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Abstract 

In order to model the behavior of geometarials under complex loadings, several researches have 

done numerous experimental works and established relative constitutive models for decades. An 

important feature of granular materials is that the relationship between stress and strain especially in 

elastic domain is not linear, unlike the responses of typical metal or rubber. It has been also found that 

the stress-strain response of granular materials shows the characteristics of cross-anisotropy, as well as 

the non-linearities. Besides, the stress-induced anisotropy occurs expectedly during the process of 

disturbance on soils, for example, the loads or displacements. In this work, a new model which is a 

combination of Houlsby hyperelastic model and elastoplastic Plasol model was proposed. This new 

model took into account the non-linear response of stress and strain in both elastic and plastic domain, 

and the anisotropic elasticity was also well considered. Moreover, the overflow problem of plastic 

strain in plastic part was calibrated by a proper integration algorithm. Later, new model was verified 

by using numerical method and compared with laboratory experiments in axisymmetric triaxial 

conditions. The comparison results showed a good simulation effect of new model which just used 

one single set of parameters for a specific soil in different confining pressure situations. Then the 

analysis of new model internal variable, i.e., pressure exponent, illustrated that the value of pressure 

exponent which corresponds to the degree of anisotropy had an obvious effect on the stress-strain 

response. Moreover, this kind of effect is also affected by the density and drainage condition of 

samples. Basing on new model, a safety factor which refers to the second-order work criterion was 

adopted and tested in axisymmetric model and actual slope model. It showed that the negative value 

or dramatic decreasing of global normalized second-order work occurs accompanying with a local or 

global failure with a burst of kinetic energy. This feature of second-order work can also be affected by 

the variable pressure exponent. At last, new model was also compared with an elastoplastic model 

which considers both anisotropic elastic and anisotropic dilatancy, i.e., modified SANISAND model. 

Both advantages and disadvantages were illustrated in the comparison results. 

Key words 

Houlsby hyperelasticity; Plasol model; Granular materials; Axisymmetric model; Slope; Drainage 

conditions; Modified SANISAND model; Stress-induced anisotropy; Anisotropic elasticity   
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Résumé 

Afin de modéliser le comportement des géométariaux sous des charges complexes, plusieurs 

études et travaux expérimentaux ont été réalisées afin d’établir des modèles constitutifs relatifs. Une 

caractéristique importante des matériaux granulaires est que la relation entre la contrainte et la 

déformation et ce même dans le domaine élastique n’est pas linéaire, contrairement aux réponses du 

métal. Il a également été constaté que la réponse contrainte-déformation des matériaux granulaires 

montre les caractéristiques de l’anisotropie induite, ainsi que les non-linéarités. En outre, l’anisotropie 

induite par la contrainte se produit pendant le processus de chargement sur les sols, par exemple, les 

charges ou les déplacements. Dans ce travail, un nouveau modèle qui est une combinaison de modèle 

hyperélastique Houlsby et modèle élastoplastique Plasol a été proposé. Ce nouveau modèle a pris en 

compte la réponse non linéaire de la contrainte dans le domaine élastique et plastique, et l’élasticité 

anisotrope a également été bien considérée. En outre, les problèmes de l’écoulement de la déformation 

plastique a été calibré par un algorithme d’intégration approprié. Plus tard, le nouveau modèle a été 

vérifié en utilisant la méthode numérique et comparé aux expériences de laboratoire dans des 

conditions triaxiales axisymmétriques. Les résultats de comparaison ont montré un bon effet de 

simulation du nouveau modèle qui a juste utilisé un seul ensemble de paramètres pour un sol 

spécifique dans différentes situations de contraintes. Ensuite, l’analyse de la nouvelle variable interne 

du modèle, c’est-à-dire l’exposant de pression, a montré que la valeur de l’exposant de pression qui 

correspond au degré d’anisotropie a eu un effet évident sur la réponse contrainte-déformation. De plus, 

ce type d’effet est également affecté par la densité et l’état de drainage des échantillons. En 

s’appuyant sur un nouveau modèle, un facteur de sécurité qui fait référence au critère de travail de 

deuxième ordre a été adopté et testé dans un modèle axisymétrique et un modèle de pente réel. Il a 

montré que la valeur négative ou la diminution spectaculaire du travail global normalisé de second 

ordre se produit lors d’une défaillance locale ou globale avec apparition d’énergie cinétique. Cette 

caractéristique du travail du second ordre peut également être affectée par l’exposant à pression 

variable. Enfin, un nouveau modèle a également été comparé à un modèle élastoplastique qui 

considère à la fois l’anisotropie élastique et la dilatation anisotrope, c’est-à-dire le modèle 

SANISAND modifié. Les avantages et les inconvénients ont été illustrés dans les résultats de 

comparaison. 
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Notations 

Latin symbols  

a, b, n Parameters related with yield function in Chapter 2 

Bp , Bc Hardening coefficients of the Plasol model 

c Cohesion  

cijkl Compliance matrix component 

𝐷𝑖𝑗𝑘𝑙
𝑒 ,  𝐷𝑖𝑗𝑘𝑙

𝑝
 Constitutive elastic tensor component, constitutive plastic tensor component 

D(ijkl), D(ij) Jacobian matrix (incremental stiffness matrix) component 

dijkl Stiffness matrix component 

dQ, dF Global nodal incremental displacement and force 

E Young’s modulus 

E’ Complementary energy (Gibbs free energy) 

eij Deviator of strain tensor component 

e Void ratio 

F Strain energy (Helmholtz free energy) 

f Yield surface 

G, G0 Shear modulus, small strain shear modulus 

g (1) Plastic potential, (2) shear stiffness factor 

Iσ First stress invariant 

𝐼𝐼𝜎̂  Second deviatoric stress invariant 

Ⅲ
𝜎̂

  Third deviatoric stress invariant 

J Coupling modulus 

K Bulk modulus 

K Global consistent tangent matrix 

k 
(1) Over-consolidation ratio exponent (also with * superscript), (2) bulk stiffness 

factor 

k0 Permeability  

m, m’, k’ Parameters as function of cohesion , friction angle or dilatancy angle 

n1 Pressure exponent (also with * superscript) 

N Rate-independent constitutive operator 

Ns Symmetric part of N 

p, p’ Effective mean pressure 

pa Atmospheric pressure 

q Deviator stress (invariant) 

R Over-consolidation ratio in terms of mean effective stress (also with subscript) 

r, rC, rE Reduced radius, reduced radius in compression, in extension 

S Dimensionless stiffness factor (also with * superscript and η subscript) 

Sij Anisotropic stiffness factor 

sij Deviator of effective stress tensor component 

u Displacement 
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Val Scalar related with equivalent plastic strain 

W2,W2n Global second-order work, integrated second-order work 

w2, w2n Local second-order work, normalized second-order work 

Xi Position vector 

  

  

Greek letters  

∆()  Increment 

β Lode angle 

δij Kronecker tensor (unit tensor) 

𝜀𝑖𝑗  Strain tensor 

𝜀𝑣  Volumetric strain 

𝜀𝑣
∗  Modified volumetric strain 

𝜀𝑣
0  Function of strains 

𝜀𝑠  Shear strain 

𝜀𝑖̇𝑗, 𝜀𝑖̇𝑗
𝑒 ,  𝜀𝑖̇𝑗

𝑝
 Components of strain rate, elastic strain rate and plastic strain rate 

𝜀𝑒𝑞
𝑝

  Equivalent plastic strain 

φC Friction angle under triaxial compression path 

φE Friction angle under triaxial extension path 

η Triaxial stress ratio 

κ Internal variables 

κ’ Slope of swelling line in a consolidation plot 

𝜆  Lame’s first parameter 

𝜆̇  Plastic multiplier 

μ Lame’s second parameter 

ν Poisson’s ratio 

ρ Density 

𝜎𝑖𝑗, 𝜎̇𝑖𝑗 Components of stress tensor (effective) and stress rate 

𝜎𝑁  Normal stress 

𝜎̂, 𝜎̂𝑖𝑗 Deviatoric stress tensor, deviatoric stress tensor component 

σ1
*, σ2

* , σ3
* Projection of the principal stress on the deviatoric plane 

σ0 Confining pressure 

τ Tangential stress 

ψ Dilatancy angle 
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General introduction  

 Nowadays, the constitutive modeling work of the geomaterials has been causing various 

geotechnical researchers’ attention for more than 50 years, as well as the detecting and definition 

problems of failure. The granular material which is a representative material of general geomaterials 

always shows a non-linear stress and strain response in both elastic part and plastic part. Therefore, 

when numerically simulating the actual behavior of granular materials, the non-linearization should be 

taken into account. Besides, another important fact that natural soils show characteristics of 

cross-anisotropy (or transverse isotropy) requires also attention (CAS 17). Anisotropy could be 

divided into two parts, namely inherent anisotropy and induced anisotropy depending on the 

formation condition, which is due to the process of natural deposition and later disturbance 

respectively (ART 72; ODA 72c). Also, the anisotropy could also be composed into fabric anisotropy, 

stress or stiffness anisotropy and permeability anisotropy (KUH 15) from the manifestations aspect 

which are closely related with the external loading. Therefore, this research work, our main purpose 

focuses on the stress-induced anisotropy and its influence on the response of stress and strain. 

 In order to simulate the appropriate behavior of granular materials, various authors present some 

anisotropic elastoplastic models. For normally consolidated or lightly overconsolidated soil, an even 

small increase of stresses is likely to cause yielding. It is also easily concluded that the plastic 

deformation is likely to dominate for most problems of practical interest, while the elastic strain is 

relatively unimportant (WHE 03). At the meantime, when simulating this kind of behavior, the 

elasticity part in elastoplastic model has an influence on the response of stress and strain (CHA 05). In 

that case, the feature of anisotropy in elastic domain in the whole process of deformation is way 

important even though some elastoplastic models neglect the anisotropic characteristic in the elastic 

part for the reason of simplification (SCH 68; ROS 68; WRO 80). Besides, the hyperelastic 

formulations which are energy conservative and thermodynamically consistent present the feature that 

the elastic behavior can be derived from a relative potential energy function (HOU 00; EIN 04; GAJ 

08). That means that a theoretical relation between stress and strain can be derived from this kind of 

formulation. Furthermore, another point needs to be focused on is that the stiffness matrix derived 

from this formulation varies as a function of current stress state, i.e. the pressure dependency (HOU 
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05). Moreover, the induced anisotropy which occurs when non-zero value of off diagonal components 

exist in the stiffness matrix shows a good relation with the natural response of granular materials. 

 The problem of observation and definition of failure of soil has also been a hot issue for decades. 

The complex properties of granular materials determine that the analysis work is hard and elusive for 

both theoretical and physical definition of failure. Despite the earliest but outdated definition that 

failure occurs accompanied with the existence of a limit stress state which is impossible to exceed for 

any possible monotonous loading path, the basic but classical Lyapunov’s definition of stability shows 

a different and contradictory theory with the limit stress state theory mentioned before (LYA 07). 

Moreover, Lyapunov’s definition clearly states that the materials instabilities can be expected in 

elastoplastic media. But Lyapunov’s definition has limitation because it does not provide a well 

defined mathematical equation for a proper media. Thus the Hill’s condition of stability is taken into 

account (HIL 58). Hill states that a stress strain state is unstable if one loading direction which can be 

pursed in an infinitesimal manner exists and there is no external energy input in this direction. It 

means that the deformation could proceed itself without any input external loading or energy. Basing 

on Hill’s theory, the equation of second-order work which is the product of incremental strain and 

incremental stress is established and used for determine the existence of specific failure. According to 

Daouadji’s synthesis work (DAO 10), the equations of bifurcation domain in the stress space and of 

cones of unstable loading directions with proper control parameters are established from experimental, 

theoretical and numerical points. It is also far important that an essential feature of failure can be the 

outburst of kinetic energy accompanied with the drastically increased strains and decreased stresses. 

Furthermore, three necessary and sufficient conditions for an effective failure are proposed, namely: 

(1) the stress state within bifurcation domain, (2) the loading direction within cones of unstable 

directions, and (3) the proper parameters set in right place (LAO 02; PRU 009; NIC 09). 

 In order to apply the second-order work criterion basing on an appropriate constitutive relation, 

several works should be done in advance, and these works will be shown in the following Chapters. 

 In Chapter one, the literature research about anisotropy is firstly presented, which includes the 

different components of inherent and induced anisotropy in the way of generation, and the fabric and 

stress/stiffness anisotropy. As well, some latest anisotropic elastoplastic models are shown. Moreover, 

a hyperelastic formulation which is closely relevant with actual engineering situation is introduced 

later. In the latest, the works performed related to the second-order work are also introduced in 
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detailed. 

 In the second Chapter, an elastoplastic constitutive model ‘Plasol’ which contains an implicit 

backward Euler integration algorithm is firstly presented. Much emphasis is put on the fact that this 

Plasol model involves a general yield criterion which could be anyone of classical failure criterion, 

such as Mohr-Coulomb, or Drücker Prager and so on. Secondly, a hyperelastic strain energy function 

which is thermodynamically consistent is taking into account. The elastic strain energy is expressed in 

terms of strain invariants so that related stress invariants as a function of the strains can be derived 

from this function, as well as the incremental stiffness matrix. Thirdly, the combination and 

replacement work of Plasol model and the elastic stress strain relation mentioned above is 

implemented. Thus a new constitutive relation which is much appropriate theoretically for the 

behavior of non-associated granular materials is established. Last, another constitutive model which 

also considers the anisotropic elasticity will be shown in detail. 

 The works concerning numerical simulations will be described in the following Chapter 3. First 

of all, the equations of models mentioned before, including the original Plasol model, Modified 

SANISAND model and the new model we proposed, will be written in the User-Defined Material 

(abbreviated as ‘UMAT’) tool in FORTRAN which could be used as external model in ABAQUS 

simulation. Later, a simplified but representative axisymmetric Abaqus model will be built and run 

with these models. After, the comparison results between the simulations and experimental data will 

be shown, as well as the relevant evolution of tangent modulus. Then, the undrained triaxial tests will 

be implemented to analyze the influence of parameter namely pressure exponent, and the effect of 

different densities of samples with different Young’s moduli and Poisson’s ratios will be taken into 

account to test on the influence of pressure exponent. At the end, the simulation by modified 

SANISAND model will be compared with new model. 

In the fourth Chapter, the second-order work criterion will be adopted with this new model 

written into the Umat format. The use of global or integrated second-order work criterion used as a 

safety factor will be discussed. 

Finally, the last Chapter about conclusion and further perspectives will be drawn. 
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Chapter 1 – Literature review 

1.1 Research on anisotropy 

1.1.1 Inherent and induced anisotropy 

In materials science, anisotropy is a material’s directional dependence of a physical property. It is 

a critical consideration for materials selection in engineering applications. Tensor descriptions of 

material properties can be used to determine the directional dependence of that property. In other 

words, the diverse directional dependence of internal structure determines the anisotropic physical 

property, as well as the application in engineering problems. 

Anisotropy can be composed by two forms: inherent anisotropy and stress induced anisotropy. 

The former one is formed because of preferred particles and contacts orientations that develop in the 

process of deposition, while the latter one is due to the displacement or the loaded stress during later 

activities (ART 72; ODA 72c). According to Arthur and Menzies (ART 72), the inherent anisotropy of 

non-cohesive granular materials is described. Samples are set up in different directions of deposition 

referring to the sample axes and then loaded in principal stress directions. It is concluded that inherent 

anisotropy can emerge in the direction corresponding to strength and pre-failure stress-strain 

anisotropy. Furthermore, the coincidence of principal stress axes and direction of strain increment is 

shown up, as well as the anisotropic effects on stress-strain response. Oda shows that the fabric 

reconstruction of initial fabric is continuous and is caused mostly by the sliding along unstable 

contacts between the neighboring particles and partly by the rotation of particle during the process of 

axial strain increment. Note that a material’s fabric describes the spatial and geometric configuration 

of all the elements that make it up. 

Arthur et al. (ART 77) also publishes a work about the pre-failure induced anisotropy in dense 

granular media. After the plane strain test with controlled changes of principal stress directions, it is 

found that the induced anisotropy has less influence on the angle of shearing resistance but large 

effect on the secant modulus on reloading after a principal stress rotation. Moreover, the different 

directions between the present axes of induced anisotropy and previous axes leads to slight and 

diminishing deviation between axes of stress and strain rates. 
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This theory is also mentioned and used as fundament by later researchers. Hu et al. (HU 10) 

emphasize the fact that the anisotropy of structure of granular materials can influence the response of 

stress and strain, and its feature of two kinds of components, i.e. inherent and induced anisotropy. In 

their paper, the fabric tensor is used to explicitly present the interactions between individual particles, 

and its eigenvalues can be treated as a measure of the fabric anisotropy, so does the coordination 

number to the packing density of material. Here, the coordination number is described as the average 

of the contacts of all grains of an assembly. The Discrete Element Method (DEM) in two-dimensional 

is used to simulate the evolution of fabric in cyclic loading condition. It is found that the inherent 

anisotropy decreases in the process of isotropic consolidation, but increases in the process of 

anisotropic consolidation. The anisotropy which is induced by the loading cyclic stress path has a 

dependency on maximum and minimum values of cyclic loadings. Furthermore, the ratio of normal to 

shear springs stiffnesses can influence the development of anisotropy, with the fact that higher value 

of this ratios corresponding to lower degree of anisotropy induced by anisotropic consolidation.  

Induced anisotropy could also be decomposed into fabric anisotropy, stress (or stiffness) 

anisotropy and permeability anisotropy (KUH 15). According to Kuhn et al., the anisotropies of 

granular particles (fabric) and of materials’ strength, stiffness and permeability are induced by the 

external loading on samples. For fabric anisotropy measurements, there are four categories which are 

preferred orientation of particle, particle surface, normal contacts and void space can be developed. It 

is found that the measures of particle’s orientation are the most representative one to loading. For 

stiffness anisotropy, it is concluded that this kind of stiffness increases along the initial compressive 

loading direction and reduces along the extension direction. Furthermore, it is closely matched with a 

special measure of contact fabric. For permeability anisotropy, the results that the permeability is 

negatively linked with directional mean free path and is positively linked with pore width show that 

the induced permeability anisotropy is caused by the changes in the direction of directional hydraulic 

radius.  

1.1.2 Fabric and stress/stiffness anisotropy  

For geotechnical materials, especially natural soil, the response of stress and strain shows a 

non-linear behavior, which could be described by using elastoplastic models for instance which can be 
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phenomenological or micro-mechanical-based. When simulating this kind of behavior, the elasticity 

part in elastoplastic model has an influence on the response of stress and strain (CHA 05). According 

to Chang and Hicher, the inter-particle stiffness is closely related to inter-particle elastic constants and 

proportional to the mean particle size. This stiffness can directly affect the response of stress and 

strain under an externally applied stress for an assembly of particles. In this paper, an elastoplastic 

model which is a combination of Hertz-Mindlin’s elastic law and Mohr-Coulomb’s plastic law is 

established. They also conclude that the anisotropic samples which are placed in different loading 

directions show the model’s qualification and consideration of the influence of inherent anisotropy on 

the behavior of stress and strain in drained triaxial loading test.  

Oda et al. (ODA 85) presented that three main factors affecting and quantifying the fabric 

anisotropy which are the: (1) distribution of normal contacts; (2) shape of non-spherical particles; and 

(3) shape of associated voids. In their paper, a basis of biaxial compression tests performed on 

two-dimensional assemblies is used to define the second-rank fabric tensor which is representative of 

the corresponding anisotropy. It is found that the direction of principal axes of fabric tensor changes 

gradually approaching to the principal axes of stress tensor in the process of monotonic loading. 

Moreover, the generation of particle contacts along the maximum principal compression are closely 

linked with the order of column-like loading paths along the same direction, and these new contacts 

result in the stress-induced anisotropy and seem to be a contributing factor to the post-peak failure.  

Li and Dafalias (LI 12) proved that the anisotropic critical state theory which accounts for the 

role of anisotropic fabric of the classical critical state theory is appropriate for large deformations. A 

fabric tensor is taken into account during the studies of micromechanics and experiments, and a scalar 

fabric anisotropy variable which is an evolving fabric tensor in the direction of loading is also 

proposed. It is shown that, when this variable reaches its critical state value, the dilatancy state line in 

the void ratio – pressure plane is coincident with the classical critical state line, and the dilatancy state 

parameter evaluating the contracting or dilating trends of current state changes toward to the value of 

dilatancy angle. Moreover, the feature of static liquefaction occurs when the dilatancy state parameter 

equals to zero and stress ratio reaches its critical value.  

