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Approches quantitatives d’imagerie pour étudier la
physiologie des cellules photosynthétiques

Résumé — Le phytoplancton est composé de micro-organismes photosynthétiques (mi-
croalgues et cyanobactéries) vivant en suspension dans les eaux marines et douces. Grâce à la
photosynthèse, le phytoplancton produit de grandes quantités d’oxygène indispensable à la vie
marine et terrestre, et fixe le CO2 de l’atmosphère. Les microalgues marines sont également
des organismes prometteurs pour les applications biotechnologiques (alimentation humaine et
animale, biocarburants). En raison de leur importance écologique et économique, l’étude des
réponses du phytoplancton aux défis environnementaux (y compris ceux induits par l’activité
humaine et le réchauffement climatique) est un domaine de recherche en plein développement.
L’activité du phytoplancton est influencée par les changements dans la stratification verticale
de la colonne d’eau qui module, en fonction de la température, la disponibilité de l’énergie
lumineuse ainsi que l’apport de nutriments aux cellules du phytoplancton. En raison de la
disponibilité de la lumière et des nutriments, les cellules du phytoplancton ont évolué vers
différents modes de vie : phototrophie (activité photosynthétique), mixotrophie (utilisation
simultanée de la photosynthèse et de la respiration de sources de carbone organique
extérieures pour la croissance) et photosymbiose (interactions symbiotiques à l’intérieur de
cellules animales). Dans cette thèse, j’ai étudié les réponses physiologiques des cellules du
phytoplancton aux changements environnementaux en regardant aux niveaux cellulaires
et subcellulaires. Pour atteindre cet objectif, j’ai mis au point un processus d’imagerie
complet permettant d’effectuer des analyses morphométriques quantitatives de cellules
entières d’algues représentatives à la fois d’espèces à succès écologique et de modèles de
laboratoire. Le protocole commence avec l’acquisition de séries d’images hautes résolutions
soit par FIB-SEM (Focused Ion Beam - Scanning Electron Microscopy) ou SBF-SEM (Serial
Block Face - Scanning Electron Microscopy). Le protocole d’analyse d’images 3D développé
dans ce travail permet d’obtenir des modèles tridimensionnels à haute résolution de cellules
entières permettant la réalisation d’analyses quantitatives. Grâce à ces outils, j’ai pu imager
des cellules du phytoplancton dans diverses conditions environnementales révélant ainsi
: 1) le changement de taille et de morphologie des plastes et des mitochondries lors de
l’acclimatation à la lumière dans les diatomées, 2) le changement dans l’interaction des
organites chez Nannochloropsis lors de l’acclimatation aux nutriments, 3) les changements
morphologiques qui surviennent lors de la photosymbiose dans l’algue Phaeocystis. Ces
travaux révèlent plusieurs scénarios d’acclimatation du phytoplancton au niveau cellulaire
et subcellulaire. J’ai également pu valider l’utilisation de ce protocole chez les plantes pour
répondre à deux questions biologiques principales : la transition étioplaste - chloroplaste
dans les cellules du cotylédon et le processus de formation des granules d’amidon dans les
feuilles matures d’Arabidopsis.

Mots clés : Imagerie 3D, Analyse morphométriques, Phytoplancton, Photosymbiose, Organites, Plantes.

Plant & Cell Physiology lab (LPCV) - UMR 5168 - IRIG
17 rue des Martyrs

38054 Grenoble cedex 9
France





Quantitative imaging methods to investigate the physiology of
photosynthetic cells

Abstract — Phytoplankton is composed of photosynthetic microorganisms (microalgae and
cyanobacteria) living in suspension in marine and fresh waters. Through photosynthesis,
phytoplankton produce large amounts of the oxygen essential for marine and terrestrial life,
and captures CO2 from the atmosphere. Marine microalgae are also promising organisms for
biotechnological applications (human and animal food, biofuels). Because of their ecological
and economic importance, the study of the phytoplankton responses to environmental chal-
lenges (including the ones induced by human activity and global warming) is a developing
field of research. Phytoplankton activity is influenced by changes in the vertical stratification
of the water column, which modulate light energy availability as well as nutrient supply
to phytoplankton cells in a temperature-dependent manner. Based on light and nutrient
availability, phytoplankton cells have evolved different lifestyles: autotrophy (photosynthetic
activity), mixotrophy (simultaneous use of photosynthesis and respiration of exogenous
organic carbon sources for growth) and photosymbiosis (endosymbiotic interactions within
animal cells). In this thesis, I have studied phytoplankton cells and their responses to
environmental changes at the cellular and subcellular levels. To achieve this goal, I have
developed a complete imaging workflow to perform quantitative morphometric analyses of
entire algal cells, representatives of ecologically-successful and laboratory-model microal-
gal species. This protocol starts with FIB-SEM (Focused Ion Beam-Scanning Electron
Microscopy) or SBF-SEM (Serial Block Face-Scanning Electron Microscopy), to acquire
high-resolution images. By implementing the 3D image analysis protocol, it is possible
to obtain high-resolution whole cells models in three dimensions, suitable to perform
quantitative analyses. Thanks to these tools, I have been able to image phytoplankton cells
in various environmental conditions: (i) changes in the size and morphology of plastids and
mitochondria during light acclimation in diatoms, (ii) Changes in organelles interaction
during nutrient acclimation in Nannochloropsis, (iii) morphological changes occurring during
photosymbiosis in Phaeocystis. Overall, this work reveals several scenarios of phytoplankton
acclimation at both the cellular and subcellular levels. I have also validated the use of
this protocol in plants to answer two main biological questions: the etioplast - chloroplast
transition in cotyledon cells and the process of starch granule formation in mature leaves of
Arabidopsis.

Keywords: 3D imaging, Morphometric analyses, Phytoplankton, Photosymbiosis, Organelles, Plants.

Plant & Cell Physiology lab (LPCV) - UMR 5168 - IRIG
17 rue des Martyrs
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My Thesis project was financed in the frame of a call from the IDEX University Grenoble
Alpes International Strategic Partnerships. My project is part of the SCruTINy project, and
aims at unveiling Single-Cell phytoplankton eco-physiological responses with high-resolution
chemical and structural imaging. The international partner of the project is the Plant
Biochemistry Laboratory at the Swiss Federal Institute of Technology of Zurich (ETHZ).
Both laboratories, The LPCV in Grenoble and the PBL at ETH of Zurich are developing
research with photosynthetic eukaryotes to understand how phytoplankton (LPCV) and
higher plants (PBL) respond to changes in their environment for different physiological
pathways such as photosynthesis and carbohydrates storage and degradation.

The objective of the project is to develop subcellular imagery approaches to better
understand responses of phytoplankton facing abiotic and biotic (symbiosis) constraints.
During my PhD, I focused on the 3D reconstruction pipeline. First, I developed a full
workflow to analyse single phytoplankton cells and then I transposed this pipeline to
microalgal and higher plant cells.

My introduction chapter is therefore divided into two parts. In the first part, I present the
biological material and its evolutionary origin since it is important to know these organisms
if we want to understand their subcellular organization and physiological responses. In the
second part, I present the history and development of the imaging techniques (acquisition
and image processing) used in this project.

1
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1.1 Origin of photosynthesis

Eukaryotic cells are complex organisms containing organelles and multiple cellular compart-
ments, which are the result of more than two billion years of evolution. Nuclei, mitochondria
(present in all eukaryotic cells) and plastids (present only in photosynthetic cells: plants
and algae) are major organelles known as the ‘control room’, the ‘power house’ and the
‘energy captor/transformer’, respectively of the cell (Archibald 2015; Dyall et al. 2004).
Mitochondria and plastids are issued from distinct endosymbioses. Mitochondria originate
from the engulfment of an α-proteobacterium-like organism in a Archea-type host cell about
2.2 billion years ago, giving rise to all modern eukaryotes (Degli Esposti 2014; Falconet 2012).

Plastids probably originated from the symbiotic association between a cyanobacterium
(a photosynthetic bacteria) and a mitochondriate eukaryote having occurred between 1.6
and 0.6 billion years ago (Gray et al. 1999; Poole et al. 2007; Archibald 2015; Keeling 2013),
reviewed in (Falconet 2012). This event leads to the development of plants, green and red
algae, and glaucophytes, which contain the so-called primary plastids.

Multiple endosymbiotic events occurred between red and green algae as endosymbionts en-
gulfed by non-photosynthetic eukaryotes leading to the so-called secondary plastids (Keeling
2010; De Clerck et al. 2012; Falconet 2012) (see Figure 1.1). The consequence of successive
endosymbiosis is reflected by the number of membranes, which are limiting the primary
and secondary plastids. While primary plastids are limited by two membranes, secondary
plastids are generally surrounded by four membranes (Petroutsos et al. 2014; Flori et al. 2016).

Tertiary endosymbiosis introduces additional layers of associations after secondary en-
dosymbiosis. These phenomena are common in dinoflagellates, which once had a red
secondary plastid. However, some lines have apparently lost or reduced this plastid and have
either taken another secondary alga to form a tertiary plastid or taken another primary alga
to form a series of secondary plastids (Keeling 2013).
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Figure 1.1 – Schematic representation of the endosymbiosis event. Representation
of the primary endosymbiosis event, secondary and tertiary endosymbiosis event and their
consequences in the photosynthetic organism’s apparition on Earth. Adapted from (Keeling
2013).
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The different evolutionary origin translates into different plastid structures, functions and
interactions with other cellular organelles, which in some cases (Bailleul et al. 2015), deeply
affect the photosynthetic activity.

All unicellular photosynthetic organisms, which are highly diverse and present both
on terrestrial and in aquatic environments, play a critical role as primary producers. These
organisms, collectively named ‘phytoplankton’, are producing the oxygen of the atmosphere
and are key players for the organic matter flux on Earth (Knoll et al. 2007; Falkowski et al.
2004).

Phytoplankton cells exhibit different lifestyles: autotrophy (photosynthetic activity),
mixotrophy (simultaneous use of photosynthesis and respiration of exogenous carbon
sources for growth) and photosymbiosis (symbiotic interactions with animal cells) (Diońısio
2017). Because of their ecological and economic importance, the question of photosynthetic
responses to changing environments is becoming more and more relevant. Owing to climate
changes, increasing temperatures at the surface of the Earth (both in the ocean and on
land) could be detrimental for the growth rate and biomass production (Falkowski 2002;
Field et al. 1998). These changes could impact the entire food web and the efficiency of the
biologically driven sequestration of carbon from the atmosphere to the deep sea (Basu et al.
2018).

Therefore, it is very important to fully understand the physiological responses of the
photosynthetic organisms exposed to different environmental challenges from the cellular
to the subcellular level. Transcriptome and genome analyses have provided valuable infor-
mation about the potential consequences of climate change on phytoplankton communities
(Maor-Landaw et al. 2017; Stillman et al. 2015), but much less is known about responses
at the single-cell level. In addition, bulk analyses (e.g. transcriptomics, metabolomics)
can only reflect an average among cell populations and organelles, and cell heterogeneity
cannot be distinguished. By contrast, subcellular imaging carries spatial information at the
subcellular level about an ultrastructural component that provides invaluable information to
highlight and decipher physiological mechanisms in an individual cell. Without this level of
understanding, it is not possible to fully interpret the significance of ”omics” analyses, and
to understand the phytoplankton responses in general.
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1.2 General history of microscopy

Although the inventor of the single-lens is unknown, it made it possible to see objects that
are too small to be observed by the naked eyes. The oldest optical instrument known could
be the 3000 years old Nimrud lens found in Mesopotamia by Austen Henry Layard and
exposed at the British museum in London (Figure 1.2). However, it is only more recently, in
the mid-17th century, that Robert Hooke and then Antoni van Leeuwenhoek investigate the
world of the small living cells using artisanal magnifying microscopes (Figure 1.2).

Antoni van Leeuwenhoek showed the link between the focal length of the microscope
and the lens diameter. Since then, efforts have been made to build a powerful microscope
based on this theory. The use of curved lens instead of flat lens allowed a magnification
of x270 instead of x50 with a flat lens. It was then possible to reduce the focal length
while keeping the lens diameter building microscopes with many lenses. The new devices
allow higher magnifications. Thanks to these new microscopes, biologists were able to
observe single-cell organisms (bacteria) or cells of mammalian brain (Van Leeuwenhoek 1800;
Dall’Oglio et al. 2010; O’Mara 1979; Gest 2004).

Figure 1.2 – Nimrud lens British Museum Geni - Photo by user: geni. Licensed
under GFDL via Wikimedia Commons. R. Hooke, Micrographia: or, some physiological
descriptions of minute bodies made by magnifying glasses. London: J. Martyn and J. Allestry,
first edition (1665).
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It was only at the end of the 19th century that Ernst Abbe formulated the theory of the image
formation in the microscope. Abbe’s theory considers the phenomena of light diffraction and
interference in microscopy imaging. It states that to achieve a spatial resolution of 187−200nm
in the microscope, it is necessary to use lenses of high-quality with thin specimens (Abbe
1873; Fornasiero et al. 2015; Kremer et al. 2015). Years later, a new microscope will be
created allowing to see colours and to control light for the first time. Nowadays, modern light
microscopes can magnify up to 1000x with a spatial resolution of 200 nm (see (Figure 1.3)
for the different scales of observation). However, to address some biological problems, it is
essential to have a higher spatial resolution.

Figure 1.3 – Evolution of optic microscope to the compound light microscope.
The modern devices magnify the image up to x1500 from its original size.

1.2.1 From photons to electrons
At the beginning of the 20th century, the wave-particle theory developed by De Broglie
(De Broglie 1924) attracted Ernst Ruska’s attention. Under the supervision of Dr. Max
Knoll, Ruska performed experiments on the wave-like physical effect of particles, concluding
that optical microscopes do depend on the wavelength of the light beams used to view the
sample. He was able to show that since electrons have much shorter wavelengths than light,
they could provide better resolutions. Ruska and Knoll built the first electron lens, which
use the magnetic field to focus the electron beam as if it were light. Trying several lenses,
they could greatly increase magnification (Knoll et al. 1932). Two-years later, their work
led to the building of the first Transmission Electron Microscope (TEM) (for a review see
(Kremer et al. 2015)). In TEM, electrons pass through a plastic-embedded specimen and are
directed to the sample to create an image with a spatial resolution that extends to 0.1nm
(Flegler et al. 1997; Reimer 2013).

A few years later, Max Knoll worked on the theory of backscattering electrons and
found that electron beams can scan the surface of sample and resolve its structure in the nm
range (Stadtländer 2007; Bogner et al. 2007). This work led to the making of a Scanning
Electron Microscope (SEM) prototype, with a 250 000x magnification and a spatial resolution
of 20 nm. At the same time, TEM was improved, becoming able to magnify an object up
to 500 000x its original size with a spatial resolution of 0.1 nm (Stadtländer 2007; Erdman
et al. 2019). SEM generates an image that gives the impression to see the surface of the
sample in three-dimensions, while in TEM, electrons are transmitted through a thin section
producing a magnified two-dimensional image (Smith 2010; Bogner et al. 2007)(Figure 1.4).
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Figure 1.4 – Image formation
in electron microscopy. When
an electron beam interacts with the
sample surface, they generate differ-
ent types of signals from the interac-
tion of particles with specimens. The
produced secondary atoms (back-
scattered electron, transmitted elec-
tron, auger electrons, and X-ray ra-
diations) contain the information of
sample topography. The information
is then analyzed via a numerical pro-
cessing device and provides a 2D im-
age (Murata et al. 1987).

Different scales of observation can be generated depending on the instrument used to perform
the observations, as summarized in (Figure 1.5).
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Figure 1.5 – Summary of the different scales of observation.
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1.2.2 Volume imaging in biology

The above-mentioned development in light and electronic microscopy allows a two-dimensional
(2D) observation of the objects. In biology, however, the function of a cell is often associ-
ated with its structure. To decipher the function of cells or organs, it is essential to ob-
tain precise information about their three-dimensional (3D) structures. In light microscopy,
the development of confocal laser scanning microscopes (CSLM) has made it possible to
reconstruct 3D organization at the cellular and, to some extend, subcellular level. The
use of immune-histochemical techniques has allowed to localize labelled proteins of interest
them within anatomic structures (Sands et al. 2005). More recently, super-resolution mi-
croscopy (SRM) encompassing a variety of methods such as stochastic optical reconstruction
microscopy (STORM), structured illumination microscopy (SIM) and stimulated emission
depletion (STED) has been developed, generating images with higher (a few nanometers)
resolution. Nonetheless, SRM methods have some limitations and EM is still a method of
choice to address the structure of biological objects at the nm scale, offering a resolution not
provided by SRM (Knott et al. 2013; Nellist et al. 2004).

Volume imaging by EM
Observation of objects with EM is limited by the fact that the maximum thickness
that can be explored is ∼ 0.5µm. When samples are thicker, electrons diffuse inelasti-
cally, thus reducing the information provided by the image. It is therefore important to
find a specific imaging technique to image larger samples with variable thickness (nm→ µm).

This difficulty can be circumvented by a slicing approach, which divides the sample in
manageable sections (Helmchen et al. 2005; Kanaya et al. 1972) for EM analysis. The first
volume imaging was developed in the 1950’s and known as serial section TEM (ssTEM)
(Figure 1.6). This approach uses a manual sectioning of ' 100nm layers of the resin-
embedded sample, followed by an individual imaging section in TEM. Acquired images are
manually aligned to obtain a 3D representation of the tissue volume with high-resolution in
x- and y-planes and limited z-resolution because of the slice thickness (Harris et al. 2006;
Frank 2013). Later advances have led to electron tomography, making it possible to acquire
high-resolution 3D images with a thickness up to 1µm. The technique uses a high-voltage
TEM in which the object on the grids is tilted along one or two axes and a series of images
is acquired at various tilt angles. Image analysis allows reconstructing the volume of the
section (Hoppe 1974; McEwen et al. 2001).

The two above methods are complementary, since while electron tomography provides
higher resolution in the z-axis, the ssTEM gives a continuous view in larger depth volume
(Bock et al. 2011). Both methods are very labor intensive and use expensive equipment
(Bock et al. 2011; Takemura et al. 2013). In addition, long exposure with a high-energy
electron beam ( 100-200 kV) as typically used with a TEM can cause cell distortion and
damage (Briggman et al. 2006). Imaging biological samples with thicknesses in the order of
several µm was a challenge, which led to other more or less semi-automatic strategies based
on the use of a Scanning Electron Microscope (SEM).
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The SEM-based methods
In the Automated Tape-collecting Ultra Microtome SEM (ATUM-SEM) technique, sections
are automatically collected and mounted in the right order on silicon wafers and then
scanned in an SEM (Figure 1.6) (Hayworth et al. 2006). SEM provides surface information
since the electron beam (with low energy, ∼ 1 − 3kV ) is scanned across the surface of the
sample and the backscattered electrons are detected with a detector placed above the sample.
This technique reduces the 3D EM acquisition time considerably compared to the previous
approach and enabled biologists to explore in 3D the cell architecture with high structural
and molecular details.

Over the last two decades, the development of two other automated EM volume imaging
have emerged and led to a tremendous increase in 3D EM studies. The automated EM
volume imaging is the technique which allows the acquisition of serially sectioned, imaged
and digitally aligned ultrastructural data (Cocks et al. 2018; Deerinck et al. 2010; Tapia
et al. 2012). The technique includes two similar and complementary approaches called Serial
Block Face-Scanning Electron Microscopy (SBF-SEM) and Focused Ion Beam–Scanning
Electron Microscopy (FIB-SEM) (Denk et al. 2004; Leighton 1981). In the SBF-SEM
method, the automated sectioning with a diamond knife and imaging of the sample are
performed within the vacuum chamber of the SEM. In the FIB method the sections are
removed by a Gallium (Ga+) beam. These two methods repeatedly remove and discard
sections of the sample surface. Both techniques are destructive. FIB-SEM can provide
a 3D reconstructed model with an excellent resolution in-depth compared to what a
diamond knife in SBF-SEM can do. The choice of the thickness and number of serial sec-
tions depend on the method and the size of the sample (Young et al. 1993; Bushby et al. 2011).

FIB-SEM offers a higher voxel resolution of automated serial imaging compared to
SBF-SEM (Peddie et al. 2014; Titze et al. 2016). Its higher resolution makes FIB-SEM
the reference volume EM technique for imaging microscopic structures and specific areas of
tissue. Its z-resolution could achieve < 4nm while SBF-SEM sections thickness is 20nm. A
summary of the different methods is presented in (Table 1.1).

Serial-section electron microscopy Serial block-face electron microscopy Super-resolution light microscopy

Section collection on 
TEM grids, TEM
imaging

Section collection on 
solid support, SEM 
imaging

Diamond-knife 
cutting, SEM imaging

Focused ion beam 
ablation, SEM imaging

Stimulated-emission 
depletion nanoscopy 
and variants

Photo-activation localization
microscopy (also known as
STORM)

Depth (z) 
resolution

40nm section thickness,
 improved by tilts <30nm section thickness 23 nm section thickness 5 nm ablasion thickness

~30 nm (strongly dependent
on fluorophore properties)

15 nm (strongly dependent
on single-fluorophore brightness)

Lateral (xy)
resolution

2 nm < 4 nm < 10 nm < 10 nm ~30 nm ~20 nm

Advantages

Staining of sections possible after cutting, sections 
available for re-imaging, parallelized imaging possible

Negligible distortion, no loss of sections, fully automated 
cutting and acquisition

Multiple colours, optical sectioning possible

Large areas possible Highest isotropic resolution Live cell imaging Cheap

Section distortion, folding and loss En-block staining necessary, sections destroyed 
during cutting

Limited sample thickness, high fluorophore density
needed

Drawbacks
Section loss and 
distortion more severe

Tilt series more difficult 
than in TEM

Cutting de-bris on
block face

Limited filed of view Limited speed (point 
scanning)

Many images of the same
field needed

SEM: scanning electron microscope; STORM: stochastic optical reconstruction microscopy; TEM: transmission electron microscope; TEMCA: transmission 
electron microscope fitted with a fast camera array. J. Lichtman, personal communication, H. Hess, personal communication.  

Highest lateral resolution, 
fastest imaging rate 
(TEMCA)

automatic section collection, 
large section areas, lower 
likelihood of section loss

Table 1.1 – Comparison of different volume imaging methods. Volume electron
microscopy methods and two super resolution light-microscopy methods (Denk et al. 2012).
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Figure 1.6 – EM volume imaging techniques as described by (Briggman et al.
2012).

Achievements of 3D EM imaging in cell biology
Electron Microscopy Tomography (EMT) has been principally used to investigate macro-
molecules, viral particles and the molecular organization of the cytoplasm (Baumeister 2002;
Phan et al. 2016). A few 3D reconstruction of plant (Liang et al. 2018) with emphasis
on thylakoids organization (Austin et al. 2011; Daum et al. 2010; Kowalewska et al. 2016;
Shimoni et al. 2005) and algae cells (Moisan et al. 2006; Moisan et al. 1999; Ota et al. 2016a;
Ota et al. 2016b) have been obtained and specific protocols described (Toyooka et al. 2014).

Early studies using manual serial sectioning and EM observations revealed the organi-
zation of the brain and its connectivity, first at the level of few synapses in the mouse cortex
(White et al. 1981) and then the connectome of Caenorhabditis elegans formed by hundreds
of neurons (White et al. 1986). At that time, sections were photographed and reconstructions
were done by hand from prints. To perform such a reconstruction, 8000 prints were used;
thus requiring a huge effort to achieve the 3D reconstruction. Manual sections have also been
used to reconstruct algal cells (Ota et al. 2016a; Ota et al. 2016b; Wayama et al. 2013).



1.2. General history of microscopy 11

To study larger volumes of the brain, the ATUM device (see above) was used (Kasthuri
et al. 2015) in association with a computer-assisted manual space-filling segmentation and
annotation program (https://neurodata.io/data/kasthuri15/). Such an approach was
at the same time simplified by the use an ultramicrotome localized inside the microscope
chamber (SBF, see above) allowing to address functional connectomics (Briggman et al. 2011).

The technology has been adopted by plant biologists with new preparation procedures
suitable for plant tissue (Kittelmann et al. 2016) and was recently used to study chloroplast
anatomical features in (Harwood et al. 2020) and in this thesis report, to study the chloroplast
biogenesis during de-etiolation in Arabidopsis thaliana (see Chapter 5 and (Pipitone et al.
2020)).

The FIB-SEM technique was initially developed for materials science (Lopez-Haro et
al. 2013) and later found promising applications in biology. One initial application of the
ion-beam milling was to prepare thin lamella for imaging by cryo-EM (Rigort et al. 2012)
revealing the native architecture of the Chlamydomonas chloroplast (Engel et al. 2015;
Schaffer et al. 2015). Recently an improvement of this approach was proposed with an
automated cyro-lamella preparation for high-throughput in-situ structural biology (Buckley
et al. 2020).

Another important application was the possibility (with SBF) to scan the surface of
the block after removing as little as 2nm, capturing images at isotropic resolution. This
approach has been applied to different types of cells such as mammalian cells (Heymann
et al. 2009), Human hepatoma cells (Vihinen et al. 2013), Mouse retina (Briggman et al.
2011), Plasmodium chabaudi infected erythrocytes (Medeiros et al. 2012), 3T3 fibroblast
cells (Wierzbicki et al. 2013), yeast cells (Wei et al. 2012), for exhaustive reviews see (Hughes
et al. 2014; Kizilyaprak et al. 2014; Narayan et al. 2015).

Recently FIB-SEM has been used to reveal the 3D structure of photosynthetic cells
either with chemically fixed samples as in rice (Oi et al. 2017; Yamane et al. 2018), the green
alga Chlamydomonas (Garćıa-Cerdán et al. 2020; Xu et al. 2017), the diatom Phaeodactylum
tricornutum (Flori et al. 2017; Flori et al. 2016) (Figure 1.7, or cryo-fixed and freeze
substituted Phaeocystis cells (Decelle et al. 2019) and Chapter 3 and Chapter 4 of this thesis.
Cryo-FIB-SEM of high-pressure frozen marine algae such as coccolithophores (Sviben et al.
2016) and dinoflagellates (Jantschke et al. 2019; Jantschke et al. 2020) have also been used
to study biomineralization pathways.

https://neurodata.io/data/kasthuri15/
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Figure 1.7 – FIB-SEM imaging of Phaeodactylum tricornutum cells. The representa-
tion shows the three-dimensional organization of the cell and reveals the contacts between the
chloroplast (green), mitochondrion (red), and nucleus (blue), together with internal chloro-
plast structures (violet: semi-transparent plane, green: thylakoid volume) (Figure adapted
from (Flori et al. 2018).
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Image analyses and 3D reconstruction
Volume imaging produced large datasets, which require very long machine times for analysis.
Therefore advances in 3D EM imaging have generated new technological challenges related
to “what to do with all the data” (Cocks et al. 2018). The complexity of the task can be
explained by the following reasons:

• Image analysis tools. Over the past two decades, a significant number of automatic
segmentation approaches have arisen. However the tools used are poorly described in
the literature and inaccessible to the community of microscopists. The methodology
proposed is often designed to analyse a specific dataset and not necessary suitable for
studying other living systems. Actually, there is no suitable dataset that reflects the
realities of all features observed in plant or animal cell structures. Although we need
an impartial criterion to evaluate the automated segmentation algorithms performance,
we still validate the automatic segmentation process by comparing it with manual pro-
cedures.

• Segmentation. The segmentation process allows separating a digital image into sets of
pixels, i.e. to change the image representation into something more meaningful and
easier to analyse. Upon segmentation, sets of pixels within an image will be assigned a
label, in such a way that pixels with the same label share specific characteristics. Start-
ing from a labelled area, it is possible to reconstruct the object volume, as required to
represent biological objects in three-dimension and help biologists to explore structural
features, state hypotheses and plan targeted experiments to relate cellular structures
and functions. It is, therefore, crucial to increase data reproducibility by quantifying a
large number of samples. The approach should avoid bias from the user/experimenter.
Thus, the segmentation process should be automatic to get unbiased information fast.
However, the reality is that capture of good quality images from a biological sample not
only depends on image analysis, but also on the physiological state of the sample itself,
the reagents used during fixation and the parameters of image acquisition.

• Image quality. Image acquisition provides complex grayscale images in which it is often
possible to find two different Regions of Interests (ROIs) with the same pixel intensity or
small areas with a significant variation in grey intensities. Therefore, often automated
image segmentation does not lead to the desired results, and it is preferable and more
straightforward to do manual segmentation to obtain 3D structure estimation close to
reality.

1.3 Objective of the Thesis project

The main objective of my project was to implement the 3D image-processing pipeline for
images datasets obtained by FIB-SEM or SBF-SEM using only free-access softwares. The im-
ages datasets were obtained through international collaborations involving different samples
(microalgae and plants), and different samples preparation and different image acquisition
protocols. The developed pipeline include sample preparation and image processing (see
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material and methods, Chapter 2 of this thesis). It allowed us to get cell representation in
three dimensions and obtain quantitative (volume, surface, contact) information.

These datasets allowed to investigate different photosynthetic organisms (see eukaryotic
tree (Figure 1.8)), revealing: i) - the structural and metabolic responses of phytoplankton
to abiotic stresses (Results, Chapter 3), ii) - the morphological changes occurring during
photosymbiosis in Phaeocystis in its acantharians host (Results, Chapter 4) and iii) -
plastid biogenesis during de-etiolation and transitory starch granule formation in Arabidopsis
thaliana ( Results, Chapter 5).
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Summary
In the previous chapter, I have presented the state of the art on volume imaging. In this
chapter, I describe the materials, procedures, methods and tools I have implemented to extract
three-dimensional information from high-resolution 3D EM datasets. First, I briefly describe
the protocol for cell culturing. Then I continue with the procedures for 3D reconstruction
and quantitative analysis. The crucial steps to consider in quantitative imaging methods
are (i) image pre-processing, (ii) image segmentation, and (iii) geometry processing. The
principal goal of the segmentation is to extract relevant features based on pixel intensities
distribution and reconstruct the 3D model corresponding to the features extraction. The
proposed 3D imaging protocol can beapplied to samples from any environment and can be
used for quantitative comparative analysis of different species, which represent a link between
cell structures and physiological/metabolic responses.

Keywords: [sample preparation], [FIB-SEM], [Segmentation], [Geometry processing]
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2.1 Introduction

In this chapter, I present the materials, procedures, methods and tools needed to get three-
dimensional information form high-resolution EM data. It start with details on cell culturing.
I discuss how image preprocessing steps may be different depending on the sample preparation
methods. The chapter ends with examples of the various sample preparation methods used
for this thesis and the corresponding image processing methods. Footnotes acknowledge the
help of people involved in the different steps of the workflow as well as the laboratory where
experiments have been performed.

2.2 Algal growth1

Phaeodactylum tricornutum Pt1 strain (CCAP 1055/3) was obtained from the Culture
Collection of Algae and Protozoa, Scottish Marine institute, UK. Cells were grown in 50mL
flasks in a growth cabinet (Certomat BS-1, Sartorius Stedim, Germany), at 19◦C, a light
intensity of 20µmol photon m−2s−1, a 12− h light /12− h dark photoperiod and shaking
at 100rpm, using the ESAW (Enriched Seawater Artificial Water) medium (Berges et al. 2001).

Galdieria sulphuraria SAG21.92 was obtained from the University of Dusseldorf (Ger-
many) and was grown in a sterile 2XGS modified Allen medium, pH 2.0 (Allen 1959) at
42◦C. Cells were grown in 250mL flasks (50mL culture volume).

Nannochloropsis gaditana CCMP526 was cultivated in artificial seawater (ESAW) us-
ing ten times enriched nitrogen and phosphate sources (5.49× 10−3 M NaNO3 and
2.24× 10−4 NaH3PO4 ; called “10X ESAW” (Dolch et al. 2017). Cells were shifted from
photoautotrophic to mixotrophic conditions by adding 5% of Lysogeny Broth (LB) to the
growth medium.

Micromonas commoda RCC 827, Pelagomonas calceolata RCC 100, Emiliania huxleyi
RCC 909 were grown in the K medium. Symbiodinium pilosum RCC 4014 cells were grown
in the F/2 medium. Cells were grown at 20◦C without agitation. All lines were obtained
from the Roscoff Culture Collection (Vaulot et al. 2004).

Symbiotic acantharians harboring intracellular microalgal cells (Phaeocystis) were col-
lected from surface seawaters (Mediterranean Sea, Villefranche-sur-Mer, France) as described
in (Decelle et al. 2019). After collection, individual cells were isolated under a microscope
with a micropipette, rapidly transferred into natural seawater, and maintained in the same
controlled conditions (light intensity: 100µmol photon m−2s−1, temperature: 20◦C ) as the
free-living stage. In parallel, cultures of the haptophyte Phaeocystis cordata RCC 1383 (the
symbiont of Acantharia in the Mediterranean Sea) were maintained at 20◦C in K/5 culture
medium at 100µmol photon m−2s−1 without shaking.

1Cell culture and growth: Gilles Curien, Johan Decelle, Claire Seydoux, Davide Dal Bo - Plant & Cell
Physiology lab - IRIG /CEA Grenoble / France
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2.3 Sample preparation methods

2.3.1 Chemical Fixation2

Phaeodactylum tricornutum and Nannochloropsis gaditana cells were fixed in 0.1 M Phosphate
Buffer (PB) containing 2.5% glutaraldehyde, for at least 1h at room temperature and then
prepared according to the modified protocol from T. J. Deerinck (https://ncmir.ucsd.edu/
sbem-protocol) (see (Flori et al. 2018)).

2.3.2 Cryo-substitution3

1. Microalga cells were cryofixed using high-pressure freezing (HPM100, Leica).

2. Cells were subjected to high-pressure freezing, i.e. exposed to a pressure of 210MPa at
−196◦C, followed by freeze-substitution (EM ASF2, Leica).

3. Prior to cryo-fixation, microalgal cultures were concentrated by gentle centrifugation
(800 rcf) for 10 min

4. For the freeze substitution, we used a mixture of 2% osmium tetroxide and 0.5% uranyl
acetate in dried acetone. The freeze-substitution machine was programmed as follows:
60 − 80 h at −90◦C, heating rate of 2◦C h−1 to −60◦C (15 h), 10 − 12 h at −60◦C,
heating rate of 2◦C h−1 to −30◦C (15 h), and 10 − 12 h at −30◦C, quickly heated to
0◦C for 1 h, to enhance the staining efficiency of osmium tetroxide and uranyl acetate
and then back at −30◦C.

5. Cells were washed four times for 15 min in anhydrous acetone at −30◦C and gradually
embedded in anhydrous araldite resin.

6. A graded resin/acetone (v/v) series was used (30, 50 and 70% resin) with each step
lasting 2 h at increased temperature: 30% resin/acetone bath from −30◦C to −10◦C,
50% resin/acetone bath from −10◦C to 10◦C, 70% resin/acetone bath from 10◦C to
20◦C.

7. Samples were finally placed in 100% resin for 8 − 10 h and in 100% resin with the
accelerator BDMA for 8 h at room temperature. The resin polymerization occurred at
65◦C for 48 h.

Note: The sample preparation protocol was adapted from (Decelle et al. 2019) to optimize
the contrast for 3D electron microscopy imaging and therefore facilitate image segmentation.

Note: For TEM observations, ultrathin sections (50 − 70 nm) were prepared with an
ultra-diamond knife, collected with an appropriate loop, and prepared following the protocol
of (Flori et al. 2018).

2Chemical fixation: Denis Falconet PCV - Plant & Cell Physiology laboratory - IRIG /CEA Grenoble
3Cryo-substitution: Johan Decelle (PCV), Benoit Gallet , Christine Moriscot, Guy Schoehn - Structural

Biology platforms @ IBS - IRIG Grenoble

https://ncmir.ucsd.edu/sbem-protocol
https://ncmir.ucsd.edu/sbem-protocol
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2.4 FIB-SEM acquisition4

FIB tomography was performed with either a Zeiss NVision 40 or a Zeiss CrossBeam 550
microscope, both equipped with the Fibics Atlas 3D software for tomography. The resin
block containing cells was fixed on a stub with carbon paste, and surface-abraded with a
diamond knife in a microtome to obtain a perfectly flat and clean surface. The entire sample
was metalized with 4 nm of platinum to avoid charging during the observations. Inside
the FIB, a second platinum layer (1 to 2 µm) was deposited locally on the analysed area.
The sample was abraded slice by slice with the Ga+ ion beam (generally with a current of
700 nA at 30 kV ). Every freshly exposed surface was imaged with a SEM at 1.5 kV and with
current of ∼ 1 nA using the in-lens EsB backscatter detector. For algae, we generally used
the simultaneous milling and imaging mode for better stability, with an hourly automatic
correction of focus and astigmatism. For every slice, a thickness of a few nm was removed,
and the SEM images were recorded with an adequate pixel size to obtain an isotropic voxel
size.

2.5 Equipment and software tools

The reagents and equipment needed to prepare cell cultures for EM are described at
https://ncmir.ucsd.edu/sbem-protocol for chemical fixation and in (Nicolas et al. 2018)
for cryo-preparation.

Computers

Linux platform Windows platform
CPU: 2x Intel Xeon E5-2695 v4 (36 cores total) CPU: Intel 3.7 GHz (8 cores)

GPU: NVIDIA GeForce 980Ti 6GB GPU: NVIDIA Quadro P4000 8GB
RAM: 128 GB RAM: 256 GB

Storage: 4TB HDD Storage: 2TB PCIe SSD

Software

1. The Fiji program for images pre-processing (cropping in 3D images, image alignment
and filtering) can be downloaded here

2. Fiji(ImageJ v1.53c) additional plugins:

a. MultiStackReg for 3D data registration (available here) MultiStackReg uses Tur-
boStackReg Plugin. You can download the TurboStackReg plugin and drop it
directly in the plugin folder.

b. Template Matching and Slice Alignment for 3D data registration (available here).
c. 3D Object counters for multiple objects counting (download here).

3. 3 DSlicer 4.10.0 software for segmentation.
4FIB-SEM acquisition: Pierre-Henri Jouneau - The Nanocharacterization platform - IRIG Grenoble -

Rachel Templin, Nicole Schieber, Yannick Schwab - Electron Microscopy Core Facility- EMBL-Heidelberg

https://ncmir.ucsd.edu/sbem-protocol
https://imagej.net/Fiji
http://bradbusse.net/sciencedownloads.html
http://bigwww.epfl.ch/thevenaz/turboreg/
https://sites.google.com/site/qingzongtseng/template-matching-ij-plugin
https://imagej.net/3D_Objects_Counter
https://www.slicer.org/
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4. MeshLab v1.3.2− 64bit for 3D model editing/cleaning/re-meshing.

5. Paraview 5.7.0 to capture a 2D representation of 3D dimension of cell ultrastructure.

6. Blender 2.82 for animation using its BlendLuxCore 2.3 module.

7. Python 2.7.12.

8. Python modules:

– Matplotlib: for data plotting and visualization (https://matplotlib.org/).
– NumPy: N-dimensional linear algebra library (www.numpy.org/).
– STL: access to geometry data of the STL format (https://pypi.org/project/

numpy-stl/).
– Trimesh: load and handle triangular meshes with an emphasis on watertight

surfaces (https://trimsh.org/install.html).
– SciPy: for image processing and interpolation (https://www.scipy.org/).

2.6 Image processing and 3D reconstruction

To get high quality 3D tomograms, it is crucial to have high quality samples for EM
acquisition but also to correctly perform the image acquisition process. A poor sample
preparation or a poor image acquisition leads to a poor representation of the sample,
ultimately biasing any attempt to perform quantitative analysis.

FIB-SEM acquisition produces large datasets, which need to be simplified to get rid
of useless information for image analysis. The acquisition methods automatically generate
3D images with good z−axis resolution with an isotropic voxel size. Most of the time,
data need minimal image registration and a few steps to extract information from the 3D data.

Conversely, SBF-SEM images produce 3D data having big slice depth with a small
x− y pixel size. These features generate an anisotropic voxel (Guérin et al. 2019). Therefore,
yielding data needs additional image registration to realign the slices in data volume.

Both techniques produce huge datasets (between 50 to 100 GB), while existing soft-
wares for 3D reconstruction can only efficiently handle datasets around 1 GB. Therefore, as
a first step of data analysis, we need to find a way to extract smaller data volumes, while
preserving the image details. This requires investigating the images content before starting
the segmentation process. The pipeline I designed for this purpose includes noise reduction,
feature extraction, 3D reconstruction and quantitative analysis.

2.6.1 Image pre-processing methods
The image pre-processing step has the role of ‘improving’ images by enhancing contrast
or by highlighting important features. This step also includes stack registration and noise
reduction with the overall purpose of facilitating the user in the process of identifying and

https://www.meshlab.net/
https://www.paraview.org/
https://www.blender.org/
https://luxcorerender.org/
https://www.python.org/
https://matplotlib.org/
www.numpy.org/
https://pypi.org/project/numpy-stl/
https://pypi.org/project/numpy-stl/
https://trimsh.org/install.html
https://www.scipy.org/
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characterizing Regions Of Interest (ROIs). Using some plugins of Fiji, we can display images
features, adapt settings to improve image resolution and perform stack registration.

Adjust image parameter settings.

1. Upload images sequences in Fiji by selecting “File → import → Image sequences”. In
the sequence window check “virtual stack” mode → press ok (see Figure 2.1).

Figure 2.1 – Open image sequences in Fiji.

2. The volume of interest is isolated by specifying a landmark in an area of the current
displayed image and right clicking on the mouse to select “crop → check duplicate the
stack”. This technique helps creating a sub-stack without losing the displayed raw data
in the virtual stack mode.

3. Set the voxel size information in “Image → Properties” (see Figure 2.2).
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Figure 2.2 – Add voxel size information in Fiji.

Image features enhancement, observation and compression.

4. An image is an array of multi-dimensional points and every dimension represents a spa-
tial dimension (the height, the width and the thickness) and resolution. For an image of
two dimensions, the points are “pixels” while in three-dimensional, the points are “vox-
els”. The image resolution is the number of pixels per length normally represented as
dpi (dots per inch). When the dpi is high, the image content and feature are important.
To adjust “dpi” go to “Image → Adjust → scale to dpi”.

5. FIB-SEM/SBF-SEM acquires 16-bit colour images. This means that in 16-bit images,
there are 216 = 65536 possible grey values per pixel. Working with 16−bit images
requires managing large file size. 16− bit images can be reduced to 8−bit images in Fiji
by choosing “Image → Type → 8 − bit”. 8−bits images are “cheaper” in memory
and represent images with only 28 = 256 grey values for every pixel, effectively dividing
required memory by two (see Figure 2.3).
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Figure 2.3 – Grey-shading toners from black to white just as the bits channel.

6. EM images vary significantly in terms of pixel intensities from one area to another.
For example, in one image we distinguish groups of global properties, which are easy to
distinguish based on image histogram analysis, and local properties, which are undistin-
guishable (“Analyze→ Histogram”, see Figure 2.4 ). Image histogram allows visualizing
the distribution of the number of pixels in terms of their grey values and histogram
thresholding is important in the segmentation process. However, the image histogram
provides only quantitative information.

Figure 2.4 – Grey image and the graphic representation of values distribution.



2.6. Image processing and 3D reconstruction 23

7. Image contrast is increased by the “Image → Adjust → Brightness/contrast” module to
visualize and distinguish black and white by remapping the pixels values of the image
to the (minimum, maximum, brightness or contrast) range of the data type (see Figure
2.5).

Figure 2.5 – Adjust image contrast in Fiji. Brightness-contrast window and contrast
adjustment in the range of the data type.

8. Depending on the image, we may want to give more weight to features strongly repre-
sented, with the “Process / Enhance Contrast” module and perform “histogram equal-
ization”. This function increases the image contrast by equalizing histogram. It is also
possible to set the “%” number of pixel saturation in the “Saturated Pixels boxfg. When
the “normalize” and “equalize Histogram” options are not checked, the pixel intensity
is not changed.

9. EM images must have a scale bar to give a clear visual indication of the size of the
content. A scale bar is added to the image, by drawing a line on a specific location and
choosing the “Analyze → Tools Scale Bar” module. The opened window will ask to add
the scale bar and to adjust the settings at will.

Registration
1. Preview the z-stack alignment in Fiji by opening “Image → Stacks → orthogonal

views”(see Figure 2.6).
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Figure 2.6 – z−stack preview in Fiji using the orthogonal view module.

2. If the z-stack is misaligned, find the proposed registration methods in Fiji choosing
“Plugins → Registration → define the alignment methods”. Stack registration methods
proposed in Fiji use different image transformation as shown below (Table 2.1).

Translation Rigid body

(x’,y’)

Image located at (x,y) in the 
original coordinate is shifted  to 
a new position(x’,y’)

(x,y)0
0

Image which located at (x,y) in the 
original coordinate  is rotated with an 
angle θ and shifted to the new position 
(x’,y’) while keeping the arrangements 
unchanged

0 (x,y) (x’,y’) 0

Affine Similarity

(x’,y’)

(x,y)0 0

Image which located at (x,y) in the 
original coordinate is projected to the 
new position (x’,y’), by combining shift, 
turn with an angle θ, scale and shear 
operators.

Image which located at (x,y) in the original 
coordinate is projected to the new position 
(x’,y’) by either rotation, translation, scaling, 
or reflection,  without modifying the shape. It 
means that what is straight remain straight, 
and parallel lines remain parallel.

0 0

Table 2.1 – The transformation methods provided in registration plugins of Fiji.
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Example of the stack registration methods:

3. Template matching plugin for Fiji. The method works on a given landmark on the
displayed image, which is taken as a reference slice. Use “plugins → Template matching
→ run Align slices” and matches with normalized correlation coefficient. Try subpixel
displacements with bilinear interpolation to obtain best possible registration (Figure
2.7). Verify z−stack registration. If the stack is still incorrectly aligned, keep launching
template matching mode until z−stack is correctly aligned.

Figure 2.7 – Alignment with template matching. Stack registration using the template
matching additional plugin from Fiji.

4. Linear stack Alignment with SIFT from Fiji. This method works by: (i) Selecting
“Plugin→ Registration→ Linear stack Alignment with SIFT” (ii) Choosing appropriate
image transformation methods (Table 2.1) and (iii) Defining the parameters (Figure
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2.8). For more information on how to adjust the parameters and their meaning read
details “here”. After each alignment round, verify the z-stack.

 

Figure 2.8 – Alignment with SIFT. Stack registration using Linear Stack Alignment
with SIFT from Fiji.

https://www.ini.uzh.ch/%7Eacardona/howto.html#sift_parameters
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5. MultiStackReg plugin for Fiji. The module works by selecting “Plugin → Registra-
tion →MultiStackReg” and choosing image transformation methods (see Figure 2.9 and
Table 2.1).

Figure 2.9 – Alignment with MultiStackReg. Stack registration using MultiStackReg
additional plugin from Fiji.
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Image filtering

1. Binning transformation is the process that works by regrouping adjacent pixels either
by average, sum, or median methods, depending on the binning factor. In Fiji, a
binning transformation for a big stack file is done using: “Image → Transformation →
Bin.” and applying an average method. Binning by 2× 2× 2 will reduce the stack by a
factor of 23 and binning by 3×3×3 reduces the stack by a factor of 33. Binning method
helps attenuating random image noise as well. Depending on the image content, the
binning transformation provides a stack that can be further processed without applying
any additional filter.

Several filtering methods exist for EM images, e.g. the work of Sim and collab-
orators on noise types in EM images (Sim et al. 2004a), and noise variation estimation
(Sim et al. 2004b). Noise can be reduced using either a linear or a nonlinear filter.
In most cases, the decision on ‘good’ or ‘bad quality’ images depends on human eyes.
Despite this, “the intensity profile” module of Fiji can help evaluating the extent of
‘damage’ done on a given image every time its content is modified.

2. The intensity profile of an image is obtained using the profile plots function of Fiji.
After drawing a line in a specific area, go to “Analyze → plot profile”. A plot describing
the variation of the grey values at that location will appear. If the grey values of a
ROI show sharp changes near the edges, that edge is identifiable using the first order
derivative methods (see Figure 2.10).

3. Fiji proposes linear and nonlinear filters accessible in the “Process → Filters → select
filters” module. Every selected filter will ask to define the window size. Different filters
have advantages and drawbacks.

For example, (see Figure 2.11), when the window size becomes too large for the
Gaussian filter, additional blurs appear in the image and edges are less visible. The
median filter completely removes ‘shot noises’ without attenuating significantly the
edges. When the histogram equalization is applied to both Gaussian and median filters,
a small change in image observability is found. This change reflects the reorganisation
of the density distribution of the grey value of the image. Therefore, it can be difficult
to detect and localize the contour of the objects. In this case, image derivative methods
can help to detect object contours in the image.

Note: in some cases, binning should be avoided because the high-resolution information is
modified or lost.
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Figure 2.10 – 2D FIB-SEM images were binned using different regrouping factor
methods. A line (in blue) of 1458 nm scans through the 2D slices in an area. The profile
analysis represents the variation of grey values and local binning-impact.
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Gaussian filter

Raw image
 

Window size: 3x3 Window size: 5x5 Window size: 7x7 Window size: 7x7, 
 Equalize histogram

Raw image
 

Window size: 3x3 Window size: 5x5 Window size: 7x7 Window size: 7x7, 
Equalize histogram
 

Median filter

Figure 2.11 – Comparison of the image filtering methods. Gaussian and Median
filters with a different window size.

4. Image derivative for edge detection. The edge based technique consists in identifying
high variation intensities (edges or contours) through the so-called “first-order deriva-
tive” of the image function. We compute, image derivative by convolving the original
image with a specific kernel.

2D Convolution


1 4 3 2 1
0 5 1 1 0
1 2 2 2 1
7 5 6 1 2
1 1 2 2 2


Original image

∗

−1 −1 −1
−1 15 −1
−1 −1 −1


Kernel: Edge enhancement

=


6 50 32 24 12
−10 61 −6 3 −7
−4 3 7 16 9
95 53 73 −4 22
2 −6 15 17 25


Output image

(2.1)

How to calculate a 2D convolution manually?

