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Résumé Français

Dans un contexte d’évaluation des structures en béton armé, il est d’usage d’estimer certaines
propriétés de l’ouvrage étudié. En particulier, la durabilité à l’échelle du matériau, l’aptitude au
service et enfin, la tenue structurale sont des fonctions qui doivent être évaluées. L’ensemble de
ces propriétés définit la performance de l’ouvrage considéré. Cette performance doit être main-
tenue au cours du temps afin de se prémunir du risque de défaillance non maîtrisé. Toutefois,
évaluer la performance d’un élément de structure à un instant donné nécessite le recours à des
approches numériques permettant la description, voire la prédiction, des principaux mécanismes
dissipatifs qui sont susceptibles de se produire au sein d’un élément de structure en béton armé
sous chargement. Par ailleurs, il est attendu de cette description que des quantités locales carac-
térisants la fissuration soient accessibles numériquement. Par exemple, on peut citer la tortuosité,
l’espacement ou encore les ouvertures associés à la fissuration.

Il existe plusieurs méthodes numériques efficaces dans la littérature pour modéliser l’enclenchement
et la propagation de fissures dans les milieux continus. Cependant, simuler l’enclenchement de
multiples fissures, les interactions entre ces fissures et les effets de fermeture pendant un charge-
ment cyclique reste un problème ouvert.

L’objectif principal de ces travaux de thèse est le développement d’un cadre numérique dans
lequel les multiples fissures dans le béton peuvent être décrites de manière explicite, pour que
des quantités locales caractérisants la fissuration soient obtenues sans recourir à une technique
de post-traitement. En particulier, nous proposons, (i) un modèle constitutif qui prend en compte
la phase d’endommagement diffus dans le béton, (ii) un modèle numérique pour décrire la for-
mation et la propagation de fissures multiples pendant le chargement cyclique et (iii) un cadre de
transition au sein duquel les deux approches sont couplées pour modéliser l’ensemble du proces-
sus de localisation des déformations.

Afin de décrire le comportement du béton sous chargements cycliques, nous devons prendre
en compte la dégradation de la rigidité, l’effet unilatéral et l’anisotropie induites par la fissura-
tion. Dans la littérature, plusieurs modèles comme les modèles élasto-plastiques [REYNOUARD,
1974, WILLAM and WARNKE, 1975, OTTOSEN and SCORDELIS, 1977], les modèles de fissur-
ation diffuse (smeared crack) [NGO and SCORDELIS, 1967, ?], les modèles d’endommagement
[MAZARS, 1984, LEMAITRE and MAZARS, 1982], les modèles microplan [BAŽANT and OH,
1985, BAŽANT, 1984], etc. , sont développés pour décrire des fissures dans le béton sur la base
d’approches phénoménologiques. Parmi ces formulations, on choisit d’utiliser un modèle mi-
croplan. Selon la théorie des microplans, on suppose une relation entre les vecteurs des con-
traintes sur les microplans et le tenseur des contraintes à un point donné du milieu. Le principe
des travaux virtuels est alors utilisé pour calculer le tenseur des contraintes à partir d’une inté-
gration sur une sphère/cercle de quantités définies aux microplans.

Par ailleurs, les modèles à cinématique discontinue permettent de prédire la rupture dans les
matériaux quasi-fragiles en incorporant des discontinuités de déformation/déplacement dans le



ii

milieu continu. Dans l’approche par discontinuité forte, une discontinuité est introduite dans
le champ de déplacement. Dans la littérature, il existe deux familles de modèles suivant cette
approche: (i) EFEM [ORTIZ et al., 1987, OLIVER, 1996a, ALFAIATE et al., 2001, ARMERO and
EHRLICH, 2006], Embedded Finite Element Method, où des degrés de liberté supplémentaires
sont intégrés dans les éléments finis localisés et des degrés de liberté globaux du modèle d’éléments
finis restent inchangés et (ii) XFEM [BELYTSCHKO and BLACK, 1999, DOLBOW and BELYTSCHKO,
1999, MOES et al., 1999, SUKUMAR et al., 2001], eXtended Finite Element Method, où des degrés
de liberté supplémentaires sont pris en charge par les nœuds des éléments finis localisés. Ainsi,
des degrés de liberté globaux supplémentaires sont ajoutés. Parmi ces modèles, nous avons choisi
la méthode EFEM pour modéliser les fissures explicitement en raison de son coût de calcul qui
reste maîtrisé.

Plusieurs approches qui réalisent une transition d’une description implicite de la fissuration à
une description explicite de la fissuration ont été proposées [MAZARS and PIJAUDIER-CABOT,
1996, JIRÁSEK and ZIMMERMANN, 2001, ?, COMI et al., 2002]. Dans ces travaux, l’approche
par équivalence énergétique est retenue pour introduire une fissure cohésive dans la zone de
dommages localisés. Selon cette approche, nous introduisons des discontinuités fortes (fissures
cohésives) dans les éléments finis lorsqu’un certain critère de transition est atteint [COMI et al.,
2007, ROTH et al., 2015, WU et al., 2014]. Les paramètres des lois cohésives (énergie de rupture,
niveau de traction au point de transition) sont calibrés à partir de l’équivalence entre la dissipation
d’énergie du processus de rupture décrit par un modèle de microplan et celle de la loi cohésive.
L’équilibre à travers l’élément fini fissuré est alors assuré en utilisant des conditions de continuité
du vecteur des tractions (une condition par fissure). Ceci est nécessaire pour déterminer les degrés
de liberté supplémentaires et pour pouvoir appliquer la technique de condensation statique au
niveau des éléments finis traversés par une discontinuité.

Dans ce cadre, le cas des fissures multiples peut être traité de manière simple. En effet, le principal
avantage de l’utilisation du modèle des microplans est que l’on peut formuler des critères de
transition basés sur les variables des microplans, ce qui est prometteur pour la représentation de
phénomènes directionnels comme la multi-fissuration, qui ne sont pas naturels à décrire dans le
cadre de la méthode EFEM.

Les méthodologies proposées sont illustrées à l’aide de plusieurs cas de tests élémentaires per-
mettant de reproduire des états de contrainte et de déformation complexes. Enfin, nous évaluons
la capacité des modèles proposés à simuler la formation et la propagation de fissures dans les
structures en béton et en béton armé.
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Chapter 1

Introduction

1.1 Context

Owing to the drastic increase in the computing power in recent decades, there is a surge in the
flux of new developments in computational mechanics from research to the industry. Particularly,
the development of numerical methods for the simulation of material failure is highly motivated
by the necessity of the assessment of the performance of the structures. Especially in the case of
crucial civil engineering structures like Nuclear Power Plants (NPP), periodic safety reviews are
conducted to address the issues related to the durability and serviceability before they adversely
effect the structural safety. Also, it is essential to avert any catastrophes in the case of extreme
loading like earthquakes.

Massive concrete and reinforced concrete structural elements are used in the construction of dif-
ferent components of NPP that provides containment functionality like the fluid storage build-
ings [GRANGER et al., 2001a, GRANGER et al., 2001b, JASON and MASSON, 2014]. In these
cases, the quantification of crack features like Crack Mouth Opening Displacement (CMOD),
crack spacing and tortuosity plays a key role in estimating the leakage rates [AKHAVAN et al.,
2012, RASTIELLO et al., 2014, RASTIELLO et al., 2018]. Also, predicting the information about
cracking is important in devising the safety measures for large scale structures like concrete dams,
bridges, multi-storey residential buildings, masonry structures, etc.

1.2 Motivation

Fracture process in quasi-brittle materials is a complex physical phenomenon with cracking pro-
cess occurring in different zones fig. 1.1. It starts with the initiation of microcracks in the zone
of distributed damage. This is followed by the formation of regions of highly localized microc-
racking, termed as ’localization band’. This phenomenon is known as ’strain localization’. In the
localization band irreversible energy dissipation takes place while the material in the surrounding
releases elastic energy. Finally, the microcracks coalesce to form the zone of stress free macroc-
racks. The zone of distributed damage and the localized strains is known as the Fracture Process
Zone (FPZ) whose length is denoted by lFPZ .

There are several efficient numerical methods that are dedicated for modeling crack initiation and
propagation in solids. But simulation of the formation of multiple crack patterns, crack interac-
tions and crack closure effects during cyclic loading is still a challenging issue. For example, in
a shear wall under cyclic loading (fig. 1.2), the cracks formed during first phase of loading are
crossed by the cracks formed during the second phase. Simulation of such complex multiple
crack patterns is still an ongoing research work.
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Figure 1.1: Schematic representation of the strain localization process [HUESPE and OLIVER, 2011]

The purpose of this work is to model the complex phenomenon of formation of multiple cracks
in concrete and reinforced concrete structures submitted to complex loading.

Although it is customary to model concrete as an isotropic material prior to cracking, it is essential
to tackle induced anisotropy due to cracking. In the literature, several models like elasto–plastic
models [REYNOUARD, 1974, WILLAM and WARNKE, 1975, OTTOSEN and SCORDELIS, 1977],
smeared crack models [NGO and SCORDELIS, 1967, BAŽANT and GAMBAROVA, 1980], dam-
age models [MAZARS, 1984, LEMAITRE and MAZARS, 1982], microplane models [BAŽANT
and OH, 1985, BAŽANT, 1984], etc., are developed for modeling cracking in concrete based on the
phenomenological approach. Among these models, microplane models are able to describe the
anisotropic damage in concrete by describing damage in several possible directions. Neverthe-
less, these models cannot provide the explicit information about cracking without extra compu-
tational effort. This motivates to explore further models that are dedicated for explicit modeling
of cracks.

In the literature, several models like cohesive crack models, discontinuous kinematics models
etc., are developed to model the cracks in an explicit manner. In the framework of discontinuous
kinematics models, various numerical methods like Embedded Finite Element Method (EFEM)
[ORTIZ et al., 1987, OLIVER, 1996a], eXtended Finite Element Method (XFEM) [BELYTSCHKO
and BLACK, 1999, MOES et al., 1999], etc., are also developed. Among these numerical methods,
EFEM has several computational advantages over the other methods.

On the other hand, transition methodologies are proposed in the literature [COMI et al., 2007,
CAZES et al., 2009] to couple both the implicit and explicit description of cracking. In this manner,
the complete strain localization process is captured in a single framework.

The purpose of this work is to model the anisotropic damage and multiple cracks in an explicit
manner by coupling microplane model and EFEM in a transition framework. The main idea here
is to take benefit of anisotropic damage description provided by microplane models in order to



1.3 – Structure of the manuscript 3

Figure 1.2: Shear wall [French research project, Ceos.fr] under cyclic loading

activate multiple cracks in a unit volume. Then an extended EFEM is used in order to tackle the
activation and opening of multiple non-orthogonal cracks within a finite element.

1.3 Structure of the manuscript

The manuscript is structured as follows:

(i) in the second chapter we perform the state-of-the-art literature review concerning the mod-
eling of cracking in concrete. First, experimental observations of the behavior of concrete
under different loading conditions are reviewed and the phenomenological features of mod-
eling interest are described. Then, we present the thermodynamic framework for develop-
ing constitutive laws. Later, the formulations for modeling of cracking in quasi-brittle mate-
rials in implicit and explicit manner is presented. The pros and cons of several constitutive
models and numerical formulations are discussed and the justifications for the appropriate
choices are provided. This is followed by the experimental motivation for the transition
models. Finally, the available numerical frameworks for the transition methodologies are
presented;

(ii) in the third chapter, we present the strong discontinuity formulation. First, different ap-
proaches for incorporating the strong discontinuity in the standard continuum are dis-
cussed. Later, EFEM to model a single strong discontinuity is presented in detail. We il-
lustrate the proposed formulation using some numerical examples in the case of a single
crack. After illustrating the cases in which the localization of multiple cracks is necessary,
we extend the formulation of standard EFEM. Some numerical studies to study the interac-
tions between multiple cracks are performed.

(iii) in the fourth chapter, we present the microplane model. After discussing the underlying
assumptions, the microplane formulation in a thermodynamic framework is presented. We
study several aspects of the constitutive model. This is followed by some simple numeri-
cal tests to illustrate the main features of proposed formulations. We end this chapter by
comparing the responses of a damage model, extended EFEM and microplane model to
highlight the main features of the proposed model;

Ceos.fr
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(iv) in the fifth chapter, we present the general framework of transition models available in the
literature and then propose a transition methodology from microplane model to a strong
discontinuity model formulated in the EFEM. First, the formation of a single crack is con-
sidered and numerical aspects of the proposed methodologies are discussed. Later, the case
of multiple orthogonal/non-orthogonal cracks is considered and both theoretical and nu-
merical aspects are presented;

(v) some structural test cases to show the applicability of the proposed transition methodology
are performed in the last chapter. We simulate these examples using both the microplane
model and the transition methodology. The obtained global, local responses and crack pat-
terns are shown;

(vi) finally, some conclusions of proposed methodologies are drawn and perspectives for the
future work close the manuscript.



Chapter 2

State-of-the-art literature review

Abstract. The main features of the mechanical behavior of quasi–brittle (e.g., concrete) materials
are briefly illustrated in the first part of the chapter. Then, attention is focused on strategies and
numerical formulations for modeling concrete and concrete-like materials. Representative contin-
uum mechanics based (continuum displacement field, dissipation distributed over a volume of
finite size) and strong discontinuity formulations (discontinuous displacement field, dissipation
localized at a discontinuity surface) are discussed. Finally, some formulations allowing to explic-
itly model a progressive transition from one modeling approach to the other one are illustrated.

2.1 Mechanical phenomenology of concrete

Failure mechanisms observed under various types of loading suggests that plain concrete is a
quasi–brittle material even though the composites of concrete behave like linear elastic perfectly
brittle materials. Brittle materials exhibit a sudden and immediate loss of strength after the peak
stress is reached but in quasi–brittle materials (as the nomenclature suggests) the strength of the
material is reduced gradually and exhibits post–peak behavior before complete failure. In con-
crete, microcracking is the driving phenomenon for progressive loss of material strength. The
complexity of the concrete behavior arises due to the fact that different physical mechanisms (de-
pending on the interaction of microcracks with each other) dictates the macroscopic behavior for
different types of loading. In the case of reinforced concrete, presence of steel limits the crack
openings. Hence, the overall response of the composite material is ductile. However, at higher
loading, steel bars yield and plastic hinges are formed in the structural members. Here, we sum-
marize the main aspects of the response of concrete to various monotonic and cyclic loading
conditions.

Uniaxial tension test During uniaxial tensile loading, the microcracks that initiate at the weaker
zones coalesce without being intervened by the aggregate thus forming macrocracks perpendic-
ular to the direction of the loading. Concrete undergoes through different stages [LEGENDRE,
1984] during loading from virgin intact material to the material failure. These physical mecha-
nisms manifest the behavior of the concrete into two different regimes: (i) linear elastic regime up
to the tensile strength; (ii) a softening response in the phase post–peak of load. In the later phase, if
unloading-reloading cycles are performed (cyclic tensile loading) [TERRIEN, 1980, REINHARDT
and CORNELISSEN, 1984, CORNELISSEN et al., 1986, NOUAILLETAS et al., 2015] then hystere-
sis loops with permanent strains are observed (fig. 2.1).

Uniaxial compression test During uniaxial compression loading, the formation of microcracks
happens in the direction parallel to the loading due to lateral expansion (Poisson’s effect). The
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Figure 2.1: Uniaxial behavior of concrete in tension [TERRIEN, 1980]

traversing path of the microcracks is intervened by aggregate thus preventing the formation
of macrocrack abruptly. Due to this mechanism, concrete becomes more ductile and exhibits a
compressive strength much higher than the tensile strength. The compression behavior can be
schematically divided into three regimes: (i) linear elastic regime with decreasing volume up to
30% of the compressive strength; (ii) non-linear irreversible regime with decreasing volume up to
the compressive strength; (iii) softening regime with increasing volume (dilatancy) in the phase
post–peak of load.

During the dilatancy phase, the Poisson’s ratio increases abruptly. This can be explained on the
basis of formation of macrocracks in the directions orthogonal to the external loading direction.
As the material strength is lost in these directions, the lateral expansion (transversal strain in
fig. 2.2a) is more dramatic than the longitudinal expansion (axial strain in fig. 2.2a) causing the
increase in the Poisson’s ratio (fig. 2.2b).

(a) (b)

Figure 2.2: Dilatancy of concrete during uniaxial compression loading: evolution of the transversal defor-
mation (a) and evolution of the effective Poisson’s ratio (b) [RAMTANI, 1990]

Similar to tension, the uniaxial cyclic compressive behavior exhibits hysteresis loops with perma-
nent strains [RAMTANI, 1990, SINHA et al., 1964, VASSAUX et al., 2014]. However, the contact
between the microcrack surfaces increases as they are in crushing mode in compression (opposed
to the opening mode in tension). Due to this, the internal friction between the macrocrack surfaces
is more pronounced in compression causing larger hysteresis loops (fig. 2.3).

In addition to this, when material is subjected to compression after tensile damage, material
stiffness is fully recovered due to the closure of microcracks (fig. 2.4). This is known as unilat-
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Figure 2.3: Uniaxial behavior of concrete under compression loading [RAMTANI, 1990]

eral effect [MAZARS et al., 1990, NOUAILLETAS et al., 2015, REINHARDT and CORNELISSEN,
1984, LA BORDERIE, 1991].

Figure 2.4: Unilateral effect in concrete [LA BORDERIE, 1991]

Biaxial tests Similar to the behavior during uniaxial tests, the biaxial compressive strength is
much higher than the biaxial tensile strength [KUPFER et al., 1969, LEE et al., 2004]. Comparing
uniaxial compressive strength and biaxial compressive strength, the later is about 25% higher
than the former. A typical biaxial strength envelope curve is shown in fig. 2.5, where, σI , σII and
fc are the maximum and minimum principal stresses and strength of the concrete in compression
respectively.

Remark. In the interest of describing the cracking in concrete when subjected to complex loading,
we restrict ourselves to consider the following phenomenological features: (i) stiffness degrada-
tion due to cracking; (ii) unilateral effect; (iii) induced anisotropy due to cracking. The other
aspects like hysteresis loops and permanent strains which are due to internal friction, strain rate
effects (important in fatigue loading) are not considered in the present research work.
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Figure 2.5: Normalised biaxial strength envelopes for concrete [LEE et al., 2004]

2.2 Thermodynamic framework

Here, we present a general formulation for developing constitutive models in thermodynamically
consistent manner. In this framework, the method of local state [LEMAITRE and CHABOCHE,
1990] postulates that thermodynamic state at a given point and instant is defined by the state
variables which comprises of the observable and the internal variables. The observable variables
consists of measurable quantities like strain (ε) and temperature while the internal variables char-
acterizes the dissipative phenomena like plastic strain or damage. Assuming an isothermal state,
we drop here the dependence of temperature. Let us also assume that there exists a free energy
density of Helmholtz type (ψ) which is a convex function of the state variables as given below:

ψ = ψ (ε, κ) (2.1)

where, κ is an internal variable. The stress tensor, σ and the associated variables (Y ) are derived
from ψ as given below:

σ = ρ
∂ψ

∂ε

Y = −ρ∂ψ
∂κ

(2.2)

(2.3)

The Clausius-Duhem-Trusdell inequality that restricts the rate of energy dissipation of a unit
volume (φ̇V ) is written as:

φ̇V = σ : ε̇− ρψ̇ ≥ 0 (2.4)

where, ′ : ′ is the double contraction operator between two second–order tensors. From eqs. (2.1)
and (2.3), we have ρψ̇ = σ : ε̇−Y κ̇ and substituting this expression in eq. (2.4) gives the volumetric
energy dissipation as:

φ̇V = Y κ̇ ≥ 0 (2.5)

Now, by denoting the free energy and energy dissipation for whole material domain as Ψ and Φ
respectively, we write the total mechanical energy (E ) using the work-energy theorem [CAZES
et al., 2009] as:

E = Ψ +K −Wext + Φ (2.6)

where, Wext is the work done by the external forces and K is the kinetic energy of the whole
material.

In the next section, we present the constitutive and numerical models that attempt to describe the
cracking in concrete.
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2.3 Description of cracking in concrete

In the literature, various material and numerical models are developed to model dissipative phe-
nomena like cracking in concrete. Some models take into account cracking in a diffused manner
(e.g. through continuum constitutive laws) while some models take into account cracking in a
discrete manner (e.g. as cohesive cracks). The modeling aspect of these types of description of
cracking is the ’energy dissipation’ during the strain localization process.

Based on the this aspect, the description of cracking can be classified as follows:

1. implicit description of cracking: energy dissipation associated with cracking processes is
smeared over certain volume of the material. Accordingly, the displacement field is always
assumed continuous. This kind of formulations are often used in applications due to their
relative robustness and simplicity of implementation. Since discontinuous kinematics can-
not be modeled explicitly, extracting fine information about cracking (e.g., crack opening
displacements) need some additional steps (e.g. post-treatments) and assumptions;

2. explicit description of cracking: kinematic discontinuities associated with the formation of
cracks are modeled explicitly. Accordingly, the energy dissipation occurring at the crack
surface is directly taken into account. The resulting numerical implementations are however
less straightforward than with the continuum models.

In the later sections, a brief description of the models based on the implicit and explicit descrip-
tions of cracking is presented.

2.3.1 Implicit description of cracking

Following the phenomenological approach, the progressive loss of stiffness due to cracking is
modeled using strain–softening relationship. In this work, we restrict ourselves to the models
that are developed to describe the behavior of concrete, particularly during the cyclic loading. We
present here a brief description of the chosen models before going into the chronological evolution
of them in the later sections. In particular, we will first introduce continuum models based on
elasto–plastic theory and damage mechanics. In these models, the progressive degradation due to
the microcracking is achieved using constitutive laws written in terms of stress and strain tensors.
Then, attention will be focused on smeared crack models, where the diffused microcracking is
represented in a smeared manner on a crack plane. Finally, microplane models will be presented.
In these models, the progressive degradation due to the microcracking is achieved using stress
and strain vectors in several possible directions instead of tensorial constitutive relationships.

2.3.1.1 Elasto–plastic models

The classical theory of plasticity with a softening function is used to model concrete behavior in
many works [REYNOUARD, 1974, WILLAM and WARNKE, 1975, OTTOSEN and SCORDELIS,
1977, IMRAN and PANTAZOPOULOU, 2001, GRASSL et al., 2002]. The key concept of this theory
is the additive split of strain into elastic strain and plastic strain (εe and εp in fig. 2.6 respectively).
The stresses are calculated using the elastic strain and the Hooke’s law.

During unloading and reloading, these models exhibits permanent strains while the stiffness
modulus remains elastic (fig. 2.6). This feature makes them more suitable to model the irre-
versible strains during cyclic loading [DRAGON and MROZ, 1979, FEENSTRA and de BORST,
1996]. However, in order to model other features of concrete behavior during cyclic loading like
stiffness degradation, crack closure effects and hysteresis loops, more complex softening rules are
required [MOHARRAMI and KOUTROMANOS, 2016, ORTIZ, 1985, FEENSTRA and de BORST,
1996]. Also, these models require a very high number of material parameters to fit the experimen-
tal curves.
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Figure 2.6: Elasto–plastic model for concrete: plastic strain and elastic unloading [DRAGON and MROZ,
1979]

2.3.1.2 Damage models

In the earlier work [KACHANOV, 1958], the concept of damage is introduced in the context
of creep rupture of metals. Later it is used to describe the progressive degradation in concrete
[MAZARS, 1984, LEMAITRE and MAZARS, 1982, MAZARS and PIJAUDIER-CABOT, 1989] that
leads to the softening behavior. These models can be classified into isotropic and anisotropic dam-
age models based on the description of stiffness degradation. We present below the development
of these models in the perspective of cracking in concrete especially during cyclic loading.

Isotropic damage models In earlier damage models [LEMAITRE and MAZARS, 1982, MAZARS,
1984, MAZARS and PIJAUDIER-CABOT, 1989], the stiffness degradation is taken into account us-
ing a bounded internal variable termed as isotropic scalar damage variable (d) which varies from
0 in undamaged state to 1 in damaged state. In this framework, the thermodynamic potential and
the stress tensor can be written as [MAZARS, 1984]:

ρψ =
1

2
(1− d) ε : E : ε

σ = (1− d)E : ε

(2.7)

(2.8)

where, E is the Hooke’s elastic stiffness tensor. However, this model is well suitable for model-
ing uniaxial tensile behavior and other aspects like the concrete dissymetry and unilateral effect
when concrete is subjected to cyclic loading cannot be described easily using this framework.
For modeling the behavior of concrete in both tension and compression, an earlier attempt was
made in [MAZARS, 1986] by reformulating the damage variable as a weighted sum of two vari-
ables representing damage due to tension and compression (dt and dc respectively) as [MAZARS,
1986]:

d = αtdt + αcdc (2.9)

where, αt and αc are the weights for the damage variables in tension and compression respec-
tively. However, the unilateral effect is still not taken into account in this model. Later, a sophisti-
cated approach using the concept of spectral decomposition of stress and strain is used to account
for tensile and compressive damage mechanisms independently [LADEVÉZE and LEMAITRE,
1984, ORTIZ, 1985, MAZARS, 1985, SIMO and JU, 1987, STEVENS and LIU, 1992, LUBARDA
et al., 1994].

Other approaches for modeling unilateral effect in this framework may include a bi–dissipative
damage model [COMI and PEREGO, 2001, COMI, 2001, RASTIELLO et al., 2016] with separate
flow surfaces as functions of two independent damage variables for tension and compression.
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In another work [RICHARD et al., 2010], a partial unilateral effect, internal frictional effects like
permanent strains and hysteresis loops are modeled using damage mechanics by splitting the free
energy potential into hydrostatic and deviatoric parts. The unilateral effect is then handled by the
hydrostatic part while the deviatoric part manages the frictional effects. Later, another model
based on the previous one is proposed to take into account the full unilateral effect by using a
closing function [RICHARD and RAGUENEAU, 2013, VASSAUX et al., 2015].

Anisotropic damage models While isotropic scalar damage models are successful to achieve
isotropic stiffness degradation, anisotropic damage models are developed to tackle the crack in-
duced anisotropy. In these models, the preferential microcrack orientations due to the type of
loading are taken into account by using tensors rather than an isotropic damage variable. In
some models [KRAJCINOVIC, 1985, LECKIE and ONATE, 1981, LEMAITRE and CHABOCHE,
1990, CHABOCHE, 1992], the damage is described using a fourth-order tensor while in another
approach [MURAKAMI, 1988, HALM and DRAGON, 1998, MESCHKE et al., 1998], a second-
order tensor is used.

In a general anisotropic damage framework [LEMAITRE, 2012], the Helmhotz free energy and
the stress tensor can be defined using a modified elastic tensor due to damage, Ẽ as:

ρψ =
1

2
ε : Ẽ : ε

σ = Ẽ : ε

(2.10)

(2.11)

Now, assuming that the inverse of Ẽ exists, a general fourth-order damage tensor can be obtained
as:

C = I− Ẽ : E−1 (2.12)

In order to take into account the unilateral and the microcrack closure-reopening effects, a spectral
decomposition of the stress tensor [ORTIZ, 1985] or equivalently that of the strain tensor [CAROL
and WILLAM, 1996] is considered as follows (here we focus on the strain based approach):

ε+ = 〈εi 〉x′i ⊗ x′i
ε− = ε− ε+ = 〈−εi〉x′i ⊗ x

′

i

(2.13)

(2.14)

where, ε+ and ε− are the strains in tension and compression respectively, 〈•〉+ denotes the posi-
tive part of 〈•〉 and x′i is the eigen basis of ε for i = {1, 2} in 2D and i = {1, 2, 3} in 3D.

As introduced in [ORTIZ, 1985], the expressions of ε+ and ε− can also be rewritten using the
projection operators P+ and P− as ε+ = P+ : ε and ε− = P− : ε. Using the above spectral decom-
position, the secant (reduced) stiffness tensor can be obtained as:

Ẽ = E− P+ : ∆E+ : P+ − P− : ∆E− : P− (2.15)

where, ∆E+ and ∆E− are the reduction of the elastic tensor due to the microcracks active in
tension and compression respectively.

However, the description of anisotropic damage by a fourth-order damage tensor would require
to determine a high number of material parameters and complicated numerical implementation.

In [DESMORAT et al., 2007], a second-order tensor (D) whose eigen values between 0 and 1 is
used to obtain an effective stress tensor (σeff ) as follows:

σeff =

(I −D)
−

1

2 · σd · (I −D)
−

1

2


d

+
1

3

[ 〈trσ〉
I − trD

〈−trσ〉
]
I (2.16)
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where, ’·’ denotes the simple contraction operator, tr(•) denotes the trace of a second-order ten-
sor (•) (it is defined as tr(•) = I : (•) = (•)ii), and (•)d denotes the deviatoric part of (•) (for a
second-order tensor it is defined as (•)d = (•)− tr(•)I/3) . Although this model is thermodynam-
ically consistent and robust [RAGUENEAU et al., 2008], it is difficult to define the limits of the
components of D [DESMORAT et al., 2007]. Also, a second-order damage tensor would restrict
the description of damage in orthotropic axes [MURAKAMI and OHNO, 1981].

Coupling elasto-plasticity and damage models The inadequacy of plasticity models to de-
scribe stiffness degradation due to cracking during unloading and reloading can be overcome
by coupling plastic and damage models [ORTIZ, 1985, LUBLINER et al., 1989, YAZADANI and
SCHREYER, 1990, GATUINGT and PIJAUDIER-CABOT, 2002]. The coupled plastic-damage mod-
els can also model the permanent strains during cyclic loading [LEE and FENVES, 1998, GRASSL
and JIRÁSEK, 2006]. In [JASON et al., 2006], an isotropic damage model is coupled with a hard-
ening yield plastic surface.

2.3.1.3 Smeared crack models

In smeared crack models [NGO and SCORDELIS, 1967, RASHID, 1968, ČERVENKA, 1971, BAŽANT
and GAMBAROVA, 1980, de BORST, 1985], microcracks of different orientations which are not
necessarily planar are represented in a smeared manner on a plane termed as ’crack plane’. This
representation is then followed by the decomposition of total strain (ε) into elastic strain (εe) and
crack strain (εcr) as shown below:

ε = εe + εcr (2.17)

The initial direction of the computational crack is specified by an initiation criterion. For example,
following the Rankine criterion, let us postulate that the normal direction (ncr) to the initial crack
is parallel to the direction of the maximum principal stress (x′I ) (fig. 2.7). Let scr (⊥ ncr) denotes
the tangent to the crack plane.

Next, the crack strain vector (ecr) is obtained by the projection of crack strain on the crack plane
(ecr = εcr · ncr). Traction vector on the crack plane (tcr) is related to the stress tensor (σ) outside
the cracking zone using Cauchy’s stress principle (tcr = σ · ncr) (fig. 2.7). Now, the crack strain
is calculated by defining a constitutive relationship between the crack strain vector and crack
traction.

Depending on the treatment of direction of the crack during the rotation of principal stress axes,
three different models are developed in the literature as presented below.

Fixed crack model In this approach [de BORST, 1985, de BORST et al., 2004, JIRÁSEK, 2011],
direction of the crack is fixed after its activation. This leads to the misalignment of crack plane

crack plane

ncr//x′I

scr

tcr = σ · ncr

Figure 2.7: Smeared crack model: crack plane aligned with the maximum principal stress direction



2.3 – Description of cracking in concrete 13

with the maximum principal stress direction (fig. 2.8). In these models, a shear retention factor
is used to transmit the shear traction across the crack [SUIDAN and SCHNOBRICH, 1973, ROTS
and de BORST, 1987, ROTS et al., 1985]. This leads to the non–realistic generation of shear stresses
[WILLAM et al., 1989]. Also, fixed crack approach leads to stress locking [WILLAM et al., 1989,
JIRÁSEK, 2011] that is, in a finite element mesh which is not aligned with the crack orientation
there is a spurious transfer of stress across the crack.

Rotating crack model Here [ROTS, 1991, GUPTA and AKBAR, 1984, JIRÁSEK, 2011], the idea
is to rotate the crack as the maximum principal stress direction rotates by keeping the normal of
the crack plane aligned (fig. 2.9) to the direction of the maximum principal stress. Let us assume
that a first crack plane whose normal and tangent are denoted by ncr1 and scr1 respectively is
localized. Also, let tcr1 = σ · ncr1 be the traction vector on this plane. Now, as the maximum
principal stress direction rotates a second crack plane localizes such that its normal ncr2 (tangent
scr2 ) is parallel to present x′I . Furthermore, the information regarding the previous crack is erased
and a second traction vector tcr2 = σ ·ncr2 is defined. In rotating crack model, shear retention factor
is avoided but stress locking still takes place [JIRÁSEK and ZIMMERMANN, 1998]. However,
these models are thermodynamically inconsistent and also the unloading stiffness loses positive
definiteness [ROTS, 1988, JIRÁSEK and ZIMMERMANN, 1998].

