
HAL Id: tel-03198435
https://theses.hal.science/tel-03198435

Submitted on 14 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solar wind / magnetosphere coupling inferred from
machine-learning methods

Gautier Nguyen

To cite this version:
Gautier Nguyen. Solar wind / magnetosphere coupling inferred from machine-learning methods. Earth
and Planetary Astrophysics [astro-ph.EP]. Université Paris-Saclay, 2021. English. �NNT : 2021UP-
ASP012�. �tel-03198435�

https://theses.hal.science/tel-03198435
https://hal.archives-ouvertes.fr


Th
ès

e 
de

 d
oc

to
ra

t
N
N
T:
2
0
2
1
U
PA

S
P
0
1
2

Solar wind/magnetosphere
coupling inferred from

machine-learning methods

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 127 Astronomie et Astrophysique d’Ile de
France

Spécialité de doctorat: Astronomie et astrophysique
Unité de recherche: Université Paris-Saclay, CNRS, Ecole polytechnique, LPP,

91128, Palaiseau, France.
Référent: : Faculté des Sciences d’Orsay

Thèse présentée et soutenue à Palaiseau, le 1 Février 2021, par

Gautier Nguyen

Composition du jury:

Karine Bocchialini Présidente
Professeur, Université Paris-Saclay
Philippe Louarn Rapporteur et examinateur
Directeur de recherche , Université Paul Sabatier,
Toulouse
Zdenek Nemecek Rapporteur et examinateur
Professeur, Faculty of Mathematics and Physics, Charles
University, Prague
Jonathan Eastwood Examinateur
Maître de conférences, Imperial College, Londres
Vincent Genot Examinateur
Astronome, Université Paul Sabatier, Toulouse

Direction de la thèse

Dominique Fontaine Directrice de thèse
Directrice de recherche, Laboratoire de Physique des
Plasmas
Nicolas Aunai Co-directeur de thèse
Chargé de recherche, Laboratoire de Physique des Plas-
mas

Membre invité

Maud Pastel
Referent Technique, Direction Générale de l’Armement



Aujourd’hui, la seule chose que je trouvais à la fin de cette quête était une perte. Rien
de plus normal: une quête ne s’achève pas par une trouvaille, car une quête n’a
jamais de fin. En réalité, un quêteur n’a pas besoin de trouver: seule la quête est
importante. Elle donne un sens à nos vies. Alors je compris que j’étais un quêteur,
que je l’avais toujours été, que j’étais fier de l’être.

Luis Montero Manglano
(La Table du roi Salomon)
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Abstract

The solar wind and the Earth magnetosphere form a complex duet which dynamics is ruled by a
multitude of physical processes at every steps of this coupling. Upstream, large scale solar events
such as Interplanetary Coronal Mass Ejections (ICMEs) transport important quantities of plasma
and magnetic field which entry in the magnetosphere generates geomagnetic storms with a high
impact on human activities. At the Earth proximity, varying solar wind conditions generate small-
scale physical processes such as magnetic reconnection that rule the entire dynamics of the sys-
tem.

Although the different elements of this coupling have been studied from an observational
point of view for decades and by an important number of missions, the manual collection of the
in-situ signature of the events of interest in the data is still a subjective, fastidious and hardly re-
producible task and thus affects the quality of their associated statistical studies.

In this thesis, we take a step further in the direction of a global, statistically representative
vision of the different actors of the solar wind-magnetosphere coupling by applying supervised
machine learning algorithms to the automatic detection of their in-situ signatures.

In particular, we apply an ensemble of Convolutional Neural Networks (CNNs) to the auto-
matic detection of ICMEs, we use a gradient boosting algorithm to provide an automatic clas-
sification of the near-Earth regions and we combine the latter with a second gradient boosting
classifier to detect plasma jets issued from magnetic reconnection at the magnetopause.

In the three cases, the method we develop outperforms state of the art automatic detection
methods based on manual empirical thresholds on a reduced number of physical parameters. We
also show that these methods are adaptable from a mission to another provided the regions visited
by the concerned spacecraft share the same physical nature and offer the advantage of improving
their detection performance with the simple increasing amount of data with time. This paves
the way to the elaboration of additional detection methods, inspired from the one we develop,
applied to the other actors of this coupling. However, we also show that the errors made by these
algorithms is actually comparable to the difference that exists in the interpretation of in-situ data
by two different human observers and that the quality of the predictions made by these methods
is thus limited by the vision we have on the data and the events they measure .

These methods allow the rapid and reproducible elaboration of extensive multi-mission event
catalogs that contain a reduced proportion of False Positives (FPs). These catalogs can then be
used for further statistical analysis of in-situ measured events with an important number of sam-
ples. For instance, we use the magnetopause crossings catalogs obtained with the region classifier
on the data of near-Earth missions with equatorial (THEMIS, MMS, Double Star), polar (Cluster)
and lunar (ARTEMIS) to perform a statistical analysis of the position and shape of the magne-
topause for different solar wind and seasonal conditions.

In the first place, this study confirms long-proved characteristics of the magnetopause such
as the influence of the solar wind dynamic pressure or the azimuthal asymmetry induced by sea-
sonal variations. In the second place, we bring answer elements to still open questions such as the
influence of the Interplanetary Magnetic Field (IMF) radial component or the actual existence of
a dawn-dusk asymmetry. In particular, we evidence the influence of the IMF By by showing that
a varying clock angle affects the shape of the magnetopause because of the displacement of the
reconnection sites it induces. These results are condensed into an analytical non-indented mag-
netopause model that offers a more precise description of this boundary on the night side of the
magnetosphere.

Finally, we come back on the question of the near-cusp indentation of the magnetopause.
We show that the crossings identified by both other researchers and by our method actually cor-
respond to the crossings of the cusp inner boundary and result in overestimating the supposed
magnetopause cusp indentation in models. We show that accounting for actual magnetopause
current sheet crossings instead drastically changes the result, increasing the radial distance of the
magnetopause boundary, although still showing an apparent depletion in comparison with a non-
indented model.

vi



Résumé

La dynamique des différentes étapes du couplage entre le vent solaire et la magnétosphère ter-
restre est régie par une multitude de processus physiques aux échelles spatio-temporelles sig-
nificativement différentes. En amont de la terre, des évènements solaires de grande envergure
comme les Ejections de Masse Coronales Interplanétaires (ICMEs) transportent d’importantes
quantités de plasma et de champ magnétique dont l’entrée dans la magnétosphere est à l’origine
de tempêtes géomagnétiques aux effets dévastateurs sur les activités humaines. Au voisinage de
la Terre, les variations des paramètres physiques du vent solaire sont à l’origine de processus
physiques à petite échelle, tels que la reconnection magnétique, régissant l’ensemble de la dy-
namique du système.

Si les différents acteurs de ce couplage sont étudiés de manière observationelle par de nom-
breuses missions depuis des décennies, la selection manuelle d’evenements d’intérêt pa rrecon-
naissance de leur signature in-situ rete une tâche subjective, chronophage et difficilement repro-
ducible affectant nécéssairement la vision globale offerte par les études statistiques qui en dé-
coulent.

Dans ce travail de thèse, nous effectuons un pas supplémentaire vers l’acquisition d’une vision
globale, statistiquement représentative des différents acteurs du couplage vent solaire - magné-
tosphère en appliquant des algorithmes d’apprentissage supervisé à la détection automatique de
leurs signatures in-situ respectives.

En particulier, nous appliquons un ensemble de réseaux de neurones convolutionels (CNNs)
à la détection automatique des Ejections de Masse Coronale Interplanétaires (ICMEs), nous util-
isons deux algorithme à boosting de gradient, l’un pour classifier automatiquement les différentes
régions de l’environnement terrestre proche, l’autre pour détecter les jets de plasma produits par
la reconnexion magnétique à la magnétopause.

Dans les trois cas d’utilisation, les méthodes développées s’avèrent être plus performantes
que les méthodes de détection automatiques basées sur l’utilisation manuelle de seuils établis sur
un nombre réduits de paramètres physiques. Nous montrons également que ces méthodes sont
adaptables d’une mission à une autre pourvu que les régions visitées par les différentes sondes ont
la même nature physique. Ces méhodes ont également l’avantage de bénéficier d’une augmen-
tation de leurs performances par simple augmentation de la quantité de données traitées. Les
résultats obtenus sont le préambule à l’élaboration de méthodes de détection supplémentaires
appliquées aux autres acteurs du couplage. Nous montrons cependant que les erreurs faites par
ces algorithmes sont comparables aux divergences d’interprétation de données in-situ existantes
entre deux observateurs humains différents. La qualité des prédictions de ces méthodes étant par
conséquent limitées par l’interprétabilité que nous avons des données et des évènements qu’elles
dérivent.

Ces méthodes permettent l’élaboration rapide et reproductible des catalogues multi-missions
d’evenements qui contiennent une proportion réduite de Faux Positifs (FPs) tout en étant parmi
les plus exhaustifs existants. Ces catalogues pouvant par la suite être exploités dans le cadre
d’études statistique d’évenements observés in-situ. En l’occurrence, nous utilisons le catalogues
de traversées de magnétopause obtenu avec le classifieur de régions appliqué aux données des
missions ayant des orbites équatoriales (THEMIS, MMS, Double Star), polaires (Cluster) et lu-
naires (ARTEMIS) pour réaliser une étude statistique de la position et de la forme de la magné-
topause en fonction des conditions physiques du vent solaire et saisonales.

En premier lieu, cette étude confirme des charactéristiques de la magnétopause suggérées
par de nombreuses études existantes telles que l’influence de la pression dynamique ou la non-
axisymmétrie azimuthale induite par les variations saisonales. En deuxième lieu, nous apportons
des éléments de réponse aux questions encore ouvertes comme l’influence de la composante radi-
ale du Champ Magnétique Interplanétaire (IMF) ou l’existence de l’asymmétrie aube-crépuscule.
En particulier, nous mettons en évidence l’influence de la composante y de l’IMF By en mon-
trant qu’une variation de l’angle horaire affecte le coefficient d’explosion de la magnétopause.
L’ensemble de ces résultars sont condensés dans un modèle analytique, non indenté de la posi-
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tion de la magnétopause qui offre une meilleure description de cette frontière sur le côté nuit de
la magnétosphère.

Finalement, nous revenons sur la question de l’indentation de la magnétopause dans les cor-
nets polaires. Nous suggérons que les traversées détectées par notre algorithme à boosting de
gradient ainsi que les évenements pris en compte par les précédentes études sur le sujet corre-
spondent en fait aux frontières internes du cornet polaire et on tendance à sur-estimer la pro-
fondeur de l’indentation supposée dans cette région. Nous montrons, en prennant en compte des
traversées de la couche de courant caractéristique de la magnétopause que cette dernière se situe
en fait à des distances radiales plus élevées bien que les positions prises en compte continuent de
suggérer la présence d’une déplétion vis-à-vis d’un modèle non-indenté.
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Chapter 1

Introduction

C’est une planète
Indomptable et secrète
Où se jouent les rouages
De nos humeurs sauvages

Les Frangines
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CHAPTER 1. INTRODUCTION

1.1 Solar wind and the near-Earth environment

1.1.1 Solar wind

The solar wind is the permanent stream of plasma in the interplanetary medium originating from
the solar corona. Its existence was predicted by the theoretical work of Parker [1958] and first
observed by spacecraft in 1959 with the mission Luna 1 [Beatty, 2007].

Mainly composed of protons andαparticles (He2+), it propagates in the interplanetary medium
at supersonic and super-Alfvénic speed that is to say V > Vs =

√
γPt /ρ and V > Va = B/

p
µ0ρwhere

V is the velocity, Pt is the thermal pressure, γ is the ratio of specific heats, B is the amplitude of the
magnetic field transported by the solar wind, the so-called Interplanetary Magnetic Field (IMF), ρ
is the particle density and µ0 is the magnetic constant.

The IMF is frozen in the plasma. That is to say, the solar wind can be considered as a perfectly
conducting plasma and the IMF field lines are transported in the interplanetary medium at the ve-
locity of the solar wind. Because of the solar rotation, the IMF field lines are arranged into a spiral
shape known as the Parker spiral [Parker, 1963]. A schematic representation of such arrangement
in the ecliptic plane is shown in the Figure 1.1. Despite of this nominal, spiral configuration, the
orientation of the IMF is still highly variable. This variability, transported at 1 Astronomical Unit
(AU) 1 is a major actor of the dynamics of the interaction between the solar wind and the near-
Earth environment. This importance will be discussed later-on. In particular, we will discuss the
importance of the so-called clock angleΩ defined as the angle of the projection of IMF in the plane
perpendicular to the Sun-Earth direction. In the rest of this thesis, this direction will be defined as
the X-axis. The convention adopted during the whole manuscript to define Ω, in the Geocentric
Solar Magnetospheric (GSM) coordinate system detailed in the Appendix A, is shown in the Figure
1.2.

Figure 1.1: Representation of the Parker spiral (from Parker [1963])

The first observation of the solar wind by Luna 1 in 1959 was followed by a multitude of mis-
sions dedicated to Sun observation, from the ecliptic observatories SOHO and STEREO to the re-
cently launched Parker Solar Probe and Solar Orbiter without forgetting the polar orbit of Ulysses.
The permanent monitoring of the solar wind arriving at the Earth orbit is possible since the launch
and the positioning of the missions WIND and ACE at the Earth Lagrange point L1 in the late 1990s.
The combination of the data of these two missions and their time-shift to the nose of the Earth
bow shock, the point on the Sun-Earth axis at which the solar wind becomes subsonic, forms the
so-called NASA/GSFC’s OMNI database [King and Papitashvili, 2005].

1Sun-Earth distance = 150×106 km
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CHAPTER 1. INTRODUCTION

Figure 1.2: Schematic representation of the definition of the IMF clock angle Ω .

Figure 1.3 represents the distribution of several solar wind parameters between 2001 and 2019.
At the Earth orbit, the density of the plasma is in the orders of 5 cm−3 for an average velocity of
approximately 400 km/s resulting in an average dynamic pressure of approximately 2 nPa. As a
direct consequence of the Parker spiral, the IMF, that has an average amplitude in the orders of
5 nT, is essentially westward or eastward (e.g |Ω| ∼ 90◦) with a fairly important radial component
Bx which sign depends on the orientation of the Heliospheric current sheet, the surface where the
polarity of the Sun’s magnetic field switches from North to South.

1.1.2 The near-Earth environment

Since the IMF is frozen in the solar wind, the interaction between the solar wind and the dipole-
like magnetic field of the Earth creates a cavity around our planet known as the magnetosphere
[Chapman and Ferraro, 1931].

On the dayside part of the near-Earth environment, the geomagnetic field lines resulting from
this interaction are compressed and bent earthward. This compression limits the extension of the
dayside geomagnetic field lines to an average 8-9 Re 2 on the Sun-Earth axis. On the night side, the
geomagnetic field lines are stretched out anti-sunward for more than 200 Re forming the so-called
magnetotail.

The magnetosphere constitutes an obstacle along the solar wind propagation in the interplan-
etary medium. Consequently, the solar wind that arrives in the near-Earth environment is slowed
down and deflected forming in the process a collisionless bow shock downstream of which the
solar wind becomes subsonic. The bow shock constitutes a first boundary that delimits the near-
Earth environment from the upstream solar wind and one of the crucial surface of interest when
studying the magnetosphere-solar wind coupling.

Downstream of the bow shock is a region where the plasma is compressed, decelerated and
heated. In this region, the so-called magnetosheath, the IMF is also compressed and the associated
field lines are draped around the magnetosphere [Kobel and Flückiger, 1994]. Downstream of the
bow shock, the typical ion density of the shocked solar wind in the magnetosheath is about 20
cm−3 for an average velocity of approximately 200 km/s and a magnetic field amplitude in the
orders of 20 nT.

2Earth radii, 1 Re = 6371 km
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Figure 1.3: Distribution of the solar wind parameters of the OMNI database between 2001 and 2019: the
amplitude of the IMF B (top left), the velocity V (top right), the IMF radial orientation Bx/B (middle left),
the IMF clock angle Ω (middle right), the proton density Np (bottom left) and the dynamic pressure Pd yn

(bottom right).
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CHAPTER 1. INTRODUCTION

The boundary that delimits the shocked solar wind of the magnetosheath from the interior of
the magnetosphere is called the magnetopause. At first order, this is the surface at which the solar
wind and the magnetosphere total pressure balance each other and the current layer that, under
ideal Magnetohydrodynamics (MHD) assumptions, prevents any transport of the shocked solar
wind into the magnetosphere. In practice, the magnetopause is a dynamic boundary, strongly in-
fluenced by the physical parameters of the upstream solar wind, and affected by a multitude of
small-scale physical processes occurring in its vicinity. Among them, magnetic reconnection, the
merging and reconfiguration of the non-parallel geomagnetic and IMF field lines, is of uttermost
importance as it allows the penetration of solar wind plasma and magnetic flux in the magneto-
sphere. This boundary will be one of the main topic of this thesis, whether it concerns its detection
from satellite in-situ measurements, the identification of the small-scale physical processes occur-
ring in its vicinity, or the statistical analysis of its location and shape. A more detailed description
of both the magnetopause and magnetic reconnection will be given in the next section.

All regions of the near-Earth environment that we have presented so far are shown on the
Figure 1.4. In addition to the three "main" regions and the two boundaries that were previously
discussed, the magnetosphere can be divided in additional regions hereafter described:

• The polar cusps, where the geomagnetic field lines fan out from the magnetic poles. These
regions of particularly weak magnetic field are a privileged place of entry for the solar wind
particles. The topography of this region and the associated shape of the magnetopause is
particularly affected by magnetic reconnection as this will be seen in the chapter 5.

• The plasma sheet, the region located around the tail mid plane where most of the magne-
totail plasma is concentrated. It is characterized by an average density of 0.5 cm−3 and a
low magnetic field. In this region, the shear between the geomagnetic field lines of the two
hemispheres is high and almost antiparallel. Therefore, the plasma sheet is centered around
a current sheet called the neutral sheet.

• The lobes, a region almost empty of plasma (with typical densities lower than 0.001 cm−3

located between the plasma sheet and the magnetopause for which the geomagnetic field
lines ere open and stretched anti-sunward.

• The plasmasphere, much denser than the magnetospheric and solar wind plasmas located
just outside of the ionosphere, the layer that separates the Earth magnetosphere from the
atmosphere.

• The two Van Allen radiation belts made of highly energetic particles trapped on closed geo-
magnetic field lines at 2 and 6 Re.

5



CHAPTER 1. INTRODUCTION

Figure 1.4: Meridional view of the different regions of the near-Earth environment. (Source: https://ase.
tufts.edu/cosmos/print_images.asp?id=29)

1.1.3 In-situ observations of the solar wind-magnetosphere coupling

The magnetosphere and the solar wind constitute a complex duet in permanent interaction at
every scale. The variations of the solar wind modify the properties of the near-Earth regions,
their boundaries, and generate small-scale physical processes such as magnetic reconnection that
strongly affects the dynamics of this interaction. On the other hand, large-scale solar events such
as Coronal Mass Ejections (CMEs), perturb the solar wind during their propagation in interplane-
tary space and strongly affect the magnetosphere by the formation of geomagnetic storm that can
have huge consequences on the human activity.

With the easy access to this specific region of the interplanetary medium for a spacecraft
launched from Earth, numerous are the missions focused on the study of the solar wind and its
relation with the magnetosphere whether they are solar wind monitors at the Lagrange point L1
(Wind and ACE in particular) or explorers of the different regions of the near-Earth environment
(Cluster, Double Star, THEMIS and MMS to mention just a few of them).

The increasing number of these missions and the associated analysis of their in-situ data mea-
surements led to the multiplication of case studies that increased our knowledge on the different
physical processes at stake.

Nowadays, the accumulation of decades of spacecraft in-situ data measurement allows the
elaboration of massive, global statistical studies of the different actors of the solar wind-magnetosphere
interaction that use the data of several different missions at the same time. In particular, we can
cite the studies that have been made on on the near-Earth regions (Zhang et al. [2019], Lavraud
et al. [2004a] and references therein), their boundaries (Hasegawa [2012], Paschmann et al. [2018],
Němeček et al. [2020] and references therein) and the physical processes at small (Lewis and
Fuselier [2011], Hoshi et al. [2018], and references therein) and large scales (Kilpua et al. [2017],
Richardson [2018], Chi et al. [2016] and references therein) that rule the interaction of the magne-
tosphere with the solar wind.

As they concatenate an important number of samples, such statistical studies contribute to
the elaboration of a global, statistical vision of the different physical processes that affect the
Sun-Earth relation. Nevertheless, they often rely on the manual selection of events of interest
in the streaming in-situ time series data provided by spacecraft. This, in addition to being time-
consuming, is an ambiguous task, strongly linked to the interpretation of an external observer
and poorly reproducible 3. This necessarily limits the information one can extract from the asso-
ciated statistical studies. With the increasing number of spacecraft dedicated to the study of the

3Even by the authors themselves !
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near-Earth environment and the ever-growing amount of data provided by the totality of these
spacecraft, the proportion of selected data will represent an even smaller proportion of the total
accessible data, which spoil the potential of their overall consideration.

From now on, the elaboration of automatic event detection methods in streaming in-situ time
series data provided by spacecraft appears as an interesting option to accelerate the collection of
data and improve the reproducibility of statistical studies. For this purpose, manually set thresh-
olds on the values of physical quantities appear as the most intuitive and fastest solution one
can think of to improve the detection [Jelínek et al., 2012; Lepping et al., 2005]. Nevertheless,
these methods are limited by the high variability of in-situ data and the manual setting of opti-
mal thresholds is another time-consuming, ambiguous and hardly reproducible task, limited by
the visual inspection of huge quantities of data. Moreover, these methods are often tested on the
dataset on which they have been developed and there are generally no clues on how well they do
on unknown sets of data and how easy it is to apply them to the data of different missions. Addi-
tionally, the thresholds are often based on a reduced number of parameters and lose in efficiency
when several physical features must be considered at the same time.

An interesting option we have to overcome these constraints then stands in using supervised
machine learning algorithms. These algorithms, that have the ability to learn to perform a certain
task after being trained on a given dataset, represent a promising tool to tackle already large and
ever-growing bases of reliable data accumulated for decades, and their use in space physics is
therefore progressing [Camporeale, 2019].

To what extent can these algorithms help us improve the automatic detection of the signatures
in streaming in-situ data of the different physical processes that rule the interaction between the
solar wind and the Earth magnetosphere ? How can they help constructing a global, statistically
representative vision of these processes ?

The objectives of this thesis are then as follows:

• Investigate the potential of different machine learning algorithms in the optics of the fast,
automatic and reproducible identification of the in-situ signatures of the different processes
that intervene in the Sun-Earth interaction.

• Use these algorithms to perform a massive detection of the events of interest in the accu-
mulated decades of in-situ data and generate some of the most exhaustive events catalogs.

• Exploit these catalogs to take a step further in the improvement of our global vision of the
magnetosphere through the realization of massive, global statistical studies of the phenom-
ena at stake.

Naturally, the question can be asked at every level of the interaction, and the application of
machine learning algorithms thus has potential all along the chain of events from the Sun to the
magnetosphere as this will be discussed in the next sections.

1.2 Large-scale solar events

In addition to the production of the solar wind, the physical processes that occur in the solar
corona can generate large-scale solar events which, through the transport of important quantities
of plasma and magnetic field, induce large-amplitude perturbations of the nominal solar wind
with possible serious consequences regarding the dynamics of the near-Earth environment.

Among them, CMEs are the spectacular expulsion of large quantities of plasma and magnetic
field in the interplanetary medium from the solar corona.

Suggested by the theoretical work of Chapman and Ferraro [1929] to explain geomagnetic dis-
turbances in the Earth magnetosphere, their existence was confirmed by the ground observations
of Hansen et al. [1971] and the on-board observations of Tousey [1973].

Produced in the solar corona, the ejecta propagates and expands in the interplanetary medium.
This propagation of the ejecta, the so-called ICME, was first observed in by the measurmements

7
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of the interplanetary proton density and temperature by the Vela 3 spacecraft [Gosling et al., 1973]
and linked to the production of CMEs by the combination of the data of 5 different spacecraft by
Klein and Burlaga [1981].

The observation of a CME with the coronograph of the Solar and Heliospheric Observatory
(SOHO) spacecraft along with the schematic representation of an ICME arriving at Earth orbit are
shown on the two panels of Figure 1.5.

The propagation of the ejecta in the interplanetary medium is accompanied by a three-dimensional
expansion. At 1 AU, the average estimated width of an ICME is in the order of 0.3 AU [Wang et al.,
2005]. The transported magnetic field is commonly described as having helical field lines form-
ing a so-called flux rope [Goldstein, 1983]. By definition, the amplitude of the magnetic field is
stronger than the average IMF and the typical values of the magnetic field of ICMEs found at 1 AU
is in the order of 10 nT [Kilpua et al., 2017]. Following the ejection at large velocities in the solar
corona, the transported plasma is usually faster than the preceding nominal solar wind, at 1 AU,
the average velocity found for ICMEs is in the orders of 450 km/s. When the velocity of the ejecta is
fast enough, the ICME pushes the downstream solar wind at supersonic speeds and is thus drives
a shock. The propagation of this shock wave is at the origin of a turbulent plasma region of low
anisotropy between the shock and the main body of the ICME, the so-called sheath [Klein and
Burlaga, 1981; Moissard et al., 2019].

Figure 1.5: CME observed by the SOHO spacecraft on the 27th of February 2000 (right) and schematic rep-
resentation of an ICME (right) (Adapted from Zurbuchen and Richardson [2006]).

These are the general average properties of ICMEs and these properties are also visible in solar
wind observations during such events as shown in the Figure 1.6. If the different characteristics we
just described define the commonly agreed in-situ signatures of these events, their identification is
actually much more ambiguous and strongly related to the interpretation of an external observer
[Shinde and Russell, 2003]. In Chapter 3, we will give a particular focus on how the application
of machine learning highlights the difficulties inherent to the identification of ICMEs from in-situ
data measurement.

The link between the CMEs and the geomagnetic disturbances recorded in the Earth magne-
tosphere was confirmed by Wilson [1987] who noticed the particular importance of the southward
component of the IMF on the triggering of geomagnetic storms. From then on, storms were also
observed for northward IMF [Du et al., 2008] and the CMEs are considered as the most geoeffective
solar events [Yermolaev et al., 2012] at the origin of the greatest part of geomagnetic storms [Echer
et al., 2005]. Among the various hazards already caused by these events on the human activity,
one can typically cite the Bastille Day event [Webber et al., 2002], one of the largest geomagnetic
storm ever recorded in space, or the March 1989 geomagnetic storm that led to an electrical power
blackout in the entire Quebec [Boteler, 2019].

8
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Figure 1.6: Solar wind observation during an ICME from the WIND spacecraft located at the Lagrangian
Point L1. The solid vertical lines delimitate the ICME while the dashed vertical line indicate the beginning
of the sheath. From the top to the bottom are represented : the magnetic field amplitude and components,
the proton density and the solar wind velocity.

Eventhough the geoeffectiveness is expected to be related to the large quantities of plasma and
magnetic field transported by the ejecta [Turc et al., 2014], the physical properties of ICMEs that
are the most likely to affect the magnetospheric activity are still under debate [Kilpua et al., 2017].

In the development of space weather, a global, statistically representative vision of CMEs would
be the opportunity to better understand the nature of these events and how they interact with the
magnetosphere and affect the human activity. For this purpose, the increasing number of solar
wind oriented missions (SOHO, STEREO, WIND, ACE, SOlar Orbiter, Parker Solar Probe just to
mention a few of them) led to the multiplication of the existing ICMEs catalogs and associated
statistical studies of their different physical parameters [Lepping et al., 2006; Nieves-Chinchilla
et al., 2018; Richardson and Cane, 2010]. Nevertheless, the lack of consensus on the typical in-situ
signature of ICMEs associated to the fact these catalogs were elaborated after a manual selection
of events resulted in incomplete, ambiguous and hardly reproducible lists which using masks the
statistical vision we can have on such events.

In this context, elaborating automatic detection methods would allow the rapid and repro-
ducible collection of such events for their further statistical analysis. Moreover, the analysis of
the events detected by one of these methods could bring interesting information on how visual
identification is made and how we interpret in-situ data measurements.

We will focus on those questions in the Chapter 3 that will entirely be dedicated to the auto-
matic detection of ICMEs.

If CMEs are known so, they are far from being alone in the zoology of the large-scale solar
events produced in the solar corona which transport of plasma and magnetic field strongly affects
the Earth magnetosphere. Among this zoology, we can particularly cite the Corotating Interaction
Regions (CIRs), the interaction of a stream of high speed solar wind emanating from coronal holes
with the preceding slower nominal solar wind (Richardson [2018] and references therein), and the
interplanetary shocks, direct consequence of the propagation of CMEs and CIRs in the interplan-
etary medium and responsible for the acceleration of particles to very high energies (Oliveira and
Samsonov [2018] and references therein).
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1.3 The magnetopause, boundary between the solar wind and the mag-
netosphere

1.3.1 MHD discontinuities

The different regions of the near-Earth environment are characterised by different physical prop-
erties. Consequently, the boundaries that delimit the three regions, the magnetopause and the
bow shock, are discontinuities that evolve with the interaction of the plasma of the different me-
dias.

In the frame of ideal Magnetohydrodynamics (MHD), when the plasma is considered as per-
fectly conducting, these discontinuities can be described by the Rankine-Hugoniot equations:

[ρVn] = 0 (1.1)

[Bn] = 0 (1.2)

[ρV2
n +P+ B2

2µ0
] = 0 (1.3)

[ρVn~Vt − Bn ~Bt

µ0
] =~0 (1.4)

[Bn~Vt −Vn ~Bt ] =~0 (1.5)

Where ρ is the density, P is the thermal and kinetic pressure, [X] the jump of a parameter X
across the discontinuity, Xn and Xt denotes respectively the normal and the tangential compo-
nents of~X .

When [Vn] 6= 0, this is particularly what happens at the interface between the magnetosheath
and the solar wind, the discontinuity is a shock.

Otherwise, we can distinguish three different configurations schematically represented in the
Figure 1.7 :

• If Vn = 0 and Bn 6= 0, all the physical parameters but the density are continuous. No mass
flow across the discontinuity is allowed and the jump in density is compensated by a jump
in thermal pressure that rapidly disperse this so-called contact discontinuity.

• If Vn = 0 and Bn = 0, the discontinuity is said tangential (TD). The flow and the magnetic
field are tangential to the discontinuity, the total pressure on the two sides balance and no
mass or magnetic flux crossing is allowed. This is what happens at the magnetopause when
no penetration of solar wind plasma is allowed.

• If Vn 6= 0, the discontinuity is said rotational (RD). Mass flow crossing is allowed, the tan-
gential velocity and magnetic field rotate but keep their magnitudes constant and equal to
the Alfven velocity across the discontinuity. This is for instance what happens when the IMF
reconnects with the geomagnetic field as this will be detailed in the next section.

10
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Tangential RotationalContact

Figure 1.7: Schematic representation of a contact discontinuity (left), a Tangential discontinuity (TD) (mid-
dle) and a Rotational discontinuity (RD) (right), the solid arrows represent the magnetic field while the
dashed arrows represent the velocity

1.3.2 Location and shape of the magnetopause

At first sight, magnetopause can locally be approximated by a TD and prevents any transport of the
shocked solar wind into the magnetosphere. This boundary can be defined by the surface where
the magnetosphere and the solar wind total pressure balance each other. In the solar wind, the
total pressure can easily be approximated by the lone dynamic pressure Pd yn = ρsw V2

sw because
of the weak magnitude of the IMF and thermal pressure. In the magnetosphere, the thermal and
dynamic pressures can be neglected in comparison to the magnetic pressure.

Thus, the pressure balance can be written as follows:

Pd yn cos(ξ)2 = B2
MSP

2µ0
(1.6)

Where ξ is the incidence angle between the solar wind flow and the local magnetopause nor-
mal direction as shown in the Figure 1.8.

Figure 1.8: Meridional representation of the magnetopause obtained by balancing the solar wind dynamic
pressure and the magnetosphere magnetic pressure (adapted from Baumjohann and Treumann [1996])

When the incidence is normal (e.g when ξ = 0◦), the flow in the magnetosheath reduces to 0
at the encounter with the magnetopause. Assuming a dipolar expression of the geomagnetic field,
the radial distance of the magnetopause at this so-called stagnation point, the so-called magne-
topause stand-off distance denoted r0 can be estimated by:

r0 =
(

κB2
E

2µ0Pd yn

)1/6

(1.7)
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Where BE is the magnetic field measured at the surface of the Earth and κ accounts for the
deviation of the magnetic field from its dipolar value and the field generated at the boundary sur-
face. Assuming κ = 2, BE = 3.1×104 nT, and Pd yn = 2 nPa, we obtain a typical value expected for
the stand-off distance under standard solar wind conditions: r0 = 9.9 Re.

An expression of the position and shape of the magnetopause can then be obtained by solving
the equation (1.6). This is what was done analytically by Spreiter and Briggs [1962] and numerically
by Sotirelis and Meng [1999].

A typical representation in the meridional plane of the magnetopause obtained from pressure
balance is shown in the Figure 1.8. In addition to the stand-off distance, the level of flaring that
describes the expansion of the surface in both equatorial and meridional planes is a key factor that
characterises the position and shape of the magnetopause for changing solar wind conditions.

By solving the equation 1.6, Spreiter and Briggs [1962] noticed that the topological change of
the geomagnetic field line at the polar cusps induced discontinuities between the dayside and the
nightside magnetopause in these regions. These discontinuities are represented by the singular
points on the magnetopause in the two hemispheres in the Figure 1.8. In practice, the magne-
topause can be continuously extended in these regions through the introduction of an indentation
that consider the geometry of the polar cusps with varying solar wind and seasonal conditions.

Following this theoretical definition, the first observation of the magnetopause was made with
the measurements of Explorer 12 by Cahill and Amazeen [1963]. From then on, the accumulation
of the missions that came across the different boundaries of the near-Earth environment allowed
the multiplication of the studies focused on the magnetopause, whether they concern its location
and shape (Němeček et al. [2020] and references therein) or its global dynamics (Hasegawa [2012];
Paschmann et al. [2018] and references therein). The collection of several observed magnetopause
crossings allowed the establishment of empirical analytical models of the magnetopause shape
and location that kept improving with the evidences of the influences of the different solar wind
and seasonal parameters (Fairfield [1971]; Jelínek et al. [2012]; Lin et al. [2010]; Liu et al. [2015];
Shue et al. [1997] just to mention a few).

These observations also proved that the magnetopause is the theater of small-scale plasma
processes that contribute to the dynamics of the boundary. Among them, magnetic reconnection
fundamentally affects the location and shape of the magnetopause through the convection of the
geomagnetic field lines it rearranges. Naturally, the evidence of this phenomenon questions the
first definition of the magnetopause we gave. How do this process affect the position and shape of
the magnetopause ? How can we consider it in the frame of an analytical model fitted from in-situ
data?

The generation and the characteristics of these processes is strongly dependent on the asso-
ciated upstream solar wind conditions. Consequently, their effects on the magnetopause location
and shape are seen through the variations of the boundary with changing solar wind and seasonal
conditions.

With the important number of studies dedicated to the subject, the influence of some of these
parameters has been showed for long: the dynamic pressure pushes the magnetopause earthward
when increasing and the IMF Bz component increases the azimuthal flaring while reducing the
equatorial one when negatively decreasing. The importance of some other parameters, the two
other components of the IMF Bx and By for instance, is however unclear and still under debate.
Additionally, the previous existing studies are limited in the night side and there is no indication
if what we know about the magnetopause holds in the far night side where the identification of
the magnetopause becomes even more ambiguous. Last but not least, the existence of magnetic
reconnection fundamentally affects the topography of the polar cusp and blurs the nature of the
magnetopause in this region. There is thus no clue about the reality of the theoretically predicted
indentation.

In the wake of the existing studies, answering these open questions requires the collection of
as many magnetopause crossings as possible.

A typical in-situ signature of a magnetopause crossing by the THEMIS E spacecraft is repre-
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sented in the Figure 1.9. At first, the high density above 20 cm−3 and the omnidirectional differen-
tial energy ion fluxes indicate the spacecraft is in the magnetosheath, as the velocity, shown on the
third panel, is low, the crossing happens near the stagnation point. Past 12 : 00, one can notice a
drop in density followed by a jump in Bz , the spacecraft has crossed the magnetopause and is now
in the magnetosphere. The interpretation of the high velocity peaks highlighted with the green
intervals will be detailed in the next section.

In practice, the in-situ measurement of magnetopause crossings are not as clear in every re-
gion of the near-Earth environment and for every upstream solar wind condition and the iden-
tification of such events much less obvious 4. The motion of the magnetopause with changing
conditions result in partial crossings and the nature of the data measured by spacecraft with polar
orbit is quite different from the nature of the data measured on an equatorial orbit. Additionally,
the manual selection of such events is necessarily ambiguous and time-consuming. The automa-
tion of this task would then be an important improvement in the elaboration of statistical studies
of the different properties of the magnetopause.

Because of the drawbacks of methods based on manually-set thresholds, one can see the po-
tential of machine learning algorithms in the realisation of this task. The application of such algo-
rithms in the frame of the automatic detection of the near-Earth regions and boundaries will be
discussed in the Chapter 4 and the magnetopause crossings detected with these methods will be
exploited through the statistical study of the magnetopause shape and location in the Chapter 5.

4Additional observational examples of magnetopause crossings are shown in the Appendix B.
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Figure 1.9: In-situ spacecraft measurement provided by the THEMIS E spacecraft during a magnetopause
crossing on the 30th of April 2014. From top to bottom are represented the proton density, the three com-
ponents of the magnetic field, the three components of the velocity and the omnidirectional differential
energy fluxes of ions. The green intervals highlight magnetic reconnection plasma jets.
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1.4 Small-scale physical processes of the near-Earth environment

Because the solar wind and the magnetosphere are two plasmas of different nature, their inter-
action is likely to create small-scale physical processes that strongly affects the dynamics of the
system

Among them, we can for example mention Kelvin-Helmholtz instability that results in the
propagation of surface waves along the magnetopause (Kivelson and Zu-Yin [1984] and references
therein) or magnetic reconnection that occurs when two non-parallel field lines are merged and
topologically rearranged.

The latter was evidenced as the dominant process when it comes to the transfer of momentum
between the solar wind and the magnetosphere [Sibeck et al., 1999]. For this reason, the part of
this thesis dedicated to the small-scale physical processes of the near-Earth environment focuses
on magnetic reconnection.

1.4.1 Magnetic reconnection

Magnetic reconnection is likely to occur when two conductive plasma with non-parallel magnetic
field interact with each other. The interacting field lines are merged resulting in a topological re-
arrangement of the system, often characterised by the conversion of magnetic energy into kinetic
and thermal energy.

The term magnetic reconnection was first used by Dungey [1953] who showed that a break-
down of the frozen-in law could result in the rearrangement of the field lines connectivity and
associated particle acceleration. From then on, the decades of studies dedicated to the compre-
hension of the process evidenced magnetic reconnection as a key factor of a wide range of phe-
nomena. For instance, it plays a fundamental role in the formation of geomagnetic storms and au-
roras, in the relativistic jets emitted by active galactic nuclei or sawtoothing oscillations observed
in tokamak fusion plasmas (Yamada et al. [2010] and references therein). Magnetic reconnection
is also believed to be the main actor at the origin of the formation or solar flares and CMEs that
will constitute the main topic of the Chapter 3 [Shibata et al., 1995].

A schematic representation of magnetic reconnection is shown in the Figure 1.10. The incom-
ing plasma flows are designated as the inflows while the flows of accelerated particles are denom-
inated the outflows. When the frozen-in law is respected, the boundary between the two media is
closed and no transfer of mass and momentum between the two plasmas is allowed. This is the
case we described in the previous section when the plasma of the magnetosheath flows around
the magnetopause.

With the violation of the frozen-in condition, the ions and the electrons decouple from the
magnetic field in the proximity of the reconnection site. These regions of demagnetization are
often called the diffusion regions and usually have a thickness in the order of the particles inertial
length or thermal larmor radius, depending on the amplitude of the guide field. The Ion Diffusion
Region (IDR) and the Electron Diffusion Region (EDR) are indicated in the Figure 1.10 with the
grey and the blue rectangles respectively. The thick black lines of Figure 1.10 represent the field
lines that are just being reconnected. As these lines separate the regions of different magnetic
topology, they are called the separatrices. Because of the X shape they adopt, the point in the
center of interest where they intersect is called the X-point. This is the point where the field lines
are reconnected and from which they are convected with the outflow. In a 3D configuration, the
counterpart of this reconnection site is called the X-line.