We add outside pixels (0−padding), then we overlap the kernel over the image,
advancing pixel-by- pixel.
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0 0 0 0 0 0 0
0 1 4 3 2 1 0
0 0 5 1 1 0 0
0 1 2 2 2 1 0
0 7 5 6 1 2 0
0 1 1 2 2 2 0
0 0 0 0 0 0 0



Image1,10 0 0
0 1 4
0 0 5

 ∗

Kernel−1 −1 −1
−1 15 −1
−1 −1 −1



Im1,1 = 0 ∗ (−1) + 0 ∗ (−1) + 0 ∗ (−1) + 0 ∗ (−1) + 1 ∗ 15+
= (−1) ∗ 4 + 0 ∗ (−1) + 0 ∗ (−1) + 5 ∗ (−1)
= 6

Im1,2 = 0 ∗ (−1) + 0 ∗ (−1) + 0 ∗ (−1) + 1 ∗ (−1) + 4 ∗ 15+
= 3 ∗ (−1) + 0 ∗ (−1) + 5 ∗ (−1) + 1 ∗ (−1)
= 50

Im1,3 = 0 ∗ (−1) + 0 ∗ (−1) + 0 ∗ (−1) + 4 ∗ (−1) + 3 ∗ 15+
= 2 ∗ (−1) + 5 ∗ (−1) + 1 ∗ (−1) + 1 ∗ (−1)
= 32

...
Im5,5 = 1 ∗ (−1) + 2 ∗ (−1) + 0 ∗ (−1) + 2 ∗ (−1) + 2 ∗ 15+

= 0 ∗ (−1) + 0 ∗ (−1) + 0 ∗ (−1) + 0 ∗ (−1)
= 25

Im1,1 Im1,2 Im1,3 Im1,4 Im1,5
Im2,1 Im2,2 Im2,3 Im2,4 Im2,5
Im3,1 Im3,2 Im3,3 Im3,4 Im3,5
Im4,1 Im4,2 Im4,3 Im4,4 Im4,5
Im5,1 Im5,2 Im5,3 Im5,4 Im5,5

 =


6 50 32 24 12
−10 61 −6 3 −7
−4 3 7 16 9
95 53 73 −4 22
2 −6 15 17 25


The results will depend on the choice of the kernel. The common edge operators used
in image processing are “Roberts, Prewitt and Sobel (see below) and Robinson (not
shown)” (Gonzalez et al. 2002; Haralick et al. 1985; Rogowska 2000).

Roberts Prewitt Sobel[
0 −1
1 0

]
Gy

[
1 0
0 −1

]
Gx

−1 0 1
−1 0 1
−1 0 1


Gy

−1 −1 −1
0 0 0
1 1 1


Gx

−1 0 1
−2 0 2
−1 0 1


Gy

−1 −2 −1
0 0 0
1 2 1


Gx

(2.2)

The edge strength is given by the gradient magnitude |G| =
√

(G2
x +G2

y) to give the
approximations of the first derivative (Malathi et al. 2011). Therefore, when it is difficult
to define an image contour, the object contours can be sharpened either by combining
edge-enhanced images with the original image (Table 2.2) or by convoluting the original
image with the sharpen kernel to help the user eyes to identify the object boundaries.
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Original image Edge enhancement kernel

Im = Original * Kernel (Original + Im)

Table 2.2 – The transformation methods provided in registration plugins of Fiji.

In Fiji, image convolution is computed with “Process → Filters → Convolve” (Figure
2.12).

Figure 2.12 – Image convolution using a specific kernel in Fiji.
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2.6.2 Segmentation and 3D reconstruction

Segmentation techniques are defined depending on object characteristic and classification
design. We distinguish: manual, semi-automatic, and automatic techniques (Suetens et al.
1993), which use pixel-based or region-based selection methods (for a review see (Awcock et
al. 1995; Rajapakse et al. 1997). The thresholding technique classifies global methods based
on grey-level histograms and global methods are based on local properties (Pal et al. 1993).

Objects classification

To process EM images, we need an adaptive segmentation method to process all datasets
in the same way, to ensure data reproducibility and allow data comparison between species
or within cells. The datasets analysed in this PhD project contain different cell types with
different features. The goals is therefore to isolate Volumes Of Interest (VOI), annotate Areas
Of Interest (AOI) and, finally, to link these regions to specific cellular and subcellular features
in order to reconstruct a corresponding three-dimensional representation of the cell.

Manual segmentation
A manual pixel classification using the segmentation plugin “TrakEM2” of Fiji was tested.
This technique was useful to process small stacks of few images (Cardona et al. 2012). The
method consists in using the brush tool to draw an outline around the selected object in the
image and then, fill the object area by using the keyboard and the mouse. The process is
iteratively repeated on the next slices (for more details see (Cocks et al. 2018)). This method
is labour-intensive to build a 3D model from 2000 images. It was therefore replaced by an
automatic segmentation of the AOI.

Automatic segmentation
I tested an automatic segmentation process using the “autocontext” module of Ilastik to
speed up the segmentation (Kreshuk et al. 2011; Tu et al. 2009). This module allows
annotating the AOI in two steps. The first step is to separate the AOI from other structures
using a pixel classification module (the extracted region does not have to be perfect and
can be used as a training dataset). The second step uses the training dataset to select the
region vs. the background. This technique was used to segment synaptic contacts and the
quantitative validation of the automatic detection of synapse (Kreshuk et al. 2011). I noticed
that this process is particularly greedy in RAM and pretty slow for both steps. Indeed, it
was difficult to individualize cell features within an image stack containing mixtures of cells
from different species. Moreover, some features (i.e., membranes and intracellular structures
of small cells) were difficult to extract. Hence, the semi-automatic segmentation turned out
to be the best choice to annotate the AOIs independently and perform quantitative analysis.

Semi-automatic segmentation
To avoid problems of low contrast and a large variation in pixel intensities of AOI, image
pre-processing was performed to improve image visibility. Based on the notion that all pixels
in a given AOI share a common property, thresholding methods were used to extract objects
with respect to the pixel intensities range of grey values.
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Global thresholding

Let I(x, y) be the image with global properties represented in the histogram (Figure 2.13
A-C), the easiest way to extract the AOI from the background is to set the pixel intensity
at a thresholding range “T” which separates the two regions (Figure 2.13). Therefore, the
segmentation of the AOI will be defined as:

Mij =
{

1 if Iij ∈ [vmin, vmax]
0 Otherwise (2.3)

The result is a binary image M(image mask) where the pixels with “1” value correspond to
the AOI while those with “0” reflect the background. When an image contains more than two
types of AOI with almost the same intensity, the histogram modes fail to separate regions,
and the threshold selection becomes difficult. However, it is still possible to split the image
into patches and set sub-thresholding range (see Figure 2.13).
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Figure 2.13 – Grey images and histograms highlighting the distribution of grey
values in AOI. (A-D) illustrate the different image contents and AOIs characteristics.
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Note: If the background pixel intensities vary significantly across the image (see Figure
2.13 D) or if AOIs have low contrast the thresholding method fails. Therefore, a manual
segmentation is advisable. In this situation it may also be worth trying adaptive thresholding.

Adaptive thresholding

When image characteristics contain a heterogeneous grey value distribution in the back-
ground and structures that vary across the image (see Figure 2.13 D), the thresholding
method well in one part of the image, will provide unsatisfactory results for other areas.
In this case, it is important to get insight on the grey values distribution to correctly set
the thresholding range or add missing pixels manually. To do that, it is crucial to use a
segmentation software that offers possibilities to remove easily or add misclassified pixels
and avoid the under/overestimation of AOI.

To perform supervised semi-automatic segmentation we use the 3Dslicer software (Fe-
dorov et al. 2012). Among the different modules contained in the 3DSlicer software platform
(see Figure 2.14), we have chosen to present only those that will help to speed up the
segmentation process.

Note: for other usages, please refer to the tutorial training.

Segmentation using the Editor module of 3D Slicer

The Editor module of 3D Slicer was used to segment a complete tomogram of 3D EM data.
To segment correctly the AOI, we have developed a technique based on image characteristics
to optimize the thresholding ranges selection.

1. Using 3D Slicer, import data volume (.tiff format) “→ Load data module →
choose the file to add”. The module displays in the three windows the image vol-
ume in axial (XY ), sagittal (Y Z) and coronal (XZ) views. Adjust the image contrast
for better visibility by ticking in any window and scroll the mouse from the top to
bottom.

2. Set voxel size information using “welcome to slice module → volume →
add voxel size information” in the image spacing window and press “center volume”
to set data volume to the origin coordinate (Figure 2.14).

https://www.slicer.org/wiki/Documentation/4.10/Training
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slicer view
er

3D viewer

 3Dslicer modules

Figure 2.14 – Representation of 3D Slicer interface. The interface represents different
view modes: the axial (z−y plane) in red, the sagittal (y−z plane) in yellow and the coronal
(x− z plane) in green (view together with all welcome modules).
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Figure 2.15 – The volume module includes many possibilities to adjust image
settings.

Note: When one changes the properties of the unity in 3D Slicer, the software changes
only the displayed values. So, it is simple if the pixel unity of the image qual to the
default unity “mm” (i.e. 8 nm = 8 mm or 5 µm = 5 mm).

3. Run the editor module selecting “welcome to slice module → Editor”. A label map of
an AOI is generated in the “per − structure” editor module. A new structure is added
with a new labelling colour. The process generates automatically a file with the same
name. The segmented AOI corresponds to the binary images. Switch the view mode if
necessary, to improve the view (Figure 2.16).

4. In the painting tools, select the brush to manually colour the AOI. In the active tools
select the “paint effect” and in additional settings box check “paint over” to draw on
the image. Choose “threshold paint” and a range of grey values in 0...256 will appear.
Adapt the thresholding range to select ranges, which correspond to grey values of the
AOI. Draw a line on the AOI to test if your thresholding range is well adjusted (Figure
2.16).

5. In the “paint effect” additional settings, check “sphere”. Adapt the painting brush
setting to be able to work with more than one image at a time. (See the comparison in
Figure 2.17 and Figure 2.18).

3D reconstruction

i. If necessary, adapt and modify the thresholding range to fit with all grey values of the
AOI, and perform segmentation using a sphere painting brush (Figure 2.19).

ii. Build the 3D model using active tools and select “Make model effect”. If you want
to generate a smoothed 3D model, use “Model maker” default parameters and check
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“smooth model → apply”. Otherwise go to “Model maker” adjust settings and choose
filter type (Sinc or Laplacian filter) and check smoothing % then “apply” in the “model
maker” panel (Figure 2.20).

The volume computation

a. To automatically clean and remove the isolated misclassified pixels, use the active tools
and select the “dentify Islands effect”. In the displayed setting check “Fully connected”
mode and “apply”. The function will assign a new colour to all detected disconnected
components (see Figure 2.21).

b. Compute the volume of the reconstructed 3D model, by selecting
“Welcome to slice modules → Label statistic → select the label name of the
AOI → apply”.

Choose the view you want to consconsider

Painting tools

Additional settings

Thresholding range correspond to the 
AOI of grey values

* Set brush diameter
* Check to define a sphere brush
*Check if you want to make more than 
one structure simultanesly

* Check to paint over the structure
* Check to adjust thresholding range

Select the labelling color

Figure 2.16 – 3D Slicer Editor modules. Additional settings in (pink arrow) are used
to paint the AOI. Painting tools (green arrow) help controlling the brush. The icon shown by
the black arrow opens a window with tools to enable switching the view modes.
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Figure 2.17 – Painting with a circle brush of diameter 87 nm on a stack with the voxel
size: 8× 8× 8 nm3. It takes 1 image at a time for 1 move.

Figure 2.18 – Painting with a sphere brush of diameter 87 nm on a stack with the
voxel size: 8× 8× 8 nm3. It takes 10 image at a time for 1 move.
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Original image

[63.56 - 127.5] [130.44 - 198.77] [63.56 - 198.77][0 - 256]

AOI1 AOI2 AOI1 + AOI2

Figure 2.19 – Adaptive thresholding segmentation. The pixel intensities distribution
was separated into sub-thresholding ranges to classify different objects in the AOI.

Save file in 3D Slicer

CTRL+S then choose the directory for selected “files → save”. 3D Slicer generates
different type of file formats:

a. The *.mrml format contains all the information of the 3D reconstruction and segmen-
tation (label map + 3D models). If you want to rework on previously unfinished seg-
mentations, upload only .mrml file in 3D Slicer interface and all files will be included.

b. The *.nrrd format contains binary images generated during the segmentation of the
AOI. They are named automatically every time a label volume for a structure to edit is
selected.

c. Generated 3D models can be saved as poly data in (.vtk) format, which is a default
format. The 3D model can be saved as either as XML poly data (.vtp), STL (.stl),
PLY (.ply) or wavefront OBJ (.obj) as well. These file formats are read with other
image analysis software (see Table 2.3).

3D reconstructed model

"Sinc filter " - 10% "Laplacian filter " - 10%

Figure 2.20 – Smooth 3D reconstructed model. Welcome modules provide tools to
smooth generated models.
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(a) Here classified pixels are mixed with wrong pixels in the AOI.

(b) Fully connected classified pixels in a group of clusters.

Figure 2.21 – Volume computation in 3D Slicer. The output table contains the number
of voxels, the volume of the model and all the information related to the AOI annotation and
pixel intensities distribution properties.

Fiji/TrakEM2 Ilastik 3D Slicer
Datasets format 130 file formats .tif, HDF .tif,.nrrd, DICOM

Segmentation tools Manual Automatic Manual,
semi-automatic,
automatic

Export 3D file format .obj .tif,.obj,.h5 .obj, .stl, .vtk, .vtp,
.ply, .tif,.nrrd

Tested compatible
software

ParaView, 3D Slicer,
MeshLab, Blender

ParaView, 3D Slicer,
MeshLab, Blender

Paraview, Ilastik,
MeshLab, Blender,
Amira, Fiji

Table 2.3 – Saving module of 3D Slicer. The different image formats and segmentation
techniques offered by 3D image analysis open-source softwares tested in this project.
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2.6.3 3D visualization and model editor

Segmentation and 3D reconstruction generate model files, which reach up to 2 GB ca and
therefore cannot fit easily into memories of the 3D visualization and animation software. We
need to reduce them to an ‘easy to manage’ size. The memory size may vary considerably
from file to file depending on the features used in a model (see Table ??). Moreover, to clean
the model in 3DSlicer, it is necessary to rerun the “model make” module to reconstruct a
cleaned 3D structure. We therefore propose an additional technique in this pipeline, which
involves editing and cleaning the 3D model in the MeshLab software.

Editing 3D model in MeshLab

i. In MeshLab software go to “File → Import mesh file format (*.stl, *.obj, *.ply)”
or drag and drop the 3D model into the window and in the “post-open processing”
window, check “unify duplicate vertices” (Figure 2.22). A project will be created and
the mesh will appear in the MeshLab interface. The interface displays the model’s
name, number of vertices and faces.

Figure 2.22 – MeshLab interface and post-opening of a 3D model.

ii. Clean and edit the mesh by selecting the “Filters” module → choose “cleaning and
repairing” function. This module removes unreferenced and unclean components with
respect to the diameter of isolated pieces (Figure 2.23). Add the maximum diameter “d”
of isolated pieces. The program will delete the isolated component having a diameter
smaller than or equal to the specified distance “d”.
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(a) The clean and edit module removes isolated pieces

(b) Removing unstructured triangle meshes in MeshLab

Figure 2.23 – Cleaning and editing 3D model in MeshLab.
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iii. Once the model is clean, select the “quality measure and computations” module→ then
the “compute geometric measures” function. On the top of the menu click on the “show
layer dialog” icon and the information of the model will appear on the right side of the
interface (Figure 2.24).

iv. To reduce the size of the mesh, go to the “Remeshing, Simplification and Reconstruc-
tion” module and select the “Quality Edge Collapse Decimation” function to open the
corresponding window. Set the minimum faces you want to consider in “the target
number of faces” box → “apply” (see example in Figure 2.25 and Table 2.4).

STL format PLY format OBJ format
3D model size 22.1 Mo

204617 meshes
8.78 Mo
204087 meshes

35.2 Mo
204087 meshes

Volume information 1.22669× 109 nm3 Mesh is not
’watertight’

Mesh is not
’watertight’

Model decimation
information

7.15 Mo
150000 meshes

2.71 Mo
150000 meshes

10.8 Mo
150000 meshes

Table 2.4 – Exported different file formats, size, volume information of the 3D model.

Show lay dialog

Figure 2.24 – Quantification and computation of mesh metrics in MeshLab.
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Figure 2.25 – Mesh simplification, refinement or decimation in MeshLab. Set the
target number of faces in the “Quality Edges Collapse Decimation” window.

Animation
After editing the 3D model in MeshLab, the model file is imported into the ParaView software
to capture a 2D representation of a three-dimensional description. For animation, we used
Blender and its “LuxCoreRender” module for realistic rendering.

2.7 Geometry Processing

In this protocol, 3DSlicer and MeshLab softwares compute model geometry using two different
methods. The 3DSlicer method is based on the voxel size information while the MeshLab
method uses the information of triangle points of a tetrahedron. To understand and evaluate
the “pro” and “cons” of the two methods, I implement a third method, which uses python
packages to get quantitative data after image segmentation and volume reconstruction.

2.7.1 Surface and volume metrics

Fist method

3DSlicer uses label map and counts all voxels as if the model is voxelized (see Figure 2.26).
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Figure 2.26 – Voxelized model with voxel unity.

The volume

Given dx, dy, dz the width, length and height, the voxel size volume Vi is computed as:

Vi = dx × dy × dz(unity3) (2.4)

Therefore, the total volume VI of the model in (Figure 2.26) will be:

VI = (nbre of voxels in the object I)× (the voxel size Vi) (2.5)

The surface area

Taking a voxelized object I, the area measurement is computed as follow:

- first, draw the boundary of the AOI on the surface.

- second, identify the region that is surrounded by the border.

- third, calculate the area of the region

These steps take into account the topological properties of a discrete surface by:

• counting all the voxels which are covered.

• ensuring that no path of the adjacent voxels are connected.

• taking into account hidden faces.

These tasks are not trivial but for additional information read (Prepelit, ă et al. 2016; Schwarz
et al. 2010).
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Second method

MeshLab reads a 3D model as a collection of vertices, edges and faces, which represent a
polyhedral structure (Figure 2.27).

Figure 2.27 – 3D reconstructed model represented by polygons.

The volume

Let a, b, c be the triangle vertices of the tetrahedrons of object J . The volume of Ti:

Ti = 1
6(−→a ×−→b ).−→c ⇒ VJ =

N∑
i=1

Ti (2.6)

The process involves summing N polygons faces. Those pointing in will be added on VI and
those pointing out will be subtracted. Thus, VI is the volume inside.

The surface area

The surface area SI of the object in (Figure 2.27) is the number of faces unity defin-
ing the polygon. The area surface of one face Ai is computed as:

SJ =
all faces∑

i=1
At, where At = 1

2 |
−−→
AB ×

−→
AC| (2.7)

Third method

Surface and volume metrics computation using STL python module.

Requirements:

1. Download the source code on GitLab: https://gitlab.com/clariaddy/stl_
statistics

https://gitlab.com/clariaddy/stl_statistics
https://gitlab.com/clariaddy/stl_statistics
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import numpy as np
from stl import mesh

mesh_file = ’a.stl’ # add here the location path of your STL file.
mesh = mesh.Mesh.from_file(mesh_file)
def compute_surface(mesh):

surface = 0.0
for triangle in mesh.vectors:

X0,X1,X2 = triangle
u, v = X1-X0, X2-X0
w = np.cross(u, v)
surface += np.sqrt(np.dot(w, w)) / 2.0

return surface
def compute_volume(mesh):

volume = 0.0
for triangle in mesh.vectors:

X0,X1,X2 = triangle
volume += np.dot(X0, np.cross(X1, X2)) / 6.0

return volume
def compute_surface_fast(mesh):

Vt = mesh.vectors
U = Vt[:,1]-Vt[:,0]
V = Vt[:,2]-Vt[:,0]
W = np.cross(U,V)
S = np.sum(np.sqrt(np.sum(W*W, axis=1))) / 2.0
return S

def compute_volume_fast(mesh):
Vt = mesh.vectors
V = np.sum(Vt[:,0]*np.cross(Vt[:,1], Vt[:,2])) / 6.0
return V

shape = mesh.vectors.shape
pts = mesh.vectors.reshape(shape[0]*shape[1], shape[2])
pmin = np.min(pts, axis=0)
pmax = np.max(pts, axis=0)
L = pmax - pmin

S = compute_surface_fast(mesh)
V = compute_volume_fast(mesh)
print ’’’
Mesh ’{}’ statistics:
pmin: {}
pmax: {}
L: {}
S: {}
V: {}
S/V: {}
’’’.format(mesh_file, pmin, pmax, L, S, V, S/V)

2. Make sure you have Python on your computer

3. Install numpy-stl by just pip3 install numpy-stl

4. Install sublime Text
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5. Open Sublime Text

6. Copy and paste the code in the sublime text interface and add the path of your STL file
and save (CTRL + S) the work in a specific directory

7. Run the code with (CTRL + B)

When we compared the volume computed using the voxel (3DSlicer) and mesh (MeshLab
and Python script) based methods, results are comparable (see Table 2.5)

3DSlicer
(Label statistics)

MeshLab
geometric measures
module

Python script

Model test
volume

1.20689× 109nm3 1.22669× 109nm3 1.21272× 109nm3

Table 2.5 – Comparison of metrics obtained from 3Dslicer, MeshLab and Python script.

2.7.2 Proximity distance between two meshes
After building the 3D model of the cellular system, we wished to evaluate distances between
two organelles in the cells to hypothesize a possible functional relationship. In the following
pipeline, I describe how to integrate the proximity distance computation between two meshes
and implement the surface contact surface below the thresholding.

Given two meshes A and B, we computed the pointwise distance from mesh A to
mesh B. For each vertex in the mesh A, we computed the minimal distance to the mesh B

using the Trimesh python module. Using this method, every vertex of mesh A is compared
to all vertices contained in mesh B to calculate the intermesh distance (Figure 2.28).

Mesh A Mesh B
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3

4

5

6

Mesh A has vertices xi

Mesh B has vertices yi

dij = ‖yi − xi‖
Di = min dij

j

(2.8)

Figure 2.28 – Minimum distance between two meshes.
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After having set a biological meaningful threshold distance (here ≤ 90 nm), we generate
subsets of A−B points that meet this criterion:

xi close to B⇔ Di ≤ Dthreshold (2.9)
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Figure 2.29 – Proximity distance estimation. Computation of the minimum distance
between two meshes using pointwise distance from mesh A to mesh B.

Using the python code provided at: https://gitlab.com/clariaddy/mindist, we
reconstruct the matching surface using face data (see Figure 2.29) also the example in
Figure 2.30).

The code scripts and implementation

The algorithms implement the minimum distance between two meshes either by
providing the minimum distance between mesh A and mesh B or implementing the
area corresponding to the proximity distance between them. What you need to
implement the code:

1. Download the python code on GitLab: https://gitlab.com/clariaddy/
mindist

– mindist: allows to compute the distance between two meshes.

https://gitlab.com/clariaddy/mindist
https://gitlab.com/clariaddy/mindist
https://gitlab.com/clariaddy/mindist
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– minsurf: allows to extract a surface below a threshold distance.

2. Install all packages in the text file “deps.txt”:

– sudo apt-get install libspatialindex-dev
– sudo pip3 install rtree
– sudo pip3 install svg.path
– sudo pip3 install bashplotlib

3. Make the python code executable by opening the terminal CTRL + ALT+ T and
add location path of the code + run:

– chmod +x mindist
– chmod +x minsurf

4. The main parameter, we need to run the code:

– mindist [-h] [-n NPTS] [-u UNIT] [-prec PREC] [-plt] [-nv]
mesh0 mesh1

– minsurf [-h][-d MAX_DISTANCE][-af][-cd][-n NPTS]
[-ss SPACE_SCALING][-ps PLOT_SCALING][-prec PREC][-nv]
[-plt][-bc BASE_COLOR][-ba BASE_ALPHA][-s SUBDIVISIONS]
[-cc CUSTOM_COLORS][-vc][-dm DISPLAY_MODE] mesh0 mesh

5. Run the command below:

./minsurf Mitochondria.stl Chloroplast.stl -ss 1
-d 50 -plt -dm all -cc black,green -bc red -ba 0.2
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using face data
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The contact area between the mesh red and the mesh green 
≤ 50nm = ~ 1% of  mesh red surface

Figure 2.30 – Contact area computation. Dark spots show the contact points between
mitochondria and plastid.
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2.7.3 Splitting method

During the segmentation process, we noticed that an AOI may contain several structures
that can be individualized only upon several rounds of segmentation. Individualizing
∼ 100 structures, one by one, even using the semi-automatic segmentation to speed
up the process is a tedious task. Therefore, the protocol to implement quantitative
analysis, as detailed below:

Region splitting in 3DSlicer use “3DSlicer/Editor module”

1. Add a label map for a structure to edit in a per-structure module panel.

2. While keeping the same label map, annotate different structures from the AOI
using different labelling colours (see Figure 2.17 and 2.18)

3. Select “Welcome to Slicer modules→ label statistic” and indicate in “the Grayscale
volume” the name of your stack and in the “Label Map” the name of the label
map, which corresponds to the segmented clusters of the AOI and → apply.

4. A table appears displaying volume information of the topology of individualized
structures and the corresponding pixel intensities distribution. The module dis-
plays information with respect to the segmentation order.

Region splitting in Fiji use “Fiji/3D objects counter plugin”

During the segmentation of multiple clusters in the AOI, we may choose to annotate
all clusters with one colour to avoid repetitive segmentation. External softwares may
be required to get quantitative information of individual structure. The simplest way
is to use the “3D object counter” plugin from Fiji.

Note:After segmentation save the .nrrd file which contains binary images of the AOI.

Count object number structures using “3D objects counter” plugin:

1. Download the 3D object counter plugin here. Drag and drop the 3d-oc.jar in
the plugins folder of Fiji. Go to Plugins → install → 3d-oc.jar and restart Fiji.

2. Import the .nnrd file in Fiji; go to Image → Properties to set voxel size infor-
mation. Select “Plugins → 3D Object Counter → Set Measurements” and add
statistical parameters then select “3D Object Counter” function.

https://imagejdocu.tudor.lu/_media/plugin/analysis/3d_object_counter/3d-oc_.jar
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3. Adapt the thresholding value, which corresponds to your data and scroll the slice
panel to see if the threshold value covers all objects individually (Figure 2.31)
then press ok. A table, containing all the statistical measurements of the detected
objects, will appear. Note that the object realignment is random, i.e. we cannot
have the structures ordered exactly as they were originally modelled in 3DSlicer.

Figure 2.31 – 3D Object Counter plugin form Fiji provides all geometric topology
information of detected objects in the cluster.

Mesh splitting

After evaluating how much time it takes to get quantitative data in the cluster, we
tried splitting a mesh model using Trimesh. The technique based on 3D model gives
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good results in term of quantitative analysis and reduces the working time (see how
the algorithm works and the example in Figure 2.32):

1. Load the mesh file in .stl format and cleans it if required.

2. Check if the loaded object is watertight, (i.e, it has true volume, count connected
groups of vertices and compute the surface/volume).

3. Split mesh objects using connected faces (faces sharing an edge).

4. Sets up a minimum number of triangles considered as a sub-mesh. If it is not
specified, the algorithm considers that a sub-mesh contains at least three triangles
or 1% of base mesh triangles.

5. Iterate on face subgroups and build the sub-mesh. Clean the sub-mesh and save it.

6. Print the computed statistical measurements of individual generated sub-meshes.

7. The parameters, we need to run the code:

split_mesh [-h] -i INPUT_FILE [-o OUTPUT_BASENAME] [-c] [-nv]
[-mo MAX_OBJECTS] [-mt MIN_TRIANGLES] [-mtp MIN_TRIANGLES_PERCENTAGE]

3D models of plastids 
in Phaeocystis cells

Figure 2.32 – Mesh splitting using Trimesh python package.
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2.8 Image processing methods with sample preparations

The image processing has been applied to different sample preparations: either chemi-
cally fixed or frozen at high pressure and cryo-substituted cells.

Chemically fixed samples
When samples are chemically fixed, membranes are heavily stained and organelles
envelopes are visible. However, the segmentation process may take a lot of time
because the AOI is delimited by membrane structure. This information tends to add
many details on the AOI and the human eye will use edges to delimit structures.

Therefore, image pre-processing needs to include filtering and edge detection
methods to help the user extracting the AOI from other structures. Overall, a full
segmentation of a cell can take a week (see example in Figure 2.33).

(Flori et al. 2017)

Image processing:
1. Image pre-processing steps:

– Binning transformation
– Gaussian filter
– Edge enhancement

2. Image segmentation (3DSlicer) and
reconstruct 3D model.

3. 3D representation (ParaView)

Figure 2.33 – Chemically fixed image of Phaeodactylum tricornutum. 3D cell
architecture organization (bottom panel), together with indication on the image processing
steps (top panel).
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Cryo-substituted sample

If the sample preparation is improved to preserve cell structure (see above, sample
preparation description), the image resolution is higher and the subcellular structures
are well preserved.

Thus, the image pre-processing steps include fewer steps and the time required
to segment a full tomogram of the cell is largely reduced (three days for an experienced
user, Figure 2.34).

(Uwizeye et al. 2020)

Image processing:
1. Image pre-processing steps:

– Crop 3D volume data.
– Binning transformation could

be enough to reduce noise.

2. Image segmentation (3DSlicer) and
reconstruct 3D model.

3. 3D representation (Blender,
LuxCoreRender)

Chloroplast

Nucleus

Mitochondria

Calcium rich body

Golgi body

Figure 2.34 – 3D architecture organization of Emiliania huxleyi. The cells were
frozen at high pressure and cryo-substituted.
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Summary
Phytoplankton comprise microorganisms belonging to prokaryotes and to eukaryotes.
Phytoplankton play an essential role on Earth through the process of photosynthesis, and
support aquatic trophic networks. Despite a better understanding of their biodiversity,
evolution and ecology, we still lack information about their response at the subcellular
level. Nanoscale information can help understanding the internal cell organisation and
its possible link to physiological responses. In this chapter, I employed the imaging work-
flow described in Chapter 2 to perform quantitative analyses of entire algal cells from
different phytoplankton taxa. I focused on the relationships between the energy produc-
tions compartments (plastids, mitochondria) and energy storage compartments. I found
that they occupy constant volume fractions in the different lineages. I also identified
interactions between plastids and mitochondria in all species, which change according
to the cell energy demand. These findings revealed the role of plastid-mitochondria
interactions and morphology adjustment as the critical parameters to understand how
phytoplankton adapt to their environment. Moreover, this type of investigation opens
new perspectives in the study of phytoplankton cellular structure and acclimation at the
cellular and subcellular scale.

Keywords: [phytoplankton], [microalgae], [3D structure], [biometrics], [organelles]
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Introduction
Phytoplankton are essential for life on Earth. By turning CO2 , sunlight and other
nutrients into useful biomass and O2 , they are almost equivalent to forests and other
land plants (Falkowski 2002; Field et al. 1998). These single-celled photosynthetic
organisms are ubiquitous in the oceans, in aquatic and terrestrial ecosystems and they
significantly contribute to food chains, and to the CO2 feedstock pump. Phytoplankton
include prokaryotes and eukaryotes. Eukaryotic phytoplankton group a wider variety
of lineages (diatoms, dinoflagellates, haptophytes, rhodophytes, etc.) with different
forms and sizes (Yoon et al. 2017). Under optimum conditions, phytoplankton growth
is exponential (Mellard et al. 2012). However, it is affected by abiotic challenges,
including global warming (Pörtner et al. 2014; Lewandowska et al. 2014; Cross et al.
2015), which affect nutrient availability by modulating the vertical stratification of the
water column and ocean temperature (Pandey et al. 2017).

Phytoplankton growth is also regulated by biotic stresses, including e.g. the
presence of biotoxins produced by other organisms, which are harmful to marine life
(Hallegraeff 2010; Davidson et al. 2012). While our knowledge of population responses
to abiotic and biotic is increasing, thanks e.g. to omics approaches, the cellular
reactions behind these responses are less known. For these reasons, a major challenge
of my PhD has been to develop a pipeline to access to the cellular and subcellular
features of phytoplankton at the nanometric scale, based on FIB-SEM technique
approach as reported e.g. in (Narayan et al. 2015; Kizilyaprak et al. 2014).

FIB-SEM has already been successfully applied to provide 3D models of eukary-
otic cells (Decelle et al. 2019; Flori et al. 2017; Gavelis et al. 2019). As explained in
chapter 2, the protocol developed here is suitable to carry out comparative studies
of subcellular features. We applied it to several cell types, mainly focusing on three
observables: (i) cell volume fractions occupied by the different organelles, (ii) constant
volumetric ratios between plastids and mitochondria and (iii) plastid-mitochondria
interactions at specific locations, suggesting the presence of contact points between the
energy-producing compartments. In the following, I will present data that have been
included in a manuscript that is in preparation plus additional information concerning
other species/observables.
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Abstract

Eukaryotic phytoplankton is a minor fraction of the global biomass playing a
major role in primary production and climate. Despite improved understanding of
its diversity, evolution and ecology, we still miss information on 3D architectures of
phytoplankton cells and their possible plasticity during physiological responses. Here,
we developed an imaging workflow to perform quantitative morphometric analysis of
subcellular structures using 3D electron microscopy (FIB-SEM). Comparative analysis
across distant phylogenetic taxa representing major oceanic phytoplankton lineages
and model-laboratory microalgae reveal i) conserved cell-volume fractions (40− 50%)
occupied by the main organelles (nucleus, plastid, mitochondria); ii) constant vol-
umetric ratios between plastids and mitochondria; and iii) plastid-mitochondria
interactions at specific locations, suggesting the presence of contact points between the
energy-producing compartments. Hence, we propose that phytoplankton cell volume
occupancy and organelles topology is governed by energy management rules. In line
with this hypothesis, we observed a link between changes in cell volume occupancy
of plastids and mitochondria, their interactions, and phytoplankton environmental
acclimation. The comparison between diatom Phaeodactylum tricornutum cells grows
under low light and high light show the enhancement of photosynthesis and respiration
in parallel with increased of plastid-mitochondria interactions and larger volume
occupancy by the mitochondria and the plastid CO2-fixing pyrenoid. Changes in
organelle architectures and interactions also accompany acclimation of Nannochloropsis
to different trophic lifestyle, along with commensurate modifications in respiration
and photosynthesis. Overall, by revealing the evolutionary- conserved architectures
of microalgal energy managing organelles and the role of their structural plasticity
in phytoplankton fitness and physiology, this study opens new perspectives to study
acclimation responses at the subcellular scale.

Keywords: [phytoplankton], [microalgae], [3D structure], [FIB-SEM], [biometrics]

3.1 Introduction
Phytoplankton plays a critical role in supporting life on Earth. By converting CO2,
sunlight and nutrients into biomass and oxygen, unicellular phototrophs are responsible
for about 50% of primary productivity (Field et al. 1998). They also contribute to food
webs and to the biological CO2 pump in the oceans. Phytoplankton members are ubiq-
uitous in marine and freshwater ecosystems and include prokaryotes and eukaryotes,
the latter having acquired photosynthesis capacity up to 1.5 billion years ago through
endosymbiotic events (Sibbald et al. 2020). Eukaryotic phytoplankton encompasses a
great diversity of lineages (e.g. diatoms, dinoflagellates, haptophytes, chlorophytes,
and rhodophytes) with different morphologies and sizes (from 0.8 to a few tens of
microns) (Not et al. 2012). Although our knowledge on phytoplankton biodiversity
and ecological relevance in aquatic ecosystems has greatly improved in the recent
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years e.g. (De Vargas et al. 2015), the cellular bases of ecological responses of these
unicellular organisms remain undetermined. Moreover, we do not know how flexible
the phytoplankton cellular (subcellular) architectures are facing environmental changes.

So far, phytoplankton morphological features have been mainly visualized by light
microscopy and 2D electron microscopy studies (Andersen et al. 2015; Embleton et al.
2003; Rodenacker et al. 2006; Schulze et al. 2013; Sosik et al. 2007), often associated
with assessment of photosynthetic activity (Hense et al. 2008; Schulze et al. 2013).
A high-throughput confocal fluorescence 3D imaging has been developed to scan,
classify and quantify phytoplankton cells collected in different oceanic regions (Colin
et al. 2017). However, optical microscopy studies have insufficient resolution to reveal
microstructural features, and 2D electron microscopy by definition cannot provide a
comprehensive volumetric description of phytoplankton cells and their organelles. This
is a critical aspect, as recent works have proposed that some phytoplankton physio-
logical responses rely on the presence of peculiar 3D subcellular architectures (Engel
et al. 2015; Bailleul et al. 2015). Thanks to the recent development of 3D Electron
Microscopy (EM) studies, it is now possible to visualize small sections of native frozen
cells at nearly-atomic resolution using cryo-Electron Tomography (cryo-ET, (Engel
et al. 2015; Wietrzynski et al. 2020; Asano et al. 2016) or to provide 3D structures of
entire cells with enough resolution (4− 10 nm) to investigate subcellular architectures,
using focused Ion Beam Scanning Electron Microscopy (FIB-SEM) (Flori et al. 2017;
Decelle et al. 2019).

In this work, we applied a FIB-SEM-based workflow to seven monoclonal cul-
tures of different eukaryotic microalgae representing major oceanic phytoplankton
lineages and/or model-laboratory microalgae. By optimising every step of the workflow
(sample preparation including cryofixation, 3D imaging, filtering, segmentation, and
3D modelling), we generated accurate 3D reconstructions, suitable for quantitative
morphometric analysis (surfaces and volumes) of organelles and subcellular structures.
Comparative analysis of the different lineages revealed preserved structural character-
istics between the different species: (i) conserved cell-volume fractions occupied by
the different organelles; (ii) constant volumetric ratios in energy-producing organelles
(plastids, mitochondria); (iii) consistent plastid-mitochondria interactions. These
relationships between cellular sub-compartments related to energy management likely
represent evolutionary conserved features responsible for specific phytoplankton phys-
iological responses. Consistent with this idea, physiological responses of microalgae
acclimated to either different light regimes or trophic lifestyles were accompanied by
substantial modifications in the structural features of plastids and mitochondria, as
well as in their interactions.
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3.2 Results and Discussion
3.2.1 Cellular architectures of phytoplankton

We reconstructed the 3D cellular architecture of different eukaryotic lineages rep-
resentatives of ubiquitous phytoplankton taxa and laboratory model organisms:
Mammiellophyceae (Micromonas RCC 827), Prymnesiophyceae (Emiliania RCC 909),
Pelagophyceae (Pelagomonas RCC 100), Dinophyceae (Symbiodinium RCC 4014 clade
A), Cyanidiophyceae (Galdieria SAG 21.92) and Bacillariophyceae (Phaeodactylum
Pt1 8.6), Eustigmatophyceae (Nannochloropsis CCMP 526) (see supplementary Table 3.1).
Prior to FIB-SEM imaging, live cells were fixed with high-pressure freezing (to max-
imise preservation of native structures) followed by slow freeze-substitution and resin
embedding. FIB-SEM datasets were processed to 3D models using open-access software
( supplementary Figure 3.8 and section 2.6 for more details). This imaging approach
allows quantifying cell volumes in a wide range, from 3 µm3 ca in the mamiellophyceae
Micromonas, to more than 200 µm3 in the dynoflagellate Symbiodinium.

Figure 3.1 – Cellular volume and external features of selected phytoplankton
cells. Green lineages of the phylogenetic tree of eukaryotes represent photosynthetic eu-
karyotes (adapted from (Decelle et al. 2015b)). A 3D scan view of cell morphology of
selected phytoplankton members (Mammiellophyceae (Micromonas RCC 827), Prymnesio-
phyceae (Emiliania RCC 909), Bacillariophyceae (Phaeodactylum Pt1 8.6), Pelagophyceae
(Pelagomonas RCC 100), Dinophyceae (Symbiodinium RCC 4014 clade A), Cyanidiophyceae
(Galdieria SAG21.92) and Eustigmatophyceae (Nannochloropsis CCMP526)) is shown with
a linear scale bar of 1 µm and a voxel scale of 1 µm3. Specific cellular features
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We observed both external architectures of microalgae (e.g. coccoliths in Emiliania,
the raphe in Phaeodactylum, the flagellum in Micromonas, Figure 3.1), and subcellular
features, including the main organelles (Figure 3.3: nucleus -blue-, plastid-green- and
mitochondria-red).

Other cellular features were observed (grey): storage bodies in Emiliania (Gal
et al. 2018; Sviben et al. 2016), carbon-rich structures in Pelagomonas (Andersen
et al. 1993), lipid droplets in Phaeodactylum (Lupette et al. 2019) and large oil bodies
in Nannochloropsis, starch sheath surrounding the pyrenoid in Micromonas (Dos San-
tos et al. 2017) and Symbiodinium and vacuoles of different sizes in Phaeodactylum,
Galdieria and Micromonas (the so-called impregnated bodies (Dos Santos et al. 2017)).

Different shapes were observed for the main organelles. Plastids were cup-shaped in
Galdieria, Pelagomonas, Emiliania, lobed in Symbiodinium (Blank 1987); globular in
Micromonas and Nanochloropsis and elongated in Phaeodactylum (Figure 3.2 B and
Figure 3.2 A). When distinguishable, photosynthetic membranes (thylakoids) were
organised in layers of a few stacks, without the clear subdivision into stacked and
unstacked membrane domains observed in vascular plants (Mustárdy et al. 2003).

The nucleus had spherical/oval shape and was closely associated to the plastid
via the fourth envelope membrane in secondary plastids (i.e. Phaeodactylum (Flori
et al. 2016)). Mitochondria were characterized by more variable shapes not only
between species but also within cells of the same species (e.g. Supplementary Figure
3.9 in the case of Emiliania). This likely reflects the dynamic nature of these organelles,
which change their shape, undergo dislocations, and undergo fusion and fission within
the cell (Bereiter-Hahn et al. 1994).

Concerning the main organelles, plastids always occupied the largest fraction
(25 − 40%) of the cell (Figure 3.2 C and Supplementary Table 3.2), followed by the
nucleus (5− 15%) and the mitochondria (2.5− 5%). Altogether, these three organelles
(nuclei, plastids and mitochondria) filled a relatively constant fraction (40 − 55%)
of the total cell volume, despite significant differences in the cell volumes of the
different phytoplankton taxa (Symbiondinium e.g. is around 200 times bigger than
Micromonas). Networks of internal vesicles, the Golgi apparatus, ER, vacuoles and
storage compartments (e.g. lipid droplets, starch granules, nutrient storage, etc.) and
the cytosol occupied the other half with a larger variability in terms of their relative
volume occupancy. We interpret this conservation of the organelle volumes and the
variability of the other compartments as the signature of evolutionary constraints
that preserve essential cellular functions (gene expression, energy production, and
anabolism/catabolism), while leaving metabolic flexibility to allow the storage of as-
similated nutrients, particularly carbon and subcellular trafficking. The only exception
was Nannochloropsis, where the large accumulation of oil bodies likely reduced the cell
volume available to the main organelles (Figure 3.2, see below).



64 Chapter 3. Assessing subcellular features and their dynamics in microalgae

Figure 3.2 – Internal cell architecture of phytoplankton cells. (a) Sections through
cellular 3D volumes, segmented from FIB-SEM images of whole cells of Micromonas,
Pelagomonas, Emiliania (Supplementary Video 3), Galdieria, Phaeodactylum , Symbiodinium,
and Nannochloropsis were imaged. (b) Segmentations highlight the main subcellular com-
partments: green: plastids (containing thylakoids and pyrenoids -light green- in some cell
types); red: mitochondria; blue: nuclei (with different intensity of staining possibly corre-
sponding to euchromatin -light blue- heterochromatin -blue- and the nucleolus -dark blue);
grey: other compartments. (c) Volume occupancy by the different subcellular compartments
in different microalgal cells. Top plot: % of occupation; bottom plot: absolute volume sizes
(N = 3± SD).
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Figure 3.3 – Morphometric analysis of phytoplankton members. (a) 3D topology
of the main organelles (green: plastids; red: mitochondria; blue: nuclei) in the different
cell types. (b) Volume relationships in different subcellular compartments, as derived from
quantitative analysis of microalgal 3D models. (c) Surface relationships in different subcel-
lular compartments, as derived from quantitative analysis of microalgal 3D models. Three
cells were considered for every taxum. Hexagons: Micromonas; circles: Pelagomonas; stars:
Emiliania; squares: Galdieria; triangles: Phaeodactylum; suns: Nannochloropsis. Symbio-
dinium cells were not considered in this analysis, because their size, which largely exceeds
the other (Supplementary Figure 3.10, prevents a meaningful analysis of the volume/surface
relationships.
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Thanks to the possibility offered by our approach to perform quantitative surface and
volumetric estimates, we sought relationships between the three above mentioned or-
ganelles (Figure 3.2 A) in the different taxa, to identify possible evolutionary-preserved
morphological characteristics. This analysis was initially biased by the presence of
Symbiodinium (Supplementary Figure 3.10). These dinoflagellate cells, being much
larger than the others, led to the clustering of data into two groups (Symbiodinium
cells on one side, all the other ones on the other side), leading to the observation of
apparent linear relationships between all the considered parameters.

Excluding Symbiodinium from the analysis removed this bias and unveiled the
existence of a tight correlation between plastids and mitochondria in terms of volume
(the coefficient of determination R2, being 0.95, Figure 3.3 B) and surface area
ratios (R2 = 0.85, Figure 3.3 C) (see also Supplementary Table 3.2 and 3.3). No
significant correlation was found between the volume/surface ratio of the nucleus and
the mitochondria or plastid (R2 ≤ 0.5).

Plastid-mitochondria relationships are of primary importance in diatoms (Bailleul
et al. 2015; Kim et al. 2016), where interactions between the two organelles are
relevant for carbon assimilation. Based on the findings above, we propose that
this organelle-organelle relationship also exists in othermicroalgal species, possibly
representing a conserved feature of phytoplankton bioenergetics. Plastid-mitochondria
interactions may rely on physical contacts between the two organelles (Bailleul et al.
2015; Flori et al. 2017; Mueller-Schuessele et al. 2018).

We tested this possibility by a comparative analysis, where we quantified con-
tacts between plastids and mitochondria in the different species analysed above
(Figure 3.4 and see Supplementary 3.4 of this chapter). Distance criteria have been
recently proposed to operationally track contact points between organelles (Scorrano
et al. 2019).

The distance between two organelles that can reflect a contact site is in the
10− 90 nm range, with distances of 30 nm can be found in most cases (Scorrano et al.
2019). Following this rule, we identified surface areas of contact between plastids and
mitochondria. Areas of contact varied depending on the microalgal. At 30 nm, almost
no contact points were detected in Pelagomonas and Nannochloropsis (0.1 ± 0.1%
and 0.16 ± 0.3% of the plastid surface being involved in contacts with mitochondria,
respectively), while interactions were found in the other microalgae (up to 7.1 ± 0.1%
in Phaeodactylum). At 90nm, plastid-mitochondria contacts became visible in all
algae, reaching 15.7± 1.4% in the diatom. Despite changes in their size, contact points
maintained the same localisation when calculated using the distance criteria. To us,
this finding suggests that plastid-mitochondria interactions occur at specific locations,
as already proposed in the case of other organelles-organelle interactions (Prinz 2014;
Phillips et al. 2016; Rowland et al. 2012).
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Figure 3.4 – Contact surface areas between plastids and mitochondria in phyto-
plankton. Green: plastid surface. Light red: mitochondria surface. Pink: contact points
(i.e. points at a distance ≤ 30 nm, panel A or ≤ 90 nm) between mitochondria and plastids.

3.2.2 Subcellular features of energy managing organelles
Besides providing information on the topology of organelles, our 3D images had
enough resolution to explore sub-organelle features. We exploit this possibility to
investigate the possible conservation of structural architectures within plastids and
mitochondria (Figure 3.5 and Supplementary Figure 3.11), seeking for signatures of
structural constraints relayed to cellular energy management. Plastids were mostly
occupied by thylakoid membranes and the stroma, and by the carbon-fixing pyrenoid
(Figure 3.5 B), a Rubisco-rich matrix that was not observed in Pelagomonas (Andersen
et al. 1993), Galdieria and Nannochloropsis (Merola et al. 1981; Mackinder et al. 2016).

In two taxa (Phaeodactylum and emphEmiliania), we observed thylakoids cross-
ing the pyrenoid matrix (Figure 3.5 A). These pyrenoid membranes (also called
pyrenoid tubules in Chlamydomonas reinhardtii (Engel et al. 2015)) display different
topologies: we observed parallel stacks in the diatom and a more branched structure in
Emiliania, reminiscent of that recently reported in Chlamydomonas reinhardtii (Engel
et al. 2015; Meyer et al. 2016).

Micromonas and Symbiodinium contained thylakoid-free pyrenoids that were al-
most completely surrounded by starch sheaths (Figure 3.5 A). Few stalks ensure the
connection between pyrenoid and the plastid, possibly to facilitate the diffusion of
Rubisco substrates and products as previously proposed (Badger et al. 1994; Engel
et al. 2015; Moroney et al. 1991), see also the review (Meyer et al. 2017). Unlike
Micromonas, the pyrenoid of the dinoflagellate Symbiodinium was not centred in
the plastid, but instead protruded towards the cytosol, being surrounded by a shell
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of cytosolic rather than stromal starch (Dauvillée et al. 2009; Meyer et al. 2017;
Van Thinh et al. 1986).

Figure 3.5 – Organization/architecture of the mitochondria and plastids of phy-
toplankton. (a)Topology of the plastid. Whole plastid images and focus on the CO2-fixing
compartment (pyrenoid) topology in Phaeodactylum, Emiliania, Micromonas and Symbio-
dinium cells. The 3D reconstruction displays the thylakoid network (dark green) crossing
the pyrenoid matrix (light green). If present (Micromonas and Symbiodinium), a starch layer
surrounding the pyrenoid is shown in grey. The histogram recapitulates volume occupancy by
sub-plastidial structures (thylakoids, matrix, starch). Note that starch is cytosolic in Symbio-
dinium, and therefore its volume is not considered in the graph. (b) Mitochondrial features.
Topology of mitochondrial compartments. Red: mitochondrial matrix; yellow: cristae. The
histogram recapitulates volume occupancy by mitochondrial sub-compartments (in the ma-
trix and within the cristae). Despite changes in the mitochondria morphology, likely reflecting
the dynamic character of these organelles (Supplementary Figure 3.9), the ratio between the
subcellular compartment volumes is relatively constant in the different cells.

Despite the differences in the pyrenoid topology, the ratio of pyrenoid/plastid volumes
was preserved in three out of the four microalgae lineages where this compartment
was present (7.1 ± 1.2 %, 9.3 ± 1.4 %, 7.2 ± 1.2 % for Phaeodactylum, Emiliania,
Micromonas, respectively, Figure 3.5 A and Supplementary Table 3.5). This constant
ratio highlights the importance of maintaining a proper balance between the sub-
compartments performing light harvesting (the photosynthetic membranes) and CO2
fixation (the pyrenoid). An exception to this observation is Symbiodinium, where the
pyrenoid occupies a much lower fraction of the plastid volume (2.8 ± 0.2 %). Our
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quantitative morphometric analysis provides a possible rationale for this exception.
We found that the pyrenoid surface/volume ratio (an important parameter for gas
exchange in this compartment, and therefore for CO2 assimilation) is 20.6±6, 12.3±2.6
and 15.1± 2.4 in Phaeodactylum, Emiliania, Micromonas but only around 4.7± 2.3 in
the dinoflagellate.

