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Abstract

Distributed graph topology inference from streaming data

The second decade of the current millennium can be summarized in one short phrase: the
advent of data. There has been a surge in the number of data sources: from audio-video

streaming, social networks and the Internet of Things, to smartwatches, industrial equipment
and personal vehicles, just to name a few. More often than not, these sources form networks in
order to exchange information. As a direct consequence, the field of Graph Signal Processing has
been thriving and evolving. Its aim: process and make sense of all the surrounding data deluge.

In this context, the main goal of this thesis is developing methods and algorithms capable of
using data streams, in a distributed fashion, in order to infer the underlying networks that link
these streams. Then, these estimated network topologies can be used with tools developed for
Graph Signal Processing in order to process and analyze data supported by graphs.

After a brief introduction followed by motivating examples, we first develop and propose an
online, distributed and adaptive algorithm for graph topology inference for data streams which
are linearly dependent. An analysis of the method ensues, in order to establish relations between
performance and the input parameters of the algorithm. We then run a set of experiments in
order to validate the analysis, as well as compare its performance with that of another proposed
method of the literature.

The next contribution is in the shape of an algorithm endowed with the same online, dis-
tributed and adaptive capacities, but adapted to inferring links between data that interact non-
linearly. As such, we propose a simple yet effective additive model which makes use of the
reproducing kernel machinery in order to model said nonlinearities. The results if its analysis
are convincing, while experiments ran on biomedical data yield estimated networks which exhibit
behavior predicted by medical literature.

Finally, a third algorithm proposition is made, which aims to improve the nonlinear model by
allowing it to escape the constraints induced by additivity. As such, the newly proposed model is
as general as possible, and makes use of a natural and intuitive manner of imposing link sparsity,
based on the concept of partial derivatives. We analyze this proposed algorithm as well, in order
to establish stability conditions and relations between its parameters and its performance. A set
of experiments are ran, showcasing how the general model is able to better capture nonlinear
links in the data, while the estimated networks behave coherently with previous estimates.

Keywords: network topology, graph signal processing, distributed learning, online
graph estimation, linear dependence, nonlinear dependence, reproducing kernels,
sparse networks, algorithm analysis
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Résumé

Inférence distribuée de topologie de graphe à partir de flots de données

La deuxième décennie du millénaire actuel peut être résumée en une courte phrase : l’essor
des données. Le nombre de sources de données s’est multiplié : du streaming audio-

vidéo aux réseaux sociaux et à l’Internet des Objets, en passant par les montres intelligentes,
les équipements industriels et les véhicules personnels, pour n’en citer que quelques-unes. Le
plus souvent, ces sources forment des réseaux afin d’échanger des informations. En conséquence
directe, le domaine du Traitement de Signal sur Graphe a prospéré et a évolué. Son but : traiter
et donner un sens à tout le déluge de données environnant.

Dans ce contexte, le but principal de cette thèse est de développer des méthodes et des
algorithmes capables d’utiliser des flots de données, de manière distribuée, afin d’inférer les
réseaux sous-jacents qui relient ces flots. Ensuite, ces topologies de réseau estimées peuvent être
utilisées avec des outils développés pour le Traitement de Signal sur Graphe afin de traiter et
d’analyser les données supportées par des graphes.

Après une brève introduction suivie d’exemples motivants, nous développons et proposons
d’abord un algorithme en ligne, distribué et adaptatif pour l’inférence de topologies de graphes
pour les flots de données qui sont linéairement dépendants. Une analyse de la méthode s’ensuit,
afin d’établir des relations entre les performances et les paramètres nécessaires à l’algorithme.
Nous menons ensuite une série d’expériences afin de valider l’analyse et de comparer ses perfor-
mances avec celles d’une autre méthode proposée dans la littérature.

La contribution suivante est un algorithme doté des mêmes capacités en ligne, distribuées et
adaptatives, mais adapté à l’inférence de liens entre des données qui interagissent de manière
non-linéaire. À ce titre, nous proposons un modèle additif simple mais efficace qui utilise l’usine
du noyau reproduisant afin de modéliser lesdites non-linéarités. Les résultats de son analyse
sont convaincants, tandis que les expériences menées sur des données biomédicales donnent des
réseaux estimés qui présentent un comportement prédit par la littérature médicale.

Enfin, une troisième proposition d’algorithme est faite, qui vise à améliorer le modèle non-
linéaire en lui permettant d’échapper aux contraintes induites par l’additivité. Ainsi, le nou-
veau modèle proposé est aussi général que possible, et utilise une manière naturelle et intuitive
d’imposer la parcimonie des liens, basée sur le concept de dérivés partiels. Nous analysons
également l’algorithme proposé, afin d’établir les conditions de stabilité et les relations entre
ses paramètres et ses performances. Une série d’expériences est menée, montrant comment le
modèle général est capable de mieux saisir les liens non-linéaires entre les données, tandis que
les réseaux estimés se comportent de manière cohérente avec les estimations précédentes.

Mots-clés : topologie des réseaux, traitement de signaux sur graphe, apprentis-
sage distribué, estimation de graphe en ligne, dépendance linéaire, dépendance non-
linéaire, noyau reproduisant, réseaux parcimonieux, analyse des algorithmes
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Notations

a Normal font lowercase letters denote scalars

|a| Absolute value of scalar a; can also be applied element-wise

sign{·} Sign operator; can also be applied element-wise

dae Ceiling operator, i.e., returns the least integer greater or equal to a

mod(a, b) Modulo operator, i.e., returns the remainder of the integer divion of a by b

a Boldface lowercase letters denote column vectors

a> Transpose of vector a, i.e., the row-vector form of a

ak , [a]k kth entry of vector a

A Boldface uppercase letters denote matrices

A> Transpose of matrix A

A−1 Inverse of matrix A

Aij , [A]ij (i, j)th entry of matrix A

[A]i,• ith row of matrix A

[A]•,j jth column of matrix A

Tr{A} Trace of the matrix A, i.e., the sum of all main-diagonal entries

det{A} Determinant of the matrix A, i.e., the product of all eigenvalues

supp{A} Support of the matrix A, i.e., the set of its non-zero entries

sym {A} Shorthand for A+A>

A⊗B Kronecker product of matrices A and B

A ◦B Hadamard product of matrices A and B, i.e., element-wise product

R Set of real numbers
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A Normal font caligraphic letters denote sets

card{A} Cardinality of set A, i.e., the number of elements in set A
A \ B Set difference between sets A and B
‖ · ‖0 Pseudo `0-norm of its vector/matrix argument, i.e.,the number of non-zero entries

‖ · ‖1 `1-norm of its vector argument; sums the absolute values of the entries

‖ · ‖ `2-norm of its vector argument; also known as the Euclidean norm

‖ · ‖F Frobenius norm of its matrix argument; the square root of the sum of squares of all entries
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Introduction

Contents
1.1 About graphs and distributed processing . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis structure and publications . . . . . . . . . . . . . . . . . . . . . . . . . 3

This first chapter serves as a review and brief introduction into the field of Graph Signal

Processing (GSP). We recall useful definitions, establish motivating examples, as well

as enumerate a selection of pertinent applications. We then move on to an overview of the

objectives of the thesis and, ultimately, its contributions. The final section of this introductory

chapter is dedicated to presenting the overarching structure of the manuscript alongside a list of

published or to-be-published works.

1.1 About graphs and distributed processing

GSP is an active research field, given its inherent properties of exploiting underlying relationships

between certain data, and even more so when dealing with large quantities of data [Sandryhaila

and Moura, 2014]. Another inherent advantage of graphs is the distributive aspect. In many

cases, e.g., graphs based on geographical distances when measuring temperatures at different

stations [Zhou et al., 2010, Spelta and Martins, 2018] or image similarity in image processing

[Sanfeliu et al., 2002, Tremeau and Colantoni, 2000], one node (be it a meteorological station

or a pixel) is linked with only its close neighborhood, nodes among which an interdependence

relationship exists. This fact allows for the developing of methods and algorithms which can

take advantage of distributed computations, in which every node is able to process information

locally, even when network-wide they work together in , e.g., graph filter estimation, towards the

same global goal [Nassif et al., 2017a], or towards locally similar goals [Nassif et al., 2017b].

1



CHAPTER 1. INTRODUCTION

The graph-based framework has been successfully applied in many fields and applications, of

which we are listing a few in order to illustrate its success:

• Low-dimensional representation of high-dimensional data[Belkin and Niyogi, 2003]

• Source identification of a rumor or contagion [Shah and Zaman, 2011, Lesot et al., 2012]

• Recommendation systems [Narang et al., 2013]

• Environmental monitoring in a smart city [Jabłoński, 2017]

• Ship detection in radar images [Salembier et al., 2018]

• City traffic analysis [Deri and Moura, 2016]

• Genomics and biology [Alekseyenko et al., 2011, Kim et al., 2019]

• Terrain and topology modeling [Cioacă et al., 2019]

• Pharmacological property prediction in drug development [Lukovits, 1992]

Each and any of these or other applications can be abstractly summarized in the same unique

manner, using both graph and signal processing terminology. A set of separate agents are spread

across a certain area, relevant to the application. These agents represent the nodes of the

graph. Each one of them is able to acquire and transmit a measure of a certain quantity. These

measurements represent the signal. The agents interact among each other, and these interactions

are modeled by the edges of a graph. Together with the nodes, they represent the domain which

supports the signal. For the simple example of a road network, the agents can be cities within a

region. The signal at every agent can be a scalar representing the difference between the number

of cars exiting and entering within a time interval. Finally, the edges are, quite intuitively, a

model of the road network. The concepts of neighborhood and local interaction can also be

explained via this particular example: more traffic can be expected to occur locally, between

closer cities, due to, e.g., commuters. As such, the exchange of information is more relevant

on a local scale. These concepts are illustrated in Fig. 1.1. Under the graph signal processing

framework, the goal in this context may be modeling and predicting the flow of traffic and jams.

The notion of graph is used interchangeably with the one of network throughout this manuscript,

because of how the latter can be mathematically modeled as an instance of the former. Moreover,

the applicability of the developed methods to real-world cases allows, at least in the context of

this work, for the interchangeable use of the two terms. The same arguments hold for the couple

node, which is the main structural component of a graph, and agent, which represents the main

acting entity in a network.
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(a) The nodes of the graph. They can also be
numbered

(b) The graph, formed by the nodes and edges
which connect them

(c) The neighborhood of a certain node (d) The graph signal

Figure 1.1: Various graph and graph signal concepts

1.2 Thesis structure and publications

Each chapter is aimed to build upon the previous one. As such, the structure and organization

of this manuscript is linear, as depicted in Fig. 1.2.

The second chapter mainly serves to motivate the direction in research that we undertook.

It further develops and introduces concepts in GSP and emphasize the ubiquity of the graph

topology in this field. Based on this fact, we note how most, if not all, processing methods

require knowledge of this structure, which in many cases is not available. We end the chapter

with an overview of state of the art methods in inferring such topologies. They are separated

in two groups, where the first showcases previously proposed methods which consider linear

dependencies between agents, while the second treats the case of nonlinear dependencies.

The third chapter introduces our proposed method for topology inference under the assump-

tion of linear dependencies. We present an online, distributed and adaptive solution, supported

by a performance analysis. This chapter ends with a set of experimental results which aim to em-

phasize the simplicity and adaptability of our method. Moreover, they show how the estimated

topologies can then be used in follow-up processing algorithms on graphs, such as clustering.
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The main results recalled in this chapter were published in:

• M. Moscu, R. Nassif, F. Hua, and C. Richard. Learning causal networks topology from

streaming graph signals. In 27th European Signal Processing Conference (EUSIPCO), pages

1–5, 2019. doi: 10.23919/EUSIPCO.2019.8902826

• M. Moscu, R. Nassif, F. Hua, and C. Richard. Apprentissage distribué de la topologie d’un

graphe à partir de signaux temporels sur graphe. In Actes du 27e Colloque GRETSI sur

le Traitement du Signal et des Images, 2019

Chapter four aims to further develop the method previously introduced, by considering the

case of nonlinear dependencies between nodes. It starts by introducing an additive nonlinear

model, before moving on to the concept of Reproducing Kernel Hilbert Space (RKHS). Supported

by real-world applications, this new method makes use of kernel functions in order to model

nonlinear relationships between agents. A convincing set of experiments is presented, including

some on real data.

The work presented in this chapter was published in:

• M. Moscu, R. Borsoi, and C. Richard. Online graph topology inference with kernels for

brain connectivity estimation. In IEEE International Conference on Acoustics Speech and

Signal Processing (ICASSP), 2020a

• M. Moscu, R. Borsoi, and C. Richard. Convergence analysis of the graph-topology-inference

kernel LMS algorithm. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2021a

The fifth chapter works under the same nonlinear premise as the previous one. It introduces

a more general nonlinear model, in order to obtain an algorithm able to breach the constraints

of the previous additive model. We then continue by introducing a sparsity-imposing regularizer

based on partial derivatives. The choice of this particular regularizer is motivated by real-world

network examples. An algorithm analysis is then provided, just before introducing a set of

convincing experiments.

The work presented in this chapter is based on:

• M. Moscu, R. Borsoi, and C. Richard. Online kernel-based graph topology identification

with partial-derivative-imposed sparsity. In 28th European Signal Processing Conference

(EUSIPCO), pages 2190–2194, 2021b. doi: 10.23919/Eusipco47968.2020.9287624

• M. Moscu, R. Borsoi, and C. Richard. Graph Topology Inference with Kernels and Partial-

derivative-imposed Sparsity: Algorithm and Convergence Analysis. 2020b. submitted

The manuscript ends with a set of concluding remarks. Their aim is to summarize the

contributions presented throughout this work, while proposing future research directions.
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Chapter 1
Introduction

Chapter 2
Background and motivation

Chapter 3
Topology inference with linear dependencies

Chapter 4
Topology inference with nonlinear
dependencies: Additive model

Chapter 5
Topology inference with nonlinear

dependencies: General model

Chapter 6
Conclusion and possible research directions

Figure 1.2: Thesis structure
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Background and motivation

Contents

2.1 Notions of Graph Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Graph filters and Graph Fourier Transform . . . . . . . . . . . . . . . 9

2.2 Motivating our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Objectives and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 State of the art in topology inference . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Linear dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Nonlinear dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Representing a relatively new area of study, the field of GSP is in continuous expansion.

During a short time span, less than ten years, it has seen an impressive growth, being

adapted to many applications and recently introduced in the spotlight with the rise of the Internet

of Things [Paul, 2013, George and Thampi, 2018], due to its innate capability of modeling and

analyzing networks. Along the present chapter, the first section briefly introduces the notion of

graph, followed by some tools developed for GSP, formalizing some notions introduced in the

previous chapter. We then follow with a set of arguments to motivate our work on the problem of

graph topology inference. The next subsection presents an overview of our general objectives and

contributions, before ending the chapter with the state of the art in solving the same problem of

graph topology inference.
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CHAPTER 2. BACKGROUND AND MOTIVATION

2.1 Notions of Graph Signal Processing

We start by formally defining a graph and then follow with the definition of a signal on said

graph. We introduce the concept of graph shift, before ending the section with a list of tools

adapted to the particularities of GSP.

2.1.1 Definitions

Defining a graph: A graph G consists of a set N of N nodes, and a set E of edges such that

if nodes m and n are linked, then (m,n) ∈ E . By linked we mean that there exists a relation

of influence between the two nodes, be it bi- or unidirectional. For undirected graphs, these

node pairs are unordered. Particular to this work, we consider that self-loops do not appear, i.e.,

ann = 0,∀n. This is to support the fact that the goal of GSP is to analyze connections between

node couples, and thus self-loops are not useful. Notation Nn stands for the set of indices of

nodes in the neighbourhood of node n, i.e., Nn = {m : (m,n) ∈ E}.

The concepts of graph signal and shift matrix: From each of the N nodes, we collect

a signal x , [x1, . . . , xN ]>, assumed to be real-valued, where xn is the sample of the signal x

at node n. For a visual representation of N , E , Nn and x, see Fig. 1.1. We endow the graph

G with a shift operator [Shuman et al., 2013], defined as an N × N matrix S, which is the

algebraic representation of the graph. Entries snm are zero if (m,n) /∈ E , and non-zero real

scalars otherwise. This matrix encodes the underlying graph connectivity and dictates the flow

of information within the network. Valid choices for this operator are the adjacency matrix A,

the weighted adjacency matrix W or the Laplacian matrix L (and its variations) [Biggs, 1993].

Choices for the shift matrix: As mentioned above, one choice for the shift matrix is repre-

sented by the adjacency matrix A, whose elements are defined as:

Anm =

0 , if (n,m) /∈ E

1 , if (n,m) ∈ E
. (2.1)

The entries of A are binary, only showing if a link exists or not. On existing links, weights can be

affected in order to denote the strength of the connection, thus obtaining the weighted adjacency

matrix W , with entries:

Wnm =

0 , if (n,m) /∈ E

wnm ∈ R \ {0} , if (n,m) ∈ E
. (2.2)

One of the most common choices for the shift matrix S is represented by the so-called Laplacian

L, defined as:

L ,D −W , (2.3)

8



2.1. NOTIONS OF GRAPH SIGNAL PROCESSING

(a) Before the graph shift (b) After the graph shift

Figure 2.1: A graph shift applied on a cyclic, directed, graph. Signal is represented under the
form of bars, for easier visualization. For the GSO, the adjacency matrix A was chosen

with D being the degree matrix, whose diagonal entries are:

Dnn =
N∑
m=1

Wnm . (2.4)

The graph shift: Once the GSO chosen, it can be applied on the graph signal in order to

generate a shift. Operation Sx is called a graph shift and can be performed locally at each node

n by aggregating samples in its neighborhood, i.e.,
∑

m∈Nn snmxm. Also, S
kx represents a shift

of order k that aggregates samples from k-hop neighbors. Node m is a k-hop neighbor of n if n

can be reached from m by traveling across at least k edges. For the simple case of a cyclic graph,

i.e., E = {(m,m + 1) : m ∈ {1, . . . , N − 1}} ∪ {(N, 1)}, see Fig. 2.1. An immediate observation

concerning this operation is that, depending on the spectrum of the GSO, the energy of the

signal may not be preserved when shifts are applied. Works such as [Gavili and Zhang, 2017,

Dees et al., 2019] propose a set of shift operators which do not alter the energy of the graph

signal when graph shifts are applied.

2.1.2 Graph filters and Graph Fourier Transform

In this subsection we consider an undirected graph G, meaning that A,W and L are symmetric.

We note that solutions exist for applying the following tools on directed graphs [Sardellitti et al.,

2017], but these remain out of the scope of this chapter.
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CHAPTER 2. BACKGROUND AND MOTIVATION

Graph filters: A linear, shift-invariant graph filter is any matrix H which is a polynomial in

the GSO S [Sandryhaila and Moura, 2013b]:

H , h0I + h1S + . . .+ hL−1S
L−1 , (2.5)

with {h`}L−1
`=0 ∈ RL representing the filter taps of the L-order filter H. The result of applying

the graph filter on a signal yields, just like in classical signal processing, another signal.

Graph Fourier Transform: Consider the eigen-decomposition of S:

S = V ΛV −1 , (2.6)

where Λ is a diagonal matrix containing the eigenvalues {λk}Nk=1 of S. Then the Graph Fourier

Transform (GFT) matrix is [Sandryhaila and Moura, 2013c]:

F = V −1 . (2.7)

Interestingly, the eigenvalues of the Laplacian, collectively called graph Laplacian spectrum, can

be intuitively considered as frequencies. See works such as [Shuman et al., 2016] for further

details and Fig. 2.2 – 2.3 for a visualization of their behavior. In particular, notice how the

first frequency λ1 = 0 and its corresponding eigenvector v1 is constant, behavior reminiscent of

frequency analysis in classical signal processing.

Altogether, notions and tools such as graph signal, filters and Fourier transforms represent

the workhorse in the field of Graph Signal Processing, just like their counterparts in classical

signal processing.

2.2 Motivating our work

Modern data analysis and processing tasks usually involve large sets of data structured by a

graph. Typical examples include data shared by users of social media, traffic on transportation

or energy networks, and gene regulatory networks. There are often settings where the network

structure is not readily available and the underlying graph explaining the different interactions

between participating agents is unknown. In situations such as these, the graph topology has to

be estimated from the available data, i.e., the measured graph signals. Moreover, some graphs

can be dynamic, such as brain activity supported by neurons or brain regions.

In the particular domain of functional brain imaging, the tools derived by GSP, such as filters

and the GFT, can prove insightful in the analysis of brain imaging data [Huang et al., 2018]. The

Internet of Things is another highly active area of research and development. In this context,

tools and concepts from GSP are highly useful, especially in filtering [Spachos and Plataniotis,

2018].

Encoding the graph topology with the adjacency matrix A, the weighted adjacency matrix

W or the graph Laplacian L is ubiquitous in graph signal models. This operator describes the

10
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(a) Graph Laplacian spectrum

(b) The 1st eigenvector plotted as a signal (left) and as a graph signal (right)

(c) The 2nd eigenvector plotted as a signal (left) and as a graph signal (right)

(d) The 3rd eigenvector plotted as a signal (left) and as a graph signal (right)

Figure 2.2: The behavior of the eigenvalues and eigenvectors 1, 2, 3 of the graph Laplacian L
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(a) Graph Laplacian spectrum

(b) The 5th eigenvector plotted as a signal (left) and as a graph signal (right)

(c) The 10th eigenvector plotted as a signal (left) and as a graph signal (right)

(d) The 15th eigenvector plotted as a signal (left) and as a graph signal (right)

Figure 2.3: The behavior of the eigenvalues and eigenvectors 5, 10, 15 of the graph Laplacian L
12
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interactions between entities and, by extension, it can be considered as a tool for representing

relationships between data. Moreover, as seen in applications such as those from section 1.1,

the signal processing tools introduced in section 2.1, and in the research domains cited earlier

in this section, knowledge of S is paramount in order to process data on graphs. The context

in which we place our work is just before any graph processing can take place, at the step of

forming and estimating a pertinent shift matrix S. This pre-processing context based on the

needed knowledge of the Graph Shift Operator motivates our chosen research direction.

2.3 Objectives and contributions

The main objectives that we set for our research is the development of algorithms of graph

topology inference, based on acquired graph signals. To this main objective we add secondary

goals, which aim at further improving the developed methods. Firstly, we consider the online

framework in which nodal signals represent time series. As such, a network-wide signal y(i) is

acquired at every time instant i and used in order to improve the current estimate of S. Secondly,

we aim at endowing the algorithms with distributive capacities. Indeed, for reasons of privacy

and energy consumption in the network, being able to process data in a distributed manner is an

advantage [Lee and Zomaya, 2010]. Thirdly, we consider the capacity of adapting to slow changes

in said topology. These can occur in areas such as, e.g., brain activity and social interactions.

In terms of contributions, the existing literature on topology inference, as presented in section

2.4, rarely took into consideration the online aspect of some applications. Under this premise,

Chapter 3 presents and develops an online algorithm of topology inference, able to adapt to

changes in network interactions. The method is then analyzed and compared with another

proposition of the literature.

Based on a lack of online methods considering the existence of nonlinear dependencies be-

tween nodal measurements, Chapter 4 introduces a novel, node-dependent, algorithm capable

of topology inference. The proposed model is additive and takes advantage of the reproducing

kernel machinery, as well as of dictionary-sparsifying methods. The thorough analysis of the

algorithm is then complemented by experiments based on real data. The method reveals topolo-

gies which present qualities and metrics coherent with findings by medical studies, as long as

other topology inference methods.

A further development of our proposed nonlinear topology inference solution is presented in

Chapter 5. The introduced model does not assume any additive relations between nodes, thus

allowing for a better representative capacity. Furthermore, it makes use of a natural solution in

introducing sparsity in the networks’ links. This solution avoids artificially introducing sparsity

by the use of the `1-norm, instead relying on partial derivatives. A complex analysis is then

set forth, for both the non-regularized and regularized case. The experimental section of this

chapter further proves the inferring capacities of the method.
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2.4 State of the art in topology inference

This section highlights a few works in the existing literature on topology inference, with more

examples and complementary information given on a case by case basis in each of the following

chapters. A comprehensive review of the state of the art methods for graph topology inference

is given in [Dong et al., 2019].

The remainder of this section showcases a selection of both linear and nonlinear methods.

This separation is done in order to match the structure of the future chapters, in which this

separation exists as well.

2.4.1 Linear dependencies

For topology identification, several works have been put forward. A very early proposition is in

[Dempster, 1972], where a covariance estimation based method of inferring links is introduced.

On the same line, in [Friedman et al., 2008] the graphical LASSO is employed in order to

estimate the inverse covariance matrix from available data. Other solutions include the use of

dictionaries. The authors in [Ding et al., 2020] devise a method for learning a dictionary that is

able to efficiently represent the signals as linear combinations of atoms, from which they establish

a similarity graph between the data.