Another related factor that has to be considered is its cross-anisotropy (or transverse isotropy) 

due to the geological processes, which leads to a more complicated and unpredictable relationship of 

stress and strain (CAS 17). The authors present that natural clays have a feature of significant degree 
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of anisotropy in fabric because of the shape of clay platelets, deposition process and one-dimensional 

consolidation, and this behavior can be called as cross-anisotropy or transversely isotropy. A new 

constitutive model includes the anisotropic behavior of elastic and plastic features and incorporates 

the stress-dependent cross-anisotropic elastic behavior using three independent elastic parameters and 

one additional variable, namely the ratio of horizontal and vertical stiffness. The evolution of elastic 

anisotropy is not considered within this new model, but the noticeable variation of elastic anisotropy 

can be caused within a large deformation condition, which induces a more complex relationship 

between strain and stress.  

Zdravkovic et al. (ZDR 02) state that neglecting this anisotropy of natural soil behavior can 

induce high inaccuracy during the predicting of stress-strain response. When designing and 

calculating the safety factor of embankment, the traditional way is often based on a limit equilibrium 

approach with a consideration of isotropic materials. However, the natural soil always shows the 

behavior of anisotropy in both stiffness and strength, so that the old practice would be inaccurate and 

uneconomic even the empirical factors are introduced into conventional design procedures.  

Other studies have been done about the influence of anisotropy on the stress-strain in different 

situations. Toyota et al. (TOY 14) investigated the stability of slopes which were affected by the 

anisotropy of shear strength induced by K0 consolidation and swelling in cohesive soils. Due to the 

reason that shear direction changes at each sliding points, the strength anisotropy should be taken into 

account in the process of stability analyses. Therefore, in this paper the undrained torsional shear tests 

and two-dimensional plane strain tests conducted on samples which are consolidated and swollen in 

different directions are implemented to assess the influence of anisotropy of shear strength. Results 

show that the anisotropy of undrained shear strength closely corresponding to the difference between 

consolidation and shearing in terms of directions and stress condition. Furthermore, the slope stability 

analyses also need take the anisotropy of undrained shear strength into account.  

Additionally, the influence of anisotropy on the failure with localization pattern and the limit 

loading capacity of geostructure is investigated by Chang et al. (CHA 14). For this purpose, an 

extended Drücker Prager yield criterion is developed for this kind of transversely isotropic 

geomaterials. After simulating with Finite Element Method, the results show that the localization 

pattern and the critical bearing capacity of geostructure are corresponding closely to the principal 

direction of materials and the degree of anisotropy.  
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The existence and the level of anisotropy occurring in particulate materials which have nearly 

spherical aggregates have been shown within the work of Oboudi et al. (OBO 16). To this aim, both 

experimental test and theoretical support are contained in this study. The former is about the 

performance of series of tests at different sample orientations, while the latter is about the plasticity 

formulation based on a critical plane approach. The results present that the proposed framework can 

account for the various performance of load-induced anisotropy.  

1.1.3 Anisotropic elastoplastic models 

Before introducing anisotropic elastoplastic models, the general elastoplastic models have been 

accepted for decades and adopted until now. For example, the elastoplastic Plasol (BAR 98) model 

which contains a linear elastic part and a plastic part is a general constitutive model for granular 

materials which will be show detailedly in the Chapter 2. In this Section, however, the anisotropic 

elastoplastic models are focused on.  

Several authors have done extensive experimental testing and proposed relevant elastoplastic soil 

models for modeling the mechanical behavior of natural soils. Dafalias (DAF 86) presents the fact that 

the isotropic constitutive model is inappropriate for modeling the behavior of stress and strain of soil 

within the framework of elastoplasticity. Then an evolution law with yield surface accompanying 

anisotropic features such as rotational hardening has been postulated basing on the provided 

expression of a rotated and distorted ellipse as the yield surface. These constitutive equations equip a 

significant feature of simplicity, as well as the successful comparison with experimental data. 

Whittle and Kavvadas (KAV 94) proposed an effective stress model for clays normally and 

moderately and over-consolidated. Three components are comprised in this model which are: the 

elastoplastic model for clay normally consolidated and including the behavior of anisotropy and strain 

softening; the equations describing the nonlinearity of small strain and characterizing the hysteretic 

response in the process of loading and unloading; and the surface plasticity of boundary for 

irrecoverable, anisotropic features of overconsolidated clays. Furthermore, the complexity of model 

can be controlled by using specific parameters which are obtained from few standardized soil tests.  

However, some of these models assume that the elastic part of the model is isotropic due to the 

reasons of simplification and thoughts of leading position of plastic deformation, yet it is widely 
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known that the natural soils exhibit anisotropy of elastic behavior (GRA 83; WHE 03). Graham and 

Houlsby describe the anisotropic behavior of natural clays because of the mode of deposition. Five 

elastic parameters which could reduce to three in the situation of triaxial tests are also proposed to 

describe the transverse isotropy. For example, in these required parameters, the bulk modulus, shear 

modulus, and cross modulus are easily identified and can be used to express the behavior of 

anisotropic soil between strain and stress, i.e., mean stress and shear strain, shear stress and 

volumetric strain specifically. The result of this anisotropic model is compared with true triaxial tests 

and results show that the clay is approximately 1.8 times stiffer along the horizontal direction than 

vertical direction which is a quite strongly anisotropic. 

According to Wheeler et al. (WHE 03), an anisotropic elastoplastic model is presented on the 

basis of experimental data for shape of yield curve and relationship describing the influence of plastic 

straining on yield curve inclination. This model is called S-CLAY1 and incorporates a rotational 

component of hardening in the reason of influence of plastic anisotropy. This rotational hardening law 

contains the dependence on plastic shear and volumetric strain increment and is also validated by 

conventional drained triaxial tests on clay. The simulation results of new model are compared with 

experimental data and proved improving the performance of the Modified Cam Clay model (ROS 68). 

However, it also equips a shortcoming, which is that it would under-predict the post yield volumetric 

strain in the case of high values of stress ratio. This shortcoming could be made up by taking the 

bonding and destruction into account which has been shown in an extended version (KAE 05) of this 

model. 

Schädlich and Schweiger (SCH 13) check the effect of anisotropic elasticity on the deformation 

behavior of deep excavations and strip footings in means of a constitutive model. A model which 

incorporates the feature of taking the anisotropic elasticity into account in the range of small strain is 

proposed and aimed to solve two simple benchmark problems mentioned above. The studies show 

that under the condition of relatively low displacement and strains, the influence of small strain 

stiffness anisotropy is more significant than the case under higher strains conditions. It is also found 

that this kind of stiffness anisotropy can be approximated as the average of axial stiffnesses. 

However, their model is limited in a very small range of strains and can’t be regarded as a full 

constitutive model because it doesn’t consider stress-dependent stiffness and plastic strains. Based on 

this model, a model named S-CLAY1S is proposed by Karstunen et al. (KAE 05), and extended by 
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Castro and Sivasithamparam (CAS 17), avoids this problem and contains a yield surface function and 

stress-dependent stiffness. Based on the fact that S-CLAY1 takes the initial and plastic strain induced 

anisotropy into account, its extension model, i.e., S-CLAY1S also considers additionally the case of 

inter-particle bonding and degradation of bonds. After comparing results of these two models and 

isotropic Modified Cam Clay with the obtained field data, it is shown that the anisotropy is 

importantly and necessarily taken into account, whereas the influence of destructuration seems to be 

implicit on the predicted deformations. This model also had a good agreement with the field 

measurements, according to the work of Yildiz et al. (YIL 09) on embankment test. 

The extended model based on S-CLAY1S, is proposed for situation of cross-anisotropy (CAS 17) 

which also shows anisotropy behavior both of elastic and plastic nature as well as the 

stress-independent cross-anisotropic elastic behavior. Note that the cross-anisotropy behavior could be 

described with three elastic parameters in this model which have been discussed by Graham and 

Houlsby (GRA 83). Only one additional parameter is contained in this new model, i.e., the ratio of 

horizontal stiffness to vertical stiffness, which can be easily obtained from conventional experimental 

tests. By the model, the initial non-vertical effective stress path can be analytically and easily captured, 

and the deviatoric strain in the process of isotropic loading and unloading can be predicted as well. 

Another extended model based on S-CLAY1S was proposed by combining the anisotropy and 

destructuration using an elasto-viscoplastic model on the natural soft clays (YIN 11). The clays which 

equip the strain-rate-dependency were tested at constant strain-rate and creep in one-dimensional and 

triaxial conditions. With this model, the result that loading scenarios is necessary to get an accurate 

prediction when accounting for anisotropy and / or destructuration was revealed. Also, the fact that 

proposed model can successfully reproduced the time-dependent behavior of natural soft clays can be 

obtained by the comparisons between predicted and measured results. 

1.2 Hyperelastic formulation 

Before introducing the hyperelastic formulation in this Section, the definition of elasticity, 

hyperelasticity and hypoelasticity should be well described in detailed. Elasticity in materials science 

is the ability of a material body to resist a distorting influence and to return to its original size and 

shape when the influence is removed. If the materials is elastic, this material body will return to its 
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original shape and size after the removal of influence or force. Hyperelasticity or hyperelastic material 

is a type of constitutive model for ideally elastic material for which the stress-strain relationship 

derives from a strain energy density function. This type of material is a special case of simple elastic 

material. Note that the hyperelasticity equips an integrable expression because it is derived from a 

potential function, and it shows a conservative elastic response. Hypoelasticity or a hypoelastic 

material is an elastic material that has a constitutive model independent of finite strain measures 

except in the linearized case. Hypoelastic material models are distinct from hyperelastic material 

models (or standard elasticity models) in that, except under special circumstances, they cannot be 

derived from a strain energy density function. This kind of elasticity shows non-conservative elastic 

response. 

An approach could be used here for the non-linear elastic response of stress and strain (HOU 85; 

HUE 92; BOR 97) which is related to hyperelasticity. According to Houlsby (HOU 85), the use of a 

shear modulus proportional to the mean effective stress is justified by measurement modeling the 

elastic behavior. It is also shown that this measurement has a shortcoming that it induces a 

non-conservative elastic behavior and is inappropriate for the case of cyclic loading. Thus, a 

theoretical approach using the pressure dependency shear modulus is proposed and several 

experimental evidences for supporting this approach are discussed. Moreover, Hueckel et al (HUE 92) 

proved an approach that the shear modulus is not only depending on the mean pressure but also on the 

over-consolidation ratio. Later, a stored energy functions including two invariants and describing 

hyperelastic characteristics is coupled with a critical state plasticity model by Borja et al. (BOR 97). 

The pressure dependency elastic shear modulus is included in the energy function and makes the 

function satisfying elastic behavior for any loading path and being energy conservative. After 

assessing the pressure dependency of shear modulus within elastic and plastic response for undrained 

elastic responses, this hyperelastic model shows a fundamentally accuracy simulation of elastic 

behavior. 

Unlike constitutive models with hypoelastic formulation, the hyperelastic formulations present 

energy conservative behavior (elastic stress or strain can be derived from a potential function) and 

thermodynamics consistency (HOU 00; EIN 04; HOU 05; GAJ 08). Houlsby and Purzin (HOU 00) 

proposed four energy functions to describe the combinations of stress, strain and temperature, and 

these energy functions could be transferred to each other by using the Legendre transformations. The 
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irreversible behavior could be described by a dissipation function or a yield function, which is related 

to the degenerate case of Legendre transformation. According to Einav et al. (EIN 04), a versatile 

energy potential function is firstly presented within the framework of an energy conservative or 

non-conservative elasticity and a plasticity model. The fact that the stiffness of soil depends on the 

pressure is also shown in this work. The combination of this energy potential and hyperplastic 

constitutive relation allows for the relevant model to obey the Law of Energy Conservation for both 

elastic and plastic parts of soil behavior. Except that, two very important features are that this model 

can automatically show a stress-induced cross-anisotropy of elastic component, and that a dilatancy 

term can arise because of the pressure dependency shear modulus. The model with these features, 

which are neglected by conventional hypoelastic-plastic model, shows a significant accuracy on the 

prediction of undrained behaviors of overconsolidated clays. Houlsby et al. (HOU 05) also present a 

hyperelastic formulation which shows the non-linear elastic behavior and the dependency of elastic 

modulus on mean effective stress. Furthermore, the elastic model which is derived from this 

hyperelastic formulation allows the elastic modulus being a function of effective mean stress, and 

satisfies the thermodynamic acceptability. Similarly, Gajo and Bigoni (GAJ 08) also present a 

formulation based on hyperelasticity after showing the experimental evidence that cohesive and 

granular materials contain an elastic range in which the elasticity is non-linear and anisotropic. This 

formulation is established within the framework of elastoplastic coupling via the new proposal of 

elastic potentials and the combination of non-linear elasticity and dependency of fabric tensor on 

plastic strain. Combining the formulation in the proposed constitutive framework, the simulation 

results show a very accurate fitting degree on the evolution of elastic behavior with the existing 

experimental data.  

1.3 Second-order work criterion 

 For modeling the behavior of geo-materials, several constitutive models are proposed and 

mentioned above. However, the observation and definition of the failure of sample is also important, 

so do the tools for detecting failure. 

 The theoretical and physical definition of failure in solid and its analysis is hard and elusive to 

determine in granular materials. For more than a century, much works have been done about finding a 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI133/these.pdf 
© [L. HU], [2020], INSA Lyon, tous droits réservés



Chapter 1 – Literature review 

 
 

13 

way to detect the failure behavior, as well as its defining criterions. In fact, there is a version of failure 

definition at initial time that failure occurs accompanied with the existence of special limit stress 

states which are impossible to exceed for any possible monotonous loading path. This physical 

definition shows that large deformation, cracks, or fragmentation will suddenly occur if any tiny 

additional loading is loaded at such limit stress state. This change of materials state is called roughly 

‘failure’. 

 Around the initial definition above, two typical classes of failure modes due to the instabilities 

can be found in either geometric or materials, which could be expressed in column buckling, or 

constitutive behavior respectively based on the observations of experiments tests. Within the domain 

of instability, two popular criteria have emerged. The first criterion is about the vanishing of 

determinant value of the acoustic tensor (RUD 75) which is accompanied with the emergence of 

plastic strain localization, whereas the second one refers to the vanishing of the determinant of the 

whole constitutive tensor which involves the signals failure at plastic limit condition. 

 For the associated materials, such as metal materials which follow the associative flow rule, these 

two criteria mentioned above coincide because of the symmetry feature of the elasto-plastic tensor. 

However, the geomaterials are widely known as non-associated materials because of the 

non-symmetry of the elasto-plastic tensor. Therefore, based on the evidence of much laboratory 

experiments, the localization criterion can be met before the plastic limit criterion for particularly 

dense sands or overconsolidated clays (VAR 95). However, for the fact that the stress controlled 

undrained triaxial test on very loose sands show a performance of different type of failure, this 

different mode of failure occurring at the peak of deviatoric stress which is not described before is 

named as ‘diffuse failure’ (KHO 06) to distinguish it from the localized one (NIC 10; DAO 2010; JRA 

12). 

 The problems of bifurcation occur due to the loss of uniqueness of the basic governing equations’ 

solution which is caused by the instability of materials. Therefore, it is quite necessary to propose the 

bifurcation theory being a general framework when analyzing all kinds of failure. Bifurcation happens 

at the time that the system state changes suddenly following with one of the at least two possibilities, 

which could be either stable or unstable state, under the condition of continuous variations of state 

variables. For example, with the condition of proper loading, failure can happen with a state 

phenomenon of sudden transition from a static regime to a dynamic one accompanying with the 
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exponential growth of strains (DAR 07; NIC 09; SIB 09). This kind of phenomenon is closely related 

with the experimental phenomenon of failure. Furthermore, one of the bifurcated states’ 

characteristics refers to the fact that failure will happen with small additional perturbations in the 

system. Based on this kind of property, failure can be also considered as an instability phenomenon in 

the Lyapunov’s definition of stability (LYA 07) which will be described below. As a conclusion, any 

tiny additional loading at a given bifurcation state on the curve of stress and strain will result in an 

infinitely large responses if proper control variables are applied (direction of loading and mix loading 

conditions).  

 For non-associated materials, which relate to the non-symmetry of the elastoplastic tensor, the 

elastoplastic theory considering the bifurcation criteria precede the plastic limit criterion which can be 

represented precisely by the zero determinant value of product of elastoplastic matrix and unit matrix 

(BIG 91). Different bifurcation criteria exist in the literature which is relating to different modes of 

failure. Concerning the shear band formation by plastic strain localizations, Rice’s criterion (RIC 76) 

is based on the description that the earliest shear band in normal direction corresponds to the 

vanishing values of the so-called ‘acoustic tensor’. However, this phenomenon occurs before the 

plastic limit criterion is met for non-associated materials, and this has been demonstrated and verified 

in experimental tests on dense sand (DES 90). The plastic strain localization refers to the bifurcated 

strain mode from a diffuse one to a strictly discontinuous one. This kind of bifurcation can be called 

as ‘discontinuous bifurcation’ or localized mode of bifurcation. 

 As an opposition of discontinuous bifurcation, the ‘continuous bifurcation’ also refers to a failure 

mode but which does not contain strain localization behaviors. Like we present before, this diffuse 

failure mode is subjected to a bifurcation with the vanishing constitutive uniqueness at the bifurcation 

point. According to Nova’s theory (NOV 94), different loading control model can lead to different 

response paths at the bifurcation point, and for certain control modes, the stress state is no more 

controllable any longer. This continuous bifurcation, as well as the related diffuse failure mode can be 

detected by Hill’s stability condition (HIL 58), which corresponds to the vanishing value of 

second-order work for unstable states (DAR 09). Moreover, this vanishing value of second-order work 

corresponds to the vanishing value of determinant of the symmetric part of elastoplastic matrix for 

non-linear constitutive relation. 

 Now two basic definition of failure namely Lyapunov’s definition of stability and Hill’s stability 
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condition will be presented in details. Based on Lyapunov’s stability definition re-visited in the field 

of solid mechanics, the statement is: “A stress-strain state, for a given material after a given loading 

history, is called stable, if for every positive scalar ε, a positive number η(ε) exists such that for all 

incremental loading bounded by η, the associated responses remain bounded by ε.” (LAO 02) 

 According to this definition of stability, all the limit stress states which are mentioned before are 

unstable. That means that a very small incremental reverse stress at the limit stress state could induce 

a small response, whereas this small incremental additional stress exceeding the limit state can 

produce large strain response. Moreover, Lyapunov’s definition clearly states that the materials 

instabilities can be expected in elastoplastic media. Taking the fact into account that some limit stress 

states are strictly met before the Mohr-Coulomb plastic limit surface, it is possible that instabilities 

can occur before the Mohr-Coulomb plastic limit condition is satisfied. 

 However, Lyapunov’s definition is inappropriate to use in the content of geomaterials. Thus, the 

Hill’s condition of stability is taken into account. Hill states that a stress strain state is unstable if one 

loading direction which can be pursued in an infinitesimal manner exists and there is no external 

energy input in this direction. That means the deformation could proceed itself without any input 

external loading or energy. Indeed, in some practice situations, failure happens with external energy 

such as the weight or loads on the slope, whereas in some other cases, failure occurs without any 

additional energy input from outside such as the landslides, rockfalls and so on. Moreover, based on 

Hill’s condition of stability, the stress state is stable if the second-order work which is the product of 

incremental strain and incremental stress linked by constitutive relation is strictly positive. This is the 

fundamental second-order work criterion, which could be expressed as w2 by the following general 

expression. 

𝑤2 = 𝑑𝜎 ∙ 𝑑𝜀                                 (1.1) 

 In this expression, w2 by presents the second-order work, while and σ are ε stress and strain 

respectively. The positive value of w2 refers to a stable stress state. 

 Nicot and Darve (NIC 07) presented the investigation of bifurcation from the view of 

micro-mechanics of granular materials. The fact that the vanishing value of second-order work 

defined on the macroscopic scale can be viewed as a fundamental role for detecting the occurrence of 

bifurcation referring to the loss of sustainability is noted. Also, the relationship between the 

macroscopic second-order work at the sample scale and the discrete local expression which represents 
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the microscopic variables at particle contact scale is established. Furthermore, this relationship helps 

us to figure out which factor at microscopic scale should be responsible for the vanishing of 

macroscopic second-order work. Darve et al. (DAR 07) also do the same work from the 

macro-mechanics as well as the micro-mechanics points. The discrete element method is used to study 

this problem via the phenomenological constitutive relations and numerical simulations after showing 

the experimental evidence. The equations of bifurcation domain and cones of unstable direction are 

established, and the relationship between second-order work criterion and the diffuse failure mode is 

taken into consideration by means of continuum and discrete mechanics approaches. The fact turns 

out that the second-order work criterion can determine analytically and verify numerically the 

boundaries of bifurcation domain and cones of unstable direction by means of the macro- and 

microscopic values of second-order work. From the macroscopic point of view, the expression for 

macro second-order work can be expressed as an integration of second-order work in microscopic 

scale. In the following expression, W2 refers to the integrated or global second-order work, while the 

variable V means the integration range of micro second-order work. 