Fixed multi–directional crack model As proposed in [de BORST and NAUTA, 1998], in this
approach a new crack is initiated after the angle between the previous crack and the present max-
imum principal stress direction exceeds a certain threshold value, θth (fig. 2.10). In this approach,
all the cracks that are localized remains active and dissipate energy. In fixed multi–directional
crack model, the threshold angle remains arbitrary and cannot be determined on a sound physi-
cal basis.

Also, these models inherits the problems of dependency on the mesh size and orientation. Later,
in the section 2.3.2.3, we describe a method to embed the cracks inside the mesh to avoid these
problems.

2.3.1.4 Microplane models

The phenomenological models presented above are based on the constitutive laws developed
between stress and strain tensors. Thus the constitutive response remains invariant during the
rigid body rotations. Although these models are capable of describing simple stress states it is
very difficult to get a realistic description for more complex stress states and in particular cases
where principal stress/strain axes rotate. Microplane models [BAŽANT and OH, 1985, BAŽANT,
1984, BAŽANT and PRAT, 1988a, BAŽANT, 1996] are developed with an aim to handle the di-
rectional dependent phenomena (e.g. microcracking in quasi–brittle materials) by describing the

crack plane

ncr

x′I

scr

tcr = σ · ncr

Figure 2.8: Fixed crack model: misalignment of crack plane with the maximum principal stress direction
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rotating crack plane

ncr1

ncr2 //x′I

scr1

scr2

tcr1 = σ · ncr1

tcr2 = σ · ncr2

Figure 2.9: Rotating crack model: rotation of the crack plane along with the maximum principal stress
direction

first crack plane

second crack plane

ncr1

ncr2 //x′I

scr1

scr2

θth
tcr1 = σ · ncr1

tcr2 = σ · ncr2

Figure 2.10: Fixed multi–directional crack model: opening of the second crack plane after certain rotation of
the maximum principal stress direction

inelastic behavior in planes of all possible orientations known as ’microplanes’. The key concept
here is to develop constitutive relations between stress/strain vectors on each microplane instead
of tensors and perform integration (spherical or circular) over all possible directions thus ensuring
the tensorial invariance.

The concept of directional sampling of material behavior was introduced in [TAYLOR, 1938]
which is later developed by [BATDORF and BUDIANSKY, 1949] as the slip theory of plastic-
ity. In these models stresses on planes of all possible orientations are linked with the macroscopic
stress by an assumed static constraint. However, in the case of softening behavior (e.g. in quasi–
brittle materials) the static constraint leads to instabilities [BAŽANT, 1984]. Hence, it was realized
[BAŽANT, 1984] that it is more appropriate to assume that strain components on the microplanes
is linked with the strain at a unit volume by a ’kinematic constraint’.

Here, following [BAŽANT and OH, 1985, BAŽANT, 1984], we present a general framework of
the microplane system in 3D (fig. 2.11) using a discretized sphere. However, for planar prob-
lems [PARK and KIM, 2003] this representation can be simplified using a disk microplane system.
Hence, we denote the closed surface of the microplane system (spherical or disk) by Ω. The frame-
work consists of the projection operation of ε (kinematic constraint) on a microplane to obtain its
components εm and εl in the normal (m) and the tangential (l1, l2) directions (see [BAŽANT and
OH, 1985] for expressions) respectively. The corresponding stress components, σm and σl are
obtained by postulating constitutive laws on each microplane. Then the Principle of Virtual Work
(PVW) is used to link the microplane stresses to that of the continuum one [BAŽANT, 1984] which
is not the case in the slip theory of plasticity. Notice that in the case of classical framework for
obtaining constitutive laws, we obtain a direct relationship between ε and σ.
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Figure 2.11: Framework of the microplane models: spherical microplane models

Since the initial conception various versions of the microplane models were developed. We
present the chronological development of these models below.

M1-model In this version of the microplane models [BAŽANT and OH, 1985, BAŽANT, 1984],
the primary emphasis is made to tackle the tension strain–softening. Failure in compression is
achieved when the tensile limit is reached (due to Poisson’s effect) in the microplanes whose
normal is perpendicular to the direction of compression. Also, it is assumed that only the normal
component of the strain tensor on each microplane drives the cracking process. The constitutive
relation at the microplane level is defined as [BAŽANT and OH, 1985], σm = Cm(εm). Then, the
components of the tangent stiffness tensor (Ctpqrs) are obtained by (using Einstein notation):

Ctpqrs =
3

2π

∫
Ω

C ′mmpmqmrmsdS (2.18)

where, mp are the components of m and C ′m is the derivative of the constitutive law at the mi-
croplane level.

As a consequence, the Poisson’s ratio is restricted to 1
4 . The possible remedies are either to add

an elastic shear stiffness by including the tangential component of strain and stress (εl and σl
respectively) on each microplane [BAŽANT, 1984] or to add an elastic strain to the total strain of
the material [BAŽANT and OH, 1985].

M2-model In order to describe the biaxial and triaxial behavior of concrete, it is proposed in
[BAŽANT and PRAT, 1988a, BAŽANT and PRAT, 1988b] to split the normal behavior into vol-
umetric and deviatoric parts. The corresponding components of stress and strain on each mi-
croplane are denoted by σv , εv , σd and εd respectively. This enables to capture the compression
failure due to the lateral expansion caused by inelastic deviatoric strains and slip on inclined mi-
croplanes. In addition to this, the tangential component of strain and stress are also considered.
The relations between various components of stress and strain on each microplane are assumed
as, σv = Cv(εv), σd = Cd(εd) and σl = Cl(εl,σ), where, Cv , Cd and Cl are the volumetric, de-
viatoric and tangential stiffness parameters respectively. The parameter Cl is dependent on σ
to model the frictional phenomena. The components of tangent stiffness tensor in this case are
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obtained as [BAŽANT and PRAT, 1988a]:

Ctpqrs =
3

2π

∫
Ω

[
(C ′d − C ′l)mpmqmrms +

1

3
(C ′v − C ′d)mpmqδrs

]
dS+

3

2π

∫
Ω

[
1

4
C ′l (mpmrδqs +mpmsδqr +mqmrδps +mqmsδpr)

]
dS

(2.19)

where, C ′v , C ′d and C ′l are the derivatives of the volumetric, deviatoric and the tangential consti-
tutive laws respectively and δrs is Kronecker delta defined as:

δrs =

{
0 if r 6= s

1 if r = s

In this version, all Poisson’s ratios between -1 to 0.5 are achievable. The major disadvantage of
this model is that it lacks the work–conjugacy of volumetric stress. An explicit formulation of
M2-model was proposed in [CAROL et al., 1992]. Also, a regularization scheme of nonlocal type
is coupled with this model to avoid mesh sensitivity and the failure modes with zero energy
dissipation in [BAŽANT, 1994].

M3-model To avoid any discrepancies during cyclic loading, the concept of stress–strain bound-
aries is introduced in [BAŽANT, 1996, BAŽANT et al., 1996]. These conditions limit the max-
imum value of the stress components that can be attained in tensile and compressive regimes.
In [BAŽANT, 1996], stress–strain boundaries for normal, volumetric, positive and negative de-
viatoric and tangential components of stress (Fm, Fv , F+

d , Fd and Fl respectively) are defined as
:

σm = Fm (εm, σv) , σv = −Fv (−εv) , σl = Fl (σm)

σd = −Fd (−εd) , σd = F+
d (εd)

(2.20)

Here, the normal stress–strain boundary is also defined to ensure the continuity of transition from
the elastic behavior. The shear response is modeled by a friction–cohesive yield surface (Fl) that
relates the shear stress component to the normal stress component on the microplane instead of
the shear strain component in M2-model.

M4-model In the M4-model [BAŽANT et al., 2000, CANER and BAŽANT, 2000], the normal
stress boundaries are improved to tackle more efficiently tensile cracking with the fragment pull-
out, aggregate bridging and crack closing. In M3-model [BAŽANT, 1996], a linear relationship
is considered between the shear and normal stress components on the microplane which leads
to an overestimation of stress. Hence, in M4-model this is replaced by a hyperbolic relationship
between the shear and normal stress components on the microplane.

M5-model Even though M4-model is a refined version of the older microplane models, it is suf-
fered from problems at the far post–peak tensile softening regime such as excessive lateral con-
traction and stress locking. As a remedy, a series coupling of kinematically constrained and stat-
ically constrained microplane systems is proposed in M5-model [BAŽANT and CANER, 2005a,
BAŽANT and CANER, 2005b]. Using this model, the test data for far post–peak tensile softening
and also the shear–compression failure envelope of concrete is well represented.

M6-model In M6-model model [CANER and BAŽANT, 2005], another idea is pursued to solve
the problem of excessive lateral contraction in far post–peak tensile softening regime. It was
realized that the volumetric–deviatoric split causes this problem due to the generation of large
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compressive strains in directions parallel to the crack in far post–peak tensile softening regime.
This problem is solved by a transition from an explicit volumetric–deviatoric split to no split when
the maximum principal stress exceeds certain limit. In addition to this, loading/unloading rules
for tension–compression load cycles are also introduced.

M7-model In M7-model [CANER and BAŽANT, 2013, CANER and BAŽANT, 2012], explicit
volumetric–deviatoric split is abandoned for elastic part of microplane strains and for the ten-
sile stress–strain boundaries. For compressive stress-strain boundaries, the volumetric–deviatoric
split is retained and both the components are summed to obtain the normal component. In addi-
tion to this, multiple hysteresis loops in cyclic loading are also well represented.

Instead of using stress–strain boundaries, plasticity and damage based constitutive laws [CAROL
and BAŽANT, 1997, OŽBOLT and BAŽANT, 1992, ZREID and KALISKE, 2018] are also intro-
duced in the framework of microplane models. A thermodynamic consistent framework for mi-
croplane models is also developed in [CAROL et al., 2001a]. In this thermodynamic framework
of microplane models, the inelastic constitutive modeling is described by considering plasticity
and damage [KUHL et al., 2001] at the microplane level.

Among various implicit models presented in this section, the microplane models are used to
model the anisotropic damage due to their simplicity in the present work.

2.3.1.5 Regularization techniques

In softening regime, the governing equations of equilibrium become ill–posed and the numerical
solutions suffer from lack of objectivity with respect to spatial discretization (mesh dependency).
This leads to the prediction of zero energy dissipation at the failure surface which is not realistic.
Several regularization methods are proposed to preserve the objectivity of the numerical solu-
tions. In the literature, techniques known as localization limiters are developed by limiting the
size of the localization zone based on the internal structure of the continuum [BELYTSCHKO and
LASRY, 1989].

Localization limiters that use the concept of nonlocal continua incorporate an internal length into
the constitutive law by considering nonlocal interactions between the microcracks. In integral
nonlocal models [PIJAUDIER-CABOT and BAŽANT, 1987, PIJAUDIER-CABOT et al., 2004], non-
local variables (f̄(x)) driving damage evolution are computed using an integral of the product of
the local (f(x)) variable and a nonlocal weight function (Wnl) over a domain (V) as:

f̄(x) =

∫
V

Wnlf(x, ξ)dξ (2.21)

where, x is the target point and ξ is the source point. Here, nonlocal weight function is normalized
in order not to alter a uniform field as [JIRÁSEK, 2007]:

Wnl =
Wnl

0 (x, ξ)∫
V
Wnl

0 (x, ξ)dξ
(2.22)

where,Wnl
0 (x, ξ) is monotonically decreasing non-negative function of the distance, ||x−ξ||which

is usually considered as a Gaussian distribution function:

Wnl
0 (x, ξ) = exp

(
−4||x− ξ||2

(lnlc )
2

)
(2.23)

and lnlc is an internal length of the nonlocal continuum. Enhancements to the original framework
were also introduced by several authors in order to solve some well known drawbacks of stan-
dard formulations (e.g., damage diffusion across damaged bands), through considering nonlocal
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interactions which evolve based on mechanical fields [NGUYEN, 2011, PIJAUDIER-CABOT and
DUFOUR, 2010, KRAYANI et al., 2009, GIRY et al., 2011, DESMORAT et al., 2015, RASTIELLO
et al., 2018].

In differential nonlocal or gradient enhanced models [PEERLINGS et al., 1996, SIMONE et al.,
2003, SAROUKHANI et al., 2013], higher order gradients of the local variable are considered.
Constitutive models based on the gradient of internal variables [de BORST and MÜHLHAUS,
1992, MÜHLHAUS and ALFANTIS, 1991, LORENTZ and GODARD, 2011] are also used as local-
ization limiters.

In other class of localization limiters, continuum with microstrucutre is used to introduce the
internal length. In [CHAMBON et al., 2001, FERNANDES et al., 2008, JOUAN et al., 2017] local-
ization phenomenon in quasi–brittle materials is modeled using a local second gradient model
where the standard kinematics of the continuum is enhanced with the gradients of strain.

The energetic regularization method proposed in [HILLERBORG et al., 1976] assumes that frac-
ture energy depends on some length measure characteristic to the finite element. Nevertheless, it
is very difficult to solve the issue of directional mesh bias [JIRÁSEK and GRASSL, 2008] induced
by this method.

In the context of the microplane models, several of the above mentioned approaches are em-
ployed to avoid the pathological mesh sensitivity. In [ČERVENKA et al., 2005], the crack band
approach in which the Crack Opening Displacement (COD) is calculated using the inelastic strain
in a band of fixed width. This width is determined using the finite element size [JIRÁSEK and
BAUER, 2012]. In [BAŽANT and di LUZIO, 2004, di LUZIO, 2007], the nonlocal approach for the
microplane models (like M4 model) is formulated in which the softening yield limit is defined us-
ing a spatially averaged strains. In [ZREID and KALISKE, 2018], the implicit gradient approach
is used to regularize a combined plasticity–damage microplane model. A high–order and mi-
cropolar microplane theories are also developed in [CUSATIS and ZHOU, 2013] and [ETSE et al.,
2003, ETSE and NIETO, 2004] respectively.

In the present work, for the sake of computational effectiveness, we employ an energy regular-
ization technique to obtain mesh independent results using the microplane models.

2.3.2 Explicit description of cracking

The extraction of fine information about cracking from continuum strain–softening models in-
volves adaptation of a finer mesh or post-processing [MATALLAH et al., 2010, OLIVER-LEBLOND
et al., 2013, DUFOUR et al., 2011]. In the context of finite element analysis of large structures, this
increases the computational demand substantially. In order to avoid the use of additional tools
to extract information related to cracking process (location, crack opening, etc.) and to describe
more precisely the displacement discontinuity occurring at failure, numerical methods have been
developed to describe cracking in an explicit manner.

2.3.2.1 Cohesive crack models

The cohesive crack models [NGO and SCORDELIS, 1967, RASHID, 1968, INGRAFFEA and SAUOMA,
1985, ALLIX and LADEVÈZE, 1992] were developed by treating the crack as geometrical discon-
tinuity in continuous material (fig. 2.12). The basic idea of this approach is to form a crack as the
stress level reaches its peak and consider that the crack can still transmit the stress across its width
(hence the term cohesive crack). This is also termed as fictitious crack model [HILLERBORG et al.,
1976] and can be a crude description of fracture process zone around the tip of the crack where
strain localization phenomenon occurs.
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Figure 2.12: Cohesive crack approach [de BORST et al., 2004]

In numerical solutions using the finite element method, the strategy is to duplicate the node at
which the nodal force reaches a limit into two nodes and to gradually release the stress until the
separation of the two nodes reaches certain value. After that the crack tip is transferred to the
next node and the process is repeated (fig. 2.12). The main disadvantage in this approach is that
the crack is formed only along the inter element boundaries which introduces mesh bias. The
possible remedy is re-meshing but it involves high computational demand in the finite element
codes [CARPINTERI et al., 2003]. Meshless methods [BELYTSCHKO et al., 1994, HEGEN, 1996]
were also coupled with this approach by modifying the nodal support for the node in front of the
crack. But the difficulties like high computational demand and requirement of a better base mesh
for accurate integration [BELYTSCHKO et al., 1996, de BORST et al., 2004] are inherited from
the meshless methods. Nevertheless, these methods were limited for one and two dimensional
applications.

2.3.2.2 Discontinuous kinematics models

The discontinuous kinematics models try to capture the failure in quasi–brittle materials by in-
corporating the strain/displacement discontinuities inside the continuum. From a physical stand
point, the formulation for modeling strain localization in quasi–brittle materials can be classified
based on the width of the localization band as follows:

1. localization into a band of finite thickness where the strain field is discontinuous which is
termed as weak discontinuity,

2. localization into a line or a surface of zero thickness where the displacement field is discon-
tinuous which is termed as strong discontinuity.

To demonstrate the characteristics of weak and strong discontinuities, let us consider a one di-
mensional bar of length L whose spatial coordinates are denoted by x and applied displacements
by u0 as shown in the fig. 2.13a.

Let us consider the possibility of two localized cases, one in which a band of thickness lc is formed
(fig. 2.13b) and one in which a crack of zero thickness is formed (fig. 2.13c). In the former case,
xA = (L− lc)/2 and xB = (L+ lc)/2 denotes the end points of the localization band while
xC = L/2 denotes the location of the discontinuity in the later case. For the case of weak dis-
continuity, displacement distribution is characterized by a smooth jump (fig. 2.13d) and strain
distribution is characterized by a sharp jump (fig. 2.13f). For the case of strong discontinuity, dis-
placement distribution is characterized by a sharp jump (fig. 2.13e) while the strain distribution
is unbounded at the discontinuity (fig. 2.13g).

In the context of finite elements, these discontinuities are modeled by introducing additional De-
grees of Freedom (DOFs) pertaining to the modes of localization. These additional DOFs are inter-
polated using enhanced shape functions. Depending on the technique of enhancement, different
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Figure 2.13: Illustration of weak and strong discontinuities

numerical methods developed to construct the discontinuous kinematics fields can be classified
as:

1. embedded discontinuity method, where, the additional DOFs are embedded inside the lo-
calized finite elements and the global DOFs of the discretized finite element model remains
unchanged.

2. nodal enrichment method, where, the additional DOFs are supported by the nodes of the
localized finite elements. Hence, the global DOFs of the discretized finite element model are
increased.

In the next sections, we present both the methods in detail and discuss the differences between
them.

2.3.2.3 Embedded finite element method

The modeling features of EFEM can be illustrated by a bar discretized using 4 nodes as shown in
the fig. 2.14a. Let us assume the presence of a discontinuity (e) at an arbitrary location between
nodes 2 and 3. Due to this, the discretized displacement field (da, a = 1, 2, 3, 4) consists of a jump
at the location of the discontinuity as shown in the fig. 2.14d. Also, a constant displacement jump
distribution is assumed in the domain of influence (fig. 2.14b) which includes nodes 2 and 3 as
shown in the fig. 2.14e. Now, the distribution of continuous displacements in the bulk portion of
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the bar (fig. 2.14c) are obtained by removing the jump from the displacement field d as shown in
the fig. 2.14f. Later this displacement distribution is used to compute the strain/stress in the bulk
that satisfy the equilibrium.

1 2 3 4

e

(a) 4 noded bar with discontinuity

3 4

(b) Nodes influenced by the discon-
tinuity

1 2 3 4

(c) Bulk portion of the bar

1 2 3 4
d1

d2

d3
d4

(d) Distribution of displacement

1 2 3 4

e-

(e) Distribution of displacement
jump

1 2 3 4

u1
u2

u3
u4=

(f) Distribution of continuous dis-
placement in the bulk

Figure 2.14: Illustration of embedded finite element method

In this method, both the weak and strong discontinuities can be embedded inside the finite ele-
ment to capture the localization phenomenon.

Weak discontinuity approach The concept of embedding a weak discontinuity inside the fi-
nite element is introduced in [ORTIZ et al., 1987, BELYTSCHKO and BLACK, 1999]. After the
onset of localization, certain additional DOFs are added which represent the magnitude of strain
discontinuity associated with the given localization mode. These additional DOFs are statically
condensed at the element level thus not effecting the global DOFs.

Strong discontinuity approach In strong discontinuity approach, a discontinuity is introduced
in the displacement field. So the variable that drive the cracking process is the discontinuous dis-
placement field itself. In the earlier works [DVORKIN et al., 1990, DVORKIN et al., 1991], the
discontinuity line was introduced in the finite element. Extension of this approach to a standard
bilinear quadrilateral is done in [KLISINSKI et al., 1991] and for Constant Strain Triangular ele-
ment (CST) in [OHLSSON and OLOFSSON, 1997] using physical considerations. In [LOTFI, 1992]
an Enhanced Assumed Strain (EAS) format starting from the Hu-Washizu variational principle
[WASHIZU, 1955] is used to derive a symmetric formulation. A non-symmetric formulation is
also developed in [SIMO and RIFAI, 1990, SIMO et al., 1993, WELLS and SLUYS, 2000] by using
the same approach but with different interpolation functions for real and virtual quantities. It was
shown in [OLIVER, 1996a, OLIVER, 1996b] that relationship between the cohesive traction and
the displacement discontinuity can be derived from the continuum constitutive laws instead of
using a cohesive law at the displacement discontinuity. This approach is used to propose a transi-
tion model from weak discontinuity to strong discontinuity for an elasto-plastic constitutive law
in [OLIVER et al., 1999] and for a damage constitutive law in [OLIVER, 2000]. This method is
also extended for treatment of crack branching problems in a dynamic setting [ALFAIATE et al.,
2001, ARMERO and EHRLICH, 2006]. Recently, an anisotropic cracking model in the framework
of strong discontinuity is also developed in [KISHTA, 2017]. In [JIRÁSEK, 2000] different formu-
lations are classified into three major classes based on representation of the kinematics and the
equilibrium at the crack surface.

2.3.2.4 Nodal enrichment method

The notion of enriching the nodes of a finite element with additional DOFs is an idea that is
exploited in Partition of Unity based Finite Element Method (PUFEM) [MELENK and BABUSKA,
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1996, BABUSKA and MELENK, 1997]. The general idea of this method is to introduce enrichment
functions which are multiplied by the partition of unity functions to construct the approximation
of the displacement field. Consequently, the resulting product has the approximation properties
(say, modes of localization) inherited from enrichment functions and the limited support inherited
from partition of unity functions. The choice of the enrichment functions is based on the analytical
solution of the problem in the cases where one exists. So, in order to design PUM it is required
to have a priori knowledge about the solution of the problem. Depending on the physical nature
of the enriched field the choice of the enrichment functions can be polynomial or non-polynomial
functions [DUARTE and ODEN, 1996, DUARTE et al., 2007, KIM et al., 2011]. However, except
for low order polynomial functions, the computation of element stiffness is costly because of the
requirement of higher number of integration points.

In the case of XFEM [BELYTSCHKO and BLACK, 1999, DOLBOW and BELYTSCHKO, 1999,
MOES et al., 1999, SUKUMAR et al., 2001], two different types of enrichment functions are used.
The asymptotic functions are used to enrich the nodes of the crack tip and the Heaviside func-
tion is used to enrich the nodes far from the crack tip (fig. 2.15). The asymptotic functions are
constructed based on the Westergaard’s analytical solution [WESTERGAARD, 1939].

EFEM vs. XFEM Comparative studies between EFEM and XFEM have been carried out in
[JIRÁSEK and BELYTSCHKO, 2002] and [OLIVER et al., 2006]. The differences between the
two methods lies in both the modeling and computational aspects. Following [JIRÁSEK and BE-
LYTSCHKO, 2002], a one-dimensional example is chosen to demonstrate the differences between
the two methods.

Let us consider a discontinuity Γd which divides the discretized 1D domain in to two parts
(fig. 2.16). Let the part right of the discontinuity be influenced by it. The EFEM enhancement
functions are constructed such that the value of the function is equal to 1 at the discontinuity and
0 at the all the other nodes in the right side of the discontinuity. Consequently, the enhancement
is non-conforming and the obtained displacement jump is discontinuous along the elements. In
contrast to this, the enrichment functions in XFEM are designed using the shape functions of
nodes in the right side of the discontinuity such that the displacement jump is non-zero at the re-
spective nodes. Consequently, the obtained displacement jump is continuous along the elements
except at the discontinuity. Various aspects of EFEM and XFEM are compared in the table 2.1.

While the discontinuous kinematics models can provide the explicit description of cracking, they
cannot capture the initial anisotropic damage during the strain localization process. Also, the
crack directions obtained for multiple cracks during complex loading are not accurate using the
explicit models [JIRÁSEK and ZIMMERMANN, 2001].

Figure 2.15: Enrichment in XFEM: nodes enriched using asymptotic function (red squares) and nodes en-
riched using Heaviside function (blue circles) [BELYTSCHKO et al., 2009]
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Figure 2.16: Enrichment function: EFEM (right) and XFEM (left) [JIRÁSEK and BELYTSCHKO, 2002]

In the literature, several models that performs a transition from implicit description of cracking to
explicit description of cracking are proposed [MAZARS and PIJAUDIER-CABOT, 1996, JIRÁSEK
and ZIMMERMANN, 2001, SIMONE et al., 2003, COMI et al., 2002, COMI et al., 2007, CUVILLIEZ
et al., 2012, CAZES et al., 2009, ROTH et al., 2015, SAKSALA et al., 2015] to describe the entire
strain localization process from localized damage to the initiation and propagation of cracks.

2.4 Transition from implicit to explicit descriptions of cracking

2.4.1 Experimental motivation

Experimental investigation to study the fracture growth from the localized damage to the crack
opening is conducted in [ALAM and LOUKILI, 2017]. In this experimental campaign, three point
bending tests are performed on single notched beams as shown in fig. 2.17a. The information re-
garding the energy dissipation in the localized damage zone is obtained using Acoustic Emission
(AE) while Digital Image Correlation (DIC) technique is used to obtain the COD. The plot of AE
energy rate for different relative crack lengths (distance from the bottom of the beam) is shown in
fig. 2.17b.

According to [ALAM and LOUKILI, 2017], the following 3 phases can be identified during the
failure process of the concrete: (i) the damage growth phase, where the AE energy rate increases
due to the progressive increase in microcrack density; (ii) the transition phase, between 90% pre–
peak load and 80% post–peak load, where the AE energy rate reaches a maximum value; (iii) the
crack opening phase, where the AE energy rate decreases.

This gives a physical motivation for a modeling strategy of strain localization process with tran-
sition from localized damage zone to initiation and propagation of multiple cracks.
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(a)

(b)

Figure 2.17: Experimental investigation of fracture growth (localized damage/crack opening) in a single
notched beam: set up (a) and simultaneous behavior of crack openings and AE energy dissipation with
loading steps (b) [ALAM and LOUKILI, 2017]

In literature, several transition methodologies are proposed to model the initial phase of dam-
age using the implicit description of cracking and perform a transition to explicit description of
cracking to model the crack opening which are presented in the next section.

2.4.2 Numerical transition methodologies

In [MAZARS and PIJAUDIER-CABOT, 1996], an equivalent crack is introduced in the given dam-
age zone using the concept of ’energetic equivalence’ with in the framework of Linear Elastic
Fracture Mechanics (LEFM). The main idea here is that the fracture energy required to create the
equivalent crack is calculated using the energy dissipated during the formation of damage zone.

In later works [CAZES et al., 2009, COMI et al., 2007, ROTH et al., 2015, CAZES et al., 2009,
CUVILLIEZ et al., 2012], the approach of energetic equivalence is followed to introduce a cohesive
crack in the localized damage zone.

Even though the energetic equivalence is used in transition methodologies, different numerical
strategies [WU et al., 2014] are developed to enforce it either strongly or in a weak manner. The
main difference of these strategies lies in the way in which the corresponding cohesive law at the
crack after transition is formulated.

2.4.2.1 Weak energetic equivalence enforcement

In this approach [COMI et al., 2007, ROTH et al., 2015, WU et al., 2014], the shape of the cohesive
law at the crack surface is predefined and the unknowns to be determined are the parameters of
cohesive law such as the fracture energy per unit area of the crack surface. These parameters are
determined by enforcing the energetic equivalence over the entire pseudo–time, t ∈ [0,∞) do-
main either using 1D or multi–directional considerations. The relations between the total energy
dissipated in the domain by the implicit (Φimp), explicit (Φexp) and coupled models (Φimp/exp)
obtained by using the energy equivalence are [WANG and WAISMAN, 2016]:

Φimp = Φexp = Φimp/exp (2.24)

Based on 1D considerations In [COMI et al., 2007], a nonlocal damage model is used for
the description of diffused damage while a cohesive crack is introduced in the framework of
XFEM. The energy available for the cohesive law is computed from the dissipated energy in the
localization band in a 1D setting and the corresponding stored elastic energy. A similar approach
is also followed in [ROTH et al., 2015] where a continuum damage model is used to model the
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initial localized damage zone and the residual energy is computed analytically by equating the
area under the uniaxial stress–strain curve to that of the cohesive law.

In another work [WU et al., 2014], a transition methodology coupling the nonlocal implicit dis-
continuous Galerkin model to cohesive crack approach using the interface elements is proposed.
In this work, a relationship between the damage level and the available energy to be dissipated
at the crack surface is established using 1D assumption.

Here, the cohesive law which is formulated in 1D setting is used for 2D problems where the cracks
exhibit mode I behavior [COMI et al., 2007, ROTH et al., 2015, WU et al., 2014] and propagate in
a straight manner. This may lead to a mismatch between the global response using the model
based on implicit description of cracking and that of the transition methodology [WANG and
WAISMAN, 2016].

Based on multi–directional considerations On the other hand, a more general transition
methodology is proposed in [WANG and WAISMAN, 2016] to handle the cases involving propa-
gation of curved cracks and mixed mode behavior. In [CAZES et al., 2016], a thermodynamically
consistent approach is developed to couple the models based on implicit and explicit descriptions
of cracking. In these works, both the energy dissipation in the localization band and the available
energy at the crack are computed by considering a multi–directional stress/strain states.

2.4.2.2 Strong energetic equivalence enforcement

In another approach, as introduced in [CUVILLIEZ et al., 2012], the shape of the cohesive law at
the crack surface is not predefined. But it is obtained by enforcing the energy equivalence at each
pseudo–time step.

In the same work, a gradient damage model is used to describe the damage growth, and transition
is performed after the regularized damage parameter reaches a certain limit. Also, the cohesive
law is obtained using the relations in 1D setting and the framework is extended for 2D problems
under mode I crack opening. Here, only parameters required are the ones of the model used to
describe the implicit description of cracking. However, the main advantage of this approach is
that global responses obtained using continuous and discontinuous (after transition) models has
a perfect match [WU et al., 2014, CUVILLIEZ et al., 2012].

The continuous, discontinuous approaches and transition criteria used in several transition method-
ologies from literature are summarized in the table 2.2.

2.5 Summary

When concrete is subjected to cycling loading, stiffness degradation, unilateral effect and crack
induced anisotropy are observed. In order to predict the response of a plain or reinforced concrete
structures under cyclic loading, these behavioral features should be take into account.

Of various models based on implicit description of cracking, microplane models are particularly
interesting because these models provide a simple way of developing constitutive laws between
components of stress and strain vectors in several possible directions instead of tensors. This way
of modeling material behavior is very promising to handle anisotropy due to cracking. Of various
models based on explicit description of cracking, EFEM is computationally effective and requires
low implementation effort.

Furthermore, the models based on implicit description of cracking are well suitable to model the
initial phase of diffused microcracking and models based on explicit description are capable of
modeling crack initiation and propagation. A detailed study on the transition models suggests
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that both implicit and explicit descriptions of cracking can be coupled to model the complete
strain localization process. Hence, in this work, microplane models are considered to model
anisotropic damage and EFEM is considered to model multiple cracks by coupling them in a
transition framework.



Chapter 3

Strong discontinuity kinematics and embedded
finite element method

Abstract. In this chapter, we describe in detail the modeling of media crossed by cracks using the
strong discontinuity approach in the framework of the EFEM. In the standard EFEM, a single dis-
continuity per element is allowed to appear, which limits its applicability for the cases involving
multiple cracks. So, the purpose of this chapter is to propose a possible extension of the standard
EFEM into model multiple intersecting cracks within the same finite element.

