓.

With this construction we reproved that Λ↓ is invariant. The above approach
to computing a basis of Λ↓ is advantageous in two ways. First Gauss elimination is
performed only on smaller blocks. But also, when solving invariant and equivariant
interpolation problems, the result will respect exactly the intended invariance or
equivariance, despite possible numerical inaccuracy.

3.5.2 Computing interpolants

We consider an interpolation problem (Λ, φ) where Λ is a G-invariant subspace of
K[x]∗ and φ ∶ Λ→ Km. Take P to be a symmetry adapted basis of an invariant inter-
polation space P for Λ as obtained from Algorithm 1. The interpolant polynomial
p that solves (Λ, φ) in P is given by

p =
N
∑
i=1

ni

∑
α=1

Ai
−1φ (L(i,α))t (P(i,α))t , (3.5.1)

where P(i,α), L(i,α) are as in (2.3.6) and Ai = WP(i,1)
L(i,1) . Note that we made no asump-

tion on φ. The invariance of Λ allows to decompose the problem into smaller blocks,
independently of the structure of φ. This illustrate how symmetry can be used
to better organize computation : if we can choose the points of evaluation, the
computational cost can be alleviated by choosing them with some symmetry.

When φ is invariant or equivariant, Equation (3.5.1) can be further reduced.
If (Λ, φ) is an invariant interpolation problem, it follows from Schur’s lemma that
φ(L(j)) = 0 for any j > 1. Therefore for solving any invariant interpolation problem
we only need to compute the first block of WP

L , i.e., the interpolant is given by

A1
−1φ (L(1))t (P(1))t.

More generally if (Λ, φ) is a ϑ− θ equivariant problem, such that the irreducible
representation ρi does not occur in θ, then φ (L(i)) = 0. The related block can thus
be dismissed.

Example 3.5.1 Following on Example 3.3.1. Since we are interested in building
an interpolation space for an invariant problem, we only need to compute bases of
ΛG and K[x]G≤5. We have

LG = {eξ1 ,
6

∑
i=2

eξi ,
11

∑
i=7

eξi ,
16

∑
i=12

eξi}

and
PG = {1, x2

1 + x2
2, x

4
1 + 2x2

1x
2
2 + x4

2, x
5
1 − 10x3

1x
2
2 + 5x1x

4
2}.

Since W = WPG
LG is a square matrix with full rank, ⟨PG⟩K contains a unique invariant

interpolant for any invariant interpolation problem. It has to be the least interpolant.
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For φ given in Example 3.3.1, one finds the interpolant p by solving the 4×4 linear
system W a = φ(LG). The solution a = (−0.3333333,3.295689,−36.59337,45.36692)t
provides the coefficients of PG in p. The graph of p is shown in Figure 3.1. If p given
above is only an approximation of the least interpolant, due to numerical inaccuracy,
it is at least exactly invariant. Had we computed the least interpolant with the
algorithm of De Boor and Ron (1992a), i.e., by elimination of the Vandermonde
matrix based on the monomial basis, the least interpolant obtained would not be
exactly invariant because of the propagation of numerical inacurracies.

We define the deviation from invariance (InvD) of p = ∑
degα≤5

aαx
α as

σ (a20, a02) + σ (a40,
a22

2
, a04) + σ (a50,−

a32

10
,
a14

5
) +∑

β∈B
∣aβ ∣

where σ is the standard deviation, and B represents the exponents of the monomials
that do not belong to any of the elements in PG. In Table 3.1 we show the InvD for
the interpolant p computed with different precisions. The obtained polynomials are
somehow far from being G−invariant.

# Digits 10 15 20 30
InvD 72.9614 40.0289 6.0967 < 10−9

Table 3.1: InvD values for different digits of precision

In the same spirit, let us mention that the condition number of WM
Λ , where M

is the monomial basis of K[x]≤5, is more than 102 times the condition number of
WPG
LG . This is an indicator that two additional digits of precision are lost in the

computation.

Example 3.5.2 Following up on Example 3.4.1. Let θ be the permutation repre-
sentation of D3 in R3. θ decomposes into two irreducible representations, the trivial
representation and the irreducible representation ϑ of dimension 2. Let φ ∶ Λ → R3

a ϑ − θ equivariant map determined by φ(%1) = (1,−1,5)t. For solving (Λ, φ) we
need only consider the first and third block of the Vandermonde matrix computed
in Example 3.4.1. The ρ∗ − θ equivariant map that solve (Λ, φ) is P = (p1, p2, p3)
with:

p1 ∶=
705

4256
x2

1 +
135

4256
x2

2 +
31

56

√
3x1 +

93

56
x2 −

15

112

√
3x1x2

p2 ∶=
705

4256
x2

1 +
135

4256
x2

2 +
31

56

√
3x1 −

93

56
x2 +

15

112

√
3x1x2

p3 ∶= −
75

2128
x2

1 +
495

2128
x2

2 −
31

28

√
3x1.

In Figure 3.3 we show the image of R2 by P and the tangency conditions imposed
by φ.
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Figure 3.3: Parameterized surface with tangency constraints.

Example 3.5.3 This example illustrate the use of an equivariant interpolating map
to parameterize a surface with an symmetric set of tangency conditions. It follows
up on Example 3.3.2. Since the representation ϑ of D3 in R2 is irreducible, for
computing any ϑ − ϑ equivariant we only need to compute the third isotopic block
in the Vandermonde matrix WP(3)

L(3) , where P is a basis for the interpolation space PΛ

built by Algorithm 1. This block is W = ( A3

A3
). The rows correspond to

L(3) ∶= {L(3,1),L(3,2)} ,L(3,1) ∶= {λ1, λ2, λ3, λ4} and L(3,2) ∶= {λ5, λ6, λ7, λ8}

λ1 = eξ1 + eξ2 − eξ4 − eξ5 λ5 =
√

3
2 (−eξ1 + eξ2 + 2eξ3 + eξ4 − eξ5 − 2eξ6),

λ2 = eξ3 − eξ4 − eξ5 + eξ6 , λ6 =
√

3
2 (−2eξ1 + 2eξ2 + eξ3 − eξ4 − eξ5 − eξ6).

λ3 = eξ7 + eξ8 − eξ10 − eξ11 λ7 =
√

3
2 (−eξ7 + eξ8 + 2eξ9 + eξ10 − eξ11 − 2eξ12),

λ4 = eξ9 − eξ10 − eξ11 + eξ12 , λ8 =
√

3
2 (−2eξ7 + 2eξ8 + eξ9 − eξ10 − eξ11 − eξ12).

The columns correspond to

P(3) ∶=
⎧⎪⎪⎨⎪⎪⎩

P(3,1) ∶= {x,x2 − y2, x3 + xy2, x4 − y4} ,
P(3,2) ∶= {y,−2xy, y(x2 + y2),−2xy(x2 + y2)}

⎫⎪⎪⎬⎪⎪⎭
.

A3 = −
2

27

⎛
⎜⎜⎜⎜
⎝

72
√

3 −288 608
√

3 −2432

9
√

3 90 76
√

3 760

45
√

3 −90 140
√

3 280

9
√

3 18 28
√

3 504

⎞
⎟⎟⎟⎟
⎠
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We thus determine that the equivariant interpolant for the interpolation problem
described in Example 3.3.2 is given by :

p1 =
α

320
x + 3β

640
(x2 − y2) + 9γ

8960
x(x2 + y2) + 27 δ

17920
(x4 − y4)

p2 =
α

320
y − 3β

320
xy + 9γ

8960
y(x2 + y2) − 27 δ

8960
xy(x2 + y2)

where

α=
√

3(25a − 114 b) + 494d − 185 c, β=
√

3(114d − 25 c) + 38 b − 5a,

γ=
√

3(42 b − 25a) + 185 c − 182d, δ=
√

3(25 c − 42d) + 5a − 14 b.

Example 3.5.4 We now seek an invariant implicit surface through a given sym-
metric set of points. We thus seek an invariant polynomial that is zero on the given
point. In order to obtain a non zero polynomial though, we need to select a point,
for instance the origin, where the polynomial shall not be zero.

The group here is Oh, the subgroup of the orthogonal group R3 that leaves the
cube invariant. It has order 48 and 10 inequivalent irreducible representations whose
dimensions are (1,1,1,1,2,2,3,3,3,3).

Consider Ξ ⊂ R3 the invariant set of 27 points illustrated on Figure 3.4a. They
are grouped in four orbits O1,O2,O3 and O4 of Oh. The orbit O1 consist of only
one point, the origin of coordinates. The points in O2 are the vertices of cubes with
the center at the origin and edge length

√
3. The points in O3 and in O4 are the

centers of the faces and edges of a cube with the center at the origin and edge length
1. Consider Λ = ⟨{eξ ∣ ξ ∈ Ξ}⟩K . Λ is an invariant subspace. Consider the the map
φ ∶ Λ → R defined by φ(ξ) = 1

2 if ξ ∈ O1 and φ(ξ) = 0 if ξ ∈ O2 ∪O3 ∪O4. The pair
(Λ, φ) is an invariant interpolation problem. The polynomial p ∈ K[x]G given by

p = 18 + (x2 + y2 + z2) + 18 (x2y2 + x2z2 + y2z2) − 19 (x4 + y4 + z4)

is the solution of (Λ, φ) in Λ↓. We built p over the Vandermonde matrix W
PG
≤6

LG ∈ R4×6

instead of the full Vandermonde matrix for bases of Λ and K[x]≤6 which is a 27×84
matrix. The set O2 ∪O3 ∪O4 is in the zero set of p, in Figure 3.4b we show the zero
set of p, which has the symmetry of Oh. Note that we introduce a non zero value in
the origin to avoid zero solutions during interpolation.
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#Nodes A node per orbit value
O1 1 ξ1 = (0,0,0) φ(eξ) = 1/2
O2 8 ξ2 = (−

√
3,−

√
3,−

√
3) φ(eξ) = 0

O3 6 ξ10 = (−1,0,0) φ(eξ) = 0
O4 12 ξ16 = (0,−1,−1) φ(eξ) = 0

(a) Points in Ξ divided in orbits

(b) Variety of p

Figure 3.4: Interpolation data and variety of the interpolant p that goes through
the points in O2 ∪O3 ∪O4.
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Chapter 4

Ideal Interpolation

This chapter is an extended version of :
(Rodriguez Bazan and Hubert, 2020) Rodriguez Bazan, E., Hubert, E., 2020.

Ideal Interpolation, H-basis and Symmetry. In: ISSAC’20. ACM, Kalamata, Greece
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4.1 Introduction

In Chapter 3 we addressed multivariate interpolation, in this chapter we go further
with ideal interpolation. We provide an algorithm to compute simultaneously a
symmetry adapted basis of the least interpolation space and a symmetry adapted H-
basis of the associated ideal. In addition to be manifested in the output, symmetry
is exploited all along the algorithm to reduce the size of the matrices involved,
and avoid sizable redundancies. Based on QR-decomposition (as opposed to LU-
decomposition previously) the algorithm also lends itself to numerical computations.

A space of linear forms Λ on the polynomial ring K[x] = K[x1, . . . , xn] is an ideal
interpolation scheme if

I = ⋂
λ∈Λ

ker λ = {p ∈ K[x] ∶ λ(p) = 0, for all λ in Λ} (4.1.1)

is an ideal in K[x].
An interpolation space for Λ can be identified with the quotient space K[x]/I.

In this Chapter we make use of the least interpolation space (Section 3.2.4) as a
canonical representation of the quotient of the polynomial algebra by the ideal. In
Proposition 3.2.4 we freed the computation of the least interpolation space from
its reliance on the monomial basis by introducing dual bases. We pursue this ap-
proach here for the representation of the ideal by H-bases (Macaulay, 1916; Möller
and Sauer, 2000). Where Gröbner bases single out leading terms with a term or-
der, H-bases work with leading forms and the orthogonality with respect to the
apolar product. The least interpolation space then reveals itself as the orthogonal
complement of the ideal of leading forms.

As a result, computing a H-basis of the interpolation ideal is achieved with
linear algebra in subspaces of homogeneous polynomials of growing degrees. The
precise algorithm we shall offer to compute H-bases somehow fits in the loose sketch
proposed in (De Boor, 1994). Yet we are now in a position to incorporate symmetry
in a natural way, refining the algorithm to exploit it.

Symmetry is preserved and exploited thanks to the block diagonal structure of
the matrices at play in the algorithms. This block diagonalisation, with predicted
repetitions in the blocks, happens when the underlying maps are discovered to be
equivariant and expressed in the related symmetry adapted basis. The case of the
Vandermonde matrix was settled in Corollary 3.4.2. In this chapter, we also need
the matrix of the prolongation map, known in the monomial basis as the Macaulay
matrix. Figuring out the equivariance of this map is one of the key results of this
chapter.

The chapter is organized as follows. In Section 4.2 we define ideal interpolation
and explain the identification of an interpolation space with the quotient algebra.
In Section 4.3 we review H-bases and discuss how they can be computed in the ideal
interpolation setting. In Section 4.4 we provide an algorithm to compute simultane-
ously a basis of the least interpolation space and an orthogonal H-basis of the ideal.



53 CHAPTER 4. IDEAL INTERPOLATION

In Section 4.5 we show how the Macaulay matrix can be block diagonalized in the
presence of symmetry. This is then applied in Section 4.6 to obtain an algorithm to
compute simultaneously a symmetry adapted basis of the least interpolation space
and a symmetry adapted H-basis of the ideal.

4.2 Ideal interpolation

In this section, we consider the ideal interpolation problem and explain the identifi-
cation of an interpolation space with the quotient algebra. We recall that the least
interpolation space is the orthogonal complement of the ideal of the leading forms,
I0.

All along this chapter we shall assume that

I = kerw = ∩λ∈Λ kerλ

is an ideal. When for instance Λ = ⟨eξ1 , . . . ,eξr⟩K then I is the ideal of the points
{ξ1, . . . , ξr} ⊂ K[x]. One sees in general that dimK[x]/I = dim Λ∗ = dim Λ =∶ r.

With Q = {q1, . . . , qr} ⊂ K[x], we can identify K[x]/I with ⟨Q⟩K if ⟨Q⟩K ⊕ I =
K[x]. With a slight shortcut, we say that Q is a basis for K[x]/I.

Proposition 4.2.1 Q = {q1, . . . , qr} ⊂ K[x] spans an interpolation space for Λ iff it
is a basis for the quotient K[x]/I.

proof: If Q = {q1, . . . , qr} is a basis of K[x]/I then for any p ∈ K[x] there is a
q ∈ ⟨q1, . . . , qr⟩K such that p ≡ q mod I. Hence λ(p) = λ(q) for any λ ∈ Λ and thus
⟨Q⟩K is an interpolation space for Λ. Conversely if ⟨q1, . . . , qr⟩K is an interpolation
space for Λ then {q1, . . . , qr} are linearly independent modulo I and therefore a basis
for K[x]/I. Indeed if q = a1q1 + . . . + arqr ∈ I then any interpolation problem has
multiple solutions in ⟨Q⟩K, i.e, if p is the solution of (Λ, φ) so is p+ q, contradicting
the interpolation uniqueness on ⟨Q⟩K. ◻

For p ∈ K[x] we can find its natural projection on K[x]/I by taking the unique
q ∈ ⟨Q⟩K that satisfies λ(q) = λ(p) for all λ ∈ Λ. From a computational point of view,
q is obtained by solving the Vandermonde system, i.e.,

q = (q1, . . . , qr) (WQ
L )−1

⎛
⎜
⎝

λ1(p)
⋮

λr(p)

⎞
⎟
⎠

with L = {λ1, . . . , λr} a basis of Λ.

Similarly, the matrix of the multiplication map, in the basis Q, is

mp ∶ K[x]/I → K[x]/I,
[q] ↦ [pq]

is obtained as [mp]Q = (WQ
L )−1

WQ
L○mp where L ○mp = {λ1 ○mp, . . . , λr ○mp}.
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When working with Gröbner bases, one fixes a term order and focuses on leading
terms of polynomials and the initial ideal of I. The basis of choice for K[x]/I consists
of the monomials that do not belong to the initial ideal. An H-basis of I is somehow
the complement of the least interpolation space Λ↓ and hence can be made to reflect
the possible invariance of Λ and I. Instead of leading terms, the focus is then on
the leading homogeneous forms.

Hereafter we denote by p0 the leading homogeneous form of p, i.e., the unique
homogeneous polynomial such that deg (p − p0) < deg (p). Given a set of polynomials
P we denote P 0 = {p0 ∣ p ∈ P}.