𝑊2 = ∫ 𝑑𝜀𝑡 

𝑉
∙ 𝑑𝜎𝑑𝑉                           (1.2) 

 For the three-dimensional case, Prunier et al. (PRU 09) analyzes the problems of bifurcation of 

granular media for the first time. Two phenomenological constitutive relations, namely the 

incrementally piece-wise linear and nonlinear relations proposed by Darve et al. (DAR 95) are 

considered for the analytical and numerical investigation of Hill’s criterion. Moreover, the 3D 

bifurcation domain and 3D cones of unstable directions are taken into analysis for these two relations. 

Results show that the shape and structure of bifurcation domain is probably affected by the yield 

criterion, and the direction of first cones of unstable direction in the stress space is oriented close to 

the origin of stress plane no matter what the loading path is. 

 The relation of second-order work, kinetic energy and diffuse failure mode is considered by 

Nicot et al. (NIC 10) for granular materials. After presenting the condition that collapse of granular 

soils is related to the sudden burst of kinetic energy, the relation between the burst of kinetic energy 

and vanishing value of second-order work is numerically and theoretically obtained and 

experimentally verified. The same research is also done by Nguyen et al. (NGU 16) by means of 

numerical analysis. They find that the increasing kinetic energy is caused by the difference between 

external second-order work involving the external loading parameters and internal second-order work. 
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The dynamic response occurs when the internal stress loses the capacity to balance the external stress 

which relates to the value of internal second-order work is lower than the one of external second-order 

work. 

 According to Daouadji et al. (DAO 10), a synthesis of the works about the second-order work 

criterion done by various teams from France, Italy and Canada is presented. In this paper, the 

second-order work criterion with the analytical and numerical analysis via both the macro-mechanical 

phenomenological elastoplastic constitutive relations and micro-mechanical mode is proposed and 

analyzed systematically. Furthermore, the equations of bifurcation domain in the stress space and of 

cones of unstable loading directions with proper control parameters are established from experimental, 

theoretical and numerical points. The authors also present that there are three necessary and sufficient 

conditions for an effective failure, namely: (1) the stress state within bifurcation domain, (2) the 

loading direction within cones of unstable directions, and (3) the proper parameters set in right place. 

 A proper framework based on energy conservation is built by using the second-order work 

criterion in the work of Nicot and Darve (NIC 15). It is also shown that the increase in kinetic energy 

in incremental loading condition is equal to the difference of external second-order work and internal 

second-order work which involves the constitutive properties of material. If an additional external 

pressure is loaded at the stress limit state, a dramatic increase of strain rate happens. Moreover, the 

plastic limit theory appears to be one particular case of second-order work theory in the theoretical 

framework, and the incremental external loading resulting in the sharp increasing of kinetic energy 

leads to the sudden collapse of specimen from the experimental results. 

1.4 Objectives of this research  

In the present work, our objectives are the following: 

⚫ Obtain a correct and accurate representation for the frictional behavior of granular materials. 

⚫ Obey the First Law of Thermodynamics or guarantee thermodynamic acceptability about the 

elastic part of constitutive model. 

⚫ Find a proper integration algorithm to correct the overflow problems of plastic strain in the 

plastic part of constitutive model. 

⚫ Emphasize the influence of anisotropy of elastic behavior even though the initial elastic 
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matrix is isotropic. 

⚫ Evaluate the stabilities with a proper failure criterion as the safety factor. 

⚫ Allow the large deformation of the objects of simulations, for example the landslide 

phenomenon of slope. 

In order to be able to study the above points mentioned, some requirements must be satisfied as 

follows: 

⚫ The elastic stress strain relation which is derived from a proper hyperelastic energy function 

obeying the First Law of Thermodynamics should be established, as well as the further 

anisotropy of elastic behavior.  

⚫ A new constitutive model should contain the elastic model mentioned above and a plastic 

model which can correct the overflow of plastic strain. 

⚫ The Finite Element Method (will be abbreviated as ‘FEM’ in later content) tools can 

simulate different geometric and parameters of models.  

⚫ The new constitutive model needs to be transferred into numerical language so that the FEM 

tools can run it directly. 

⚫ Experimental tests should be implemented so that the comparison between laboratory and 

numerical simulation can be made. 

⚫ The second-order work criterion based on the new model should be calculated for detecting 

the failure. 

1.5 Originality of this work 

 The work that is presented in this thesis aims to propose an appropriate theoretically and 

numerically approach to model the behavior of stress strain of frictionally granular materials. The 

main points are addressed in this thesis: 

⚫ A more actual constitutive model which includes a stiffness matrix depending on current 

stress state is established, and the anisotropy induced by stress arises as a natural 

consequence of this hyperelastic formulation corresponds well to real observations of soil 

behavior. 

⚫ Only one set of parameter is necessary for one type of soil whatever confining pressure or 
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consolidation conditions the soil sample is loaded. That means for different confining 

pressures, just one optimal set of parameter is needed and well appropriate for simulating the 

behavior of granular material under the framework of new constitutive relation. 

⚫ The stress-induced anisotropy which relates to the real observations is found to have 

influence on the stress-strain response, even change the hardening tendency of plastic strain. 

The degree of this kind of anisotropy is affected by one single variable with other parameters 

well controlled. 

⚫ From a macroscopic perspective, the density of sample is found to have effect on the degree 

of anisotropy which could illustrate a different response in the stress plane. 

⚫ A proper stability criterion is established basing on new model as the safety factor and can 

detect accurately the occurrence of failure. 
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Chapter 2 – A new constitutive relation 

In this Chapter, an elastoplastic constitutive model ‘Plasol’ which contains an implicit backward 

Euler integration algorithm and a hyperelastic strain energy function which is thermodynamically 

consistent are presented in details. Then, the proposed constitutive relation which combines properly 

these two relations above is established and supposed to be an appropriate theoretically relation for 

modeling the behavior of non-associated granular materials. Note that unless explicitly expressed, the 

stresses used in the following are effective stresses which are equal to the total stress for dry cases or 

to the difference between the total normal stresses and the pore pressure. 

2.1 Plasol model  

2.1.1 Incremental general elastoplastic formulation 

Generally, the elastoplastic relations are formulated in rate form because of the dependency of the 

stress-strain response on its actual state. The sign convention of solid mechanics is used, i.e. 

compression is recognized as negative and traction as positive. The strain rate is divided into the 

elastic and plastic parts (additive decomposition): 

𝜀𝑖̇𝑗 = 𝜀𝑖̇𝑗
𝑒 + 𝜀𝑖̇𝑗

𝑝
                              (2.1) 

The elastic part is related with the stress tensor which refers to the Hooke Law: 

𝜎̇𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙
𝑒 𝜀𝑘̇𝑙

𝑒                               (2.2) 

where the constitutive elastic tensor is defined by  

𝐷𝑖𝑗𝑘𝑙
𝑒 =

𝐸

1+𝜈
𝛿𝑖𝑘𝛿𝑗𝑙 +

𝐸𝜈

(1+𝜈)(1−2𝜈)
𝛿𝑖𝑗𝛿𝑘𝑙                  (2.3) 

 Using the definition of the compressibility modulus K and the shear modulus G 

𝐾 =
𝐸

3(1−2𝜈)
                               (2.4) 

𝐺 =
𝐸

2(1+𝜈)
                                (2.5) 

the constitutive elastic tensor can be rewritten as:  

𝐷𝑖𝑗𝑘𝑙
𝑒 = 2𝐺𝛿𝑖𝑘𝛿𝑗𝑙 + (𝐾 −

2

3
𝐺)𝛿𝑖𝑗𝛿𝑘𝑙                    (2.6) 

The limitation between elastic and plastic domain is expressed by a yield surface in the principal 
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stress space, and this surface is described by using the yield function f. Thus, it could say that the 

stress state is within the elastic domain if f ＜ 0, or in the plastic domain if f = 0 (f ＞ 0 is 

impossible for rate-independent materials). In the classical or associated plasticity, the rate of plastic 

flow is perpendicular to the yield surface and its intensity is proportional to the so called plastic 

multiplier 𝜆̇. During the process of plastic flow, the stress state must remain on the yield surface, i.e. f 

= 0.  

However, the more general framework of non-associated plasticity of geomaterials is considered 

for limiting the dilatancy process. Then the rate of plastic flow is perpendicular to a plastic potential g. 

It is worth noting that the plastic potential g could be substituted by yield function f for associated 

materials. 

𝜀𝑖̇𝑗
𝑝

= 𝜆̇
𝜕𝑔

𝜕𝜎𝑖𝑗
                                 (2.7) 

 In the equation (2.7), the plastic potential g is defined as the same definition method of yield 

surface but assuming a dilatancy angle distinct from the friction angle. The cohesion is avoided 

because only the derivative of g is required. Then the combination of (2.1) and (2.7) is shown as: 

𝜀𝑖̇𝑗 = 𝜀𝑖̇𝑗
𝑒 + 𝜆̇

𝜕𝑔

𝜕𝜎𝑖𝑗
                             (2.8) 

 The value of 𝜆̇ can be obtained from the consistency condition, while the consistency condition 

explicates that the stress state stays on the limit surface during the plastic flow. For a perfectly plastic 

law this condition yield as: 

𝑓̇ =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝜎̇𝑖𝑗 = 0                             (2.9) 

 When considering the general plastic flow with hardening or softening of the internal variables κ, 

the consistency condition can be formulated as following: 

𝑓̇ =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝜎̇𝑖𝑗 +

𝜕𝑓

𝜕𝜅
𝜅̇ = 0                         (2.10) 

 It is widely known that the plastic flow is the key to induce hardening or softening of the limit 

surface, by introducing a hyperbolic variation of the internal variables which contain the friction angle 

under triaxial compression path (referred as φC), the friction angle under triaxial extension path (φE) 

and the cohesion c. These internal variables are function of the Von Mises equivalent plastic strain 

𝜀𝑒𝑞
𝑝

. 

𝜑𝐶 = 𝜑𝐶0 +
(𝜑𝐶𝑓−𝜑𝐶0)𝜀𝑒𝑞

𝑝

𝐵𝑝+𝜀𝑒𝑞
𝑝                       (2.11) 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI133/these.pdf 
© [L. HU], [2020], INSA Lyon, tous droits réservés



Chapter 2 – A new constitutive relation 

 
 

22 

𝜑𝐸 = 𝜑𝐸0 +
(𝜑𝐸𝑓−𝜑𝐸0)𝜀𝑒𝑞

𝑝

𝐵𝑝+𝜀𝑒𝑞
𝑝                       (2.12) 

𝑐 = 𝑐0 +
(𝑐𝑓−𝑐0)𝜀𝑒𝑞

𝑝

𝐵𝑐+𝜀𝑒𝑞
𝑝                          (2.13) 

 In these equations, the Von Mises equivalent plastic strain is obtained and calculated by 

integration of the Von Mises equivalent plastic strain rate 𝜀𝑒𝑞
𝑝̇  

𝜀𝑒𝑞
𝑝

= ∫ 𝜀𝑒𝑞
𝑝

𝑑𝑡
𝑡

0
                            (2.14) 

𝜀𝑒𝑞
𝑝̇

= √
2

3
𝜀̂̇𝑖𝑗

𝑝
𝜀̂̇𝑖𝑗

𝑝
                            (2.15) 

The coefficients Bp and Bc refer to the values of equivalent plastic strains when the half values of 

the hardening/softening of friction angle and cohesion is achieved respectively. This process could be 

illustrated in Figure 2.1 clearly.  

 

Figure 2.1 Hardening hyperbolic relation for 2 values of coefficient Bp (with φE =30°, φE =35°) (BAR 

98) 

 In some cases, the plastic flow might also lead to a modification of the flow surface which 

induces an equation proposed by Taylor (TAY 48): based on experimental evidences, the difference 

between friction angle and dilatancy angle is regarded as constant. That is to say, the modification of 

friction angle will modify the value of the dilatancy angle. 

𝜑 − 𝜓 = 𝑐𝑠𝑡                               (2.16) 

 Then the consistency condition (equation (2.10)) can be modified as: 

𝑓̇ =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝜎̇𝑖𝑗 +

𝜕𝑓

𝜕𝜑𝐶
𝜑̇𝐶 +

𝜕𝑓

𝜕𝜑𝐸
𝜑̇𝐸 +

𝜕𝑓

𝜕𝑐
𝑐̇ = 0               (2.17) 
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and in this equation, the derivatives of internal variables are formulated as: 

𝜑̇𝐶 =
𝑑𝜑𝐶

𝑑𝜀𝑒𝑞
𝑝 𝜀𝑒̇𝑞

𝑝
                               (2.18) 

𝜑̇𝐸 =
𝑑𝜑𝐸

𝑑𝜀𝑒𝑞
𝑝 𝜀𝑒̇𝑞

𝑝
                               (2.19) 

𝑐̇ =
𝑑𝑐

𝑑𝜀𝑒𝑞
𝑝 𝜀𝑒̇𝑞

𝑝
                                (2.20) 

 The combination of the plastic multiplier 𝜆̇ and the equivalent plastic strain rate can be achieved 

from equations (2.7) and (2.15) and shown with: 

𝜀𝑒̇𝑞
𝑝

= 𝑉𝑎𝑙𝜆̇                               (2.21) 

 where the values of Val is calculated by 

𝑉𝑎𝑙 = √
2

3
(

𝜕𝑔

𝜕𝜎𝑖𝑗

𝜕𝑔

𝜕𝜎𝑖𝑗
−

1

3

𝜕𝑔

𝜕𝜎𝑘𝑘

𝜕𝑔

𝜕𝜎𝑙𝑙
)                   (2.22) 

Therefore, the former consistency condition equation can be modified as: 

𝑓̇ =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝜎̇𝑖𝑗 + 𝑉𝑎𝑙𝜆̇(

𝜕𝑓

𝜕𝜑𝐶

𝑑𝜑𝐶

𝑑𝜀𝑒𝑞
𝑝 +

𝜕𝑓

𝜕𝜑𝐸

𝑑𝜑𝐸

𝑑𝜀𝑒𝑞
𝑝 +

𝜕𝑓

𝜕𝑐

𝑑𝑐

𝑑𝜀𝑒𝑞
𝑝 ) = 0        (2.23) 

 After combining the equation (2.2) and (2.8) together, it is easily concluded that 

𝜎̇𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙
𝑒 (𝜀𝑘̇𝑙 − 𝜆̇

𝜕𝑔

𝜕𝜎𝑘𝑙
)                       (2.24) 

 Then, the value of plastic multiplier 𝜆̇ could be obtained by combining the equation (2.23) and 

(2.24) together. 

𝜆̇ =

𝜕𝑓

𝜕𝜎𝑖𝑗
𝐷𝑖𝑗𝑘𝑙

𝑒 𝜀̇𝑘𝑙

𝜕𝑓

𝜕𝜎𝑚𝑛
𝐷𝑚𝑛𝑜𝑝

𝑒 𝜕𝑔

𝜕𝜎𝑜𝑝
−𝑉𝑎𝑙(

𝜕𝑓

𝜕𝜑𝐶

𝑑𝜑𝐶

𝑑𝜀𝑒𝑞
𝑝 +

𝜕𝑓

𝜕𝜑𝐸

𝑑𝜑𝐸

𝑑𝜀𝑒𝑞
𝑝 +

𝜕𝑓

𝜕𝑐

𝑑𝑐

𝑑𝜀𝑒𝑞
𝑝 )

            (2.25) 

 Now, the full version of incremental constitutive elastoplastic relation can be written as: 

𝜎̇𝑖𝑗 = (𝐷𝑖𝑗𝑘𝑙
𝑒 − 𝐷𝑖𝑗𝑘𝑙

𝑝
)𝜀𝑘̇𝑙                      (2.26) 

where the 𝐷𝑖𝑗𝑘𝑙
𝑝

 is the plastic constitutive tensor and formulated as: 

𝐷𝑖𝑗𝑘𝑙
𝑝

=

𝜕𝑓

𝜕𝜎𝑎𝑏
𝐷𝑎𝑏𝑘𝑙

𝑒 𝐷𝑖𝑗𝑐𝑑
𝑒 𝜕𝑔

𝜕𝜎𝑐𝑑

𝜕𝑓

𝜕𝜎𝑚𝑛
𝐷𝑚𝑛𝑜𝑝

𝑒 𝜕𝑔

𝜕𝜎𝑜𝑝
−𝑉𝑎𝑙(

𝜕𝑓

𝜕𝜑𝐶

𝑑𝜑𝐶

𝑑𝜀𝑒𝑞
𝑝 +

𝜕𝑓

𝜕𝜑𝐸

𝑑𝜑𝐸

𝑑𝜀𝑒𝑞
𝑝 +

𝜕𝑓

𝜕𝑐

𝑑𝑐

𝑑𝜀𝑒𝑞
𝑝 )

        (2.27) 

It is worth noting that in this kind of general elastoplasticity framework, it is quite common to 

derive the yield surface (also named as yield function in the following Sections) f and the flow surface 

(or plastic potential) g with respect to stresses. Conversely, the derivatives of f and g with respect to 

stresses are quite suitable for these formulations. 
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2.1.2 Yield surfaces for frictional behavior of geomaterials 

Modeling the behavior of geomechanical materials requires taking into account the plastic 

behavior of materials of different rock types, for example, the sand and sandstones, and so on. The 

plastic behavior is usually based on the concept of yield surface. 

 Experimentally, the existence of the yield surface expresses the loss of the linear stress-strain 

relation. The yield surface represents a bound in the stress space which cannot be overcome. As far as 

frictional materials are concerned, it has been observed from triaxial experiments that a linear relation 

exists between tangential stresses τ and normal stresses σN , which led to the formulation of the 

so-called Mohr-Coulomb yield criterion (described in the next Section). This linearity is not only valid 

in the Coulomb plane (τ, σN) but also in the (p,q) plane. However, the shape of the yield surface in the 

deviatoric plane has been investigated experimentally much later (LAN 88), see Figure 2.2. 

 

Figure 2.2 Experimental limit surfaces for Hostun sand, modified from (LAN 88) 

 The simple model which is namely Mohr Coulomb model, which will be presented in next 

Section, only considers the frictional properties of granular materials. This kind of simple model just 

takes the minimum and maximum principal stresses into account. However, this model is 

inconvenient to use during the numerical simulation because there exists the geometric singularities in 

the principal stress space for the plasticity surface. But this problem can be solved by using an 

approximation of the Mohr Coulomb criterion, which could be called Drucker Prager criterion. As the 

similarity of the former one, the latter one also has a main disadvantage about which in some cases the 

criterion makes the doubtful results. Therefore, a more sophisticated model can be chosen to 

approximate the Mohr Coulomb criterion more accurately (e.g. Matsuoka-Nakai (MAT 82), Van 
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Eekelen (VAN 80)). 

 The Mohr Coulomb (MC) model will be briefly presented here while the other two criterions, i.e., 

the Drucker Prager (DP) and Van Eekelen (VE) criterion with their full elastoplastic formulation will 

be described in this Section too. The formulation will be given including the isotropic hardening / 

softening of friction angles and cohesion. 

2.1.2.1 Stress invariants and stress space 

In this Section, 𝐼𝜎  , 𝐼𝐼𝜎̂  , Ⅲ
𝜎̂

 and β represent the first stress tensor invariant, the second 

deviatoric stress tensor invariant, the third deviatoric stress tensor invariant related to the Lode angle, 

respectively. In other word, the first stress tensor invariant can show the isotropic change, while the 

second and third invariant of the deviatoric stress tensor describe the deviatoric changes. 