Work [Zaman et al., 2017] proposes a vector auto-regressive data model, leading to the

development of an online topology inference algorithm. The parameters of the proposed auto-

regressive model are estimated and used in order to reveal an underlying directed graph, based

on causality [Bolstad et al., 2011]. A scalable algorithm is devised, based on a block coordinate

descent implementation. The method is, however, centralized. A similar solution, based on causal

graph processes, is proposed in [Ramezani-Mayiami and Beferull-Lozano, 2017]. In [Segarra

et al., 2017], the authors advocate that connectivity can be recovered from estimated spectral

templates, while the authors of works such as [Sardellitti et al., 2016, 2019] use a similar method

with a focus on band-limited signals, i.e., signals whose GFT are sparse. In [Vlaski et al., 2018]

the authors propose an online adaptive algorithm for learning the topology from streaming graph

signals driven by a diffusion process. Linearity of interactions and signal stationarity are assumed

in [Shafipour et al., 2019], while developing an ADMM algorithm. The authors of [Shafipour

et al., 2017] introduce and develop a method designed for topology inference for the case when

the measured signals are non-stationary.

2.4.2 Nonlinear dependencies

In modeling non-linear phenomena, works such as [Harring et al., 2012, Finch, 2015] focus on

polynomial structural equation models, while the authors of [Lim et al., 2015] use their non-linear

counterparts. Structural equation models are also used in [Baingana et al., 2013] to track slowly

time-varying networks, with application to contagion propagation. They, however, have some
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limitations, such as assuming knowledge of certain connections or the form of the non-linear

functions. Reproducing kernels have seen widespread use in topology inference problems. One

of these works is [Shen et al., 2017] where kernels, chosen to best fit the data, model nonlinear

relationships between nodes based on measurements at successive time instants. The authors

present an auto-regressive framework that allows to track graph connectivity over time, proving

useful in providing insights on brain connectivity. The multi-kernel approach in [Zhang et al.,

2017] uses partial correlations to encode graph topology and `p-norm regression to enhance

performance. Another solution is developed in [Lippert et al., 2009], where an unsupervised

kernel-based method is implemented. One particularity of the algorithm is that it requires, as

a parameter, the number of sought edges. It also offers the possibility of statistical significance

testing when setting this parameter. In [Giannakis et al., 2018], a thorough analysis of the kernel-

based topology inference problem is given. This last work focuses on capturing both nonlinear

and dynamic links, i.e., connections that vary with time.
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Topology inference with linear dependencies
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3.4.3 Mean square error behavior . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Theoretical validation and experimental results . . . . . . . . . . . . . . . . . . 29

3.5.1 Theoretical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

The current chapter focuses on developing a framework of estimating a network structure

in an online, distributed and adaptive fashion. Several works proposed centralized of-

fline solutions to address this problem, without paying much attention to the inherent distributed

nature of networks. A few other works proposed online, adaptive methods, but are still central-

ized. A focus is placed on distributed algorithms, throughout the current and the following

chapters, for reasons of reducing computational burden, as well as introducing a layer of privacy

and security. The principle is that should an agent of the network be compromised, then only the
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CHAPTER 3. TOPOLOGY INFERENCE WITH LINEAR DEPENDENCIES

locally stored and processed information is at risk. Another advantage of distributed algorithms

is that should an agent fail, the network would still be able to continue processing until nominal

functioning parameters are reestablished.

We depart from a centralized setting and show how, by introducing a simple yet powerful

data model, we can infer a graph structure from streaming data with a distributed online learning

algorithm. By capturing the dependencies among streaming graph signals, an estimate is ob-

tained in the form of a possibly directed, weighted adjacency matrix. The online and distributed

aspects of the method allow for the estimation of networks which change in time, endowing it

with topology-tracking capabilities. A performance analysis of the algorithm is proposed, both

in the mean and in the mean square sense, as well as a brief study in stability. Our proposed

approach is then tested experimentally to illustrate its usefulness, and successfully compared to a

centralized offline solution of the existing literature. For illustration purposes, we consider both

a symmetry-imposing regularization, tending to the estimation of undirected graphs, as well as

a sparsity-imposing one, reliant on the `1-norm, tending to the estimation of sparse graphs.

The work presented in this chapter was published in:

• M. Moscu, R. Nassif, F. Hua, and C. Richard. Learning causal networks topology from

streaming graph signals. In 27th European Signal Processing Conference (EUSIPCO), pages

1–5, 2019. doi: 10.23919/EUSIPCO.2019.8902826

• M. Moscu, R. Nassif, F. Hua, and C. Richard. Apprentissage distribué de la topologie d’un

graphe à partir de signaux temporels sur graphe. In Actes du 27e Colloque GRETSI sur

le Traitement du Signal et des Images, 2019

3.1 Introduction

In the last decade, data have become a raw resource that needs to be collected and refined

before becoming useful information. Data are abundant and diverse, taking different forms

and stemming from different sources: e-commerce, sporting events, entertainment media, and

social interactions, to name a few. Structured data, which have a defined format and where each

component is linked in some way to others, are ubiquitous and generally evolve over time, making

it difficult to process and analyze. Since seminal works such as [Shuman et al., 2013, Sandryhaila

and Moura, 2013a], the field of Graph Signal Processing has attracted great attention due to the

large array of potential applications it offers. Typical examples include functional brain topology,

social media analysis, and transportation or energy networks monitoring.

Most GSP algorithms introduced in the past years assume prior knowledge of the graph

structure. However, there are often settings where the graph is not readily available, and has

to be inferred from data by capturing the underlying relationship between the characteristics of

the observations at each node. This chapter focuses on developing a framework able to estimate
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a network structure by capturing the linear dependencies among streaming graph signals. The

estimated GSO is in the form of a possibly directed, weighted adjacency matrix, which governs

said dependencies.

Under a graph signal smoothness assumption, the so-called pairwise distances matrix Z with

entries defined as znm , ‖yn − ym‖2, is introduced in [Kalofolias, 2016] to estimate a weighted

adjacency matrix W . Notations yn and ym denote a scalar measurement acquired at nodes n

and m, respectively. The optimization problem they propose is:

argmin
W

‖W ◦Z‖1 − α1> log(W1) + β‖W ‖2F , (3.1)

where the `1-norm and the log(·) operators are element-wise. The logarithmic constraint helps

reducing exceedingly large weights, while the Frobenius-norm regularization reduces the number

of less connected nodes and hinders the existence of non-connected ones. The work [Yamada

et al., 2019] improves upon problem (3.1) by adding a regularization term to impose temporal

sparseness, under the assumption that changes in topology are sparse in time.

A recent work is [Natali et al., 2020], in which the authors consider the connectivity of the

network as known, i.e., supp{S}, and they focus on jointly estimating interaction weights, as well

as filter coefficients which best explain the input – output relation. In order to tackle the non-

convexity in the proposed optimization problem due to the joint estimation, the authors employ

the alternating minimization approach, iterating alternatively between the filter coefficients and

the Graph Shift Operator.

In [Segarra et al., 2017, 2018], the authors advocate that connectivity can be recovered from

spectral templates, under the assumption that the graph signal x is stationary and generated

through a diffusion process. Starting from the sample covariance, they obtain an estimate of its

eigenvectors, which are shown to be the same as those of the Graph Shift Operator, commutation

rendered possible by the mild requirements previously imposed on the signal x. They then

proceed to estimate the shift operator S under a set of constraints that yields a matrix with

desirable properties, such as zeros on the diagonal, sparsity or symmetry. The method is shown

to be robust to noisy or incomplete spectral templates.

These previous proposals share the limiting characteristic of the approach being offline. As

such, they lack in adaptive capabilities. The authors of [Shafipour et al., 2019, Shafipour and

Mateos, 2020] improve the spectral-template-based method previously discussed by endowing

it with online-estimating capacities. They formulate an optimization problem amenable for an

Alternating Direction Method of Multipliers (ADMM) algorithm and also reduce the complexity

of the necessary eigen-decomposition from O(N3) to O(N2), rendering it suitable for the online

setting. The method is, however, feasible only when the input signal x is stationary, since this

represents the base condition for spectral templates commuting between the estimated covariance

matrix and the Graph Shift Operator.
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Table 3.1: List of notations and symbols present in Chapter 3

Symbol Definition
S Shift matrix of a graph
A Adjacency matrix of a graph
W Weighted adjacency matrix of a graph
N Set of nodes of the graph
Nn Set of nodes in the neighborhood of node n, excluding node n
N\n Set of all nodes, excluding node n
J(·) Global cost function
Jn(·) Local cost function
N Total number of nodes in the graph
K Number of filter taps

Unlike existing methods, this chapter focuses on developing a method of identifying the

topology of a graph from streaming graph signals in a distributed and online manner, without

strong constraints on the nature of the input signal.

A set of symbols used throughout the remainder of this chapter are collected in Table 3.1,

while others are defined and used locally.

3.2 Centralized problem statement

3.2.1 Shift-invariant graph filtering

The proposed method focuses on a graph-based filtering framework. A graph filter takes a signal

on graph x(i) as input, and outputs a signal y(i) given by y = Hx indexed by the same graph

[Sandryhaila and Moura, 2013b]. For an application such as functional brain topology, the input

could be a voltage applied in different brain regions, while the output can be the voltage measured

at each of the same regions [Penfield, 1947, Histed et al., 2009]. Another input – output pair can

be found in the context of the contagion-like spread of tweets on Twitter. For instance, a certain

piece of news can be posted by a number of users in a relatively short time span, representing

the input, whereas a binary output can be represented by the users which retweet (or not) the

news, within a chosen time frame [Lerman et al., 2012].

Different forms have been considered forH in the literature. As a starting point in developing

our method, theKth order linear shift invariant graph filter is defined as [Sandryhaila and Moura,

2013a, Shuman et al., 2018]:

y(i) =
K−1∑
k=0

hkS
kx(i) , i ≥ 0 , (3.2)

with S denoting a shift matrix and {hk}K−1
k=0 being the filter coefficients. The shift-invariant

property is expressed by the relation S(Hx) = H(Sx), meaning that a shift applied on the

filtered signal is the same as filtering a shifted signal. Observe that the previous model assumes
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3.2. CENTRALIZED PROBLEM STATEMENT

the instantaneous diffusion of information, which may appear as a limitation of this model.

A dynamical model was proposed to overcome this restriction [Nassif et al., 2018], in which a

realistic delay on the input is introduced:

y(i) =
K−1∑
k=0

hkS
kx(i− k) , i ≥ K − 1 . (3.3)

This model has seen extended use in graph filtering [Nassif et al., 2018, Hua et al., 2018].

3.2.2 Network topology inference

Taking into account the input signal delay, we propose the multivariate, centralized data model

defined as:

y(i) =

K−1∑
k=0

Skx(i− k) + v(i), i ≥ K − 1 , (3.4)

where Sk , {snm,k} in the above power series contains regressive coefficients that describe the

influence of node m on node n at a distance of k hops, and v(i) is innovation noise. The chosen

model is helpful to asses Granger causality, based on the cause-before-effect principle [Granger,

1988]. In our context, xm is said to Granger-cause x` if knowledge of the former improves the

prediction of the latter [Bolstad et al., 2011]. We remark upon the fact that the simplification

of model (3.3) into (3.4) is possible due to the goal being the estimation of a suitable GSO, able

to explain the underlying connectivity. Assuming that the shift matrix S is known, the authors

in [Nassif et al., 2018] show how diffusion adaptation strategies can be applied to estimate the

filter coefficients {hk}K−1
k=0 from streaming data {x(i),y(i)}. Moreover, h1 cannot be zero, since

this would imply the nonexistence of the network.

Consider a connected network with N nodes. Model (3.4) allows for the use of the assumption

that each node ` knows the set of its neighbors N` with which it communicates, while the

support of S remains unknown. In order to keep our algorithm as general as possible, we

do not assume any connections as known beforehand. The problem is to estimate S from

streaming data {x(i),y(i)}. We assume that signal x(i) is zero-mean wide-sense stationary, i.e.,

correlation sequence Rx(k) , E{x(i)x>(i − k)} is a function of the time lag k only. The noise

v(i) = [v1(i), . . . , vN (i)]> is assumed zero-mean, independent and identically distributed (i.i.d.),

with covariance Rv = diag
{
{σv,n}Nn=1

}
. Under these assumptions, estimating matrix S in (3.4)

can be performed by solving the following problem:

S∗ = argmin
S

E

{∥∥∥y(i)−
K−1∑
k=0

Skx(i− k)
∥∥∥2
}

+ ηΨ(S) ,

subject to snm = 0 if m /∈ Nn , snn = 0 , n = 1, . . . , N

(3.5)

with η > 0. The objective function in (3.5) includes a data-fidelity term alongside regularization

term Ψ(S), which can account for some prior knowledge of S such as symmetry or sparsity. The
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CHAPTER 3. TOPOLOGY INFERENCE WITH LINEAR DEPENDENCIES

constraints aim at forcing to zero the entries snm of S corresponding to node pairs (n,m) not

belonging to the edge set E .
Formulation (3.5) is, however, non-convex due to the matrix polynomial. This leads any

resolution algorithm to possibly converge toward a local minimum rather than a global one.

Reference [Mei and Moura, 2017] considers a similar problem in a centralized setting where the

data across the network are collected and processed by a fusion center. In the next section, we

shall show how the entries of S can be estimated in a distributed manner where nodes perform

local computations and exchange information only with their one-hop neighbors.

3.3 Distributed solution

The following strategy allows each node to locally estimate its own non-zero entries in S. Ac-

cording to (3.4), the output yn(i) at each node n is given by:

yn(i) =

K−1∑
k=0

[
Skx(i− k)

]
n

+ vn(i) . (3.6)

This can be rewritten as:

yn(i) =s>n [x(i− 1)]m∈N\n
+ s>n [Sx(i− 2)]m∈N\n

+ . . .+ s>n
[
SK−2x(i−K + 1)

]
m∈N\n

+ xn(i) + vn(i) , (3.7)

with sn = col{snm : m ∈ N\n} the (N − 1)× 1 vector aggregating all entries of the nth row of S,

expect for the nth one. We remark that the constraint snn = 0 is included, for the case of this

local model, directly in the definition of sn. Given that the diffusion of information is achieved

in the manner depicted in Fig. 3.1, and that node n only needs to estimate sn, matrices S in

(3.7) are replaced with their past available estimates Ŝ(i− k), k = 1, . . . ,K − 2. By subtracting

xn(i) from yn(i), (3.7) can be expressed as:

ȳn(i) , yn(i)− xn(i) = z>n (i)sn + vn(i) , (3.8)

where zn(i) is a (N − 1)× 1 column vector defined as:

zn(i) =

K−2∑
k=0

[
Ŝkx(i− k − 1)

]
m∈N\n

, (3.9)

with:

Ŝk(i) , Ŝ(i− 1)Ŝ(i− 2) . . . Ŝ(i− k) , Ŝ0 = I . (3.10)

This solution reduces to approximating the powers of S with products of past estimates of

S which are available network-wide, i.e., Sk ≈ Ŝ(i − 1) . . . Ŝ(i − k). Regressor zn(i) is non-

stationary, since its statistical properties depend on the current chosen estimates of S. It also
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`

x`(i − 2)
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xm(i − 1)
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Figure 3.1: Data paths toward node n. Links are depicted as directed edges in order to illustrate
the flow of weighted data. In order to estimate its own snm, node n receives from its neighbour
m the (K − 1)-element vector [xm(i− 1), smpxp(i− 2) + sm`x`(i− 2)]>

represents a quantity that is known at every instant i by the current node, which entails a removal

of the initial non-convexity of the problem.

Reformulating (3.7) in the form (3.8) has the following rationale. Consider node n. At time

instant i, this node weights the incoming data from its neighbors with the corresponding entries

of the nth row of S. The same reasoning holds for any neighboring node m of n, as illustrated in

Fig. 3.1, which weights its own incoming data with entries of the mth row of S. This means that

two-hop data sent by node ` at time instant i− 2, passing through node m at time instant i− 1,

and received by node n at time instant i, are successively weighted by sm` and snm. Therefore,

when estimating S, node n can simply focus on its own weights stored in the nth row of S

provided that every other node in the network does the same with its own weights.

Reformulation (3.8) – (3.27) comes along with several benefits compared to the centralized

solution in [Mei and Moura, 2017]. The main one concerns computational efficiency since only

one-hop regressors zn(i) are considered at each node n. These one-hop transfers also translate

into lower overall communication costs.

We reformulate problem (3.5) by introducing the following aggregate cost function:

J(S) =

N∑
n=1

Jn(sn) , (3.11)

where Jn(sn) denotes the cost at node n, namely:

Jn(sn) , E
{
|ȳn(i)− z>n (i)sn|2

∣∣ Ŝk, k = 0, . . . ,K − 2
}

+ ηnψ(sn) . (3.12)

The expected value is now conditioned by the fact that past estimates of S are fixed and, most

importantly for the proposed approach, known. Form (3.12) allows each node n to estimate

its known entries sn of S, and to possibly account for some prior knowledge of S via ψ(sn).

We also note that the decomposition (3.11) of the global cost function entails the condition

Ψ(S) =
∑N

n=1 ψ(sn), under the central assumption of separability of the regularization function.
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3.3.1 Symmetry constraint

For illustration purposes, in this subsection, we shall promote symmetry in matrix S via Ψ(S) =∥∥vec{S − S>}∥∥2. This locally translates into the regularizer:

ψsym(sn) =
∑

m∈N\n

(snm − smn)2 . (3.13)

Following the strategy in [Nassif et al., 2017b], we address this problem by considering the

following local cost function:

Jn(sn) , E
{
|ȳn(i)− z>n (i)sn|2

}
+ ηn

∑
m∈N\n

(snm − smn)2 , (3.14)

where parameter ηn > 0 controls the relative importance of respecting the symmetry constraint

on S [Towfic and Sayed, 2014]. To minimize (3.14), we propose an incremental solution based

on gradient descent, namely:

ŝn(i+ 1) = ŝn(i) + µn[rzny −Rzn ŝn(i)− ηnδ(i)] , (3.15)

where δ(i) = ŝn(i) − s̃n(i), with s̃n = col{ŝmn : m ∈ N\n}, µn a sufficiently small positive

step-size, and:

Rzn , E
{
zn(i)z>n (i)

}
, rzny , E {zn(i)ȳn(i)} . (3.16)

Note that vector s̃n aggregates entries on the nth column of Ŝ, i.e., connections leaving from local

node n towards any other node m, while the estimated vector ŝn aggregates connections arriving

to local node n from any other node m. Under this particular symmetry-enforcing constraint,

step-size µn in (3.15) must satisfy:

0 < µn <
2

λmax(Rzn + ηnI)
, (3.17)

as to guarantee stability in the mean under certain independence conditions on the data [Sayed,

2008].

Update (3.15) may prove difficult to perform in an online fashion, since second-order moments

are rarely available beforehand. As a consequence, a stochastic gradient descent strategy can be

devised. It consists of choosing instantaneous approximations, such as:

Rzn ≈ zn(i)z>n (i) , rzny ≈ zn(i)ȳn(i) . (3.18)

We used the adapt-then-penalize approach introduced in [Yu and Sayed, 2017] to implement

the algorithm (3.15) with approximations (3.18). Let us note the local instantaneous error εn(i):

εn(i) , ȳn(i)− z>n (i)ŝn(i) , (3.19)

and introduce the intermediate estimate φn(i), leading to a development of strategy (3.15) into:

φn(i+ 1) = ŝn(i) + µnzn(i)εn(i) , (3.20a)

ŝn(i+ 1) = φn(i+ 1)− µnηn
[
φn(i+ 1)− φ̃n(i+ 1)

]
, (3.20b)
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with φ̃n(i + 1) , col
{

[φm(i+ 1)]n : m ∈ N\n
}

the column vector that aggregates all partial

estimates related to node n in partial estimates of its neighboring nodes. Note that couple

φn – φ̃n works in a similar way to ŝn – s̃n: vector φ̃n aggregates the entries of the intermediate

estimates corresponding to connections leaving from node n, while φn aggregates the entries

of the intermediate estimates corresponding to connections arriving to n. The algorithm is

synthesized hereafter.

Algorithm 1: Local estimation of graph topology
For every node n:
Inputs: Parameters µn and ηn
Initialization: Initialize all entries of ŝn(0)
Algorithm: At each time instant i ≥ 1

Collect weighted data
[
Ŝk−1x(i− k)

]
m∈N\n

from neighbors

Compute the regressor zn(i) with (3.27)
Update the local estimate ŝn with either (3.20), (3.25a) or (3.25b)

3.3.2 Sparsity constraint

In this subsection, we enforce a sparsity constraint on S. Such a constraint helps take into account

that large real-world graphs tend to be sparse, i.e., one particular node is usually connected to

a small subset of the available nodes [Danisch et al., 2018]. This behavior can be noticed in,

e.g., web graphs [Gibson et al., 2005], social networks [Speriosu et al., 2011], and biological

networks [Harbison et al., 2004]. Thus, we use the zero-attracting regularization (ZA):

ψZA(sn) =
∑

m∈N\n

|snm| , (3.21)

and the reweighted zero-attracting regularization (RZA):

ψRZA(sn) =
∑

m∈N\n

log

(
1 +
|snm|
ε

)
, ε > 0 , (3.22)

with (3.12), both of which are introduced in [Chen et al., 2009]. In order to minimize (3.12),

we employ an incremental solution based on gradient descent, namely [Jin et al., 2018b]:

ŝn(i+ 1) = ŝn(i) + µn [rzny −Rzn ŝn(i)− ηn sign{ŝn(i)}] , (3.23a)

ŝn(i+ 1) = ŝn(i) + µn

[
rzny −Rzn ŝn(i)− ηnε−1 sign {ŝn(i)}

1 + ε−1| ŝn(i)|

]
, (3.23b)

for ZA and RZA, respectively. The division on the right-hand side (r.h.s.) of (3.23b) is performed

element-wise. Note that the sign function is always bounded, hence the stability condition for

updates (3.23) is [Sayed, 2008]:

0 < µn <
2

λmax(Rzn)
. (3.24)
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Table 3.2: List of notations and symbols employed throughout the analysis in Chapter 3

Symbol Equation
S∗ = RzyR

−1
z (3.29)

Bi , I − µz(i)z>(i) (3.35)
Gi , µv(i)z>(i) (3.35)

The instantaneous approximations (3.18) can be once again used, due to the potential unavail-

ability of second order moments in (3.23). This leads to the stochastic gradient updates:

ŝn(i+ 1) = ŝn(i) + µnzn(i)εn(i)− µnηn sign{ŝn(i)} , (3.25a)

ŝn(i+ 1) = ŝn(i) + µnzn(i)εn(i)− µnηnε−1 sign {ŝn(i)}
1 + ε−1| ŝn(i)|

. (3.25b)

3.4 Algorithm analysis

The centralized problem is analyzed in this section, since its local counterpart follows the same

train of thought. No regularization is taken into consideration in the analysis, due to the large

number of possible regularization functions. The delicate case of an `1-norm constraint, which

is the base for the ZA regularization, is analyzed in [Chen et al., 2016]. Consider the centralized

conditional cost function, without regularization:

J(S) =
1

2
E

{∥∥∥ȳ(i)− Sz(i)
∥∥∥2
∣∣∣∣∣ Ŝk, k = 0, . . . ,K − 2

}
, (3.26)

with:

z(i) =
K−2∑
k=0

Ŝkx(i− k − 1) . (3.27)

Its gradient with respect to (w.r.t.) S is then:

∇SJ(S) = E
{
−ȳ(i)z>(i) + Sz(i)z>(i)

}
, (3.28)

which leads to:

∇SJ(S) = 0 ⇐⇒ SE
{
z(i)z>(i)

}
= E

{
ȳ(i)z>(i)

}
⇐⇒ S∗ = RyzR

−1
z , (3.29)

with Ryz , E
{
ȳ(i)z>(i)

}
, Rz , E

{
z(i)z>(i)

}
, and S∗ representing the optimal value which

minimizes cost function (3.26). Recall that S does not allow self-loops.
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3.4.1 Weight error recursion

Let Ŝ(i) denote the estimate at step i of S. The classic gradient descent step is:

Ŝ(i+1) = Ŝ(i) − µ∇SJ(S) , (3.30)

where µ is a small enough step size. Using this alongside relation (3.28), we obtain the gradient

step:

Ŝ(i+1) = Ŝ(i) + µ
(
Ryz − Ŝ(i)Rz

)
, (3.31)

with its stochastic variant:

Ŝ(i+1) = Ŝ(i) + µ
(
ȳ(i)− Ŝ(i)z(i)

)
z>(i) . (3.32)

Let us denote by D(i) , Ŝ(i) −S∗ the difference between the current available estimate and the

optimal solution (3.29).

Assumption 3.1. Assume regressors z(i) arise from a random process, temporally white, and

independent of D(i).

We can now write:

ȳ(i)− S(i)z(i) = v(i)−D(i)z(i) . (3.33)

Subtracting S∗ from both sides of (3.32) and using (3.33), we obtain:

Ŝ(i+1) − S∗ = Ŝ(i) − S∗ + µ
(
v(i)−D(i)z(i)

)
z>(i)

⇐⇒D(i+1) = D(i) + µv(i)z>(i)− µD(i)z(i)z>(i)

⇐⇒D(i+1) = D(i)

(
I − µz(i)z>(i)

)
+ µv(i)z>(i) . (3.34)

The analysis is hereafter split in two main parts: the mean and the mean error behaviors.

The goal of this analysis is three-fold: first, it establishes stability conditions for the algorithm,

i.e., the conditions needed for its convergence in the mean; second, it offers the possibility to fix

the step-size µ in accordance with the needs of the considered application and the desired mean

square performance; third, it predicts the evolution of the estimated quantity as a function of

the time instant i.