Proposition 4.2.2 Let Q be an interpolation space of minimal degree for Λ. Then
Q⊕ I0 = K[x].

proof: We proceed by induction on the degree, i.e, we assume that any
polynomial p in K[x]≤d can be written as p = q + l where q ∈ Q and l ∈ I0. Note that
the hypothesis holds trivially when d is equal to zero.

Now let p ∈ K[x]≤d+1. Since K[x] = ⟨Q⟩K⊕I there exists q ∈ Q and l ∈ I such that
p = q + l. Since Q is of minimal degree, q and l are in K[x]≤d+1. Writing l = l0 + l1
he have p = q + l0 + l1 with l1 ∈ K[x]≤d then by induction l1 = q1 + l2 with q1 ∈ Q and
l2 ∈ I0 and therefore p = q + q1 + l0 + l2 ∈ Q⊕ I0. ◻

As a consequence we retrieve the result of (De Boor and Ron, 1992b, Theorem
4.8).

Corollary 4.2.3 Considering orthogonality with respect to the apolar product it

holds that Λ↓
⊥⊕ I0 = K[x].

proof: Follows from the fact that λ(p) = 0 ⇒ ⟨λ↓, p0⟩ = 0. ◻

4.3 H-bases

H-bases were introduced by Macaulay (1916). The use of H-basis in interpolation
has been further studied in (Möller and Sauer, 2000; Sauer, 2001). In this section
we review the definitions and present the sketch of an algorithm to compute the
H-basis of I = ⋂λ∈Λ kerλ.

Definition 4.3.1 A finite set H ∶= {h1, . . . , hm} ⊂ K[x] is an H-basis of the ideal
I ∶= ⟨h1, . . . , hm⟩ if, for all p ∈ I there are g1, . . . gm such that,

p =
m

∑
i=1

higi and deg(hi) + deg(gi) ≤ deg(p), i = 1, . . . ,m.

Theorem 4.3.2 (Möller and Sauer, 2000) Let H ∶= {h1, . . . , hm} and I ∶= ⟨H⟩.
Then the following conditions are equivalent:

1. H is an H-basis of I.



55 CHAPTER 4. IDEAL INTERPOLATION

2. I0 ∶= ⟨{h0 ∣ h ∈ I}⟩ = ⟨h0
1, . . . , h

0
m⟩ .

Hilbert Basis Theorem says that I0 has a finite basis, hence any ideal in K[x] has
a finite H-basis. We shall now introduce the concepts of minimal, orthogonal and
reduced H-basis. The notion of orthogonality is considered w.r.t the apolar product.
Our definitions somewhat differ from (Möller and Sauer, 2000) as we dissociate them
from the computational aspect. We need to introduce first the following vector space
of homogeneous polynomials.

Definition 4.3.3 Given a set H = {h1, . . . , hm} of homogeneous polynomials in
K[x] and a degree d, we define the subspace Vd(H) as

Vd(H) = {
s

∑
i=1

gihi ∣ gi ∈ K[x]d−deg(hi)} ⊂ K[x]d.

Vd(H) is the image of the linear map ψd:

ψd,h ∶ K[x]d−d1 × . . . ×K[x]d−dm → K[x]d
(g1, . . . , gm) →

m

∑
i=1

gihi
.

We denote by MMd,Pd(H) the matrix of ψd in the bases Md and Pd of K[x]d−d1 ×
. . . ×K[x]d−dm and K[x]d respectively. It is referred to as the Macaulay matrix for
H. We can write Vd(H) as

Vd(H) =
⎧⎪⎪⎨⎪⎪⎩

∣Pd∣

∑
i=0

aipi ∣ (a1, . . . , a∣Pd∣) ∈R (MMd,Pd(H))
⎫⎪⎪⎬⎪⎪⎭
, (4.3.1)

where R (MMd,Pd(H)) denotes the column space of MMd,Pd(H).
We shall use the notation P 0

d for the set of the degree d elements of P 0. In other
words P 0

d = P 0 ∩K[x]d.

Definition 4.3.4 We say that an H-basis H is minimal if, for any d ∈ N, H0
d is

linearly independent and
Vd (I0

d−1)⊕ ⟨H0
d⟩K = I0

d . (4.3.2)

Furthermore H is said to be orthogonal if ⟨H0
d⟩K is the orthogonal complement of

Vd (I0
d−1) in I0

d .

Note that if hi and hj are two elements with deghi > deghj of an orthogonal
H-basis we have

⟨h0
i , ph

0
j⟩ = 0 for all p ∈ K[x]deghi−deghj .

The concept of orthogonal H−basis introduces uniqueness of the leading ho-
mogeneous forms of a H−basis up to linear transformations. If H and G are two
orthogonal H-basis then H0

d and G0
d are both bases of the orthogonal complement
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of Vd (I0
d−1) in I0

d , and thus H0
d = G0

d ⋅Qd, where Qd is the change of basis from G0
d to

H0
d, therefore

H0 = G0 ⋅Q, with Q = diag (Qd, d = 1..D) . (4.3.3)

We can extend the previous notion of uniqueness not only for the leading homo-
geneous forms of a H− basis but also for the complete H−basis by introducing the
concept of reduced H−basis.

Definition 4.3.5 Let H = {h1, . . . , hm} be an orthogonal H-basis of an ideal I. The
reduced H-basis of H is defined by

H̃ = {h0
1 − h̃0

1, . . . , h
0
m − h̃0

m} (4.3.4)

where, for p ∈ K[x], p̃ is the projection of p on the orthogonal complement of I0

parallel to I.

(Möller and Sauer, 2000, Lemma 6.2) show how p̃ can be computed given H.

Proposition 4.3.6 Let H = {h1, . . . , hm} and G = {g1, . . . , gm} be two reduced H−bases
of I. Then there is a linear transformation from H to G, i.e, there is a m×m matrix
Q such that

(h1, . . . , hm) = (g1, . . . , gm) ⋅Q.

proof: By (4.3.3) there is a m ×m matrix Q such that H0 = G0 ⋅Q, thus

h0
i =

m

∑
j=1

qijg
0
j for 1 ≤ i ≤m.

By the uniqueness of p̃ for any p ∈ K[x] follows that h̃0
i = ∑m

j=1 qij g̃
0
j and therefore

h0
i − h̃0

i = ∑m
j=1 qij (g0

i − g̃0
i ). Last equality implies that H̃ = G̃ ⋅Q. ◻

Schematic computation of H-bases In the next section we elaborate on an
algorithm to compute concomitantly the least interpolation space and an H-basis
for the ideal associated to a set of linear forms Λ. As a way of introduction we
reproduce the sketch of an algorithm as proposed by De Boor (1994) to compute an
H-basis until degree D. It is based on the asumption that we have access to a basis
of Id ∶= I ∩K[x]≤d for any d.
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Algorithm 2 (De Boor, 1994) H-basis construction

Input: - a degree D.
- basis for Id for 1 ≤ d ≤D.

Output : - an H-basis until degree D

1: H ← {} ;
2: for d = 0 to D do
3: Cd ← a basis of Vd(H0);
4: Bd ← a basis for the complement of Vd(H) in I0

d ;

5: B̂d ← projection of Bd in Id
6: H ← H⋃ B̂d;
7: end for
8: return H;

The correctness of Algorithm 2 is shown by induction. Assume that Hd−1 consists
of the polynomials in an H-basis of I up to degree d − 1. Consider p ∈ I with
deg(p) = d. By Step 4 in Algorithm 2 we have

p0 = ∑
hi∈H

h0
i gi + ∑

bi∈Bd
aibi (4.3.5)

with gi ∈ K[x]d−deg(hi) and ai ∈ K. From (4.3.5) we have that p ∈ I and ∑hi∈H higi +
∑bi∈Bd+1

aib̂i ∈ I have the same leading form. Thus

p − ∑
hi∈Hd−1

higi − ∑
bi∈Bd

aib̂i ∈ Id−1

therefore using the induction hypothesis we get that

p = ∑
hi∈Hd−1

higi + ∑
bi∈Bd+1

aib̂i + ∑
hi∈Hd−1

hiqi

with qi ∈ K[x]≤d−1−deg(hi) and therefore H is an H-basis.
Algorithm 2 can be applied in the ideal interpolation scheme. In this setting a

basis of Id can be computed for any d using Linear Algebra techniques due to the
following relation.

Id =
⎧⎪⎪⎨⎪⎪⎩

∣P≤d∣

∑
i=1

aipi ∣ (a1, . . . , a∣P≤d∣)
t ∈ ker (WP≤d

L ) and pi ∈ P≤d
⎫⎪⎪⎬⎪⎪⎭
,

for any basis P≤d of K[x]≤d.
In the next section we will give an efficient and detailed version of Algorithm 2

in the ideal interpolation case. We will integrate the computations of an H-basis for
I = ∩λ∈Λ ker λ and a basis for Λ↓.
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When the ideal is given by a set of generators it is also possible to compute
an H-basis with linear algebra if you know a bound on the degree of the syzygies
of the generators. A numerical approach, using singular value decomposition, was
introduced in (Javanbakht and Sauer, 2019). Alternatively an extension of Buch-
berger’s algorithm is presented in (Möller and Sauer, 2000). It relies, at each step,
on the computation of a basis for the module of syzygies of a set of homogeneous
polynomials.

4.4 Simultaneous computation of the H-basis and

least interpolation space

In this section we present an algorithm to compute both a (orthogonal) basis of Λ↓
and an orthogonal H-basis H of the ideal I = ∩λ∈Λ ker λ. We proceed degree by
degree. At each iteration of the algorithm we compute a basis of Λ↓ ∩K[x]d and the
set H0

d = H0∩K[x]d. Recall from Corollary 4.2.3, Theorem 4.3.2, and Definition 4.3.4
that

K[x] = Λ↓
⊥⊕ I0, I0 = ⟨H0⟩, and I0

d = Vd (I0
d−1)

⊥⊕ ⟨H0
d⟩K .

I is the kernel of the Vandermonde operator while Λ↓ can be inferred from a rank
revealing form of the Vandermonde matrix. With orthogonality prevailing in the
objects we compute it is natural that the QR-decomposition plays a central role in
our algorithm.

For a m × n matrix M, the QR-decomposition is M = QR where Q is a m ×m
orthogonal matrix and R is a m × n upper triangular matrix. If r is the rank of M
the first r columns of Q form an orthogonal basis of the column space of M and the
remaining m− r columns of Q form an orthogonal basis of the kernel of MT (Golub
and Van Loan, 1996, Theorem 5.2.1). We thus often denote the QR-decomposition
of a matrix M as

[Q1 ∣ Q2 ] ⋅ [
R
0

] = M

where Q1 ∈ Km×r,Q2 ∈ Km×(m−r) and R ∈ Kr×n. Algorithms to compute the QR-
decomposition can be found for instance in (Golub and Van Loan, 1996).

In the Lagrange interpolation case, Fassino and Möller (2016) already used the
QR-decomposition to propose a variant of the BM-algorithm (Möller and Buch-
berger, 1982) so as to compute a monomial basis of an interpolation space, the
complement of the initial ideal for a chosen term order. They furthermore study the
gain in numerical stability for perturbed data. We shall use QR-decomposition to
further obtain a homogeneous basis of Λ↓ and an orthogonal H-basis of the ideal.

Due to Corollary 4.2.3 the reduction p̃ of p that appeared in Definition 4.3.5 is
the unique interpolant of p in Λ↓.

Definition 4.4.1 Given a space of linear forms Λ, we denote by Λ≥d the subspace



59 CHAPTER 4. IDEAL INTERPOLATION

of Λ given by
Λ≥d = {λ ∈ Λ ∣ λ↓ ∈ K[x]⩾d } ∪ {0}.

Hereafter we organize the elements of the bases of K[x], Λ, or their subspaces, as
row vectors. In particular P and P† are dual homogeneous bases for K[x] according
to the apolar product. Their degree part Pd and P†

d are dual bases of K[x]d.
A basis L≥d of Λ≥d can be computed inductively thanks to the following obser-

vation.

Proposition 4.4.2 Assume L≥d is a basis of Λ≥d. Consider the QR-decomposition

WPd
L≥d = [Q1 ∣ Q2 ] ⋅ [

Rd

0
]

and the related change of basis [Ld ∣ L≥d+1] = L≥d ⋅ [Q1 ∣Q2 ].
Then

• L≥d+1 is a basis of Λ≥d+1;

• Rd = WPd
Ld has full row rank;

• The components of Ld↓ = P†
d ⋅RT

d form a basis of Λ↓ ∩K[x]d.

We shall furthermore denote by L≤d = ⋃di=0Li the thus constructed basis of a
complement of Λ≥d+1 in Λ.

proof: It all follows from the fact that a change of basis L′ = LQ of Λ implies
that WP

L′ = QTWP
L . In the present case Q = [Q1 ∣Q2 ] is orthogonal and hence

QT = Q−1.
The last point simply follows from the fact that, for λ ∈ Λ, λ = ∑p∈P λ(p)p†(∂).

Hence if T = WP
L then the j-th component of L is ∑i tjip

†(∂). ◻
This construction gives us a basis of Λ↓ ∩K[x]d in addition to a basis of Λ≥d+1 to

pursue the computation at the next degree. Before going there, we need to compute
a basis H0

d for the complement of Vd(H0
<d) in I0

d . For that we shall use an additional
QR-decomposition as explained in Proposition 4.4.5, after two preparatory lemmas.

Lemma 4.4.3 Let d ≥ 0 and let Pd be a basis of K[x]d then:

I0
d =

⎧⎪⎪⎨⎪⎪⎩

∣Pd∣

∑
i=1

aipi ∣ (a1, . . . , a∣Pd∣)
t ∈ ker (WPd

Ld ) and pi ∈ Pd
⎫⎪⎪⎬⎪⎪⎭

.

proof: Recall that I is the kernel of the Vandermonde operator, and WP
L is the

matrix of this latter. The Vandermonde submatrix WP≤d
L≤d can be written as follows

WP≤d
L≤d = WP≤d

[L≤d−1 ∣ Ld]
=
⎛
⎝

WP≤d−1

L≤d−1
WPd
L≤d−1

0 WPd
Ld

⎞
⎠

(4.4.1)
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where WP≤d−1

L≤d−1
has full row rank.

Assume first that p is a polynomial in I0
d . Then there is q ∈ I of degree d such

that q0 = p. Let q = ( q≤d−1

qd
) and p = qd be the coefficients of q and p respectively

in the basis P. As q ∈ Id we have that

WP≤d
L≤d ⋅ q =

⎛
⎝

W
P
≤(d−1)

L≤d−1
⋅ q≤d−1 +WPd

L≤d−1
⋅ qd

WPd
Ld ⋅ qd

⎞
⎠
= 0

and therefore p = qd is in kernel of WPd
Ld . Now let v a vector in the kernel of WPd

Ld . A

vector u such that ( u
v

) ∈ K(n+d
d

) and WP≤d
L≤d ⋅ (

u
v

) = 0 can be found as the solution

of the following equation.

W
P
≤(d−1)

L≤d−1
u = WPd

Ld v −WPd
L≤d−1

v. (4.4.2)

As W
P
≤(d−1)

L≤d−1
has full row rank, Equation 4.4.2 always has a solution. Then P≤d ⋅

( u
v

) ∈ I and therefore Pd ⋅ v ∈ I0
d . ◻

Lemma 4.4.4 Consider the row vector q of coefficients of a polynomial q of K[x]d
in the basis Pd. The polynomial q is in the orthogonal complement of Vd(H) in
K[x]d if and only if the row vector q is in the left kernel of MMd,P†

d
(H).

proof: The columns of MMd,P†
d

are the vectors of coefficients, in the basis

P†
d, of polynomials that span Vd(H). The membership of q in the left kernel of

MMd,P†
d
(H) translates as the apolar product of q with these vectors to be zero. And

conversely. ◻

Proposition 4.4.5 Consider the QR-decomposition

[ (WPd
Ld )T MMd,P†

d
(H) ] = [Q1 ∣ Q2] ⋅ [

R
0

]

The components of the row vector Pd ⋅Q2 span the orthogonal complement of Vd(H)
in I0

d .

proof: The columns in Q2 span ker WPd
Ld ∩ ker (MMd,P†

d
)
t
. The result thus

follows from Lemmas 4.4.3 and 4.4.4. ◻
We are now able to show the correctness and termination of Algorithm 3.
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Algorithm 3

Input: - L a basis of Λ (r = ∣L∣ = dim (Λ))
- P a basis of K[x]≤r
- P† the dual basis of P w.r.t the apolar product.

Output: - H a reduced H-basis for I ∶= ker Λ
- PΛ a basis of the least interpolation space of Λ.