𝐼𝜎 = 𝜎𝑖𝑖                                   (2.28) 

𝐼𝐼𝜎̂ = √
1

2
𝜎̂𝑖𝑗𝜎̂𝑖𝑗                               (2.29) 

Ⅲ
𝜎̂

=
1

3
𝜎̂𝑖𝑗𝜎̂𝑗𝑘𝜎̂𝑘𝑖                               (2.30) 

𝜎̂𝑖𝑗 = 𝜎𝑖𝑗 −
𝐼𝜎

3
𝛿𝑖𝑗                               (2.31) 

β = −
1

3
sin−1 (

3√3

2

Ⅲ
𝜎̂

𝐼𝐼𝜎̂
3)                           (2.32) 

The three invariants 𝐼𝜎 , 𝐼𝐼𝜎̂ and β define a cylindrical referential around the 𝐼𝜎 axis. This 

referential is shown in Figure 2.3a,  and the distance between any stress state ‘p’ and the axis 𝐼𝜎 is 

presented by 𝐼𝐼𝜎̂, while the angular position of ‘p’ with respect to the pure shear line is represented by 

the Lode angle β with a range of (- 30°, + 30°). In this Figure 2.3b, σ1
*, σ2

* and σ3
* represent the 

projection of the principal stress axes on the deviatoric plane. The deviatoric plane can be also called 

Π plane. 
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Figure 2.3 a) representation of the principal stress space, b) deviatoric plane (BAR 98) 

2.1.2.2 Stress invariants and stress space 

 The Mohr Coulomb failure criterion is an intrinsic curve criterion, i.e. it does not depend on the 

state of the material. It expresses a linear relationship between the shear stress τ and the normal stress 

σN in the failure plane, which is given by: 

𝜏 = 𝑐 + 𝜎𝑁 ∙ 𝑡𝑎𝑛𝜑                            (2.33) 

In this relation, c and φ are the cohesion and effective friction angle respectively. This criterion 

can be expressed in terms of stress tensor invariant by the relation 

𝑓 =
𝐼𝜎

3
𝑠𝑖𝑛𝜑 + 𝐼𝐼𝜎̂𝑐𝑜𝑠𝛽 −

𝐼𝐼𝜎̂

√3
𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝜑 − 𝑐 ∙ 𝑐𝑜𝑠𝜑 = 0             (2.34) 

 Note that, in this criterion, the friction angle under triaxial compression paths (referred as φC) is 

identical with the angle under triaxial extension path (φE), i.e., φ = φC =φE. It is worth starting from an 

isotropic stress state for this relation, the triaxial compression path results to an increasing of axial 

stress whereas the triaxial extension path results to a decreasing of axial stress which however still 

remains in the compressive state.  

Geometric representation of this criterion in the principal stress space (σ1, σ2 and σ3) is a 

hexagonal pyramid which is shown in Figure 2.4. As mentioned previously, this criterion is 

inconvenient to implement in a classical plasticity framework because the gradient of this yield 

surface is undefined on the hexagon corners. Therefore it is much necessary to develop more complex 

integration schemes (CRI 87), which means the more continuously derivable yield surfaces functions 

are preferred in priority.  
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Figure 2.4 Limit surface for Mohr-Coulomb criterion in the deviatoric plane for φ =35° (BAR 98) 

2.1.2.3 Drucker Prager criterion (DP) 

 An alternative and more sophisticated solution to solve this difficulty has been proposed by 

Drucker and Prager (DRU 52) who defined the yield function f by using a linear relationship between 

the first stress tensor invariant and the second deviatoric stress tensor invariant. 

𝑓 = 𝐼𝐼𝜎̂ + 𝑚𝐼𝜎 − 𝑘′ = 0                        (2.35) 

 In the principal stress space, the plasticity surface becomes a cone which is much easier to use in 

numerical algorithms. The trace of this plasticity surface on the Π plane is then a circle which is 

presented in Figure 2.5. 

 

Figure 2.5 Limit surface for Drucker Prager criterion in the deviatoric plane for φ =35° (BAR 98) 

 As mentioned before, this criterion is independent on the third stress invariant and thus on the 

Lode angle β, although it has been widely used in geomechanics to represent frictional behavior of 

granular materials. Parameters m and k’ can be identified on the Mohr envelop as a function of 

internal friction angle in compression φC and cohesion c (DES 84) if the compression cone is chosen, 
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i.e. the DP circle is circumscribed to the MC hexagon. 

𝑚 =
2𝑠𝑖𝑛𝜑𝐶

√3(3−𝑠𝑖𝑛𝜑𝐶)
                              (2.36) 

𝑘′ =
6𝑐∙𝑐𝑜𝑠𝜑𝐶

√3(3−𝑠𝑖𝑛𝜑𝐶)
                              (2.37) 

 Combining the equation (2.35), (2.36) and (2.37), the Drucker Prager criterion can be rewritten 

as: 

𝑓 = 𝐼𝐼𝜎̂ + 𝑚 (𝐼𝜎 −
3𝑐

𝑡𝑎𝑛𝜑𝑐
) = 0                      (2.38) 

The definition of reduced radius r is needed to be mentioned. 

𝑟 =  
𝐼𝐼𝜎̂

𝐼𝜎
                               (2.39) 

and the reduced radius in compression (rC) and in extension (rE) for triaxial tests can be expressed and 

deduced from Mohr circle and intrinsic curve. 

𝑟𝐶 =
1

√3
(

2𝑠𝑖𝑛𝜑𝐶

3−𝑠𝑖𝑛𝜑𝐶
)                          (2.40) 

𝑟𝐸 =
1

√3
(

2𝑠𝑖𝑛𝜑𝐸

3+𝑠𝑖𝑛𝜑𝐸
)                          (2.41) 

When putting rE = rC since the radius is constant in the Drucker Prager model, leads a relation 

between φC and φE, and this relation equation is shown as the combination of former two equations. 

𝜑
𝐸

= 𝑠𝑖𝑛−1 (

3𝑠𝑖𝑛𝜑𝐶
3−𝑠𝑖𝑛𝜑𝐶

1−(
𝑠𝑖𝑛𝜑𝐶

3−𝑠𝑖𝑛𝜑𝐶
)
)                     (2.42) 

Since the relation between φC and φE is formulated, their relation curve can be plotted, which is 

illustrated in Figure 2.6. Observing directly from this Figure, the non-linear relation between them is 

easily found, as well as the limit values of φE = 90° for φC ≈ 36.87° . 
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Figure 2.6 φC vs φE for Drucker Prager criterion (BAR 98) 

 In the principal stress space, the conical limit surface based on Drucker Prager criterion leads to 

an angle θ: 

𝜃 = 𝑡𝑎𝑛−1 (√2
2𝑠𝑖𝑛𝜑𝐶

3−𝑠𝑖𝑛𝜑𝐶
)                          (2.43) 

and this angle refers to the hydrostatic axis (σ1 = σ2 = σ3). 

 Since the plastic criterion equation f is shown by formula (2.38) for Drucker Prager, the plastic 

potential g is needed to be defined in a similar form by 

𝑔 = 𝐼𝐼𝜎̂ + 𝑚′𝐼𝜎 = 0                           (2.44) 

with 

𝑚′ =
2𝑠𝑖𝑛𝜓

√3(3−𝑠𝑖𝑛𝜓)
                             (2.45) 

with the angle ψ is the dilatancy angle. 

 For the aim of obtaining the general elastoplastic relation mentioned before, it is necessary to 

derive the limit surface f and plastic potential g with respect to stresses. 

 Firstly, the derivation of limit surface of Drucker Prager is presented as following. 

𝜕𝑓

𝜕𝜎𝑖𝑗
=

𝜕𝑓

𝜕𝐼𝜎

𝜕𝐼𝜎

𝜕𝜎𝑖𝑗
+

𝜕𝑓

𝜕𝐼𝐼𝜎̂

𝜕𝐼𝐼𝜎̂

𝜕𝜎𝑖𝑗
                          (2.46) 

𝜕𝑓

𝜕𝐼𝜎
= 𝑚                                (2.47) 

𝜕𝐼𝜎

𝜕𝜎𝑖𝑗
= 𝛿𝑖𝑗                                 (2.48) 
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𝜕𝑓

𝜕𝐼𝐼𝜎̂
= 1                                 (2.49) 

𝜕𝐼𝐼𝜎̂

𝜕𝜎𝑖𝑗
=

𝜎̂𝑖𝑗

2𝐼𝐼𝜎̂
                                (2.50) 

Thus, the derivative of limit surface of Druker Prager with respect to stresses is 

𝜕𝑓

𝜕𝜎𝑖𝑗
= 𝑚𝛿𝑖𝑗 +

𝜎̂𝑖𝑗

2𝐼𝐼𝜎̂
                           (2.51) 

Secondly, the derivative of plastic potential with respect to stresses is  

𝜕𝑔

𝜕𝜎𝑖𝑗
= 𝑚′𝛿𝑖𝑗 +

𝜎̂𝑖𝑗

2𝐼𝐼𝜎̂
                          (2.52) 

In this case, the scalar Val which refers to the relation between the equivalent plastic strain and 

the plastic multiplier (equation (2.22)) simplifies to:  

𝑉𝑎𝑙 =
√3

3
                             (2.53) 

Note that, in this format of DP model, only two independent hardening variables are needed to be 

considered, namely the compression friction angle φC and the cohesion c. Now the derivatives of f 

with respect to these two variables and the variables with respect to the equivalent plastic strain are 

required and shown as following: 

𝜕𝑓

𝜕𝜑𝐶
=

2𝐼𝜎

√3
(

𝑐𝑜𝑠𝜑𝐶

3−𝑠𝑖𝑛𝜑𝐶
+

𝑐𝑜𝑠𝜑𝐶𝑠𝑖𝑛𝜑𝐶

(3−𝑠𝑖𝑛𝜑𝐶)2
) −

6c

√3
(

𝑠𝑖𝑛𝜑𝐶

3−𝑠𝑖𝑛𝜑𝐶
+

𝑐𝑜𝑠2𝜑𝐶

(3−𝑠𝑖𝑛𝜑𝐶)2
)     (2.54) 

𝜕𝑓

𝜕𝑐
= −

3𝑚

𝑡𝑎𝑛𝜑𝐶
                           (2.55) 

𝜕𝜑𝐶

𝜕𝜀𝑒𝑞
𝑝 =

𝜑𝐶𝑓−𝜑𝐶0

𝐵𝑝+𝜀𝑒𝑞
𝑝 − 𝜀𝑒𝑞

𝑝 𝜑𝐶𝑓−𝜑𝐶0

(𝐵𝑝+𝜀𝑒𝑞
𝑝

)
2                    (2.56) 

𝜕𝑐

𝜕𝜀𝑒𝑞
𝑝 =

𝑐𝑓−𝑐0

𝐵𝑐+𝜀𝑒𝑞
𝑝 − 𝜀𝑒𝑞

𝑝 𝑐𝑓−𝑐0

(𝐵𝑐+𝜀𝑒𝑞
𝑝

)2
                      (2.57) 

2.1.2.4 Van Eekelen criterion (VE) 

 In order to match the Mohr Coulomb criterion more closely, a more sophisticated model by 

introducing the dependence of Lode angle 𝛽 into Drucker Prager model is proposed (VAN 80). It 

includes a more smooth plasticity surface than Mohr Coulomb model does, and it can be written in a 

similar way with Drucker Prager criterion (see Equation (2.36) and (2.38)). 

𝑓 = 𝐼𝐼𝜎̂ + 𝑚 (𝐼𝜎 −
3𝑐

𝑡𝑎𝑛𝜑𝑐
) = 0                  (2.58) 

but with the different value of coefficient m 

𝑚 = 𝑎(1 + 𝑏𝑠𝑖𝑛3𝛽)𝑛                       (2.59) 
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Noting that in this equation, the sin3β is derived from equation (2.32). Moreover, it is easily 

found that the one and only one difference between Drucker Prager and Van Eekelen criteria is the 

different values of coefficient m which is constant for the former criterion whereas a function of the 

Lode angle for the later criterion. 

𝛽 = −
1

3
sin−1 (

3√3

2

Ⅲ
𝜎̂

Ⅱ
𝜎̂

3)                      (2.60) 

 In the formula giving the coefficient m (Equation (2.59)), three parameters a, b and n must be 

suited for the following conditions: 

𝑎 > 0                                (2.61) 

𝑏𝑛 > 0                               (2.62) 

−1 < 𝑏 < 1                             (2.63) 

 Moreover, the coefficients a and b have relationship with friction angles φC and φE actually with 

the formulas (2.40), (2.41) and the following two equations. 

𝑏 =
(
𝑟𝐶
𝑟𝐸

)

1
𝑛
−1

(
𝑟𝐶
𝑟𝐸

)

1
𝑛
+1

                             (2.64) 

𝑎 =
𝑟𝐶

(1+𝑏)𝑛
                             (2.65) 

 Note that the exponent n controls the convexity of the yield surface in the formulation of Drucker, 

and its default value equals to -0.229 basing on the conclusion of Van Eekelen (VAN 80). 

 The trace of this plasticity surface of Van Eekelen criterion in the Π plane is much smoother than 

the one of Mohr Coulomb, but in the other hand, it fits the Mohr Coulomb criterion much better than 

the Drucker Prager criterion for high friction angles. The limit surface is illustrated in Figure 2.7. 
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Figure 2.7 Limit surface for Van Eekelen criterion in the deviatoric plane for φ = 35° (BAR 98) 

 Similarly, the plastic potential g for Van Eekelen criterion has the same definition with f.  

𝑔 =Ⅱ
𝜎̂

+ 𝑚′ (𝐼𝜎 −
3𝑐

𝑡𝑎𝑛𝜑𝐶
) = 0                    (2.66) 

where the coefficient 𝑚′ is calculated in the same equation with equation (2.59), (2.64), (2.65), (2.40) 

and (2.41) but containing two dilatancy angles ψC and ψE to replace the two friction angles φC and φE. 

 Considering the derivatives of the limit surface f with respect to stresses is necessary to get 

access to the general elastoplastic relation. Here are the equations: 

𝜕𝑓

𝜕𝜎𝑖𝑗
=

𝜕𝑓

𝜕𝐼𝜎

𝜕𝐼𝜎

𝜕𝜎𝑖𝑗
+

𝜕𝑓

𝜕𝐼𝐼𝜎̂

𝜕𝐼𝐼𝜎̂

𝜕𝜎𝑖𝑗
+

𝜕𝑓

𝜕𝑠𝑖𝑛3𝛽

𝜕𝑠𝑖𝑛3𝛽

𝜕𝜎𝑖𝑗
                 (2.67) 

𝜕𝑓

𝜕𝑠𝑖𝑛3𝛽
= 𝑎𝑏𝑛(1 + 𝑏𝑠𝑖𝑛3𝛽)𝑛−1 (𝐼𝜎 −

3𝑐

𝑡𝑎𝑛𝜑𝐶
)              (2.68) 

𝜕𝑠𝑖𝑛3𝛽

𝜕𝜎𝑖𝑗
= −

3√3

2𝐼𝐼𝜎̂
3 (𝜎̂𝑖𝑘𝜎̂𝑘𝑗 −

2

3
𝐼𝐼𝜎̂

2𝛿𝑖𝑗 −
3Ⅲ

𝜎̂

𝐼𝐼𝜎̂

𝜕𝐼𝐼𝜎̂

𝜕𝜎𝑖𝑗
)             (2.69) 

The values of 
𝜕𝑓

𝜕𝐼𝜎
, 

𝜕𝐼𝜎

𝜕𝜎𝑖𝑗
, 

𝜕𝑓

𝜕𝐼𝐼𝜎̂
 and 

𝜕𝐼𝐼𝜎̂

𝜕𝜎𝑖𝑗
 have already been defined in the Section of Drucker 

Prager criterion (see Equations (2.47) to (2.50)). 

In this case, the scalar Val which refers to the relation between equivalent plastic strain and the 

plastic multiplier has different value with Drucker Prager does but with the same calculation equation.  

It is important to present that there would be three parameters, namely the compressive friction 

angle φC, the extensive friction angle φE and the cohesion c, playing important roles in this criterion. 

The derivatives of friction angles and cohesion with respect to equivalent plastic strain are identical to 

the ones of Drucker Prager criterion. The derivatives of f with respect to cohesion and the two 

independent friction angles are  
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𝜕𝑓

𝜕𝑐
= −

3𝑎(1+𝑏𝑠𝑖𝑛3𝛽)𝑛

𝑡𝑎𝑛𝜑𝐶
                         (2.70) 

𝜕𝑓

𝜕𝜑𝐶
=

𝑁𝑢𝑚1

𝐷𝑒𝑛𝑜1
                             (2.71) 

𝜕𝑓

𝜕𝜑𝐸
=

𝑁𝑢𝑚2

𝐷𝑒𝑛𝑜2
                             (2.72) 

with 

𝑁𝑢𝑚1 =
√3

𝑠𝑖𝑛𝜑𝐶
(1 +

𝑠𝑖𝑛3𝛽(𝑃𝑜𝑙−1)

1+𝑃𝑜𝑙
)
𝑛
(𝐴1 + 𝑃𝑜𝑙 ∙ 𝐴2)      (2.73) 

𝐷𝑒𝑛𝑜1 = 2𝑛(𝑠𝑖𝑛𝜑𝐶 − 3)2 (
𝑃𝑜𝑙

1+𝑃𝑜𝑙
)
𝑛
(1 − 𝑠𝑖𝑛3𝛽 + 𝑃𝑜𝑙(1 + 𝑠𝑖𝑛3𝛽))    (2.74) 

𝑁𝑢𝑚2 = 2√3
(𝑠𝑖𝑛3𝛽−1)

𝑡𝑎𝑛𝜑𝐸
(𝐼𝜎𝑠𝑖𝑛𝜑𝐶 − 3𝑐 ∙ 𝑐𝑜𝑠𝜑𝐶) (1 +

𝑠𝑖𝑛3𝛽(𝑃𝑜𝑙−1)

1+𝑃𝑜𝑙
)
𝑛

   (2.75) 

𝐷𝑒𝑛𝑜2 = 2𝑛(𝑠𝑖𝑛𝜑𝐶 − 3)(𝑠𝑖𝑛𝜑𝐸 + 3) (
𝑃𝑜𝑙

1+𝑃𝑜𝑙
)
𝑛
(1 − 𝑠𝑖𝑛3𝛽 + 𝑃𝑜𝑙(1 + 𝑠𝑖𝑛3𝛽))  (2.76) 

where 

𝑃𝑜𝑙 = (
𝑠𝑖𝑛𝜑𝐶(3+𝑠𝑖𝑛𝜑𝐸)

𝑠𝑖𝑛𝜑𝐸(3−𝑠𝑖𝑛𝜑𝐶)
)

1

𝑛
                   (2.77) 

𝐴1 = (6𝑐 − 2𝑐 ∙ 𝑠𝑖𝑛𝜑𝐶)(1 − 𝑠𝑖𝑛3𝛽)               (2.78) 

𝐴2 = 3𝑐(1 + 𝑠𝑖𝑛3𝛽 − 𝑐𝑜𝑠(2𝜑𝐶) − 𝑠𝑖𝑛3𝛽 ∙ 𝑐𝑜𝑠(2𝜑𝐶)) − 2𝑐 ∙ 𝑠𝑖𝑛𝜑𝐶(𝑠𝑖𝑛3𝛽 + 1) + 𝐼𝜎𝑠𝑖𝑛(2𝜑𝐶) ∙

(1 + 𝑠𝑖𝑛3𝛽)                   (2.79) 

 Comparing the derivatives of f of the VE model and the DP model with respect to friction angles, 

the hardening part makes a big difference between them. Since the initial and final values of friction 

angles for the two criteria are identical, so are the intermediate values of the compressive friction 

angles φC in the process of hardening. But for the extensive friction angles φE, the situation changes 

during hardening for two criteria. In DP criterion, the variation of φE is related to the change of φC, 

whereas in VE criterion, the variation of φE is related to the equivalent plastic strain with the relation 

(2.12). 

 Regarding the derivatives of flow potential g with respect to stresses, the equations are quietly 

similar with those obtained for the limit surface f (see equations (2.67) to (2.79)). It is worth 

highlighting that the expression of the flow potential should contain the component of cohesion in VE 

model since it appears in the derivative of g respect to stresses basing on the relation of f and g and 

equation (2.68). 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI133/these.pdf 
© [L. HU], [2020], INSA Lyon, tous droits réservés



Chapter 2 – A new constitutive relation 

 
 

34 

2.1.2.5 Comparison between MC, DP and VE yield criteria 

The traces of the three yield surfaces are plotted on Figure 2.8 for low (φC = 5°) to high friction 

angles values (φC = 45°), with φE = φC for Van Eekelen one. At very low friction angles the 3 criteria 

are pretty much similar (see Figure 2.8a). It is clear that the differences between the DP criterion on 

one hand and the MC or VE criteria on the other hand increases as friction angle gets larger. This is 

directly related to the relation between φC and φE (see equation (2.42) and Figure 2.6). From equation 

(2.42) it is found that, for φC = 20°, then φE = 26°. However as friction angle φC gets closer to the limit 

value 36.89°, the corresponding angle φE approaches 90°. Therefore if low friction angles are 

considered (let say below 20°), the 3 criteria will give approximately the same results. However above 

this value of 20°, some significant differences can be expected between the DP criterion on one hand 

and the MC or VE criteria on the other hand. These 3 criteria can also be compared against 

experimental determination of the limit surface shape in the Π plane obtained on sand by (LAN 88). 