3.1 Introduction

First, the kinematics of strong discontinuity is presented in section 3.2. This is followed by a
discussion on strong discontinuity approaches available in the literature to derive the constitutive
relationships for the crack. The Boundary Value Problem (BVP) taking into account the strong
discontinuity framework is presented in section 3.4.

The numerical solution procedure of this BVP in the context of EFEM involves in writing the vari-
ational form of the governing equilibrium equations in a non-classical manner. This is obtained in
the framework of enhanced assumed strain method. This is presented in section 3.5.1 along with
the FE discretization. Numerical resolution scheme to solve the discretized equilibrium equations
is presented in section 3.5.2. The representative example to illustrate the methodology of EFEM
is presented in section 3.5.3.

The framework of multiple intersecting strong discontinuities is presented in section 3.6. First the
assumptions involved in the extension of the standard framework is presented which is followed
by the kinematics and the augmented BVP for continuum with multiple intersecting strong dis-
continuities. The EAS formulation and the EFEM are revisited, taking into account the multiple
discontinuity jumps in section 3.6.3.

Numerical examples to show that the extended EFEM is able to tackle the localization of multiple
cracks are presented in section 3.6.5. Finally, the conclusions of the proposed methodology for
modeling multiple intersecting cracks are drawn in section 3.7.

3.2 Kinematics of strong discontinuity

Let us consider a body B ⊂ Rndim which is in quasi–static equilibrium, and denote by x the mate-
rial points in B. Here, ndim = 1, 2, 3 for one, two and three dimensional continuum respectively.
Let ∂B ⊂ Rndim be the boundary of B and denote with p its outer normal vector.
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The kinematic response at any material point x ∈ B is characterized by an infinitesimal dis-
placement field, u = u(x, t) : B × [0,∞) 7→ Rndim . We define the infinitesimal strain tensor
ε = ε(x, t) : B × [0,∞) 7→ Rndim×ndim (state variable introduced in section 2.2) as the symmetric
part of the gradient of displacement (∇su) at x. Also, its conjugate variable (eq. (2.2)), is taken as
the symmetric Cauchy stress tensor, σ = σ(x, t) : B× [0,∞) 7→ Rndim×ndim .

In the absence of the body forces, let us consider an applied traction t0 = t0(x, t) : ∂tB× [0,∞) 7→
Rndim and displacement u0 = u0(x, t) : ∂uB× [0,∞) 7→ Rndim . Here, ∂tB ⊂ ∂B and ∂uB ⊂ ∂B are
the parts of the boundary, where t0 and u0 are prescribed respectively. These subsets are defined
such that ∂tB ∪ ∂uB = B and ∂tB ∩ ∂uB = ∅.
Now, let us suppose that B is crossed by a crack surface/line Γd ∈ Rndim (fig. 3.1), whose normal
is denoted by n and tangent by s (i.e., s·n = 0). Here, Γd divides the domain into two sub-domains
B+ and B−.

The inclusion of Γd introduces a jump in the displacement field, JuK = JuK(x, t) : B × [0,∞) 7→
Rndim . The enhanced displacement, by taking into account the motion at the discontinuity, is thus
given by:

u = ū + HΓdJuK (3.1)

where, ū = ū(x, t) : B × [0,∞) 7→ Rndim is the continuous part of the displacement field, and
HΓd = HΓd(x) is the Heaviside function centered on Γd:

HΓd =

{
0 ∀ x ∈ B−

1 ∀ x ∈ B+
(3.2)

Under the small perturbations assumption, the strain field compatible to the displacement field
presented above is given by:

ε = ∇sū + HΓd∇sJuK︸ ︷︷ ︸
regular part

+ δΓd(JuK⊗ n)s︸ ︷︷ ︸
singular part

(3.3)

where, δΓd = δΓd(x) is the Dirac’s delta distribution appearing from the gradient of the Heaviside
function, (•)s denotes the symmetric part of tensor (•) and symbol ’⊗’ denotes the dyadic product
between second order tensors. As it can be seen from eq. (3.3), the strain field has a regular part
which is bounded and a singular part which is unbounded. Let us denote the bounded strains in
the remaining of this work by:

ε̄ = ∇sū + HΓd∇sJuK (3.4)

From now on, the implicit dependence on (x, t) is considered by default and is not shown unless
otherwise.

3.3 Strong discontinuity approach

Due to the singularity introduced by δΓd in the strain field, it is not straightforward to define
constitutive relationships. This comes from the fact that σ has to be bounded to satisfy the equi-
librium even though ε is unbounded. There are two approaches to define the constitutive rela-
tionships for both the bulk and the discontinuity. They are briefly described here.

Continuum Strong Discontinuity Approach (CSDA) The first approach consists in deriving
the discrete constitutive equations at the discontinuity level using the continuum constitutive
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Figure 3.1: Strong discontinuity kinematics - a body (B) crossed by discontinuity Γd

law [ARMERO and GARIKIPATI, 1995, OLIVER et al., 1999, OLIVER, 2000]. First, a collocation
function, µΓdk

= µΓdk
(x) is defined on a band (Γdk ) of width k and centered on Γd:

µΓdk
=

{
0 ∀ x ∈ B \ Γdk
1 ∀ x ∈ Γdk

(3.5)

This allows regularizing the Dirac’s delta function using k as:1

δΓdk (x) = lim
k→0

1

k
µΓdk

(x) (3.6)

and to write the k-regularized strain field as:

ε = ε̄+
1

k
µΓdk

(JuK⊗ n) (3.7)

The continuum constitutive law is then defined in terms of the k-regularized strain (eq. (3.7)). The
criterion for localization and the direction of the discontinuity are obtained from the bifurcation
analysis. Finally, the ’strong discontinuity analysis’ is performed to derive the discrete constitu-
tive law at the discontinuity surface from the continuum one using the limit condition k → 0
(localization of discontinuity). Thus, there is a consistency between the constitutive laws at the
bulk and that of the discontinuity surface. It has to be noted that in this approach, the volumetric
energy dissipation takes place before the surface energy dissipation begins.

Discrete Strong Discontinuity Approach (DSDA) In this approach, the discontinuity is treated
as a discrete surface in the continuum [WELLS and SLUYS, 2001, BRANCHERIE, 2003]. The crack
initiates when an assumed criterion is reached and the discrete constitutive law at the discon-
tinuity is defined independently from the continuum constitutive law. As a consequence, the
consistency between both the constitutive laws is not ensured as in the previous case of CSDA.

The equivalence between the two approaches can be shown [BRANCHERIE, 2003] if the contin-
uum is assumed to be elastic (i.e., σ = E : ε with E the fourth–order elastic stiffness tensor) prior
to the crack initiation. In this case, the energy dissipation takes place only at the discontinuity
surface. Hence, the discrete constitutive law obtained either by performing strong discontinuity
analysis or by following DSDA coincides.

In this chapter, DSDA is followed and the crack is initiated when the maximum principal stress
reaches the tensile strength of the material (ft).

3.4 Boundary value problem

In a general continuum mechanics context, the Boundary Value Problem (BVP) to be solved con-
sists of finding the displacement field u which satisfies the equilibrium equations, compatibility

1The strong discontinuity regime is reached as k → 0.
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conditions and constitutive relationship along with the given displacement and traction bound-
ary conditions.

In the presence of a strong discontinuity, the enhanced kinematics and the traction continuity
condition across the crack have to be taken into account. Hence, an augmented BVP is written as
follows: 

divσ = 0 on B

ε = ∇su on B

σ = F(ε) on B

u = u0 on ∂uB
σ · p = t0 on ∂tB
σ · n = t on Γd

t = h(JuK) on Γd

(3.8a)
(3.8b)
(3.8c)
(3.8d)
(3.8e)
(3.8f)
(3.8g)

where, ’div’ denotes the divergence operator, F denotes a constitutive relation between σ and ε
(eventually expressed in the rate form), t is the traction vector on the discontinuity surface, and
h is the discrete constitutive law written in terms of t and JuK. Other quantities are defined in
fig. 3.1.

The augmentation comes from the fact that along with the global equilibrium eq. (3.8a), the trac-
tion continuity condition (3.8f) is to be fulfilled across the crack to ensure the local equilibrium.
Finally, h is the traction–separation law (3.8g) that drives the evolution of the traction with respect
to the displacement jump at the discontinuity.

Traction–separation law Following [ALFAIATE et al., 2001], a constitutive law at the discon-
tinuity can be defined in the framework of thermodynamics of irreversible processes using an
isotropic damage-like internal variable dcr. The latter represents the degradation of the proper-
ties of the discontinuity, ranging between −∞ (no crack) and 1 (fully opened cohesive crack).

The Helmholtz free energy at a surface, ψS = ψS(JuK, dcr), available for the formation of crack is
thus written as:

ψS =
1

2
(1− dcr)JuK ·K · JuK (3.9)

where, K is an elastic stiffness-like operator. Using standard continuum mechanics arguments,
the traction vector at Γd depends on JuK according to the following traction–separation law:

t =
∂ψS
∂JuK

= (1− dcr)K · JuK (3.10)

Now, if the principal stress axes are aligned with n, then mode I crack opening takes place. Hence,
only the normal component of the displacement jump (JuKn = n · JuK) and the traction (n · t =
tn(JuKn, dcr)) evolves. In the cases in which the principal stress axes rotate after opening of the
crack, mixed mode crack opening is evident. As a consequence, the tangential component of the
displacement (JuKs = s · JuK) and the traction (s · t = ts(JuKs, dcr)) also evolves.

In order to handle these cases, a mixed mode traction–separation law is considered. The expres-
sion for the damage-like variable is given by [ALFAIATE et al., 2001]:

dcr = 1− exp

(
− ft
Gf

κcr

)
(3.11)

where, Gf is the fracture energy and κcr is an internal (history) variable. It is defined using the
historical maxima of JuKn and JuKs as:

κcr = max〈JuKn〉+ + βcr max |JuKs| (3.12)
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where, βcr ≤ 1 is a model parameter.

Finally, the Mohr–Coloumb like yield surface fcr = fcr(JuKn, JuKs, κcr) and the loading–unloading
(Kuhn–Tucker) conditions are finally given as:

fcr = 〈JuKn〉+ + βcr|JuKs| − κcr = 0

κ̇cr ≥ 0, fcr ≤ 0, κ̇crfcr = 0

(3.13)
(3.14)

3.5 Embedded finite element method

In this section, the discretization procedure of the augmented BVP in the framework of embed-
ded finite element method is presented. The variational form of the augmented BVP is derived
using the Hu-Washizu variational principle [WASHIZU, 1955] in the framework of EAS method.
Since the displacement jump is embedded inside a finite element in EFEM, the enhanced assumed
strains are treated as local. Here, EAS method for one local enhancement corresponding to one
crack is illustrated.

3.5.1 Enhanced assumed strain method

Variational form of the augmented BVP In EAS method, the enhanced kinematics of the con-
tinuum is taken into account by representing the discontinuous part of the strain field as enhanced
strain (ε̃) as follows:

ε = ∇su + ε̃ (3.15)

The Hu-Washizu variational principle consists in writing the variational forms of the equilibrium,
kinematic and the constitutive equations individually. This is achieved by considering the virtual
work done by the displacement field, actual stress field (σ̃) and the strain field independently.

Let us denote with (u∗, ε∗, σ̃∗) the virtual variations corresponding to (u, ε, σ̃). The three-fields
variational problem to be solved consist in finding (u, ε, σ̃) ∈ (U,E,S) such that ∀ (u∗, ε∗, σ̃∗) ∈
(U0,E,S), ∫

B

∇s(u∗) : σ(ε) dV −
∫
∂tB

u∗ · t0 dS = 0∫
B

σ̃∗ : [∇su− ε] dV = 0∫
B

ε∗ : [−σ̃ + σ(ε)] dV = 0

(3.16)

(3.17)

(3.18)

where σ(ε) is the stress in the continuum defined using the constitutive law (3.8c), and the ad-
missibility spaces U, U0, E and S are defined as:

U =
{

u|u ∈ H1 (B) ,u = u0 on ∂uB
}

U0 =
{

u|u ∈ H1
0 (B) ,u = 0 on ∂uB

}
E =

{
ε|ε ∈ L2 (B)

}
S =

{
σ̃|σ̃ ∈ L2 (B)

}
(3.19)

(3.20)

(3.21)

(3.22)

whereH1 (B) andH1
0 (B) are first-order and homogeneous first-order Sobolev spaces of functions

on B respectively, and L2 (B) denotes the set of square-integrable functions on B.

The virtual enhanced strain is given in terms of u∗ and ε̃∗ ∈ E as:

ε∗ = ∇s(u∗) + ε̃∗ (3.23)
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Substituting eqs. (3.15) and (3.23) in eqs. (3.17) and (3.18) we obtain:∫
B

σ̃∗ : ε̃ dV = 0∫
B

∇s(u∗) : [−σ̃ + σ(∇su + ε̃)] dV +

∫
B

ε̃∗ : [−σ̃ + σ(∇su + ε̃)] dV = 0

(3.24)

(3.25)

We can eliminate eq. (3.24) by assuming that the enhanced strain field is orthogonal to the stress
field [SIMO and RIFAI, 1990, WELLS and SLUYS, 2000], i.e., ε̃ belongs to space E⊥S such that
σ̃∗ : ε̃ = 0 ∀ σ̃∗ ∈ S.

Finally, combining eqs. (3.16) and (3.25) the governing equations are:∫
B

∇s(u∗) : σ(∇su + ε̃) dV −
∫
∂tB

u∗ · t0 dS = 0∫
B

ε̃∗ : σ(∇su + ε̃) dV = 0

(3.26)

(3.27)

Finite element approximation Now, let us consider the finite element discretization Bh ⊂ B,
composed by nelem non-overlapping finite elements Bhe such that:

Bh = ∪neleme=1 Bhe (3.28)

In general, the inter element connectivity is not imposed on the stress and strain fields which
allows to introduce the required enhancements locally in a finite element. Hence, the correspond-
ing discretized displacement field consists of the nodal DOFs (d) and the elemental enhanced
displacement field (e). Let Eh denotes the set of finite elements that are crossed by the disconti-
nuity.

Now, consider that Γd divides the finite element Bhe ∈ Eh into two sub-domains (Bhe )+ and (Bhe )−

such that n is inward (Bhe )+ (fig. 3.2). The finite element approximation of u is constructed as:

u =
∑
a∈Bhe

Nada + Nce (3.29)

where, Na denotes the elementary shape functions matrix and Nc is the shape functions matrix
for the enhanced displacement field. Following the standard EFEM [SIMO et al., 1993, OLIVER,
1996b], Nc is chosen as:

Nc = HΓd −
∑

a∈(Bhe )+

Na (3.30)

where, HΓd is a matrix formed using the Heaviside function (3.2). For the sake of simplicity, we
remove the subscript a for the nodal DOFs and interpolation functions.

The finite element approximation of ε is obtained as:

ε = Bd + Ge (3.31)

where, B is the standard strain-displacement matrix (i.e., the gradient matrix of N), and G is the
interpolation matrix of the enhanced strain. Using the orthogonality condition between spaces
E and S, it can be shown [SIMO and RIFAI, 1990, JIRÁSEK, 2000] that G is required to fulfill the
zero mean condition over Bhe (i.e., to pass the so-called patch-test).

The approximations of the variational fields u∗ and ε∗ are accordingly given by:

u∗ = Nd∗ + Nce∗

ε∗ = Bd∗ + G∗e∗︸ ︷︷ ︸
ε̃∗

(3.32)
(3.33)
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Figure 3.2: EFEM - a finite element (Bhe ∈ E) with a discontinuity Γd

where, G∗ is the interpolation matrix of the virtual enhanced strain field.

Substituting eqs. (3.31) to (3.33) in eqs. (3.26) and (3.27), we obtain:

d∗
(∫

B

B>σ(Bd + Ge) dV −
∫
∂tB

N>t0 dS
)

+

e∗
(∫

B

B>σ(Bd + Ge) dV −
∫
∂tB

N>c t0 dS
)

= 0 (3.34)

and

e∗
(∫

B

G∗σ(Bd + Ge) dV

)
= 0 (3.35)

Here, we assume that the ∂tB ∩ Γd = ∅, i.e., no traction is imposed on the Γd. For arbitrary
variations, the governing equations are finally obtained as:

∫
B

B>σ(Bd + Ge) dV = Fext∫
B

G∗σ(Bd + Ge) dV = 0

(3.36a)

(3.36b)

where, Fext is the standard external force vector given by:

Fext =

∫
∂tB

N>t0 dS (3.37)

Interpolation operators Depending on the type of discontinuity and the chosen method for ful-
fillment of traction continuity condition, G and G∗ matrices can be constructed in three different
ways as described in [JIRÁSEK, 2000, CAZES et al., 2016]. In particular:

(i) the case in which G and G∗ are constructed such as the zero mean condition is satisfied
without considering Nc is known as, Statically Optimal Symmetric (SOS) formulation. In
this case, even though the traction continuity condition is satisfied, the kinematics of strong
discontinuity is not well represented;

(ii) in order to represent the kinematics correctly, the gradient matrix Bc can be chosen for
both G and G∗ matrices. But this results in the traction continuity condition expressed
between the traction at Γd and the nodal forces of the nodes belonging to (Bhe )+ which
does not ensure equilibrium in complex deformation modes. This formulation is known as
Kinematically Optimal Symmetric (KOS) formulation;
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(iii) alternatively, we can choose G = Bc matrix and another matrix constructed from the func-
tions that satisfies the zero mean over the finite element can be chosen for G∗. This formula-
tion is known as the Statically and Kinematically Optimal Nonsymmetric (SKON) formulation
which takes into account both the kinematics of strong discontinuity and the traction conti-
nuity in a well manner.

In this work, the SKON approach is followed and the interpolation functions G and G∗ are chosen
as:

G = PδΓd −
∑

a∈(Bhe )+

Ba

G∗ =

(
δΓd −

meas(Γd)

meas(Bhe )

)
P

(3.38)

(3.39)

where, P is a projection operator given by:

P =

n1 0

0 n2

n2 n1

 (3.40)

with, [n1 , n2] denoting the components of vector n in the orthonormal basis R(x1, x2), and
’meas(•)’ representing the measure of (•).

The following property holds true for a given function z(x) defined on B,∫
B

δΓdz(x) dV =

∫
Γd

zΓd dS (3.41)

where, zΓd is the value of the function on the discontinuity.

Here, we assume that the traction is constant across the element. We then substitute eqs. (3.38)
and (3.39) in eqs. (3.36a) and (3.36b), and use the relation (3.41), to obtain the final global and local
equilibrium equations (using the assembly operator A):

nelem

A
e=1

∫
Be

BTσ(Bd + Ge) dV = Fext

t(e)−
∫
Bhe

1

meas(Bhe )
PTσ(Bd + Ge) dV = 0 ∀ Bhe ∈ E

(3.42a)

(3.42b)

3.5.2 Numerical resolution

In this section the numerical resolution of the governing equilibrium equations is presented. First,
the static condensation procedure to obtain the global solution is presented in the framework of
the incremental iterative scheme. Later, the so called ’operator split method’ for the solution of
the local equilibrium equation is presented.

3.5.2.1 Incremental iterative scheme

The governing discretized equilibrium eqs. (3.42a) and (3.42b) are solved using an incremental
iterative scheme. In this procedure, the pseudo–time domain is discretized according to a se-
quence of N pseudo–time instants {ti}Ni=1 such that tn+1 = tn + ∆t, with ∆t being a pseudo–time
step. The evolution of the external load is then applied in increments (∆Fn+1

ext ) with respect to the
discretized pseudo–time tn+1 as:

Fn+1
ext = Fnext + ∆Fn+1

ext (3.43)
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Next, the unknown increments ∆dn+1 and ∆en+1 obtained by solving the discrete system of
eqs. (3.42a) and (3.42b), for the given ∆Fn+1

ext , and the solution at tn+1 is updated as:

dn+1 = dn + ∆dn+1

en+1 = en + ∆en+1

(3.44)

(3.45)

In general, eqs. (3.42a) and (3.42b) are non-linear. Hence, the increments of the solution fields
are obtained using an iterative procedure. Here, we adopt a modified Newton method for each
pseudo–time step. The solution increments at iteration i+ 1 and time increment tn+1 is given by:

∆dn+1,i+1 = ∆dn+1,i + δdn+1,i+1

∆en+1,i+1 = ∆en+1,i + δen+1,i+1

(3.46)

(3.47)

where, δdn+1,i+1 and δen+1,i+1 are the solution increments between iterations i and i+1, whereas
∆dn+1,i+1 and ∆en+1,i are the solution increments at iteration i. From here-forth, the dependency
on the time step is skipped for the sake of conciseness. As a consequence, every quantity without
the upper-script n+ 1 has to be intended as referred to tn+1.

In order to obtain (δdn+1,i+1, δen+1,i+1), we define the residuals of the global and local equilib-
rium equations at iteration i+ 1 (for the sake of simplicity we remove the index n+ 1) as follows:

R(di+1, ei+1) =

nelem

A
e=1

∫
Be

B>σ(di+1, ei+1) dV − Fext

r(di+1, ei+1) = t(ei+1)−
∫
Bhe

1

meas(Bhe )
P>σ(di+1, ei+1) dV ∀ Bhe ∈ E

(3.48a)

(3.48b)

Now, we minimize the residuals at the iteration i+ 1 using the solution (di, ei) at non-converged
iteration i (i.e., corresponding to a non-equilibrium state) as follows:

R(di+1, ei+1) = R(di, ei) +
∂R
∂d

∣∣∣∣
di
δdi+1 +

∂R
∂e

∣∣∣∣
ei
δei+1 = 0

r(di+1, ei+1) = r(di, ei) +
∂r
∂d

∣∣∣∣
di
δdi+1 +

∂r
∂e

∣∣∣∣
ei
δei+1 = 0

(3.49a)

(3.49b)

Using the assembly operator, the linearized system of the global and local equilibrium equations
is written as: {

Ki
bbδdi+1 + Ki

bgδei+1 = Fext − Fiint
Ki
gbδdi+1 + Ki

ggδei+1 = fiint ∀ Bhe ∈ E

(3.50a)

(3.50b)

where,

Ki
bb =

nelem

A
e=1

∫
Be

B>CB dV (3.51)

Ki
bg =

∫
Bhe

B>CG dV (3.52)

Fiint =

nelem

A
e=1

∫
Be

B>σ
(

di, ei
)
dV (3.53)

Ki
gb = −

∫
Bhe

1

meas(Bhe )
P>CB dV (3.54)

Ki
gg =

∂t
∂e

∣∣∣∣
ei
−
∫
Bhe

1

meas(Bhe )
P>CG dV (3.55)
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fiint = t(ei)−
∫
Bhe

1

meas(Bhe )
P>σ

(
εi
)
dV (3.56)

also, in general, C is the tangent stiffness matrix obtained from the constitutive law of the bulk.
However, in this work, we chose a positive definite matrix defined using the Hooke’s law to
ensure the convergence in the softening regime.

Here, the static condensation can be performed at the element level to eliminate DOFs corre-
sponding to the discretized displacement jump from the global DOFs. This allows obtaining the
following modified system of equations:

K̃iδdi+1 = Fext − F̃
i

int (3.57)

where,
K̃i = Ki

bb −Ki
bg

[
Ki
gg

]−1
Ki
gb

F̃
i

int = Fiint −Ki
bg

[
Ki
gg

]−1
fiint

(3.58)

(3.59)

However, as we do not use a tangent stiffness matrix in this work, the global stiffness matrix, K̃i

is assembled using the components of positive definite matrix chosen for C.

3.5.2.2 Path-following technique

In general, the numerical solutions of non-linear analysis of structures constituted by the strain-
softening materials may exhibit snap-back behavior at the global scale [de BORST, 1987, RASTIELLO
et al., 2019]. In order to avoid this, we employ a path-following technique. The main idea is to
make the intensity of the external loading to depend on a novel problem unknown, the loading
factor ζ ∈ R. Accordingly, the external forces vector and the imposed displacements vector are
written as:

Fext = Fext,0 + ζF̂

d0 = d0 + ζd̂

(3.60)

(3.61)

where, Fext,0 is the imposed contribution to the external forces vector, F̂ is a normalized vector
which determines the direction of the indirectly controlled part of the external force. Similarly,
d0 is the vector of imposed displacements and d̂ gives the direction of the indirectly controlled
contribution to the imposed displacement.

In order to compute ζ, the BVP is augmented through the path following constraint equation P =
P (d, e, ζ; τ) = 0, with τ , a user-defined path-step length parameter. As shown in [RASTIELLO
et al., 2019] discontinuity scale constraint equations can be written in order to control the load-
ing based on quantities directly related to the response of elemental strong discontinuities (e.g.,
enhanced displacement variations, variation of dcr, . . . ). In a more standard framework that is
considered in this work, the dependency on the enhanced displacement field is skipped, i.e.,

P = P (d, ζ; τ) = 0 (3.62)

Moreover, we assume that function P can be differentiated with respect to all the unknowns.

The novel problem to solve consists of computing the increments of the solution (δdi+1, δei+1,
δζi+1), that solves the global and local equilibrium equations (now linearized with respect to
the three unknowns), together with the linearized constraint equation. In the framework of the
iterative process that is used, the loading factor is thus computed in an iterative manner. At
iteration i+ 1, ζi+1 is written as:

ζi+1 = ζi + δζi+1 (3.63)
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with δζi+1 denoting the loading factor increment between iterations i and i+ 1.

Now, the local equilibrium equation (3.48b) is independent of ζ and is not affected by the intro-
duction of the novel unknown ζ. Conversely, from the linearization of the global equilibrium
eq. (3.48a) with respect to (d, e, ζ), we obtain the displacement variation δdi+1 as:

δdi+1 = δζi+1δdi+1
I + δdi+1

II (3.64)

where δdi+1
I and δdi+1

II are computed by solving two independent systems of equations:

K̃iδdi+1
I = F̂

K̃iδdi+1
II = Fext − Fext,0 − ζiF̂

(3.65)

(3.66)

Substituting eq. (3.64) into the linearized constraint equation, one obtains a linear equation in
δζi+1:

P (di, ζi) +

(
∂P

∂d

)i
δdi+1

II +

[(
∂P

∂d

)i
δdi+1

I +

(
∂P

∂ζ

)i]
δζi+1 −∆τ = 0 (3.67)

Here, we chose a path following constraint first proposed in [de BORST, 1987] which is termed as
’Controlled Nodal Displacement Increment’ (CNDI). It is given by:

P = a>∆di+1 −∆τ = a>
(

∆di + δζi+1δdi+1
I + δdi+1

II

)
−∆τ = 0 (3.68)

where, a> is a column vector that provides the coefficients of the linear combination between the
controlled degrees of freedom. Finally, δζi+1 is obtained by solving eq. (3.68) as:

δζi+1 =
∆τ − a>(∆di + δdi+1

II )

a>δdi+1
I

(3.69)

3.5.2.3 Staggered solution scheme: operator split method

The solution of the linearized system of equations eqs. (3.50a) and (3.50b) is obtained in a stag-
gered manner. That is to say, the solution of the global equilibrium at the iteration i+1 is obtained
first using the solution of the local equilibrium at previous iteration i and then the residual of the
local equilibrium is redefined taking into account the global solution at the iteration i + 1. This
procedure is known as ’operator split method’ which is described in detail here.

Global equilibrium equation The residual of the global equilibrium eq. (3.49a) is redefined as,
R(di+1, ei) = 0. Since ei are known, the static condensation can be performed and the solution
δdi+1 of eq. (3.57) is obtained.

Local equilibrium equation The residuals of the traction continuity condition (3.49b) is rede-
fined using δdi+1. Since these equations are also non-linear, an iterative procedure is used at the
local level to compute δei+1. At local iteration j + 1, one solves the following problem:

r(di+1, ej+1) = r(di, δdi+1, ej) + Kj
ggδej+1 = 0 (3.70)

The discretized displacement jump at j + 1 is then obtained as,

ej+1 = ej + δej+1 (3.71)
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and once local convergence is achieved ei+1 is set equal to ej+1. The residual at the iteration i+ 1

is then updated as R(di+1, ei+1(= ej+1)), which is checked for a given tolerance (εtol).

As an advantage of the operator split method, the terms fiint figuring in eq. (3.59) are null during
the local solving. Thus, the internal force vector comprises alone of the global forces coming from
the stress in the bulk i.e., F̃

i

int = Fiint. The algorithm for resolution of global and local equilibrium
equations is presented in algorithm 1. The above methodology is implemented in an in-house FE
code in MATLAB ® environment called CastLab [RICHARD et al., 2019].

When a path-following method as the one presented in the previous section is used, the solution
process is only slightly different. In particular, increments δdi+1

I and δdi+1
II are first computed.

Then the path-following constraint equation is solved for δζi+1, and the the displacement cor-
rection is updated as defined in eq. (3.64). Finally, enhanced displacements are computed as
explained previously. The solving process when using path-following constraints depending on
the enhanced displacements is quite different, but this kind of algorithms is not treated in the
present work. For more details, the interested reader can refer to [RASTIELLO et al., 2019].

3.5.3 Representative example: uniaxial tension-compression test

We show here a representative example to validate the numerical implementation and to illustrate
the ability of the method to describe the initiation and evolution of the crack in the continuous me-
dia. The response in mode I crack opening is studied followed by crack closure and the unilateral
effect.

Problem setting A unit concrete specimen which is discretized using 2 CST elements and the
corresponding material parameters are shown in fig. 3.3. The specimen is simply supported at
the bottom edge and vertical loading–unloading is applied on the top edge. The evolution of the
applied displacement2 in vertical direction (u2) is shown in fig. 3.4. Here, plane strain conditions
are assumed for the sake of illustration.

(a)

material parameter value
Young’s modulus 36 GPa

Poisson’s ratio 0.20

Gf 1000 N/m
ft 3.6 MPa
βcr 1

(b)

Figure 3.3: FE discretization of the specimen (1 m × 1 m) and the expected crack orientations under vertical
loading–unloading (a) and the considered material parameters (b)

Results First, a tensile loading is applied till P1, followed by the unloading of the specimen.
The components of the global force against the global displacement in vertical direction (F2, u2

2In the CastLab, double Lagrange multipliers technique is used to impose the applied displacement [VERPEAUX and
CHARRAS, 2011, RICHARD et al., 2019].
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Figure 3.4: Time evolution of the applied loading - vertical loading–unloading

respectively) are plotted in fig. 3.5a. The material remains elastic until P0 (figs. 3.5a and 3.5b),
where the maximum principal stress reaches ft.

At P0, the crack is initiated and the energy dissipation takes place. Since the uniaxial tensile load-
ing is applied, the direction of the maximum principal stress is always aligned with the normal of
the crack, hence only mode I is activated. The evolution of the normal components of the traction
(tn) and the displacement jump (JuKn) are plotted in fig. 3.5b.

The crack opens between stages P0 and P1. This is followed by the elastic unloading of the spec-
imen between stages P1 and O′, during which the crack closes without dissipating energy. Due
to the presence of the crack, the global unloading stiffness is reduced with respect to the initial
stiffness of the specimen as shown in fig. 3.5a.

At O′, load reversal takes place and the compression loading is applied. On further loading into
compression regime, the crack is completely closed as shown in fig. 3.5b, and the initial stiffness is
fully recovered in the global response curve. The behavior of the material is assumed to be elastic
in compression.

At P2 in the compression regime, the direction of the loading is again reversed. After reentering
the tension regime at O′′, the crack reopens (fig. 3.5b). The reopening of the crack is assumed to
be elastic without energy dissipation until the previous unloading point P1 is reached. As both
closing and reopening of the crack are assumed to be elastic, the same path P1 − O′ and O′′ −
P ′1 is followed without any hysteresis loops in both the global response curve and the traction–
separation law. Upon further loading in tension, the evolution of crack opening and the energy
dissipation continues.

Remark. It is worth noting that in the numerical test case studied here, the direction of the princi-
pal stress axes does not rotate with respect to the loading. Hence the energy dissipation happens
at a single localized crack, as stated by the chosen EFEM. However, in order to tackle the cases
involving complex loading paths leading to the rotation of the principal stress axes, it is realized
that multiple cracks needs to be localized [de BORST and NAUTA, 1998, MANZOLI and SHING,
2004]. Hence, we extend the standard EFEM for the case of multiple cracks in the next section.
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Figure 3.5: Global and local responses of the vertical loading–unloading test: force–displacement curve (a)
and traction–separation law - opening of horizontal crack (b)

3.6 Multiple cracks in EFEM

The problem of a quasi–brittle media developing multiple intersecting discontinuities in quasi–
static case is treated with in the framework of EFEM in [MANZOLI and SHING, 2004]. In this
paper, the discontinuous part of the displacement is obtained as the sum of displacement jumps
at the multiple discontinuities. Also, the local equilibrium is fulfilled by satisfying the traction
continuity conditions at each discontinuity surface. Following a similar approach, we present
here the kinematics and the augmented BVP of the continuum with multiple intersecting cracks.