1: H0 ← {}, PΛ ← {}
2: d← 0
3: L≤0 ← {}, L≥0 ← L

4: while L≥d ≠ {} do

5: Q ⋅ [ Rd

0
] = WPd

L≥d ▷ QR-decomposition of WPd
L≥d

6: PΛ ← PΛ⋃P†
d ⋅RT

d

7: [Ld ∣ L≥d+1]← L≥d ⋅QT ▷ Note that Rd = WPd
Ld

8: L≤d+1 ← L≤d ∪Ld

9: [Q1 ∣ Q2] ⋅R = [ RT
d MMd,P†

d
(H) ]

10: H0 ← H0⋃Pd ⋅Q2

11: d← d + 1
12: end while
13: for all p ∈ H0 do

14: H ← H⋃{p −PΛ (WPΛ

L≤d)
−1 (L≤d)T}

15: end for
16: return (H,PΛ)
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Correctness In the spirit of Algorithm 2, Algorithm 3 proceeds degree by degree.
At the iteration for degree d we first compute a basis for Λ≥d+1 by splitting L≥d into
L≥d+1 and Ld. As explained in Proposition 4.4.2, this is obtained through the QR-
decomposition of WPd

L≥d . From this decomposition we also obtain a basis for Λ↓∩K[x]d
as well as WPd

Ld . We then go after H0
d, which spans the orthogonal complement of

Vd(H0
≤d−1) in I0

d . The elements of H0
d are computed via intersection of ker WPd

Ld and

ker (MMd,P†
d
)
t

as showed in Proposition 4.4.5. Algorithm 3 stops when we reach a

degree δ such that L≥δ is empty. Notice that for d ≥ δ the matrix WPd
Ld is an empty

matrix and therefore its kernel is the full space K[x]d. Then as a consequence of
Lemma 4.4.3, for all d > δ we have that Vd(I0

d−1) = I0
d hence ⟨H0

d⟩ is an empty set.
The latter implies that when the algorithm stops we have computed the full H-basis
H0 for I0.

We then obtain an H-basis of I by finding the projections, onto Λ↓ and parallel to
I, of the elements of H0. These are the polynomials of Λ↓ interpolating the elements
of H0 according to Λ.

Termination Considering r ∶= dim(Λ) we have that L≥r is an empty set, this
implies that in the worst case our algorithm stops after r iterations.

Complexity The most expensive computational step in Algorithms 3 is the com-

putation of the kernel of the matrix [(WPd
Ld )T MMd,P†

d
(H)] , with number of columns

and rows given by

row(d) = (d+n−1
n−1

) = dn−1

(n−1)! +O (dn−1)

col(d) = ∑∣H∣
i=1 (

d−di+n−1
n−1

) + ∣Ld∣ = ∣H∣dn−1

(n−1)! +O (dn−1)
(4.4.3)

where d1, . . . , d∣H∣ are the degrees of the elements of the computed H-basis un-
til degree d. Then the computational complexity of Algorithm 3 relies on the
method used for the kernel computation of VM(d), which in our case is the QR-
decomposition.

We are giving a frame for the simultaneous computation of an H-basis and the
Least interpolation space, but there is still room for improving the performance of
Algorithm 3. The structure of the Macaulay matrix might be taken into account to
alleviate the linear algebra operations as for instance in (Berthomieu et al., 2017).
We can also consider different variants of Algorithm 3. In Proposition 4.4.6 we
show that orthogonal bases for K[x]d ∩Λ↓ and I0

d can be simultaneously computed

by applying QR-decomposition in the Vandermonde matrix (WPd
L≥d)T . Therefore we

can split Step 9 in two steps. First we do a QR-decomposition (WPd
L≥d)T to obtain

orthogonal bases of K[x]d ∩Λ↓ and I0
d . Once that we have in hand a basis of I0

d we
obtain the elements of Hd as its complement in the column space of MMd,P†

d
(H).



63 CHAPTER 4. IDEAL INTERPOLATION

Proposition 4.4.6 Let [Q1 ∣ Q2] ⋅ [
Rd

0
] = (WPd

L≥d)
T

be a QR-decomposition of

(WPd
L≥d)

T
. Let r be the rank of (WPd

L≥d)
T

. Let {q1 . . . qr} and {qr+1 . . . qm} be the
columns of Q1 and Q2 respectively. Then the following holds:

1. PΛ,d = {P†
d ⋅ q1, . . . ,P†

d ⋅ qr} is a basis of K[x]d⋂Λ↓.

2. N = {Pd ⋅ qr+1, . . . ,Pd ⋅ qm} is a basis of I0
d .

3. If p ∈ PΛ,d and q ∈ N then ⟨p, q⟩ = 0, i.e., K[x] = (Λ↓ ∩K[x]d)
⊥⊕ I0

d .

In the case where P is orthonormal with respect to the apolar product, i.e. P = P†,
then PΛ,d and N are also orthonormal bases.

proof: Let D such that L≥D = {} and let L≤D = ⋃d≤D Ld be a basis of Λ.
Then the matrix WP≤D

L≤D is block upper triangular with non singular diagonal blocks.

Consider {a1, . . . a`} ∈ K∣P≤D ∣ the rows of WP≤D
L≤D . By Proposition Proposition 3.2.4

we have that PΛ {(P†
≤D ⋅ at1)↓ , . . . , (P

†
≤D ⋅ at`)↓} is a basis of Λ↓, we can rewrite PΛ

as
D

⋃
d=1

{P†
d ⋅ bt1, . . . ,P

†
d ⋅ bt`d} where {b1, . . . , b`d} is a basis of the row space of (WPd

Ld ).

Since PΛ is a graded basis then {P†
d ⋅ bt1, . . . ,P

†
d ⋅ bt`d} is a basis K[x]d ∩Λ↓.

Part (2) in the proposition is a direct consequence of Lemma 4.4.3 and the fact
that the columns of Q2 form a basis of the kernel of WPd

L≥d . Let now q ∈ PΛ,d and
p ∈ N . Then,

⟨p, q⟩ = ⟨ ∑
pi∈Pd

aipi, ∑
qi∈P†

d

biqi⟩ =∑
i=1

aibi = 0.

Last equality stems from a and b being different rows in Q. ◻

4.5 Symmetry reduction

In the above Algorithm 3, to compute an H-basis of I = kerw, we use the Vander-
monde and Macaulay matrices. We showed in Section 3.4 how the Vandermonde
matrix can be block diagonalized using appropriate symmetry adapted bases of K[x]
and Λ. We show here how to obtain such a block diagonalization on the Macaulay
matrix when the space spanned by H is invariant under the induced action of a
group G on K[x]. The key relies on exhibiting the equivariance of the prolongation
map Ψd,h defined in Section 4.3.

Consider now a set H = {h1, . . . , hl} of homogeneous polynomials of K[x]. We
denote d1, . . . , d` their respective degrees and h = [h1, . . . , h`] the row vector of K[x]`.
Associated to h, and a degree d, is the map introduced in Section 4.3

ψd,h ∶ K[x]d−d1 × . . . ×K[x]d−d` → K[x]d
f = [f1, . . . , f`]t → h ⋅ f.

(4.5.1)
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We assume that H forms a basis of an invariant subspace of K[x] and we call
θ the restriction of the representation ρ to this subspace, while Θ is the matrix
representation in the basis H: Θ(g) = [θ(g)]H. Then

[ρ(g)(h1), . . . , ρ(g)(h`)] = h ○ ϑ(g−1) = h ⋅Θ(g).

Note that, since the representation ρ on K[x] preserves degree, deghi ≠ deghj ⇒
Θij(g) = 0, ∀g ∈ G.

Proposition 4.5.1 Consider h = [h1, . . . , h`] ∈ K[x]d1× . . .×K[x]dl and assume that
h○ϑ(g−1) = h ⋅Θ(g), for all g ∈ G. For any d ∈ N, the map ψd,h is τ −ρ equivariant for
the representation τ on K[x]d−d1 × . . .×K[x]d−d` defined by τ(g)(f) = Θ(g) ⋅ f ○ϑ(g−1).

proof: (ρ(g) ○ ψd,h)(f) = ρ(g)(h ⋅ f) = h ○ ϑ(g−1) ⋅ f ○ ϑ(g−1) = h ⋅Θ(g) ⋅ f ○ ϑ(g−1) =
(ψh ○ τ(g)) (f). ◻

By application of (Fässler and Stiefel, 1992, Theorem 2.5), the matrix of ψd,h is
block diagonal in symmetry adapted bases of K[x]d−d1×. . .×K[x]d−d` and K[x]d. Yet,
in the algorithm to compute symmetry adapted H-basis, the set H increases with d
at each iteration and τ changes accordingly. We proceed to discuss how to hasten
the computation of a symmetry adapted basis of the evolving space K[x]d−d1 × . . .×
K[x]d−d` .

The set H = H1 ∪ . . .HN that we shall build, degree by degree, is actually a sym-
metry adapted basis. In particular, for 1 ≤ i ≤ N , Hi spans the isotypic component
associated to the irreducible representation ρi. If the multiplicity of the latter, in the
span of H, is `i then the cardinality of Hi is `i ni. The matrices of the representation
θ in this basis are Θ(g) = diag (Ri(g)⊗ I`i ∣ i = 1 . . .N).

Assume Hi is determined by hi,1, . . . , hi,`i , of respective degrees di,1, . . . , di,`i . In
other words, for 1 ≤ l ≤ `i,

hi,l = [hi,l, π(i)
21 (hi,l) , . . . , π(i)

ni1
(hi,l)]

is such that hi,l ○ ϑ(g−1) = hi,l ⋅Ri(g). Hence the related product subspace K[x]nid−di,l
is invariant under τ . The symmetry adapted bases for all these subspaces can be
combined into a symmetry adapted basis for the whole product space

(K[x]d1,1 ×K[x]d1,`1
)n1 × . . . × (K[x]dN,1 ×K[x]d1,`N

)nN .

Note that the components K[x]nie with representation τi,e defined by τi,e(g)(f) =
Ri(g) ⋅ f ○ ϑ(g−1) are bound to reappear several times in the overall algorithm of
next section. Hence the symmetry adapted bases for the evolving τ can be computed
dynamically.

We can actually go further in the combination of symmetry adapted bases of
smaller size, down to the symmetry adapted bases for the tensor product represen-
tations ρi ⊗ ρj.
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Let us first observe what is the matrix of τ for any H. We take the same set Pe
as a basis for each component K[x]e and call P the natural basis for the product
K[x]d−d1 × . . . × K[x]d−d` . Let Γe = [ρ∣K[x]e]Pe be the matrix representation of the

restriction of ρ to K[x]e in the basis Pe. The matrix of τ is then described by
blocks. The block in position (i, j) is zero if d − di ≠ d − dj and Θij(g)Γd−dj(g).

If we choose Pe to be a symmetry adapted basis of K[x]e then

Γe(g) = diag (Rj(g)⊗ Icj,e ∣1 ≤ j ≤ N), where cj,e

is the multiplicity of the irreducible representation ρj in K[x]e. Hence the matrices
of the restriction of τ to the invariant product subspace K[x]nid−di,l are

Ri(g)⊗ Γd−di,l(g) = Ri(g)⊗ diag (Rj(g)⊗ Icj,d−di,l ∣1 ≤ j ≤ N).

With a permutation of the basis elements of K[x]nid−di,l , the matrices of the restriction

of τ can be brought to a diagonal of blocks Ri(g)⊗Rj(g). Assuming that the sym-
metry adapted bases for these tensorial representations of ρi ⊗ ρj are precomputed,
a symmetry adapted basis for the restriction of τ , and then of τ , can be assembled
from the symmery adapted bases of the components K[x]e.

4.6 Constructing Symmetry Adapted H-Basis

In this section we show, when the space Λ is invariant, an orthogonal equivariant
H-basis H can be computed. In this setting, we exploit the symmetries of Λ to build
H. A robust and symmetry adapted version of Algorithm 3 is presented. The block
diagonal structure of the Vandermonde and Macaulay matrices allow to reduce the
size of the matrices to deal with. The H-basis obtained as the output of Algorithm
4 inherits the symmetries of Λ.

Proposition 4.6.1 Let I = ∩λ∈Λ kerλ and d ∈ N. If Λ is invariant, then so are I,
I0, I0

d , Vd (I0
<d). Also, if H is an orthogonal H-basis of I, then ⟨H0

d⟩K is invariant.

proof: Let p ∈ I and g ∈ G, since Λ is closed under the action of G, λ(ρ(g)(p)) =
ρ∗(g) ○ λ(p) = 0 for all λ ∈ Λ therefore ρ(g)(p) ∈ I implying the invariance of I.
Considering d the degree of p we can write p as p = p0 + p1, with p1 ∈ K[x]<d. Then
we have that ρ(g)p = ρ(g)p0 + ρ(g)p1 ∈ I, as ρ is degree preserving then ρ(g)p0 ∈ I0

d

and the invariance of I0 follows. Now for every q = ∑hi∈I0
d−1
qihi ∈ Vd (I0

≤d), it holds

that ρ(g)q = ∑hi∈I0
d−1
ρ(g)qiρ(g)hi ⊂ Vd (I0

≤d), thus Vd (I0
≤d) is an invariant subspace.

Finally recalling (4.3.2) we conclude that ⟨H0
d⟩K is also G-invariant for being the

orthogonal complement of a G−invariant subspace. ◻
Algorithm 4 is a symmetry adapted version of Algorithm 3. In any iteration we

compute H0
d as a symmetry adapted basis of the orthogonal complement of Vd(H0

<d)
in I0.
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This structure is obtained degree by degree. Assuming that the elements of H0
<d

form a symmetry adapted basis it follows from Corollary 3.4.2 and Proposition 4.5.1
that the matrices WPd

L and MMd,Pd(H0
<d) are block diagonal. Computations over the

symmetry blocks leads to the symmetry adapted structure of H0
d. For any degree d

we only need to consider the matrices W
Pi,1
d

Li,1
≥d

and Mi
d(H0

<d), i.e., only one block per

irreducible representation.

Once we have in hand H0 = [h1
11, . . . , h

1
1n1
, . . . , hncnnn

]T and a symmetry adapted
basis for Λ↓, we compute H by interpolation. Since H0 ∈ K[x]θϑ, by (?, Proposition
3.5), its interpolant in Λ↓ is also ϑ − θ equivariant. Therefore

H = [h1
11 − h̃1

11, . . . , h
1
1n1

− h̃1
1n1
, . . . , hncnnn

− h̃ncnnn
]
T
∈ K[x]θϑ.

The set H of its component is thus a symmetry adapted basis. The correctness and
termination of Algorithm 4 follow from the same arguments exposed for Algorithm 3.
Note that both Macaulay and Vandermonde matrices split in ∑n

i=1 ni blocks. Thanks
to Proposition 2.4.8 we can approximate the dimensions of the blocks by

dim Mi(H0)
dim M(H0) ≈

dim WPi
Li

dim WP
L

≈ n2
i

∣G∣ .

Therefore depending on the size of G the dimensions of the matrices to deal with in
Algorithm 4 can be considerably reduced.

Example 4.6.1 Consider Ξ ⊂ R3 the invariant set of 26 points given by the union
of the orbits O2,O3 and O4 in Example 3.5.4. Consider Λ = ⟨{eξ ∣ ξ ∈ Ξ}⟩ . Λ is
an invariant subspace and therefore I = ⋂λ∈Λ kerλ is an invariant ideal under the
action of Oh. Applying Algorithm 4 to I we wet the following orthogonal symmetry
adapted H-basis H.

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(1) = {p ∶= −19 (x4 + y4 + z4) + 18 (x2y2 + x2z2 + y2z2) + x2 + y2 + z2 + 18}

H(5) = {x4 − 2y4 + z4 − x2 + 2y2 − z2,
√

3 (x4 − z4 − x2 + z2)}

H(7) = {yz (y2 − z2) ,−xz (x2 − z2) , xy (x2 − y2)}

H(9) = {−yz (4x2 − 3y2 − 3z2 + 6) , xz (3x2 − 4y2 + 3z2 − 6) , xy (3x2 + 3y2 − 4z2 − 6)}

From the structure of H it follows that p is the minimal degree invariant polyno-
mial of I. Notice that as a difference with Example 3.5.4 we do not need an artificial
point to get an invariant interpolant which its zero set contains Ξ. In Figure 4.1 we
show the zero surface of p which is Oh invariant.
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Algorithm 4

Input: - L a s.a.b of Λ (r = ∣L∣ = dim (Λ), ri = ∣Li,1∣)
- P an orthonormal graded s.a.b of K[x]≤r
- Mi a graded s.a.b of K[x]ni≤r, 1 ≤ i ≤ n

Output: - H an orthogonal equivariant H-basis for I ∶= ker Λ
- PΛ a s.a.b of the least interpolation space for Λ.