When all the physical parameters of the two interacting plasmas are equal but the orientation
of their magnetic field, the reconnection is said to be symmetric. This well approximates what hap-
pens in the magnetotail as this will be described in the next subsection. Otherwise, reconnection
is said to be asymmetric. This is especially what happens at the magnetopause where the dense
and cold magnetosheath interacts with the hot, tenuous magnetosphere.
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Figure 1.10: Schematic representation of magnetic reconnection, the black lines represent the magnetic
field lines of the two media, the thick black lines are the separatrix, the black arrows indicate the plasma
inflow and outflow, the grey rectangle represents the IDR and the blue rectangle represents the EDR.

1.4.2 Magnetic reconnection at the Earth magnetopause

Reconnection of the IMF with the geomagnetic field was first detailed by Dungey [1961] and rep-
resented in the Figure 1.11 in the case of a southward IMF.

The interplanetary field lines, represented in blue, and the geomagnetic field lines, represented
in green, reconnect in the dayside of the magnetosphere at the reconnection site indicated by the
grey rectangle (step 1 of the Figure). It is worth noting that reconnection in this region is asym-
metric. The reconnected field lines (represented in red), open on one side and attached to the
Earth pole on the other side, are convected tailward 5 by the flow of solar wind and pile up in
the magnetotail (step 2 of the Figure). As the convected field lines point sunward in the north-
ern hemisphere, and antisunward in the southern hemisphere, they reconnect in this region (step

3 ), interrupting the accumulation of flux in the process. On the nightward side of this symmetric
reconnection site, which location is represented by the second grey rectangle, a bubble of plasma,
known as a plasmoid, is expelled in the interplanetary medium. On the other side, the reconnected
field lines are attached to the Earth and convected earthward carrying energetic accelerated par-
ticles which precipitation is at the origin of the formation of auroras (step 4 ). These closed field
lines are then brought back to the dayside where they can reconnect again with the interplanetary
field lines ensuring the continuity of the so-called Dungey cycle (step 5 ).

Following the description of Dungey [1961], when the IMF is northward and in a null dipole tilt
condition, the interplanetary field lines and the closed geomagnetic field lines are parallel around
the equatorial plane, indicating the absence of reconnection in this region. With the solar wind
flowing around the magnetosphere, the interplanetary field lines are draped around the magne-
topause and are likely to reconnect at high latitude where they are quasi anti-parallel to the geo-
magnetic field lines. The sunward convection of the newly reconnected field lines that appears in
this case is opposed the flow of the solar wind.

In both cases, reconnection fundamentally affects the position and shape of the magnetopause
by eroding the magnetosphere in a direction that depends on the IMF orientation, on the dayside
equatorial plane when it is southward and at high-latitudes when it is northward [Aubry et al.,
1970]. In the previous observational studies of the magnetopause, the effects of this erosion are
considered through the study of the influence of the lone IMF Bz component that appears to be
the component with the greatest impact on the magnetic topology of the magnetosphere. How-
ever, this consideration is reductive regarding the effect of the two other components of the IMF,
Bx and By , on magnetic reconnection, which has been evidenced for long [Gonzalez and Gonza-
lez, 1980; Russell and Atkinson, 1973]. Consequently, the influence of these two other components
of the IMF is still unclear and open to further investigations. This open question will be one of the

5This convection process fills with plasma a layer between the magnetosheath and the lobes commonly known as
the plasma mantle.
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Figure 1.11: Schematic representation in the meridional plane of the dynamics of the magnetosphere when
the IMF is southward. The blue lines represent the interplanetary field lines. The closed geomagnetic field
lines are shown in green while the lines opened by reconnection are shown in red. The two grey boxes
indicate the location of the dayside and the nightside reconnection sites and the black dashed line represent
the bow shock and the magnetopause. The circled number depict the different steps of the Dungey cycle
(see text) (adapted from Hughes [1995]).

main central topic of the chapter 5.

By reconfiguring the magnetic topology of the magnetosphere, reconnection modifies the na-
ture of the near-cusp magnetopause. Indeed, the convection of the newly reconnected field lines
creates boundaries that separate the plasma in the polar cusp from the magnetosheath called
the cusp external boundaries [Lavraud et al., 2004b] by opposition with the so-called cusp inner
boundaries that separate the cusp exterior from the magnetosphere. Without reconnection, the
latter is the logical continuous extension between the dayside and the nightside magnetopauses.
In the sense of reconnection, one of these boundaries actually corresponds to the separatrix of
the geomagnetic and the interplanetary field liness. Consequently, the former appears as a more
appropriate continuous extension of the magnetopause in the near-cusp region in the optics of
reconnection that occurs whatever the orientation of the IMF might be. Although observed by
various missions [Lavraud et al., 2004a; Zhou and Russell, 1997], the topology of this boundary for
various solar wind conditions is still unclear and there are no existing clues on its actual indenta-
tion. We will come back on this still-open question in the Chapter 5.

The first in-situ evidence of magnetic reconnection was brought by Sonnerup and Cahill Jr.
[1967] who observed non-zero normal magnetic field component at the crossing of the magne-
topause by Explorer 12, indicating an interface between the magnetosheath and the geomagnetic
fields that was not limited to the lone tangential discontinuity. This first observation was followed
by the first evidence of accelerated plasma at the magnetopause found by Paschmann et al. [1979]
using the ISEE satellites and by the evidence of reconnection in the magnetotail observed in IMP
data by Hones Jr. et al. [1976] that were consistent with the predictions of Dungey. From then on,
the evidences of reconnection occurring at the magnetopause multiplied with the accumulation
of missions. In particular, we can cite Cluster, THEMIS and Double Star, some of the missions
that will focus our attention in this thesis. Nowadays, the technological advances allow an in-situ
measurement of the plasma properties with an even finer time resolution permitting a deeper in-
vestigation of the complexity of magnetic reconnection. For instance, the high resolution of the
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measurements of the recently launched MMS allowed an observational insight on the EDRs for
the first time.

For now, the most solid evidence we can collect happens when a spacecraft goes through a
reconnection outflow during the crossing of the magnetopause 6. Because of reconnection, the
plasma of the outflow is accelerated, a spacecraft going through this region would then see a
so-called plasma jet faster than the surrounding magnetosheath flow with a peaking component
roughly corresponding to the component of the magnetic field that reverses during the crossing.
This is especially the case for the jets represented by the green rectangles in the Figure 1.9. Here,
the 5 jets we identified are oriented in the +Z direction indicating a spacecraft actually located
north of the X-line, when the observed jets peak in both +Z and −Z directions, we usually talk
about reversal jets that indicate a passage in the close proximity of the X-line by the spacecraft.

40 years of in-situ observation allowed an intensive study of the different aspects of magnetic
reconnection that completed the theoretical and the numerical works dedicated to the subject.
If these studies already confirmed a wide range of properties of magnetic reconnection, the clear
influence of the conditions in the inflow regions [Cassak and Shay, 2007], the role of the different
IMF components (Lavraud et al. [2005], Sonnerup [1974]) or its suppression by diamagnetic ef-
fects [Swisdak et al., 2003] just to mention a few, the secrets of this process are far from all being
unlocked. Among the remaining unknowns, one can especially cite the conditions that initiate the
process, the structure of the different diffusion regions or the parametric dependence of the X-line
location.

The latter has been under debate since the very first premises of studies dedicated to magne-
topause magnetic reconnection. The question to know if reconnection occurs where the magnetic
field of both sides are anti-parallel (anti-parallel reconnection [Crooker, 1979]) or if only a compo-
nent of the IMF actually reconnects (component reconnection [Sonnerup, 1974]) has been under
debate for years. De facto, both scenarios have been observed in spacecraft data and the question
is then not to know which one prevails but how does the actual location of reconnection line, that
should probably be a combination of these two configurations, varies with changing solar wind
and seasonal conditions. Using Polar observations, Trattner et al. [2007] inferred that reconnec-
tion occurs where the shear angle between the magnetosheath and the geomagnetic field lines is
maximized and developed the so-called maximum shear angle model. Although the the capac-
ity of this model to predict the local orientation of the X-line has been indicated in an important
number of observational studies (Cassak and Fuselier [2016] and references therein), one does
still not know how to link this empirical predictions to the different parameters we believe to af-
fect reconnection dynamics such as the density, the field amplitude or bulk velocity jumps across
the magnetopause [Cassak and Shay, 2007]. The numerical and theoretical investigations of the
X-line orientation also led to the development of numerous models among which we can cite the
maximisation of the outflow speed by Swisdak and Drake [2007], the bisection between the mag-
netospheric and the magnetosheath fields by Aunai et al. [2016] or the maximisation of the current
density of the magnetopause by Gonzalez and Mozer [1974]. Nevertheless, the comparison of all
of these models, including the maximum shear angle model, to observational data has only been
done through the investigation of the local orientation of the X-line [Souza et al., 2017] or on a
small number of events [Trattner et al., 2012]. We then lack both of a global vision on how the re-
connection sites extend over the whole magnetopause and of a comparison of these models with
an important number of samples.

An interesting alternative we could bring to clarify the situation would be to exploit the accu-
mulated data of spacecraft that observed the process, collect as much in-situ evidences of mag-
netic reconnection in the form of magnetopause plasma jets and perform a statistical analysis of
their position relatively to the X-line for various solar wind and seasonal conditions. Collecting
these jets in the data of various missions that have been crossing the magnetopause at various
orbits and studying their position and velocity for different upstream conditions would result in a
representation of the magnetopause plasma flow induced by reconnection which analysis would

6This outflow will also sometimes be called the reconnection exhaust.
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give clue on the actual position of the X-line. Nevertheless, it implies the collection of an impor-
tant number of magnetopause plasma jets in the data of different missions throughout their whole
time period, which are in practice, much harder to locate than in the textbook case of Figure 1.97.
First because it requires the identification of magnetopause crossings which can already be an
ambiguous task. Second because the in-situ signature of the exhaust can be obliterated by the
presence of strong plasma fluctuations in the magnetosheath, this is particularly likely to happen
at the flanks or when multiple crossings occur in a short time interval. Third because, depend-
ing on its trajectory, the apogee of a spacecraft can perfectly be located at the interface between
the exhaust and one of the inflows. The measured in-situ signature will then be weaker necessar-
ily and less distinguishable from the magnetosheath than what would have been measured if the
crossing of the exhaust was complete.

From then on, elaborating an automated magnetopause plasma jets routine could consti-
tutes an important milestone in the statistical representation of the reconnection induced mag-
netopause plasma flow and the subsequent global investigation of the location of the X-line.

The first step of this improvement stands in the massive collection of magnetopause crossings
as this is where reconnection is observed. Along with the possibility of investigating the large-
scale influence of reconnection on the location and shape of the magnetopause from a statistical
point of view, the interest of performing such massive detection is doubled and confirms all the
potential such method would have. We will focus on this topic in the Chapter 4.

Concerning the jets detection properly speaking, and provided we have enough magnetopause
crossings, machine learning algorithms appears again as good candidates in the frame of improv-
ing the automatic detection of magnetopause plasma jets. This will be the main focus of Chapter
6.

1.5 Summary

In this thesis, we apply different machine learning algorithms to provide a fast, automatic and
reproducible identification of large-scale, medium-scale and small-scale events of interest in the
in-situ data provided by spacecraft of multiple missions. In particular, we focus on the automatic
detection of ICMEs at 1 AU, the classification of the three main near-Earth regions and the detec-
tion of magnetic reconnection plasma jets. In the three cases, the automatic detection methods
allow us to rapidly generate reproducible catalogs of events with an important number of sample
that can be used for additional statistical studies. Finally, we use the magnetopause crossings cat-
alog generated with the region classifier to perform a statistical study of the position and shape of
the magnetopause as a function of the upstream solar wind conditions. In particular, we benefit
from the important number of samples detected by our method to investigate the influence of the
IMF clock angle and to reconsider the issue of the near-cusp indentation of the magnetopause.

The outcome of the thesis is as follows, in Chapter 2, we present the principle of machine
learning algorithms and describe the different algorithms that will be in use in the next chapters.
In Chapter 3, we apply CNNs to the automatic detection of ICMEs. In chapter 4, we train a gradient
boosting algorithm to distinguish the magnetosphere from the magnetosheath and the solar wind
and use this method to provide a massive detection of the Earth magnetopause and bow shock
crossings. Chapter 5 focuses on the exploitation of the obtained crossings catalog through the
statistical study of the position and shape of the magnetopause as a function of the upstream solar
wind conditions. Finally, we use the region classifier and the magnetopause crossings catalog as a
basis for the elaboration of an automatic detection method of magnetic reconnection plasma jets
in the Chapter 6.

7See chapter 6 and appendix B for additional observational examples.
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Chapter 2

Machine learning as an automatic
selection tool

What we want is a machine that can learn from experience.

Alan Turing
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CHAPTER 2. MACHINE LEARNING AS AN AUTOMATIC SELECTION TOOL

2.1 Introduction

Machine learning designates a specific type of algorithms that have the specificity to learn from a
given dataset to perform a certain task by exhibiting trends and patterns that are generalizable to
unseen data. This concept is not recent in the field of computer science and the first uses of the
term came with the first theoretical principles of such algorithms that appeared no later than the
middle of the 20th century [Berkson, 1944; Fisher, 1936; Samuel, 1959].

With the recent advances in the field of artificial intelligence, with the emergence of the requi-
site technologies and for the potential they have to deal with already large and ever growing bases
of reliable data accumulated for decades, the use of such methods is flourishing in various fields
for a wide range of tasks from face recognition in social networks to weather prediction. Their con-
tribution to science also does not have to be neglected and such algorithms are already used when
it comes to disease diagnosis [Sajda, 2006] or galaxy classification [Nolte et al., 2019] to name just
two examples.

The diversity of the tasks these algorithms are best suited for can be grouped in two main
purposes: regression and classification.

The former should sound familiar to any reader who already attempted to fit a model to the
data and a schematic representation of such a problem is shown on the left panel of Figure 2.1.

Given a dataset (Xi , j )n×m made of n observations of m different features, represented in the
left panel of Figure 2.1 by the blue points, (let us say the solar wind magnetic field, velocity and
density), the goal here stands in fitting a function h called hypothesis that bests describes the evo-
lution of a given label (Yi )n (the position of the nose of the Earth bow shock for example), expected
to be continuous and also accessible for each of the n samples of data.

This best description aspect is reached by finding the parameters of the function h that min-
imize the errors made by the hypothesis in comparison to the label, the so-called loss function.
The expression for this function are numerous, the most frequently used of them being the Mean
Square Error (MSE) defined as follows:

MSE(X) = 1

n

n∑
i=i

(h(Xi )−Yi )2 (2.1)

Where Xi is a m dimensional vector that represents the ith row of X. The fitted hypothesis
function is represented in the left panel of Figure 2.1 by the red dashed line.

The schematic representation of a classification problem is shown in the middle panel of Fig-
ure 2.1. In this case, the label Y has discrete values that represent the number of elements (or
classes) we wish the dataset to be classified into (represented by the crosses and the points in Fig-
ure 2.1). The objective here is to fit a hypothesis function that best separates the elements of the
two classes in the features space as shown with the dashed red line in Figure 2.1. The output of
the algorithm can, depending on the requirements of the user, either be discrete, giving the pre-
dicted class of a given point, either continuous, between 0 and 1, and can thus be interpreted as
the probability a given sample of data actually belongs to a given class.

For the two first panels of Figure 2.1, the algorithm is aware of the label it is supposed to predict
for each observation of the dataset and has been trained iteratively to minimize the loss function
by comparing predictions to labels. This kind of training is defined as supervised learning.

Another option we have in the fitting or training phase of the algorithms stands in not attribut-
ing any label to the data and let the algorithm find trends within the dataset by itself. This tech-
nique is called unsupervised learning and is schematized in the right panel of Figure 2.1. Without
supposition on the class each datapoint belongs to, the idea here is to find clusters of data points
in the feature space and use this clustering process to define the classes used for classification
purpose.
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CHAPTER 2. MACHINE LEARNING AS AN AUTOMATIC SELECTION TOOL

Figure 2.1: Schematic representation of a regression problem (left), a classification problem (middle) and
a clustering problem (right). The blue markers represent the dataset points, the red figures represent the
fitted hypothesis functions (left), the boundary between the two classes (middle) or the fitted clusters (right)

In the frame of our work, we intend to use machine learning algorithms to rapidly detect in-
situ events and provide catalogs of then that would be consistent with what human experts would
have manually labeled, but in a much faster and reproducible way. For this purpose, supervised
learning algorithms used for classification tasks then appear as the most appropriate method. We
will focus on the way they are trained and how they make predictions, in the next section.

Section 3 will present the metrics that can be used to give an insight on how the prediction of
such algorithms can be trusted.

Section 4 will finally present how machine learning is currently used in space physics.

2.2 Different types of supervised classification

Having presented the main families of machine learning algorithms, we will here focus on 4 of the
methods we have use in this thesis:

• Logistic regression

• Decision trees

• Gradient Boosting

• Artificial Neural Networks (Artificial Neural Network (ANN))

In the whole section, we will consider n observations of m different features (Xi , j )n×m and the
label (Yi )n associated for each observation.

Having trained an algorithm, one has to prove its capacity to generalize to unseen data. It is
then necessary, when labeling a dataset, to keep a significant part of the data that will not intervene
in the training phase but that will be used for the evaluation of the algorithm. This part of the
dataset will be referred as the test set and usually represents 1/3 of the total dataset. The other 2/3
of the dataset are used for the training phase of the algorithm and will be referred as the training
set.

For a given dataset, the performances of a trained algorithm can depend on how the training
set and the test set are defined. This can easily lead to an algorithm that sticks too well to the
training data without being able to generalize what it has learnt another set of data. Such algo-
rithms are said to be overfitting. A typical solution we have to ensure this independence and avoid
overfitting the data consists in removing a small subset of the training set and using this so-called
validation set to test an algorithm trained with the remaining part of the training set. If an algo-
rithm is independent from the separation made between the training and the validation set, its
performances should be similar whatever the separation is. This independence can thus be ver-
ified by, in a so-called cross-validation process, repeating the operation for different separations
between the training and the validation set and checking if the obtained performances are similar.
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2.2.1 Optimization of loss functions: Gradient Descent

Each hypothesis function h comes with a set of parameters (Θi ) one can modify in order to make
it fit to the training data and to the label. These parameters can for example be the coefficients of
a polynome in the case of a polynomial fit.

The training phase then consists in finding the best values of (Θi ) in the parameter space that
minimise the Loss function J(Θ,X).

Gradient Descent is one of the most useful algorithms used to perform this minimization task.
The principle of the algorithm is then to come as close as possible to the Loss function minimum
by taking iterative steps in the parameter space following the negative gradients of the loss func-
tions.

A schematic representation of Gradient Descent is shown in Figure 2.2
Starting with initial conditions (Θi )0, each step of the algorithm then consists in updating the

values of each parameters (Θi )l as follows:

Θi ,l =Θi ,l−1 −α
∂J(Θ,X)

∂Θi
(2.2)

Where Θi ,l represents the i th component of (Θi ) after the l th iteration. The parameter α is
called the learning rate and describes how wide the steps are taken in the parameter space. A
small learning rate will require more steps until convergence while large learning rates are the
exposed to the risk of skipping the minimum.

Figure 2.2: Schematic representation of Gradient Descent (Adapted from Lanham [2018])

Gradient descent is particularly efficient when the loss function is convex but is limited when
the minimum is not unique as it could easily get stuck around a local minimum. Additionally, the
consideration of the whole training set at each iteration makes it computationally heavier than an
algorithm that consider small subsets of the training set at each iteration.

Starting from the principle we presented, the existing strategies to overcome these difficul-
ties are numerous from the use of reduced portions of the dataset to compute the gradients at
each iteraction [Kiefer and Wolfowitz, 1952; Li et al., 2014], the acceleration of the process through
the introduction of momentum [Botev et al., 2017] or algorithms with adaptative learning rates
[Kingma and Ba, 2014].

2.2.2 Logistic regression

Logistic regression [Berkson, 1944] consists in defining the boundary between two classes (asso-
ciated to a label being either equal to 0 or 1) as a hyperplane in the feature space. This concept is
especially illustrated by the dashed red line of the middle panel of Figure 2.1.

Given a set of m +1 parameters (Θi ), a given data point Xi will then belong to one or another
class if it fall on one or the other side of the hyperplane defined by the vector (Θi ). That is to say, if:

S(Xi ) =Θ0 +Θ1 ×Xi ,1 +Θ2 ×Xi ,2 + ...+Θm ×Xi ,m > 0 (2.3)
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This condition can be expressed as a probability by the application of the sigmoid function
defined as:

σ(x) = 1

1+e−x (2.4)

With a resulting hypothesis function being equal to:

hΘ(Xi ) = 1

1+e−S(Xi )
(2.5)

The evolution of hΘ for varying values of S(Xi ) is shown in Figure 2.3.

With the application of the sigmoid function, the condition 2.3 becomes hΘ(Xi ) > 0.5, which
indicates this hypothesis function can easily be understood as the probability a sample of the
dataset has to belong to a given class.

Figure 2.3: Evolution of the hypothesis function hΘ as a function of the different possible outputs of S(Xi )

With this expression of the hypothesis, using the MSE as a loss function to minimize would
bring to a non-convex problem with the presence of an important number of local minima result-
ing in an enhanced difficulty to find the global minimum. To cope with it, we define the logistic
loss by:

J(Θ) =− 1

n

n∑
i=i

Yi log(hΘ(Xi ))+ (1−Yi ) log(1− (hΘ(Xi )) (2.6)

Such a function has the advantage of attributing a low contribution to the extremal values of
the hypothesis while giving a higher attention on the data points for which hΘ is close to 0.5. This
is the function that will be minimized during the training phase of a logistic regression.

Logistic regression is also adaptable to classification problem where the label contains more
than two classes. In this case, a common approach stands in training one logistic regression for
each class and to compare the predictions made by these algorithms altogether. In this approach,
called "One versus All", the final prediction for a given data point will then be the class for which
the specifically trained algorithm will output the highest probability. Another possible approach
stands in the generalization of the sigmoid function through the consideration of the so-called
softmax function and the associated softmax regression [Ren et al., 2017].

Because of its simple design, a logistic regression algorithm is the one of the easiest algorithm
to interprete as an insight on the found parameter, Θ, directly gives the importance each feature
has on the selection process of the algorithm, in addition to providing a linear relationship to dis-
criminate one class from another. Nevertheless, its efficiency supposes a perfect linear separation
between the different features of the dataset, which is far from being the case in the majority of
machine learning problems.
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2.2.3 Decision trees

Decision trees [Fisher, 1936] are a specific type of algorithm which final decision, the so-called
leaves are reached through the application of a hierarchical sequence of thresholds-based tests on
the different features of the dataset, the so-called nodes. Such techniques can be used for both and
classification and regression purposes.

A schematic representation of such trees is shown in Figure 2.4. Here, the definition of the
leaves and nodes have been set arbitrarily following the statistical a priori we have on the magne-
tosheath, the magnetosphere and the solar wind.

Figure 2.4: Schematic representation of a decision tree, each rectangle is a node of the tree, each diamond
is a leaf

The machine learning adaptation of these trees, the so-called Classification and Regression
Trees (CART) [Breiman et al., 1984], generalizes this sequential application of arbitrary threshold-
based tests by defining the set of nodes, splits within the dataset and leaves that best suits the
training set.

To do so, we start with the training set Xi , j and find the feature j and the observation θ j of this
feature that minimize the defined cost-function:

J(θ j ) = nl e f t

ntot al
Gl e f t +

nr i g ht

ntot al
Gr i g ht (2.7)

Where left and right denote the two dataset subsets obtained with the split, ntot al represents
the total number of samples in the node and nle f t (resp. nr i g ht ) represent the number of samples
in the left (resp. right) split data subset.

G represents the so-called Gini index defined by:

G = 1−
Ncl asses∑

k=i
pk (2.8)

Where pk is the proportion of elements belonging to the class k in the considered data subset.
This index measures the impurity and a null value of the Gini indicates a subset of data in which
all the elements belong to the same class.

This splitting process is repeated for the newly-created nodes until one of these stopping con-
ditions is reached:

1. All of the elements of the subsets created after a split belong to the same class, this is the
natural stopping condition as no further split is then needed.

2. The number of nodes between the initial and the current one reaches a value called maxi-
mum depth. All the nodes created that reach this maximum depth become leaves.
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3. The amount of data to split is below the minimum number of samples required to split an
internal node. The concerned node then becomes a leaf.

For a given unknown data point, the predicted class will then correspond to the class that is in
majority in the leave of the tree this data point falls in. This output can also be expressed from a
probabilistic point of view. The probability will then correspond to the proportion of this majority
in the leaf in which the data point falls in.

The maximum depth and the minimal number of samples required to split are two hyper-
parameters an external user can adjust to tune the decision tree. High values of these parameters
allow a finer insight on the dataset but increase the risk the model will have to overfit the training
data. Low values help reducing the training time but expose the model to the risk of not having
seen enough training samples to exhibit any particular trend in the data and thus to underfit the
data.

The concept of decision trees used for regression purpose is pretty similar with the noticeable
differences that the Gini will be in this case substituted by a cost-function usually used in Regres-
sion such as the Root Mean Square Error and that the output of each leaf will here correspond to
the average of the data points that fall into that leaf.

Because of the simplicity of their concept, decision trees are among the simplest machine
learning algorithm to interpret. They also offer the advantage of requiring few preprocessing of
the data and can even deal with missing features measurements. Nevertheless, these algorithms
are very sensitive to small changes in the dataset and are thus very likely to overfit the training
data. A common way to overcome these drawbacks then stands in considering an ensemble of
several trees and considering a global prediction made of each of their individual guess. This is for
example the principle of Random Forests [Breiman, 2001].

2.2.4 Gradient Boosting

Another approach we can have to overcome the disadvantages of decision trees we just mentioned
stands in considering a sequential ensemble of decision trees and having each tree to correct the
errors made by the previous one. This is the principle of Gradient Boosting algorithms [Friedman,
2001] that are among the most popular machine learning algorithms for their ability to rapidly deal
with complex problems, that include missing data or an unbalanced dataset [Brown and Mues,
2012].

The principle of the construction of the algorithm is as follows:

1. For each element of the training set, define a preliminary score F0(Xi ) as the log of the
odds of each element of the training set and define the associated preliminary probabil-
ity P0(Xi ) =σ(F0(Xi )) whereσ is the sigmoid function defined in the equation 2.4. This value
F0 is uniform whatever the input is.

2. Fit a decision tree to the probabilistic residual error made by this preliminary prediction
Yi − P0(Xi ), define the score h1(leaf) =

∑
i∈leaf Yi−P0(Xi )

P0(Xi )(1−P0(Xi )) and predict the value of h1 for each
element of the training set.

3. Define the updated score F1 = F0 +αh1 where α is defined as the learning rate of the algo-
rithm and allow the reduction of the importance of the prediction of each trees in order to
avoid an eventual overfit.

4. Compute the updated probabilities P1(Xi ) =σ(F1(Xi )).

5. Repeat the operation for the number of trees used for the algorithm.

After the fitting phase, running instances of each of the trees that compose the algorithm then
directly give the predicted score F and the associated probability of an unknown datapoint.
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Even if the idea of fitting regression trees for classification purposes may seem counter intu-
itive, this approach offers an enhanced opportunity while considering a given classification prob-
lem and another example of this concept will be detailed in the next chapter.

In addition to the hyper-parameters that are used to fit the Decision Trees, the number of
these trees and the learning rate α are the two main parameters an external user can adjust to tune
the decision tree. Decreasing the learning rate implies less importance granted to the updates
provided by each tree. Increasing it exposes to the risk of taking into account the overfit of each
tree and then ending up with an algorithm unable to generalize what it has learnt on the data. On
the contrary, increasing the number of trees increases the chance of overfit, decreasing it increases
the chance of underfit.

The same principle is followed when Gradient boosting is used for regression purposes, in this
case, the probability and the score being replaced by the raw predictions made by the algorithm.

Despite of their efficiency, the implication of several trees at the same time and the increased
number of hyper parameters make these algorithms harder to tune and much less interpretable
than the Decision Trees or the Logistic Regression.

2.2.5 Artificial Neural Network (ANN)

Neural networks [Samuel, 1959] consist in a set of fully interconnected nodes, called neurons or
simply units, arranged in a certain number of layers so that the output of each neuron of a layer to
each neuron of the next one.

These algorithms, firstly conceptualized by analogy with the way the human brain processes
the information, gained in popularity with the increasing amount of data, the technological ad-
vances that allowed a reduction of their training time, the utilisation of smarter optimization algo-
rithms and thanks to their ability to successfully deal with massive datasets.

A schematic representation of a neural network is shown in Figure 2.5. For a given datapoint,
the inputs of the first layer correspond to the measurement of each of the features for this point.
These inputs are processed by the intermediate layers (unique in the case of Figure 2.5) called the
hidden layers and result in a final output that can either be the probability of a class in a classifica-
tion problem or the prediction of the quantity estimated in a regression problem.

Figure 2.5: Schematic representation of a neural network (taken from https://www.nicolamanzini.com/

single-hidden-layer-neural-network/

For a given layer, each neuron independently processes the output of the previous layer and
turns it into an output through the application of a so-called activation function that will be pro-
cessed by the neurons of the following layer.
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The process done by each neuron is of various nature depending on the nature of the neural
network we intend to use. For the simplest one, the so-called Multilayer Perceptrons [Murtagh,
1991], this process consists in the weighted sum of the different neuron inputs. For more sophis-
ticated networks such as CNN [Lecun et al., 1998] this process consists in the application of filters
detecting the presence of a certain pattern in the data.

There are also various ways to define the activation function of each unit. The sigmoid func-
tion we presented in 2.4 can for example be an interesting choice of activation function, especially
when comes the moment to return the probabilistic output expected at the last layer of the net-
work. Another commonly used activation function is the Rectified Linear Unit (ReLU) defined as:

ReLU(x) = max(0, x) (2.9)

Because of its performances and its computation easiness [Hahnloser and Seung, 2001], this
activation function is commonly used for the hidden layers and this is what will be done in the
neural network used in Chapter 3.

Along with the activation function, the number of neurons per layer and the number of hidden
layers are usual hyper-parameters modified when tuning the architecture of the algorithm. Neural
networks that contain more than 2 hidden layers are usually designated as deep neural networks.
In this case, we generally talk about deep learning rather than machine learning.

Having set the general architecture of the algorithms, neural networks are trained following
the backpropagation algorithm [Rumelhart et al., 1988] which principle can be detailed as follows:

1. Perform a prediction on a subset of the training set (also called batch).

2. Compute the error made by this prediction.

3. Go through each layer starting from the final one and adjust the parameters of each neuron
in order to reduce the error made by the prediction by applying a minimization process such
as Gradient Descent on a defined cost function such as the Root Mean Square Error.

4. Repeat the operation until each sample of the training set has been predicted.

Following this backpropagation phase, we evaluate the performance of the algorithm on the
validation set by computing the total cost function used in the training phase. We then train the
neural network again starting this time with the previously found parameters. This operation is
repeated for a certain number of iterations or epoch or until the cost function reaches its mini-
mum. This ensures the capacity the algorithm has to generalize on the data and makes sure the
cost function is at its minimum.

Following this description, the number of epochs, the number of samples in the batch, the cost
function and the minimization algorithm all appear as important hyper-parameters an external
user can modify to tune the algorithm and better the quality of the prediction.

Despite of their efficiency, the complexity of these algorithms go with their lack of interpretabil-
ity. This is currently a hot topic in the field of Artificial Intelligence and is currently being addressed
on simple cases such as digits recognition [Liu et al., 2018]. Thus, obtaining physical information
from what these algorithms have learnt appears as coming out of the scope of this thesis. Never-
theless, we will figure out in the next chapter a couple of studies that can be made to investigate
the influence each feature has on the quality of the prediction of these algorithms.
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2.3 Evaluating the performances of an algorithm

The performances of an algorithm trained on the training set are evaluated by comparing the pre-
dictions performed on the test set to the associated ground truth label. In the case of classification,
this prediction often comes as the probability a data point has to belong to the different accessible
classes. The final decision of the algorithm can then be obtained by setting a probabilistic decision
threshold and assigning an element to a class if its probability is above this threshold.

Without surprise, 0.5 is the most commonly used threshold but the performances reached by
the algorithm of the constraint imposed by the problem we are focusing on might imply the choice
of a different value.

2.3.1 Calibrating the probabilistic output

The probabilistic output gives a certain confidence in the prediction made by the algorithm. Nev-
ertheless, this assertion is only true if it provides a correct representation of the data seen by the
algorithm. That is to say, if x% of the elements predicted with a probability of x% for a given la-
bel are actual elements of this label. Such algorithm is defined as being well-calibrated and this
verification must be done each time the probabilistic output of an algorithm is at stake.

To do so, we evaluate the fraction of the so-called positive elements on different probability
intervals. A typical representation of such calibration curve is shown in the left panel of Figure
2.6 for a logistic regression, a decision tree and a gradient boosting. For a perfectly calibrated
classifier, the calibration should stick to the gray dashed line. Seeing an almost perfect calibration
for the blue curve of Logistic regression is not surprising as the main principle of the algorithm
stand in minimizing the log of the odds of the prediction. On the opposite, decision trees are well
known to show calibration issues [Niculescu-Mizil and Caruana, 2005] and often need a correction
of their probabilistic output.

A solution we can apply to calibrate these probabilities stands in fitting the predicted prob-
abilities to the associated training set label and keeping this final output as the final predicted
probability [Niculescu-Mizil and Caruana, 2005]. This fit can either be a Logistic Regression, this
is the principle of the so-called Platt scaling, or be a stair-shaped monotonous function, this is
the principle of the so-called Isotonic Regression. The effect of the latter on the probabilities of a
Decision Tree and a gradient boosting is shown in the right panel of Figure 2.6. Although not per-
fect, the calibration process allowed a more consistent distribution of the predicted probabilities
especially for the highest probabilities for which we expect to have the most confidence.

Here again, the choice between Platt scaling and Isotonic regression is left free for an external
user and the efficiency of one method compared to the other depends on the considered problem.

Figure 2.6: Typical representation of the calibration curve of a Logistic regression (blue), a Decision tree
(red) and a Gradient Boosting (green) before (left) and after (right) the application of an isotonic regression.
The gray dashed line represents the perfect calibration curve. As logistic regression is already a calibrated
algorithm (see text), it is only represented in the left panel.
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2.3.2 Metrics

Once the probabilities are calibrated, the choice of a particular decision threshold directly gives
access to the final class predictions made by the trained algorithm. From now on, the predicted
classification can be sorted into four categories:

• A True Positive (TP) is a point of a class that has been predicted correctly.

• A True Negative (TN) is a point not belonging to the concerned class that has been predicted
as such.

• A False Negative (FN) is a point of a class that has not been correctly predicted.

• A FP is a point not belonging to the concerned class that has been predicted as belonging to
the class.

With these definitions, the two types of errors likely to be made by an algorithm are the FN
and the FP. From then on, the performance of a classifier can be summarized by two quantities,
the recall or True Positive Rate (TPR), defined as one minus the ratio of FN over the number of
points in the associated class, and the precision defined as one minus the ratio of FP over the total
number of points predicted in this class :

Recall = 1− NFN

NFN +NTP
(2.10)

Precision = 1− NFP

NFP +NTP
(2.11)

The value of these metrics comes with the chosen decision threshold and the evolution of the
precision and the recall for varying decision thresholds can be represented in the precision-recall
curve for which we have a typical representation on the left panel of Figure 2.7. The black dashed
line represent the performances that would be reached by a random classifier and we expect the
precision-recall curve to always be above this line. Logically, low values allow the prediction of
more elements in a given class, which allows a decreasing number of FN but an increasing number
of FP, the recall improves while the precision drops. On the opposite, high decision thresholds will
drastically reduce the number of FP while augmenting the number of FN. The precision soars, the
recall drops. All the interest in choosing properly a decision threshold then stands in finding the
best compromise between recall and precision that best fulfills the user requirement. The elbow
point of this curve is an interesting working point in the precision-recall curve as it offers the best
compromise between a high precision and a high recall and we want this point to be as close to
the right corner of the left panel of Figure 2.7 as possible. Nevertheless, for the purpose of physical
studies, one may set a higher decision threshold in order to have a few number of FP provided the
method still detects a fair number of events.

The quality of the precision-recall curve can be quantified by the computation of the so-called
average precision defined by the area under the curve normalized by the area of the zone delimited
by the minimal precision reached for the decision threshold of 0. We then expect this average
precision to be as close to 1 as possible.

Another method we can use to express the performance of the algorithm is the Receiving Oper-
ator Curve (ROC) curve that represents the evolution of the recall as a function of the False Positive
Rate (FPR) defined as:

FPR = NFP

NFP +NTN
(2.12)
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Figure 2.7: Typical representation of the precision-recall (left) and the ROC (right) curves for a trained algo-
rithm. The yellow area represents the average precision and the AUC of the algorithm, the black dashed line
represents the performance of a random clasifier

A typical representation of the ROC curve is shown in the right panel of Figure 2.7. Similarly to
the precision recall curve, the idea here is to find the best compromise between a high recall and
a high FPR that here corresponds to the elbow point that we want to be as close to the upper left
corner as possible. Once again, seeing this ROC curve above the black dashed line is reassuring as
it means a classifier better than random.

The quality of the ROC curve can be assessed by the computation of the Area Under Curve
(AUC) that is expected again to be as close to 1 as possible.

The definition of the FPR relies on the total number of TN. However, depending on the prob-
lem, it can be impossible to properly define a TN. This for instance the case of object detection
in images or the exhibition of patterns in time series data. Thus, exploiting the ROC curve should
only be considered when the notion of TN exists.

In addition to the ROC curve and the AUC, we can define the Heidke Skill Score (HSS) that
compares the performance of the algorithm to what would come out of a random classifier:

HSS =
NTPs+NTNs

N − (NTPs+NFNs )∗(NTPs+NFPs )+(NFN+NTNs )∗(NFP+NTN)
N2

1− (NTPs+NFNs )∗(NTPs+NFPs )+(NFN+NTNs )∗(NFP+NTN)
N2

(2.13)

A negative HSS indicates randomness performs better than the classifier while a perfect fore-
cast would be associated to a HSS of 1. The evolution of the HSS as a function of the decision
threshold is shown in the Figure 2.8. Finding decreasing HSS for high decision threshold is not
surprising as the number of FN will slightly increase in this case. The main interest in this curve
then stands in the value of the HSS we do find for the final decision threshold we chose and the
objective we have to bring this score as close to 1 as possible.

Figure 2.8: Typical representation of the evolution of the HSS as a function of the decision threshold
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In the following, we will use machine learning algorithms to automatically elaborate event
catalogs from in-situ data measurements. In addition to the mistakes we mentioned and their
associated characterization, the beginning and ending times of the detected events also become
a source of difference between the predicted and the labeled event list. To take into account this
additional source of error, we define the Jaccard index between two events lists as:

Jaccard(A, B) = duration(A∩B)

duration(A∪B)
(2.14)

Once again, the better the prediction, the closest to 1 the Jaccard. With this definition, a low
Jaccard can be induced by both events exclusive to one of the two lists and the differences on the
boundaries of events. The Jaccard index gives clues on how well a predicted events list is similar to
a labeled lists and an example of computation of this metrics will be detailed in the next chapter.

2.4 Implementing Machine Learning

All of the algorithms we presented are easily usable in Python with the associated packages. We
used the machine learning algorithms implemented in the package Scikit-learn [Pedregosa et al.,
2011] and the deep learning algorithms implemented in the package Tensorflow [Abadi et al., 2015]
used as a backend of the library Keras [Chollet et al., 2015].

The machine learning algorithms have been trained on an AMD ryzen ™threadripper ™2990wx
processor while the deep learning algorithms have been trained on two NVIDIA GeForce GTX 1080
TI ™Graphical Processing Units.

2.5 Machine Learning in space physics

Space physics is not an exception in the diversity of the domains in which machine learning algo-
rithms have a huge potential. Camporeale [2019] recently identified the future of their utilization
to be mainly focused around three objectives: the use of solar imagery, the estimation of geomag-
netic indices and the detection and classification of time-series patterns.

They have especially been widely used on solar images for tasks such as the prediction of solar
flares (Colak and Qahwaji [2009] and references therein), the detection of sunspots [Yang et al.,
2018] or even the classification of solar active regions that produced a solar flare with or without a
CME [Bobra and Ilonidis, 2016].

These algorithms also prove their worth in estimating the geomagnetic indices based on on-
ground measurement (Zhelavskaya et al. [2019] and references therein) showing their usefulness
in the field of space weather.