3.4.2 Mean error behavior

We now aim to analyze the evolution of the estimate Ŝ(i) of S in relation with the optimal

solution (3.29), for each instant i. Let us first introduce the notations:

Bi , I − µz(i)z>(i) , Gi , µv(i)z>(i) . (3.35)

Applying the expected value operator on both sides of recursion (3.34), we obtain:

E
{
D(i+1)

}
= E

{
D(i)

}
B +G , (3.36)
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where B = E {Bi} and G = E {Gi}. It is useful to note that G = 0, since the noise v(i) is i.i.d.

and zero-mean.

For stability reasons, we have that [Sayed, 2008]:

ρ(B) < 1 ⇐⇒ 0 < µ <
2

λmax(Rz)
. (3.37)

Should the stability condition (3.37) be respected, it follows that:

lim
i→∞

E
{
D(i)

}
= 0 . (3.38)

3.4.3 Mean square error behavior

We now analyze the behavior of the mean square error in the estimate of S. Using recursion

(3.34) and notations (3.35), we have:

D(i+1) = D(i)Bi +Gi . (3.39)

Thus, we are interested in computing:

E
{
D(i+1)D

>
(i+1)

}
= E

{
D(i)BiB

>
i D

>
(i)

}
+ E

{
GiG

>
i

}
+ 2E

{
D(i)BiG

>
i

}
. (3.40)

We remark upon the fact that the last term on the r.h.s. of (3.40) is 0, due to the properties

of the noise v(i). We also denote BiB
>
i , Ki and E {Ki} = K , BB>. Applying the trace

operator on both sides of (3.40) and using its properties, we obtain:

E
{
‖D(i+1)‖2F

}
= E

{
‖D(i)‖2F,K

}
+ µ2Tr {RvRz} , (3.41)

where ‖D(i)‖2F,K is the Frobenius norm by the metric K, i.e., ‖D(i)‖2F,K = Tr
{
D(i)KD

>
(i)

}
.

We obtain that, if µ is small enough, the algorithm is mean-square stable as i → ∞, since

ρ(Ki)→ 0, and converges towards:

lim
i→∞

E
{
‖D(i)‖2F

}
= µ2 Tr {RvRz}

Tr {I −K}
, (3.42)

which represents the steady-state Mean Square Deviation (MSD) of our algorithm.

We now iterate from i = 0:

E
{
‖D(i+1)‖2F

}
= E

{
‖D(0)‖2F,Ki+1

}
+ µ2

i∑
j=0

Tr
{
RvRzK

j
}
, (3.43)

where D(0) represents the initial error. This relation, alongside recursion (3.41), allows the

introduction of the learning curve ζ(i) , E
{
‖D(i)‖2F

}
:

ζ(i+ 1) = ζ(i) + E
{
‖D(0)‖2F,Ki(K−I)

}
+ µ2Tr

{
RvRzK

i
}
. (3.44)
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3.5 Theoretical validation and experimental results

Setting: An undirected community graph was generated using GSPBOX [Perraudin et al.,

2014], with N nodes forming two clusters, i.e., communities. The corresponding adjacency

matrix is shown in Fig. 3.3a. The ground truth GSO S was chosen to be:

S =
W

1.1 · λmax(W )
, (3.45)

which represents the normalized weighted adjacency matrix. The entries of W were set to:

wnm = exp(−γ ‖cn − cm‖2) , (3.46)

where γ ∈ [0, 1] and cn are the coordinates of the 2D embedding for node n. Changing the

parameter γ in (3.46) during our experiments allows us to simulate a sudden change in the

networks’ underlying connectivity.

We considered an i.i.d. zero-mean Gaussian signal x(i) with covariance matrix Rx. To

reaffirm our ideas, this matrix was chosen to be the solution of the discrete Lyapunov equation

SRxS
>−Rx+I = 0, which can be computed using vec{Rx} = (I − S ⊗ S)−1 vec{I} [Kitagawa,

1977]. We note that this choice is arbitrary, as any positive matrix Rx is eligible. Noise v(i) was

also zero-mean Gaussian with covariance matrix Rv = diag
{
{σ2

v,n}Nn=1

}
. Variances σ2

v,n were

generated from the uniform distribution U(0.1, 0.15). We set the filter order to K = 3. Output

data y(i) were generated with model (3.4). We used a constant step-size µ for all nodes. The

theoretical validation was ran over 100 Monte-Carlo runs. For each of the other experiments,

estimates were averaged over 50 Monte-Carlo runs.

3.5.1 Theoretical validation

The step-size used was µn = 10−4 for all nodes. Parameter γ was equal to 0.1. No regularization

term was used. Due to its dependency on quantities Ŝk, matrix Rzn was re-computed at every

iteration, via relation:

Rzn , E
{
zn(i)z>n (i)

} (3.27)
= E

{
K−2∑
k=0

[
Ŝkx(i− k − 1)

]
m∈N\n

K−2∑
`=0

[
x>(i− `− 1)Ŝ

>
`

]
m∈N\n

}

=
K−2∑
k=0

K−2∑
`=0

[
ŜkRxŜ

>
`

]
m∈N\n

. (3.47)

The mean error analysis was done locally, at node n = 1. Fig. 3.2a depicts the estimated

non-zero entries on the first row of S. These curves correspond to the mean sense analysis, and

are obtained via (3.36).

The mean square error analysis was conducted globally. Fig. 3.2b depicts the MSD. The

theoretical curve used relation (3.44), while the steady-state MSD was computed using (3.42).

The experimental MSD was evaluated using (3.48). We observe that the theoretical curves match

well the experimental ones, thus confirming the validity of our model and theoretical analysis.

This observation is valid for the behavior of both the mean and mean square error.
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(a) Theoretical and experimental entries of S. Continu-
ous lines are the theoretical curves, while dashed line are
experimental. Corresponding curves are color coded

(b) Experimental, steady-state, and theoretical MSD

Figure 3.2: Validation for the analysis in both the mean and mean square sense

(a) Adjacency matrix A (b) Shift matrix S′ (c) MSD learning curves

Figure 3.3: Adjacency matrix considered for Experiments 1 and 2, shift matrix S′ used in
Experiment 2 , and the MSD learning curves

3.5.2 Experimental results

Experiment 1: Learning Algorithm 1 was run in order to estimate the GSO S for a network

with N = 32 nodes. The symmetry-enforcing regularizer (3.13) was used, alongside updates

(3.20). In order to illustrate the adaptation abilities of the method, we changed the shift operator

mid-way during the experiment. As such, parameter γ in (3.46) was set to 0.1 during the first

part of the experiment, and then changed to 0.6 for the second part in order, in order to simulate

a sudden change in topology. Parameters ηn were set to 300, ∀n ∈ N . The estimated MSD

learning curve, defined as:

MSD(i) =
1

N

N∑
n=1

E
{
‖ŝn(i)− sn‖2

}
, (3.48)
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(a) The eigengap (b) The recovered clusters

Figure 3.4: Spectral clustering performed during Experiment 2. Two communities can be ob-
served in the graph topology. When taking into consideration how the agents actually interact,
three clusters are identified

is depicted in Fig. 3.3c. It shows that the algorithm converged monotonically to a reasonably

low MSD, and succeeded in adapting to the change in S at time i = 50000.

Experiment 2: Data were generated as in Experiment 1, with a new shift matrix S′ such that

supp{S′} ⊆ supp{S}. This allowed us to consider a new setting where, even if a node m is linked

to a node n, i.e., (m,n) ∈ E , the output signal yn(i) at node n does not necessarily depend on

the input signal xm(i − 1) at node m via data model (3.4). To design S′, we selected a subset

of nodes in one of the two communities of the initial community graph, and we divided their

connection weights in S with all other nodes by 102. The resulting shift matrix S′ is depicted

in Fig. 3.3b. In this way, we obtained two clusters according to the adjacency matrix A, and

three clusters according to the shift matrix S′. Mid-way through the experiment, parameter γ

in (3.46) was changed from 0.1 to 0.6 in order to simulate a change in topology.

Learning Algorithm 1 was ran in order to estimate S′. As in the previous experiment, the

symmetry-enforcing regularizer (3.13) was employed, with ηn = 300,∀n ∈ N , warranting the

use of updates (3.20). The learning curve represented in Fig. 3.3c shows that the algorithm

converged to a reasonably low MSD, at a slower rate than in Experiment 1 possibly because of

the larger number of clusters. To check this assumption, we computed the eigen-decomposition

of the estimated shift matrix to infer the number of clusters [Tremblay et al., 2016]. It was

numerically found to be equal to 3. Finally, we performed a spectral clustering of the nodes

with a k-means algorithm based on the first k = 3 eigenvectors. The result depicted in Fig. 3.4b

is in accordance with the experimental setup. The aim of this experiments was to check if the

obtained estimated topology, under the form of a weighted adjacency matrix, is useful for a post-

processing algorithm, in this case a clustering one. This algorithm has numerous applications,

across multiple fields, e.g., image segmentation [Wu and Leahy, 1993, Shi and Malik, 2000] or

classification [Bengio et al., 2004]. As such, the estimated GSO managed to shed light on how

actually groups of node communicate among themselves, even if connections exist that could
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(a) Performance in terms of MSD (b) Performance in terms of NMSD

Figure 3.5: MSD and NMSD curves showcasing how Ŝk approach Sk, ∀k = 1, . . . , 4

facilitate an increase in communication capacities. This behavior arises in the right cluster,

where two groups are formed, the yellow and the blue. Even if the two are well connected, the

concerned agents tend to mostly influence and be influenced by other agents of the same color.

Experiment 3: The goal of this experiment is to experimentally show that, as i → ∞, ap-

proximations Ŝk approach Sk. Algorithm 1 was run under the same conditions as in Experiment

1, except for the filter order which was set to K = 5. This was done in order to obtain ap-

proximations of higher order powers in S, namely up to S4. The performance was quantified

in terms and MSD and Normalized Mean Square Deviation (NMSD). The former is defined in

(3.48), while the latter is defined as:

NMSD(i) =
1

N

N∑
n=1

E


∥∥∥∥[Ŝk(i)]n,• − [Sk]n,•

∥∥∥∥2

∥∥∥[Sk]n,•∥∥∥2

 , k = 1, . . . ,K − 1 . (3.49)

These metrics are depicted in Fig. 3.5. For the particular case of power k > 1 when ρ(Sk)

decreases as k increases, the Normalized Mean Square Deviation is a better adapted metric to

depict the performance. As in the previous experiments, the adaptive capabilities of to proposed

method are showcased via the change in γ, present in (3.46), from 0.1 to 0.6.

Experiment 4: Comparisons were conducted with the centralized batch algorithm derived

in [Mei and Moura, 2017], called benchmark algorithm (BA). We considered the same experi-

mental setup as in Experiment 1, except that the number of nodes was set to N = 20, and each

cluster now has 10 nodes. No regularization term ψ(·) was used. Since it deals with a more

complex polynomial model than our algorithm, we simplified the BA model by setting its extra
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Figure 3.6: Comparison of our algorithm with BA for 3 training set sizes: T1 = 105, T2 =
7.5 · 104 and T3 = 5 · 104 samples

coefficients to 0. As BA is a batch-mode algorithm which estimates model parameters from a

batch of training data, we successively set the size of the training set to T1 = 105, T2 = 7.5 · 104,

and T3 = 5 ·104 samples, and ran the BA for each of the three setups. In each case, parameters of

BA were set to achieve the best possible MSD. Next, we set the step-sizes µn of our algorithm to

achieve the same MSD at steady-state as BA, by using relation (3.42). The results are presented

in Fig. 3.6. We observe that our algorithm was able to achieve the same MSD after processing

approximately half of the training samples. From a computational point of view, note that our

method needs to process every sample only once, whereas the BA processes the whole training

set many more times, depending on the chosen solver.

Experiment 5: Learning Algorithm 1 was run in order to estimate S, depicted in Fig. 3.7b,

which is the shift operator for a graph with N = 20 nodes split into two clusters of 10 nodes.

Three cases have been showcased, namely with (i) ηn = 0,∀n ∈ N , i.e., without regularization,

(ii) with ZA regularization, and (iii) with RZA regularization. Imposing a regularization based

on the `1-norm leads to obtaining a good estimate for the topology of the graph of supp{S},
which is a proxy for the binary adjacency matrixA. This, in turn, translates into an improvement

of MSD performance. The learning MSD curves are presented in Fig. 3.7a. They show how the

algorithm converges monotonically towards a reasonably low steady-state MSD. Moreover, it also

succeeded in adapting to the change of the topology encoded in S at instant i = 5000, change

obtained by switching the parameter γ in (3.46) from 0.1 to 0.6, simulating a mid-way switch in

the GSO.
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(a) MSD curves (b) Shift matrix and its estimates

Figure 3.7: The MSD curves are depicted in 3.7a. Shift matrix S and its estimates obtained via
the different considered methods are shown in 3.7b

Visually, Fig. 3.7b showcases how the RZA regularizer is able to offer a better estimate of

graph shift operator S. Since the log-sum penalty it employs behaves more like an `0-norm than

an `1-norm [Candes et al., 2008], it avoids introducing bias towards already large values, behavior

exhibited by the ZA regularizer [Chen et al., 2009].

3.6 Conclusion

In this chapter, we defined and introduced a distributed and online strategy for topology identi-

fication based solely on measured graph signals. This framework allows to estimate a graph shift

operator, under the form of a weighted adjacency matrix, based on local one-hop computations.

The distributed approach allows not only for the division of the computational burden, but for

the enhancement of privacy and security as well. While most of state of the art topology infer-

ence algorithms work in a batch mode, the developed online approach allows the algorithm to

adapt to changes in the graph shift operator, rendering it able to track dynamic topologies.

Chapter 4 continues to develop the directions set in the current chapter, namely the online

and distributed framework. A kernel-based framework is devised, which leads to an algorithm

able to cope with nonlinear relationships between the agents of a network.
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This chapter builds upon the previous one and proposes a method of estimating in an online

and adaptive manner a network structure capturing the nonlinear dependencies among

streaming graph signals. As such, a new data model is introduced. The estimated structure is

presented under the form of a possibly directed adjacency matrix.

The online aspect has rarely been taken into consideration in the existing literature on non-

linear dependencies, and remains one of the main focuses of our work, alongside the capacities to

35



CHAPTER 4. INFERENCE WITH NONLINEAR DEPENDENCIES: ADDITIVE MODEL

conduct distributed computations. A local problem is stated, followed by the introduction of Re-

producing Kernel Hilbert Spaces. These spaces represent the tool which allows for the modeling

of nonlinearities. By projecting data into a higher- or even infinite-dimensional space, we focus

on capturing nonlinear relationships between agents. In order to mitigate the increasing number

of data points, kernel dictionaries are employed. We follow up with an analysis of the proposed

algorithm, before presenting a set of tests ran on both synthetic and real biomedical data. On the

former, we obtain reasonable performance, while on the latter the results are comparable with

those of state of the art methods and are supported by previous findings in medical literature.

The work presented in this chapter was published in:

• M. Moscu, R. Borsoi, and C. Richard. Online graph topology inference with kernels for

brain connectivity estimation. In IEEE International Conference on Acoustics Speech and

Signal Processing (ICASSP), 2020a

• M. Moscu, R. Borsoi, and C. Richard. Convergence analysis of the graph-topology-inference

kernel LMS algorithm. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2021a

4.1 Introduction

Graphs represent powerful mathematical objects able to model and analyze any kind of network.

Due to their inherently distributed nature, they are also suited for big data analysis, since a

distributed solution can be easily applied on such an object. Nonlinear interactions between

agents appear in applications such as gene regulation systems [The International HapMap Con-

sortium et al., 2007], socio-economical interactions [Heiberger, 2018], or brain activity [Kramer

et al., 2008]. When further processing data in contexts such as these, information about network

structure is of utmost importance, as motivated in section 2.2. Among graph topology inference

methods, most assume linear dependencies between the agents (genes in a network, sectors of

a market economy, regions of the brain). Therefore, here resides the need of developing algo-

rithms capable of modeling nonlinear relationships, which are naturally present in real-world

applications. Using the properties of reproducing kernels and their ability to model nonlinear

relationships between nodal signals, we develop an algorithm capable of estimating the topology

of a network, in an online, adaptive, and distributed framework.

Throughout the present chapter, we consider a setting where online nodal measurements are

acquired and used in order to infer the topology of the underlying network. In the developed

approach, the goal is to model nonlinear dependencies, via an online and adaptive algorithm,

capable of tracking changes in the network structure. To that, we add the capability of distribu-

tivity over the different agents. The developed method estimates a possibly directed adjacency

matrix. The block `1-norm regularization sees extensive use in this chapter, given its block

36



4.1. INTRODUCTION

sparsity-inducing properties. This is motivated by real-word examples where edge sparsity is

present, such as social graphs.

To the best of our knowledge, a kernel-based online solution to the topology inference problem

has not yet been considered. As such, we propose an online approach that can sensibly reduce

computational stress, as well as adapt to slow changes in the topology that occur in dynamic

environments. For the particular case of brain connectivity estimation, the developed method

has the advantage of adaptability concerning data availability: due to its online nature, the

data acquisition process can be stopped exactly when the desired estimate is obtained. This, in

turn, can render the medical process of signal acquisition less strenuous for both the patient and

medical personnel.

An early work on graph inference based on nonlinear modeling is [Vert and Yamanishi, 2005].

The method takes into account nodal measurements, but also considers that a subset of the set

of edges E is known beforehand.

One of the recent developments is introduced in [Shen et al., 2017]. The authors propose a

batch optimization problem with a regularization term that promotes sparsity in the solution.

The method is, however, lacking in adaptability and can prove to be computationally costly. It

shows, however, that leveraging kernels in modeling nonlinear connections and feasible, and their

results on real data provide insights on brain connectivity.

Along the current chapter, a focus is represented by the inference of functional connectivity

of different brain regions, inferred from measures of brain activity. Works such as [Sporns, 2010,

Zalesky et al., 2010] propose anatomically-motivated networks, where different chosen areas are

linked with the others depending on the estimated number of axonal connections. The field

of neuroscience has been able to show that indeed, different actions and functions are mostly,

but not completely, directed from certain brain regions. In particular, experiments have been

conducted where the left hemisphere was shown to play a major role in speech and reasoning, and

controls the right side of the body, while the right hemisphere processes spatial information, and

controls the left side of the body [Dennerll, 1964]. The authors of [Sperry et al., 1969] considered

the case of patients which, due to different causes, had a severed corpus callosum (a nerve tract

which connects the left and right hemispheres of the brain). An interesting case is that of W.J.,

a former Second World War combatant [Gazzaniga, 2014]. When flashed an image of a square

to his right side of his field of vision, he was able to identify the square. When flashed on his

left side of his field of vision, W.J. stated he had seen nothing. Experiments such as these, as

well as the works on topology inference presented earlier in this section, motivate the work in

the current chapter.

A set of symbols used throughout the remainder of this chapter are collected in Table 4.1,

while others are defined and used locally.
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Table 4.1: List of notations and symbols present in Chapter 4

Symbol Definition
A Adjacency matrix of a graph
N Set of nodes of the graph
Nn Set of nodes in the neighborhood of node n, excluding node n
N\n Set of all nodes, excluding node n
Jn(·) Local cost function
N Total number of nodes in the graph
Hκm A Reproducing Kernel Hilbert Space associated to kernel κm
Lm Time lag pertaining to the influence of node m
Dm The dictionary of node m
ξm Dictionary admission threshold for node m

4.2 Nonlinear model and distributed problem statement

Consider an N -node graph with adjacency matrix A which models a system such as the brain

network [Breakspear, 2017]. In this setting, the brain activity in every considered region 1

through N can be measured at different time instants i, thus obtaining a signal y(i). Each of

these regions influences and is influenced by the other regions, and these links are encoded in the

matrix A. For the particular case of brain connectivity, the existence of nonlinear connections

have been reported by studies such as [Freeman, 1979, de Zwart et al., 2009]. This motivates

modeling certain systems, such as the brain, with nonlinear connections. With these remarks,

we consider the following data model:

y(i) = Af(i) + v(i) , (4.1)

where A is the adjacency matrix of the graph. We recall that the estimated graph does not have

self-loops, i.e., ann = 0, ∀n ∈ N . This matrix models how entries of f(i) , col
{
fm
(
yLm(i)

)}N
m=1

influence every node. We consider fm : RLm → R a nonlinear function whose argument is

yLm(i) = [ym(i), . . . , ym(i − Lm + 1)]>. Parameter Lm endows the algorithm with memory by

making use of past data. This last characteristic is important in applications such as func-

tional brain topology estimation, where there is a 10–20 ms delay in signal propagation between

nodes [Petkoski and Jirsa, 2019]. The signal v(i) models innovation noise. The output at every

node m is therefore nonlinearly dependent of all the other signals from the other nodes, including

the past. Given nodal measurements y(i) acquired online, the goal is estimating the adjacency

matrix A.

Under the Least Mean Squares (LMS) criterion, the optimization problem can now be ex-

pressed under the form:

A∗ = argmin
A

1

2
E
{∥∥∥y(i)−Af(i)

∥∥∥2
}

+ Ψ(A)

subject to anm ∈ {0, 1} , ann = 0,∀n ∈ N , ∀m ∈ N\n ,
(4.2)
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where Ψ(A) is a regularization term to account for some prior knowledge of A such as symmetry

or sparsity. The constraint aims at forcing the entries of the adjacency matrix to be binary. A

relaxation of the constraint may be employed, by instead enforcing anm ∈ [0, 1].

Focusing on a single node n, model (4.1) locally becomes:

yn(i) =
∑

m∈N\n

anmfm(yLm(i)) + vn(i) , (4.3)

and the local optimization problem is now:

a∗n = argmin
an

1

2
E

∣∣∣yn(i)−
∑

m∈N\n

anmfm(yLm(i))
∣∣∣2
+ ψ(an)

subject to anm ∈ {0, 1} , (4.4)

where an is the nth row of A, with entries anm,m = 1, . . . , N . We note that constraint ann = 0

is taken into consideration into the local optimization problem (4.4) through the sum over the

indexes m ∈ N\n.
Problem (4.4) has to be solved based only on local measurements y(`), ` ≤ i that are available

at a certain time instant i.

4.3 Reproducing Kernel Hilbert Spaces and kernel dictionaries

Several solutions in modeling nonlinearities exist, such as nonlinear and polynomial Structural

Equation Models [Jöreskog et al., 1996], as well as function selection from an existing function

set [Song et al., 2013]. The focus of the present chapter is on kernel methods, which are able to

deal with nonlinearities in classification or regression problems by applying linear algorithms over

a high-dimensional representation of the input data on an RKHS Hκ associated with a positive

definite reproducing kernel κ(·, ·).

The reproducing property: We briefly recall the reproducing property in an RKHS. For

further details, see [Paulsen and Raghupathi, 2016]. Let Hκ be an RKHS associated with kernel

κ(·, ·) and endowed with the inner product 〈·, ·〉Hκ . Let f be a function, f ∈ Hκ, and X an input

space. Then, evaluating f(x), x ∈ X can be performed as follows:

f(x) = 〈f, κ(·, x)〉Hκ . (4.5)

For the particular case where f = κ(·, y), y ∈ X , we have that:

κ(x, y) = 〈κ(·, x), κ(·, y)〉Hκ , (4.6)

meaning that simple kernel evaluations suffice when computing inner products in Hκ. This

simplifying property is also known as the kernel trick.
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4.3.1 Formulating the problem in a Reproducing Kernel Hilbert Space

Let us denote φnm = anmfm, which allows us to incorporate the binary variable anm and turn

(4.4) into a problem that is linear in φnm. Assuming that φnm belongs to an RKHS Hκm , for
m ∈ N\n, and approximating the expected value in (4.4) by empirical averages computed over

the available measurements for ` ≤ i, a non-parametric version of the local optimization problem

for node n and time instant i can be written as:

{φ∗nm}Nm=1 = argmin
φnm∈Hκm
m=1,...,N

1

2i

i∑
`=1

E

∣∣∣yn(`)−
∑

m∈N\n

φnm(yLm(`))
∣∣∣2


+ Ψ
(
‖φn1‖Hκm , . . . , ‖φnN‖Hκm

)
, (4.7)

where Ψ : RN → [0,∞[ is a regularization functional which promotes sparsity in the underlying

adjacency matrix by favoring solutions in which many functions φnm are zero. We assume this

function to be separable, i.e., Ψ
(
‖φn1‖Hκm , . . . , ‖φnN‖Hκm

)
=
∑

m∈N ψHκm (‖φnm‖Hκm ), where

ψHκm : R → [0,∞[ are non-decreasing functions. Since (4.7) employs a convex loss function,

the conditions of the linear representer theorem are satisfied [Schölkopf et al., 2001]. Thus, at

instant i, the solution to (4.7) admits a finite-dimensional representation of the form:

φ∗nm(·) =
i∑

p=1

αnmpκm
(
·,yLm(p)

)
, m = 1, . . . , N ,m 6= n , (4.8)

where coefficients αnmp ∈ R.