1: H0 ← {}, PΛ ← {}
2: d← 0
3: L≤0 ← {}, L≥0 ← L

4: while L≥d ≠ {} do

5: for i = 1 to n such that Li,1≥d ≠ ∅ do

6: Q ⋅ [ Rd,i

0
] = W

Pi,1
d

Li,1
≥d

▷ QR-decomposition of W
Pi,1
d

Li,1
≥d

7: [Li,1d ∣ Li,1≥d+1]← L
i,1
≥d ⋅QT

8: Li,1≤d+1 ← L
i,1
≤d ∪L

i,1
d

9: [Q1 ∣ Q2] ⋅R = [ RT
d,i Mi

d(H0) ]
10: for α = 1 to ni do
11: P iΛ ← P iΛ ∪P i,αd ⋅RT

d,i

12: H0
i ← H0

i ⋃P
i,α
d ⋅Q2

13: end for
14: end for
15: d← d + 1
16: end while
17: for i = 1 to n do
18: for all p ∈ H0

i do

19: H ← H⋃{p −P i,1Λ (W
Pi,1Λ

Li,1
≤d

)
−1

(Li,1≤d)
T}

20: end for
21: end for
22: return (H,PΛ)
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Figure 4.1: Lowest degree invariant algebraic surface through an invariant set of the
points Ξ.

Example 4.6.2 The subgroup of the orthogonal group R3 that leaves the regular
tetrahedron invariant is commonly called Th. It has order 24 and 5 inequivalent irre-
ducible representations, all absolutely irreducible, whose dimensions are (1,1,2,3,3).
We consider the the following action of Th in R3

Th = {δiσjαkβ` ∣ 0 ≤ i ≤ 1, 0 ≤ j ≤ 2, 0 ≤ k ≤ 1, 0 ≤ ` ≤ 1}

which is defined by the matrices.

δ =
⎛
⎜⎜⎜
⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎟
⎠
, σ =

⎛
⎜⎜⎜
⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎟⎟
⎠

α =
⎛
⎜⎜⎜
⎝

−1 0 0

0 1 0

0 0 −1

⎞
⎟⎟⎟
⎠

and β =
⎛
⎜⎜⎜
⎝

1 0 0

0 −1 0

0 0 −1

⎞
⎟⎟⎟
⎠
.

Consider Ξ ⊂ R3 the invariant set of 14 points illustrated on Figure 4.2a. They are
gruped in three orbits O1 (violet points), O2 (brown points) and O3 (red points).
Consider the space of linear forms Λ given by

Λ = ⟨{eξ ∣ ξ ∈ Ξ} ∪ {eξ ○Dξ⃗ ∣ ξ ∈ O3}⟩R

The fact that I = ∩λ∈Λλ is an ideal in R[x] can be easily deduce from the fact that

eξ ○Dξ⃗ (f ⋅ g) = f(ξ) ⋅ eξ ○Dξ⃗(g) + g(ξ) ⋅ eξ ○Dξ⃗(f)

so if ξ ∈ O3 then for any f ∈ I and g ∈ R[x], eξ ○Dξ⃗ (f ⋅ g) = 0. Applying Algorithm 4
to I, we get a symmetry adapted H-basis H
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H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(1) = {2152
1875 (x4 + y4 + z4) + 25973

1875 (x2y2 + x2z2 + y2z2) + 45000
25973xyz − 13750

1875 (x2 + y2 + z2) + 1}

H(3) = {(4x2 + 4z2 − 25)(x − z)(x + z), (4y2 + 4z2 − 25)(y − z)(y + z)}

H(4) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

270x2yz + 90y3z + 90yz3 − 8x3 + 79xy2 + 79xz2 − 250yz + 50x,

90x3z + 270xy2z + 90xz3 + 79x2y − 8y3 + 79yz2 − 250xz + 50y,

90x3y + 90xy3 + 270xyz2 + 79x2z + 79y2z − 8z3 − 250xy + 50z

H(5) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

H(5,1) = {xy2 − xz2, yz (y2 − z2)}
H(5,2) = {−x2y + yz2,−xz (x2 − z2)}
H(5,3) = {x2z − y2z, xy (x2 − y2)}

and a symmetry adapted basis L of the least interpolation space

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(1) = { 1, x2 + y2 + z2, xyz,25973 (x4 + y4 + z4) − 12912 (x2y2 + x2z2 + y2z2) }

L(3) = {2x2 − y2 − z2, y2 − z2}

L(4) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L(5,1) = {x, yz, x3, x (y2 + z2)}
L(5,2) = {y, xz, y3, y (x2 + z2)}
L(5,3) = {z, yx, z3, z (x2 + y2)}

(a) Points in Ξ divided in orbits
(b) Variety of p ∈H(1)

Figure 4.2: Interpolation data and variety of the interpolant p that goes through
the points in Ξ and with zero directional derivative in O3.
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4.7 FGLM

The FGLM algorithm was introduced by Faugere et al. (1993). It performs change
of orderings for Gröbner bases in a zero dimensional ideal. Variations of the FGLM
to take symmetries into account can be found in (Faugère and Rahmany, 2009) and
(Faugere and Svartz, 2013). Denoting by IG the intersection of an ideal I with
K[x]G, an algorithm is presented in (Faugère and Rahmany, 2009) to compute a
Gröbner basis of an invariant ideal K[h1, . . . , hm] with hi ∈ IG from an SAGBI basis
of IG.

In (Faugere and Svartz, 2013) for invariant ideals with respect to diagonal ac-
tions, the symmetries are exploited to speed up the change of orderings. In this
section we show how Algorithm 4 can be seen as a FGLM-type algorithm and as a
generalization of the Diagonal-FGLM algorithm proposed in (Faugere and Svartz,
2013). From a Gröbner basis of an invariant ideal I we compute a symmetry pre-
serving H-basis as well as a symmetry adapted basis of K[x]/I. Having a robust
and symmetry adapted basis of K[x]/I plays a key role for exploiting symmetries
during the solution of equivariant system of equations (Gatermann, 1990; Corless
et al., 2009), and for computing symmetric cubatures (Gatermann, 1988; Collowald
and Hubert, 2015). An aggregated value of Algorithm 4 is that it provides a s.a.b of
K[x]/I such that its representatives are also a s.a.b of an invariant subspace of K[x].
We will see in Example 4.7.1 that symmetry adapted bases computed w.r.t the rep-
resentation ρ̂ does not necessarily induce a decomposition in irreducible components
of K[x].

Proposition 4.7.1 If I is a G-invariant ideal and g ∈ G then

ρ̂(g) ∶ K[x]/I → K[x]/I
[p] → [ρ(g)p] (4.7.1)

is a linear representation of G.

proof: We just need to check that the definition is independent of the choice
of representative for [p]. If [p] = [q] then p − q ∈ I so that ρ(p − q) = ρ(p) − ρ(q) ∈ I
since I is G-invariant. Hence [ρ(p)] = [ρ(q)]. ◻

Consider n1, n2, . . . , nr ∈ K[x] such that {[n1], . . . , [nr]} is a basis of K[x]/I. Let
α1, . . . , αr be its dual basis, so that any element [p] ∈ K[x]/I can be written as

[p] =
r

∑
i=1

αi([p])[ni]. (4.7.2)

As a consequence of Proposition 4.7.1, if I is G-invariant so is (K[x]/I)∗ under the
dual representation of ρ̂. Define λ1, . . . , λr as elements of K[x]∗ by λi(p) = αi([p])
for any p ∈ K[x].

Proposition 4.7.2 Let λ1, . . . , λr be defined as above. The following holds.
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• Λ = ⟨λ1, . . . , λr⟩K is a G-invariant subspace of K[x]∗ w.r.t ρ∗.

• I = ∩λ∈Λ kerλ

proof: The first assertion is mostly a matter of unrolling the definitions. We
want to show that ρ∗ (g) (λ) ∈ Λ for any g ∈ G. Applying ρ∗ (g) (λ) to any p ∈ K[x]
we have that ρ∗ (g) (λ)p = λ (ρ (g−1)p) = α ([ρ (g−1)p]) = ρ̂∗ (g) (α) ([p]). Therefore
as ρ̂∗ (g) is in (K[x]/I)∗ then ρ∗ (g) (λ) ∈ Λ.

For the second assertion, we have the equivalences:

p ∈ I ⇔ [p] = 0 ⇔ αi([p]) = 0,1 ≤ i ≤ r ⇔ λi(p) = 0,1 ≤ i ≤ r.
◻

Let G = {g1, g2, . . . , gm} ⊂ K[x] be a Grobner basis of I, and letN = {n1, n2, . . . , nr} ⊂
K[x] the corresponding normal set of monomials. The linear forms λ1, . . . , λr in
K[x]∗ are defined so that the normal form of p ∈ K[x] w.r.t. G is λ1(p)n1 + . . . +
λr(p)nr.

Example 4.7.1 Lets consider the cyclic group C3, and its action over R3. It has
order 3 and 3 inequivalent irreducible representations of dimension 1, one absolutely
irreducible representation and a pair of conjugate irreducible representations of com-
plex type. We analyze the cyclic n−th roots system (Björck, 1990), which has been
widely used as a benchmark. The cyclic 3−th roots system is defined by:

C(3) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x + y + z
xy + yz + zx
xyz − 1

The associated ideal I = ⟨C(3)⟩ of C(3) is invariant under C3. The reduced Gröbner
basis G of I w.r.t the graded reverse lexicographic order and its corresponding normal
set N are given by G ∶= {x + y + z, y2 + yz + z2, z3 − 1} and N ∶= {1, z, y, z2, yz, yz2}.
Applying Algorithm 4 to the linear forms given by the coefficients of the normal
forms w.r.t N , we obtain a symmetry adapted H-basis

H = {x + y + z, x2 + y2 + z2, x3 + y3 + z3 − 3}
as well as a symmetry preserving and robust representation of the quotient

P = { P
G = {1, (y − z)(x − z)(x − y)}
P(2) = {x − z, y − z, (x − y)(x − 2z + y), (y − z)(2x − y − z)}

If instead of using Algorithm 4 we compute directly a s.a.b of K[x]/I whit respect
to ρ̂ we get the following basis

Q = { Q
G = {1, yz2}
Q(2) = {2z + y, yz + 2z2, −z + 2y, −2yz + z2} .

We can check that the elements of Q do not belong to any isotypic component of
K[x].
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5.1 Introduction

The main purpose of this chapter is to offer algorithms to compute relevant sets of
generators of equivariant modules, together with generators for the ring of invariants.

In Section 5.3, we show that the ideal interpolation algorithms presented in
Chapter 4 can be straighforwardly applied to compute the generating invariants and
equivariants of a reflection group. In Section 5.4, given a set of primary invariants
for any representation of a finite group {r1, . . . , rn}, we apply the algorithms in
Chapters 3 and 4 to compute both a set of secondary invariants; and free bases of
all fundamental equivariant K[r1, . . . , rn]-modules.

In Section 5.5 we elaborate on the idea in Section 5.4 to compute a set of gen-
erating invariants simultaneously to the generating equivariants. The Section 5.2
links symmetry adapted basis and fundamental equivariants.

5.2 Symmetry adapted bases and fundamental equiv-

ariants

In polynomial rings, symmetry adapted bases can be understood to consist of fun-
damental equivariants. We recall these notions and we show their connections.

We recall that r(1), . . . , r(n) denote the inequivalent irreducible matrix represen-
tations of G over C; n` the dimension of r(`). We call fundamental equivariant an
r(`)-equivariant, for some 1 ≤ ` ≤ n. Hence a symmetry adapted basis of any in-
variant subspace of K[x] consists of fundamental equivariants. Furthermore the
r-equivariants, for any matrix representation r ∶ G → GLm(K), are linear combina-
tions of fundamental equivariants. Indeed, let q ∈ K[x]m be a r-equivariant and
P ∈ Km×m be the invertible matrix such that

P−1 r(g)P = diag (Im` ⊗ r(`)(g) ∣ 1 ≤ ` ≤ n) for all g ∈ G.

Then q P is a (m1r(1)⊕. . .⊕mnr(n))-equivariant, i.e., its components are fundamental
equivariants.

Proposition 5.2.1 For any 1 ≤ k ≤ n`, the K[x]G-linear maps

φk ∶ K[x]G
r(`)

→ K[x](`,k)

[q1, . . . , qn`] ↦ qk

and Φk ∶ K[x](`,k) → K[x]G
r(`)

q ↦ [π(`)
1k (q), . . . , π(`)

n`k
(q)]

are well defined and inverse of each other.

proof: The fact that φk and Φk are K[x]G-linear is an easy observation from

the definition of the maps π
(`)
ji . We first show that the images of φk and Φk are in
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K[x](`,k) and K[x]G
r(`)

respectively. Let q = [q1, . . . , qn`] be an r(`)-equivariant. By

definition of equivariance q = ρ(g)(q) r(`)(g)−1. Hence

q = [ρ(g)(q1), . . . , ρ(g)(qn`)] r(`)(g−1) = [
n`

∑
j=1

r
(`)
j1 (g−1)ρ(g)(qj), . . . ,

n`

∑
j=1

r
(`)
jn`

(g−1)ρ(g)(qj)] .

Summing over g ∈ G we see

∣G∣q = [
n`

∑
j=1

∑
g∈G

r
(`)
j1 (g−1)ρ(g)(qj), . . . ,

n`

∑
j=1

∑
g∈G

r
(`)
jn`

(g−1)ρ(g)(qj)]

= ∣G∣
n`

[
n`

∑
j=1

π
(`)
1j (qj) , . . . ,

n`

∑
j=1

π
(`)
n`j

(qj)] .

Since π
(`)
jk ○ π(`)

kl = π(`)
jl we can write

q = 1

n`
[
n`

∑
j=1

π
(`)
11 ○ π(`)

1j (qj) , . . . ,
n`

∑
j=1

π
(`)
n`1

○ π(`)
1j (qj)] = [π(`)

11 (q̂) , . . . , π(`)
n`1

(q̂)] , (5.2.1)

where q̂ = 1

n`

n`

∑
j=1

π
(`)
1j (qj). It follows that φk(q) ∈ K[x](`,k).

Now let q ∈ K[x](`,k). By Proposition 2.3.1 we have

ρ(g) (π(`)
jk (q)) =

n`

∑
i=1

r
(`)
ij (g)π(`)

ik (q)

so that

ρ(g) (Φk(q)) = [
n`

∑
i=1

r
(`)
i1 (g)π(`)

ik (q), . . . ,
n`

∑
i=1

r
(`)
in`

(g)π(`)
ik (q)]

= [π(`)
1k (q), . . . , π(`)

n`k
(q)] r(`)(g) = Φk(q) r(`)(g).

Hence Φk(q) ∈ K[x]G
r(`)

.
To conclude we show that φk ○ Φk and Φk ○ φk are the identity maps. Let

q = [q1, . . . , qn`] ∈ K[x]G
r(`)

By Equation (5.2.1) there exists q̂ ∈ K[x] such that

q = [π(`)
11 (q̂) , . . . , π(`)

n`1
(q̂)]. Hence

Φk ○ φk (q) = Φk (π(`)
k1 (q̂)) = [π(`)

1k ○ π
(`)
k1 (q̂) , . . . , π(`)

n`k
○ π(`)

k1 (q̂)] = q.

If now q ∈ K[x](`,k) then π
(`)
kk (q) = q so that φk ○Φk(q) = q. ◻

Corollary 5.2.2 Consider a set Q = {q1, . . . ,qm} of r(`)-equivariants, with qi =
[qi1, . . . , qin`]. The following statements are equivalent:

1. Q is a generating set for K[x]G
r(`)
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2. for any given 1 ≤ k ≤ n`, {qik ∣1 ≤ i ≤m} is a generating set for K[x](`,k)

3. {qik ∣1 ≤ k ≤ n`, 1 ≤ i ≤m} is a generating set for K[x](`).

All as K[x]G-module.

proof:
1.⇒ 2. Let q ∈ K[x](`,k). Since Φk(q) ∈ K[x]G

r(`)
, there exist h1, . . . , hm ∈ K[x]G such

that Φk(q) = ∑m
i=1 hiqi. Applying φk on both sides we obtain q = ∑m

i=1 hiφk (qi) =
∑hiqik.