Concerning the detection and classification of streaming time series patterns from in-situ
data, Miniere [1999] used neural networks to identify and classify electron and proton whistlers.
Karimabadi et al. [2009] developed a data mining method called MineTool-TS they used to pro-
vide a classification of data intervals that contained Flux Transfer Event (FTE) or not as well as
an extension to apply data mining to 3D simulation data [Sipes and Karimabadi, 2012]. Using a
support vector machine on magnetopause crossings measured by 23 different spacecrafts, Wang
et al. [2013] provided an empirical three dimensional model for the Earth magnetopause. Finally,
Camporeale et al. [2017] provided an accurate method of solar wind classification into 4 classes
using a Gaussian Process.

The emergence of these techniques in this specific type of problem even got further with the
elaboration of methods to detect beginning and ending dates of events [Nguyen et al., 2019] or
algorithms with the ability to classify specific regions in the Earth plasma environment [Olshevsky
et al., 2019]. Nevertheless, despite of fair performances of such methods that will be discussed
later-on, the efficiency of such methods on the streaming in-situ data provided by spacecraft is
highly influenced by the representation we make of these objects or processes, and the definition
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we have of the observational signatures we are supposed to see when crossing them. The underly-
ing reasons standing behind this ambiguity and the tools we can use to deal with it will be detailed
in the next chapter.

Chapters 3, 4 and 6, will focus on three examples of utilization of machine learning in the
field of space physics in the frame of automatic detection and classification of specific patterns in
streaming in-situ data.
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Chapter 3

An example of ambiguously labeled
problem: automatic detection of ICMEs

La conscience n’est jamais assurée de surmonter l’ambiguïté et l’incertitude.

Edgar Morin
(Le paradigme perdu)
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CHAPTER 3. AN EXAMPLE OF AMBIGUOUSLY LABELED PROBLEM: AUTOMATIC DETECTION
OF ICMES

3.1 Introduction

We mentioned in the previous chapter that the application of machine learning algorithms to the
detection of specific physical signatures of events in streaming in-situ time series data provided
by spacecraft found a bottleneck in the manually defined event catalogs given as an input. The
underlying reasons of this ambiguity are numerous.

First of all, these events are measured whenever they are crossed by a spacecraft, the in-situ sig-
nature we obtain is then the 1D slice of a 3D much bigger structure, which bias the global overview
we have on them.

Second, those structures are surrounded by a continuum of other events likely to happen in
the solar wind or in the near-Earth environment which makes it hard to define properly where
does an event begins or ends and if it really is the event we were expecting.

These two reasons can explain by themselves the difference of the criteria applied by differ-
ent experts to label the same kind of event [Shinde and Russell, 2003]. Coupled to the different
tolerance of each experts and the psychological factors 1 that can influence the experts criteria
throughout the identification process, the existing event lists are assumed to be incomplete and
ambiguous from a person to another.

Consequently, we expect an automatic event detection method to bring a considerable gain in
time, objectivity and reproducibility in these catalogs. In this chapter, adapted from Nguyen et al.
[2019], we use the problem of the automatic detection of ICMEs to show how the quality of the
prediction of supervised machine learning is limited by the ambiguity of the events lists we use to
label our dataset.

In Section 2, we will give a brief presentation of ICMEs and the problematics linked to their
automatic detection. In section 3, we will present the data and event lists we used for the study.
Section 4 will present in details the principle of our pipeline and how did we designed it. The
obtained performances will be shown in Section 5. We will then discuss the robustness of the
prediction regarding the different dataset features, the size of the event list used in the training
set and the period considered for training, validating and testing our method. Finally, Section 6
will discuss the global quality of our prediction in comparison to ICME lists manually identified
by experts.

3.2 Interplanetary Coronal Mass Ejections

CMEs are spectacular manifestations of the solar activity which are responsible for the expulsion
at large velocities of large quantities of solar plasma and magnetic field. Their interplanetary coun-
terpart, the so-called ICMEs, interact with the planetary environments. Their most famous sub-
class, the Magnetic Clouds (MCs), being well-known for their strong geoeffectiveness and their
capacity to trigger magnetic storms that severely impact the Earth magnetosphere, ionosphere
and even human activities.

After initial studies [Burlaga et al., 1981; Gosling et al., 1973; Klein and Burlaga, 1981], these
events have been extensively investigated from in-situ measurements (Kilpua et al. [2017] and
references therein).

Observationnally speaking, we observe the typical signature of these events whenever a space-
craft goes through the ICME following the dashed arrow represented on the schematic represen-
tation of an ICME shown in the Figure 3.1.

The associated typical-measurement of such events by the WIND spacecraft is shown in Figure
3.2. The top panel shows an enhanced magnetic field compared to the surrounding ambient solar
wind and a long (here about 2 days), smooth rotation of the magnetic field. It is associated with
a low proton temperature (fourth panel) resulting in low values of the parameter β defined as the
ratio between the thermal pressure and the magnetic pressure (second panel). The third panel
shows an enhanced velocity compared to the preceding solar wind with a declining profile. The

1especially its time consumption
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MC is featured by a preceding abrupt and simultaneous jump in the magnetic field and velocity
(indicated by the dashed line in Figure 3.2), and by a turbulent sheath, between the shock and the
MC.

These are the main criteria generally used for the identification of ICMEs and we consider
an event that fulfill all of these criterias to be an actual MC [Chi et al., 2016; Kilpua et al., 2017;
Zurbuchen and Richardson, 2006]. However, not all ICMEs feature all standard ICME signatures
and there is no signature that would be present in all ICMEs [Gosling et al., 1973; Kilpua et al.,
2017; Richardson and Cane, 2010]. For example, about half of the ICMEs drive a fast upstream
shock and are preceded by a sheath (Chi et al. [2016] and references therein).

Figure 3.1: Same representation than the left panel of 1.5. The dashed arrow represents the 2D-slice realized
by a spacrecraft when providing the typical in-situ signature of an ICME represented in Figure 3.2. (Adapted
from Zurbuchen and Richardson [2006])

With the increase of the number of solar wind oriented missions (WIND, ACE, STEREO and the
more recent Parker Solar Probe and Solar Orbiter, ...), the number of ICMEs catalogs associated
with these two missions flourished. Lepping et al. [2006] referenced 106 MCs between 1995 and
2008. Richardson and Cane [2010] listed 373 ICMEs between 1996 and 2015. Jian et al. [2006] listed
250 ICMEs between 1995 and 2009. Nieves-Chinchilla et al. [2018] listed 302 ICMEs between 1997
and 2016. And Chi et al. [2016] listed 465 ICMEs from 1995 to 2015. In average, 80% of the ICMEs
of a given list are present in another list Chi et al. [2016].

The main difference we notice from one list to another stands in the criteria used by the au-
thors to identify the ICME such as the presence of a front shock, the presence of a sheath, the fit to
a flux rope model [Lepping et al., 2006] or the importance given by the authors to a specific phys-
ical parameter [Chi et al., 2016; Richardson and Cane, 2010]. Moreover, a given ICME might only
fulfill a subset of these criteria or partially fulfill them which complicates their identification and
consequently their automated detection.

The establishment of such catalogs allowed the study of ICMEs from a statistical point of view.
These studies indicated the enhanced magnetic field and the low proton temperature as being
typical characteristic of ICME in-situ signatures. They also indicated that the yearly occurrence
of ICMEs is correlated to the solar cycle [Chi et al., 2016; Jian et al., 2006], and that ICMEs were
considered to be long term events with an average duration being equal to 25 hours [Klein and
Burlaga, 1981]. Complete conclusions of such studies can be found in Chi et al. [2016], Nieves-
Chinchilla et al. [2018], Mitsakou and Moussas [2014], Kilpua et al. [2017] and references therein.
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Figure 3.2: Solar wind observation during an ICME from the WIND spacecraft located at the Lagrangian
Point L1. The solid vertical lines delimitate the ICME while the dashed vertical line indicate the beginning
of the sheath. From the top to the bottom are represented : the magnetic field amplitude and components,
the plasma parameter β, the solar wind velocity, the thermal velocity, the similarity the ICME have with
sliding windows of various sizes (from 1 to 100 Hr) and the similarity predicted by our method.
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All the beginning and ending dates of the ICMEs present in these catalogs have been identified
by visual inspection. For the reason we mentioned in the introduction, this leads to incomplete,
ambiguous and hardly reproducible catalogs which bias the statistical conclusions we can extract
from them.

The development of an automatic identification method of ICMEs would then bring a consid-
erable gain in time and objectivity in the elaboration of our catalogs.

Lepping et al. [2005] proposed an automatic detection method based on empirical thresholds.
These thresholds are inferred from the expert knowledge of ICMEs properties and involve various
physical and temporal parameters such as the duration, the plasma β, the magnetic field, the bulk
velocity or the quality of the fit with a flux rope model.

Even though this method was able to recognize a fair quantity of identified events (45 on a total
of 76 ICMEs in the period considered), the large number of found false positives (66 for a total of
111 predicted ICMEs) evidenced both the incompleteness of the list as well as the limits of using
fixed thresholds for automatic identification.

Recently, Ojeda-Gonzalez et al. [2017] proposed an alternative automatic identification method
based on the computation of a Spatio-Temporal Entropy. However, the method was tested on a
very low number of ICMEs and its performance on long periods is not known.

Finally, the problem of identifying patterns in in-situ data measurement is at the root of many,
if not all, observational studies. No matter how efficient previous automatic detection methods
were, if some exist, they are based on expert and detailed knowledge of target event properties
and thus are very specific to their detection. This methodology thus imposes to re-think the de-
tection pipeline entirely for each kind of event, which constitutes a serious bottleneck that may be
comparable or worse than doing the visual identification itself.

One way to overcome these constraints stands in the use of supervised machine learning al-
gorithms that have proven their worth for various tasks in the field of space physics as explained
in the previous chapter. Nevertheless, none of these methods was used to identify the starting
and the ending times of a specific kind of event in streaming time series yet and this will be the
challenge of the method we detail in the following sections.

3.3 Data

3.3.1 WIND

WIND is a NASA mission that was launched on the 1st of November 1994. After some time spent
in the magnetosphere, the spacecraft went through a solar orbit at the Lagrangian point L1 where
it coutinuously provided solar wind measurements from then on. We used the data provided by
WIND between the 1st of October 1997 and the 1st of January 2016.

The magnetic field information were provided by the Magnetic Field Investigator (MFI) with a
temporal resolution of 1 minute. The plasma moments were provided by the Solar Wind Experi-
ment (SWE) with an approximate resolution of 90s and the particle distribution function between
0.3 and 10keV were provided by the 3-D Plasma and Energetic Particles Experiment (3DP) with a
temporal resolution of 1 min.

The obtained dataset is therefore made of 30 primary input variables: the bulk velocity and its
components V,Vx ,Vy ,Vz , the thermal velocity Vth , the magnetic field, its components and their
Root Mean Square (RMS) : B,Bx ,By ,Bz ,σBx ,σBy ,σBz , the density of protons and α particles ob-
tained from both moment and non-linear analysis : Np ,Np,nl and Na,nl as well as 15 canals of
proton flux between 0.3 and 10 keV.

Due to instrumental constraints, holes are present within the whole dataset, the great major-
ity of these holes have a duration between 2 and 10 minutes. On the other hand, the crossings
of ICMEs with their sheath typically have durations of several hours. We therefore resample the
data to a 10 minutes resolution, thereby eliminating the greatest majority of the holes while still
remaining accurate in the determination of start and end times of labeled events.
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In addition to this 30 input variables, we computed 3 additional features that will also serve as
input variables : the plasma parameter β, the dynamic pressure Pd yn = Np V2 and the normalized

magnetic fluctuations : σB =
√

(σ2
Bx

+σ2
By

+σ2
Bz

)/B.

Apart from the sections 3.6.3 and 3.7, the period between 1998 and 2010 constitutes our train-
ing set, the period between 1997 and 1998 our validation set and the period between 2010 and
2016 our test set. This repartition has the advantage of considering a whole solar cycle (1997-2008)
during the training phase and consequently giving to our algorithm the opportunity to notice the
changes in the solar wind and in the frequency of ICMEs during a solar cycle.

3.3.2 ICME catalog

The ICME catalog we used consists in the union of the different WIND ICME lists [Chi et al., 2016;
Jian et al., 2006; Lepping et al., 2006; Nieves-Chinchilla et al., 2018; Richardson and Cane, 2010].
During the various tests of our method, additional ICMEs that were not present in any of the ex-
isting lists were detected and have been progressively added to our catalog. Following these inves-
tigations, 148 new ICMEs have been discovered throughout our period and added to the dataset
after a visual validation of the associated in-situ measurement. This represents 22% of our total
dataset for a total of 657 ICMEs distributed as follows: 420 ICMEs in the training set, 13 ICMEs in
the validation set and 232 ICMEs in the test set.

Our catalog can be found online 2 and will be designed, in the following, as the Reference List
(RL). We consider that this catalog is still not exhaustive and that events predicted by our pipeline
but not being present in the catalog might be in fact actual ICME as it will be explained in 3.5.2.

Statistically speaking, we ensure the consistency of the RL by comparing it to the list estab-
lished by Chi et al. [2016] that has the advantage of being extended over the same time period, as
well as being the one containing the most events.

Figure 3.3 compares the yearly occurrence frequencies of the two catalogs. Even if the RL has
more ICMEs, the trend observed in the annual variation of the number of ICMEs is conserved and
confirms that a whole solar cycle is included in our training set.

Figure 3.3: Yearly occurrence frequencies of ICMEs of the RL (red) and the list established by Chi et al. [2016]
(blue). The vertical dashed line indicate the yearly disposition of our training, validation and test set.

As displayed by the bottom panel of Figure 3.4, the number of events in the RL (in pink) is
larger than in the list of Chi et al. [2016] (in blue) (the overlap region appears in purple) but with
a comparable distribution in duration. The first row of Figure 3.4 also shows consistent distribu-
tions of the magnetic field and the thermal velocity between both lists. To ensure this similarity
as a proof of consistence, we compare the magnetic field and the thermal velocity of Chi et al.
[2016] ICME list with random intervals of data in which no ICME was found, the duration of these
intervals being distributed according to the duration distribution of our catalog (bottom panel).
This comparison in the second row of Figure 3.4 shows distributions with larger magnetic fields
and reduced thermal velocities in Chi et al. [2016] ICME list (in dark blue) than in the list without

2https://github.com/gautiernguyen/Automatic-detection-of-ICMEs-at-1-AU-a-deep-learning-approach
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ICMEs (in yellow) (overlap region in light blue). This is consistent with the expected ICMEs char-
acteristics used by experts for their identification [Zurbuchen and Richardson, 2006]. On the other
hand, this difference compared to the similarity we have for the two ICME lists (first row) ensures
that the ICME catalog we used in our identification process is consistent with the previous existing
ICME catalogs.

Figure 3.4: First row: distribution of the mean values over the whole ICME interval of the magnetic field
and thermal velocity, 〈B〉 and 〈Vth〉 compared for the list of Chi et al. [2016] (blue) and our ICME catalog
(pink) (overlap in purple). Second row: idem for the list of Chi et al. [2016] (blue) and random intervals of
solar wind in which there is no ICME (yellow) (overlap in light blue). Bottom Panel : distribution of ICME
duration for the list of Chi et al. [2016] and our ICME catalog (same color code as first row).

3.4 Algorithm

3.4.1 Scaling

We scale and normalize the data in order for each feature to have an average of 0 and a standard
deviation of 1 in the training set. For the i th of the j th feature, this is done applying the following
formula:

xi j ,scaled = xi j −µ j

σ j
(3.1)
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Where µ j and σ j are the average and the standard deviation of the j th feature of the training
set respectively.

This pre-process technique is particularly useful when used with a logistic regression or a neu-
ral network as it prevents an eventual feature preselection due to the differences in orders of mag-
nitude that can exist among them [Juszczak et al., 2002].

3.4.2 Windowing

The data is grouped into windows of a hundred different sizes (from 1 to 100 hours) that are sliding
on both our training and validation sets at a period corresponding to the global dataset sampling:
10 minutes. A window of data represents the values of the 33 input variables within this window
that will be treated simultaneously. Our initial dataset is then converted into 100 datasets, each of
them corresponding to a size of sliding window. Following this process, there are around 622000
windows of data in the training set, around 311000 in the test set and around 12960 in the valida-
tion set. In the following, we will refer to one of these datasets by calling it by its window size.

For each window size, the principle of the detection will stand in estimating a similarity param-
eter yi for each window of data Xi , using regression methods for classification purpose. Logically,
we would expect this parameter to be equal to 0 when no ICME intersects our window while it
shall be equal to 1 when a window perfectly matches an ICME. The similarity s window Xi has
with a given ICME could then easily be defined by :

s(ICME,Xi ) = dur ati on(Xi ∩ ICME)

dur ati on(Xi ∪ ICME)
(3.2)

Given an ICME list and a window, we then define the expected similarity of the window Xi as:

s(Xi ) = max
ICMEi nl i st

s(ICME,Xi ) (3.3)

The aim of each regression would then stand in predicting a similarity yi in order to make it as
close to the expected similarity s(Xi ) as possible.

Stacked together, similarities of many windows make a so-called 2D similarity map. An exam-
ple of such a map for a specific ICME is shown on Figure 3.2, fifth panel. The similarity is coded
with the color bar, and the ordinate represents the window size from 1 to 100 hours. The maxi-
mum is reached in the middle of the event for the window corresponding to the ICME size. One
can see that the similarity decreases faster in time for small windows than for large windows. In-
deed, as they slide along time, small windows cease to see high similarities pretty quickly while
large windows remain in range of ICME-like data - and thus high similarities - for quite longer
times.

The orange bars in Figure 3.5 represent the distribution in similarity we have on the test set for
a window size of 30 hours. Having the largest part of the computed similarity being equal to 0 is
not surprising as the ICME are very seldom events in the solar wind .

3.4.3 Convolutional Neural Network (CNN)

Principle

For each window size, we fit a Convolutional Neural Network (CNN) to the associated set of sim-
ilarities. CNNs are a specific kind of neural networks particularly good when it comes to images
classification and object detection.

Here, each neuron is a learnable filter that, slided (convolved) on the data, produces a feature
map that tries to recognize a specific pattern in the input data. The aim of additional layers is then
here to go deeper in the details of the input data by fitting the characteristics of additional filters.

When moving from a layer to another, it can often be useful to reduce the dimensional of the
produced feature maps by exhibiting their maximum. This operation, called max pooling, allows
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Figure 3.5: Distribution of the similarity values we have on the test set for a window size of 30 hours (orange)
and the similarity repartition we have in our prediction for a window size of 30 hours (green).

both a computational gain in time and hampers the risk of overfitting by reducing the dimension-
ality of the input of the following neurons.

The final outputs of the last hidden layer are concatenated or flattened and used as the input
of a fully interconnected neural network that produces the final prediction of the algorithm.

Architecture

A schematic representation of the CNN trained in this chapter is shown in Figure 3.6.
The architecture of each CNN is widely adapted from the one found in Yang et al. [2015] that

proved its efficiency for the recognition of patterns in time series data and is made as follows:

1. A first convolutional layer made of 80 filters activated with ReLU

2. Max pooling

3. A second convolutional layer made of 80 filters activated with ReLU

4. Max Pooling

5. A third convolutional layer made of 80 filters activated with ReLU

6. Flattening

7. A neural network made of one hidden layer of 10 units activated with ReLU

8. A final output cell activated with the sigmoid function.

In order to avoid the overfit of the training set, a fraction of the nodes that constitute the fully
connected network layer are randomly dropped out at each step of the training phase. This oper-
ation ensures the robustness of the features learned by the algorithm and thus reduces the overfit.

The algorithm was trained for 100 epochs for a batch size of 128 samples, one of the commonly
used batch sizes when it comes to the design of neural networks [Bengio, 2012], and we minimized

the log-cosh cost function J(X) = 1
n

n∑
i=1

log[cosh(yi − s(Xi ))] that has the advantage of being less

sensitive to falsely predicted value than the RMSE [Grover, 2019].
We minimize the cost function using the Stochastic Gradient Descent Algorithm [Kiefer and

Wolfowitz, 1952] that has the advantage of being computationally cheaper than gradient descent
while converging faster and being more likely to avoid local minima.
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Figure 3.6: Illustration of the CNN architecture we used to estimate the similarity parameter for each win-
dow size.

3.4.4 Post-processing

The first panel of Figure 3.7 represents the expected similarity coded with the color bar computed
for each of 100 CNNs (windows) during the period between the 8th of April 2012 and the 20th of
July 2012. The raw predictions of the similarities (second panel) for each of these 100 CNNs are
remarkably consistent with the expected similarities. However a small noise is present in this raw
prediction, which is then smoothed using a median filter, and gives us the third panel of Figure
3.7.

It is worth noting already from this figure that the high predicted similarity values are very
well localized in time on intervals very close to those of cataloged ICME, and there is a quite high
contrast with the ambient solar wind background.

Additionally, the predicted similarity seems to be high for intermediate window sizes and lower
for small and large windows, indicating the algorithm has well learned the typical length of the
ICMEs from the training set. In addition, it is remarkable that ICMEs that are quite close from
each other are not well separated by large windows, but often are separated by smaller ones. This
is quite reasonable since, to the CNN, large windows features roughly look like a single ICME,
whereas small windows actually have a chance to see data intervals that do not. The CNN here
faces the same dilemma an observer would: "does an ICME cover the whole 100 hours, or are there
two ICMEs, one closely following the other?". In these cases of true observational ambiguity, our
2D similarity map does not choose for the observer but rather provides a multi-scale suggestion.

The smoothed predicted similarity is also shown on the bottom panel of Figure 3.2 for an in-
terval zoomed over a single ICME. Like the expected similarity, one can see a faster decrease of the
similarity for small windows than for the large ones. It is worth noting that plotting the predicted
similarity together with data is of great interest to very quickly and unambiguously identify visu-
ally ICMEs or periods of ICMEs, thereby shortening the usually long phases of data selection for
observers. The first ICME of Figure 3.7 is a FN. Interestingly though, 2D maps still reveal a weak
but coherent signature over the 100 - independent - CNN predictions, and that is visually detached
from the ambient solar wind zero similarity. The penultimate predicted ICME is a FP even though
the 2D maps reveal a strong signature for this event. The nature of these two types of events will
be detailed in the next section.
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Figure 3.7: Three different representations of the similarity parameter during the period between 8 April
2012 and 20 July 2012. Top : Theoretical similarity computed from our prior ICME list, colored regions
correspond to an actual ICME of our catalog. Middle : raw predictions obtained from each of our CNN.
Bottom: Actual prediction of the pipeline after applying a median-filter to the raw predictions.

3.4.5 Automatization

The evaluation of the detection performance requires an automatization process that converts
our predicted similarity into a list of predicted ICMEs. An important by-product of this process
is the production of a reproducible and objective ICME catalog that can thus easily be updated
incrementally with time without human intervention.

Because we only want to generate a list of start and end times, and because of noise in the win-
dow size dimension persisting after the application of the median filter, we reduce the predicted
similarity to its time dependent integral along the window size axis, which defines the so-called
reduced similarity.

We then regularize it by using a multiple-gaussian fit. An example of the fitted reduced simi-
larity is shown as the green curve on Figure 3.8 for the period running from July 3rd 2012 to July
7th 2012.

A primary criterion is then applied to determine intervals within which ICME candidates may
be searched. These intervals are defined as those for which the similarity exceeds a so-called deci-
sion threshold, shown as the dashed horizontal line in Figure 3.8.

Finally, a peak detection algorithm is applied to each of these intervals, from which the peak
times and the half-height times will define our center, start and end times for predicted ICMEs.

To deal with the possible ambiguity that can exist for two close-by events, neighboring pre-
dicted ICMEs by less than two hours will be merged and considered as a single predicted event.
This is the case for the fourth predicted ICME of Figure 3.8.

Finally, a predicted ICME having a duration of less than 2 hours is automatically considered as
an inconsistent prediction since the CNN has never learned such a short duration event from our
list, and is removed from the predicted list.

Predicted ICME intervals are represented on Figure 3.8 as green rectangles.
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Figure 3.8: Expected (red) and predicted (green) reduced similarities for the period between the 3rd July
2012 and the 17th of July 2012. The red regions correspond to expected ICMEs from our catalog. Green
regions correspond to predicted ICMEs after applying gaussian fitting and peak detection. The dashed line
indicates the decision threshold (here equal to 12) we choose to make our prediction. The performances
associated to this threshold correspond to the black dot of Figure 3.10.

3.5 Results

Having elaborated our pipeline, summarized on Figure 3.9, with the training and validation set,
we can move on evaluating its performance by running it on the test set.

The performance of our method simply consists in comparing the predicted ICME list, ob-
tained as explained above, with the ICMEs of the RL that are in the test period. It is important to
remind that the RL, as any catalog, is not exhaustive and there are still ICME-like intervals never
labeled in WIND data. Furthermore, time series represent a one dimensional slice into a non-
stationary three-dimensional structure, therefore start and end times isolating events are based
on an interpretation of the data. Labels do not represent an absolute truth, they vary from one
expert to the other and one cannot expect any algorithm to outperform human in this subjective
task. As a consequence, performance metrics are not perfect, their estimate cannot be expected
to reach 100%.

3.5.1 Precision and recall

Test ICME intervals are shown on Figure 3.8 as red rectangles. An existing (red) ICME is then
considered as detected if more than 50% of its duration is overlapped by a predicted (green) ICME.

Due to the possible ambiguity that can exist in the transition from an ICME to a neighboring
one, two ICMEs of our catalog are allowed to be detected by the same predicted ICME, which is
the case for the first predicted ICME of Figure 3.8.

Computing the recall and precision for a continuously varying decision threshold gives us the
evolution of the precision as a function of the recall, as represented in the precision-recall curve
in Figure 3.10. The low values of this threshold allow weak similarity peaks to be seen as predicted
ICMEs, thereby increasing FPs but decreasing FNs. Inversely, high decision thresholds result in
less FPs but more FNs. The irregularities that are found on the curve, especially for high preci-
sion can be explained by the total number of predicted ICMEs that changes when we change our
decision threshold. High recall and high precision regions are shown on Figure 3.10 as colored
rectangles, the performances of our method in these regions will be detailed later-on. A perfect
algorithm works at recall and precision 1. In practice it is rarely the case and observers will need to
adjust the decision threshold so to maximize the recall, at the price of a smaller precision, or vice
versa, depending on the objective.
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Figure 3.9: Scheme of our pipeline that converts raw data from WIND spacecraft into a generated ICME
catalog, blocks with black contours represents operation lead on the data while blocks without contour
represent the state of the dataset at the various steps of the pipeline. The dashed boxes indicate the different
major steps of our pipeline.
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Figure 3.10 shows recall and precision obtained in a previous work proposing automatic ICME
detection [Lepping et al., 2005]. Because this method consists in fixing several arbitrary thresholds,
it cannot easily produce precision recall curves, and only few points are to be compared with.
Unlike it, our method comes with a single handle for the decision threshold, that moreover does
not require prior knowledge of the physical nature of the events to be detected. Let us note here
that at equivalent values of recall (resp. precision), our method leads to higher precision (resp.
recall) and even reaches values of precision and recall that had not been reached by automatic
identification methods yet.

To ensure the capacity our algorithm has to generalize on unknown data we also made a test
of our whole pipeline on the training set and compared the performances of both predictions.

To do so, we compute the average-precision associated to the different precision-recall curves.
Since our problem is limited by the ambiguity we have on the starting and ending times of the
ICME signature combined with the non-exhaustivity of the RL, we do not expect such a high score.
The average precision on our training set is 0.743 while it is 0.697 on the test set. As the training set
has been used to set the characteristics of the filters of the CNN, it is not surprising to see a higher
score on this prediction. The two scores are in the same order of value, which proves the capacity
our algorithm has to generalize the knowledge about ICMEs it learned to unknown data.

Figure 3.10: Precision-recall curve (black line) of our method. The region in blue indicates zones of high
recall and fair precision where flux ropes and small ICME-like events can be detected. The region in yellow
maps the high-precision zone for which the greatest part of the predicted ICMEs are in our catalog but do
not represent it fully. The three markers indicate the performances of the previous attempts of ICME auto-
matic identification : Lepping et al. [2005] strict (leftward triangle) and loose (rightward triangle) criteria.
The black dot in the high precision region is associated with the decision threshold presented in Figure 3.8
and with the discussion of subsection 3.5.3. The black dot in the high recall region represents the working
point used in the discussion of subsection 3.5.2.

3.5.2 High-recall region

The high recall region is represented by the blue rectangle in the Figure 3.10. In this region, our
method detects the greatest part of the ICMEs present in the test set while generating a fair number
of FPs.

To quantify the performances of our method, we selected the working point shown in Figure
3.10. At this point, 197 of the 232 ICMEs present in our test period are detected, which means
a total recall of 84% and 160 of the 330 predicted ICMEs are considered as FPs, meaning a total
precision of 51%.
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The difference we notice between the number of detected ICMEs and the number of predicted
ICMEs that are not FPs (170) comes from the fact that we allow neighboring ICMEs to be detected
by the same predicted event.

For this decision threshold, 136 of the 150 ICMEs present in the list of Chi et al. [2016] were
detected, which represents a recall of 91 % on this list. Likewise, we detected 100 of the 111 ICMEs
present in the list of Nieves-Chinchilla et al. [2018] with a recall being equal to 90%. As our recall is
close to its maximal value, the FNs we have correspond to ICMEs that will not be detected by this
model whatever our decision threshold is. It is then in our interest to characterize these events.
For the decision threshold we chose, we obtained 35 FNs, 10 were exclusive to the list of Chi et al.
[2016], 7 came from the list of Nieves-Chinchilla et al. [2018], 3 were common to both lists and the
15 remaining came from the ICMEs we added after the different tests of our pipeline.

In the Figure 3.11, we represent the average reduced similarity of each ICME of the test set
as a function of the time shift with the closest predicted ICME (that can also be a FP). The red
points represent detected ICMEs while the blue ones represent the FNs. The size of each point is
proportional to the associated ICME duration. The dashed line represents the decision threshold
we chose to make our prediction. For a detected ICME, the closest predicted ICME is expected to
be as close to the ICME as possible. This is why the time shift is usually low for detected ICMEs.
The reason for which we can have more than 15 hours in the shift stands in the possibility we
have to merge the predicted ICMEs. Additionally, it is not surprising to notice that the greatest
majority of the detected ICMEs have an average reduced similarity above the decision threshold.
Concerning the FNs, we can split them in two categories. On the one hand, 11 of them have an
average reduced similarity below the decision threshold and can in fact be considered too weak in
both their duration and pattern to be detected. On the other hand, all of the FNs with an average
reduced similarity above the threshold are distant from a predicted ICME by less than 30 hours.
Because of this proximity, the pipeline might not be able to distinguish the transition from an
ICME to another and the prediction of the FN is then absorbed by its closest neighbor. Additionally,
all of the FNs appear to have a short duration. Consequently, our FNs are short ICMEs that are
either too weak to be detected, or close to another predicted ICME that entails their detection.

Figure 3.11: Average reduced similarity for each ICME of our test period as a function of the temporal shift
to the closest predicted ICME. Red corresponds to detected ICME and blue corresponds to the FNs. The
dashed line indicate the decision threshold we chose to make the prediction. The size of the circles corre-
sponds to the duration of the event.

Similarly, a characterization of our FPs is necessary to understand the origin of the errors made
by the model. Additionally, we remind that the RL cannot be considered as exhaustive, thus inves-
tigating FPs constitutes an opportunity to potentially discover ICMEs that had not been discovered
yet.

Figure 3.12 represents the distribution of the ICMEs predicted by our pipeline according to
their duration and the mean value of the reduced similarity during the event. As the FPs are a sub-
set of these predicted ICMEs, the red bins then represent the predicted ICME that do contain one
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or several ICMEs of our catalog. The possibility a predicted ICME has to cover several expected
ICMEs is also at the origin of the difference we notice with the duration distribution shown in Fig-
ure 3.4. The left panel shows the great majority of the predicted ICMEs that have a duration below
20 hours are FPs. Similarly, the right panel shows that most of the ICMEs predicted with a low
mean value of the reduced similarity are actually FPs. This confirms that augmenting the decision
threshold is a good way to drastically reduce the number of FPs. Most of our FPs appear to have a
short duration and a low mean value of the reduced similarity. An efficient way of ignoring them
would then stand in the establishment of criteria according to these two parameters. However, as
our catalog is assumed to be not exhaustive yet, some of these FPs might in fact be regions in the
dataset where there could be one or several ICMEs that have not been discovered yet.

Figure 3.12: Distribution of the duration (left) and the mean value of the integral (right) for the predicted
ICMEs (red) and the FPs (blue).

For these reasons, we inspected visually the 160 supposedly FPs and made a distinction be-
tween the ICME-like FPs, that did contained one or several time intervals that were susceptible of
being actual ICME, and the non ICME-like FPs. A FP was considered as ICME-like if fitted at least
three of the criteria used by Chi et al. [2016] to identify ICME manually. 102 of our 160 FPs were
considered to be ICME-like while 58 others were considered to be non ICME-like.

Figure 3.13 represents the in-situ observation of the FP predicted by the models in the Figure
3.8 between the 11th of July 2012 and the 14th of July 2012 with the same panels than the one
exposed in Figure 3.2. Between the two vertical solid lines that indicate the boundaries of the
FP, one can see two ICME-like regions. This appears very clearly on the 2D maps for predicted
similarity (bottom panel in Figure 3.13) with a single spot for high window sizes that splits into
two for the low window sizes. In this case, the FP appear to have a large duration and a high mean
value of the reduced similarity. One could then wonder if these two parameters could also serve
as criteria to discriminate the ICME-like from the non ICME-like among the FP.

Figure 3.14 represents the distribution of the FPs predicted by our pipeline according to their
duration and the mean value of the reduced similarity during the event. The blue bins represent
the non ICME-like FPs while the green bins represent the ICME-like. Even if there is no real tem-
poral discrimination visible on the left panel, FPs having a duration higher than 20 hr are likely
to contain one or several ICME-like regions while the non-ICME like FPs usually have a short du-
ration below 20 hr. Looking at the right panel, the reduced similarity then appears as a useful
parameter to identify ICME-like FPs . Indeed, the great majority of the non ICME-like appear to
have the lowest mean reduced similarity values while all but one FPs having the highest mean
reduced similarity values are in fact ICME-like.

Setting our decision threshold in order to be in the high recall zone would then be useful to
detect additional ICMEs in order to complete our current catalog. During the numerous trials of
the pipeline, we then regularly checked the FPs predicted by our models in order to complete our
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Figure 3.13: Solar wind observation of the FP predicted by our pipeline in the figure 3.8 that contains two
ICME-like events. The solid vertical lines delimitate the boundaries of the predicted event. From the top to
the bottom are represented : the magnetic field amplitude and components, the plasma β, the solar wind
velocity, the thermal velocity, the similarity the ICME have with sliding windows of various sizes (from 1 to
100 Hr) and the similarity predicted by our method.

59



CHAPTER 3. AN EXAMPLE OF AMBIGUOUSLY LABELED PROBLEM: AUTOMATIC DETECTION
OF ICMES

Figure 3.14: Distribution of the duration (left) and the mean value of the integral (right) for the acrshortFP
depending if they are ICME-like (green) or not (blue).

catalog with potential new ICMEs. In order to find new ICMEs in the whole 1997-2015 period,
predictions were also made on the 1997-2003 and 2004-2009 period by using the remaining period
of the dataset for the training and the validation of our pipeline. This investigation led us to the
ICME catalog that was presented previously.

3.5.3 High-precision region

The high precision region is represented by the yellow rectangle in the Figure 3.10.
In this region, the models generate an ICME list having a low number of FPs which ensures

the consistency of the prediction. To quantify the performances of our method, we selected the
working point shown in Figure 3.10 that corresponds to the decision threshold we used in the
Figure 3.8.

At this point, 145 of the 232 ICMEs present in our test period are detected for a total recall of
62% and 25 of the 158 predicted ICMEs are considered as false positives for a total precision of
84%. For this decision threshold, 120 of the 150 ICMEs present in the list of Chi et al. [2016] were
detected, which represents a recall of 80 % on this list. Likewise, we detected 82 of the 111 ICMEs
present in the list of Nieves-Chinchilla et al. [2018] with a recall being equal to 74%. It is then worth
noting that even with a high value of precision we still manage to detect the great majority of the
previously detected ICMEs. The 87 FNs we obtained in this case were distributed as follows: 21 of
them were exclusive to the list of Chi et al. [2016], 20 came from Nieves-Chinchilla et al. [2018], 9
were common to both list and 37 came from the ICMEs we discovered after different tests of our
pipeline.

Following the distribution of the the average reduced similarity of the FNs in Figure 3.14, all but
one of the 25 FPs we obtain, including the one represented in the Figure 3.13, will be considered
as ICME-like and may contain one or several additional ICME we could add to our catalog.

By increasing our decision threshold, we ensure our pipeline will return ICMEs that have been
predicted with high values of similarities just as the one shown in Figure 3.2. The generated pre-
dicted list is then supposed to contain easy-to-detect ICMEs that could be used for additional
statistical study. To ensure it, we compared our predicted list to the ICMEs of our test period. Fig-
ure 3.15 shows the yearly occurrence frequencies of the two catalogs. As expected, the predicted
list is shorter than the test list because the increased value of the decision threshold reduced the
number of predictions. The two lists follow the same trend and both of them peak at the solar
maximum in 2012 which is a first argument for the consistency of our predicted list.
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Figure 3.15: Yearly occurrence frequencies of ICMEs of our catalog during our test period (blue) and the list
predicted by our pipeline (green) for the high precision point on Figure 3.10.

Figure 3.16 represents the distribution of the mean values of the magnetic field 〈B〉, the thermal
velocity 〈Vth〉 and the duration of our two catalogs, the left column corresponds to our test catalog
while the right corresponds to our predicted list. Looking at the third row of subplots, the ICMEs
we predict tend to be longer than the ICMEs of our catalog. This fact is partly due to the merge we
did in our processing part as explained in the subsection 3.4.6. Nevertheless, the two first rows of
supblots show similar distribution in magnetic field and thermal velocity. This confirms that our
pipeline predicts consistent ICMEs that can be used by an external user for statistical studies.
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Figure 3.16: Distribution of the mean values of different parameters of the ICMEs in our test period (blue)
and of the predicted ICMEs in our high precision region(green). From top to bottom are represented: 〈B〉,
〈Vth〉 and the duration.
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3.6 Robustness

3.6.1 Importance of the various features as ICME indicators

To determine the relative importance of our different physical variables as important ICME indi-
cators, we trained our pipeline on various configurations of our initial training set and compared
the predictions that were made on our test set. The configurations we investigated are as follows :

• By considering solely the magnetic field magnitude and components data

• By considering the magnetic field data, the spectrogram and the β

• By considering the proton fluxes only

• By considering the densities of protons and α particles only

Figure 3.17 shows the similarity parameter which is expected (top panel) and predicted for the
hundred windows from 1 to 100 hours in each of the above configurations on the same period
between 8 April 2012 and 20 July 2012 as Figure 3.7. On the right part of the figure, the ICMEs
that had been predicted with the strongest values of similarity are still detected with high values
of similarity for the three first different arrangements of features. This proves the ability of our
method to detect an ICME with missing parameters which is to say when data from an instrument
are not available. Surprisingly, the lone measurements of densities can provide a fair detection
of ICMEs despite the enhanced noise in this case. The prediction based on the densities values
is even the only combination of features that detects the third ICME of Figure 3.17 apart from
the detection based on our complete dataset. Similarly, the prediction on the lone magnetic field
components and amplitude is the only arrangement of features that detects the fourth ICME.

As for visual detection of ICMEs, the magnetic field seems to play a key role in the CNN’s learn-
ing. The possibility of detecting an ICME by using a specific set of features rather than an other is
consistent with the possibility ICMEs have to partially fulfill the criteria generally used to detect
them manually [Zurbuchen and Richardson, 2006]. The fact that no ICME during the period of
Figure 3.17 detected by one of the subsets of features has not been also detected by our complete
dataset indicates the importance each feature has in the characterization of the specific signatures
of ICMEs as well as the importance of considering them altogether.

To understand the impact of removing features, we compute the precision-recall curves for
each configuration that are shown in Figure 3.18. The average precision is then computed for each
dataset configuration, these values are shown in Table 3.1. Unsurprisingly, the highest value of
this area is obtained for the complete dataset while the predictions based on the proton fluxes
and the one based on the densities have the lowest scores. This confirms the interest we have
in considering the most complete set of features. The high values of the area obtained for the
predictions based on the magnetic field, β and the proton fluxes indicate the major importance
these features have on the automatic detection of ICMEs.