Introducing sparsity: An important question is how to introduce sparsity in the graph con-

nections now that the problem is formulated in terms of φnm. Since φnm = anmfm, anm = 0

implies that function φnm ≡ 0. Thus, promoting sparsity over A is equivalent to promoting

sparsity over the functions φnm, for m ∈ N\n. Fortunately, the coefficient-based representation

(4.8) means that this can be performed equivalently by promoting sparsity of groups of variables

{αnmp}ip=1, for m ∈ N\n. This can be done very efficiently by using a block-sparse regularization

over the coefficients. This leads to the following optimization problem at every time instant i:

α∗n = argmin
αn

1

2i

i∑
`=1

E
{∣∣∣yn(`)−α>nk(`)

∣∣∣2}+ ηn ‖αn‖B,1 , (4.9)

where the Ni× 1 block vectors αn and k(`) are defined as:

αn =
[
α̃>n1, . . . , α̃

>
nN

]>
, α̃nm = col {αnmp}ip=1 , ∀m ∈ N\n , (4.10a)

k(`) =
[
k̃
>
1 (`), . . . , k̃

>
N (`)

]>
, k̃m(`) = col

{
κm(yLm(`),yLm(p))

}i
p=1

,∀m ∈ N\n . (4.10b)

Constant ηn > 0 is a regularization parameter. Also, a block sparsity-inducing regularisa-

tion on αn was added through the term ‖αn‖B,1, the block-wise `1-norm, i.e., ‖αn‖B,1 =

40



4.3. REPRODUCING KERNEL HILBERT SPACES AND KERNEL DICTIONARIES

∑
m∈N\n

‖α̃nm‖2. This norm is known to promote group sparsity [Yuan and Lin, 2006], fa-

voring solutions with entire blocks of variables α̃nm equal to 0, from which it can be inferred

that anm = 0 and thus there will be no connection from node m towards n.

It is important to note now that the model allows for data from each node m to exist in their

own space, therefore being allotted their own separate kernel κm(·, ·).

4.3.2 Optimization

Solving (4.9) in batch mode is, however, impractical and computationally costly. This is why

we propose a stochastic gradient descent-based solution in order to update αn every instant i.

Remark that a sub-gradient of the block-`1 regularization ‖αn‖B,1 =
∑

m∈N\n
‖α̃nm‖2 is given

by the block vector Γn = [Γ>n1, . . . ,Γ
>
nN ]> [Jin et al., 2018a,b], where each block Γnm is:

Γnm =


α̃nm
‖α̃mn‖2

if ‖α̃mn‖2 6= 0

0 if ‖α̃mn‖2 = 0

. (4.11)

This entails the use of group zero-attracting LMS (GZA-LMS) [Jin et al., 2018a], leading to the

following update rule, for every time instant i:

α̂n(i+ 1) = α̂n(i) + µn[rky −Rkkα̂n(i)− ηnΓn(i)] , (4.12)

where rky = E{k(i)yn(i)},Rkk = E{k̃(i)k̃
>

(i)}. Estimating these second order moments can

however prove to be unattainable or computationally costly. This warrants for the use of ap-

proximations, such as those based on instantaneous realizations:

rky ≈ yn(i)k(i), Rkk ≈ k(i)k>(i) . (4.13)

The use of (4.13) leads to the stochastic GZA-LMS update:

α̂n(i+ 1) = α̂n(i) + µnk(i)[yn(i)− k>(i)α̂n(i)]− µnηnΓn(i) . (4.14)

4.3.3 Kernel dictionaries

An immediate observation concerning update (4.14) is that the size of k(i) can become prohibitive

as i increases, since each acquired measurement increases the number of kernel functions, in

accordance with (4.10b). A solution to this problem are kernel dictionaries which admit a new

candidate kernel function only if the candidate function passes a certain sparsification rule. Under

this framework, each node m in the network creates, updates, and stores a dictionary of kernel

functions, Dm = {κm(·,yLm(ωj)) : ωj ∈ Iim ⊂ {1, . . . , i − 1}}, where Iim represents the set of

time indices of elements selected for the dictionary, up to time instant i. Multiple dictionary

sparsification rules exist in the literature. One of the simplest is the Nyström method [Williams

and Seeger, 2001], which is based on random selection of the dictionary elements. The authors
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of [Engel et al., 2004] propose the approximate linear dependence (ALD) criterion. When a

new sample arrives, the method checks if its corresponding kernel function is approximately

linearly dependent of the already selected entries, and added to the dictionary should it bring

new information, i.e., be independent of previous elements. A recent work is [Bueno and Silva,

2020], where an improvement of the ALD method is introduced. A fixed-size dictionary based on

Fourier features of the kernel drawn from a probability density function is developed in [Bouboulis

et al., 2016]. This method has the advantage of allowing the user to set the exact number of

entries beforehand.

The chosen method of dictionary sparsification is the coherence criterion [Richard et al.,

2009]. Under this framework, a candidate kernel function κm(·, ym(i)) is added in Dm if the

following sparsification condition holds:

max
ωj∈Iim

|κm(yLm(i),yLm(ωj))| ≤ ξm , (4.15)

where ξm ∈ [0, 1[ determines the level of sparsity and coherence of the dictionary [Richard et al.,

2009]. Vector k(i) now only stores functions which satisfy (4.15), leading to a rewriting of (4.10b)

under the form:

k(`) =
[
k̃
>
1 (`), . . . , k̃

>
N (`)

]>
, k̃m(i) = col{κm(yLm(i),yLm(ωj))}ωj∈Iim ,∀m ∈ N\n . (4.16)

It is worth noting that using this approach, every time one kernel function is added to a Dm,
all the blocks α̃nm increase in size by one new entry, ∀n ∈ N . Also, at each instant i, αn
and k(i) are of size

∑
m∈N\n

card {Dm} × 1. Most importantly, the number of entries in the

dictionary tends to stop increasing with the total number of currently available samples, i.e.,

card {Dm} <∞ when i→∞ [Richard et al., 2009].

Algorithm 2 summarizes the developed method. In the last step, τn acts as an edge identi-

fication threshold. This parameter is used in order to identify the topology from the estimated

coefficients α̂n(i), determining whether there exist links from each node m ∈ N\n towards n.

When processing real data, due to a lack of a ground truth matrix, τn can be set as to obtain an

estimated topology which realistically explains the studied process, method already successfully

applied in works such as [Shen et al., 2019]. Its value can be further adjusted as to obtain a con-

nected graph, i.e., a graph in which there exists a path between any node couple. The execution

of the algorithm yields Nn, the neighborhood of node n.

4.4 Algorithm analysis

The distributed problem is analyzed in the current section. The dictionary elements are consid-

ered as chosen and set beforehand. Consider the local conditional cost function:

Jn(αn) =
1

2
E

{∣∣∣yn(i)−α>nk(i)
∣∣∣2∣∣∣∣∣ {Dm}m∈N\n

}
. (4.17)
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Algorithm 2: Kernel-based online topology inference
For every node n:
Inputs: Parameters µn, ηn, κn(·, ·), ξn, and τn
Initialization: Set all entries of α̂n(0) to 0
Algorithm: At each time instant i ≥ 1
Introduce κn(·, yn(i)) in Dn if (4.15) is verified
Receive and store the updated dictionaries Dm, ∀m 6= n
Compute k(i) defined in (4.16)
Update α̂n(i) using (3.20)
Set ânm(i) to 1 if ‖α̂nm(i)‖ ≥ τn, to 0 otherwise

Table 4.2: List of notations and symbols employed throughout the analysis in Chapter 4

Symbol Equation
α∗n = R−1

kk rky (4.19)
d(i) , α̂n(i) −α∗n (4.23)

ε(i) = yn(i)− k>(i)d(i)− k>(i)α∗n (4.25)

Jn,min , Jn(α∗n) = E
{
y2
n(i)

}
− r>kyR

−1
kk rky (4.35)[

K(u,v)
]
ab

= E {[k(i)]u [k(i)]v [k(i)]a [k(i)]b} (4.42)

[Q(i)]uv = Tr
{
K(u,v)D(i)

}
(4.43)

F 0 = I2 − µ(I ⊗Rkk +Rkk ⊗ I) + µ2F 1 (4.48)
Jn,MSE(∞) = Jn,min + Tr

{
RkkD(∞)

}
(4.50)

Its corresponding gradient w.r.t. αn is:

∇αnJn(αn) = E
{
−yn(i)k(i) + k(i)k>(i)αn

}
, (4.18)

leading to:

∇αnJ(αn) = 0 ⇐⇒ E
{
k(i)k>(i)

}
αn = E {yn(i)k(i)}

⇐⇒ α∗n = R−1
kk rky , (4.19)

with Rkk , E
{
k(i)k>(i)

}
, rky , E {yn(i)k(i)}, and α∗n representing the optimal value which

minimizes cost function (4.17).

4.4.1 Weight error recursion

Let α̂n(i) denote the estimate at step i of αn. The classic gradient descent step is:

α̂n(i+1) = α̂n(i) − µ∇αnJn(αn) , (4.20)

where µ is a small enough step size. Replacing the gradient via relation (4.18), we obtain the

gradient step:

α̂n(i+1) = α̂n(i) + µ(rky −Rkkα̂n(i)) , (4.21)
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with its stochastic variant:

α̂n(i+1) = α̂n(i) + µk(i)ε(i) , (4.22)

where ε(i) , yn(i) − k>(i)α̂n(i) represents the instantaneous error.Let us denote the difference

between the current available estimate and the optimal solution (4.19) by:

d(i) , α̂n(i) −α∗n . (4.23)

Assumption 4.1. We assume the use of the Gaussian kernel.

It is defined as:

κG(a, b) = exp

(
−‖a− b‖

2

2σ2

)
. (4.24)

This kernel choice is made due to its capacities as an universal approximator [Liu et al., 2010].

Assumption 4.2. We suppose that dictionaries {Dm}m∈N\n
are already set beforehand. Inputs

y(i) are assumed independent, zero-mean Gaussian random vectors with auto-correlation matrix

Ryy = E
{
y(i)y>(i)

}
.

Assumption 4.3. Quantity k(i)k>(i) is statistically independent of the error vector d(i).

A justification for the feasibility of the latter assumption is presented in [Minkoff, 2001].

Error ε(i) can be expressed in terms of the error vector d(i):

ε(i) = yn(i)− k>(i)d(i) − k>(i)α∗n . (4.25)

Replacing (4.25) into relation (4.22) leads to the following error vector recursion:

d(i+1) = d(i) + µyn(i)k(i)− µk(i)k>(i)d(i) − µk(i)k>(i)α∗n . (4.26)

4.4.2 Mean error behavior

Moment-generating function of a Gaussian random variable: Before proceeding to the

mean behavior analysis, consider the quadratic form ξ of a Gaussian vector ζ:

ξ = ζBζ> + b>ζ , (4.27)

with E {ζ} = 0,Rζζ = E
{
ζζ>

}
. The moment-generating function of the random variable ξ is

[Omura and Kailath, 1965, p. 101]:

Ψξ(t) , E {exp(tξ)}

= det {I − 2tBRζζ}
−

1

2 exp

(
t2

2
b>Rζζ (I − 2tBRζζ)

−1 b

)
, t ∈ R . (4.28)

This result will be useful in the remainder of this subsection.
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The goal of the analysis in the mean is to determine the stability conditions of the algorithm,

i.e., the conditions in which the algorithm converges in the mean. As such, we start by taking the

expectation of relation (4.26) and employing Assumptions 4.3 – 4.4, which leads to the following

mean error recursion:

E
{
d(i+1)

}
= (I − µRkk)E

{
d(i)

}
. (4.29)

Block matrix Rkk contains blocks R(m1,m2)
kk , E

{
km1(i)k>m2

(i)
}
, ∀m1,m2 ∈ N\n. Each entry

(u, v), u = 1, . . . , card{Dm1}, v = 1, . . . , card{Dm2} of every block R(m1,m2)
kk , for both m1 = m2

and m1 6= m2, is:[
R

(m1,m2)
kk

]
uv

=E
{

exp

(
− 1

2σ2

(∥∥∥yLm1
(i)− yLm1

(ωu)
∥∥∥2

+
∥∥∥yLm2

(i)− yLm2
(ωv)

∥∥∥2
))}

= exp

(
− 1

2σ2

∥∥∥y(uv)
∥∥∥2
)
E
{

exp

(
− 1

σ2

(
1

2

∥∥∥y(ii)
∥∥∥2
−
(
y(uv)

)>
y(ii)

))}
, (4.30)

where y(ii) =

[
yLm1

(i)

yLm2
(i)

]
and y(uv) =

[
yLm1

(ωu)

yLm2
(ωv)

]
. We now make use of relation (4.28), with

B =
1

2
I, b = −y(uv) and t = − 1

σ2
. Thus, we obtain:

[
R

(m1,m2)
kk

]
uv

= exp

(
− 1

2σ2

∥∥∥y(uv)
∥∥∥2
)

det

{
I +

1

σ2
R(m1m2)
yy

}−1

2

× exp

(
1

2σ4

(
y(uv)

)>
H(m1m2)y(uv)

)
, (4.31)

where I is of size (Lm1 + Lm2)× (Lm1 + Lm2), H(m1m2) = R
(m1m2)
yy

(
I +

1

σ2
R

(m1m2)
yy

)−1

and

R
(m1m2)
yy =

[Ryy]m1m1
1Lm1

1>Lm1
[Ryy]m1m2

1Lm1
1>Lm2

[Ryy]m2m1
1Lm2

1>Lm1
[Ryy]m2m2

1Lm2
1>Lm2

. We note that R(m1m2)
yy has a sparser

structure should y(i) be i.i.d.. Blocks on the main diagonal then become [Ryy]mjmj I, where I is

of size mj ×mj , for j = 1, 2. The remaining blocks, which are not necessarily square, are formed

similarly, with entries [Ryy]mjmk , j, k = 1, 2, j 6= k, on their main diagonals and zero otherwise.

Given Assumption 4.3 and the preset dictionaries {Dm}m∈N\n
, the proposed algorithm con-

verges if the following condition holds:

0 < µ <
2

λmax(Rkk)
. (4.32)

4.4.3 Mean square error behavior

The mean square error analysis allows for the prediction of the behavior of the algorithm under

a deterministic model, thus removing the reliance on Monte-Carlo runs. Moreover, it allows for

the selection of the step-size µ in accordance with the needs of the considered application.

We start this subsection by defining the optimal estimation error ε0 as:

ε0(i) = yn(i)− k>(i)α∗n . (4.33)
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Assumption 4.4. We assume that the optimal estimation error ε0 given by the finite order

model is close to the one obtained by the infinite length model, such that E {e0(i)} ≈ 0.

Let us denote D(i) , E
{
d(i)d

>
(i)

}
. As such, using (4.26) and Assumptions 4.3 – 4.4, we

obtain:

D(i+1) = D(i) − µ
(
D(i)Rkk +RkkD(i)

)
+ µ2Q+ µ2RkkJn,min , (4.34)

with Jn,min being the minimum value of the cost function (4.17), i.e.:

Jn,min , Jn(α∗n) = E
{
y2
n(i)

}
− r>kyR−1

kk rky , (4.35)

and:

Q = E
{
k(i)k>(i)d(i)d

>
(i)k(i)k>(i)

}
. (4.36)

We define the Mean Square Error (MSE) at instant i:

Jn,MSE(i) , E
{∣∣∣yn(i)− k>(i)α̂n(i)

∣∣∣2} , (4.37)

and the MSD at instant i:

MSD(i) , E
{∥∥α̂n(i) −α∗n

∥∥2
}

= E
{∥∥d(i)

∥∥2
}
. (4.38)

The second-order weight momentsD(i) relate to the MSE via relation [Haykin, 2002, p. 268]:

Jn,MSE(i) = Jn,min + Tr
{
RkkD(i)

}
, (4.39)

and to the MSD through:

MSD(i) = Tr
{
D(i)

}
. (4.40)

In order to compute these two metrics, the next step in the analysis is evaluating the entries

of the matrix Q. Let us note kD =
∑

m∈N\n
card {Dm}, the total number of dictionary entries.

We make use of Assumption 4.3, leading to the writing of the (u, v)th entry of Q as:

[Q]uv =

kD∑
a=1

kD∑
b=1

E {[k(i)]u [k(i)]v [k(i)]a [k(i)]b}
[
D(i)

]
ab
. (4.41)

For alleviating the notation, we introduce matrix K(u,v), whose (a, b)th entry is:[
K(u,v)

]
ab

= E {[k(i)]u [k(i)]v [k(i)]a [k(i)]b} . (4.42)

Now we can write relation (4.41) as:

[Q(i)]uv = Tr
{
K(u,v)D(i)

}
. (4.43)

It is important to note that indexes u, v, a, b in relations (4.41) and (4.42) act upon the

whole block-vector k(i). As such, it is necessary to identify which particular block m = 1, . . . , N

and specific dictionary entry j – helping in determining ωj – any of these indexes point to.
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Table 4.3: Identification of blocks and dictionary entries depending on the generic index h

Case Block m Dictionary entry j
h ≤ card {D1} m = 1 j = h∑¯̀−1

`=1 card {D`} < h ≤
∑¯̀

`=1 card {D`}
with ¯̀= {2, . . . , N − 1}

m = ¯̀ j = h−
∑¯̀−1

`=1 card {D`}∑N−1
`=1 card {D`} < h m = N j = h−

∑N−1
`=1 card {D`}

Knowing the number of entries of the dictionaries, this identification is straightforward. Let h =

{u, v, a, b} be a generic index, able to replace any and all of the other indexes. The corresponding

identification process is summarized in Table 4.3.

After having identified indexes m1,m2,m3,m4 and ωp, ωq, ωr, ωs, we can write the following:[
K(u,v)

]
ab

=E {[k(i)]u [k(i)]v [k(i)]a [k(i)]b}

=E

{
exp

(
− 1

2σ2

(∥∥∥yLm1
(i)− yLm1

(ωp)
∥∥∥2

+
∥∥∥yLm2

(i)− yLm2
(ωq)

∥∥∥2

+
∥∥∥yLm3

(i)− yLm3
(ωr)

∥∥∥2
+
∥∥∥yLm4

(i)− yLm4
(ωs)

∥∥∥2
))}

(4.44)

= exp

(
− 1

2σ2

∥∥yd∥∥2
)
E
{

exp

(
− 1

σ2

(
1

4

∥∥yi∥∥2 −
(
yd)> yi

))}
, (4.45)

with yd =
[
y>Lm1

(ωp) y>Lm2
(ωq) y>Lm3

(ωr) y>Lm4
(ωs)

]>
collecting the dictionary entries and

yi =
[
y>Lm1

(i) y>Lm2
(i) y>Lm3

(i) y>Lm4
(i)
]>

collecting the instantaneous measurements. We

now use relation (4.28), with B =
1

4
I, b = −yd and t = − 1

σ2
. Thus, we obtain:

[
K(u,v)

]
ab

= exp

(
− 1

2σ2

∥∥yd∥∥2
)

det

{
I +

1

2σ2
R(m1→4)
yy

}−1

2

× exp

(
1

2σ4

(
yd)>H(m1→4)yd

)
, (4.46)

where I is of size
∑4

`=1 Lm`×
∑4

`=1 Lm` ,H
(m1→4) = R

(m1→4)
yy

(
I +

1

2σ2
R

(m1→4)
yy

)−1

andR(m1→4)
yy

a block matrix formed similarly to R(m1m2)
yy . Each of its blocks (k, `) ∈ {1, 2, 3, 4}2 is equal to

[Ryy]mkm` 1Lmk1
>
Lm`

. Its full form is given by (A.1). Recursion (4.34) can now be computed.

Steady-state MSD: In order to further compute the steady-state MSD, we stack columns of

D(i) on top of each other, i.e., d̄(i) = vec
{
D(i)

}
. Making use of the properties of the vectorization

operator and relation (4.34), we obtain:

d̄(i+1) = F 0d̄(i) + µ2Jn,minr̄kk , (4.47)
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where r̄kk = vec {Rkk}, and:

F 0 = I2 − µ(I ⊗Rkk +Rkk ⊗ I) + µ2F 1 . (4.48)

We remark upon the fact that the identity matrix I2 is of size k2
D×k2

D, while I is if size kD×kD.
Also, entries of the matrix F 1 are [F 1]u+(v−1)kD,a+(b−1)kD

=
[
K(u,v)

]
ab
.

Assuming a small enough step size µ, the algorithm is mean-square stable as i → ∞, and

converges towards:

lim
i→∞

d̄(i) = µ2Jn,min (I − F 0)−1 r̄kk , d̄(∞) . (4.49)

Using relations (4.39) – (4.40) and the matrix form D(∞) of d̄(∞), i.e., D(∞) = vec−1
{
d̄(∞)

}
,

the steady-state MSE is given by:

Jn,MSE(∞) = Jn,min + Tr
{
RkkD(∞)

}
, (4.50)

while the steady state MSD is:

MSD(∞) = Tr
{
D(∞)

}
. (4.51)

4.5 Theoretical validation and experimental results

4.5.1 Theoretical validation

Data generation: We recall our local data model:

yn(i) =
∑

m∈N\n

anmfm(yLm(i)) + vn(i) . (4.52)

For purposes of simplification, we consider the time dependence lags Lm equal to 1, i.e., yLm(i) =

ym(i), and that fm(ym(i)) = ym(i). We assumed that y(i) = col
{
{yn(i)}Nn=1

}
is an i.i.d., zero-

mean Gaussian signal with covariance Ry , E
{
y(i)y>(i)

}
. With these remarks, computing Ry

from the local model above reduces to:

[I −A]y(i) = v(i) (4.53)

⇒ E
{

[I −A]y(i)y>(i)[I −A]>
}

= E
{
v(i)v>(i)

}
(4.54)

⇒ [I −A]Ry[I −A]> = Rv (4.55)

⇒ Ry = [I −A]−1Rv([I −A]>)−1 , (4.56)

where we select Rv , E
{
v(i)v>(i)

}
= diag

{{
σ2
v,m

}5

m=1

}
as the noise covariance, and the

adjacency matrix:

A =



0 1 0 1 1

1 0 1 0 1

1 0 0 1 0

0 1 1 0 1

1 0 1 1 0


. (4.57)
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(a) Theoretical and experimental entries of α1. Con-
tinuous lines are the theoretical curves, while dashed
line are experimental

(b) Experimental, steady-state, and theoretical
MSD

Figure 4.1: Validation for the analysis in both the mean and mean square sense

We recall that we consider graphs without self-loops. Noise standard deviations were σv,m =

0.05, ∀m ∈ N . We note that the theoretical validation simulations were ran for the first node,

i.e., n = 1, with a step size µ = 5 · 10−2. Our algorithm used the Gaussian kernel (4.59),

with band-width σ = 1. The 5-node graph has adjacency matrix (4.57). Each node stored a

dictionary Dm with 3 entries, chosen in a uniform grid on [−1, 1]. Simulations were averaged

over 100 Monte-Carlo runs.

Quantifying the performance: Fig. 4.1a shows both the theoretical and experimental values

for coefficients α1mp. We remark upon the fact that, for visibility and clarity reasons, only a

selection of non-zeros coefficients are depicted. Fig. 4.1b shows both the theoretical and exper-

imental MSD curves, as well as the steady-state MSD. The experimental MSD was computed

using:

MSD(i) = E
{
‖α̂n(i)−α∗n‖

2
}
. (4.58)

The curves show how our theoretical curves are generally consistent with the experimental ones,

for both the mean error and the mean square error case. The results of this analysis can prove

useful in selecting an adequate step-size when processing data with known statistical properties.

Moreover, they show that behavior of the algorithm as a function of i is predictable.

4.5.2 Experimental results

Experimental setup: Multiple experiments have been conducted, with the goal of showcasing

different characteristics of the developed algorithm. Firstly, a simple 3-node graph is considered,

where nonlinearities are present in node interactions. Secondly, on real biomedical data, the

obtained results are coherent with the results obtained in other works. Thirdly, we take into

49



CHAPTER 4. INFERENCE WITH NONLINEAR DEPENDENCIES: ADDITIVE MODEL

Figure 4.2: Performance in terms of EIER, as well as estimates of A at i = 50, 150, 250

consideration a dynamic graph setting in order to test the adaptive capabilities of the algorithm.

Along our experiments, we either used the Gaussian kernel:

κG(a, b) = exp

(
−‖a− b‖

2

2σ2
n

)
, a, b ∈ RN , (4.59)

or the exponential kernel:

κE(a, b) = exp

(
−‖a− b‖

σn

)
, a, b ∈ RN , (4.60)

where σn is a hyper-parameter of the kernel function.

Discretized Lorenz Attractor: Consider the discretized version of the Lorenz attractor

[Lorenz, 1989, Tobar et al., 2014]:
y1(i+ 1)

y2(i+ 1)

y3(i+ 1)

 =


y1(i)

y2(i)

y3(i)

+ 0.01


10 (y2(i)− y1(i))

y1(i) (28− y3(i))− y2(i)

y1(i)y2(i)− 8

3
y3(i)

 , i ≥ 0 , (4.61)

with initial conditions [y1(0), y2(0), y3(0)]> = [10−2, 10−2, 10−2]>. We used the Gaussian kernel

and set µn = 0.1, σn = 8, ξn = 0.8. Parameters ηn and τn were set as to achieve the best

performance in terms of EIER:

EIER ,
‖Agt − Â‖0
N(N − 1)

· 100% , (4.62)

where Agt is the ground truth. Its binary entries encode direct influence, based on (4.61),

between node couples, excluding self-loops, i.e.:

Agt =


0 1 0

1 0 1

1 1 0

 . (4.63)

Fig. 4.2 shows the EIER, and the estimates of A at iterations 50, 150, 250. These results,

obtained after less than 300 samples with the dictionaries containing only between 6 and 8 kernel

functions per node, show that the proposed method is able to infer links in a distributed and

online manner, even if they are based on nonlinear interactions.