3.6.1 Motivation

Let us present here the motivations for extension of the standard EFEM by considering a case
in which the principal stress axes are rotated after the initiation of the first crack. For example,
consider the vertical loading-unloading experiment performed in section 3.5.3 and let us apply a
loading in the orthogonal direction to the initial one, after the crack closure at O′(O′′) in figs. 3.5a
and 3.5b. As the loading progresses, the direction of the maximum principal stress rotates to the
horizontal direction from the previous vertical direction. Hence, the evolution of the damage like
variable associated with the horizontal crack does not take place anymore and it stays closed.
Now, if the second crack (aligned in the vertical direction) is not localized, then the numerical
response in the horizontal direction remains elastic because there is no energy dissipation during
this phase of loading. Hence, in complex loading conditions, it is necessary to localize more than
one crack to dissipate the energy in multiple directions.

3.6.2 Kinematics and boundary value problem

Let us revisit the case of a body B crossed by a single discontinuity Γd1 ∈ Rndim×ndim whose
normal is now denoted by n1. Now, let us assume that during history of the loading, a second
crack Γd2 ∈ Rndim×ndim with normal n2 is localized (fig. 3.6).
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Figure 3.6: Extension of strong discontinuity kinematics - a body (B) with multiple intersecting discontinu-
ities Γd1 and Γd2

Here, the main underlying assumption is that the state of the body with two discontinuities is ob-
tained as the superposition of the states with each discontinuity. Interaction between discontinu-
ities is then modeled through coupled traction continuity conditions. From now on, under-scripts
1 and 2 are used to denote quantities proper to the cracks Γd1 and Γd2 respectively.

Kinematics Let JuK1 = JuK1(x, t) : B × [0,∞) 7→ Rndim and JuK2 = JuK2(x, t) : B × [0,+∞) 7→
Rndim be the displacement jump functions associated with Γd1 and Γd2 respectively. Following
this approach, the displacement and the strain fields of continuum with multiple discontinuities
are given by:

u = ū + HΓd1
JuK1 + HΓd2

JuK2 (3.72)

and
ε = ∇sū + HΓd1

∇sJuK1 + HΓd2
∇sJuK2 + δΓd1 JuK1 ⊗ n1 + δΓd2 JuK2 ⊗ n2 (3.73)

where, HΓd1
and HΓd2

are the Heaviside functions at Γd1 and Γd2 respectively. In this context, the
bounded part of the strain is defined as:

ε̄ = ∇sū + HΓd1
∇sJuK1 + HΓd2

∇sJuK2 (3.74)

Augmented BVP Due to the principle of superposition, the individual traction continuity con-
ditions for both the discontinuities are coupled to obtain the local equilibrium of the superposed
state. The coupled traction continuity conditions are given by:

σ · n1 = t1 ∀ x ∈ Γd1

σ · n2 = t2 ∀ x ∈ Γd2

(3.75)
(3.76)

The augmented BVP in the case of multiple cracks reads exactly as in the one crack case, with the
only difference that now eqs. (3.75) and (3.76) have to be fulfilled, together with two independent
traction-separation laws defining the behaviors of cracks:

t1 = h1(JuK1) ∀ x ∈ Γd1

t2 = h2(JuK2) ∀ x ∈ Γd2

(3.77)
(3.78)
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3.6.3 Enhanced assumed strain method – multiple local enhancements

The variational form of the augmented BVP with coupled traction continuity conditions is ob-
tained in the framework of EAS method, following the same procedure as in section 3.5.1.

Variational form of the augmented BVP Let us assume that the enhanced strain field consists
of contributions from two superposed local enhancements. In this case, the strain field and its
variation are expressed as:

ε = ∇su + ε̃1 + ε̃2

ε∗ = ∇su∗ + ε̃∗1 + ε̃∗2

(3.79)
(3.80)

Here, ε̃1 and ε̃2 belong to E, ε̃∗1 and ε̃∗2 belong to E⊥S. Substituting the above expressions in
eqs. (3.26) and (3.27), the global and the local equilibrium equations become,∫

B

∇s(u∗) : σ(∇su + ε̃1 + ε̃2) dV −
∫
∂tB

u∗ · t0 dS = 0∫
B

ε̃∗1 : σ̃(∇su + ε̃1 + ε̃2) dV +

∫
B

ε̃∗2 : σ̃(∇su + ε̃1 + ε̃2) dV = 0

(3.81)

(3.82)

Finite element discretization Now, let us consider a finite element that is crossed by two in-
tersecting discontinuities Γd1 and Γd2 . The discretized displacement jumps across Γd1 and Γd2 are
given by e1 and e2. The finite element approximations for u and u∗ are constructed using the
enhanced displacement interpolation functions Nc1 , Nc2 as:

u = Nd + Nc1e1 + Nc2e2

u∗ = Nd∗ + Nc1e∗1 + Nc2e∗2

(3.83)
(3.84)

Following the SKON approach, the approximation of ε and ε∗ are obtained using the strain inter-
polation functions G1,G2,G

∗
1 and G∗2 as:

ε = Bd + G1e1 + G2e2

ε∗ = Bd∗ + G∗1e∗1︸ ︷︷ ︸
ε̃∗1

+ G∗2e∗2︸ ︷︷ ︸
ε̃∗2

(3.85)
(3.86)

Also, we assume that the enhanced fields do not interact with each other, hence the variations e∗1
and e∗2 are independent.

We substitute eqs. (3.84) to (3.86) in eqs. (3.81) and (3.82), and consider that the variations u∗ and
ε∗ are arbitrary to obtain the following discretized equations:

∫
B

BTσ(Bd + G1e1 + G2e2) dV = Fext∫
B

G∗1σ(Bd + G1e1 + G2e2) dV = 0∫
B

G∗2σ(Bd + G1e1 + G2e2) dV = 0

(3.87a)

(3.87b)

(3.87c)

Following the EFEM, the interpolation functions are given by:

Nc1 = HΓd1
−

∑
a∈(B

h1
e )+

Na

Nc2 = HΓd2
−

∑
a∈(B

h2
e )+

Na

(3.88)

(3.89)
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Figure 3.7: Extended EFEM - a finite element (Bhe ∈ E1 ∩ E2) with multiple intersecting discontinuities Γd1
and Γd2

G1 = P1δΓd2 −
∑

a∈(B
h2
e )+

Ba

G2 = P2δΓd1 −
∑

a∈(B
h1
e )+

Ba

(3.90)

(3.91)

G∗1 =

(
δΓd1 −

meas(Γd)

meas(Bh1
e )

)
P1

G∗2 =

(
δΓd2 −

meas(Γd)

meas(Bh2
e )

)
P2

(3.92)

(3.93)

where,

P1 =

n11 0

0 n12

n12
n11

 (3.94)

P2 =

n21
0

0 n22

n22
n21

 (3.95)

where, [n11 , n12 ], [n21 , n22 ] are the components of n1 and n2 respectively. Let Eh1 , Eh2 denote the set
of finite elements that are crossed by the Γd1 and Γd2 respectively. In case of multiple intersecting
cracks, E1 ∩ E2 is not a null set.

Substituting the interpolation functions (eqs. (3.88) and (3.93)) in eqs. (3.87a) to (3.87c), the dis-
cretized global and local equilibrium equations to be solved in the case of multiple intersecting
cracks are given by:



nelem

A
e=1

∫
Be

B>σ(Bd + G1e1 + G2e2) dV = Fext

t1(e1)−
∫
B
h1
e

1

meas(Bh1
e )

P>1 σ(Bd + G1e1 + G2e2) dV = 0 ∀ Bh1
e ∈ E1

t2(e2)−
∫
B
h2
e

1

meas(Bh2
e )

P>2 σ(Bd + G1e1 + G2e2) dV = 0 ∀ Bh2
e ∈ E2

(3.96a)

(3.96b)

(3.96c)
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3.6.4 Numerical resolution - two embedded cracks

In the presence of two cracks, the residuals eqs. (3.49a) and (3.49b) are redefined by taking into
account an additional unknown ei+1

2 as follows:

R(di+1, ei+1
1 , ei+1

2 ) = R(di, ei1, e
i
2) +

∂R
∂d

∣∣∣∣
di
δdi+1 +

∂R
∂e1

∣∣∣∣
ei1

δei+1
1 +

∂R
∂e2

∣∣∣∣
ei2

δei+1
2

r1(di+1, ei+1
1 , ei+1

2 ) = r1(di, ei1, e
i
2) +

∂r1

∂d

∣∣∣∣
di
δdi+1 +

∂r1

∂e1

∣∣∣∣
ei1

δei+1
1 +

∂r1

∂e2

∣∣∣∣
ei2

δei+1
2

r2(di+1, ei+1
1 , ei+1

2 ) = r2(di, ei1, e
i
2) +

∂r2

∂d

∣∣∣∣
di
δdi+1 +

∂r2

∂e1

∣∣∣∣
ei1

δei+1
1 +

∂r2

∂e2

∣∣∣∣
ei2

δei+1
2

(3.97a)

(3.97b)

(3.97c)

The linearized system of the global and local equilibrium equations are rewritten by taking into
account the coupled traction continuity conditions as:

Ki
bbδdi+1 + Ki

bg1δei+1
1 + Ki

bg2δei+1
2 = Fext − Fiint

Ki
g1bδdi+1 + Ki

g1g1δei+1
1 + Ki

g1g2δei+1
2 = (f1)

i
int ∀ Bh1

e ∈ E1

Ki
g2bδdi+1 + Ki

g2g1δei+1
1 + Ki

g2g2δei+1
2 = (f2)

i
int ∀ Bh2

e ∈ E2

(3.98a)

(3.98b)

(3.98c)

where,

Ki
bg1 =

∫
B
h1
e

B>CG1 dV

Ki
bg2 =

∫
B
h2
e

B>CG2 dV

Ki
g1b = −

∫
B
h1
e

1

meas(Bh1
e )

P>1 CB dV

Ki
g1g1 =

∂t1
∂e1

∣∣∣∣
ei1

−
∫
B
h1
e

1

meas(Bh1
e )

P>1 CG1 dV

Ki
g1g2 = −

∫
B
h1
e

1

meas(Bh1
e )

P>1 CG2 dV

(f1)
i
int = t1

(
ei1
)
−
∫
B
h1
e

1

meas(Bh1
e )

P>1 σ
(
εi
)
dV

Ki
g2b = −

∫
B
h2
e

1

meas(Bh2
e )

P>2 CB dV

Ki
g2g2 =

∂t2
∂e2

∣∣∣∣
ei2

−
∫
B
h2
e

1

meas(Bh2
e )

P>2 CG2 dV

Ki
g2g1 = −

∫
B
h2
e

1

meas(Bh2
e )

P>2 CG1 dV

(f2)
i
int = t2

(
ei2
)
−
∫
B
h2
e

1

meas(Bh2
e )

P>2 σ
(
εi
)
dV

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

The stiffness matrices Ki
g1g2 and Ki

g2g1 have non-zero stiffness terms only if both Bh1
e and Bh2

e

belong to E1 ∩ E2. That is to say, for the elements in which the two cracks intersect, the coupled
traction–separation laws are solved. In the elements that contain only the first crack, we solve the
system of equations concerning only a single crack eqs. (3.50a) and (3.50b).

Now, both ei1 and ei2 are eliminated from the global unknowns by performing static condensation.
The final system of the equations is given by:

K̃iδdi+1 = Fext − F̃
i

int (3.109)
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where,
K̃i = Ki

bb −Ki
bg1

[
Ki
g1g1

]−1
Ki
g1b −Ki

bg2

[
Ki
g2g2

]−1
Ki
g2b

F̃
i

int = Fiint −Ki
bg1

[
Ki
g1g1

]−1
(f1)

i
int −Ki

bg2

[
Ki
g2g2

]−1
(f2)

i
int

(3.110)

(3.111)

As in the previous case of a single crack, K̃i is defined using the components of positive definite
stiffness matrix C.

Operator split method - coupled traction continuity conditions Following the operator split
method, the local residuals eqs. (3.97b) and (3.97c) are solved in a coupled manner. After freezing
the displacement increment δdi+1, the displacement jump increments at the local iteration j + 1

(δej+1
1 and δej+1

2 ) are obtained by solving the following simultaneous system of the equations:

r1(di+1, ej+1
1 , ej+1

2 ) = r1(di, δdi+1, ej1, e
j
2) + Kj

g1g1δej+1
1 + Kj

g1g2δej+1
2 = 0

r2(di+1, ej+1
1 , ej+1

2 ) = r2(di, δdi+1, ej1, e
j
2) + Kj

g2g1δej+1
1 + Kj

g2g2δej+1
2 = 0

(3.112)

(3.113)

The algorithm 2 presents the resolution process of global and local equilibrium equations in the
extended EFEM, by considering the coupled traction continuity conditions for multiple intersect-
ing cracks.

3.6.5 Numerical examples: multiple cracks

To illustrate the main features of the proposed extended EFEM, in this section, we show two
simple examples. We first focus on the case of two orthogonal intersecting cracks such that, given
the BVP formulation, no interaction occurs between them. Then we study a more complicated
situation in which two non-orthogonal cracks localize in the medium.

3.6.5.1 Two phase tensile test: orthogonal cracks

Problem setting Let us perform a two phase loading experiment using the framework of the
extended EFEM where a first phase vertical loading-unloading is applied which is followed by
the horizontal loading.

In the first phase, we open a horizontal crack by applying a vertical loading (fig. 3.3) and after
certain energy is dissipated at the crack, the crack is closed. The corresponding global curve and
the traction–separation law are represented byO′−P0−P1−O′′ in figs. 3.5a and 3.5b respectively.

Later, the boundary conditions are changed and a horizontal loading (u1) is applied on the speci-
men (fig. 3.8). In this phase, both the global and the local fields are initiated using the correspond-
ing fields at the end of the first phase. Thus, the presence of the first crack is taken into account
during the application of the horizontal loading.

Results The components of the global force and displacement in the horizontal direction (F1

and u1 respectively) are plotted against each other in figs. 3.9a and 3.9b for the standard EFEM
and the extended EFEM respectively. It can be observed that the response remains elastic in the
former case, since the localization of an additional crack is not possible. However, owing to the
coupled traction continuity conditions governing the local equilibrium of multiple cracks in the
extended EFEM, the second crack in the direction orthogonal to the first crack is localized.
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Figure 3.8: FE discretization of the specimen (1 m × 1 m) and the expected crack orientations - horizontal
loading after vertical loading-unloading
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Figure 3.9: Force–displacement curve - horizontal loading: standard EFEM (a), extended EFEM (b)

Notice that, the crack initiation criterion and the material parameters for the second crack are as-
sumed to be the same as for the first crack. This is justified as the bulk is assumed to be an isotropic
elastic material. The maximum principal stress reaches the tensile strength of the material at P4

in the force–displacement curve fig. 3.9a.

Mesh dependency study Given that the energy dissipation is at the surface of the crack, the
numerical results are expected to be independent on the spatial discretization. This is studied by
comparing the global response of the same specimen discretized with different meshes. Two ad-
ditional meshes with 18 and 162 elements (fig. 3.10) are considered. The global curve for different
meshes during horizontal and vertical loading is shown in fig. 3.11.

Remark. An important point to note is that the traction–separation laws of both the cracks are
identical because the material parameters of the cracks are assumed to be the same. Also, since
the cracks are orthogonal, the coupled traction continuity conditions evolve independently to
each other. Hence, the first crack stays closed while the opening of second crack takes place, that
is to say, the cracks do not interact with each other. It will be shown in the next section that it is
not the case for the non-orthogonal cracks. The interaction between the cracks depends on the
angle between them.
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(a)

(b)

Figure 3.10: Different FE discretization of the specimen (1 m × 1 m) and the expected crack orientations -
two phase vertical and horizontal loading: 18 elements (a), 162 elements (b)
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Figure 3.11: Force–displacement curves for different meshes: vertical loading (a), horizontal loading (b)

3.6.5.2 Willam’s test: non-orthogonal cracks

In this section, we demonstrate the capability of the proposed methodology to tackle the localiza-
tion of non-orthogonal cracks. Let us consider a multi axial test with Willam’s test like loading
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[WILLAM et al., 1989]. In this test, the loading is applied in a non-proportional manner in the
horizontal and vertical directions that leads to a progressive rotation of principal stress axes. This
changes the behavior of the cracks from mode I to mixed mode. The test is successful if the
model is able to handle the mixed mode cracking and dissipate the available energy in multiple
directions.

Problem setting The considered geometry, loading, boundary conditions and material proper-
ties are given in fig. 3.12. Loading is applied (imposed displacements) in two phases. In the first
phase, a tensile loading in the vertical direction is applied along with the compression loading
in the horizontal direction as shown in fig. 3.13. The horizontal loading is applied to negate the
Poisson’s effect.

Just after the opening of the first crack at A, the second phase of the loading starts at B. In this
phase, a combined horizontal tensile loading and shear loading along with the vertical tensile
loading is applied in a non-proportional manner.

(a)

material parameter value
Young’s modulus 10 GPa

Poisson’s ratio 0.20

Gf 500 N/m
ft 1.0 MPa
βcr 1

(b)

Figure 3.12: FE discretization of the specimen (1 m × 1 m) and the expected crack orientations under
Willam’s like loading (a) and the considered material parameters (b)
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Figure 3.13: Time evolution of the applied displacement - Willam’s like loading

Global results The time evolution of the components of the stress tensor is shown in fig. 3.14.
The first crack is initiated when σ22 reaches the tensile strength at A. Due to the application of
the non-proportional loading at B, the normal of the first crack is no longer aligned with the
direction of principal stress axes. As loading increases, the principal stress axes rotate further,
and the tensile strength limit reaches in the direction of the present maximum principal stress
axes which is at 48◦ to the normal of the first crack at C in fig. 3.14. Now, both the cracks continue
to dissipate energy leading to the simultaneous decrease of the stress components σ11, σ12 and
σ22 from C.

Local results During the first phase, the crack behaves in mode I and only the normal displace-
ment of the first crack (JuKn1

) evolves from A to B in fig. 3.15. During the second phase, the first
crack begins to slide due to the rotation of the principal stress axes as soon as the non-proportional
loading is applied. This leads to the evolution of (JuKs1 ) from B in fig. 3.15. Furthermore, the con-
stant rotation of the principal stress axes compel the cracks to behave in mixed mode condition to
satisfy the local equilibrium. This leads to the evolution of both JuKn2

and JuKs2 from the onset of
second crack at C.

Characterization of anisotropy Before the initiation of the crack, the principal stress and strain
axes stay parallel with each other as we assumed an isotropic elastic response prior to the crack-
ing. However, due to induced anisotropy, the principal stress and strain axes rotates at different
rate with respect to a fixed direction. Using Willam’s test, rate of anisotropy can be quantified
by computing the difference between the asymptotic values of the rotation of the principal stress
and strain axes during the loading history.

Let γσ and γε be the rotation of the maximum principal stress and strain axes respectively with
respect to the vertical direction. Here, we consider two cases; the first one is the case in which
we allow only one crack to initiate, whereas in the second case (which is the present case) two
non-orthogonal cracks are initiated. The evolution of γε remains the same in both cases as it is
related to the applied loading while the evolution of γσ is compared for both the cases in fig. 3.16.

It can be observed from this figure that γσ becomes non-zero at the beginning of the second phase
and if the second crack is not initiated then it keeps on increasing before reaching an asymptotic
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Figure 3.14: Time evolution of the components of stress - Willam’s like loading test using extended EFEM
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Figure 3.15: Time evolution of the components of the displacement jump - Willam’s like loading test using
extended EFEM

value of 90◦. That is to say, the maximum principal direction is aligned with the horizontal direc-
tion. This is because, if the second crack is not localized, then the local response in the horizontal
direction (σ11) stays elastic. However, as the second crack localizes, reduction takes place for all
the stress components. Hence, γσ starts decreasing before reaching an asymptotic value (γasyσ )
of 19.73◦. The asymptotic value of the rotation of the maximum principal strain axis (γasyε ) is

obtained as 47.82◦. Finally, the rate of anisotropy is computed as,
γasyε − γasyσ

γasyε
× 100 = 58.74%.
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Figure 3.16: Time evolution of the rotation of the maximum principal stress and strain axes with respect to
the vertical direction - Willam’s like loading test using extended EFEM

3.7 Conclusions

In this chapter, the modeling of cracks using a strong discontinuity approach in the framework of
EFEM is elaborated. Following a DSDA, crack is initiated using a criterion based on maximum
principal stress. An isotropic damage like traction–separation law is then followed. The unilateral
conditions that describe the full stiffness recovery upon the crack closure are taken into account.

The standard EFEM with a single discontinuity has limited scope in the context of multiple
cracks. Modeling of the formation of multiple intersecting cracks in complex loading conditions
is achieved by extending the strong discontinuity approach for multiple crack cases. The kine-
matics of the continuum, as well as the coupled traction continuity conditions expressing local
equilibrium at the cracks, are obtained by assuming that the cracks are superposed. The pro-
posed methodology is applied in the loading cases that result in orthogonal and non–orthogonal
cracks. The energy dissipated at the first crack influence the orientation of the second crack. Also,
the assumption of initial isotropy leads to the assignment of the same material parameters to both
the cracks.

In the proposed model, the bulk is assumed to be elastic, and the energy dissipation occurs only
at the crack. But the assumption of no energy dissipation before initiation of cracks is far from
reality. To model the complete process of strain localization, the phase of damage growth needs
to be taken into account.

We propose an anisotropic damage model to describe the initial phase of strain localization in
chapter 4. This is followed by a transition approach to initiate a crack inside the localization zone
in chapter 5. Owing to the anisotropic description of the bulk, a method to compute the material
parameters of the cracks, depending on their orientations, is also proposed the chapter 5.
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Fn+1
ext = Fnext + ∆Fn+1

ext ;
i = 0;
convglobal = 0;
while convglobal = 0 do

δdn+1,i+1 = −
{

K̃i
}−1

R(di);

dn+1,i+1 = dn+1,i + δdn+1,i+1;
for loop over Gauss points do

j = 0;
convlocal = 0;
while convlocal = 0 do

if j = 0 then
δen+1,i+1,0 = −

[
Ki
gg

]−1 r(dn+1,i+1, en+1,i);
en+1,i+1,0 = en+1,i + δen+1,i+1,0;

else
compute Ki+1,j

gg using eq. (3.55);

δen+1,i+1,j+1 = −
[
Ki+1,j
gg

]−1 r
(

dn+1,i+1, en+1,i+1,j
)

;

en+1,i+1,j+1 = en+1,i+1,j + δen+1,i+1,j+1;
end

en+1,i+1,j+1 → t
(

dn+1,i+1, en+1,i+1,j+1
)

;

dn+1,i+1, en+1,i+1,j+1 → σ
(

dn+1,i+1, en+1,i+1,j+1
)

;

dn+1,i+1, en+1,i+1,j+1 → r
(

dn+1,i+1, en+1,i+1,j+1
)

;

if ||rn+1,i+1,j+1|| < εtol then
j = j + 1;

else
convlocal = 1;

end
end

end

σ
(

dn+1,i+1, en+1,i+1
)
→ Fn+1,i+1

int ;

Fn+1
ext ,F

n+1,i+1
int → R

(
dn+1,i+1, en+1,i+1

)
;

if ||Rn+1,i+1|| < εtol then
i = i+ 1;

else
convglobal = 1;

end
end

Algorithm 1: Algorithm for resolution of global and local equilibrium equations in EFEM
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Fn+1
ext = Fsext + ∆Fn+1

ext ;
i = 0;
convglobal = 0;
while convglobal = 0 do

...;
computation of dn+1,i+1 algorithm 1;
...;
for loop over Gauss points do

j = 0;
convlocal = 0;
while convlocal = 0 do

if j = 0 then{
δen+1,i+1,0

1

δen+1,i+1,0
2

}
=

[
Ki
g1g1 Ki

g1g2

Ki
g2g1 Ki

g2g2

]−1{
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1 , en+1,i
2 )
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2 )

}
{

en+1,i+1,0
1

en+1,i+1,0
2

}
=

{
en+1,i

1

en+1,i
2

}
+

{
δen+1,i+1,0

1

δen+1,i+1,0
2

}
else

compute

[
Ki+1,j
g1g1 Ki+1,j

g1g2

Ki+1,j
g2g1 Ki+1,j

g2g2

]
using eqs. (3.102), (3.103), (3.106) and (3.107);{

δen+1,i+1,j+1
1

δen+1,i+1,j+1
2

}
=[

Ki+1,j
g1g1 Ki+1,j

g1g2

Ki+1,j
g2g1 Ki+1,j

g2g2

]−1{
r1(dn+1,i+1, en+1,i+1,j+1

1 , en+1,i+1,j
2 )

r2(dn+1,i+1, en+1,i+1,j+1
1 , en+1,i+1,j

2 )

}
{

en+1,i+1,j+1
1

en+1,i+1,j+1
2

}
=

{
en+1,i+1,j

1

en+1,i+1,j
2

}
+

{
δen+1,i+1,j+1

1

δen+1,i+1,j+1
2

}
end{

en+1,i+1,j+1
1

en+1,i+1,j+1
2

}
→

t1
(

dn+1,i+1, en+1,i+1,j+1
1 , en+1,i+1,j+1

2

)
t2
(

dn+1,i+1, en+1,i+1,j+1
1 , en+1,i+1,j+1

2

)
dn+1,i+1, en+1,i+1,j+1

1 , en+1,i+1,j+1
2 → σ

(
dn+1,i+1, en+1,i+1,j+1

1 , en+1,i+1,j+1
2

)
;

dn+1,i+1, en+1,i+1,j+1
1 , en+1,i+1,j+1

2 → r1

(
dn+1,i+1, en+1,i+1,j+1

1 , en+1,i+1,j+1
2

)
;

dn+1,i+1, en+1,i+1,j+1
1 , en+1,i+1,j+1

2 → r2

(
dn+1,i+1, en+1,i+1,j+1

1 , en+1,i+1,j+1
2

)
;

if ||r1, r2|| < εtol then
j = j + 1;

else
convlocal = 1;

end
end

end

σ
(

dn+1,i+1, en+1,i+1
1 , en+1,i+1

2

)
→ Fn+1,i+1

int ;

Fn+1
ext ,F

n+1,i+1
int → R

(
dn+1,i+1, en+1,i+1

1 , en+1,i+1
2

)
;

if ||R|| < εtol then
i = i+ 1;

else
convglobal = 1;

end
end

Algorithm 2: Algorithm for resolution of global and local equilibrium equations in ex-
tended EFEM using coupled traction continuity conditions for multiple intersecting cracks
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Chapter 4

Microplane microdamage model

Abstract. An approach for describing anisotropic damage growth in the initial stage of strain
localization using microplane constitutive model [BAŽANT and OH, 1985, BAŽANT, 1984] is
presented. In this approach, the constitutive model of the continuum is developed using the
simple constitutive laws defined on planes of generic orientation known as ’microplanes’. After
illustrating the mathematical formulation of the simple proposed model, the secant and tangent
stiffness tensors are derived and the localization properties in the case of the uniaxial tension (of
main interest in this work) are analyzed. Finally, some numerical examples are presented in order
to show the main features of the model both in terms of the obtained global response and of the
induced anisotropy.

4.1 Introduction

According to microplane models, the anisotropic damage is modeled by sampling the mate-
rial behavior in several possible directions. In earlier microplane models [BAŽANT and PRAT,
1988a, BAŽANT, 1996], the unit volume is represented by a spherical microplane system. Even
though the triaxial experimental results are well reproduced using this representation, it is re-
alized in [PARK and KIM, 2003] that a simplification can be achieved for the analysis of planar
members. In these cases, we can idealize the spherical microplane system (section 2.3.1.4) by the
disk microplane system (Ω in fig. 4.1) to represent the unit volume.

Figure 4.1: Representation of unit volume using the disk microplane system

Starting from this idea, simple microplane models can be derived leading to 2D formulations that
are easier to implement and less time consuming than full three–dimensional modeling (integra-
tion is no more performed over a sphere but over a circle).

First, the general framework of the microplane models is presented. The microplane system used
to represent the unit volume is detailed in the section 4.2. Second, the assumptions involved
in developing a relationship between the unit volume and the microplane system are described
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in the section 4.2.1. This is followed by different approaches for deriving the continuum tensor
quantities from the microplane scalar/vector quantities in the section 4.2.2.

In section 4.3, a specific constitutive law ’microplane microdamage model’ is formulated in ther-
modynamic framework. This is followed by the derivation of secant and the tangent material
stiffness tensors. After this, the conditions under which the loss of ellipticity of the rate equilib-
rium problem occurs for the proposed model are investigated in the section 4.3.4. In section 4.4.2,
a simple energetic regularization technique to solve the mesh dependency issues (typically asso-
ciated with constitutive models exhibiting softening) is presented.

Numerical studies are performed in the section 4.5 to understand several aspects of the proposed
model. Finally some conclusions are drawn in the section 4.7 based on the ability of the proposed
constitutive model in handling the anisotropic damage.

4.2 Framework of microplane models

In the simplified microplane representation that is considered in this work, microplanes are lo-
cated on the circumference of the unit disk1 Ω (fig. 4.1). In this chapter, the disk microplane system
under the plane strain assumptions is used to represent the unit volume2. A kinematic constraint
is assumed between the microplane system and the unit volume. According to this, the compo-
nents of the strain vector (normal strain and tangential strain) on each microplane are obtained as
the projection of the continuum strain tensor in the normal and tangential directions. The compo-
nents of stress vector (normal stress and tangential stress) on each microplane are defined using
the constitutive laws on the each microplane. The continuum stress tensor is then obtained as an
integral of the components of stress vector on each microplane. Finally, the stress and strain com-
ponents in the direction of x3 (fig. 4.1) are assumed to be independent of the microplane system.

4.2.1 Projection of strain tensor

Let us consider a microplane Ωα whose normal vector (denoted by mα) makes an angle α with
reference axis x1 (fig. 4.1). The tangent vector to Ωα is denoted by lα (lα · mα = 0). From now
on, we distinguish the quantities of the disk microplane system from that of the spherical one by
using a superscript α.

Following the kinematic constraint, the normal component of strain (εαm) and the tangential com-
ponent of strain (εαl ) at microplane Ωα are obtained as the projection of the strain tensor:

εαm = mα · ε ·mα = Mα : ε

εαl = lα · ε ·mα = Lα : ε

(4.1)
(4.2)

where the second-order tensors Mα and Lα are the projection operators given by:

Mα = mα ⊗mα

Lα =
1

2
(lα ⊗mα + mα ⊗ lα)

(4.3)

(4.4)

Notice that the projection tensor lα ⊗ mα could have been alternatively used for computing εαl .
However, exploiting the orthogonality condition between the vectors mα and lα and given the
symmetry of ε, one can easily show that εαl = Lα : ε = (lα ⊗mα) : ε. Here, the symmetric part of
the Lα tensor was considered since this will also be used to obtain a symmetric stress tensor.

1The planar surfaces with outward normal parallel to x3 (fig. 4.1) are not included in the system.
2In the introductory paper [PARK and KIM, 2003], the thickness of the unit disk is assumed to be equal to that of the

planar member which corresponds to a state of plane stress.
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Considering the assumption of disk microplane system, the expressions of the projection oper-
ators can be derived by writing the vectors mα and lα in an orthogonal basis R(x1, x2) as given
below:

mα = cosα x1 + sinα x2

lα = − sinα x1 + cosα x2

(4.5)
(4.6)

As a consequence:

Mα = cos2 α (x1 ⊗ x1) +
1

2
sin 2α (x1 ⊗ x2 + x2 ⊗ x1) + sin2 α (x2 ⊗ x2)

Lα =
1

2
[sin 2α (x2 ⊗ x2 − x1 ⊗ x1) + cos 2α (x1 ⊗ x2 + x2 ⊗ x1)]

(4.7)

(4.8)

Now, the symmetric 2D strain tensor (ε12 = ε21) can be expressed as:

ε = ε11 (x1 ⊗ x1) + ε12 (x1 ⊗ x2 + x2 ⊗ x1) + ε22 (x2 ⊗ x2) (4.9)

By considering the expressions of projection operators and the 2D strain tensor (eqs. (4.7) to (4.9)
respectively), εαm and εαl thus read:

εαm = cos2 α ε11 + sin (2α) ε12 + sin2 α ε22

εαl =
1

2
sin (2α) (ε11 + ε22) + cos (2α) ε12

(4.10)

(4.11)

4.2.2 Derivation of stress tensor

In this section, we derive the continuum stress tensor of the unit volume from the normal and
tangential stress components on each microplane. In microplane models, tensor σ is obtained
either using the principle of virtual work [BAŽANT and OH, 1985] or a thermodynamic frame-
work [CAROL et al., 2001b, KUHL et al., 2001]. In the first case, the equivalence of the virtual
works computed using macroscopic quantities and their microplane counterparts is imposed. In
contrast, in the second case, thermodynamically consistent constitutive laws are written at the
microplane level. The stress tensor is obtained from the spherical/circular integration of the mi-
croplane stresses.