Dataset features Average precision
All 0.697

B,Bx ,By ,Bz 0.593
B,Bx ,By ,Bz ,β and proton fluxes 0.621

Proton fluxes only 0.486
Np ,Np,nl ,Na,nl 0.334

Table 3.1: Areas under the precision recall curve for different dataset configurations, higher values indicate
more efficient detection.
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Figure 3.17: Estimation of the similarity parameter for different sets of features during the period between
the 3rd of July 2012 and the 17th of July 2012. From top to bottom are represented : the expected sim-
ilarity, the prediction with the complete dataset, the prediction based only on the magnetic field and its
components, the prediction based on the magnetic field, the plasma parameter β and the proton fluxes, the
prediction based on the lone proton fluxes and the prediction based on the lone measures of the protons
and α particles.

Figure 3.18: Precision recall curves of our method using different dataset features : Our complete dataset
(black), the lone magnetic field information (blue), the magnetic field, the plasma β and the proton fluxes
(green), the proton fluxes only (red) and the proton and α particles densities only (yellow).
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3.6.2 Influence of the number of ICMEs in the training period

Statistical learning methods, in particular deep learning algorithms, often need a large quantity of
data to give meaningful predictions. In this section, we investigate the influence of the number of
ICMEs in our training period and its impact on the general performances of the method. We thus
progressively reduce the length of our training set by removing periods of data and thus ICMEs.
This approach also allows us to investigate the real interest of considering a whole solar cycle of
data during our training phase. Like in the previous subsection, we compute the average precision
for each training period.

The evolution of this value as a function of the number of ICMEs in the training period is shown
in Figure 3.19. The different tests we made are indicated with a cross x. The more we add ICMEs
in our training period, the higher our average precision, which is consistent with the necessity of
having a large quantity of data. However, the average precision starts with a sharp increase and
evolves rapidly towards a weak inclination. The sharp increase indicates that a very low number
of ICMEs are needed in order to reach fair performances.

Surprisingly, it is even possible to start detecting ICMEs with the knowledge given by a single
event as shown by the second point of the Figure 3.19. It is very interesting to note that learning
from few ICMEs with the complete set of features give similar performances than the whole train-
ing period with only particle densities or proton flux. Even if the progression is slower later-on,
additional ICMEs keep improving the performances and it is then worth taking them into account.

Figure 3.19: Average precision of our pipeline as a function of the number of ICMEs present in the training
period we considered, the tests we made are represented by the crosses. The grey dashed line represent the
estimation of what the average precision would be if additional ICMEs were added to our training period.

From then on, we could estimate the number of ICMEs we would need in order to reach a
certain level of performances. This estimation is shown with the gray dashed line in the Figure
3.19. At first sight, as many ICMEs as what we currently have would be needed for an increase
in average precision by 10 %. However, this expected number of ICMEs could be easily increased
by completing our list with the FPs that appeared to be ICME-like and by extending our dataset
period to the years before October 1997 and after 2015.

Additionally, we showed in previous subsections the capacity our pipeline had to predict ICMEs
with one or several missing features. Coupled with the diversity of spacecraft that have been
providing in-situ measurements of ICMEs for the past 22 years (STEREO, Helios, Ulysse, ACE,...),
one could perfectly imagine a dataset composed of the in-situ measurements provided by various
spacecraft standardized in order to have consistent features and sampling for each spacecraft.

This would increase drastically the number of given ICMEs and thus the performance of our
pipeline provided a good compromise between the different instruments and products of each
mission is found.
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3.6.3 Influence of the training, validating and testing period

As mentioned in the subsection 3.5, we used our pipeline on three different training, validating
and testing period. Changing the attribution of our three datasets period also has the interest of
investigating the influence of the training period and the changes in WIND trajectory from 1997
to 2016 on our prediction. To do so, we changed the periods of our training, validation and test set
as follows:

• Training period from the 1st of April 2004 to the 31st of December 2015, validation between
the 1st of January 2004 and the 30th of March 2004 and test on the 1997-2003 period

• Training on the 1997-2003 period and from the 1st of April 2010 to the 31st of December
2015, validation between the 1st of January and the 30th of March 2010 and test on the 2004-
2009 period

For each distribution, the average precision on the prediction made on the test set is shown
on the Table 3.2. In the three cases we find similar values, which is consistent with the number of
ICMEs (425, 530 and 353 respectively) contained in each training period and the average precision
estimation provided by Figure 3.19. This confirms the importance of the diversity and of the num-
ber of ICMEs seen by the CNN during the training phase on the quality of the prediction made by
our pipeline.

Considering these three values, the mean average precision for our pipeline is then 0.694±
0.003. Additionally, finding similar values for the three periods indicate that the changes in WIND
trajectory especially during the 1997-2003 do not affect our results.

Testing period Average precision
2010-2015 0.697
2004-2009 0.690
1997-2003 0.694

Table 3.2: Areas under the precision recall curve for different testing periods

3.7 Global quality of the prediction

The ambiguity that exists in the definition of the starting and ending times of an ICME combined
of the non-exhaustivity of the different observers lists tends to limit the overview an event-based
score would give on the quality of the detection made by our pipeline. It is thus interesting to also
quantify to what extent the predicted list is globally similar to our list, and compare this global
similarity to those of various independent expert lists covering the same time period.

For each prediction period, we computed the Jaccard index, defined in the chapter 2, for each
decision threshold on our reduced similarity and represented the evolution of this index as a func-
tion of the temporal size of the list predicted by our pipeline in Figure 3.20.

High (resp. low) values of the total duration of the predicted list will correspond to a low (resp.
high) decision threshold as the predicted list in this case will contain more (resp. less) events. The
low value of the Jaccard in these cases is then mainly due to the important number of FPs (resp.
FNs). For each of our prediction period, we notice a similar evolution of the Jaccard that peaks
around the temporal size of the reference list represented by the vertical dashed line (that will vary
with the considered period according to Figure 3.3). This proximity can be understood as the peak
will correspond to the best compromise we can find between a high recall and a high precision.

To compare the quality of our prediction regarding the global similarity that exists between
different expert lists, we computed the Jaccard between lists that had the same number of events
in one of the three prediction periods that we considered (e.g Chi et al. [2016]; Nieves-Chinchilla
et al. [2018]; Richardson and Cane [2010] and the RL for the three periods and Jian et al. [2006] for
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the 1997-2003 and the 2004-2009 periods). The min-max interval for the different values of the
Jaccard we found is represented on Figure 3.20 by the gray zone. The values we find that barely
exceeds 50% find their origin in the non-exhaustivity of the lists and the ambiguity that exists in
the definition of the temporal boundaries of the ICMEs. Below this interval, the generated list
contains too many FPs or not enough events to give a significant insight about ICMEs.

Inside and above the interval, the list generated by our pipeline is as or more similar to our
reference list than the human made lists between them. This is where the generated ICME lists
can be used for further work such as the detection of additional events or statistical studies.

Figure 3.20: Jaccard between our ICME list and the generated ICME list as a function of the total duration
of the generated ICME list (in days) for each prediction period: 1997–2003 (red), 2004–2009 (green), and
2010–2015 (blue). The vertical dashed lines represent the total duration of our list in each considered period.
The gray line represents the confidence interval we have on the Jaccard between human-made lists.

In the three cases, a non negligible part of the Jaccards are inside of above the typical expert
list Jaccards lying in the gray zone. This proves that the lists generated by our pipeline are as glob-
ally similar to the RL as experts lists are to one another, and can then be used, either for further
detections or statistical studies.

3.8 Conclusion

Using Convolutional Neural Networks that estimated a similarity parameter for windows of data
of various sizes, from 1 to 100hr, and a post processing method based on peak detection, we de-
veloped a pipeline that provides an automatic ICME detection from the WIND spacecraft in-situ
measurements. The 2D-similarity map the pipeline returned and that is shown in Figure 3.7 pro-
vides an interesting visual indicator of zones of interest for an external user particularly in the case
of neighbored ICMEs or multiple events with various duration3.

Our pipeline also has the ability to generate generic and reproducible ICME catalogs with a
precision and a recall that has not been reached yet. From a Jaccard point of view, the list we
predict are as comparable to our RL as two experts lists are together. Depending on the decision
threshold we set on our detection, the pipeline offers the possibility to detect additional ICMEs
(high-recall case) or to generate consistent and reproducible ICME catalogs that could be used for
further statistical study (high-precision case).

From the insight we had on the FNs in the high recall region, we showed that the ICMEs that
are never detected by our pipeline are either short and too weak to be detected or too close to an-
other predicted ICME to be distinguished by the pipeline as a separate one. Up to now, a total of
148 additional ICMEs have been detected and were added to our WIND ICME catalog. Neverthe-
less, our catalog is not exhaustive yet and there are still ICMEs that have not been discovered yet.

3Additional prediction examples of our pipeline can be found in the appendix B.
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Additional runs of the pipeline shall be needed in order to establish a consistent ICME catalog as
much exhaustive as possible.

By testing our pipeline on datasets with missing features, we proved that even if the prediction
was altered, our pipeline still has the capacity to detect ICMEs. On the first hand, this proves that
our pipeline can be used even when one or several instruments of the spacecraft are defective in
order to maintain a continuous prediction of ICMEs. On the other hand, this also proves that our
pipeline can easily be adapted to the data of other spacecraft that have been measuring ICMEs
over the past 22 years in different places of the solar system (Cluster, ACE, Stereo, Helios, Ulysse,
Venus Express...) and for which measured features might be missing.

The influence of the number of ICMEs being present in the training set has been investigated
by training our pipeline with reduced datasets. Even if a few number of ICMEs is enough to de-
tect events properly, a large number of additional events is required if we want the quality of the
prediction to improve significantly. These additional ICMEs could be added by considering ad-
ditional training period such as the 2016-2018 period, by looking more precisely at the ICME-like
FP that were found by our pipeline or even by considering the data provided by other spacecraft.
Another way we would have to improve our performances would stand in the fine tuning of the
parameters of the CNN we used to make our prediction.

The prediction of ICMEs has been established without giving to the algorithm any initial knowl-
edge on ICMEs. The presence of an ICME in a given window of data being indicated to the algo-
rithm through the similarity that only depends on the event temporal boundaries. This indicates
the adaptability of our pipeline which could be used to detect other phenomena likely to be mea-
sured by spacecraft such as the sheaths of ICMEs, Co-rotating Interaction regions or Stream Inter-
action regions.

Finally, we established our method starting with an ambiguous input ICME list and proved
their capability to generate events list containing the greatest part of events already detected by
human observers while adding FPs that could be considered as actual events by an additional
external observer. These studies made on the FPs and FNs of our pipeline therefore show the
necessity, whenever the label is ambiguous, to go beyond the strict values of the used evaluation
metrics. And the underlying importance of the insight given on the FPs and FNs of our method in
the frame of massive event detection. A very similar insight on the errors made by our detection
algorithms will be given in the next chapters where we will encounter the ambiguity issue again
in both the problem of the automatic detection of magnetopause crossings and the automatic
detection of magnetic reconnection jets.
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Chapter Summary

• In this chapter, we use CNNs on sliding windows and peak detection, to provide a fast, au-
tomatic and multi-scale detection of ICMEs in the in-situ data measurement provided by
WIND.

• The pipeline we developed returns 2D-similarity maps that provide visual indications about
the zones of interest in the data for an external observer labeling the data manually.

• Combining these maps to peak detection, our pipeline has the ability to generate generic
and reproducible ICMEs catalogs with a precision and recall that passes the performance of
the other existing detection method based on manual, empirical thresholds.

• Depending on the decision threshold we set for the production of the catalogs, they can be
used either to detect additional ICMEs, either to study these events from a statistical point
of view.

• Although less inaccurate, the method also works with one or several parameters and im-
proves its performances by increasing the amount of input data.

• From a Jaccard point of view, the list we generate is as comparable to the list used to evaluate
the algorithm than the lists manually elaborated by two different external observers.

• As the method uses no particular physical knowledge about ICMEs, the elaboration of our
method paves the way for the automatic detection of the other large-scale events measured
by solar monitors.
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CHAPTER 4. AUTOMATIC CLASSIFICATION OF THE THREE NEAR-EARTH REGIONS

4.1 Introduction

At first order, the magnetopause and the bow shock are the boundaries of three distinct regions of
the near-Earth environment: the magnetosphere, the magnetosheath and the solar wind.

By definition, the shape and location of these boundaries do depend on the upstream solar
wind conditions [Fairfield, 1971].

The ever-growing quantity of near-Earth in-situ data allowed the realisation of statistical stud-
ies dedicated to the position, shape and dynamics of both the magnetopause (Paschmann et al.
[2018], Němeček et al. [2020] and references therein) and the bow shock (Kruparova et al. [2019]
and references therein). Following these studies comes the task of their modelling and numerous
are the existing magnetopause (Lin et al. [2010]; Shue et al. [1997]; Wang et al. [2013] and refer-
ences therein) and bow shock (Farris and Russell [1994]; Jeřáb et al. [2005] and references therein)
analytical or numerical models [Liu et al., 2015].

The first step of both empirical modelling and statistical studies is always the same and has
already been mentioned in the chapter 1: establishing a consistent catalog of boundary crossings
from the streaming in-situ data provided by missions of interest. Just like what was seen in the
previous chapter, this appears to be a time-consuming, ambiguous and poorly reproducible task
that should be automatized.

Nevertheless, the problem here is slightly different from detecting the beginning and ending
date of an event, as seen with the ICMEs, as it consists here in finding the transition from a certain
region in the data to another. In the former, an ICME is a spatial structure moving in a specific
medium, the solar wind, that is measured when its trajectory encounters a spacecraft. The begin-
ning and ending dates of the event then correspond to the entry and the exit of the structure by
the spacecraft. In the latter, the before and the after of a crossing correspond to stable conditions
reached on both sides of the boundary. In this context, no proper beginning or ending time can be
defined objectively and the lone crossing of the boundary is not enough to provide information on
the structure of the boundary . The method we presented in the previous chapter is consequently
not adaptable here and the simplest way to achieve it then stands in training a model to classify
the three near-Earth regions and finding the transitions intervals.

The in-situ measurements made by a spacecraft that went through these three regions are
shown in Figure 4.1 where are represented from top to bottom the proton density, the magnetic
field components, the velocity components and the omnidirectional energy fluxes of ions mea-
sured by THEMIS. The last panel will be explained in the following sections. This representation
illustrates the typical values of these physical parameters in each of the region that we presented
in chapter 1. The three regions are easily distinguishable by eye and the first method we could
think about in this classification task would be to use manually set thresholds. Using the data pro-
vided by the five THEMIS spacecraft coupled with the solar wind conditions provided by WIND,
Jelínek et al. [2012] established a method based on thresholds on the magnetic field amplitude B
and the proton density Np normalized by the IMF amplitude and proton density. They used this
method to identify the three near-Earth regions and eventually build crossings lists from this clas-
sification. All the principle of the method then consists in manually setting the two straight lines
that best separate the three regions in the (Np , B) plane in a similar way than what is shown in
Figure 4.12. Nevertheless, this still requires the manual setting of thresholds on a reduced number
of parameters and there is additionally no guarantee on how well they will do on an unknown set
of data and the separability of these two features presented here is not guaranteed on the whole
magnetopause, especially in the case of nightside, flanks or high latitude boundary crossings. The
method could thus be improved with additional features such as the amplitude of the ion bulk
velocity or the ion temperature but this would lead to the establishment of manual thresholds in a
N-dimensional space, which is usually a tricky task when done manually. Moreover, the best value
found for these thresholds was not shared. The exploitation of this method by an external user
thus requires to start the threshold setting all again from scratch.

Once again, machine learning appears as an interesting way to improve this automatization.
The objective of this chapter is then to elaborate a machine learning based method that auto-
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matically classifies the three near-Earth regions by looking at the magnetic field and the plasma
moments provided by spacecraft of different missions. This method shall then be used to au-
tomatically elaborate massive and reproducible boundary crossings catalogs that will find their
usefulness in the two next Chapters.

After presenting the data of the different missions we are concerned about, most of them being
also used in the two next chapter, and the associated labels, we present the algorithm we use and
why we choose it. We then evaluate its performances, investigate its adaptability to various mis-
sions: Double Star, MMS, Cluster and ARTEMIS. The performances of our method are then com-
pared to a manually-set threshold method and is finally used to automatically elaborate boundary
crossings catalogs.

4.2 Data

4.2.1 THEMIS

The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is a
NASA mission that was launched in February 2007. The mission consists of 5 identical spacecraft
(from A to E) each measuring ions and electrons distributions between ∼ 5 eV and ∼ 1 MeV and
computing the associated moments [Angelopoulos, 2008]. The five spacecraft have an equatorial
orbit with a slowly rotating apogee that allows the mission to provide a complete sweeping of the
dayside, the nightside, the dawnside and the duskside of the magnetosphere.

THEMIS B and C were the spacecraft with the largest apogee (respectively 30 and 20 Re) and
frequently went through the bow shock while THEMIS A, D and E apogees (respectively 12, 12 and
10 Re) are more likely to provide an orbit tangential to the magnetopause. After February 2010,
THEMIS B and C were inserted into the lunar orbit and became the Acceleration Reconnection
Turbulence & Electrodynamics of Moon’s Interaction with the Sun (ARTEMIS) mission.

We use the data between the 1st of March 2007 and the 1st of July 2019 and the data provided
by THEMIS B and C until the 1st of January 2010. Past the latter period and until the 1st of July
2019, the data we have from the spacecraft B and C will constitute the ARTEMIS dataset we will
especially use in the next section.

In both cases, the magnetic field measurements are provided by the Fluxgate Magnetometer
(FGM, Auster et al. [2008]) while the plasma moments are provided by the Electrostatic Analyzer
(ESA, McFadden et al. [2008]).

Concerning FGM, we used the spin-averaged data measurements of the magnetic field com-
ponents in GSM coordinates for which we had a sample for each 3 seconds.

ESA provides three main modes of data: Full with an approximate 90s resolution, Reduced
with an approximate resolution of 4s and Burst mode that provide high-resolution 3D distribution
functions for disjoints 5 minutes intervals. The reduced mode can be separated into two distinct
sub-modes. The Slow-Survey mode, where the particles distribution functions are composed of
32 omni directional energy channels and a singular solid-angle distribution, and the Fast-Survey
mode, where the distribution functions are composed of 24 energy channels and 50 solid-angle
distributions. Because of this singular solid-angle distribution, the computation of the ion bulk
velocity is impossible in the Slow-Survey mode. We then use the plasma moments provided by the
Fast-Survey reduced mode whenever they are available. We use the onboard moments to fill in the
data gaps in the Slow-Survey mode. The remaining holes in the plasma moments are filled with
the data measured in the full mode and linearly time interpolated in order to obtain streaming
time series of the ion density, velocity and temperature with a uniform resolution of 4s.

The ESA and FGM are then synchronized to obtain a unique dataset with a common resolution
of 5s.
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4.2.2 Double Star

Double Star is a sino-european mission that consists in two spacecraft: TC-1 and TC-2. TC-1 was
launched in December 2003 and introduced into an equatorial orbit while TC-2 was launched
in July 2004 and had a polar orbit. The mission ended with the atmospheric re-entry of TC-1 in
October 2007.

In this thesis, we will only consider the data provided by TC-1 during the whole mission period.
We used the magnetic field data provided by the Fluxgate Magnetometer (FGM, Carr et al.

[2005]) and the plasma moments provided by the Hot Ion Analyzer instrument (CIS-HIA, Faza-
kerley et al. [2005]) whenever these data were available. The data from the two instruments were
synchronized in order to obtain a streaming physical features dataset with a uniform temporal
resolution of 4s.

4.2.3 MMS

Magnetospheric Multiscale (MMS) is a NASA mission launched in March 2015. Specifically de-
signed for the study of near-Earth magnetic reconnection, the mission is made of 4 identical space-
craft that orbit in the equatorial plane with a close interspacecraft proximity while forming a tetra-
hedron. This close interspacecraft proximity (at a maximum being equal to 160 km) combined
with the high time resolution provided by the Fast Plasma Investigation (FPI, Pollock et al. [2016]
is designed for the measurement of electron-scale physics and the probing of EDR whenever the
plasma and electromagnetic signatures suggest the spacecraft came to the close surroundings of
an X-line region. At ion-scale, this small distance implies very similar interspacecraft moments
measurements and there is then no need to consider the 4 spacecraft in the frame of our study.

For this reason, we solely used the data provided by MMS 1 between September 2015 and July
2019.

The magnetic field information is measured by the Fluxgate Magnetometer (FGM, Russell et al.
[2016]) for which we use the survey mode that provides data with a temporal resolution of 4.5s.

The plasma moments and distribution functions are provided by FPI under three different
modes: the slow survey with an approximate 60s resolution, the Fast Survey with an approximate
resolution of 4.5s and the Burst mode switched on with a 150ms resolution whenever the space-
craft comes across a region of interest. The selection, analysis and labeling of such burst intervals
is the specific task of a group of experts called the Scientists In The Loop (SITL) that continuously
browse the data and choose the one of specific interest to be stored and transmitted to the ground
for analysis. Implying manual and visual labeling of data, this task is obviously subjective and
time-consuming and automatizing the data selection process is an interesting alternative to the
SITL.

In order to obtain a streaming continuous dataset with a similar resolution than the one we
use for the other missions, we use the measurements in the Fast Survey mode.

After removing the data gaps of each instrument, data from both FGM and FPI are synchro-
nized to obtain a streaming continuous MMS dataset with a temporal resolution of 4s.

4.2.4 Cluster

Cluster is an european mission launched in July and August 2000. The mission consists in 4 space-
craft designed to study the near-Earth environment with a specific focus on the magnetospheric
cusps thanks to a polar orbit that distinguishes this mission from the three we have been present-
ing so far.

Years before MMS, the orbits of the four spacecraft are the very first ones to be designed so that
they formed a tetrahedron. The interspacecraft distance varying here between 10 and 20000 km.

Whenever they are availabe, we use the magnetic field measurement provided by the Fluxgate
Magnetometer (FGM, Balogh et al. [2001]) and the plasma distribution functions and moments
provided by the Hot Ion Analyzer of the Cluster Ion Spectrometry (CIS-HIA, Rème et al. [2001]).
The data of both instruments being measured with a 4s resolution.
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Depending on the mission phases and the spacecraft location, HIA works under different modes
that correspond to different energy sweeping schemes and thus an eventual alterated plasma mo-
ments computation:

• The magnetospheric and magnetosheath modes where the particle distribution functions
come on the full 62 energy channels and 88 solid angles distribution.

• The solar wind modes where the energy channels are reduced to allow a higher energy res-
olution for the solar wind beam data which alterates the associated computation of plasma
moments.

Because they are limited to the energy ranges typically found in the solar wind, the HIA data
measured under the solar wind is not well suited to compute properly the plasma moments in
the magnetosphere and the magnetosheath for which low and high energy information is needed.
Consequently, we removed the HIA data that are measured under the solar wind modes and we
keep the data under the magnetospheric and magnetosheath modes only.

HIA being unavailable on Cluster 2, 4 and on Cluster 3 after 2009, we used the data provided
by Cluster 1 between January 2001 and January 2013 as well as the data provided by Cluster 3 until
November 2009.

4.2.5 Multi-spacecraft datasets

Each of the different dataset then consists in 8 input variables; the ion bulk velocity components,
Vx , Vy , Vz , the magnetic field components, Bx , By , Bz , the ion density Np and the temperature
T.

Due to the important differences existing between the different missions in the specificities of
the distribution functions and particle energy or pitch angle spectrograms, we chose to focus on
the plasma moments and magnetic field only.

For each dataset, the ion omnidirectional differential energy fluxes shown in 4.1 are then only
be used for visual inspection of the data and to provide visual guidance in our labeling process.

In addition to the plasma an magnetic field measurements, we collect the position of each
spacecraft that will be exploited, in the entire manuscript, in GSM coordinates.

4.3 Labeling THEMIS data

We start out this work with the data provided by THEMIS B on the whole available period for this
spacecraft, that is to say between the 1st of March 2007 and the 1st of January 2010. To erase
the noise due to very punctual partial crossings that will particularly hard to label and detect, we
resample the data to a 1 minute resolution. A typical representation of such resampled data is
shown in Figure 4.1.
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Figure 4.1: In-situ measurement provided by THEMIS B spacecraft on the 12th of May 2008. From the top
to the bottom are represented: the ion density, the magnetic field components, the velocity components
the omnidirectional differential energy fluxes of ions. The last bottom panel represents the evolution of the
label (blue) , intentionally shifted for visual inspection and the prediction made by our algorithm (black).
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Following the main characteristics of the near-Earth regions we presented in Chapter 1, we
define the labeled regions as follows:

• Points in tenuous regions with almost no ion bulk flow and important magnetic field are
identified as magnetosphere points and are associated to the label 0.

• Points in dense, fast regions for which we notice a monoenergetic beam in the ion spectro-
gram are identified as solar wind points and are associated to the label 2.

• Points that are not identified as solar wind or magnetosphere are identified as magnetosheath
and are associated to the label 1. Those points correspond to the denser regions with an in-
termediate plasma velocity with a wide-spread ion spectrogram. With this definition, any
region downstream of the bow shock that is not the magnetosphere is considered as the
magnetosheath. This will be particularly the case of the regions of mixed plasmas such as
the reconnection outflows or the near-cusp dense and hot plasma. In the optics of the de-
tection of magnetopause crossings, this is as if we did not allowed any spontaneous mix of
plasma at the magnetosphere-magnetosheath interface. Consequently, the magnetopause
detected by this manner will actually correspond to the tangential definition of the magne-
topause we gave in the Chapter 1. If this choice has negligible consequences regarding the
magnetopause location at low-latitudes, it has a non-negligible impact on the representa-
tion we have on this boundary in the near-cusp region where the plasma mixing occurs on
a much broader region . The consequences of this choice on the position and shape of the
boundary in this specific region will be investigated in the next chapter.

We make those labels by inspecting the data visually and deciding, by selecting intervals, to
which class their points belonged to. This requires to zoom in and out many intervals and is thus a
long and fastidious process. To make it faster, in particular to zoom in regions of interest, we decide
to guide our eyes with the preliminary predictions of algorithms trained on a dataset iteratively
widened by our labels, plotted over the data.

The typical labeling of the three regions for a 1 minute resampled data interval is shown on
the last subplot of Figure 4.1 where the theoretical label, shown in blue has been slightly shifted
vertically for visual purpose. Following this process, our dataset is made of 59798 points of mag-
netosphere, 48056 points of magnetosheath and 150415 points of solar wind.

We selected data within dawn, dayside and dusk operation phases of THEMIS and thus expect
a good Magnetic Local Time (MLT) coverage of both magnetopause and shock surfaces. This is
confirmed by the actual spatial coverage of our labeled dataset shown in Figure 4.2. We then ex-
pect the method to be robust enough to the variability one can find in the data through the three
different THEMIS operation phases.
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Figure 4.2: Spatial coverage of our labeled THEMIS dataset projected in the (X-Y) GSM plane, the solid black
line represent a stand-off position the bow shock following Jeřáb et al. [2005] model while the dotted black
line represent the magnetopause model of Lin et al. [2010]. Labels are spatially represented in a log-scale 2D
histogram. Magnetosphere bins in blue vary between 1 and 901, Magnetosheath bins in red vary between 1
and 1421, solar wind bins in green vary between 1 and 788

4.4 Algorithm selection

First of all, we randomly split our THEMIS dataset in 10 different ways in order to have 70% of the
total dataset representing the training set and the remaining 30% constituting the test set. For each
split, we train and test 3 different types of algorithms: logistic regression, decision tree and gradi-
ent boosting. From the AUC and HSS averaged over the three splits that are shown for each class
and each algorithm in Table 4.1, gradient boosting appears as being the algorithm that performs
best on differentiating the three regions although it should be noted here that even the simplest
algorithm result in fair performances already. Gradient boosting will then be the algorithm we will
be training and evaluating for the rest of the section.

Logistic Regression Decision Tree Gradient Boosting
AUC magnetosphere 0.998 0.976 0.999
AUC magnetosheath 0.954 0.937 0.997

AUC solar wind 0.937 0.881 0.999
HSS magnetosphere 0.974 0.953 0.987
HSS magnetosheath 0.846 0.878 0.975

HSS solar wind 0.560 0.701 0.992

Table 4.1: AUC and HSS obtained for different algorithms for several train-test split.

The high AUC and HSS obtained for the three classes indicate how well this model performs
in classifying the three regions. Moreover, the standard deviation obtained from the 10 different
split cases is lower than 10−3, which shows that our method is independent from the split we make
between our two sets. Seeing a lower score on the magnetosheath is not surprising as this is the
class where we will find the most diversity in the physical nature of the data.
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4.5 Algorithm performance

4.5.1 Temporal dependance

By performing a random split, we allow temporally close points, and thus almost identical points
in the features space, to be in both training and test sets. Consequently, performing this split
only partially shows the reproducibility of our method and how well it would perform on really
unknown data. To ensure there are not any temporal overfit due to this split and that our method
is truly reproducible, we train and evaluate our model 3 times by splitting our dataset temporally
instead of randomly. For this, we consider our training set to be a time interval that represented
2/3 of our dataset and leave the remain to be the test set. The average AUC we obtain in this case
are also shown in Table 4.2 the very few variations we have compared to the random split ensures
the temporal independence of our method as well as its reproducibility.

Mission AUC Magnetosphere AUC Magnetosheath AUC Solar Wind
THEMIS B (w. Random split) 0.999 0.999 0.999

THEMIS B (w. Temporal split) 0.999 0.997 0.999
Cluster 1 (without retraining) 0.988 0.983 0.996

Cluster 1 (with retraining) 0.999 0.998 0.999
Double Star TC1 (without retraining) 0.996 0.992 0.996

Double Star TC1 (with retraining) 0.999 0.998 0.999
MMS (without retraining) 0.997 0.994 0.995

ARTEMIS 0.999 0.999 0.999

Table 4.2: Comparison of the AUC of the ROC of our detection algorithms for different missions.

4.5.2 Influence of the manual labeling

The manual labeling process can be an important source of prediction errors. Thus, the label can
eventually contain errors that could affect the quality of our prediction and high AUC would then
not indicate the classification ability of our model but its ability to learn from an erroneous label.
To figure this out, we perform trainings and evaluations of the algorithm by voluntarily mislabeling
an ever-growing percentage of the dataset. If our model completely follows the indicated label in
the training set, we expect a high AUC whatever this percentage might be. The mislabeling process
is done as follows:

• We select a fraction of random points in the dataset

• The magnetosphere and the solar wind points are labeled as magnetosheath points

• Magnetosheath points are randomly mislabeled between the two other classes

The main reason that justifies this process stands in the fact that a human observer will never
confuse magnetosphere and solar wind and there is of course some ambiguity in the labeling for
classes concerned with a physical interface where data points don’t strictly belong to either one or
the other, but rather represent the finite transition region, omitted in our model. We repeat the op-
eration for an ever growing percentage of the dataset until the proportion of the mislabeled points
reaches 50% of the dataset. The random mislabeling and associated training and AUC computa-
tion are repeated 10 times at each step. The evolution of the AUC with the mislabeling proportion
is shown in Figure 4.3 for the three classes of the THEMIS dataset. The grey dashed lines represent
the standard deviation we have between the different iterations of a given percentage of mislabel-
ing.
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Figure 4.3: Evolution of the AUC as a function of the mislabeling percentage for the three different classes:
magnetosphere (blue), magnetosheath (red) and solar wind (green). The gray dashed line represent the
standard deviation we have between the different AUC scores of a same mislabeling percentage.

Having a more significant drop in the performances for the magnetosheath is not surprising
as this is the class that will be most affected by our mislabeling process. Noticing that drop for the
three different classes proves the model does not simply follow the indications provided from the
labels but tries to find an intrinsic difference in the physical parameters of the three classes.

This shows the real capacity of our algorithm to classify the three near-Earth regions as well as
the reliability of our label.

4.6 Adaptability of the model: from a mission to the other

Having developed an automatic detection method of the three near-Earth regions with high re-
liability, we should have few difficulties to adapt it to the data provided by additional spacecraft
that goes through these regions. Even if a similar work can be adapted on the numerous past mis-
sions that went through the three near-Earth regions, we focus on this chapter on the most recent
missions that offer the advantage of providing the data with the best quality, which removes an
additional complexity that would appear with the oldest missions.

To do so, we label data points of each of the missions we are working on and compare this label
to the predictions of our model trained with THEMIS data.

4.6.1 Double Star

A typical representation of the 1 minute resampled Double Star data data is shown in Figure 4.4.
We label 20 671 magnetosphere points, 23 091 magnetosheath points and 4 944 solar wind

points at the beginning of the year 2005 of our 1 minute resampled Double Star dataset. A third
of these points constituting the Double Star test set, the other two thirds being kept in the case a
different algorithm has to be trained to take into account the specificity of Double Star data. The
spatial distribution of our labeled data is shown in the Figure 4.5.

Since Double Star also has an equatorial orbit, we expect the model trained on THEMIS to
perform well even without having to be retrained and this is the main reason why our label does
not have to provide an entire coverage of the (X-Z) plane. And this is confirmed by the high AUC
and HSS we have in Tables 4.2 and the comparison of the HSS obtained for the different missions
shown in the Table 4.3.

Refitting the model would then allow a finer detection that would be specific to the quality of
the data provided by Double Star in comparison to the THEMIS data but can be skipped as it does
not bring a significant gain in AUC according to Table 4.2.
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Figure 4.4: In-situ measurement provided by Double Star TC1 spacecraft on the 1st of January 2005. The
legend is the same than in 4.1
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Figure 4.5: Spatial coverage of the Double Star labeled dataset. The legend is the same than in Figure 4.2

4.6.2 MMS

A typical representation of the 1 minutes resampled MMS data is shown in Figure 4.6.
Since MMS also has an equatorial orbit, we once again expect the model trained on THEMIS

to provide a very good classification of the three regions on MMS data as for the case of what has
been shown for Double Star.

To figure it out, we label 7 612 magnetosphere points, 1 9272 magnetosheath points and 3 651
solar wind points during the first year of MMS and these labels the associated prediction of the
classifier. The spatial coverage of these labeled points is shown in Figure 4.7

The high AUC and HSS shown in the Tables 4.2 and 4.3 confirms the adaptability of our classi-
fier to equatorial missions without further additional fitting.
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Figure 4.6: In-situ measurement provided by MMS spacecraft on the 31st of December 2015. The legend is
the same than in 4.1
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Figure 4.7: Spatial coverage of the MMS labeled dataset. The legend is the same than in Figure 4.2

4.6.3 Cluster

In comparison with the two previous cases, Cluster case might be more challenging because of
the orbit, polar in this case, and the regions visited that have different physical properties than
the one visited by equatorial missions. The data provided THEMIS and Cluster can therefore be
substantially different and there is no real clue on how an algorithm trained on equatorial orbit
data would perform on predicting on polar orbit data.

One minute sampled Cluster data are shown in Figure 4.8 and we here label 50 277 points of
magnetosphere, 76 468 points of magnetosheath and 22 017 of solar wind between the years 2005
and 2006 which spatial distribution is shown in Figure 4.9. One third of these labeled points are
used to evaluate the performances of the models while we kept the remaining two thirds in the
case refitting the algorithm is needed. Applying our THEMIS-trained model, we notice a lower
AUC for each of the three classes. This indicates the adaptability is not that obvious in this case.

We then adapt our classifier to the polar case by refitting the model trained on THEMIS with
the Cluster labels. The increasing AUC we obtained, shown in Table 4.2 and the associated high
HSS also shown in 4.3 proves the necessity we had to adapt our algorithm to the specificity of
the Cluster data. It also shows our method can be easily adapted to the data of another mission,
exploring regions with significant statistical deviations of the features, after a small labeling and
refitting phase.
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Figure 4.8: In-situ measurement provided by Cluster 1 spacecraft on the 6th of February 2005. The legend
is the same than in 4.1

85



CHAPTER 4. AUTOMATIC CLASSIFICATION OF THE THREE NEAR-EARTH REGIONS

Figure 4.9: Spatial coverage of the Cluster labeled dataset. The legend is the same than in Figure 4.2

4.6.4 ARTEMIS

The orbit of the ARTEMIS spacecraft is different from the orbit of the mission we have been inves-
tigating so far. This difference comes with a lot of change in the nature of the data measured by
the spacecraft.

First of all, the spacecraft orbit the moon and are then much farther (around 40 Re) from the
Earth than the spacecraft of the other missions we have studied. This implies the spacecraft does
not explore the dayside regions and crosses the magnetopause and the bow shock in the night-
side. At these distances, the magnetosheath plasma becomes almost as fast and as tenuous as the
solar wind and small fluctuations on either one of the other side could easily be confused with a
boundary crossing.

Second, the spacecraft spend most of their time in the solar wind, which make their measure-
ment more sensitive to the data variability induced by the solar cycle that we neglected for the
previous missions.

Finally, this specific type of orbit also introduces time intervals during which the data does not
take values statistically close to any of our regions of interest. Indeed, once per orbit, ARTEMIS
explores the lunar wake, characterized by an extremely low density and fluctuating velocity in
every direction. These intervals, for which a typical representation of the data is shown in Figure
4.10, cannot be considered to belong to any of our existing region classes.

For this three reasons, the method we presented in the previous sections and successfully
adapted to Double Star, MMS and Cluster cannot be used as is and the entire process from the
labeling to the choice of the feature has to be designed from scratch.

To cope with the variability induced by the solar cycle we label a month per year and add the
lunar wake as a fourth explored region (with an associated value of 3). The final labeled dataset is
made of 26 560 magnetosphere points, 131 656 magnetosheath points, 429 283 solar wind points
and 15 070 points of lunar wake which spatial distribution is shown in Figure 4.11.

We cope with the increasing difficulty to distinguish magnetosheath and solar wind by adding
the spacecraft GSM coordinates as a feature of the dataset which will then consist in 11 input
variables.
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Figure 4.10: In-situ measurement provided by the ARTEMIS B spacecraft on the 13r d of August 2016. The
legend is the same than in 4.1
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Figure 4.11: Spatial coverage of the ARTEMIS labeled dataset. The legend is the same than in Figure 4.2 with
the addition of the Moon’s wake bins in purple which vary between 1 and 157

Having a different dataset and a different number of classes, we here cannot use the model
trained in the previous section and we will then focus on the specific model we trained for this
mission. The resulting high AUC shown in Table 4.2 proves the adaptability of our gradient boost-
ing based method to another kind of orbit and and its flexibility and robustness regarding the
addition of another region. This especially confirmed with the AUC and the HSS we found for the
lunar wake region, that we respectively found equal to 0.97 and 0.947.

Mission HSS Magnetosphere HSS Magnetosheath HSS Solar Wind
THEMIS B 0.987 0.975 0.993
Cluster 1 0.976 0.972 0.981

Double Star TC1 0.980 0.974 0.983
MMS 0.982 0.973 0.987

Artemis 0.976 0.962 0.974

Table 4.3: Comparison of the HSS of our detection algorithms for different missions.
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4.7 Comparison with manually set thresholds

Having proved the efficiency of gradient boosting on different missions1, we want to compare it
to the state of the art existing methods such as the one elaborated by Jelínek et al. [2012] that we
described in the introduction.

Figure 4.12 represents the 2D histogram of B and Np for THEMIS B, Double Star and Cluster 1
on the periods on which we labeled the different associated datasets. We divided these parameters
by the corresponding solar wind density and the IMF amplitude that we obtained from the shifted
OMNI data. At first sight, one can easily distinguish three main regions that are separated with
the solid red lines for the three missions. Nevertheless, these linear boundaries have been set
manually and we cannot ensure these could be the best choice for the three missions. To evaluate
the quality of the classification, we compute the TPR and the FPR for the three missions and for
varying boundary lines. We then use these values to compute the AUCs that are shown in the Table
4.4.

Figure 4.12: 2d histogram of B and Np divided by the corresponding OMNI data for the three missions:
THEMIS B (left), Cluster 1 (middle) and Double Star TC1 (right). The solid red lines indicate a possible set
of linear boundaries we could define to separate the three regions

Mission AUC Magnetosphere AUC Magnetosheath AUC Solar Wind
THEMIS B 0.915 0.908 0.859
Cluster 1 0.897 0.852 0.828

Double Star TC1 0.913 0.894 0.843

Table 4.4: AUC for the threshold-based method

Once again, we notice a lower AUC in the case of Cluster which is consistent with the difference
we have between equatorial and polar orbits as explained in the previous section. Additionally,
even if the boundaries plotted in the Figure 4.12 seem to provide a decent separation between the
three regions, the AUC is lower than the one we obtained with the gradient boosting. This indicates
our model performs better in classifying the three regions by setting more flexible boundaries on
supplementary features while requiring less fitting time than the one required to manually set the
thresholds used in the Figure 4.12.