This possibly explains why the large increase in the plastid volume of Symbiodinium
(63.5 ± 9.5 µm3 ) when compared to Phaeodactylum, Emiliania and Micromonas
(11±0.3 µm3 , 5.8±1.8 µm3, 0.5±0.2 µm3 , respectively, Supplementary Table 3.5) is
not followed by a commensurate expansion of the pyrenoid volume in the dinoflagellate
(2 ± 0.2 µm3), when compared to the other algae (0.8 ± 0.1 µm3, 0.5 ± 0.2 µm3 and
0.05 ± 0.03 µm3 respectively). A much lower surface to volume ratio may represent a
functional constraint for carbon assimilation.

Overall, our volumetric analysis of the pyrenoid suggests that both the surface
to volume ratio and the volumetric ratio between the plastid and the pyrenoid are
important parameters for the photosynthetic metabolism. This concept of constant
volumetric ratios within energy producing organelles is corroborated by our analysis
of mitochondria. In these organelles, we found that the ratio between the volume
inside the cristae and the matrix (Figure 3.5 B and and Supplementary Table 3.6) is
relatively constant in all cells (11.6 ± 2.8 %, 14.2 ± 2.6 %, 14.5 ± 2.9 %, 10.1 ± 5.9 %
in Phaeodactylum, Pelagomonas, Emiliania and Micromonas, respectively, Figure
3.5 B), despite differences in the shape (Figure 3.3 A) and overall volumes of their
mitochondria (Figure 3.2 C and Supplementary Figure 3.9).

3.2.3 Remodelling of the subcellular architecture of microalgae following
physiological responses

The finding that plastid-mitochondria interactions and sub-organelle volume partition-
ing are relatively well conserved features of phytoplankton suggest that these features
could have been evolutionary-selected to ensure proper microalgal fitness. To test this
hypothesis, we looked at possible modifications in the above mentioned parameters
upon exposing microalgae of a given species to changing environmental conditions.
For these experiments, we concentrated on laboratory model algae (Phaeodactylum
and Nannochloropsis), which can easily be grown in different conditions.

We first focused on Phaeodactylum cells grown under different light intensities,
i.e. a type of environmental modification that is often experienced by diatoms in
their natural environment (Gallagher et al. 1984). Exposure to increasing light
intensity enhanced both respiratory and photosynthetic performances (Figure 3.6),
see Supplementary Table 3.7), in line with previous reports (Bailleul et al. 2015).
Comparative analysis of 3D models of cells from low light (40 µmol photons m−2s−1)
and high light (350 µmol photons m−2s−1) conditions revealed substantial changes in
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the morphology of the two cell engines (Figure 3.6).

Figure 3.6 – Light acclimation in Phaeodactylum tricornutum. Cells were
grown under two different regimes: LL (40 µmol photons m−2s−1, left) and HL
(350 µmol photons m−2s−1, right). Photosynthetic capacities and respiratory activities are
indicated in green and red, respectively. (a) Volume occupancy by the plastids (dark green),
mitochondria (red) and pyrenoid (light green) in the two growth conditions. (b) plastid-
mitochondria contact points in LL and HL cells, measured at 30 nm (grey) and 90 nm

(black). At both distances, contact points are increased by around 25 % (blue) upon HL
transition. N = 3± s.d

The volume occupied by mitochondria showed an almost twofold increased (from
3.9± 0.2 to 6.6± 0.2 %), consistent with the enhanced respiratory activity. Conversely,
the overall plastid volume slightly narrowed down from 31.3± 1.2 to 21.5± 5 %. This
reduction already reported in the case of Phaeocystis Antarctica (Moisan et al. 2006)
was not accompanied by changes in the pyrenoid volume occupancy (2.4 ± 0.6 vs
3.2 ± 1) leading to an almost twofold augmentation of the plastid volume occupied
by the pyrenoid (from 7 ± 1.3 to 13.2 ± 2.5 %), at the expenses of the thylakoids +
stroma. These increase likely accounts for the significant increase in photosynthetic
activity (from 37± 11 µmols O2 mg Chl−1 to 58± 5 µmols O2 mg Chl−1) observed
between low light and high light acclimated cells.
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Indeed, photon capture by the thylakoids in high light no longer limits the pho-
tosynthetic flux, which is, instead, set by the turnover of the carbon assimilating
enzymes. Enhanced photosynthetic performances are also expected based on the
relative increase of plastid-mitochondrial contacts (35±13 % at 30 nm and 25±6.7 %)
between HL and LL cells, in the frame of the hypothesis that organelle interactions
improve photosynthesis by facilitating energetic interactions between the two cell
engines (Bailleul et al. 2015).

Next, we compared the physiology and subcellular features of Nannochloropsis
cells exposed to two trophic conditions. Previous studies have highlighted the ability
of this alga to metabolize external carbon sources under photosynthetic conditions
(mixotrophy) for a better growth (Sforza et al. 2012; Das et al. 2011; Fang et al. 2004).

Figure 3.7 – Plastid mitochondria interactions are modified by trophic regimes.
(a) 2D FIB-SEM section of Nannochloropsis cell. (b) Growth capacity. (c) Oxygen evolu-
tion and consumption in photoautotrophic conditions (black), and mixotrophic ones (orange).
(d) Volume occupancy by the different subcellular compartments in different microalgal cell.
Green: plastid; red: mitochondria; blue: nuclei; white storage vesicles; grey: other. (e) Anal-
ysis of plastid-mitochondria contact points in phototrophic (black) and mixotrophy (orange)
conditions. N = 5± s.d.
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We reproduced the growth enhancement reported earlier when shifting cells from
phototrophy (without organic carbon) and in a carbon rich medium (Marudhupandi
et al. 2016) (Figure 3.7 and supplementary Table 3.8), and found that changes in the
trophic lifestyle of this alga were also accompanied by substantial physiological and
morphological changes. Shifting the algae to mixotrophy enhanced their respiratory
capacity (from 11.5± 0.5 µmols O2 mg Chl−1 to 18.5± 2.5 µmols O2 mg Chl−1)
while photosynthetic activity decreased (from 113.1± 11.1 µmols O2 mg Chl−1 to
41± 3.1 µmols O2 mg Chl−1).

In parallel, the volume occupied by organelles recovered a value (around 50%)
similar to the one observed in the other algae (Figure 3.2), mainly due to a substantial
decrease in the bulkiness of reserve vesicles. We interpreted this finding in terms of a
higher consumption of lipid reserves in mixotrophy owing to the less favourable balance
between photosynthesis and respiration. Moreover, we observed a substantial increase
of plastid and mitochondria interaction upon acclimation to mixotrophy (Figure 3.7
C, Supplementary Table 3.8). The increase was huge when calculated for a distance
of at 30 nm (from 0.16 ± 0.3 % to 1.776 ± 0.9 %) and still two fold at 90 nm(from
3.3 ± 1.7 % to 6.9 ± 1.4 %). We conclude that Nannochloropsis cells may increase
organelles contacts under conditions where respiration is boosted to favour energy
interactions between the two organelles and therefore improve cell energy usage for
growth.

Conclusion and perspectives

Thanks to the optimisation of the different steps of the workflow (sample preparation,
acquisition, segmentation and 3D reconstruction), the FIB-SEM tomograms reported
here allows generating high-resolution whole cell 3D models of different phytoplankton
species. These tomograms provide a unique resource to evaluate morphological
differences and similarities between relatively distant phytoplankton organisms, and
better assess their physiological responses in changing environment.

Besides structural differences, our analysis pinpoints conserved features: (i) con-
served cell-volume fractions that are occupied by the main organelles (Figure 3.2); (ii)
plastid-mitochondria contact points (Figure 3.3 - 3.4), (iii) constant surface/volumetric
ratios inside the energy-producing organelles, as exemplified by the surface to volume
ratio in mitochondria and in the pyrenoid (Figure 3.2). These characteristics suggest
the existence of topological constraints on phytoplankton subcellular organisation,
possibly reflecting functional constraints at the level of energy management for carbon
assimilation. Consistent with this hypothesis, acclimation of Phaeodactylum cells to
different light conditions and of Nannochloropsis to trophic lifestyles result in changes
in their photosynthetic/respiratory activity, which we can explain based on topological
changes in the two cell engines plastid and mitochondria. Overall these data clearly
highlight the existing link between cell structures, cell energy balance and physiological
responses.
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The quantitative FIB-SEM tomography workflow develops here represents a unique
approach to interpret physiological responses at the subcellular and even sub-organellar
structures. Correlation of this approach with cryo-electron tomography, combination
with chemical imaging (Decelle et al. 2020) and correlative microscopic studies on
phytoplankton (Sartori et al. 2007; Stephens et al. 2003) may further improve the
spectrum of applications of this technique, and enlarge its applications. We predict
that it will be relevant to study climate change scenarios (Pachauri et al. 2014), where
changes in temperature and nutrient availability may affect the subcellular features of
phytoplankton, thereby disturbing their activity and acclimation capacity.

Material and methods
Species. The species used in this work (see Table 3.1) were chosen on the basis of
their representativeness of phytoplankton taxa that are ecologically relevant or of their
ability to successfully grow in variable laboratory conditions.

Algal cultivation. Phaeodactylum CCAP 1055/3 was obtained from the Culture
Collection of Algae and Protozoa, Scottish Marine institute, UK. Cells were grown
in the ESAW (Enriched Seawater Artificial Water) medium (Berges et al. 2001) in
50 mL flasks in a growth cabinet (Minitron, Infors HT, Switzerland), at 19◦C, a light
intensity of 40 µmols photon m−2s−1 , a 12−h light / 12−h dark photoperiod (unless
otherwise specified) and shaking at 100 rpm. Galdieria SAG21.92 was obtained from
the University of Dusseldorf (Germany) and was grown in sterile 2XGS modified Allen
medium, pH 2.0 (Allen 1959) at 42◦C under the same light conditions.

Cells were grown in 250 mL flasks (50 mL culture volume). Nannochloropsis CCMP526
was cultivated in artificial seawater ESAW using ten times enriched nitrogen and phos-
phate sources (5.49× 10−3 MNaNO3 and 2.24× 10−4 NaH3PO4); called “10X ESAW”
(Dolch et al. 2017). Cells were shifted from photoautotrophic to mixotrophic con-
ditions through the addition of 5% Lysogeny Broth (LB) to the growth medium.
Micromonas 84 RCC 827, Pelagomonas RCC 100, Emiliania RCC 909 in K medium
at 20◦C, and Symbiodinium RCC 4014 in F/2 medium at 20◦C were obtained from the
Roscoff Culture Collection (Vaulot et al. 2004) and maintained in the same medium
and temperature condition without agitation. Cells were kept at a light intensity of
60− 80 µmols photon m−2s−1, a 12−h light /12−h dark photoperiod, without shaking.

Nannochloropsis growth was measured following changes in the culture optical
density at 650 nm. Changes were calibrated with cell numbers in both control and
mixotrophic cultures. Oxygen exchanges were measured with a Clark-type electrode
(Hansatech Instruments, UK) at 20◦C. Respiration and gross photosynthesis were
quantified by measuring the slope in the dark and upon light exposure (intensity
300 µmols photon m−2s−1).
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Sample preparation for electron microscopy. Sample preparation protocols were
adapted from (Decelle et al. 2019) to optimize the contrast for 3D electron microscopy
imaging and therefore facilitate image segmentation through pixel classification. Live
cells were cryofixed using high-pressure freezing (HPM100, Leica) in which cells
were subjected to a pressure of 210 MPa at -196°C, followed by freeze-substitution
(EM ASF2, Leica). Prior to cryo-fixation, the microalgal cultures were concentrated
by gentle centrifugation for 10 min (800 rcf). For the freeze substitution (FS), a
mixture 2% osmium tetroxide and 0.5% uranyl acetate in dried acetone was used. The
freeze-substitution machine was programmed as follows: 60− 80 h at −90◦C, heating
rate of 2◦C h−1 to −60◦C (15 h), 10 − 12 h at −60◦C, heating rate of 2◦C h−1 to
−30◦C (15 h), and 10− 12 h at −30◦C, quickly heated to 0◦C for 1 h to enhance the
staining efficiency of osmium tetroxide and uranyl acetate and then back at −30◦C.
The cells were then washed four times in anhydrous acetone for 15 min each at
−30◦C and gradually embedded in anhydrous araldite resin. A graded resin/acetone
(v/v) series was used (30, 50 and 70% resin) with each step lasting 2 h at increased
temperature: 30% resin/acetone bath from −30◦C to −10◦C, 50% resin/acetone bath
from −10◦C to 10◦C, 70% resin/acetone bath from 10◦C to 20◦C. Samples were then
placed in 100%resin for 8 − 10 h and in 100% resin with the accelerator BDMA for 8
h at room temperature. Resin polymerization finally occurred at 65◦C for 48 h.

FIB-SEM acquisition imaging. Focused ion beam (FIB) tomography was performed
with either a Zeiss NVision 40 or a Zeiss CrossBeam 550 microscope, both equipped
with Fibics Atlas 3D software for tomography. The resin block containing the cells
was fixed on a stub with carbon paste, and surface-abraded with a diamond knife
in a microtome to obtain a perfectly flat and clean surface. The entire sample was
metallized with 4 nm of platinum to avoid charging during the observations. Inside the
FIB, a second platinum layer (1 − 2 µm) was deposited locally on the area analysed.
The sample is then abraded slice by slice with the Ga+ ion beam (generally with a
current of 700 nA at 30 kV ). Each freshly exposed surface is imaged by scanning
electron microscopy (SEM) at 1.5 kV and with a current of ∼ 1 nA using the in-lens
EsB backscatter detector. For algae, we generally used the simultaneous milling and
imaging mode for better stability, and with an hourly automatic correction of focus
and astigmatism. For each slice, a thickness of 8 nm was removed, and the SEM
images were recorded with a pixel size of 8 nm, providing an isotropic voxel size of
8× 8× 8 nm3 Whole volumes were imaged with 800 to 1000 frames, depending on the
species. Due to its reduced cell dimensions, the voxel size was reduced to 4×4×4 nm3

in the case of Micromonas, resulting in higher resolution datasets with approximately
350− 500 frames/cell.

Image processing. As a first step of image processing, ROIs containing cells
were cropped from the full image stack. This was followed by image registration
(stack alignment), noise reduction, semi-automatic segmentation of ROIs, 3D recon-
struction of microalgae cells and morphometric analysis. Several problems may be
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encountered during these steps. Raw stacks consist of big data (50 to 100 GB for
the whole imaged volume, containing several cells) that do not necessarily fit into
the computer main memory (RAM). Moreover, cryo-substituted cells generate less
contrasted images than cells prepared with chemical fixation. Therefore, the first step
in building a robust 3D model consists in ‘isolating’ a given ROI (e.g. an organelle)
from other compartments, to obtain a smaller stack size that can be easily worked with
(in practice, we worked with substacks that were around 10% of the original stack size).

Single cells were isolated by cropping in 3-dimensions using the open software
Fiji (Supplementary Figure 3.8 A). Image misalignment was corrected using template
matching (“align slices in stack”) option implemented in Fiji. This function tries to find
the most similar image pattern in every slice and translates them to align the landmark
pattern across the stack (Figure 2.7). Aligned image stacks were filtered to remove
noise using Python (Oliphant 2007) and OpenCV (Minichino et al. 2015). Filtering
techniques were chosen to highlight contours while removing noise in the images.
Depending on the species, we found that the osmium staining was not homogeneously
distributed. Therefore, it was not possible to filter raw datasets of every species with
the same method. Based on the effectiveness in highlighting organelle boundaries,
different filters were used for the different microalgae (Supplementary Figure 3.8 B).
Application of a linear Gaussian filter followed by sharpening to remove noise and
enhance contours, which is widely used and easy to implement (Russo 2002), was used
to process raw datasets of Emiliania, Micromonas, Nannochloropsis, Phaeodactylum
and Pelagomonas. However, this method was less effective when applied to raw
datasets of Galdieria and Symbiodinium, where using the median filter turned out
to be a better de-noising option. These choices reflect the different cellular features
and biochemical composition of each taxon (e.g. the presence of a thick cell wall in
Galdieria), which results in variable contrast.

Segmentation. Segmentation of organelles, vesicular networks, vacuoles and storage
compartments was carried out with 3DSlicer software (Kikinis et al. 2014)(Supple-
mentary Figure 3.8 C), using a manually-curated, semi-automatic pixel clustering
mode (3 to 10 slices are segmented simultaneously for a given Region Of Interest,
(ROI)). We ‘coloured’ the ROIs using paint tools and adjusted the threshold range for
image intensity values. The ROIs were annotated and the corresponding label map
was run into the model maker module from 3D slicer (Supplementary Figure 3.8 C),
to generate corresponding 3D models that were exported in different formats (.stl,
.obj, .vtk, .ply, .mtl). For further analysis, we used the .stl mesh, which proved
to be more suitable for 3D analysis in our workflow (Table 2.4).

3D reconstructed model. A 3D filtering process was needed to clean the model
and reduce the size of the file (see Figure 2.1). In our case, 3D models generated
by 3D Slicer were imported into the open source software MeshLab (Cignoni et al.
2008) to clean the model by automatically removing isolated islands and then edited

https://imagej.net/Fiji
https://sites.google.com/site/qingzongtseng/template-matching-ij-plugin
https://sites.google.com/site/qingzongtseng/template-matching-ij-plugin
https://www.slicer.org/
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with the MeshLab software (Cignoni et al. 2008; Callieri et al. 2012) to eliminate
“isolated islands”, which were erroneously annotated as ROIs. We also performed
a remeshing process to facilitate 3D modelling, visualization and animation. Using
MeshLab, we simplified meshes (‘mesh decimation’, Supplementary Figure 3.8 D) to
reduce the model nodes and faces down to 25% of the original data without modifying
morphometric values, such as surfaces and volumes (see Table 2.5 ). Every 3D model
was imported into Paraview (Ahrens et al. 2005) (Supplementary Figure 3.8 D) to
visualize 3D objects and understand their relationship. Blender was used for object
animation.

Morphometric evaluations. Measurement of volumes, surface area, and the mini-
mum distance between meshes were performed using numpy-stl and Trimesh packages
of Python see the code script in the section 2.7.1. This Python package is faster than
MeshLab, with obvious advantages in terms of analysis of large files (> 500 MB).

Surface and volume measurements. Surfaces and volumes were computed using
the discrete mesh geometry, surface being computed directly from mesh triangles, and
volume being obtained from the signed volume of individual tetrahedrons, assuming a
closed surface (watertight mesh Supplementary Figure 3.8 E).

Briefly, to compute the surface, we iterated over all the triangles of the mesh.
The computation of the cross product between two edges of a given triangle gives
a vector whose magnitude is twice the area of said triangle. Then, the sum of all
these areas provides the total surface area of the mesh. We then computed the signed
volume of all tetrahedrons, which goes from the origin (0, 0, 0) to each triangle present
in the mesh. Assuming a closed surface (watertight mesh), summing all those volumes
give the volume of the mesh (Zhang et al. 2001). A simple implementation of those
algorithms is provided by the authors here.

Distance between organelles. Using the Trimesh Python module, the minimal distance
between two meshes was calculated based on the closest points between two triangular
meshes. Hence, the surface area contacts were quantified based on: i) calculating the
minimal distance between each vertex of the plastid mesh to the mitochondria mesh
(for 3 cells of every species), and then by ii) gathering mesh vertices according to a
given distance threshold to generate contact surface. A distance threshold ≤ 90 nm
was chosen as representative of an interaction between nearby organelles, on the basis
of previously established morphometric analysis in animal and plant cells (Helle et al.
2013; Mueller-Schuessele et al. 2018; Scorrano et al. 2019). The corresponding surfaces
were then compared to the total plastid surface. Mindist python code is provided here.
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3.3 Conclusion and perspectives

Compared to other imaging approaches involving electron microscopy (ssTEM,
cyo-TEM or SBF-SEM), the FIB-SEM technique presented here has the advantage of
providing a 3D tomogram of full cells with high z−resolution in organisms of different
sizes (in our case < 2 µm to 15 µm). Different cell types of closely related size can
be mixed in the same block during the preparation of the sample, ensuring a fast and
reliable comparison between species or conditions.

The pipeline described above is entirely based on open-source software and op-
timises the speed of image analysis and 3D reconstruction. This approach can be
applied to samples from any environment and can be used for comparative quantitative
analysis of different species, providing links between cell structures and physiological
or metabolic responses. We observe for instance morphological rearrangements (con-
cerning the volume, shape and size of the cell, mitochondria and plastid organization)
during adaptation of cells to different light and trophic regime (Phaeodactylum and
Nannochloropsis, respectively). In both cases, a significant increase in the contact
surface between the plastid and mitochondria was observed, likely to enhance the
traffic between these organelles. Exchanges between plastids and mitochondria have
been proposed to optimize energy utilisation in diatoms for carbon assimilation
(Bailleul et al. 2015). Based on our finding, it is tempting to propose that a similar
phenomenon may also occur in other phytoplankton members. To better understand
the significance of this plastid mitochondria interaction, we need to count the number
of membranes which are limiting the primary and secondary plastids. While primary
plastids are limited by two membranes, secondary plastids are in most of the cases
surrounded by four membranes (McFadden 2001; Petroutsos et al. 2014; Flori et al.
2016). However, in the contact points between the plastids and mitochondria observed
in diatoms, we can only count less than six membranes (4 in the plastid +2 in the
mitochondria). Unfortunately, all these membranes cannot be clearly distinguished by
FIB-SEM tomography.

Despite its structural limits, FIB-SEM can provide information on suborganelle
structures in some cases. This concept is clearly exemplified in cells grown under
high light regime by the plastids harbouring thylakoid deformation, larger pyrenoid
volume and increase in number and size of plastoglobules. These changes probably
reflect an adaptation of the plastid to the light stress. The pyrenoid matrix is
particularly interesting. We observe various features of the pyrenoid matrix and
transpyrenoidal membranes (also called tubules (Meyer et al. 2017). Based on the
3D reconstructed model, the different shape of the pyrenoid with transpyrenoidal
membranes in Phaeodactylum and Emiliania and the presence of a starch sheath
surrounding the pyrenoid in Micromonas and Symbiodinium, can be considered as
defining characteristics of the pyrenoid and probably contribute to their ability to
deliver high CO2 concentrations to Rubisco (Meyer et al. 2017; Ramazanov et al. 1994).
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As a final comment, I would like to point out that in this study, we focused on
a limited set of cell types and a restricted set of growth conditions, because this
approach is relatively time consuming. However, many conditions can potentially
be compared to visualise the adaptation strategies of photosynthetic microorgan-
isms eukaryotes (and prokaryotes) to their environment, to bridge the gap between
physiology, cell biology, structure and function of the ecosystems (Mock et al. 2016;
Hildrew et al. 2007). These findings may be relevant to predict the consequences of
climate change on phytoplankton size and morphology by influencing temperature,
acidity and nutrient supply (Rossoll et al. 2012) (Rossoll et al., 2012). An important
challenge for the future will be to combine this approach with Cryo-EM tomography
to improve the resolution of subcellular structures at molecular levels. Mixing it
with chemical imaging (Decelle et al. 2019) and fluorescence measurements with
fluorophores/antibodies (Zhang et al. 2017; Prieto et al. 2014) will allow correlative
microscopy studies on phytoplankton (Robinson et al. 2009).
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3.4 Supplementary Materials

Figure 3.8 – Flowchart of image processing from data acquisition to morphometric
analysis. (a) The pipeline includes data acquisition with FIB-SEM and registration with
Fiji. (b) Single cells are selected from the whole FIB-SEM stack; images are registered before
inverting their contrast. Stacks are filtered in Python using the PyOpenCV module. Linear
(Gaussian) filter followed by edge enhancement (sharpening) or non-linear filters (median
filter) are suitable in different species based on their cellular features (see text). A scan line
of the Golgi apparatus drawn with Fiji in Emiliania huxleyi shows the impact of different
filters on the profile plot of the flattened membrane-enclosed disks (the cisternae). Red:
original image. Blue: A Gaussian filter smooths the edges and some membranes disappear.
Purple: sharpening after application of the Gaussian filter allows recovery of some image
details after smoothing edges. Green: The median filter is less sensitive to edges. (c) Image
processing was done with 3D Slicer for segmentation and (d) MeshLab and ParaView, for
editing and visualisation, respectively. (e) The STL and Trimesh python packages were used
to quantify volumes, surfaces and distances. From a watertight mesh, surface is obtained by
summing the surface of each individual triangle present in the mesh. Volume is computed
with a volume integral formula discretized over tetrahedrons according to ref60. Distances
between nearby point clouds of different objects within a cell were used to estimate organelle
proximity. The whole process requires 10 to 15 days for a microalgal cell with a cell diameter
comprised between 2 µm to 8 µm.
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Figure 3.9 – The different morphologies of mitochondria in three Emiliania cells.
(a) Sections through cellular 3D volumes. (b) Segmentations highlight the different 3D topol-
ogy of the mitochondria (red) in the cell (light grey), consistent with the dynamic character
of these organelles. Scale bar: 1 µm. Representatives micrographs and tomograms of an
experiment repeated three times with similar results.
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Figure 3.10 – Volumes and surfaces relationship in different subcellular compart-
ments. Three cells are considered for every species. (a) stars: Emiliania; squares: Galdieria;
hexagons: Micromonas; circles: Pelagomonas; triangles: Phaeodactylum; diamonds: Symbio-
dinium; suns: Nannochloropsis. (b) Because of the much larger size of Symbiodinium cells,
all the other taxa are compacted in a bottom left cluster in the plot. The presence of these
two clusters prevents the observation of correlation between the other cells (Figure 3.3).

Figure 3.11 – Subcellular features of different phytoplankton taxa. 2D FIB-SEM
frames of pyrenoids (a) and mitochondria (b). Scale bar: 500 nm.
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Nucleus feature

In the nucleus, we observed regions with different affinity for heavy metal stain (Sup-
plementary Figure 3.12), likely reflecting differences in DNA compactness (e.g. euchro-
matin vs heterochromatin). The compartments vary from the nucleus of Phaeodacty-
lum, where low stained DNA was predominant (60 %) to the dinokaryon of dinoflagel-
lates, which contained around hundreds of compact chromosomes of different sizes. The
averaged surface to volume ratio was 30±10 in Symbiodinium and 15±3 in Scrippsiella
(see Supplementary Figure 3.13 C).

Emiliania Phaeodactylum Pelagomonas Symbiodinium

Nucleolus Heterochromatin Euchromatin

a

b

cc

Figure 3.12 – Nucleus features. (a) 2D FIB-SEM frames of nucleus Nuclear features and
the topology of the nucleus. (b) Yellow: euchromatin-low stained; blue: heterochromatin-
heavy. Nucleoids-medium stained (magenta) are also visible. (c) Volume occupancy by the
different types of chromatin. Different levels of DNA condensation are visible. DNA is
present in the form of compact chromosomes in Symbiodinium, possibly leaving a fraction of
the nucleoplasm without chromatin. Scale bar : 500 nm.
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Figure 3.13 – Dinoflagellate cellular system. (a) 2D view of cell ultrastructure of
Symbiodinium, and Scrippsiella cells. Abbreviation. Pla: plastid; Mtc: mitochondria; Ncl:
nucleus and Pyr: pyrenoid. (b) The organelles of interest are labelled (plastid -green, mito-
chondria -red, nucleus -blue). 3D topologies represent the lobed plastids, mitochondria net-
work and a dinokaryon nucleus in Symbiodinium and Scrippsiella. (c) Nuclear features. Yel-
low: euchromatin-low stained; blue: heterochromatin-heavy and Nucleoids-medium stained
(magenta). Scale bar: 2 µm.

Inside the nucleus, chromosomes display a particular arrangement: most of them were
in contact with the nuclear envelope, while only a few were ‘floating’ in the matrix
(Supplementary Figure 3.14).
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Figure 3.14 – Nucleus architecture in Symbiodinium pilosum cell. ((a) 3D ar-
rangement of chromosomes (blue) inside the nucleus. ((b) Contact points with the nuclear
envelope (purple) were detected for peripheral chromosomes 63 and for the nucleolus (wine)
((c) Chromosomes number and volume distribution in three cells. Scale bar: 1 µm.

Thylakoid structures in cells grown under low light and high light regimes

In chemical preparation at room temperature, osmium tends to be more effective to
highlight organelles membrane envelopes compared to cryo-substitution at −30◦C.
We, therefore, used room temperature chemical fixation to compare the photosyn-
thetic membranes of cells grown under low light (LL) and high light (HL) regimes (
Supplementary Figure 3.15).

When Phaeodactylum cells are grown under a high light regime (Supplementary
Figure 3.15), the global structure of the thylakoid membranes is rearranged and is
somewhat more disorganised than that observed under a low light control (Supple-
mentary Figure 3.15 A). These membranes being responsible for light absorption and
utilisation, it is reasonable to think that the acclimation to high light leads to changes
in the photosynthetic process associated with the structural thylakoids modification
(Lodish et al. 2000). We also observe more plastoglobules, which appear larger in the
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high light regime (Supplementary Figure 3.15 B). Increase in plastoglobule size and
numbers reflects the reduced number of photosynthetic membranes per plastid in high
light condition, and constitute probably a sign of stress as reported in the Phaeocystis
Antarctica (Moisan et al. 2006).

a

b

Figure 3.15 – Thylakoid membranes are modified under different light regimes.
The internal plastid structures: the thylakoids (green), the pyrenoid (light green) and the
plastoglobules (blue) are represented in (a) low light vs (b) high light conditions. Scale bar:
1 µm
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Class Species Cell size FIB-SEM
z-resolution

Bacillariophyceae Phaeodactylum tricornutum
Pt1 8.6

13− 15 µm of length 6nm

Pelagophyceae Pelagomonas
RCC 100

≤ 3 µm in diameter 4nm

Dinoflagellates Symbiodinium
RCC 4014 clade A

7−8 µm in diameter 8nm

Scrippsiella 11− 15 µm in diameter 8nm

Prymnesiophyceae Emiliania huxleyi
RCC 909

3− 8µm in diameter 6nm

Mammiellophyceae Micromonas commoda
RCC 827

≤ 2 µm in diameter 4nm

Cyanidiophyceae Galdieria
SAG21.92

3−9 µm in diameter 8nm

Eustigmatophyceae Nannochloropsis
CCMP526

2−4 µm in diameter 6nm

Table 3.1 – Taxonomy, cell size and FIB-SEM resolution of the phytoplankton cells.
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Micromonas Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Cell 2,38 1,09 1,43 1,63 0,67
Plastid 0,74 0,32 0,45 0,50 0,22
Mitochondria 0,06 0,03 0,04 0,04 0,02
Nucleus 0,25 0,18 0,23 0,22 0,04
Remaining 1,33 0,56 0,71 0,87 0,41

Galdieria Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Cell 24,36 18,79 13,97 19,04 5,20
Plastid 10,48 7,272 6,20 7,980 2,23
Mitochondria 1,13 0,76 0,62 0,84 0,26
Nucleus 1,00 0,90 0,73 0,88 0,14
Remaining 11,75 9,86 6,42 9,34 2,70

Pelagomonas Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Cell 4,16 3,91 2,34 3,47 0,81
Plastid 1,10 1,09 0,65 0,95 0,21
Mitochondria 0,13 0,14 0,11 0,13 0,01
Nucleus 0,49 0,48 0,12 0,36 0,17
Remaining 2,44 2,20 1,46 2,03 0,42

Phaeodactyl. Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Cell 35,33 31,94 30,59 32,62 2,44
Plastid 11,28 10,80 10,84 10,97 0,27
Mitochondria 1,44 1,19 1,18 1,27 0,15
Nucleus 2,07 1,82 2,13 2,01 0,16
Remaining 20,54 18,13 16,44 18,37 2,06

Emiliania Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Cell 22,12 24,35 11,98 19,48 6,597
Plastid 6,84 6,92 3,82 5,86 1,77
Mitochondria 0,94 1,34 0,58 0,95 0,38
Nucleus 3,63 3,20 2,15 2,99 0,76
Remaining 10,71 12,89 5,43 9,68 3,84

Symbiodinium Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Cell 189,32 241,24 205,50 212,02 26,57
Plastid 56,56 74,45 59,59 63,53 9,57
Mitochondria 6,81 6,61 5,51 6,31 0,70
Nucleus 17,52 17,68 14,32 16,51 1,90
Remaining 108,43 142,50 126,08 125,67 17,04

Nannochlorop. Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Cell 6,86 11,31 5,86 8,01 2,90
Plastid 0,79 1,51 1,04 1,11 0,37
Mitochondria 0,19 0,36 0,22 0,26 0,09
Nucleus 0,35 0,42 0,36 0,38 0,04
Remaining 5,53 9,02 4,24 6,26 2,47

Table 3.2 – Volumetric data of micro-algae Cells.
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Micromonas Cell1(µm3) Cell2(µm3) Cell3(µm3)
Cell 11,164 6,731 7,127
Plastid 13,92 6,36 7,65
Mitochondria 1,185 0,703 0,967
Nucleus 8,13 7,07 10,17

Galdieria Cell1(µm3) Cell2(µm3) Cell3(µm3)
Cell 53,28 56,34 32,15
Plastid 36,69 50,39 24,76
Mitochondria 14,96 12,81 9,14
Nucleus 59 49,686 5,47

Pelagomonas Cell1(µm3) Cell2(µm3) Cell3(µm3)
Cell 21,76 19,01 25,79
Plastid 12,11 10,876 9,136
Mitochondria 3,673 2,815 3,031
Nucleus 16,907 12,337 8,173

Phaeodactylum Cell1(µm3) Cell2(µm3) Cell3(µm3)
Cell 132,07 97,89 97,74
Plastid 48,61 48,003 39,86
Mitochondria 29,88 27,47 20,85
Nucleus 14,52 15,07 13,48

Emiliania Cell1(µm3) Cell2(µm3) Cell3(µm3)
Cell 53,947 60,5 34,421
Plastid 45,905 45,165 22,305
Mitochondria 24,532 27,741 10,677
Nucleus 59,963 57,388 32,033

Symbiodinium Cell1(µm3) Cell2(µm3) Cell3(µm3)
Cell 185,477 236,402 183,631
Plastid 274,23 390,164 268,393
Mitochondria 69,41 55,085 88,466
Nucleus 41,56 32,51 38,56

Nannochloropsis. Cell1(µm3) Cell2(µm3) Cell3(µm3)
Cell 20,8 30,2 27,2
Plastid 5,5 9,5 7,1
Mitochondria 2,7 5,2 3,3
Nucleus 4,3 6,0 4,5

Table 3.3 – Surface metrics information of the organelles.
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Micromonas Mitochondria
(µm2)

Plastid (µm2) Area
% (d ≤ 30nm)

Area
% (d ≤ 90nm)

Cell1 1,082 12,632 0,510 3,39
Cell2 0,658 6,000 0,390 4,62
Cell3 0,765 6,860 1,990 5,01

Galdieria Mitochondria
(µm2)

Plastid (µm2) Area
% (d ≤ 30nm)

Area
% (d ≤ 90nm)

Cell1 12,12 31,05 0,79 3,47
Cell2 7,10 10,14 1,32 3,96
Cell3 8,27 22,38 2,83 10,50

Phaeodactylum Mitochondria
(µm2)

Plastid (µm2) Area
% (d ≤ 30nm)

Area
% (d ≤ 90nm)

Cell1 21,482 41,009 5,660 15,350
Cell2 21,781 45,917 7,250 15,530
Cell3 18,887 38,773 8,410 16,090

Emiliania Mitochondria
(µm2)

Plastid (µm2) Area
% (d ≤ 30nm)

Area
% (d ≤ 90nm)

Cell1 4,94 13,90 0,98 5,34
Cell2 6,63 14,27 2,78 8,24
Cell3 2,71 7,56 1,51 4,10

Symbiodinium Mitochondria
(µm2)

Plastid (µm2) Area
% (d ≤ 30nm)

Area
% (d ≤ 90nm)

Cell1 65,86 255,29 0,36 2,50
Cell2 53,95 303,06 0,70 2,88
Cell3 55,01 261,05 0,32 3,13

Pelagomonas Mitochondria
(µm2)

Plastid (µm2) Area
% (d ≤ 30nm)

Area
% (d ≤ 90nm)

Cell1 2,10 9,53 0,22 5,71
Cell2 1,89 8,64 0,00 4,87
Cell3 1,86 6,33 0,05 5,06

Nannochloropsis Mitochondria
(µm2)

Plastid (µm2) Area
% (d ≤ 30nm)

Area
% (d ≤ 90nm)

Cell1 2,48 5,27 0,00 0,98
Cell2 4,41 9,00 0,00 1,21
Cell3 3,03 6,78 10,63 17,09

Table 3.4 – Surface metrics information of the organelles.



3.4. Supplementary Materials 91

Plastid

Phaeodactyl. Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Thylakoid +
stroma

10,30 9,91 9,90 10,04 0,23

Pyrenoid 0,67 0,72 0,92 0,77 0,13

Pyrenoid Volume (µm3) Surface (µm2) S/V ratio
Cell1 0,92 11,793 12,82
Cell2 0,67 18,327 27,35

Emiliania Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Thylakoid +
stroma

6,12 6,23 3,54 5,30 1,52

Pyrenoid 0,74 0,61 0,31 0,55 0,22

Pyrenoid Volume (µm3) Surface (µm2) S/V ratio
Cell1 0,74 6,396 8,64
Cell2 0,61 8,748 14,34

Micromonas Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Thylakoid +
stroma

0,74 0,32 0,45 0,5 0,22

Pyrenoid 0,084 0,025 0,04 0,05 0,03
Starch 0,186 0,072 0,063 0,11 0,07

Pyrenoid Volume (µm3) Surface (µm2) S/V ratio
Cell1 0,084 1,018 12,119
Cell2 0,025 0,448 17,92

Symbiodinium Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Thylakoid +
stroma

55,13 72,34 57,85 61,77 9,25

Pyrenoid 1,43 2,11 1,74 1,76 0,34

Pyrenoid Volume (µm3) Surface (µm2) S/V ratio
Cell1 1,43 7,227 5,05
Cell2 2,11 9,537 4,52
Cell3 1,74 8,004 4,60

Table 3.5 – Sub-organelle in plastid volume.
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Mitochondria

Phaeodactyl. Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Cristae 14,6 11,1 9,2 11,6 2,8
Matrix 85,4 88,9 90,8 88,4 2,8

Pelagomonas Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Cristae 11,8 13,7 17,0 14,2 2,6
Matrix 88,2 86,3 83,0 85,8 2,6

Emiliania Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Cristae 16,0 16,4 11,2 14,5 2,9
Matrix 84,0 83,6 88,8 85,5 2,9

Micromonas Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Cristae 16,7 10,0 4,9 10,1 5,9
Matrix 83,3 90,0 95,1 90,2 5,9

Table 3.6 – Sub-organelle compartment ratio in mitochondria volume.
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Phaeodactylum cells growing under different regime

Low light Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Cell 35,33 31,94 30,59 32,61 2,44
Plastid 11,28 10,8 10,84 10,97 0,27
Mitochondria 1,44 1,19 1,18 1,27 0,15
Nucleus 2,07 1,82 2,13 2,01 0,16
Pyrenoid 0,67 0,72 0,92 0,77 0,13
Thylakoid
+ stroma

10,61 10,08 9,92 10,20 0,36

Proximity
distance

Mitochondria
(µm2)

Plastid
(µm2)

Area
% (d ≤ 30nm)

Area
% (d ≤ 60nm)

Area
% (d ≤ 90nm)

Cell1 17,023 39,387 4,61 11,01 14,73
Cell2 19,419 43,736 6,69 11,92 14,96
Cell3 17,242 38,036 7,5 11,91 15,33

High light Cell1(µm3) Cell2(µm3) Cell3(µm3) Average(µm3) STD (µm3)
Cell 20,16 32,88 29,15 27,40 6,54
Plastid 3,43 9,32 8,41 7,05 3,17
Mitochondria 1,28 2,00 2,17 1,81 0,47
Nucleus 1,53 1,87 1,80 1,73 0,18
Pyrenoid 0,50 1,40 0,85 0,92 0,46
Thylakoid
+stroma

2,93 7,92 7,56 6,14 2,78

Proximity
distance

Mitochondria
(µm2)

Plastid
(µm2)

Area
% (d ≤ 30nm)

Area
% (d ≤ 60nm)

Area
% (d ≤ 90nm)

Cell1 12,562 16,467 6,96 14,27 18,29
Cell2 21,471 30,876 8,9 15,60 19,82
Cell3 19,26 34,271 9,29 14,53 18,25

Table 3.7 – Quantitative analysis of Phaeodactylum cells growing under high light regime.
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Nannochloropsis cells grow in two trophic conditions

Autotroph. Cell1
(µm3)

Cell2
(µm3)

Cell3
(µm3)

Cell4
(µm3)

Cell5
(µm3)

Average
(µm3)

STD
(µm3)

Cell 12,70 12,33 6,89 11,18 7,36 10,09 2,77
Plastid 1,71 1,43 0,86 1,50 0,91 1,28 0,38
Mitoch. 0,41 0,41 0,28 0,39 0,28 0,35 0,07
Nucleus 0,54 0,59 0,42 0,50 0,42 0,50 0,08
Remaining 10,04 9,90 5,33 8,79 5,76 7,96 2,27

Proximity
distance

Mitochondria
(µm2)

Plastid
(µm2)

Area
% (d ≤ 30nm)

Area
% (d ≤ 60nm)

Area
% (d ≤ 90nm)

Cell1 4,93 11,49 0,15 0,94 2,83
Cell2 4,65 9,82 0,00 0,05 1,72
Cell3 2,91 5,61 0,66 1,74 3,29
Cell4 4,51 9,07 0,00 0,63 2,33
Cell5 3,56 6,48 0,01 2,56 6,09

Mixotroph. Cell1
(µm3)

Cell2
(µm3)

Cell3
(µm3)

Cell4
(µm3)

Cell5
(µm3)

Average
(µm3)

STD
(µm3)

Cell 8,58 3,91 3,43 4,94 5,23 5,22 2,02
Plastid 3,07 1,27 1,04 1,83 2,10 1,86 0,80
Mitoch. 0,33 0,20 0,10 0,23 0,36 0,24 0,11
Nucleus 0,53 0,36 0,30 0,38 0,38 0,39 0,08
Remaining 4,65 2,08 1,99 2,50 2,39 2,72 1,10

Proximity
distance

Mitochondria
(µm2)

Plastid
(µm2)

Area
% (d ≤ 30nm)

Area
% (d ≤ 60nm)

Area
% (d ≤ 90nm)

Cell1 4,03 12,94 0,50 2,73 5,65
Cell2 2,67 6,97 2,30 5,75 7,94
Cell3 1,23 5,51 1,46 3,10 5,03
Cell4 2,46 8,17 2,75 5,55 8,03
Cell5 3,47 9,45 1,87 5,54 7,81

Table 3.8 – Quantitative analysis of Nannochloropsis cells growing in two trophic regime.
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Summary

Endosymbiosis has been vital in the evolution of life on Earth and remains today a
ubiquitous and ecologically significant process. Photosymbiosis is a relationship between
hosts and endosymbiotic microalgae widespread in oceanic plankton, particularly in olig-
otrophic waters where nutrients are poorly available. However, the functioning of the
host-symbiont interaction and the subcellular mechanisms by which the host harvests
and benefits from its microalgae remains largely unknown. Using a quantitative subcel-
lular imaging approach, we reconstructed the three-dimensional cell architecture of the
Haptophyte Phaeocystis cell in free-living and symbiotic stages, and studied how mi-
croalgal cells are associated with hosts sampled in the sea. We have shown the invagina-
tion of the host-derived vacuole into the microalgal cell. This highlights cell-adaptation
mechanisms in the host and provides strong evidence of host farming of algae. Inside
the host, we observe algal cell volume by 80−times with a higher number of plastids
(from 2 to 65 in symbiosis). Plastid multiplication lead to a 100−fold increase in the
total volume of plastids in a cell. Cell division of the alga is blocked, suggesting that
the cell cycle evolution and plastid division are uncoupled in symbiosis, possibly because
of inhibition of communication between the plastid and the nucleus. The volume of the
mitochondrial network increases up to 45 times in relation to the volume of the plas-
tids. Altogether, these findings demonstrate a substantial morphological transformation
of microalgae after their integration within a host that boost their bioenergetics, and
suggest that this symbiosis could be a farming strategy in which the host exploits the
microalgae for its own benefit.

Keywords: [Photosymbiosis], [Phaeocystis], [Anchantarian], [3D structure], [FIB-
SEM], [organelles]
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4.1 Introduction
Symbiosis is living together with organisms of different species and represents one of
the most intimate and sophisticated form of cellular interactions (Decelle et al. 2015a).
Symbiosis was essential in the evolution of life (Margulis 1970; Decelle et al. 2015a),
and it is common to almost all species and habitats. Photosymbiosis is a symbiotic
interaction that arises when a photosynthetic organism is maintained within eukaryotic
host cells. Through this process, many unicellular and multicellular heterotrophic
species acquired a functioning mode by which they can assimilate organic carbon by
phototrophy. Within plankton, mutualistic partnerships such as photosymbiosis are
found everywhere in the ocean, provided that surface waters are deficient in nutrients
(Taylor et al. 1982). The oligotrophy is likely to be a significant driving force in
the development of these planktonic symbioses. Today, the interaction between host
and microalgae is an ecologically important process in our ecosystem (Decelle et al.
2015a) because of their significant contribution to the biomass of plankton, carbon
sequestration and exportation in the deep sea (Guidi et al. 2016; Lampitt et al. 2009).

Photosymbiosis is considered as a preliminary step leading to the acquisition of
plastids and their propagation in photosynthetic lineages (Bhattacharya et al. 2007;
Embley et al. 2006; Keeling 2004). The interplay between host and endosymbiont has
eventually evolved into a parasitic relationship in which the host exploits a prokaryotic
“primary endosymbiosis” or symbiont plastid “secondary or tertiary endosymbiosis”.
Slowly, the symbiont cell size organelles and genomes are reduced until the host
“steals” the symbiont plastid (Keeling 2013; Archibald 2015).

Among the plankton photosymbionths, Radiolaria, are commonly observed in
the oligotrophic waters of the upper surface (Michaels et al. 1995; Decelle et al. 2015a).
These hosts are reported to concentrate large numbers of actively photosynthesising
microalgae (dinoflagellates or haptophytes) (Swanberg et al. 1991) and represent an
important source of marine primary productivity. While the diversity of eukaryotic
photosymbiosis is well known, the physiology and underlying cellular mechanisms,
which enable a host cell to incubate and control algal cells, remain poorly understood.
Here, the main objective of this chapter is to reveal the morphological changes of algal
cells not in abiotic constraints as studied in the previous chapter but in biotic stress
inside a host cell.

Algal remodelling in a ubiquitous planktonic photosymbiosis
By combining FIB-SEM, nanoscale mass spectrometry X-ray fluorescence imaging, we
investigated the transition between the free-living and symbiotic stages of microalgae
at the subcellular level and determined the role of the host and the symbiont. These
methods were complemented by physiological analyses to provide a complete picture
of the physiology and metabolism of the entire relationship between the host (the
radiolarian Acantharia) and its symbiont (the haptophyte Phaeocystis). We observed:
(i) more plastids (from 2 to up to 30) and thylakoids in symbiotic Phaeocystis
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than in free-living forms. (ii) higher photosynthetic efficiency (3−fold) in symbiotic
Phaeocystis than do free-living cells, (iii) decreasing amount of phosphorous content in
the plastids of symbiotic Phaeocystis and (iv) high concentrations of iron in vacuoles
in symbiotic algae through nanoscale imaging.

Section 4.1 was from an article published in Current Biology in which I contributed by:

1. Computing the surface area occupied by the thylakoid membranes in the plastid
of symbiotic and free-living Phaeocystis based on TEM images.

2. Analysing FIB-SEM images to reconstruct 3D models of Phaeocystis in free-living
versus symbiotic stages.

3. Computing the surface and volume of individual plastids in free-living and sym-
biotic microalgal cells from a 3D reconstructed model.

I was in charge of Figure 1 (See Appendix A.1). In this study, only one symbiotic cell
and few free-living cells were analysed, preventing any statistical analyses and robust
conclusions.

Light microscopy image showing an acantharian cell (host) with its mineral skeleton
and its intracellular symbiotic Phaeocystis cells (microalgae) in yellow.
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Cytoklepty in the plankton: a host strategy to boost the bioen-
ergetics of transformed endosymbiotic algae

Abstract
Using a quantitative subcellular 3D analysis protocol described in Chapter 2 of this
Thesis, we reconstructed the three-dimensional cell architecture of twenty Haptophyte
Phaeocystis cells and seven symbiotic cells. Thanks to the imaging workflow I
developed, we could observe: (i) the invagination of the host-derived vacuole into the
microalgal cell, highlighting cell-adaptation mechanisms in the host and providing
evidence of host farming of algae; (ii) the organelle hypertrophy which multiplies cell
volume by 80−times with a higher number of plastids (2 − 65) and a large central
vacuole; (iii) the plastid multiplication, which may lead to a 100−fold increase in the
total volume of plastids in a cell; (iv) the uncoupling mechanism between cell cycle
evolution and plastid division, which suggests inhibition of communication between the
plastid and the nucleus; (v) the volume of the mitochondrial network in symbiotic cells
that grows up to 45 times in relation to the volume of the plastids. Altogether, these
findings demonstrate an extraordinary morphological and metabolic transformation
of microalgae after integration within a host and suggest that symbiosis is a farming
strategy in which the host controls and exploits the microalgae (see in Appendix
A.2 supplementary data related to single-cell transcriptomic and photo-physiology
analysis).

Methods
Symbiotic acantharians harboring intracellular microalgal cells (Phaeocystis) were
collected from surface seawaters (Mediterranean Sea, Villefranche-sur-Mer, France)
as described in (Decelle et al. 2019). After collection, individual cells were isolated
under a microscope with a micropipette, rapidly transferred into natural seawater, and
maintained in the same controlled light (100 µmols photon m−2s−1) and temperature
(20◦C) conditions as the free-living stage. In parallel, cultures of the haptophyte
Phaeocystis cordata RCC 1383 (the symbiont of Acantharia in the Mediterranean Sea)
were maintained at 20◦C in K/5 culture medium and at 100 µmols photon m−2s−1. Mi-
croalga cells were cryofixed using high-pressure freezing, followed by freeze-substitution
as indicated in Chapter 2.

Image processing, segmentation and quantitative analysis
Datasets were initially aligned1 by the FIJI plugin ‘Linear Stack Alignment with SIFT ’
(Lowe 2004), then finetuned by AMST (Hennies et al. 2020). Aligned FIB-SEM stacks
were cropped and then binned in Fiji (https://imagej.net/Fiji). The regions of in-

1FIB-SEM acquisition and image registration: Nicole Schieber & Yannick Schwab - Electron Mi-
croscopy Core Facility- EMBL- Heidelberg - Germany.

https://imagej.net/Fiji
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terest were annotated, and 3D reconstructed models were generated using the workflow
described in Chapter 2 and geometry measurements were computed using an implemen-
tation of algorithms provided at (https://gitlab.com/clariaddy/stl_statistics)
and (https://gitlab.com/clariaddy/mindist).