2.⇒ 1. Take q ∈ K[x]G
r(`)

. Since φk(q) ∈ K[x](`,k) there are invariant polynomials
h1, . . . , hm such that φk(q) = ∑m

i=1 hiqik. Appplying Φk on both sides we obtain
q = ∑m

i=1 hiΦk (qik) and therefore Φk (q1k) = q1, . . . ,Φk (qmk) = qm form a generating
set for K[x]G

r(`)
.

2. ⇒ 3. Since K[x](`) =
n`

⊕
j=1

K[x](`,j), and π
(`)
jk ∶ K[x](`,k) → K[x](`,j) is K[x]G-

linear and bijective, and π
(`)
jk (qik) = qij.

3. ⇒ 2. Since π
(`)
kk ∶ K[x](`) → K[x](`,k) is K[x]G-linear and surjective, and

π
(`)
kk (qij) equals to qik or 0 according to whether j = k or not. ◻

5.3 Fundamental equivariants & invariants by in-

terpolation

A reflection group is a subgroup of GLn(K) that is generated by matrices that
have precisely one eigenvalue different from 1. Such finite groups enjoy extensive
properties (Benson and Grove, 1985; Chevalley, 1955; Kane, 2001). In this section
we show that we can deduce generating invariants and equivariants for such group
actions from the solution of an ideal interpolation problem as computed in Section
4.6.

For ξ ∈ Kn we consider the evaluation map eξ ∶ K[x] → K. Then I = ⋂g∈G kereg⋅ξ
in K[x] is the radical ideal of the orbit of ξ. Algorithm 3 applied to the space of
linear forms Λ = ⟨eg⋅ξ ∣ g ∈ G ⟩ determines a reduced H-basis H of I and a basis Q
of the orthogonal complement of I0, the ideal of the leading homogeneous forms of
the polynomials in I. Q can be interpreted as a basis for the quotient K[x]/I.

For a given group, and its irreducible representations, Algorithm 4 produces fur-
thermore aH and a Q that are symmetry adapted. We shall show in this section that
a minimal set of generating invariants can be read on such a H and the generating
fundamental equivariants are given by Q.

Proposition 5.3.1 ⟨r − eξ(r) ∣ r ∈ K[x]G⟩ ⊂ I.

proof: eg⋅ξ (r − eξ) = 0 for all r ∈ K[x]G and g ∈ G. ◻
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The isotropy subgroup Gξ of ξ ∈ Kn is the set of elements of G that leave ξ
invariant: Gξ = { g ∈ G ∣ g ⋅ ξ = ξ }

Proposition 5.3.2 The induced representation on K[x]/I is equivalent to the per-
mutation representation of G associated to G/Gξ.

proof: The ideal I = ⋂g∈G kereg⋅ξ is invariant under the action of G. There is
thus an action of G induced on K[x]/I that is well defined.

Let g1, . . . , gr be representatives for the classes of G/Gξ. Denoting ξi = ϑ(gi) (ξ)
we have that ξi ≠ ξj for i ≠ j and {ξ1, . . . , ξr} is the orbit of ξ and hence the zero set
of I. Therefore for every g ∈ G there exists a permutation σ (g) such that

ϑ(g) (ξi) = ξσ(g)(i) for all ξi ∈ V.

Now let f1, . . . , fr be polynomial such fi (ξj) = δij. Such polynomials can be found
via interpolation and we prove next that they form a basis of K[x]/I. This latter
is of dimension r hence we only need to prove that they are linearly independent
modulo I. Let a1, . . . , ar ∈ K such that f = ∑r

i=1 ai fi ∈ I. Then for any 1 ≤ i ≤ r,
ai = f(ξi) = 0.

For any 1 ≤ i, j ≤ r we have

ρ(g) (fi) (ξj) = fi ○ ϑ(g−1) (ξj) = fi (ξσ(g−1)(j)) = fσ(g)(i) (ξj) .

It follows that ρ(g) (fi) − fσ(g)(i) vanishes on the orbit of ξ and thus ρ(g) (fi) −
fσ(g)(i) ∈ I. Hence, in the basis f1, . . . , fr, the induced matrix representation of G on
K[x]/I is given by the permutation σ. ◻

In particular, if Gξ is restricted to the identity then the induced representation
on K[x]/I is equivalent to the regular representation of G and thus has dimension
∣G∣.

Lemma 5.3.3 When G is a reflection group and Gξ is restricted to the identity, I0

is the ideal N generated by all the homogeneous invariants of positive degree.

proof: From Proposition 5.3.1 it follows that N ⊂ I0. G being a reflection
group, by (Kane, 2001, Theorem 24-1), and originally (Chevalley, 1955), K[x]/N
is equivalent to the regular representation and thus of dimension ∣G∣. By Proposi-
tion 5.3.2, K[x]/I, and hence K[x]/I0, is also of dimension ∣G∣. We can therefore
conclude that I0 = N . ◻

Lemma 5.3.4 Let J be an ideal generated by k homogeneous invariants of posi-
tive degree. Then any homogeneous orthogonal H-basis of J consists of invariant
polynomials, and of at most k of them.

proof: We write Jd = J ∩K[x]d and J≤d = J ∩K[x]≤d and similarly for H a set
of homogeneous invariants generating J . Recalling Ψd (⋅) the map defined in (4.5.1),
we have Jd = Ψd (H<d) + ⟨Hd⟩K.
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We show that for any degree d, any basis for the orthogonal complement Qd of
Ψd (J<d) in Jd consists of homogeneous invariants in numbers less or equal to the
cardinal of Hd.

Let m be the dimension of a complement of Ψd (H<d) in Jd. Then m ≤ card(Hd).
We can select h1, . . . , hm ∈ ⟨Hd⟩ ⊂ K[x]Gd s.t. Jd = Ψd (H<d)⊕ ⟨h1, . . . , hm⟩K.

Consider q1, . . . , qm any basis of Qd. There is then a nonsingular matrix (aij) ∈
Km×m such that qi = ∑aijhj + ri where ri ∈ Ψd (H<d). Since Ψd (J<d), Jd and Qd are
invariant, the polynomial qi − π(1)(qi) = ri − π(1)(ri) belongs to Qd ∩ Ψd (H<d). It
therefore is 0, i.e., qi = π(1)(qi), that is to say qi ∈ K[x]Gd . ◻

Theorem 5.3.5 Consider G ⊂ GLn(K) a reflection group and take ξ ∈ Kn with
Gξ = {In}. Define

• I = ⋂
g∈G

kereg⋅ξ, and

• Q =
n

⋃
`=1

n`

⋃
k=1

{q(`)1k , . . . , q
(`)
n`k

} a symmetry adapted basis of an invariant complement

of I.

Then :

• Any reduced H-basis of I is given by a set {r1 − eξ(r1), . . . , rn − eξ(rn)} where
{r1, . . . , rn} is a set of homogeneous invariants generating K[x]G

• Q(1) = {1} and, for 2 ≤ ` ≤ n, Q(`) consists of r(`)-equivariants q
(`)
1 , . . . , q

(`)
n`

freely generating K[x]G
r(`)

as a K[x]G-module. Writing qi = [q(`)i1 , . . . , q
(`)
in`

], for

1 ≤ i ≤ n`, we have

K[x] =
n

⊕
`=1

n`

⊕
k,i=1

K[x]G q(`)ik .

proof: When G is a reflection group, K[x]G is generated by n algebraically
independent homogeneous invariants (Chevalley, 1955), (Kane, 2001, Theorem 18-
1). The ideal N generated by all homogenous invariants of positive degree is a zero
dimensional ideal and thus any of its H-basis cannot have less then n elements. It
thus follows from Lemma 5.3.4, that a reduced H-basis of Nconsists of exactly n
homogeneous invariants. By the classical argument of Hilbert’s finiteness theorem
(Sturmfels, 2007, Theorem 2.1.3), a set of homogeneous invariants generating N as
an ideal is also generating for K[x]G as an algebra.

H is a H-basis of I iff H0 is a H-basis of I0 = N . It follows that for any orthogonal
H-basis of I H0 = {r1, . . . , rn} where r1, . . . , rn form a generating set of homogeneous
invariants. With Proposition 5.3.1 we can conclude that the shape of a reduced
H-basis is as stated.
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On the other hand, Q spans the orthogonal complement of I0 (Corollary 4.2.3).
By Lemma 5.3.3 I0 = N , and thus K[x] = N ⊕ ⟨Q⟩K. Nakayama’s lemma for graded
algebra (Kane, 2001, Lemma 17-5) thus implies that

K[x] =
n

∑
`=1

n`

∑
k=1

(
n`

∑
i

K[x]G q(`)ik ) .

By (Kane, 2001, Lemma 18-3) the set {q(`)ik ∣1 ≤ ` ≤ n, 1 ≤ i, k ≤ n`} is furthermore al-

gebraically independent when G is a reflection group. Moreover K[x](`,1) = ∑n`
i K[x]G q(`)1i ,

and thus Proposition 5.2.2 implies that Q(`) = {[q(`)i1 , . . . , q
(`)
in`

] ∣ 1 ≤ i ≤ n`} is a freely

generating K[x]G
r(`)

as a K[x]G-module. ◻

Example 5.3.6 Consider the representation ρ of the dihedral group

D8 = {δασβ ∣ δ8 = σ2 = (σδ)2 = 1}

of order 16 given by the matrices

ϑ(σ) =
⎛
⎝

1 0

0 −1

⎞
⎠

and ϑ(δ) = 1√
2

⎛
⎝

1 1

1 −1

⎞
⎠
.

D8 has 7 inequivalent irreducible representations, four of dimension 1 and three of
dimension 2.

Applying Algorithm 4 to Λ = ⟨eg⋅ξ ∣ g ∈ G ⟩ where ξ = t[a, b] we obtain the
following H-basis H of I and s.a.b Q = ⋃7

`=1Q(`) of the orthogonal complement of I0

H = {x2 + y2 − (a2 + b2), x8 − 28x6y2 + 70x4y4 − 28x2y6 + y8 − (a8 − 28a6b2 + 70a4b4 − 28a2b6 + b8)}

Q(1) = {1} , Q(2) = {xy (x6 − 7x4y2 + 7x2y4 − y6)} ,

Q(3) = {x4 − 6x2y2 + y4} , Q(4) = {xy (x2 − y2)} ,

Q(5) = {[x, y] , [x (x6 − 21x4y2 + 35x2y4 − 7y6) , y (−7x6 + 35x4y2 − 21x2y4 + y6)]} ,

Q(6) = {[x2 − y2,2xy] , [x6 − 15x4y2 + 15x2y4 − y6,2xy (3x4 − 10x2y2 + 3y4)]} ,

Q(7) = {[x (x2 − 3y2) , y (3x2 − y2)] , [x (−x4 + 10x2y2 − 5y4) , y (5x4 − 10x2y2 + y4)]} .
As Theorem 5.3.5 asserts H0 = {x2 + y2, x8 − 28x6x2 + 70x4y4 − 28x2y6 + y8} is a

generating set for K[x]D8 and, for 2 ≤ ` ≤ 7, Q(`) is a set of free generators for the
r(`)-equivariants.

Example 5.3.7 Consider the action of the group of symmetries of the cube B3 =
S4 ⋉ (Z/2Z)3

B3 = {δ`σmα ∣ 0 ≤ i, j, k,m ≤ 1, 0 ≤ ` ≤ 2}
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in R3 which is defined by the matrices.

δ =
⎛
⎜⎜⎜
⎝

0 1 0

0 0 1

1 0 0

⎞
⎟⎟⎟
⎠
, σ =

⎛
⎜⎜⎜
⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎟
⎠
, α =

⎛
⎜⎜⎜
⎝

(−1)i 0 0

0 (−1)j 0

0 0 (−1)k

⎞
⎟⎟⎟
⎠
.

B3 has order 48 and 10 inequivalent irreducible representations, all absolutely
irreducible, whose dimensions are {1,1,1,1,2,2,3,3,3,3}. Applying Algorithm 4 to
Λ = ⟨eg⋅ξ ∣ g ∈ B3 ⟩ where ξ = t[1, 2, 3] we obtain a H-basis H of I and a symmetry
adapted basis of the orthogonal complement Q = ⋃10

`=1Q
(`) of I0.

H0 = {x2 + y2 + z2, x2y2 + x2z2 + y2z2, x2y2z2}

is a generating set of invariants and, for 2 ≤ ` ≤ 10, Q(`) freely generate the r(`)-
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equivariants, with

Q(1) = {1} , Q(2) = {xyzpxpypz} , Q(3) = {pxpypz} , Q(4) = {xyz} ,

Q(5) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[−
√

3xyzpy, xyzpx − pz] ,
⎡⎢⎢⎢⎢⎣

√
3

3 (x4 + 6x2y2 − 12x2z2 − 2y4 + 6y2z2 + z4) ,
−py (x2 − 6y2 + z2)

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

Q(6) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[−
√

3xyzpy, xyzpx − pz] ,
⎡⎢⎢⎢⎢⎣

2
√

3
3 py (10y2 − 3x2 − 3z2) ,

3x4 + 10x2y2 − 30x2z2 − 6y4 + 10y2z2 + 3z4

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

Q(7) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[yzpx, xzpy, xypz] ,
[yzpx (y2 + z2 − 10x2) , xzpy (z2 + x2 − 10y2) , xypz (x2 + y2 − 10z2)] ,

⎡⎢⎢⎢⎢⎢⎢⎣

yzpx (5x4 − 3x2y2 − 3x2z2 + y2z2) ,
xzpy (5y4 − 3y2z2 − 3x2y2 + x2z2) ,
xypz (5z4 − 3x2z2 − 3y2z2 + x2y2)

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Q(8) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x, y, z] ,
[x (3y2 + 3z2 − 2x2) , y (3z2 + 3x2 − 2y2) , z (3x2 + 3y2 − 2z2)] ,

⎡⎢⎢⎢⎢⎢⎢⎣

x (2x4 − 5 (y4 + z4) − 10 (x2 (y2 + z2) − 6y2z2)) ,
y (2y4 − 5 (z4 + x4) − 10 (y2 (z2 + x2) − 6x2z2)) ,
z (2z4 − 5 (x4 + y4) − 10 (z2 (x2 + y2) − 6x2y2))

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Q(9) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[yz, xz, xy] ,
[yz (y2+z2 − 6x2) , xz (z2+x2 − 6y2) , xy (x2+y2 − 6z2)] ,

⎡⎢⎢⎢⎢⎢⎢⎣

yz (20y2z2 + 30x2 (x2 − y2 − z2) − 3 (y4 + z4)) ,
xz (20x2z2 + 30y2 (y2 − z2 − x2) − 3 (z4 + x4)) ,
xy (20x2y2 + 30z2 (z2 − x2 − y2) − 3 (x4 + y4))

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Q(10) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[xpx, ypy, zpz] ,
[xpx (py − pz) , ypy (pz − px) , zpz (px − py)] ,
⎡⎢⎢⎢⎢⎢⎢⎣

xpx (3x4 − 5x2y2 − 5x2z2 + 15y2z2) ,
ypy (3y4 − 5y2z2 − 5x2y2 + 15x2z2) ,
zpz (3z4 − 5x2z2 − 5y2z2 + 15x2y2)

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where pz = x2 − y2, py = z2 − x2, px = y2 − z2.
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We shall now illustrate that Theorem 5.3.5 fails when not applied to a reflection
group.

Example 5.3.8 Consider the three dimensional representation of D6 given in Ex-
ample 5.5.2. Contrary to the classical representation of D6, this is not a reflection
group since −1 is a double eigenvalue of ϑ(σ).

The output Algorithm 4 applied to Λ = ⟨eg⋅ξ ∣ g ∈ G ⟩ consist of a symmetry
adapted H-basis H of I and Q a s.a.b. of the orthogonal complement of I0. For
ξ = t[a, b, c]

Q =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q(2,1) = {1} , Q(2,1) = {z} , Q(3,1) = {x3 − 3xy2} ,
Q(4,1) = {3x2y − y3} ,{Q(5,1) = {x, yz} ,Q(5,2) = {y,−xz}} ,

{Q(6,1) = {x2 − y2,2xyz} ,Q(6,2) = {2xy,−x2z + y2z}}

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
and

H(1,1) = {x2 + y2 − (a2 + b2), z2 − c2} ,

H(2,1) = ∅, H(3,1) = {a (a2 − b2) yz (3x2 − y2) − bc (3a2 − b2)x (x2 − y2)} ,

H(4,1) = {b (b2 − 3a2)xz (x2 − 3y2) − ac (a2 − 3b2) y (y2 − 3x2)} , H(5,1) = ∅,

H(6,1) = { c (a2 + b2)2 (x4 − 6x2y2 + y4) + 4ab (a2 − 3b2) (3a2 − b2)xyz
+c (a2 − b2) (a4 − 14a2b2 + b4) (x2 − y2) } ,

H(6,2) = { 2c (a2 + b2)2
xy (x2 − y2) − ab (3a2 − b2) (a2 − 3b2) (x2 − y2) z

+c (a2 − b2) (a4 − 14a2b2 + b4)xy }

Q has 12 elements, as predicted by Proposition 5.3.2. Yet we saw in Exam-
ple 5.5.2 that a minimal set of generating equivariants has 22 elements.