50



4.5. THEORETICAL VALIDATION AND EXPERIMENTAL RESULTS

(a) Preictal interval (b) Ictal interval
Figure 4.3: Estimated adjacency matrices for each interval

Tests on epilepsy seizure data: In this experiment, we aimed to show how the estimated

topology using the presented method is consistent with results presented in other works. The

used data come from a 39-year-old female subject suffering from intractable epilepsy. The data

acquisition and pre-processing information is provided in [Kramer et al., 2008]. The data set

contains 8 instances of electrocorticography (ECoG) time series, each instance representing one

seizure and contains voltage measurements from 76 different regions on and inside the brain,

during the 10 seconds before the epilepsy seizure (preictal interval) and the first 10 seconds

during the seizure (ictal interval). Studies in epilepsy were able to shed light on the relations

between the different regions of the brain, as well as their functions [Dennerll, 1964]. This

condition manifests through a plethora of seemingly random electrical signals discharging in a

certain region, then propagating throughout the brain. The Gaussian kernel was used, and we

set µn = 5 · 10−5, σn = 90, ξn = 0.9 for each n. Concerning the choice of the ηn and τn, since

there was no ground truth, they were set as to obtain coherent results with previous works,

while ensuring a weakly-connected graph, i.e., the existence of a path between any node couple,

independent of edge directionality.

Algorithm 2 was ran on these data. In Fig. 4.3 we show the estimated connectivity of the

brain, during both these intervals, averaged over the 8 instances. For further insight, Table 4.4

depicts some graph metrics, which are further detailed in Annex B. Other detailed metrics are

presented in Fig. 4.5. Interestingly, the betweenness measure is lower for nodes 5 – 8 and 56 –

65, an indication that these particular nodes do not influence the transit of information as much

as the others. Moreover, the same nodes also have a relatively low hub centrality measure, which

we can interpret as a another sign of their decreased influence on other nodes. We make a third
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(a) Preictal interval

 
(b) Ictal interval

Figure 4.4: Summed in- and out-degrees for the estimated graphs for both preictal and ictal
intervals. The radii encode the values of their respective node degree, relative for each interval.
The larger the radius corresponding to node n, the larger the summed degree of node n

observation on the authority centrality measure of nodes 56 – 65, which is relatively low as well,

which shows that these particular nodes are not influenced by their neighbors as much as the

rest. Nodes 27, 50 and 66 exhibit a high betweenness measure in the ictal interval, meaning that

their removal can seriously inhibit the information flow in the network.

Fig. 4.4 depicts the degree (sum of in- and out-degree), encoded in the radii of the circles,

relative to each interval. Interestingly, our online estimate reveals roughly the same behavior

before and during the seizure as the estimate obtained using the method developed in [Shen

et al., 2019]. More precisely, the number of total connections decreases from one interval to the

other, especially due to the variation of in-degrees for nodes 30 to 50. Further analyzing the

connections, nodes 75 and 76 have a small in-degree, however they present a more important

out-degree. Observe the decrease of the degree of node 26 or the major increase for node 73.

This behavior is consistent with the findings of the aforementioned paper. Moreover, works in

the field of epilepsy uncovered that metrics such as the average path length tend to be larger in

the ictal interval [Ponten et al., 2007, Schindler et al., 2008, van Diessen et al., 2013], behavior

obtained by our method as well.

The algorithm is therefore able to obtain results similar to those obtained in previous works,

while based on kernel dictionaries. For reference, the number of kernel functions inserted in the

dictionaries varied between 15 to 30, after 4000 samples. These results show how only a reduced

number of kernel functions are actually needed in order to obtain a topology estimate. This fact,

alongside the online approach, can translate in reduced computational complexity, depending on

the solver, due to the drastically reduced number of needed kernel functions.
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4.5. THEORETICAL VALIDATION AND EXPERIMENTAL RESULTS

(a) The in-closeness centrality measure per node (b) The out-closeness centrality measure per node

(c) The betweenness centrality measure per node (d) The PageRank centrality measure per node

(e) The hub centrality measure per node (f) The authority centrality measure per node

Figure 4.5: Various centrality measures per node, which are indicators of node importance within
the graph. See Annex B for details on these measures. Blue continuous lines pertain to the
preictal, while red dashed lines pertain to the ictal interval
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Table 4.4: Metrics for the estimated topologies concerning the preictal and ictal intervals

Metric Preictal interval Ictal interval
Network density 0.436 0.377

Average in- (and out-) degree 32.67 28.29
Average path length 1.600 1.730
Average in-closeness 8.287 · 10−3 7.570 · 10−3

Average out-closeness 8.617 · 10−3 8.007 · 10−3

Average betweenness 44.45 53.34
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Figure 4.6: Electrode layout. Each circle represents one electrode. For each one, the site name
is on the top, while the bottom is its corresponding node index

Real dynamic setting: The goal of this experiment is to analyze how the proposed method

adapts to slow dynamic changes in topology. Once again, we use real data whose details are
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found in [Ford et al., 2013]. They represent electroencephalography (EEG) measurements taken

from a group of 81 subjects in total, some of which are healthy and some of which suffer from

schizophrenia. The electrode layout is presented in Fig. 4.6. A simple button-pressing task is set

up, in three separate settings where subjects either:

1. pressed the button and a tone was immediately played;

2. listened to the tone without the button press;

3. pressed the button and the tone was not played.

The goal of the experiment was to check how the subjects’ brains respond to sensory consequences

of their own actions, in healthy and unhealthy subjects. This behavior arises when, for example,

one voluntarily moves their eyes from side to side and their brain knows that the environment

is not actually shifting. Patients suffering from schizophrenia have difficulties in differentiating

between internally and externally generated stimuli [Freedman et al., 1996], meaning that they

could encounter difficulties when discerning between tasks 1 (where the stimulus – the tone, is a

direct consequence of their own action) and 2 (where the stimulus is initiated externally, without

direct action). During our experiment, we used the measurements pertaining to three of the

healthy subjects, namely subjects 1, 2, 3, and three of the schizophrenia-suffering, namely 67,

68, 69. A total of M = 5000 measurements per task and per subject were selected and fed to

Algorithm 2, in order: task 1, task 2 and task 3, as if executed one after the other. For both

the healthy and unhealthy sets we used the exponential kernel with σn = 1, µn = 9 · 10−2,

ξn = 0.1. In order to obtain comparable results, the same manner of choosing parameters ηn and

τn was used in both cases, and set as to obtain weakly-connected graphs. For each subject in the

healthy group, 30 to 80 kernel functions were chosen for the dictionary, while for each subject in

the unhealthy group between 20 and 60. These values are significantly lower than the possible

maximum of 5000 dictionary elements for each patient.

The estimated topologies, averaged over the three subjects in the healthy and unhealthy

groups respectively, are depicted in Fig. 4.7 for each of the three tasks. The topology was obtained

by applying the threshold τn on the average of the estimated norms ‖ânm(M)‖ for each group

of three patients. For both the healthy subjects (first row) and the unhealthy schizophrenia-

suffering (bottom row), no important changes appear in topology while moving from task to

task. However, comparing the average healthy and unhealthy subjects, a rather different network

structure arises for each case. Some graph metrics are given in Table 4.6. Interestingly, the graph-

based analysis of schizophrenic patients conducted by the authors of [Olejarczyk and Jernajczyk,

2017] reports similar findings to ours, notably the reduced average path lengths exhibited by

topologies pertaining to such patients.

See Fig. 4.8 for the evaluation of multiple centrality measures for each of the nodes, and Annex

B for details on these metrics. An interesting remark is that nodes 28 and 61 have a relatively
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(a) Task 1 (b) Task 2 (c) Task 3
Figure 4.7: Estimated topologies per task, averaged per group

high betweenness measure across all three tasks, for the case of the healthy group, indicative

of their high importance in the flow of information and that their removal has the potential of

fragmenting the global network. On the same line, nodes 2, 7, 41 and 61 exhibit a high hub

centrality measure for the same group, for tasks 2 and 3. This measure, for the unhealthy group,

is, however, relatively low on the same two tasks, indicating that there are no nodes of particularly

high importance in the transit of information. However, for task 1, the unhealthy group shows

a higher average betweenness and a lower average path length, signs that point towards a lesser

connected network. This behavior is exposed in works such as [Venkataraman et al., 2012,

Skåtun et al., 2016]. Moreover, according to the same works, patients with schizophrenia tend

to have a higher connectivity in the frontal (approximately nodes 4 – 7 and 39 – 42) and parietal

(approximately nodes 20 – 23 and 57 – 60) regions. This sort of higher regional connectivity is

indeed visible in Fig. 4.7 across all tasks, as well as in the selection of local connectivity measures

presented in Table 4.5.

4.6 Conclusion

An online, kernel-based, and distributed graph topology inference method was devised, which

advocates the use of kernel dictionaries as a sparsification solution, under the coherence criterion.
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Table 4.5: Local frontal and parietal metrics for the estimated topologies concerning the average
healthy and unhealthy subject, for each of the three tasks

Local metric Task Healthy Unhealthy

Frontal density
1 0.714 0.840
2 0.697 0.643
3 0.679 0.750

Parietal density
1 0.196 0.446
2 0.482 0.500
3 0.250 0.446

Average frontal betweenness
1 49.72 66.85
2 50.70 61.46
3 54.05 60.63

Average parietal betweenness
1 9.64 47.29
2 42.33 32.75
3 24.56 42.43

Table 4.6: Metrics for the estimated topologies concerning the average healthy and unhealthy
subject, for each of the three tasks

Metric Task Healthy Unhealthy

Network density
1 0.356 0.410
2 0.286 0.451
3 0.310 0.395

Average in- (and out-) degree
1 22.41 25.84
2 17.98 28.44
3 19.50 24.86

Average path length
1 1.705 1.753
2 1.804 1.689
3 1.888 1.739

Average in-closeness
1 8.778 · 10−3 9.851 · 10−3

2 8.857 · 10−3 9.449 · 10−3

3 8.478 · 10−3 9.213 · 10−3

Average out-closeness
1 8.376 · 10−3 9.117 · 10−3

2 9.231 · 10−3 9.758 · 10−3

3 9.019 · 10−3 9.429 · 10−3

Average betweenness
1 39.58 47.45
2 50.62 43.42
3 55.92 46.53

The use of kernels allows for the inference of connections when nonlinear links are presumed.

While most state of the art methods rely on batch methods, which usually come with a high

computational cost, the developed online algorithm comes with advantages such as adaptability.

On the considered biomedical data, the method proved effective, paving the way to further

work and research. Most importantly, behavior signaled by works in the study of epilepsy and

schizophrenia was captured by the estimated networks and indicated through a set of both local
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and global graph metrics.

Chapter 5 proposes an alternative nonlinear model alongside a partial-derivative-based spar-

sity inducing method, under the same principles of online distributed and adaptive processing.

In contrast with models such as the one employed in this current chapter, which do not consider

the nonlinear interactions between multiple nodes and assume an additive nodal interaction, the

next chapter introduces a general model accounting for any type of nodal interaction.
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(a) The in-closeness centrality measure per node (b) The out-closeness centrality measure per node

(c) The betweenness centrality measure per node (d) The PageRank centrality measure per node

(e) The hub centrality measure per node (f) The authority centrality measure per node

Figure 4.8: Various centrality measures per node, which are indicators of node importance within
the graph. See Annex B for details on these measures. Blue continuous lines pertain to the group
of healthy subjects, while red dashed lines pertain to the group of unhealthy subjects
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In many real-world applications, such as brain network connectivity, gene networks or in

shopping recommendations, the underlying graph explaining the different interactions be-

tween participating agents is not known. Moreover, many of these interactions may be based on

nonlinear relationships, rendering the topology inference problem more complex. This chapter

aims to develop a method of topology inference, under the form of a possibly non-symmetric

adjacency matrix, able to explain nonlinear interactions between agents, in an online framework.
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The proposed model is as general as possible, without assuming any nodal interchange based

on, e.g., the additive model (4.3). Sparsity on the estimated matrices is imposed via partial

derivatives, while kernel functions are used to model these nonlinear interactions. The impact

of the increasing number of data points is alleviated by using dictionaries of kernel functions. A

comparison with a previously developed method showcases the generality of the method. Fur-

thermore, the interpretation of the estimated networks on real biomedical data is coherent with

reports from the medical community.

The work presented in this chapter was published in:

• M. Moscu, R. Borsoi, and C. Richard. Online kernel-based graph topology identification

with partial-derivative-imposed sparsity. In 28th European Signal Processing Conference

(EUSIPCO), pages 2190–2194, 2021b. doi: 10.23919/Eusipco47968.2020.9287624

• M. Moscu, R. Borsoi, and C. Richard. Graph Topology Inference with Kernels and Partial-

derivative-imposed Sparsity: Algorithm and Convergence Analysis. 2020b. submitted

5.1 Introduction

In the analysis and processing over networks such as gene regulation systems [The International

HapMap Consortium et al., 2007], socio-economical interactions [Heiberger, 2018], or brain activ-

ity [Kramer et al., 2008], graphs have proven to be a useful tool, given their inherently distributed

nature. Most graph signal processing algorithms, however, assume the graph topology as known

beforehand. Recently, significant interest has been dedicated to the estimation of the graph

topology from available data. Most of these works assume linear dependencies between the

agents, e.g., brain regions, genes in a network, or sectors of a market economy. However, the

presence of nonlinear interactions in real-world applications imposes the need of developing more

general algorithms. As such, the ability of reproducing kernels to model nonlinear relationships

between nodal signals makes them a powerful tool in the graph inference process.

In this chapter, we consider a setting where online nodal measurements are acquired and

subsequently used in order to infer the topology of an underlying network. In the developed

approach, the goal is to estimate a possibly directed adjacency matrix while accounting for general

nonlinear dependencies between nodal signals, all in a distributed manner over the different agents

of the network. Since many real-world examples, such as social graphs, show considerable edge

sparsity, a sparsity-inducing framework based on partial derivatives is employed.

We propose an online approach able to estimate an adjacency matrix based on a general

nonlinear model, thus improving upon the additive model (4.3) previously considered in Chap-

ter 4. This model ensures a better representativity of nonlinear interactions, without assuming a

particular manner on how agents in a network influence each other. Moreover, due to the online

nature of the method, the data acquisition process can be stopped exactly when an estimate is
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obtained, thus allowing for the acquisition of solely the needed data, a property which can prove

useful in domains such as medical research.

5.2 General nonlinear problem and distributed problem

statement

Table 5.1: List of notations and symbols present in Chapter 5

Symbol Definition
A Adjacency matrix of a graph
N Set of nodes of the graph
Nn Set of nodes in the neighborhood of node n, excluding node n
N\n Set of all nodes, excluding node n
Jn(·) Local cost function
N Total number of nodes in the graph
Hκ A Reproducing Kernel Hilbert Space associated to kernel κ
Lm Time lag pertaining to the influence of node m
Dn The dictionary of node n
ξn Dictionary admission threshold for node n

Ω(·) Sparsity-inducing regularizer

Consider an (N+1)-node graph with adjacency matrix A which models a system such as the

brain network or a power grid. In this setting, the electrical activity of different brain-regions

[Rubinov and Sporns, 2010, Shen et al., 2019], or the voltage angle per bus [Zhang et al., 2017],

numbered from 1 through (N + 1), can be measured at different time instants i ∈ N+, leading to

a dynamic graph signal y(i). The signal at each node influences and is influenced by the signals

at the other nodes, with nonlinear relationships being reported in many applications such as,

e.g., in the case of brain connectivity [Freeman, 1979, de Zwart et al., 2009]. The links between

the signals at different nodes are then encoded in the matrix A.

The distributed nature of graphs allows for a local problem formulation. As such, we focus

on a single node n, while keeping in mind that the following reasoning can be applied for any

other particular node. For ease of notation, we assume that n ≡ (N + 1) (i.e., we identify n with

the (N + 1)th node of the graph), which allows us to denote N\n = {1, . . . , N}. Recent methods

have considered models of the form [Shen et al., 2017, Moscu et al., 2020a]:

yn(i) =

N∑
m=1

anmgm(yLm(i)) + vn(i) , (5.1)

where vn(i) represents innovation noise, and anm is the (n,m)th entry of the graph adjacency

matrixA. This matrix models how each function gm,m = 1, . . . , N influences the signal observed

at node n. Let gm : RLm → R be a nonlinear function whose possibly vector-valued argument is

yLm(i) = [ym(i), . . . , ym(i− Lm + 1)]>, for Lm ≥ 1. Therefore, the signal at each node depends
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nonlinearly on the signals at all the other nodes, up to the past Lm samples. Given nodal

measurements y(i) acquired online and model (5.1), the goal is to estimate the adjacency matrix

A locally at each node:

argmin
an,g1,...,gN

1

2
E

{∣∣∣yn(i)−
N∑
m=1

anmgm(yLm(i))
∣∣∣2}+ ψ(an)

subject to anm ∈ {0, 1} , (5.2)

where an is the nth row of A, and function ψ(·) is a sparsity promoting regularizer. However,

models such as (5.1) do not consider the nonlinear interactions between multiple nodes, as they

assume an additive model for yn(i) [Buja et al., 1989]. To overcome this issue, we propose to

consider the following general nonlinear model:

yn(i) = fn(yL1
(i), . . . ,yLN (i)) + vn(i) . (5.3)

Model (5.3), compared to (5.1), can capture and account for more complex relationships be-

tween the different nodes since it does not rely on a fixed presumed interaction model, therefore

rendering it more general.

5.3 Introducing sparsity

5.3.1 Nonparametric sparsity

Although kernel-based and other nonlinear regression frameworks can be applied to estimate the

function fn described in equation (5.3), there remains a challenge to relate fn to the underlying

graph topology A. Although the lack of an additive model precludes a straightforward relation-

ship such as in (5.1), the influence of a certain variable can be quantified by the norm of the

corresponding partial derivative, i.e.:

node m does not influence n ⇐⇒
∥∥∥∥ ∂fn
∂yLm

∥∥∥∥ = 0 , (5.4)

under the assumption that fn is continuously differentiable.

If we do not assume the additive model, we can generalize problem (5.2) as:

argmin
fn

1

2
E
∣∣∣yn(i)− fn(yL1

(i), . . . ,yLN (i))
∣∣∣2

subject to col

{{∥∥∥∥ ∂fn
∂yLm

∥∥∥∥}N
m=1

}
being sparse . (5.5)

Let us denote ỹ(i) = [yL1
(i)>, . . . ,yLN (i)>]>. As thoroughly detailed in [Rosasco et al., 2013], in

order to define a nonparametric notion of sparsity that leads to a convex optimization problem,

one can define the sparsity through the following functional:

ΩE(fn) =

N∑
m=1

∥∥∥∥ ∂fn
∂yLm

∥∥∥∥
E

=

N∑
m=1

√
Eỹ
{∥∥∥∥∂fn(ỹ)

∂yLm

∥∥∥∥2}
. (5.6)
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The expectation involving the derivatives in (5.6) can be approximated by the empirical average

on all the data samples available up to instant i. Employing the `2-norm, as proposed in the

aforementioned paper, and approximating the expectation, we obtain the following sampled

version functional:

Ω(fn) =

N∑
m=1

∥∥∥∥ ∂fn
∂yLm

∥∥∥∥
i

=

N∑
m=1

√√√√1

i

i∑
p=1

∥∥∥∥∂fn(ỹ(p))

∂yLm

∥∥∥∥2

. (5.7)

By including the regularizer Ω(fn) as an additive term in the cost function of (5.5), we are able

to obtain a convex optimization problem, which allows us to obtain more efficient algorithms,

and cater to real-word graphs, which tend to be sparse [Danisch et al., 2018].

5.3.2 Sparsity in Reproducing Kernel Hilbert Spaces

The penalty term proposed in the previous section allows us to promote sparsity in the estimated

topology without the restrictive constraint of an additive model. However, there remains a fun-

damental step to constrain fn to an adequate class of functions that is flexible but allows for an

efficient, finite dimensional implementation. Several solutions exist in the literature, including

nonlinear and polynomial Structural Equation Models [Jöreskog et al., 1996] and function selec-

tion from function sets defined a priori [Song et al., 2013]. In this work we will consider kernel

methods, which address the presence of nonlinearities in classification or regression problems by

applying linear algorithms to a high-dimensional feature space obtained by mapping the input

data to an RKHS Hκ endowed with the inner product 〈·, ·〉Hκ and associated with a positive

definite reproducing kernel κ(·, ·). RKHS-based solutions have been applied in the context of

nonlinear additive models for online topology estimation in, e.g., [Moscu et al., 2020a]. The

desired reproducing kernel property is briefly introduced in section 4.3.

Using the sparsity penalty in (5.7), constraining fn to belong to an RKHS Hκ and approxi-

mating the expectation in (5.5) by an empirical average leads to the formulation of the following

optimization problem:

argmin
fn∈Hκ

1

2i

i∑
`=1

|yn(`)− fn (y(`))|2

+ ηn

 N∑
m=1

√√√√1

i

i∑
p=1

Lm∑
q=1

(
∂fn(y(p))

∂ym,q

)2

+ ψHκ
(
‖fn‖Hκ

) , (5.8)

where ym,q represents the qth entry of yLm . In (5.8), parameter ηn > 0 controls the relative

importance of respecting the constraint on the unknown fn, and ψHκ : R → [0,∞[ is a mono-

tonically increasing function.

Despite allowing us to introduce sparsity in fn without constraining it to an additive model,

the cost function in (5.8) also contains a significant challenge to an RKHS-based solution: the
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sparsity-promoting penalty term hinders the direct application of traditional representation the-

orems to obtain a finite dimensional representation, because of the presence of the derivatives

of fn. However, if we suppose that the kernel κ(·, ·) is at least twice differentiable, the following

relation holds [Zhou, 2008]:

Hκ 3
∂fn(y)

∂ym,q
= 〈fn, κ∂m,q(·,y)〉Hκ , (5.9)

where:

κ∂m,q(·,y(q)) =
∂κ(·,a)

∂am,q

∣∣∣∣
a=y(q)

. (5.10)

This means that for sufficiently smooth kernels, the derivative of functions in Hκ also belong to

Hκ, and can be evaluated in the form of simple inner products. This makes it possible to obtain

a finite dimensional representation of the solution of (5.8), similarly to what has been previously

done in [Rosasco et al., 2013]. As such, we can obtain a representer theorem for our approach,

by generalizing the one presented in the aforementioned paper. We formalize this result in the

following theorem:

Theorem 5.1. Suppose that Hκ is an RKHS endowed with the inner product 〈·, ·〉Hκ, and whose

associated reproducing kernel κ(·, ·) is at least twice differentiable. Then, the optimal solution to

the optimization problem (5.8) can be written as:

f∗n =
i∑

p=1

αpκ (·,y(p)) +
N∑
m=1

i∑
`=1

Lm∑
q=1

βm,`,qκ∂m,q (·,y(`)) . (5.11)

Proof. Using the orthogonal projection, we can decompose any fn ∈ Hκ as:

fn = f‖n + f⊥n , (5.12)

where f⊥n is orthogonal to f‖n (i.e., 〈f‖n, f⊥n 〉Hκ = 0) and f‖n can be written as:

f‖n =
i∑

`=1

α`κ (·,y(`)) +
N∑
m=1

i∑
p=1

Lm∑
q=1

βm,p,qκ∂m,q (·,y(p)) , (5.13)

for an arbitrary choice of coefficients α` and βm,p,q. This means that f‖n lies in the span of

κ (·,y(`)) and κ∂m,q (·,y(p)), from which the orthogonality condition implies 〈f⊥n , κ(·,y(`))〉Hκ =

0 and 〈f⊥n , κ∂m,q (·,y(p))〉Hκ = 0, ∀`,m, p, q.
We suppose that the kernel κ(·, ·) is at least twice differentiable. Then, the following relation

holds Zhou [2008]:

Hκ 3
∂fn(y)

∂ym,q
= 〈fn, κ∂m,q(·,y)〉Hκ , (5.14)
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where ym,q is the qth entry of yLm .

We plug this decomposition of fn in (5.12) in the cost function (5.8). For the first term in

the cost function, using the kernel reproducing property, we have:

fn(y(`)) = 〈fn, κ(·,y(`))〉Hκ = 〈f‖n + f⊥n , κ(·,y(`))〉Hκ = 〈f‖n, κ(·,y(`))〉Hκ , (5.15)

∀` = 1, . . . , i, where 〈f⊥n , κ(·,y(`))〉Hκ = 0 since f⊥n is orthogonal to each term in (5.13).

For the second term of the cost function:

∂fn(y(p))

∂ym,q
=
∂fn(y)

∂ym,q

∣∣∣∣
y=y(p)

= 〈f‖n + f⊥n , κ∂m,q(·,y(p))〉Hκ = 〈f‖n, κ∂m,q(·,y(p))〉Hκ , (5.16)

∀p = 1, . . . , i, where 〈f⊥n , κ∂m,q(·,y(p))〉Hκ = 0 since f⊥n is perpendicular to each term in (5.13).