The same kind of histogram gets messier with a much less obvious transition from the magne-
tosheath to the solar wind and the addition of the moon’s wake as shown with the ARTEMIS data in
Figure 4.13. This shows the difficulty manually set thresholds would have for a night side oriented
mission and the interest of using machine learning in this case.

1Additional prediction examples can be found in the appendix B.
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Figure 4.13: 2d histogram of B and Np divided by the corresponding OMNI data for ARTEMIS B

4.8 Massive detection of boundary crossings

In the previous sections, we proved the efficiency, the reliability and the adaptability of our classi-
fiers on data from several missions and spacecraft. From now on, these classifiers can be used to
elaborate our own magnetopause and bow shock crossings catalogs by classifying the streaming
in-situ data provided by any near-Earth spacecraft and by selecting time intervals enclosing two
predicted regions. To do so, we train our 4 different models, THEMIS, Double Star, Cluster and
ARTEMIS on their whole labeled datasets 2.

4.8.1 Magnetopause catalog

We define a crossing as a 1 hour interval that contains as much magnetosheath points as mag-
netosphere points. With this definition, the magnetopause is defined as the region that separates
the two labeled classes magnetosphere and magnetosheath. The consequence of such definition,
especially in the polar cusps will be investigated in the next chapter.

We then elaborate a complete magnetopause crossing catalog by running our THEMIS model
on the data provided by THEMIS A, B, C, D and E spacecraft. To gain time in the construction of
the crossings and because we do not expect any magnetopause crossing in the nightside operation
phase, we restrict ourselves to the dayside, dawn and dusk operation phase. As no crossing is
expected far away in the solar wind (XGSM > 15 Re) or close to the Earth dipole, we also remove
these parts of the orbit.

The same model was used on the in-situ data provided by Double Star between 2004 and 2007
and MMS between 2015 and 2020.

We finally apply the same process on the in-situ data provided by Cluster 1 on the 2001-2016
period, by Cluster 3 on the 2001-2009 period and on ARTEMIS between 2010 and 2019 by using
the corresponding trained model. The total number of crossings we obtained are summarized in
the Table 4.5.3

2Those trained models can be found at https://github.com/gautiernguyen/in-situ_Events_lists
3All of the magnetopause lists can be found at the same address.
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Mission Magnetopause crossings Bow shock crossings
THEMIS A 2 824 1 590
THEMIS B 373 1 030
THEMIS C 658 1 238
THEMIS D 2 691 1 520
THEMIS E 2 726 1 511
Cluster 1 1 813 3 225
Cluster 3 1 534 2 004

Double Star TC1 931 846
MMS 1 810 1 035

ARTEMIS B 263 1 602
ARTEMIS C 373 1 626

Total 14 996 17 227

Table 4.5: Number of magnetopause and bow shock crossings we have for different missions

Given that our detection method has been evaluated on large parts of orbits, the high quality
of the classification is made with regions where the spacecraft is not expected to cross a boundary.
In these regions, the algorithm is less likely to hesitate on its prediction. On the other hand, it is
more probable it hesitates on the predictions made close to the boundaries. Consequently, we
have to ensure the classification is still of decent quality there.

Figure 4.14 represents the ROC we have on the classification between magnetosphere and
magnetosheath points for THEMIS B, Cluster 1 and Double Star for the subset of our test set that
lies in the proximity of a magnetopause or shock crossing. These predictions have been obtained
with a model that has been trained with the complement part of the dataset, i.e. the subset that ex-
cludes the proximity of the crossings. Even if the AUC is lower than the one we obtained in the pre-
vious section, its still high value indicates the good quality of the classification when a spacecraft
arrives close to the magnetopause and thus our capacity of building crossings from the prediction
made by our model.

Another method we could use to ensure the consistency of the obtained crossings would stand
in the certitude of the prediction made by the algorithm and their position in comparison to a the-
oretical magnetopause position. To do so, we computed the mean probability of each crossing by
averaging the probabilities of belonging to the predicted class of each point present in the cross-
ing.

As we explained it in Chapter 2, the use of the probabilistic output only makes sense if the
probabilities are well-calibrated, which is not especially the case for ensemble algorithms such
as gradient boosting Niculescu-Mizil and Caruana [2005]. The calibration curve of our THEMIS
model is shown in Figure 4.15. Having a linear calibration curve close enough to the perfect cal-
ibration curve for the three regions, we consider the probabilistic output of our model to be de-
cently well-calibrated and we can move on with using the probabilisitc output of our models.

Events with high probability would correspond to undoubtful crossings while the events with
the lowest probability would be the less likely to be actual crossings. The probability distribution
of our 14996 is shown in Figure 4.16. Having a high probability for the greatest part of our events
then ensures the consistency of our magnetopause list.
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Figure 4.14: ROC curves evaluated on the labeled crossings for the three missions THEMIS B (left), Cluster
1 (middle) and Double Star (right) for the three classes: magnetosphere(top), magnetosheath(middle) and
solar wind (bottom)

Figure 4.15: Calibration curve of our model trained on THEMIS data for the three regions. The black dashed
line represent the calibration a perfectly-calibrated classifier would have.
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Figure 4.16: Distribution of the probability of the 14996 magnetopause crossings we built and summarized
in Table 4.5. The solid dashed line represent the probability threshold we chose for the Figure 4.17

Finally, the spatial distributions of the crossings that have a probability higher than 75% in the
GSM XZ, XY and YZ planes is shown in Figure 4.17. These crossings represent 98.5% of the cross-
ings built with our models and are then expected to be the most likely to be actual magnetopause
crossings. The solid black lines represent the stand off position of the magnetopause model es-
tablished by [Lin et al., 2010] computed for a dynamic pressure of 2 nPa, a null Bz and assuming
no dipole-tilt. The proximity between this distance and our actual crossings ends up proving the
capacity our method has to elaborate a decent magnetopause crossings catalog with a decent cov-
erage of the magnetopause at all latitudes and longitudes.

Figure 4.17: Spatial distribution of the crossings above the threshold in Figure 4.16 in the XY (left), XZ (mid-
dle), YZ (right) GSM planes. The solid black line indicate the Lin et al. [2010] magnetopause model with a
dynamic pressure of 2 nPa and a null Bz .

4.8.2 Bow shock catalog

We define a bow shock crossing event as 10 minutes interval that contains as much magnetosheath
points as solar wind points. We then run the models we trained for the different missions detailed
in Section 3 on the same dataset we used in the case of the making of the magnetopause crossing
catalog. The total number of obtained crossings is once again summarized in Table 4.5 4.

The spatial distribution of the crossings with a probability higher than 75% in the GSM XZ,
XY and YZ planes is shown in the Figure 4.19. The solid black line here represents the stand off
position of the Jeřáb et al. [2005] bow shock model computed for a dynamic pressure of 2 nPa, a
null Bz and an Alfven Mach of 8.

4And the bow shock lists can once again be found at https://github.com/gautiernguyen/in-situ_Events_
lists.
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Figure 4.18: Distribution of the probability of the 17227 bow shock crossings we built and summarized in
Table 4.5. The solid dashed line represent the probability threshold we chose for the Figure 4.19

Figure 4.19: Spatial distribution of the crossings above the threshold in Figure 4.18 in the XY (left), XZ (mid-
dle), YZ (right) GSM planes. The solid black line indicate the Jeřáb et al. [2005] bow shock model with a
dynamic pressure of 2 nPa, a null Bz and an Alfven Mach of 8.

4.9 Conclusion

Using a Gradient Boosting Classifier, we established an automatic detection method of the differ-
ent near-Earth environment regions when they are traversed by the THEMIS spacecraft during the
dawn, dusk and dayside mission phases. This method was successfully adapted on other equa-
torial dayside missions (Double Star and MMS) and, after a small retraining phase necessary to
consider the orbital differences between different missions, its success on non-equatorial dayside
missions such as Cluster. The adaptability of the method has even been tested on missions with
a substantially different orbit such as ARTEMIS for which we provided a successful region classi-
fication after a small redesign of the observed features and the way the label was made. Having
proved this adaptability, we could also think of using the method on the data of additional near-
Earth missions, such as the 23 different spacecraft enumerated in Wang et al. [2013], provided
enough information about the plasma moments with a sufficient resolution is provided.

For simplification, we only considered 3 classes and defined as magnetosheath any region
where plasma differed from pristine solar wind and magnetospheric ones. The classification could
then even be enhanced by the consideration of additional regions like the ion foreshock, the
Plasma Depletion Layer (PDL), the exterior of the polar cusps, or the different boundary layers
of the magnetopause.
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At the same time of our study, Olshevsky et al. [2019] elaborated a CNN based method that
analyzed the in-situ distribution functions provided by MMS to provide a near-Earth regions clas-
sification. Due to the important differences existing between different missions in the specificities
of the distribution functions and particle energy or pitch angle spectrograms this method would
require to start it all from scratch when it comes to its adaptability to other spacecraft. This re-
training necessity comes with unavoidable extra hours of training due to the slow convergence of
CNNs compared to the GB and the much heavier dataset. For these reasons, using the plasma
moments paved the way to an easy adaptability from a specific type of mission to another and
the production of light-weight algorithms that could eventually be taken onboard of upcoming
missions to automatically select the data of interest and thus automatically decide of the data that
should be stored and kept for further analysis. This would particularly bring a huge gain time in
the data selection process that are either threshold triggered or human monitored like the SITL.
Moreover, the method does not use the specificity of being in the near-Earth and could then also
be adapted to other planetary missions in the solar system.

We used this method to elaborate one of the most exhaustive existing magnetopause and bow
shock crossing catalogs. A bonus to our method is that these catalogs can be readily and automat-
ically grown as new data is made available. Having a large list of events also gives the opportunity
to study these two near-Earth boundaries and physical processes occurring in their vicinity, from a
statistical point of view . One could think, for instance, of the identification of the magnetic recon-
nection jets, which will be the topic of the Chapter 6 where the region classifier will even prove its
utility to automatically extract the magnetosheath conditions associated to a given crossing and
the eventual underlying subset of reconnection jets.

Last but not least, the high number of events we found is expected to be linked with a great
variety in the associated solar wind conditions and it could then be interesting to link the position
of the crossings with these upstream conditions through the construction of magnetopause and
bow shock empirical analytical models, this will be the topic of the next chapter.
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Chapter Summary

• In this chapter, we apply a gradient boosting algorithm to the in-situ data of the THEMIS B
spacecraft to provide an automatic classification method of the 3 main near-Earth regions:
the magnetosphere, the magnetosheath and the solar wind.

• This method outcomes the previous existing region classification methods based on the set-
ting of manual, empirical thresholds on a reduced number of physical parameters.

• We test succesfully the algorithm trained with THEMIS B data on the data provided by the
other THEMIS spacecraft, by MMS and by Double Star TC1.

• After a retraining phase to take into account the differences induced by its polar orbit, we
adapt the classifier to the data provided by Cluster.

• By reconsidering the set of features in the dataset and adding the lunar wake as a potential
visitable region, we even manage to elaborate an equivalent of our method applied to the
lunar orbit of ARTEMIS.

• We use the region classifier to elaborate one of the most exhaustive and accessible magne-
topause and bow shock crossings catalogs. These lists can be used for further additional
studies of the properties of these two boundaries or as a basis for the elaboration of the au-
tomatic detection method of the in-situ signature of the small-scale physical processes of
the near-Earth environment.
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Chapter 5

Statistical analysis of the magnetopause
shape and location

There’s much to do and many unknowns to the horizon...

Herodotos

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 A brief insight on the magnetopause shape and location models . . . . . . . . . . 103

5.3 Statistical analysis of the magnetopause crossing . . . . . . . . . . . . . . . . . . . 106

5.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.2 The magnetopause stand-off distance . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.3 Evidencing the asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.4 Dependencies of the flaring coefficients . . . . . . . . . . . . . . . . . . . . . 114

5.4 Fitting a new magnetopause model . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.1 Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.2 Evaluation and comparison with other models . . . . . . . . . . . . . . . . . 119

5.4.3 Characteristics of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.4 From a static to a dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Nature of the near-cusp magnetopause . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5.1 Different boundaries of the polar cusps . . . . . . . . . . . . . . . . . . . . . . 123

5.5.2 Shape of the near-cusp magnetopause . . . . . . . . . . . . . . . . . . . . . . 128

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

101
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5.1 Introduction

First observed by Cahill and Amazeen [1963], the Earth magnetopause has from then on been
extensively studied from both in-situ measurements and numerical simulations (Hasegawa [2012]
and references therein).

Using the observations of IMP and assuming a pressure balance between the solar wind and
the magnetosphere without additional coupling, Fairfield [1971] and Formisano [1979] investi-
gated the location and shape of the magnetopause and elaborated the very first empirical and
analytical models of the magnetopause shape and location in the form of a quadric surface.

These observations also showed that reconnection eroded the magnetosphere in a location
dependent on the orientation of the IMF resulting in an earthward motion and in the decrease
of the level of flaring. Such finding was considered in the modeling of the magnetopause surface
when Sibeck et al. [1991] and Petrinec et al. [1991] considered the solar wind dynamic pressure
and the IMF Bz component as the main parameters of their models.

From then on, numerous analytical empirical models based on the solar wind dynamic pres-
sure and the IMF Bz were developed [Petrinec and Russell, 1993; Roelof and Sibeck, 1993]. These
models, that continued relying on the form of a quadric surface, were fitted using ISEE magne-
topause crossings and progressively considered the extension of the magnetopause in the night-
side [Petrinec and Russell, 1996]. With the measurements of the IMP8, ISEE 1 and ISEE 2 space-
craft used simultaneously, Shue et al. [1997] improved the accuracy of the magnetopause models
by considering an inverse trigonometric function still in use in the most recent existing models.

All of the previously mentioned models used data from spacecraft that had an equatorial orbit
and thus supposed a symmetry around the X axis. This symmetry was questioned by the inves-
tigation of Sotirelis and Meng [1999] that evidenced an influence of the Earth dipole tilt angle in
accordance with the findings of Tsyganenko [1998]. The influence of the dipole tilt angle was later
confirmed by the Hawkeye observation of Boardsen et al. [2000], Eastman et al. [2000] and the
Interball observations of Šafránková et al. [2002]. They also observed a depletion of the selected
boundary in the near-cusp region that was interpreted as the confirmation of an indented mag-
netopause. As already said in the chapter 1, this indentation can be seen as the logical continuous
extension between the dayside and the nightside magnetopause in the case of a boundary locally
tangential everywhere.

Using measurements of LANL and GOES, Kuznetsov and Suvorova [1998] evidenced the pres-
ence of a dawn-dusk asymmetry later confirmed by Dmitriev and Suvorova [1999] through the
help of ANN. This asymmetry was later found to be linked to the aberration of the solar wind due
to Earth orbital motion by Šafránková et al. [2002].

At the light of these new findings, Lin et al. [2010] fitted their magnetopause surface model
that took into consideration the azimuthal asymmetry induced by the dipole tilt angle and also
noticed a dawn-dusk asymmetry despite of the correction brought to the data in order to remove
the aberration. Some years later, Wang et al. [2013] developed their own model by applying a sup-
port vector regression1 to the combined crossings of 23 different spacecraft. Without assuming
anything but symmetries on the magnetopause, they fell back on the dependencies on the dy-
namic pressure and the IMF Bz , proving in the process the potential of machine learning in the
frame of such a regression problem. However, neither their data nor their model is shared, the
study is consequently hardly reproducible and the results not usable.

Going further in our knowledge of the magnetopause, Dusik et al. [2010] and Grygorov et al.
[2017] used THEMIS data and pointed out that an increasing IMF Bx pulled the magnetopause
sunward while the MHD simulations of Liu et al. [2015] indicated this component would rather
also contribute to the north-south asymmetry already induced by the dipole tilt angle. The latter
also showed that increasing IMF By component twisted the magnetopause in the direction of the
IMF.

1Although not presented in this thesis, support vector machines [Cortes and Vapnik, 1995] are another family of
machine learning algorithms that can be used either for classification or regression purposes.
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Despite of this important number of studies, the question of the magnetopause shape and
location is not over yet and still numerous are the number of remaining questions:

1. First of all, the influence of the IMF cone angle is still unclear and the different conclusions
drawn by Dusik et al. [2010] and Liu et al. [2015] calls for further investigation.

2. Second, Liu et al. [2015] evidenced the influence of the IMF clock angle numerically and
Dmitriev and Suvorova [1999] inferred an influence of By on the level of flaring. Nevertheless
this influence still lacks of observational evidences and has not yet been considered by any
empirical analytical model.

3. Third, all of the magnetopause surface models considered data in the range X > −40 Re
and thus extrapolated to the far nightside whereas now spacecraft at lunar orbit such as
ARTEMIS could provide useful information on the nature of the magnetopause at these dis-
tances.

4. Fourth, different observations of the polar cusps crossings led to different conclusions re-
garding the shape of the magnetopause in this region. If [Boardsen et al., 2000; Šafránková
et al., 2002; Šafránková et al., 2005] suggested the existence of an indentation, [Lavraud et al.,
2004a; Zhou and Russell, 1997] suggested the opposite. Eastman et al. [2000] inferred that
these divergences could be explained by the definition of the magnetopause considered by
each study. Using Cluster data polar cusp events, Lavraud et al. [2004b] suggested that the
indentation was observed because the inner boundary was considered instead of the actual
magnetopause current sheet for which no specific depletion was noticed. Consequently, the
question of the shape of the magnetopause in the near-cusp region is still open and requires
additional investigations.

In this chapter, we exploit the 14 996 complete magnetopause crossings detected in the previ-
ous chapter to perform a statistical analysis of the magnetopause shape and location that result in
the fit of an analytical empirical model.

After a brief presentation of three different existing magnetopause surface models, the two
most recents [Lin et al., 2010; Liu et al., 2015] and the most used [Shue et al., 1997], we will study
the magnetopause stand-off distance, asymmetries and levels of flaring from a statistical point of
view. The conclusions of the study will then be used to fit a new analytical empirical model of the
magnetopause surface. The last section will investigate the nature of the polar cusps events of our
dataset and consider the notion of indentation of the magnetopause in this region.

5.2 A brief insight on the magnetopause shape and location models

Intuitively, the two parameters we expect to influence the most the location and shape of the mag-
netopause are the dynamic pressure Pd yn and the Bz component of the solar wind and IMF. This
is because of the definition of the magnetopause at first order and because of the influence of Bz

on magnetic reconnection and the associated erosion as presented in the chapter 1.
Assuming an axial symmetry around the X axis, and after the statistical study of the influence

of Pd yn and Bz on the crossings of the magnetopause by the IMP8, ISEE 1 and ISEE 2 spacecraft,
Shue et al. [1997] developed their model defined as:

r = r0

(
2

1+cos(θ)

)α
(5.1)

r0 = [a0 +a1 tanh(a2(Bz +a3))]Pa4

d yn (5.2)

α= (a5 −a6Bz )(1+a7Pd yn) (5.3)

Where the value of α can either describe an open (α> 0.5) or a closed (α< 0.5) magnetopause
in the nightside. r0 represents the magnetopause stand-off distance at θ= 0 and the values of the
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coefficients ai in equations 5.3 and 5.2 were obtained through the fit of this model to their in-situ
observations.

This model was questioned by the evidence of the possible dawn-dusk, the north-south and
the azimuthal asymmetries [Boardsen et al., 2000; Kuznetsov and Suvorova, 1998; Sotirelis and
Meng, 1999]. At the same time, the observations of Boardsen et al. [2000], Eastman et al. [2000]
and Šafránková et al. [2002] indicated a possible indentation of the magnetopause in the near-
cusp regions. These possible changes in the analytical expression of the magnetopause and shape
were considered by Lin et al. [2010] who adapted the Shue et al. [1997] model by setting:

r = r0(cos

(
θ

2

)
+a5 sin(2θ)(1−e−θ))β0+β1 sin(φ)+β2 cos(φ)+β3 cos(φ)2 +C(ednψ

a21
n +edsψ

a21
s ) (5.4)

r0 = a0(Pd yn +Pm)a1 (1+a2
ea3Bz −1

ea4Bz +1
) (5.5)

β0 = a6 +a7
ea8Bz −1

ea9Bz +1
(5.6)

β1 = a10 (5.7)

β2 = a11 +a12γ (5.8)

β3 = a13 (5.9)

C = a14(Pd yn +Pm)a15 (5.10)

dn,s = a16 ±a17γ+a18γ
2 (5.11)

ψn = arccos(cos(θ)cos(θn)+ sin(θ)sin(θn)cos(φ)) (5.12)

ψs = arccos(cos(θ)cos(θs)+ sin(θ)sin(θs)cos(φ−π)) (5.13)

θn,s = a19 ±a20γ (5.14)

Where the values of the coefficients ai are determined through fitting the model to in-situ
measurements of magnetopause crossings. In the case of Lin et al. [2010], the value of the coef-
ficients were determined using 2708 magnetopause crossings of 12 different spacecraft and are
summarized in the Table 9 of the aforementioned paper2.

Here, the first term of the first equation is an extension of the model proposed by Shue et al.
[1997] and setting a5 to 0 brings us back to the expression of r in equation 5.1. β0 controls the
tail flaring and β1 , β2 and β3 control the dawn-dusk, the north-south and the (Y−Z) asymmetries
respectively. The second term is the consideration of the cusps indentation and C, dn (ds), a21

and θn (θs ) control the depth, the scope, shape and location of the northern (southern cusp)
indentation.

In addition to Pd yn and Bz , the model here depends on the solar wind magnetic pressure Pm

and the dipole tilt angle γ. The consideration of Pm simply adds a term in the pressure balance
that rules the magnetopause location and this is why its consideration in equations 5.5 and 5.10
appears as a sum with the dynamic pressure Pd yn . It is worth noting here that even if the most re-
cent models take it into account, the influence of the magnetic pressure remains almost negligible
in comparison to the effect of a changing Pd yn .

As we expect the North-South asymmetry and the position and shape of the cusps to be influ-
enced by the dipole tilt, it is not surprising to notice its contribution in the expressions of β2, dn,s

and θn,s .
This model provides a detailed prediction of the magnetopause location and shape for an im-

portant set of solar wind parameters. Nevertheless, they only considered the main solar wind
parameters likely to affect the magnetopause: the magnetic and dynamic pressures and the IMF
Bz component. They also developed their model without confirming or invalidating the influence

2Here again, the events used by the authors to develop their model is not shared and their study is consequently
hardly reproducible in the same conditions.
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of other possible parameters. For instance, the possible stretching of the magnetopause Dmitriev
and Suvorova [1999] induced for different IMF clock angles and the eventual influence of the IMF
cone angle is not accounted in the model.

Additionally, the cusp geometry expressed in the second term of equation 5.4 as an additive
term has the drawback of being non-zero at the stand-off position of the magnetopause and in the
nightside, biasing the interpretability we can have of r0 that cannot anymore be considered as the
representation of the stand-off position.

Using the magnetopause detected in their MHD simulations, Liu et al. [2015] adapted the Shue
et al. [1997] model by setting:

r = r0

(
2

1+cos(θ)

)α
(1−0.1C cos(φ)2) (5.15)

α= α0 + [αφ+δαsgn(cos(φ))]cos(2(φ−ω))+αz cos(φ) (5.16)

C = e−
|θ−ln |

w (1+ sgn(cos(φ)))+e−
|θ−ls |

w (1+ sgn(cos(−φ))) (5.17)

r0 = (a0 +a1 tanh[a2(Bz +a3)])(Pd yn +Pm)a4 (5.18)

ln,s = (a5 +a6 tanh[a7(Bz +a8)])(1∓a9γ) (5.19)

w = (a10 +a11 log(Pd yn))(1+a12γ
2) (5.20)

α0 = (a13 −a14 tanh[a15(Bz −a16)])(1+a17 logPd yn) (5.21)

αφ = a18 +a19 tanh[a20(|Bz |−a21)](1−a22 logPd yn) (5.22)

δα = a23 tanh(a24Bx )sgn(Bx ) (5.23)

ω= arctan[a25(
By

Bz
)(B2

y +B2
z )a26 ] (5.24)

αz = a27 tanh(a28γ) (5.25)

In this case, the flaring is controlled by α0, αφ controls the azimuthal asymmetry between
low and high latitudes, δα controls the north-south asymmetry induced by the IMF cone angle,
αz describes the asymmetry induced by the tilt influence and ω is the stretching direction of the
magnetopause in the (Y-Z) plane induced by a changing clock angle. The consideration of the
cusp indentation is here expressed by ln,s and w that control the location and the angular width
of the northern and southern cusps indentation respectively.

All of the coefficients ai , expressed from equation 5.15 to 5.25, have been determined through
the fitting of the model to MHD simulations of the magnetopause under various upstream solar
wind conditions and the quality of the model has been assessed through the comparison of the
predicted magnetopause to the 2168 in-situ observed crossings from the NASA magnetopause
database 3.

In comparison Lin et al. [2010], this model has the advantage to take into account the influence
of the three components of the IMF while predicting the magnetopause with a slightly increased
accuracy [Liu et al., 2015]. Nevertheless, this model assumes a dawn-dusk symmetry in opposition
to what was assumed by Lin et al. [2010] and the cone angle is here set to only influence the north
south asymmetry while having no influence on the stand-off distance r0 or the flaring α0, which
is opposed to the observations made by Dusik et al. [2010] or Grygorov et al. [2017]. Moreover, the
crossings used for the observational comparison were by far mostly made in the north hemisphere
and dayside region which thus gives poor evidence on how the model performs in the southern
hemisphere or in the far nightside. Additionally, the perturbation induced by the consideration
of the indentation depends on the azimuth angle and even if it vanishes in the far nightside (e.g
θ∼π), it is still non-zero on the X axis and thus results in a non-unicity of the stand-off distance.

3https://omniweb.gsfc.nasa.gov/ftpbrowser/magnetopause/Database.html
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The projections in the (X−Y), (X−Z) and (Y−Z) planes of the three models we presented in this
section are represented in the Figure 5.1 for a dynamic pressure of 2 nPa and an IMF Bz component
of −2 nT. The advantages and disadvantages presented by these models indicate that the question
of predicting accurately the position and shape of the magnetopause for a given set of solar wind
and seasonal parameters is still open. For instance, the control parameters are still under debate
and there is still uncertainties associated to the magnetopause behavior in the far nightside.

Figure 5.1: Projections in the (X −Y) (left column), in the (X −Z) (middle column) and in the (Y −Z) (right
column) planes of the magnetopause models of Shue et al. [1997] (top), Lin et al. [2010] (middle) and Liu
et al. [2015] (bottom) computed for a dynamic pressure of 2 nPa and an IMF Bz component of −2 nPa.

5.3 Statistical analysis of the magnetopause crossing

5.3.1 Dataset

The detection of 14 996 complete magnetopause crossings in Chapter 4 offers a unique oppor-
tunity to provide a statistical insight on various geometrical properties of the magnetopause as
functions of the upstream solar wind conditions. The 1 hour crossings we constructed in chapter
4 are here reduced to 10 minutes crossings by using the process described in 4.8.1. Each crossing is
then associated to a set of solar wind upstream conditions obtained with a temporal shift of OMNI
data.
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We determine this shift time by applying the two-step propagation algorithm exposed in Šafránková
et al. [2002]:

• for a given event at the GSM position X0 at the time t0, we assume a solar wind velocity of
V0 = 400 km/s and determine a first time lag δt from the position difference between OMNI
and the spacecraft along the X axis: δt = (XOMNI −X0)/V0

• We measure V1, the OMNI velocity at the shifted time t0 −δt to determine the final time lag
δt ′ = (XOMNI −X0)/V1

• We average OMNI data in the 5 minutes centered interval around t0 −δt ′

Using this method, we removed 1 815 crossings that had no available upstream solar wind
condition.

Such a dataset can be enhanced in size through the addition of the 2 168 online crossings of the
missions IMP, ISEE, Geotail, Prognoz, Hawkeye, AMPTE, Explorer and OGO (ftp://nssdcftp.
gsfc.nasa.gov/spacecraftdata/magnetopausecrossings) that were used in the compari-
son of Liu et al. [2015]’s model to observational data. The Hawkeye crossings were also used by
Lin et al. [2010], especially when looking at the near-cusp magnetopause. The summary of such
crossings and the mission they are associated with are shown in Table 5.1. When necessary, we
will distinguish these events from the one detected by our region classifier by denominating them
as crossings from older missions.

IMP ISEE Geotail Prognoz Hawkeye AMPTE Explorer OGO Total
75 333 76 91 1484 60 17 32 2168

Table 5.1: Summary of the 2168 crossings we added to the dataset

The combination of the two lists results in an ensemble of 15 349 magnetopause crossings dis-
tributed on 17 different spacecraft. If at first sight, we roughly have as much events as Wang et al.
[2013], they considered an important number of partial crossings and we thus expect their dataset
to offer a narrower range of solar wind and seasonal conditions at all altitudes and longitudes.

Having merged the two lists, we limit the dataset to the crossings for which X > −70 Re, the
minimal distance for which we detected ARTEMIS crossings. We correct the GSM position of each
of the obtained 15 349 magnetopause crossings by removing the aberration due to the Earth’s rev-
olution using a similar approach than what was done in Lin et al. [2010] and Boardsen et al. [2000]
and assuming a revolution velocity of 30 km/s.

The histograms of the associated upstream solar wind parameters are shown in the Figure 5.2.
For each panel, we notice a similar distribution to the one we show in the chapter 1 for OMNI. This
indicates that the greatest part of the crossings occurred under normal solar wind conditions and
these are the conditions under which we expect the statistics we are about to perform to be the
most reliable.

As half of our crossings have been measured by spacecraft with relatively low apogees (∼ 12
Re), it is important to make sure that our dataset is free from any orbital bias. Such limitations
could indeed affect the importance of the different dependencies we will be focusing on in the
next sections as discussed in Němeček et al. [2020].

To do so, we show in Figure 5.3 the projections in the (X−Y) and the (X−Z) plane of the cross-
ings corrected position. The grey shading represents the time during which the different spacecraft
were at given coordinates (X, Y) and (X, Z). In both cases and for each value of X, the crossing with
the highest Y or Z is located far from the maximal Y or Z reached by the spacecraft during the orbit.
This suggests the crossings we selected are not limited by the orbit of the spacecraft we consider
in this study.

Despite of having an even distribution in the (X −Y) plane, the majority of the high-latitude
crossings are detected in the northern hemisphere. We balance this distribution by reverting the Z
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Figure 5.2: Histogram of the solar wind parameters of the 15349 magnetopause crossings: the three mag-
netic field components, Bx (top left), By (top right), Bz (middle left), the dynamic pressure Pd yn (middle
right), the magnetic pressure Pm (bottom left) and the dipole tilt angle (bottom right).

coordinate and the tilt angle γ of every crossing, in a similar way than was was done in Wang et al.
[2013]. Assuming de facto that the northern summer hemisphere of the magnetopause is similar
to the southern winter hemisphere: r (X,Y,Z,γ) = r (X,Y,−Z,−γ) .

The absence of bias is also confirmed by Figure 5.4 that represents the histograms of the solar
wind parameters for both the entire dataset and the crossings measured by the spacecraft that
have a high apogee (above 12 Re, corresponding to the crossings of any spacecraft but Double Star,
MMS and THEMIS A, D and E.). Having similar blue and red histograms for each panel ensures no
orbital bias is introduced whatever solar wind parameter is considered.
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Figure 5.3: Projection in the (X −Y) (left) and in the (X −Z) (right) GSM plane of the 15349 magnetopause
crossings (red dots) The gray shading represents the time spent by all of the spacecraft in a given region of
the (X−Y) (resp. (X−Z)) plane. The blue line represent Lin et al. [2010] magnetopause model with a dynamic
pressure of 2 nPa and a null Bz.

Figure 5.4: Histogram of the solar wind parameters of the 15 349 magnetopause crossings. Each panel is
the same than in Figure 5.2. The red here bins show the same distribution for the events measured by high
apogee spacecraft
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In the introduction, we mentioned that the question of the magnetopause indentation is still
open and a non-negligible part of the events of our dataset might be inner boundary crossings
instead of being crossings of the actual magnetopause. Consequently, the crossings of our dataset
that occurred in the near-cusp region will be studied separately from the other magnetopause
crossings in the next section and the studies that we will show in the three following subsections
have been performed without the consideration of the high latitude crossings that were likely to
occur near the northern or the southern cusp.

Considering the expression of the indentation expressed by Lin et al. [2010] in equations 5.10
to 5.14, we define those so-called "out of cusp" crossings as the events for which the spherical
coordinates θ and φ verify:  (θ−θn)2 +φ2 ≥

(
− 1

dn

) 2
a21 if Z ≥ 0

(θ−θs)2 +φ2 ≥
(
− 1

ds

) 2
a21 if Z ≤ 0

(5.26)

The application of such criteria separates the dataset into 29 077 out of cusp crossings and 1
621 so-called near-cusp crossings.

5.3.2 The magnetopause stand-off distance

We study the magnetopause stand-off distance by selecting the 275 events for which θ < 7.50◦

and Z > 0 and approximate the magnetopause stand-off distance r0 of these crossings by their
actual radial distance r . The reason that explains the second selection criteria we make is that the
crossings selected with the criteria on the zenith angle θ correspond to a very narrow latitude and
longitude band. It is then of no use here to consider the events in the southern hemisphere as they
will just repeat the information brought by their northern hemisphere counterpart.

Naturally, we expect the total pressure Pd yn +Pm to be the feature that has the greatest influ-
ence on the stand-off distance. Figure 5.5 represents the radial distance of all of the events as a
function of the total pressure. The stand-off distance r0 here appears to have a clear and consis-
tent power-law dependency on the total pressure that was already exhibited in observations by
Shue et al. [1997] and references therein and numerically by Liu et al. [2015]. We exhibit this de-
pendency by fitting r0 to the power law a0(Pd yn+Pm)a1 where a0 represents the stand-off distance
of the magnetopause at 1 nPa and a1 the exponent of the power-law. The result of such fit is repre-
sented by the solid blue line and the grey interval that represents the 1-sigma confidence interval.
The obtained values of a0 and a1 are shown in the top right corner of the Figure. a0 represents
the stand-off distance at 1 nPa and the obtained value is thus consistent with the typical value we
expect for the magnetopause nose. We also find an exponent value of −0.161 for a1, which is very
close to the theoretical −1

6 exposed in the chapter 1 and close to the values obtained by Shue et al.
[1997], Lin et al. [2010] and Liu et al. [2015].

The dependency on the solar wind ram and magnetic pressure is so strong that studying now
the dependency of the standoff distance on the IMF components must be done with care. To cope
with it, we separate the 275 events into 2 nT wide bins for each of the IMF components and fit r0

as a power law of the total pressure, r0 = a0(Pd yn +Pm)a1 for each bin. We limit the bins for each
component by looking at the total number of each event per defined bin. This still offers a wide
range of upstream IMF conditions of the same order as the ones used in the studies led by Roelof
and Sibeck [1993] and Petrinec and Russell [1993].

We represent the evolution of the fitted a0, the stand-off distance at 1 nPa, as a function of
Bx and By with the black circles in the two panels of Figure 5.6. In both cases, we notice an al-
most constant evolution of a0 that indicates no particular dependency of the stand-off distance
for these two components. In the Bx case, this is different from the findings of Dusik et al. [2010]
or Grygorov et al. [2017] who both exhibited a sunward motion of the magnetopause for a radial
IMF but consistent with the study of Liu et al. [2015] for which the influence of the IMF Bx was
almost negligible. The differences with the former might be explained by the spatial distribution
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Figure 5.5: Variations of r0 with the dynamic pressure. The solid blue line represent the fit of r0 as a power-
law of Pd yn +Pm and the grey interval is the 1-sigma confidence interval of such fit.

of our event selection that is much narrower. Our finding does not reflect the influence of the IMF
cone angle on the whole magnetopause but is restricted to the lone stand-off distance for which
the sunward motion due to a radial IMF was found in the order of magnitude of the errors usually
made by the existing magnetopause models [Grygorov et al., 2017]. It would then be interesting
in a further study to see if this apparent independence at the stand-off distance holds at higher
latitudes and longitudes. For now, we will assume no particular Bx dependence.

Figure 5.6: Evolution of the stand-off distance at 1 nPa, a0 as a function of the IMF Bx (left) and By (right).
The black circles represent the value we obtain from fitting a power law to r0 for different Bz bins. The error
bars represent the 1-sigma confidence interval of such fits.

The evolution of a0, as a function of Bz is shown in Figure 5.7. Here, the noticed decrease of a0

for negative Bz is consistent with the erosion of the dayside magnetosphere when reconnection,
favored by a southward IMF, occurs at low-latitude. This argument of the erosion of the dayside
magnetosphere may also explain the saturation of a0 for positive Bz since magnetic reconnection
is not thought to occur at low latitude for a northward IMF.

For comparative purposes, the three colored dashed lines represent the evolution of a0 with Bz

previously obtained by Shue et al. [1997] (green line), Lin et al. [2010] (red line) and Liu et al. [2015]
(blue line). For northward IMF, the values of a0 is consistent with the one obtained by both Shue
et al. [1997] and Liu et al. [2015] while Lin et al. [2010]’s model over-estimate the stand-off distance
by 2 Re further from the Earth. The three models also predict an erosion of the magnetopause for
southward IMF and the slope of the decrease of a0 for negative Bz is close from the one exhibited
by Shue et al. [1997].
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The studies of Liu et al. [2015] and Shue et al. [1997] suggest a saturation of a0 for strong neg-
ative Bz (not shown in Figure 5.7) that confirms the observations made by Yang et al. [2002]. This
saturation was also assumed by Lin et al. [2010] through the introduction of the third term of the
equation 5.5. In our case, even if the decrease of our fitted values of a0 for negative Bz appears
to be less important below -7 nT, the important error bars for this point and the restricted range
of Bz , due to the restriction of our dataset to the stand-off distance, do not permit to draw of any
conclusion on what happen for extreme values of Bz . Subsolar magnetopause crossings under ex-
treme Bz are extremely scarce and it is then of no use to study them from a statistical point of view
for now. They however constitute excellent samples for further case studies on the behavior of the
magnetosphere under solar events, such as ICMEs, for which we expect such extreme conditions4.
The saturation will be assumed when we will use the totality of the out of cusp crossings to fit an
empirical magnetopause shape and location model.

Figure 5.7: The same than Figure 5.6 but as a function of the IMF Bz . The three colored dashed line represent
the evolution of a0 according three previous existing models: Shue et al. [1997] (green), Lin et al. [2010] (red)
and Liu et al. [2015] (blue).

We can use the two evolutions we exhibited to establish a primary empirical expression of the
magnetopause stand-off distance. Applying the Levenberg-Marquardt algorithm [Newville et al.,
2014] to our 275 subsolar crossings, we then obtain:

r0 = 10.75(1+0.05tanh(0.35Bz +1.6))
(
Pd yn +Pm

)−0.161 (5.27)

5.3.3 Evidencing the asymmetries

The first empirical models [Fairfield, 1971; Formisano, 1979; Petrinec and Russell, 1993; Shue et al.,
1997] of the magnetopause shape and location assumed axisymmetry around the GSM X axis.
Nevertheless, the MHD simulations of Lu et al. [2011] evidenced an asymmetry between the mag-
netopause flaring in the (X−Y) plane and the flaring in the (X−Z) plane. They evidenced the IMF
Bz component and the Earth dipole tilt angle as the main actors at the origin of such azimuthal
asymmetry. This asymmetry was considered by the fits of Wang et al. [2013] and Lin et al. [2010]
and already observed Šafránková et al. [2002] but never confirmed in the far nightside, below -20
Re.

We address this question by selecting on the one hand the 2154 out of cusp crossings for which
|Y| < 2 Re (the so-called X−Z plane events) and on the other hand the 5170 out of cusp crossings
for which |Z| < 1 Re (the so-called X−Y plane events). In both cases, we represent log(r ), the radial

distance of each crossing as a function of log
(

2
1+cos(θ)

)
, the inverse trigonometric function used by

Shue et al. [1997] and Liu et al. [2015] in equations 5.1 and 5.15, in the two panels of Figure 5.8. In

4This could especially been done through the study of the magnetopause crossings of our dataset at the date of
which we also have a detected ICME.
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both cases, we notice a clear linear dependency that legitimates the commonly used expression
of the magnetopause shape and location as a power law of an inverse trigonometric function. It
is also worth noting that the linear dependency holds for the far nightside crossings of ARTEMIS
giving in the process another credit to the using of such analytical expression.