In this case H0 has non invariant elements. For instance

a (a2 − b2) yz (3x2 − y2) − bc (3a2 − b2) (x3 − xy2) ∈ H(3).

Its leading form yz (3x2 − y2) ∈ H0 is not an invariant and one can check that it does

not belong to N . Hence N ⊊ I0. Also we can see that (H0)(1) consists of only 2
elements so we can not obtain from H a fundamental set of invariants.

5.4 Fundamental equivariants from invariants

In this section we show how to determine generating invariants and fundamental
equivariants assuming we have sufficiently many invariants already. We then show
that this construction provides a Hironaka decomposition of K[x]G and K[x](`),
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1 ≤ ` ≤ n, if it is applied to a set of primary invariants r1, . . . , rn. Indeed, working
with the concepts of primary and secondary invariants (Sturmfels, 2007, Section
2.3) allows to have a unique representation of invariants and equivariants, or any
element of K[x], seen as a K[r1, . . . , rn]-module.

Theorem 5.4.1 Consider H = {h1, . . . , hk} ⊂ K[x]G a set of homogeneous invariants
of positive degree such that the ideal H = ⟨h1, . . . , hk⟩ is a zero dimensional.

Consider Q = ⋃n
`=1Q(`) a symmetry adapted basis of an invariant complement

of H in K[x], where Q(`) consists of the r(`)-equivariants q
(`)
i = [q(`)i1 , . . . , q

(`)
in`

], for

1 ≤ i ≤m`.
Then Q(`) generates K[x](`) as a K[h1, . . . , hk]-module. In particular H∪Q(1) is

a generating set of invariants. Also ∑n
`=1 n`m` ≥ ∣G∣.

proof: H is G-invariant and thus admits an invariant complement in K[x].
As a basis of such a complement ⟨Q⟩K can be identified with K[x]/H. Thus

K[x]/H ≅ ⟨Q⟩K =
n

⊕
`=1

n`

⊕
k=1

m`

⊕
i

K q
(`)
ik .

By Nakayama’s lemma for graded algebra (Derksen and Kemper, 2015, Lemma
3.7.1).

K[x] =
n

∑
`=1

n`

∑
k=1

(
m`

∑
i

K[h] q(`)ik ) .

With the notations of (Serre, 1977), for all ` and k, q
(`)
ik belongs to K[x](`,k) =

π
(kk)
( K[x]). These subspaces are in direct sum with each other. Hence two subspaces

(∑i K[x]G q(`)ik ) for different k’s have an intersection restricted to {0}. We can thus

replace the two first ∑ by a ⊕ so that

K[x] =
n

⊕
`=1

n`

⊕
k=1

(
n`

∑
i

K[h] q(`)ik ) and thus K[x](`) =
n`

⊕
k=1

(
n`

∑
i

K[h] q(`)ik ) .

In particular K[x]G = K[x](1) = ∑n`
i K[h] q(1)ik .

LetN be the ideal generated by all the homogeneous invariants of positive degree.
By (Kane, 2001, Theorem 17-5 and Propositions 18-3,4,5), dimKK[x]/N ≥ ∣G∣. Since
H ⊂ N the announced inequality holds. ◻

A particular case of this statement is when H is a generating set of invariants
of positive degree. Then the r(`)-equivariant q

(`)
i , 1 ≤ i ≤ m`, generate K[x](`) as a

K[x]G-module. Also Q(1) = {1} then.

Corollary 5.4.2 When G is a reflection group andH is a generating set of invariants
then m` = n` and the r(`)-equivariant q

(`)
i , 1 ≤ i ≤ n` freely generate K[x](`) so that

K[x] =
n

⊕
`=1

n`

⊕
k=1

n`

⊕
i

K[x]G q(`)ik
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proof: By (Kane, 2001, Proposition 18-3,4,5 and Lemma 18-3): the homoge-
neous representatives of K[x]/H are independent over K[x]G if and only if G acts as
a reflection group on Kn. When G is a reflection group, the induced representation
on K[x]/N is equivalent to the regular representation of G (Kane, 2001, Theorem
24-1). Hence then m` = n`. ◻

Of particular interest is the case where H = {h1, . . . , hn} is a set of primary in-
variants, i.e., a set of homogeneous parameters for K[x]G. In particular {h1, . . . , hn}
are then algebraically independent and K[h] = K[h1, . . . , hn] is a polynomial alge-
bra. The secondary invariants s1, . . . , sm are then a free basis of K[x]G viewed as a
K[h]-module. Any p ∈ K[x]G can be written in a unique way as p = p1s1+ . . .+pmsm
where pi ∈ K[h]. This is a so called Hironaka decomposition of K[x]G. The following
results shows how we can actually obtain a Hironaka decomposition of K[x] as a
K[h]-module.

Theorem 5.4.3 Consider h1, . . . , hn a set of primary invariants. Then ∣G∣ divides
the product of their degrees ∏n

i=1 deg(ri). Let m be their quotient. If Q = ⋃n
`=1Q(`)

is a symmetry adapted basis of a G-invariant complement of the ideal ⟨h1, . . . , hn⟩
in K[x], then Q(`) splits into mn` vectors of K[x]n` that are r(`)-equivariants and

form a free basis of K[x](`) seen as a K[h]-module. In particular Q(1) consists of a
set of secondary invariants for h1, . . . , hn.

proof: By (Sturmfels, 2007, Proposition 2.3.6), ∣G∣ divides ∏n
i=1 deg(ri) and

the number of secondary invariants m is their quotient. With an argument based
on the Molien series of the K[x](`), (Stanley, 1979, Proposition 4.9) proves that
K[x]/⟨h1, . . . , hn⟩ is equivalent to m times the regular representation of G. Hence

mn`2 is the dimension of K[x](`)/⟨h1, . . . , hn⟩K[x](`) as a K-vector space.

Nakayama’s lemma for graded algebra (Derksen and Kemper, 2015, Lemma
3.7.1) ensures that Q generates K[x] as a K[h]-module. We have

K[x] =
n

⊕
`=1

n`

⊕
k=1

mn`

∑
i=1

K[h] q(`)ik

since the components K[x](`) are mutually orthogonal.

On the other hand K[x] is finitely generated over K[x]G so that h1, . . . , hn
also form a homogeneous system of parameters for K[x]. Since K[x] is Cohen-
Macaulay, K[x] is a free K[h]-module. If η1, . . . , ηk is a free basis, then their images
in K[x]/⟨r1, . . . , rn⟩ span this m∣G∣-dimensional vector space. Hence the rank of
K[x] as a K[h]-module is at least m∣G∣. It follows that Q is a free basis. ◻

If we have a set of primary invariants we can compute thus the secondary invari-
ants and fundamental equivariants with the following algorithm that is a straight-
forward application of the Section 4.7. Note that for reflection group we can pick
the primary invariants so that ∏n

i=1 deg(ri) = ∣G∣ (Sturmfels, 2007, Corolary 2.4.5).
Hence m = 1 and K[x]G = K[r1, . . . , rn].
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Algorithm 5

Fundamental equivariants

Input: A set {h1, . . . , hn} of primary invariants.

Output: Q(`) = {[q(`)i1 , . . . , q
(`)
in`

] ∣ 1 ≤ i ≤mn`}, 1 ≤ ` ≤ n, a set r(`)-equivariant

that form a free basis for K[x](`) viewed as a free K[h1, . . . , hn]-module.
Compute a Gröbner basis B of ⟨h1, . . . , hn⟩, according to any given term order

λ1, . . . , λm∣G∣ ∈ K[x]∗ the coefficient forms for the normal form w.r.t. B,
where m∣G∣ is the cardinality of the normal set of monomials w.r.t. B

Compute Q =
n

⋃
`=1

Q(`) a s.a.b of the least interpolation space for ⟨λ1, . . . , λm∣G∣⟩,
applying Algorithm 4.

The above algorithm can also be applied to a set of invariants H that satisfies
only the hypotheses of Theorem 5.4.1. It would still output generating sets of
fundamental invariants. But they would not be freely generating.

We have to point out though that with a set of homogeneous (invariant) poly-
nomials always form a H-basis. One can thus compute more directly a basis of the
orthogonal complement of the generated ideal, with prolongation. Such an approach
is taken in next section where we actually compute generating invariants on the fly.

There are actually several algorithms to compute primary invariants. In (Sturm-
fels, 2007, Algorithm 2.5.8) and (Gatermann, 2000, Algorithm 2.1.5) algorithms are
proposed to extract primary invariants from a generating set. They generate in-
variants of increasing degree whose variety gets smaller each time until a set of
algebraically independent homogeneous invariants is found. If the obtained set is
composed of n elements, then it is a set of primary invariants. Otherwise sets of n
elements weighted over the computed invariant are randomly generated until an al-
gebraically independent set is found. Dade’s algorithm (Sturmfels, 2007, Algorithm
2.5.14) is a more direct approach based on linear algebra. It constructs primary
invariants taking products over G−orbits of linear forms, such that all the degrees
of the computed invariants are divisors of the group order. On the other hand
(Kemper, 1999, Algorithm 2) looks for a set of primary invariants {f1, . . . , fn} that
minimize Πn

i=1 deg(fi), and then ∑n
i=1 deg(fi). The algorithm iterates over Nn follow-

ing the described pre-order and stops when a n-tuple d1, . . . , dn is found such that
there exist a set of primary invariants with those degrees.

Example 5.4.4 The alternating group An is the group of even permutations on a
set of n elements. It has order n!

2 . We consider here the alternating group A4 consist-
ing of 12 elements and generated by the cycles {(2,4,3) , (1,3) (2,4) , (1,2) (3,4)}.
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We consider the representation of A4 in R3 given by the matrices

ρ ((2,4,3)) =
⎛
⎜⎜⎜
⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎟⎟
⎠
, ρ ((1,3) (2,4)) =

⎛
⎜⎜⎜
⎝

−1 0 0

0 1 0

0 0 −1

⎞
⎟⎟⎟
⎠
, ρ ((1,2) (3,4)) =

⎛
⎜⎜⎜
⎝

1 0 0

0 −1 0

0 0 −1

⎞
⎟⎟⎟
⎠
.

A4 has four irreducible representations, three of dimension 1 and one of dimension
3. Two of the irreducible representations of dimension 1 are of complex type and
conjugate to each other. Since we are dealing with a real representation, we shall
consider the 3 irreducible real representation of A4 given by the two absolutely
irreducible ones and the one obtained by the combination of the two of complex
type. A set of primary invariants for A4 is given by

H = {x2 + y2 + z2, xyz, x2y2 + x2z2 + y2z2} .

The Gröbner basis and the normal sets of the ideal generated by H w.r.t a degree
reverse lexicographical order are given by

B = {x2 + y2 + z2, xyz, y3z + yz3, y4 + y2z2 + z4, z5}

N =
⎧⎪⎪⎨⎪⎪⎩

1, z, y, x, z2, yz, xz, y2, xy, z3, yz2, xz2, y2z, y3, xy2, z4,

yz3, xz3, y2z2, xy3, yz4, xz4, y2z3, y2z4

⎫⎪⎪⎬⎪⎪⎭
.

We define the linear forms λ1, . . . , λ24 so that the normal form of p ∈ K[x] w.r.t
B is λ1 (p)n1 + . . . + λ24(p)n24 where ni ∈ N and let Λ = ⟨λi ∣ 1 ≤ i ≤ 24 ⟩. Then
Algorithm 5 computes the secondary invariants and fundamental equivariants Q

S = Q(1) = {1, (y2 − z2)(z2 − x2)(x2 − y2)}

Q(2) = {2x2 − y2 − z2, y2 − z2, (y2 − x2) z2, x4 − y4,6x2(y2 − z2) − y4 + z4}

Q(3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[x, y, z] , [yz, xz, xy] , [x (x2 − 3z2) , y (y2 − 3x2) , z (z2 − 3y2)] ,
[x (y2 − z2) , y (z2 − x2) , z (x2 − y2)] , [yz (y2 − z2) , xz (z2 − x2) , xy (x2 − y2)] ,
[2x3(y2 − z2) − x(y4 − z4),2y3(z2 − x2) − y(z4 − x4),2z3(x2 − y2) − z(x4 − y4)]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Example 5.4.5 Consider the action of the cyclic group Cm in Cn given by

Cm = { diag (e 2ikπ
m , . . . , e

2ikπ
m ) ,0 ≤ k ≤ n − 1} .

C[x]Cm is generated by all terms of degreem (Sturmfels, 2007, Proposition 2.1.5) and
H = {xm1 , . . . , xmn } is set of primary invariants. H is also a Gröbner basis with respect
to any term order. The normal set consists of the termsN = {xαyβzγ ∣ 0 ≤ α,β, γ ≤m − 1}.
Cm has m inequivalent irreducible representations of dimensions 1. For 1 ≤ ` ≤m, the
generating fundamental equivariants are given byQ(`) = {xαyβzγ ∣α + β + γ =m + 1 − `}.
Observe N = ⋃m`=1Q

(`) and this corroborates Theorem 5.4.3.
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5.5 Simultaneous computation of invariants and

equivariants

For a row vector of polynomials h = [h1 . . . hm] ∈ K[x]m, with hi of degree di, the
prolongation map to degree d defined in (4.5.1) is given by

ψdh ∶ K[x]d−d1 × . . . ×K[x]d−dm → K[x]d
(g1, . . . , gm) ↦

m

∑
i=1

gihi
.

The restriction of this map to K[x](`,1) is

ψ
(`,1)
dh ∶ K[x](`,1)d−d1

× . . . ×K[x](`,1)d−dm → K[x]d
(g1, . . . , gm) →

m

∑
i=1

gihi
.

For a setH = {h1, . . . , hm} we shall denote by Ψd (H) and Ψ
(`,1)
d (H) the respective

images of ψdh and ψ
(`,1)
dh where h = [h1, . . . , hm]. Whether H ⊂ K[x]G or Q ⊂ K[x](`,1)

both Ψ
(`,1)
d (H) and Ψ

(1)
d (Q) are contained in K[x](`,1)d .

Lemma 5.5.1 Consider H ⊂ K[x]G≤d∖K and Q ⊂ K[x](`,1)≤d−1. Assume that Ψ
(1)
d−1 (Q) =

K[x](`,1)≤d−1 and that Ψ
(1)
e (H) = K[x]Ge for all 1 ≤ e ≤ d. Then Ψ

(`,1)
d (H) = Ψ

(1)
d (Q).

proof: Let q = ∑
hi∈H

hipi ∈ Ψ
(`,1)
d (H) with pi ∈ K[x](`,1)≤d . Since Ψ

(1)
d−1 (Q) =

K[x](`,1)≤d−1, for any i there are polynomials r1, . . . , r∣Q∣ ∈ K[x]G such that pi = ∑
qi∈Q

riqi

so we have
q = ∑

hi∈H
hi ∑

qj∈Q
rjqj = ∑

qj∈Q
qj ∑

hi∈H
rjhi ∈ Ψ

(1)
d (Q) ,

hence Ψ
(`,1)
d (H) ⊂ Ψ

(1)
d (Q). Analogously any q = ∑

qi∈Q
piqi in Ψ

(1)
d (Q) can be written

as

q = ∑
qi∈Q

⎛
⎝ ∑hj∈H

hjrj
⎞
⎠
qi = ∑

hj∈H
hj ∑

qi∈Q
rjqi ∈ Ψ

(`,1)
d (H) ,

therefore Ψ
(`,1)
d (H) = Ψ

(1)
d (Q) . ◻

Computational note. In the algorithm we need to compute a complement of
Ψ

(`,1)
d (H) in K[x](`,1)d , for H ⊂ K[x]G. In general, this can be achieved with linear

algebra as follows: Assume we use P(`,1)
d as basis for K[x](`,1)d and let M be the

matrix of ψ
(`,1)
dh . On a column echelon form of M select the indices of the rows that
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have no pivot; They index the elements of P(`,1)
d that form a basis of a complement

to Ψ
(`,1)
d (H).