For the last term of the cost function we have:

ψHκ
(
‖fn‖Hκ

)
= ψHκ

(
‖f‖n + f⊥n ‖Hκ

)
= ψHκ

(
‖f‖n‖Hκ + ‖f⊥n ‖Hκ

)
. (5.17)

Then, since ‖f⊥n ‖Hκ does not influence the two first terms in the cost function, if ψHκ is mono-

tonically increasing, then the solution to (5.8) will be such that ‖f⊥n ‖Hκ = 0.

Using the results of Theorem 5.1, relation (5.11) can be substituted in (5.8) in order to obtain

the finite dimensional optimization problem:

argmin
{αj},{βo,j,s}
j=1,...,i
o=1,...,N
s=1,...,Lm

1

2i

i∑
`=1

∣∣∣∣∣∣yn(`)−

 i∑
j=1

αjκ (y(j),y(`)) +
N∑
o=1

i∑
j=1

Lm∑
s=1

βo,j,sκ∂o,s (y(j),y(`))

∣∣∣∣∣∣
2

+ηn

N∑
m=1

√√√√√1

i

i∑
p=1

Lm∑
q=1

 i∑
j=1

αjκ∂m,q (y(j),y(p)) +
N∑
o=1

i∑
j=1

Lm∑
s=1

βo,j,s
∂2κ (y(j),y(p))

∂ym,q(p)∂yo,s(j)

2

, (5.18)

where now we optimize over scalar coefficients instead of functions.

Before concluding this subsection, we note that an alternative solution to introducing sparsity

exists in the literature: instead of introducing sparsity on the partial derivatives of the estimate

function, works such as [Mukherjee andWu, 2006, Ye and Xie, 2012] focus on learning the gradient

directly, thus circumventing the need of learning the function itself. However, the proposed

solutions are not straightforward to compute online and distributively, especially because of the

highly demanding singular value decomposition.

For the remainder of the chapter, for ease of comprehension and notational simplicity, we

consider the case of an instantaneous model, i.e., Lm = 1, ∀m ∈ N\n, which means that we can

now note yLm(i) = ym,q(i) = ym(i), and κ∂m,q(·,y) = κ∂m(·,y).
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5.4 An online algorithm

An immediate observation concerning solution (5.11) is that the number of coefficients αp and

βm,q can become prohibitive as i increases, since each acquired measurement increases the num-

ber of kernel functions. A solution to this problem is the use of kernel dictionaries which

can be defined a priori [Chen et al., 2014] or which can admit a new candidate kernel func-

tion only if the candidate function passes a certain sparsification rule based on, e.g., the co-

herence criterion [Richard et al., 2009]. Other options exist, some of which were briefly in-

troduced in subsection 4.3.3. Under the coherence criterion framework, each node n in the

network creates, updates, and stores a dictionary of kernel functions and their derivatives,

Dn = {{κ(·, ỹ(ωj)), κ∂1(·, ỹ(ωj)), . . . , κ∂N (·, ỹ(ωj))} : ωj ∈ Iin ⊂ {1, . . . , i − 1}}, where Iin rep-

resents the set of time indices of elements selected for the dictionary, before instant i. This

entails the fact that, after a sufficient number of samples i has been acquired, only a number

card {Dn} � i of coefficient couples will be needed. A candidate kernel function κ(·, ỹ(i)) is

added to Dn if the following sparsification condition holds [Richard et al., 2009]:

max
ωj∈Iin

|κ(ỹ(i), ỹ(ωj))| ≤ ξn , (5.19)

where ξn ∈ [0, 1[ determines the level of sparsity and coherence of the dictionary. The number of

entries in the dictionary satisfies card {Dn} <∞ when i→∞ [Richard et al., 2009]. We rewrite

relation (5.11) as:

f∗n =

card{Dn}∑
p=1

αpκ(·, ỹ(ωp)) +

N∑
m=1

card{Dn}∑
q=1

βm,qκ∂m(·, ỹ(ωq)) . (5.20)

Let vectors α = col
{
{αp}card{Dn}

p=1

}
, β = col

{
{βm}Nm=1

}
, with βm = col

{
{βm,q}card{Dn}

q=1

}
,

group the coefficients in (5.20). Considering the online version of the batch cost function (5.8)

with the instantaneous MSD estimate (measured only at instant i), and using the dictionary-

based representation of f∗n in (5.20), we obtain the following finite-dimensional optimization

problem:

argmin
γ

1

2

∣∣∣yn(i)− γ>s(i)
∣∣∣2 + ηn

N∑
m=1

√√√√1

i

i∑
p=1

(
γ>tm(p)

)2
, (5.21)

with s(i) =

[
z(i)

k(i)

]
,γ =

[
β

α

]
, tm(p) =

[
`m(p)

zm(p)

]
, and:

k(i) = col
{
κ(ỹ(i), ỹ(ωq))

}card{Dn}

q=1
, (5.22)

z(i) =
[
z>1 (i), . . . ,z>N (i)

]>
, [zm(i)]q =

∂κ(ỹ(i), ỹ(ωq))

∂ym(ωq)

∣∣∣∣∣
q=1,...,card{Dn}

, (5.23)

`m(i) =
[
`>1,m(i), . . . , `>N,m(i)

]>
, [`m1,m2(i)]q =

∂2κ(ỹ(i), ỹ(ωq))

∂ym1(ωq)∂ym2(i)

∣∣∣∣∣
q=1,...,card{Dn}

. (5.24)
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The quantities (5.22), (5.23), and (5.24) can be computed in closed form when an explicit ex-

pression of the continuously differentiable kernel κ(·, ·) is chosen.

One difficulty with problem (5.21) is that the summation of tm(p), p = 1, . . . , i in the reg-

ularization term grows linearly with i, and is thus not scalable in this form. Note that we can

write the finite-dimensional regularizer in (5.21) as:

Ω(fn) =

N∑
m=1

√√√√1

i

i∑
p=1

(
γ>tm(p)

)2
=

N∑
m=1

√√√√γ>(1

i

i∑
p=1

Tm(p)

)
γ =

N∑
m=1

√
γ>Tm(i)γ , (5.25)

with Tm(p) = tm(p)t>m(p) and Tm(i) = 1
i

∑i
p=1 Tm(p), for m = 1, . . . , N . Since the following

relation is satisfied:

Tm(i) =
1

i
Tm(i) +

i− 1

i
Tm(i− 1) , ∀i ≥ 2 , (5.26)

we can compute Tm(i) recursively for all i with a fixed complexity. In terms of an efficient

initialization of the recursive average Tm(1), implementing methods such as the Ledoit-Wolf

shrinkage estimator [Ledoit and Wolf, 2004] may improve the algorhitm’s convergence speed.

Optimization problem (5.21) now becomes:

argmin
γ

1

2

∣∣∣yn(i)− γ>s(i)
∣∣∣2 + ηn

N∑
m=1

√
γ>Tm(i)γ . (5.27)

Cost function (5.27) can now be optimized iteratively using the subgradient descent update:

γ̂(i+ 1) = γ̂(i) + µns(i)
(
yn(i)− s>(i)γ̂(i)

)
− µnηn

N∑
m=1

Tm(i)γ̂(i)

Λ̂m(i)
, (5.28)

with Λ̂m(i) =
√
γ̂>(i)Tm(i)γ̂(i). In (5.27) and (5.28), each Λm represents the estimate of the

partial derivative of fn with respect to ym. The proposed method, summarized in Algorithm 3,

has a per-iteration complexity of O(N2). Approximate strategies can be considered to obtain

a scalable implementation. Parameter τn acts as an edge identification threshold. It is used to

identify the topology from the estimated coefficients Λ̂m(i), determining whether there exist links

from each node m ∈ N\n towards n. When processing real data, τn can be set as to obtain an

estimated topology which realistically explains the studied process, method already successfully

applied in works such as [Shen et al., 2019]. Its value can also adjusted as to obtain a connected

graph, i.e., a graph in which there exist a path between any node couple.

Using the approximation Tm(i) ≈ E
{
Tm(i)

}
: Should Tm(i) be computed as the cumulative

average of Tm(i), as per (5.26), then we can write:

Tm(i) =
1

i

i∑
`=1

Tm(i) ≈ E
{
Tm(i)

}
, for large enough i , (5.29)
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Algorithm 3: Kernel-based online graph inference with partial-derivative-imposed
sparsity
Inputs: For every node n: µ, η, κ(·, ·), ξn, and τn
Initialization: Set all entries of γ̂(0) to 0
Algorithm: At each time instant i ≥ 1
Update Dn if κ(·, ỹ(i)) satisfies condition (5.19)
Compute s(i) and Tm(i) with (5.22), (5.23), (5.24), (5.26)
Update γ̂(i) using (5.28)
Set ânm(i) to 1 if Λ̂m(i) ≥ τn, to 0 otherwise

Figure 5.1: Normalized deviation between the empirical average Tm(i) and its expectation (i.e.,∥∥Tm(i)− E
{
Tm(i)

}∥∥2

F /
∥∥E{Tm(i)

}∥∥2

F) as a function of the number of samples i. Results are
averaged for 100 Monte-Carlo runs, under the conditions defined in 5.6.1.1

which is an empirical average of Tm(i). Indeed, if the elements of Tm(i) are i.i.d. (with respect

to i) and have variance ϑ2, Chebyshev’s inequality implies that [Boucheron et al., 2003]:

P
(∣∣[Tm(i)]u,v − [E

{
Tm(i)

}
]u,v
∣∣ ≥ ε) ≤ ϑ2

ε2i
, (5.30)

meaning that the decay of the estimation error is of the order of i−1. An empirical simulation is

presented in Fig. 5.1.

5.5 Algorithm analysis

The distributed problem is analyzed in the current section. The dictionary elements are consid-

ered as chosen and set beforehand. Consider the local cost function, given dictionary Dn:

Jn(γ) =
1

2
E

∣∣∣yn(i)− γ>s(i)
∣∣∣2 + η

N∑
m=1

√√√√1

i

i∑
p=1

(
γ>tm(p)

)2 ∣∣∣∣∣Dn
 . (5.31)

Its minimum value is:

Jn,min , Jn(γ∗) = E
{
y2
n(i)

}
− r>syR−1

ss rsy , (5.32)
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Table 5.2: List of notations and symbols employed throughout the analysis in Chapter 5

Symbol Equation
γ∗0 = R−1

ss rsy (5.34)
ε0(i) = yn(i)− s>(i)γ∗ (5.37)

d(i) , γ̂(i) − γ∗ (5.45)
ε(i) = yn(i)− s>(i)d(i)− s>(i)γ∗ (5.46)

Jn,min , Jn(γ∗) = E
{
y2
n(i)

}
− r>syR−1

ss rsy (5.32)[
K(u,v)

]
ab

= E {[s(i)]u [s(i)]v [s(i)]a [s(i)]b} (5.70)

[Q(i)]uv = Tr
{
K(u,v)D(i)

}
(5.71)

F 0 = I2 − µ(I ⊗Rss +Rss ⊗ I) + µ2F 1 (5.84)
Jn,MSE(∞) = Jn,min + Tr

{
RssD(∞)

}
(5.87)

while its corresponding gradient w.r.t. γ is:

∇γJn(γ) = E

{
−yn(i)s(i) + s(i)s>(i)γ + η

N∑
m=1

Tm(i)γ

Λm(i)

}
. (5.33)

For the non-regularized case, i.e., η = 0, we have:

∇γJ(γ) = 0 ⇐⇒ E
{
s(i)s>(i)

}
γ = E {yn(i)s(i)}

⇐⇒ γ∗0 = R−1
ss rsy , (5.34)

with Rss , E
{
s(i)s>(i)

}
, rsy , E {yn(i)s(i)}, and γ∗0 representing the optimal value which

minimizes cost function (5.31) with η = 0. Further in the analysis, we consider γ∗ as being the

optimal solution to the same cost function, for η > 0.

Before proceeding, we establish a set of simplifying hypotheses.

Assumption 5.1. We assume that vector y(i) is zero-mean and Gaussian with covariance matrix

Ry, thus its probability density function is:

θ
(
y(i)

)
= (2π)

−
N

2 det {Ry}
−

1

2 exp

(
−1

2
y>(i)R−1

y y(i)

)
. (5.35)

Assumption 5.2. For reasons of simplicity, we consider Lm = 1.

Assumption 5.3. We assume the use of the Gaussian kernel.

It is defined as:

κG(a, b) = exp

(
−‖a− b‖

2

2σ2

)
. (5.36)

This kernel choice is made due to its capacities as an universal approximator [Liu et al., 2010].

Assumption 5.4. We assume that s(i)s>(i) is statistically independent of d(i).
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This assumption has been successfully used in the analysis of various adaptive filtering algo-

rithms [Parreira et al., 2012], and has been shown in [Minkoff, 2001] to be less restrictive when

compared to the classical independence assumption.

We define the optimal estimation error ε0 as:

ε0(i) = yn(i)− s>(i)γ∗ . (5.37)

Assumption 5.5. We assume that ε0(i) and s(i)s>(i) are uncorrelated.

This assumption is closely related to the Assumption 5.4.

Assumption 5.6. The elements y(ωp), ∀ωp ∈ Iin that compose the dictionary are set a priori,

and thus independent from y(i).

Relating the error in the derivatives to the error in the coefficients: One difficulty

related to the update (5.28) is that it considers the evolution of the coefficients γ, instead of the

partial derivatives of the function
∂f̂n(y)

∂ym
. Nevertheless, we can study the convergence of the

derivatives indirectly by means of filter coefficients. We denote the estimated function fn by f̂n.

Using (5.9) and the Cauchy-Schwarz inequality:

∂f̂n(y)

∂ym
− ∂f∗n(y)

∂ym
= 〈f̂n, κ∂m(·,y)〉Hκ − 〈f∗n, κ∂m(·,y)〉Hκ

≤ ‖κ∂m(·,y)‖Hκ
(
‖f̂n‖Hκ − ‖f∗n‖Hκ

)
, (5.38)

leading to: ∣∣∣∣∣∂f̂n(y)

∂ym
− ∂f∗n(y)

∂ym

∣∣∣∣∣ =
∣∣∣〈f̂n, κ∂m(·,y)〉Hκ − 〈f∗n, κ∂m(·,y)〉Hκ

∣∣∣
=
∣∣∣〈f̂n − f∗n, κ∂m(·,y)〉Hκ

∣∣∣
≤ ‖κ∂m(·,y)‖Hκ‖f̂n − f∗n‖Hκ . (5.39)

Moreover, we also have that:

‖f̂n − f∗n‖Hκ = ‖s>γ̂ − s>γ∗‖

= ‖s>(γ̂ − γ∗)‖

≤ ‖s‖ ‖γ̂ − γ∗‖ , (5.40)

which gives: ∣∣∣∣∣∂f̂n(y)

∂ym
− ∂f∗n(y)

∂ym

∣∣∣∣∣ ≤ ‖κ∂m(·,y)‖Hκ‖s‖ ‖γ̂ − γ∗‖ . (5.41)

Thus, we can bound the error in the estimated derivatives by the error in the coefficients γ.

This allows us to study the convergence behavior of the derivatives indirectly by means of the

coefficients γ̂.
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5.5.1 Weight error recursion

Let γ̂(i) denote the estimate at step i of γ. The classic gradient descent step is:

γ̂(i+1) = γ̂(i) − µ∇γJn(γ) , (5.42)

where µ is a small enough step size. Replacing the gradient via relation (5.33), we obtain the

gradient step:

γ̂(i+1) = γ̂(i) + µ

(
rsy −Rssγ̂(i) − η

N∑
m=1

E

{
Tm(i)γ̂(i)

Λ̂m(i)

})
, (5.43)

with its stochastic variant:

γ̂(i+1) = γ̂(i) + µs(i)ε(i)− µη
N∑
m=1

Tm(i)γ̂(i)

Λ̂m(i)
, (5.44)

where ε(i) , yn(i) − s>(i)γ̂(i) represents the instantaneous error. We recall that Λ̂m(i) =√
γ̂>(i)Tm(i)γ̂(i). Let us denote the difference between the current available estimate and the

optimal solution (5.34) by:

d(i) , γ̂(i) − γ∗ . (5.45)

Error ε(i) can be expressed in terms of the error vector d(i):

ε(i) = yn(i)− s>(i)d(i) − s>(i)γ∗ . (5.46)

Replacing (5.46) into relation (5.44) and using (5.37) leads to the following error vector recursion:

d(i+1) = d(i) − µs(i)s>(i)d(i) + µs(i)ε0(i)− µη
N∑
m=1

Tm(i)
(
d(i) + γ∗

)√(
d(i) + γ∗

)>
Tm(i)

(
d(i) + γ∗

) . (5.47)

5.5.2 Mean error behavior

The goal of the analysis in the mean is to determine the stability conditions of the algorithm, i.e.,

the conditions in which the algorithm converges in the mean. As such, we take the expectation

of relation (5.47) and employ Assumption 5.4, leading to:

E
{
d(i+1)

}
= (I − µRss)E

{
d(i)

}
+ µ (E {s(i)yn(i)} −Rssγ

∗)

− µη
N∑
m=1

E

 Tm(i)
(
d(i) + γ∗

)√(
d(i) + γ∗

)>
Tm(i)

(
d(i) + γ∗

)
 , (5.48)

with Rss , E
{
s(i)s>(i)

}
=

[
Rzz R>kz

Rkz Rkk

]
, where Rzz , E

{
z(i)z>(i)

}
, Rkk , E

{
k(i)k>(i)

}
,

and Rkz , E
{
k(i)z>(i)

}
. Due do their complexity, the explicit form of block matrix Rss is

present in Annex C.1, while the entries of term E {syn(i)} are developed in Annex C.5.
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Approximating the regularization term: For the third term on the r.h.s. of (5.48), we

first employ the approximation Tm(i) ≈ E
{
Tm(i)

}
, followed by:

E

 E
{
Tm(i)

}
γ̂(i)√

γ̂>(i)E
{
Tm(i)

}
γ̂(i)

 ≈ E
{
Tm(i)

}
µ√

Tr{E
{
Tm(i)

}
Σ}+ µ>E

{
Tm(i)

}
µ
, (5.49)

with µ = E
{
γ̂(i)

}
and Σ = E

{
γ̂(i)γ̂

>
(i)

}
−µµ>. In this case, we successively approximated the

expectation of the ratio by the ratio of the expectations, and the expectation of the square root

by the square root of the expectation [Elandt-Johnson and Johnson, 1999, p. 70]. Note that

E
{
γ̂(i)γ̂

>
(i)

}
can be computed as:

E
{
γ̂(i)γ̂

>
(i)

}
= E

{
[γ̂(i) + γ∗ − γ∗][γ̂(i) + γ∗ − γ∗]>

}
= E

{
[d(i) + γ∗][d(i) + γ∗]>

}
= E

{
d(i)d

>
(i)

}
+ E

{
d(i)

}
(γ∗)> + γ∗E

{
d(i)

}>
+ γ∗(γ∗)> . (5.50)

We remark that approximation (5.49) is successfully used in the theoretical validation, present

further in this chapter, in subsection 5.6.1.

Algorithm stability: From (5.48), we can obtain an expression for the error at instant i+ 1:

E
{
d(i+1)

}
=(I − µRss)

i+1E
{
d(0)

}
+ µ

i∑
`=0

(I − µRss)
i−` (E {s(`)yn(`)} −Rssγ

∗)

− µη
i∑

`=0

(I − µRss)
i−`E

 Tm(`)
(
d(`) + γ∗

)√(
d(`) + γ∗

)>
Tm(`)

(
d(`) + γ∗

)
 . (5.51)

Taking the norm of both sides of (5.48) and using the triangle and Cauchy-Schwarz inequalities

leads to:

∥∥E{d(i+1)

}∥∥ ≤∥∥(I − µRss)
i+1E

{
d(0)

}∥∥+ µ

∥∥∥∥∥
i∑

`=0

(I − µRss)
i−` (E {s(`)yn(`)} −Rssγ

∗)

∥∥∥∥∥
+ µη

∥∥∥∥∥∥
i∑

`=0

(I − µRss)
i−`E

 Tm(`)
(
d(`) + γ∗

)√(
d(`) + γ∗

)>
Tm(`)

(
d(`) + γ∗

)

∥∥∥∥∥∥

≤
∥∥(I − µRss)

i+1
∥∥∥∥E{d(0)

}∥∥+ µ
i∑

`=0

∥∥∥(I − µRss)
i−`
∥∥∥ ‖(E {s(`)yn(`)} −Rssγ

∗)‖

+ µη

i∑
`=0

∥∥∥(I − µRss)
i−`
∥∥∥
∥∥∥∥∥∥E
 Tm(`)

(
d(`) + γ∗

)√(
d(`) + γ∗

)>
Tm(`)

(
d(`) + γ∗

)

∥∥∥∥∥∥ . (5.52)
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The Cholesky decomposition of Tm(`) is Tm(`) = C>m(`)Cm(`). Using it, alongside certain

properties of the spectral norm and Jensen’s inequality [Jensen, 1906], leads to:

∥∥E{d(i+1)

}∥∥ ≤∥∥(I − µRss)
i+1
∥∥∥∥E{d(0)

}∥∥+ µ

i∑
`=0

∥∥∥(I − µRss)
i−`
∥∥∥ ‖(E {s(`)yn(`)} −Rssγ

∗)‖

+ µη

i∑
`=0

∥∥∥(I − µRss)
i−`
∥∥∥
∥∥∥∥∥∥E
 C>m(`)Cm(`)

(
d(`) + γ∗

)√(
d(`) + γ∗

)>
C>m(`)Cm(`)

(
d(`) + γ∗

)

∥∥∥∥∥∥

= ‖I − µRss‖i+1
∥∥E{d(0)

}∥∥+ µ

i∑
`=0

∥∥∥(I − µRss)
i−`
∥∥∥ ‖(E {s(`)yn(`)} −Rssγ

∗)‖

+ µη
i∑

`=0

‖I − µRss‖i−`
∥∥∥∥∥E
{
C>m(`)

Cm(`)
(
d(`) + γ∗

)∥∥Cm(`)
(
d(`) + γ∗

)∥∥
}∥∥∥∥∥

≤‖I − µRss‖i+1
∥∥E{d(0)

}∥∥+ µ
i∑

`=0

∥∥∥(I − µRss)
i−`
∥∥∥ ‖(E {s(`)yn(`)} −Rssγ

∗)‖

+ µη
i∑

`=0

‖I − µRss‖i−` E

{∥∥∥C>m(`)
∥∥∥∥∥∥∥∥ Cm(`)

(
d(`) + γ∗

)∥∥Cm(`)
(
d(`) + γ∗

)∥∥
∥∥∥∥∥
}

= ‖I − µRss‖i+1
∥∥E{d(0)

}∥∥+ µ

i∑
`=0

∥∥∥(I − µRss)
i−`
∥∥∥ ‖(E {s(`)yn(`)} −Rssγ

∗)‖

+ µη
i∑

`=0

‖I − µRss‖i−` E
{∥∥∥C>m(`)

∥∥∥}
= ‖I − µRss‖i+1

∥∥E{d(0)

}∥∥+ µ
i∑

`=0

∥∥∥(I − µRss)
i−`
∥∥∥ ‖(E {s(`)yn(`)} −Rssγ

∗)‖

+ µη

i∑
`=0

‖I − µRss‖i−` E
{√
‖Tm(`)‖

}
. (5.53)

Since ‖I − µRss‖ ≥ 0, the third term in (5.53) can be upper bounded as:

i∑
`=0

‖I − µRss‖i−` E
{√
‖Tm(`)‖

}
≤

i∑
`=0

‖I − µRss‖i−` max
0≤`≤i

E
{√
‖Tm(`)‖

}
=
‖I − µRss‖i+1 − 1

‖I − µRss‖ − 1
max
0≤`≤i

E
{√
‖Tm(`)‖

}
, (5.54)

while, since we assume that the signals are stationary, for the second term we have:

i∑
`=0

‖I − µRss‖i−` ‖E {s(`)yn(`)} −Rssγ
∗‖

=
‖I − µRss‖i+1 − 1

‖I − µRss‖ − 1
‖E {s(i)yn(i)} −Rssγ

∗‖ , (5.55)
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leading to the following upper bound for
∥∥E{d(i+1)

}∥∥:
∥∥E{d(i+1)

}∥∥ ≤‖I − µRss‖i+1
∥∥E{d(0)

}∥∥+ µ
‖I − µRss‖i+1 − 1

‖I − µRss‖ − 1
‖E {s(i)yn(i)} −Rssγ

∗‖

+ µη
‖I − µRss‖i+1 − 1

‖I − µRss‖ − 1
max
0≤`≤i

E
{√
‖Tm(`)‖

}
. (5.56)

All terms above converge if λmax(I − µRss) < 1, thus, stability in the mean is attained if the

stepsize satisfies the following condition:

0 < µ <
2

λmax(Rss)
. (5.57)

5.5.3 Mean square error behavior

The mean square error analysis allows for the prediction of the behavior of the algorithm under a

deterministic model, thus removing the reliance on Monte-Carlo simulations. Moreover, param-

eters such as the step-size µ and regularization parameter η can be then selected in accordance

with the needs of the considered application.