4.2 Results and Discussion
4.2.1 Integration of the microalgae into the host cell

The FIB-SEM tomography shows the external architectures of the microalga Phaeocys-
tis in its free-living and symbiotic phases. Based on 3D reconstruction, we can visualise
how the algae are integrated into the host and examine how the host interacts with the
algae.

Small symbiont 

Big symbiont

a

b

Cell1 Cell2 Cell3

Symbiotic cell
Invaginated symbiosome

Figure 4.1 – The integration of the alga Phaeocystis in the host. (a) In the small
symbiont (4 plastids), the symbiosome (pink) is associated with the microalgal cell while
(b) in large symbionts, the symbiosome penetrates the microalgal cell. Both symbionts are
surrounded by host mitochondria (red) and Golgi (purple). In the symbiosome, we can
also note the presence of small vesicles (Bordeaux or dark red). The histogram shows the
volume occupancy of the invaginated symbiosome in the symbiont space volume. In symbiosis,
Phaeocystis cells exhibit large vacuoles (light purple) that increase with the number of plastids.

In photosymbiosis, the host phagocytes microalgal cells from the environment and

https://gitlab.com/clariaddy/stl_statistics
https://gitlab.com/clariaddy/mindist
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maintains them individually in a vacuole, called a symbiosome (Davy et al. 2012)
(See Figure 4.1). The symbiosome is, therefore, a functional interface between the
partners where metabolic exchanges take place. In small symbiotic Phaeocystis cells,
the symbiosome membrane was tightly associated with the microalgal cell as observed
in other photosymbioses (Davy et al. 2012). However, in larger microalgal cells (from
30 plastids), the symbiosome invades the symbiotic microalgal cell with a volume of
up to 140 µm3 (Figure 4.1). We can predict that the invagination of the symbiosome
occurred to optimise the exchange with the microalgal cell that became very large, so
decreasing the surface to volume ratio.

This host-derived symbiosome invagination adds compelling evidence toward the
concept that the acantharians host controls and parasites the microalgal cell, which is
radically transformed. We also observed a high number of small round mitochondria
of the host surrounding the symbiotic microalgae (Figure 4.1). They may bring ATP
to support the transport of metabolites and nutrients via pumps and antiporters to
symbiotic microalgae across the different membranes, including the symbiosome. Do
morphological changes come with two different lifestyles? To address this question, we
applied the same imaging approach to unveil Phaeocystis cellular architecture.

4.2.2 The architecture of Phaeocystis cell in free-living phase

FIB-SEM imaging was applied to unveil the subcellular organisation of the microalgal
cell Phaeocystis cordata in culture “free-living phase” and inside a host cell “symbiosis
phase”, to identify the structural changes following symbiotic condition. Twenty
free-living cells and seven symbiotic cells were reconstructed and analysed with a 5 nm
and 10 nm resolution, respectively.

Using electron microscopy, we identified the Phaeocystis cells in the free-living
phase as unicellular and flagellar cells (Figure 4.2). The external architecture of
Phaeocystis cell consists in a heart-shaped form, which is covered by two layers of
thin scales. Then, we have identified specific subcellular features in Phaeocystis cells,
focusing on particular organelle (plastid, mitochondria, and nucleus (see Figure 4.2
C)) modifications and interactions.

Amongst the twenty free-living Phaeocystis cells studied, with only one excep-
tion, Phaeocystis has typically two plastids (Figure 4.2 D) as reported in (Moisan et al.
2006; Medlin et al. 2007) with different mitochondria topologies (Figure 4.2 E) and a
nucleus with the chromatin and a nucleolus (Figure 4.2 2).

From data volumes, the statistical analysis revealed a correlation between cell
volume and plastid volume but not between the cell volume and the mitochondria or
nucleus volume (see Figure 4.3).



4.2. Results and Discussion 101

Chl

N

Vac

Mtc

Chl

3

4

5

2

a

b
d

c

e

Figure 4.2 – Cell ultrastructure of Phaeocystis in the free-living phase. (a) The
SEM image represents the Phaeocystis cell with flagella. (b) 2D FIB-SEM section shows
the Phaeocystis inner structure. (c) The spatial localisation of organelles such as plastid
(green), mitochondria (red) and nucleus (blue). (d) Plastids (green), (e) mitochondria (red)
a. Abbreviations: Chl, plastid; N, nucleus; Mtc, mitochondrion; Vac, vacuole. Scale bars
1 µm.
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Figure 4.3 – The correlation between the cell volume and organelles. Plastid
(green), mitochondria (red), and nucleus (blue).
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4.2.3 Morphological change of Phaeocystis cells in symbiotic phase

We analysed 7 symbiotic microalgal cells within two distinct hosts, observing a fun-
damental morphological transformation, which tends to reflect different steps of algal
metamorphosis.

10.6±2µm3 63.7µm3 128.6µm3

833.6µm3

695.6µm3474.6µm3

807.8µm3736.5µm3

Free-living microalga Symbiotic microalga

Figure 4.4 – Cellular architectures of Phaeocystis in free-living (first on the left) versus
symbiotic phase. Scale bar: 2µm

Quantitative analysis revealed a significant increase in cell volume and the disappear-
ance of the flagella. The Phaeocystis cell volume can increase to 80−fold in symbiosis
from 63.71 µm3 to 833.6 µm3. In contrast, in free-living on the average of 20 cells,
the cell volume is estimated at 10.6 µm3 (Figure 4.4). Increased cell volume may
stem from blockage of cell division in symbiosis and the consequent development of
organelles.

Thanks to 3D imaging and morphometric analyses, we can propose that the cell
volume adjusts in response to the increase in number and size of the intracellular
organelles (Figure 4.5). The 3D reconstructed model highlight a change in organelles
size and volume.



4.2. Results and Discussion 103

Free-living microalga Symbiotic microalga

Figure 4.5 – 3D reconstructed model of Phaeocystis organelles in free-living versus
symbiosis. Plastid (green), mitochondria(red), nucleus (blue) and vacuole (light purple).

Multiplication of the plastids in symbiosis

While in the free-living phase the cell has two plastids, the symbiotic phase induces
plastids multiplication from 2 in free-living up to 65 (see Figure 4.6 A). Moreover, the
plastids occupied 42 − 62% of the cell volume in symbiosis, compared to the fraction
30.8% occupied by the plastid in the free-living cell (see Figure 4.6 B).

In some cells it is possible to observe plastid division. A dense mitochondrial
network surrounds the dividing plastids (see Figure 4.7 A) where individual large
plastids enclose the differing state of pyrenoid dividing pyrenoid before a complete
plastid division (Figure 4.7 B). We analyse the surface to volume ratio of individual
plastids in the cell to understand the mechanisms behind the plastids division (Figure
4.7 C).

Based on previous observations made in mesophyll leaf cells (Jeong et al. 2002),
one could hypothesise that a plastid division occurs once the plastids have reached a
specific size (see the surface to volume ratio Figure 4.7 C). The assumptions would
indicate why the photosynthetic cell in the symbiotic phase would contain many
small plastids as reported in leaf cells (Trojan et al. 1996) instead of a couple of large
plastids. A large population of small chloroplasts allows more effective chloroplast
movement than a few enlarged chloroplasts (Jeong et al. 2002) probably aiding in
efficient use of naturally fluctuating light intensities inside the host.
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Figure 4.6 – Morphological transformation of the microalga in symbiosis. (a) 3D
reconstructions of Phaeocystis in the free-living microalga (2 plastids) and different symbiotic
microalgae with 4, 16, 36 and 65 plastids (green), mitochondria (red), nucleus (blue), and
vacuoles (light purple) (scale bar: 2µm). (b) The volume of different organelles and cellular
compartments as % occupancy in the cell (organelle volume/cell volume ratio) in free-living (2
plastids) and symbiotic microalgal cells and volume (µm3) of the cell, plastids, mitochondria,
nucleus and vacuoles in free-living and symbiotic microalgae.
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Figure 4.7 – The plastids division in symbiotic Phaeocystis. (a) 3D representation of
the plastids (green) and mitochondria (red) shows a mitochondrial network, which surrounds
the nucleus and plastids in the division. FIB-SEM tomography revealed different stages of
pyrenoid and plastid division in symbiotic Phaeocystis cells. (b) Pyrenoid (light green) spatial
localisation inside the plastid. (c) Surface to volume ratio of the individual plastids in the
cell.

The FIB-SEM tomography provided images with a spatial resolution, which allowed
investigating the internal organisation of the plastids. In Decelle et al. we report an
increase in the fraction of thylakoid membrane in the plastid volume of symbiotic
Phaeocystis cell compared to the fraction observed in free-living Phaeocystis cell (De-
celle et al. 2019). We noticed that the thylakoid membranes of symbiontic Phaeocystis
contained much denser networks of stacked thylakoid membranes, compared to the
free-living microalgae. We believe that Phaeocystis cells expand their photosynthetic
surfaces by increasing the thylakoid membranes and plastids volume. This observation
corroborates a possible correlation between cell size and the number of plastids as
supposed in higher plants (Dean et al. 1982; Ellis et al. 1983). However, the mechanism
governing the plastid size and number in symbiotic Phaeocystis is still unclear.

We further investigate the inner structure of Phaeocystis plastids, highlighting
the CO2-fixing compartment - pyrenoid. More specifically, the localisation and archi-
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tecture of the pyrenoid were analysed in free-living and symbiotic cells. The pyrenoid
occupies a central location in the plastid and exhibits different shapes that vary from
a rectangle shape in free-living (Figure 4.8 A) to a triangle shape in symbiosis (Figure 4.8 B).
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Figure 4.8 – Plastid architecture in Phaeocystis cell in free-living vs symbiotic
phase. 3D reconstructed models represent the thylakoid membrane (dark green) and pyrenoid
(light green).(a) The pyrenoid shows a rectangular shape in free-living with/without tubules
and (b) a triangular form in symbiotic phase with different tubule structures. (c) The bar
chart shows the averaged volume occupancy of the pyrenoid in each plastid of free-living (2
plastids) and symbiotic cells.Surface to volume ratio of the individual plastids in the cell. (d)
The histogram represents the surface to volume ratio of the pyrenoid in both phases.
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We compared the pyrenoid volume in free-living phase versus symbiotic phase and
found an increase in pyrenoid volume from 0.08µm3 in free-living up to 1.5µm3 in
symbiosis with an eventual growing up to 2.3µm3 when the plastids are dividing
(Figure 4.8 C). The pyrenoid fraction in individual plastid volume is 4.8% in free-living
while in symbiosis this fraction can increase up to 15.5% of the plastid volume (Figure
4.8 C). The average surface to volume ratio of pyrenoid in the free-living cell is 22± 3
while in the symbiotic cell the value reduces to 10.4 ± 2 and to 7.6 ± 2 when the
plastids start to divide (Figure 4.8 D).

The pyrenoid architecture investigation highlighted different types of pyrenoid.
In free-living cells, some pyrenoids contain crossing thylakoid membrane (tubule),
while some others are lacking tubules (Figure 4.8 A). In symbiosis, we only observe
pyrenoids with tubules, which are either separated in groups or fusing as a network. In
symbiosis, the volume of tubules inside the pyrenoid is 9.5 fold more important than
the single tubule in free-living pyrenoid (Figure 4.8 B). These tubules probably help
maintaining CO2 delivery to the Rubisco and ensure its diffusion for large pyrenoid
as previously reported in Chlamydomonas (Meyer et al. 2017; Engel et al. 2015).
The structural modifications found here corroborate our conclusions about the rules
governing the pyrenoid architecture in different phytoplankton taxa (see results,
Chapter 3).

Mitochondria expansion in symbiosis

The mitochondria of symbiotic Phaeocystis also underwent a significant expansion
toward a well-developed network. Quantitative analysis indicates a volume increase
from 0.5µm3 with a surface area of 7.4µm2 in free-living up to 28.4µm3 with an area
expansion of 343.4µm2 in symbiosis (see Figure 4.6 A). However, compared to the
cell volume, the fraction of mitochondria of 5.3% in free-living decreased to 3.1% in
symbiosis (Figure 4.6 B).

In addition, we found a correlation between the plastid and mitochondria vol-
ume with R2 = 0.73 and p − value = 0.015 in symbiosis. In contrast, no significant
correlation was found between the volumes of plastid and mitochondria in fourteen
Phaeocystis free-living cells (R2 = 0.07 and p − value = 0.38) (see Figure 4.9 A).
This analysis shows a common similarity to what has been previously observed in
phytoplankton taxa (see Chapter 3), suggesting that coordination between plastids
and mitochondria is an essential parameter in microalgae. In diatoms (Bailleul et al.
2015; Kim et al. 2016), it has been proposed that mitochondria and plastids are
functionally related to optimize carbon assimilation.

Evaluating the possible physical contacts between plastid and mitochondria, based on
the fact that plastid communicates with other cellular compartments to regulate their
function and biogenesis as reported in (Mueller-Schuessele et al. 2018); we quantified
the contact areas between plastids and mitochondria of Phaeocystis cells. Using



108 Chapter 4. Photosymbiosis

criteria discussed in (Scorrano et al. 2019) and in Chapter 3, contact areas below a
distance of 50 nm between the two organelles was found in both phases (see Figure
4.9 B). Despite the increasing number of plastids in symbiosis, the surface area of the
mitochondria in contact with plastids increases to about 8% in symbiosis compared to
only 0.98± 0.9% in free-living cells (see Figure 4.9 C). This observation would suggest
an interdependence of photosynthesis and mitochondrial metabolism, which need to
be enhanced in symbiotic Phaeocystis cells.
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Figure 4.9 – The plastid-mitochondria interaction. 3D reconstructed models represent
the thylakoid membrane (dark green) and pyrenoid (light green).(a) 3D representation of
plastid (green) and mitochondria red (left panel and graph showing the correlation between
the volume of the plastid and the volume of the mitochondria. (b) Proximity assessment
≤ 50 nm between the plastids (green) and mitochondria (red) is highlighted in light green.
(c) Histogram recapitulates the contact area below a distance of 50 nm in free-living versus
symbiotic phase.
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Besides observing differences in shape (see Figure 4.10 A) and overall mitochondria
surface and volume, among four symbiotic cells and fourteen free-living cells studied,
we quantified the cristae which are the inner membrane folds of mitochondria. They
provided an internal compartmentation of mitochondria for chemical reactions. We
found that the fractions of cristae in mitochondria volumes are constant in both free
living and symbiotic algae (Figure 4.10 B) as noted in the previous chapter for the
mitochondria characterisation in different phytoplankton taxa studied by FIB-SEM
tomography. This observation would suggest that the infolding of the inner membrane
inside mitochondria is not a random process (Hackenbrock 1968).

By counting the number of cristae out of 1 µm3 in free-living versus symbiotic
phase, we noticed an essential variation in the cristae density in both conditions
(Figure 4.10 C). This variation perhaps reflects the dynamics of the inner membrane
of the mitochondria, which can be adjusted and manage the volume of the cristae by
a phase-independent fission and fusion mechanism (Cogliati et al. 2016; Picard et al.
2015; Muñoz-Gómez et al. 2015). Although both high-resolution images and further
work are needed to study the shape and understand their physiological role in both
phases, these preliminary results confirm the notion of cristae as a dynamic energy
compartment.
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Figure 4.10 – Mitochondria features in both phases. (a) 3D reconstructed models
showing the morphological change of the mitochondria in both stages with a focus on their
cristae membranes (yellow) and matrix (red) (scale bar: 1µm). (b) Representation of the
volume occupancy of the cristae membrane in both phases. (c) Plot Showing the cristae
density.

The internal organisation of the algae in symbiosis also displays an increase of the
vacuole volume. The vacuole presents a dynamic morphology, probably depending on
the cell function (Figure 4.6 A). This compartment gradually increased from 5.6 µm3
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to 91.6 µm3 in larger symbiotic cells while in free-living, the volume of the vacuole is
estimated at 0.12± 0.05 µm3 (see Figure 4.6 B). In Decelle et al. we showed that these
vacuoles contain trace metals iron and cobalt (Decelle et al. 2019), which may reflect
the storage requirement for metabolism and photosynthetic activity.

Nucleus volume increase in symbiosis

The nucleus is the ‘control centre’ of the cell, enclosing most of the genetic material
of the cell. FIB-SEM tomography distinguishes different cell compartments, including
the nuclear organisation based on heavy-metal (uranyl-acetate and osmium) staining.
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c
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Figure 4.11 – Nucleus features in both phases. 3D reconstruction models distinguish
nucleus compartments based on heavy-metal staining like uranyl-acetate and osmium with a
(scale bar: 1µm). Heavy stained (blue) heterochromatin, low stained (light blue) euchromatin
and medium stained (dark blue) nucleolus.(a) Free-living and (b) symbiotic phase. (c) The
histogram shows the volume occupancy of each of these three nuclear compartments.

In the seven symbiotic cells as in the fourteen free-living cells, we observe only one nu-
cleus. We separate heavy staining (blue), low staining (light blue) and medium staining
(dark blue) ( Figure 4.11). Based on literature indications, we assigned these staining
levels to DNA compactness levels to set up the comparison in free-living (Figure 4.11
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A) and symbiotic phases (Figure 4.11 B). Hence, the medium staining being nucleolus
(known to synthesis RNA and ribosomes (Boisvert et al. 2007; Schöfer et al. 2018)),
the heavy staining - heterochromatin (maintaining the structural and functional
integrity of specific chromosomal regions (Guetg et al. 2012) and low staining - eu-
chromatin (package and protect the DNA structure and sequence (Schöfer et al. 2018)).

Like for plastids and mitochondria, the volume of the nucleus largely increased
(30−fold) in symbiosis compared to its estimation in free-living. However, the fraction
of the nucleus in the cell volume of 9.2% in free-living reduces to 4.4% in symbiosis
(Figure 4.6 B). Performing sub-organelle analysis, the volume of nuclear compartments
increased in symbiosis to 32−fold the nucleolus, 31−fold the heterochromatin and
39−fold the chromatin, compared to the free-living phase (Figure 4.11 C). Based on
these observations, we can assume that in symbiosis there is an active DNA replication
and increased production of ribosomes. If we quantify the proximity area below 50 nm
(see Figure 4.12 A), the physical contact between plastid and nucleus was preserved
in free-living (12% on the average) while in symbiosis two cells out of seven had no
physical contact area (Figure 4.12 B).
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Figure 4.12 – Plastid-nucleus interactions.(a) Physical contacts between plastid (green)
and nucleus (blue) corresponding to an area below a distance of 50 nm is represented in both
phases (pink), (b) histogram recapitulating the contact area below a distance of 50 nm and
(c) correlation between the plastids and nucleus volumes.
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However, from volume data, the statistical analysis shows a poor correlation between
the volume of plastid and nucleus with R2 = 0.64 and p− value = 0.0006 in free-living
and a better one (R2 = 0.82 and p− value = 0.005) in symbiosis (Figure 4.12 C). This
observation suggests that interactions between nucleus and plastid are also crucial in
these microalgae (Mueller-Schuessele et al. 2018). Although many cells are needed to
evaluate this possible linear trend between plastid and nucleus volume, the concept
of how the plastid and nucleus keep functioning at optimal levels in symbiosis is not
clear.

4.3 Conclusion and perspective
This work provides evidence that FIB-SEM imaging workflow described in Chapter 2
allows highlighting the significant cell morphological changes following symbiosis when
the free-living Phaeocystis microalgae cells is hosted by acantharians to develop a photo-
symbiosis lifestyle. Using this imaging approach, we have been able to observe different
organelles of the algae inside the host. Based on the observations made on seven sym-
biotic cells, we can raise several conclusions on the modifications of the alga following
photosymbiosis. (i), the invagination of the host vacuole inside the symbiotic algae cell
suggests how this symbiosis is mainly host-regulated. Phaeocystis cells transform them-
selves into powerful energy machinery where the plastids and mitochondria increase the
volume up to 100 and 45 times, respectively. (ii) it appears that the symbiotic Phaeo-
cystis cell does not divide. The multiplication of plastids is accompanied by the enlarged
nucleus accumulating chromatin. (iii) the photosynthetic capacity of symbiotic Phaeo-
cystis, including carbon fixation, is very likely boosted, with significant production of
fixed carbon. This fixed carbon by photosynthesis is probably not deposited as carbon
storage but used as photosynthates transferred to the hosts. Overall, the host seems to
control the symbionts to optimise photosynthetic yield while controlling algal cell pop-
ulations. An unknown mechanism inhibits plastid-to-nucleus communication, which is
required to continue cell division. The integration of the alga in the host confirms the
concept of algae culture where the host radically transforms and controls its symbiont,
creating an irreversible evolutionary condition where Phaeocystis is enslaved. Com-
bining these results with single-cell transcriptomic and photo-physiology could better
explain this significant change in morphogenetic in the microalga Phaeocystis involved
in a widely distributed photosymbiosis in the global ocean. This is the reason why
I collaborated with different experts to prepare a manuscript, which can be found in
Appendix A.2.
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Summary
SBF-SEM imaging provides ultrastructural information from larger volumes of plant
cells by giving the ability to generate 3D reconstructions of entire plant cells, including
internal structures such as plastids. By adapting the 3D image processing workflow
conceived for FIB-SEM to SBF-SEM datasets of plant cells, it has been possible to
improve the resolution of Z-stacks of the existing model and extract quantitative data.
Thanks to this approach, we have addressed two main biological questions: the etioplast
- chloroplast transition in cotyledon cells and the process of starch granule formation
in mature leaves. (i) Quantitative data and 3D reconstructions of the chloroplast and
thylakoid membrane structures revealed the number and volume of chloroplasts as well
as the extent of the thylakoid membrane surfaces during de-etiolation. Morphometric
data showed a rapid formation of the thylakoid membrane, which demonstrates the
efficiency of thylakoid biogenesis in the leaf cell of Arabidopsis thaliana to enable plants
to optimise their light absorption capacity and ensure their primary energy source. (ii)
A quantitative comparative analysis carried out on series of SBF-SEM images of wild-
type Arabidopsis thaliana leaves and plants lacking soluble starch synthase 4 (SS4)
showed that the number of starch granules per plastid in Arabidopsis leaf development
depends on the duration of light exposure. A deficiency in SS4 protein affects initiation
and shape per chloroplast by counterbalancing the increase in starch granule volume.

Keywords: [SBF-SEM], [Arabidopisis thaliana], [chloroplast biogenesis], [ss4 mutant],
[starch granule]
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5.1 Introduction
Plants are well adapted to cope with changes in their environment. This is particularly
true for light, probably the most important stimulus to which plants have to react. In
addition to being the driving force for photosynthesis, light is involved in many devel-
opmental and regulatory processes. One of the well-known light regulated processes is
de-etiolation, a switch in seedlings development from the skotomorphogenic program
called etiolation to the photomorphogenic program. Photomorphogenesis involves
a series of morphological changes, such as cotyledons expansion, hypocotyl growth
inhibition and greening that accompany the onset of photosynthesis in the newly
formed chloroplasts. We have followed the etioplast-chloroplast transition occurring
during the etioplast-chloroplast transition. The results are a part of preprint of a
bioRxiv paper submitted for publication and accepted in Elife on which I am the sixth
author out of 10 (see Appendix A.3).

Another light-mediated effect is the accumulation of transitory starch, which is
synthesized in the leaves during the day and is degraded in the following night
(Pfister et al. 2016). Albeit transitory starch metabolism is important in the plant life
cycle, many aspects of the synthesis and degradation of the starch granule are unknown.

In order to establish a comprehensive picture of chloroplast development and of
transitory starch granules formation I have adapted the imaging protocol described
in Chapter 2 of this Thesis to improve the segmentation process of SBF-SEM image
datasets. Images were acquired during the etioplast-chloroplast transition of Ara-
bidopsis thaliana seedlings for chloroplast biogenesis studies. To study the transitory
starch granule formation, image datasets of wild type Arabidopsis thaliana leaves and
plants lacking the soluble starch synthase 4 (SS4) (Roldán et al. 2007) were used.

5.2 Preparation of plant material for SBF-SEM imaging

Plant growth1

Arabidopsis thaliana seeds were prepared and sown following the protocol described in
(Pipitone et al. 2020). Briefly, the seeds were surface-sterilized with 70% (v/v) ethanol
with 0.05% (v/v) Triton X−100, and then washed with 100% ethanol. Seeds were
sown on agar plates containing 0.5×Murashige and Skoog salt mixture (MS, Duchefa)
without sucrose. Following stratification in the dark for 3 days at 4◦C, seeds were
irradiated with 40µmol m−2s−1 for 2 h at 21◦C and then transferred to the dark for 3
days growth at 21◦C. Etiolated seedlings were collected in the dark (0 h of light; T0 )
and at selected time points (T0, T4 , T24 , T96) upon continuous white light exposure
(40µmol m−2s−1 at 21◦C).

1Plant growth:Rosa Pipitone, Felix Kessler, Emilie Demarsy - Neuchâtel Platform of Analytical Chem-
istry, University of Neuchâtel, Switzerland & Department of Botany and Plant Biology, University of Geneva,
Switzerland
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Sample preparation and SBF-SEM acquisition2

The plant material was prepared using the protocol developed by (Pipitone et al.,
2020). Samples were fixed under vacuum (200 mBar) in 0.1M cacodylate buffer (pH
7.4) containing 2.5% (w/v) glutaraldehyde and 2% (w/v) formaldehyde (fresh from
paraformaldehyde) for 4 h and left in the fixation solution for 16 h at 4◦C. Samples
were then incubated in a solution containing 3% (w/v) potassium ferrocyanide and
4 mM calcium chloride in 0.1M cacodylate buffer combined with an equal volume of
4% (w/v) aqueous osmium tetroxide (OsO4) for 1 h, on ice. After the first heavy
metal incubation, samples were rinsed with ddH2O and treated with 1% (w/v)
thiocarbohydrazide solution for 1 h at 60◦C. Samples were rinsed (ddH2O for 15 min)
before the second exposure to 2% (w/v) OsO4 aqueous solution for 30 min at room
temperature. Following this second exposure to osmium, tissues were placed in 1%
(w/v) uranyl acetate (aqueous) and left overnight at 4◦C. The samples were rinsed
with ddH2O for 15 min, and placed in the lead aspartate solution for 30 min at
60◦C. Samples were dehydrated in a series of aqueous ethanol solutions ranging from
50% (v/v) to 100%, and then embedded in Durcupan resin by successive changes
of Durcupan resin/acetone mixes, with the last imbibition in 100% Durcupan resin.
Polymerization of the resin was conducted for 48 h at 60◦C.

SBF-SEM was performed on Durcupan resin–embedded cotyledons representing
the four de-etiolation time points T0, T4, T24, and T96. Images were acquired using a
variable pressure, field emission scanning electron microscope equipped with a Gatan
3View 2XP. Voxel size of T4 zoomed stacks: 3.9× 3.9× 50 nm; T24 : 4.7× 4.7× 50 nm;
T96 : 5.6 × 5.6 × 50 nm. Voxel size for T0 overview: 9.5 × 9.5 × 100 nm; T4 :
19.3× 19.3× 100 nm; T24 : 40× 40× 200 nm; T96 : 43.5× 43.5× 200 nm.

5.3 Background model
Previous studies on MRI (Magnetic Resonance Imaging) images (Mulder et al. 2019)
and micro-MRI (Vasilic et al. 2008) have highlighted the trade-off between voxel size
and quality of an image, when comparing 3D data acquired with an isotropic voxel size
vs. an anisotropic voxel size. The comparison highlights the presence of gaps between
adjacent slices when data volumes are acquired with a big step in z.

The same gaps were identified when Rosa Pipitone3 processed the SBF-SEM
stack and performed the segmentation of the AOIs using the Amira software (FEI
Visualisation Sciences group). The 3D reconstruction model of the extracted features
had big gaps in geometry representation (Figure 5.1). The process of inferring
geometry information from these models will be biased by their holey shape.

2SBF-SEM acquisition: Simona Eicke, Samuel Zeeman - Electron Microscopy Core Facility - ETH Zurich
- Switzerland

3Background 3D reconstructed model: Rosa Pipitone - Neuchâtel Platform of Analytical Chemistry,
University of Neuchâtel, Switzerland.
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To improve the z−stack analysis in these datasets, where the voxel size was largely
anisotropic (i.e. 5 × 5 × 20 nm3 ) we have considered adding a z−stack interpolation
in the pre-processing step after the stack registration described in chapter 2 of this
manuscript. The approach allowed refining the structure and obtaining a continuous
surface volume.

SBF-SEM Data
3D reconstruction

3D image processing

Semi-automatic tool
Segmentation Editor

 

Quanti�cation of 

morphometric data

Amira software FEI

Label Analysis package

Figure 5.1 – 3D reconstruction of thylakoid membranes of an etioplast from 3
day-old. Partial growth of Arabidopsis thaliana seedlings illuminated for 0 h.

5.4 Segmentation and 3D analysis of SBF-SEM image datasets
SBF-SEM image datasets have been registered using the Fiji MultiStackReg plugin
using affine transformation (Figure 5.2 A).The z−stack has to be well aligned before
performing the z−stack resampling.

Using Fiji we performed a z−stack resampling using “Image → Stacks → Reslice z”
mode and interpolate in z by setting a new z depth accordingly. The isotropic voxel
size was automatically resampled after adjusting the depth parameter (Figure 5.2 B).

If necessary the resliced stack was binned twice to reduce the file size. Binning
transformation would remove noise as well. However, in our cases, resliced stacks were
filtered using a median filter with a window size of 5× 5× 5 (Figure 5.2 C).

Segmentation and 3D reconstruction were performed using semi-automatic tools
provided by 3D Slicer software as described in Chapter 2 of this Thesis (see also
Figure 5.2 D). The surface mesh quality evaluation and geometry measurements were
done in MeshLab software (Figure 5.2 E) and 2D pictures of 3D representations of
reconstructed mode at different time points were performed using ParaView software.
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MeshLab & ParaView
 

Fiji/MultistackReg
Image registration
 

a

SBF-SEM Data

b z-stack resampling
 Fiji/reslice Z
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 Fiji : median filter

 

 Set window size
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d Segmentation & 
3D reconstruction

3DSlicer

e  Surface mesh quality evaluation
 

Current z-step
 

New z-step resampling
 

Figure 5.2 – SBF-SEM images processing and 3D reconstruction. (a) Stack reg-
istration -MultiStackReg from Fiji, (b) Interpolation of z−stack using resliced module from
Fiji, ((c)) Stack filtering in Fiji, (d) Volume of interest segmentation and 3D reconstruction
applying 3DSlicer and (e) 3D reconstructed model was evaluated in MeshLab and visualized
in ParaView.

5.5 Results and Discussion
The workflow described in Chapter 2 of this Thesis with z−stack interpolation made
it possible to represent a detailed picture of cotyledons plastids at different develop-
mental stages of the de-etiolation process (Figure 5.3 A-D). From SBF-SEM image
datasets (Figure 5.3 E-H), we also obtained morphometry information of the plastid
and thylakoid surface area during differentiation.

5.5.1 Plastid development in germinating seedlings

The 3D reconstructed models revealed a change in plastid shape from ovoid at T0 and
T4 to hemispheric at T24 and T96 (Figure 5.3 J-K). At T0 , the dark-germinated seedlings
contain undifferentiated plastids, the etioplasts, harbouring the characteristic lattice-
like membranous structure known as the prolamellar body (PLB) and Prothylakoid
(PT) structures (Pogson et al. 2011) to initiate the thylakoid membranes (Figure 5.3
E and I).
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Figure 5.3 – 3D reconstructions of plastid and thylakoid membrane during de-
etiolation. (a-d) Cotyledon phenotype of etiolated seedlings (T0) after 4 h (T4), 24 h (T24),
and 96 h (T96) in continuous white light (scale bars: 0.5 mm). (e-h) 2D SBF-SEM sections
highlighting the etioplast structure of cotyledons of dark grown Arabidopsis thaliana seedlings
(T0) and the thylakoid membrane evolution after 4 h (T4), 24 h (T24), and 96 h (T96) of
illumination (scale bars: 2 µm).(i-l) 3D reconstruction of the thylakoid membrane network
(light green) from the etioplast (j) to a completely developed chloroplast (l) Starch granules
are shown in grey.

After 4 h of illumination the prolamellar body is converted to thylakoid membrane.
The typical structure of the PLB connected to PTs disappeared leaving only elongated
lamellar structures, where the appearance of small amounts of starch granules shows
excess energy, due to photosynthesis (Figure 5.3 F and J). At T24 and T96, thylakoid
membranes were organised in appressed and non-appressed regions and large spaces
occupied by starch granules were observed (Figure 5.3 G-H and K-L).
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Reconstructing the 3D thylakoid network for 3 or 4 chloroplasts for each developmental
stage, we could extract quantitative data such as chloroplast volume and membrane sur-
face areas (Figure 5.4 A and B). The total chloroplast volume increased about 12−fold
from T4 (9.4 µm3) to T96 (112.14 µm3). The surface area of the thylakoid membranes
increased 10 times, from T4 - 66.4± 29 µm2 to T96 - 583.4± 62.5 µm2 (Figure 5.4 B).
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Figure 5.4 – Quantitative analysis of plastid and thylakoid membrane during de-
etiolation. (a) Average individual plastid volume and (b) average thylakoid membrane area
per plastid volume of 3 days old, dark grown Arabidopsis thaliana seedlings illuminated for
0 h, 4 h, 24 h and 96 h.

However, as observed in Figure 5.4, from T0 to T4 , the volume and the surface of both
the plastid and thylakoid membrane do not change much. Both etioplasts (T 0 ) and
developing chloroplasts (T4) lack complete functional 133thylakoids. From T4 to T24,
the thylakoid membrane area increased significantly (∼ 6 fold) and still developed from
T24 to T96 (about 1.5−fold). Our observations indicated that chloroplast development
during the first 96 hours of de-etiolation can be separated into two phases: a first
phase reflected by qualitative changes (i.e. structure establishment and reorganisation
of the thylakoid network architecture) and a second phase (starting before T24 ) during
which the thylakoids surface increased due to the expansion and stacking of lamellae.
The chloroplast volume expansion during the second phase may also reflect the
enlargement of extra-thylakoidal spaces occupied by emerging starch granules. Indeed
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starch granules were present at T24 , supporting the notion that these chloroplasts are
photosynthetically functional and able to assimilate carbon dioxide (CO2 ). The major
differences observed between T24 and T96 were the increase in the overall chloroplast
size and in starch granule size and number.

Our data also show that photosynthetically functional thylakoid membranes are
formed rapidly during the first 24 h of de-etiolation. These results also suggest that
large amounts of lipids and proteins are necessary to build up the thylakoid membrane
until T24 , whereas increases in lipids and proteins between T24 and T96 enable the
expansion of already functional thylakoid membranes in preparation for chloroplast
division. Indeed, chloroplast number per cell increased during de-etiolation, a process
that depends on the division of pre-existing chloroplasts.

 

Lipid:

Vacuole:

Cell:

T24T0

7188.3µm31058.5µm3

44.1% 8.3%
7.1% 1.5%

T0 T4 T24 T96

a b

c

Figure 5.5 – 3D reconstruction of a 3−days old cotyledon cell revealed by SBF-
SEM imaging. (a) after 0 h and 24 h (b) of illumination. The vacuole compartment (coral)
and lipid body (blue) are shown. (c) Inside the cell, plastids (green) are surrounded by frag-
mented mitochondria (red) and lipid bodies (blue) that disappear after 96 h of illumination.
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The data volume of a 3−days old cotyledon cell show that at T0 , the cell (with a
volume of 1058.5 µm3 ) contains about 20 chloroplasts and is filled with a large vacuole
(44.1 % of the cell volume) and lipids bodies (7.1 % of the cell volume)(Figure 5.5 A).
As stated above, these reserves are mobilized to fuel post-germination seedling growth
associated with an increase in photosynthesis (Sela et al. 2020; Baud et al. 2008). After
24 hours of illumination, the cell volume rises to 7 times of its original size (7188.3 µm3)
and the storage system is diminished with lipid bodies filling a small portion of the cell
(about 1.5 % of the cell volume) and the vacuole about 8.3 % of the cell volume (Figure
5.5 B). In addition to lipid bodies, the 3D reconstructed model unveiled the plastid-
mitochondria interaction (Figure 5.5 C). Such interaction may reflect some energetic
coupling between the two organelles during the etioplast/chloroplast transition.

5.5.2 Control of starch granule numbers in Arabidopsis chloroplasts

Previous studies on Arabidopsis thaliana developing leaves have shown that when
plants are kept in continuous light for long periods, the starch granules change in
size and shape (Zeeman et al. 2002). The authors hypothesized that the shape of
the granules is defined by the space available between layers of thylakoid membranes
within the plastid. Later, studies conducted to investigate the starch granule numbers
in Arabidopsis thaliana, unveil a correlation between the starch granule numbers and
plastid volume (Crumpton-Taylor et al. 2012). However, little is known about how
granules are initiated and the factors that control the number and size of granules
within the individual plastid. To address this question, we started from previous
studies carried out to identify key proteins involved in granules size regulation and
starch granule initiation in Arabidopsis thaliana during the leaf development (Seung
et al. 2018; Crumpton-Taylor et al. 2013).

We thus focused on the morphological changes in Arabidopsis WT and ss4 mu-
tant strains. The latter lacks the sucrose synthase 4 protein, which is important for
the starch granule formation (Lu et al. 2018). Using SBF-SEM4 image datasets, we
investigated the role of SS4 protein in Arabidopsis leaf development by comparing the
amount of starch granules per plastid of Arabidopsis wild-type (WT) leaf versus ss4
mutant leaf. Both WT and ss4 plants were grown in the dark for 16 hours and then
illuminated in continuous white light (150 µmol m−2s−1) during 15 min and 8 hours.

3D reconstruction of starch granules in WT chloroplasts after 15 min of illumi-
nation reveals several small starch granules (Figure 5.6 A) when in ss4 chloroplast a
large starch granule is present (Figure 5.6 B). In WT plants, the number of initiated
starch granules is different between plastids (24± 16). Quantitative analyse performed
with 7 plastids shows that starch volume in ss4 chloroplasts is greatly increase
(17.1 ± 3 µm3) compared to the volume of wild-type starch granules (0.2 ± 0.1 µm3)

4SBF-SEM datasets of Arabidopsis WT and ss4 mutant: Simona Eicke, Léo Bürgy, Samuel Zeeman
- Electron Microscopy Core Facility - ETH Zurich -Switzerland
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(Figure 5.6 C). In ss4 quantitative analysis performed with 7 plastids shows that in
ss4 the starch granules volume content per plastid increases when compared to wild type.

After 8 h of illumination WT chloroplasts harbour the same number of starch
granules between chloroplasts (25 ± 7) but with a drastic increase in granule volume
(15.7 ± 4 µm3) (Figure 5.6 D). In the ss4 mutants, a slight increase in starch granule
number is observed (Figure 5.6 E-F) and the number of the starch granules per plastid
grow to (4± 1) with an important increase in total volume (65.9± 24 µm3) (Figure 5.6 F).

15m in

15m in

Figure 5.6 – Starch granules initiation in developing leaf cells of Arabidopsis WT
vs. ss4. 3D reconstruction of starch granules (white) enclosed by stroma pocket (magenta).
SBF-SEM gave a 2D picture of the plastid ultrastructure in Arabidopsis leaf cells of wild type
and mutant plants grown in the dark for 16 h and then illuminated in the continuous white
light of (150µmol m−2s−1). (a) wild-type versus (b) ss4 plants after 15 min of illumination.
(c) Boxplots comparing both the volume and the number of starch granules per plastid. (d)
wild-type versus (e) ss4 plants after 8 h of illumination. (f) Boxplots comparing both the
volume and the number of starch granules per plastids.

5.6 Conclusion and perspective
In comparison with FIB-SEM tomography, which has a limited volume of observation,
SBF-SEM allows the acquisition of ultrastructural data from larger volumes of plant
tissue and the generation of 3D reconstructions of whole plant cells, including internal
structures such as plastids. Thanks to the image processing workflow described in
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Chapter 2 of this manuscript, it has been possible to improve the z-stack resolution
of the background model and perform quantitative analysis to address two distinct
biological questions: the etioplast- chloroplast transition in cotyledons cells and the
process of starch granule formation in mature leaves.

The proposed approach allowed us to obtain both qualitative and 3D represen-
tation of the plastid and thylakoid at different time points of development during
de-etiolation at the whole plastid level. The 3D reconstructions revealed chloroplast
number and volume and the extent of the thylakoid membrane surface during the
de- etiolation process. The extent of thylakoid surface area emphasizes how fast and
efficient the thylakoid biogenesis is. During plant development, extending thylakoids
surface allows plants to optimize light absorption capacity, ensuring their primary
source of energy.

SBF-SEM image datasets of Arabidopsis WT and ss4 mutants confirmed that
the number of starch granules per plastid in Arabidopsis leaf development depends
on the length of the light utilization. Under continuous light (8 h) the starch granule
number per chloroplast increases in WT and ss4 mutant with different quantities as
reported in (Malinova et al. 2017). However, the lack of SS4 protein has an impact on
formation of starch granules and seems to be important in generating and regulating
the volume and morphology of starch granules per plastid as recently expressed by
(Malinova et al. 2018; Abt et al. 2020). The reduced number of starch granules in ss4
mutants is compensated for by the increase in starch granules size.

The 3D quantitative and comparative analysis obtained from the SBF-SEM data of
Arabidopsis WT and ss4 mutants leaves open new perspectives to investigate other
proteins targeting to starch protein involved in starch granules initiation as reported
in (Seung et al. 2017; Seung et al. 2018).





Conclusion and perspectives

General conclusion

The objective of this PhD project was to implement 3D image processing and mor-
phometric analysis workflow to generate 3D models describing the cell ultrastructure
organization. The ultimate purpose of this work was to understand physiological
responses of photosynthetic organisms (microalgal and plant cells) to environmental
changes at the cellular and subcellular levels based on high-resolution 3D electron
microscope techniques (FIB- SEM and SBF-SEM).

Volume EM imaging produces large datasets and has been the key starting ma-
terial to investigate biological ultrastructures. However, the approach requires time for
data analysis. Hence, 3D EM imaging faces data management challenges, including
data processing. The challenge of the task is explained by: (i) the image analysis tools
poorly described in literature and inaccessible to the microscopist community, (ii) the
segmentation process limiting data reproducibility and (iii) the limited resolution of
acquired images. Overcoming these challenges is the prerequisite to investigate cell
structure organisation and perform quantitative analysis. Starting from these premises,
this work proposes a 3D images processing pipeline, which optimizes image processing
and provides quantitative data. From quantitative data, it is possible to understand
the internal cell organisation and possible link to cell physiological responses.

The first chapter presents the biological material used in this study with a
focus on the role of endosymbiosis events in the differentiation of phytoplankton
species and plant cells. I also introduced the history of electron microscopy and its
contribution to the identification and understanding of living organisms. This section
includes a review of researches carried out with three-dimensional cellular investigation
using EM imaging and the role of sample preparation in explaining cell ultrastructure
towards scientific interpretation.

The second chapter focuses on the materials and the image methodology de-
veloped in this project. The culture conditions of the different algae together with the
sample preparation methods used for EM observation are described. The main part of
this chapter describes in detail the development of an optimised 3D imaging workflow
needed to obtain three-dimensional information from high-resolution volumetric EM
data. The idea behind the proposed workflow, entirely based on open access softwares,
is to use supervised semi-automated segmentation that accelerates image analysis and
3D reconstruction and delivers quantitative data after image segmentation and volume
reconstruction. First, the proposed workflow does not suffer from the automatic
detection of wrong pixels in the segmentation process and the method can be applied
to samples from any environment for quantitative analysis. Second, the geometry
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processing offers to the user the possibility to automatically clean the reconstructed
model, divide the clusters into independent structures and quantify the structural
features to obtain volumes, surface areas and the proximity distances between nearby
compartments. The different steps are described in a way that this protocol can be
used by a large number of users.

The third chapter presents results from the application of the proposed 3D
imaging workflow to observe morphological rearrangements following cell adaptation
to abiotic and biotic stress. Using 3D EM (FIB-SEM) image data, we assessed
subcellular features and their dynamic changes in algae representing major oceanic
phytoplankton lineages and established laboratory models. The analysis done on
cell architecture focused only on the relationships between the energy productions
compartments (plastids, mitochondria and energy storage compartments). The study
showed the constant fraction occupancy of the energy production compartments in the
different lineages as well as the interaction between plastid and mitochondria.

To understand how the cell architecture is remodeled in response to environ-
mental change, I used this workflow to investigate the acclimation response of the
diatom Phaeodactylum tricornutum to change in light intensity. When cells grown
under a low light regime are transferred to high light, larger volume occupancy by
the mitochondria and the plastid CO2 -fixing pyrenoid are observed together with an
increase in plastid-mitochodria surface contact. Overall, these changes reveal how cells
modify their structure to regulate respiration and photosynthesis capacity.

I have also studied the change in trophic lifestyles when Nannochloropsis gadi-
tana is grown under photoautotrophic conditions or in the presence of light plus
reduced external carbon sources (mixotrophy). The change in the trophic lifestyle
was also associated with substantial physiological and morphological changes. The
observed increase in respiration and decrease in photosynthesis is also associated with
enhanced surface contacts between both organelles thus probably favouring energy
interaction between them. From these results, we propose that phytoplankton cell
volume occupancy and organelles topology is possibly governed by energy management
rules.

The fourth chapter deals with the application of the image processing work-
flow to unveil the morphological change following photosymbiosis (biotic constraint)
when the free-living Haptophyte Phaeocystis undergoes a symbiotic lifestyle with
an Acantharians host. I have reconstructed the cell architecture of the free-living
and symbiotic Phaeocystis. The 3D reconstructed models of symbiotic Phaeocystis
highlighted the invagination of the host vacuole into the algal, the increase in the
symbiosome (the vacuole surrounding the symbiotic alga), the arrest of the algal cell
division together with the drastic increase in plastids number and volume and the
expansion of the mitochondrial network. Therefore, the observed cell modifications
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demonstrate a substantial morphological adaptation of the microalgae after their
integration within a host cell.

The fifth chapter focuses on the adaptation of the workflow to SBF-SEM im-
age segmentation. 3D reconstructed models of chloroplast and thylakoid membranes
helped establishing a complete picture of chloroplast development and transient
starch granule initiation in Arabidopsis thaliana. The qualitative and quantitative
imaging approaches reveal the transformation, the increase in the number and volume
of chloroplasts as well as the surface area of the thylakoid membrane during the
etioplast-chloroplast transition. The quantitative data pinpoints an extent of the
thylakoid surface as a marker of the speed and efficiency of thylakoid biogenesis during
plant development, providing to plants the ability to optimise their light absorption
capacity.

Finally, the quantitative analyses done on SBF-SEM image datasets of Arabidopsis
wild-type and mutants lacking the soluble starch synthase 4 protein (SS4) in developing
leaf show that starch granules accumulation, an important energy reserve compartment
of the plant, depends on the length of the light exposure. An important increase in
the starch granule number is observed in WT chloroplasts. This increase is drastically
reduced in ss4 chloroplasts, but it is largely compensated by the augmentation in the
starch granule volume.

Perspectives

Further important observations relevant to this project

Cell adaptation studies may require ‘omics’ approaches to identify genes and proteins
associated with physiological transitions and to decipher mechanisms of acclimation.
However, imaging approaches are needed to interpret acclimation responses at the
cellular and subcellular levels as shown in this Thesis. Many other studies will emerge
from the application of this workflow and some of them are actually ongoing such as:

1. Lipid droplets biogenesis in microalgae cells.

2. Morphological comparisons between many eukaryote - eukaryote and eukaryote -
prokaryote photosymbiosis, parasitism in planktonic communities, etc.

Since the proposed 3D imaging workflow relies on sample preparation methods, data
acquisition techniques and the images processing workflow, it requires interactions be-
tween people with different skills. Every step takes some time to be completed and
probably will still needs to be optimized. This is actually a bottleneck to produce data.
The image processing protocol described in chapter 2 of this manuscript outlines two
potential approaches: (i) semi-automatic segmentation, and (ii) geometry processing,
considered optimizing the 3Ddata analysis approach.
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Improvements in image segmentation that can be expected in the future

It would be insightful to perform deep-learning based segmentation, which requires an
intelligent segmentation to reduce human interaction to detect, observe and classify
important features in an image. To do so, we have to build a model, which learns,
identifies and detects certain features in 3D EM images, by manually building a rich
training dataset representing different microalgae species, plants and complex intra-
cellular structures models. This knowledge will allow training the same model with
different observations. This approach showed robust extraction of relevant and high-
quality information in small extracellular vesicles TEM images (Horwath et al. 2020).
The authors noticed that clear edges are the most important factor in features iden-
tification of structure in the images and seemed to reduce the negative impact of any
wrong detection.

The study of morphodynamics can improve the way we understand the
adaptation of the cell to its environment

As cell morphology depends on its environment, understanding features that can reg-
ulate or modulate cell migration could bring other perspectives in cell structure to
address some biological question on:

1. How do cells rearrange their morphology in order to travel more easily through
its environment? This study will need a time-lapse 3D imaging.

2. Understanding temporal evolution of morphological features. It would suggest
linking cell motility to cell structure, function and adaptation mechanism to clas-
sify and identify microalgae species, which resist the stress environment and those,
which completely change morphology and function to adapt to the environment
as reported in morphodynamics of 3D migrating cancer cells (Eddy et al. 2018).

Protein tags can help to interpret the biological processes involved in cell motility or
membrane and organelle dynamics. It could be important to use time-lapse imaging
to analyse the trajectory of a specific protein and get spatial temporal information of
cell activity. Such information could bring new knowledge to reveal the link between
cell topology and cell motility in order to figure out how a cell survives in extreme
environmental fluctuations.

luorescence microscopy can be employed to image specific features. In fixing
fluorescent markers on samples, which exhibit targeted characteristics, we can produce
a time-lapse image, which easily shows protein tags in the specific region:

• to specify resident protein composition and observe what happened to organelles
machinery at contact sites.



Conclusion and perspectives 129

• to investigate the stability of contact sites (D’Agostino et al. 2016).

• to study protein trafficking, organelle dynamics and division in order to under-
stand trafficking function as reported in animal cell (Wu et al. 2017; Friedman
et al. 2011; Friedman et al. 2013; Xu et al. 2020; Rowland et al. 2014).

We can finally state if physical contacts between organelles can refer to a metabolic
exchange by showing factors and functions of organelles membranes at the contact
using CryoET.

The acquisition of the images by FIB-SEM gives a detailed view of the internal
structure of the cell but the method does not give the possibility to work on several
cells. Depending on the cell size to be studied we can capture 4 to 20 cells per
acquisition. If we consider the time of acquisition and the time it takes to prepare the
sample for EM, it is difficult to obtain many cells in a short period of time.

How to get more cells for statistical analysis?