The VE model is the best fit of these experimental results both regarding the yield surface shape and 

regarding the slight difference observed between the friction angle for triaxial compression and triaxial 

extension stress paths. 
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Figure 2.8 Limit surfaces for Mohr Coulomb, Drucker Prager and Van Eekelen criteria in the 

deviatoric plane for different friction angle value: a) φ=5°, b) φ=20°, c) φ=35°, d) φ=45° (BAR 98) 

 

2.1.3 Integration of elastoplastic constitutive relation 

The general rate constitutive elastoplastic relation has been obtained in the previous Section (see 

Equation (2.26)), and the integration over time of this equation leads to an incremental form:  

∆𝜎𝑖𝑗 = (𝐷𝑖𝑗𝑘𝑙
𝑒 − 𝐷𝑖𝑗𝑘𝑙

𝑝
)∆𝜀𝑘𝑙                       (2.81) 

Where the ∆𝜎𝑖𝑗 refers to the stress increment, while the ∆𝜀𝑘𝑙 means the strain increment. 𝐷𝑖𝑗𝑘𝑙
𝑒  and 

𝐷𝑖𝑗𝑘𝑙
𝑝

 represent the elastic and plastic constitutive tensors. 

A detailed analysis of the different methods used for the integration of different stress-strain 

relations has been presented in (CHA 87). The method used here is based on the operator split 

methodology (SIM 85) which consists in computing an elastic predictor and plastic corrector. 
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2.1.3.1 Elastic predictor 

From a given stress state σA at beginning of the step, the stress increment Δσe corresponding to a 

purely elastic response is computed with 

∆𝜎𝑖𝑗
𝑒 = 𝐷𝑖𝑗𝑘𝑙

𝑒 ∆𝜀                              (2.82) 

which defines an elastic trial stress state σE at point E 

𝜎𝑖𝑗
𝐸 = 𝜎𝑖𝑗

𝐴 + ∆𝜎𝑖𝑗
𝑒                              (2.83) 

 When the value of trial stress σE does not overpasses the value of yield criterion, i.e. f (σE, κA) ≤ 0, 

and then this trial step is done in elastic domain. But if the stress state at point E violates the yield 

criterion, i.e. f (σE, κA) > 0, then a plastic correction must be computed to turn the stress state back 

onto the yield surface (Figure 2.9). The stress point σC on the yield surface means the cross point with 

the trial line from point A to E. 

 

Figure 2.9 Evaluation of the trial stress state at point E 

2.1.3.2 Plastic corrector 

 In this phase, there are three quantities which should be determined first, namely the plastic strain 

increment Δεp, the plastic stress increment Δσp which equips the opposite sign to and the hardening 

/softening increment Δκ. 

 In classical framework of non-associated plasticity, the plastic strain increment Δεp is defined by 

its intensity and direction. The intensity has been defined before with equation (2.7), and the direction 

is defined by the normal n of the plastic flow potential g. 

𝐧 =
𝜕𝑔

𝜕𝜎
                                (2.84) 

Moreover, there are three choices can be made for the determination of normal n which are illustrated 
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in the following Figure 2.10. 

 

Figure 2.10 Choice of the normal: comparison between three possible directions for a Von Mises type 

criterion (BAR 98) 

(1) Beginning of the step, i.e. at point C (referring to the tangent rigidity). Then the method in 

this case is fully explicit. 

(2) Middle of the step, i.e. at point M (referring to the mean normal). Then the method in this 

case is semi-implicit. 

(3) End of the step, i.e. at point E, then the method is fully implicit. Moreover, this choice 

corresponds to a radial return for Von Mises type of surfaces in deviatoric plane. But for the yield 

surface of Van Eekelen criterion which is non circular, this choice does not coincide with a radial 

return. In order to obtain such a radial return, the Van Eekelen criterion could be combined with a 

Drucker Prager flow surface. 

In sum, the explicit method is only stable for small time increments whereas the semi-implicit 

and fully implicit method are stable without any conditions. Moreover, the explicit and semi-implicit 

methods need to compute the stresses at point C for which a simple relationship can be derived from 

the simple criterion, such as the Drucker Prager criterion. But for more complex one, i.e. the Van 

Eekelen criterion, this simple relationship does not exist and an iterative method is needed to compute 

a solution at point C and requires additional time. 

Therefore, the fully implicit backward Euler method is adopted appropriately here to integrate the 

constitutive relation. That means all the variable are calculated at point B in Figure 2.11, and the exact 
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solution is obtained by using the Newton-Raphson iterative method. Based on Newton-Raphson 

method, the first order Taylor development of the plasticity criterion f near the value of stress situated 

at point B is 

𝑓(𝜎𝑖𝑗
𝐵 + ∆𝜎𝑖𝑗

𝑝
, 𝜅𝐵 + ∆𝜅) = 𝑓(𝜎𝑖𝑗

𝐵, 𝜅𝐵) +
𝜕𝑓

𝜕𝜎𝑖𝑗
𝐵 ∆𝜎𝑖𝑗

𝑝
+

𝜕𝑓

𝜕𝜅𝐵 ∆𝜅          (2.85) 

with 

∆𝜎𝑖𝑗
𝑝

= −𝐷𝑖𝑗𝑘𝑙
𝑒 ∆𝜀𝑘𝑙

𝑝
                        (2.86) 

∆𝜅 =
𝑑𝜅

𝑑𝜀𝑒𝑞
𝑝 𝑉𝑎𝑙∆𝜆                       (2.87) 

Then the equation (2.85) could be rewritten as: 

𝑓 = 𝑓(𝜎𝑖𝑗
𝐵, 𝜅𝐵) −

𝜕𝑓

𝜕𝜎𝑖𝑗
𝐵 𝐷𝑖𝑗𝑘𝑙

𝑒 ∆𝜆
𝜕𝑔

𝜕𝜎𝑘𝑙
𝐵 + 𝑉𝑎𝑙

𝜕𝑓

𝜕𝜅𝐵

𝑑𝜅

𝑑𝜀𝑒𝑞
𝑝 ∆𝜆          (2.88) 

Based on the Newton-Raphson method and the consistency condition, the plasticity criterion f = 0, 

then the increment of plastic strain is obtained as: 

∆𝜆 =
𝑓(𝜎𝑖𝑗

𝐵,𝜅𝐵)

𝜕𝑓

𝜕𝜎𝑖𝑗
𝐵𝐷𝑖𝑗𝑘𝑙

𝑒 𝜕𝑔

𝜕𝜎𝑘𝑙
𝐵 −𝑉𝑎𝑙

𝜕𝑓

𝜕𝜅𝐵
𝑑𝜅

𝑑𝜀𝑒𝑞
𝑝

                      (2.89) 

The corrected stress state σB is obtained from the equation below. 

𝜎𝑖𝑗
𝐵 = 𝜎𝑖𝑗

𝐵 − ∆𝜆𝐷𝑖𝑗𝑘𝑙
𝑒 𝜕𝑔

𝜕𝜎𝑘𝑙
𝐵                         (2.90) 

 

Figure 2.11 Fully implicit scheme: stress space representation for perfect plasticity (BAR 98) 

 Combining the Figure 2.11 and these formulas before, it is much clear that the stress state at point 

E (σE, κE) is used in the first iteration, and the values obtained from previous iteration will be 

corrected and used for next further iterations. 

 Moreover, there would be a condition defining the termination of iterations, otherwise it would 

not stop. For perfectly plastic circular criterion (DP or Von Mises criteria), a coherent stress state at 

point B in which point the condition of f(σB, κB) ≈ 0 meets is reached after one time iteration. 

However, for more general case of non-circular criterion, some iterations do not equip the condition 
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mentioned above. Also, if hardening or softening exists, some additional iterations are required to 

integrate κB over the step. Therefore, a convergence condition is proposed and formulated as: 

𝑓(𝜎𝐵 , 𝜅𝐵) ≈ 0                                (2.91) 

This convergence criterion can be rewritten in terms of the stress increments ratio between the (n-1)th 

iteration and nth iteration as following: 

1 − 𝑃𝑟𝑒𝑐 < 𝑚𝑎𝑥 |
∆𝜎𝑖𝑗

𝑛

∆𝜎𝑖𝑗
𝑛−1| < 1 + 𝑃𝑟𝑒𝑐                   (2.92) 

A value of Prec = 10-3 is chosen, which means the convergence is achieved when the maximum stress 

increments ratio between two iterations is smaller than 0.1%.  

 All these steps are summarized as a global integration algorithm seen in Figure 2.12. 
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Figure 2.12 Implicit backward Euler integration algorithm implemented in the elastoplastic 

constitutive law PLASOL (BAR 98) 

 

Beginning of the constitutive law integration 

n = 0 

1. Computer elastic predictor σE 

            𝜎𝑖𝑗
𝐸 = 𝜎𝑖𝑗

𝐴 + 𝐷𝑖𝑗𝑘𝑙
𝑒 ∆𝜀 

If f(σE, κA) < 0 

      𝜎𝑖𝑗
𝐵 = 𝜎𝑖𝑗

𝐸 ,   𝜅𝐵 = 𝜅𝐴  (elastic stress state) 

Else 

  Initialize stresses and internal variables: 

      𝜎𝑖𝑗
𝐵 = 𝜎𝑖𝑗

𝐸 ,   𝜅𝐵 = 𝜅𝐴 

  2. Iteration n = n+1 

    Compute Δλ:  ∆𝜆 =
𝑓(𝜎𝑖𝑗

𝐵,𝜅𝐵)

𝜕𝑓

𝜕𝜎𝑖𝑗
𝐵𝐷𝑖𝑗𝑘𝑙

𝑒 𝜕𝑔

𝜕𝜎𝑘𝑙
𝐵 −𝑉𝑎𝑙

𝜕𝑓

𝜕𝜅𝐵
𝑑𝜅

𝑑𝜀𝑒𝑞
𝑝

  

3. Up-date equivalent plastic strain 

          𝜀𝑒𝑞
𝑝

= 𝜀𝑒𝑞
𝑝

+ 𝑉𝑎𝑙 ∙ ∆𝜆 

4. If hardening / softening, up-date of κB 

5. Compute new stresses at σB 

          𝜎𝑖𝑗
𝐵 = 𝜎𝑖𝑗

𝐵 − ∆𝜆 ∙ 𝐷𝑖𝑗𝑘𝑙
𝑒 ∙

𝜕𝑔

𝜕𝜎𝑘𝑙
𝐵  

6. Test on yield condition f(σB, κB) ≈ 0: 

  If (1-Prec < max∣Δσn/Δσn-1∣< 1+Prec), then 

      Solution has converged 

      Goto End 

Else 

    Goto step 2 

End if 
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2.2 Houlsby hyperelastic energy formula  

 Since several decades, the analysis of geotechnical problems is depending on a realistic 

representation which states that the initial stiffness equips a non-linear dependence on stress. This is 

most commonly achieved by adopting hypoelastic formulations (FUN 65) in the elastic-plastic 

framework, in which the definition of varying tangent moduli is given. For example, the following 

formulations are commonly used to calculate the elastic moduli in Modified Cam-Clay model. The 

bulk modulus K is usually defined via the expression K = p’ (1+e) / κ’, in which κ’ means the slope of 

swelling line in a consolidation plot. The shear modulus G is achieved by assuming a constant 

Poisson’s ratio ν. As a result, such model leads to a non-conservative elastic response (ZYT 78). That 

means that, a material which follows this kind of property will lead to continuous production of 

energy under the application of multiple cycles loading. However, this phenomenon is clearly 

physically incorrect. A numerical model adopting such property for the analysis of cyclic behavior 

might results in a totally unreasonable result. 

Thus an alternative model is proposed to adopt the hyperelastic approach, which is based on the 

theory of energy potential, and the reversible response can be derived from this energy potential. This 

results in a conservative elastic response, obeying the First Law of Thermodynamics, and thus 

avoiding the problems about cyclic loading mentioned above. 

2.2.1 Selected experimental evidence 

 Most of the published literatures about the small strain stiffness of soils are achieved from the 

dynamic laboratory tests on samples in a triaxial condition and under isotropic stress states. As a 

results, the small strain shear stiffness G0 has been focused on the most literatures. Here in this 

Section, the symbol G is adopted to replace G0 for simplification and representing the small strain 

modulus, i.e. shear modulus. 

 A basic observation from Hardin (HAR 78) shows that the shear modulus G has dependence on 

the current stress state, and can be expressed by the current void ratio, the mean effective pressure and 

the stress history loaded before. Here, the stress history can be simply expressed by the 

over-consolidation ratio OCR = σ’vmax / σ’v, and the G can be formulated as: 
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𝐺

𝑝𝑎
= 𝑆 ∙ 𝑓(𝑒) ∙ (

𝑝

𝑝𝑎
)
𝑛1

∙ 𝑂𝐶𝑅𝑘                     (2.93) 

 In this relation, the function f(e) represents an empirically defined function of the void ratio 

which shows a decreasing trend with the increasing void ratio; pa is the atmospheric pressure which is 

adopted as the reference stress; and coefficients S, n1 and k are dimensionless parameters determined 

experimentally. In this work, parameter n1 is supposed to be in the range from 0 to 1, while values 0 

and 1 are included.  

 It is worth noting that for most engineering applications on sands, the soil does not reveal a 

significant variation of the void ratio or OCR, and the OCR is also hard to calculate in most cases. 

Therefore, the use of simplified expressions of initial shear stiffness and bulk stiffness are naturally 

and necessarily derived. In the relations below, the g and k are dimensionless constants. 

𝐺

𝑝𝑎
= 𝑔 (

𝑝

𝑝𝑎
)
𝑛1

                            (2.94) 

𝐾

𝑝𝑎
= 𝑘 (

𝑝

𝑝𝑎
)
𝑛1

                            (2.95) 

For the applications of clay soils, few further experimental observations and their interpretation 

(HOU 91; VIG 92; RAM 94) indicate that the shear moduli G can be expressed as a function of just 

two out of three variables e, p and OCR for isotropic stress conditions. Thus, the equation (2.93) can 

be written as: 

𝐺

𝑝𝑎
= 𝑆∗ ∙ (

𝑝

𝑝𝑎
)
𝑛∗

𝑅𝑘∗
                         (2.96) 

with the R represents the over-consolidation ratio in terms of mean effective stress R = pc / p, where pc 

being mean pre-consolidation pressure. Noting that the exponent of mean effective stress n* is 

different with n1 because of the different meaning defined by different authors. 

 Also, few observations of the small strain shear stiffness of soils have been performed under 

anisotropic stress conditions (NI 87; HAR 89; JAM 94; RAM 97; JOV 98). These researches proved 

that it is necessary to modify the expression of G obtained under isotropic condition for anisotropic 

condition. For instance, Ni (NI, 87) and Hardin & Blandford (HAR, 89) proposed a modified 

expression of G for sands as following: 

𝐺

𝑝𝑎
= 𝑆𝑖𝑗 ∙ 𝑓(𝑒)

(𝜎𝑖𝜎𝑗)
𝑛1

2⁄

𝑝𝑎
𝑛1 𝑂𝐶𝑅𝑘                    (2.97) 

The principal stresses σi and σj are captured in the plane where G is measured, while 𝑆𝑖𝑗 represents 

anisotropic stiffness factor. 
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 Another expression for clays which is based on the equation (2.96) was proposed by Rampello et 

al. (RAM, 97). This expression is obtained based on the experimental results of reconstituted clay 

along the radial stress loading paths performed by different values of stress ratio η = q / p. 

𝐺

𝑝𝑎
= 𝑆𝜂

∗ (
𝑝

𝑝𝑎
)
𝑛∗

𝑅𝜂
𝑘∗

                            (2.98) 

where the variable Rη is the over-consolidation ratio defined regarding the anisotropic compression 

line. 

 In conclusion, the empirical expressions of small strain shear moduli mentioned above indicate 

that the three following main features should be taken into account when describing the reversible 

behavior of soil: (a) the non-linear dependence on current stress state; (b) the influence of anisotropic 

stress state; and (c) the stress history loaded on materials at least for clays. 

2.2.2 Linear and non-linear isotropic hyperelasticity 

 The soil stiffness modeling should take into consideration the current stress state. In order to 

propose an expression which is thermodynamically acceptable and equips the conservative behavior, 

Houlsby (HOU 05) presented an expression of free energy potential from which the stresses (or 

strains) can be derived with respect to strains (or stresses). It is necessary and sufficient that the 

function of this free energy potential obey the First Law of Thermodynamics.  

2.2.2.1 Triaxial formulation 

 The following will focus on the potential which is expressed using the invariants of strain or 

stress tensors. Thus, the behavior described will be essentially isotropic, although the concept of 

stress-induced anisotropy will arise under this isotropic condition. 

 Being appropriate for triaxial test, the elastic strain energy or internal energy or Helmholtz free 

energy F could be written as a function of the strains F = F(εv, εs) where εv and εs are the volumetric 

strain and shear strain respectively. It is easily gotten that:  

𝑝 =
𝜕𝐹

𝜕𝜀𝑣
                              (2.99) 

𝑞 =
𝜕𝐹

𝜕𝜀𝑠
                             (2.100) 

and then the expression of tangent bulk modulus and shear modulus are defined as: 
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𝐾 =
𝜕𝑝

𝜕𝜀𝑣
=

𝜕2𝐹

𝜕𝜀𝑣
2                           (2.101) 

3𝐺 =
𝜕𝑞

𝜕𝜀𝑠
=

𝜕2𝐹

𝜕𝜀𝑠
2                          (2.102) 

Furthermore, the incremental stiffness matrix could be defined as following. 

[
𝑑𝑝
𝑑𝑞

] = [
𝐾 𝐽
𝐽 3𝐺

] [
𝑑𝜀𝑣

𝑑𝜀𝑠
]                       (2.103) 

where the off-diagonal terms J: 

𝐽 =
𝜕𝑝

𝜕𝜀𝑠
=

𝜕𝑞

𝜕𝜀𝑣
=

𝜕2𝐹

𝜕𝜀𝑣𝜕𝜀𝑠
                       (2.104) 

 It is worth noting that when J has a non-zero value, the materials will behave incrementally in an 

anisotropic manner, although the free energy F is an isotropic function of strains. This is the case of 

stress induced anisotropic which will be discussed in next Section. 

 In order to solve the inconvenient of moduli expressed in terms of strains, because of the more 

usually practical application moduli expressed in terms of stresses, the Legendre transform of the 

Helmholtz free energy function is adopted and applied to obtain the complementary energy function 

or Gibbs free energy function E’: 

𝐸′ = (𝑝𝜀𝑣 + 𝑞𝜀𝑠) − 𝐹                    (2.105) 

The E’ is expressed as a function of stresses, i.e. E’ = (p, q), then the strains can be derived as: 

𝜀𝑣 =
𝜕𝐸′

𝜕𝑝
                           (2.106) 

𝜀𝑠 =
𝜕𝐸′

𝜕𝑞
                           (2.107) 

and the compliance matrix can be shown as: 

[
𝑑𝜀𝑣

𝑑𝜀𝑠
] = [

𝑐1 𝑐3

𝑐3 𝑐2
] [

𝑑𝑝
𝑑𝑞

]                   (2.108) 

with the each terms to be 

𝑐1 =
3𝐺

3𝐾𝐺−𝐽2 =
𝜕𝜀𝑣

𝜕𝑝
=

𝜕2𝐸′

𝜕𝑝2                        (2.109) 

𝑐2 =
𝐾

3𝐾𝐺−𝐽2 =
𝜕𝜀𝑠

𝜕𝑞
=

𝜕2𝐸′

𝜕𝑞2                        (2.110) 

𝑐3 =
−𝐽

3𝐾𝐺−𝐽2 =
𝜕𝜀𝑣

𝜕𝑞
=

𝜕𝜀𝑠

𝜕𝑝
=

𝜕2𝐸′

𝜕𝑝𝜕𝑞
                 (2.111) 

 Therefore, it is reasonable to modify the expression of free energy F and complementary energy 

E’ for linear elasticity in a quadratic form. 