As a first step in the mean square analysis, let us denote D(i) , E
{
d(i)d

>
(i)

}
. Thus, by using

(5.47) and Assumption 5.4, we obtain:

D(i+1) =D(i) − µ
(
D(i)Rss +RssD(i)

)
+ µ2Q+ µ2N − µ2 sym {M}+ µ sym {O}

− µη sym {P 1}+ µ2η sym {P 2}+ µ2η2P 3 − µ2η sym {P 4} , (5.58)

with:

Q = E
{
s(i)s>(i)d(i)d

>
(i)s(i)s

>(i)
}
, (5.59)

[N ]u,v =
[
E
{
s(i)s>(i)ε2

0(i)
}]

u,v
= E{su(i)s>v (i)(yn(i)− s>(i)γ∗)2}

=E
{
su(i)sv(i)y

2
n(i)

}
− 2

∑
p

γ∗pE {su(i)sv(i)sp(i)yn(i)}

+
∑
`

∑
m

γ∗` γ
∗
mE {su(i)sv(i)s`(i)sm(i)} , (5.60)

[M(i)]u,v =
[
E
{
s(i)s>(i)d(i)s

>(i)ε0(i)
}]

u,v
=
∑
m

E {su(i)sm(i)vm(i)sv(i)ε0(i)}

=
∑
m

E
{[
d(i)

]
m

}
E
{
su(i)sm(i)sv(i)(yn(i)− s>(i)γ∗)

}
=
∑
m

E
{[
d(i)

]
m

}
E {su(i)sm(i)sv(i)yn(i)}

−
∑
`

∑
m

E
{[
d(i)

]
m

}
E {su(i)sm(i)sv(i)s`(i)} γ∗b , (5.61)
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O(i) = E
{
d(i)s

>(i)ε0(i)
}

= E
{
d(i)

}
E
{
s>(i)ε0(i)

}
=E

{
d(i)

}(
E
{
s>(i)yn(i)

}
− (γ∗)>Rss

)
=E

{
d(i)

}
(E {s(i)yn(i)} −Rssγ

∗)> , (5.62)

P 1 = E

d(i)

[
N∑
m=1

Tm(i)γ̂(i)

Λ̂m(i)

]> , (5.63)

P 2 = E

s(i)s>(i)d(i)

[
N∑
m=1

Tm(i)γ̂(i)

Λ̂m(i)

]> , (5.64)

P 3 = E


[

N∑
m=1

Tm(i)γ̂(i)

Λ̂m(i)

] N∑
p=1

Tp(i)γ̂(i)

Λ̂p(i)

>
 , (5.65)

P 4 = E

s(i)ε0(i)

[
N∑
m=1

Tm(i)γ̂(i)

Λ̂m(i)

]> . (5.66)

We remark upon the fact that terms (5.61) – (5.62) depend on the mean error term E
{
d(i)

}
,

which is computed using either (5.48) or (5.51). We also note that the third term on the r.h.s.

of relation (5.60) is related to term (5.70), which is detailed in Annex C.2. The first two terms

on the r.h.s. of the same relation are computed in Annexes C.4 and C.3, respectively.

We now define the MSE at instant i:

Jn,MSE(i) , E
{∣∣∣yn(i)− s>(i)γ̂n(i)

∣∣∣2} , (5.67)

and the MSD at instant i:

MSD(i) , E
{∥∥∥γ̂(i) − γ∗

∥∥∥2
}

= E
{∥∥d(i)

∥∥2
}
. (5.68)

Computing any of these performance metrics requires explicit knowledge of quantities (5.59) and

(5.63) – (5.66). The remainder of this section focuses on analyzing these terms.

5.5.3.1 Computing matrix Q

Let us note ks = (N + 1)card {Dn}, the total number of entries in block vector s. We make use

of Assumption 5.4, leading to the writing of the (u, v)th entry of Q as:

[Q]uv =

ks∑
a=1

ks∑
b=1

E {[s(i)]u [s(i)]v [s(i)]a [s(i)]b}
[
D(i)

]
ab
. (5.69)

For alleviating the notation, we introduce matrix K(u,v), whose (a, b)th entry is:[
K(u,v)

]
ab

= E {[s(i)]u [s(i)]v [s(i)]a [s(i)]b} . (5.70)
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Now we can write relation (5.69) as:

[Q(i)]uv = Tr
{
K(u,v)D(i)

}
. (5.71)

It is important to note that indexes u, v, a, b in relations (5.69) and (5.70) act upon the

whole block-vector s(i). As such, it is necessary to identify which particular block m = 1, . . . , N

and specific dictionary entry j – helping in determining ωj – any of these indexes point to.

Knowing the number of entries in the dictionary Dn, this identification is straightforward: let h =

{u, v, a, b} be a generic index, able to replace any and all of the other indexes. The identification

process is then trivially done as:

m =

⌈
h

card {Dn}

⌉
, j = mod(h− 1, card {Dn}) + 1 . (5.72)

After having identified the concerned indexes, each entry of K(u,v) can be explicitly written.

Due to their complexity, these derivations are found in Annex C.2.

5.5.3.2 Computing matrix P 1

We need to compute:

E

d(i)

[
N∑
m=1

Tm(i)γ̂(i)

Λ̂m(i)

]> =

N∑
m=1

E

 d(i)γ̂
>
(i)Tm(i)>√

γ̂>(i)Tm(i)γ̂(i)

 . (5.73)

We present it alternatively as:

E

 d(i)γ̂
>
(i)Tm(i)>√

γ̂>(i)Tm(i)γ̂(i)

 = E


[
d(i) + γ∗ − γ∗

]
γ̂>(i)Tm(i)>√

γ̂>(i)Tm(i)γ̂(i)


= E

 γ̂(i)γ̂
>
(i)Tm(i)>√

γ̂>(i)Tm(i)γ̂(i)

− γ∗E
 γ̂>(i)Tm(i)>√

γ̂>(i)Tm(i)γ̂(i)

 . (5.74)

The second term on the r.h.s. of (5.74) can be computed using approximation (5.49). For the

first term in the same relation, we employ the following approximation:

E

 γ̂(i)γ̂
>
(i)Tm(i)>√

γ̂>(i)Tm(i)γ̂(i)

 ≈ E

 γ̂(i)γ̂
>
(i)E

{
Tm(i)

}>√
γ̂>(i)E

{
Tm(i)

}
γ̂(i)


≈

E
{
γ̂(i)γ̂

>
(i)

}
E
{
Tm(i)

}>√
Tr
{
E
{
Tm(i)

}
E
{
γ̂(i)γ̂

>
(i)

}} . (5.75)

In this case, we again successively approximated the expectation of the ratio by the ratio of the

expectations, and the expectation of the square root by the square root of the expectation. Note

that E
{
γ̂(i)γ̂

>
(i)

}
can be computed using (5.50).
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5.5.3.3 Computing matrix P 2

By approximating Tm(i) ≈ E
{
Tm(i)

}
and using some algebraic manipulations alongside As-

sumption 5.4, we obtain:

E

s(i)s>(i)d(i)

[
N∑
m=1

Tm(i)γ̂(i)

Λ̂m(i)

]> ≈ E

s(i)s>(i)d(i)

[
N∑
m=1

E
{
Tm(i)

}
γ̂(i)

Λ̂m(i)

]>
= E

{
s(i)s>(i)

}
E

d(i)

[
N∑
m=1

E
{
Tm(i)

}
γ̂(i)

Λ̂m(i)

]>
= RssP 1 . (5.76)

5.5.3.4 Computing matrix P 3

We successively have:

E


[

N∑
m=1

Tm(i)γ̂(i)

Λ̂m(i)

] N∑
p=1

Tp(i)γ̂(i)

Λ̂p(i)

>
 = E


N∑
m=1

N∑
p=1

Tm(i)γ̂(i)√
γ̂>(i)Tm(i)γ̂(i)

γ̂>(i)T
>
p (i)√

γ̂>(i)Tp(i)γ̂(i)


=

N∑
m=1

N∑
p=1

E

 Tm(i)γ̂(i)√
γ̂>(i)Tm(i)γ̂(i)

γ̂>(i)T
>
p (i)√

γ̂>(i)Tp(i)γ̂(i)


≈

N∑
m=1

N∑
p=1

E

 E
{
Tm(i)

}
γ̂(i)γ̂

>
(i)E

{
Tp(i)

}>√
γ̂>(i)E

{
Tm(i)

}
γ̂(i)

√
γ̂>(i)E

{
Tp(i)

}
γ̂(i)


≈

N∑
m=1

N∑
p=1

E
{
Tm(i)

}
E
{
γ̂(i)γ̂

>
(i)

}
E
{
Tp(i)

}>√
E
{
γ̂>(i)E

{
Tm(i)

}
γ̂(i)γ̂

>
(i)E

{
Tp(i)

}
γ̂(i)

} ,
(5.77)

for which we successively approximated the expectation of the ratio by the ratio of the expec-

tations, and the expectation of the square root by the square root of the expectation. The

numerator is straightforward to compute. The denominator is the expectation of a product of

quadratic forms in Gaussian random variables, equal to [Kumar, 1973, Bao and Ullah, 2010]:

E
{
γ̂>(i)E

{
Tm(i)

}
γ̂(i)γ̂>(i)E

{
Tp(i)

}
γ̂(i)

}
=
(
µ>E

{
Tm(i)

}
µ+ Tr

{
E
{
Tm(i)

}
Σ
})(

µ>E
{
Tp(i)

}
µ+ Tr

{
E
{
Tp(i)

}
Σ
})

+ 4µ>E
{
Tm(i)

}
ΣE

{
Tp(i)

}
µ+ 2Tr

{
E
{
Tm(i)

}
ΣE

{
Tp(i)

}
Σ
}
, (5.78)

where µ = E {γ̂(i)} and Σ = E
{
γ̂(i)γ̂>(i)

}
− µµ>.
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5.5.3.5 Computing matrix P 4

By approximating Tm(i) ≈ E
{
Tm(i)

}
and using Assumption 5.4, we obtain:

E

s(i)ε0(i)

[
N∑
m=1

Tm(i)γ̂(i)

Λ̂m(i)

]> ≈ E

s(i)ε0(i)

[
N∑
m=1

E
{
Tm(i)

}
γ̂(i)

Λ̂m(i)

]>
= E {s(i)ε0(i)}E


[

N∑
m=1

E
{
Tm(i)

}
γ̂(i)

Λ̂m(i)

]>
= (E {s(i)yn(i)} −Rssγ

∗)E


[

N∑
m=1

E
{
Tm(i)

}
γ̂(i)

Λ̂m(i)

]> .

(5.79)

Entries of the quantity E {Tm(i)} are expressed in Annex C.6.

With results (5.71) – (5.79), all the terms in the recursive equation for D(i) (5.58) are now

explicited, allowing the computation of both the MSE and MSD.

5.5.3.6 Case when η = 0

When there is no regularization, the recursion is:

D(i+1) = D(i) − µ
(
D(i)Rss +RssD(i)

)
+ µ2Q+ µ2N − µ2 sym {M}+ µ sym {O} . (5.80)

In this case, the second-order weight moments relate to the MSE through [Haykin, 2002, p. 268]:

Jn,MSE(i) = Jn,min + Tr
{
RssD(i)

}
, (5.81)

and to the MSD through:

MSD(i) = Tr
{
D(i)

}
. (5.82)

In order to compute the steady-state MSD, we stack columns of D(i) on top of each other,

i.e., d̄(i) = vec
{
D(i)

}
. Making use of the properties of the vectorization operator, we obtain the

following for recursion (5.80):

d̄(i+1) = F 0d̄(i) + µ2p̄(i) , (5.83)

where p̄(i) = vec
{
N − sym {M(i)}+ µ−1 sym {O(i)}

}
, and:

F 0 = I2 − µ(I ⊗Rss +Rss ⊗ I) + µ2F 1 . (5.84)

We remark upon the fact that the identity matrix I2 is of size k2
s × k2

s , while I is if size ks × ks.
Also, entries of the matrix F 1 are [F 1]u+(v−1)ks,a+(b−1)ks

=
[
K(u,v)

]
ab
.
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Steady-state performance: Assuming a small enough step size µ, i.e., one which verifies

condition (5.57), then we have, via relation (5.51), that:

lim
i→∞

E
{
d(i)

}
= d(∞) =0 + µ

i∑
`=0

(I − µRss)
i−` (E {s(`)yn(`)} −Rssγ

∗)

=µ
I

I − (I − µRss)
(E {s(i)yn(i)} −Rssγ

∗)

=0
(
R−1
ss rsy − γ∗0

) (5.34)
= 0 . (5.85)

Thus, replacing d(∞) intoM(i) and O(i) yieldsM(∞) and O(∞), respectively. Since d(∞) = 0,

given (5.61) – (5.62), we have that M(∞) = O(∞) = 0. In turn, these quantities give p̄(∞) =

vec
{
N − sym {M(∞)}+ µ−1 sym {O(∞)}

}
= vec {N}. The algorithm is mean-square stable

as i→∞, and converges towards:

lim
i→∞

d̄(i) = µ2 (I2 − F 0)−1 p̄(∞) = d̄(∞) . (5.86)

Using relations (5.81) – (5.82) and the matrix form D(∞) of d̄(∞), i.e., D(∞) = vec−1
{
d̄(∞)

}
,

the steady-state MSE is given by:

Jn,MSE(∞) = Jn,min + Tr
{
RssD(∞)

}
, (5.87)

while the steady-state MSD is:

MSD(∞) = Tr
{
D(∞)

}
. (5.88)

5.6 Theoretical validation and experimental results

5.6.1 Theoretical validation

The conditions of the validation and the data generation methods are the same as those enumer-

ated in subsection 4.5.1, except for the dictionary Dn, whose six elements were chosen uniformly

from the grid [−1, 1]× [−1, 1]. We are splitting this subsection in two parts, one with the results

where there is no regularization, i.e., η = 0, and one where the regularization term is present,

i.e., η > 0.

5.6.1.1 Parameter η = 0

The optimal solution in the non-regularized case is γ∗0, computed via (5.34). Fig. 5.2a shows both

the theoretical and experimental values for coefficients γuv. Fig. 5.2b shows both the theoretical

and experimental MSD curves, as well as the steady-state MSD. The experimental MSD was

computed using:

MSD(i) = E
{∥∥∥γ̂(i) − γ∗

∥∥∥2
}
. (5.89)

The theoretical curves are shown to be closely following the theoretical ones, in both the mean

and mean square sense. They also validate the approximation (5.49) of the regularization term

present in update (5.47).
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(a) Theoretical and experimental entries of γ. Blue
dashed lines represent the experimental curves, while
red lines represent the theoretical ones

(b) Experimental, steady-state, and theoretical MSD

Figure 5.2: Validation for the analysis in both the mean and mean square sense, for η = 0

5.6.1.2 Parameter η > 0

The conditions of the experiment are the same as for the previous case, with η = 1 · 10−4. The

quantity Tm is computed a priori, using the cumulative average (5.26). As depicted in Fig. 5.1,

it converges towards a satisfying average of Tm. The simulation curves are presented in Fig. 5.3.

The optimal solution for the regularized case γ∗ was computed using the Matlab CVX package

[Grant and Boyd, 2014, 2008]. The experimental MSD curve was computed with (5.89). As for

the previous case, the theoretical curves fit the experimental ones. This serves to validate the

approximations employed in the analysis, for terms such as P 1 (5.74) – (5.75) and P 3 (5.77).

Moreover, these curves also validate the simplifying hypotheses made before proceeding with the

analysis.

5.6.2 Experimental results

Experimental setup: In this section, the performance of the proposed method is evaluated

by two experiments: one considering synthetic data, and another considering real biomedical

epilepsy data. The Gaussian kernel is defined as:

κG(a, b) = exp

(
−‖a− b‖

2

2σ2
n

)
, a, b ∈ RN , (5.90)

where σn represents the kernels’ band-width, and was used in both cases.

Discretized Lorenz Attractor: Let us consider the Discretized Lorenz Attractor experiment

from section 4.5. The additive-model-based algorithm developed in Chapter 4 and employed in

the aforementioned section is hereafter called RA for reference algorithm. The Lorenz system
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(a) Theoretical and experimental entries of γ. Blue
dashed lines represent the experimental curves, while
red lines represent the theoretical ones

(b) Experimental and theoretical MSD

Figure 5.3: Validation for the analysis in both the mean and mean square sense, for η = 1 · 10−4

parameters were set to the same values as in (4.61), with initial conditions [y1(0), y2(0), y3(0)]> =

[10−10, 10−10, 10−10]> for both RA and the proposed Algorithm 3 , called PA. This system

contains nonlinear interactions which cannot be completely characterized by additive models.

We set µn and τn as to achieve the fastest convergence. Parameters σn and ξn were set as to

obtain the same number of dictionary entries per node, nine, in order to achieve a meaningful

comparison between the two methods. Finally, τn were set as to achieve the best performance in

terms of EIER, previously defined in (4.62), where Agt is the ground truth depicted in Fig. 5.4b.

Fig. 5.4a depicts the EIER of both algorithms as a function of the iterations. In Fig. 5.4c and

Fig. 5.4d, each entry represents the mean of the normalized Λ̂m(i), per n, over i = 5000 iterations,

which encodes the strength of a link from node m towards n before thresholding. It is desired

that the amplitude of the elements for which anm = 1 be larger and as separated as possible from

the amplitude of the elements for which anm = 0, since this makes distinguishing the active and

inactive links easier. On the first row, the more general model of the current method is able to

better differentiate between the absence and presence of a link. This is seen through the larger

difference between Λ̂2 and Λ̂3 corresponding to â12 = 1 and â13 = 0, respectively, in the case of

PA, while for the RA the strength of the link corresponding to â13 is much closer to that of the

active link. The lower performance of RA was expected since it constrains the interactions to

obey a more constraining additive model.

Tests on epilepsy seizure data: The data for this experiment come from a 39-year-old female

subject suffering from intractable epilepsy. The data acquisition and pre-processing information

is provided in [Kramer et al., 2008]. The data set contains 8 instances of electrocorticography

(ECoG) time series, each instance representing one seizure and contains voltage measurements
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(a) EIER (b) Agt (c) RA (d) PA

Figure 5.4: EIER, ground truth and estimates. White represents 0

(a) Preictal

(b) Ictal (c) Left: Preictal interval. Right: Ictal interval.

Figure 5.5: Estimated adjacency matrices (left). Summed in- and out-degrees for the estimated
graphs (right). The larger the radius corresponding to n, the larger the summed degree of n

from 76 different regions on and inside the brain, during the 10 seconds before the epilepsy seizure

(preictal interval) and the first 10 seconds during the seizure (ictal interval). Further information

on these data and on epilepsy can be found in subsection 4.5.2. We set µn = 10−3, ηn = 102, ξn =

0.8 for each n. Since there was no ground truth, parameters σn and τn were set as to obtain

results coherent with previous works and existing medical studies.

Fig. 5.5a and Fig. 5.5b show the estimated connectivity of the brain, for each interval, aver-

aged over the 8 instances. Fig. 5.5c depicts the degree (sum of in- and out-degree), encoded in

the radii of the circles, relative to each interval. Interestingly, our online estimate reveals roughly

the same behavior before and during the seizure as the estimate obtained using the method batch

developed in [Shen et al., 2019] and the online method in [Moscu et al., 2020a]. More precisely,

the number of total connections decreases from one interval to the other, especially due to the

variation of in-degrees for nodes 30 to 50. Further analyzing the connections, nodes 75 and 76
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Table 5.3: Metrics for the estimated topologies concerning the preictal and ictal intervals

Metric Preictal interval Ictal interval
Network density 0.498 0.370

Average in- (and out-) degree 37.37 27.71
Average path length 1.467 1.559
Average in-closeness 8.219 · 10−3 6.350 · 10−3

Average out-closeness 8.710 · 10−3 6.895 · 10−3

Average betweenness 31.39 30.91

have a small in-degree, however they present a more important out-degree. Observe the decrease

of the degree of node 26 or the major increase for node 73. This behavior is consistent with the

findings of the aforementioned papers. Moreover, as stated in subsection 4.5.2, the average path

length tends to be greater in the ictal interval, behavior illustrated by our estimates as well. See

Table 5.3 and Fig. 5.6 for more metrics and details. An interesting observation we can make

concerning this figure is that the low betweenness measure for nodes 50 – 65 indicates their rel-

atively decreased importance in the flow of information in the network. The same behavior has

been showcased in Fig. 4.5 by nodes 56 – 65, where the topology was estimated by the algorithm

developed in the previous chapter. The same nodes 50 – 65 also exhibit a low hub authority

measure, fact which only serves to emphasize that their influence in the network is relatively low.

We pay particular attention to nodes 22 and 73: the first displays unusually high betweenness

and PageRank measures in the preictal interval, while the same measures are high for the second

in the ictal interval. This indicates that these two nodes are important transit points for the

information in the network, each in one of the two intervals.

The proposed algorithm is therefore able to obtain results similar to those obtained in previous

works, as well as results reported in works of the medical field. This goes to show that the

general nonlinear data model proposed in this chapter is pertinent and is able to capture hidden

interactions in both synthetic and real data. For reference, the number of kernel functions inserted

in the dictionaries was at most 9, after 4000 samples. These results show how a small number

of kernel functions are actually needed in order to obtain a satisfactory topology estimate. This

fact, alongside the online approach and general model, can translate in reduced computational

complexity due to the drastically reduced number of necessary kernel functions.

5.7 Conclusion

In this chapter, a new kernel-based online topology estimation method was proposed accounting

for general nonlinear interactions between the agents in a network. While previous works and

the previous chapter only considered models based on additive interactions between the signals

at the different nodes, the proposed method surpasses this possibly limiting aspect. Also, such

a simplifying additive model is not entirely justified in many practical applications. Following
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(a) The in-closeness centrality measure per node (b) The out-closeness centrality measure per node

(c) The betweenness centrality measure per node (d) The PageRank centrality measure per node

(e) The hub centrality measure per node (f) The authority centrality measure per node

Figure 5.6: Various centrality measures per node, which are indicators of node importance within
the graph. See Annex B for details on these measures. Blue continuous lines pertain to the
preictal, while red dashed lines pertain to the ictal interval
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a more general approach, we consider arbitrary nonlinear interactions between the nodes, which

render our model much more general. By encoding links as partial derivatives of the nonlinear

functions, we are able to benefit from the kernel machinery framework to estimate a possibly

directed, sparse adjacency matrix. An online algorithm is proposed, using kernel dictionaries

and recursive computations of the regularization terms to operate with bounded complexity. A

complex analysis of the algorithm is provided, as well as performance bounds and conditions.

The experimental results, as well as the algorithm analysis, indicate the proposed method can

lead to more accurate estimates for more general nonlinear systems.
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Conclusion and possible research directions
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As acquiring, processing and storing data become a more and more challenging, algorithms

develop new capacities in order to keep up. The quantity and variety of data has only increased,

with studies showing that, for the year 2013, 90% of the data had been generated only over the

past two years [SINTEF, 2013]. Moreover, recent estimates place the data generation rate at

over 2.5 · 1018 bytes per day [Marr, 2018], data stemming from areas such as blogs, shopping

sites, media streaming, just to name a few. This rhythm is only increasing, given the rise and

development of the Internet of Things. In medicine, data processing tools such as clustering or

classification are commonplace among efforts towards cost-effective disease prevention [Razzak

et al., 2020]. Increased ownership of personal devices such as smartphones and smartwatches,

able to measure and relay different metrics about the bodies of their wearers, brings the problem

of data processing to adapt to reduced resource usage in terms of storage space and energy.

These examples represent only a few of the driving forces in the recent developments in the field

of Graph Signal Processing, alongside the different tools and solutions that it proposes.

Graphs are versatile and easy to employ in data processing and analysis, usable in different

fields of human activity, such as medicine, transportation, and economics. As motivated in

Chapter 2, however, many of these applications and tools need knowledge of the actual graph

in order to be feasible. As such, the main goal throughout this work was developing algorithms

for graph topology estimation, constrained by conditions such as distributivity, adaptability, and

online processing. In this final chapter, we summarize the methods and solutions developed for

topology inference, and propose new and captivating possible directions for future work.
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6.1 Results summary

Pursuing the development of algorithms for graph topology detection led to tackling different

approaches and investigating multiple options. These were further constrained by the three

main characteristics we considered for our algorithms. The first one was the focus on the online

setting, motivated by the continuous flow of data occurring in the real world: medical parameters,

road traffic, internet activity. Stemming directly from this setting is the second characteristic,

the adaptive capacity. Being able to process every data point quickly and on-the-fly endows the

algorithms with the ability to adapt to changes and evolution in the studied network. Thirdly, the

distributed aspect: thanks to the intrinsic nature of graphs, processing data can take advantage

of distributed computation. In turn, there is a gain in enforcing data privacy [Harrane et al.,

2016] and robustness to any local failure of an agent [Mi et al., 2011].

Chapter 3 focused on linear interactions between the agents of a network. The proposed

method has the versatility and simplicity necessary for quick data processing. Departing from

the fact that each node only needs to exchange data with its one-hop neighbors, the proposed

model is based on the principle of causality between signals at different nodes. Moreover, it

also gives the possibility to employ any desired regularization, in order to account for any prior

knowledge on the estimated graph. The proposed algorithm is also analyzed in both the mean and

mean square sense. A successful comparison with another method of the literature emphasizes its

qualities, especially concerning the quantity of data necessary to attain a satisfying performance.

Other synthetic experiments were run, notably in order to prove the usability of the obtained

estimates in a post-processing scenario, such as clustering.