Following this linear dependency, the slope of a fitted linear expression should give a first es-
timate of the flaring coefficient α in both the (X−Z) and the (X−Y) planes. The red curve and the
associated grey shading confidence intervals are shown in the two panels of Figure 5.8. We find a
value of α that is lower in the (X−Z) plane than in the (X−Y) plane. Even if we lack observational
evidences for the magnetopause at high latitude in the far nightside, this suggests the existence
of an azimuthal asymmetry and a magnetopause that is more elongated in the Y-direction than in
the Z-direction. Following 5.1, the intercept of the red curve of the two panels should correspond
to an estimate of the average value of the stand-off distance r0. This value is equal to 10.5Re in the
(X−Z) plane and to 10.38Re in the (X−Y) plane, which is in the orders of magnitude of the average
value of r0 we had in the previous subsection.

Figure 5.8: Evolution of the radial distance r of the crossings in the (X −Z) (left) plane and in the (X −Y)
plane as a function of the inverted trigonometric function 2

1+cos(θ) on a logarithmic scale. The solid red line

represent the linear fit of logr as a function of 2
1+cos(θ) . The grey intervals represent the confidence intervals

of such fits.

In addition to the azimuthal asymmetry, the MHD simulations of Liu et al. [2012] showed the
dipole tilt angle induced a North-South asymmetry that was also observed by Boardsen et al. [2000]
and considered by the fits of Lin et al. [2010] and Wang et al. [2013]. The symmetrization of the
dataset we did in 5.3.1 already allows this asymmetry and the evolution of the northern (or the
southern) magnetopause flaring with the dipole tilt angle will thus be properly evidenced and
investigated in the next subsection.

Using Goes and LANL spacecraft, Kuznetsov and Suvorova [1998] evidenced a dawn-dusk asym-
metry of the magnetopause, this asymmetry was also observed and linked to the solar wind aber-
ration caused by the Earth orbital motion by Šafránková et al. [2002]. The latter noticed that the
correction of this aberration was enough to erase the asymmetry. Having the aberration corrected,
Lin et al. [2010] still noticed a dawn-dusk asymmetry in their fitted magnetopause model. Never-
theless, this was noticed in the MHD simulations of Liu et al. [2015] and references therein.

Following what we did to evidence the azimuthal asymmetry, we now separate the 5170 out
of cusp crossings in the (X−Y) plane into 2832 dawnward (Y < 0) and 2338 duskward (Y > 0) and
applied the same method than previously. The logarithm of the radial distance r of these two
subsets of events as a function of the logarithm of the inverted trigonometric function 2

1+cos(θ) is
shown in the Figure 5.9.
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In this case, we obtain almost equal values for α in both sides that indicate no apparent dawn-
dusk asymmetry and thus, a symmetric magnetopause regarding the Y = 0 plane. In the light of
those results, we decide to add another symmetry to the dataset by reverting the Y coordinate,
increasing the size of the out of cusp crossings from 29077 to 58154.

Figure 5.9: The same figure than 5.8 but with the crossings in the Y < 0 (left) and in the Y > 0 (right) half-
spaces.

5.3.4 Dependencies of the flaring coefficients

The Figures 5.8 and 5.9 evidenced the magnetopause flaring as the power law of an inverse trigono-
metric function, consistently with (6.1). They also evidenced different flarings in the (X −Y) and
in the (X −Z) directions indicating our necessity to treat the influence of the various solar wind
parameters on the two flarings separately.

Influence of the dynamic pressure

Having symmetrized the dataset by reverting Y, we focus on the Equatorial flaring by selecting
the 5170 duskward out of cusp crossings for which |Z| < 1 Re and the 3882 northern out of cusp
crossings for whidh |Y| < 2 Re. We represent the averaged distribution of the total pressure in
these two newly so-defined (X−Y) and (X−Z) planes in the two panels of Figure 5.10.

Although the observation is noisier in the left panel, one can see the appearance of clear paral-
lel contours which intercept goes from 15 Re to 7 Re with an increasing pressure. This proves that
the main effect of an increasing pressure stands in an earthward translation of the magnetopause
along the X axis and thus, that the flaring coefficient of the magnetopause is independent from
the upstream solar wind pressure. This finding is consistent with Lin et al. [2010] who found no
particular pressure dependency and with the results of Liu et al. [2015] and Shue et al. [1997] that
found a flaring coefficient that had very little variations with the pressure.

Another method we have to evidence this independence stands in separating the data of the
two planes into sliding pressure bins between 0.5 and 6 nPa and estimating the flaring coefficient
α by fitting the radial position of the crossings to the equation 5.1 with r0 being defined by the
equation 5.27. The result of such fits is shown in the two planes in Figure 5.11 and seeing very little
variations of α in the two planes confirms the independence.
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Figure 5.10: Averaged distribution of the solar wind total pressure (Pd yn +Pm) associated to the crossings in
the (X−Z) (left) and in the (X−Y) (right) planes.

Figure 5.11: Evolution of the fitted flaring coefficient α as a function of the total pressure for the out of cusp
crossings in the (X−Y) (blue) and in the (X−Z) (red) planes. The error bars represent the 1-sigma confidence
intervals of the different fits.

Influence of the dipole tilt angle

The dipole tilt angle is expected to only influence the polar flaring of the magnetopause (Boardsen
et al. [2000]; Lin et al. [2010] and references therein). Thus, we investigate the influence of the
dipole tilt angle on the flaring by considering the (X −Z) events previously defined. Working in
a similar manner than for the pressure, we separate the crossings into sliding tilt angle bins and
estimate α for each group of events5.

The result of such fits are shown in the Figure 5.12 and show a clear linear increase of α with
an increasing γ. This indicates a northern hemisphere magnetopause that opens during summer
and that tends to become more closed during winter.

This finding is consistent with the dependencies evidenced by Boardsen et al. [2000] and Lin
et al. [2010] and very close from the hyperbolic tangent dependency chosen by Liu et al. [2015].
Having a symmetrized dataset, the observed flaring for the southern hemisphere will naturally
also be a linear function of γ with the same intercept but an opposed slope.

5Although not shown, we also looked at the averaged spatial distribution of the Earth dipole tilt angle but did not
notice any specific pattern with this method, proof of the absence of any translationial effect γ on the magnetopause.
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Figure 5.12: Evolution of the fitted flaring coefficient α as a function of the dipole tilt angle γ for the out of
cusp crossings in the (X−Z) plane. The error bars represent the 1-sigma confidence intervals of the different
fits

Influence of the IMF clock angle

The influence of the IMF orientation on the magnetopause shape was first noticed by Aubry et al.
[1970] who noticed, using Ogo 5 measurements, an earthward motion of the boundary when the
IMF was southward. The phenomena was later-on frequently found in numerous statistical stud-
ies of the magnetopause location and shape [Petrinec and Russell, 1996; Sibeck et al., 1991] and
considered in the most recent analytical models through the dependence on the IMF Bz compo-
nent for both the subsolar stand-off distance and the level of flaring [Lin et al., 2010; Liu et al.,
2015; Shue et al., 1997; Wang et al., 2013].

The aforementioned models all suggested an elliptic cross-section of the magnetopause which
semi-major axis is located on the GSM Z (resp. Y) axis when the IMF is southward (resp. north-
ward).

Such behaviour may be explained by the erosion mechanism triggered by magnetic recon-
nection and usually described by the so-called onion peel model described in Sibeck et al. [1991].
When the IMF turns southward, the X-line is believed to be located in the equatorial plane. Day-
side magnetic flux is then convected by the magnetosheath flow to the magnetotail where its ac-
cumulation might result in a magnetopause surface that flares more in the azimuthal plane. The
semi-major axis of the cross section is on the Z axis. On the opposite, when the IMF is northward,
reconnection occurs in the lobes as the magnetic flux is here convected sunward, the azimuthal
flaring decreases and the semi-major axis of the cross-section is now located on the Y axis.

Another reason that may explain this change of shape stands in the magnetic forces exerted
on the boundary surface. A southward turning IMF results in a larger current flowing across the
magnetopause surface and thus in an increased force exerted on the boundary in the equatorial
plane.

It is also worth noting that the influence of the IMF orientation might depend on the value of
the Alfvén Mach Number. Using MHD simulations, Lavraud and Borovsky [2008] suggested that, at
low Mach numbers, both southward and northward IMF resulted in a semi-major axis on the Z axis
while eastward (resp. orientation) rotated the semi-major axis anti-clockwise (resp.clockwise).

Although, the IMF Bz is believed to be the one with the greatest impact on the topology of the
magnetosphere, its lone consideration is reductive regarding the totality of the parameters that
have an influence on the shape of the magnetopause, one can especially think of the two other
IMF components, Bx and By and their value in comparison with Bz . Consequently, instead of
considering the influence of the lone value of Bz , we investigate the influence of the IMF clock
angle Ω. We leave the influence of the IMF cone angle for a further study.

Accordingly, we consider both the events in the (X−Y) (resp. (X−Z)) plane and separate them
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into 30◦ (resp. 60◦ wide clock angle bins between -180 ◦ and 180 ◦ and estimate α for each group
of events. The obtained values are shown in the Figure 5.13.

For southward IMF orientations (green shaded intervals), the (X −Z) flaring, represented by
the blue dots, is higher than the equatorial flaring represented wih the red dots. The semi-major
axis of the magnetopause cross-section is then oriented along the GSM Z axis. For northward ori-
entations (yellow-shaded intervals), the equatorial flaring becomes higher than the (X−Z) flaring.
The semi-major axis is now oriented along the GSM Y axis. This evolution is consistent with the
suggestions of the other existing empirical magnetopause models [Lin et al., 2010; Liu et al., 2015;
Shue et al., 1997; Wang et al., 2013] and could thus be explained either by the erosion mecha-
nism triggered by magnetic reconnection, either by the magnetic forces exerted on the boundary
surfaces. Nevertheless, these results are obtained with no distinction between the low and the
high Alfven Mach number crossings and are opposed to the suggestions previously Lavraud and
Borovsky [2008]. It would thus be interesting, in a further study, to investigate if the result we
evidenced still hold for low Alfven Mach number values.

Figure 5.13: Evolution of the fitted flaring coefficientα as a function of the IMF clock angle for the out of cusp
crossings in the (X−Y) (blue) and in the (X−Z) (red) planes. The green intervals indicate the intervals where
the IMF is southward and the yellow interval is the interval of northward IMF. The error bars represent the
confidence intervals of the different fits.

The flaring coefficients evolving with changing values of the IMF clock angle also suggests a
modification of the magnetopause shape for a changing IMF By component.

To ensure it, we consider the 888 events in the (X −Z) plane for which 1 nT < Bz < 3 nT and
the 756 events in the (X −Z) plane for which −3 nT < Bz < −1 nT . In the two cases, we separate
the events into 1 nT wide By bins and estimate α for each group of events. The obtained values are
shown in the Figure 5.14.

For a negative Bz (green dots), increasing absolute value of By results in a decreasing flaring
coefficient. On the opposite, for a positive Bz (yellow dots), increasing absolute value of By sug-
gests in a decreasing flaring coefficient. These evolutions are consistent with the evolution of α for
a changing IMF orientation in the (X−Z) plane, as shown in the Figure 5.13, and indicates that By

modifies the magnetopause shape by displacing the reconnection sites.
It was also suggested in MHD simulations that a varying By induces a twisting of the mag-

netopause that followed the induced rotating IMF [Liu et al., 2015]. Nevertheless, such rotation
results in an expected dawn dusk asymmetry that we neglected after the findings of Figure 5.9 and
the symetrization of the dataset that was there performed. The question of an eventual twisting of
the magnetopause with changing IMF clock angle thus remains open and should be investigated
in further studies.
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Figure 5.14: Evolution of the fitted flaring coefficient α as a function of the IMF By component for the out of
cusp crossings in the (X−Z) plane for which 1 nT < Bz < 3 nT (yellow) and for which −3 nT < Bz <−1 nT
(green). The error bars represent the confidence intervals of the different fits.

5.4 Fitting a new magnetopause model

5.4.1 Fit

We began this chapter by presenting several existing empirical models made from both observa-
tions and MHD simulations. In the light of the statistical studies that were just performed, we
evidenced an expression of the magnetopause stand-off distance close from the one established
by Shue et al. [1997] and Liu et al. [2015] and an azimuthal asymmetry that was mainly controlled
by the dipole tilt angle and the IMF clock angle. If the tilt angle dependency is not new and was
already taken into account by Lin et al. [2010], Liu et al. [2015] and Wang et al. [2013], the evolu-
tion of the flaring as a function of the clock angle is a novelty as previous studies considered the
influence of Bz alone when taking into account the influence of magnetic reconnection.

Considering the results of the previous section, we can define an alternative expression of the
non indented magnetopause surface as:

r = r0

(
2

1+cos(θ)

)α
(5.28)

r0 = a0(Pd yn +Pm)a1 (1+a2 tanh(a3Bz +a4)) (5.29)

α= α0 +α1 cos(φ)+α2 sin(φ)2 +α3 cos(φ)2 (5.30)

α0 = a5 (5.31)

α1 = a6γ (5.32)

α2 = a7 cos(Ω) (5.33)

α3 = a8 cos(Ω) (5.34)

Where α0, α1, α2, and α3 control the different flarings we studied previously and Ω is the IMF
clock angle. The expressions of r0 is similar to the one exposed in 5.27 and the expression of α has
been modified from the previous models to consider the dependencies we evidenced in the previ-
ous subsections. It is worth noting that such an expression is unchanged by the substitution of φ
by −φ and by the substitution of (φ,γ) by (π−φ,−γ) respecting consequently the two symmetries
we supposed in the dataset. To ensure our model does not overfit the data, we randomly split the
symmetrized dataset into a train set of 43664 events that will serve for the modeling and into a
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test set of 14490 events that will be used to evaluate the accuracy of the fitted model on the next
subsection.

We predetermined the values of a0, a1, a2, a3 and a4 in 5.27. The initial values of a5 and a7 are
determined by fitting 5.28, 5.29, 5.30, 5.31 and 5.34 to the out of cusp crossings for which |Z| < 1Re
and the initial values of a5, a6 and a8 by fitting 5.28, 5.29, 5.30, 5.31, 5.32 and 5.33 to the out of
cusp crossings for which |Y| < 2Re. We show these initial fitting values in the Table 5.2 and adjust
them by fitting the 7 equations, from 5.28 to 5.34, altogether to the 43664 out of cusp crossings all
at once. We used the average initial fitted values of a5 as an initial guess for this coefficient.

a0 a1 a2 a3 a4 a5 a6 a7 a8

10.75 -0.161 0.050 0.35 1.60 0.55 , 0.51 0.026 0.015 -0.050

Table 5.2: Initial values of the coefficients of the equations (5.27) to (5.33) obtained from the initial fits
around the subsolar point of a0, a1, a2, a3 and a4, in the (X−Y) plane for a5 (first value) and a7 and in the
(X−Z) plane for a5 (second value), a6 and a8

The final values obtained for each coefficients are presented in the Table 5.3 and result in an
analytical empirical model of the non-indented magnetopause shape and location that depend
on the solar wind total pressure Pd yn +Pm , the IMF Bz and clock angle Ω and the dipole tilt angle
γ. 6

a0 a1 a2 a3 a4 a5 a6 a7 a8

10.61 -0.150 0.027 0.207 1.62 0.558 0.135 0.015 -0.0839

Table 5.3: Final values of the coefficients of the equations 5.28 to 5.34 obtained after a total fit on the training
set.

5.4.2 Evaluation and comparison with other models

We evaluate the accuracy of the fitted model by computing the RMSE on the 14490 events of the
test set and compare it to the RMSE of the models of Shue et al. [1997], Lin et al. [2010] and Liu
et al. [2015] computed on the same test set. To keep a consistent comparison, we removed the
indentation part of the models of Lin et al. [2010] and Liu et al. [2015] during the computation of
the RMSE. The score we obtain for the different models for different spatial regions are shown in
the Table 5.4 and visually represented in the Figure 5.15.

The obtained RMSE in the low-latitude, dayside regions, subsolar and flank, is almost similar
for the four models, this indicates that our model continues providing an accurate description of
the magnetopause shape and location in those regions and this is not surprising given the prox-
imity of the expression and coefficients of the stand-off distance of the 4 models (equations 5.2,
5.5, 5.18 and 5.29). At high latitudes, we notice a more important error for the model of Shue et al.
[1997] that is not surprising as no high latitude data was considered during the development of
this model and this is particularly reflected by the similarity we find between our RMSE and the
RMSE of Lin et al. [2010] and Liu et al. [2015].

Looking at the "close" nightside region, we notice this time a reduced error in comparison to
the three others than can be explained by our consideration of the IMF clock angle in the expres-
sion of the flaring coefficient α rather than the lone Bz .

Finally, the previous models were established without consideration of magnetopause cross-
ings further than −30 Re, especially the one detected by ARTEMIS and it is thus not surprising
to notice a lower RMSE for our model in the "far" nightside. Naturally, the error here is possibly
substantially higher than in any other region we considered. This could be explained by the flap-
ping of the magnetotail in the far nightside that could result in a much more variable boundary

6A numerical implementation of this model can be found at: https://github.com/gautiernguyen/

magnetopause_models and will be the one used in the following paragraphs.
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[Sergeev et al., 1998]. The underlying detection of magnetopause crossings will consequently be
much more ambiguous and constitute a non-negligible source of error.

Our model Liu et al. [2015] Lin et al. [2010] Shue et al. [1997]
X <−30 (361) 6.06±0.32 15.01±0.53 14.06±0.34 9.19±0.34

X >−30 and X < 0 (2525) 1.67±0.033 2.39±0.040 2.48±0.047 2.26±0.034
X > 0 and |Z| > 7.5 (1188) 1.84±0.042 1.78±0.042 1.72±0.044 2.24±0.043

X > 0 and |Z| < 7.5 and |Y| > 7.5 (3992) 1.02±0.016 0.99±0.017 1.22±0.016 1.19±0.016
X > 0 and |Z| < 7.5 and |Y| > 7.5 (6424) 0.93±0.011 0.86±0.010 0.96±0.010 1.00±0.012

All regions (14490) 1.53±0.013 2.73±0.021 2.65±0.023 2.06±0.015

Table 5.4: RMSE of the different models in different region for he 14490 crossings of the test set, the uncer-
tainty represents the standard error of mean of the error of each model. The number between brackets in
the first column indicate the number of events per region.

Figure 5.15: Visual representation of the RMSE of the different models exposed in the Table 5.4. The error
bar represent 10 times the Standard Error of the Mean (SEM) of the error made by the models on the test
set.

Combining the regions altogether (last group of bars of Figure 5.15), the precedent findings
result in a global RMSE that is lower for our model in comparison to the others and thus ensures
the reliability of our model and its legitimacy to be exploited in further magnetopause studies.

5.4.3 Characteristics of the model

We show the influence of the total pressure, P = Pd yn +Pm on our magnetopause model with the
three panels of Figure 5.16. Following what we evidenced in the Figure 5.11, the total pressure
pushes the magnetopause earthward along the X axis without influencing the flaring. This be-
havior confirms the findings of the previous models that showed very little pressure dependency.
Additionally, we find a power law index a1 equal to -0.15 that is very close to the theoretical −1/6
for a dipole in vacuum and in the same orders of magnitude than the values found by Shue et al.
[1997], Lin et al. [2010] and Liu et al. [2015].

The influence of the IMF Bz is shown in the three panels of Figure 5.17. A decreasing Bz from
a northward to a southward orientation will also translate the magnetopause Earthward along the
X-axis, nevertheless, this effect, explained by the magnetopause erosion, is less important than
the translation of the magnetopause induced by the variations of the total pressure. This is con-
sistent with what we show in Figure 5.7 and the coefficients we obtain are very similar to what was
obtained by Shue et al. [1997].
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Figure 5.16: Projection in the (X−Y) (left), (X−Z) (middle), and (Y−Z) (right) planes of our model for varying
total pressure P = Pd yn +Pm . The IMF is purely southward and Bz = -2 nT.

Figure 5.17: Projection in the (X−Y) (left), (X−Z) (middle), and (Y−Z) (right) planes of our model for varying
Bz . The total pressure is equal to 2 nPa.

Additionally, a southward Bz induces an equatorial erosion and the opposite is observed for a
northward IMF at high latitudes. This effect is represented with the three panels of Figure 5.18 that
represent the influence of the clock angle. This is consistent with the change of flaring coefficients
that was evidenced in the Figure 5.13 and results in an elliptic magnetopause cross section with a
major axis on the Y axis for a positive Bz and on the Z axis for negative Bz .

Figure 5.18: Projection in the (X−Y) (left), (X−Z) (middle), and (Y−Z) (right) planes of our model for varying
clock angle Ω. The total pressure is equal to 2 nPa and |B| = 2nT.
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Finally, we show the influence of the dipole tilt angle γ with the three panels of Figure 5.19
that clearly indicate a magnetopause that rotates around the Y axis with a rotating dipole tilt an-
gle resulting in a north hemisphere summer (respectively south hemisphere winter) shift of the
magnetopause cross section.

Figure 5.19: Projection in the (X−Y) (left), (X−Z) (middle), and (Y−Z) (right) planes of our model for varying
dipole tilt angle γ. The total pressure is equal to 2 nPa, the IMF is purely northward and and Bz = 2nT .

5.4.4 From a static to a dynamic model

All of the magnetopause models we have been presenting so far, including our model, return a
static representation of the magnetopause for a permanent upstream solar wind regime. Never-
theless, this regime is far from being the nominal case and the magnetopause is thus in a perma-
nent evolution, following the variations of the upstream solar wind. This implies the necessity we
have to adapt our static model into a dynamic magnetopause model that has the ability to provide
radial distance of the magnetopause for every spherical coordinate, θ and φ, at any time.

To do so, we adapt the two-step propagation algorithm of Šafránková et al. [2002] to estimate
the temporal shift to OMNI data needed for each zenith angle θ :

1. At a given time t and a given zenith angle θ, we estimate a first position of the magnetopause
by computing our model for the averaged solar wind conditions in the interval between t
and t −30 min. We chose 30 minutes as this is the typical shifting time we obtain for X ∼−70
Re.

2. This first position serves to estimate a first value of the X coordinate of the magnetopause at
this value of θ.

3. We apply the two step propagation algorithm to estimate a first shifting time from this first
X position and compute the associated radial position of the magnetopause.

4. We use this second radial position to re-estimate the X coordinate of the magnetopause at
this value of θ.

5. We apply the two-step propagation algorithm a second time to determine the final shifting
time that will be used for this value θ and we compute the associated final radial position of
the magnetopause.

At a given time t , we apply this process for every zenithal position θ and end up with a dynam-
ical magnetopause model similar to the one shown in the two right panels of Figure 5.20 where we
represented the projection of the magnetopause in the (X−Y) and in the (X−Z) planes at the time
indicated by the black dashed line on the two left panels. Naturally, the shifting time increases
with the zenith angle and the left boundary of the grey interval represented in the two left pan-
els then corresponds to the magnetopause computed at the left border of the two right panels.
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Figure 5.20: OMNI solar wind dynamic pressure (top) and magnetic field (bottom) measurement (left col-
umn) on the 3r d of March 2011 and projection of our dynamical magnetopause model (right column) in the
(X−Y) (top) and in the (X−Z) (bottom) planes at the time corresponding to the black dashed line on the left
column. The grey interval in the left panels represent the data interval propagated throughout the whole
magnetopause.

The obtained magnetopause then considers an IMF shift from a negative to a positive Bz and the
propagation of this transition is reproduced through the propagation of the erosion we notice in
the (X−Z) plane.

Adapting the two step propagation algorithm, we then elaborated a process useful for provid-
ing a dynamical view of the magnetopause at any time. Additionally, this process is independent
from the used static magnetopause model and thus easily adaptable to the models of Shue et al.
[1997], Lin et al. [2010] and Liu et al. [2015]. 7

5.5 Nature of the near-cusp magnetopause

5.5.1 Different boundaries of the polar cusps

The polar cusps are defined in the two hemispheres as the regions where the geomagnetic field
is vanishing. These regions, located at an average latitude of 75◦, are the privileged entry place
of solar particles in the magnetosphere as this was confirmed by the low-latitude observations of
IMP5 data by Frank [1971] and the observations of ISIS data by Heikkila and Winningham [1971].

7The numerical implementation of this models can also be found at: https://github.com/gautiernguyen/

magnetopause_models.

123

https://github.com/gautiernguyen/magnetopause_models
https://github.com/gautiernguyen/magnetopause_models


CHAPTER 5. STATISTICAL ANALYSIS OF THE MAGNETOPAUSE SHAPE AND LOCATION

Just like the different regions and boundaries of the near-Earth environment, the location and
the geometry of the cusps are strongly affected by the solar wind conditions and the seasonal
variations of the Earth dipole tilt angle. A southward (northward) IMF shifts the cusp equatorward
(poleward) while a dawnward (duskward) orientation of the IMF shifts it dawnward (duskward) in
the northern hemisphere, an increasing dynamic pressure widens it and a sunward tilt of the Earth
dipole brings the cusp poleward (Russell [2000] and references therein).

As they are the privileged entry for the solar particles in the terrestrial magnetosphere, the
polar cusps are particularly affected by magnetic reconnection and the orientation of the IMF as
shown by the two panels of Figure 5.21:

• When the IMF is northward (right panel) reconnection occurs in the lobes and the merged
field lines are convected sunward (green line). This convection, opposed to the tailward flow
of the magnetosheath generates a region of dense, turbulent, and overall stagnant plasma,
hotter than the magnetosheath and characterised by a low magnetic field defined as the cusp
exterior. A passage of the Cluster 1 spacecraft in this region during northward IMF is shown
between the two black lines in Figure 5.22.

• When the IMF is southward (left panel), reconnection occurs on the dayside, low latitude
magnetopause. The merged field lines are convected tailward (green line). In this case, the
direction of the two flows are similar and the associated cusp exterior, still dense, hot and
associated to a low magnetic field, becomes a convective region where the plasma flow is
oriented tailward. A passage of the Cluster 1 spacecraft in this region during southward IMF
is shown between the two black lines in Figure 5.23.

Figure 5.21: Schematic representation of the magnetic field topology and plasma flow in the near-cusp
region for southward (left) and northward (right) IMF. The blue green lines show the time evolution of the
reconnected field lines (see text). The red-line is the first non-convected field line and the dashed purple
line represents the assumed location of the cusp external boundary. (adapted from Lavraud and Cargill
[2005]).
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In both cases, the convection of reconnected field lines are at the origin of the cusp exterior,
a region of dense, hot plasma with a low magnetic field that can either be stagnant or convective
depending on the orientation of the IMF. The differences of the physical parameters of this region
with the magnetosheath imply the necessary existence of a discontinuity between the two regions
known as the cusp external boundary, represented by the purple dashed line in Figure 5.21 and by
the black dotted lines in Figures 5.22 and 5.23.

We define the boundary that delimits the exterior of the cusps from the magnetosphere as the
cusp inner boundary. This boundary, represented by the black dotted lines in the 5.22 and 5.23,
delimits the closed field lines of the magnetosphere8.

Both the inner and the external boundary can be seen as the continuous prolongation be-
tween the day side and the nightside magnetopause. Without reconnection, we expect the exter-
nal boundary to vanish and the inner boundary should be TD that prevent any solar intrusion in
the magnetosphere. It is then the logical continuous extension of the magnetopause in the near-
cusp magnetopause. In the sense of reconnection, the inner boundary is actually the separatrix
of the open and closed field lines on the dayside (resp. nightside) when the IMF is southward
(resp. northward). The external boundary then appears as a more appropriate definition of the
magnetopause in this region.

8Another observational example of the cusp external boundary is shown in the appendix B.
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Figure 5.22: In-situ measurement provided by Cluster 1 spacecraft on the 16st of March 2002. From top to
bottom are represented the ion density, the plasma magnetic field and velocity components, the omnidi-
rectional energy fluxes of ions, The difference between the radial position of the spacecraft and the radial
position predicted by our dynamic model and the prediction of the region classifier presented in Chapter 4.
The grey dashed line indicate the magnetopause obtained from the gradient boosting prediction. The grey
dotted line indicate the actual position of the magnetopause.
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Figure 5.23: In-situ measurement provided by Cluster 1 spacecraft on the 21th of March 2002. The legend is
the same than in Figure 5.22.
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5.5.2 Shape of the near-cusp magnetopause

Based on pressure balance between the solar wind and the magnetosphere, the theoretical work of
Spreiter and Briggs [1962] predicted a discontinuity between the dayside and the nightside mag-
nesopause that could be extended by considering an indentation of the boundary in the near-cusp
region. This indentation was later suggested by Haerendel et al. [1978] following their observations
of HEOS data. These observations also proposed the existence of a dense, hot and stagnant region
located on the assumed magnetosheath side of the indentation. From then on, the apparent near-
cusp indentation was observed in a multitude of study based on the data of various spacecraft
(Boardsen et al. [2000], Šafránková et al. [2002]) and considered by latest magnetopause models
[Lin et al., 2010; Liu et al., 2015; Wang et al., 2013]. Although largely admitted, the existence of
the indentation was questioned by the Hawkeye cusp observations of Zhou and Russell [1997] .
Using the same set of data, Eastman et al. [2000] suggested that the absence of indentation they
observed was linked to the definition they gave to the magnetopause in the near-cusp region.
The Cluster observations of Lavraud et al. [2004a,b] indicated that the cusp external boundary, al-
though a more appropriate continuous extension of the magnetopause in the near-cusp region,
did not present any particular indentation while the inner boundary, an appropriate continuous
extension of the magnetopause in the near-cusp region in the absence of reconnection, did so.

Nevertheless, their study was based on a very small number of samples and the actual exis-
tence of the near-cusp indentation still lacks of a large-scale, statistically relevant, confirmation.
In this section , we take a step further in this direction by considering the 501 northern hemi-
sphere in-cusp crossings9 detected with our region classifier and the 205 in-cusp crossings from
older missions that comply the same condition. In the following, the former events will be desig-
nated as the automatically detected crossings and the latter events will be designated as the older
crossings. It is worth keeping in mind here that, given the orbit of the missions on which we ap-
plied our region classification routine, all of the automatically detected crossings are issued from
our Cluster crossings catalogs.

In the previous chapter, we defined as magnetosheath any data point that was not defined ei-
ther as magnetosphere or either at solar wind. Consequently, any region of mixed plasma found
downstream of the bow shock, is classified as magnetosheath. In the near-cusp region, the cusp
exterior, generated by the convection of the reconnected field lines, is then classified as magne-
tosheath and the detected boundary actually corresponds to the cusp inner boundary as shown
for example by the last panel of the Figures 5.22 and 5.23. We thus expect the statistical insight on
the position of the automatically detected crossings to predict an indented boundary, consistently
with what has been said in the previous subsubsection.

To investigate the actual position of the near-cusp magnetopause, we visually collect 147 among
the 501 automatically detected crossings for which Cluster 1 spacecraft goes through both the in-
ner and the external cusp boundaries in a similar way than what is shown in the Figures 5.22 and
5.23.

Figure 5.24 represents the distribution of the solar wind parameters and of the Earth dipole
tilt angle associated to the selected events. Having similar distributions of Pd yn , By and Bz than
what is shown in the Figure 5.2 and a balanced distribution of winter, summer and equinox events
ensures our selection is representative enough and thus, not biased by any solar wind or seasonal
parameter.

9The term in-cusp being defined with the equation 5.26
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Figure 5.24: Histogram of the solar wind parameters and Earth dipole tilt angle of the 147 in-cusp magne-
topause crossings manually identified: Pd yn (top left), the dipole tilt angle (top right), By (bottom left) and
Bz (bottom right).

We characterise the events we selected by comparing the variations of the density, the velocity
and the temperature at the crossing of the inner boundary to the same variations at the crossing
of the external boundary. The results of such comparisons are shown on the three panels of Figure
5.25 :

• Looking at the left panel, the variations of density are much more important when crossing
the inner boundary. This is consistent with the passage of a region almost empty of plasma
(the lobe) to a dense region compared to the passage from a dense region to another. It is
also worth noting that the density ratio between the magnetosheath and the cusp exterior is
always above 1, indicating that the latter is on average more tenuous than the former.

• The middle panel indicates the jump in velocity is larger when crossing the external bound-
ary. Additionally, the important standard deviation noticed in the distribution of this varia-
tion combined with the limitation of the jump the crossing of the inner boundary to ∼ 150
km/s is consistent with the flow of the cusp exterior we described in the previous subsection.

• The right panel indicates a temperature that increases when passing from the magnetosheath
to the cusp exterior and no particular variations of temperature at the crossing of the inner
boundary. This indicates the passage to a hotter region when crossing the cusp external
boundary from the magnetosheath, consistently with the characteristics of the cusp exte-
rior.

In the three cases, the variations induced by the crossing of the two boundaries are substan-
tially different and the region they delimit is consistent with the characteristics of the cusp exterior
presented previously.
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Figure 5.25: Variations of density (left), velocity (middle) and temperature (right) associated to the crossing
of the cusp external boundary as a function to the variations of the same parameters associated to the
crossing of the cusp inner boundary. The grey dashed line is the identity function.

Having characterised the crossing of the external boundary in comparison to the crossing of
the inner boundary, we now focus on the position of the selected cusp external crossing. These
events will be referred to as the manually selected crossings.

In order to draw a significant conclusions independent from the upstream solar wind condi-
tions, we normalize the GSM position of the events of each list, manually selected, automatically
detected and older, following the scheme presented in the Figure 5.26 and adapted from Lavraud
et al. [2004a]:

• The GSM position of each event is projected in the (X−Z) plane, in Figure 5.26, the projected
event corresponds to the point A1.

• We define a reference magnetospheric field using the model of Tsyganenko and Sitnov [2005]
computed for reference conditions defined: Pd yn = 2 nPa, Bz =−2 nT, By = Bx = 0 nT, DST =
−10nT and a null dipole tilt angle. At these conditions, we look for the last field line bent
toward the dayside and define it as the reference last bent line represented by the solid red
line.

• We compute the model of Tsyganenko and Sitnov [2005] for the solar wind and dipole con-
ditions associated to our event and define the current last bent line as the last field line bent
toward the dayside for these conditions, for instance, the green line.

• A1 is transformed into A2 through the rotation at the angle defined by the difference between
the current last bent line and the reference last bent line.

• We use our magnetopause model to compute the position of the magnetopause in the (X−Z)
plane for the reference (red dashed line) and the current conditions (green dashed line). The
radial distance of A2 is then scaled with the radial difference between the two computed
magnetopause positions along the grey dotted line. This radial adjustment results in the
final crossing with a normalized position represented by the point A3.
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Figure 5.26: Illustration of the different steps of the coordinate transformation we apply to the in-cusp
crossing. A1 is the projection of the GSM coordinate of an event in the (X −Z) plane. A2 is the image of
the rotation of A1 with an angle defined by the difference between the current last bended line (green solid
line) to the reference last bended line (red solid line). A3 is the image of the translation of A2 following the
difference between the current (green dashed line) and the reference (red dashed line) magnetopause. in
the direction defined by the zenith angle of A2 (grey dotted line).

The normalized positions of the automatically detected crossings are represented with the
blue dots in the left panel of Figure 5.27. In comparison with our magnetopause model repre-
sented by the black solid line and despite of an important dispersion, we notice a clear depletion
of these events location at the near-cusp latitudes. This is consistent with the nature of these cross-
ings and the underlying expected indentation. It is worth noting that the position of the automat-
ically detected crossings appear to be consistent with the near-cusp magnetopause predicted by
Lin et al. [2010] and represented by the green line. This makes us infer that they fitted their model
with a near-cusp magnetopause defined as the inner boundary. This assumption is confirmed by
the normalized position of the older crossings represented by the blue dots of the right panel of
Figure 5.27. Most of these crossings are the Hawkeye observations of Boardsen et al. [2000] and
Eastman et al. [2000]10 that are used in the fit of Lin et al. [2010] in this region and we notice the
same depletion than in the left panel.

The average similar distribution of the normalized position noticed for the older and the auto-
matically detected crossings is not surprising these events actually corresponds to the cusp inner
boundary in both cases. The automatically detected crossings are thus consistent with magne-
topause crossings manually detected by experts and this is not surprising as we had the same
interpretation of the data. This proves, once again, that the quality of the prediction made by su-
pervised learning algorithms is extremely linked to the interpretation of the data labeled by an
external observer.

The normalized position of the manually selected crossings is represented by the red dots in
the two panels of Figure 5.27. In this case, the detected crossings have a higher radial distance
than the automatically detected and the older crossings, this is consistent with the definition of the
cusp exterior external boundary for which we expect the location at higher radial distances than
the inner boundary. Naturally, the agreement with the prediction of Lin et al. [2010] is much less
obvious and this indicates that the indentation of the near-cusp magnetopause is not completely
clear yet.

10Who defined the near-cusp magnetopause as the inner boundary.
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Figure 5.27: Comparison of the position in the normalized (X−Z) plane of the in cusp events of our manually
detected in cusp magnetopause crossings (red dots), the in cusp events detected in the Chapter 4 (blue
dots, left panel) and the in cusp crossings from older mission (blue dots, right panel). The solid grey line
represent the reference separatrix obtained from Tsyganenko and Sitnov [2005] magnetospheric magnetic
field model. The black solid line is our magnetopause model computed for the reference conditions used
in the normalization process (see text)) and the solid green line is Lin et al. [2010] model computed for the
same conditions.

Using Hawkeye and Cluster observations respectively, Zhou and Russell [1997] and Lavraud
et al. [2004b] predicted a non-indented magnetopause. If this was actually the case we would
intuitively expect the average normalized position of the manually selected crossing to be con-
sistent with the projection in the (X −Z) plane of our non-indented model. Nevertheless, almost
all of these events are below our predicted magnetopause and keep suggesting a depletion in the
near-cusp region.

We confirm this depletion by superimposing the normalised position of these crossings to the
normalized position of the low and high latitude out of the cusp crossings for which |Y| < 2 Re
in the Figure 5.28. An indentation seems to appear in a way consistent with the near-cusp mag-
netopause predicted by Liu et al. [2015] and this can be explained by the fact that the authors
identified the near-cusp magnetopause by looking at the variations of the thermal pressure. This
gives an argument in favor of a near-cusp indentation that persists with the consideration of mag-
netopause magnetic reconnection. Nevertheless, this does not completely confirm its existence
yet and further investigations would be needed.

From now on, an interesting option we could have to investigate this existence would be to
perform a statistical study of the position and angular dispersion of crossing of the cusp external
boundary as functions of the upstream solar wind and seasonal conditions. This would require
the identification of additional events that could be detected with our region classifier applied on
Cluster data provided we adapt the label to take the presence of the cusp exterior into considera-
tion. A final argument in favor of the near-cusp indentation of the magnetopause would then be
to observe a better fit to the data of a model that would account for this indentation in comparison
with a model that would not. This would be one of the main focus of further studies on the shape
of the near-cusp magnetopause.
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Figure 5.28: Position in the normalized (X−Z) plane of the manually detected in cusp magnetopause cross-
ings (red dots) and the out of the cusp crossings for which |Y| < 2Re. The solid grey line represent the ref-
erence separatrix obtained from Tsyganenko and Sitnov [2005] magnetospheric magnetic field model. The
black solid line is our magnetopause model computed for the reference conditions used in the normaliza-
tion process (see text)) and the solid green line is Liu et al. [2015] model computed for the same conditions.

5.6 Conclusion

Combining the magnetopause crossings we have detected in the Chapter 4 to online accessible
magnetopause crossings, we provided a statistical analysis of the magnetopause shape and loca-
tion through the study of the stand-off distance, the asymmetries and the level of flaring.

The findings of the statistical analysis can be summarized as follows:

1. The power-law that describes the evolution of the stand-off distance as a function of the
solar wind dynamic pressure was found very close to the theoretical −1/6.

2. The influence of the IMF Bz on the stand-off distance was found similar to the one fitted by
Shue et al. [1997].

3. We found no particular influence of the IMF Bx component on the stand-off distance . This
finding appears to be in agreement with Liu et al. [2015] but is however restricted to the nose
for which the sunward motion evidenced by Grygorov et al. [2017] appeared to be in the
order of magnitude of the prediction errors usually made by the magnetopause models in
this region. Thus, we gave no clue on the eventual influence of the IMF Bx component on the
whole magnetopause and such focus would be the main topic of the future investigations.

4. We confirm the azimuthal asymmetry, and the influence of the dipole tilt angle on this asym-
metry, as well as the lack of a dawn-dusk asymmetry.

5. The IMF By is found to affect the magnetopause shape and location through the influence of
the clock angle. In comparison with all of the previous existing magnetopause models, this
finding is more consistent with the role played of the IMF By component on the displace-
ment of the reconnection site and the underlying erosion direction.