Alternatively, taking advantage that K is a subfield of C, we can choose to
compute the orthogonal complement w.r.t. the apolar product. A vector in the
kernel of tM provides the conjugate of the coefficients in the dual basis of P(`,1)

d of

a polynomial orthogonal to Ψ
(`,1)
d (H). Thus a basis of the kernel of tM provides a

basis for the orthogonal complement of Ψ
(`,1)
d (H).

Algorithm 6

Fundamental Invariants and Equivariants

Input: P =
n

⋃
`=1

∣G∣
⋃
d=1

P(`,1)
d where P(`,1)

d is an orthonormal basis of K[x](`,1)d .

Output: H ⊂ K[x]G and Q =
n

⋃
`=1

Q(`) a s.a.b. for K[x]/⟨H⟩ with the properties

that

• H is a minimal generating set of homogeneous invariants

• Q(`) = {[q(`)i1 , . . . , q
(`)
in`

] ∣ 1 ≤ i ≤m`} is a generating set for K[x](`) as a K[x]G-
module

H0,Q(2,1)
0 , . . . ,Q(n,1)

0 ← ∅
Q(1) ← {1}
a← 1 # counts the polynomials of degree d in ⋃n

`=1Q(`)

for d from 1 to ∣G∣ while a > 0 do

K ← a basis of a complement of Ψ
(1)
d (Hd−1) in K[x]Gd

Hd ← Hd−1 ∪ K
a← 0

for ` = 2 to n do

K ← a basis of a complement of the image of Ψ
(`,1)
d (Hd) in K[x](`,1)d

Q
(`,1)
d ← Q

(`,1)
d−1 ∪K

a← a + cardinal(K)
end-do

end-do

return Hd−1 and
n

⋃
`=1

{[π(`)
11 (q), . . . , π(`)

n`1
(q)] ∣ q ∈ Q(`,1)

d−1 }

proof: We prove first that the three following properties are true at the end
of each iteration of the for-while loop bearing on d.
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A(d) : Ψ
(1)
e (Hd) = K[x]Ge for all 1 ≤ e ≤ d.

B(d) : Ψ
(1)
d (Q(`,1)

d ) = K[x](`,1)≤d

C(d) :
n

⋃
`=1

n`

⋃
α=1

{π(`)
α1 (q) ∣ q ∈ Q(`,1)

d } is a basis of an invariant complement of
d

⊕
e=1

Ψe (H)

in K[x]≤d

Property A(0), B(0) and C(0) hold. Assume that A(d− 1), B(d− 1) and C(d− 1)
hold.

Property A(d) is then secured because of Property A(d − 1) and the adjunction

to Hd−1 of a basis of the complement of Ψ
(1)
d (Hd−1) in K[x]Gd to form Hd.

By Lemma 5.5.1 and Property A(d) and B(d − 1), Ψ
(`,1)
d (Hd) = Ψ

(1)
d (Q(`,1)

d−1 ).

Hence Q(`,1)
d consists of Q(`,1)

d−1 and a basis of the complement of Ψ
(1)
d (Q(`,1)

d−1 ) in

K[x](`,1)d , and thus Property B(d) holds.

Q(`,1)
d is a basis of the invariant complement, in K[x](l,1)≤d , of Ψd (Hd)∩K[x](`,1)≤d =

Ψ
(`,1)
d (Hd). Recall that π

(`)
k1 ∶ K[x](`,1)≤d → K[x](`,k)≤d is an isomorphism such that

π
(`)
k1 (rq) = rπ(`)

k1 (q) for any r ∈ K[x]G. It follows that {π(`)
k1 (q) ∣ q ∈ Q(`,1)

d } is a basis of

the complement of Ψd (Hd) ∩K[x](`,k)d in K[x](`,k)d . As K[x]≤d =⊕n
`=1⊕n`

k=1 K[x](`,k)≤d ,
we obtain Property C(d).

With these properties at each iteration, we want now to prove that when d = ∣G∣
or a = 0 we have that Hd is a generating set of K[x]G and Q(`,1)

d is a generating set

of K[x](`,1) as a K[x]G-module.
Note that Property A(d) implies that any p ∈ K[x]G≤d can be written as a poly-

nomial in the elements of Hd. Hence, if d = ∣G∣, Noether’s bound, Hd is a generating
set of invariants (Sturmfels, 2007, Theorem 2.1.4). By (Stanley, 1979, Theorem

3.1) or (Worfolk, 1994, Proposition 4.3), K[x](`)∣G∣ generates K[x](`) as a K[x]G-
module. Thus Property B(d), together with the properties of the maps π

(`)
k1 , implies

that Q(`,1)
d is a generating set for K[x](`,1)∣G∣ as a K[x]G-module. So by Proposi-

tion 5.2.2,
n

⋃
`=1

{[π(`)
11 (q), . . . , π(`)

n`1
(q)] ∣ q ∈ Q(`,1)

d } is a generating set for K[x]G
r`

as a

K[x]G-module.
At the end of an iteration a = 0 means that Ψd (Hd) = K[x]d. It follows that

Ψe (Hd) = K[x]e for all e ≥ d. Hence

K[x] = ⟨H⟩⊕
⎛
⎜
⎝

n

⊕
`=1

n`

⊕
k=1

⊕
q∈Q(`,1)

d

Kπ(`)
k1 (q)

⎞
⎟
⎠
.

Any homogeneous invariant of positive degree thus belongs to ⟨H⟩. By the classical
argument used in Hilbert’s finiteness theorem (Sturmfels, 2007, Theorem 2.1.3), Hd
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is a generating set of homogeneous invariants. It is a minimal such set by construc-
tion. Then, by Nakayama’s lemma for graded algebra (Derksen and Kemper, 2015,

Lemma 3.7.1) and the fact that the different K[x](`,k) are in direct sum we have

K[x] =
n

⊕
`=1

n`

⊕
k=1

⎛
⎜
⎝
∑

q∈Q(`,1)
d

K[x]G π(`)
k1 (q)

⎞
⎟
⎠
.

It follows that K[x](`,k) = ∑
q∈Q(`,1)

d

K[x]G π(`)
k1 (q). ◻

In the algorithm we have made use of Noether’s bound to mark termination. Yet
we could have use a = 0 as unique stopping criterion : it is indeed enough to know
that K[x]G is finitely generated as an algebra and K[x](`) is finitely generated as a
K[x]G-module.

As the algorithm in (King, 2013), for each degree d Algorithm 6, looks for invari-
ants that are not yet in the ideal generated by the invariants of degree d − 1. The
membership in King’s algorithm is decided thanks to a Gröbner basis of the ideal,
which is thus computed at each step. The termination criterion is also different.
King’s algorithm stops when d reaches a degree bound. This latter is updated at
each iteration once the ideal generated by the so far computed invariants is zero
dimensional. Our algorithm terminates as soon as no new element appears in the
quotient K[x]/⟨H⟩.

Prior approaches to compute generating invariants of finite groups (Derksen and
Kemper, 2015) proceeded by first determining a set of primary invariants, and then
a set of secondary invariants. In this approach, Molien’s series is key: it provides the
degrees of the invariants. These are then computed applying the Reynolds operator.

The computation of generating θ-equivariants in (Gatermann, 1996, Algorithm
3.16) and (Worfolk, 1994) is in the same spirit as the computation secondary in-
variants. They introduce the representation τ ∶ G → Aut (K[x]m) , τ(g) (p) = θ(g) ⋅
p ○ ϑ(g−1) and use the fact that the related the Reynolds operator is a projection
on the K[x]Gθ vector space. Note that the linear algebra operations at degree d are
then made in a vector space of dimension m times the dimension of K[x]d.

As explained in Section 5.2, any equivariant can be written as linear combinations
of fundamental equivariants. Algorithm 6 computes generating sets of these with
linear algebra in the vector spaces K[x]d of homogeneous polynomials, and not
vectors of them. Furthermore we actually only compute the generators for the
K[x]G-modules K[x](`,1), from which the generators of any K[x](`,k) can be deduced.

Example 5.5.2 Consider the representation ϑ ∶D6 → GL3(R) of the dihedral group
D6 = {δασβ ∣ δ6 = σ2 = (σδ)2 = 1} defined by

ϑ(σ) =
⎛
⎜⎜⎜
⎝

1 0 0

0 −1 0

0 0 −1

⎞
⎟⎟⎟
⎠

and ϑ(δ) =
⎛
⎜⎜⎜
⎝

1
2 −

√
3

2 0
√

3
2

1
2 0

0 0 1

⎞
⎟⎟⎟
⎠
.
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This action was examined in (Sturmfels, 2007, Example 2.2.6). D6 has six absolutely
irreducible representations, four of dimension 1 and two of dimension 2. Applying
the Fundamental Invariants and Equivariants algorithm to D6 we obtain the follow-
ings generating invariants

H = {x2 + y2, z2, x6 − 15x4y2 + 15x2y4 − y6, xyz (3x4 − 10x2y2 + 3y4)} ,

and equivariants

Q(2) = {z, xy (3x4 − 10x2y2 + 3y4)} , Q(3) = {x (x2 − 3y2) , yz (3x2 − y2)}
Q(4) = {y (3x2 − y2) , xz (x2 − 3y2)} ,

Q(5) = {[x, y] , [yz,−xz] , [x (x4 − 10x2y2 + 5y4) , y (5x4 − 10x2y2 + y4)] ,
[yz (5x4 − 10x2y2 + y4) , xz (x4 − 10x2y2 + 5y4)]} ,

Q(6) = {[x2 − y2,2xy] , [2xyz,−x2z + y2z] , [x4 − 6x2y2 + y4, xy (x2 − y2)] ,
[xyz (x2 − y2) , z (x4 − 6x2y2 + y4)]} .

Example 5.5.3 Consider the action of the full group of symmetries of the regular
tetrahedron

Th = {δiσjαkβ` ∣ 0 ≤ i ≤ 1, 0 ≤ j ≤ 2, 0 ≤ k ≤ 1, 0 ≤ ` ≤ 1}

in R3 which is defined by the matrices.

δ =
⎛
⎜⎜⎜
⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎟
⎠
, σ =

⎛
⎜⎜⎜
⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎟⎟
⎠

α =
⎛
⎜⎜⎜
⎝

−1 0 0

0 1 0

0 0 −1

⎞
⎟⎟⎟
⎠

and β =
⎛
⎜⎜⎜
⎝

1 0 0

0 −1 0

0 0 −1

⎞
⎟⎟⎟
⎠
.

Th has order 24 and 5 inequivalent irreducible representations, all absolutely irre-
ducible, whose dimensions are 1, 1, 2, 3, and 3. Applying the Fundamental Invariants
and Equivariants algorithm to Th we obtain the following generating invariants

H = {x2 + y2 + z2, xyz, x4 + y4 + z4 − 3x2y2 − 3x2z2 − 3y2z2} ,
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and equivariants

Q(1) = {1} , Q(2) = {(y2 − z2)(x2 − z2)(x2 − y2),}

Q(3) =
⎧⎪⎪⎨⎪⎪⎩

[2x2 − y2 − z2, y2 − z2] ,
[x4 − 3x2 (y2 + z2) − 1

2y
4 + 6y2z2 − 1

2z
4,6x2y2 − 6x2z2 − y4 + z4]

⎫⎪⎪⎬⎪⎪⎭

Q(4) =
⎧⎪⎪⎨⎪⎪⎩

[x, y, z] , [yz, xz, xy] ,
[x (2x2 − 3y2 − 3z2) , y (3x2 − 2y2 + 3z2) , z (3x2 + 3y2 − 2z2)]

⎫⎪⎪⎬⎪⎪⎭

Q(5) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[xy2 − xz2,−x2y + yz2, x2z − y2z] ,
[yz (y2 − z2) , xz (x2 − z2}, xy{x2 − y2)] ,

⎡⎢⎢⎢⎢⎢⎢⎣

x (2x2y2 − 2x2z2 − y4 + z4) ,
y (x4 − 2x2y2 + 2y2z2 − z4) ,
z (x4 − 2x2z2 − y4 + 2y2z2)

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Example 5.5.4 Consider the three-dimensional representation of the cyclic group
C4 of order 4 over C[x, y, z] given by the matrices

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0

−1 0 0

0 0 −1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 −1 0

1 0 0

0 0 −1

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

This action was examined in (Sturmfels, 2007, Example 2.3.7). C4 is an abelian
group with four irreducible representations of dimension 1, two of which are abso-
lutely irreducible and the other two being of complex type and conjugate to each
other. Applying Algorithm 6 we get the following generating invariants

H = {x2 + y2, z2, xyz, x2z − y2z, x4 + y4, xy (x2 − y2)}

and equivariants

Q(2) = {z, xy, x2 − y2} ,
Q(3) = {x − iy, z (x + iy) , 3x2y + y3 + i(x3 + 3xy2)} ,
Q(4) = {x + iy, z (x − iy) , 3x2y + y3 − i(x3 + 3xy2)} .

In the above, the elements of Q(3) and Q(4) are conjugate of each other. And
indeed, when dealing with a real representation, pairs of conjugate irreducible rep-
resentations of complex type can dealt with as a single one; If Q(`) is a generating

set of r(`)-equivariants then Q(`) is a generating set of r(`)-equivariants.



Chapter 6

Implementation



CHAPTER 6. IMPLEMENTATION 94

The methods and algorithms we discuss in this work have been implemented in
a Maple library: SyCo (Symmetry and Computations). This library can be used to
construct group actions for finite groups and symmetry adapted bases. It provides
algorithms to effectively preserve and exploit symmetry in multivariate interpolation
(Chapter 3). We offer symmetry representation (via H-basis) for ideals given by
the kernel intersection of invariant sets of linear forms (Chapter 4). The library
has different methods to compute fundamental sets of invariants and equivariants
(Chapter 5), either via interpolation or using direct symbolic approaches. We design
SyCo to be extensible and generic. Our purpose in this chapter is to present the
general design and a basic documentation of the library.

6.1 Linear Forms

All linear forms in SyCo implement an interface (LinearForm) that contains the eval-
uation method. This method receives as parameter a polynomial expression. Below
we show the existing linear forms in our library as well as their main attributes.

Figure 6.1: UML diagram for the implemented linear forms.

#Example of use

p ∶= x2 + y2

Grobner_Basis ∶= {x2 + y, y3 + x};

p_eval := Object(PointEvaluation, ⟨1,2⟩);
d_eval := Object(DirectionalDerivative, ⟨1,2⟩, ⟨1,0⟩);
w_eval := Object(WeightedForm, [point_eval, d_eval], ⟨1,1⟩);
q_eval := Object(quotientForms, Grobner_Basis, ⟨0,1,0,0,0,0⟩);

for lf in [p_eval, d_eval, w_eval] do

print(lf:-evaluate(p));

end;

#The output is 5 , 6 , 11, -1
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6.2 Group Actions

The group actions in SyCO are divided in two main groups: actions on Kn and
induced representations. Any induced representation contains a group action on
Kn, and any group action is associated to a particular finite group. As we can
observe in Figure 6.2, any implementation of a group action must provide:

• A method to compute linear representations for a given dimension and type.

• A method to compute a collection of non isomorphic irreducible representa-
tions in a given field (R or C for the current implementation).

Figure 6.2: Linear actions diagram.

Table 6.1 shows the implemented group actions in our library together with the
existing configuration for dimension and type. The default types for each dimension
are highlighted in red.

Group action Dimension Type Additional parameters

OhGroup 3 F1u, F2u, F1g, F2g -

ThGroup 3 Th (Example 5.5.3) -

DihedralGroup
2
n

ortogonal (3.3.3)
parametric

m:int
S,R:matrices

CyclicGroup n permutation, diagonal m:int

SymmetryGroup
3
n

embedded
permutation

-

AlternatingGroup
3
n

embedded
signedPermutation

-

DiagonalGroup n parametric A:Matrix, P:List

Table 6.1: Group actions in Rn and Cn.

In Table 6.1 the additional parameter m corresponds to the order of Dhiedral
and Cyclic group. The matrices S and R are such that S2 = Rm = (S ⋅R)2 = In. The
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explicit description of the parameters A and P in the diagonal group can be found
in (Hubert and Labahn, 2016, Section 2.2).

We provide the following implementations for the InducedAction module:

• PolynomialAction. ρ(g)p = p ○ ϑ(g−1) in K[x]d
• FormsAction. ρ∗(g)λ(p) = λ (p ○ ϑ(g−1)) in K[x]∗

• PolyMapAction. τ(g)p = θ(g) ⋅ p ○ ϑ(g−1) in K[x]md
• QuotientAction. ρ̂(g) ([p]) = [ρ(g)p] in K[x]/I
where ϑ and θ linear actions in Rn and Rm respectively, p ∈ K[x], λ ∈ K[x]∗ and

p ∈ K[x]m.