In order to take into account the fact that certain networks interact based on nonlinear

relationships, Chapter 4 presents an algorithm able to infer the topology of such a network. The

introduced model is based on a presumed additive interaction between nodes. We make use

of reproducing kernels and their properties, especially the kernel trick. In order to mitigate the

impact of the continuously increasing number of data points, due to the online setting, we employ

kernel dictionaries, based on the coherence criterion. One of the advantages of such a solution

is represented by the extent of the existing literature on the subject. The proposed algorithm

is then analyzed in both the mean and mean square sense. Applied on real biomedical data,

the method proves itself capable of inferring brain networks which portray the same behavior

uncovered by studies in neurology and neuropsychology.

Chapter 5 takes the same nonlinear connectivity premise of the previous chapter, but with-

out presuming any additive behavior. The proposed method is thus conceived to be general and

able to encompass any type of interaction. While the same solutions were used for modeling

nonlinearities – reproducing kernels – and mitigating the increase in data points – kernel dic-

tionaries, a new solution is employed for introducing sparsity. Based on partial derivatives, it

acts as a natural means of quantifying if and how much one node influences another. This novel
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algorithm as also analyzed in the mean and mean square sense, including the influence fo the

aforementioned sparsity-enforcing regularizer. When compared to the additive model, it displays

a better ability of separating links which exist in the network from those which do not. As a final

confirmation, it yields satisfactory results on real data as well, verifiable both by the previously

established additive model and medical studies.

6.2 Future research directions

One of the most interesting and straightforward focuses for the future is represented by the

use of the presented algorithms in a more diversified selection of applications. Indeed, as seen

throughout the manuscript, the field of GSP has seen widespread use in many fields of interest

for human activity and it would be only natural to tackle more applications than the medical

one, which was the main focus of the work.

In order to further observe and analyze the proposed methods, more detailed performance

comparisons can be ran. While, undoubtedly, they offer certain advantages, quantifying them in

relation with other works remains an aspect to be taken into consideration. In the same vein, an

analysis in terms of complexity can also prove beneficial.

In terms of foreseeable improvements to the node-dependent algorithm developed in Chap-

ter 4, one lead is the introduction of a method of automatically selecting the threshold τn

by making use of the mean square analysis. If there is no link between node m towards

n, then the optimal coefficients related to fm satisfy α̃∗nm = 0. In this case, we have that

E
{
‖ ̂̃αnm(∞) − α̃∗nm‖2

}
= Tr

{[
D(∞)

]
a→b, a→b

}
, where a = 1 +

∑m−1
`=1 Lm` , b =

∑m
`=1 Lm` .

Thus, if the weights corresponding to the linked nodes are not exceedingly small when compared

to the coefficient MSD, it is possible to use the model information to identify the links. Assuming

that i is sufficiently large such that the coefficients have already converged (i.e., D(i) ≈ D(∞)),

an automatic decision rule can be established.

Regarding the general algorithm developed in Chapter 5, one improvement is to consider a

low-rank decomposition of matrix Tm(i), such as Tm(i) = Um(i)U>m(i), withUm ∈ RNcard{D}×Krank .

The reduced size of Um translates into reduced computational stress, with complexity of the or-

der of O(Ncard {D}Krank). Indeed, preliminary tests show that the first two largest eigenvalues

of matrices Tm(i) are three to four orders of magnitudes larger than the rest, indicating that a

rank-2 decomposition is indeed possible.

The use of a multi-kernel framework akin to the method presented in [Garrigos et al., 2018,

Shen et al., 2019] can endow both nonlinear algorithms with better inference capacities, alongside

flexibility in the choice of kernels. Using a selection of predefined kernels, the goal is to learn a

combination of these in order to solve the problem at hand. An introduction and analysis into

this topic is given in [Jin et al., 2010, Kloft et al., 2011].

On the general line of topology inference through estimating a nonlinear function, the field of
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deep learning can provide an alternative [Schwab and Karlen, 2019, Nauta et al., 2019, Lachapelle

et al., 2019]. For a given neural network of J > 2 layers, the network paths, starting from any

input representing node m which is not connected to n, increase exponentially with the number

of neurons per layer. A solution to this is isolating the decision of node influence to the input

layer, while allowing for the rest of the layers to account for the nonlinearity aspect. In doing so,

any node m without influence on n, intuitively, gets cut from the first layer, without influencing

the networks behavior in deeper layers. With these remarks, note that a function fn(x) can

be rewritten as the composition of two other functions fn(x) = fdeep
n ◦ σ(W 1x + b1) where

◦ denotes the function composition, and fdeep
n (·) models the behavior of layers {2, . . . , J} of

the neural network. Matrix W 1 and vector b1 collect the weights and biases of the first layer,

respectively, while σ(·) is the activation function, e.g., ReLU [Hanin, 2019]. The identification can

then be done by checking if the norm of the mth column of W 1 approaches zero, fact indicative

of a lack of influence from node m.

* * *

In line with current research tendencies, the direction of the undertaken work aimed in devel-

oping online, distributed, and adaptive topology inference algorithms. Both the comprehensive

theoretical analyses and their corresponding experiments showcase the capacities for each pro-

posed method. Moreover, in many cases, the obtained results are also supported by previous

research in other fields of study. With many directions to tackle in the future, the field of Graph

Signal Processing represents a growing and developing domain, boundless in opportunity.

92



Appendix

A
C

o
m

pl
et

e
fo

r
m

o
f

m
at

r
ix
R

(m
1
→

4
)

y
y

T
he

fu
ll
fo
rm

of
m
at
ri
x
R

(m
1
→

4
)

y
y

,w
hi
ch

in
te
rv
en

es
in

re
la
ti
on

(4
.4
6)
,i
s:

R
(m

1
→

4
)

y
y

=

      [R
y
y
] m

1
m

1
1
L
m

1
1
> L
m

1
[R

y
y
] m

1
m

2
1
L
m

1
1
> L
m

2
[R

y
y
] m

1
m

3
1
L
m

1
1
> L
m

3
[R

y
y
] m

1
m

4
1
L
m

1
1
> L
m

4

[R
y
y
] m

2
m

1
1
L
m

2
1
> L
m

1
[R

y
y
] m

2
m

2
1
L
m

2
1
> L
m

2
[R

y
y
] m

2
m

3
1
L
m

2
1
> L
m

3
[R

y
y
] m

2
m

4
1
L
m

2
1
> L
m

4

[R
y
y
] m

3
m

1
1
L
m

3
1
> L
m

1
[R

y
y
] m

3
m

2
1
L
m

3
1
> L
m

2
[R

y
y
] m

3
m

3
1
L
m

3
1
> L
m

3
[R

y
y
] m

3
m

4
1
L
m

3
1
> L
m

4

[R
y
y
] m

4
m

1
1
L
m

4
1
> L
m

1
[R

y
y
] m

4
m

2
1
L
m

4
1
> L
m

2
[R

y
y
] m

4
m

3
1
L
m

4
1
> L
m

3
[R

y
y
] m

4
m

4
1
L
m

4
1
> L
m

4

      .
(A

.1
)

W
e
no

te
th
at
R

(m
1
→

4
)

y
y

ex
hi
bi
ts

a
sp
ar
se
r
st
ru
ct
ur
e
sh
ou

ld
y

(i
)
be

i.i
.d
..

B
lo
ck
s
on

th
e
m
ai
n
di
ag

on
al

th
en

be
co
m
e

[R
y
y
] m

j
m
j
I
,
w
he

re
I

is
of

si
ze
m
j
×
m
j
,
fo
r
j

=
1,

2,
3
,4
.
T
he

re
m
ai
ni
ng

bl
oc
ks
,
w
hi
ch

ar
e
no

t
ne

ce
ss
ar
ily

sq
ua

re
,
ar
e
fo
rm

ed
si
m
ila

rl
y,

w
it
h
en
tr
ie
s

[R
y
y
] m

j
m
k
,

j,
k

=
1,

2
,3
,4
,j
6=
k
,o

n
th
ei
r
m
ai
n
di
ag

on
al
s
an

d
ze
ro

ot
he

rw
is
e.

93





A
p

p
e

n
d

ix B
Metrics pertaining to directed graphs

We present several graph metrics which can be useful in interpreting the estimated topologies

obtained throughout the experiments. For ease of reading, we recall some useful notations in

Table B.1. Consider a directed graph G. We define the following:

Network density: The ratio between the existent number of edges and the total possible

number of edges and it is equal to:

ρG =
card {E}
N(N − 1)

. (B.1)

Average in- (out-) degree: It represents the average number of edges going in (out) of the

networks’ nodes. It is equal to:

σG =
card {E}

N
. (B.2)

Average path length: Applies to an un-weighted graph and is one of the most robust graph

metrics [Albert and Barabási, 2002]. It is equal to:

¯̀
G =

1

N(N − 1)

∑
m1 6=m2

d(m1,m2) , (B.3)

where d(m1,m2) outputs the shortest path between nodes m1 and m2.

In- (out-) closeness centrality: It is computed at every node n and is the inverse of the sum

of the distances to (from) the other reachable nodes in the graph, on all paths arriving to (going

from) node n. It is computed as:

cinG , c
out
G =

(
card {Nn}
N − 1

)2 1

dn
, (B.4)
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Table B.1: List of graph-related notations and symbols present in the quantities defined through-
out Annex B

Symbol Definition
G A directed graph
A Adjacency matrix of a graph
E Set of edges of a graph
N Set of nodes of the graph
Nn Set of nodes in the neighborhood of node n, excluding node n
N Total number of nodes in the graph

where dn is the sum of the number of edges on the shortest paths between n and nodes m ∈ Nn.
These paths can be computed using Dijkstra’s algorithm [Dijkstra, 1959].

Betweenness centrality: Computed at a certain node n, it is the ratio between the shortest

paths that pass through n and the total number of shortest paths. Thus, it is a measure of

importance as an intermediary on paths between other node pairs. A high node betweenness can

mean that its removal will sever or isolate other nodes. It is computed as:

bG =
∑

m1,m2 6=n

snm1m2

sm1m2

, (B.5)

where sm1m2 is the total number of shortest paths from m1 to m2, while snm1m2
is the number of

shortest paths from m1 to m2 which pass through n.

PageRank centrality: Measures the average time spent on a certain node when applying a

random walk on the graph [Brin and Page, 1998]. When at a certain node, a successor is chosen

randomly with a preset probability. The PageRank centrality measure of a node n is:

PRG = lim
i→∞

1

i

i∑
j=1

ιn (c(i)) , (B.6)

where ιn(a) =

0 , n = a

1 , n 6= a
is an indicator function, and c(i) is a function whose output is the

index of the current node at time i. The supporting principle of this metric is that the rank of

a certain node should be high if the rank of other nodes linking towards it are high, and low if

the rank of these nodes are low.

A random walk, in accordance with [Grady and Polimeni, 2010, p. 106], is an iterative process

which follows a random walker located at a certain node as it moves from node to node, along

the edges. At each step, the random walker located at node m1 will move to a node m2 ∈ Nm1

with a probability qm1m2 =
am1m2

wm1

, where wm1 is a possibly weighted degree of node m1. If pm1

is the probability that the walker is present at node m1, then we can write the process as:

p(i+ 1) = W−1Ap(i) , (B.7)
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n

h1

h2

h3

h4

a1

a2

a3

a4

Figure B.1: Example of a hub-authority interaction, with hub nodes on the left and authority
nodes on the right. Notice how n is both a hub and an authority

where p = col {{pm}m∈N }.

Hub-authority centrality: Also known as Kleinberg centrality [Kleinberg, 1999], it is a linked

measure between a hub – node which points to multiple other nodes (i.e., the authorities), and

an authority – node towards which many other nodes point (i.e., the hubs). One node can be

both a hub and an authority. A visual example of such an interaction is in Fig. B.1. The hub

centrality H(n) of node n is given by:

H(n) = cH
∑

m∈N\n

[A]mnA(n) , (B.8)

while the authority centrality A(n) of node n is given by:

A(n) = cA
∑

m∈N\n

[A]nmH(n) , (B.9)

where cH and cA are chosen constants.

We remark upon the fact that, except for the first, all the other listed metrics represent

different measures of centrality, which is a node property quantifying its relative importance in

the network.
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(ỹ
h
7
−
x
h
8
)ι

4
ex

p

( −1 2
c 4
ỹ
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(ỹ
h
3
−
x
h
4
)ι

2
(ỹ
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(ỹ
h
1
−
x
h
2
)ι

1
(ỹ
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ỹ N

+
1

(C
.3
)

=
(2
π

)−
N

+
1

2
d

et
{R

ỹ
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(ỹ
h
7
−
x
h
8
)ι

4

×
ex

p

( −1 2
ỹ
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ỹ

=
−

1 2

( ỹ>
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ỹ

] ỹ+
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ỹ

] −1 B
4
x

4
.

(C
.5
)

100



T
hu

s,
re
la
ti
on

(C
.4
)
be

co
m
es
:

(2
π

)−
N

+
1

2
d

et
{R

ỹ
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(ỹ
h
1
−
x
h
2
)ι

1
(ỹ
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(ỹ
h
7
−
x
h
8
)ι

4
}

=
E
{ỹ
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ỹ h

3
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{ỹ
h
1
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C.1. CASES CORRESPONDING TO Rss (c1 = c2 = 0, c3 = 1)
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C.3 Cases corresponding to E{su(i)sa(i)sb(i)yn(i)}
(c1 = 0, c2 = c3 = 1)

These terms can easily be computed using the results in Annex C.2.

C.3.1 Term E{zu(i)za(i)zb(i)yn(i)}

Consider indexes u = 1, . . . , Ndn, a, b = 1, . . . , Ndn.

We adapt relations (C.20) – (C.21), thus obtaining:
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(C.31)

C.3.2 Term E{zu(i)ka(i)zb(i)yn(i)}

Consider indexes u = 1, . . . , Ndn, a = 1, . . . , dn, b = 1, . . . , Ndn.

We adapt relations (C.22) – (C.23), thus obtaining:
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(C.33)

C.3.3 Term E{zu(i)ka(i)kb(i)yn(i)}

Consider indexes u = 1, . . . , Ndn, a, b = 1, . . . , dn.
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We adapt relations (C.24) – (C.25), thus obtaining:

E{zu(i)ka(i)kb(i)yn(i)}

=
E
{

(ym1(i)− ym1(ωp))

σ2
yn(i)

× exp

(
− 1

2σ2

(
‖y(i)− y(ωp)‖2 + ‖y(i)− y(ωq)‖2 + ‖y(i)− y(ωr)‖2

))} (C.34)

=
1

σ2
ν({hi}8i=1), with



h1 = h2 = m1 =
⌈
u
dn

⌉
h3 = h4 −N = m2 = •

h5 = h6 − 2N = m3 = •

h7 = h8 − 3N = m4 = n

,



ωp = mod(u− 1, dn) + 1

ωq = a

ωr = b

ωs = •

.

(C.35)

C.3.4 Term E{ku(i)ka(i)kb(i)yn(i)}

Consider indexes u = 1, . . . , dn, a, b = 1, . . . , dn.

We adapt relations (C.26) – (C.27), thus obtaining:

E{ku(i)ka(i)kb(i)kv(i)}

= exp

(
− 1

2σ2

(
‖y(i)− y(ωp)‖2 + ‖y(i)− y(ωq)‖2 + ‖y(i)− y(ωr)‖2

))
(C.36)

=ν({hi}8i=1), with



h1 = h2 = m1 = •

h3 = h4 −N = m2 = •

h5 = h6 − 2N = m3 = •

h7 = h8 − 3N = m4 = n

,



ωp = u

ωq = a

ωr = b

ωs = •

. (C.37)

C.4 Cases corresponding to E{sa(i)sb(i)y2
n(i)} (c1 = c2 = 0, c3 = 1)

These terms can easily be computed using the results in Annex C.3.

C.4.1 Term E{yn(i)za(i)zb(i)yn(i)}

Consider indexes a, b = 1, . . . , Ndn.
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We adapt relations (C.30) – (C.31), thus obtaining:

E{yn(i)za(i)zb(i)yn(i)}

=
E
{
yn(i)

(ym2(i)− ym2(ωq))

σ2

(ym3(i)− ym3(ωr))

σ2
yn(i)

× exp

(
− 1

2σ2

(
‖y(i)− y(ωq)‖2 + ‖y(i)− y(ωr)‖2

))} (C.38)

=
1

σ4
ν({hi}8i=1), with



h1 = h2 = m1 = n

h3 = h4 −N = m2 =
⌈
a
dn

⌉
h5 = h6 − 2N = m3 =

⌈
b
dn

⌉
h7 = h8 − 3N = m4 = n

,



ωp = •

ωq = mod(a− 1, dn) + 1

ωr = mod(b− 1, dn) + 1

ωs = •

.

(C.39)

C.4.2 Term E{yn(i)ka(i)zb(i)yn(i)}

Consider indexes a = 1, . . . , dn, b = 1, . . . , Ndn.

We adapt relations (C.32) – (C.33), thus obtaining:

E{yn(i)ka(i)zb(i)yn(i)}

=
E
{
yn(i)

(ym3(i)− ym3(ωr))

σ2
yn(i)

× exp

(
− 1

2σ2

(
‖y(i)− y(ωq)‖2 + ‖y(i)− y(ωr)‖2

))} (C.40)

=
1

σ2
ν({hi}8i=1), with



h1 = h2 = m1 = n

h3 = h4 −N = m2 = •

h5 = h6 − 2N = m3 =
⌈
b
dn

⌉
h7 = h8 − 3N = m4 = n

,



ωp = •

ωq = a

ωr = mod(b− 1, dn) + 1

ωs = •

.

(C.41)

C.4.3 Term E{yn(i)ka(i)kb(i)yn(i)}

Consider indexes a, b = 1, . . . , dn.
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We adapt relations (C.34) – (C.35), thus obtaining:

E{yn(i)ka(i)kb(i)yn(i)}

= E
{
yn(i)yn(i) exp

(
− 1

2σ2

(
‖y(i)− y(ωq)‖2 + ‖y(i)− y(ωr)‖2

))}
(C.42)

= ν({hi}8i=1), with



h1 = h2 = m1 = n

h3 = h4 −N = m2 = •

h5 = h6 − 2N = m3 = •

h7 = h8 − 3N = m4 = n

,



ωp = •

ωq = a

ωr = b

ωs = •

. (C.43)

C.5 Cases corresponding to E{sb(i)yn(i)} (c1 = c2 = c3 = 0)

These terms can easily be computed using the results in Annex C.4.

C.5.1 Term E{zb(i)yn(i)}

Consider index b = 1, . . . , Ndn.

We adapt relations (C.38) – (C.39), thus obtaining:

E{zb(i)yn(i)} = E
{

(ym3(i)− ym3(ωr))

σ2
yn(i) exp

(
− 1

2σ2

(
‖y(i)− y(ωr)‖2

))}
(C.44)

=
1

σ2
ν({hi}8i=1), with



h1 = h2 = m1 = •

h3 = h4 −N = m2 = •

h5 = h6 − 2N = m3 =
⌈
b
|D|

⌉
h7 = h8 − 3N = m4 = n

,



ωp = •

ωq = •

ωr = mod(b− 1, |D|) + 1

ωs = •

.

(C.45)

C.5.2 Term E{kb(i)yn(i)}

Consider index b = 1, . . . , dn.

We adapt relations (C.42) – (C.43), thus obtaining:

E{kb(i)yn(i)} = E
{
yn(i) exp

(
− 1

2σ2

(
‖y(i)− y(ωr)‖2

))}
(C.46)

= ν({hi}8i=1), with



h1 = h2 = m1 = •

h3 = h4 −N = m2 = •

h5 = h6 − 2N = m3 = •

h7 = h8 − 3N = m4 = n

,



ωp = •

ωq = •

ωr = b

ωs = •

. (C.47)
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C.6 Cases corresponding to E {Tm(i)} (c1 = c2 = 0, c3 = 1)

Since tm(p) =

[
`m(p)

zm(p)

]
, the matrix E {Tm(i)} can be written as:

E {Tm(i)} = E
{
tm(i)t>m(i)

}
= E

{[
`m(i)

zm(i)

] [
`>m(i) z>m(i)

]}
=

[
R``,m R>z`,m

Rz`,m Rzz,m

]
, (C.48)

where in the last step we used the fact that the signals are i.i.d. (for different i).

In the following subsections, indexes a, b = 1 . . . , N correspond to nodes in the graph and,

implicitly, blocks in `m, when applicable.

C.6.1 Block R``,m

[
R``,m

]
(a−1)dn+p,(b−1)dn+q

=
[
E
{
`m(i)`>m(i)

}]
(a−1)dn+p,(b−1)dn+q

= E {[`a,m]p[`b,m]q}

=



E
{

(ya(i)− ya(ωp))
σ2

(ym(i)− ym(ωp))

σ2

(yb(i)− yb(ωq))
σ2

(ym(i)− ym(ωq))

σ2

× exp

(
− 1

2σ2
‖y(i)− y(ωp)‖2 −

1

2σ2
‖y(i)− y(ωq)‖2

)} , a 6= m, b 6= m

E
{

(ya(i)− ya(ωp))
σ2

(ym(i)− ym(ωp))

σ2

((
yb(i)− yb(ωq)

)2
σ4

− 1

σ2

)
× exp

(
− 1

2σ2
‖y(i)− y(ωp)‖2 −

1

2σ2
‖y(i)− y(ωq)‖2

)} , a 6= m, b = m

E
{

(yb(i)− yb(ωq))
σ2

(ym(i)− ym(ωq))

σ2

((
ya(i)− ya(ωp)

)2
σ4

− 1

σ2

)
× exp

(
− 1

2σ2
‖y(i)− y(ωp)‖2 −

1

2σ2
‖y(i)− y(ωq)‖2

)} , a = m, b 6= m

E
{((ya(i)− ya(ωp))2

σ4
− 1

σ2

)((
yb(i)− yb(ωq)

)2
σ4

− 1

σ2

)
× exp

(
− 1

2σ2
‖y(i)− y(ωp)‖2 −

1

2σ2
‖y(i)− y(ωq)‖2

)} , a = m, b = m

.

(C.49)

113



APPENDIX C. QUANTITIES INVOLVED IN THE ALGORITHM ANALYSIS

[
R``,m

]
(a−1)dn+p,(b−1)dn+q

=



1

σ8
ν({hi}8i=1), with



h1 = a

h2 = a

h3 = m

h4 = m

h5 = b

h6 = N + b

h7 = m

h8 = N +m

, a 6= m, b 6= m

1

σ8
ν({hi}8i=1)

− 1

σ2
[Rzz](a−1)dn+p,(m−1)dn+p

, with



h1 = a

h2 = a

h3 = b

h4 = b

h5 = b

h6 = N + b

h7 = b

h8 = N + b

, a 6= m, b = m

1

σ8
ν({hi}8i=1)

− 1

σ2
[Rzz](b−1)dn+q,(m−1)dn+q

, with



h1 = b

h2 = b

h3 = a

h4 = a

h5 = a

h6 = N + a

h7 = a

h8 = N + a

, a = m, b 6= m

1

σ8
ν({hi}8i=1)

− 1

σ2
[Rzz](a−1)dn+p,(a−1)dn+p

− 1

σ2
[Rzz](b−1)dn+q,(b−1)dn+q

+
1

σ4
[Rkk]p,q

, with



h1 = a

h2 = a

h3 = a

h4 = a

h5 = b

h6 = N + b

h7 = b

h8 = N + b

, a = m, b = m

. (C.50)
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C.6.2 Block Rz`,m

[
Rz`,m

]
p,(b−1)dn+q

=
[
E
{
zm(i)`>m(i)

}]
p,(b−1)dn+q

= E {[zm]p[`b,m]q}

=



−E
{

(ym(i)− ym(ωp))

σ2

(yb(i)− yb(ωq))
σ2

(ym(i)− ym(ωq))

σ2

× exp

(
− 1

2σ2
‖y(i)− y(ωp)‖2 −

1

2σ2
‖y(i)− y(ωq)‖2

)} , b 6= m

−E
{

(yb(i)− yb(ωp))
σ2

((
yb(i)− yb(ωq)

)2
σ4

− 1

σ2

)
× exp

(
− 1

2σ2
‖y(i)− y(ωp)‖2 −

1

2σ2
‖y(i)− y(ωq)‖2

)} , b = m

. (C.51)

[Rz`,m]p,(b−1)dn+q =



− 1

σ6
ν({hi}8i=1), with



h1 = •
h2 = •

}
ι1 = 0

h3 = m

h4 = m

h5 = b

h6 = N + b

h7 = m

h8 = N +m

, b 6= m

− 1

σ6
ν({hi}8i=1)

+
1

σ2
[Rkz]q,(b−1)dn+p

, with



h1 = •
h2 = •

}
ι1 = 0

h3 = b

h4 = b

h5 = b

h6 = N + b

h7 = b

h8 = N + b

, b = m

. (C.52)

C.6.3 Block Rzz,m

[Rzz,m]p,q =
[
E
{
zm(i)z>m(i)

}]
p,q

= E {[zm]p[zm]q}

= E
{

(ym(i)− ym(ωp))

σ2

(ym(i)− ym(ωq))

σ2
exp

(
− 1

2σ2
‖y(i)− y(ωp)‖2 −

1

2σ2
‖y(i)− y(ωq)‖2

)}
.

(C.53)
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[Rzz,m]p,q =
1

σ4
ν({hi}8i=1), with



h1 = •
h2 = •

}
ι1 = 0

h3 = m

h4 = m

h5 = •
h6 = •

}
ι3 = 0

h7 = m

h8 = N +m

. (C.54)
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