Following these results, we developed an empirical analytical asymmetric magnetopause shape
and location model parameterized by the upstream solar wind dynamic and magnetic pressure,
by the IMF Bz and By components and by the Earth dipole tilt angle. Comparing our model with
the models of Shue et al. [1997], Lin et al. [2010] and Liu et al. [2015], we found the 4 models to
predict the magnetopause location with equal accuracy on the dayside equatorial part of the mag-
netopause and the error made by our model is similar to the one made by Lin et al. [2010] and Liu
et al. [2015] on the high-latitude dayside part of the magnetopause. On the nightside, the consid-
eration of the clock angle instead of Bz and the consideration of crossings above -30 Re resulted in
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a reduced error in comparison to the other existing model. Nevertheless, the lack of data in this
region combined to the remnant ambiguity concerning the identification of the magnetopause at
lunar distances indicate further studies are needed in this specific region of the near-Earth envi-
ronment.

Assuming a dawn-dusk symmetry of the magnetopause, our model indicate a clock angle an-
gle that squeezes the magnetopause in the Y direction and stretches it in the Z direction when the
IMF turns from a northward to a southward orientation. This finding gives clues on the influence
of the Y component of the IMF on the magnetopause but is not completely in agreement with
Liu et al. [2015] that found By to twist the magnetopause instead. This shows the question of the
dawn-dusk asymmetry and the nature of the influence of the clock angle on the magnetopause
shape is still open and would need additional observational studies.

All of the existing magnetopause models, including ours, provide a static view of the magne-
topause for a permanent upstream solar wind regime that is far from being the ground truth. For
this reason, we adapted our static model to also provide a dynamic model of the magnetopause
surface able to give an estimation of the magnetopause shape and location at any time.

Finally, we compared 147 manually selected cusp exterior boundary crossings to both the au-
tomatically detected in-cusp crossings and the older in-cusp crossings to give a global view of the
shape of the two boundaries of the polar cusps.

The inner boundary represents a clear indentation. This boundary has been considered as the
continuous extent of the magnetopause between the dayside and the nightside for long. This is
the boundary considered by Lin et al. [2010] in the development of their model and the boundary
we detect with our region classifier in the logic aftermath of the way we labeled the data.

Whenever reconnection occurs, the cusp external boundary appears as a more appropriate
continuous extension between the dayside and the nightside magnetopauses. In this case, we no-
ticed a depletion of the magnetopause location in the near-cusp region that appears in adequation
with the numerical results of Liu et al. [2015]. Nevertheless, this finding is still preliminary and the
confirmation or the invalidation of the actual existence of the indentation would requires further
additional studies on the position of the cusp external boundary as a function of the upstream
solar wind and seasonal condition.

Last but not least, the labeling of the magnetosheath we made in the Chapter 4 resulted in the
detection of the crossing of the inner boundary in the near-cusp region. After the reproduction of
the ambiguity of human made observation of ICMEs by the CNNs presented in the Chapter 3, this
once again shows that the quality of detection method based on machine learning algorithms is
highly linked to the interpretability of the external observer at the origin of the labeled dataset and
the ambiguity, inherent to in-situ observations is also found in the prediction of such algorithms.
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Chapter Summary

• In this chapter, we use the magnetopause crossings catalog generated in the Chapter 4 com-
bined to an online accessible catalog of crossings by older missions to perform a statistical
analysis of the position and shape of the magnetopause for various solar wind and seasonal
conditions.

• The results of this study confirm a certain number of long-proven properties of the magne-
topause such as the earthward pushing with an increasing dynamic pressure, the descrip-
tion of the flaring with the inverted trigonometric function, the influence of the IMF Bz on
the standoff distance or the azimuthal asymmetry induced by the seasonal variations of the
geomagnetic field.

• No particular dependence on the radial component of the IMF, Bx , on the stand-off distance
was found, showing that the question of this influence is still open.

• We do not notice any dawn-dusk asymmetry once the aberration due to the Earth revolution
is corrected.

• We investigate the role played by reconnection by investigating the influence of the IMF
clock angle instead of considering the lone Bz . This allow us to evidence the influence of a
changing By which will affect the shape of the magnetopause by displacing the reconnection
sites and the direction of the magnetosphere erosion.

• We condense our result in an analytical empirical magnetopause model that provides a more
accurate prediction of the boundary location in the nightside of the magnetosphere. This
model is also adapted into a dynamic magnetopause model that predicts the position and
shape of the magnetopause at any given time.

• We compare the near-cusp crossings of our dataset to manually detected crossings of the
cusp external boundary to prove that the representation we have on the magnetopause is
strongly affected by its definition. Defined as the cusp inner boundary, the near-cusp mag-
netopause presents a clear and expected indentation. When it is defined as the cusp external
boundary, the question is still open and requires further investigation although we still no-
tice a depletion in comparison to a non-indented magnetopause model.
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Chapter 6

Automatic detection of magnetopause
plasma flow

Pour soulever un poids si lourd,
Sisyphe, il faudrait ton courage !
Bien qu’on ait du coeur à l’ouvrage,
L’Art est long et le Temps est court.

Charles Baudelaire
(Les Fleurs du mal)
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6.1 Introduction

6.1.1 Location of the reconnection sites

Magnetic reconnection is a key actor of the dynamics of the solar wind-magnetosphere system.
The merging and convection of the field lines erodes the magnetosphere in a location that varies
with the orientation of the IMF, on the dayside when it is southward, at higher latitudes when it
is northward. This effect was especially confirmed by the statistical analysis of the magnetopause
location and shape we performed in the last chapter and took into account in the magnetopause
model we developed.

Locally, the question of the location of reconnection sites for varying solar wind and seasonal
conditions is still an open question. Based on theoretical predictions, Sonnerup [1974] and Gon-
zalez and Mozer [1974] suggested that only a component of the magnetic fields is actually recon-
necting. This so-called component reconnection model was opposed by the geometrical consid-
erations of Crooker [1979] who suggested instead that reconnection occurred where the magnetic
fields of both sides are anti-parallel. In practice, in-situ magnetopause observations revealed evi-
dences of reconnection in favor or the anti-parallel model [Gosling et al., 1991; Petrinec and Fuse-
lier, 2003; Phan et al., 2003] and evidences in favor of the component model [Fuselier et al., 2005;
Gosling et al., 1990; Trattner et al., 2007] and the actual position of the reconnection line possibly
lies in a combination of these two scenarii [Fuselier et al., 2011].

This being said, the orientation of the X-line, and the parameters likely to affect its location
have been at the core of a myriad of observational and numerical studies. Simultaneous obser-
vations of reconnection evidence in the data of two different, distant spacecraft [Dunlop et al.,
2011; Phan et al., 2006] suggested the occurrence of reconnection on a globally extended line on
the magnetopause surface. These findings seem in agreement with resistive MHD simulations
who predicted reconnection to occur on a topological line, called the separator, discriminating
the IMF from the domains of open and closed magnetospheric flux [Dorelli et al., 2007; Glocer
et al., 2016; Komar et al., 2013]. Nevertheless, they do not give clues about whether reconnection
occurs all along the separator or is restricted to a subset of the line.

Through the observation of ISEE 2 data, Gosling et al. [1990] inferred reconnection evidences
were more likely to be found in the northern (resp. southern) dusk and the northern (resp. south-
ern) dawn regions for a positive (resp. negative) By component. The following observational ev-
idences of both anti-parallel and component reconnection at various latitudes prove a clear in-
fluence of the IMF clock angle on the location of reconnection sites. Using MHD simulations,
Hoilijoki et al. [2014] and Peng et al. [2010] suggested a northward (resp. southward) motion of the
reconnection line for a positive (resp. negative) Bx component and indicated that this shift was
suppressed under high solar wind Alfvén Mach number. These findings were however observed
on a very low number of events [Lavraud et al., 2005] or in the lone case of a southward IMF [Hoshi
et al., 2018] and thus lack of observational confirmation.

Reconnection was also suggested to be strongly affected by the variations of the Earth dipole
tilt angle. Both numerical simulations [Park et al., 2006; Russell et al., 2003] and observations
[Hoshi et al., 2018; Kitamura et al., 2016; Trattner et al., 2012] suggested a southward (resp. north-
ward) shift of the reconnection line during summer (resp. winter) but once again, these findings
lack of observational confirmation with an important number of samples.

Finally, additional theoretical and numerical investigations indicated the crucial role played
by the variations of the physical parameters across the magnetopause on the efficiency of recon-
nection, one can especially cite the jump of both the magnetic field amplitude and the density
[Cassak and Shay, 2007] or the shear flow [Cassak and Otto, 2011].

All of these parametrical considerations were completed by the numerical investigation of the
local orientation of the X-line. Such studies led to the development of a multitude of models which
allow the step by step construction of a global X-line over the whole magnetopause surface, often
based on the maximisation of a given quantity. Among them, one can especially cite the orienta-
tion of the reconnection line following the bisection between the magnetosheath and the magne-
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tospheric fields, [Aunai et al., 2016; Moore et al., 2002] or the maximisation of the outflow speed
[Schreier et al., 2010; Swisdak and Drake, 2007].

If the numerical comparison of these models showed that all of them did reasonably well un-
der a southward IMF [Komar et al., 2015], comparing these models to in-situ data is a tricky task
as it requires knowledge of the concerned parameters that are not available for in-situ spacecraft
measurement. The consideration of a single event at a time only gives indications on the local
orientation of the X-line without providing any global answer elements. The Polar observations of
Trattner et al. [2007] led to the development of the maximum shear angle model which states that
reconnection occurs along the line where the shear between the magnetosheath and the magneto-
spheric field lines is maximized. From then on, numerous observational studies gave consistency
to this model [Petrinec et al., 2011; Trattner et al., 2012; Vines et al., 2017]. It was even used in the
MMS design effort to predict the encounters of reconnection sites [Fuselier et al., 2016]. Neverthe-
less, one does still not know how to link this lone reliance on the shear angle to our understanding
of reconnection dynamics and its dependency on physical quantities such as the density, the field
amplitude or bulk velocity jumps across the magnetopause. Additionally, the numerous observa-
tional tests of this model have only considered the local orientation of the reconnection line for
each single event [Souza et al., 2017] or have been done on a small set of reconnection evitences
[Trattner et al., 2017]. They also gave no guarantee about whether reconnection occurs all along
the line predicted by the model or just on a subset of it.

From now on, an interesting approach we can have stands in collecting as many in-situ evi-
dence of magnetopause plasma flow, defined in the following as magnetopause plasma jets, as we
can in the data of both equatorial (THEMIS, Double Star, MMS, ...) and polar missions (Cluster,
Geotail, ...), superimpose these events together in the form of magnetopause flow maps. Assum-
ing reconnection as the main process at the origin of the magnetopause flow and if they are steady
enough, a global pattern would appear in the different produced flow maps and would follow the
expected evolution of the X-line as solar wind and seasonal condition change. This is especially
what has been done with Double Star data by Trenchi et al. [2008] and with THEMIS data by Hoshi
et al. [2018] and represented in the Figure 6.1 for different values of the clock angle Ω. This ap-
proach proved its potential by showing consistency with the idea of an extended X-line on the
magnetopause surface and the suggestions made about the influence of a changing By , a chang-
ing Bx or the seasonal variations. Nevertheless, the small number of events they selected limited
the precision of their conclusion and their results concerning the influence of both the IMF clock
angle and the Earth dipole tilt angle were limited to the case of a southward IMF.

Figure 6.1: Spatial distributions of dayside reconnection jets and their velocities projected in the GSM (Y−Z)
plane under northward (a), westward (b), southward (c) and eastward (d) IMF. The blue and the red bars
represent the southward and the northward jets respectively and their length indicate their relative velocity
with the magnetosheath. The green dashed lines represent the rough location of the reconnection line
expected by the bisection model [Moore et al., 2002]. Adapted from Hoshi et al. [2018].
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A typical in-situ measurement of a magnetopause crossing with a spacecraft going through the
reconnection exhaust has been shown in the Chapter 1 in Figure 1.9. There, we identified magne-
topause plasma jets by considering the velocity peaks that are higher than the average of what
is observed in the surrounding magnetosheath and for which the peaking direction was consis-
tent with the reversed component of the magnetic field. This observation in the plasma moments
and magnetic fields was then correlated with an enhanced ion flux at higher energy indicating the
mixing of two ions populations. These are the main criteria when one attempts to collect magne-
topause plasma jets with the plasma moments and the magnetic field, but the consideration of all
of these criteria at once and the decision of their fulfillment is ambiguous because of its depen-
dency on the external observer’s decision and because of the variability that exists globally in the
dataset1.

Here again, the complexity of the magnetopause plasma jets gathering task is a serious bot-
tleneck to these studies that often leads to poorly reproducible catalogs limited to the few most
obvious events. Automating this collection task and performing it on all of the available missions
measurement then once again appears as a serious milestone in the elaboration of consistently
reproducible massive statistical studies of events observed in-situ and would bring us a step fur-
ther in the study of the location of the X-line through the analysis of the reconnection induced
magnetopause plasma flow.

6.1.2 Detection of magnetopause plasma with manually-set thresholds

Following the theoretical work of Levy et al. [1964] who predicted that the acceleration could ei-
ther be due to slow shocks or Rotational discontinuitys (RDs) and the numerous observations of
Alfvénic flows at the crossing of the magnetopause [Paschmann et al., 1986], a common option we
have to avoid the fastidious manual detection of jets stand in selecting the plasma peak that are
faster than the magnetosheath and comparing their relative velocity∆~Vobser ved to their theoretical
expected Alfvén velocity ∆~Vexpected given by the so-called Walén relation:

∆~Vexpected =~Vout f l ow −~Vi n f l ow =±
(

1−αi n f l ow

µ0ρi n f l ow

)1/2 [
~Bout f l ow

(
1−αout f l ow

1−αi n f l ow

)
−~Bi n f l ow

]
(6.1)

Where α=µ0
p∥−p⊥

B2 is an anisotropic factor with p∥ and p⊥ being the thermal pressure parallel
and perpendicular to the magnetic field respectively.

If the selected peak corrseponds to an Alfvénic flow, then∆~Vobser ved and∆~Vexpected should be
aligned or anti-aligned verifying the so-called Walén test [Paschmann et al., 1986]:

RW = |∆
~Vobser ved

∆~Vexpected
| ∼ 1 and |cos(ΘW)| = ∆~Vobser ved •∆~Vexpected

|∆~Vobser ved ||∆~Vexpected |
∼ 1 (6.2)

Naturally, one should not expect perfect fulfillment of this relation because of the variabil-
ity of in-situ measurement and because of the ideal assumptions that lead to 6.1. For this rea-
son, the verification of the Walén test is usually done by introducting thresholds on both RW

and ΘW . Although this test allows the selection of an important number of actual magnetopause
plasma jets, it also misses a lot of them while making an important number of false predictions
as shown by Paschmann et al. [2018] and are often followed by a post processing step to elim-
inate the falsely predicted events after their visual inspection or the introduction of additional
manually-set thresholds to a method already based on manually-set thresholds. Additionally, this
relation implies the manual definition of a reference magnetosheath and the setting of arbitrarily
set thresholds that can hardly generalize for different crossings and to different types of missions.
Consequently, the automatic detection of reconnection jet still requires improvements.

In the aftermath of what was done in the chapters 3 and 4, the next step that could be taken in
this automation process would be the application of machine learning algorithms. The problem

1Additional less obvious magnetopause crossings and associated jets are shown in the Appendix B.
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here has a lot of common points with the problem we exposed in chapter 3: both problems are
about defining beginning and ending dates of events from streaming in-situ data and both signa-
tures are limited by the ambiguity that exists from an observer to another. A consistent attempt in
this approach would then to adapt the CNN we used to detect ICME to magnetic magnetopause
plasma. Nevertheless, the huge amount of required training data and associated manually labeled
jets of different types and the required training time make this solution hardly adaptable in prac-
tice. Moreover, the pipeline we designed in the chapter 3 is adapted to the detection of events
that have a wide duration dispersion, which is not particularly the case for magnetopause plasma
which often have a weak duration in comparison to the resolution of the instrument.

In this chapter, we will elaborate another machine learning based method that automati-
cally detects magnetopause plasma in the data provided by various spacecraft that went across
the magnetopause. After presenting the datasets we used, we will detail the different steps of
our method and evaluate its performance and its adaptability from a spacecraft to another. The
method will finally be used to rapidly build the massive magnetopause plasma catalog fit for fur-
ther statistical studies, that unfortunately comes out of the scope of this thesis.

6.2 Construction of the dataset

6.2.1 Data

We use the datasets of the equatorial missions, the five THEMIS spacecraft, Double Star TC1 and
MMS 1 that we presented in the chapter 4. With the difficulties of creating a dataset made of
particle distribution functions that would be homogeneous for all of the missions we are working
on, we once again choose to focus on the plasma magnetic field and moments while keeping the
spectrograms for the visual inspection and the easing of our labeling process.

In the following, we will have to identify the magnetospheric and the magnetosheath parts of
the different crossings we consider. To do so, we use the THEMIS region classifier we presented in
the chapter 4 that was proved also adaptable to Double Star and MMS data.

Even though a work similar to what we do in this chapter could be applied to non-equatorial
missions such as Cluster, the observational differences in the typical signature of magnetopause
plasma and the associated magnetopause crossings when moving from an equatorial to a polar
orbit add another complexity to the problem that is skipped for now.

6.2.2 Magnetopause crossings

As our objective is to detect magnetopause plasma occurring at the dayside magnetopause, there
is no use of considering each dataset in its globality.

Consequently, we restrict our 7 datasets to the magnetopause crossings we found with the
region classifier presented in the previous chapter. Among the 11 634 accessible crossings, we keep
those that are in the MLT range from 8 to 16 hr and enlarge the initial 1hr-crossings to ensure the
crossing are complete and the spacecraft do returned in the magnetosheath or the magnetosphere
after crossing the boundary layer.
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Figure 6.2: In-situ measurement provided by THEMIS C spacecraft during a magnetopause crossing on the
27th of July 2009. From the top to the bottom are represented the ion density, the magnetic field compo-
nents in GSM coordinates, the velocity components and magnitude and the omnidirectional differential
energy fluxes of ions. The yellow shading highlight the reference magnetosheath we define. The green
intervals indicate the algorithm TP. The blue interval is a FN. The red interval is a FP.
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The enlargement of the crossings is done automatically following this process:

1. Consider a 1-hr crossing

2. Iteratively define the beginning time (resp. the ending time) of the crossing 5 minutes earlier
(resp. later) until one of the following conditions is fulfilled:

• The spacecraft crosses the bow shock (i.e the region classifier detects solar wind).

• The spacecraft comes back in the magnetosphere/magnetosheath (i.e the region clas-
sifier detects magnetosphere/magnetosheath in the 5 minutes added interval while it
was in the magnetosheath/magnetosphere before resp. after).

• The spacecraft comes in the vicinity of the Earth’s dipole (i.e the magnetic field ampli-
tude goes above 100 nT).

• The new spacecraft beginning time is 90 minutes after the ending date of a preceding
crossing (resp. before the beginning date of a following crossing) (this condition is
added to make sure none of the enlarged crossings overlapped one with each other).

• The total crossing duration is equal to 3 hours.

We finally keep the so-called non-hesitating crossings that we define either as crossings for
which the region classifier detects less than 4 magnetosheath intervals within the crossing, either
as crossings for which the largest detected magnetosheath interval represent more than 75% of the
total detected magnetosheath beneath the crossing.

A typical representation of such crossing is shown for THEMIS C data in Fig. 6.2 where from
top to bottom are represented the ion density, the magnetic field GSM components, the velocity
GSM components and module and the omnidirectional differential ion energy fluxes. The yellow
shading depicts the magnetosheath intercal detected by the region classifier while the meaning of
the blue, green and red rectangles will be explained later-on.

The final list of observed magnetopause crossings is then composed of 7126 events distributed
on the 7 spacecraft we consider in this chapter as shown in the Table 6.3.

6.2.3 THEMIS C dataset

We use the THEMIS C dataset to fit and evaluate the algorithm before adapting it to the other
spacecraft and missions. This set is made of 240 crossings that we randomly split into a train set
made of 164 events and a test set in which there are 76.

The spatial distribution of the two sets is shown in Figure 6.3. The presence of events for all
MLT longitudes shown in the two panels indicate we will give our algorithm the opportunity to
take into account the physical diversity of the plasma flow throughout the magnetopause.
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Figure 6.3: Spatial distribution in the GSM (Y-Z) plane of the THEMIS C crossings that constitute the train-
ing (left) and the test (right) set of our classifier. The solid black line indicate the (Y-Z) projection of the
magnetopause model developed in the chapter 5 computed with a dynamic pressure of 2 nPa and a null Bz

6.3 Jet detection pipeline

6.3.1 Peak detection

For a given magnetopause crossing, we expect such jets to be faster than the average surrounding
magnetosheath flow.

Thus, the first step in the detection of magnetopause plasma jets stand in the proper defini-
tion of a reference magnetosheath for every considered crossing. We define this reference mag-
netosheath by the largest magnetosheath interval that has been detected by the region classifier.
This reference magnetosheath is represented in the Figure 6.2 by the yellow interval.

For each crossing, we apply a Minimum Variance Analysis (MVA) to represent the vectorial
quantities (velocity and magnetic field) in the Local Magnetopause Normal (LMN) coordinate sys-
tem 2. We then select the velocity module peaks that are above the median velocity module of this
reference magnetosheath and consider as potential jets the time intervals that corresponds to the
half-height width of each peak. Those detected peaks are the one that will be classified as being
actual magnetopause plasma or not and some of them are represented by the colored blue, red
and green intervals in Figure 6.2.

We then manually inspect every detected peaks of the 240 THEMIS C crossings and manually
label those that are actual in-situ signature of magnetic magnetopause plasma. Following this
process, the train (resp. test) is the made of 9358 (resp. 4534) peaks, 705 (resp. 313) of which
being actual magnetopause plasma. The total number of considered crossings and detected jets
for THEMIS C is reminded in Table 6.1.

6.3.2 Peak classification

For each detected peak, we compute the following set of features:

• The LMN components of the velocity difference between the peak and the reference mag-
netosheath, ∆Vl ,∆Vm and ∆Vn .

• The local variation of the L component of the magnetic field δBl .

• The ion jet temperature T within the peak.

• The density difference between the peak and the reference magnetosheath, ∆Np .

2The definition of such coordinate system and the principle of MVA is presented in the Appendix A.
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• The module of the velocity V of the peak.

• The difference between the jet velocity module and the reference magnetosheath median
velocity module, V −Vmsh .

• The ratio (V −Vmsh)/σVmsh where σVmsh represents the standard deviation of the median ve-
locity module in the reference magnetosheath.

These are the 9 features we will use to classify the detected peaks and determine which of them
are magnetopause plasma.

For the ability it has proved (see Chap. 4) to rapidly deal with complex and unbalanced datasets,
we choose once again to train a Gradient Boosting Classifier here made of 500 base tree estimators.

Being interested in the massive detection of magnetopause plasma for statistical purpose, we
want the algorithm prediction to provide as less FPs as possible even if this implies reducing the
recall with an augmented decision threshold.

Naturally, this implies to exploit the probabilistic output of the trained algorithm. We then
have to make sure it is well-calibrated. The calibration curve of the algorithm represented by the
blue dotted curve in Figure 6.4 indicates the necessity we have to calibrate this probabilistic out-
put. To do so, we apply an Isotonic regression [Niculescu-Mizil and Caruana, 2005] to the prob-
abilistic output of the algorithm. The modified calibration curve is represented by the blue solid
line in Figure 6.4. Seeing it better sticking to the dashed grey line that represents the case of a
perfectly calibrated classifier, especially for the highest probabilities, then proves the efficiency of
such calibration process and gives consistency to the probabilistic output of the algorithm that
will be used in the upcoming sections.

Figure 6.4: Calibration curve of the Gradient Boosting Classifier the peak classification. The gray dashed
line represents the curve of a prefectly-calibrated classifier. The blue dotted (resp. solid) line represents
the calibration curve of of the Gradient Boosting before (resp. after) applying the Isotonic regression to the
probabilistic output of the algorithm. The grey interval represents the probability interval on which we will
focus in the following sections.
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6.4 Method performance

6.4.1 Decision threshold

We evaluate the performances of the calibrated gradient boosting classifier fitted to our train set,
by comparing the peak classification performed on our test set to our manual jet labeling.

A typical prediction made by our algorithm is shown in Figure 6.2 where the green intervals
represent our test set TP. The blue (resp. red) interval is a FN (resp. FP) of the test set. It is already
worth noting that, just like the CNNs of chapter 3 and the gradient boosting of chapter 4, the
prediction provides an interesting visual indicator in the form of colored shading intervals that can
be used by an external observer as suggestions about the patterns in the data likely to be actual
magnetopause plasma jets.

Figure 6.5 shows the precision-recall curve we obtain for a varying probabilistic decision thresh-
old. The best compromise we find between a low FP and low FN, the elbow point of the curve, is
reached for a decision threshold of 0.5 and leads to a precision and a recall of 0.86.

The leftward triangle indicates the precision and the recall we have when we apply the Walén
test with the typical thresholds values : 0.4 < RW < 3 and |ΘW −90◦| > 60◦ 3.

In this case, we notice both a low precision (∼ 20%) and a low recall (∼ 20%), this is not sur-
prising as we expect a significant part of the peaks in the test set to have a low V −Vmsh , coming
from the velocity fluctuations that can be found in the crossing reference magnetosheath. Such
peaks are usually removed by the setting of a velocity threshold before applying the application of
a Walén test [Hoshi et al., 2018; Paschmann et al., 2018].

Thus, we only apply the Walén test to the peaks of the test set for which V −Vmsh > 150km/s,
which is the criteria used in Hoshi et al. [2018] and Trenchi et al. [2008]. In this case, the obtained
precision and recall is shown by the rightward triangle. Although the addition of this 5th threshold
does reduce efficiently the total number of FPs (for a precision now equal to ∼ 85%), it still leads
to an important number of FNs ( Seen in the recall now equal to ∼ 50%).

Similarly to what we noticed in Figure 3.10, equivalent values of recall (resp. precision), leads
to higher precision (resp. recall) for our method. This indicates the efficiency of our method in
comparison to the manual set of threshold to ensure the respect of the rotational discontinuity
relation.

Additionally, the Gradient Boosting Classifier presents the advantage of coming with a single
degree of freedom when it comes to the choice of the decision threshold, which is not the case
with the Walén test for which we can count 4 or 5 of them depending on the setting of a velocity
threshold or not.

6.4.2 Insight on the pipeline’s FNs and FPs

For the purpose of physical studies, we want the massively detected event lists to contain as few
FPs as possible even if this implies reducing the recall 4. To do so, we select the working point
indicated by the black dot on the Figure 6.5.

At this point, which corresponds to a decision threshold of 0.8, the algorithm correctly classi-
fies 230 of the 313 jets of the test set (or in other words gives a recall of 73%) and only returns 9
FPs (which gives a precision of 96%). In order to understand the origin of the errors made by the
algorithm, a characterization of these FNs and FPs is needed.

3These are the typical values used by Hoshi et al. [2018] and Trenchi et al. [2008] for instance.
4Without missing the greatest part of the existing jets of course.
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Figure 6.5: Precision-recall curve of the calibrated gradient boosting algorithm. The left pointing black
triangle indicate the performances reached by the Walén Test on the test while the right pointing black
triangle indicate the performances of the Walén Test on the fastest peaks only. The black dot indicate the
value of the precision and the recall for the decision threshold we chose in the next sections.

A visual inspection reveals that the 9 obtained FPs can be divided into 3 categories:

• 4 of them are peaks that look like magnetopause plasma but are either too weak in compari-
son to the reference magnetosheath, either isolated in the magnetosheath and thus tempo-
rally far from the the other detected magnetopause plasma within the crossing.

• 2 of them have a velocity that peaks in a direction uncorrelated to the observed change in
the magnetic field orientation

• 3 of them are actual magnetopause plasma that were forgotten in the labeling process

Even if their low number prevents us from extracting any statistical information about their
nature, this distribution gives us trends on how the FP present in the upcoming massive jet detec-
tion can be characterised.

Due to their higher number, a more consistent statistical insight can be provided on the FNs.
Figure 6.6 shows the scatter plot of ΘW versus RW computed for each of the TPs (left panel,

green scatter) and each of the FNs (right panel, blue scatter). The color scale here represents the
velocity difference the event has with its associated reference magnetosheath V −Vmsh and the
gray zones represents the zones of the plan (RW ,ΘW) a given event has to fall into to be considered
as a reconnection jet by the Walén test. The boundaries of these zones have been set using the
habitual thresholds.

The distribution of the TPs in the left panel is consistent to what is shown in [Paschmann et al.,
2018] as the greatest part of the fastest jets are located either in the gray zones, either in their
surroundings, most of them being located in the 50◦ < ΘW < 120◦ and Rw < 1 region. On the
opposite, the greatest part of the FNs are outside of the gray regions and do fail the Walén test.

Thus, the majority of the FNs are jets for which the rotational discontinuity relation is not
respected. Nevertheless also having TPs that fail the Walén test proves this is not the only pa-
rameter we can look at to fully describe those FPs. Additionally, this shows the difficulties faced
by the Walén test to provide an exhaustive collection of magnetopause plasma jets as well as the
observer bias introduced by the application of manual thresholds when performing this test and
consequently confirms the interest of the construction of more elaborated methods such as ours.
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Figure 6.6: Walén test results of the TPs (left) and the FNs (right) of the test set for a decision threshold of
0.8. Each dot represent the Walén Angle ΘW of a given jet as a function of its Walén ratio RW . The dots are
colored according to their velocity in comparison the velocity of their associated reference magnetosheath.
The grays intervals represents the criterias set the region in the (RW ,ΘW) space defined by the typical Walén
test thresholds.

Another feature we could look at is the temporal distance of the FNs in comparison to the de-
tected TPs of the same crossing and about how well these events are separated from the surround-
ing reference magnetosheath. Figure 6.7 shows the Kernel Density Estimation (KDE) we obtain for
both TPs and FNs of the three different parameters:

• The distance to the closest TP within the same crossing (first panel).

• The ratio N10
Ncr ossi ng

where N10 is the number of TPs in a 10 minutes interval centered around

the event and Ncr ossi ng is the total number of TPs in the associated magnetopause crossing
(second panel).

• The difference V −Vmsh between the jet velocity and the median velocity of the reference
magnetosheath (third panel)

To obtain this KDE, we consider each value of the concerned parameter as a Gaussian den-
sity function centered on this observation and sum these densities altogether for each concerned
events list.

Looking at the first panel, we notice similar distribution. This indicates that the FNs are not
especially more isolated from the surrounding other jets than what it is for the TPs. Looking at the
second panel now, the FNs appear to be less surrounded by TPs than the TPs themselves. Con-
sequently, the FNs are more likely to occur at the beginning or at the ending of a time interval
in which the proportion of jets is important e.g. when the spacecraft just enters or is about to
leave the reconnection outflow, where the signatures of reconnection might be the hardest to dis-
tinguish from the reference magnetosheath. This trend is confirmed with the different observed
distributions we have in the third panel that shows the FNs tend to be slower than the TPs and
then harder to distinguish from the reference magnetosheath.
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Figure 6.7: KDE of the distance of a given jet to the closest TP (left), of the proportion of TPs in a 10 minutes
interval around a given jet (middle) and the difference of velocity between a given jet and its associated
reference magnetosheath (right) for both the TPs (green curves) and the FNs (blue curves) of the THEMIS
C test set

6.4.3 Summary

In this section, we showed the efficiency of a calibrated gradient boosting classifier to automati-
cally detect the evidence of magnetopause plasma jets.

For the purpose of physical studies, setting a high decision threshold leads to a precision of
96% with FPs that are mostly jet-like but hardly distinguishable from the associated reference mag-
netosheath or that have been forgotten during the labeling process.

This decision threshold also leads to a recall of 73% with a great part of the missed events that
corresponds to the beginning or the ending time of the crossing of the outflow by the spacecraft
or slow events, hard to distinguish from the reference magnetosheath that are furthermore likely
to fail the Walén test.

6.5 Adaptability of the method

6.5.1 Selection of test crossings

Having shown the efficiency of our method on the THEMIS C dataset, we expect it to be easily
adaptable to the data of additional missions in a similar way to what was shown with the region
classifier in the previous chapter. To do so, we randomly select 90 magnetopause crossings of
THEMIS A, MMS and Double Star and manually inspect the detected velocity peaks of each cross-
ing to label those that are actual magnetopause plasma in a similar way to what was done for
THEMIS C.

We make sure our crossing selection is still representative of all of our accessible longitude by
looking at their spatial distribution shown in the Figure 6.8 in the (Y-Z) GSM plane for the three
spacecraft separately and considered altogether and indicate the total number of labeled events
in Table 6.1.

Spacecraft Concerned crossings Number of Jets
THEMIS A 90 417
THEMIS C 240 1018

Double Star 90 722
MMS 90 583
Total 510 2740

Table 6.1: Number of manually labeled magnetopause plasma and associated reconnecting magnetopause
crossings we have for different spacecrafts
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Figure 6.8: Spatial distribution in the GSM (Y-Z) plane of the test crossings we selected for different mis-
sions: THEMIS A (upper left), Double Star (upper right), MMS (bottom left) and the three missions alto-
gether (bottom right). The solid black line is similar as the one shown in Fig. 6.3

6.5.2 Decision threshold

Typical predictions made by our peak detector are shown for Double Star and MMS in the Figures
6.9 and 6.10 with a disposition of panels and legends that are the same than in Figure 6.2. At first
sight, the given prediction looks consistent with the one we had for THEMIS C and we perform a
study similar to what is done in the previous section to ensure it.
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Figure 6.9: In-situ measurements provided by the Double Star TC1 spacecraft on the 16th of April 2005 that
include jets detected by our model. The legends are the same than in Figure 6.2
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Figure 6.10: In-situ measurements provided by the MMS 1 spacecraft on the 4th of January 2016 that include
jets detected by our model. The legends are the same than in Figure 6.2
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Figure 6.11 shows the precision-recall curves we have for out three missions separately and
altogether. Even if the recall drop is here more abrupt than the one we have for THEMIS C, the
best recall-precision compromise we can find is above 80% for each panel and is thus consistent
with what we show in Figure 6.5. This proves the method can be easily extended to a wide range of
equatorial missions provided they offer the same features.

Figure 6.11: Precision-recall curves of our model on the subsets of the magnetopause crossings of THEMIS
A (upper left), Double Star (upper right), MMS (bottom left) and for the three missions at once (bottom
right). The black dot corresponds to the preformances we have for a probability threshold of 0.8

6.5.3 Errors characterization

Being consistent to what is done with THEMIS C, we characterize the errors made by the algorithm
by selecting the working point that corresponds to a decision threshold of 0.8 for each of the three
spacecraft. The associated precisions and recalls are represented by the black points in the four
panels of Figure 6.11.

At this working point, the algorithm detects 1163 jets, 78 of which being FPs (for a precision of
93%) and misses 637 labeled jets (for a recall of 63%). The performances for the three spacecraft
are detailed in Table 6.2.

At first sight, the lower precision we have for MMS could be a serious bottleneck to the mas-
sive detection as the proportion of FPs will be more important for this mission than the others at a
given decision threshold. Nevertheless, this precision is linked to the value we chose for the deci-
sion threshold and we could perfectly increase it in this specific case in order to reach a precision
equivalent to the one we obtain for THEMIS and Double Star.
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Spacecraft Number of TPs Number of FNs Number of FPs Recall Precision
THEMIS A 284 133 16 0.68 0.95

Double Star 433 289 18 0.6 0.96
MMS 368 215 44 0.63 0.89
Total 1085 637 78 0.63 0.93

Table 6.2: Number of TPs, FNs, FPs and obtained precision and recall for the three different missions for a
decision threshold of 0.8

The multi-mission equivalent of Figure 6.6 is shown in Figure 6.12 where we also added the
same scatter plot for the FPs (middle panel, red scatter) that are here more numerous and can
then be considered statistically speaking.

The distribution we observe for the TPs in the top left panel is once again consistent with the
one observed in Paschmann et al. [2018] with a faster majority being present in the gray zones or
in their vicinity. This distribution is once again much less localized in the case of the FNs even
though, a larger proportion of events here respect the Walén test. This once again shows a sig-
nificant part of the missed jets are far from succeeding the Walén test in addition to be statisti-
cally slower than the TPs and thus harder to distinguish from the surrounding reference magne-
tosheath.

The same distribution is more scattered for the FPs and no particular trend can be inferred
from the bottom middle panel. With this in mind, we still notice some events, particularly the
fastest that pass the Walén test or fall in its vicinity. And some of these events could perfectly be
actual jets we forgot during the labeling process as this was a possibility mentioned with the FPs
of THEMIS C.

Moving on with the characterization, similar KDEs to what we presented in Figure 6.7 are
shown in Figure 6.13 where the computed KDEs of the FPs are represented with the red curves.

Here, the difference in the distributions we notice between TPs and FNs are similar to the one
we had in the Figure 6.7. This confirms the supposition we made on how the majority of these FNs
looked like and gives a rough idea on the nature of these events we will miss during our massive
detection process.

Looking now at the density estimations of the FPs, the left panel shows they are more likely
to be found far from the magnetopause crossing where we expect most of the detected jets to be
found than the FNs. However, the three distribution in the Figure 6.13 that concern the FPs appear
to have a similar evolution than the one observed for the FNs. This proves that, just like the latter,
they correspond to events that are either far in the magnetosheath and temporally distant from
the majority of the other detected jets, either at the beginning or ending time of the the outflow
and could actually correspond to actual jets that were not labeled by omission or because of their
weaker in-situ signature. The latter is confirmed by the distribution of the velocity of the FPs that
proves these events are statistically slower than the other detected jets and thus present a less
obvious signature in the data.
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Figure 6.12: Walén tests results for the TPs (left), FNs (right) and FPs (middle). The legends are the same
than in Fig. 6.6

Figure 6.13: Kernel Density Estimation of the distance of a given jet to the closest TPs (top left), of the
proportion of TPs in a 10 minutes interval around a given jet (bottom middle) and the difference of velocity
between a given jet and its associated reference magnetosheath (top right) for both the TPs (green curves),
the FNs (blue curves) and the FPs (red curves) of our multi mission test set
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6.5.4 Global quality

The clues we evidenced on the nature of the FNs and on the FPs of the algorithm show that the
boundary between a missed, a predicted and a falsely predicted jet is not as sharp as what we
would like it to be. This is understandable as, if it existed, the knowledge of such a boundary would
have brought us to a perfect detection free of any mistake and the problem of the automatic detec-
tion of magnetopause plasma would have been solved with the setting of a single threshold wisely
chosen. This lack of sharpness is another proof of the ambiguity, due to the lack of consensus
on the definition of a jet and to the difference of perception from an observer to an other, that is
hidden behind this problem.

In a similar way than what we did in chapter 3, it could then be interesting to compare the
wrong predictions made by the algorithm to the differences that exist between the manual selec-
tion of magnetyopause plasma jets done by two different external human observers. We do it by
having two different manual label of the jets of 20 of the 90 crossings considered for each space-
craft in this chapter and we compute the precision associated with the comparison of one event
list to another.

The min-max interval of these 6 different precisions is shown with the gray interval in Fig-
ure 6.14. The interval expands from 0.83 to 0.98 and never reaches 1. Coupled with the average
precision of 0.86, represented by the black dashed line, this is the evidence of the difference of
perception that exists from an observer to another and the ambiguity linked with this detection
problem.

The green line represented in this Figure is the evolution of the precision obtained on the three
spacecraft considered altogether as a function of the chosen decision threshold and the black
point represent the precision we have for the value 0.8 we used in this section.

For a wide range of decision thresholds, and particularly the one we used, 0.8, the precision is
in this min-max interval and the method then returns jets catalog that contain as much difference
between the predicted and the labeled list than the inconsistencies that exist between in the event
selection made by two different human experts compared to one another.

This statement is particularly strengthened by the characterization we made on the FNs and
FPs for which we evidenced a significant part of them to be ambiguous events, either isolated from
the other predicted TPs, either at the start or the end of a time interval that contained a lot of jets.
Such events were harder to distinguish from the associated reference magnetosheath, which are
typical labeling mistakes that are likely to be made by a human observer.

Figure 6.14: Evolution of the precision of the algorithm on the three missions at once as a function of the
probabilistic decision threshold. The gray zone (resp. the black dashed line) represents the confidence
interval (resp. the average precision) we have between two human made lists compared to one another.
The black dot represents the precision we have for the decision threshold we chose in the study
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6.6 Massive detection of magnetopause plasma jets

In the two previous sections, we showed the reliability and the adaptability of the jet detector, and
after having given an insight on the mistakes most likely to be made by the algorithm, we can now
perform the massive jet detection by running it on the totality of the crossings we selected for each
of our 7 concerned spacecraft. In order to provide lists with as less FPs as possible while still seeing
a fair number of jets, we set our decision threshold to 0.8 to decide if a peak had to be kept or not
in our final events lists.