3D confocal imaging approach
We have measured the fluorescence of different symbiotic algae in a acan-
tharians host using a confocal microscope and we have reproduced the same
images using four different intensities of confocal light, with a voxel size
δV(dx, dy, dz) = (0.3095 µm, 0.3095 µm, 3.25 µm). The resulting images for each
experiment were stacked to produce 3D images representing the sample in three-
dimension.
Approach, method and strategy
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Data visualization

A preliminary result shows the volume of detected symbiotic microalgal cells based on
the thresholding pixels value range. When the estimated volume data were compared
to volume information computed from FIB-SEM dataset the true thresholding value
was obtained.

Using Gradient Descent methods for a linear regression estimation implemented in
(Nedrich 2014) we can estimate organelles volume as a function of cell volume ∼ βXi

where i = chloroplast, mitochondria, nucleus, cother.
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A.1 Algal Remodeling in a Ubiquitous Planktonic Photosym-
biosis

Summary
Photosymbiosis between single-celled hosts and microalgae is common in oceanic plank-
ton, especially in oligotrophic surface waters. However, the functioning of this ecologi-
cally important cell-cell interaction and the subcellular mechanisms allowing the host to
accommodate and benefit from its micro-algae remain enigmatic. Here, using a combi-
nation of quantitative single-cell structural and chemical imaging techniques (FIB-SEM,
nanoSIMS, Synchrotron X-ray fluorescence), we show that the structural organization,
physiology, and trophic status of the algal symbionts (the haptophyte Phaeocystis) sig-
nificantly change within their acantharian hosts compared to their free-living phase in
culture. In symbiosis, algal cell division is blocked, photosynthesis is enhanced, and cell
volume is increased by up to 10-fold with a higher number of plastids (from 2 to up to 30)
and thylakoid membranes. The multiplication of plastids can lead to a 38-fold increase
of the total plastid volume in a cell. Subcellular mapping of nutrients (nitrogen and
phosphorous) and their stoichiometric ratios shows that symbiotic algae are impover-
ished in phosphorous and suggests a higher investment in energy-acquisition machinery
rather than in growth. Nanoscale imaging also showed that the host supplies a substan-
tial amount of trace metals (e.g., iron and cobalt), which are stored in algal vacu oles
at high concentrations (up to 660 ppm). Sulfur mapping reveals a high concentration in
algal vacuoles that may be a source of antioxidant molecules. Overall, this study unveils
an unprecedented morphological and metabolic transformation of microalgae following
their integration into a host, and it suggests that this widespread symbiosis is a farming
strategy wherein the host engulfs and exploits microalgae.

Keywords: symbiosis, plankton, microalga, single-cell imaging, photosynthesis,
mass spectrometry imaging, 3D electron microscopy, eukaryotes, plastid, Phaeocys-
tis.
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SUMMARY

Photosymbiosis between single-celled hosts and
microalgae is common in oceanic plankton, espe-
cially in oligotrophic surface waters. However, the
functioning of this ecologically important cell-cell
interaction and the subcellular mechanisms allowing
the host to accommodate and benefit from its micro-
algae remain enigmatic. Here, using a combination
of quantitative single-cell structural and chemical
imaging techniques (FIB-SEM, nanoSIMS, Synchro-
tron X-ray fluorescence), we show that the struc-
tural organization, physiology, and trophic status of
the algal symbionts (the haptophyte Phaeocystis)
significantly change within their acantharian hosts
compared to their free-living phase in culture. In sym-
biosis, algal cell division is blocked, photosynthesis
is enhanced, and cell volume is increased by up to
10-fold with a higher number of plastids (from 2 to
up to 30) and thylakoid membranes. The multiplica-
tion of plastids can lead to a 38-fold increase of the
total plastid volume in a cell. Subcellular mapping of
nutrients (nitrogen and phosphorous) and their stoi-
chiometric ratios shows that symbiotic algae are
impoverished in phosphorous and suggests a higher
investment in energy-acquisition machinery rather
than in growth. Nanoscale imaging also showed that
thehost supplies asubstantial amountof tracemetals
(e.g., iron and cobalt), which are stored in algal vacu-
oles at high concentrations (up to 660 ppm). Sulfur
mapping reveals a high concentration in algal vacu-

oles that may be a source of antioxidant molecules.
Overall, this studyunveils anunprecedentedmorpho-
logical and metabolic transformation of microalgae
following their integration into a host, and it suggests
that this widespread symbiosis is a farming strategy
wherein the host engulfs and exploits microalgae.

INTRODUCTION

Acquisition of plastids by eukaryotic host cells via endosymbi-

osis with microalgae is heralded as one of the most important

biological innovations [1, 2]. Prior to genetic integration, hosts

had strong control over their photosynthetic symbionts by

driving metabolic integration [3, 4]. In today’s oceanic plankton,

living in symbiosis with microalgae (photosymbiosis) is a wide-

spread and ecologically important phenomenon [5, 6]. The

widely distributed photosymbiosis between heterotrophic

radiolarian hosts and eukaryotic microalgae is abundant in sur-

face oligotrophic waters [5, 7–9]. These organisms significantly

contribute to planktonic biomass, carbon fixation (through

photosynthesis of the algal symbionts), and carbon export to

the deep ocean [9–12], making them important components of

oceanic ecosystems. Photosymbiosis may become even more

prominent in the oceans of the future, since oligotrophic prov-

inces are expanding due to global warming [13]. While knowl-

edge of the diversity of eukaryotic photosymbioses has greatly

improved in the past decade (e.g., radiolarians, foraminiferans)

[7, 14], their physiology and metabolism remain largely unex-

plored, as does their biogeochemical significance in marine eco-

systems. In particular, investigating the structural and metabolic

strategies that allow host cells to integrate and control intracel-

lular microalgae has been a major challenge due to the highly

complex nature of their intertwined partnerships, the lack of
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stable cultures, and the scarcity of knowledge about their ge-

nomes and protein functions [15, 16]. In the ecologically suc-

cessful symbiosis between Acantharia (radiolarian host) and

the microalga Phaeocystis, the host depends entirely on en-

gulfed symbiotic microalgae for growth and survival (i.e., obliga-

tory symbiosis) [7]. By contrast, the microalga Phaeocystis,

which is a keystone phytoplankton taxon that shapes the struc-

ture and function of marine ecosystems, can exist in free-living

forms in the environment [17, 18]. Phylogenetic analyses

including different nuclear and plastidial genes suggest that

the free-living and symbiotic Phaeocystis populations are genet-

ically identical in a given oceanic region (e.g., Phaeocystis cor-

data in theMediterranean Sea [7]). Livingwith the locally adapted

and abundant symbiont genotypes would be an advantageous

strategy for acantharian hosts that must re-establish the symbi-

otic partnership at each generation (i.e., horizontal transmission).

We studied this ubiquitous symbiotic interaction between sin-

gle-celled organisms, which represents a promising model to

study the cellular integration of algae into a host and therefore

to elucidate the possible processes underpinning plastid acqui-

sition in eukaryotes. We used a combination of 3D electron

microscopy, nanoscale mass spectrometry, and X-ray fluores-

cence imaging to investigate the transition between free-living

and symbiotic stages of the microalgae at the subcellular level

and disentangle the role of each symbiotic partner. These tech-

niques were complemented by physiological analyses to offer a

comprehensive picture of the physiology and metabolism of the

interaction. We showed that, within their host, division of algal

cells is blocked, and their ultrastructure, physiology, and trophic

state significantly change, transforming them into a highly pro-

ductive photosynthetic machinery. This algal remodeling, pre-

sumably induced by the host, suggests that this widespread

and abundant symbiosis could represent an algal farming strat-

egy, providing a new paradigm for the ecological success of

planktonic photosymbiosis in the oligotrophic oceans.

RESULTS AND DISCUSSION

Major Structural Transformation of Symbiotic
Microalgae for Enhanced Photosynthesis
We investigated the ultrastructure of microalgal symbionts

(Phaeocystis cordata) within their acantharian hosts (Figure 1A),

collected from marine surface waters, and of their free-living

phase (i.e., grown ex hospite in culture). To preserve their native

ultrastructure and chemical composition, cells were cryofixed

with high-pressure freezing, subjected to freeze substitution,

and embedded in resin. Transmission electron microscopy

of ultrathin sections showed that the free-living microalgae were

A B C

D E F

Figure 1. Morphological Transformation of the Microalga Phaeocystis between the Free-Living and Symbiotic Stages

(A) Ultrastructure of the symbiotic microalga Phaeocystis cordata within acantharian host unveiled by transmission electron microscopy (TEM). The scale bar

represents 1 mm. Inset: light microscopy image showing an acantharian host cell with its star-shaped biomineralized skeleton and its intracellular microalgae

Phaeocystis (yellow cells indicated by a green arrow).

(B) Ultrastructure in TEM of the free-living Phaeocystis cell grown in culture with two parietal plastids. The scale bar represents 0.5 mm. n, nucleus; c, plastid; p,

pyrenoid; h, host; t, thylakoid membrane; s, symbiosome membrane; m, mitochondria.

(C) Surface occupied by thylakoid membranes per plastid in free-living (light green; 47.37% ± 12.88%, n = 113 plastids) and symbiotic (dark green; 63.85% ±

8.95%, n = 86 plastids) Phaeocystis calculated from TEM micrographs.

(D and E) 3D visualization with FIB-SEM (focused ion beam scanning electron microscopy) of the microalga Phaeocystis in symbiosis within a host (D) and in free-

living phase (E) with plastids (green) and a nucleus (yellow). The scale bar represents 1 mm. (See also Video S1.)

(F) Surface area and volume of individual plastids in free-living (n = 10) and symbiotic (n = 8) microalgal cells were calculated from the 3D reconstructions.

In symbiosis, the surface area and volume of plastids (6.95 ± 1.22 mm2 and 1.13 ± 0.17 mm3)were higher than those of free-livingPhaeocystis cells in culture (4.65 ±

0.85 mm2 and 0.51 ± 0.12 mm3). (See also Video S1.)
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3–5 mm in size and typically possessed two parietal plastids (Fig-

ure 1B), as described in the taxonomic diagnosis of the species

[19]. In stark contrast, thesymbioticmicroalgaewere substantially

larger (8–10 mm in size), with average volumes up to 10-fold larger

than those of the free-living cells. In addition to a nucleus, symbi-

oticmicroalgae possessed up to 31 pyrenoid-containing plastids,

located predominantly at the periphery of the cells (Figure 1).

Three-dimensional subcellular reconstruction showed that the

multiple interconnected plastids occupied most of the algal cell

volume and were 3-fold more voluminous than were the plastids

in the free-livingmicroalgae (Figures 1D–1F; Video S1). In a single

algal cell, our morphometric analyses based on 3D models re-

vealed a 30-fold increase of the total surface of plastids (from

8.4 mm2 in free-living to 251.6 mm2 in symbiosis) and a 38-fold in-

crease of the total volume of plastids (from 1 mm3 in free-living to

38.6 mm3 in symbiosis). In addition, the plastids of symbiotic mi-

croalgae contained far denser networks of stacked thylakoid

membranes (17 nm thick), which occupied 64% (±9%) of the

plastid surface area, compared to 47% (±13%) in the free-living

microalgae (Figure 1C). Thus, microalgae in symbiosis signifi-

cantly expand their photosynthetic surfaces by multiplication of

voluminous plastids (from 2 to 31) and of thylakoid membranes.

To our knowledge, this significant morphological transforma-

tion of the photosynthetic machinery has not been reported in

other symbiotic algae from terrestrial and marine ecosystems,

such as coral or other planktonic symbioses [20, 21]. To test

whether photosynthetic activity is affected by these morpholog-

ical changes, we conducted in vivo photophysiology measure-

ments based on measurements of chlorophyll fluorescence in

the free-living and symbiotic microalgae. We found that the elec-

tron transfer rate (ETR), awidely usedparameter to assessphoto-

synthetic efficiency [22], was significantly higher (up to three

times) in the symbiotic microalgae than in the free-living microal-

gae (Figure 2A).Within the host, photosynthesis was enhanced in

a range of light conditions (29 to 672 mmol photons m�2 s�1) en-

compassing values experienced by these organisms in the natu-

ral environment [23]. Based on the photosynthesis (ETR)-irradi-

ance curves, different parameters of free-living and symbiotic

microalgae were evaluated, such as the maximum photosyn-

thetic capacity (Pm), the photosynthetic efficiency under light

levels close to zero (the initial slope a), and the minimum photo-

synthetic saturation irradiance (Ek) [24]. Compared to free-living

microalgae, we found higher values of Pm (128.85 ± 6.5 versus

41.34 ± 0.87), a (0.61 ± 0.04 versus 0.40 ± 0.02), and Ek

(211.50 ± 16.32 versus 103.12 ± 6.03) in symbiotic microalgae,

suggesting that the photosynthetic activity in limiting and satu-

rating light levels was enhanced in symbiosis (Table S1). More

particularly, we can conclude that light capture at limiting light

was higher in symbiosis (1.5 timesmore) aswell as carbon assim-

ilation at saturating light (3.1 timesmore). In addition, excess light

dissipation via non-photochemical quenching (NPQ) was dimin-

ished in symbioticmicroalgae in high-light conditions (Figure 2B).

This suggests that symbiotic microalgae were less exposed to

excess light stress, confirming that the environment provided

by the host is optimal for their photosynthesis.

High-Nitrogen and Low-Phosphorous Conditions in
Symbiotic Microalgae
The structural and associated physiological changes of symbi-

onts may be promoted by the host to maximize photosynthetic

capacity and thereby fully benefit from the photosynthates,

such as sugars. The transformed microalgal cells are maintained

in an intracellular vacuole (symbiosome, Figure 1), where the

host has to provide essential nutrients (nitrogen, phosphorous,

and trace metals), which generally limit the primary productivity

of phytoplankton in oceanic waters [25]. In order to highlight

possible metabolic changes induced by symbiosis, we investi-

gated the subcellular distribution and composition of nutrients

in free-living and symbiotic microalgae. Note that we hereafter

compared algal cells grown in an artificial culture medium

(free-living condition) with algal cells maintained in the micro-

habitat provided by their host (Table S2).

The nitrogen (N)-to-phosphorus (P) ratio is generally consid-

ered to be a proxy for the metabolic investment of a cell [26].

A

B

Figure 2. Photosynthetic Efficiency and Response to Light Stress in

Free-Living and Symbiotic Microalgae Phaeocystis

(A) Photosynthetic efficiency measured by the relative electron transfer rate

(ETR) for free-living (dark green squares; 23 measures from triplicates) and

symbiotic (light green circles; 10 measures from triplicates) microalgae over a

range of light intensities up to 700 mmol photons m�2 s–1.

(B) The non-photochemical quenching (NPQ) parameter indicated that the light

energy absorption of symbiotic microalgae Phaeocystis (light green line;

10 measures from triplicates) was less sensitive in high-light conditions than it

was in free-living Phaeocystis grown in culture (dark green line; 23 measures

from triplicates).

See also Table S1.
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Depending on environmental factors, microalgal cells are able

to differentially allocate N and P into either energy-acquisition

machinery (N-rich proteins; high N/P ratio) or growth machinery

(P-rich RNA; low N/P ratio) [27, 28]. To reconstitute N/P ratios in

host cells, symbiotic microalgae, and free-living microalgae, we

mapped the content and distribution of N and P at a subcellular

level using nanoSIMS. In order to compare the relative N and P

content between the host and symbiotic and free-living microal-

gae, the total ion counts of these elements were normalized by

the total ion counts of carbon (C2). We showed that symbionts

have higher N/P ratios than their hosts (Figure 3C; Data S1),

due to a higher N content of the plastids (p < 0.05; ANOVA; Fig-

ure 3A; Data S1) and a lower cellular P content (Figure 3B). P in

symbionts was mainly contained in the nucleus, with no evi-

dence of cellular storage (Figure 3B). By contrast, the host cells

contained cytosolic hotspots of P, where the content was 3- and

10-fold higher than that in the nucleus and plastids of the symbi-

onts, respectively. Overall, N/P ratio mapping in cells suggests

A CB

ED F

HG I

Figure 3. Subcellular Quantitative Mapping of Nitrogen, Phosphorous, and their Stoichiometric Ratios in Symbiotic and Free-Living Phaeo-

cystis Cells, Measured by nanoSIMS

(A–C) Subcellular distribution of nitrogen (12C14N/12C2), phosphorous (
31P16O2/

12C2), and the N/P ratio (12C14N/31P16O2) in two symbiotic Phaeocystis algal cells

highlighted by a red dashed line. Note that the two symbiotic microalgae are intracellular within their host cell. The scale bar represents 3 mm.

(D–F) Subcellular distribution of nitrogen (12C14N/12C2), phosphorous (31P16O2/
12C2) and the N/P ratio (12C14N/31P16O2) in one free-living Phaeocystis algal cell.

The two plastids of the algal cell are highlighted by a green and white dashed line. The scale bar represents 1 mm.

(G–I) Nitrogen (12C14N/12C2) and phosphorous (31P16O2/
12C2) content and the N/P stoichiometric ratio (12C14N/31P16O2) in plastids of free-living and symbiotic

microalgae. (See also Data S1.) Statistical analyses were performed using ANOVA type-II tests based on 17 plastids of free-living microalgae and 45 plastids

of symbiotic microalgae. 12C14N/12C2 was log-transformed, and Tukey’s Ladder for Power transformation was applied to 31P16O2/
12C2 and 12C14N/31P16O2

(*p < 0.05, **p < 0.01; ***p < 0.001, ANOVA test).

See also Figures S1 and S4; Data S1; and Table S2.
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the existence of an optimal metabolic coupling and labor division

between the host (investment in growth) and symbionts (invest-

ment in energy acquisition), which likely provides a competitive

edge in resource-limited oceanic waters, such as the Mediterra-

nean Sea.

Compared to those in free-living cells, the N/P ratios of the

symbiotic microalgae were 2-fold higher, especially in plastids

(p = 0.002, ANOVA; Figure 3I). This was mainly caused by the

lower P content of the plastids in the symbionts, since the N con-

tent was comparable in plastids of symbiotic and free-living cells

(p > 0.01; ANOVA; Figures 3G–3I). The P content in symbiotic mi-

croalgae could be two times lower than that in free-living cells,

and the plastids exhibited a significantly low P content with

respect to the cytosol (p < 0.05; ANOVA; Figures 3B and 3E).

By contrast, in free-living cells, P was homogeneously distrib-

uted and did not exhibit a lower concentration in the plastids

(Figure 3E; Data S1). As the non-storage P in algae is mainly con-

tained in RNA, followed by DNA and phospholipids [29, 30], sub-

cellular P mapping suggests that these molecules were present

in lower concentrations in symbiotic versus free-living microal-

gae. This could result from the increased primary productivity

of the symbiotic microalgae that must adjust their nutrient ho-

meostasis and/or from a lower availability of P in the symbio-

some compared to that in the culture medium (Table S2). We hy-

pothesize that the lower P content in symbiosis could reflect a

limitation imposed by the host to control the symbiont popula-

tion, as observed in reef photosymbioses [31, 32]. Under P limi-

tation, cell division is blocked, but carbon fixation is maintained

in some microalgae [33], which could be an optimal metabolic

strategy for the host. Consistent with this hypothesis, we did

not observe any Phaeocystis cell divisions within their hosts,

either from electron micrographs or by in vivo monitoring of iso-

lated host cells over 7 days (Figure S1), whereas Phaeocystis

cells in culture can divide every 6–7 h [34]. Inorganic P is scarce

in oceanic waters, particularly in theMediterranean Sea [35], and

the association with symbiotic microalgae with naturally low

phosphate requirements could be a selective pressure for the

host. ToF-SIMS molecular mapping of PO2
– and PO3

�, which

are characteristic phospholipid fragments [36], showed that

the phospholipids were barely present in the plastids of the sym-

biotic microalgae (Figures 4B and 4C). Consistent with this

finding, our lipidomics analyses revealed that free-living Phaeo-

cystis cells, maintained in a culture medium where P was not

limiting, contained an extremely low quantity of phospholipids

(Figure 4D). In plastids, their thylakoid membranes consist

mainly of non-phosphorous galactolipids (MGDG [monogalacto-

syldiacylglycerol] and DGDG [digalactosyldiacylglycerol]), and

their extra-plastidial membranes are mainly composed of the

non-phosphorus and N-containing betaine lipids (DGTA and

DGCC). In Phaeocystis, P requirements for thylakoid lipid

synthesis and high photosynthetic activity are therefore very

low, which is highly advantageous for a host to accommodate

a high number of plastids in an oligotrophic environment.

Yet in order to sustain the enhanced primary productivity of its

intracellular symbionts, the host must also deliver trace metals,

such as iron, which are driving photosynthesis in the oceans

[25, 37].

Altered Metal Homeostasis in Symbiotic Microalgae
Trace metals are essential for photosynthesis, N assimilation,

antioxidant protection, and other essential biochemical func-

tions of microalgae [37, 38]. The ecological success of the

A B C

D

Figure 4. Subcellular Distribution of Phos-

phorous-Containing Molecules in the Host

Acantharia and Lipid Composition of theMi-

croalga Phaeocystis

(A) Scanning electron microscopy (SEM) image

of a host acantharian cell containing endosymbi-

otic microalgae Phaeocystis artificially colored in

green; the scale bar represents 10 mm.

(B and C) Corresponding ToF-SIMS images of

the whole host cell showing the subcellular distri-

bution of the accumulated phosphate ions PO2
�

(m/z 62.98) and PO3
� (m/z 78.96) in blue, in lower

concentration in plastids of the symbiont Phaeo-

cystis (highlighted by green arrows); in red, the

ion fragment H2PO4
� (dihydrogen phosphate;

m/z 96.96) located mainly in two cytoplasmic

membranes of the host cell, and in green, nitrogen

(CNO�; m/z 42.01) in high concentration in the

symbiont plastids. The scale bar represents

20 mm.

(D) Lipidomics analyses showing the compo-

sition of glycerolipids (sulfolipids, galactolipids,

and phospholipids) in the free-living Phaeo-

cystis microalgae grown in a culture medium.

SQDG, sulfoquinovosyldiacylglycerol; MGDG and

DGDG, mono- and digalactosyldiacylglycerol,

respectively; PG, phosphatidylglycerol; PI, phos-

phatidylinositol; PE, phosphatidylethanolamine;

PC, phosphatidylcholine.

See also Figure S1 and Table S2.
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host-symbiont associationmust therefore rely on efficient mech-

anisms to uptake, sequester, and regulate the exchange of these

extremely low-concentrated nutrients in the ocean. Here, we

imaged and quantified the subcellular distribution of metals in

host and symbiont cells with Synchrotron X-ray fluorescence.

We found that the concentration of Fe in symbiotic microalgae

was twice as high (90 ± 23 ppm) as that in free-living microalgae

(44 ± 6 ppm) (Figure 5; Table S3). The higher concentration of Fe

in symbiotic microalgae was mainly due to the presence of large

Fe-rich vacuoles in the algal cytosol containing up to 660 ppm Fe

(420 ± 210 ppmon average) (Figures 5B and 5C; Figure S2; Table

S4). The same type of vacuole was also present in free-living mi-

croalgae, but these vacuoles were smaller, and their concentra-

tion of Fe was approximately decreased by 2-fold (160 ± 30 ppm)

(Figures 5A and 5F; Table S4). The individual plastids of free-

living and symbiotic Phaeocystis cells had similar Fe concentra-

tions. Since they possess large storage vacuoles and numerous

plastids, symbiotic microalgal cells contained substantially more

Fe (from 0.77 to 5.50 fg, calculated from the analyzed surface

area), than do free-living cells (0.25 ± 0.03 fg). This implies that

a significant quantity of Fe is delivered by the host, and once

sequestered in the intracellular microalgae, the homeostasis of

this essential yet toxic metal could be regulated through storage

vacuoles to minimize oxidative stress. In the host cell, Fe was

localized in high concentrations in specific subcellular structures

but was, on average, 2.5 times less concentrated (34 ± 6 ppm)

than in the symbiotic microalgae. Variability in metal homeosta-

sis between symbiotic and free-living forms was also found

for cobalt. Co was not detected in the free-living symbionts,

although this metal was present in the culture medium

(Table S2). By contrast, we detected Co in symbiotic microalgae

(25 ± 17 ppm), specifically in the nucleus, some organelles, and

the vacuole. In the latter cellular compartment, Co could be co-

localized in high concentrations (up to 400 ppm) with Fe (Fig-

ure 5F and Figure S2). In the host cell, Co was homogeneously

distributed in the cytoplasm (e.g., nucleus, Golgi apparatus)

and was present at higher concentration (68 ppm) than in

symbionts. For manganese, we found that the concentration

was higher in symbiotic microalgae (24 ± 8 ppm) than in the

host cell (11 ± 4 ppm) but was similar in free-living cells

(32 ± 16 ppm) (Figure 5E; Table S3).

Overall, the subcellular quantitative mapping of metals

showed that the metal homeostasis of microalgae was dramat-

ically altered in symbiosis, implying specific mechanisms by

which the host takes up and transfers these key elements to

intracellular symbionts. Fe deprivation is known to decrease

carbon fixation, N assimilation, and overall photosynthetic activ-

ity in microalgal cells [39]. We therefore hypothesize that the

A B C

D E F

Figure 5. Subcellular Distribution andQuantification of TraceMetals—Fe,Mn, andCo—in Free-Living and SymbioticMicroalgae by Synchro-

tron X-Ray Fluorescence

(A) In free-living Phaeocystis, Fe (red) is localized in the two plastids and in vacuoles (osmium showing the ultrastructure, green). The co-localization of Fe and Os

is indicated by the yellow color. (See also Tables S2–S4 and Figure S2.)

(B and C) In symbiosis, Fe concentration increases in Phaeocystis and is mainly stored in large vacuoles (yellow).

(D and E) Fe andMn concentration in the host cells (black bars) and in the symbiotic and free-living Phaeocystis cells (light and dark green bars, respectively) (see

also Table S3).

(F) Average S-XRF spectrum per pixel in subcellular compartments of Phaeocystis in free-living (dark green) and symbiotic (light green) stages, showing high Fe

concentration in vacuoles of symbiotic microalgae (light green circles), where cobalt (Co) is also present (see also Figure S2 and Tables S2 and S4).
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host provides Fe in order to satisfy the high needs of the well-

developed photosynthetic apparatus and antioxidant proteins

[37]. The exclusive presence of cobalt in the symbiotic stage

in the algal nucleus and vacuoles raises questions on the bio-

logical role of this element in the partnership. In microalgae,

Co can be not only the metal center of important enzymes,

such as carbonic anhydrase for C fixation [37], but also the

metal ligand of the essential vitamin B12 (cobalamin). Yet to fully

interpret metal homeostasis changes, future molecular analyses

should investigate the genes and proteins that are involved in

the transport and regulation of metals in free-living and symbi-

otic microalgae.

A B
C D

E F G H

L
KJI

Figure 6. Subcellular Distribution and Quantification of Sulfur in the Symbiotic Partners

(A) Scanning electron microscopy (SEM) images of the host-symbiont partnership (symbiotic microalgae Phaeocystis are artificially colored in green).

(B) Correlated Synchrotron X-ray Fluorescence (S-XRF) mapping of sulfur (red) and phosphorous (green) showing high sulfur concentration in microalgae

(indicated by green arrows). The scale bar represents 20 mm.

(C) Sulfur concentration (ppm) measured by S-XRF in the host cell (dark bar) and the free-living and symbiotic Phaeocystis cells (dark and light green,

respectively).

(D) Sulfur content (32S/12C2) in plastids of free-living and symbioticPhaeocystismeasured by nanoSIMS. Statistical analyseswere performed using ANOVA type-II

tests, and the 32S/12C2 was log-transformed (***p < 0.001, ANOVA test). (See also Data S1.)

(E) SEM image of a single symbiont cell with a bright round vacuole.

(F) Subcellular distribution of sulfur (32S�) in symbiotic Phaeocystis.

(G) RGB image showing the subcellular distribution of sulfur 32S� (red), nitrogen 12C14N� (green), and phosphorous 31P� (blue) in symbiotic cells.

(H) Lateral profiling across the plastid and vacuole of the symbiotic microalga (dashed line in D, E, and F) showing the contribution of the nutrients S, N, and P (red,

green, and blue solid lines, respectively).

(I) Subcellular distribution of nitrogen (12C14N�) in free-living Phaeocystis.

(J) Subcellular distribution of sulfur (32S�) in free-living Phaeocystis.

(K) RGB image showing the subcellular distribution of sulfur 32S� (red), nitrogen 12C14N� (green), and phosphorous 31P� (blue) in free-living cells.

(L) Lateral profiling across the free-living microalga (dashed line in I and J) showing the contribution of S, N, and P (red, green, and blue solid lines, respectively).

See also Tables S2 and S3, Figures S3 and S4, and Data S1.

974 Current Biology 29, 968–978, March 18, 2019



High Sulfur Concentration in Symbiotic Microalgae
Enhanced intracellular photosynthetic activity performed by

numerous plastids inevitably leads to the harmful production of

reactive oxygen species (ROS) and implies the existence of anti-

oxidant mechanisms. In microalgae, sulfur (S) metabolism plays

a key role in antioxidant protection with the production of several

S-containing compounds, such as glutathione and dimethylsul-

foniopropionate (DMSP), which are also key components of the

global S cycle of the ocean [40, 41]. Plastids have a central role in

sulfate uptake and the production of DMSP [42–44]. It has been

shown that the symbiont Phaeocystis can produce 100-fold

more DMSP than free-living microalgae [7, 45], consistent with

the notion that production of this compound increases with

photosynthesis [46]. Here, we showed that the S concentration

in symbiotic microalgae (2,400 ± 500 ppm) was 1.7 times higher

than that of their host (1,400 ± 300 ppm) and similar to that of

free-living microalgae (3,200 ± 400 ppm) (Figure 6; Table S3).

These concentrations may be underestimated, since small

S-molecules can be lost during sample preparation [47]. In

the microalgal cells, S was mainly contained in plastids and

cytoplasmic vacuoles (Figures 6E, 6L, and S3). In symbiosis,

the S content decreased in plastids and was mainly localized

in vacuoles, which increased in size (1.5–2 mm in diameter) and

contained up to 6.5 times more S than did the plastids

(compared to 2.5 times more in free-living cells). In these vacu-

oles, S was the major macronutrient, P was not present, and

N was very low, suggesting the absence of nucleic acids

and phospholipids and a low amount of S-containing amino

acids (Figures 6H and 6L). Based on previous evidence showing

that DMSP is the main S-containing molecule in microalgal cells

[48, 49] (i.e., representing more than 50% of the total organic S),

is stored in Phaeocystis vesicles [50], and is produced in high

amounts by symbiotic Phaeocystis, we speculate that these

S-rich vacuoles may contain DMSP. The antioxidant properties

of DMSP could reduce the oxidative stress of symbiotic Phaeo-

cystis, which would be consistent with the enhanced oxidative

stress scavenging during photosynthesis revealed by our photo-

physiology measurements (NPQ parameter, Figure 2B). The

capacity to reduce sulfur and produce different S-containing

compounds for intracellular antioxidant defense would enhance

the suitability of microalgae to be symbionts. It may also partially

explain why high-DMSP-producing red plastid lineages such as

haptophytes and dinoflagellates are prevalent photosymbionts

in oceanic waters [51].

Conclusions
This study shows that microalgae can be radically transformed

at themorphological andmetabolic levels following their integra-

tion into a host cell, a process that has not previously been re-

ported in other algal symbioses. Specifically, by combining

nanoscale imaging techniques and photophysiology, we provide

evidence that host cells engulf ecologically successful microal-

gal cells from the environment and subsequently block cell pro-

liferation without preventing plastid division to optimize the

photosynthetic machinery (multiplication of voluminous plastids

and thylakoids) for high productivity. In plants, the multiplication

of plastids has been recognized as a means of increasing the

surface exchange with the environment, in particular to enhance

CO2 diffusion [52]. The structural and functional changes of sym-

biotic microalgae are also paralleled by specific modifications

of the trophic micro-environment (e.g., Fe). Considering the

numerous N-rich plastids per symbiont cell and the low availabil-

ity of N in oceanic waters [25], the host must transfer a substan-

tial quantity of N to its intracellular symbionts. The recognized

capacity of acantharian hosts to heterotrophically feed on a va-

riety of prey could represent an essential source of N to sustain

the photosynthesis of its symbionts [53].

Overall, this study sheds light on the capacity of a heterotro-

phic host to exploit and engineer photosynthetic cells in the

ocean, and it paves the way for omics studies to fully understand

the molecular mechanisms of this algal remodeling. Our findings

challenge the common view of photosymbiosis as being mutual-

istic in nature. This Acantharia-Phaeocystis interaction could

rather be considered as farming or inverted parasitism of micro-

algal cells where the host largely benefits from the symbiosis.

This scenario is further supported by the fact that Phaeocystis

cells cannot be grown after the symbiotic stage, do not divide

within their host, and are very likely digested at the end of the

life cycle of their host [7]. Available evidence suggests that the

degree of host control seems to be less pronounced in other

photosymbioses (e.g., reef invertebrates, foraminiferans) since

the algal symbiont can divide within its host and can be grown

in culture or survive in natural seawater after the symbiotic stage

[6, 54]. In an evolutionary context, similar traits found in symbi-

otic Phaeocystis have been reported in Paulinella chromato-

phora, a recent primary endosymbiosis, where photosynthetic

organelles (chromatophores) are 15–20 times larger than in

free-living cyanobacteria [55, 56]. The Acantharia-Phaeocystis

symbiotic partnership could therefore reflect a possible route

for plastid acquisition where metabolic control of the host pre-

ceded the genetic integration and led to themorphological trans-

formation of the photosynthetic endosymbiont. Alternatively, the

expansion of the photosynthetic machinery in Paulinella and

Phaeocystis could represent a host strategy to increase the

photosynthetic yield while controlling a small number of symbi-

onts. A comparison with other abundant planktonic photosym-

bioses using high-resolution imaging combined with transcrip-

tomics and proteomics will certainly elucidate the different

facets of microalgae in photosymbiosis and shed light on key

evolutionary mechanisms in plastid acquisition.
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Johan

Decelle (johan.decelle@univ-grenoble-alpes.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Symbiotic acantharians harboring intracellular microalgal cells (Phaeocystis) were gently collected by towing a plankton net with a

large cod-end (1 L) for 1-2 min in surface waters (Mediterranean Sea, Villefranche-sur-Mer, France). After collection, the individual

cells were isolated under a microscope with a micropipette as in [7], rapidly transferred into natural seawater, and maintained in

the same controlled light (100 mmol photons m-2s-1) and temperature (20�C) conditions as the free-living stage. In parallel, cultures

of the haptophyte Phaeocystis cordata RCC 1383 (the symbiont of Acantharia in the Mediterranean Sea) [7] were maintained at 20�C
in K/5 culture medium and at 100 mmol photons m-2s-1. Nutrient concentrations of the free-living (culture medium K/5) and symbiotic

(natural seawater surrounding the host) conditions of microalgae are provided in Table S2.

METHOD DETAILS

Photophysiology measurements
Photosynthetic parameters were derived from chlorophyll fluorescence emission measured in cultures of the microalga Phaeocystis

cordata (free-living) (23 measures from triplicates) and pools of 80-100 acantharian cells containing symbiotic Phaeocystis (10 mea-

sures from triplicates). For measurements, we employed a fluorescence imaging setup previously described in [61]. The system was

modified by replacing the green LEDs for actinic light with red LEDs (emission peak 630 nm, Full Width at Half Maximum 40 nm), and

the acquisition setup was an ORCA flash 4.0 LT camera (Hamamatsu, Japan). The photosynthetic electron transfer rate, ETRPSII, was

calculated as the product of the light intensity times the photochemical yield in the light: I *(Fm’-F)/Fm’), where F and Fm’ are the

steady-state and maximum fluorescence intensities in light-acclimated cells, respectively, and I is the light irradiance in mmol

quanta *m-2 s-1 (see previous work [62] for more details). The light intensity was increased stepwise from 29 to 672 mmol quanta

*m-2 s-1. At each light intensity, the cells were allowed to reach steady state fluorescence emissions before increasing the photon

flux. Photosynthesis (ETR) - irradiance curves were then fitted with an exponential saturation function to evaluate the maximum

photosynthetic capacity (Pm), the initial slope (a: which is the photosynthetic efficiency under light levels close to zero), and the min-

imum photosynthetic saturation irradiance (Ek = Pm/ a) of free-living and symbiotic cells [24] (See Table S1). The photoprotective

responses were evaluated by measuring the non-photochemical quenching of fluorescence (NPQ [62]) using the fluorescence setup

described above. The NPQ was calculated as 1-(Fm’/Fm) where Fm is the maximum fluorescence emission in dark acclimated cells.

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Cultures of the microalga

Phaeocystis cordata

Roscoff Culture Collection RCC1383

Chemicals, Peptides, and Recombinant Proteins

Araldite Resin 502 Electron Microscopy Sciences Cat#13900

Software and Algorithms

GIMP software Open access https://www.gimp.org/

StackReg (ImageJ plugin) Open access http://bigwww.epfl.ch/thevenaz/stackreg/

3D Slicer [57] https://www.slicer.org/

MeshLab [58] http://www.meshlab.net/

PyMca [59] http://pymca.sourceforge.net/

Look@NanoSIMS [60] http://nanosims.geo.uu.nl/nanosims-wiki/doku.php/nanosims:lans

R package ‘‘car’’ Open access https://cran.r-project.org/web/packages/car/index.html

R package ‘‘DescTools’’ Open access https://cran.r-project.org/web/packages/DescTools/index.html

R package ‘‘rcompanion’’ Open access https://cran.r-project.org/web/packages/rcompanion/index.html

SurfaceLab 6.7 software ION-TOF GmbH https://iontof-download.com/login.php
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Sample preparation for electron microscopy and chemical imaging
Rapid freezing methods are recognized as superior to chemical fixation in preserving native-state cell ultrastructure and chemistry.

Symbiotic acantharians (host and algal symbionts) and free-living microalgae in culture (Phaeocystis cordata) were therefore cryo-

fixed using high-pressure freezing (HPM100, Leica) in which cells were subjected to a pressure of 210 MPa at �196�C, followed

by freeze-substitution (EM ASF2, Leica). Prior to cryo-fixation, the microalgal cultures were concentrated by gentle centrifugation

for 10min. This cryo-preparation is recognized as the most suitable method to preserve the native chemistry of cells, including highly

diffusible elements and trace elements [63–65]. For the freeze substitution (FS), a mixture of dried acetone and 1% osmium tetroxide

was used. The FSmachine was programmed as follows: 60-80 h at�90�C, heating rate of 2�Ch�1 to�60�C (15 h), 10-12 h at�60�C,
heating rate of 2�C h-1 to �30�C (15 h), and 10-12 h at �30�C. The cells were then washed several times in anhydrous acetone for

20min at�30�C. Subsequently, the cells were gradually embedded in anhydrous araldite, a resin that contains negligible levels of the

elements [66] and had been previously used in different analytical imaging studies [67–69]. A graded resin/acetone (v/v) series was

used (30, 50 and 70% resin) with each step lasting 2 h at increased temperature: 30% resin/acetone bath from�30�C to�10�C, 50%
resin/acetone bath from �10�C to 10�C, 70% resin/acetone bath from 10�C to 20�C. Samples were then placed in 100% resin for

8-10 h and in 100% resin with accelerator (BDMA) for 8 h at room temperature. Resin polymerization finally occurred at 65�C for

48 hours. The resin blocks and sections were stored in dry conditions before imaging. Prior to ultra-thin sectioning, symbiotic cells

were observed in the resin blockwith a binocular and an invertedmicroscope to define the region of interest and the z-position of cells

in the block, respectively. Trimming around the targeted cells was performed with razor blades and an EM Trimming Leica machine.

Semi-thin sections (200-400 nm thick) were then obtained using an ultramicrotome (Leica EM) with an ultra-diamond knife (Diatome)

and placed on 10-mm arsenic-doped silicon wafers for NanoSIMS and ToF-SIMS and on Si3N4 membrane windows for synchrotron

X-ray fluorescence. Adjacent sections of 60- to 80-nm thick were also obtained for TEM analysis. Resin sections were rapidly

collected on the water (< 30 s) of the diamond knife. Because it has been shown that some diffusible molecules and elements

can be lost at this step [70, 71], we visualized the distribution of highly-diffusible elements (chlorine, potassium and calcium) with

the synchrotron X-ray fluorescence. The presence of these mobile elements is a rule-of-thumb criterion to assess the chemical pres-

ervation of cells during the sample preparation [72, 73].

Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM)
For TEM analysis, ultrathin sections of 60 nm thickness were mounted onto copper grids or slots coated with formvar and carbon.

Sections were then stained in 1% uranyl acetate (10min) and lead citrate (5min). Micrographs were obtained using a Tecnai G2 Spirit

BioTwin microscope (FEI) operating at 120 kV with an Orius SC1000 CCD camera (Gatan). From the TEM images, the surface area

occupied by the thylakoid membranes in plastids of symbiotic (n = 86 plastids) and free-living (n = 113 plastids) cells was calculated.

To calculate this area, we performed amanual area of interest extraction using GIMP software. By applying an adaptive thresholding

technique, the pixels of the same greyscale were classified using computer vision library OpenCV linked to its python packages, and

the classified pixels were computed for statistical analyses. Moreover, SEM was used to locate the cells on the sections, verify

the quality of structural preservation, and identify the relevant regions of interest for subsequent chemical imaging with NanoSIMS,

ToF-SIMS and S-XRF. The SEM micrographs were acquired at an electron energy of 5 kV using the secondary electron detector of

the Zeiss Merlin VP Compact SEM at ProVIS.

Focused Ion Beam Scanning Electron Microscopy (FIB-SEM)
The sample was trimmed for FIB-SEM with a 90� diamond knife (Diatome) to expose cells at two surfaces (the imaging surface and

the surface perpendicular to the focused ion beam, FIB) in order to optimize the acquisition [74]. After the sample was trimmed, it was

mounted onto the edge of an SEM stub (Agar Scientific) using silver conductive epoxy (CircuitWorks) with the trimmed surfaces fac-

ing up and toward the edge of the stub. The sample was gold sputter coated (Quorum Q150RS; 180 s at 30 mA) and placed into the

FIB-SEM for acquisition (Crossbeam 540, Carl Zeiss Microscopy GmbH). Once the ROI was located in the sample, Atlas3D software

(Fibics Inc. and Carl Zeiss Microscopy GmbH) was used to perform sample preparation and 3D acquisitions. First, a 1-mm platinum

protective coat (20 mm x 20 mm) was deposited with a 1.5 nA FIB current. The rough trench was then milled to expose the imaging

cross-section with a 15 nA FIB current, followed by a polish at 7 nA. The 3D acquisition milling was done with a 1.5 nA FIB current. For

SEM imaging, the beam was operated at 1.5 kV/700 pA in analytic mode using an EsB detector (1.1 kV collector voltage) at a dwell

time of 8 ms with no line averaging. Datasets were acquired (8 nm pixel size and 8 nm steps) in z and aligned using the plugins

StackReg provided by the open source software ImageJ. Dataset quality improvement and noise reduction were performed by

3D median filtering using the SciPy python package. The segmentation and 3D models of cells were performed using the 3D Slicer

[57] and MeshLab [58] open source software packages.

Synchrotron X-ray fluorescence (S-XRF) imaging
S-XRF hyperspectral images were acquired on the ID21 and ID16B-NA beamlines of the European Synchrotron Radiation Facility

[75, 76]. Semi-thin sections (300 nm) were laid on Si3N4 membranes. On ID21, the incoming X-rays were tuned to the energy of

7.3 keV with a fixed-exit double crystal Si(111) monochromator and focused to 0.30 3 0.75 mm2 with a Kirkpatrick-Baez (KB) mirror

system, yielding a flux of 4.7$1010 ph/s. The experiment was performed under vacuum (10�5-10�4 mbar). The emitted fluorescence

signal was detected with energy-dispersive, large area (80 mm2) SDD detectors equipped either with polymer or with Be window

(XFlash 5100 from Bruker and SGX from RaySpec, respectively). Images were acquired by raster scanning the sample in the
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X-ray focal plane, with a 0.5 3 0.5 mm2 step and a 1 s or 500 ms dwell time. The detector response was calibrated over a thin film

reference sample consisting of layers of elements in ng/mm2 concentration sputtered on a 200-nm thick Si3N4 membrane (RF7-

200-S2371 from AXO), measured using the same acquisition parameters. Elemental mass fractions were calculated from funda-

mental parameters with the PyMca software package [59], assuming a biological matrix of light elements only (H, C, N, O). For

comparison between concentrations in different samples and sample areas (host versus symbiont, free-living versus symbiotic),

we performed the acquisitions in identical experimental conditions (Be-window detector, fixed detector-sample distance, 300 nm

cuts, 500 ms/pixel dwell time) to ensure the comparability of the results. Areas were chosen by manually selecting the pixels in

the region of interest and summing up their fluorescence signal; the sum spectrum normalized by the number of pixels was then

subjected to spectral deconvolution, and the peak areaswere converted inmass fractions. Three sections per samplewere analyzed,

and their average and standard deviation are reported in Table S3.

On ID16B-NA, a beam of 17.5 keV focused to 503 50 nm2 through KBmirrors (2$1011 ph/s) was used to excite X-ray fluorescence

from the samples. High-resolution XRF images (50 3 50 nm2 step size) were acquired in air, with a dwell time of 100 ms/pixel. Two

3-element SDD detector arrays were used to collect fluorescence from the sample. The detector response was calibrated over a thin

film reference sample (RF8-200-S2453 from AXO). High-resolution images were acquired for free-living (n = 4) and symbiotic (n = 6)

microalgae and in selected areas of the host (see also Table S4). Elemental quantification was extracted from fundamental param-

eters. To cross-check the consistency between data obtained with different experimental conditions (mm resolution and low excita-

tion energy versus nm resolution and high energy, on ID21 and ID16B-NA, respectively), the estimated Fe concentrations in free-living

Phaeocystis were compared: 44 ± 6 ppm (ID21) and 50 ± 5 ppm (ID16B-NA) lie within the error (see also Tables S3 and S4).

NanoSIMS acquisition and analyses
Semi-thin sections (200-300 nm) on silicon wafers were coated with 20-nm gold-palladium and analyzed with a nanoSIMS 50L

(Cameca, Gennevilliers, France) at the ProVIS Centre (UFZ Leipzig). A 16-keV Cs+ primary ion beam of 1–2 pA focused to approx-

imately 70 nmwas rastered over the sample area between 153 15 mm2 and 703 70 mm2 in size, with a dwelling time of 2ms/pixel in a

5123 512 or 10243 1024 pixel pattern, keeping the physical distance between pixels well below the beam size in order to avoid an

ion beam induced surface roughening. The analysis areas were defined based on previous SEM observation. Before analysis, each

area was pre-implanted with a 1 nA Cs+ ion beam for 1–2 min to equilibrate the yield of negative secondary ions. Multiple analysis

scans (up to 100) were recorded for each area. Secondary ions extracted from each pixel of the sample surface were analyzed for

their mass to charge (m/z) ratio and counted separately with 7 electron multiplier detectors. The mass resolving power (MRP) of the

spectrometer was set to 9000 (M/DM) to resolve isobaric interferences. Different secondary ions (12C14N, 31P or 31P16O2,
32S, 16O,

12C2 or
12C) were detected in simultaneous collectionmode by pulse counting to generate 10-100 serial maps of secondary ion count

for their further quantitative evaluation. The analyzed sample depth measured was between 50 nm and 200 nm.

For eachnanoSIMSsecondary ion countmap, the regionsof interest (ROI)weredefinedbymanual drawingwith the look@nanosims

software [60], and ion counts (normalized by scans and pixels number) and ratioswere calculated for eachROI (Data S1; Figure S4). In

total, nine microalgal cells in symbiosis from three different host cells were analyzed. Four classes of ROIs were defined: host cell,

wholemicroalgal cell (Phaeocystis), cytosol andplastid of themicroalgal cell. In addition, elevenmicroalgal cells in the free-living stage

were analyzed, where three ROIs classes were defined: entire cell, plastid of the alga and cytosol of the alga. Note that the cytosol of

themicroalgal cell can include the nucleus and vacuoles. In order to compare the relativeNandPcontent betweenhost, symbiotic and

free-living microalgae, the total ions counts of elements (e.g., 31P or 12C14N�) were normalized by the total ions counts of carbon (C2).

These analyses do not provide absolute quantification of N and P concentration but a comparison of the relative N and P content be-

tween ROIs of the algae and the host. For each ROI, the nitrogen, phosphorous and sulfur contents were therefore calculated by
12C14N/12C2,

31P16O2/12C2 and
32S/12C2, respectively. Similarly, the stoichiometric ratio N/P was estimated by 12C14N/31P16O2. For

comparison of different ROIs from the same acquisition, the homogeneity of variancewas tested using Levene’s test proposed in loo-

k@nanosims, and significant differences were tested using either the Kruskal-Wallis or ANOVA test. For cross-comparisons of

different acquisitions, statistical significance was evaluated by performing ANOVAswith type II tests to account for unbalanced data-

sets. To meet the assumptions for ANOVA analysis, 12C14N/12C2 was log-transformed, and Tukey’s Ladder for Power transformation

was applied to 31P16O2/12C2 and
12C14N/31P16O2. Confidence intervals were set to 95%. All statistical analyseswere carried out using

the R software (version 3.4.3, R Core Team 2017) with the packages ‘car’, ‘DescTools’ and ‘rcompanion’.

ToF-SIMS acquisition and analyses
Qualitative analysis of molecular composition was performed on uncoated semi-thin sections, employing the time-of-flight second-

ary ion mass spectrometry technique (ToF-SIMS) with a ToF-SIMS.5 (ION-TOF GmbH, Münster) instrument. The ToF-SIMS exper-

iment was performed using the imaging mode of ToF-SIMS.5 operation in combination with a delayed extraction [77] of negative

secondary ions, providing a mass resolving power (MRP) above 3000 and a lateral resolution of approximately 150 nm. In these

experimental conditions, the 30-keV NanoProbe LMIG source delivered 0.02 pA of primary Bi3
2+cluster ions in 100 ns pulses with

a 200 ms repetition period. The analysis has been done in 400 scans/plains with 5 shots of Bi3
2+ primary cluster ions per pixel distrib-

uted randomly in a 512x512 raster over a 56x56 mm2 sample area. 30 keV Bi3
+ ions from a NanoProbe source were employed for

analysis. The 110-ms repetition period of primary ion pulse delivered 0.03 pA of Bi3
+. The analysis was performed by rastering the

primary ion beam randomly in a 1024x1024 pixels pattern over a 110 3 110 mm2 sample area. Each shot of analysis Bi3
+ ion

beam was followed by sample charge compensation implemented with 12 eV electrons from flooding e-gun and 2 3 10�7 mbar
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partial pressure of Ar gas in the analysis chamber. The data were acquired in 306 planes. Each data plane was generated after 5

scans over the analysis area with 5 shots per pixel, and 5 keV [Ar]1757 cluster ions from aGCIB source were used for sample sputter-

ing in non-interlaced mode. The accumulation of acquired scans/plains was done after lateral drift correction, and the resulted total

stack was analyzed for lateral distribution of ion yield using the SurfaceLab 6.7 software (ION-TOF GmbH).