𝐹 = 𝑝𝑎 (
𝑘

2
𝜀𝑣

2 +
3𝑔

2
𝜀𝑠

2)                      (2.112) 
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𝐸′ =
1

𝑝𝑎
(

1

2𝑘
𝑝2 +

1

6𝑔
𝑞2)                      (2.113) 

In these two equations, coefficients k and g are dimensionless constants, and the expressions each 

term are: p = kpaεv, q = 3gpaεs, K = kpa, G = gpa and J = 0. 

 The expressions of free energy and complementary energy function which expose a non-linear 

elasticity (i.e. K ∝ pn1) under purely isotropic stress conditions (without shear stress or shear strain 

terms) can be also established clearly. When the pressure exponent n1 ≠ 1, the expressions for F and E’ 

can be: 

𝐹 =
𝑝𝑎

𝑘(2−𝑛1)
[𝑘(1 − 𝑛1)𝜀𝑣]

(2−𝑛1)
(1−𝑛1)⁄

                (2.114) 

𝐸′ =
𝑝2−𝑛1

𝑝𝑎
1−𝑛1𝑘(1−𝑛1)(2−𝑛1)

                     (2.115) 

One can derive from anyone of these two formulas above: 

𝑘(1 − 𝑛1)𝜀𝑣 = (
𝑝

𝑝𝑎
)
1−𝑛1

                     (2.116) 

𝐾

𝑝𝑎
= 𝑘 (

𝑝

𝑝𝑎
)
𝑛1

= 𝑘[𝑘(1 − 𝑛1)𝜀𝑣]
𝑛1

(1−𝑛1)⁄
             (2.117) 

 However, the expressions above will become singular when n1 = 1. Moreover, a problem is 

inevitable that if the volumetric strain is seen as zero at the state p = 0 kPa, then the problem of 

infinite will happen for all finite stresses. An approval that shifting the reference point for zero 

volumetric strain from the origin (i.e. p = 0) to p = pa can avoid this problem, just with the 

modification of equation (2.114) and (2.115) to: 

𝐹 =
𝑝𝑎

𝑘(2−𝑛1)
[𝑘(1 − 𝑛1)𝜀𝑣

∗]
(2−𝑛1)

(1−𝑛1)⁄
             (2.118) 

𝐸′ =
𝑝2−𝑛1

𝑝𝑎
(1−𝑛1)

𝑘(1−𝑛1)(2−𝑛1)
−

𝑝

𝑘(1−𝑛1)
                 (2.119) 

where the variable 𝜀𝑣
∗: 

𝜀𝑣
∗ = 𝜀𝑣 +

1

𝑘(1−𝑛1)
                       (2.120) 

Also, this transition can change equations (2.116) and (2.117) to: 

1 + 𝑘(1 − 𝑛1)𝜀𝑣 = (
𝑝

𝑝𝑎
)
(1−𝑛1)

                   (2.121) 

𝐾

𝑝𝑎
= 𝑘 (

𝑝

𝑝𝑎
)
𝑛1

= 𝑘[𝑘(1 − 𝑛1)𝜀𝑣
∗]

𝑛1
(1−𝑛1)⁄

               (2.122) 

Note that this modification does not affect the expressions of stiffness in terms of pressure. In 

addition, one can conclude that equations (2.112) and (2.113) are appropriate for the case of pressure 
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exponent n1 = 0 (linear elasticity), while equations (2.114) and (2.115) are suitable for the case of n1 

≠ 0 (non-linear elasticity), but only on the isotropic axis. However, to obtain a more general 

expression which suits both for any triaxial stress states and for non-linear cases is our purpose 

eventually, and this expression can turn into each of those equations above in the appropriate special 

cases.  

 Combining the quadratic function of 𝜀𝑣
∗, εs and equations (2.112) and (2.118), a generalization of 

function F is proposed in triaxial formulation. 

𝐹 =
𝑝𝑎

𝑘(2 − 𝑛1)
[𝑘(1 − 𝑛1)]

(2−𝑛1)
(1−𝑛1)⁄

× [𝜀𝑣
∗2 +

3𝑔𝜀𝑠
2

𝑘(1 − 𝑛1)
]

(2−𝑛1)
(2−2∙𝑛1)⁄

 

=
𝑝𝑎

𝑘(2−𝑛1)
[𝑘𝜀𝑣

0(1 − 𝑛1)]
(2−𝑛1)

(1−𝑛1)⁄
             (2.123) 

where  

𝜀𝑣
02

= 𝜀𝑣
∗2 +

3𝑔𝜀𝑠
2

𝑘(1−𝑛1)
                        (2.124) 

 The variable 𝜀𝑣
∗ (equation (2.120)) is used to replace εv for moving the origin point for zero 

volumetric strain from p = 0 to p = pa, for consistency with the case of n1 = 1. Similarly, the stresses 

and moduli in terms of strains can be obtained with differentiation of formulation (2.123). Also, the 

complementary energy expression E’ can be obtained by the Legendre transformation of formulation 

(2.123). 

𝐸′ =
1

𝑝𝑎
(1−𝑛1)

𝑘(1−𝑛1)(2−𝑛1)
[𝑝2 +

𝑘(1−𝑛1)

3𝑔
𝑞2]

(2−𝑛1) 2⁄

−
𝑝

𝑘(1−𝑛1)
         

=
𝑝0

(2−𝑛1)

𝑝𝑎
(1−𝑛1)

𝑘(1−𝑛1)(2−𝑛1)
−

𝑝

𝑘(1−𝑛1)
                       (2.125) 

where 

𝑝0
2 = 𝑝2 +

𝑘(1−𝑛1)𝑞2

3𝑔
                           (2.126) 

2.2.2.2 General stress formulation 

 The expressions described above can be generalized into others than triaxial formulation, if the 

free energy F is expressed by strain tensor εij and the complementary energy E’ by effective stress 

tensor σij. Thus, the following expressions must be applied. 

𝐸′ = 𝜎𝑖𝑗𝜀𝑖𝑗 − 𝐹                            (2.127) 
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𝜎𝑖𝑗 =
𝜕𝐹

𝜕𝜀𝑖𝑗
                               (2.128) 

𝜀𝑖𝑗 =
𝜕𝐸′

𝜕𝜎𝑖𝑗
                               (2.129) 

Then the stiffness matrix and compliance matrix can be re-written as: 

𝑑𝑖𝑗𝑘𝑙 =
𝜕𝜎𝑖𝑗

𝜕𝜀𝑘𝑙
=

𝜕𝐹

𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙
                          (2.130) 

𝑐𝑖𝑗𝑘𝑙 =
𝜕𝜀𝑖𝑗

𝜕𝜎𝑘𝑙
=

𝜕𝐸′

𝜕𝜎𝑖𝑗𝜕𝜎𝑘𝑙
                         (2.131) 

Now the general form of free energy (for case of n1 ≠ 1) is written as the same with equation 

(2.123): 

𝐹 =
𝑝𝑎

𝑘(2−𝑛1)
[𝑘𝜀𝑣

0(1 − 𝑛1)]
(2−𝑛1)

(1−𝑛1)⁄
               (2.132) 

but with the different expression of 𝜀𝑣
0 : 

𝜀𝑣
02

= [𝜀𝑖𝑖 +
1

𝑘(1−𝑛1)
] [𝜀𝑗𝑗 +

1

𝑘(1−𝑛1)
] +

2𝑔𝑒𝑖𝑗𝑒𝑖𝑗

𝑘(1−𝑛1)
           (2.133) 

Note that we use the summation convention over a repeated index, such as: 𝜀𝑖𝑖 = ∑ 𝜀𝑖𝑖
3
𝑖=1 , and 

the 𝑒𝑖𝑗 = 𝜀𝑖𝑗 − 1 3⁄ ∙ 𝜀𝑣 ∙ 𝛿𝑖𝑗 , where 𝜀𝑣 = 𝜀𝑖𝑖 and 𝛿𝑖𝑗 is the Kronecker delta (δij = 1, if i = j; δij = 0, if 

i ≠ j). 

 Similarly, the complementary energy for case of n1 ≠ 1 is then: 

𝐸′ =
𝑝0

(2−𝑛1)

𝑝𝑎
(1−𝑛1)

𝑘(1−𝑛1)(2−𝑛1)
−

𝜎𝑘𝑘

3𝑘(1−𝑛1)
                (2.134) 

where 

𝑝0
2 =

𝜎𝑚𝑚𝜎𝑛𝑛

9
+

𝑘(1−𝑛1)𝑠𝑚𝑛𝑠𝑚𝑛

2𝑔
                  (2.135) 

with 

𝜎𝑖𝑖 = ∑ 𝜎𝑖𝑖
3
𝑖=1                           (2.136) 

The deviatoric component of stress tensor sij: 

 𝑠𝑖𝑗 = 𝜎𝑖𝑗 − 𝑝 ∙ 𝛿𝑖𝑗                          (2.137) 

It is easily calculated that the stiffness matrix can be written as: 

𝑑𝑖𝑗𝑘𝑙 = 𝑝𝑎 (
𝑝0

𝑝𝑎
)
𝑛1

[𝑘 ∙ 𝑛1
𝜎𝑖𝑗𝜎𝑘𝑙

𝑝0
2 + 𝑘(1 − 𝑛1)𝛿𝑖𝑗𝛿𝑘𝑙 + 2𝑔 (𝛿𝑖𝑘𝛿𝑗𝑙 −

1

3
𝛿𝑖𝑗𝛿𝑘𝑙)]  (2.138) 

while the compliance matrix is: 

𝑐𝑖𝑗𝑘𝑙 =
1

𝑝𝑎
(
𝑝𝑎

𝑝0
)
𝑛1

[
(

1

𝑘
+

𝑛1∙𝑠𝑚𝑛𝑠𝑚𝑛

2𝑔𝑝0
2 )

𝛿𝑖𝑗𝛿𝑘𝑙

9
−

𝑛1∙𝜎𝑚𝑚

18𝑔𝑝0
2 × (𝑠𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑗𝑠𝑘𝑙) +

1

2𝑔
(𝛿𝑖𝑘𝛿𝑗𝑙 −

1

3
𝛿𝑖𝑗𝛿𝑘𝑙) −

𝑛1∙𝑘(1−𝑛1)

4𝑔2𝑝0
2 𝑠𝑖𝑗𝑠𝑘𝑙

]  (2.139) 
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These two expressions are applicable for the cases of pressure exponent n1 = 1, and require just 

three dimensionless constants k, g and n1. Most importantly, the compliances or stiffness matrices can 

be adopted directly in, for example, a finite element program for general stress states, and make sure 

and express a fully conservative elastic behavior when the moduli are expressed as functions of 

pressure. 

2.3 New model established 

2.3.1 Establishment of new model 

 As mentioned in the two previous Sections, Plasol model is an elastoplastic model with the 

implicit backward Euler integration algorithm with two main parts, i.e. elastic predictor part and 

plastic corrector part, while Houlsby proposed a general hyperelasticity potential function for 

describing the non-linear elastic stiffness of soils as a function of stress with no plasticity. In the 

Plasol model, the current stress could be calculated by the incrementally linear evolution of strain 

increments, and verified and calibrated by the yield criterions accompanied with an implicit 

integration algorithm to make sure that the stress state remains on the plastic surface at least. As for 

Houlsby model, the stress-dependent small-strain moduli is adopted to account for the variation of 

stiffness of soils, and the hyperelastic function is adopted to meet the condition of thermodynamic 

acceptability. Moreover, simple free and complementary energy potentials are defined from which the 

small-strain stiffness can be captured realistically. Most important, the behaviour of stress-induced 

anisotropy is predicted within this hyperelastic formulation and it also corresponds to the empirical 

observation of natural soils. 

Besides the characteristics of hyperelastic formulation, an invisible and significant feature 

derived from the stress dependency of small-strain moduli is that the current stiffness is changing with 

the variation of current stress state, since the formulation contains the components of consolidation 

pressure and current stresses. In other words, the stiffness formulations are adjustable for general 

consolidation and shearing conditions. Therefore, an idea that accompanying with the feature above 

this hyperelastic approach should be employed for describing the elastic behaviour at the heart of 

more complex elastic-plastic models is appeared, to combine with Plasol model. More exactly, it is an 

excellent theory to replace the linear incremental stress-strain relation in elastic predictor part in 
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Plasol model with Houlsby hyperelastic formulations. This is a reasonable and valid assumption 

which will be discussed below. 

Therefore, a new constitutive model which is theoretically appropriate for simulating actual 

response of granular materials is established as a combination of Houlsby and Plasol models. The 

accuracy of this model will be verified with triaxial experimental results in the following Section. 

Here are given the equations of Houlsby model as the elastic predictor. 

𝜀𝑖𝑗
𝐸 = 𝜀𝑖𝑗

𝐴 + ∆𝜀                          (2.140) 

By using the formula of strain increment which is different with the one of stress increment, the 

following steps are related to the strains instead of stresses. Note that in the following equations, the 

volumetric and shear strains (εv and εs) are basing on the trial elastic strains 𝜀𝑖𝑗
𝐸 . Thus, the mean 

effective stress and shear stress which are derived from the free energy function (equations (2.99), 

(2,100) and (2.123)) are given as: 

𝑝 = 𝑝𝑎[𝑘(1 − 𝑛1)]
1

1−𝑛1 {[𝜀𝑣 +
1

𝑘(1−𝑛1)
]
2
+

3𝑔𝜀𝑠
2

𝑘(1−𝑛1)
}

𝑛1

2(1−𝑛1)

∙ [𝜀𝑣 +
1

𝑘(1−𝑛1)
]    (2.141) 

𝑞 = 𝑝𝑎[𝑘(1 − 𝑛1)]
𝑛1

1−𝑛1 {[𝜀𝑣 +
1

𝑘(1−𝑛1)
]
2
+

3𝑔𝜀𝑠
2

𝑘(1−𝑛1)
}

𝑛1

2(1−𝑛1)

∙ 3𝑔𝜀𝑠        (2.142) 

Then the trial elastic stress is derived with respect to strain 

𝜎𝑖𝑗
𝐸 =

𝜕𝐹

𝜕𝜀𝑖𝑗
= 𝑝 ∙

𝜕𝜀𝑣

𝜕𝜀𝑖𝑗
+ 𝑞 ∙

𝜕𝜀𝑠

𝜕𝜀𝑖𝑗
= 𝑝 ∙ 𝛿𝑖𝑗 +

2

3
∙ 𝑞 ∙

𝑒𝑖𝑗

𝜀𝑠
 with 𝜀𝑠 ≠ 0       (2.143a) 

or 𝜎𝑖𝑗
𝐸 = 𝑝 ∙ 𝛿𝑖𝑗    with 𝜀𝑠 = 0       (2.143b) 

Using these equations ((2.140) to (2.143)) to replace the equation in elastic predictor part in 

Figure 2.12, a more realistic theoretical model is built.  

During the process of plastic corrector, all the equations are identity with the ones mentioned in 

the Section of Plasol above, except the incremental stiffness matrix which should adopt equations 

(2.135) and (2.138). 

It can be easily shown that this stiffness matrix changes and depends on the current stress state 

(not just the mean effective stress). More importantly but less obviously, the incremental stiffness 

cannot be expressed just in terms of isotropic stiffness, which means the stiffness matrix does not 

simply indicate the stress-dependent values (parameters K and G). This matrix can be represented by 

anisotropic elasticity, rather than simply expressed just in terms of isotropic elasticity. These two 

features are also adjustable for the new constitutive model as a consequence. 

In sum, the contribution on the new model can be focused on the following three aspects: (1) 
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theoretical idea of combining Plasol and Houlsby based on the observation of granular material 

behavior; (2) derivation of formula of stress / strain / stiffness matrix from Houlsby hyperelasticity 

function; and (3) perfect combination and theoretically feasibility of new model. 

The establishment and verification works of new model are well described and explained by Hu 

et al. (HU 20).  

2.3.2 Effect of elasticity in elastoplastic model 

 The elastoplastic model could be commonly de-componented into elasticity region and plasticity 

region during the devoloping process of strain. For geomaterials, it is hard to define the limit between 

these two parts. Due to the granular property of geomaterials, the deformation could be seen as the 

internal particles’ relative movement in the view of microscopic. And within an infinitesimal 

deformation, it is acceptable for this kind of decomposition from an asymptotic point of view in 

several works. However, for finite increments, any uncrystallised granular material will dissipate 

energy because of the friction within partiles movement. It is therefore difficult in these conditions to 

speak of elasticity alone. The interest of micromechanical or incrementally non-linear models is 

precisely to avod this pitfall of having to postulate the existence of an elastic domain. 

New model, which includes the hyperelasticity formulas and their transformation formulas within 

the elastic part could contribute to a more effect on the plastic processes. As mentioned before in 

Section 2.2, hyperelasticity is more acceptable than hypoelasticity when descriping the behaviour of 

geomaterials because of the obedience of First Law of Thermodynamics. The property of elastic 

parameters bulk modulus and shear modulus derived from hyperelasticity energy function makes them 

realistic and changeable during the process of deformation rather than constant. Not only the effect of 

Hyperelasticity is focused on the elastic part, but also on the later plastic processes. Based on the 

changing value of bulk and shear modulus, the stiffness matrix which connects the stresses and strains, 

shows the ability of calibration of stress in plastic domain. As it is shown in Figure 2.12, the changing 

stiffness matrix deriving from Houlsby hyperelastic energy formula (Equation (2.138)) can show the 

effect on the plastic part as well as on the elastic part. In other words, the hyperelasticity presents an 

effect on the whole strain processes. 
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2.4 Compared model  

In order to compare the new constitutive model we built before, another model which uses the 

concept of second order fabric tensor is presented in this Section, namely modified SANISAND 

model (LAS 10).  

Before introducing the modified SANISAND model in details, the simple conventional 

SANISAND model should be stated clearly. SANISAND is the name represented for a family of 

Simple ANIsotropic SAND models which are developed within the framework of critical state soil 

mechanics and bounding surface plasticity (DAF 04; MAN 97). The simple SANISAND models 

adopt a narrow cone-type yield surface with an apex at the origin which is suitable for the rotational 

kinematic hardening. Due to this basic framework of Manzari and Dafalias (MAN 97), the modified 

SANISAND model including a simplified elasticity theory which is capable of considering the effect 

of induced anisotropy on the elastic response is proposed. 

According to Lashkari, Dafalias and Manzari (LAS 10; DAD 04; MAN 97), the summary of 

constitutive equations of SANISAND model accompanying with the modified parts in triaxial space is 

illustrated in the following Table 2.1.  

NOTE that the symbols of all variables in Section 2.4 and the following Section 3.6 referring to 

the SANISAND model are only meaningful in these Sections. Even if the same symbols in these 

Sections (2.4 and 3.6) appear in other Chapters or Sections, their meanings are not exactly the same.  