It has to be noted that in the case of spherical microplane system with deviatoric/volumetric split,
both the approaches may not lead to the same expression for the stress tensor [CAROL et al.,
2001b]. However, in the following, we show that in the case of ’disk microplane system’ without
any volumetric/deviatoric split of the normal component, both the PVW and thermodynamic
framework will give the same expression for σ.

4.2.2.1 Using principle of virtual work

Let us denote the normal and tangential stress components on Ωα as σαm and σαl respectively. Fur-
thermore, let εα∗m and εα∗l be the virtual quantities of the normal and tangential strain components
on Ωα. Here, the dissipative processes are assumed to be uniform on Ω (i.e., the same dissipation
mechanism is assumed for each microplane), and the stress components are computed at the cen-
troid of each microplane. Hence, the contour of the microplanes can be idealized as a circle, and
the work done by the stress and strain components is expressed as an integral over the contour of
a circle.

In this context, the PVW states that the total work (in an integral sense) done by the components
of stress and strain on the microplane system is equal to the work done by the stress and strain
tensors in a unit volume, i.e.,

σ : ε∗ =
1

π

∫
Ω

(σαmε
α∗
m + σαl ε

α∗
l ) dS (4.12)
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where, ε∗ is the virtual strain tensor at the continuum level.

Now, using the projection operators introduced above for expressing εα∗m and εα∗l as functions of
an arbitrary strain variation ε∗, one can easily obtain the following expression of the stress tensor:

σ =
1

π

∫
Ω

σα dS =
1

π

∫
Ω

(σαmMα + σαl Lα) dS (4.13)

where, σα = (σαmMα + σαl Lα) is the microplane stress tensor. It can be easily verified that the
tensor, σ is symmetric since Mα and Lα are both symmetric.

4.2.2.2 Using thermodynamic framework

Alternatively, stress tensor can be derived using thermodynamic framework. For this purpose,
one defines the free energy potential on each microplane as:

ψα = ψα(εαm, ε
α
l ,θ

α) (4.14)

where, θα denotes a vector of internal variables defined on each microplane. Then, the normal
and tangential stresses on Ωα are obtained as the first partial derivatives of ψα with respect to the
normal and tangential strain respectively:

σαm = ρ
∂ψα

∂εαm

σαl = ρ
∂ψα

∂εαl

(4.15)

(4.16)

Now, the free energy potential at the unit volume (ψ) is defined using the following integral
relationship:

ρψ =
1

π

∫
Ω

ρψα dS (4.17)

By substituting eq. (4.17) in the relation between ψ and σ eq. (2.2), we obtain:

σ = ρ
∂ψ

∂ε
=

1

π

∫
Ω

∂ (ρψα)

∂ε
dS =

1

π

∫
Ω

ρ

(
∂ψα

∂εαm

∂εαm
∂ε

+
∂ψα

∂εαl

∂εαl
∂ε

)
dS (4.18)

Finally, using kinematic constraints eqs. (4.1) and (4.2), and the definitions of the normal and
tangential stresses eqs. (4.15) and (4.16) respectively, we obtain the stress tensor as the same in the
previous case (i.e., using PVW):

σ =
1

π

∫
Ω

σα dS =
1

π

∫
Ω

(σαmMα + σαl Lα) dS (4.19)

4.3 Microplane microdamage model

In this section, we define a scalar isotropic damage constitutive law on each microplane and de-
rive the constitutive model of the unit volume. Damage is considered as the only dissipative
mechanism on a given microplane for the sake of simplicity.

We recall that several approaches like plasticity and damage [CAROL and BAŽANT, 1997, KUHL
et al., 2001] are available in literature for this purpose. In the original formulation [KUHL and
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RAMM, 1998], more than one microdamage variable is used to describe dissipation in each di-
rection in a decoupled manner. It is shown in [OŽBOLT and BAŽANT, 1992] that the decoupled
description of microdamage is, however, not suitable for cohesive frictional materials like con-
crete.

For that reason, we adopt the microplane microdamage model that employ a single microdamage
variable [KUHL and RAMM, 2000, FICHANT, 1996]. From a numerical viewpoint, such a choice
also leads to a more computationally efficient formulation.

4.3.1 Thermodynamic framework

Free energy The following particular form of the free energy on each microplane can be as-
sumed using the state variables on the microplane (εαm and εαl ) and the microdamage scalar vari-
able (ωα ∈ [0, 1]):

ρψα = (1− ωα) ρψα0 (4.20)

where ρψα0 is the stored elastic energy on each microplane:

ρψα0 =
1

2

[
Em (εαm)

2
+ El (ε

α
l )

2
]

(4.21)

Here, Em and El are the elastic constants for each microplane in normal and tangential directions
respectively.

Conjugate variables Now, substituting eq. (4.20) in eqs. (4.15) and (4.16), the normal and tan-
gential stresses on each microplane are obtained as:

σαm = ρ
∂ψα

∂εαm
= (1− ωα)Emε

α
m

σαl = ρ
∂ψα

∂εαl
= (1− ωα)Elε

α
l

(4.22)

(4.23)

Furthermore, the energy release rate (Y α) on each microplane is obtained as a conjugate of the
internal variable as:

Y α = −ρ∂ψ
α

∂ωα
=

1

2

[
Em (εαm)

2
+ El (ε

α
l )

2
]

(4.24)

Rate of energy dissipation Using the Clausius–Duhem–Trusdell inequality for a unit volume
(2.5), and the integral relations (4.17) and (4.19), we obtain the following relation for the rate of
volumetric energy dissipation, φ̇V as:

φ̇V =
1

π

∫
Ω

−Y αω̇α dS =
1

π

∫
Ω

φ̇αV dS ≥ 0 (4.25)

where, φ̇αV = −Y αω̇α is the rate of energy dissipation on each microplane.

Remark. It is worth noting that a relationship equivalent to Clausius–Duhem–Trusdell inequal-
ity on each microplane, that is, φ̇αV ≥ 0 is not straight forward because of the complex integral
eq. (4.25). In fact it is mentioned in the recent M7–model [CANER and BAŽANT, 2013] that: ’The
dissipation rate on each microplane being non–negative is only a sufficient condition, not a necessary one;
only the combined dissipation rate on the microplane system must be non–negative, which means that the
dissipation can be negative on some microplanes.’
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From this discussion, we can consider the following two cases: (i) φ̇αV ≥ 0 ∀Ωα which directly
verifies φ̇V ≥ 0; (ii) ∃Ωα such that φ̇αV ≤ 0, however, φ̇V ≥ 0 is satisfied at the unit volume
(eq. (4.25)).

In [CAROL et al., 2001a], the negative dissipation on some microplanes is demonstrated using ex-
amples that involve complex loading–unloading behavior laws at the microplane level. However,
in the present context of microplane microdamage model, since we use simple constitutive laws
at the microplane level, we follow a different approach and derive a threshold on the Poisson’s
ratio such that the energy dissipation is non–negative both at the unit volume and the microplane
level for any loading–unloading path in section 4.3.2.2.

Internal variable Let us now define ωα as a function of an internal (history) variable, κα as:

ωα = g(κα) = 1− q(κα)

κα
(4.26)

where, g(κα) is the microdamage evolution function and q(κα) is the softening function. Here, κα

is defined as the historical maxima of an equivalent strain measure (ε̃α) on each microplane as:

κα = max
t

(ε̃π0 , ε̃
α(t)) (4.27)

where, ε̃π0 is a threshold equivalent strain corresponding to microdamage activation, t is the
present pseudo–time. Notice that in the following, upper-script π will always used to denote
microplane quantities that are independent of the chosen Ωα.

In the simple formulation proposed in this work, κα is defined as:

ε̃α =

√(
ε
α+
m

)2
+ β

(
ε
α+

l

)2 (4.28)

where, εα+
m and ε

α+

l are defined as the projections of the positive part of the continuum strain
tensor (eq. (2.13)) in the respective directions as:

εα+
m = Mα : 〈ε〉+

ε
α+

l = Lα : 〈ε〉+
(4.29)

(4.30)

and β ≥ 0 is a parameter that takes into account the contribution of the tangential strain to the
growth of microdamage. Since cracking in quasi–brittle materials is mainly controlled by exten-
sions [MAZARS, 1984], such a choice seems quite consistent from a physical viewpoint.

Remark. In microplane models with more than one microdamage variable [CAROL and BAŽANT,
1997, KUHL and RAMM, 1998], the corresponding internal variables are defined using the respec-
tive strain components in a decoupled manner. In the case of the proposed microplane microdam-
age model, the coupling between different components of strain is necessary since we use a single
microdamage variable to drive the dissipation in both the normal and tangential directions. This
is taken into account by the parameter β appearing in eq. (4.28).

Yield function The yield function (denoted by fα) is expressed in terms of ε̃α on each mi-
croplane as:

fα = fα(ε̃α) = ε̃α − κα (4.31)

Finally, the Kuhn–Tucker loading–unloading conditions are written for each microplane as:

ω̇α ≥ 0, fα ≤ 0, ω̇αfα = 0 (4.32)
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Damage evolution law In the present work, we define the softening function as an exponential
function of κα as:

qα = q(κα) = ε̃π0 exp(−B(κα−ε̃π0 )) (4.33)

where, B is a material parameter controlling the shape of the damage evolution function.

According to this choice, microdamage growth starts when ε̃α reaches the threshold value ε̃π0 and
then evolves exponentially to achieve unity when κα tends to infinity. Notice that alternative
(linear, bilinear . . . ) damage evolution models could have been used without major changes to
the theoretical framework.

Density of energy dissipation Let gf be the energy available for unit volume which is dissi-
pated at the end of the fracture process. This can be expressed using the expended power for a
unit volume as:

gf =

∞∫
0

σ : ε̇ dt (4.34)

Owing to the representation of the unit volume using microplane system, the relation between
the energy dissipation in a unit volume and that of on each microplane is given by:

gf =

∞∫
0

 1

π

∫
Ω

(σαmε̇
α
m + σαl ε̇

α
l ) dS

 dt (4.35)

where, ε̇αm = Mα : ε̇ and ε̇αl = Lα : ε̇.

Since microplanes do not interact with each other, eq. (4.35) can be rewritten using the expended
power on each microplane (gαf ) as:

gf =
1

π

∫
Ω

gαf dS (4.36)

where:

gαf ≡
∞∫

0

(σαmε̇
α
m + σαl ε̇

α
l ) dt (4.37)

It has to be noted that the power expended on the microplanes depends on the loading cycle.
Now, let us consider a load cycle in which all the available energy in a unit volume is dissipated.
This is possible only if all the microplanes dissipate the corresponding available energy at the end
of the load cycle (see eqs. (4.36) and (4.37)).

Hence, due to the assumed initial material isotropy, the time integral of the stress power on each
microplane is the equal for all the microplane, even though the evolution depends on the phase
of the load cycle (importantly, the direction of loading). According to this consideration, gαf is the
same on all the microplanes (i.e., gαf = gπf ).

The energy dissipation on each microplane (i.e., the fracture energy density at microplane level)
such that energy gf is dissipated at the continuum level, can now be easily computed from ana-
lytical integration of eq. (4.36):

gπf =
gf
2

(4.38)



64 Chapter 4 – Microplane microdamage model

4.3.2 Secant stiffness

Secant stiffness tensor can be derived by substituting the constitutive relations on microplanes
(eqs. (4.22) and (4.23)) in the stress tensor (4.19) as given below:

σ =
1

π

∫
Ω

(σαmMα + σαl Lα) dS

=
1

π

∫
Ω

[(1− ωα) (Emε
α
mMα + Elε

α
l Lα)] dS

=
1

π

∫
Ω

(Esmε
α
mMα + Esl ε

α
l Lα) dS (4.39)

where, Esm andEsl are the reduced secant stiffness parameters in normal and tangential directions
of each microplane:

Esm = (1− ωα)Em

Esl = (1− ωα)El

(4.40)
(4.41)

Now using the definitions of εαm and εαl (see eq. (4.1) and eq. (4.2) respectively), eq. (4.39) is rewrit-
ten as3:

σ = Cs : ε (4.42)

where, Cs is the fourth–order secant damage stiffness tensor:

Cs =
1

π

∫
Ω

Cα,s dS (4.43)

with:
Cα,s = Esm(Mα ⊗Mα) + Esl (Lα ⊗ Lα) (4.44)

Alternatively, this can be written as the reduction of the Hooke’s elastic stiffness matrix (E), due
to the evolution of microdamage on the localized microplane as:

Cs =
1

π

∫
Ω

(1− ωα)Eα dS

= E− 1

π

∫
Ω

ωαEα dS

(4.45)

(4.46)

where, E is retrieved using the microplane elastic constants (Em and El) as:

E =
1

π

∫
Ω

EαdS (4.47)

with Eα denoting the symmetric fourth order tensor defined on each microplane as:

Eα = Eαm(Mα ⊗Mα) + Eαl (Lα ⊗ Lα) (4.48)

4.3.2.1 Microplane elastic constants

Now, using the plane strain assumption and the relation (4.47), we derive the elastic constants in
normal and the tangential directions of the microplane.

3We use the definition of the dyadic product ⊗ between second order tensors. Given three second order tensors A, B
and D, one has: (A⊗ B) : D = (B : D)A.
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By performing the analytical integration over the surface of a semi–circle, the stress–strain relation
is obtained as:4 

σ11

σ22

σ21

 =
1

4

3Em + El Em − El 0

Em − El 3Em + El 0

0 0 2(Em + El)



ε11

ε22

ε21

 (4.50)

The stress–strain relation using the Hooke’s law in a plane strain condition is given by:
σ11

σ22

σ21

 =

λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 2µ



ε11

ε22

ε21

 (4.51)

where, λ and µ are Lame’s constants given in terms of the Young’s modulus E and the Pois-
son’s ratio ν. Now, using the equivalence between eqs. (4.50) and (4.51), we obtain the following
microplane elastic constants after some algebraic manipulations:

Em = 2(λ+ µ)

El = 2(µ− λ)

(4.52)
(4.53)

More details about the analytical derivation of microplane elastic constants are given in appendix
7.2.

4.3.2.2 Effect of ν on φ̇αV

Here, we obtain the range of Poisson’s ratio for which the energy dissipation on each microplane
(section 4.3.1) stays non–negative. By substituting the elastic constants (4.52), (4.53) in the eq. (4.24)
we get the following expression for φ̇αV :

φ̇αV = −Y αω̇α =
1

2

[
2(λ+ µ) (εαm)

2
+ 2(µ− λ) (εαl )

2
]
ω̇α (4.54)

Now, in the present context of microplane microdamage model, given that the Kuhn–Tucker
loading–unloading conditions (4.32) are satisfied, the rate of microdamage growth is always
non–negative, that is, ω̇α ≥ 0. Hence, from eq. (4.54), non–negative energy dissipation at the
microplane level is possible only if the energy release rate is negative. That is,

Y α < 0 =⇒ 1

2

[
2(λ+ µ) (εαm)

2
+ 2(µ− λ) (εαl )

2
]
> 0 =⇒

(
εαm
εαl

)2

>
−(µ− λ)

(λ+ µ)
(4.55)

Now, the expressions (εαm/ε
α
l )

2 and (λ + µ) are always non–negative for any loading–unloading
path and all values of µ and λ. Hence, the condition (4.55) is satisfied for all loading–unloading
paths if µ − λ > 0, that is ν < 0.25. Since this is the case for concrete, the non–negative energy
dissipation both at the unit volume and on each microplane is ensured in this work.

4Components σij = xi · σ · xj of the stress tensor can be easily computed as:

σij =
1

π

∫
Ω

(
Emε

α
mM

α
ij + Elε

α
l L

α
ij

)
dS (4.49)
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4.3.3 Tangent stiffness

Tangent stiffness tensor can be derived by rewriting the constitutive relations on microplanes in
the rate form as:

σ̇αm = (1− ωα)Emε̇
α
m − ω̇αEmεαm = Esmε̇

α
m − ω̇αEmεαm

σ̇αl = (1− ωα)Elε̇
α
l − ω̇αElεαl = Esl ε̇

α
l − ω̇αElεαl

(4.56)
(4.57)

The rate of variation of the damage variable (ω̇α) is given by:

ω̇α(κα) = (gα)′κ̇α (4.58)

where, (gα)′ = dgα/dκα is the derivative of the damage function with respect to κα, which is
obtained using eqs. (4.26) and (4.33) as:

(gα)′ =

[
B

κα
+

(
1

κα

)2
]
ε̃0 exp(−B(κα−ε̃π0 )) (4.59)

and
κ̇α = ηαmε̇m + ηαl ε̇l (4.60)

where, ηαm and ηαl are the derivatives of κα with respect to εαm and εαl respectively:

dκα

dεαm
=
ε
α+
m

ε̃α
= ηαm

dκα

dεαl
= β

ε
α+

l

ε̃α
= ηαl

(4.61)

(4.62)

Now, the stress tensor can be rewritten in rate form as:

σ̇ =
1

π

∫
Ω

(σ̇αmMα + σ̇αl Lα) dS (4.63)

By substituting the constitutive relations eqs. (4.23) and (4.56) in eq. (4.63), and using the rate of
microdamage evolution eq. (4.58), we obtain the following relation:

σ̇ =
1

π

∫
Ω

{[1− ωα − (gα)′(ηαmε̇
α
m + ηαl ε̇

α
t )εαm]Emε

α
mMα

+ [1− ωα − (gα)′(ηαmε̇
α
m + ηαl ε̇

α
l )εαl ]Elε

α
l Lα } dS (4.64)

Now, using the kinematic relations (eqs. (4.1) and (4.2)) in rate form, and after some mathematical
manipulations, we obtain the constitutive relation at the unit volume in the rate form as:

σ̇ = Ct : ε̇ (4.65)

where, Ct is fourth order tangent stiffness tensor given by:

Ct =
1

π

∫
Ω

{[1− ωα − (gα)′ηαmεm]Em(Mα ⊗Mα) + [1− ωα − (gα)′ηαl εl]

El(L
α ⊗ Lα) −(gα)′ηαmElεl(L

α ⊗Mα)− (gα)′ηαl Emεm(Mα ⊗ Lα)} dS (4.66)

or equivalently by:

Ct = Cs − 1

π

∫
Ω

(gα)′ [ηαmεmEm(Mα ⊗Mα) + ηαl εlEl(L
α ⊗ Lα)

+ ηαmElεl(L
α ⊗Mα) + ηαl Emεm(Mα ⊗ Lα)] dS (4.67)
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From eq. (4.67), it can be easily noted that in the case of unloading (i.e., ω̇α = 0 for all microplanes)
the tangent and secant stiffness tensors are identical.

In addition to that, the tangent stiffness tensor can also be written in more concise form as:

Ct =
1

π

∫
S

[Cα,s − (gα)′ (σ̃α ⊗ ηα)] (4.68)

or equivalently as:

Ct = Cs − 1

π

∫
Ω

(gα)′ (σ̃α ⊗ ηα) dS (4.69)

where σ̃α is the effective (elastic) microplane stress tensor:

σ̃α = Emε
α
mMα + Elε

α
l Lα (4.70)

and tensor ηα is the derivative of the internal variable with respect to the total strain tensor:

ηα =
dκα

dε
= ηαmMα + ηαl Lα (4.71)

Remark. It can be easily identified that the tangent damage stiffness tensor (4.68) of the mi-
croplane microdamage model has the same form as the corresponding ones of other continuum
isotropic/anisotropic damage models [JIRÁSEK, 2016].

4.3.4 Loss of ellipticity of the rate equilibrium problem

In this section, we derive the conditions for which strain localization occurs when the material
behavior is modeled using microplane microdamage model. Mathematically, the localization of
strain into a band (whose outward normal is n) is understood as the discontinuous bifurcation
solution of the rate equilibrium problem due to the loss of ellipticity [HILL, 1958, HILL, 1962,
RICE, 1976]. The later is associated with the so called acoustic tensor (Q), which is defined in
terms of the material tangent stiffness tensor as:

Q = n · Ct · n (4.72)

Now, the localization analysis consists in finding the unit vector n for which the acoustic tensor
Q becomes singular, that is:

det Q = 0 (4.73)

where, ’det(•)’ denotes the determinant of second-order tensor (•).

By substituting the expression of Ct, (4.66) in eq. (4.72), we obtain the acoustic tensor in the case
of microplane microdamage model as:

Q = n ·
[

1

π

∫
Ω

[Cα,s − (gα)′ (σ̃α ⊗ ηα)] dS

]
· n

=
1

π

∫
Ω

Qα dS (4.74)

where:
Qα = n · [Cα,s − (gα)′ (σ̃α ⊗ ηα)] · n

= n · Cα,s · n− (gα)′σ̃αn ⊗ ηαn (4.75)

with σ̃αn = n · σ̃α and ηαn = ηα ·n, is the localization tensor defined on each microplane that gives
the contribution of each microplane to the strain localization in the direction of n.
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Remark. It has to be noted that the loss of ellipticity of the rate equilibrium problem is associated
to the acoustic tensor (Q) which in turn is only associated to the integral of localization tensors
from all the microplanes and not the individual contributions (Qα).

In general, several solutions of n that satisfy the localization condition (4.73) are possible. In the
standard localization analysis, a complementary condition is defined on an internal variable (ε̃α

in this case) to find the potential discontinuity plane, ncrit. But in the present context, this would
require to perform an analytical integration which is not possible in general loading cases.

However, the localization analysis of the microplane model can be performed numerically [KUHL
and RAMM, 1998] by choosing n as the normal (mα) of each microplane. Then, a set containing
the determinant of the acoustic tensors that satisfies the localization condition (denoted by L) is
obtained as:

L =
{

det Qn=mα |det Qn=mα = mα · Ct ·mα ∀mα ∈ Ω; det Qn=mα ≤ 0
}

(4.76)

Finally, ncrit is chosen as normal of the microplane that corresponds to the critical determinant of
the acoustic tensor (denoted by det Qn=ncrit) which is defined as the minimum in L as:

ncrit = min
mα

[
det mα · Ct ·mα

]
det Qn=ncrit = det(ncrit · Ct · ncrit)

(4.77)

(4.78)

Now, if the condition for loss of ellipticity (4.73) is satisfied, then there exists a non-trivial vector
r such that:

Qn=ncrit · r =
1

π

∫
Ω

Qα
n=ncrit dS · r = 0 (4.79)

Here, r is the eigenvector of Q corresponding to the direction of discontinuity in the strain field.
Also, the mode of opening depends on inclination of r with respect to n. If r is parallel to n
then the localization band opens in mode I without sliding while for other cases, a mixed mode
opening occurs.

Remark. As for other microplane models, loss of ellipticity condition for the proposed model
cannot be studied in an analytic way as in standard damage models (except for some simple
loading path and simplified model). However, this study can be done numerically by computing
microplane acoustic tensors Qα and finding the vector ncrit given by eq. (4.77). Then one can
identify vector r. Furthermore, a criterion on each microplane equivalent to localization criterion
(4.73) such as det Qα = 0 cannot be established because of the integral relation (4.74). In other
words, localization has to be studied at the material point, since it concerns the rate equilibrium
problem.

Further investigations on the implications of the integral relation (4.74) on the loss of ellipticity
for uniaxial tension are carried out in the section 4.5.1 using a numerical example.

4.4 Numerical implementation of the microplane microdamage model

In a nonlinear finite element context, the microplane micro damage model is used at each Gauss
integration point in order to evaluate the stress tensor and elementary stiffness matrices. From a
computational viewpoint, this can achieved easily by projecting the strain tensor on microplanes
and then use relationships introduced above for computing the stress tensor and material stiffness
at the continuum level from integration of the corresponding microplane quantities.
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4.4.1 Integration of microplane quantities

A huge literature exist concerning spherical integration techniques for microplane models based
on spherical representation of the microplane system. These schemes are developed based on
either theory of orthogonal polynomials, for example, Stroud’s integration scheme [STROUD,
1971] and Lebedev’s integration scheme [LEBEDEV and LAIKOV, 1999] or the Taylor’s series
expansion of the function on the surface of the sphere (bazant’s integration scheme [BAŽANT
and OH, 1986]). The efficiency of the integration schemes depends on the invariance of the stress–
strain response with respect to an arbitrary rigid body rotations of the set of integration points.
All the developed integration formulae possess symmetry with respect to the center of the sphere.
Due to this, the integration is performed over an hemisphere instead of a full sphere.

In this work, given the symmetry of the domain and because function σα is periodic with period
π (i.e., σα = σα+π) the integration in eq. (4.19) is restricted to the contour of a unit semi–circle.
The half microplane system Ω is then discretized as the set ofNα microplanes of normal mα, such
that one microplane is always orthogonal to x1 (i.e., α = 0◦). As a consequence, the inclination
of the i-th microplane with respect to the horizontal axis is (i − 1)180◦/Nα. Alternatively, if
both microplanes whose normal corresponds to α = 0◦ and α = 180◦, the inclination of the i-th
microplane with respect to the horizontal axis can be obtained as (i − 1)180◦/(Nα − 1). Note
that for Nα = 2, we can include either the microplane whose normal corresponds to α = 0◦ or
α = 180◦ but not both.5

The stress tensor σ is finally obtained as:

σ =
2

π

∑
Nα

(σαmMα + σαl Lα) Wα (4.80)

where, Wα = π/Nα is the weight associated to each microplane (equal in all directions in the
present case). The same integration formula is used for other quantities (stiffness tensor, dissi-
pated energy. . . ) which are defined through circular integration on microplanes.

As it will be shown later, the chosen method is well suited for the purpose of the present work
despite its relative simplicity.

4.4.2 Energetic regularization

Since the volumetric energy density of the microplane microdamage model is not an objective
quantity, a characteristic length (lc) is required to obtain mesh independent solutions in the con-
text of FEM. In literature, microplane models are regularized using crack band [ČERVENKA et al.,
2005], nonlocal [BAŽANT and di LUZIO, 2004] and gradient enhanced [ZREID and KALISKE,
2018] approaches, among others. In a finite element context, these formulation leads to restore
mesh independence of the obtained results. They impose, however, additional computational
costs due to the need of computing averaged quantities that drive the damage evolution (e.g., in
nonlocal models) or to solve an additional diffusion-like equation (e.g., in gradient formulations).

An alternative approach that is commonly used in the literature [JIRÁSEK and BAUER, 2012,
XENOS and GRASSL, 2014] in order to reduce mesh sensitivity, with a moderate computational
cost, is based upon the so-called ’energetic regularization’ technique [PIETRUSZCZAK and MROZ,
1981, BAŽANT and OH, 1983]. According to this approach, a length lc is introduced into the con-
stitutive equations using a direct relationship between the volumetric and the surface energy
densities as follows:

gf =
Gf
lc

(4.81)

5As an example of this, forNα = 2, the two considered microplanes are such that α is equal to 0◦ and 90◦ respectively.
For Nα = 3 one considers three microplanes with normal vectors inclined of 0◦, 60◦ and 120◦ respectively with respect
to the horizontal axis. Following the second approach, for Nα = 21, microplanes are inclined at 0◦, 9◦ . . . 180◦.
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The relation (4.81) says that the volumetric energy dissipated in an unit lc is taken equal to the
energy required to create an unit crack surface which can be considered as a material property,
in other words, an objective quantity. Length, lc is defined using the characteristics of the mesh
[OLIVER, 1989, JIRÁSEK and BAUER, 2012], e.g., the type of finite element and its size6. For
example, in the case of 1D finite elements, lc can be defined as the size of the element. In the case
of higher dimensional finite elements, lc is defined as a certain measure of the element.

Volumetric energy density Now, substituting eq. (4.81) in the relationship (4.38) between en-
ergy dissipation density on each microplane and that of a unit volume, we obtain the following
relationship:

gπf =
Gf
2lc

(4.82)

By substituting the expression for the power expended on each microplane (4.37) in eq. (4.82), we
get:

Gf
2lc

=

∞∫
0

(σαmε̇
α
m + σαl ε̇

α
l ) dt (4.83)

Substituting eqs. (4.22) and (4.23) in eq. (4.83) we obtain:

Gf
2lc

=

∞∫
0

(1− ωα) (Emε
α
mε̇

α
m + Elε

α
l ε̇
α
l ) dt (4.84)

Regularized damage evolution model Given the exponential damage evolution law (4.26), the
energetic regularization problem comes into finding the scalar parameter B = B(lc) such that:

Gf
2lc

=

t0∫
0

(Emε
α
mε̇

α
m + Elε

α
l ε̇
α
l ) dt+

∞∫
t0

ε̃π0
κα

exp(−B(κα−ε̃π0 )) (Emε
α
mε̇

α
m + Elε

α
l ε̇
α
l ) dt (4.85)

where, t0 is the time instant at which the microplane equivalent strain reaches the strain level
corresponding to damage activation.

This requires analytically integrating previous equation, which is possible only for the hypothet-
ical case of ν = 0 (i.e., Em = El = E) and β = 1. Consider a uniaxial tensile loading in the
direction of axis 2 (or equivalently 1), i.e., ε = ε22 x2 ⊗ x2. Since in this case εα+

m = εm = sin2 α ε22

and εα+

l = εl = sinα cosα ε22, the first term of previous equation reads:

E

∫ t

0

(εαmε̇
α
m + εαl ε̇

α
t ) dt = E sin2 α

∫ t

0

ε22 dε22 = E

∫ ε̃π0

0

ε̃α dε̃α =
1

2
E (ε̃α)

2 (4.86)

where, we used the relationship ε̃α = ε22 sinα. Furthermore, during the damaging phase, the
history variable and its rate of variation (4.60) read:

κα = ε̃α and κ̇α =
εαmε̇

α
m + εαl ε̇

α
l

ε̃α
. (4.87)

So, we can rewrite the second contribution figuring in eq. (4.85) in terms of the sole variable κα.
As a consequence, eq. (4.85) can be rewritten as:

Gf − E (ε̃α)
2
lc

2lc
= Eε̃π0

∞∫
ε̃π0

exp(−B(κα−ε̃π0 )) dκα (4.88)

6We recall that in other regularization methods like the nonlocal methods, lc has a physical meaning in that it measures
the fracture process zone.
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for each microplane, except the one with mα orthogonal to the loading direction.

Finally, after performing the analytical integration, the material parameter B is obtained in terms
of lc as:

B =
2Eε̃π0 lc

Gf − E (ε̃π0 )
2
lc

(4.89)

Even though we consider here the case of ν = 0 (and β = 1) for the sake of analytical integration,
we study the influence of non–zero Poisson’s ratio, ν = 0.2 (and β = 1) using a numerical example
in the section 4.5.2.

4.5 Numerical case studies

In this section, we present the numerical test cases to study different aspects of the microplane
microdamage model. First, we illustrate the projection operation and the thermodynamic consis-
tency of the microplane microdamage model. This is followed by the study on the influence of the
parameters of the constitutive model and the numerical integration. Later, the mesh dependency
studies of the proposed model are performed. Finally, the advantages of the microplane model in
handling the anisotropic damage growth are highlighted.

4.5.1 Uniaxial tensile loading

In order to illustrate the characteristic behavior of the microplane microdamage model, a numer-
ical experiment with a uniaxial tensile loading is performed.

4.5.1.1 Problem setting

We consider a unit concrete specimen which is discretized using 2 CST elements (fig. 4.2) and
apply the loading (vertical imposed displacements) on the upper boundary whereas the bottom
boundary is constrained. Here, the only dissipation mechanism considered is the damage growth
and no cracks are initiated. The material parameters of the microplane microdamage model are
also shown in fig. 4.2.