Lipidomics analyses
Cultures of Phaeocystis cordata were concentrated, cryofixed in liquid nitrogen and lyophilized. Once freeze-dried, the pellet was

suspended in 4 mL of boiling ethanol for 5 min to prevent lipid degradation and lipids were extracted according to Folch by addition

of 2 mLmethanol and 8mL chloroform at room temperature [78, 79]. Themixture was then saturated with argon and stirred for 1 hour

at room temperature. After filtration through glass wool, cell remains were rinsed with 3 mL chloroform/methanol 2:1, v/v and 5 mL of

NaCl 1%were then added to the filtrate to initiate biphase formation. The chloroform phase was dried under argon before solubilizing

the lipid extract in pure chloroform. Total glycerolipids were quantified from their fatty acids: in an aliquot fraction of extracted lipids, a

known quantity of 15:0 was added, and the fatty acids were converted into methyl esters (FAME) by a 1 hour incubation in 3 mL of

2.5% H2SO4 in pure methanol at 100�C [79]. The reaction was stopped by the addition of 3 mL of water and 3 mL of hexane. The

hexane phase was analyzed using a gas chromatography-flame ionization detector and mass spectrometry (GC-FID/MS) (Perkin

Elmer) on a BPX70 (SGE) column. FAME were identified by mass spectrometry and quantified by the surface peak method of the

FID signal using 15:0 for calibration. For quantification of each lipid class by LC-MS/MS analysis, a fraction of extracted lipids cor-

responding to 25 nmol was resuspended in 100 mL of chloroform/methanol (2:1 v/v) containing 125 pmol of internal standards and

analyzed as described in [80] or the total extract was re-suspended in 40 mL of chloroform/methanol (2:1 v/v) containing 50 pmol of

internal standards. Internal standard used for DAG, TAG, MGDG and DGDGwas DAG 18:0-22:6 from Avanti Polar Lipid. The internal

standard for PE was PE 18:0-18:0 from Avanti Polar Lipid, and the internal standard for PC, PI, PS, PA, DPG, PG and SQDG was

SQDG 16:0-18:0 extracted from spinach thylakoid [81] and hydrogenated as described before [82]. Lipids were then separated

by HPLC and quantified by MS/MS. The high-performance liquid chromatography (HPLC) separation method was adapted from

a previous study [83]. Lipid classes were separated using an Agilent 1200 HPLC system using a 150 mm 3 3 mm (length 3 internal

diameter) 5-mm diol column (Macherey-Nagel) at 40�C. The mobile phases consisted of hexane/isopropanol/water/ammonium

acetate 1 M, pH 5.3 [625/350/24/1, (v/v/v/v)] (A), and isopropanol/water/ammonium acetate 1 M, pH 5.3 [850/149/1, (v/v/v)] (B).

The injection volume was 20 mL. After 5 min, the percentage of B was increased linearly from 0% to 100% over 30 min and stayed

at 100% for 15 min. This elution sequence was followed by a return to 100% A in 5 min and an equilibration for 20 min with 100%

A before the next injection, leading to a total run time of 70 min. The flow rate of the mobile phase was 200 mL/min. The distinct

glycerolipid classes were eluted successively as a function of the polar head group. Mass spectrometric analysis was done on a

6460 triple quadrupole mass spectrometer (Agilent) equipped with a Jet stream electrospray ion source under the following settings:

drying gas heater, 260�C; drying gas flow 13 L.min-1; sheath gas heater, 300�C; sheath gas flow; 11 L.min-1; nebulizer pressure,

25 psi; capillary voltage, ± 5000 V; nozzle voltage, ± 1000. Nitrogen was used as collision gas. The quadrupoles Q1 and Q3 were

operated at widest and unit resolution respectively. PC, DGTA and DGCC analysis were carried out in positive ion mode by scanning

for precursors of m/z 184, 236 and 104 at collision energies (CE) of 34 eV, 52 eV and 40 eV, respectively. SQDG analysis was carried

out in negative ion mode by scanning for precursors of m/z �225 at a CE of �56 eV. PE, PI, PG, MGDG and DGDG measurements

were performed in positive ion mode by scanning for neutral losses of 141 Da, 277 Da, 189 Da, 179 Da and 341 Da at CEs of 20 eV,

12 eV, 16 eV, 8 eV and 8 eV, respectively. Quantification was performed using multiple reaction monitoring (MRM) with a 40-ms dwell

time. Mass spectra were processed by MassHunter Workstation software (Agilent) for the identification and quantification of lipids.

Lipid amounts (pmol) were corrected for response differences between internal standards and endogenous lipids and by comparison

with a quality control (QC). TheQC extract corresponded to a knownPhaeodactylum tricornutum lipid extract qualified and quantified

by TLC and GC-FID as previously described [80].

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis and graph production were performed using R with specific libraries mentioned above. For nanoSIMS data,

the homogeneity of variance was tested using Levene’s test proposed in the software look@nanosims, and significant differences

were tested using either the Kruskal-Wallis or ANOVA test. For cross-comparisons of different nanosims acquisitions, statistical

significance was evaluated by performing ANOVAs with type II tests to account for unbalanced datasets based on 17 plastids of

12 free-living microalgae and 45 plastids of 10 symbiotic microalgae. To meet the assumptions for ANOVA analysis, 12C14N/12C2

was log-transformed, and Tukey’s Ladder for Power transformation was applied to 31P16O2/
12C2 and

12C14N/31P16O2. Confidence in-

tervalswere set to 95%.Statistical analyseswerecarriedout using theRsoftware (version 3.4.3,RCoreTeam2017)with thepackages

‘car’, ‘DescTools’ and ‘rcompanion’. For the photophysiologymeasurements, 23measures were conducted on cultures of free-living

Phaeocystis in triplicate, and 10 measures on three pools of 80-100 acantharian cells containing symbiotic Phaeocystis (triplicate).

Samples for lipidomics analyses were composed of two biological and three technical replicates. Synchrotron X-ray fluorescence

was performed on 21 free-living Phaeocystis cells and 11 symbiotic Phaeocystis cells from three different host cells (Table S3). On

the high resolution S-XRF beam line, four free-living and six symbiotic microalgae were also analyzed (see also Table S4).
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148 Appendix A. Appendices

A.2 Cytoklepty in the plankton: a host strategy to optimize
the bioenergetic machinery of endosymbiotic algae

Summary

Endosymbioses have shaped the evolutionary trajectory of life and remain widespread
and ecologically important. Investigating modern oceanic photosymbioses can illumi-
nate how algal endosymbionts are energetically exploited by their heterotrophic hosts,
and inform on putative initial steps of plastid acquisition in eukaryotes. By combining
3D subcellular imaging with photophysiology, carbon flux imaging and transcriptomics,
we show that cell division of algal endosymbionts ( Phaeocystis) is blocked within hosts
(Acantharia), and that their cellular architecture and bioenergetic machinery are rad-
ically altered. Transcriptional evidence indicates that a nutrient-independent mecha-
nism prevents symbiont cell division and decouples nuclear and plastid division. As
endosymbiont plastids proliferate, the volume of the photosynthetic machinery volume
increases 100-fold in correlation with expansion of a reticular mitochondrial network
in close proximity to plastids. Photosynthetic efficiency tends to increase with cell size
and photon propagation modeling indicates that the networked mitochondrial architec-
ture enhances light capture. This is accompanied by 150-fold higher carbon uptake and
upregulation of genes involved in photosynthesis and carbon fixation, which, in con-
junction with a ca.15-fold size increase of pyrenoids demonstrates enhanced primary
production in symbiosis. NanoSIMS analysis revealed major carbon allocation to plas-
tids and transfer to the host cell. Invagination of the symbiosome into endosymbionts
to optimize metabolic exchanges is strong evidence that the algal metamorphosis is ir-
reversible. Hosts therefore trigger and unambiguously benefit from major bioenergetic
remodeling of symbiotic microalgae with important consequences for the oceanic carbon
cycle. Unlike other photosymbioses, this interaction represents a so-called cytoklepty,
which is a putative initial step towards plastid acquisition.

Keywords: symbiosis, oceanic plankton, 3D electron microscopy, photosynthesis,
single-cell, transcriptomics.
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Abstract 

Endosymbioses have shaped the evolutionary trajectory of life and remain widespread and 

ecologically important. Investigating modern oceanic photosymbioses can illuminate how algal 

endosymbionts are energetically exploited by their heterotrophic hosts, and inform on putative 

initial steps of plastid acquisition in eukaryotes. By combining 3D subcellular imaging with 

photophysiology, carbon flux imaging and transcriptomics, we show that cell division of algal 

endosymbionts (Phaeocystis) is blocked within hosts (Acantharia), and that their cellular 

architecture and bioenergetic machinery are radically altered. Transcriptional evidence indicates 

that a nutrient-independent mechanism prevents symbiont cell division and decouples nuclear 

and plastid division. As endosymbiont plastids proliferate, the volume of the photosynthetic 

machinery volume increases 100-fold in correlation with expansion of a reticular mitochondrial 

network in close proximity to plastids. Photosynthetic efficiency tends to increase with cell size 

and photon propagation modeling indicates that the networked mitochondrial architecture 

enhances light capture. This is accompanied by 150-fold higher carbon uptake and upregulation 

of genes involved in photosynthesis and carbon fixation, which, in conjunction with a ca.15-fold 

size increase of pyrenoids demonstrates enhanced primary production in symbiosis. NanoSIMS 

analysis revealed major carbon allocation to plastids and transfer to the host cell. Invagination of 

the symbiosome into endosymbionts to optimize metabolic exchanges is strong evidence that the 

algal metamorphosis is irreversible. Hosts therefore trigger and unambiguously benefit from major 

bioenergetic remodeling of symbiotic microalgae with important consequences for the oceanic 

carbon cycle. Unlike other photosymbioses, this interaction represents a so-called cytoklepty, 

which is a putative initial step towards plastid acquisition. 
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Introduction  

Living with intracellular microalgae (photosymbiosis) is a globally widespread and ecologically 

important lifestyle. In marine benthic ecosystems, a wide diversity of animals (e.g. cnidarians, 

molluscs) host photosynthesizing microalgae in their tissues, sustaining coral reef habitats and 

their associated biodiversity worldwide. In the oceanic plankton, various unicellular heterotrophic 

eukaryotes (e.g. radiolarians, foraminiferans) also establish symbioses with intracellular 

microalgae (1, 2). These ubiquitous organisms contribute significantly to primary production (3) 

and carbon sequestration from surface waters to the deep sea (4–7). Photosymbioses are 

generally recognized as mutualistic partnerships with hosts providing nutrient-rich and protective 

microhabitats to algal symbionts, which in return provide energy-rich compounds produced via 

photosynthesis (e.g. sugars, lipids; (8)). This metabolic crosstalk between a heterotroph and an 

autotroph provides a competitive advantage in nutrient-poor habitats, such as the open ocean. 

However, it is difficult to demonstrate whether photosymbioses confer evolutionary advantages 

on algal symbionts, particularly in marine planktonic symbioses, which cannot be cultured in 

laboratory conditions and where the costs and benefits for each partner are not clearly defined 

(9). Therefore, whether photosymbioses are true mutualistic partnerships has long been debated 

(10).  

 

In the evolutionary history of eukaryotes, photosymbiosis is recognized as a preliminary step 

leading to plastid acquisition and spread across photosynthetic lineages (11, 12). Interactions 

between host and endosymbiont evolved into inverted parasitism whereby the host exploited a 

prokaryotic (primary endosymbiosis) or plastid-bearing eukaryotic symbiont (secondary or tertiary 

endosymbiosis), leading to gradual cellular and genomic reduction of the symbiont and ultimately 

plastid acquisition by the host (13–15). However, the underlying cellular mechanisms that allow a 

host cell to take control and manipulate the bioenergetics of intracellular microalgae remain 

unknown. Several relevant models have been studied, but reduction of the microalgal cell and 

horizontal gene transfer to the host has already occurred in each of them (e.g. kleptoplastidy in 

dinoflagellates (16), Paulinella chromatophora (17)). Studying contemporary unicellular 

photosymbioses involving intact microalgae has the potential not only to lead to a better 

understanding of their ecological success in the ocean but also to provide evolutionary insights 

into the putative first steps of plastid acquisition and underlying host control.  

 

The cosmopolitan planktonic photosymbiosis between acantharian hosts and intact microalgae 

(Phaeocystis spp., Haptophyta) is characterized by a morphological transformation of symbionts, 
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wherein algal cell volume increases dramatically and there is a multiplication of enlarged plastids 

(18, 19). Free-living Phaeocystis cells can reach high population densities in many oceanic 

regions (20, 21), thus confounding any evolutionary advantages symbiosis may confer on this 

microalga. Conversely, the ecological success of free-living Phaeocystis benefits hosts since it 

increases opportunities to capture new symbionts throughout the life cycle (22). Hence, 

Acantharia-Phaeocystis photosymbioses are potentially exploitive symbioses with intact symbiont 

cells and represent an ideal system to investigate this oceanic interaction and bring new insights 

into the early transitional stages of more permanent algal endosymbioses.  

 

To elucidate mechanisms involved in host exploitation of algal cells and the putative initial steps 

of plastid acquisition, the structural, physiological, and genetic changes of symbiotic microalgae 

need to be explored at the subcellular and molecular level. Here, the subcellular architecture of 

Phaeocystis cells outside (i.e. free-living in culture) and inside host cells was reconstructed in 3D 

to quantify structural changes of energy-producing organelles (plastid, mitochondria) and their 

interactions. In parallel, single-cell transcriptomics compared Phaeocystis gene expression in 

free-living and symbiotic stages. This combination of quantitative subcellular imaging and 

transcriptomics showed that the cell cycle of endosymbiotic microalgae is halted and the 

bioenergetic machinery is drastically enhanced. We observed a proliferation of plastids with 

enlarged pyrenoids and correlated extension of reticulated mitochondria in symbionts, 

accompanied by the upregulation of genes involved in photosynthesis and central carbon 

pathways. Photophysiology, photon propagation modeling and carbon flux imaging further 

demonstrated that algal energy production is significantly enhanced, leading to increased 

production of organic carbon, which is allocated to plastids and transferred to the host cell. This 

study deciphers mechanisms on how a microalgal cell is morphologically, metabolically and 

transcriptionally modified and ultimately exploited by a heterotrophic host cell in the oceanic 

plankton (i.e. cytoklepty).  

 

Results and Discussion  
Phaeocystis cell division is inhibited in symbiosis 

Using 3D electron microscopy (FIB-SEM: Focus Ion Beam - Scanning Electron Microscopy), we 

reconstructed and performed morphometric analyses of the subcellular architecture of the 

microalga Phaeocystis in the free-living (n = 20 cells) and endosymbiotic stage within two distinct 

acantharian hosts (n = 7 cells) (Fig. 1, Dataset S1). Alongside the disappearance of flagella and 

external scales, the total volume of symbiotic Phaeocystis cells increased 6- to 78-fold compared 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.416644doi: bioRxiv preprint 



 

to free-living cells and accommodated more organelles and larger vacuoles (Figs. 1 and 2). Such 

a dramatic increase in cell size indicates that Phaeocystis cell-division could be blocked while 

living symbiotically (23, 24). Consistent with this hypothesis, single-cell transcriptome analysis on 

twelve distinct hosts revealed that key Phaeocystis genes involved in DNA replication and 

progression through cell cycle stages (G1, S, G2, M) were downregulated in symbiosis (Fig. 2 

and Fig. S1), including genes for DNA polymerase complexes, cyclins, cyclin-dependent kinases, 

and the anaphase-promoting complex. Additionally, nuclear volume increased in symbiotic cells 

up to 32-fold (Fig. 2, Dataset S1), although its relative occupancy decreased from 9.3 ± 1.6% in 

free-living cells to 4.7 ± 2% in symbiosis (Fig. 1D). Taking advantage of the varying electron 

densities of compartments within the nucleus, we separately quantified the volumes of the 

nucleolus (site of ribosome genesis) (25) and, eu- and hetero-chromatin (sites of DNA replication 

and gene expression) (26). The volume of these three nuclear compartments concomitantly 

increased in symbiosis (20-fold for the nucleolus, 18-fold for the heterochromatin, 23-fold for 

euchromatin) and their volume ratios remained relatively stable (Fig. S1, Dataset S1). While there 

is no reorganization of chromatin in symbiosis, the overall increase of its volume suggests that 

symbionts accumulate DNA. DNA synthesis occurs in symbiosis, but the final steps of mitosis and 

cytokinesis are prevented. Increased cell and nuclear volume alongside downregulation of DNA 

replication and cell-cycle pathways compile strong evidence for inhibited cell division in symbiotic 

Phaeocystis.  

  

Preventing symbiont cell division is a host strategy for managing symbiont populations and limiting 

symbiont overgrowth (27). Hosts can regulate symbiont cell-division by controlling access to 

essential nutrients (e.g. nitrogen and phosphorus) (28), which has been previously hypothesized 

for the Acantharia-Phaeocystis symbiosis. We therefore investigated the expression level of 

marker genes for nutrient deprivation in microalgae: alkaline phosphatase genes for phosphorus 

limitation (29–31) and nitrate transporter genes for nitrogen limitation (28, 32, 33). Alkaline 

phosphatase genes  (phoA and ehap1-like) that were expressed by free-living cells cultured in 

nutrient replete conditions were generally not expressed at detectable levels in symbionts, and 

the nitrate transporter gene (Nrt) was significantly downregulated in symbiotic cells compared to 

free-living cells (Fig. 2). Hence, symbiotic Phaeocystis in the host microhabitat does not appear 

to be limited by these major essential nutrients, despite very low nutrient availability in the waters 

from which hosts were collected. This is further supported by the increased nucleolar volume 

observed in symbiotic cells (Fig. S1), which reflects high rDNA transcription rates (34) and thus 

increased ribosome production and protein translation—that are processes typically reduced 
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under N-limitation (35). Similarly, the Translation, Translation initiation, and Protein folding GO 

terms, as well as the Ribosome KEGG pathway, were enriched among the significantly 

upregulated genes in symbiosis (Fig. S2, Dataset S1). Furthermore, the assimilatory nitrite 

reductase gene (NirA) was downregulated in symbiosis. In contrast, genes responsible for 

ammonia assimilation (GS-GOGAT, CPS1) were upregulated (Fig. 2D), indicating that ammonium 

may be readily available to symbionts, as has been shown in several other photosymbioses (36–

38). Together, these results suggest that acantharian hosts may rely on a nutrient-independent 

mechanism to inhibit symbiont cell division and manage intracellular symbiont populations, a 

strategy that would give hosts finer control over symbionts while ensuring maximal symbiont 

productivity. 

 

Enhanced photosynthesis and carbon fixation in symbiosis 

Free-living, flagellated Phaeocystis cells usually have two plastids (Figs. 3A and S3). In symbiotic 

cells, there is a proliferation of enlarged plastids (18), and in this study, we observed 4–65 plastids 

in individual symbiotic Phaeocystis cells. 3D reconstructions allowed us to further determine that 

plastids occupied 42–62% of the total volume of symbiotic cells, compared to 31% in free-living 

cells, and that both the total volume and surface area of the photosynthetic machinery expanded 

up to app. 100 fold (Figs. 1 and 3, Dataset S1). In single-celled algae, plastid division is typically 

synchronized with cell division and is initiated by expression of nuclear-encoded plastid division 

genes during S-phase of the cell cycle (39). Several of these genes (FtsZ, DRP5B, and PDR1) 

were expressed at similar levels in symbiotic and free-living cells (Fig. S4), despite cell-cycle 

genes being significantly downregulated in symbiosis. Moreover, 3D reconstructions of symbiotic 

cells revealed several plastids in the process of dividing (Fig. S4). Continued plastid division 

without consequent cell division leads to the accumulation of plastids and indicates that plastid 

division has become decoupled from cell division in symbiotic Phaeocystis. Symbiotic cells may 

therefore be arrested in S-phase, thus allowing plastids to proliferate and explaining the build-up 

of chromatin, but ultimately keeping symbiont population density constrained.  

  

In plants, plastid proliferation increases photosynthesis more efficiently than plastid enlargement 

and is recognized as a means of increasing surface exchange, particularly for CO2 diffusion (40). 

Here, we found that the photosynthesis GO term and KEGG pathway were both enriched among 

genes upregulated in symbiotic Phaeocystis cells (Fig. S2). To further test whether morphological 

and transcriptional changes in symbiotic cells enhanced photosynthesis, we assessed the 

relationship between cell size (a proxy for number of chloroplasts) and photosynthetic efficiency 
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by analyzing photosynthetic parameters in vivo at the single-cell level. We found that 

photosynthetic capacity increased rapidly with cell size until size had doubled, at which point, 

further increase in photosynthetic capacity was limited (Fig. 3B). This suggests that increased cell 

size, and therefore expanded photosynthetic machinery, enhances photosynthesis in 

Phaeocystis. The presence of small and large algal cells within a host indicates that Phaeocystis 

cells with different photosynthetic capacity coexist (Fv/Fm ranging from 0.4 to 0.78). The smallest 

symbiotic algae had Fv/Fm values lower than those measured in free-living cells (0.54 ± 0.02). 

These algae could represent an early stage during the establishment of symbiosis, in which 

photosynthesis is transiently repressed. 

 

Expansion of the photosynthetic machinery in symbiotic Phaeocystis should be accompanied by 

increased carbon fixation and production of organic compounds. Carbon uptake was measured 

in free-living Phaeocystis cells and symbiotic Phaeocystis within their host incubated with 13C-

bicarbonate for one hour. We found that symbiotic Phaeocystis cells took up approximately 150 

times more 13C (0.70 ± 0.19 pg of 13C.cell-1) than free-living cells (0.0043 ± 0.0004 pg of 13C.cell-

1) (Dataset S2). Consistent with this, nearly all nuclear-encoded genes for Calvin-Benson cycle 

enzymes were upregulated in symbiosis (Fig. 3D). To further explain enhanced carbon fixation in 

symbiotic Phaeocystis, we resolved the internal organization of pyrenoids within plastids. 

Pyrenoids contain the majority of the Rubisco enzyme in plastids and separate it from the 

surrounding, more basic stroma to maximize the enzyme’s efficiency and, therefore, the cell’s 

carbon fixation potential (41). We found that the volume of pyrenoids increased 15 fold from 0.08 

± 0.02 µm3 in free-living cells (n = 27 plastids, 14 cells) to 1.2 ± 0.6 µm3 in symbionts (n = 74 

plastids, 7 cells) and that they occupied a larger proportion of plastid volume (13 ± 2.8% in 

symbiotic cells compared to 5 ± 1.6% in free-living cells, Fig. 3C, Fig. S5, Dataset S1). A 

consequence of enlarged pyrenoids in symbiosis is that their surface area:volume ratio inherently 

decreases (Fig. S5), potentially increasing the diffusion barrier for gas and metabolite exchange. 

Thylakoid tubules deliver CO2 to Rubisco and transport glycerate-3-phosphate product to the 

stroma, where the remainder of the Calvin-Benson cycles occurs (42, 43). In symbiosis, pyrenoids 

were always crossed by multiple tubules, whereas pyrenoids in free-living cells either lacked 

tubules (type 1) or were crossed by one small tubule (type 2) (Fig. 3C). When present, tubules in 

the pyrenoids of free-living cells were 9.5 times less voluminous than those in symbiotic cells. We 

hypothesize that multiple tubules in the pyrenoids counterbalance the lower surface area: volume 

ratio in symbiosis and maintain optimal delivery of CO2. These fine-scale changes in pyrenoid 
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structure, alongside upregulation of Calvin-Benson cycle genes, explain the mechanisms 

underpinning enhanced carbon fixation in symbiotic Phaeocystis.   

 

Symbionts may themselves take advantage of the additional organic carbon produced from 

enhanced carbon fixation—either immediately or after synthesizing storage molecules—or they 

could transfer the additional fixed carbon to hosts. Based on the transcriptome analyses, 

symbiotic cells do not seem to be storing more fixed carbon than free-living cells. Key genes for 

the biosynthesis of triacylglycerol (TAG)—the preferred storage molecule among microalgae in 

oligotrophic regions (44)—were downregulated in symbiosis, including those for acyl-CoA binding 

proteins and acyltransferases that are involved in the production of TAG precursors (e.g. 

phosphatidic acid) and diacylglycerol transferase (DGAT), which performs the terminal step in 

TAG synthesis (Fig. 3E). Likewise, starch synthase was significantly downregulated in symbiosis 

(Fig. 3E). Symbiotic cells may store less carbon than free-living cells and instead produce ATP to 

meet energetic requirements (plastid division, protein synthesis) and relinquish surplus 

photosynthate to hosts. NanoSIMS analyses incorporating a 5-hour incubation with 13C-labelled 

bicarbonate on four algal cells from two distinct hosts showed that symbiotic Phaeocystis cells 

mainly allocated carbon to their multiple plastids and small vacuoles (Fig. 3F, Fig. S6). These 

analyses also demonstrated that photosynthetically fixed carbon is transferred to the host cell 

(Fig. 3F), thus providing direct evidence that the host benefits from the boosted primary production 

of its symbiotic microalgae. 

 

Transformation of the mitochondria into a reticulated fine network connected to 

plastids 

Like plastids, mitochondria underwent an extensive expansion in symbiosis, forming a well-

developed fine reticular network with mitochondrial volume and surface area increasing up to 52 

and 47 fold, respectively (Fig. 4A, Dataset S1). Such reticular and fused networks are 

characteristic of actively respiring cells in eukaryotes (45). Yet, in relation to cell volume, the 

contribution of mitochondria was relatively constant (from 5.3 ± 1.5% in free-living to 3.3 ± 0.6% 

in symbiosis) (Fig. 1C and Dataset S1). At the sub-organelle level, the total volume of 

mitochondrial cristae (i.e. membrane invaginations, which are respiratory units), increased by up 

to 38-fold in symbiosis, but volume occupancy was similar in both stages (17.4 ± 3.9% in free-

living and 16.3 ± 2.1% in symbiosis) (Fig. S7). The GO terms for Respiration and Oxidative 

phosphorylation were enriched among genes downregulated in symbiosis (Fig. S2) and the 

majority of genes in the TCA cycle and respiratory oxidative phosphorylation KEGG pathways 
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were downregulated in symbiosis (Fig. S8). The morphology of the mitochondria and 

downregulation of respiratory pathways indicates that symbiotic cells may not respire at a higher 

rate than free-living cells. The mitochondria may, therefore, have a different primary role in 

symbiotic cells.  

Other metabolic functions could provide a functional rationale for the morphological modification 

of mitochondria in symbiotic Phaeocystis. Mitochondrial interaction with plastids is an essential 

aspect of the bioenergetics of photosynthetic cells (46–48). In symbiotic Phaeocystis, 

mitochondrial volume tended to increase as plastid volume increased (R2 = 0.74, p = 4.8 E10-11), 

whereas this relationship was not observed for free-living cells (R2 =0.07, p = 0.38) (Fig. 4B). We 

further found that mitochondrial surface area in contact with plastids (≤ 50 nm distance) increased 

from 2.63 ± 2.1% in free-living (n = 14 cells) to up to 8.8 % in the largest symbiotic cell that was 

imaged (65 plastids, Fig. 4A, Dataset S1), with mitochondria interacting with multiple plastids in 

symbiotic cells. This indicates that the expansion of the reticulated mitochondria is likely related 

to plastid proliferation, where mitochondria may serve to maintain minimal diffusion distance 

between the two organelles and ensure optimal metabolic exchange (e.g. lipids, ammonium, ATP; 

(47, 48)). Consistent with this possibility, a brief incubation with mitochondrial inhibitors (Antimycin 

A, Salicylhydroxamic acid) at concentrations blocking respiration (47) decreased the Fv/Fm in 

symbiosis to 0.55 ± 0.05 (Fig. 4C). We interpret this observation in terms of a reduction of the 

electron acceptors between the two photosystems, due to increased cellular reducing power upon 

blocking consumption of reducing equivalents by the respiratory chain, as shown in other 

microalgae (49). This effect of inhibitors was less pronounced in free-living cells, indicating less 

interaction between the two organelles in this life stage. Overall, these results show that 

mitochondria contribute to the enhanced physiological performance of symbiotic Phaeocystis. 

Symbiont photosynthesis within multicellular hosts is strongly affected by the light scattering 

properties of cells (50, 51). At the cellular level, mitochondria are known to be efficient light 

scatterers (52). We, therefore, tested whether the well-developed mitochondrial network of 

symbiotic cells could improve light distribution for photosynthesis. We used Finite-Difference-

Time-Domain (FDTD) calculations to model the 3D light propagation in free-living (2 plastids) and 

symbiotic cells (16 plastids) using the 3D architectures of plastids and mitochondria. We observed 

that the reticular mitochondrial network homogeneously distributed the incident electric field due 

to its high scattering cross-section and intricate spatial distribution (Fig. 4D). Contrary to scattering 

in free-living microalgae, which is small and unidirectional with the incident light, the reticular 

mitochondrial network of symbiotic microalgae increases the photon pathlength within the algal 
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cell (Fig. 4D and Fig. S9), consequently enhancing the chance of light absorption (51). Thus, 

mitochondria-induced light scattering may contribute to the optimized photosynthetic performance 

of Phaeocystis in symbiosis. This is consistent with earlier measurements, showing that symbiotic 

cells have improved photosynthetic efficiency under limiting light (the initial slope 𝛂 of the 

photosynthesis-irradiance curve, (18)) than their free-living counterparts.  

Physical integration of microalgae into the host cell: symbiosome invagination into 

symbionts 

In photosymbioses, hosts phagocytize microalgal cells from the environment and maintain them 

individually in a vacuole, or symbiosome, where metabolic exchanges take place. For small 

symbiotic Phaeocystis cells, the symbiosome surrounds the microalgal cell as observed in other 

photosymbioses (53) (Fig. 5A). Remarkably, in larger symbiotic cells (> 31 plastids), an 

invagination of the symbiosome vacuole into the microalgal cell was observed in different  host 

cells (Fig. 5B). This invagination can represent a volume of up to 139.4 µm3 (one-fifth of symbiont 

volume) with a tendency to increase with symbiont size (Fig. 5C). We predict that symbiosome 

invagination maintains/optimizes metabolic exchanges with very large symbionts that would 

otherwise have decreased surface area for exchange. Of note, small vesicles were visible in the 

symbiosome space around symbionts, as well as within the invaginated symbiosome in larger 

symbionts (Fig. 5A and 5B). These vesicles could represent a route for transfering photosynthetic 

products from symbiont to host or metabolites and signaling molecules from host to symbiont. 

Indeed, free-living Phaeocystis are often considered “secretory cells” because they excrete 

vesicles rich in organic carbon (polysaccharides) into the environment (54). Penetration of the 

symbiosome represents a profound morphological manipulation and adds compelling evidence 

for the concept that symbionts are too far changed to return to their free-living form. Thus, the 

acantharian host hijacks and parasitizes the microalgal cell, ultimately performing “cytoklepty”. 

Cytoklepty can be defined as an evolutionarily one-sided endosymbiosis, in which the host 

captures and physiologically exploits endosymbionts, which eventually die and must be replaced 

by uptake of new endosymbionts from a wild population. 

 

Conclusions The combination of nanoscale imaging with single-cell transcriptomics in this study 

illuminates the drastic morpho-genetic manipulation of endosymbiotic microalgae involved in a 

globally distributed and ecologically relevant photosymbiosis. Acantharian hosts prevent 

Phaeocystis cell division, leading to a complete cellular overhaul that improves symbiont 

bioenergetic performance, enhances photosynthesis and carbon fixation, and ultimately results in 
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substantial organic carbon production and transfer to hosts. More specifically, there is a structural 

remodeling of the bioenergetic machinery at multiple scales within the algal cell: plastids 

proliferate and pyrenoids develop with an immersed thylakoid network, which is accompanied by 

an extension of reticulated mitochondria that maintains contact with plastids and optimizes light 

distribution within the algal cell. These modifications are clearly beneficial to single-celled 

planktonic hosts, which gain an additional energy source and avoid symbiont overgrowth. The 

observation that host symbiosomes intrude into symbiont cells is unique among marine 

photosymbioses and provides new evidence supporting the idea that the metamorphosis of 

Phaeocystis is unidirectional, making the relationship an evolutionary dead-end for symbionts. 

Such extreme manipulation of microalgae suggests that this relationship, named cytoklepty, may 

represent a first step toward a more complete integration of endosymbionts.  

 

Aspects of the symbiont remodeling observed here, such as hypertrophy of the photosynthetic 

machinery, are also observed in the Paulinella chromatophora endosymbiosis, the most recent 

known example of primary plastid acquisition (55), and in the Hatena endosymbiosis, a 

contemporary example of secondary endosymbiosis in progress (56). Expansion of the 

photosynthetic machinery may, therefore, represent a common stepping stone towards plastid 

acquisition. Enlarged nuclei and increased genome ploidy, observed here and in several 

examples of kleptoplastidy, may represent another commonality in plastid acquisition that serves 

to support photosynthetic expansion (57, 58).   

 

The uncoupling between cell cycle progression and plastid division in symbiotic Phaeocystis 

suggests that the plastid-to-nucleus signal required to continue cell division is inhibited and 

deciphering the mechanism involved warrants further attention. Canonical cell-signalling 

pathways are a promising target for future work, as they have been implicated in mediating other 

endosymbioses as well as the morphological transformation between flagellate and colonial 

Phaeocystis cells (59, 60). As this cytoklepty shares important similarities with kleptoplastidy and 

may represent an early intermediary step between photosymbiosis and more permanent 

incorporation of the photosynthetic machinery, further elucidation of the mechanisms involved 

should pave the way to a more complete understanding of how eukaryotes acquire new 

organelles. 
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Materials and methods 

Sampling and preparation for electron microscopy 

Symbiotic acantharians harboring intracellular microalgal cells (Phaeocystis cordata) were 

collected from surface waters as in (18) (Mediterranean Sea, Villefranche-sur-Mer, France). After 

collection, individual cells were isolated under a microscope with a micropipette, rapidly 

transferred into filtered natural seawater, and maintained in the same controlled light (100 µmol 

photons m-2s-1) and temperature (20°C) conditions as the free-living stage. In parallel, cultures of 

the haptophyte Phaeocystis cordata (the symbiont of Acantharia in the Mediterranean Sea) (1) 

(strain RCC1383 from the Roscoff Culture Collection) were maintained at 20°C in K5 culture 

medium and at 100 µmol photons m-2s-1. 

Sample preparation protocols were adapted from (18) to optimize the contrast for 3D electron 

microscopy imaging and facilitate pixel classification. Symbiotic acantharians (with algal 

endosymbionts) and free-living Phaeocystis cordata in culture were cryofixed using high-pressure 

freezing (HPM100, Leica), in which, cells were subjected to a pressure of 210 MPa at 196°C, 

followed by freeze-substitution (EM ASF2, Leica). Prior to cryo-fixation, the microalgal cultures 

were concentrated by gentle centrifugation for 10 min. For freeze-substitution (FS), a mixture of 

dried acetone, and 2% osmium tetroxide and 0.5% uranyl acetate was used as contrasting 

agents. The FS machine was programmed as follows: 60–80 h at −90°C, heating rate of 2°C h-1 

to −60°C (15 h), 10–12 h at −60°C, heating rate of 2°C h-1 to −30°C (15 h), and 10–12 h at −30°C, 

quickly heated to 0°C for 1 h to enhance the staining efficiency of osmium tetroxide and uranyl 

acetate and then back to −30°C. Cells were then washed in anhydrous acetone for 20 min at 30°C 

and gradually embedded in anhydrous Araldite (resin). A graded resin/acetone (v/v) series was 

used (30, 50 and 70% resin) with each step lasting 2 h at increased temperature: 30% 

resin/acetone bath from −30°C to −10°C, 50% resin/acetone bath from −10°C to 10°C, 70% 

resin/acetone bath from 10°C to 20°C. Samples were then placed in 100% resin for 8–10 h and 

in 100% resin with the accelerator BDMA for 8 h at room temperature. Resin polymerization finally 

occurred at 65°C for 48 h.  

 

Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) 

For FIB-SEM, the sample was trimmed with a 90° diamond knife (Diatome) to expose cells at two 

surfaces (the imaging surface and the surface perpendicular to the focused ion beam) and 

optimize acquisition (61). For symbiotic Phaeocystis cordata, trimming was targeted towards the 

periphery of hosts where microalgae were more abundant. After the sample was trimmed, it was 

mounted onto the edge of an SEM stub (Agar Scientific) using silver conductive epoxy 

(CircuitWorks) with the trimmed surfaces facing up and towards the edge of the stub. The sample 

was gold sputter-coated (Quorum Q150RS; 180 s at 30 mA) and placed into the FIB-SEM for 

acquisition (Crossbeam 540, Carl Zeiss Microscopy GmbH). Once the Region of Interest (ROI) 

was located in the sample, Atlas3D software (Fibics Inc. and Carl Zeiss Microscopy GmbH) was 

used to perform sample preparation and 3D acquisitions. First, a 1 µm platinum protective coat 

was deposited with a 1.5 nA FIB current. The rough trench was then milled to expose the imaging 
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cross-section with a 15 nA FIB current, followed by a polish at 7 nA. The 3D acquisition milling 

was conducted with a 1.5 nA FIB current. For SEM imaging, the beam was operated at 1.5 kV/700 

pA in analytic mode using an EsB detector (1.1 kV grid collector voltage) at a dwell time of 8 µs 

with no line averaging. The voxel size used throughout acquisitions was 5 or 10 nm. Datasets 

were initially aligned by the Fiji plugin “Linear Stack Alignment with SIFT” (62) then fine-tuned by 

AMST (63). Raw electron microscopy data are deposited in EMPIAR, accession code EMPIAR-

XXX. 

FIB-SEM Image analysis: segmentation and morphometric analyses 

From the aligned FIB-SEM stack, images were binned in Fiji (https://imagej.net/Fiji), and regions 

of interest representing Phaeocystis cells were cropped. Segmentation and 3D reconstruction 

were performed using the work-flow developed in (64), and geometry measurements were 

provided using algorithms provided at (https://gitlab.com/clariaddy/stl_statistics and 

https://gitlab.com/clariaddy/mindist). Briefly, segmentation of organelles and vacuoles of 

Phaeocystis (considered as regions of interest) was carried out with 3DSlicer software (65) 

(www.slicer.org), using a supervised semi-automatic pixel classification mode (3 to 10 slices 

automatically segmented for each ROI). Each region was “colored” using paint tools and adjusting 

the threshold range of pixels values of the images. The Model maker module from 3D slicer was 

then used to generate corresponding 3D models which were exported in STL format. 3D 

reconstructed models were imported into the MeshLab software (66) to clean the model and 

reduce file size by model decimation. Metrics for volumes, surface area, and the area below the 

minimum distance between meshes were computed using Numpy-STL 

(https://pypi.org/project/numpy-stl/) and TRIMESH (https://trimsh.org/trimesh.html) python 

packages. Surfaces and volumes were computed using the discrete mesh geometry, the surface 

being computed directly from mesh triangles, and volume being obtained from the signed volume 

of individual tetrahedrons, assuming a watertight model. Proximity distance between organelles 

was calculated based on the closest points between two triangular meshes. The surface area 

below the proximity distance was quantified based on (i) the minimal distance between each 

vertex of the plastid mesh to the mitochondria mesh, and (ii) matching surface using face data 

according to a given distance threshold. A distance threshold ≤ 50 nm was chosen as 

representative of an interaction between nearby organelles, based on previous morphometric 

analyses in animal and plant cells (48, 67). Morphometric data are available in Dataset S1. 

 

Single-cell chlorophyll fluorescence imaging 

Single-cell chlorophyll fluorescence was detected with an imaging system (JBeamBio, France), 

mounted on an optical microscope (CKX 53 Olympus, Japan). The imaging setup consists of a 

high sensitivity camera (Orca Flash 4.0 LT, Hamamatsu, Japan) equipped with a near-infrared 

long-pass filter (RG 695 Schott, Germany). Regions of Interest (ROIs) containing host cells were 

identified using the microscope in transmission mode. The photosynthetic capacity of symbiotic 

Phaeocystis was quantified as the photochemical quantum yield of Photosystem II (Fv/Fm), 

calculated as (Fm-Fo)/Fm (68). Cells were excited with blue light pulses (l = 470 nm ± 12 nm, 

duration 260 µs) to evaluate minimum fluorescence emission Fo. Short green saturating pulses (l 
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= 520 nm ± 20 nm, intensity 3000 µmol photons m-2 s-1, duration 250 ms) were used to reach 

maximum fluorescence emission (Fm). Fm was evaluated with the same blue pulses used for Fo, 

fired 10 µs after the saturating light was switched off. We used a 20X (NA = 0.45) objective to 

scan the slits. Single algal cells within a given ROI were imaged separately, with a pixel resolution 

of 1.7 µm2. 

Comparative transcriptomics for symbiotic and free-living Phaeocystis 

Individual acantharians (n = 12) were collected for single-host RNA-seq from the western 

subtropical North Pacific. RNA-seq was also performed with biological culture replicates (n = 3) 

of Phaeocystis cordata CCMP3104 (synonymous to RCC1383) to assemble a de novo reference 

transcriptome and to provide a comparison point for changes in symbiotic gene expression. Raw 

sequencing reads are available from the NCBI Sequencing Read Archive with accession 

PRJNA603434. Detailed descriptions of sampling, culturing, RNA extraction, sequencing, 

transcriptome assembly and annotation, differential expression and functional enrichment testing 

are presented in the SI Appendix and in Tables S1 and S2 and Fig. S10. All code and data 

analysis pipelines are available from GitHub 

(https://maggimars.github.io/PcordataSymbiosisDGE/analysis.html). Genes were considered 

significantly differentially expressed when the False Discovery Rate adjusted p-value (padj) was 

less than 0.05 and the log2 fold-change was greater than |1|. Likewise, Gene Ontology (GO) and 

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were considered significantly 

enriched among up- or downregulated genes when the padj from the respective enrichment test 

was less than 0.05.   

 

13C bulk enrichment (EA-IRMS) and isotope analysis 

Symbiotic acantharia were sampled as described above. Between 54 and 78 individual 

acantharian cells were pooled together. Two control samples were kept in unspiked filtered 

seawater (FSW, 0.22 µm) to obtain natural (background) 13C cell content and two experimental 

samples were incubated for one hour in 13C-bicarbonate spiked FSW at 20°C under constant light 

(100 µmol photons m-2s-1). To start the incubation, H13CO3 (99%13C; Cambridge Isotopes 

Laboratory Inc.) was added to the FSW (0.2 mM, 10% final concentration). After one hour, 

acantharian cells were immediately harvested by centrifugation and rinsed three times with FSW 

and one time with Milli-Q water. All individuals in each sample were then transferred to tin 

capsules and dried at room temperature for three days. 

 

In parallel, cultures of free-living Phaeocystis cordata RCC1383 maintained at 20°C in K5 culture 

medium and at 100 µmol photons m-2s-1 were also incubated for 1 hour with 13C-bicarbonate 

spiked K5 medium (0.2 mM, 10% final concentration). As for symbiotic cells, two samples were 

used as controls to obtain natural (background) 13C cell content and were kept in unspiked K5 

medium. To harvest cells, cultures were centrifuged and rinsed four times with FSW (0.22 µm). 

Before free-living were transferred to tin capsules, an aliquot was taken from each sample to 

count the number of cells per sample (Dataset S2). Tin capsules were dried for one day at 37°C. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.416644doi: bioRxiv preprint 



 

Samples were analyzed for 13C-enrichment using an Elemental Analyser (Flash 2000, Thermo 

scientific, Milan, Italy) coupled to an Isotopic Ratio Mass Spectrometer (IRMS Delta V Plus with 

a Conflo IV Interface, Thermo scientific, Bremen, Germany). Atom% of samples was derived from 

isotope ratio data and calculated using the Vienna Pee Dee Belemnite standard (RVPDB = 

0.0112372) 

Rsample = ( Xsample/1000 + 1) × Rstandard (1) 

atom%X [%] = Rsample/(1 + Rsample) (2) 

The uptake of 13C (Iisotope) in acantharia and Phaeocystis cells was obtained from the excess E of 

the 13C stable isotope in the sample above background (E = atom%Xsample – atom%Xcontrol), and 

total carbon content in the sample or cell. 

Iisotope = E × µg C per sample (per cell) (3) 

To measure 13C uptake of symbiotic Phaeocystis cells in Acantharia, we estimated that one 

acantharian cell harbors an average of 30 cells (29 ± 27, (1)). Note that we also added the values 

calculated for 60 symbiotic Phaeocystis per Acantharia to have conservative estimations of 13C-

uptake in Acantharia cells (Dataset S2). The uptake of 13C (Iisotope, pg. cell-1) for symbiotic 

Phaeocystis cells was calculated using these estimations. A short incubation (1 hour) was chosen 

to reduce the effect of cell respiration and C-compound exudation on measured 13C uptake values.  

NanoSIMS imaging and associated sample preparation 

Upon collection, symbiotic acantharians were maintained in filtered seawater for 24 hours. Cells 

were then incubated with 13C-labelled bicarbonate (0.4 mM, corresponding to a 16% 13C labeling) 

for five hours and cryofixed as for electron microscopy according to a freeze substitution protocol 

from (18). Semi-thin sections (200 nm) were placed on boron-doped silicon wafers, coated with a 

20 nm Au/Pd (80/20) layer and analyzed with a nanoSIMS 50L (Cameca) at the ProVIS Centre 

for Chemical Microscopy (UFZ Leipzig). The analysis areas involving symbiotic algal cells were 

defined from SEM observations on consecutive sections. Before analysis, pre-implantation with 

200 pA of 16 keV Cs+ ion beam was performed for 15–20 min in 100x100 µm² area to equilibrate 

the yield of negative secondary ions. Upon analysis, a 16 keV Cs+ primary ion beam of 1–2 pA 

focused to approximately 70 nm was rastered over the sample area between 15x15 µm2 and 

70x70 µm2, with a dwelling time of 2 ms pixel-1 in a 512x512 or 1024x1024 pixel pattern, keeping 

the physical pixel size well below the beam-spot size in order to avoid an ion-beam induced 

surface roughening. Secondary ions extracted from each pixel of the sample surface were 

analyzed for their mass to charge (m/z) ratio and counted separately with seven electron multiplier 

detectors. To resolve isobaric interferences, the mass resolving power (MRP) of the spectrometer 

was set > 8000 (M/DM) with the entrance slit of 20×140 µm (width × height; nominal size), 

200×200 µm aperture, 40×1800 µm exit slits and the energy slit cutting-off 20% of 12C14N− ions at 

their high-energy distribution site. Secondary ion species (16O−, 12C2
−, 12C13C−, 12C14N−, 13C14N−, 

31P−, 32S−) were simultaneously detected in single-ion counting mode. The acquired 40 serial 

maps of secondary ion count were corrected for lateral drift and accumulated with the 
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Look@NanoSims software (69). Isotope ratios were calculated for each ROI defined with LANS 

either in automatic thresholding mode or by manual drawing over cell compartments recognized 

in ion-count/ratio maps (normalized by scans and pixel number) and correlative SEM images. The 

fraction of assimilated carbon relative to its initial content (relative carbon assimilation, Ka) was 

derived from the changes in carbon-isotope composition as described in (70). 

Photon propagation model: Finite-difference time-domain simulations 

To study the role of light scattering from the 3D mitochondrial network we performed 3D finite-

difference time-domain (FDTD) calculations using a Maxwell equation solver (Lumerical FDTD 

Solutions 8.16). FDTD allows for discretizing the real-space time-domain Maxwell equations onto 

a regular lattice in time and space with equidistant time steps and cubic voxels on the Yee grid. 

The propagation of the electromagnetic field is modelled by time stepwise forward integration. For 

plastids, we assumed that the real part of the refractive index was minimally wavelength 

dependent (between 1.352–1.364 for 400–700 nm), while the imaginary part of the refractive 

index (k) was governed by the characteristic absorption profile of chlorophyll a (71). The real 

refractive index (n) of mitochondria was assumed to be 1.4, which is a moderate estimate for such 

strongly light scattering structures (52, 72) with a reduced scattering coefficient about two orders 

of magnitude greater  than the absorption coefficient (µs’ > 100*µa)  (52). The background n of 

the cell was similar to water (n = 1.34). For each cell type (i.e. free-living and symbiotic) we 

performed calculations in the presence and absence of mitochondria. Additionally, we replaced 

the mitochondria with a solid sphere of the same volume, to visualise the beneficial light spreading 

by the intricate mitochondrial network over a solid sphere with the same refractive index 

properties. For each simulation, excitation was provided by a plane wave that was incident in 

either the x, y or z plane. Only one plane is shown as the results were largely independent of the 

incident plane. The numerical stability of the simulation was ensured by selecting boundary 

conditions and simulation times (> 150 fs) that confirmed that the electric field in the structure 

decayed prior to the end of the simulation, such that all of the incident excitation was lost from the 

grid. 
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Figure 1. Morphological transformation of the microalga Phaeocystis cordata in symbiosis 

unveiled by FIB-SEM.  
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A–B) Sections of the 3D reconstruction of the free-living (A) and symbiotic (B) Phaeocystis cells 

as revealed by FIB-SEM (Focused Ion Beam-Scanning Electron Microscopy), showing 

multiplication of plastids (green) with immersed pyrenoids (light brown), extension of the 

mitochondria (red), nuclear compartments (nucleolus in dark blue, heterochromatin in blue, and 

euchromatin in light blue), and vacuoles (purple). Scale bar: 2 µm. C) Box plots showing the 

increase of the cell volume (log scale, µm3) in symbiotic Phaeocystis (left) compared to the free-

living cells (right). D) Relative volume occupancy of different organelles and cellular 

compartments (plastid, mitochondria, nucleus, vacuole) as % occupancy in the cell (organelle 

volume/cell volume ratio) in free-living (FL-2 plastids) and seven different symbiotic microalgal 

cells (Sy) having 2, 4, 16, 31, 36, 40, 54, 65 plastids. The volumes (µm3) of organelles and cellular 

compartments are given within respective bar segments, and in Dataset S1 
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Figure 2. Increased nuclear volume and inhibited cell cycle in symbiotic Phaeocystis 

despite lack of evidence for nutrient limitation. 

A) 3D reconstruction of algal cells (transparent) and their nucleus (blue) after FIB-SEM imaging, 

showing increased nuclear volume in symbiotic algal cells with 4, 16, 36, 65 plastids from left to 

right, compared to the free-living stage (top left) (See also Fig. S1). Scale bar: 2 µm B) Differential 
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expression of Phaeocystis genes in the KEGG cell cycle reference pathway (ko04110). Blocks 

representing protein and enzymes are colored according to differential gene expression results. 