# Examples

DG := DihedralGroup:-linearAction(2, type=ortogonal, 3);

> DG ∶=
⎡⎢⎢⎢⎢⎣
(

1 0

0 1
) ,

⎛
⎝
−1/2 − 1/2

√
3

1/2
√

3 − 1/2
⎞
⎠
,
⎛
⎝
−1/2 − 1/2

√
3

1/2
√

3 − 1/2
⎞
⎠
,(

1 0

0 1
) ,

⎛
⎝
−1/2 − 1/2

√
3

1/2
√

3 − 1/2
⎞
⎠
,
⎛
⎝
−1/2 − 1/2

√
3

1/2
√

3 − 1/2
⎞
⎠

⎤⎥⎥⎥⎥⎦
;

ohAction := OhGroup:-linearAction(3, type=F_1u): #F_1u action of Oh in R3

cycPerm := CyclicGroup:-linearAction(3, type=permutation, 3);

> cycPerm ∶=
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
,
⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
,
⎛
⎜
⎝

0 0 1
1 0 0
0 1 0

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
;

cycDiag := CyclicGroup:-linearAction(3, type=diagonal, 3);

> cycDiag ∶=
⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
,

⎛
⎜⎜
⎝

e
2iπ
3 0 0

0 e
2iπ
3 0

0 0 e
2iπ
3

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

e
4iπ
3 0 0

0 e
4iπ
3 0

0 0 e
4iπ
3

⎞
⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎦
;

#List of non-isomorphic irreducible representations of D3 in R3

Irr := DihedralGroup:-irredRepresentation(3):

#Polynomial representation for the permutation action of C3 in R[x, y]2

PolyAction := PolynomialAction:-linearAction(cycPerm, degree=2):

> PolyAction ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 1
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

6.3 Symmetry Adapted Bases

The effective computation of a symmetry adapted basis plays a key role in all our
algorithms. Given a group G, we provide functions to compute symmetry adapted
bases for different vector spaces. The exiting options are listed below.
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• SymmetricPolynomialBasis Calling sequence: SymmetricPolynomialBasis(action,
irreducibles, d, W). Parameters: action a linear representation of G, irreducibles
list of all irreducible representations of G, d degree, W a subspace of K[x]≤d
given by a set of linear generators. W is an optional parameter, by default
the full space K[x]≤d will be considered. Returns a list of symmetry adapted
bases for each isotypic component, i.e., a list of lists of polynomials.

• SymmetricLinearFormBasis Calling sequence: SymmetricLinearFormBasis(action,
irreducibles, ΛΛΛ). Parameters: action, irreducibles, ΛΛΛ a set of LinearForms. Re-
turns a list of symmetry adapted bases for each isotypic component, i.e., a list
of lists of WeightedForm.

• SymmetricPolynomialMapBasis Calling sequence: SymmetricPolynomialMapBa-
sis(θθθ, ϑϑϑ, irreducibles, degreeMap, W). Parameters: θθθ, ϑϑϑ linear actions in Kn and
Km respectively, irreducibles, degreeMap vector of degrees d1, . . . , dm represent-
ing the space K[x]d1 × . . .×K[x]dm , W a subspace of K[x]d1 × . . .×K[x]dm , if W
is not provided the full space K[x]d1 × . . .×K[x]dm will be considered. Returns
a list of symmetry adapted bases for each isotypic component, i.e., a list of
lists of polynomials maps.

• SymmetricQuotientBasis Calling sequence: SymmetricQuotientBasis(action, ir-
reducibles, GB, degreeOrd). Parameters: action, irreducibles, GB a Gröbner
basis of the associated ideal I, degreeOrd a monomial order. Returns a list
of symmetry adapted bases for each isotypic component, i.e., a list of lists of
polynomials. Each polynomial is representative of its associated equivalence
class.

To compute a s.a.b for a generic vector space W we first look for a representation
of W in Km and then we call the method SymmetryAdaptedOrthogonalBasis. The
method SymmetryAdaptedOrthogonalBasis is in charge of handling the computation
of s.a.b for every isotypic component of W and it needs the following parameters:

action ∶ − Group action in Km of a group G
irreducibles ∶ − List of all irreducible representations of G
W − Subspace of Km given by a set of vectors

Depending on the type of each irreducible representation one of the following
subroutines is called:

• IsotypicComponentAbsolutelyIrreducible Calling sequence IsotypicComponentAb-
solutelyIrreducible(action, irr, W). Parameters: action, irr the i-th irreducible
representation of action, and W. Returns a symmetry adapted basis of W (i) ,
i.e., the i-th isotypic component of W .

• IsotypicComponentComplexTypeIsotypicComponentComplexType(action, irr, W).

Parameters: action, irr, W. Returns a symmetry adapted basis of W (i) ⊕W (i).
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6.4 Interpolation

The symmetry preserving algorithms from Chapters 3 and 4 are implemented in the
SymmetryInterpolation module. We list below the precise signature of the algorithms
as well as their calling sequence in our library.

• SymmetryInterpolationSpace Calling sequence: SymmetryInterpolationSpace(action,
ΛΛΛ, m, t, epsilon). Parameters: action a GroupAction, ΛΛΛ set of LinearForm, m
(optional) equation of the form method = name where name is one of ‘leastIn-
terpolation’ or ‘minimalDegree’ methods, t (optional) equation of the form type
= name where name is one of the available representations on action, epsilon
(optional) integer indicating the number of digits of precision. The Symme-
tryInterpolationSpace first computes symmetry adapted bases of span(Λ) and
K[x]≤r, with r ≤ ∣Λ∣. Then it calls as a subroutine to Algorithm 1 with the
precise method to use. Returns a symmetry preserving interpolation space for
Λ, i.e., a list of polynomials.

• SymmetryIdealInterpolation Calling sequence: SymmetryInterpolationSpace(action,
ΛΛΛ, t). Parameters: action a GroupAction, ΛΛΛ set of LinearForm such that
∩λ∈Λ kerλ is an ideal in K[x], t (optional) equation of the form type = name
where name is one of the available representations on action. The SymmetryIde-
alInterpolation method first computes symmetry adapted bases of span(Λ),
K[x]≤r and K[x]ni≤r, with r ≤ ∣Λ∣, 1 ≤ i ≤ n. Then it calls as a subroutine
to Algorithm 4. Returns a symmetry adapted H-basis for ∩λ∈Λ kerλ and a
symmetry adapted basis of Λ↓.

• ComputeInterpolant Calling sequence: ComputeInterpolant(P, ΛΛΛ, phi, epsilon).
Parameters: P an interpolation space for Λ, ΛΛΛ set of LinearForm, phi ∈ K∣Λ∣

list of interpolation values, epsilon (optional) integer indicating the number
of digits of precision. Returns a polynomial p which is the solution of the
interpolation problem (ΛΛΛ, phi).

# Examples

#Set of points closed under the orthogonal action of D3 in R2

THETA := [⟨−5
√

3
3 , 1

3⟩ , ⟨
2
√

3
3 ,−8

3⟩ , ⟨
√

3, 7
3
⟩ , ⟨−5

√
3

3 ,−1
3⟩ , ⟨

√
3,−7

3
⟩ , ⟨2

√
3

3 , 8
3⟩] ∶

#Creation of DirectionalDerivative forms from THETA

Λ := [seq(Object(DirectionalDerivative, THETA[i], THETA[i]), i=1..nops(THETA))]:

#Computation of a s.a.b of the least interpolation space for Λ
P := SymmetryInterpolationSpace(DiagonalGroup, Λ, method='leastInterpolation',

type='ortogonal');
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> P ∶= [[38
√

6(x2+y2)
9 ] , [28

√
6(3x2−y2)y

27 ] , [[−8
√

3x
3 ,−14

√
3(x2−y2)

9 ] , [−8
√

3y
3 , 28

√
3xy

9 ]]];

#Compute the interpolant for the invariant interpolation problem (Λ, φ)
φ := ⟨1,1,1,1,1,1⟩:
p := ComputeInterpolant(Λ, φ);

> p ∶= 9
152 (x2 + y2); #Notice that p is an invariant polynomial as expected

#Creation of an ideal interpolation problem

Λ1 := [seq(Object(PointEvaluation, THETA[i]), i=1..nops(THETA))]:

Λ2 := [op (Λ) ,op (Λ1)] ∶ # ⋂λ∈Λ2
kerλ is an ideal in K[x].

#Simultaneous computation of a symmetry adapted H-basis for ⋂λ∈Λ2
kerλ

#and of the least solution interpolation space of Λ2

[H,P ] = SymmetryIdealInterpolation(DiagonalGroup, Λ2, type='ortogonal');

>H ∶= [[19
√

3x3 − 57
√

3xy2 + 135x2 + 135y2 − 380, (9x2 + 9y2 − 76)2] , [] , [[] , []]];

> P ∶= [[1, x2+y2

2 ] , [
√

6y(3x2−y2)
12 ,

√
6y(3x4+2x2y2−y4)

48 ] ,

[[x, x2−y2

2 ,
√

2x(x2+y2)
4 ,

√
3(3x4+6x2y2−5y4)

48 ] , [y,−xy,
√

2y(x2+y2)
4 ,−

√
3xy(3x2+y2)

12 ]]] ;

6.5 Fundamental equivariants and invariants com-

putation

In Chapter 5 we propose three different algorithms to compute generating sets of
equivariances. The algorithms are implemented in the FundamentalEquivariants mod-
ule of our library. The signature and calling sequence of each algorithm are described
next.

• FundamentalEquivariants:-reflection Calling sequence: reflection(action, ΛΛΛ, t).
Parameters: action a reflection GroupAction, ΛΛΛ set of PointEvaluation such
that for each ξ ∈ Λ the isotropy subgroup of ξ with respect to action is trivial, t
(optional) equation of the form type = name where name is one of the available
representations on action. The reflection method checks the correctness of its
parameters and calls as a subroutine the SymmetryIdealInterpolation method.
Returns generating sets of invariants and equivariants for action which are read
from the output of the SymmetryIdealInterpolation method.

• FundamentalEquivariants:-fromInvariants Calling sequence: fromInvariants(action,
primary, t) Parameters: action a GroupAction, primary a set of primary invari-
ants for action, t (optional) equation of the form type = name where name is
one of the available representations on action. The fromInvariants method is
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an implementation of the Algorithm 5. Returns a set of secondary invariants
and a set of fundamental equivariants of action.

• FundamentalEquivariants:-simultaneously Calling sequence: simultaneously(action,
t). Parameters: action a GroupAction, t (optional) equation of the form type =
name where name is one of the available representations on action. The simul-
taneously method starts by computing symmetry adapted bases for K[x]≤d(`,1),
then it calls as a subroutine to Algorithm 6. Returns a set of secondary in-
variants and a set of fundamental equivariants of action.

#Examples

# Creation of linear forms without trivial isotropy subgroup w.r.t

# the reflection group D8 in R2

ξ ∶= ⟨a, b⟩;
DG := DihedralGroup:-irredRepresentation(3):

forms := [seq(Object(PointEvaluation, DG[i] ⋅ ξ ), i=1..nops(DG))]:

# Computation of fundamental sets of invariants and equivariants for DG
# Notice that the type of the action is omitted because the default value

# for R2 (ortogonal) is being considered

[H0,Q] = reflection(DihedralGroup, forms);

# H0 and Q are showed in Example 5.3.6

# Set of primary invarinats for the action of A4 in R3 (Example 5.4.4)
primary := {x2 + y2 + z2, xyz, x2y2 + x2z2 + y2z2}:
# Computation of secondary invariants and fundamental equivariants

[S,Q] = fromInvariants(AlternatingGroup, primary, type='embedded');

# Simultaneous Computation of fundamental invariants and equivariants for Th
[H,Q] = simultaneously(ThGroup);

# H0 and Q are showed in Example 5.5.3



Chapter 7

Conclusions

In this dissertation, we addressed three main topics, symmetry preserving interpo-
lation, ideal interpolation and the computation of generating sets for fundamental
equivariant modules. A summary of our contributions is the following:

Multivariate interpolation.

• By introducing general dual polynomial bases we generalized the construction
of the least interpolation space introduced in (De Boor and Ron, 1992a). As
we freed the computation from its reliance on the monomial basis we are then
in a position to work with symmetry adapted bases to preserve and exploit
symmetry.

• We showed how, when the space Λ of linear forms is invariant, the Vander-
monde matrix can be made block diagonal. The latter happens when making
use of symmetry adapted bases both for K[x]≤d and Λ. This block diagonalisa-
tion of the Vandermonde matrix indicates how computation can be organized
more efficiently and robustly. Substantial computational savings are obtained
from identical blocks being repeated. It just draws on the invariance of the
space of linear forms. Thus, when the evaluation points can be chosen, it
makes sense to introduce symmetry among them.

• We defined the concepts of invariant interpolation problem (IIP) and equivari-
ant interpolation problem (EIP). These interpolation problems have a struc-
ture that we want to be preserved by the interpolant. We showed that this is
automatically achieved when choosing the interpolant in an invariant interpo-
lation space. Then the solution of an IIP is an invariant polynomial and the
solution of an EIP is an equivariant polynomial map. The use of the symmetry
adapted bases allows symmetry to be exactly preserved, independently of the
numerical accuracy.

Ideal Interpolation
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• We showed I = ∩λ∈Λ kerλ is the kernel of the Vandermonde operator while Λ↓
can be inferred from a rank revealing form of the Vandermonde matrix. We
presented an algorithm to compute simultaneously a (orthogonal) basis of the
least interpolation space and an orthogonal H-basis of the ideal I. We proceed
degree by degree. We made use of Macaulay matrices, at each iteration of the
algorithm we compute bases of Λ↓ ∩K[x]d and of I0 ∩K[x]d.

• We showed how to obtain a block diagonalization on the Macaulay matrix
when ⟨H⟩ is invariant under the induced action of a group G on K[x]. The key
relies on exhibiting the equivariance of the prolongation map ψd,H. We built
a robust algorithm that exploits the symmetries of Λ. The block diagonal
structure of the Vandermonde and Macaulay matrices allow to reduce the
size of the matrices to deal with. The H-basis obtained as the output of
the algorithm inherits the symmetries of Λ. The algorithm also provides a
symmetry adapted basis of K[x]/I.

• As an application of ideal interpolation we developed a FGLM-type algorithm
for constructing symmetry representations for the ideal. From a Gröbner basis
of an invariant ideal I we are able to compute a symmetry adapted H-basis as
well as a symmetry adapted basis of K[x]/I.

Fundamental Equivariants

• We showed that a symmetry adapted basis of any invariant subspace of K[x]
consists of fundamental equivariants. Furthermore, the equivariants for any
matrix representation are linear combinations of fundamental equivariants.

• When G is a reflection group, we showed that we can deduce generating in-
variants and equivariants for such group actions from the solution of an ideal
interpolation problem. We showed that a minimal set of generating invariants
can be read from the symmetry preserving H-basis obtained in the output of
Algorithm 4, and the fundamental equivariants can be read from a symmetry
adapted basis of Λ↓.

• We proposed a new approach to determine generating invariants and funda-
mental equivariants assuming we have primary invariants. We then showed
that this construction provides a Hironaka decomposition of K[x]G and K[x](`),
for 1 < ` < n.

• We presented a new algorithm to compute a set of generating invariants simul-
taneously to the generating equivariants. When it comes to compute generat-
ing invariants, the resulting algorithm can be compared with (King, 2013). We
compute the generating sets of equivariants with linear algebra in the vector
spaces K[x]d of homogeneous polynomials, and not a vector space of dimen-
sion m times the dimension of K[x]d as in previous results in the literature
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(Worfolk, 1994; Gatermann, 1996). We actually only compute the generators

for the K[x]G-modules K[x](`,1) from which the generators of any K[x](`,k) can
be deduced. The latter makes our method more efficient from a computational
point of view.

Maple library SyCo (Symmetry and Computations) All the methods and
algorithms we presented in this work were implemented in a Maple library. We
described the general design of the library and gave some examples of use.

On the other hand, our results also open several ideas for further research. Some
of these are the following:

• Develop more advanced algorithms for the construction of symmetry adapted
basis. Find a constructive approach for building a real symmetry adapted
basis of quaternonian type from a complex symmetry adapted basis.

• Compute symmetry adapted H-basis for invariant ideals represented by a set
of polynomials generators.

• Apply our symmetry reduction techniques in the computation of resultants for
equivariant systems of equations.

• Feed our algorithms in Chapter 5 with efficient criteria to separate primary
and secondary invariants from a generating set of invariants.

• Extend all the theory developed in this thesis not only to C or R but also to
fields of positive characteristic.
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