Here, we chose the value of the parameter β as 1 in order to completely take into account the
contribution of εαl for ε̃α. Also, Nα = 361 which gives a microplane for each 0.5◦ is chosen to

material parameter value
Young’s modulus 36 GPa

Poisson’s ratio 0.20

ε̃π0 10−4

β 1

Nα 361

Gf 1000 N/m

Figure 4.2: FE discretization of the specimen (1 m × 1 m) under vertical loading (a) and the material param-
eters of microplane microdamage model (b)
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ensure a sufficient accuracy for the numerical integration. A detailed analysis of the response
of the microplane microdamage model for other values of these parameters is studied later in
the section 4.5.2. Finally, the reference axis to compute the angle α of the normal mα of a given
microplane is chosen as the axis 1 aligned in the horizontal direction (fig. 4.2).

Preliminary considerations Given the simple geometrical and loading conditions, the expres-
sions of εαm and εαl can be derived analytically by considering the state of strain at the Gauss point
given by:

ε = ε22(−νx1 ⊗ x1 + x2 ⊗ x2) (4.90)

where ε22 = u2 because of unit specimen. Using eqs. (4.10) and (4.11), the normal and tangential
microplane strains can therefore be expressed as:

εαm = ε22

(
−ν cos2 α+ sin2 α

)
, εαl = ε22 (1− ν) cosα sinα (4.91)

Furthermore, since:
〈ε〉+ = ε22 x2 ⊗ x2 (4.92)

one has that:
εα+
m = sin2 α ε22, ε

α+

l = sinα cosα ε22 (4.93)

So:
ε̃α = ε22 sinα (4.94)

From previous equations, it can be noted that the microplanes corresponding to α = 0◦ and
α = 180◦ stay in the compression regime (i.e., εαm = −νε22 and εαl = 0) through out the loading
history, whereas microplane corresponding to α = 90◦ is under pure tension.

Moreover, damage evolution is driven by ε22 through the internal variable ε̃α = ε22 sinα. In other
words, for the microplanes corresponding to α = 0◦ and α = 180◦ the history variable κα stay at
επ0 throughout the loading process (i.e., no damage occurs), whereas κα = maxt(ε̃

π
0 , ε22(t)) for the

microplane corresponding to α = 90◦.

4.5.1.2 Global and local responses

Global response The global response of the specimen is shown in fig. 4.3. As expected, the
reaction force first increases linearly (elastic phase). Then a softening phase, corresponding to the
progressive evolution of microdamage at microplanes level is obtained.

Distribution profiles of strain components Here, we study the evolution of the local quanti-
ties (at Gauss point level) by plotting the corresponding distribution profiles over the microplanes.

The evolution of the distribution profiles of εαm and εαl computed at different points along the
global curve (fig. 4.3) are given in figs. 4.4a and 4.4b respectively. It can be easily noticed that the
distribution of εαm is symmetric with respect to the direction of loading, while the distribution of
εαl is anti-symmetric with respect to the direction of loading.

The maximum value of εαm occurs on the microplane corresponding to α = 90◦ (fig. 4.4a) which
is aligned with the direction of the loading. In the case of εαl , the absolute maximum value occurs
on the microplanes corresponding to α = 45◦ and α = 135◦ (fig. 4.4b), whose inclination with the
direction of the loading is 45◦ in clockwise and anti–clockwise sense respectively.

These numerical results are in accordance with the analytical expressions obtained by the pro-
jection operation in the case of uniaxial loading. It can also be verified numerically that the mi-
croplanes whose normal (α = 0◦ and α = 180◦ in fig. 4.4a) is orthogonal to the direction of loading
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Figure 4.3: Force–displacement curve in vertical direction characterized by the softening response of the
microplane microdamage model

are in the compression regime in normal direction due to the Poisson’s effect. It can also be ob-
served from fig. 4.4a that as the loading progress there is a regime change for some microplanes
from compression to tension in the normal direction.

The evolution of the distribution profiles of ε̃α is shown in fig. 4.5. Owing to the projection of the
positive part of the strain tensor, the contribution of the microplanes in the compression regime
to ε̃α is not taken into account. Given the definition of ε̃α (eq. (4.28)), it is expected to stay positive
throughout the loading history which is observed.
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Figure 4.4: Distribution profiles of εαm (a) and εαl (b) over the microplane system at various stages of uniaxial
loading in vertical direction
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Figure 4.5: Distribution profiles of ε̃α over the microplane system at various stages of uniaxial loading in
vertical direction

Distribution profiles of stress components The distributions of σαm and σαl before the peak
follow the same trend as εαm and εαl , as shown in figs. 4.6a and 4.6b respectively. Before the load
peak, the maximum value of σαm occurs on the microplane α = 90◦ while the absolute maximum
value of σαl occurs on the microplanes corresponding to α = 45◦ and α = 135◦.

Now, the elastic limits of σαm and σαl just before the initiation of microdamage can be computed
as Em (εαm)ε̃α=ε̃π0

= 5 × 106 Pa and El (ε
α
l )ε̃α=ε̃π0

= 6.25 × 105 Pa. But the maximum values of
the distributions of σαm and σαl at the peak (B in the figs. 4.6a and 4.6b respectively) does not
correspond to the respective elastic limits, because the microdamage is initiated before the peak
is reached. This will be explained later in the section 4.5.1.3 using the numerical localization
analysis.

As the microdamage progresses, the stress level on the corresponding microplane decreases. The
reduction in the stress level is more on the microplanes with maximum microdamage.

Distribution profiles of microdamage and energy dissipation The evolution of the micro-
damage distribution profiles over the microplane system is shown in fig. 4.7a. Due to the loading
induced anisotropy, the evolution of the microdamage is maximum on the microplane whose nor-
mal is aligned with the loading direction (α = 90◦ in fig. 4.7a). There is no microdamage evolution
on the microplanes aligned in the orthogonal direction of the loading (α = 0◦ and α = 180◦ in
fig. 4.7a) which are in compression regime.

The same trend is followed by the energy dissipation profile as shown in fig. 4.7b. The maximum
energy dissipation occurs on the microplane on which the rate of microdamage is maximum. In
the case of microplanes on which there is no evolution of microdamage, the energy dissipation is
zero.

4.5.1.3 Numerical localization analysis

As discussed in the section 4.3.4, we perform the localization analysis of the microplane micro-
damage model numerically due to the presence of the complex integral in the definition of the
acoustic tensor, eq. (4.74). First, we present the identification of critical normal of the localization
band in the case of uniaxial tensile test. Then, the implications of the integral relation, eq. (4.74) on
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Figure 4.6: Distribution profiles of σαm (a) and σαl (b) over the microplane system at various stages of uniaxial
loading in vertical direction
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Figure 4.7: Distribution profiles of ωα (a) and φαV (b) over the microplane system at various stages of uniaxial
loading in vertical direction

the critical internal variable at which the loss of ellipticity of the rate equilibrium problem occurs
will be studied.

Critical normal to localization plane In order to identify the critical normal to the localization
band, we first calculate Qn=mα by choosing n as the normal to each microplane:

Qn=mα = mα · Ct ·mα ∀mα (4.95)

and compute its determinant, det Qn=mα . Then, the critical normal of the localization band is
identified according to the criterion (4.77).
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Figure 4.8: Numerical localization analysis: distribution profiles of detQ∗ (a), time evolution of detQ and
detQα=90◦ (b)

fig. 4.8a depicts the evolution of distribution of det Qn=mα . First, the distribution at the time step
which corresponds to no microdamage (A in fig. 4.8a) which is followed by the distribution at the
initiation of the microdamage (tω in fig. 4.8a). Later the distributions of det Qn=mα are plotted at
an increment of 25 time steps from the initiation of the microdamage (tω + 25 and tω + 50 in the
fig. 4.8a) to the time step at the peak (B in fig. 4.8a).

At the initiation of microdamage the determinant of the acoustic tensor is positive for the nor-
mals of all the microplanes. But the determinant of the acoustic tensor becomes negative on some
microplanes at the peak. However, the time step at which it becomes zero is difficult to cap-
ture. In the present case, the minimum of det Qn=mα occurs in the direction of the microplane
corresponding to αcrit = 63.82◦.

From these observations, the deviation of the critical normal from the direction of the loading
in the case of uniaxial tension is obtained as 26.7◦ for ν = 0.2. This value can be compared
with the deviation angle obtained in the same case using an isotropic damage model with Mazars
equivalent strain [RIZZI et al., 1995] for which it is 27◦ and Desmorat’s anisotropic damage model
[JIRÁSEK, 2016] for which it is 23◦.

In [KUHL and RAMM, 1998], the localization analysis is performed for the microplane model in
which 3 independent microdamage variables are used for volumetric, deviatoric and the tangen-
tial components. In this case, it is identified that the localization occurs in the direction of the
microplane corresponding to the direction of the loading. This is because the rate of evolution of
the tangential microdamage variable is significantly less than that of the corresponding normal
ones. As a consequence, the localization plane corresponds to the pure tension failure without
any effect of the shear failure mechanism. However, in the present work, since a single micro-
damage variable is used for both the normal (no split) and the tangential directions of a given
microplane, the shear mechanism has a significant impact on the orientation of the failure plane.

Critical internal variable The next step is to find the critical internal variable at the onset of
localization. In order to do so, we first compute det Q by substituting identified ncrit in eq. (4.72).
Here, we note that the important contribution to Q comes from the microplane on which micro-
damage is initiated first, which in this case, corresponds to α = 90◦. The corresponding contribu-
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tion det Qα=90◦ is computed from eq. (4.75). Of course, comparison is established for illustrative
purposes only, since loss of ellipticity of the rate equilibrium problem is only related to Q.

The time evolution of det Qα=90◦ and det Q are plotted in fig. 4.8b. Here, det Qα=90◦ becomes
negative as soon as the evolution of the microdamage begins. But det Q becomes negative only
when sufficient number of microplanes are localized. In the present case, both the microdamage
initiation occurs for the maximum value of κα = 10−4 while the loss of ellipticity occurs for the
maximum value of κα = 1.047× 10−4.

4.5.2 Parametric studies

In this section, the influence of the parametersNα and β on the response of the microplane micro-
damage model is studied. For this purpose, we repeat the the uniaxial tensile loading experiment
as in the previous section 4.5.1 to study the global response for different values of these parame-
ters.

4.5.2.1 Influence of the number of microplanes

One of the advantages of the disk microplane system [PARK and KIM, 2003] compared to the
spherical microplane system is that the numerical integration over the surface of the circle is less
complex than numerical integration over the surface of the sphere. But for the sake of accuracy
of the numerical integration scheme, an optimum number of microplanes has to be selected. In
order to achieve that, we study here the influence of the number of microplanes on the global
response of the uniaxial tensile test.

We compare the force–displacement curve in vertical direction for different number of microplanes
and two values of Poisson’s ratio in fig. 4.9a (ν = 0) and fig. 4.9b (ν = 0.2). For ν = 0, the elastic
stiffness is well captured for all the values of Nα. In the case of ν = 0.2 (a more general case for
ν > 0), Nα = 2 is no more enough, but at least Nα = 3 microplanes are necessary for recovering
the elastic properties.

Obtaining a microplane discretization independent response in the non-linear regime requires
using more microplanes. In order to understand the convergence of the response, we plot the peak
of the global curves (F2)peak and the amount of dissipated energy during the uniaxial loading in
vertical direction for different values of Nα and ν in figs. 4.10a and 4.10b respectively. For both
the cases of ν = 0 and ν = 0.2, (F2)peak can be considered as converged for Nα ≥ 21 (fig. 4.10a).
Concerning the dissipated energy, convergence is achieved for Nα ≥ 9 (if ν = 0) and for Nα ≥ 21
(if ν = 0.2) (fig. 4.10b).

Remark. Notice that this result in fully consistent with results presented in the original work on
disk microplane model [PARK and KIM, 2003], in which the same number of microplanes (21) are
considered for numerical integration. As a result of this analysis, we consider Nα = 21 for the
rest of the numerical studies in this work.

4.5.2.2 Influence of parameter β

The parameter β influences the equivalent strain computed on each microplane which in turn
affects the rate of microdamage growth on the localized microplanes. In the case of β = 0, the
microdamage is driven by only the normal component of the positive strain tensor. For β = 1,
the contribution of the tangential strain is completely taken into account and the definition of the
equivalent strain becomes the norm of 〈ε〉+ ·mα on each microplane.

In fig. 4.11a the force–displacement curves in the case of uniaxial tension for different values
of β are depicted. We observe that for higher the values of β, (F2)peak is lowered (figs. 4.11a
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Figure 4.9: Influence of Nα: force–displacement curves in vertical direction for ν = 0 (a) and ν = 0.2 (b)
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Figure 4.10: Influence of Nα on the peak of the global curve (a) and φV (b) of uniaxial tensile test

and 4.11b). Conversely, for lower values of β, non–zero residual forces, that is stress locking is
observed (fig. 4.11a).

In order to explain the influence of β on the peak, we plot the distributions of microdamage on the
microplanes at the peak and a time step after the peak in fig. 4.12a. We observe that the number
of microplanes that enter into the damage regime are more for the case of β = 1 than for the case
of β = 0. As the dissipation between these two steps is more for the higher values of β, the peak
is lowered.

The stress locking can be explained by plotting the microdamage distribution on the microplanes
at the end of the loading as shown in fig. 4.12b. The number of microplanes on which the damage
is not initiated is higher in the case of β = 0 than in the case of β = 1. This is because for β = 1,
even though εαm is non-negative the microdamage is driven by εαl (definition of ε̃α). But this is not
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the case for β = 0. Thus, the microplanes on which εαm is negative does not dissipate any energy
throughout the loading history for β = 0 leading to stress locking.

In order to avoid the stress locking, we chose β = 1 in all the numerical tests in the rest of this
work.
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Figure 4.11: Influence of β on the global response of uniaxial tensile test: force–displacement curves in
vertical direction (a) and corresponding peaks (b)
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Figure 4.12: Influence of β on the evolution of ωα: before vs. after the peak of the global response (a) and at
the end of the vertical tensile loading (b)

4.5.3 Mesh dependency studies

In this section, the ability of the energy regularization technique to obtain mesh independent
results for different combinations of mesh discretizations and definitions of lc is studied.
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4.5.3.1 Problem setting

A concrete bar with dimensions as shown in fig. 4.13 is considered and an uniaxial loading in the
horizontal direction is applied. We allow the localization band of width w to form only in the
central part of the bar by considering the microplane model in this part. The rest of the bar is
assumed to behave in elasticity. Here, the indirect load control technique, CNDI (section 3.5.2.2)
is used to apply the loading. The following path-following constraint is written:

P =
1

2

[(
∆dB1 −∆dA1

)
+
(
∆dC1 −∆dD1

)]
−∆τ = 0 (4.96)

where, ∆dA1 , ∆dB1 , ∆dC1 and ∆dD1 are the nodal displacements at pointsA,B,C andD respectively
(fig. 4.13) and ∆τ is taken as 3.75× 10−6 m.

Now, we consider different mesh discretizations of the given specimen using CST elements by
parameterizing the width (we) and height (he) of the weakened element (or elements) as shown
in the table 4.1. We obtain mesh–1, mesh–2 and mesh–3 by varying we while he is kept constant.
For these meshes, the aspect ratio ae = we/he also varies. Finally, mesh–4 is obtained by keeping
the same aspect ratio as in the case of mesh–1, that is, both we and he are different for the two
meshes.

Here, we study the global response of the specimen for two definitions of lc. Since, the width
of the localization band is known in the present example, the first choice is lc = we. Next, we
consider another definition, lc =

√
2Ae which is widely used in the literature. This definition

gives the width of the localization band formed in a square which is divided diagonally by 2
triangular elements.

4.5.3.2 Results

The global responses of the considered meshes (table 4.1) are shown in figs. 4.14a and 4.14b for
lc = we and lc =

√
2Ae respectively. For the definition lc = we, the global responses of all the

meshes are independent with respect to each other. For the definition lc =
√

2Ae, only the global
responses of mesh–1 and mesh–4 are independent with respect to each other. That is, the mesh
independent results are obtained only when the aspect ratio is kept constant for this definition.
This can be explained by the fact that lc =

√
2Ae does not give a direct measure of the localization

band (unlike lc = we) because the central part of the specimen is a rectangle and not a square.

One can avoid this ambiguity by resorting to projection methods [OLIVER, 1989, JIRÁSEK and
BAUER, 2012] for evaluating lc. In the rest of this work, we keep the aspect ratio constant for
different meshes (whenever possible) and use the definition lc =

√
2Ae.

Figure 4.13: Specimen for mesh dependency studies: a concrete bar under tensile loading
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Table 4.1: Different meshes adopted for the mesh dependency study

meshes

we = 0.2m, he = 0.1m, ae = 2

we = 0.1m, he = 0.1m, ae = 1

we = 0.05m, he = 0.1m, ae = 0.5

we = 0.1m, he = 0.05m, ae = 2
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Figure 4.14: Mesh dependency studies: comparisons of force–displacement curves in horizontal direction
for different meshes by considering lc = we (a) and lc =

√
2Ae (b)
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4.6 Discussion on advantages of the microplane microdamage model

In this section, the anisotropic characteristics of the microplane microdamage model are high-
lighted. We compare the response of the microplane microdamage model in two phase loading
case (detailed in the section 3.6.5.1) with that of the isotropic damage model [MAZARS, 1984]
and the extended EFEM (section 3.6). We recall that during this experiment, we apply a vertical
loading followed by unloading of the specimen and application of horizontal loading.

Isotropic damage model The global responses in vertical and horizontal loading phases us-
ing isotropic damage model are shown in figs. 4.15a and 4.15b respectively. During the vertical
loading in the first phase, a peak is observed (stage A) followed by the softening behavior due
to the damage growth. After dissipating certain amount of energy, unloading of the specimen
begins (at stage B). During unloading phase, the stiffness of the material is reduced due to the
irreversible nature of the damage. It has to be noted that the reduction of stiffness is the same in
all the directions in this case because the damage is modelled in an isotropic manner. Hence, the
response to the loading in horizontal direction is characterised by the reduced elastic stiffness. As
the force level reaches the unloading point B, the softening occurs due to the further isotropic
damage growth.

Extended EFEM In this case, we recall that the response to the two phase loading is character-
ized by the same initial elastic stiffness and the peak of the global responses in both the phases of
loading. Further, two orthogonal cracks are initiated as the principal stress component exceeds
the strength of the material in both directions (section 3.6). As the initial phase of anisotropic dam-
age is not taken into account, the complete strain localization process is not captured. Moreover,
the parameters of the cohesive laws (Gf and ft) of the two cracks are considered the same.

Microplane microdamage model The global responses in vertical and horizontal directions
using microplane microdamage model are presented in figs. 4.16a and 4.16b respectively. Owing
to the anisotropic damage growth, the response in the second phase of the loading is character-
ized by the reduction of stiffness (OF in fig. 4.16b) which is different from both the initial elastic
modulus (OC in fig. 4.16a) and the unloading modulus (OD in fig. 4.16a). Also, the peak force
level reached in the second phase of loading (F in fig. 4.16b) is between the peak force level and
the unloading force level (C and D in fig. 4.16a respectively) reached during the first phase of
loading.

Comparisons in perspective of the energy dissipation This behavior can be easily explained
by the evolution of the energy dissipation profiles on the microplane system during both the
phases. During the first phase of uniaxial loading (in vertical direction), we recall that the max-
imum energy dissipation (fig. 4.7b) is in the direction of the loading (α = 90◦) while there is no
energy dissipation in the orthogonal direction (α = 0◦ and α = 180◦). Furthermore, as already
mentioned, energy dissipation at other microplanes is in between these extreme values (fig. 4.7b).
This explains the observed elastic stiffness and the peak during the second phase of the loading
in the case of microplane microdamage model. It has to be noted that both the isotropic damage
model and the extended EFEM lack the description of directional energy dissipation.

In the second phase of the loading, due to the change in the loading direction, the microplanes
that are aligned in the horizontal direction (α = 0◦ and α = 180◦) starts dissipating energy (F , G
and H in fig. 4.17). Also, we note that there is no further energy dissipation on the microplane
corresponding to α = 0◦. The residual energy at the end of the second phase of loading is shown
in the shaded area of fig. 4.17.
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Figure 4.15: Response of the isotropic damage model during the two phase loading experiment: force–
displacement curves in vertical direction (a) and horizontal direction (b)
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Figure 4.16: Response of the microplane microdamage model during the two phase loading experiment:
force–displacement curves in vertical direction (a) and horizontal direction (b)
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Figure 4.17: Distribution profiles of φαV over the microplane system at various stages of two phase loading
experiment

4.7 Conclusions

The microplane microdamage model is formulated in the framework of disk microplane system
under plane strain assumption. In this framework, the projection operation of strain and the
numerical integration of stress are carried out over the surface of a semi–circle. In thermodynamic
framework, an integral relationship between the free energy potential at the unit volume and each
microplane is assumed. This leads to a relationship between the density of the energy dissipation
in the unit volume and that of on each microplane. Using this relationship, an expression for the
residual energy on each microplane is derived. Using the energy regularization technique, an
expression for the model material parameter (B) is derived in terms of the characteristic length.
From numerical case study of the uniaxial tensile test, it can be concluded that the modeling
strategy to use a single microdamage variable seems to be effective and simple. The evolution of
the strain components, microdamage and the energy dissipation shows the anisotropic character
of the proposed microplane microdamage model. Numerical localization analysis shows that
there is a delay between the initiation of the microdamage and the loss of ellipticity of the rate
equilibrium problem.

From the parametric studies, Nα = 21 and β = 1 are selected for the rest of the numerical cases in
this work. It is verified from global responses for several mesh discretizations that the proposed
model gives mesh independent results.

Finally, it can be concluded that owing to the anisotropic behavior of the microplane microdamage
model, the elastic stiffness, the peak of the global responses and the energy dissipation during the
complex loading paths are well captured.

Indeed, the main advantage of the microplane microdamage model is the ability to calculate the
residual energy at each stage of the loading cycle on each microplane using the energy dissipation
profiles over the microplane system.



Chapter 5

Microplane microdamage model to strong
discontinuity model transition approach

Abstract. In this chapter, a strategy to couple the microplane microdamage model with the ex-
tended EFEM is presented. This coupling is a way to achieve a complete description of the
strain localization process from diffused and anisotropic damage (representing the microcrack-
ing phase) to the formation of multiple cracks. To achieve this objective, a damage-to-fracture
transition formulation based on the energetic equivalence between the two modeling approaches
is presented. Exploiting the anisotropic damage description provided by the microplane model,
directional transition criteria are formulated for modeling the successive localization of two non-
orthogonal cracks at the same material point.

5.1 Introduction

In general, the coupling between the implicit and explicit descriptions of cracking can be estab-
lished either in a framework of thermodynamics [CAZES et al., 2009] or using the kinematics of
strong discontinuity [OLIVER et al., 1999, OLIVER, 2000]. In the first approach, we perform a
transition from the implicit to explicit description of cracking based on energy equivalence of the
two models. In the second approach, the strong discontinuity analysis is performed to introduce
a crack in the media with induced anisotropy.

According to the strong discontinuity analysis introduced in section 3.3, the traction–separation
law defining the response of the discontinuity is derived using the constitutive laws of the contin-
uum. Now, performing a strong discontinuity analysis for the microplane model would require
to derive the traction–separation laws on each microplane because constitutive laws are defined
at the microplane level. However, it is not straight forward to describe the behavior of a dis-
crete discontinuity using the traction–separation laws on each the microplane which represents
a discretized unit volume. Hence, in this work we follow the energy equivalence based transi-
tion approach for a coupling between microplane microdamage model and a strong discontinuity
formulation (implemented according to the EFEM).

First, a general transition approach is presented (section 5.2) using the framework of thermody-
namics. This is followed by the formulation of the transition approach from microplane micro-
damage model to a strong discontinuity formulation (section 5.3). The traction-separation law
is calibrated such that the global dissipation obtained using the damage-to-fracture model is the
same as the one provided by the microplane formulation. Next, we extend the proposed method-
ology to the case of the formation of multiple cracks in extended EFEM (section 5.5). This is
followed by presenting the numerical examples to illustrate the proposed model for transition
from anisotropic damage growth to multiple orthogonal/non-orthogonal strong discontinuities.
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5.2 Energy equivalence based transition approach

5.2.1 General framework

Description of energy dissipation in implicit and explicit manner In energy equivalence ap-
proach, we use the fact that the total mechanical energy of the body is the same for any modeling
strategy [CAZES et al., 2009]. Hence, the total energy dissipated by the models based on both im-
plicit and explicit description cracking are equivalent with each other [COMI et al., 2002, COMI
et al., 2007, CUVILLIEZ et al., 2012].

By assuming zero kinetic energy (quasi–static conditions), E (eq. (2.6)) is rewritten as:

E = Ψ−Wext + Φ (5.1)

The expression of the total dissipation, Φ for the models based on implicit description of cracking
is given by the integration of the volumetric energy dissipation (φV ) over B (entire volume) as:

Φ =

∫
B

φV dV with φV =

∫ ∞
0

φ̇V dt (5.2)

Also, by considering a modeling strategy for dissipation based on the explicit description of crack-
ing the total energy dissipation is obtained as the integral of the energy dissipation over the dis-
continuity surface as:

Φ =

∫
Γd

φS dΓ with φS =

∫ ∞
0

φ̇S dt (5.3)

Transition approach Now, the purpose of the transition models is to describe the energy dis-
sipation in a coupled implicit–explicit manner. From phenomenological point of view, the crack
is formed inside a given localization zone. Hence, the energy dissipated during the strain local-
ization process can be divided into two parts: (i) the volumetric part that accounts for energy
dissipation during the formation and growth of a damaged/localization band (described though
a continuum model, a microplane model in the present case); (ii) the surface part that accounts
for the energy dissipation during the initiation and propagation of the crack (described through
a strong discontinuity model, in the present case).

A transition framework is achieved such that the energy which is to be dissipated by the cou-
pled model (sum of the volumetric and surface parts) is equivalent to the energy which is to be
dissipated by the model based on implicit description of cracking without transition.

Following this, the total energy dissipation is split into the volumetric part (φ̂V ) before the transi-
tion and the surface part after the transition (φ̂S) as:∫

B

φV dV =

∫
B

φ̂V dV +

∫
Γd

φ̂S dΓ (5.4)

where,

φ̂V =

∫ ttr

0

φ̇V dt, φ̂S =

∫ ∞
ttr

φ̇S dt (5.5)

and ttr is the pseudo–time at which the transition is performed. This gives the energy dissipation
at the crack surface as the difference between the energy which is to be dissipated by the model
based on implicit description of cracking without transition and the energy already dissipated in
the localization band before transition. This is written as:∫

Γd

φ̂S dΓ =

∫
B

(
φV − φ̂V

)
dV (5.6)
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Owing to this coupling, the cohesive traction-separation law is constructed by taking into account
the energy that is already dissipated at the localization band. Now, considering that the total
energy dissipation in a unit volume is given by its density, gf , eq. (5.6) is rewritten as:∫

Γd

φ̂S dΓ =

∫
B

(
gf − φ̂V

)
dV (5.7)

In previous equations we supposed that energy dissipation in the bulk materials stops once a
crack is localized, due to progressive unloading in the neighborhood of the crack. According to
this approach, before transition, the rate of the surface energy dissipation is equal to zero, (a crack

does not exist) and the increment of the volumetric energy dissipation in the bulk material ( ˙̂
φV )

is equal to the increment of the energy dissipation of the model based on implicit description of
cracking as: ∫

B

˙̂
φV dV =

∫
B

φ̇V dV =⇒ ˙̂
φV = φ̇V (5.8)

After transition, the rate of the volumetric energy dissipation is equal to zero due to unloading in

the band and the increment of the surface energy dissipation ( ˙̂
φS) at the crack surface is given by:∫

Γd

˙̂
φS dΓ =

∫
B

φ̇V dV (5.9)

Remark. Here, the transition approach is presented by enforcing the energy equivalence in a
weak form [WANG and WAISMAN, 2016], that is to say, by considering the energy dissipation of
the implicit and explicit models over entire pseudo–time domain (loading history). The terms in
the eq. (2.24) can be identified with the notations introduced in this chapter as:

• Φimp =
∫
B
φV dV

• Φexp =
∫

Γd
φS dΓ

• Φimp/exp =
∫
B
φ̂V dV +

∫
Γd
φ̂S dΓ

Following the same approach as in [COMI et al., 2002, CAZES et al., 2009], the available energy
computed from eq. (5.6) is then used to identify the parameters of the cohesive law with a prede-
fined shape.

In the next section, we use an example of 1D bar in tension to illustrate the transition methodology
to activate a crack in the localization band and define a cohesive law at the crack surface.

5.2.2 Example in 1D setting: bar in tension

In order to illustrate the transition framework, let us consider a 1D bar of unit area and length
L with spatial coordinates along the length of the bar denoted by x and let u0 be the applied
displacement (fig. 5.1).

Energy dissipation in a localization band Following the implicit description of cracking,
strain localization process is modeled in a band of width b (from x = xb to x = xb + b in fig. 5.1).
Let us consider a representative uniaxial stress–strain curve as shown in fig. 5.2a which is charac-
terized by the softening behavior as the elastic limit reaches at B. After localization, the material
inside the band (point P2 in fig. 5.1) follows the softening curve (path BC in the fig. 5.2a) while
the material in the bulk (material point P1 in the fig. 5.1) follows the elastic unloading curve (path
BA in fig. 5.2a). In this case, the volumetric energy dissipation (φV ) can be obtained as the area
under the stress–strain curve (shaded region in fig. 5.2a).
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Energy dissipation at cohesive crack Using the model based on explicit description of crack-
ing, the strain localization can also be described as a cohesive crack formed at the center of the bar
(x = xd in fig. 5.1) which is ’energetically equivalent’ to the localization band. Let (σ, JuK) be the
traction (equal to the stress σ in 1D to fulfill the traction continuity condition) and displacement
discontinuity at the crack surface. The corresponding cohesive law is shown in fig. 5.2b with the
area under it equal to φS .

Transition framework Using the model based on coupled implicit–explicit description of crack-
ing, a transition is performed by introducing a cohesive crack as a displacement discontinuity af-
ter a defined criterion is fulfilled. After transition, the material in the band (point P2 is considered
in fig. 5.3a) starts unloading elastically with reduced unloading stiffness (path CA in fig. 5.3b)
corresponding to the transition point (C in fig. 5.3b) by expending the stored volumetric energy.

The energy dissipation at the crack surface (φ̂S) is equal to the residual energy available, which is
the difference between the energy that is to be dissipated in the localization band (φV ) if transi-
tion is not performed and the energy dissipated in the localization band before transition (φ̂V ). At
transition, the traction at the crack surface is equal to stress in the bar corresponding to the transi-
tion point (σtr) to satisfy the equilibrium. Using φ̂S and σtr, the cohesive law at the discontinuity
is constructed (fig. 5.3c) by assuming the same shape but different area, that is to say, different
available energy as in the case of explicit description of cracking fig. 5.2b.

5.3 Microplane microdamage model to strong discontinuity transition ap-
proach

The transition approach presented in the previous section can be easily extended for coupling
the microplane microdamage model and a standard strong discontinuity model in the case of
single crack formation. So, the implicit description of cracking is provided by the microplane
microdamage model and the cohesive crack is modeled using the EFEM.

5.3.1 Formulation

Now, starting from the general transition framework, we replace the energy dissipation at a unit
volume, φV with that of the microplane model. The latter is obtained as an integral relationship
of the dissipation on each microplane (see eq. (4.25)). Substituting this relation in eq. (5.5), the
volumetric energy dissipation of the microplane model before the transition is given by:

φ̂V =
1

π

∫ ttr

0

∫
Ω

φ̇αV dS dt (5.10)

with φαV denoting the microplane energy dissipation as defined in eq. (4.25).

Also, we recall that the energy dissipation density of a unit volume is related to its microplane
counterpart by eq. (4.36). Now, following eq. (5.7), the energy available for the crack formation
which is equal to the residual energy of the microplane microdamage model at ttr is given by:∫

Γd

φ̂S dΓ =
1

π

∫
B

∫
Ω

(
gπf − φ̂αV

)
dS dV (5.11)

where, φ̂αV is the volumetric energy dissipated on the given microplane before the transition.
Thus, the term (gπf − φ̂αV ) gives the residual energy on each microplane at the moment of transi-
tion. That is, owing to the anisotropic nature of the microplane microdamage model, the residual
energy is calculated as a directional dependent quantity.
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Figure 5.1: Strain localization in 1D bar: localization band and an equivalent cohesive crack
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Figure 5.2: Equivalence between implicit and explicit description of cracking: area under the stress-strain
curve (a) and the cohesive law (b) correspond to the energy dissipated during the strain localization process

After a defined criterion is fulfilled, the cohesive crack is introduced as a strong discontinuity in
the direction of the maximum principal stress at the transition. Notice that, in transition models
[SAKSALA et al., 2015, SIMONE et al., 2003, ROTH et al., 2015], the criterion for crack initiation is
formulated based on the quantities at the unit volume or the internal variables (see table 2.2). In
the present case, transition criteria can be formulated based on the quantities on the microplanes,
such as ε̃α, ωα and φ̂αV , to exploit the anisotropic damage description provided by the microplane
model. In later section, we propose several transition criteria and use some numerical case studies
to identify the most efficient one for the present framework.