Solid blue indicates genes that were significantly downregulated in symbiosis (padj < 0.05, log2FC 

< −1); transparent blue indicates genes that had a negative fold-change in symbiosis but the 

difference was not statistically significant; transparent red indicates genes that had a positive, but 

statistically insignificant, fold-change in symbiosis; white indicates proteins without annotated 

genes. C) Heatmap of alkaline phosphatase gene expression (phoA and ehap1-like) as log 

normalized counts in free-living Phaeocystis cordata cultures (n = 3) and in individual hosts (n = 

12). Alkaline phosphatase expression is a marker for phosphorus limitation in microalgae and 

these genes were mostly not expressed in symbiosis. D) Differential expression of genes in the 

Nitrogen metabolism KEGG reference pathway (ko00910). Inorganic nitrogen transporters, 

especially those encoded by Nrt, are marker genes for nitrogen limitation in microalgae. Genes 

that were significantly downregulated in symbiosis are colored blue and those that were 

significantly upregulated are red. The log2 fold-change values for differentially expressed genes 

are indicated next to or below the gene name.  
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Figure 3. Morphological transformation of the photosynthetic machinery in symbiosis and 

associated physiological and gene expression activity. 

A) Multiplication of plastids in Phaeocystis cells unveiled by FIB-SEM from two in free-living stage 

(top left) to up to 65 plastids (Sy-65) in symbiosis (see also Fig. S3 and S4). Scale bar: 2 µm. B) 
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Single-cell chlorophyll fluorescence imaging showing that the photosynthetic capacity (Fv/Fm 

parameter) changes as a function of the relative cell size of symbiotic Phaeocystis (symbols). The 

black line represents the mean Fv/Fm value in free-living cells (± s.d., grey lines). C) Architecture 

and organization of pyrenoids in plastids of free-living (two types: with and without tubule) and 

symbiotic Phaeocystis, showing the increased volume of the pyrenoid in symbiosis with multiple 

thylakoids crossing the pyrenoid (dark green tubules). Scale bar: 1 µm. (See also Fig. S5). D–E) 

Differential expression results for genes encoding enzymes of the Calvin-Benson Cycle (D) and 

proteins involved in storage molecule biosynthesis (E). The color scale indicates log2 fold-change 

in symbiosis so that positive values (red) represent upregulation in symbiotic cells and negative 

values (blue) represent downregulation in symbiotic cells. Significantly differentially expressed 

genes (false discovery rate adjusted p-value, padj < 0.05) are highlighted with bolded gene names 

and black boxes in D; all results were significant in E. When several isoforms were expressed for 

a single gene (Acyl transferase, Ligase 3, and DGAT1), the log2 fold-change is shown for each 

isoform. TAG stands for triacyglycerol. F) Single Isotope Probing-NanoSIMS-derived map of 

carbon relative assimilation (Ka, (70)) showing the fraction of carbon (relative to its initial content) 

assimilated during 5 hours of incubation with 13C-labelled bicarbonate in one symbiotic 

Phaeocystis cell (mainly allocated to plastids) and transferred to the host cytoplasm in specific 

cellular locations (See also Fig. S6). Green arrows indicate the plastids (P) of symbiotic 

microalgae (surrounded by the dashed circle) showing about 5 at% of relative carbon assimilation. 

White arrows indicate host areas revealing about 1–3 at% of the assimilated carbon fraction. 

Scale bar: 3 µm.  
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Figure 4. Expansion of the reticulate mitochondria in symbiosis and its interaction with 

plastids and role in light capture.  

A) Extension of the mitochondria (red) in symbiotic Phaeocystis cell towards a fine reticular 

network in contact with plastids. A free-living Phaeocystis cell (top left) and four symbiotic 

Phaeocystis cells (Sy) are represented with their 4, 16, 36 and 65 plastids in transparency. 

Contact surface area (≤ 50 nm, CSA) between the mitochondria and the plastids have been 

quantified and represented in dark green colors. The mitochondrial surface area in contact with 

plastids (CSA) increased from 2.6 ± 2% (n = 14) in free-living to up to 8.79% in symbiosis (Sy-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.416644doi: bioRxiv preprint 



 

65). (See also Fig. S7). Scale bar: 2 µm. B)  Scatter plot showing the correlation between the 

volume of the plastid and the volume of the mitochondria in 20 free-living cells (left insert) and in 

seven symbiotic Phaeocystis cells. C) Box plot showing the effect of mitochondrial inhibitors (inh: 

5 µM Antimycin A and 1 mM Salicylhydroxamic acid-SHAM) on the Fv/Fm parameter of free-living 

(left) and symbiotic (right) Phaeocystis cells. D) Finite-difference-time-domain (FDTD) model 

calculating the distribution of the light scattering cross-section (σ) based on 3D architectures of 

microalgal cells. Light scattering by free-living cells (left) is forward directed while light scattering 

by symbiotic cells (right, 16 plastids) is distributed, yielding an enhanced electric field distribution. 

Note that due to small light scattering by free-living cells, the scale was adjusted for improved 

visualisation. The outer and inner boxes represent the scattering monitor and the absorption 

monitor, respectively. Behind the cell, the yellow plane is measuring the transmitted field direction 

flow (poynting vector). The yellow arrows correspond to the incident plane wave (See also Fig. 

S9). 
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Figure 5. Host-symbiont integration and morphometrics of the symbiosome invagination 

in large symbiotic microalgae. 

A) 3D reconstruction following FIB-SEM of a symbiotic microalga with 16 plastids surrounded by 

mitochondria (red) and Golgi apparatus (dark purple) of the host. The different organelles and 

compartments reconstructed in 3D are highlighted in the FIB-SEM electron micrograph frame 
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(left). 3D reconstruction (right) of a large vacuole in the symbiotic microalga (light purple), which 

is surrounded by a symbiosome (pink) containing small vesicles (dark red). Scale bar: 2 µm. B) 

3D reconstruction of a large symbiotic microalga with 65 plastids surrounded by mitochondria (m; 

red) and Golgi apparatus (G; dark purple) of the host. The different organelles and compartments 

reconstructed in 3D are highlighted in the FIB-SEM electron micrograph frame (left). In large 

symbionts (> 31 plastids), there is an invagination of the symbiosome (S; pink) in the algal cell. 

Note the presence of small vesicles (Vs; dark red) in the symbiosome and large vacuoles (V; light 

purple) close to the symbiosome. Scale bar: 2 µm. C) Cell volume of different symbiotic 

microalgae with 36, 40 and 65 plastids and the associated invaginated symbiosome that 

increases in volume.  
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186 Appendix A. Appendices

A.3 A multifaceted analysis reveals two distinct phases of
chloroplast biogenesis during de-etiolation in Arabidop-
sis

Summary

Light triggers chloroplast differentiation whereby the etioplast transforms into a photo-
synthesizing chloroplast and the thylakoid rapidly emerges. However, the sequence of
events during chloroplast differentiation remains poorly understood. Using Serial Block
Face Scanning Electron Microscopy (SBF-SEM), we generated a series of chloroplast
3D reconstructions during differentiation, revealing chloroplast number and volume and
the extent of envelope and thylakoid membrane surfaces. Furthermore, we used quanti-
tative lipid and whole proteome data to complement the (ultra)structural data, provid-
ing a time-resolved, multi-dimensional description of chloroplast differentiation. This
showed two distinct phases of chloroplast biogenesis: an initial photosynthesis-enabling
‘Structure Establishment Phase’ followed by a ‘Chloroplast Proliferation Phase’ during
cell expansion. Moreover, these data detail thylakoid membrane expansion during de-
etiolation at the seedling level and the relative contribution and differential regulation
of proteins and lipids at each developmental stage. Altogether, we establish a roadmap
for chloroplast differentiation, a critical process for plant photoautotrophic growth and
survival.

Keywords: Thylakoid, Chloroplast, Photosynthesis, SBF-SEM, Proteomics, Ara-
bidopsis.
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Abstract Light triggers chloroplast differentiation whereby the etioplast transforms into a

photosynthesizing chloroplast and the thylakoid rapidly emerges. However, the sequence of events

during chloroplast differentiation remains poorly understood. Using Serial Block Face Scanning

Electron Microscopy (SBF-SEM), we generated a series of chloroplast 3D reconstructions during

differentiation, revealing chloroplast number and volume and the extent of envelope and thylakoid

membrane surfaces. Furthermore, we used quantitative lipid and whole proteome data to

complement the (ultra)structural data, providing a time-resolved, multi-dimensional description of

chloroplast differentiation. This showed two distinct phases of chloroplast biogenesis: an initial

photosynthesis-enabling ‘Structure Establishment Phase’ followed by a ‘Chloroplast Proliferation

Phase’ during cell expansion. Moreover, these data detail thylakoid membrane expansion during

de-etiolation at the seedling level and the relative contribution and differential regulation of

proteins and lipids at each developmental stage. Altogether, we establish a roadmap for

chloroplast differentiation, a critical process for plant photoautotrophic growth and survival.

Introduction
Seedling development relies on successful chloroplast biogenesis, ensuring the transition from het-

erotrophic to autotrophic growth. Light is a crucial factor for chloroplast differentiation. For seeds

that germinate in the light, chloroplasts may differentiate directly from proplastids present in cotyle-

dons. However, as seeds most often germinate underneath soil, seedling development typically

begins in darkness and follows a skotomorphogenic program called etiolation, characterized by

rapid hypocotyl elongation and etioplast development. Light promotes seedling de-etiolation, which

involves a series of morphological changes, such as cotyledon expansion, hypocotyl growth inhibi-

tion, and greening, that accompanies the onset of photosynthesis in chloroplasts. During de-etiola-

tion, etioplast–chloroplast transition is thereby rapidly triggered by light following seedling

emergence at the soil surface (Jarvis and López-Juez, 2013; Solymosi and Schoefs, 2010;

Weier and Brown, 1970). A hallmark of chloroplast differentiation is the biogenesis of thylakoids, a

network of internal membranes where the components of the photosynthetic electron transport

chain assemble. Thylakoid biogenesis and the onset of photosynthesis rely on the concerted synthe-

sis and coordinated assembly of chlorophylls, lipids, and proteins in both space and time (Jarvis and

López-Juez, 2013).
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The thylakoids harbor the photosynthetic electron transport chain, which is composed of three

complexes: photosystem II (PSII), the cytochrome b6f complex (Cyt b6f), and photosystem I (PSI).

Electron transfer between these complexes is facilitated by mobile electron carriers, specifically the

low-molecular-weight, membrane-soluble plastoquinone (electron transfer from PSII to Cyt b6f) and

the lumenal protein plastocyanin (electron transfer from Cyt b6f to PSI; Eberhard et al., 2008). Elec-

tron transfer leads to successive reduction and oxidation of electron transport chain components.

The final reduction step catalyzed by ferredoxin-NADP(+) reductase (FNR) leads to NADPH produc-

tion. Oxidation of water by PSII and of plastoquinone by Cyt b6f releases protons into the lumen,

generating a proton gradient across the thylakoid membrane that drives the activity of the thyla-

koid-localized chloroplast ATP synthase complex. Each of the photosynthetic complexes consists of

multiple subunits encoded by the plastid or nuclear genome (Allen et al., 2011; Jarvis and López-

Juez, 2013) PSII and PSI have core complexes comprising 25–30 and 15 proteins, respectively

(Amunts and Nelson, 2009; Caffarri et al., 2014). The antenna proteins from the Light Harvesting

Complexes (LHC) surround the PSI and PSII core complexes contributing to the formation of super-

complexes. Cyt b6f is an eight-subunit dimeric complex (Schöttler et al., 2015). Each complex of

the electron transport chain has a specific dimension, orientation, and location within the thylakoid

membrane, occupying a defined surface, and their dimensions have been reported in several studies

giving congruent results (Caffarri et al., 2014; Kurisu et al., 2003; van Bezouwen et al., 2017).

During de-etiolation, massive protein synthesis is required for assembly of the highly abundant pho-

tosynthetic complexes embedded in thylakoids. Photomorphogenic program is controlled by regula-

tion of gene expression at different levels (Wu, 2014). Transcriptome analyses have revealed that

upon light exposure, up to one-third of Arabidopsis genes are differentially expressed, with 3/5

being are upregulated and 2/5 downregulated (Ma et al., 2001). Chloroplast proteins encoded by

the nuclear genome must be imported from the cytoplasm (Jarvis and López-Juez, 2013). The gen-

eral chloroplast protein import machinery is composed of the multimeric complexes Translocon of

Outer membrane Complex (TOC) and Translocon of Inner membrane Complex (TIC), and selective

import is based on specific recognition of transit peptide sequences and TOC receptors (Agne and

Kessler, 2010; Richardson and Schnell, 2020).

Reminiscent of their cyanobacterial origin, chloroplast membranes are composed mostly of glyco-

lipids (mono- and di-galactosyldiacylglycerol; MGDG and DGDG) and are poor in phospholipids

compared to other membranes in the cell (Bastien et al., 2016; Block et al., 1983; Kobaya-

shi, 2016). Galactolipids comprise a glycerol backbone esterified to contain a single (MGDG) or dou-

ble (DGDG) galactose units at the sn1 position and two fatty acid chains at the sn2 and sn3

positions. In addition to the number of galactose units at sn1, galactolipids also differ by the length

and degrees of saturation of the fatty acid chains. In some species, including Arabidopsis, galactoli-

pid synthesis relies on two different pathways, defined as the eukaryotic and prokaryotic pathway

depending on the organellar origin of the diacylglycerol precursor. The eukaryotic pathway requires

the import of diacyl-glycerol (DAG) synthesized in the endoplasmic reticulum (ER) into the plastids

and is referred to as the ER pathway, whereas the prokaryotic pathway is entirely restricted to the

plastid (PL) and is referred to as the PL pathway (Ohlrogge and Browse, 1995). As signatures, ER

pathway-derived galactolipids harbor an 18-carbon chain, whereas PL pathway–derived galactolipids

harbor a 16-carbon chain at the sn2 position. In addition to constituting the lipid bilayer, galactoli-

pids are integral components of photosystems and thereby contribute to photochemistry and photo-

protection (Aronsson et al., 2008; Kobayashi, 2016). Thylakoids also contain neutral lipids such as

chlorophyll, carotenoids, tocopherols, and plastoquinone. These may exist freely or be associated

with the photosynthetic complexes, having either a direct role in photosynthesis (chlorophyll, carote-

noids, plastoquinone) or participating indirectly in the optimization of light usage and/or mitigation

of potentially damaging effects (tocopherols in addition to carotenoids and

plastoquinone; Hashimoto et al., 2003; van Wijk and Kessler, 2017).

Past studies used conventional electron microscopy to first describe the architecture of the thyla-

koid membrane network. Based on these 2D observations, researchers proposed that plant thylakoid

membranes are organized as single lamellae connected to appressed multi-lamellar regions called

grana. How these lamellae are interconnected was revealed only later following the development of

3D electron microscopic techniques (Staehelin and Paolillo, 2020). Tremendous technological prog-

ress in the field of electron microscopy has been made recently, leading to improved descriptions of

chloroplast ultrastructure (Daum et al., 2010; Daum and Kühlbrandt, 2011). Electron tomography
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substantially improved our comprehension of the 3D organization of the thylakoid network in chloro-

plasts at different developmental stages and in different photosynthetic organisms, including Arabi-

dopsis (Austin and Staehelin, 2011; Liang et al., 2018), Chlamydomonas (Engel et al., 2015),

runner bean (Kowalewska et al., 2016), and Phaeodactylum tricornutum (Flori et al., 2017). Elec-

tron tomography also provided quantitative information on thylakoid structure such as the thylakoid

layer number within the grana stack and the thickness of the stacking repeat distance of grana mem-

brane (Daum et al., 2010; Kirchhoff et al., 2011). These quantitative data allowed a greater under-

standing of the spatial organization of the thylakoid membrane in relation to the embedded

photosynthetic complexes (Wietrzynski et al., 2020). Although electron tomography offers extraor-

dinary resolution at the nanometer level, its main drawback is a limit to the volume of the observa-

tion, enabling only a partial 3D reconstruction of a chloroplast. Serial Block Face-Scanning Electron

Microscopy (SBF-SEM) is a technique where the embedded specimen is imaged by scanning the

face of the block with an electron beam. After imaging, the face of the block is shaved automatically

(e.g. 60-nm-thick slices) by an ultramicrotome mounted in the vacuum chamber. The section is dis-

carded and the newly revealed block face is imaged again. Repeated imaging and cutting allows the

collection of a tomographic sequence of hundreds of images of the same area. Thereby, a much

larger volume can be reconstructed in 3D to show cellular organization (Peddie and Collinson,

2014; Pinali and Kitmitto, 2014).

In combination with electron microscopy, biochemical fractionation of thylakoids has revealed dif-

ferential lipid and protein compositions of the grana and the stroma lamellae. The grana are

enriched in DGDG and PSII, whereas the stroma lamellae are enriched in MGDG, Cyt b6/f, and PSI

(Demé et al., 2014; Koochak et al., 2019; Tomizioli et al., 2014; Wietrzynski et al., 2020).

Changes in lipid and protein compositions during etioplast–chloroplast transition are tightly linked

to the thylakoid architecture. In particular, changes in MGDG to DGDG ratio are correlated with the

transition from prolamellar body (PLB) and prothylakoid (PT) structures (tubular membrane) to thyla-

koid membranes (lamellar structure; Bottier et al., 2007; Demé et al., 2014; Mazur et al., 2019).

Individual studies have provided much insight regarding specific dynamics of the soluble chloro-

plast proteome, the chloroplast transcriptome, photosynthesis-related protein accumulation and

photosynthetic activity, chloroplast lipids, and changes in thylakoid architecture (Armarego-

Marriott et al., 2019; Dubreuil et al., 2018; Kleffmann et al., 2007; Kowalewska et al., 2016;

Liang et al., 2018; Rudowska et al., 2012). However, these studies were mostly qualitative, focused

on one or two aspects, and were performed in different model organisms. Therefore, chemical data

related to thylakoid biogenesis remain sparse and quantitative information is rare. Here, we present

a systems-level study that integrates quantitative information on ultrastructural changes of the thyla-

koids with lipid and protein composition during de-etiolation of Arabidopsis seedlings.

Results

The photosynthetic machinery is functional after 14 hr of de-etiolation
We analyzed etioplast–chloroplast transition in Arabidopsis seedlings grown in the absence of exog-

enous sucrose for 3 days in darkness and then exposed to constant white light (Figure 1A). These

experimental conditions were chosen to avoid effects of exogenous sucrose on seedling develop-

ment and variations due to circadian rhythm. Upon illumination, the etiolated seedlings switched

from the skotomorphogenic to the photomorphogenic developmental program, evidenced by open-

ing of the apical hook and cotyledon greening and expansion (Figure 1B; Kami et al., 2010). We

stopped the analysis following 96 hr of illumination (T96), before the emergence of the primary

leaves. Samples were collected at different selected time points during de-etiolation (Figure 1A).

In angiosperms, chlorophyll synthesis arrests in the dark but starts immediately upon seedling

irradiation (Von Wettstein et al., 1995). Chlorophyll levels in whole seedlings increased within the

first 4 hr of illumination (T4) and continued to increase linearly during subsequent illumination as the

seedlings grew (Figure 1C). To evaluate photosynthetic efficiency during de-etiolation, we measured

chlorophyll fluorescence and calculated the maximum quantum yield of PSII (Fv/Fm, Figure 1D and

Figure 1—figure supplement 1). PSII maximum quantum yield increased during the initial period of

illumination and was near the maximal value of 0.8 at 14 hr of light exposure (T14), independent of

light intensity (Figure 1D and Figure 1—figure supplement 1A). Other photosynthetic parameters
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(photochemical quenching, qP and PSII quantum yield in the light, FPSII, Figure 1—figure supple-

ment 1B and C) reached maximum values at T14 and remained stable thereafter, indicating that the

assembly of fully functional photosynthetic machinery occurs within the first 14 hr of de-etiolation,

and that further biosynthesis of photosynthesis related compounds is efficiently coordinated.

Major thylakoid structural changes occur within 24 hr of de-etiolation
We determined the dynamics of thylakoid biogenesis during the etioplast–chloroplast transition by

observing chloroplast ultrastructure in cotyledons using transmission electron microscopy (TEM)
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Figure 1. Photosynthesis onset during de-etiolation. (A) Scheme of the experimental design. Seeds of Arabidopsis thaliana (Columbia) sown on agar

plates were stratified for three days at 4˚C and then transferred to 22˚C in the dark. After 3 days, etiolated seedlings were exposed to continuous white

light (40 mmol/m2/s) and harvested at different time points during de-etiolation. Selected time points used for different analyses are indicated. (B)

Cotyledon phenotype of etiolated seedlings (T0) after 4 hr (T4), 24 hr (T24), and 96 (T96) hr in continuous white light. Scale bars: 0.5 mm. (C) Chlorophyll

quantification at different time points upon illumination. Error bars indicate ± SD (n = 3). (D) Maximum quantum yield of photosystem II (Fv/Fm). Error

bars indicate ± SD (n = 4–10). For some data points, the error bars are inferior to the size of the symbol. Measurements of further photosynthetic

parameters are presented in Figure 1—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Photosynthesis parameters during de-etiolation.
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(Figure 2). Plastids present in cotyledons of etiolated seedlings displayed the typical etioplast ultra-

structure with a paracrystalline PLB and tubular PTs (Figure 2A). The observed PLBs were consti-

tuted of hexagonal units with diameters of 0.8–1 mm (Figure 2E). By T4, the highly structured PLBs

progressively disappeared and thylakoid lamellae were formed (Figure 2B). The lamellae were blurry

and their thickness varied between 15 and 70 nm (Figure 2F). After 24 hr of illumination (T24), the

density of lamellae per chloroplast was higher than that at T4 due to an increase in lamellar length

and number. Appressed regions corresponding to developing grana stacks also appeared by T24

(Figure 2C and G). These early grana stacks consisted of 2–6 lamellae with a thickness of 13 nm

each (Figure 2—figure supplement 1). In addition, starch granules were present at T24, supporting

the notion that these chloroplasts are photosynthetically functional and able to assimilate carbon

dioxide (CO2). At T96, thylakoid membrane organization was visually similar to that at T24, but with

more layers per grana (up to 10 lamellae per grana; Figure 2D and H). In addition, singular lamella

thickness at T96 increased by 2–3 nm compared to that at T24 (Figure 2—figure supplement 1).

The major differences observed between T24 and T96 were increases in starch granule size and

number and overall chloroplast size (Figure 2C and D and Table 1). Etioplast average length (esti-

mated by measuring the maximum distance on individual slices) was 2 mm (±0.9, n = 10) in the dark

 A B C                      D

 E    F G     H

PLB

PLB

PE

PE

PE

SL
GS

GS

SG SG

SL

SL

PT

 T0                              T4                                 T24                                     T96

Figure 2. Qualitative analysis of chloroplast ultrastructure during de-etiolation. Transmission electron microscopy (TEM) images of cotyledon cells of 3-

day-old, dark-grown Arabidopsis thaliana (Columbia) seedlings illuminated for 0 hr (T0, A and E), 4 hr (T4, B and F), 24 hr (T24, C and G), and 96 hr (T96,

D and H) in continuous white light (40 mmol/m2/s). (A–D) Scale bars: 500 nm, (E–H) higher magnification of A–D images; Scale bars: 200 nm. PLB:

prolamellar body; PT: prothylakoid; PE: plastid envelope; SG: starch grain; GS: grana stack; SL: single lamella. Specific details for measurements of

lamella thickness are provided in Figure 2—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Measurement of lamella thickness.
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(T0), whereas chloroplast average length was 6 mm (±1.62, n = 10) at T96 (Table 1). Collectively,

these data show that photosynthetically functional thylakoid membranes form rapidly during the first

24 hr of de-etiolation. This implies that there are efficient mechanisms for thylakoid assembly and

structural organization. Subsequent changes seem to involve the expansion of pre-existing structures

(i.e. lamellae length and grana size) and the initiation of photosynthetic carbon fixation (reflected by

starch content).

Quantitative analysis of thylakoid surface area per chloroplast during
de-etiolation
To visualize entire chloroplasts and thylakoid networks in 3D, and to obtain a quantitative view of

the total thylakoid surface area during chloroplast development, we prepared and imaged cotyle-

dons at different developmental stages by SBF-SEM (Figure 3A–D). PLBs, thylakoids, and envelope

membranes were selected, and segmented images were used for 3D reconstruction (Figure 3E–L,

and Videos 1–4; see also Figure 2—figure supplement 1 and Figure 3—figure supplement 1 for

grana segmentation). Similar to that observed by TEM (Figure 2), a drastic switch from PLB to

Table 1. Collection of quantitative data.

Morphometric data corresponding to thylakoid surfaces and volumes, thylakoid/envelope surface ratio, and chloroplast and cell vol-

umes were collected after 3View analysis. Chloroplast and cell volumes were also quantified by subsequent confocal microscopy analy-

sis, whereas plastid length was measured using TEM images. Molecular data for galactolipids (GLs) were analyzed by lipidomics,

whereas PsbA, PsaC, and PetC were quantified by quantitative immunodetection.

Method T0 T4 T8 T12 T24 T48 T72 T96

Chloroplast volume
(mm3)

SBF-SEM 12.27 (±2.3) 9.4 (±4.8) - - 62 (±2.04) - - 112.14 (±4.3)

Thylakoid surface
(mm2)

SBF-SEM - 67 (±29.5) - - 1476 (±146) - - 2086 (±393)

Grana lamellae/total
thylakoid surface

- - - - 2.55 (±0.11) - - 2.08 (±0.57)

Thylakoid/envelope
surface

- 1.02 (±0.15) - - 7.37 (±0.51) - - 6.83 (±1.40)

Length of plastid
(mm)

TEM 2 (±0.90) 2.8 (±0.90) - - 5.1 (±1.47) - - 6
(±1.62)

Stroma lamellae volume
(mm3)

SBF-SEM 2.43 (±0.95) - - 17.87 (±1.04) - - 29.17 (±1.94)

Chloroplast volume
(mm3)

Confocal - - - - 61.5 (±11.2) 70.1 (±10.2) 85
(±22)

-

Cell volume
(mm3)

SBF-SEM 1173 (±284) 1891 (±362) - - 6103 (±1309) - - 52597
(±12671)

Cell perimeter
(mm)

TEM 55.3 (±14.1) 46.4 (±6.1) 71.7 (±19.1) 92.8 (±22.1)

Number of chloroplast per
cell

SBF-SEM 22 (±6) 25 (±8) - - 26
(±6)

- - 112
(±29)

Number of cells per
seedling

- - - - ~3000 - - ~3000

Protein / GLs surface 0.19
(±0.05)

0.23 (±0.04) 0.34
(±0.03)

0.52 (±0.07) 0.80 (±0.14) 0.80 (±0.17) 0.78 (0.07) 0.87 (±0.25)

GLs (nmol/seedling) Lipidomics 0.31
(±0.03)

0.31 (±0.02) 0.32
(±0.02)

0.54 (±0.02) 0.67 (±0.04) 1.28 (±0.12) 1.84 (±0.01) 2.20 (±0.09)

PsbA (nmol/seedling) Immuno-
detection

6.9E-06
(±1.8E-06)

9.2E-06
(±1.7E-06)

1.5E-05
(±0.07E-05)

3.2E-05
(±0.4E-05)

9.3E-05
(±2E-05)

2.0E-04
(±0.6E-04)

3.9E-04
(±0.4E-04)

6.2E-04
(±1.7E-04)

PsaC (nmol/seedling) Immuno-
detection

1.6E-05 (±0.2
E-05)

7.3E-05
(±2E-05)

1.1E-04
(±0.7E-04)

1.7E-04
(±0.4E-04)

2.3E-04
(±1E-04)

PetC
(nmol /seedling)

Immuno-
detection

2.7E-05
(±0.8E-05)

2.8E-05
(±1E-05)

2.5E-05
(±0.4E-05)

5.3E-05
(±2.2E-05)

1.2E-04
(±0.4E-04)

1.8E-04 (±0.
E-04)

5.7E-04
(±1.8E-04)

7.9E-04
(±3.7E-04)
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thylakoid membrane occurred by T4: the typical structure of the PLB connected to PTs disappeared

leaving only elongated lamellar structures (Figure 3E–F and Videos 1 and 2). At T24 and T96, thyla-

koid membranes were organized in appressed and non-appressed regions and large spaces occu-

pied by starch granules were observed (Figure 3G–H and Videos 3 and 4). 3D reconstruction

revealed a change in plastid shape from ovoid at T0 and T4 to hemispheric at T24 and T96

(Figure 3I–L).

Using 3D reconstruction of the thylakoid network for three or four chloroplasts for each develop-

mental stage, quantitative data such as chloroplast volume and membrane surface area were

extracted and calculated (Figure 4A and B, Figure 3—figure supplement 1 and Table 1). The total

chloroplast volume increased about 11-fold from T4 (9.4 mm3) to T96 (112.14 mm3) (Table 1). In par-

allel, the thylakoid surface area (stroma side) increased about 30-fold reaching 2086 (±393) mm2 per

chloroplast at T96 (Figure 4A and Table 1). The surface area increased drastically between T4 and

A B C D

E F G H

I J K  L

PLB PT
SL

PE

PE

GS

SL

PE

GS

SL

PE

Figure 3. 3D reconstructions of chloroplast thylakoid network during de-etiolation. (A–D) Scanning electron microscopy (SEM) micrographs of

representative etioplasts and chloroplasts from 3-day-old, dark-grown Arabidopsis thaliana seedlings illuminated for 0 hr (T0; A), 4 hr (T4; B), 24 hr (T24;

C), and 96 hr (T96; D) in continuous white light (40 mmol/m2/s). (E–H) Partial 3D reconstruction of thylakoid membranes (green) and envelope (blue) at

T0 (E), T4 (F), T24 (G), and T96 (H). Z-depth of thylakoid membrane reconstruction corresponds to 0.06 mm (E), 0.10 mm (F), 0.13 mm (G), and 0.15 mm

(H). (I–L) 3D reconstruction of a thylakoid membrane of an etioplast at T0 (I) or a chloroplast at T4 (L), T24 (M), and T96 (N). Scale bars = 1 mm. Details of

grana segmentation at T24 are provided in Figure 3—figure supplement 1. PLB: prolamellar body; PT: prothylakoid; PE: plastid envelope; SG: starch

grain; GS: grana stack; SL: single lamella.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Grana segmentation (T24).
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T24 (about 22-fold) and much less (about 1.4-

fold) between T24 and T96. Accordingly, quantifi-

cation of the envelope surface area indicated that

the ratio of the thylakoid to envelope surface

area increased drastically from T4 to T24, but

decreased slightly between T24 and T96

(Table 1).

Our quantitative observations confirmed that

during chloroplast development the major ultra-

structural changes (disappearance of prolamellar

body, build-up of the thylakoids and their organi-

zation into grana) occurs within the first 24 hr of

de-etiolation, and no drastic changes occurs

thereafter. We further analyzed these temporal

processes at the molecular level focusing on pro-

teins and lipids that constitute the thylakoid

membrane.

Dynamics of plastid proteins
related to thylakoid biogenesis
We analyzed the full proteome to reveal the

dynamics of protein accumulation during de-etio-

lation. Total proteins were prepared from 3-day-old etiolated seedlings exposed to light for 0–96 hr

(eight time points; Figure 1A) and quantified by label-free shot-gun mass spectrometry. For relative

quantification of protein abundances between different samples, peptide ion abundances were nor-

malized to total protein (see Materials and methods). We considered further only those proteins that

were identified with a minimum of two different peptides (with at least one being unique; see

Materials and methods for information on protein grouping), resulting in the robust identification

and quantification of more than 5000 proteins.

Based on this proteomic approach, the first 12 hr of illumination (T12) saw very few statistically

significant changes in protein abundance (Figure 5—source data 1). Considering a q-value <0.01 as

a stringent threshold value, significant changes were observed only after 8 hr of illumination. These

changes correspond to the decreased abundance of only one protein (the photoreceptor crypto-

chrome 2, consistent with its photolabile prop-

erty) and increased levels of only three proteins,

Video 1. Representative sequential sections showing

etioplasts (T0) followed by segmentation and 3D

reconstruction of envelope (blue), and prothylakoids

and prolamellar body (yellow) of a single etioplast. The

tour of the etioplast reveals its ovoid shape. The

sequential view of the 3D reconstruction and final

partial 3D visualization reveals a single prolamellar

body and interconnected prothylakoids.

https://elifesciences.org/articles/62709#video1

Video 2. Representative sequential sections of a

chloroplast (T4) followed by segmentation and 3D

reconstruction of envelope (blue), and thylakoids

(green). The tour of the chloroplast reveals its ovoid/

discoid shape. The sequential view of the 3D

reconstruction and final partial 3D visualization reveals

that thylakoids are constituted by lamellae parallelly

oriented.

https://elifesciences.org/articles/62709#video2

Video 3. Representative sequential sections of a

chloroplast (T4) followed by segmentation and 3D

reconstruction of envelope (blue), and thylakoids

(green). The tour of the chloroplast reveals its

hemispheric shape. The sequential view of the sections

reveals the presence of starch granules (8). The

sequential view of the 3D reconstruction and final

partial 3D visualization reveals that thylakoids are

constituted by non-appressed (stroma lamellae) and

appressed regions (grana).

https://elifesciences.org/articles/62709#video3
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which belonged to the chlorophyll a/b binding

proteins category involved in photoprotection

(AT1G44575 = PsbS; AT4G10340 = Lhcb5;

AT1G15820 = Lhcb6; Chen et al., 2018;

Li et al., 2000). Relaxing the statistical threshold

value to 0.05, cryptochrome 2 and Lhcb6 levels

were respectively decreased and increased

already after 4 hr of illumination and the abun-

dance of two other proteins (ATCG00790 =

Ribosomal protein L16; AT4G15630 = Uncharac-

terized protein family UPF0497) increased

slightly (fold changes of 1.9 and 1.7, respec-

tively). At 8 hr, a total of 36 proteins displayed a

change in abundance with a q-value <0.05. A

drastic change of proteome composition

occurred by T24, with 402 proteins showing a

significant increase in abundance with over two-

fold change (FC >2; q-value <0.01) compared

with the etiolated stage, and 107 proteins show-

ing a significant decrease with over twofold

change (FC <0.5; q-value <0.01). As expected,

the 100 most-upregulated proteins comprised

proteins related to photosynthesis, proteins con-

stituting the core and antennae of photosystems,

and proteins involved in carbon fixation (Figure 5—source data 1).

To monitor the dynamics of the plastidial proteome, we selected proteins predicted to localize to

the plastid (consensus localization from SUBA4; Hooper et al., 2017). Generation of a global heat-

map for each of the 1112 potential plastidial proteins revealed different accumulation patterns (Fig-

ure 5—figure supplement 1 and Figure 5—figure supplement 1—source data 1). Hierarchical

clustering showed a categorization into six main clusters. Cluster 1 (purple) contained proteins

whose relative amounts decreased during de-etiolation. Clusters 2, 5, and 6 (pink, light green, and

dark green, respectively) contained proteins whose relative amounts increased during de-etiolation

but differed with respect to the amplitude of variations. Proteins in clusters 2 and 6 displayed the

largest amplitude of differential accumulation. Gene ontology (GO) analysis (Mi et al., 2019) indi-

cated a statistically significant overrepresentation of proteins related to the light reactions of photo-

synthesis in clusters 2 and 6 (Figure 5—figure supplement 1—source data 1). Underrepresentation

of organic acid metabolism, in particular carboxylic acid metabolism, characterized cluster 2,

whereas overrepresentation of carboxylic acid biosynthesis and underrepresentation of photosyn-

thetic light reactions were clear features of cluster 3. Protein levels in cluster 3 changed only moder-

ately during de-etiolation in contrast with proteins levels in cluster 2. No biological processes were

significantly over- or underrepresented in clusters 1, 4, and 5.

To analyze the dynamics of proteins related to thylakoid biogenesis, we selected specific proteins

and represented their pattern of accumulation during de-etiolation (Figure 5). We included proteins

constituting protein complexes located in thylakoids (complexes constituting the electron transport

chain and the ATP synthase complex) and proteins involved in chloroplast lipid metabolism, chloro-

phyll synthesis, and protein import into the chloroplast. In agreement with that depicted in the

global heatmap (Figure 5—figure supplement 1), all photosynthesis-related proteins increased in

abundance during de-etiolation (Figure 5A). However, our hierarchical clustering did not show any

particular clustering per complex. Only few chloroplast-localized proteins related to lipid biosynthe-

sis were present in our proteomics data set. Among the eight detected proteins, two appeared dif-

ferentially regulated; fatty acid binding protein 1 (FAB1) and fatty acid desaturase 7 (FAD7) levels

increased only between 72 hr of illumination (T72) and T96, whereas the other proteins gradually

accumulated over the course of de-etiolation (Figure 5B). Etioplasts initiate synthesis of chlorophyll

precursors that are blocked at the level of protochlorophyllide synthesis, with protochlorophyllide

oxidoreductase A (PORA) in its inactive form accumulating to high levels in the etioplast before sub-

sequently decreasing at the protein level upon activation and degradation following light exposure

Video 4. Representative sequential sections of a

chloroplast (T4) followed by segmentation and 3D

reconstruction of envelope (blue), and thylakoids

(green). The tour of the chloroplast reveals its

hemispheric shape. The sequential view of the sections

reveals the presence of large starch granules (11). The

sequential view of the 3D reconstruction and final

partial 3D visualization reveals that thylakoids are

constituted by non-appressed (stroma lamellae) and

appressed regions (grana), with large spaces between

lamellae occupied by starch granules.

https://elifesciences.org/articles/62709#video4
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(Blomqvist et al., 2008; Runge et al., 1996; Von Wettstein et al., 1995). In agreement, illumination

resulted in increased amounts of most of all detected proteins of the chlorophyll biosynthesis path-

way, except PORA and to a lesser extent PORB, which clearly decreased and was separated from

other chlorophyll-related proteins (Figure 5C and Figure 5—source data 1). We also selected pro-

teins involved in protein import in chloroplasts, focusing on the TOC-TIC machinery (Figure 5D) that

is the major route for plastid protein import and essential for chloroplast biogenesis (Kessler and

Schnell, 2006). Past studies identified several TOC preprotein receptors that are proposed to dis-

play differential specificities for preprotein classes (Bauer et al., 2000; Bischof et al., 2011). The

composition of plastid import complexes varies with developmental stages and in different tissues,

thereby adjusting the selectivity of the import apparatus to the demands of the plastid and influenc-

ing its proteome composition (Demarsy et al., 2014; Kubis et al., 2003). Accordingly, the TOC

receptors TOC120 and TOC132, which are important for the import of proteins in non-photosyn-

thetic tissues, were more abundant in etioplasts compared to fully-developed chloroplasts (compare

T0 and T96). TOC120 and TOC132 were part of a cluster separated from other components of the

plastid machinery, such as the TOC159 receptor associated with large-scale import of proteins in

chloroplasts. The general import channel TOC75 (TOC75 III) maintained stable expression levels

throughout de-etiolation, reflecting its general role in protein import. All other components clus-

tered with TOC159 and displayed gradual increases in accumulation during de-etiolation. Most of

these components have not been reported to confer selectivity to the import machinery, which sug-

gests an overall increase of chloroplast protein import capacity.

To validate and complement our proteomic data, we used immunoblot analysis to detect and

quantify representative proteins linked to photomorphogenesis and etioplast-to-chloroplast

transition.

Our proteomic data indicated a significant decrease of the abundance of the photoreceptor

phyA between 48 and 72 hr of illumination (Figure 5—source data 1). However, immunoblots

revealed that the abundance of phyA dropped already during the first 4 hr of light exposure (Fig-

ure 6), as previously reported (e.g. Debrieux and Fankhauser, 2010). The transcription factor
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Figure 4. Quantitative analysis of chloroplast volume and thylakoid surface during de-etiolation. Quantification of thylakoid surface per chloroplast (A)

and chloroplast volume (B) using 3-day-old, dark-grown Arabidopsis thaliana (Columbia) seedlings illuminated for 0 hr, 4 hr, 24 hr, and 96 hr in

continuous white light (40 mmol/m2/s). Morphometric data were quantified by Labels analysis module of Amira software. Error bars indicate ± SD

(n = 3). The total thylakoid surface indicated in A corresponds to the thylakoid surface exposed to the stroma, calculated in Amira software, in addition

to the percentage of the grana surface (%Gs) calculated as described in Figure 3—figure supplement 1.

The online version of this article includes the following source data for figure 4:

Source data 1.
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Figure 5. Accumulation dynamics of plastid proteins during de-etiolation. Three-day-old etiolated seedlings of

Arabidopsis thaliana were illuminated for 0 hr (T0), 4 hr (T4), 8 hr (T8), 12 hr (T12), 24 hr (T24), 48 hr (T48), 72 hr

(T72), and 96 hr (T96) under white light (40 mmol/m2/s). Hierarchical clustering (Euclidean, average linkage) of

normalized protein abundance for photosynthesis-(A), galactolipid metabolism- (B), chlorophyll metabolism- (C),

Figure 5 continued on next page
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ELONGATED HYPOCOTYL 5 (HY5) is a positive marker of photomorphogenesis, and accumulates

during light exposure (Osterlund and Deng, 1998). The increase of HY5 peptide abundance was

not significant by proteomics but we observed a transient accumulation of the protein between 4

and 72 hr by immunoblot (Figure 5—source data 1; Figure 6) and consistent with the previously

reported regulation of abundance during seedling development (Hardtke et al., 2000).

We further compared data obtained by proteomics and immunoblot focusing on chloroplast

localized proteins. Overall, immunoblot and proteomics provided similar results (Figure 6 and Fig-

ure 6—figure supplement 1). PsbA and PsbD (PSII reaction center core), PsbO (oxygen evolving

complex), and Lhcb2 (outer antenna complex) proteins were detectable in seedlings at T4, gradually

increasing thereafter. Accumulation of the PSI proteins PsaC and PsaD and the Cyt b6f complex pro-

tein PetC started later; these proteins were detectable starting at T8 (Figure 6A and Figure 6—fig-

ure supplement 1). Interestingly, AtpC (ATP synthase complex) was detectable in the etioplast, as

described previously (Plöscher et al., 2011). Other proteins were selected as markers of etioplast–

chloroplast transition. As expected, ELIPs (early light-induced protein) transiently accumulated upon

the dark-to-light transition (Figure 6A; Kimura et al., 2003). As in the proteome analysis, PORA

accumulated in etiolated seedlings (T0) and then progressively disappeared upon light exposure.

We performed absolute quantification for PsbA, PsaC, and PetC proteins using recombinant pro-

teins as standards (Figure 6B and C and Figure 6—figure supplement 1). Quantitative data (nmol/

seedling) were obtained and normalized using the last time point (Figure 6C) to compare the

dynamics of protein accumulation. In addition, the comparison of PsbA and PsaC (representative

proteins of PSII and PSI, respectively) showed that PsbA levels were about twice that of PsaC at T96

(Figure 6B and C).

Dynamics of chloroplast membrane lipids
Total lipids were extracted from seedlings collected at different time points during de-etiolation (T0,

T4, T8, T12, T24, T48, T72, and T96), analyzed by ultra-high-pressure liquid chromatography–mass

spectrometry (UHPLC-MS), and quantified against pure standards (Figure 7—source data 1). We

analyzed the quantity and kinetics of accumulation of 12 different species of galactolipids

(Figure 7A and B). MGDG 18:3/16:3, MGDG 18:3/18:3, MGDG 18:3/16:1, DGDG 18:3/18:3, and

DGDG 18:3/16:0 were the most abundant lipids detected at all time points. Accumulation of all gal-

actolipids increased upon de-etiolation; however, clustering analysis identified two distinct kinetic

patterns. One group displayed a leap between T8 and T12, whereas the other group increased later

during the de-etiolation period (Figure 7C). Interestingly, the two clusters separated the lipids

according to the two pathways described for galactolipid synthesis, namely the ER and PL pathways

(Figure 7A and B; Marechal et al., 1997; Ohlrogge and Browse, 1995). During early stages of de-

etiolation (T0–T24), we observed an incremental accumulation of MGDG and DGDG galactolipids

derived from the ER pathway, whereas galactolipids from the PL pathway started to accumulate at

T24 (Figure 7A and B). The MGDG/DGDG ratio decreased between T0 and T8. This was associated

with the transition from PLB (cubic lipid phase) to thylakoid membrane (lamellar structure)

(Bottier et al., 2007). The MGDG/DGDG ratio started to increase gradually at T8 and was constant

by T72 and T96 (Figure 7D).

Figure 5 continued

and protein import-related proteins during de-etiolation (D). Protein abundance was quantified by shot-gun

proteomics and heatmap colors indicate the fold change (average of 3–4 replicates) of each selected protein at

each time point of de-etiolation (T0 to T96), relative to the last time point (T96). Note that some PORA values in

panel D were higher than 3.5 and outside of the color range limits. Further hierarchical clustering based on the

accumulation dynamics of all plastid-localized proteins is provided in Figure 5—figure supplement 1.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1.

Figure supplement 1. Accumulation dynamics of selected plastid proteins during de-etiolation.

Figure supplement 1—source data 1.
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Figure 6. Accumulation dynamics of photosynthesis-related proteins during de-etiolation. Three-day-old etiolated seedlings of Arabidopsis thaliana

were illuminated for 0 hr (T0), 4 hr (T4), 8 hr (T8), 12 hr (T12), 24 hr (T24), 48 hr (T48), 72 hr (T72), and 96 hr (T96) under white light (40 mmol/m2/s). (A)

Proteins were separated by SDS-PAGE and transferred onto nitrocellulose membrane and immunodetected with antibodies against PsbA, PsbD, PsbO,

PetC, PsaD, PsaC, Lhcb2, AtpC, ELIP, POR, phyA, HY5, and ACTIN proteins. (B–C) Quantification of PsbA, PetC, and PsaC during de-etiolation.

Figure 6 continued on next page
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Identification of a chloroplast division phase
We observed a massive increase in the accumulation of photosynthesis-related proteins and galacto-

lipids between T24 and T96, corresponding to FC > 2 in the levels of all major chloroplast proteins

and lipids (Figures 6 and 7). Intriguingly, the total thylakoid surface per chloroplast increased by

only 41% between these two time points (Figure 4A and Table 1). We reasoned that the increase in

chloroplast proteins and lipids between T24 and T96 could be explained by increased chloroplast

number (per cell and thus per seedling) and thus total thylakoid surface per seedling. We therefore

determined chloroplast number per cell and the cell number and volume for each developmental

stage through SBF-SEM analysis (T0, T4, T24, and T96) and confocal microscopy analysis for interme-

diary time points (T24–T96) (Figure 8 and Figure 8—figure supplement 1). The chloroplast number

per cell was constant from T4 (25 ± 8) to T24 (26 ± 6); however, in parallel with cell expansion

(Figure 8A and B), chloroplast number increased sharply (fourfold increase) between T24 (26 ± 6)

and T96 (112 ± 29), indicating that two rounds of chloroplast division occurred during this time.

Immunoblot analysis of filamentous temperature-sensitive FtsZ1, FtsZ2-1, and FtsZ2-2 proteins

showed that these key components of the chloroplast division machinery were already present dur-

ing the early time points of de-etiolation. We observed considerably increased accumulation of these

proteins between T24 and T48, consistent with the idea that activation of chloroplast division takes

place at T24, leading the proliferation of chloroplasts (Figure 8C). However, levels of accumulation

and replication of chloroplast 5 (ARC5) protein, another key component of the chloroplast division

machinery, clearly increased during de-etiolation between T8 and T12, presumably reflecting assem-

bly of the chloroplast division machinery before its activation and the proliferation of chloroplasts

(Figure 8D). To test whether there is a correlation between chloroplast division and either volume or

developmental stage, we measured the volume of dividing chloroplasts (selected visually based on

the presence of a constriction ring, see Figure 8—figure supplement 1) at T24 and T96 using

images acquired by SBF-SEM. The average volume of dividing chloroplasts at T24 and T96 were con-

sistently higher than the average volume of all chloroplasts (96 mm3 and 136 mm3 compared to 62

mm3 and 112 mm3, respectively) (Figure 4B, Figure 8E and Figure 8—source data 1) indicating that

smaller chloroplasts are not dividing. This indicates that developing chloroplasts only divide once a

certain chloroplast volume is reached.

Model of thylakoid surface expansion over time
The quantitative molecular data for the major compounds of thylakoids (galactolipids and proteins)

and estimation of chloroplast number per cell allowed us to mathematically determine the thylakoid

membrane surface area per seedling and its expansion over time (molecular approach hereafter) and

compare it to the surface estimated from the 3D reconstruction (morphometric approach hereafter).

First, we calculated the surface area occupied by the main galactolipids (MGDG and DGDG) and

photosynthesis-related complexes (PSII, Cyt b6f, and PSI) per seedling (Table 2), assuming a 1:1 ratio

between number of PsbA, PetC, and PsaC subunits with their corresponding complexes

(Amunts and Nelson, 2009; Caffarri et al., 2014; Schöttler et al., 2015).

Surface=seedling¼ nmol=seedling � N � nm2 per molecule (1)

Quantitative data for MGDG, DGDG, PsbA, PetC, and PsaC (nmol/seedling) obtained from lipi-

domic and immunological analyses (Figures 6 and 7) were converted into number of molecules/

seedling using the Avogadro constant (N). To calculate the surface area of outer membrane of thyla-

koids (i.e. surface exposed to the stroma in lamellae and facing the other thylakoid in appressed

regions) and account for the lipid double layer of the membrane, corresponding values of lipids

Figure 6 continued

Heatmap (B) was generated after normalization of the amount of each protein relative to the last time point (T96). Graph (C) corresponds to the

absolute quantification of proteins at T96. Error bars indicate ± SD (n = 3). Quantification of photosystem-related proteins during de-etiolation is

detailed in Figure 6—figure supplement 1.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1.

Figure supplement 1. Quantification of photosynthesis-related proteins.
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Figure 7. Accumulation dynamics of galactolipids during de-etiolation. Three-day-old etiolated seedlings of Arabidopsis thaliana were illuminated for 0

hr (T0), 4 hr (T4), 8 hr (T8), 12 hr (T12), 24 hr (T24), 48 hr (T48), 72 hr (T72), and 96 hr (T96) under white light (40 mmol/m2/s). (A) Heatmap representation

of galactolipids (MGDG and DGDG) during de-etiolation. Samples were normalized to the last time point (T96). (B) Absolute quantification at T96

expressed in nmol/seedling. Error bars indicate ± SD (n = 4). (C) Absolute quantification (nmol/seedling) of the most abundant chloroplast galactolipids

Figure 7 continued on next page
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(Figure 7—source data 1, Table 2) were divided by 2. In addition, the lipid values were corrected

by subtracting the portion of lipids incorporated into the envelope rather than present in the thyla-

koids (Table 1). The surface area occupied by molecules of MGDG and DGDG, and that of PSII, Cyt

b6f, and PSI photosynthetic complexes (nm2 per molecule, corresponding to stroma-exposed sur-

face) were retrieved from the literature (Table 3). Specifically, we used the minimal molecular area of

MGDG and DGDG (Bottier et al., 2007). To quantify the surface area occupied by the galactolipids

and photosynthetic complexes in thylakoids per seedling, the number of molecules per seedling of

galactolipids was multiplied by the corresponding molecular surface area, whereas the number of

molecules per seedling of PsbA, PetC, and PsaC (subunits of PSII, Cyt b6f, and PSI, respectively)

were multiplied by the surface area of the corresponding complex (see Table 3).