Table 2.1 Modified SANISAND model in triaxial space 

Description Constitutive equations  Parameters 

Strain decomposition 𝜀𝑣̇ = 𝜀𝑣̇
𝑒 + 𝜀𝑣̇

𝑝
; 𝜀𝑞̇ = 𝜀𝑞̇

𝑒 + 𝜀𝑞̇
𝑝

 (2.144)  

Elastic strain increments 𝜀𝑞̇
𝑒 =

𝑞̇

3𝐺
; 𝜀𝑣̇

𝑒 =
𝑝̇

𝐾
 (2.145) 𝐺0, 𝜈 

Yield function 𝑓 = |𝜂 − 𝛼| − 𝑚 = 0; 𝜂 = 𝑞 𝑝⁄  (2.146) 𝑚 

 α is illustrated in Figure 2.13   

Plastic strain increments 𝜀𝑞̇
𝑝

= 〈𝐿〉𝑠 =
𝜂̇

𝐾𝑝
; 𝜀𝑣̇

𝑝
= 𝑑|𝜀𝑞̇

𝑝
| (2.147)  

 where 𝑠 = 1 if 𝜂 − 𝛼 = 𝑚, and 𝑠 = −1 if 𝛼 − 𝜂 = 𝑚,   

 𝐿 is loading index, and   

 〈  〉 Are the Macauley brackets   
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Plastic hardening modulus 

𝐾𝑝 = ℎ0(1 − 𝑐ℎ𝑒)
𝑀𝑏 − 𝑠𝜂

|𝜂 − 𝜂𝑖𝑛|
√

𝑝𝑟𝑒𝑓

𝑝
 

(2.148) ℎ0, 𝑐ℎ 

Dilatancy function 𝑑 = 𝐴𝑑(𝑀𝑑 − 𝑠𝜂) (2.149)  

Fabric-dilatancy and evolution 

laws 

𝐴𝑑 = 𝐴0(1 + 𝜇〈−𝑠𝑧〉) 

where 𝜇 = 1 

(2.150) 𝐴0 

 𝑧̇ = 𝑐𝑧〈−𝜀𝑣̇
𝑝〉(𝑠𝑧𝑚𝑎𝑥 − 𝑧) (2.151) 𝑐𝑧, 𝑧𝑚𝑎𝑥 

Consistency condition (𝑓̇ = 0) 𝛼̇ = 𝜂̇ (2.152)  

Bounding and dilatancy surfaces 𝑀𝑏 = 𝑀𝑒𝑥𝑝(−𝑛𝑏𝜓); 𝑀𝑑 = 𝑀𝑒𝑥𝑝(𝑛𝑑𝜓) (2.153) 𝑀, 𝑛𝑏, 𝑛𝑑 

 see also Figure 2.13   

State parameter 𝜓 = 𝑒 − 𝑒𝑐 (2.154)  

Critical state line e-p plane 𝑒𝑐 = 𝑒0 − 𝜆(𝑝 𝑝𝑟𝑒𝑓⁄ )
𝜉
 (2.155) 𝑒0, 𝜆, 𝜉 

In the equation (2.145), shear modulus 𝐺 is a function of current void ratio 𝑒, and mean 

principal effective stress 𝑝. According to the work of Richart et al. (RIC 70), 𝐺 can be written as: 

𝐺 = 𝐺0𝑝𝑟𝑒𝑓
(2.97−𝑒)2

1+𝑒 √
𝑝

𝑝𝑟𝑒𝑓
                          (2.156) 

In this equation, 𝐺0 is a material parameter and 𝑝𝑟𝑒𝑓 represents the reference pressure that can refer 

to the atmospheric pressure. As for elastic bulk modulus 𝐾, a small strain Poisson ratio 𝜈 could be 

introduced in advance. 

𝐾 =
2

3
𝐺 (

1+𝜈

1−2𝜈
)                              (2.157) 

Referring to the variables 𝛼, 𝑀𝑏, 𝑀𝑑 and 𝑀 in equations (2.146) and (2.153), these basic 

elements of conventional SANISAND model are illustrated in the following Figure 2.13. 
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Figure 2.13 Model surfaces in q-p triaxial stress space (MAN 97; DAF 04) 

 The constitutive relation in Table 2.1 is the conventional SANISAND model unless the fabric 

tensor 𝒁 and loading index 𝐿 (Equation (2.147)) accounting for the anisotropy in elasticity. Based 

on the work of simplified process by Lashkari (LAS 10), a traceless second order fabric tensor 𝒁 

which refers to the micro-structural characteristics, and a related evolving scalar fabric variable 𝑧 

(Equation (2.151)) which indicates the degree of induced anisotropy are applied into the elastic 

relationship between the rates of stresses and strains in the triaxial space. 

[
𝑝̇
𝑞̇
] =  (

𝐾 (3𝐾 − 2𝐺)𝑧
(3𝐾 − 2𝐺)𝑧 3𝐺

) [
𝜀𝑣̇

𝑒

𝜀𝑞̇
𝑒] = (

𝛤1 𝛤2
𝛤2 𝛤3

) [
𝜀𝑣̇

𝑒

𝜀𝑞̇
𝑒]             (2.158) 

Assume that the plastic mechanism is activated (𝐿 > 0), the general form of 𝐿 with respect to 

anisotropic elasticity can be expressed as: 

𝐿 =
(𝛤3−𝜂𝛤2)𝜀̇𝑞+(𝛤2−𝜂𝛤1)𝜀̇𝑣

𝑠𝑝𝐾𝑝+𝑠(𝛤3−𝜂𝛤2)+𝑑(𝛤2−𝜂𝛤1)
                             (2.159) 

As seen in Equation (2.158), the off-diagonal terms are non-zero (activated) in the stiffness 

matrix which induce the cross-coupling between volumetric and shear effects when the fabric is 

anisotropic. That means the elasticity tensor related with fabric affects both the volumetric and 

deviatoric strains rates because of the coupling effects. This feature is kindly similar with the new 

model proposed in this work.  

In sum, based on the simulation and comparison works by Lashkari, the modified SANISAND 
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model taking into account the concept of elastic anisotropy can partly explain the sudden loss of mean 

effective stress in liquefaction tests and well imitate the behavior of sands in cyclic triaxial tests. 

Although for one specific geomaterials, only one single set of parameters is needed to simulate 

different kind of tests, especially the loading / reversal loading test, and can obtain idea results, there 

are still 15 parameters should be tested and calculated in advanced. These 15 parameters will be 

shown in the following Section 3.6. 
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Chapter 3 – Numerical simulations 

3.1 Formulation into Umat format  

 Since the formulation of the former models are built and described in fully format, and 

appropriate numerical tools are required to verify and test more conditions, we decided to adopt the 

numerical softwares Matlab® and Abaqus® (in later contents, ‘Matlab’ and ‘Abaqus’ represent for 

numerical software Matlab and Abaqus as simplified purpose) to calibrate the accuracy of our new 

constitutive model. It is easy to program the equations of models into codes and commands for 

running and testing in Matlab command window, but for combining the formulations into Abaqus 

model it is much more complicated. 

 Abaqus contains lots of different common models in its own internal database, which are verified 

in details and widely accepted and can run smoothly for mostly part of granular materials. However 

for some materials, models given by Abaqus database are not relevant so it is necessary to build a new 

material model which can be adopted directly in Abaqus to connect Abaqus and constitutive relation 

of those materials. Thus the conception of user-defined material (simplified as Umat) subroutine is 

revealed. 

 The subroutine Umat equips powerful functions and qualifies the following abilities: (1) defining 

the constitutive relation of materials which uses the materials not included in the ABAQUS material 

library for calculating to extending program functionality; (2) being suitable for any analysis process 

of mechanics behavior of any unit of Abaqus model. In the Umat file, it is also obligatory of providing 

the Jacobian matrix of constitutive model, which links the matrices of stress increment to strain 

increment.  

 Note that the basis purpose of Umat is to calculate the stress increment matrix or tensor. In the 

Finite Element Method, it is possible to obtain the stress in (n+1) step under the condition of given 

strain and stress in (n) step and known strain increment. Thus, it is the job of Umat to complete this 

calculation process since the rate of stress increment with respect to strain increment is defined. The 

Jacobian matrix, or called as DDSDDE(I, J) unique in Umat file determines the change of Ith stress 

component influenced by the small change of Jth strain component. 

 To sum up, since we know the constitutive models, the process of formulation transformation 
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from equation to Umat commander, and the combination of Abaqus and Umat, it is obvious and easy 

to verify and calibrate the new constitutive model. 

 As for the general format of Umat files, according to the rules that the variables statement at the 

beginning of Umat is used to transfer the data between the main program and Umat, even sharing the 

same variables, a standard writing format must be obeyed consequently. The commonly used variables 

in Umat file should be determined at the start of file, and the common format is like: 

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,& 

      RPL,DDSDDT,DRPLDE,DRPLDT,& 

      STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,& 

      NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,& 

      CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 

! 

!      INCLUDE 'ABA_PARAM.INC'      

!       

      IMPLICIT INTEGER(I-N) 

      IMPLICIT REAL*8(A-H,O-Z) 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV),& 

      DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),& 

      STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),& 

      PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3),& 

      JSTEP(4) 

After that, the commanders for determining the value of DDSDDE should be attached as 

designed by users basing on requirements of Umat, followed by the calculation of stresses, strains and 

other variables. Last, the whole Umat file will be ended by the following commander, then transfer the 

results into Abaqus database. 

RETURN 

END SUBROUTINE UMAT 
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3.1.1 Original Plasol model  

 The original Plasol model has been described in Section 2.1, and it has never been tested in 

Abaqus before. As a comparison, it is also obligate to transfer its equations into Umat format. Apart 

from the general commanders at the beginning, some settlements of key calculations in the specific 

orders for original Plasol model will be expressed as following. 

 First of all, after giving the values of Young’s modulus (E) and Poisson’s ratio (ν), the values of 

Lamé’s first (λ) and second (μ) parameters will be clearly obtained by later formulas. 

𝜆 =
𝐸∙𝜈

(1+𝜈)(1−2𝜈)
                                (3.1) 

𝜇 =
𝐸

2∙(1+𝜈)
                                  (3.2) 

Later the important component of Umat file which is the Jacobian matrix (or incremental 

stiffness matrix) in matrix form for isotropic materials can be written as: 

𝐷(𝑖𝑗𝑘𝑙) =

[
 
 
 
 
 
𝜆 + 2𝜇 𝜆 𝜆

𝜆 𝜆 + 2𝜇 𝜆
𝜆 𝜆 𝜆 + 2𝜇

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝜇 0 0
0 𝜇 0
0 0 𝜇]

 
 
 
 
 

                (3.3) 

Note that the matrix above is available for the three dimensional situation, it is different for two 

dimensional cases. Thus, for two dimension cases, the matrix will be made as: 

𝐷(𝑖𝑗) = [

𝜆 + 2𝜇 𝜆
𝜆 𝜆 + 2𝜇

0 0
0 0

0 0
0 0

𝜆 + 2𝜇 0
0 𝜇

]                     (3.4) 

After finishing the orders of incremental stiffness matrix, then the most important procedure will 

be edited in following, i.e. the calculation and correction part of stress in later step. In case of 

concision, a subroutine is built naturally. 

In this subroutine, see ‘subroutine Original_Plasol’ in Appendix A, the values of stiffness matrix, 

current stresses and strains, the incremental strains, the dimensional determine factor and the user 

definition materials properties are extracted and returned to the main routine. 

Comparing with Figure 2.11, the elastic predictor in original Plasol model can be written as: 

𝜀𝐵 = 𝜀𝐵 + ∆𝜀                                (3.5) 

Note that the 𝜀𝐵 after the equal sign is the strain in current state corresponding to the ‘A’ state in 
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Figure 2.11, while the one before the equal sign is the strain in later state corresponding to the ‘E’ 

state in Figure 2.11. For the accuracy and concision of writing in Umat format, both these two strains 

are written as the same, so does the stresses in the following equation. 

𝜎𝐵 = 𝜎𝐵 + 𝐷𝑒∆𝜀                              (3.6) 

The 𝐷𝑒 in equation (3.6) refers to the incremental stiffness matrix in equation (3.3) or (3.4) 

according to the dimensional determine factor. 

Then the procedure of corrector should be adopted after the trial stress and strain achieving in 

former predictor procedure. In this stage, a loop instruction is adopted until the loop condition meets, 

and those commands below should be concluded in this loop instruction to make sure that the trial 

stress is not beyond the yield surface. 

Firstly, the yield function should be determined. Here, the Drücker Prager criterion is adopted 

considering the accuracy and concision. In this stage, the first stress tensor invariant, the second 

deviatoric stress tensor invariant, and the deviatoric stress, see equations (2.28), (2.29) and (2.31), 

should be calculated. After that, the parameters m and k, as well as the yield function f, see equations 

(2.36), (2.37) and (2.38), are computed later. 

Secondly, a plastic stress increment should be calculated consequently. This kind of stress 

increment is possible to be used or neglected according to the sign of yield function which will be 

discussed in later stage. In this stage, the parameters m’ (equation (2.45)) which is related with the 

plastic potential function g, is written as mg in the Umat file to avoid the problem of repeat. Also, the 

derivatives of yield function and plastic potential with respect to stress, see equation (2.46) and (2.52), 

are presented. Then the derivatives of yield surface with respect to the hardening variables, namely the 

compression friction angle and cohesion are computed, which correspond to the equations (2.54 - 

2.57). Combining the equations (2.89), (2.90) and the value of scalar Val, the increment of plastic 

strain is obtained, as well as the value of plastic stress increment. 

Finally, the procedure of trial and correction happen inevitably. In this phase, the sign of yield 

function should be recognized firstly to judge the trial stress state is within or beyond the yield surface. 

If the yield function is negative, which means the trial stress state is within elastic domain, the 

calculated plastic stress increment is useless and its value should be refreshed as ZERO, and returned 

back to main routine. But if the yield function is positive, which means the trial stress state is beyond 

the yield surface, the trial state should be corrected and returned back on yield surface. In this case, 
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the corrected stress state will be computed by equation (2.90). Meanwhile, compression friction angle, 

cohesion, and the dilatancy angle should be refreshed following the corrected equivalent plastic strain, 

see Figure 2.12 and equations (2.11), (2.13), (2.16) and (3.7). Symbol 𝜀𝑝 expresses the equivalent 

plastic strain in Umat file for simplification. 

𝜀𝑝 = 𝜀𝑝 + 𝑉𝑎𝑙 ∙ ∆𝜆                           (3.7) 

3.1.2 New model  

Considering the reused part with original model, which has been introduced in detail in Chapter 2, 

only the different and important part will be described and detailed. All the procedures are presented 

in the appendix B. 

Firstly, the Jacobian matrix (incremental stiffness matrix) plays a significant role in the new 

model, and is highly different with the constant incremental stiffness matrix in original Plasol model. 

According to equations (2.138), the incremental stiffness matrix is depending on the current stress 

state and shows an anisotropic characteristic during the increasing of stress. The constant Jacobian 

matrix in equation (3.3) will change into a symmetric matrix with 36 variable components (6 rows and 

6 columns). As seen appendix C, a matrix relating to the 3D model is computed on the base of 

equation (2.138), which is called trial Jacobian matrix with symbol DDSDDE1. If the facing problems 

we will solve DDSDDE1 regard to the 3D situation, the Jacobian matrix will be used directly by the 

value of trial Jacobian matrix. However, if it is about the 2D situation, the final Jacobian matrix will 

be simplified into the form of equation (3.4) on the base of trial Jacobian matrix. 

Secondly, the computation of stress is also different with the original model, as it depends on the 

derivations of the Houlsby hyperelasticity energy function. In this part, the trial strain is firstly 

computed, followed by the calculation of the volumetric strain 𝜀𝑣, shear strain 𝜀𝑠 and deviatoric 

component of strain tensor 𝑒𝑖𝑗, see equation (2.140) and below. Note that the 𝛿𝑖𝑗 is the Kronecker 

delta tensor (δij = 1, if i = j; δij = 0, if i ≠ j). 

𝜀𝑣 = 𝜀𝑖𝑖                                 (3.8) 

𝑒𝑖𝑗 = 𝜀𝑖𝑗 − 1 3⁄ ∙ 𝜀𝑣 ∙ 𝛿𝑖𝑗                          (3.9) 

𝜀𝑠 = √(2 3⁄ ∙ 𝑒𝑖𝑗𝑒𝑖𝑗)                           (3.10) 

Then the mean effective stress p and shear stress q which are derived from the free energy 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI133/these.pdf 
© [L. HU], [2020], INSA Lyon, tous droits réservés



Chapter 3 – Numerical simulations 

 
 

60 

function are calculated as formulas (2.141) and (2.142). The value of trial stress could be computed as 

equation (2.143). 

Finally, after finishing the process of elastic predictor, the procedure of plastic corrector starts in 

the same way as the original Plasol model does. 

3.2 Axisymmetric ABAQUS model simulation  

 Among those several FEM tools, the Abaqus is chosen preferentially and wisely to simulate 

non-linear constitutive model of geomaterials problems considering our situation. Not only because 

Abaqus contains lots of unit types which could reflect deeply the phenomenon of microstructures and 

the difference between them, the materials models which include the constitutive relationship and 

failure criterions, the contact and connection types which could provide more convenient tools for 

most types of engineering structures, but also Abaqus provide the user-defined materials properties 

and constitutive models under the condition of insufficient models in Abaqus itself. Combining with 

the Umat codes mentioned before, the Abaqus could simulate the majority of geomaterials problems. 

 In experimental tests, the triaxial test allows to determine some mechanical proprieties which are 

the disadvantages of other test methods such as the uniaxial test or direct shear test and so on. 

Depending on the advantages of drainage conditions and confining pressure controls, the triaxial test 

could obtain the highly accurate values of stress and strain at different states, as well as the variation 

of pore pressure. Therefore, the triaxial test is chosen naturally in Abaqus simulation. 

 Before establishing the Abaqus model, a difference between the actual physical triaxial test 

sample and Abaqus model should be mentioned firstly. For actual experimental test, the common 

shapes of sample are cylinders with different sizes and heights relating to different conditions. That is 

convenient and justified to simulate the actual condition of soil in situ. In the modeling using Abaqus, 

it is also possible to adopt the same full size of sample directly. But there is another more simple and 

concise way to imitate when considering the run process of Abaqus. Therefore, an axisymmetric 

model which is closely related with the actual cylinder model but with easier installation of loading 

and boundary conditions is established. Figure 3.1 shows the Abaqus axisymmetric model with mesh 

and boundary conditions of the homogeneous triaxial test. Note that the dimensions of the numerical 

sample are 1 m × 1 m, while the exact sizes of physical sample are φ= 70mm × h = 140mm. 
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Figure 3.1 Mesh and boundary conditions of axisymmetric homogeneous triaxial test sample 

 For the boundary settings, the limitation in horizontal direction on the axisymmetric edge, can 

imitate the central axis, while the limitation in vertical direction on the bottom edge refers to the 

bottom surface of actual sample. It is worth noting that the values of horizontal displacement ux and 

vertical displacement uy vary for different drainage conditions. For drained conditions, the horizontal 

displacement is defined as free, but σx =σ0 (confining pressure), while for the undrained conditions, 

the horizontal displacement is defined as the half value of vertical displacement to fulfill the isochoric 

condition, i.e., uy = -2ux.  

 After the Abaqus model is established, and the user-defined constitutive model written in Umat 

language, the Abaqus model runs successfully with the Umat file under different parameters, 

boundary and loading conditions. Some reasonable results appear and will be discussed in detailed in 

following Sections. 

3.3 Comparison with experimental result  

3.3.1 Experimental and numerical test 

In this part, the specific process of experimental test and Abaqus simulation will be introduced. In 

order to obtain a more reliable and reasonable comparison result, actual parameters for experimental 

triaxial test will be adopted, and then an optimal set of parameters for Abaqus simulation will be 

determined and used later. 

ux

uy
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3.3.1.1 Experimental drained triaxial test 

Since several decades before, the triaxial test method has become mature and been adopted to 

determine the material properties, as well as the response of stress and strain. The laboratory 

apparatus won’t be introduced here in details, but the test plan will be presented specifically. 

In general, the real triaxial test contains two procedures, namely the procedures of consolidation 

and shearing. In our tests, there are three different values of confining pressure (σ0) during the 

consolidation process, i.e., 50 kPa, 100 kPa, and 200 kPa. After that, the shearing stage is 

implemented on sample by loading the controlled displacement under the condition of constant 

confining pressure, as implemented in Figure 3.2. Note that for different values of confining pressures, 

the Young’s moduli for shearing processes are different, as well as the values of incremental stiffness 

matrix in the aspects of stress strain calculation. Table 3.1 is the actual parameters for experimental 

samples. 
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Figure 3.2 Flow chart of experimental triaxial test 

Table 3.1 Mechanical properties of experimental samples 

Young’s modulus 

E50 11.1 MPa 

E100 28.9 MPa 

E200 36.8 MPa 

Poisson’s ratio 

ν50 0.27 

ν100 0.22 

ν200 0.17 

Failure cohesion Cf 40.5 kPa 

50 kPasample 1

consolidation

50 kPa

shearing

¦Å1

100 kPasample 2 100 kPa

¦Å1

200 kPasample 3 200 kPa

¦Å1

¦ Ò0

¦ Ò0 =

¦ Ò0

¦ Ò0 =

ε1 

σ0 
σ0 

σ0 =  σ0 =  

ε1 

ε1 
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Failure friction angle φf 44° 

Limit dilatancy angle 

ψf
50 7° 

ψf
100 5° 

ψf
200 2° 

 The Figure 3.3 below gives the strain-strain response under drained triaxial conditions for three 

initial effective mean stresses. 

 

 (a) Deviatoric stress versus axial strain

 

(b) Volumetric strain versus shearing strain 

Figure 3.3 Experimental relationship results of stresses and strains 
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 From the experimental results, the stress-strains response shows a typical behavior of 

geomaterials. While increasing the controlled axial strain, the deviatoric stress increases rapidly first 

and then slowly, until the failure point of sample. More specific, the value of deviatoric stress under 

higher confining pressure is commonly higher than the stress under lower confining pressure. As for 

the volumetric strains, the sample contracts first and then appears dilatation process for lower 

confining pressure. After the increasing of confining pressure, the sample maybe not shows the 

phenomenon of dilatation but only the process of contraction for the same initial density of the 

specimens. 