Now, following the transition framework, the parameters (Gf , ft) of the exponential traction–
separation law (eq. (3.10) and eq. (3.11)), are taken proportional to the available energy (i.e.,
Gf ∝ φ̂S), and the value of the maximum principal stress (σI ) at the transition (i.e., ft = (σI)tr)
respectively.

5.3.2 Algorithm for microplane microdamage model to EFEM transition approach

Here, we focus on the formation of a single crack. This algorithm is presented for a given iteration
i+1 at the present time step tn+1 (we drop the super-script n+1 for conciseness). A Boolean vari-
able flag which is initiated with 0, is used to store the information of the crack opening activation.
As soon as the crack is activated, flag is set to 1.

The steps involved the initiation of crack are described below:

1. at a given Gauss point, compute the microplane quantities using the discretized displace-
ment at the present iteration di+1 and the displacement jump at the previous iteration ei
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(a) Strain localization in 1D bar: transition from localization band to cohesive crack.
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Figure 5.3: Energy equivalence based coupled implicit-explicit description of cracking: the residual energy
dissipation (b) and available energy at the crack surface (c)

(initiated with 0). So, using projection operators defined in chapter 4, microplane strains
are first computed as:

εαm = (mα)
>

(Bd + Ge) (mα) and εαl = (lα)
>

(Bd + Ge) (mα) (5.12)

where, (mα) and (lα) are the column vectors which contains the components of the normal
and the tangent of the given microplane respectively.

2. the transition criterion is then checked if the crack is not activated in the previous time step
(i.e., flag = 0). Two cases can be distinguished:

(a) if the transition criterion is not fulfilled, the microdamage variable and the volumetric
energy dissipation are updated.

(b) if the transition criterion is fulfilled on at least one microplane, then the crack is acti-
vated. Using the energy regularization technique introduced in section 4.4.2, the en-
ergy available for the crack is obtained as1:

Gf = φ̂S =

(
1

π

∑
Ωα

(gπf − φ̂αV ) Wα

)
lc (5.13)

The traction continuity condition is then solved according to the algorithm 4.

Note that, while solving the local equilibrium equation using the operator split method, the stress
tensor in the bulk needs to be updated during the iterations (algorithm 4). In order to avoid any
instabilities at the local level, due to the concurrent correction of the microdamage distribution
and crack-opening at the strong discontinuity level, the microdamage variables are frozen during
the solution procedure of the local traction continuity condition.

1Notice that similar expression is obtained in [WANG and WAISMAN, 2016] using a continuum damage model.
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5.4 Numerical aspects of microplane microdamage to strong discontinuity
formulation transition approach

In this section, we present some numerical aspects of the proposed transition approach. First, we
verify the numerical implementation by performing a transition based on the equivalent strain
defined on each microplane. We emphasize the behavior of the microplane microdamage and
strong discontinuity models. Later, we present the mesh dependency studies based on different
transition criteria. This study will allow us to select the less mesh sensitive transition criterion to
be used in further computations.

5.4.1 Numerical validation of the transition approach in the case of a single crack

The proposed transition approach is validated using the same uniaxial tensile loading experiment
(with two CST elements) that is performed in the previous chapters. Following the algorithms 3
and 4, the microplane microdamage model describes the dissipative process at the Gauss point in
the standard FEM before the transition, while the EFEM is followed after the transition.

Problem setting A square unity domain, discretized using two CST elements, is submitted
to a uniaxial tensile loading in the vertical direction (fig. 3.3). The material parameters of the
microplane microdamage model and strong discontinuity models are considered the same as in
the previous chapters (figs. 3.3 and 4.2). For the sake of illustration, we perform the transition
when the equivalent microplane strain ε̃α on at least one microplane reaches a critical value of
ε̃αtr = 1.5ε̃π0 = 1.5 × 10−4, but similar results can be obtained considering different transition
criteria and threshold values.

Results The global force–displacement response in the vertical direction is shown in fig. 5.4a.
The curve O–A–B–C shows the elastic and the damage phases, while the curve C–D (figs. 5.4a
and 5.4b) represents the crack opening phase. Upon unloading at D, the crack closes (figs. 5.4a
and 5.4b).

Microplane dissipation profiles at the different stages of the test are depicted in fig. 5.5. Based on
these observations, the evolution of the volumetric and surface energy dissipation during the test
can be summarized as follows:

1. the volumetric energy dissipation takes place during the microdamage growth phase before
the transition, i.e.,

˙̂
φV 6= 0 =⇒ ˙̂

φαV ≥ 0 ∀ Ωα ∈ Ω and ˙̂
φS = 0 (5.14)

where, ˙̂
φαV is the increment of volumetric energy dissipation on a given microplane.

2. as soon as the crack opening phase begins, there is no more volumetric energy dissipation
and the residual energy (shaded area in fig. 5.5) is dissipated at the crack. In this phase,
microplanes experience unloading (strain is reduced), the corresponding internal variables
no more evolve and damage is naturally frozen. In other words:

˙̂
φV = 0 =⇒ ˙̂

φαV = 0 ∀ Ωα ∈ Ω and ˙̂
φS 6= 0 (5.15)

Remark. Here, the smoothness of the global curve fig. 5.4a obtained using the transition method-
ology is an attribute of the exponential softening (eq. (4.33) and eq. (4.26)) and traction–separation
laws (eq. (3.10) and eq. (3.11)) of the microplane microdamage model and the EFEM respectively.
Note that C0 continuity is not enforced at the point of transition.
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Figure 5.4: Transition approach for a single crack: global force–displacement curve in vertical direction (a)
and traction–separation law after transition (b) for uniaxial loading test
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5.4.2 Mesh dependency of various transition criteria

Transition criteria are to be formulated such that the crack initiation, as well as the obtained global
(force-displacement) and local (crack opening evolution) responses, are not (or as less as possible)
mesh dependent. In this section, we study the mesh dependency induced by various transition
criteria, through repeating the same kind of analyses we performed in section 4.5.3. For the sake
of simplicity, we restrict ourselves to the cases of mesh–1, mesh–2 and mesh–3 (see section 4.5.3
for more details). Moreover, the characteristic length to be used for energetic regularization of
the microplane model is chosen equal to lc = we. This is because these combinations of the mesh
discretizations and the definition of lc are proven to give mesh independent results in the case of
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microplane microdamage model without transition for the considered meshes.

Transition criteria Here, we consider 3 different formulations for the transition criterion based
on: (i) the maximum of the equivalent strain variables on all microplanes, maxα (ε̃α); (ii) the
maximum of the microdamage variables on all microplanes, maxα (ωα); (iii) the maximum energy
dissipation on the all microplanes, maxα (φαV ). The corresponding thresholds at the transition are
denoted by, ε̃αtr, ωαtr and (φαV )tr respectively.

Results Global responses obtained using different transition criteria are given in figs. 5.6a,
5.7a and 5.8a. The corresponding calibrated traction-separation laws are given in figs. 5.4b, 5.7b
and 5.8b. The corresponding threshold values at transition of the different parameters considered
are given in table 5.1.

From fig. 5.6a, it can be seen that when performing the transition based on the equivalent strain
on microplane, the global response is mesh independent before transition due to energetic reg-
ularization of the microplane microdamage model, but mesh sensitivity comes into the picture
after the opening of the crack. The reason is that the crack is activated at different traction levels
(fig. 5.4b) for the considered meshes, since ε̃α is not a regularized quantity. Similar considera-
tions hold, when transition is performed based on a criterion defined on the maximum damage
value at microplanes (figs. 5.7a and 5.7b). This is because ωα despite a function of the regularized
parameter B, also depends on ε̃α.

As shown in figs. 5.8a and 5.8b, mesh independent results can be achieved considering a transition
based on microplane dissipation. This is explained by the fact that we regularized the energy
dissipation of the microplane microdamage model (see section 4.4.2).

Remark. According to these observations, we adopt a transition criterion based on the regular-
ized maximum energy dissipation for the rest of the numerical tests.

5.5 Microplane microdamage model to strong discontinuity model transi-
tion approach for the case of multiple cracks

In this section, we extend the proposed transition framework for describing the formation of mul-
tiple intersecting orthogonal and non-orthogonal cracks. In particular, we capture the anisotropic
damage growth due to the rotation of the principal stress/strain axes during loading, and take
benefit of information provided by the microplane formulation in order to initiate multiple cracks.

5.5.1 Formulation

Let us consider a unit volume submitted to a complex loading conditions such that principal
stress/strain axes rotate during loading. Now, as the condition maxα (φαV ) ≥ (φαV )tr is attained,

Table 5.1: Transition quantities considered for mesh dependency studies and the corresponding threshold
values

transition quantity threshold value
ε̃αtr 2.5× ε̃π0 = 2.5× 10−4

ωαtr 0.75

(φαV )tr
2gπf
3
≈ 333 N/m2



94 Chapter 5 – Microplane microdamage model to strong discontinuity model transition approach

0 2 4 6

×10−4

0

1

2

3

4

×106

u1 (m)

F
1

(N
)

mesh–1
mesh–2
mesh–3

(a)

0 2 4 6

×10−4

0

1

2

3

4

×106

JuKn (m)

t n
(P

a)

mesh–1
mesh–2
mesh–3

(b)

Figure 5.6: Mesh objectivity of the transition criterion based on max (ε̃α): comparisons of force–
displacement curves in horizontal direction (a) and local traction–separation laws (b) for different meshes
by considering lc = we
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Figure 5.7: Mesh objectivity of the transition criterion based on max (ωα): comparisons of force–
displacement curves in horizontal direction (a) and local traction–separation laws (b) for different meshes
by considering lc = we

the first crack is initiated as discussed in previous section. Due to the evolution of the stress and
strain state in the medium, however, a second crack can be localized in another direction.

In order to account for this situation in a damage-to-fracture transition approach, at each time, we
identify the microplane system Ω into two non intersecting subsets:

Ω = Ω1 ∪ Ω2 ∅ = Ω1 ∩ Ω2 (5.16)
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Figure 5.8: Mesh objectivity of the transition criterion based on max (φαV ): comparisons of force–
displacement curves in horizontal direction (a) and local traction–separation laws (b) for different meshes
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such that Ω1 contains microplanes that are in unloading condition (eq. (4.32)):

Ω1 = {Ωα ∈ Ω : ω̇α = 0, fα < 0 } (5.17)

and Ω2 is contains microplanes in loading condition (eq. (4.32)):

Ω2 = {Ωα ∈ Ω : ω̇α > 0, fα = 0 } (5.18)

Now, using the analogy between microplanes and microcracks, one can assume that microplanes
belonging to Ω1 correspond to the family of microcracks that coalesced to form the first crack,
whereas microplanes belonging to Ω2 represent still active (opening or dissipating) microcracks.

If the transition criterion for the second crack is reached on at least one microplane in Ω2 then a
second crack orthogonal/non-orthogonal to the first one is initiated in the direction of the max-
imum principal stress at the transition. The available energy for the crack (φS2

) is then obtained
through eq. (5.11), but the integration for the calculation of the energy dissipation is now per-
formed over Ω2 only:∫

Γd2

φ̂S2 dΓ =
1

π

∫
B

∫
Ω

(
gπf − φ̂αV

)
dS dV =

∫
Γd1

φ̂S1
dΓ− 1

π

∫
B

∫
Ω2

φ̂αV dS dV (5.19)

Notice that the same transition criterion is adopted for activation of both the cracks. This is justi-
fied because the material is isotropic before the initiation of the microdamage. More studies are
needed, however, in order to better define transition criteria for multiple cracks as well as the
more realistic way for calibrating traction-separation laws, in particular for the second crack.

5.5.2 Algorithm

The algorithm for performing the transition from the growth of microdamage (after the initiation
of first crack) to the initiation of second crack is presented in algorithms 5 and 6. Two Boolean
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variables flag1 and flag2 are used to store the information about the first and second crack re-
spectively. Similar to the case of a single crack, these variables are initiated with 0 and set to 1 after
the initiation of the respective cracks. Again, the variables related to the discretized displacement
jump at both cracks, ei1 and ei2 respectively, are initiated with 0. From now on, down-scripts S1

and S2 are used to denote quantities referred to the first and second crack respectively.

Here, we focus on the steps involved in the initiation of the second crack assuming that the first
crack is already initiated as described below:

1. after solving the traction–separation law at the first crack (i.e., computing the enhanced
displacement corresponding to the first crack opening), project the updated strain on each
microplane, i.e.,

εαm = (mα)
>

(Bd + G1e1) (mα) εαl = (lα)
>

(Bd + G1e1) (mα) (5.20)

2. recalculate ωα and φ̂αV using the components of updated strain on each microplane.

3. check the transition criterion on the microplanes belonging to Ω2, on which microdamage
growth takes place after updating the strain:

(a) if the transition criterion is fulfilled then the second crack is initiated. Now the coupled
traction–continuity conditions are solved using the algorithm 2. Following the same
approach for the case of single crack (see eq. (5.13)), we obtain the energy available for
the second crack as:

Gf,S2
= φ̂S2

=
1

π

∑
Ω

(gπf − φ̂αV ) Wαlc = φ̂S1
− 1

π

(∑
Ω2

φ̂αV W
α

)
lc (5.21)

It has to be noted that we should avoid checking the transition criterion on the mi-
croplane on which it is fulfilled during the initiation of the first crack. That’s why,
we restrict the check of the transition criterion to the microplanes that enter into the
loading phase due to the rotation of the principal strains;

(b) if the transition criterion is not fulfilled that enter into the loading phase due to the
rotation of the principal strains then we solve traction continuity condition for the first
crack only and continue the solving process.

5.5.3 Numerical studies involving multiple crack formation

Here, we first describe the anisotropic microdamage growth followed by the initiation of two
orthogonal cracks in the transition framework. Then, the attention is focused on the successive
localization of two non–orthogonal cracks. In both cases, we use the results of the two–phase
loading experiments performed in the cases of extended EFEM and microplane microdamage
model as the references to better explain the main features of the proposed transition framework.

5.5.3.1 Orthogonal cracks case

We reproduce the two–phase loading experiment performed in the cases of extended EFEM and
microplane microdamage model (sections 3.6.5 and 4.5.1). We recall that, in the case of extended
EFEM, two orthogonal cracks with exactly the same behavior (i.e., same traction-separation laws)
are opened in mode I. Conversely, in the case of microplane model, the microdamage growth
occurs in both the phases, however, its distribution on the microplane system depends on the
direction of the loading (fig. 4.7b and fig. 4.17).
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Problem setting The opening of the first crack during the vertical loading in the transition
framework is already tackled in sections 5.3 and 5.3.2. So, let us consider that the first crack
already exist in the medium due to previous loading phases, and that stress/strain states in the
system evolve due to the application of loading in the horizontal direction.

The influence of anisotropic damage on the global structural response becomes clear in that case.
Indeed, due to the coupling between the microplane and strong discontinuity models, the mate-
rial no longer exhibits pre–peak elastic response in the horizontal direction.

During this phase, microdamage growth occurs on a microplanes belonging to Ω2, whereas mi-
croplanes belonging to Ω1 stay in unloading condition:

˙̂
φV 6= 0 =⇒ ˙̂

φαV = 0∀Ωα ∈ Ω1,
˙̂
φαV 6= 0∀Ωα ∈ Ω2 (5.22)

At the same time, no more crack dissipation occurs at the first crack, since loading is in the or-
thogonal direction to its normal:2

˙̂
φS1

= 0 (5.23)

where, φ̂S1
is the dissipated energy at the first crack.

Now, the second horizontal crack is initiated when the transition criterion is fulfilled on at least
one microplane in Ω2. After the activation of the second crack, no more energy dissipation occurs
at the microplane level, i.e.,

˙̂
φV = 0 =⇒ ˙̂

φαV = 0 ∀ Ωα ∈ Ω1 ∪ Ω2 (≡ Ω) (5.24)

The volumetric energy dissipation due to the microdamage growth during horizontal phase is
taken into account while calculating the available energy at the second crack surface using eq. (5.21).
This is one of the main differences between the proposed damage-to-fracture transition formula-
tion and the extended EFEM for modeling the formation of multiple cracks, since in that case
both the cracks dissipate the same amount of energy (anisotropic damage growth is not taken
into account).

5.5.3.2 Non-orthogonal cracks case

In order to analyze the model response under a complex loading condition inducing the formation
of two non-orthogonal cracks, here we simulate the William’s like test performed in chapter 3.

Problem setting We recall that the loading is applied in two phases during this test. In the first
phase, vertical loading is applied along with the compression loading in the horizontal direction
which is followed by a combined shear and horizontal tensile loading. The applied loading is
according to fig. 3.12 and the considered material parameters are shown in table 5.2.

In order to illustrate the role of the chosen transition threshold on obtained results (and in par-
ticular on the deviation angle between the two cracks), we first perform the transition at a small
energy dissipation level. Hence, the transition is performed after 20% of gπf on at least one mi-
croplane is dissipated. Later, higher transition energy thresholds are considered to show the
influence of this parameter on the angle between the two cracks and on the energy available at
the second crack level.

2As it will be shown later, the first crack may continue to open during the second phase of loading for a more complex
case.
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Table 5.2: The material parameters considered for the microplane microdamage and strong discontinuity
models in the transition framework – Willam’s like loading

material parameter value
Young’s modulus 10 GPa

Poisson’s ratio 0.20

ε̃α 10−4

β 1

Nα 21

Gf 500 N/m
βcr 1

Results - first phase In the first phase of the loading, we follow the algorithms 3 and 4 for initi-
ation of the single crack in transition framework. In fig. 5.9, the evolution of different components
of stress is shown. Here, the microdamage evolution starts at A and the crack opening starts at B
which is the transition point.

From the microdamage profiles in fig. 5.10a, we can observe that the microplanes close to the
orthogonal direction of the loading (α = 0◦) are still in the elastic regime. As expected, all the mi-
croplanes enter into the unloading phase after the crack opening and there is no more volumetric
energy dissipation on the microplanes (fig. 5.10b).

Results - second phase Now, a combined vertical, shear and horizontal loading is applied
at C leading to the continuous rotation of principal strain axes. Consequently, the microdamage
evolution first takes place on the microplanes which remained elastic during the first phase of
loading (fig. 5.10a). Then, microdamage evolves on the microplanes that are in unloading regime
after the first crack is opened. The corresponding energy dissipation profiles are shown in the
fig. 5.10b.

Now, the second crack is initiated when the transition criterion is fulfilled on at least one of the
microplanes on which the microdamage growth takes place during the second phase of loading.
This crack is opened at 78.81◦ to the first crack. The energy dissipation profiles at the opening of
the second crack are shown in fig. 5.10b.

The evolution of the components of the displacement jump (fig. 5.11) follow the same trend as in
the extended EFEM case. That is, mode I opening in the first phase and mixed mode opening in
the second phase of loading.

Although a direct comparison with the response obtained cannot be done, let us recall that the
deviation angle between the two cracks was 48◦ in the case of extended EFEM. Differences be-
tween the two numerical formulations regarding this aspect can be explained by the fact that the
criterion for the initiation of crack in the two cases is different. Also, in the transition case, the
principal stress axes is rotated further during the damage growth phase before the transition cri-
terion is fulfilled which is not modeled in extended EFEM. Moreover, the angle between the two
non–orthogonal cracks also depends on the level of energy dissipation at which the transition is
performed.

Sensitivity of the traction–separation law As it can be seen from fig. 5.9, the time evolution of
the stress components is not smooth. There are several instabilities, particularly the stress compo-
nent σ22 exhibits a jump at D. This could be due to the sensitivity of the traction-separation law.
In order to understand the effect of the stiffness matrix used to solve the traction–separation law,
we repeat the same test by using a penalized stiffness matrix with coefficients whose magnitude
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Figure 5.9: Time evolution of the components of stress - Willam’s like loading test using transition approach
for the threshold at 20% of gπf
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Figure 5.10: Distribution profiles of ωα (a) and φ̂αV (b) over the microplane system at various stages of
Willam’s like loading test using transition approach for the threshold at 20% of gπf
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Figure 5.11: Time evolution of the components of displacement jump - Willam’s like loading test using
transition approach for the threshold at 20% gπf

is 100 times the ones used for the previous computation. The obtained global response is different
from the previously obtained one. In the evolution of σ22, there is a stabilization effect atD where
the jumps are observed previously. However, at the onset of the second crack E, there is a jump.
Further sensitivity studies are required to understand the effect of the penalization of the stiffness
matrix of the traction–separation law on the global response. In the later section, we carry out the
studies without any penalization.

However, the global response is stabilized by introducing a non-zero value of the internal variable
at the crack initiation (appendix 7.2). The global results of the numerical studies performed in this
and the next section with the modified traction-separation law are presented in appendix 7.2.

Influence of the threshold of transition criterion To show the role of transitional damage
threshold in the obtained response, we repeat the same test for different levels of energy dissipa-
tion at transition. For the sake of illustration, we now perform the transition after the dissipation
reaches 40% and 60% of gπf on at least one microplane.

Similar to the previous case, jumps are also observed in the global responses, fig. 5.12 and fig. 5.13
at D. It is observed from the the evolution of the components of stress tensor (fig. 5.9 fig. 5.12 and
fig. 5.13) that the peaks of the stress components, σ11 and σ12 are reduced as the threshold of
the transition criterion increases. This is explained using the corresponding microdamage and
energy dissipation profiles (figs. 5.14a and 5.14b) before the activation of the first and second
crack (B and E respectively in figs. 5.12 and 5.13). It can be concluded from figs. 5.14a and 5.14b
that as the threshold of transition criterion increases, higher is the level of microdamage before
the activation of the second crack and also lower is the available energy. Moreover, as the level of
energy dissipation at transition increases, the second crack is rotated farther from the first crack.
It is observed that the angle between the two cracks is 81◦ and 97◦ in the cases for which the level
of energy dissipation at transition is 40% and 60% of gπf respectively.



5.5 – Microplane damage to multiple cracks transition 101

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

0

0.5

1

×106

A

B C

D

E

pseudo–time

co
m

po
ne

nt
s

of
st

re
ss

(P
a)

σ22

σ11

σ12

Figure 5.12: Time evolution of the components of stress - Willam’s like loading test using transition approach
for the threshold at 40% of gπf
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Figure 5.13: Time evolution of the components of stress - Willam’s like loading test using transition approach
for the threshold at 60% of gπf
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Figure 5.14: Comparison of distribution profiles of ωα (a) and φ̂αV (b) over the microplane system at various
stages of Willam’s like loading test using transition approach for different thresholds of transition criterion

5.6 Conclusions

Microplane microdamage model and the strong discontinuity formulation are efficiently coupled
using a transition approach. The anisotropic damage growth prior to the initiation of multiple
cracks is well captured in the proposed transition framework. The implications of opening a
crack in an induced anisotropic media are studied. The transition criterion is selected on the ba-
sis of a condition of mesh independent responses at both the global and the local level. Among
other quantities studied for the transition criteria, the one based on the energy dissipation on
each microplane gives the mesh independent results. The proposed transition methodology and
algorithm are then extended to allow the formation of multiple cracks. The main novelty of the
proposed approach is that the parameters of the traction–separation laws of each crack are com-
puted using the anisotropic properties of the microplane microdamage model. The proposed
algorithms and methodologies are validated using a simple numerical experiments. Some nu-
merical instabilities encountered could be due to the sensitivity of the traction–separation law.
Preliminary sensitivity analysis show that using a penalized stiffness matrix some instabilities
disappear but still the global response is not stabilized.



5.6 – Conclusions 103

Fn+1
ext = Ftext + ∆Fn+1

ext ;
i = 0;
convglobal = 0;
while convglobal = 0 do

...;
computation of dn+1,i+1 (see algorithm 1);
...;
for loop over Gauss points do

εn+1,i+1 = Bdn+1,i+1 + Gen+1,i;
εn+1,i+1 → {εαm, εαl }

n+1,i+1;
if flag = 0 and the transition criterion on any Ωα ∈ Ω is not fulfilled then

// update ωα

{εαm, εαl }
n+1,i+1 → {ωα}n+1,i+1;

{ωα}n+1,i+1
, {εαm, εαl }

n+1,i+1 → {σαm, σαl }
n+1,i+1;

{σαm, σαl }
n+1,i+1 →

{
φ̂αV

}n+1,i+1

;{
φ̂αV

}n+1,i+1

→
{
φ̂S

}n+1,i+1

eq. (5.13);

{σαm, σαl }
n+1,i+1 → σ

(
dn+1,i+1, en+1,i+1,j+1

)
;

else
compute en+1,i+1 using algorithm 4;
εn+1,i+1 = Bdn+1,i+1 + Gen+1,i+1;
εn+1,i+1 → {εαm, εαl }

n+1,i+1
, {ωα}n+1,i+1

, {σαm, σαl }
n+1,i+1;

{σαm, σαl }
n+1,i+1 → σ

(
dn+1,i+1, en+1,i+1

)
;

end
end

σ
(

dn+1,i+1, en+1,i+1,j+1
)
→ Fn+1,i+1

int ;

Fn+1
ext ,F

n+1,i+1
int → R

(
dn+1,i+1, en+1,i+1

)
;

if ||Rn+1,i+1|| < εtol then
i = i+ 1;

else
convglobal = 1;

end
end

Algorithm 3: Global algorithm for initiation of a single crack in microplane damage-to-
fracture transition framework
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for loop over Gauss points do
j = 0;
convlocal = 0;
while convlocal = 0 do

if j = 0 then
// no update of ωα

{ωα}n+1,i
, {εαm, εαl }

n+1,i+1 → {σαm, σαl }
n+1,i+1,0;

{σαm, σαl }
n+1,i+1,0 → σ

(
dn+1,i+1, en+1,i

)
;

// compute the residual of the local traction continuity condition
σ
(

dn+1,i+1, en+1,i
)
→ r

(
dn+1,i+1, en+1,i

)
;

r
(

dn+1,i+1, en+1,i
)
→ en+1,i+1,0 eq. (3.48b);

else
εn+1,i+1,j = Bdn+1,i+1 + Gen+1,i+1,j ;
εn+1,i+1,j → {εαm, εαl }

n+1,i+1,j ;
// no update of ωα

{ωα}n+1,i
, {εαm, εαl }

n+1,i+1,j → {σαm, σαl }
n+1,i+1,j ;

{σαm, σαl }
n+1,i+1,j → σ

(
dn+1,i+1, en+1,i+1,j

)
;

// compute the residual of the local traction continuity condition
σ
(

dn+1,i+1, en+1,i+1,j
)
→ r

(
dn+1,i+1, en+1,i+1,j

)
eq. (3.48b);

r
(

dn+1,i+1, en+1,i+1,j
)
→ en+1,i+1,j+1;

end
if ||r|| < εtol then

j = j + 1;
else

convlocal = 1;
end

end
end

Algorithm 4: Local algorithm for initiation of a single crack in microplane damage-to-
fracture transition framework
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Fn+1
ext = Ftext + ∆Fn+1

ext ;
i = 0;
convglobal = 0;
while convglobal = 0 do

...;
computation of dn+1,i+1 (see algorithm 1);
...;
for loop over Gauss points do

εn+1,i+1 = Bdn+1,i+1 + G1en+1,i
1 + G2en+1,i

2 ;
εn+1,i+1 → {εαm, εαl }

n+1,i+1;
if flag1 = 0, f lag2 = 0 and the transition criterion on any Ωα ∈ Ω is not fulfilled then

// update ωα

{εαm, εαl }
n+1,i+1 → {ωα}n+1,i+1;

{ωα}n+1,i+1
, {εαm, εαl }

n+1,i+1 → {σαm, σαl }
n+1,i+1;

{σαm, σαl }
n+1,i+1 →

{
φ̂αV

}n+1,i+1

;{
φ̂αV

}n+1,i+1

→
{
φ̂S1

}n+1,i+1

;

{σαm, σαl }
n+1,i+1 → σ

(
dn+1,i+1, en+1,i+1,j+1

)
;

else
if flag1 = 0, f lag2 = 0 then

compute en+1,i+1
1 using algorithm 4;

εn+1,i+1 = Bdn+1,i+1 + G1en+1,i+1
1 ;

εn+1,i+1 → {εαm, εαl }
n+1,i+1

, {ωα}n+1,i+1
, {σαm, σαl }

n+1,i+1;

{σαm, σαl }
n+1,i+1 → σ

(
dn+1,i+1, en+1,i+1,j+1

)
;

{σαm, σαl }
n+1,i+1 →

{
φ̂αV

}n+1,i+1

;

if {ω̇α}n+1,i+1
> 0 and the transition criterion on at least one Ωα ∈ Ω2 is fulfilled

then{
φ̂αV

}n+1,i+1

→
{
φ̂S2

}n+1,i+1

eq. (5.21);

end
else

compute en+1,i+1
1 , en+1,i+1

2 using algorithm 6;
εn+1,i+1 = Bdn+1,i+1 + G1en+1,i+1

1 + G2en+1,i+1
2 ;

εn+1,i+1 → {εαm, εαl }
n+1,i+1

, {ωα}n+1,i+1
, {σαm, σαl }

n+1,i+1;

{σαm, σαl }
n+1,i+1 → σ

(
dn+1,i+1, en+1,i+1,j+1

)
;

end
end

end

σ
(

dn+1,i+1, en+1,i+1
1 , en+1,i+1

2

)
→ Fn+1,i+1

int ;

Fn+1
ext ,F

n+1,i+1
int → R

(
dn+1,i+1, en+1,i+1

1 , en+1,i+1
2

)
;

if ||R|| < εtol then
i = i+ 1;

else
convglobal = 1;

end
end

Algorithm 5: Global algorithm for initiation of two cracks in microplane damage-to-
fracture transition framework
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for loop over Gauss points do
j = 0;
convlocal = 0;
while convlocal = 0 do

if j = 0 then
// no update of ωα

{ωα}n+1,i
, {εαm, εαl }

n+1,i+1 → {σαm, σαl }
n+1,i+1,0;

{σαm, σαl }
n+1,i+1,0 → σ

(
dn+1,i+1, en+1,i

1 , en+1,i
2

)
;

// compute the residuals of the local coupled traction continuity conditions
σ
(

dn+1,i+1, en+1,i
1 , en+1,i

2

)
→

r1

(
dn+1,i+1, en+1,i

1 , en+1,i
2

)
, r2

(
dn+1,i+1, en+1,i

1 , en+1,i
2

)
eqs. (3.96b)

and (3.96c);
r1

(
dn+1,i+1, en+1,i

1 , en+1,i
2

)
, r2

(
dn+1,i+1, en+1,i

1 , en+1,i
2

)
→

en+1,i+1,0
1 , en+1,i+1,0

2 ;
else

εn+1,i+1,j = Bdn+1,i+1 + G1en+1,i+1,j
1 + G2en+1,i+1,j

2 ;
εn+1,i+1,j → {εαm, εαl }

n+1,i+1,j ;
// no update of ωα

{ωα}n+1,i
, {εαm, εαl }

n+1,i+1,j → {σαm, σαl }
n+1,i+1,j ;

{σαm, σαl }
n+1,i+1,j → σ

(
dn+1,i+1, en+1,i+1,j

1 , en+1,i+1,j
2

)
;

// compute the residuals of the local coupled traction continuity conditions
σ
(

dn+1,i+1, en+1,i+1,j
1 , en+1,i+1,j

2

)
→

r1

(
dn+1,i+1, en+1,i+1,j

1 , en+1,i+1,j
2

)
, r2

(
dn+1,i+1, en+1,i+1,j

1 , en+1,i+1,j
2

)
eqs. (3.96b) and (3.96c);

r1

(
dn+1,i+1, en+1,i+1,j

1 , en+1,i+1,j
2

)
, r2

(
dn+1,i+1, en+1,i+1,j

1 , en+1,i+1,j
2

)
→

en+1,i+1,j+1
1 , en+1,i+1,j+1

2 ;
end
if ||r1, r2|| < εtol then

j = j + 1;
else

convlocal = 1;
end

end
end

Algorithm 6: Local algorithm for initiation of a two cracks in microplane damage-to-
fracture transition framework



Chapter 6

Structural case studies

In this chapter, we perform numerical simulations of structural test cases using the microplane
microdamage model coupled with strong discontinuity formulation. For this purpose, we choose
(i) a double notched plain concrete specimen submitted to a rather simple tensile loading [SHI
et al., 2000] and (ii) a reinforced concrete shear wall [RIVILLON and GABS, 2011] under com-
plex loading conditions. The objective of the first test is to examine the capacity of the proposed
transition methodology for the initiation and propagation of cracks in the highly localized dam-
age zones at the structural level. The second test is performed to examine the capacity of the
proposed transition methodology for not only the initiation and propagation of cracks but also
the crack closure. We emphasize here that the purpose of these studies is not to reproduce the
experimental results but to check if the proposed numerical formulations are able to capture the
characteristic cracking patterns of these test cases.