The total number of crossings analysed by the method and the total number of associated
magnetopause plasma is summarized in the Table 6.35.

Spacecraft Concerned crossings Number of Jets
THEMIS A 1924 5245
THEMIS B 171 455
THEMIS C 240 1018
THEMIS D 1385 3745
THEMIS E 1892 5131

Double Star 202 852
MMS 1 379 1511

Total 7126 17957

Table 6.3: Number of magnetopause plasma and associated reconnecting magnetopause crossings we have
for different spacecrafts

Obviously, we are aware of the non-exhaustivity of these lists. Nevertheless, the assumed few
proportion of FPs and the assumed important number of total detected jets make of these lists the
most exhaustive that have been made so far. The spatial distribution of the projected position in
the (Y−Z) plane of the jets we detected is shown in the Figure 6.15. As this distribution is balanced
in the MLT range we defined, this opens the door for a future statistically representative analysis
of the reconnection induced magnetopause plasma flow and the associated position of the X-line.

Figure 6.15: Spatial distribution in the (Y-Z) GSM plane of the 17 957 jets detected by the algorithm with
a probaility above 0.8 The solid black line indicate our magnetopause model with a dynamic pressure of 2
nPa and a null Bz .

5The events list are all accessible here: https://github.com/gautiernguyen/in-situ_Events_lists
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6.7 Conclusion

A summary of the process we applied to perform a fast, reproducible detection of magnetopause
plasma on the 53 cumulated years of the equatorial data we used in this thesis is shown in Figure
6.16.

Figure 6.16: Scheme of the pipeline that takes as an input streaming in-situ data and returns a catalog of
magnetopause plasma with their associated magnetosheath and magnetosphere conditions

A first gradient boosting classifier is applied to restrict the datasets to the regions in which the
spacecraft crossed the magnetopause and retrieve the associated magnetosheath conditions. This
is the classifier we developed in the chapter 4.

Using the obtained magnetosheath conditions, we detect the velocity peaks that are faster than
the reference magnetosheath and classify them with a second gradient boosting classifier, this
time calibrated with an isotonic regression, to determine which of these peaks are actual magne-
topause plasma. Similarly to ICMEs, the obtained predictions, the green intervals of Figure 6.2,
6.9 and 6.10 provide an interesting visual indicator that could even be used as an assistant in the
frame of the manual labeling of in-situ data.

Naturally, basing our definition of jets on fast flows and the application of a classifier with
an imperfect recall necessarily leads to an incomplete and far from being exhaustive events lists.
Nevertheless, for the probabilistic decision threshold we choose, the proportion of these FN is
small compared to the number of detected jets and we showed that a significant part of them were
slower events, harder to distinguish from the magnetosheath, that tended to be at the edges of
a region with an important concentration of jets or that were more likely to fail the Walén test.
Moreover, this method allows the fast detection of a great quantity of events. We could then easily
get on statistically without their consideration.

On the other side, setting a high value of the probabilistic decision threshold results in an even
smaller proportion of FPs. Following the conclusion on the statistical insight we gave on them,
we show that a majority of them are likely to be either temporally far from the other detected
magnetopause plasma within their associated crossing, either located at the beginning or at the
ending time of the region where most of the detected jets of a given crossing were found. Moreover,
they were on average found slower than the detected TPs and thus also harder to distinguish from
the magnetosheath because of their weaker signature.

It is worth noting here that the characteristics of the FPs are pretty much similar to the char-
acteristics of the FNs and that either one or the other side could perfectly have been labeled (re-
spectively unlabeled) as an actual reconnection jet and that the two types of mistakes made by
the peak classifier could perfectly have been made by an external observer in the labeling phase
of the elaboration of the method. This is confirmed by the comparison of the performances of our
algorithm to the difference between the manual classifications of two observers on the same set
of peaks.
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For the third time in three applications of supervised machine learning algorithms, we prove
that the quality of the detection of the in-situ signature of a specific event in the streaming time-
series measurement of a spacecraft is highly linked to the interpretation of the data and the defi-
nition given to those signatures by an observer. The ambiguity, inherent to the analysis of in-situ
data, present from an observer to another is then also found in the prediction made by these al-
gorithms and is consequently the main limiting factor in the utilisation of these methods for this
purpose.

It is however not a sufficient reason to completely do without the potential of such algorithms
in the frame of the study of the solar wind-magnetosphere coupling as they proved all along this
thesis their capacity to provide a fast, reproducible detection of the events of interest while out-
performing the quality of the prediction made by manually-set thresholds.

Coming back to magnetopause plasma, we used the pipeline described in the Figure 6.16 to
elaborate the largest multi mission catalog of magnetopause plasma ever made and thus, opened
the door to study of reconnection at the Earth magnetopause through the statistical analysis of the
plasma flow they induce at the interface magnetosphere-magnetosheath and although it comes
out of the temporal constraints of this thesis, this would be the logical aftermath of our work.

Concerning the detection strictly speaking, the work presented in this chapter was done for
a MLT range from 8 to 16 hours and for the most obvious magnetopause crossings and a nice
improvement for the jet detection pipeline would then stand in its adaptation to crossings that
contain several magnetopause partial crossings and in its opening to a wider MLT range.

Having made the detection possible in the equatorial plane, this work could be adapted to
the data of additional missions with different orbits. For instance, considering the high-altitude
crossings by Cluster would be an interesting adaptation of the method described in this chapter.
However, and at the light of the discussion we made on the nature of the near-cusp magnetopause
in the last chapter, this would first imply a reconsideration of the region classifier in order to detect
the actual magnetopause everywhere.

Finally, even though the features we choose to fit the algorithm are much less obvious than
the one we used in the two previous chapters, it could be interesting to adapt it to the detection of
additional reconnection signature such as the one that can occur in the solar wind or the detection
of reconnection evidences in the magnetotail.
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Chapter Summary

• In this chapter, we combine the magnetopause crossings lists generated in the Chapter 4, the
region classifier developed in the same chapter and a calibrated gradient boosting classifier
to provide an automatic detection of the magnetopause plasma jets.

• The method is first developed and tested on the in-situ data measurement provided by the
THEMIS C spacecraft. Before being adapted to the data of other spacecraft with an equato-
rial orbit, the other THEMIS spacecraft, MMS and Double Star.

• For every mission we consider, the method we developed performs better than the Walén
test and comes with an interesting visual indicator that can be used as an assistant in the
frame of manual event labeling.

• We use the jet detection pipeline to generate one of the most exhaustive, generic, multi-
mission catalog of magnetopause magnetopause plasma. Using these catalogs in the frame
of statistical study of the magnetopause plasma flow induced by reconnection opens the
door for a novel investigation on the determination of the position of the reconnection sites
for changing solar wind and seasonal conditions.

• By having an insight on both the FNs and FP of our test set and by comparing the perfor-
mances of our algorithm to the manual label of different experts, we show that the detection
inconsistencies made by our method could perfectly have been made by an external hu-
man observer. This brings another proof of the limitation of the application of supervised
machine learning algorithms by our own interpretation of the data and the events they mea-
sure.
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Chapter 7

Conclusions and prespectives

Nos choix sont comme les rides sur l’eau. Au début, ils semblent minuscules et
insignifiants, mais avec le temps, ils peuvent se muer en raz-de-marée dévastateurs.

Socrate
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CHAPTER 7. CONCLUSIONS AND PRESPECTIVES

7.1 Overview

The ensemble solar wind-magnetosphere is a complex system which interaction dynamics is ruled
by a multitude of physical processes. In the upstream solar wind, large-scale events produced in
the solar corona such as ICMEs transport important quantities of plasma, magnetic field and en-
ergy which propagation at Earth orbit can generate geomagnetic storms with high impact on the
human activity. Around the Earth, the interaction of two different types of plasmas defines differ-
ent regions of the near-Earth environment separated by two main boundaries, the magnetopause
and the bow shock, and generates small-scale physical processes such as Kelvin-Helmholtz insta-
bility or magnetic reconnection that have a strong influence on the dynamics of the system by
modifying the location and shape of the boundaries or allowing the transfer of mass and momen-
tum between the two parts of the couple.

The study of the different actors of this coupling can be done through the statistical analysis of
the in-situ data measurement by spacecraft orbiting the Earth or the Sun. Nevertheless, these stud-
ies often rely on a small number of samples usually selected after a time-consuming, ambiguous
and poorly reproducible manual selection of events. This necessarily restricts the resulting statis-
tical vision we can have on the different events of interest ans spoils the potential of the decades
of accumulation of spacecraft in-situ data measurement considered altogether. Improving the au-
tomatic event detection methods then appears as a necessity in the frame of the construction of a
global, statistically representative vision of the different actors of the Sun-Earth relation.

In this thesis, we take a step further in this direction by providing automatic detection methods
based on supervised machine learning algorithms. Although limited by our own interpretation of
the data and definition of the events of interest, the predictions of these methods outperform the
quality of the predictions made by the previous existing methods based on manually-set thresh-
olds. This allows the exploitation of the greatest majority of the accessible spacecraft data at our
disposal through the rapid and reproducible detection of an important number of events in more
than 80 cumulated years of observation of the near-Earth environment and thus offers the op-
portunity to perform statistical studies of the different actors of the solar-wind magnetosphere
coupling with an important number of samples. We apply such methods on three specific actors
of the relation: ICMEs, the different near-Earth regions and the magnetic reconnection plasma
jets at the magnetopause. We then use the massive detection of magnetopause crossings issued
from the regions classifier to investigate how the location and shape of the magnetopause vary
with different solar wind conditions.

The different results presented in this thesis are summarized1 and put in the global context of
the Sun-Earth interaction in the Figure 7.1. We come back more precisely on these different results
and the precise perspectives they offer in the two next sections.

1An advised reader will recognize here the Figures 3.2, 4.1, 5.20, 5.28 and 6.2.
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Figure 7.1: Non exhaustive summary of the results obtained in this thesis replaced in the entire context of
the Sun-Earth interaction (Adapted from the artist view of Steel Hill: https://www.nasa.gov/mission_
pages/hinode/solar_004.html)

7.2 Application of supervised machine learning algorithms

7.2.1 Detection of ICMEs

In the Chapter 3, we used the data of the solar monitor WIND between 1997 and 2016 to elaborate
an automatic detection method of ICMEs at their arrival at the Earth Lagrange point L1. To do
so, we trained CNNs to estimate the extent at which a window of data was similar to the typical
in-situ signature of an ICME through the prediction of a so-called similarity parameter. Due to the
wide dispersion of the duration of these events, we considered 100 CNNs for 100 different windows
sizes, from 1 to 100 hr.

Stacked together, the prediction of this ensemble of CNNs returned a 2D-similarity map where
the intervals of data likely to correspond to the in-situ signature of one or several events and this
constituted a first interesting multi-scale visual indicator in the frame of the manual selection of
ICMEs 2. After a small post-processing, we exploited these maps to rapidly generate reproducible
catalogs of events.

The varying performances of this detection for a changing similarity decision threshold evi-
denced two regimes of detection of our pipeline. At high recall, a non negligible part of the FPs
appear to have an ICME-like in-situ signature and the FNs always missed by the detection actually
correspond to ambiguous events that would not have been labeled by every experts. This regime
can be used to complete the existing catalogs through the selection of additional events and we
used it to complete the list of recorded ICMEs between 1997 and 2016 through the detection of
148 additional events in this period. At high precision, the pipeline produces a small part of FPs
while still seeing an important number of events. This regime can thus be used to perform the
so-desired statistical analysis of the different properties of ICMEs and investigate, for instance, the

2The 2D-similarity maps established by this method for the 23 years of the WIND data in use in this thesis can be
found here: https://hephaistos.lpp.polytechnique.fr/data/machine_learning/ICME/index.html
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link between the properties of such events and their geoeffectiveness.
Although less accurate, we showed that the pipeline still provides a decent detection of ICMEs

when one or several input features is missing. Additionally, the method showed its capacity to
improve itself with an increasing amount of data. These two results suggest the possibility and
the interest we would have in adapting the pipeline to the data of other missions that have been
monitoring the solar wind at Earth orbit or elsewhere. They would help increase the quality of
the detection provided by the algorithm and would offer the unique opportunity to study given
ICMEs for various points in the interplanetary medium and thus obtain more precise information
on their spatial structure and propagation throughout the solar system.

Another interest of the pipeline we developed is the fact it does not require specific physical
knowledge about the event it detects and it could thus perfectly be adapted to any large-scale spa-
tial structure that propagates in the solar wind, one could think of the CIRs we briefly mentioned
in the Chapter 1 or the sheath of the ICMEs for instance.

Finally, we proved, through the comparison of different human-made lists, that the difference
between the list predicted by the pipeline and the RL used to train and evaluate it was comparable
to the differences between the lists established by two different human experts on the same set of
data. Consequently, the ambiguity inherent to our own interpretation of data appears as a limiting
factor to the quality of the prediction made by supervised machine learning algorithms.

7.2.2 Classification of the Near-Earth Regions

In the Chapter 4, we applied a gradient boosting classifier to the plasma moments and magnetic
field measurements of THEMIS B to provide an automatic classification of the 3 main near-Earth
regions: the solar wind, the magnetosheath and the magnetosphere.

Outperforming the methods based on manually-set threshold, the method was tested on the
data of two other missions with equatorial orbit, Double Star and MMS, and classified the differ-
ent regions with the same quality. Following this success, the same technique was used on the
data provided by the non-equatorial Cluster mission and the measurements at lunar orbit pro-
vided by ARTEMIS. In both cases, we reached the same prediction quality after a retraining phase
mandatory for the consideration of the physical characteristics of the different regions visited by
the concerned spacecraft. In the specific case of ARTEMIS, this adaptation implied the addition
of the position vector as an input feature and the consideration of a fourth region visited by the
spacecraft: the lunar wake.

The developed region classifier was then used to elaborate the most exhaustive and publicly
accessible complete magnetopause and bow shock crossing catalogs to our knowledge, easily and
rapidly updatable with the increasing amount of data. At first, these catalogs can be used to per-
form statistical studies of the different properties of the near-Earth boundaries. This is for instance
what we did with the analysis of the position and shape of the magnetopause in the chapter 5.
They also constitute the starting point of the identification, and the underlying statistical study,
of the different physical processes likely to happen in their vicinity. This is for instance what we
did with the magnetopause plasma jets in the chapter 6. Additionally, gradient boosting classi-
fiers are light-weighted algorithms that could thus easily be taken onboard of the future upcoming
missions and automatically select the data of interest that should be stored and kept for further
analysis, transforming the SITL process introduced with the launch of MMS into a Machine In The
Loop process.

However, the classifier was trained with a magnetosheath defined as any region that was not
neither the solar wind, neither the magnetosphere. If this simplification was reasonable at low-
latitudes to exploit the spacecraft crossing locations for modeling the position and shape of the
magnetopause, it leads, in the near-cusp region, to the detection of the cusp inner boundaries
and not to the detection of the actual magnetopause current sheet. This seriously impacts the
shape of the magnetopause if accounted as is in model fits as shown in the Chapter 5.

From now on, an interesting solution we can have to enhance the classifier would be to con-
sider the remaining near-Earth regions as additional labels of the algorithm. This improvement
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would also permit the statistical analysis of the properties of the different regions of the near-
Earth environment with an increased level of detail. Among these regions, one could for instance
cite the Ion Foreshock or the different magnetopause boundary layers but given the conclusions of
Chapter 5, the cusp exterior appear as the prioritary region we should add to the classifier adapted
to high-altitude data.

7.2.3 Detection of magnetopause plasma jets

In the chapter 6, we combined the region classifier to a peak detection and a second gradient
boosting classifier to provide an automatic detection of magnetopause plasma jets at the dayside,
low-latitude magnetopause. First trained on THEMIS C data, this pipeline was tested on the whole
THEMIS mission, on Double Star and on MMS.

Once again, the jet detection pipeline we developed performed better than state of the art
method based on manually-set thresholds. Concerning reconnection this shows that looking for
the flows that respect the RD relation is not enough to fully describe the characteristics of magne-
topause plasma flow. This jet detection pipeline was then used to elaborate the most exhaustive
and accessible multi-mission catalog of magnetopause plasma jets paving in the process the way
for the elaboration of statistical studies of the plasma flow induced by magnetic reconnection at
the dayside magnetopause. This study could be completed by the application of the jet detection
pipeline to the non-equatorial data provided by Cluster. Once this done, we could use all of the
detected jets to construct maps of the plasma flow induced by reconnection at the magnetopause
that could then be used to investigate the position of the reconnection sites for varying solar wind
and seasonal conditions consistently with the problematics exposed in the chapter 6.

Naturally, the lists we eleborated are far from being completely exhaustive and will probably
never be. This was proved through the statistical insight we gave on the FNs and the FPs of the
pipeline that often appeared as having an ambiguous in-situ signature and would not have been
considered as reconnection by every experts. In addition, we showed that the proportion of FPs
in a list generated by our pipeline was similar to the proportion of differences we can find in two
lists made by two different experts on the same dataset. Consequently, the quality of the detection
provided by our pipeline is once again limited by the ambiguity that resides in interpretation of
the data, different from an observer to another and the choices made during the labeling phase of
the elaboration of the method heavily impact the nature of the events of the detected algorithms.

Finally, the specificity of the features we used to elaborate the peak classifier makes it not as
adaptable to other structures as the ICME detector presented in the Chapter 3. Nevertheless, it
could be worth finding an equivalent adapted to the detection of reconnection evidences else-
where in the near-Earth environment or the interplanetary medium. One could especially think
of magnetotail reconnection or solar wind reconnection.

7.3 Position and shape of the magnetopause

The rapid and reproducible obtainment of events catalogs from decades of in-situ data measure-
ment is the entrance pass for the world of massive statistical studies of the different actors of the
solar wind-magnetosphere with an important number of samples. Following this perspective, al-
lowed by the application of supervised machine learning algorithms to the automatic detection
of in-situ event signature, we used the multi-mission magnetopause crossings catalog that was
elaborated with the region classifier combined to online accessible crossings to perform, in the
Chapter 5, a statistical study of the position and shape of the magnetopause.

From the important number of crossings at our disposal and from the variety of both their
associated upstream conditions and their location, this study improved the global vision we could
have on the magnetopause.
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On the one hand, we confirmed characteristics of the magnetopause that have been proven
for long, the earthward pushing with an increasing dynamic pressure, the influence of the IMF Bz

on the stand-off distance and the azimuthal asymmetry induced by the seasonal variations of the
geomagnetic field.

On the other hand, we brought answer elements to the questions concerning the location and
shape of the magnetopause that were still open:

1. We did not notice any dawn-dusk asymmetry once the aberration due to the Earth’s revolu-
tion was removed.

2. We found no particular influence of the IMF radial component Bx on the stand-off distance.

3. Through the evidence of the influence of the IMF clock angle, we showed that a changing
IMF By could induce changes on the magnetopause shape, which is consistent with the
expected effect of this component on the displacement of the reconnection sites on the day-
side.

In the three cases, the results we obtained differed with some existing studies while agree-
ing with others. Naturally, this shows that our study has not brought the final answer to these
still-open questions that are the main point on which the upcoming study of the magnetopause
location and shape with additional data shall focus. An interesting option we have to perform
further investigation would be to consider the data of the future upcoming near-Earth missions,
in particular the missions that crossed the magnetopause in the nightside, or spacecraft, such as
Cluster 4, that were not considered in this thesis. The other option would be to redefine the way
we detect the magnetopause in order to collect even the smallest partial crossings in a similar way
than what is done in the previous existing studies. These two options would help increase the size
of the crossing catalogs on which the statistical analysis will be performed and would thus allow
an even more detailed investigation of the different parameters for which the influence on the
magnetopause is still uncertain.

In all of the previous existing observational magnetopause models and statistical studies, the
effect of magnetic reconnection is considered through the lone investigation of the influence of the
IMF Bz . The third point we mentioned is then particularly interesting as it credits the influence of
a changing IMF By on the displacement of the reconnection sites. On a large scale, reconnection
affects the shape of the magnetopause by eroding the magnetosphere along a specific direction
defined by the reconnection line. For a changing IMF, the reconnection sites are displaced on the
boundary surface, the underlying erosion of the magnetosphere is also necessarily displaced and
reflected in the modification of the shape of the magnetopause. In the chapter 6, we emitted the
perspective of using the detected jets to construct magnetopause plasma flow maps and exploit
them to predict the location of the X-line for various solar wind and seasonal conditions. We could
then use these predictions to infer the influence of the different solar wind and seasonal param-
eters, one could especially think of the IMF cone angle, on the shape of the magnetopause and
confirm this supposition through the statistical analysis of additional crossings.

The different results of this statistical study were condensed in the development of an empiri-
cal, analytical, asymmetric, static, non-indented model of the magnetopause shape and location.
This model was even turned into a dynamical model that offered the possibility to predict the
magnetopause shape and location at a given time rather than predicting it for a given set of solar
wind and seasonal parameters. If the prediction of the magnetopause of our model is as accu-
rate as the predictions of the other previous existing models on the dayside, the prediction error
made by this model was found reduced in the nightside and particularly in the far nightside fur-
ther than -30 Re. This is mostly due to the consideration of an additional parameter, the IMF clock
angle, and to the presence in the dataset of magnetopause crossings at lunar distances provided
by ARTEMIS. Nevertheless, the prediction error, due to both the lack of data and the ambiguity of
magnetopause identification, even more important at lunar distances, resulted in a still important
prediction error that indicates the necessity of further study of the characteristics of this boundary
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at these distances from the Earth. Provided we have enough data, this would be an interesting
improvement of the study we made and the model we developed.

Finally, we evidenced another effect of reconnection on the shape of the magnetopause when
focused on the position of the crossings, detected and from older missions, in the near-cusp re-
gion. For every orientation of the IMF, the convection of the reconnected field lines generates a
cusp external boundary that separates the cusp exterior from the magnetosheath. Following the
way we labeled data in the chapter 4, the boundary we detected at high latitudes actually cor-
responds to the cusp inner boundary. This boundary is consistent with the concept of magne-
topause in absence of reconnection and results in an apparent discontinuity between the dayside
and the nightside. As a consequence, the magnetopause is necessarily indented in this region and
this is what we noticed when we looked at the position of our near-cusp detected crossings. We
also showed that the crossings from older missions, identified by other researchers and used in
analytical models in the literature dominantly show inner boundary crossings too and result in
overestimating the supposed magnetopause cusp indentation.

In the sense of reconnection, the external boundary appear as a more appropriate continuous
extension of the magnetopause in the near-cusp region. Through the analysis of manually labeled
crossings of this boundary, and despite of an increased radial distance, we noticed a depletion ,
in comparison to non-indented magnetopause models, in the near-cusp region that still suggests
the existence of the indentation. To make it clear in our mind, we would have to perform a more
detailed statistical analysis of the position of this boundary for various solar wind and seasonal
conditions. With those indications, the comparison of the accuracy of a refitted, non-indented,
model and an all new indented model would then give the final argument in favor or against the
actual existence of the near-cusp indentation. This is definitely one of the priorities of a future
work lead on the subject and the first step of this future work would be to adapt the region classi-
fier to the consideration of additional near-Earth regions in order to collect as many cusp external
boundaries as possible and make this vision statistically representative in terms of number of sam-
ples.

7.4 Potential of machine learning algorithms and larger perspectives

In the three cases of study we presented in this thesis, we applied supervised machine learning
algorithms on the streaming in-situ data measurement provided by the spacecraft of various mis-
sions in order to provide a fast, automatic, reproducible detection method of different actors of
the solar wind-magnetosphere coupling. Each method presents a design adapted to the spatio-
temporal scales of the structures they are detecting of classifying and to the nature of their in-situ
signature. In the three cases, the method we developed outperforms the quality of the prediction
of the state of the art existing methods based on thresholds manually set on a reduced number of
physical parameters. This is consistent with the complex physical nature of the different structures
we focused on which multiple characteristics cannot be reduced to a couple of features.

At first sight, their prediction, superposed to the associated data, constitute an interesting vi-
sual indicator that can perfectly be used by an external observer to ease the observation and the
selection of data. An interesting application of these algorithms would thus be their implementa-
tion on visualisation tool where they would act as an artificial assistant to any external observer
that has an insight on a given set of in-situ data. This is especially the objective of the upcoming
SciQLOP 3 tool currently under development at LPP for the CDPP 4. With their ability to rapidly
analyze and provide an accurate classification of data, one can also consider their onboard adap-
tation where they could be used either to provide an automatic selection and labeling of the data,
either to select the specific mode under which they are best appropriated to be sent back on Earth.
The confirmed efficiency of such algorithms is then the first step of the elaboration of a Machine

3https://github.com/SciQLop/SciQLop
4Plasma Physics Data Center
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In The Loop process dedicated to the primary analysis and selection of the raw in-situ data that
will be provided by the upcoming missions.

These algorithms can also be used to rapidly elaborate some of the most exhaustive event
catalogs. On the one hand, the increase of the size of the existing event catalogs will help im-
prove the quality of the detections made by these algorithms as this was proved in the Chapter
3. On the other hand, the rapid and reproducible obtainment of these lists paves the way to re-
producible statistical analysis of the various properties of the different actors of the solar wind-
magnetosphere coupling with an important number of samples. This is the incredible opportu-
nity to condense the decades all of the missions at once and is thus a tremendous milestone in our
way to the global statistically representative vision we can have on the different elements that rule
the dynamics of the near-Earth environment and its interaction with the solar wind.

At short term, we can consider the realisation of such type of studies through the exploitation
of the different catalogs constructed in this thesis and this perspective was already mentioned in
the case of ICMEs and magnetopause plasma jets. Concerning the magnetopause, it was actually
done in the Chapter 5 where we performed a statistical analysis of the position and shape of the
magnetopause that resulted in the production of an empirical and analytical model of this bound-
ary. From now on, it would be interesting to perform the same work in the case of the bow shock
crossing in order to have a complete statistically representative view of the dynamics of the two
main boundaries at stake in the coupling.

On a longer term, the adaptation of our detection methods to additional solar events, near-
Earth regions or small-scale physical processes, mentioned as an interesting perspective for the
three cases, would obviously lead to the detailed study of these elements from a statistical point
of view. Following what was previously said, we could think of the CIRs, the cusp exterior bound-
ary or the Kelvin-Helmholtz instability. We could also think of elaborating an automatic detection
method adapted to small-scale structures which observation is only allowed by very high reso-
lution measurement even though this would probably imply the definition of another detection
concept. This could for example be tested on the EDRs, which observation is permitted with the
burst modes of MMS. Going even further into the potential of such methods, we could even think
of their adaptation to the data of the other missions of the solar system.

On an even longer term, the accumulation of these different automatic detection methods
paves the way to their combination into a single, general, data analyzer that would have the ability
to read and classify any plasma and magnetic field measurement made in the solar system. This
would constitute a huge achievement in the field of in-situ data analysis.

Nevertheless, we proved for each of the three cases that the quality of the detection was limited
by our own interpretation of the data. In the case of ICMEs and magnetopause plasma jets, this
was shown by comparing the list generated by our detection methods to different lists obtained
by the manual selection of events by several external human observers. In the case of the bound-
aries, this was shown by showing how the choice we made on the definition of the magnetosheath
impacted the representation we had on the location and shape of the magnetopause. The ambi-
guity, characteristics of any interpretation in-situ data, will then also be found in the prediction of
these automatic detection methods and this can be explained by two reasons closely linked one
to another. First, the label of the data was done manually5 and this task is obviously ambiguous
and hardly reproducible even when the same observer labels the same set of data twice. Second,
we used supervised algorithms, the introduction of a label with a forced ambiguity in the training
phase will then necessarily result in a prediction that reflects this ambiguity.

5Either by ourselves or by external observers through the utilisation of already existing events catalogs.
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From then on, looking for the increase of the recall, precision or AUC appears as the illusory
purpose of a future work given the consequent hindsight one must have when interpreting the
values of these metrics. It would be, for instance, much more interesting to have a direct insight
on the how these algorithms have learnt to perform the task they were dedicated to. Indeed, inter-
preting the way these algorithms have learnt their knowledge from the data would bring significant
information on the physical nature of the events they are trying to detect, surely, but more inter-
estingly, they could also bring us clues on how we interpret the data and how we can reduce the
ambiguity that underlies from an observation to another. However, the interpretability of machine
learning, especially when it comes to neural networks, is still a hot topic in the field of artificial in-
telligence and comes far from the scope of this thesis. Another alternative approach we can have
concerning the introduction of machine learning in the analysis of in-situ data would be the utili-
sation of unsupervised techniques where we could benefit from the clustering of data according a
particular trend in the data to evidence new, unexpected properties of the main actors of the solar
wind-magnetosphere coupling.

Despite of this so-called ambiguous limitation , the range of the possible application of super-
vised machine learning algorithms is extremely wide and the full potential of such technique in
the field of in-situ data analysis is consequently only starting. There is however no doubt it will be
in the upcoming years given the encouraging promises glimpsed with its first applications.

177





Appendix A

Coordinates systems

In this section, we will briefly detail the different coordinate systems in use for this thesis.

A.1 Geocentric Solar Ecliptic (GSE)

In this coordinate system, we define the X axis as the Sun-Earth axis oriented sunward. The Z axis
is perpendicular to the ecliptic plane and the Y axis completes the orthogonal set.

A.2 Geocentric Solar Magnetospheric (GSM)

In GSM the X axis is also defined as the Sun-Earth axis oriented sunward. The Y axis is perpen-
dicular to the Earth Dipole, such that the Z axis is in the plane defined by the X axis and the Earth
Dipole and then completes the orthogonal set..

In this thesis, we will mostly use these GSM cartesian coordinates, X,Y and Z. We will also
ponctually consider their spherical equivalent r,θ and φ where r =

p
X2 +Y2 +Z2 is the radial dis-

tance from the center of the Earth, θ is the zenith angle between the direction of r and the X axis
and the azimuth φ is the angle between the projection of r in the Y −Z plane and the positive
direction of the Z axis:

X = r cos(θ) (A.1)

Y = r sin(θ)sin(φ) (A.2)

Z = r sin(θ)cos(φ) (A.3)

The spherical system we adopted in GSM coordinates is represented in the Figure A.1. It is
worth noting here that the convention adopted to define the azimuth angleφ is the same than the
one adopted to define the IMF clock angle Ω in the Figure 1.2.

Y

Z
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Figure A.1: Representation of the spherical coordinates used in GSM coordinates in this thesis.
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A.3 Local Magnetopause Normal (LMN)

A.3.1 Principle

LMN coordinates is a system adapted to the local study of the magnetopause and thus particu-
larly useful when focusing on the small scale physical processes occurring in the vicinity of this
boundary. The N direction is the normal outward vector to the magnetopause, the M direction
perpendicular to the plan that contain the N direction and the GSM Z axis and the L direction
completes the orthogonal set.

In practice, the LMN coordinates of a given point of space can be determined by two manners.
At first, the N direction can be estimated with the use of an analytical magnetopause such as

the one we developed in the Chapter 5.
The other method, the so-called Minimum Variance Analysis (MVA) that was used in the Chap-

ter 6, stands in finding the direction for which the magnetic field, measured during the boundary
crossing, has the less variations. The three directions , L, M and N, are thus found by finding the
eigenvalues of the so-called magnetic variance matrix defined as:

M j
i = 〈Bi B j 〉−〈Bi 〉〈B j 〉 (A.4)

where i , j = 1, 2, 3 are the three cartesian GSM components of the magnetic field.

A.4 Magnetic Local Time (MLT)

At a given point in space, MLT is the hour angle formed by the meridional plane that contain the
subsolar point with the meridional plane in which this point is.

By convention, the subsolar point is found at the so-called magnetic noon and is thus found
at a MLT of 12 Hr.

The representation of the MLT in comparison with the GSM coordinates is shown in the Figure
A.2

18 h6 h

12 h

0 h

XGSM
YGSM

Figure A.2: Schematic definition of the MLT.
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Additional prediction examples
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B.1 ICMEs

Figure B.1: Solar wind observation during an ICME from the WIND spacecraft. The legend is the same than
in the Figure 3.2
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Figure B.2: Solar wind observation during an ICME from the WIND spacecraft. The legend is the same than
in the Figure 3.2
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B.2 Near-Earth regions

B.2.1 THEMIS

Figure B.3: In-situ measurement provided by THEMIS B spacecraft on the 10th of November 2008. The
legend is the same than in 4.1.
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B.2.2 Double Star

Figure B.4: In-situ measurement provided by Double Star TC 1 spacecraft on the 15th of January 2005. The
legend is the same than in 4.1.
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B.2.3 MMS

Figure B.5: In-situ measurement provided by MMS 1 spacecraft on the 2nd of December 2015. The legend
is the same than in 4.1.
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B.2.4 Cluster

Figure B.6: In-situ measurement provided by Cluster 3 spacecraft on the 23r d of June 2003. The legend is
the same than in 4.1.

IX



APPENDIX B. ADDITIONAL PREDICTION EXAMPLES

B.2.5 ARTEMIS

Figure B.7: In-situ measurement provided by ARTEMIS B spacecraft on the 24th of April 2013. The legend is
the same than in 4.1.
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B.3 Cusp external boundary

Figure B.8: In-situ measurement provided by Cluster 1 spacecraft on the 21st of April 2007. The legend is
the same than in 5.22

.
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B.4 Reconnection jets

B.4.1 THEMIS

Figure B.9: In-situ measurement provided by THEMIS E spacecraft on the 1st of November 2011. The legend
is the same than in 6.2 except for the green intervals that here represent the velocity peaks classified as
reconnection jets by the peak classifier.
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B.4.2 Double Star

Figure B.10: In-situ measurement provided by the Double Star TC1 spacecraft on the 10th of March 2005.
The legend is the same than in 6.2

XIII



APPENDIX B. ADDITIONAL PREDICTION EXAMPLES

B.4.3 MMS

Figure B.11: In-situ measurement provided by MMS 1 spacecraft on the 29th of October 2015. The legend is
the same than in B.9.
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Appendix C

List of Acronyms

ANN Artificial Neural Network. 27, 29, 34, 102

ARTEMIS Acceleration Reconnection Turbulence & Electrodynamics of Moon’s Interaction with
the Sun. vi, vii, 71, 73, 79, 86–91, 94, 98, 103, 107, 113, 119, 172, 174, X

AU Astronomical Unit. 2, 8, 19

AUC Area Under Curve. 38, 78–80, 82, 84, 88, 89, 91, 177

CART Classification and Regression Trees. 32

CIR Corotating Interaction Region. 9, 172, 176

CME Coronal Mass Ejection. 6–9, 15, 39, 44

CNN Convolutional Neural Network. vi, vii, 19, 35, 43, 50–53, 56, 63, 66, 68, 70, 95, 134, 145, 150,
171

EDR Electron Diffusion Region. 15, 16, 18, 74, 176

FN False Negative. 37, 38, 52, 54, 57, 60, 66–68, 141, 146, 150–153, 158–160, 162, 167, 171, 173

FP False Positive. vi, vii, 37, 52, 54, 56–60, 66–68, 141, 146, 149–151, 153, 157–162, 167, 171, 173

FPR False Positive Rate. 37, 38, 89

FTE Flux Transfer Event. 39

GSE Geocentric Solar Ecliptic. x, I

GSM Geocentric Solar Magnetospheric. x, 2, 73, 75, 78, 86, 93, 94, 107, 109, 112, 116, 117, 130, 131,
143, 146–148, 153, 154, 161, I, II

HSS Heidke Skill Score. 38, 78, 80, 82, 84, 88

ICME Interplanetary Coronal Mass Ejection. vi, vii, x, 7–9, 19, 43–50, 52–58, 60–63, 65–68, 70, 72,
112, 134, 145, 162, 169–173, 176, IV, V

IDR Ion Diffusion Region. 15, 16

IMF Interplanetary Magnetic Field. vi, vii, 2–5, 8, 10–12, 16–19, 72, 89, 102–106, 110–112, 116–121,
123–125, 133, 134, 139, 142, 143, 174, 175, I

KDE Kernel Density Estimation. 152, 153, 158

XV



LMN Local Magnetopause Normal. x, 148, II

MC Magnetic Cloud. 44, 45

MHD Magnetohydrodynamics. 1, 5, 10, 102, 105, 112, 113, 116–118, 142

MLT Magnetic Local Time. x, 77, 145, 147, 161, 163, II

MMS Magnetospheric Multiscale. vi, vii, 6, 18, 71, 73, 74, 79, 82–84, 86, 90, 91, 94, 95, 98, 108, 143,
145, 153, 154, 156–158, 161, 167, 172, 173, 176, VIII, XIV

MSE Mean Square Error. 28, 31

MVA Minimum Variance Analysis. 148, II

PDL Plasma Depletion Layer. 94
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Titre: Etude du couplage magnétosphère/vent solaire par des méthodes de machine learning
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Résumé: Les décennies d’accumulation de don-
nées provenant de missions explorant le vent solaire
ainsi que l’environnement terrestre proche permet-
tent l’étude de la relation Soleil-Terre de manière
statistique. Ces études sont toutefois limitées par la
sélection manuelle des événements d’intérêt dans les
données qui reste une tâche fastidieuse, subjective
et difficilement reproductible.

En nous appuyant sur des outils d’apprentissage
statistique, nous mettons au point des méthodes
de détection automatique d’événements à partir de
mesures de données in-situ. Qu’il s’agisse de détecter
les éjections de masse coronale interplanétaires, de
classifier les régions de l’environnement terrestre
proche ou de détecter les jets de plasma issus de la re-
connexion magnétique à la magnétopause, nos méth-
odes font moins d’erreurs que celles basées sur des
seuils empiriques généralement utilisées pour sélec-
tionner des événements. Elles sont de plus adapt-
ables d’une mission à une autre pourvu que la na-
ture des régions traversées par les sondes soient sim-
ilaires. Nous montrons toutefois que l’interpretation
des données par ces méthodes sont limitées par notre

propre interprétation physique des données et des
evenements qu’elles mesurent.

Ces méthodes ouvrent la porte aux études statis-
tiques d’événements mesurés in-situ à grand nombre
d’échantillons. La classification des différentes ré-
gions de l’environnement terrestre proche nous per-
met par exemple d’étudier statistiquement la posi-
tion et la forme adoptée par la magnétopause en
s’appuyant sur les données de missions d’orbites
equatoriales (THEMIS, MMS, Double Star), po-
laires (Cluster) et lunaires (ARTEMIS). En plus de
confirmer l’influence saisonale, le rôle joué par la
pression dynamique, et l’asymétrie azimutale, nous
montrons que l’orientation azimuthale du champ
magnétique interplanétaire modifie la forme de la
magnétopause par le biais de la reconnexion mag-
nétique et discutons de la nature de cette frontière
au niveau des cornets polaires. L’étude résulte en la
production d’un modèle analytique de la position de
la magnétopause offrant une description plus précise
de cette frontière du côté nuit de la magnétosphère
terrestre.

Title: Solar wind/magnetosphere coupling inferred from machine-learning methods

Keywords: Magnetosphere, solar wind, magnetopause, machine learning

Abstract: Decades of in-situ data measurement by
missions focused on the study of the solar wind and
its relation with the near-Earth environment allowed
the study of the Sun-Earth coupling from a statis-
tical point of view. Nevertheless, these studies are
limited by the manual selection of the events of in-
terest in the data that is still a subjective, fastidious
and hardly reproducible task.

Using machine learning algorithms, we elaborate
automatic detection methods of events from in-situ
data measurement. Whether they are applied to the
detection of interplanetary coronal mass ejections, to
the classification of the near-Earth regions or to the
identification of magnetopause magnetic reconnec-
tion jets, the developed methods are more accurate
than those based on manual, empirical thresholds.
They are also adaptable from a mission to another
provided the regions visited by the spacecraft are of
the same nature. We show that the interpretation
of the data by these methods is limited by the vision

we have on the data and the events they measure.
These methods pave the way for statistical stud-

ies of in-situ measured events with an important
number of samples. Thereby, we use the classifica-
tion of the different regions of the near-Earth envi-
ronment to statistically study the position and shape
of the magnetopause using the data of missions
with equatorial (THEMIS, MMS, Double Star), po-
lar (Cluster) and lunar (ARTEMIS) orbits. In ad-
dition to confirming the seasonal dependence, the
azimuthal asymmetry and the influence of the solar
wind dynamic pressure, we show that the clock an-
gle of the interplanetary magnetic field modifies the
shape of the magnetopause through the process of
magnetic reconnection and lead a discussion on the
nature of this boundary around the polar cusps. We
combine the results of the study into an analytical
model of the magnetopause position and shape that
offers a more precise description of this boundary on
the night side of the Earth magnetosphere.
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