We calculated thylakoid surface (S) per seedling for each time point (t) as the sum of the surface

occupied by MGDG, DGDG, photosynthetic complexes (PS), and e per seedling, the latter of which

corresponds to compounds such as other lipids (e.g. sulfoquinovosyldiacylglycerol, plastoquinone)

or protein complexes (ATP synthase and NDH) that were not quantified.

S thylakoid tð Þ=seedling¼ S MGDG tð ÞþS DGDG tð ÞþS PS tð Þþ "ð Þ=seedling (2)

Omitting the unknown e factor, we plotted the thylakoid surface calculated for each time point

where quantitative molecular data were available (T0, T4, T8, T12, T24, T48, T72, and T96) as a func-

tion of the duration of light exposure (Figure 9—figure supplement 1). The best fitting curve corre-

sponded to a S-shaped logistic function, characterized by a lag phase at early time points (T0–T8),

followed by a phase of near-linear increase, and a final plateau at the final time points (T72–T96). To

model this function, a four-parameter logistic non-linear regression equation was used to describe

the dynamics of the total thylakoid surface over time (Figure 9—figure supplement 1C).

Superimposition of molecular and morphometric data
We compared the values of thylakoid surface, as obtained with the model based on molecular data,

with the values obtained from the morphometric analysis (Figure 9). The total thylakoid surface per

seedling (S_thylakoid_morpho) was calculated by multiplying the thylakoid surface (S_thylakoid) per

chloroplast obtained by morphometrics (Figure 4A) by the number of chloroplasts (nb.cp) per cell

(Figure 8A) and the number of cells (nb.cells) per seedlings for each time point (t).

Sthylakoidmorpho tð Þ

seedling
¼

S thylakoid tð Þ=chloroplast � nb:cp tð Þ=cell � nb:cells tð Þ=seedling

(3)

We estimated cell number per seedling by measuring the total volume occupied by palisade and

spongy cells in cotyledons (that corresponded to 50% of total cotyledon volume; Figure 9—figure

supplement 2) and dividing this by the average cell volume (Table 1). As reported previously

(Pyke and Leech, 1994), cell number was constant during cotyledon development. We estimated

this number as 3000 mesophyll and palisade cells per seedling at T24 and T96 (Figure 9—figure

supplement 2). The thylakoid membrane surface quantified by the morphometric approach was also

estimated at T4, assuming that cell number per cotyledon remained similar between T4 and T24.

We compared the thylakoid surface predicted by our mathematical model to the surface estimated

experimentally with our 3D thylakoid reconstruction and morphometric measurements (Figure 9 and

Table 1). As shown in Figure 9, the two approaches showed very similar total thylakoid surface area

per seedling at T4 and T24 and differences in this parameter by T96. This indicates that the plateau

Figure 7 continued

MGDG (MGDG 18:3/18:3, MGDG 18:3/16:3, MGDG 18:3/16:1) and DGDG (DGDG 18:3/18:3, DGDG 18:3/16:0) at different time points during de-

etiolation. Error bars indicate ± SD (n = 4). (D) The MGDG/DGDG ratio was calculated using all 12 species of galactolipids detected during de-

etiolation. Error bars indicate ± SD (n = 4).

The online version of this article includes the following source data for figure 7:

Source data 1.
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Figure 8. Relationship between chloroplast proliferation and chloroplast volume. (A–B) Chloroplast number and cell volume in cotyledons of 3-day-old,

dark-grown Arabidopsis thaliana seedlings illuminated for 0 hr (T0), 4 hr (T4), 24 hr (T24), and 96 hr (T96) in continuous white light (40 mmol/m2/s). (A)

Chloroplast number per cell during de-etiolation. Error bars indicate ± SD (n = 6 for T0 and T4; seven for T24; five for T96). (B) Cell volume was

quantified by the Labels analysis module of Amira software. Error bars indicate ± SD (n = 5–6). (C–D) Total proteins were extracted from T0–T96

seedlings, separated on SDS-PAGE, and transferred onto nitrocellulose. Proteins involved in plastid division (C, FtsZ; D, ARC5) and loading control

(actin) were detected using specific antibodies (FtsZ2 antibody recognizes both FtsZ2-1 and FtsZ2-2). (E) Volume of dividing chloroplast at T24 and T96.

Error bars indicate ± SD (n = 3). Further details of chloroplast proliferation in parallel with cell expansion are provided in Figure 8—figure supplement

1.
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phase suggested by the model is not validated and that other components that were not included in

the model probably contributed to the expansion of thylakoids at later time points of de-etiolation.

Discussion
Here, the analysis of 3D structures of entire chloroplasts in Arabidopsis in combination with proteo-

mic and lipidomic analyses provide an overview of thylakoid biogenesis. Figure 10 depicts a sum-

mary of the changes that occur during the de-etiolation process. When considering chloroplast

development, our study shows that de-etiolation is divided into two phases. We documented struc-

tural changes (disassembly of the PLB and the gradual formation of thylakoid lamellae) and initial

increases of ER- and PL-pathway galactolipids and photosynthesis-related proteins (PSII, PSI, and

Cyt b6f) during the ‘Structure Establishment Phase’, which was followed by increased chloroplast

number in parallel with cell expansion in the ‘Chloroplast Proliferation Phase’. Collection of quantita-

tive data allowed us to create a mathematical model of thylakoid membrane expansion and describe

this process during de-etiolation.

A set of 3D reconstructions of whole chloroplasts by SBF-SEM
In contrast to electron tomography, which is limited in the volume of observation, SBF-SEM allows

the acquisition of ultrastructural data from large volumes of mesophyll tissue and the generation of

3D reconstructions of entire cells and chloroplasts (Figure 3 and Figure 8—figure supplement 1,

Videos 1–4). SEM image resolution was sufficient to visualize stromal lamellae and grana contours,

whereas grana segmentation in different lamellae was deduced according to our own TEM analysis

and literature data (Figure 2—figure supplement 1 and Figure 3—figure supplement 1). This

approach allowed us to obtain quantitative data of chloroplast and thylakoid structure at different

developmental stages during de-etiolation at the whole-chloroplast level. By T96, the latest time

point of our analysis, the total surface area of thylakoids present in the seedling cotyledons was

about 700 mm2 (see values in Table 1 for calculation), about 500-fold greater than the surface area

of one cotyledon at this developmental stage. This result is supported by previous estimates made

regarding thylakoid surface area relative to leaf surface area (Bastien et al., 2016; Demé et al.,

2014). Moreover, the extent of thylakoid surface area emphasizes how fast and efficient thylakoid

Figure 8 continued

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1.

Figure supplement 1. Chloroplast proliferation in parallel with cell expansion.

Table 2. Surface area occupied by the main galactolipids (MGDG and DGDG) and photosynthetic complexes (PSII, cyt b6f, and PSI).

Shown are values at different time points following illumination of 3-day-old etiolated seedlings. Each value (in bold) indicates the cal-

culated surface area in mm2 and corresponds to the average of three biological replicates. Errors indicate SD.

T0 T4 T8 T12 T24 T48 T72 T96

MGDG 1.11E+07
(±0.03E+07)

1.15E+07 (±0.1E
+07)

1.11E+07 (±0.1E
+07)

1.75E+07
(±0.18E+07)

4.16E+07 (±0.4E
+07)

8.65E+07 (±0.6E
+07)

1.68E+08
(±0.09E+08)

2.35E+08 (±0.2E
+07)

DGDG 3.64E+06 (±0.4E
+06)

4.23E+06 (±0.5E
+06)

4.10E+06 (±0.1E
+06)

6.26E+06 (±0.5E
+05)

1.32E+07 (±0.1
07)

2.32E+07 (±0.2 E
+07)

3.97E+07 (±0.3E
+07)

5.48E+07
(±0.41E+07)

PSII 2.04E+06 (±0.5 E
+05)

2.74E+06 (±0.5E
+05)

4.40E+06 (±0.2E
+06)

9.91E+06 (±1.3E
+06)

2.75E+07 (±0.6E
+07)

6.06E+07 (±0.2E
+07)

1.15E+08 (±0.2E
+08)

1.83E+08 (±0.5E
+08)

PSI 0E+00 (±0E+00) 0E+00 (±0E+00) 0E+00 (±0E+00) 8.95E+05
(±4.49E+05)

1.33E+07 (±0.4E
+07)

2.10E+07
(±1.30E+07)

3.04E+07 (±0.8E
+07)

4.24E+07
(±1.89E+07)

Cyt b6f 7.99E+05
(±2.33E+05)

8.43E+05
(±2.91E+05)

7.5E+05 (±1.33E
+05)

1.57E+06 (±0.7E
+06)

3.44E+06
(±1.22E+06)

5.30E+06
(±1.01E+06)

1.69E+07 (±0.5E
+06)

2.37E+07
(±1.11E+07)

The online version of this article includes the following source data for Table 2:

Source data 1.
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biogenesis is during plant development, allowing plants to optimize light absorption capacity, ensur-

ing their primary source of energy.

Chloroplast development: ‘structure establishment phase’
We observed TEM images and quantified 3D chloroplast ultrastructure by SBF-SEM analysis during

chloroplast differentiation. Typical etioplast structure of the PLB connected with tubular PTs was

replaced by lamellar thylakoids by T4. Measurements of PLB diameter and thylakoid length and

thickness were comparable with literature values (Biswal et al., 2013; Daum et al., 2010;

Kirchhoff et al., 2011), indicating that these morphometric values are conserved between various

model organisms. Thylakoid surface area per chloroplast increased 20-fold between T4 and T24.

Table 3. Surface area occupied by galactolipid and photosynthetic complexes.

(A) Values were retrieved from the corresponding references. MGDG and DGDG surfaces correspond

to the minimal molecular area. The surfaces of PSII-LHCII, PSI, and Cyt b6f complexes correspond to

the surface exposed to the stroma (19*26 nm, 20*15 nm, and 90*55 Å, respectively). (B) Values from

the table in panel A were used to calculate the total surface per seedling corresponding to MGDG

and DGDG galactolipids, and PSII, PSI, and Cyt b6f complexes.

Surface in nm2 reference

MGDG 0,82 Bottier et al., 2007

DGDG 0,64 Bottier et al., 2007

PSII - LHCII (C2 S2 M2) 494 Caffarri et al., 2014

Cyt b6f 49,5 Kurisu et al., 2003

PSI 300 Caffarri et al., 2014
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Figure 9. Superimposition of thylakoid surface per seedling obtained from morphometric analysis and

mathematical modeling. Thylakoid surface per seedling was estimated using quantitative data from 3View analysis

(‘MORPHO’ black dots at T4, T24, and T96; and see Figure 4 and Table 1) and model generated using the

quantitative data from proteomics and lipidomics (‘MODEL’ red line at T0, T4, T8, T12, T24, T48, T72, and T96,

and Table 1). Further details are provided in Figure 9—figure supplements 1 and 2.

The online version of this article includes the following source data and figure supplement(s) for figure 9:

Source data 1.

Figure supplement 1. Non-linear mixed effect model of thylakoid surface during de-etiolation.

Figure supplement 2. Morphometric analysis of cotyledons.
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Remarkably, PSII maximum quantum yield (Fv/Fm) reached the maximal value (0.8) by T14, indepen-

dent of light intensity (Figure 1D and Figure 1—figure supplement 1). This shows that PSII assem-

bly, and more globally assembly of the photosynthetic machinery, occurs simultaneously with

thylakoid membrane formation and that photosynthesis is operational almost immediately upon

greening.

Our proteomic and lipidomic analyses suggest that chloroplast ultrastructural changes rely on

specifically timed molecular changes. Proteomic analysis revealed the accumulation patterns of more

than 5000 unique proteins at eight time points during de-etiolation. These data provide information

for plastid development and more widely on light-regulated developmental processes (Figure 5—

source data 1). Our dataset is more exhaustive regarding temporal resolution and the number of

unique proteins detected than that of previous reports on chloroplast differentiation and de-etiola-

tion (Bräutigam and Weber, 2009; Plöscher et al., 2011; Reiland et al., 2011; Wang et al., 2006).

Overall, the dynamics of the accumulation of proteins revealed by proteomics was similar to the

dynamics observed by immunoblots (Figure 6; Figure 6—figure supplement 1 and Figure 5—

source data 1), although not totally identical for some proteins (e.g. phyA, HY5). The observed dif-

ferences may be due to the detection methods of the two approaches (detection and relative quan-

tification of individual peptides in proteomics versus detection of the full-length protein by

      Number of chloroplasts

     Photosynthesis related

                                                   proteins

                                                     Galactolipids derived from the 

                                                  Prokaryotic pathway

                                                    Galactolipids derived from the 

                                                  Eukaryotic pathway

                                                   

                                                   Cell expansion

                                                Thylakoid surface/seedling

                                           

                                                   Phase Structure establishment  Chloroplast proliferation

 0    4   8  12    24      48      72      96

Time of light exposure (h)

Ultrastructure per chloroplast

Figure 10. Overview of changes observed during the de-etiolation process in Arabidopsis thaliana seedlings. The ‘Structure Establishment Phase’ is

correlated with disassembly of the PLB and gradual formation of the thylakoid membrane as well as an initial increase of eukaryotic (after 8 hr) and

prokaryotic (after 24 hr) galactolipids and photosynthesis-related proteins (PSII subunits at 4 hr, PSI and cyt b6f at 12 hr). The subsequent ‘Chloroplast

Proliferation Phase’ is associated with an increase in chloroplast number in concomitance with cell expansion, a linear increase of prokaryotic and

eukaryotic galactolipids and photosynthesis-related proteins, and increased grana stacking. The red curve (retrieved from the Figure 9) shows thylakoid

surface/seedling dynamics during the de-etiolation process.
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immunoblot analysis) or other inherent limitations of proteomics when faced with low-abundance

proteins like transcription factors.

Here, we focused on chloroplast-localized proteins, specifically on thylakoid membrane proteins.

According to the SUBA4 localization consensus, 1112 proteins were assigned to plastids, which cov-

ers about a third of the total plastid proteome (Ferro et al., 2003; Hooper et al., 2017;

Kleffmann et al., 2007). We observed striking changes at the chloroplast ultrastructural levels, and

in particular the formation of thylakoids between T0 and T4. However, our proteomic analysis indi-

cated only a few changes in abundance of proteins between these time points, including proteins

constituting the photosynthetic machinery (Figure 8—figure supplement 1 and Figure 5—source

data 1). Also, we did not observe a significant increase in the major galactolipids constituting the

lipid bilayer (Figure 7 and Figure 7—source data 1). Therefore, our data suggest that the reorgani-

zation of pre-existing molecules rather than de novo synthesis is responsible for the major chloro-

plast ultrastructural changes that occur between T0 and T4. These results are consistent with other

studies reporting only minor increases in protein accumulation and translation during initial chloro-

plast differentiation (Dubreuil et al., 2018; Kleffmann et al., 2007; Reiland et al., 2011). A signifi-

cant change in the proteome was observed when comparing T24 and T0 but overall this change

appeared gradual, indicating that increase of chloroplast associated proteins does not exactly follow

the two-step induction of corresponding nuclear encoded transcripts reported previously

(Dubreuil et al., 2018). At T96 the abundance of 607 proteins (12% of the identified) was increased

which confirm the massive reorganization of the proteome following the reorganization of the tran-

scriptome during photomorphogenesis (Ma et al., 2001). Proteins whose transcript levels decreases

in response to light exposure were also downregulated at the protein levels (e.g. phyA and PORA)

(Figure 6; Ma et al., 2001). GO analysis combined with expression pattern–based hierarchical clus-

tering highlighted that most photosynthesis-related proteins are globally coregulated (Figure 5—

figure supplement 1, clusters 2 and 6) which correlates as well with the overall increase of their cor-

responding transcripts upon light exposure (Ma et al., 2001). However, targeted immunoblot analy-

sis revealed different accumulation dynamics for specific photosystem subunits: PSI subunits were

detected at later time points than PSII subunits, but thereafter PSI subunit accumulation was faster

(Figure 6). The kinetics of different photosynthetic parameters were consistent with the sequential

activation of PSII and PSI, in particular photochemical quenching, which showed increased oxidation

of the plastoquinone pool by T14 (Figure 1—figure supplement 1). Early accumulation of proteins

such as Lhcb5, �6, and PSBS could be a way to quickly induce photoprotective mechanisms such as

non-photochemical quenching to prevent PSII photodamage during initial photosynthetic machinery

assembly. Differences in PSI and PSII accumulation dynamics and activity have been consistently

observed in other chloroplast development experimental systems, including in Arabidopsis cell cul-

tures, during germination and development of Arabidopsis seedlings in the light, and in tobacco

leaves upon reillumination after dark adaptation (Armarego-Marriott et al., 2019; Dubreuil et al.,

2018; Liang et al., 2018). The molecular mechanisms underlying this differential accumulation are

currently unknown; however, it is intriguing to observe that PSII protein abundance is higher at early

stages of thylakoid formation when grana have not yet been organized. Preferential localization of

the PSI and PSII protein complexes in specific thylakoid membrane domains have been reported

(lamellae and grana, respectively) (Wietrzynski et al., 2020). Therefore, the timing of PSII/PSI rela-

tive abundance do not match with their preferential localization. It is possible that the formation of

PSI still needs to be delayed until grana formation and PSII relocalization is initiated, which can pre-

vent spillover between the two photosystems (Anderson, 1981).

Chloroplast membranes have a specific composition that differs from that of other cell mem-

branes. Galactolipids constitute the bulk of the thylakoid membranes, but are mostly absent from

other membrane systems under growth conditions where phosphorus nutrient is available

(Jouhet et al., 2007). MGDG and DGDG represent around 80% of the thylakoid membrane lipids.

The absolute quantification of 12 types of MGDG and DGDG galactolipids (representing the major

forms) revealed specific patterns of accumulation (Figure 7). Results showed a gradual accumulation

of MGDG and DGDG galactolipids derived from the ER pathway from T8 to T24, whereas galactoli-

pids from the PL pathway started to accumulate after 1 day of light exposure (T24). This illustrates

the different galactolipid compositions of etioplasts and chloroplasts: ER-pathway galactolipids are

predominant in the etioplast whereas PL-pathway galactolipids are predominant in the chloroplast.

As no significant changes in lipid accumulation were observed by T4, it appears likely that the
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emergence of PTs relies on the existing lipids in the etioplast PLB, as suggested also by Armarego-

Marriott et al., 2019. At later time points, galactolipids from both the ER and PL pathways consti-

tute the lipid matrix of the thylakoid membrane. How the two galactolipid biosynthesis pathways are

regulated during development and/or upon light treatment remains to be elucidated; however, we

hypothesize that the PL pathway gains traction after T24 when photosynthetic capacity is fully

established.

Chloroplast development: ‘chloroplast proliferation phase’
Chloroplast development continued between T24 and T96, during which thylakoid membranes

acquired grana stacks with more clearly defined organization (Figure 2). Thylakoid surface increased

by only 41%; however, chloroplasts continued to enlarge at a rate comparable to previous de-etiola-

tion stages (T0–T24). This chloroplast volume expansion may be caused by enlargement of extra-thy-

lakoidal spaces occupied by emerging starch granules. These results suggest that large amounts of

lipids and proteins are necessary to build up the thylakoid membrane until T24, whereas increases in

lipids and proteins between T24 and T96 enable the expansion of already functional thylakoid mem-

branes in preparation for chloroplast division. Indeed, chloroplast number per cell increased during

de-etiolation, a process that depends on the division of pre-existing chloroplasts.

Both chloroplasts and mitochondria divide through the activity of supramolecular complexes that

constitute the organelle division machineries (Yoshida, 2018). As chloroplast proliferation was

observed between T24 and T96, chloroplast division may correlate with developmental stage of the

organelle. Components of the chloroplast division machinery (e.g. FtsZ and ARC5) were detectable

in etioplasts; however, their protein levels accumulated significantly during de-etiolation as chloro-

plasts proliferated (Figure 8C and D). Interestingly, the capacity to divide appeared to correlate

with a minimum chloroplast volume of about 100 mm3, even at T24 when most chloroplasts were

smaller (Figure 8E and Figure 4B). On the other hand, plastid division and volume seem not to cor-

relate with light and chloroplast photosynthetic capacity in monocots, as etioplasts can divide and

increase in size with leaf cell development in absence of light (Robertson and Laetsch, 1974;

Klein and Mullet, 1986). Whether and how cell, chloroplast size and developmental stage can be

sensed to activate the chloroplast division machinery remains poorly understood and requires further

study.

A model of thylakoid expansion
Our mathematical model describing the expansion of thylakoid surface per seedling over time con-

sidered the surface area occupied by the membrane lipids MGDG and DGDG and the major photo-

synthetic complexes PSII, PSI, and Cyt b6f. We omitted some components that contribute to the

total thylakoid membrane surface (e.g. the protein complexes ATP synthase and NDH, and the lipid

sulfoquinovosyldiacylglycerol; together grouped as ‘e’ in Equation 2). The predictions made by our

model fit the surface estimated by SBF-SEM at T4 and T24, whereas they do not fit that at T96. This

means that compounds used to generate the mathematical model appear to contribute most to

changes in thylakoid surface during early stages of de-etiolation (the structure establishment phase).

By contrast, during the later stages of de-etiolation (the chloroplast proliferation phase), the contri-

bution of other compounds omitted in our model is obviously required to build up thylakoid surface.

Our proteomics data (Figure 5—figure supplement 1 and Dataset 2) revealed some proteins

that increased between T24 and T96, such as the FtsH protease (AT2G30950). FtsH proteases have

a critical function during thylakoid biogenesis. In Arabidopsis, they constitute a hetero-hexameric

complex of four FtsH subunits, which is integrated in the thylakoid membrane (Kato and Sakamoto,

2018). Although the FtsH complex surface area is unknown in Arabidopsis, it can be considered as a

potential compound contributing to the thylakoid surface changes missing from our mathematical

model. Other proteins, such as those involved in carotenoid biosynthesis (AT3G10230) or fatty acid

metabolism (AT1G08640), also increased significantly after T24, implying that they contribute to the

‘e’ factor.

A follow-up study would be to test the model under different conditions to investigate how this

biological system responds to internal (perturbing hormone concentrations, genetic modification of

thylakoid lipid and protein composition) or external (different qualities of light) factors. This could be
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instrumental in revealing new potential regulatory mechanisms of thylakoid biogenesis and

maintenance.

Upon de-etiolation, the development of photosynthetic capacity relies on successful chloroplast

biogenesis. At the cellular level, this process is expected to be highly coordinated with the metabo-

lism and development of other organelles. Lipid synthesis involves lipid exchanges between chloro-

plasts and the endoplasmic reticulum. How lipid trafficking is organized remains poorly understood,

but could require membrane contact sites between these two organelles (Michaud and Jouhet,

2019). Physical interaction between mitochondria and chloroplasts have been reported previously in

diatoms (Bailleul et al., 2015; Flori et al., 2017). Whether such contact sites occur and are func-

tional in plants is unknown; however, these mechanisms are hypothesized to exist since it is neces-

sary that chloroplasts exchange metabolites with mitochondria and peroxisomes to ensure activation

of photorespiration concomitantly with photosynthesis. The study of membrane contact sites is an

emerging field in cell biology (Scorrano et al., 2019). Future work will focus on analysing the dynam-

ics and functionality of contact sites between chloroplast membranes and other organelles, and

investigate the general coordination of plant cell metabolism during de-etiolation. These questions

could be further addressed using the SBF-SEM stacks and proteomic resource described here.

Materials and methods

Plant material and growth conditions
Arabidopsis thaliana seeds (Columbia ecotype) were surface-sterilized with 70% (v/v) ethanol with

0.05% (v/v) Triton X-100, then washed with 100% ethanol. Seeds were sown in spot containing 50

seeds (to facilitate rapid harvest) on agar plates containing 0.5 � Murashige and Skoog salt mixture

(Duchefa Biochemie, Haarlem, Netherlands) without sucrose. Following stratification in the dark for 3

days at 4˚C, seeds were irradiated with 40 mmol m�2 s�1 for 2 hr at 21˚C and then transferred to the

dark (plates were covered with three layers of aluminium foil) for 3 days growth at 21˚C. For chloro-

phyll, protein and lipid analyses, 50 etiolated seedlings per time point and replicate were collected

in a dark room using a dim green LED lamp as light source (0 hr of light; T0) and at selected time

points (T4, T8, T12, T24, T48, T72, T96) upon continuous white light exposure (40 mmol m�2 s�1 at

21˚C), transferred into 1.5 ml tube, flash-frozen in liquid nitrogen and stored at �80˚C until further

use. For TEM and SBF-SEM microscopy, seedlings were directly immersed into fixation buffer at the

corresponding time point.

Photosynthetic parameters
Maximum quantum yield of photosystem II (FMAX = FV/FM = (Fm-Fo)/Fm where Fm is the maximal

fluorescence in dark adapted state, Fo is minimal fluorescence in dark adapted state, Fv is the vari-

able fluorescence (Fm-Fo)), photosystem II quantum yield in the light (FPSII), and photochemical

quenching (qP) were determined using a Fluorcam (Photon Systems Instruments) with blue-light

LEDs (470 nm). Plants were dark adapted for a minimum of 5 min before measurement.

Chlorophyll concentration
Chlorophylls were extracted in 4 volumes of dimethylformamide (DMF) (v/w) overnight at 4˚C. After

centrifugation, chlorophylls were measured using a NanoDrop instrument at 647 nm and 664 nm.

Chlorophyll contents were calculated according to previously described methods (Porra et al.,

1989).

Transmission electron microscopy
Samples were fixed under vacuum (200 mBar) in 0.1 M cacodylate buffer (pH 7.4) containing 2.5%

(w/v) glutaraldehyde and 2% (w/v) formaldehyde (fresh from paraformaldehyde) for 4 hr and left in

the fixation solution for 16 hr at 4˚C. Samples were then incubated in a solution containing 3% (w/v)

potassium ferrocyanide and 4 mM calcium chloride in 0.1 M cacodylate buffer combined with an

equal volume of 4% (w/v) aqueous osmium tetroxide (OsO4) for 1 hr, on ice. After the first heavy

metal incubation, samples were rinsed with ddH2O and treated with 1% (w/v) thiocarbohydrazide

solution for 1 hr at 60˚C. Samples were rinsed (ddH2O for 15 min) before the second exposure to 2%

(w/v) OsO4 aqueous solution for 30 min at room temperature. Following this second exposure to
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osmium, tissues were placed in 1% (w/v) uranyl acetate (aqueous) and left overnight at 4˚C. The sam-

ples were rinsed with ddH2O for 15 min, and placed in the lead aspartate solution for 30 min at 60˚

C. Samples were dehydrated in a series of aqueous ethanol solutions ranging from 50% (v/v) to

100%, then embedded in Durcupan resin by successive changes of Durcupan resin/acetone mixes,

with the last imbibition in 100% Durcupan resin. Polymerization of the resin was conducted for 48 hr

at 60˚C (Deerinck et al., 2010). Ultra-thin sections (70 nm) were cut using Ultrathin-E microtome

(Reichert-Jung) equipped with a diamond knife. The sections were analyzed with a Philips CM-100

electron microscope operating at 60 kV.

Confocal microscopy
To derive the chloroplast and cell volumes, images of 1–5 mm thick sections of cotyledon cells were

acquired with �10 and �40 oil immersion objectives using a LEICA TCS SP5 confocal laser scanning

microscope. Chlorophyll was excited using a red laser (33%) and spectral detection channel was

PMT3.

SBF-SEM
SBF-SEM was performed on Durcupan resin–embedded cotyledons representing the four de-etiola-

tion time points T0, T4, T24, and T96. Overview of the mesophyll tissue ( » 600 images) and zoomed

stacks of the chloroplasts (» 300 images) were acquired. Voxel size of T4 zoomed stacks: 3.9 �

3.9�50 nm; T24: 4.7 � 4.7�50 nm; T96: 5.6 � 5.6�50 nm. Voxel size for T0 overview: 9.5 �

9.5�100 nm; T4: 19.3 � 19.3�100 nm; T24: 40 � 40�200 nm; T96: 43.5 � 43.5�200 nm.

Acquired datasets were aligned and smoothed respectively, using the plugins MultiStackReg and

3D median filter, provided by the open-source software Fiji.

We performed a stack-reslice from Fiji to generate a new stack by reconstructing the slices at a

new pixel depth to obtain isotropic voxel size and improve z-resolution. The segmentation and 3D

mesh geometry information of plastid /thylakoid (T0, T4, T24 and T96) were implemented by open-

source software 3D Slicer (Fedorov et al., 2012) and MeshLab (Cignoni et al., 2008) respectively.

Segmentation, 3D reconstruction, and surface and volume
quantification
Segmentation and 3D reconstruction of 3View and confocal images were performed using Amira

software (FEI Visualization Sciences Group). Specifically, prolamellar body, thylakoids, and envelope

membranes as well as the cells were selected using a semi-automatic tool called Segmentation Edi-

tor. From the segmented images, triangulated 3D surfaces were created using Generate Surface

package. Quantification of morphometric data (Area 3D and volume 3D) was acquired using Label

Analysis package.

Analysis of grana segmentation
Grana structures acquired from SBF-SEM were selected in Amira. The grana selections were con-

verted in line set view in Amira software using the Generate Contour line package. To complete the

grana segmentation, the line set views were imported into the Rhino six software (Robert McNeel

and Associates, USA). Every granum was segmented in layers with a specific thickness and distance

according to quantitative data collected (Figure 2—figure supplement 1 and Figure 3—figure sup-

plement 1). After segmentation, images were re-imported in Amira software to quantify perimeter

using the Label Analysis package.

Chloroplast number determination
Chloroplasts per cell were counted manually using Image J software (Wayne Rasband, National Insti-

tutes of Health). From the same SBF-SEM stack, five and/or 6 cells were cropped at each time point

(T0, T4, T24, and T96) to quantify chloroplast number per cell. From TEM images, chloroplast num-

ber/cell was determined at T24 (16 cells), T48 (12 cells), T72 (12 cells), and T96 (17 cells). TEM

images were acquired from two independent experiments.
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Liquid chromatography–mass spectrometry analysis and protein
quantification
Etiolated seedlings were grown as described above. At each time point, ca. 80 seedlings were

pooled, frozen in liquid nitrogen, and stored at �80˚C until use. Frozen material was ground with a

mortar and pestle, and 40–80 mg of plant material was used for protein and peptide preparation

using the iST kit for plant tissues (PreOmics, Germany). Briefly, each sample was resuspended in 100

mL of the provided ‘Lysis’ buffer and processed with High Intensity Focused Ultrasound (HIFU) for 1

min by setting the ultrasonic amplitude to 65% to enhance solubilization. For each sample, 100 mg

of protein was transferred to the cartridge and digested by adding 50 mL of the provided ‘Digest’

solution. After 180 min of incubation at 37˚C, the digestion was stopped with 100 mL of the provided

‘Stop’ solution. The solutions in the cartridge were removed by centrifugation at 3,800 g, whereas

the peptides were retained on the iST filter. Finally, the peptides were washed, eluted, dried, and

re-solubilized in 18.7 mL of solvent (3% (v/v) acetonitrile, 0.1% (v/v) formic acid).

Mass spectrometry (MS) analysis was performed on a Q Exactive HF-X mass spectrometer

(Thermo Scientific) equipped with a Digital PicoView source (New Objective) and coupled to a

M-Class UPLC (Waters). Solvent composition at the two channels was 0.1% (v/v) formic acid for chan-

nel A and 0.1% formic acid, 99.9% (v/v) acetonitrile for channel B. For each sample, 2 mL of peptides

were loaded on a commercial MZ Symmetry C18 Trap Column (100 Å, 5 mm, 180 mm x 20 mm,

Waters) followed by nanoEase MZ C18 HSS T3 Column (100 Å, 1.8 mm, 75 mm x 250 mm, Waters).

The peptides were eluted at a flow rate of 300 nL/min by a gradient of 8–27% B in 85 min, 35% B in

5 min, and 80% B in 1 min. Samples were acquired in a randomized order. The mass spectrometer

was operated in data-dependent mode (DDA), acquiring a full-scan MS spectra (350–1400 m/z) at a

resolution of 120,000 at 200 m/z after accumulation to a target value of 3,000,000, followed by HCD

(higher-energy collision dissociation) fragmentation on the 20 most intense signals per cycle. HCD

spectra were acquired at a resolution of 15,000 using a normalized collision energy of 25 and a maxi-

mum injection time of 22 ms. The automatic gain control (AGC) was set to 100,000 ions. Charge

state screening was enabled. Singly, unassigned, and charge states higher than seven were rejected.

Only precursors with intensity above 250,000 were selected for MS/MS. Precursor masses previously

selected for MS/MS measurement were excluded from further selection for 30 s, and the exclusion

window was set at 10 ppm. The samples were acquired using internal lock mass calibration on m/z

371.1012 and 445.1200. The mass spectrometry proteomics data were handled using the local labo-

ratory information management system (LIMS) (Türker et al., 2010).

Protein quantification based on precursor signal intensity was performed using ProgenesisQI for

Proteomics (v4.0.6403.35451; nonlinear dynamics, Waters). Raw MS files were loaded into Progene-

sisQI and converted to mzln files. To select the alignment reference, a group of samples that had

been measured in the middle of the run (to account for drifts in retention times) and derived from

de-etiolation time point T12 or later (to account for increasing sample complexity) was preselected,

from which replicate 3 of time point T48 was then automatically chosen as best alignment reference.

After automatic peak picking, precursor ions with charges other than 2+, 3+, or 4+ were discarded.

The five highest-ranked MS/MS spectra, at most, for each peptide ion were exported, using the dei-

sotoping and charge deconvolution option and limiting the fragment ion count to 200 peaks per

MS/MS. The resulting Mascot generic file (.mgf) was searched with Mascot Server version 2.6.2

(http://www.matrixsicence.com) using the following settings: trypsin digest with up to two missed

cleavages allowed; carbamidomethylation of cysteine as fixed modification; N-terminal acetylation

and oxidation of methionine residue as variable modifications; precursor ion mass tolerance 10 ppm;

fragment ion (MS/MS) tolerance 0.04 kDa. This search was performed against a forward and reverse

(decoy) Araport11 database that included common MS contaminants and iRT peptides. The mascot

result was imported into Scaffold Q+S (v4.8.9; Proteome Software Inc), where a spectrum report was

created using a false discovery rate (FDR) of 10% and 0.5% at the protein and peptide level, respec-

tively, and a minimum of one identified peptide per protein. After loading the spectrum report into

ProgenesisQI, samples were normalized using the ‘normalize to all proteins’ default settings (i.e. nor-

malization was performed to all ions with charges 2+, 3+ or 4+). Samples were grouped according

to de-etiolation time point in a between-group analysis with four replicates for each condition,

except for time point T0 and T48, where n = 3. For these two time points, one replicate each had

been discarded it appeared as an outlier in principal component analysis (PCA) of protein
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abundances between different runs (Figure 5—source data 1). Quantification employed the Hi-N

method, measuring the three most abundant peptides for each protein (Grossmann et al., 2010).

Associated statistics (p-values, PCA etc.) were calculated in ProgenesisQI, except for the q-values,

which were calculated from the p-values using the Benjamini-Hochberg (BH) method, with FDR-

adjustment to enforce monotonicity. Quantification also used protein grouping, which assigns pro-

teins for which only shared but no unique peptides were identified to a ‘lead’ identifier containing all

these shared peptides and thus having the greatest coverage among all grouped identifiers or high-

est score where coverage is equal. Quantification was restricted to protein (groups) with at least two

identified peptides among which at least one is unique to the protein (group). Using these require-

ments, 5082 Arabidopsis proteins (or groups) were identified. Since 13 additional identifications

were exclusively associated with decoy proteins, the false discovery rate at the protein level is esti-

mated to be 0.3%.

Immunoblot analysis
Proteins were extracted from whole seedlings in four volumes (w/v) of SDS-PAGE sample buffer (0.2

M Tris/HCL pH 6.8, 0.4 M dithiothreitol, 8% (w/v) SDS, 0.4% (w/v) Bromophenol blue, and 40% (v/v)

glycerol).

Proteins were denatured for 15 min at 65˚C and cell debris were removed by centrifugation for 5

min at 16,000 g. Proteins were separated on SDS-PAGE (10–15% (w/v) polyacrylamide concentra-

tions depending on the molecular weight of the protein of interest) and transferred onto a nitrocellu-

lose membrane for immunoblotting (overnight at 4˚C) in Dunn buffer (10 mM NaHCO3, 3 mM

Na2CO3, 0.01% (w/v) SDS, and 20% ethanol).

Absolute quantification of PsbA, PetC, and PsaC was performed according to Agrisera instruc-

tions and using recombinant proteins (PsbA AS01 0116S, PetC AS08 330S, and PsaC AS04 042S;

Agrisera, Vännäs, SWEDEN). Three respective calibration curves for the three recombinant proteins

were created. Concentrations used to generate the PsbA and PetC calibration curves were 1.75, 2.5,

5, and 10 (ng/mL). Concentrations used to generate the PsaC calibration curve were 0.375, 0.75, 1.5,

and 3 (ng/mL). Immunodetections were performed using specific antibodies: anti-Actin (Sigma, A0

480) at 1/3000 dilution in 5% (w/v) milk in Tris-buffered saline (TBS); anti-Lhcb2 (Agrisera, AS01 003),

anti-D1(PsbA) (Agrisera, AS05 084), anti-PsbO (Agrisera, AS14 2825), anti-PsbD (Agrisera, AS06

146), anti-PetC (Agrisera, AS08 330), and anti-AtpC (Agrisera, AS08 312) at 1/5000 dilution in 5%

milk/TBS; Anti-PsaD (Agrisera, AS09 461) at 1/2000 in 5% milk/TBS; and anti-PsaC (Agrisera,

AS042P) and anti-ARC5 (Agrisera, AS13 2676) at 1/2000 in 3% (w/v) bovine serum albumin (BSA) in

TBS. Anti-FtsZ-1 and anti-FtsZ2-1/FtsZ 2–2 (El-Shami et al., 2002; Karamoko et al., 2011) were

used at 1/2000 dilution in 5% milk/TBS. After incubation with primary antibodies overnight at 4˚C,

blots were washed three times in TBS containing 0.1% (v/v) Tween without antibodies for 10 min

and incubated for 1 hr at RT with horseradish peroxidase–conjugated secondary antibodies (1/3000

(v/v) anti-rabbit or anti-mouse secondary antibodies, Agrisera). For Anti-HY5 (1/1000 dilution;

Oravecz et al., 2006) and anti-phyA (1/1000 dilution; Shinomura et al., 1996), TBS was replaced by

Phosphate Buffer Saline (PBS). Chemiluminescence signals were generated with Enhanced chemilu-

minescence reagent (1 M Tris/HCl pH 8.5, 90 mM coumaric acid, and 250 mM luminol) and detected

with a Fujifilm Image – Quant LAS 4000 mini CCD (GE Healthcare). Quantifications were performed

with ImageQuant TL software (GE Healthcare).

Lipid profiling
Lipids were extracted from whole seedlings ground in a mortar and pestle under liquid nitrogen.

Ground plant material corresponding to 40–80 mg fresh weight was suspended in tetrahydrofuran:

methanol (THF/MeOH) 50:50 (v/v). 10–15 glass beads (1 mm in diameter) were added followed by

homogenization (3 min, 30 Hz,) and centrifugation (3 min, 14 000 g, at 4˚C). The supernatant was

removed and transferred to an HPLC vial. Lipid profiling was carried out by ultra-high pressure liquid

chromatography coupled with atmospheric pressure chemical ionization-quadrupole time-of-flight

mass spectrometry (UHPLC-APCI-QTOF-MS; Martinis et al., 2011). Reverse-phase separation was

performed at 60˚C on an Acquity BEH C18 column (50 � 2.1 mm, 1.7 mm). The conditions were the

following: solvent A = water; solvent B = methanol; 80–100% B in 3 min, 100% B for 2 min, re-equili-

bration at 80% B for 0.5 min. Flow rate was 0.8 ml min�1 and the injection volume 2.5 ml. Data were
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acquired using MassLynx version 4.1 (Waters), and processed with MarkerLynx XS (Waters). Peak lists

consisting of variables described by mass-to-charge ratio and retention time were generated

(Martinis et al., 2011; Spicher et al., 2016).

Absolute quantification of mono- (MGDG) and di-galactosyldiacylglycerol (DGDG) was conducted

by creating calibration curves using MGDG (reference number 840523) and DGDG (reference num-

ber 840523) products of Avanti Company. Calibration curves were prepared using the following con-

centrations: 0.08, 0.4, 2, 10, and 50 mg ml�1 of MGDG or DGDG.

Mathematical model
A non-linear mixed effects model (with fixed effect of time and random effect of replicates on 3 of

the parameters), built on a four-parameter logistic function, was implemented in R (free software cre-

ated by Ross Ihaka and Robert Gentleman, Auckland University, New Zealand), following the exam-

ples in Pinheiro and Bates, 2000. The R-packages used are: nlme (Pinheiro and Bates, 2000),

effects, lattice and car (Fox and Weisberg, 2018). To account for self-correlation at the replicate

level, we proceeded to fit an overall mixed-effects model to the data (package ‘nlme’ from R), using

the replicate’s as random effect term (Figure 9—figure supplement 1). The four parameters a, b, c,

and d have been calculated (Figure 9—figure supplement 1) and the three plots (one for each bio-

logical replicate) (Figure 9—figure supplement 1) indicated the fitting curve for a series of data

points.
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(2008). “Storage reserve accumulation in Arabidopsis: metabolic and developmental con-

219



220 Bibliography

trol of seed filling”. In: The Arabidopsis book/American Society of Plant Biologists 6 (cit.
on p. 121).

Baumeister, Wolfgang (2002). “Electron tomography: towards visualizing the molecular or-
ganization of the cytoplasm”. In: Current opinion in structural biology 12.5, pp. 679–684
(cit. on p. 10).
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De Vargas, Colomban, Stéphane Audic, Nicolas Henry, Johan Decelle, Frédéric Mahé, Ramiro
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Garćıa-Cerdán, José G, Eva M Schmid, Tomomi Takeuchi, Ian McRae, Kent L McDonald,
Nichakarn Yordduangjun, Ahmed M Hassan, Patricia Grob, C Shan Xu, Harald F Hess,



Bibliography 225

et al. (2020). “Chloroplast Sec14-like 1 (CPSFL1) is essential for normal chloroplast de-
velopment and affects carotenoid accumulation in Chlamydomonas”. In: Proceedings of
the National Academy of Sciences 117.22, pp. 12452–12463 (cit. on p. 11).

Gavelis, Gregory S, Maria Herranz, Kevin C Wakeman, Christina Ripken, Satoshi Mitarai,
Gillian H Gile, Patrick J Keeling, and Brian S Leander (2019). “Dinoflagellate nucleus
contains an extensive endomembrane network, the nuclear net”. In: Scientific reports 9.1,
pp. 1–9 (cit. on p. 58).

Gest, Howard (2004). “The discovery of microorganisms by Robert Hooke and Antoni Van
Leeuwenhoek, fellows of the Royal Society”. In: Notes and records of the Royal Society of
London 58.2, pp. 187–201 (cit. on p. 5).

Gonzalez, Rafael C and E Richard (2002). “Woods, digital image processing”. In: ed: Prentice
Hall Press, ISBN 0-201-18075 8 (cit. on p. 31).

Gray, Michael W, Gertraud Burger, and B Franz Lang (1999). “Mitochondrial evolution”. In:
Science 283.5407, pp. 1476–1481 (cit. on p. 2).
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Approches quantitatives d’imagerie pour étudier la
physiologie des cellules photosynthétiques

Résumé — Le phytoplancton est composé de micro-organismes photosynthétiques
(microalgues et cyanobactéries) vivant en suspension dans les eaux marines et douces.
Grâce à la photosynthèse, le phytoplancton produit de grandes quantités d’oxygène
indispensable à la vie marine et terrestre, et fixe le CO2 de l’atmosphère. Les
microalgues marines sont également des organismes prometteurs pour les applications
biotechnologiques (alimentation humaine et animale, biocarburants). En raison de leur
importance écologique et économique, l’étude des réponses du phytoplancton aux défis
environnementaux (y compris ceux induits par l’activité humaine et le réchauffement
climatique) est un domaine de recherche en plein développement. L’activité du
phytoplancton est influencée par les changements dans la stratification verticale de la
colonne d’eau qui module, en fonction de la température, la disponibilité de l’énergie
lumineuse ainsi que l’apport de nutriments aux cellules du phytoplancton. En raison
de la disponibilité de la lumière et des nutriments, les cellules du phytoplancton
ont évolué vers différents modes de vie : phototrophie (activité photosynthétique),
mixotrophie (utilisation simultanée de la photosynthèse et de la respiration de sources
de carbone organique extérieures pour la croissance) et photosymbiose (interactions
symbiotiques à l’intérieur de cellules animales). Dans cette thèse, j’ai étudié les
réponses physiologiques des cellules du phytoplancton aux changements environ-
nementaux en regardant aux niveaux cellulaires et subcellulaires. Pour atteindre cet
objectif, j’ai mis au point un processus d’imagerie complet permettant d’effectuer des
analyses morphométriques quantitatives de cellules entières d’algues représentatives
à la fois d’espèces à succès écologique et de modèles de laboratoire. Le protocole
commence avec l’acquisition de séries d’images hautes résolutions soit par FIB-SEM
(Focused Ion Beam - Scanning Electron Microscopy) ou SBF-SEM (Serial Block Face
- Scanning Electron Microscopy). Le protocole d’analyse d’images 3D développé dans
ce travail permet d’obtenir des modèles tridimensionnels à haute résolution de cellules
entières permettant la réalisation d’analyses quantitatives. Grâce à ces outils, j’ai
pu imager des cellules du phytoplancton dans diverses conditions environnementales
révélant ainsi : 1) le changement de taille et de morphologie des plastes et des
mitochondries lors de l’acclimatation à la lumière dans les diatomées, 2) le changement
dans l’interaction des organites chez Nannochloropsis lors de l’acclimatation aux nu-
triments, 3) les changements morphologiques qui surviennent lors de la photosymbiose
dans l’algue Phaeocystis. Ces travaux révèlent plusieurs scénarios d’acclimatation
du phytoplancton au niveau cellulaire et subcellulaire. J’ai également pu valider
l’utilisation de ce protocole chez les plantes pour répondre à deux questions biologiques
principales : la transition étioplaste - chloroplaste dans les cellules du cotylédon et
le processus de formation des granules d’amidon dans les feuilles matures d’Arabidopsis.

Mots clés : Imagerie 3D, Analyse morphométriques, Phytoplancton, Photosymbiose, Organites, Plantes.
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Quantitative imaging methods to investigate the physiology of
photosynthetic cells

Abstract — Phytoplankton is composed of photosynthetic microorganisms (microal-
gae and cyanobacteria) living in suspension in marine and fresh waters. Through
photosynthesis, phytoplankton produce large amounts of the oxygen essential for
marine and terrestrial life, and captures CO2 from the atmosphere. Marine microalgae
are also promising organisms for biotechnological applications (human and animal
food, biofuels). Because of their ecological and economic importance, the study of the
phytoplankton responses to environmental challenges (including the ones induced by
human activity and global warming) is a developing field of research. Phytoplankton
activity is influenced by changes in the vertical stratification of the water column,
which modulate light energy availability as well as nutrient supply to phytoplankton
cells in a temperature-dependent manner. Based on light and nutrient availability,
phytoplankton cells have evolved different lifestyles: autotrophy (photosynthetic
activity), mixotrophy (simultaneous use of photosynthesis and respiration of exogenous
organic carbon sources for growth) and photosymbiosis (endosymbiotic interactions
within animal cells). In this thesis, I have studied phytoplankton cells and their
responses to environmental changes at the cellular and subcellular levels. To achieve
this goal, I have developed a complete imaging workflow to perform quantitative
morphometric analyses of entire algal cells, representatives of ecologically-successful
and laboratory-model microalgal species. This protocol starts with FIB-SEM (Focused
Ion Beam-Scanning Electron Microscopy) or SBF-SEM (Serial Block Face-Scanning
Electron Microscopy), to acquire high-resolution images. By implementing the 3D
image analysis protocol, it is possible to obtain high-resolution whole cells models in
three dimensions, suitable to perform quantitative analyses. Thanks to these tools, I
have been able to image phytoplankton cells in various environmental conditions: (i)
changes in the size and morphology of plastids and mitochondria during light accli-
mation in diatoms, (ii) Changes in organelles interaction during nutrient acclimation
in Nannochloropsis, (iii) morphological changes occurring during photosymbiosis in
Phaeocystis. Overall, this work reveals several scenarios of phytoplankton acclimation
at both the cellular and subcellular levels. I have also validated the use of this protocol
in plants to answer two main biological questions: the etioplast - chloroplast transition
in cotyledon cells and the process of starch granule formation in mature leaves of
Arabidopsis.

Keywords: 3D imaging, Morphometric analyses, Phytoplankton, Photosymbiosis, Organelles, Plants.

Plant & Cell Physiology lab (LPCV) - UMR 5168 - IRIG
17 rue des Martyrs

38054 Grenoble cedex 9
France


	Introduction
	Origin of photosynthesis
	General history of microscopy
	From photons to electrons
	Volume imaging in biology

	Objective of the Thesis project

	Materials and methods
	Introduction
	Algal growth
	Sample preparation methods
	Chemical Fixation
	Cryo-substitution

	FIB-SEM acquisition
	Equipment and software tools
	Image processing and 3D reconstruction
	Image pre-processing methods
	Segmentation and 3D reconstruction
	3D visualization and model editor

	Geometry Processing
	Surface and volume metrics
	Proximity distance between two meshes
	Splitting method

	Image processing methods with sample preparations

	Assessing subcellular features and their dynamics in microalgae
	Introduction
	Results and Discussion
	Cellular architectures of phytoplankton
	Subcellular features of energy managing organelles
	Remodelling of the subcellular architecture of microalgae

	Conclusion and perspectives
	Supplementary Materials

	Photosymbiosis
	Introduction
	Results and Discussion
	Integration of the microalgae into the host cell
	The architecture of Phaeocystis cell in free-living phase
	Morphological change of Phaeocystis cells in symbiotic phase

	Conclusion and perspective

	3D imaging to investigate chloroplast biogenesis
	Introduction
	Preparation of plant material for SBF-SEM imaging
	Background model
	Segmentation and 3D analysis of SBF-SEM image datasets
	Results and Discussion
	Plastid development in germinating seedlings
	Control of starch granule numbers in Arabidopsis chloroplasts

	Conclusion and perspective

	Conclusion and perspectives
	Appendices
	Algal Remodeling in a Ubiquitous Planktonic Photosymbiosis
	Cytoklepty in the plankton
	A multifaceted analysis reveals two distinct phases of chloroplast biogenesis.

	Bibliography