6.1 Double notched specimen under tensile loading

6.1.1 Description of the test

In the experimental campaign [SHI et al., 2000], double notched concrete specimens with different
eccentricities between the notches are tested by applying a tensile loading. The geometry and
the loading of the specimen are shown in fig. 6.1. Here, two notches of 2 mm width and 10 mm
length are considered on the opposite notches of the specimen. The experimental cracking pattern
consists of two single cracks propagating through the specimen.

For the sake of illustration, we focus here on the configuration in which the eccentricity between
the notches is 5 mm. This case is more interesting because in this configuration cracking pattern
consists of two cracks approaching each other at the center of the specimen which is more diffi-
cult to capture than the other cases where they propagate by avoiding each other at the center.
Nevertheless, from the point of view of the application of the proposed methodology, the aspects
under study such as the effect of the energy regularization technique and threshold of transition
criterion remain the same for all the configurations even though the cracking patterns changes.

6.1.2 Numerical simulations

The finite element discretization of the specimen is performed by considering unstructured coarse
and structured fine meshes using CST elements. In the case of the later, right angled triangular
elements with height and breadth equal to the width of the notch are considered. Hence, the
characteristic length of the element, lc =

√
2Ae is equal to the width of the notch which is 2 mm.
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Figure 6.1: Double notched specimen under tensile loading: geometry and loading conditions

The microplane microdamage model is considered only for the central 60 mm portion of the
specimen. The rest of the specimen is assumed as elastic. The considered material parameters
are given in the table 6.1.

The horizontal tensile loading is applied on the right edge of the specimen as shown in fig. 6.1.
The loading is applied using the CNDI technique (section 3.5.2.2) and the following path-following
constraint is written:

P =
1

2

[(
∆dB1 −∆dA1

)
+
(
∆dC1 −∆dD1

)]
−∆τ = 0 (6.1)

where, ∆dA1 , ∆dB1 , ∆dC1 and ∆dD1 are the nodal displacements in the horizontal direction (i.e.,
the direction of the loading) at points A, B, C and D respectively (fig. 6.1) and ∆τ is taken as
2.5× 10−7 m.

Damage-to-fracture transition is modeled through the formulation introduced in previous section
considering a criterion based on the energy dissipation at the microplane level. Regarding thresh-
old energy value for the transition criterion, the transition is performed when maxα (φαV ) reaches
85% of gπf . Notice that this does not means that 85% of energy available at the unit volume is
consumed before transition, given the circular integration (also relation (4.38)), at least 42.5%Gf
is still available for the crack.

Preliminary analyses showed that a lower threshold value leads to abrupt opening and closing of
the cracks during this test. On the other hand, if more volumetric energy is allowed to dissipate
before crack localization (i.e., a higher threshold for the transition criterion is chosen), then the
crack opens in a gradual manner. However, these sensitivity issues are not investigated in this
work but we present here the case where there is a smooth evolution of the traction–separation
law.

Global results The force–displacement curves in the vertical direction for the coarse and the
fine meshes using both the microplane microdamage model and the transition framework are
compared in figs. 6.2a and 6.2b respectively. Moreover, the load–CMOD curves for both models
are given in figs. 6.3a and 6.3b.

As energy regularization technique depends on the characteristic length of the mesh, the global
responses using the two meshes (for a given model) are different. The aspect of effectiveness of
the energy regularization technique as a dependant on the definition of the characteristic length
is also demonstrated using 1D bar in section 4.5.3 for mode I cracking. Moreover, in the present
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Table 6.1: The material parameters considered for the microplane microdamage model and the EFEM in the
transition framework for the double notch specimen

material parameter value
Young’s modulus 24 GPa

Poisson’s ratio 0.2

ε̃π0 1.2× 10−4

β 1

Nα 21

Gf 100 N/m
βcr 1

case, as the cracking process is more complex, it is difficult to define the characteristic length in
order to obtain the mesh independent solutions.

It can be observed that the energy dissipation (area under the global curves figs. 6.2a and 6.2b)
of the double notched specimen using the transition methodology is more than that of the mi-
croplane microdamage model. This is explained by the fact that the volumetric energy dissipa-
tion, gf is defined in terms of Gf (eq. (4.81)) by assuming a mode I crack opening. So, we have
on one hand the global response characterized by the microplane microdamage constitutive law
whose energy dissipation is obtained under the mode I assumption and on the other hand the
global response using EFEM which takes into account the mixed mode opening of cracks. Since
the mixed mode is activated here, there is a difference between the energy dissipation obtained
from the microplane microdamage model and that of the EFEM after transition.
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Figure 6.2: Comparison of the global responses of the double notched specimen with eccentricity of 5 mm
using the microplane microdamage model and the transition methodology: coarse unstructured mesh (a),
fine structured mesh (b)
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Figure 6.3: Comparison of the load–CMOD curves of the double notched specimen with eccentricity of 5
mm using the microplane microdamage model and the transition methodology: coarse mesh (a), fine mesh
(b)
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Local results In order to analyze the damage growth, we plot here the distribution of the local
quantity maxα ω

α, which is the maximum of ωα on the microplane system. The cracking pattern is
analyzed by plotting the Boolean variable, flagcr whose non–zero value represents the initiation
of the crack.

The local results are obtained by plotting the interested quantities at the Gauss point of each finite
element. Since in this case we have only one Gauss point per element (CST), the value of a given
local quantity is represented using a single color smeared over the finite element.

The points on the global curve after which the transition takes place are denoted by Ac and Af
(figs. 6.2a and 6.2b) for the coarse and the fine meshes respectively. The corresponding distribu-
tions of maxα ω

α at these points are shown in figs. 6.4 and 6.5. Since the transition is performed
after a higher percentage of the energy density at the microplane level (85%gπf ) is dissipated, the
microdamage variable also reaches a high level before transition.

The cracking patterns of the coarse mesh at two different load levels, Bc and Cc (fig. 6.2a) are
depicted in figs. 6.6a and 6.6b respectively. It can be observed that the cracks originated at the
two notches approach each other at the center of the specimen. Similarly, the cracking patterns
for a fine mesh are depicted in figs. 6.7a and 6.7b at Bf and Cf (fig. 6.2b) respectively. In this case,
only the crack originated at the upper notch tends towards the lower notch.

From these two results, it can be clearly seen that there is an induced bias with respect to the
orientation of the mesh. This is a known disadvantage of the energy regularization [OLIVER,
1989, JIRÁSEK and BAUER, 2012]. This can be alleviated by adopting other regularization tech-
niques, for instance, the nonlocal approaches [BAŽANT and di LUZIO, 2004, GIRY et al., 2011]
which is to be tested in the future work. The crack opening and sliding at the end of test are shown
in the fig. 6.8a-figs. 6.8b and 6.9a-fig. 6.9b for coarse and fine mesh respectively. As expected, both
the crack opening and sliding is more pronounced near the notch.

Figure 6.4: Distribution of maxα ω
α for the double notched specimen with eccentricity of 5 mm in the case

of coarse mesh before the initiation of crack at Ac
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Figure 6.5: Distribution of maxα ω
α for the double notched specimen with eccentricity of 5 mm in the case

of fine mesh before the initiation of crack at Af

(a)

(b)

Figure 6.6: Distribution of flagcr for the double notched specimen with eccentricity of 5 mm in the case of
coarse mesh at Bc (a) and Cc (b)
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(a)

(b)

Figure 6.7: Distribution of flagcr for the double notched specimen with eccentricity of 5 mm in the case of
fine mesh at Bf (a) and Cf (b)
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(a)

(b)

Figure 6.8: Distribution of JuKn (a) and JuKs (b) for the double notched specimen with eccentricity of 5 mm
in the case of coarse mesh at the end of the numerical test Cc
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(a)

(b)

Figure 6.9: Distribution of JuKn (a) and JuKs (b) for the double notched specimen with eccentricity of 5 mm
in the case of fine mesh at the end of the numerical test Cf
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6.2 Shear wall tests

6.2.1 Description of the test

In this section, we simulate a shear wall under monotonic and non–reverse cyclic loading us-
ing the microplane microdamage model and the transition framework. The geometry and the
reinforcement are considered according to the benchmark conducted by [RIVILLON and GABS,
2011]. The purpose of the benchmark is to determine the non–linear response and the crack pat-
terns of the shear wall. But we focus here only on capturing the characteristic crack patterns of
this test.

The specimen contains two beams and a shear reinforced concrete wall, with longitudinal and
the transverse reinforcements (fig. 6.10). Here, the longitudinal reinforcement runs through all the
components of the specimen connecting different components while the transverse reinforcement
is present only in the shear wall. The beams are placed on the top and the bottom of the shear
wall in order to impose the boundary conditions. Given the assumption of plane strain condition,
the reinforcement in the shear wall of 0.15 m is normalized for a unit meter.

Figure 6.10: Geometry and reinforcement details of the shear wall specimen [RIVILLON and GABS, 2011]

6.2.2 Numerical simulations

The FE mesh of the specimen with unstructured CST elements is shown in fig. 6.11a. Total 2344
CST elements for modeling concrete and 1746 bar elements for modeling steel reinforcement are
used.

In the experimental set up, two prestressed bars that run through the lower beam are used to
prevent rotations of the specimen. For the sake of simplicity, these bars are not modeled but the
equivalent boundary conditions are imposed on the lower beam as shown in fig. 6.11a. Also,
during experiments, a force is applied on the loading surfaces on each side of the upper beam.
However, in this work the loading is applied only on the left edge of the upper beam as Dirchlet
boundary conditions, that is to say, the simulation is displacement driven. This consideration
is because during the preliminary simulations, some convergence problems are encountered by
imposing force on the loading surfaces. This in turn could be because it is difficult to follow
the softening branch of the local constitutive law by applying an increasing force. Also, the self-
weight of the shear wall is not taken into account.

The upper and the lower beams are assumed to behave in an elastic manner while the shear wall
exhibits the non–linearity. In the case of reinforcement, each steel bar is modeled using 1D truss
elements, that is, no extra degrees of freedom pertaining to the rotations of the bars are considered.
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u1

(a)

material parameter value
Young’s modulus 22 GPa

Poisson’s ratio 0.19

ε̃π0 10−4

β 1

Nα 21

Gf 1500 N/m
βcr 1

(b)

Figure 6.11: Finite element mesh of the shear wall, elastic beams and the reinforcement of the specimen
(a) and the material parameters considered for the microplane microdamage model and the EFEM in the
transition framework for the shear wall (b)

Here, we aim to restrict the material non–linearity only to the concrete. Hence, the reinforcement
is assumed to behave in elasticity and the bond between the concrete and the steel is considered to
be perfect. The material parameters of the microplane model and the traction–separation law of
the EFEM are given in fig. 6.11b. For this test, the threshold for the transition criterion is assumed
as 70% of gπf . Finally, the material parameters considered here are for illustration purposes only.

During the experiments, multiple cracking pattern is not observed for monotonic and the non–
reverse cyclic loading, hence the number of cracks per element is restricted to 1 during these two
tests. In the next sections, we present the global and local results of the numerical simulations
performed under monotonic and non–reverse cycling loading conditions.

6.2.2.1 Monotonic loading

In the first case, monotonic loading is considered (i.e., load increases with respect to the pseudo–
time). The evolution of the global and local quantities along with the cracking patterns at different
time steps are described next.

Global results The global force–displacement curves of the shear wall under monotonic load-
ing condition using microplane microdamage model and the transition methodology are com-
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pared in fig. 6.12. Due to the presence of the reinforcement, no softening is observed in the global
response. Similar to the previous case, there is a slight difference between the global responses
of the shear wall using both the approaches which is mostly contributed due to the mixed mode
behavior of the cracks.

Local results We show the anisotropic damage growth and the cracking patterns using the
distributions of maxα ω

α and flagcr (crack activation flag) respectively.

The damage growth starts in the region near the right edge of the specimen as shown in fig. 6.13
which depicts the distribution of maxα ω

α before the initiation of the crack (A in fig. 6.12).

As the transition criterion reaches, the initiation of cracks takes place at the interface between the
specimen and the top elastic beam near its right edge. This is shown in the distribution of flagcr
at B (fig. 6.12) in fig. 6.14b. Meanwhile, the microdamage growth progresses to the center of the
specimen (fig. 6.14a) along with its initiation at the left bottom edge of the specimen.

Now, as the transition criterion reaches in more finite elements, the diagonal cracks as well as the
horizontal cracks at the center and the bottom left edge are initiated as shown in the distribution
of flagcr at C (fig. 6.12) in fig. 6.15b. At this point, the microdamage has reached its peak in most
of the elements (fig. 6.15a).

At the end of the test (D in fig. 6.12), crack initiates in even more finite elements bridging the
cracks at the center with the cracks at the bottom left edge (fig. 6.16b). Also at this point, the
microdamage growth takes place in few more elements at the top interface (fig. 6.16a).
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Figure 6.12: Comparison of the global responses of the shear wall specimen under monotonic loading using
the microplane microdamage model and the transition methodology
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Figure 6.13: Distribution of maxα ω
α for the shear wall specimen under monotonic loading before the initi-

ation of crack at A

(a)

(b)

Figure 6.14: Distribution of maxα ω
α (a) and flagcr (b) for the shear wall specimen under monotonic loading

after the initiation of crack at B
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(a)

(b)

Figure 6.15: Distribution of maxα ω
α (a) and flagcr (b) for the shear wall specimen under monotonic loading

after the initiation of crack at C

(a)

(b)

Figure 6.16: Distribution of maxα ω
α (a) and flagcr (b) for the shear wall specimen under monotonic loading

at the end of the numerical test D



6.2 – Shear wall tests 121

The distributions of JuKn and JuKs are depicted in figs. 6.17a and 6.17b. From these figures, it can
be observed that the cracks that are initiated at the later stage of the loading in the center portion
of the specimen show more crack opening and crack sliding than the initial cracks at the interface
between the specimen and the elastic beam.

(a)

(b)

Figure 6.17: Distribution of JuKn (a) and JuKs (b) for the shear wall specimen under monotonic loading at the
end of the numerical test D
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6.2.2.2 Non–reverse cyclic loading

During this test, several cycles of loading, unloading and reloading are applied as shown in
fig. 6.18 on the same (left) side of the upper elastic beam. The purpose of studying the non-reverse
cyclic loading test is to illustrate the crack closure/re-opening during the load cycles.
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5
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u
1

(m
)

Figure 6.18: Time evolution of the applied displacement – shear wall specimen under non–reverse cyclic
loading

Global results Similar to the previous case of monotonic loading, no softening is observed in
the global force–displacement curves under non–reverse cyclic loading condition (fig. 6.19). It
has to be noted that hysteresis loops are not exhibited since the internal frictional effects are not
modeled. The difference between the global responses of the microplane microdamage model and
the transition framework is less in this case than in the previous ones. However, the reduction of
the global stiffness during unloading/reloading cycle is slightly more in the case of the transition
framework than using the microplane microdamage model.

Local results It has to be noted that the distribution of maxα ω
α in the present case is the

same as in the case of monotonic loading. This is because the microdamage variable does not
evolve during the unloading/reloading part of the cycle due to thermodynamic restrictions (4.32).
Hence, we consider here the distributions of flagcr, and the components of displacement jump in
normal and tangential directions of the crack. The cracking patterns and crack closure/re-opening
are illustrated here for the load cycle AOB (fig. 6.19).

In figs. 6.20a and 6.20b, we show the cracking patterns at starting and end of the load cycle (A
and B respectively in fig. 6.19). They consist of the cracks at the interface along the upper-left
edge and the horizontal/diagonal cracks in the center of the specimen. This is followed by the
bridging between the cracks at the right bottom edge and cracks in the center of the specimen.
These cracking patterns are in accordance with those in the case of the monotonic loading at this
stage.

The closure of the crack and its reopening during the cycle AOB are illustrated using the depic-
tions of JuKn and JuKs at A, O and B in figs. 6.21a to 6.21c and 6.22a to 6.22c respectively. It can be
observed from figs. 6.21a to 6.21c (also figs. 6.22a to 6.22c) that the cracks that are opened at A are
almost closed at the end of the unloading O in the global curve (fig. 6.19).
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Figure 6.19: Comparison of the global responses of the shear wall specimen under non–reverse cyclic loading
using the microplane microdamage model and the transition methodology

(a)

(b)

Figure 6.20: Distribution of flagcr for the shear wall specimen under alternate loading at start of the cycle A
(a) and end of the cycle B (b)
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(a)

(b)

(c)

Figure 6.21: Distribution of JuKn for the shear wall specimen under alternate loading at the start of cycle A
(a), end of unloading (b) and the end of cycle B (c)
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(a)

(b)

(c)

Figure 6.22: Distribution of JuKs for the shear wall specimen under alternate loading at the start of cycle A
(a), end of unloading (b) and the end of cycle B (c)
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6.3 Conclusions

The response of plain and reinforced concrete structures has been tested using the proposed for-
mulations.

In the case of the double notched specimen, there is an acceptable match between the global
responses of the microplane microdamage model and the damage-to-fracture transition method-
ology. However, it can be observed from both the global and local responses (cracking patterns)
that the proposed energetic regularization of the microplane models does not allow to obtain
fully mesh independent results, in terms of total dissipated energy and dependency of the crack
pattern to the orientation of the finite element mesh.

In the case of the shear wall tests, the hardening trends of global responses during the monotonic
and the non–reverse cyclic loading are well captured. Again, the robustness of the proposed
transition methodology is proven from the global responses. The cracking patterns may not be
exactly the same as that of the experimental ones but the trends are similar. Several types of
cracks like interface cracks, diagonal cracks and bridging cracks are observed. In the case of the
shear wall test under non–reverse cyclic loading, the crack closure and the reopening are well
described.

In both the double notched specimen and shear wall tests studied here, the cracks exhibit mixed
mode behavior. Common conclusion for both the test cases is that in order to compare the nu-
merical results with that of the experimental ones we need to tune material parameters.

Here, we were able to simulate only the cases involving the initiation of a single crack. The crack-
ing patterns involving multiple intersecting cracks are expected in the case of reverse cyclic load-
ing of the shear wall specimen [RIVILLON and GABS, 2011, KISHTA, 2017]. However, during
the preliminary simulations it is observed that it is difficult to obtain such crack patterns without
crack tracking techniques [RICCARDI et al., 2017, OLIVER et al., 2002]. Also, the obtained global
response of the shear wall under cyclic loading exhibits softening behavior which is not consistent
for the behavior of reinforced concrete structures. This may be due to the modeling strategy used
for the steel reinforcement and the steel-concrete bond. All these issues have to be tackled in the
future work.



Chapter 7

Conclusions

7.1 Conclusions

This thesis deals with numerical modeling of multiple cracks in concrete and reinforced concrete
structures. Such a numerical tool is required to obtain the fine information of cracking which is
essential to mitigate the issues related to durability and structural safety. Also, the developed
models can be adapted to simulate the behavior of structures under severe loading conditions.
The required ingredients to model the formation of multiple cracks in concrete are:

1. a numerical framework in which the multiple cracks in concrete can be modeled explicitly
so that the fine information of cracking is obtained without resorting to any post-treatment
techniques;

2. a constitutive model that takes into account the diffused damage phase in concrete and also
capable of handling the induced anisotropy due to cracking;

3. a transition framework in which both the approaches can be coupled to model the complete
strain localization process in quasi-brittle materials.

After a detailed state-of-the-art review, the approaches available in the literature for modeling
cracking in concrete using either implicit or explicit descriptions of cracking are presented. It
is shown that modeling discrete cracks in the continuum as strong discontinuities is advanta-
geous because using this modeling strategy the information about cracking is obtained without
any extra computational effort. Among several numerical frameworks that model the cracks as
strong discontinuities, the EFEM is selected. In this framework, strong discontinuities are embed-
ded inside a given finite element. First, the standard EFEM, which incorporates a single strong
discontinuity per element, is studied. The discrete constitutive law that takes into account the
mixed-mode cracking is considered. Rankine criterion is used to initiate the cracks. Later, this
methodology is extended for the case of two intersecting strong discontinuities. In the extended
EFEM, coupled traction continuity conditions are formulated by assuming that two crack sur-
faces are superposed. In this way, the local equilibrium at both the crack surfaces is satisfied.
From the numerical tests, it is observed that the interaction between the cracks depends on the
angle between them. Finally, it can be concluded that the extended EFEM allows for describing
the initiation and propagation of orthogonal/non-orthogonal intersecting cracks. However, we
consider here that the bulk remains elastic before the initiation of the cracks.

After developing the framework for modeling multiple cracks explicitly, we then focus on the
diffused phase of cracking. The microplane models that provide the directional (anisotropic) de-
scription of cracking are selected for this purpose. The disk microplane system under plane strain
assumption is used instead of a spherical one. This assumption leads to a computationally ef-
fective microplane model. The kinematic constraint expressions are presented in the case of the
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disk microplane system. The stress tensor is then derived using both PVW and thermodynamic
framework. Simple constitutive laws using a single microdamage variable are assumed. An in-
ternal variable defined using both the normal and tangential strain components is used to derive
the microdamage variable on each microplane. Using the integration over the circle, the relation
between the density of energy dissipation at the microplane level and at a unit volume is estab-
lished. Later, the microplane elastic constants are also derived by equating the elastic stiffness
matrices obtained from the microplane model and that of the Hooke’s law. Also, the upper limit
of the Poisson’s ratio to ensure the positiveness of the energy dissipation on each microplane
is determined. In terms of numerical implementation, a simple integration scheme over a semi-
circle is employed to obtain the quantities at a unit volume (stress tensor, energy dissipation) from
that of the microplane. Numerical localization analysis in the case of a unaxial tensile test reveals
that the loss of ellipticity of the rate equilibrium problem occurs only after certain microdamage is
accumulated. As expected, the energy regularization technique gives mesh independent results
if the assumed characteristic length is well determined.

Now that we have the microplane microdamage model for modeling initial phase of the strain
localization process and the extended EFEM for tackling the multiple cracks, we next couple them
with in a damage-to-fracture transition framework. First, the microplane microdamage model is
used to describe the anisotropic damage in the localization band. Later, cracks are introduced
as strong discontinuities in the extended EFEM. Now, the energy available for the crack is to
calculated by taking into account the energy dissipated in the localization band. For this purpose,
we use the weak energy equivalence approach in which the energy dissipation of the body using
the proposed models (separately) in the entire time domain is assumed to be equal. Following
this approach, the residual energy available at the microplanes level is computed (at the transition
instant) and then is dissipated at the crack surface. This is achieved by exploiting the anisotropic
description of damage and energy dissipation of the microplane microdamage model.

The main interest of using the microplane microdamage model for modeling the response of the
bulk material is that damage-to-fracture transition criteria can be written in terms of the quantities
that are available on each microplane. Thus the induced anisotropy due to damage is taken into
account. The selected transition criterion is based on the maximum energy dissipation on the
microplane system. This proves to be an efficient one since the energy regularization technique is
followed. Also, the same transition criterion is used for the initiation of the multiple cracks.

Finally, the capabilities of the proposed methodologies are illustrated by simulating plain and re-
inforced concrete specimens. Using the proposed transition methodology, the cracks are initiated
in the localized damage zones in the specimen. The mixed mode behavior of the cracks is well de-
scribed. However, in the case of reinforced concrete specimen the dissipation at the steel-concrete
interface is not accounted for. The crack closure and reopening during non-reverse cyclic loading
is well represented.

To conclude, the objective of developing a framework for modeling anisotropic damage and the
formation of multiple cracks is achieved. Even though, we are able to illustrate the formation of
a single crack in the case of structural level tests, the elementary level tests show several features
of the proposed strategies for tackling multiple cracks.

7.2 Perspectives

The proposed framework can be improved in the following aspects:

• concerning the extended EFEM, we tackle here only the case of formation of two cracks.
Although, such a consideration is subjective of the experimental/industrial case which is
addressed by the proposed formulation. Some guidelines has to be developed for limiting
the number of cracks to be considered in this framework. Even though the mixed mode
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traction-separation law tackles the change in the behavior of crack from mode I to mixed
mode, it could be interesting to formulate more complex crack initiation criteria (such as
Mohr-Coloumb) for cracks that activates in mixed mode [WU and CERVERA, 2016]. Dur-
ing the simulations, several sensitivities related to the traction-separation law are encoun-
tered. A detailed numerical analysis on the convergence properties of the coupled traction
continuity conditions is to be performed with an objective to remove these sensitivities.

• concerning the microplane microdamage model, we considered here only the positive part
of the strain tensor for the projection operation. This is more suitable for tackling the mode
I cracking. However, this formulation has to be improved to include the compression part
of stress/strains as in several anisotropic damage models [ORTIZ, 1985, DESMORAT et al.,
2007] Also, in order to handle the triaxial and hydrostatic cases, a volumetric–deviatoric
split [BAŽANT and PRAT, 1988a] of the normal stress/strain may be required. In this case,
a microdamage variable for each component of stress may be more suitable.

• concerning the transition approach, a method for enforcing the energy equivalence by using
other than the energy regularization technique (e.g., nonlocal, gradient methods) for the mi-
croplane models has to be developed. The criteria used for the damage-to-fracture transition
is to be improved by numerical experimentation techniques such as the virtual testing tools
[DELAPLACE and DESMORAT, 2007] based on discrete element method fig. 7.1. The key
question to address is, can an objective transition criterion be formulated? Also, another
important point to clear is that how to separate the energy dissipation between initiated
cracks? In this case, the possibility of the localization of the second crack is to be investi-
gated. In the proposed transition formulation, we initiate both the cracks in the direction
of the maximum principal stress. These aspects of the crack initiation direction and the
orientation between the cracks also needs to be studied in detail.

Figure 7.1: Virtual testing: cubic specimen under biaxial loading

Finally, during the structural case studies, it is shown that the crack patterns are well captured in
the cases where single crack propagation occurs (double notched specimen, shear wall specimen
in monotonic and non-reverse cyclic loading) without any need of crack tracking techniques. In
these cases, we restrict the number of cracks to be initiated to one. However, in order to simulate
the multiple intersecting crack patterns, it is essential to know a priori the set of elements in which
multiple cracks has to be initiated. For this purpose, it is interesting to use the crack tracking
techniques [RICCARDI et al., 2017, OLIVER et al., 2002] in order to identify the set of elements
where multiple cracks intersect and to allow more than one crack to initiate. From the point of
view of the structural applications, the computational efficiency of the proposed model can be
further improved by taking advantage of the parallel computing technology. Parallel algorithms
are employed in the case of the spherical microplane models in [NĚMEČEK et al., 2002] and
future work has to be done to develop parallelization strategies for the disk microplane models
as well. Also, studies has to be carried out with the perspective of incorporating the steel-concrete
behavior in the both the microplane model and the traction-separation law.
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Appendix A

Elastic coefficients of the microplane microdamage
model

Let us consider the stress tensor obtained from the components on each microplane and focus on
the elastic response only:

σ =
1

π

∫
Ω

(Emε
α
mMα + Elε

α
l Lα) dS (A.1)

(A.1) can be rewritten in the component form as:

σij =
1

π

∫
Ω

(
Emε

α
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α
ij + Elε

α
l L

α
ij

)
dS (A.2)

Now substituting the expressions for εαm (4.10) and εαl (4.11) in eq. (A.2), we obtain:

σij =
1

π
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As a consequence σ11 reads (M11 = cos2 α and L11 = − sinα cosα) as:
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and σ22 reads (M22 = sin2 α and T22 = sinα cosα) as:
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and finally the shear stress σ12 is (M12 = sin2 α and T12 = 1
2
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)
) as:
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Using the expression for σ11, σ22 and σ12, the stress-strain relationship in matrix form is obtained
as:
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3Em + El Em − El 0
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Now the elastic constitutive model (Hooke’s law) under plane strain conditions is given by:
σ11
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(1− ν)(1− 2ν)
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(A.5)

(A.6)

(A.7)

where,E is the Young’s modulus. Finally, the microplane constants can be computed by imposing
the equality of the coefficients of the elastic stiffness matrices obtained from microplane model
(eq. (A.4)) and the Hooke’s law (eq. (A.7)):

3Em + El = 4 (λ+ 2µ)

Em − El = 4λ

Em + El = 4µ

(A.8)
(A.9)

(A.10)

So, one obtains the following expression for El:

El = 2 (µ− λ) (A.11)

Now, after substituting the expression for El (A.11) into the second identity (A.9) gives Em as:

Em = 4λ+ 2µ− 2λ = 2(λ+ µ) (A.12)

Using the expressions for Em (A.12) and El (A.11), we can easily verify that the first identity is
satisfied:

3Em + El = 6(λ+ µ) + 2 (µ− λ) = 4λ+ 8µ = 4(λ+ 2µ) (A.13)
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Appendix B

Modified traction-separation law

The traction-separation law formulated in section 3.4 is based on the condition that the internal
variable evolves from 0 at the crack initiation. However, during the numerical studies involv-
ing both the elementary and structural test cases, we observed sensitivity with respect to the
traction-separation law implemented following this condition. Hence, we the follow the formula-
tion presented in [ALFAIATE et al., 2001] and introduce a non-zero value of the internal variable
κ0
cr at the crack initiation. In this formulation, the traction-separation law is given by,

t =
∂ψS
∂JuK

= (1− dcr)K · JuK (B.14)

where, K is given by [ALFAIATE et al., 2001]:

K =
ft
κ0
cr

I (B.15)

and the damage-like variable is rewritten as:

dcr = 1− κ0
cr

κcr
exp

(
− ft
Gf

(
κcr − κ0

cr

))
(B.16)

In this case, dcr varies from 0 (no crack) to 1 (fully opened crack) instead from−∞ in the previous
case. Finally, the stiffness of the traction-separation law in the secant form is obtained as:

Ks = (1− dcr)
ft
κ0
cr

I (B.17)

Now, we give here the expressions of the stiffness matrices that are used to solve the linearized
local equilibrium equations eqs. (3.98b) and (3.98c) in the presence of two cracks, that is to say, the
coupled traction continuity conditions. First, we rewrite the expressions of Kg1g1 , Kg1g2 , Kg2g1

and Kg2g2 given in eqs. (3.102), (3.103), (3.106) and (3.107) at the iteration i in the case of CST as:

Ki
g1g1 =

∂t1
∂e1

∣∣∣∣
ei1

− P>1 CG1

Ki
g1g2 = −P>1 CG2

Ki
g2g1 = −P>2 CG1

Ki
g2g2 =

∂t2
∂e2

∣∣∣∣
ei2

− P>2 CG2

(B.18)

(B.19)

(B.20)

(B.21)
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Now, one can replace the derivative of the traction-separation law appearing in eqs. (B.18) to (B.21)
by a secant stiffness matrix, eq. (B.17). However, during numerical simulations it is observed that
the constant penalized stiffness matrix (eq. (B.15)) has better performance in the far post-peak
regime. Hence, even though the number of iterations required for the convergence of the lin-
earized local equilibrium equations is increased, we use the constant penalized stiffness matrix to
obtain the following stiffness matrices for solving the local system of equations in algorithm 2:

Ki
g1g1 =

ft
κ0
cr

I − P>1 CG1

Ki
g1g2 = −P>1 CG2

Ki
g2g1 = −P>2 CG1

Ki
g2g2 =

ft
κ0
cr

I − P>2 CG2

(B.22)

(B.23)

(B.24)

(B.25)

We repeat the William’s like test performed in section 5.5.3.2 by using the modified traction–
separation law and the global results for the threshold at 20%, 40% and 60% of gπf are presented in
the figs. B1a to B1c respectively. It can be clearly seen that the global response is stabilized using
the modified traction–separation law.
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Figure B1: Time evolution of the components of stress - Willam’s like loading test using transition approach
for the threshold at 20% (a), 40% (b) and 60% (c) of gπf using modified traction–separation law
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