3.3.1.2 Abaqus simulation 

In the simulation process using Abaqus, the most significant advantage of new model is that only 

one set of parameters is necessary and determined for all confining pressure tested. These parameters 

could be determined using the original Plasol model, i.e., the linearly elastic incremental model. After 

that, this set of parameters for one specific kind of geomaterials could be utilized and combined with a 

proper value of pressure exponent ‘n1’ in the new model to obtain a better and a more accurate 

simulation. 

Taking the experimental tests mentioned before as sample, the original Plasol model was firstly 

used to try and determine the optimal parameters. The optimal set of parameters is given in Table 3.2, 

and then the comparison between simulation (new model) and experimental results are illustrated in 

Figure 3.4. 
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(a) Relationship curves of deviatoric stress and strain 

 

(b) Relationship curves of volumetric and shearing strains 

Figure 3.4 Comparison between experimental and numerical results obtained using new model 

 

Table 3.2 Optimal parameters determined in original Plasol model 

Young’s modulus Eref 17 MPa 

Poisson’s ratio νref 0.2 
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Inherent cohesion C0 1 kPa 

Failure cohesion Cf 54 kPa 

Inherent friction angle φ0 1° 

Failure friction angle φf 22° 

Limit dilatancy angle ψf 8° 

Reference pressure a Pa 100 kPa 

Pressure exponent a n1 0.3 

Note: a The reference pressure and pressure exponent are only used in new 

constitutive law. 

Note that the reference pressure and pressure exponent mentioned above and marked by 

superscript ‘a’ are obtained and determined after the determination of other conventional parameters 

in the Table 3.2. In other words, those conventional parameters are attempted and decided firstly using 

the original Plasol model, then these parameters are utilized directly in new model and then to attempt 

the suitable value of pressure exponent to obtain the most accurate simulation.  

3.3.2 Comparison of stress strain response 

In the previous Section, the method to obtain the optimal parameters are introduced and shown in 

Table 3.2, and the final simulation results including the original Plasol model and the new model are 

shown in the following Figure 3.5 and Table 3.3. In the Figure 3.5 and Table 3.3, the only one set of 

parameters in Table 3.2 is used for the new model. From the Figure and Table, it can be found that the 

simulation of new model is more accurate than the original Plasol model when using the same 

parameters no matter the values of confining pressures. Although there are some deviatoric values in 

the simulation of volumetric strain in higher confining pressure conditions, it is apparent that new 

model with only one set of parameters is more convenient and highly efficient when comparing the 

old original Plasol model.  

Specifically, for volumetric strain simulation in Figure 3.5 (b), the accuracy is better for the low 

confining pressure than high pressure. However, the accuracy in 200kPa is not good at all in this case 

which dues to the constant adopted dilatancy angle in new model. In fact, this situation exists in many 
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regular models (ALE 05). Despite this, comparing with other linear or nonlinear elastic constitutive 

model, in which different sets of mechanic properties are needed for different consolidation and 

confining conditions, the fact that only one set of parameters is utilized for various situation with the 

new constitutive model is way important. 

Apart from this Figure, the comparison curves in detail between the original Plasol model and 

new model are illustrated in Figures 3.6 and 3.7.  

 

(a) Relationship curves of deviatoric stress and strain 

 

(b) Relationship curves of volumetric and shearing strains 

Figure 3.5 Comparison results between experimental tests and numerical simulations 
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Table 3.3 Simulation difference between experiments (EXP), original Plasol model (ORI) model and 

new model (NEW) 

Initial 

mean 

stress 

Strain 

state 

 
q (kPa) 

 
εv (%) 

 
EXP ORI RE b NEW RE b 

 
EXP ORI RE b NEW RE b 

50 kPa 

5%  287.74 221.96 -22.86 245.55 -14.66  -0.91 -1.05 15.45 -0.88 -3.16 

10%  361.72 255.13 -29.47 267.46 -26.06  0.32 -0.30 -195.70 0.35 10.17 

 
             

100 kPa 

5%  452.16 438.76 -2.96 464.42 2.71  -1.22 -1.40 14.49 -1.43 16.57 

10%  591.92 505.15 -14.66 535.21 -9.58  -0.84 -0.76 -9.39 -0.79 -5.58 

15%  665.90 531.76 -20.14 544.96 -18.16  0.49 0.36 -26.25 0.56 15.38 

 
             

200 kPa 

5%  752.21 822.93 9.40 816.82 8.59  -2.35 -2.06 -12.61 -2.23 -5.25 

10%  953.66 977.67 2.52 973.42 2.07  -2.63 -1.80 -31.82 -2.34 -11.17 

15%  1048.21 1056.48 0.79 1081.85 3.21  -2.38 -0.58 -75.69 -0.97 -59.11 

Note: b RE stands for relative error (unit: %). 
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(a) Relationship curves of deviatoric stress and strain 

 

(b) Relationship curves of volumetric and shearing strains 

Figure 3.6 Comparison results between new model and original Plasol model 
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Figure 3.7 Comparison results between new model and original Plasol model within very small strain 

 

Note again that the results in Figure 3.6 and 3.7 are obtained from the Abaqus simulation by 

using only one same set of parameters. From Figure 3.6, we can find that the value of deviatoric stress 

simulated by original Plasol model in small strain stage is higher than the one by new model in both 

these three confining pressure conditions. Then the deviatoric stress values between them are reducing 

with the increasing of strain. It can be also shown clearly in Figure 3.7 that the initial tangent moduli 

calculated in new model are lower than the values of original Plasol model.  

Meanwhile, another significant factor in Figure 3.7 is that the values of tangent moduli obtained 

from new model for different confining pressures are different while the values from original model 

are identical, although the parameters adopted are the same under different confining pressure 

conditions. This factor is a powerful evidence proving that the stiffness matrix of new model is 

changing and depends on the current stress or strain state, for only one set of paraleters, which has an 

expression of variable tangent modulus for different conditions. The influence of tangent modulus will 

be presented in detailed in the Section 3.3.3. 
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3.3.3 Evolution of tangent modulus 

3.3.3.1 Essential relation of variable tangent modulus  

 The fact that the initial tangent modulus, obtained in FEM is mentioned before, evolves during 

loading could be explained by the Houlsby hyperelastic part of the model. Since the new model is 

established based on the Houlsby model, the stiffness matrix is calculated directly by two times 

derivative of hyperelastic free energy function, which is presented in equation (2.138). From this 

formulation, it can be easily obtained that the initial stiffness matrix (or the Young’s modulus or 

Poisson’s ratio) for shear procedure is different for different initial consolidation conditions, and 

importantly it can also change during the shearing stage. 

 In equation (2.138), the stiffness matrix Dijkl is a function of variable po, and stress σij, while po is 

also a function of stress σij, according to equation (2.135). As a conclusion, this stiffness matrix varies 

as power functions of the current stress state, or effective mean stress. Typically, although this kind of 

relation is influenced by other important coefficients, e.g. the bulk stiffness factor k, shear stiffness 

factor g, and pressure exponent n1, the stiffness matrix with the expression of tangent modulus 

evolves during the variation of the current stress, which could be shown in the Figure 3.6 and 3.7. 

3.3.3.2 Comparison with real experimental data 

Note that for different confining pressure condition, the Young’s modulus and stiffness matrix are 

different. And this kind of observation could be expressed as the evolution of tangent modulus. 

Therefore, a comparison results between the experimental data and simulation using new model will 

be made and illustrated in Figure 3.8. 
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Figure 3.8 Evolution of tangent modulus for experimental tests and simulations 

 

Theoretically, the initial small-strain shear stiffness obtained using Equations (2.93) to (2.98) is 

function of the current stress state, expressed by mean effective stress, the current void ratio and the 

previous stress history experienced by the material. Such stiffness, which is expressed with tangent 

modulus, decreases with the increasing of shear strain.  

Figure 3.8 presents the evolution of tangent modulus which is identical with shear modulus in 

triaxial condition. The tangent modulus obtained with numerical simulation is quite close to the 

experimental data in the small axial strain stage, whilst these two forms of data might not coincide 

well in the large strain stages although the tendencies are similar. This feature is well presented in 

Figure 3.5 (a) and Figure 3.8. It is worth noting that the correlation coefficient (R2) of numerical 

simulation on shear modulus reaches acceptable values of 0.907. 

In turn, this comparison could prove not only the stiffness matrix calculated in new model varies 

depending on mean stress, but also new model can well simulate the actual geomaterials behavior. 

3.4 Analyses of pressure exponent in undrained condition and the related density  

3.4.1 Influence of pressure exponent in undrained condition 

 As mentioned before, the equation (2.138) shows a relation between the stiffness matrix and the 
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significant variable, i.e., the pressure exponent ‘n1’. In this part, the influence of pressure exponent 

will be discussed in detail. 

 Based on the formula of stiffness matrix (2.138) and the equations of components of stiffness 

matrix (Equations 2.101, 2.102, 2.103 and 2.104), the new formulas of components of stiffness matrix 

could be rewritten as following (n1 ≠ 1). 

𝐾 = 𝑝𝑎[𝑘(1 − 𝑛1)]
1

1−𝑛1 ∙ {
𝑛1

1−𝑛1
∙ (𝜀𝑣 +

1

𝑘(1−𝑛1)
)
2

∙ [(𝜀𝑣 +
1

𝑘(1−𝑛1)
)
2

+
3𝑔𝜀𝑠

2

𝑘(1−𝑛1)
]

3𝑛1−2

2−2𝑛1

+

[(𝜀𝑣 +
1

𝑘(1−𝑛1)
)
2

+
3𝑔𝜀𝑠

2

𝑘(1−𝑛1)
]

𝑛1

2−2𝑛1

} (3.11) 

3𝐺 = 𝑝𝑎[𝑘(1 − 𝑛1)]
𝑛1

1−𝑛1 ∙ 3𝑔 ∙ {
𝑛1∙3𝑔∙𝜀𝑠

2

𝑘(1−𝑛1)2
∙ [(𝜀𝑣 +

1

𝑘(1−𝑛1)
)
2

+
3𝑔𝜀𝑠

2

𝑘(1−𝑛1)
]

3𝑛1−2

2−2𝑛1

+ [(𝜀𝑣 +

1

𝑘(1−𝑛1)
)
2

+
3𝑔𝜀𝑠

2

𝑘(1−𝑛1)
]

𝑛1

2−2𝑛1

}  (3.12) 

𝐽 = 𝑝𝑎[𝑘(1 − 𝑛1)]
𝑛1

1−𝑛1 ∙
3𝑔∙𝑛1∙𝜀𝑠

1−𝑛1
∙ [𝜀𝑣 +

1

𝑘(1−𝑛1)
] ∙ [(𝜀𝑣 +

1

𝑘(1−𝑛1)
)
2

+
3𝑔𝜀𝑠

2

𝑘(1−𝑛1)
]

3𝑛1−2

2−2𝑛1

  (3.13) 

 Due to formula (3.13), the off-diagonal components of stiffness matrix would be non-zero values 

when the variable pressure exponent ‘n1’ is positive. Then, the induced anisotropy occurs. It is also 

obvious that the level of induced anisotropy differs with various values of pressure exponent, as well 

as the responses of stresses and strains. To sum up, the effect of pressure exponent on the level of 

induced anisotropy also affects the stress and strain behavior, even altering the hardening tendency of 

soils. 

 In order to present the effect of pressure exponent, a series simulation of undrained triaxial tests 

under 100 kPa confining pressure condition is performed. In this series of undrained triaxial 

simulations, the parameters are adopted in given Table 3.4, and most importantly, 8 values of pressure 

exponent will be adopted in the simulation, i.e., 0, 0.02, 0.04, 0.06, 0.1, 0.2, 0.3 and 0.4. The 

simulation results are shown in Figures 3.9 and 3.10. In Figures 3.9 and 3.10 and in Table 3.4, the 

sample 1 and 2 are samples with different densities which will be discussed in the next Section. It is 

worth noting that although there are two different relative densities of soil sample, these two samples 

should be seen as definetely loose ones according the absolute values of young’s modulus and poisson 

ratio. 
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Table 3.4 Parameters adopted in undrained test simulation for sample 1 and sample 2 

Young’s modulus E 17 MPa c / 7 MPa 

Poisson’s ratio ν 0.2 

Inherent cohesion C0 1 kPa 

Failure cohesion Cf 54 kPa c / 50 kPa 

Inherent friction angle φ0 1° 

Failure friction angle φf 22° c/ 15° 

Limit dilatancy angle ψf 0° 

Reference pressure Pa 100 kPa 

Note: c The parameters for sample 1 only.  

 

(a) Response for sample 1 (‘denser’ sample) 
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(b) Response for sample 2 (‘looser’ sample) 

Figure 3.9 Response of stresses in undrained triaxial simulation 

 

 

(a) Response for sample 1 (‘denser’ sample) 
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(b) Response for sample 2 (‘looser’ sample) 

Figure 3.10 Evolution of ratios of shear stress to mean effective pressure in undrained triaxial 

simulation 

 

 More important, according to Equations (3.11) and (3.12) and the free energy expressions, the 

bulk and shear modulus 𝐾 and 𝐺  are functions of 𝑝𝑎 , 𝑘, 𝑔, 𝑛1, 𝜀𝑣  and 𝜀𝑠 . Therefore, it is 

feasible to maintain a same bulk modulus value at the initial state of shearing procedure for 8 different 

values of pressure exponents, so does the value of shear modulus. Meanwhile, the void ratio doesn’t 

change during the procedure of shearing in isochoric undrained test, and it can also be kept at a same 

value for all pressure exponents conditions. 

 In Figure 3.9 (a), based on the fact that the bulk moduli, shear moduli and void ratios are 

maintained at the same value for all ‘n1’ conditions whilst ‘n1’ is the only independent variable, the 

variable affecting the induced anisotropy is ‘n1’. Figure 3.10 (a) shows the ratios of shear stress to 

mean effective pressure of sample 1, which are associated with Figure 3.9 (a). Note that the 

magnitude of this ratio has a connection with strain hardening pattern in plastic domain. Therefore, it 

is easily concluded that the induced anisotropy has a significant influence on hardening evolution 

even though the void ratio does not evolve at all for any value of ‘n1’ during isochoric conditions. 

When pressure exponent ‘n1’ has a small value, the sample presents a ‘looser’ trend, while this 

tendency changes to ‘denser’ trend with the increasing value of ‘n1’. Theoretically, for small values, 
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the sample shows a response of isotropic elastic increment and no induced anisotropic components in 

stiffness matrix occurs when the pressure exponent equals to zero. However, this situation is 

contradiction with the theory. The shear stiffness depends on the current stress state (the mean 

effective stress, current void ratio and previous stress history) proposed by Hardin (HAR 78). The 

more general situation is that the anisotropy arises as a natural consequence of the hyperelastic 

formulation, which is corresponding appropriately to the observation of soil behavior with the 

condition of non-zero value of ‘n1’. 

3.4.2 Effect of density on the influence of pressure exponent 

In order to figure out the effects of density of sample on the influence of pressure exponent on the 

response of stress and strain, two different values of density are adopted in the undrained test 

simulation, which are listed in the Table 3.4. It is worth noting that there are two sets of parameters for 

two samples, i.e. sample 1 with the same parameter of drained test sample presented in Section 3.3, 

and sample 2 with lower density (lower Young’s modulus, cohesion pressure and friction angle). 

The simulation results for denser sample 1 are shown and discussed in Section 3.4.1, then comes 

to the looser sample 2 in this Section. As a comparison, a simulation of relatively looser soil with 

lower density was simulated under the identical condition, as illustrated in Figure 3.9 (b) and Figure 

3.10 (b). The response of looser soil with low density, which is carried out with the same ‘n1’ values 

of denser soil with high density, is showing a different trend. The behavior of looser soil with a low 

value of ‘n1’ presents a similar ‘looser pattern’ until ‘n1’ reaches at 0.2, whereas that the ‘n1’ of 

denser soil reaches at 0.06 in this case. The evolution from ‘looser’ trend to ‘denser’ trend of high 

density soil can be easily reached when the value of ‘n1’ increases. In general, it can be concluded that 

the density of soil certainly influences the effect of ‘n1’ on the response of soil. In other words, the 

level of induced anisotropy, which corresponds to a specific value of ‘n1’ and influences the stress- 

strain response, is closely related with soil density. 

As a dimensionless experimentally determined parameter, the pressure exponent ‘n1’ is closely 

related with the inherent fabric of soil. In new model, the off-diagonal term 𝐽 is expressed as Equation 

(3.13), which is linked tightly with pressure exponent. The anisotropic stiffness matrix arises with 

non-zero ‘n1’. Thus the level of anisotropy which is induced by the various ‘n1’ and loaded pressure, 
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and the stress-strain response, will also change. 

The evolution of anisotropy observed during the experiments can be captured by the parameter of 

‘n1’, which is, for the current model, fixed. According to Kruyt (KRU 11), Pouragha and Wan (POU 

17), the process of deformation is the one where fabric tensor changes. In DEM, the contact disruption, 

which means the granular particle contacts disconnect during the strain increment, is the dominant 

mechanism factor for the changing fabric tensor. More importantly, this contact disruption is strongly 

anisotropic. Similarly, the anisotropic response of stress-strain owing to non-zero 𝐽 term would affect 

the proportion of contact disruption during strain increment, which might alter the coordination 

number of the assembly of particles as well. This fabric feature can change the hardening tendency 

eventually. 

3.5 Analyses of pressure exponent in drained condition  

  Previously, the simulations for undrained test were shown and discussed in detailed, as well as 

the effects of density. Theoretically and in practice, it is also necessary to do some simulations in 

drained condition. Note that in later simulations, the model parameters adopted are the same ones 

used in undrained condition (Table 3.4, sample 1) with an initial value of 0.819 for void ratio, as well 

as the same 100 kPa confining pressure. The simulation results are shown in Figure 3.11 and 3.12. 

Figure 3.11 shows the relationship of mean effective pressure and void ratio, while the stress-strain 

responses are illustrated in Figure 3.12. It is worth noting that the relative ‘denser’ sample 1 is loose 

sample with high value of void ratio according to the relative small value of young’s modulus and 

poisson ratio. That is the reason why the results presented below show the absence of post-peak 

softening and significant contractrance. 
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Figure 3.11 Void ratio versus mean effective pressure in drained triaxial simulation 
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(b) Volumetric strain versus shearing strain 

Figure 3.12 Stress-strain responses in drained simulation for different pressure exponents 

 

 Unlike the situation of undrained simulation, it is also clear that the effect of pressure exponents 

on the response of stress and strain is not obvious as comparing with the undrained situation. It means 

that the induced anisotropy leads small impact on the response of stress and strain. Similarly, the bulk 

modulus K and shear modulus G, as well as the void ratio can be kept the same for all pressure 

exponents at the initial state of shearing procedure. However, the one which is differing from the 

undrained shear condition is that the void ratio changes during the procedure of shearing because of 

the changing total volume. The variation of void ratio becomes the only one factor who minimize the 

effect of induce anisotropy comparing with the simulation with undrained triaxial test. 

3.6 Modified SANISAND model 

 In Section 2.4, the simple SANISAND model and its modified model taking account for the 

induced elastic anisotropy were well introduced. The equations of modified SANISAND model are 

combined with the work done by previous researchers and re-written into an Umat file, seen in 

Appendix C. As comparison, some experimental data and the simulation by modified SANISAND 

model should be introduced firstly.  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20

ε v
 (%

)

ε1 (%)

0 0.02

0.04 0.06

0.1 0.2

0.3 0.4

n1 = 0

n1 = 0.04

n1 = 0.02

n1 = 0.06

n1 = 0.1 n1 = 0.2

n1 = 0.3 n1 = 0.4

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI133/these.pdf 
© [L. HU], [2020], INSA Lyon, tous droits réservés



Chapter 3 – Numerical simulations 

 
 

82 

 A series of experiments in undrained loading test on medium-loose and dense samples of Toyoura 

sand were conducted by Verdugo and Ishihara (VER 96). The initial void ratios of medium-loose and 

dense samples are 0.833 and 0.735 respectively. Samples are isotropically consolidated to 100 kPa 

firstly. Then the shear stress was applied on samples. The following tables show the physical 

properties of Toyoura sand and the parameters adopted in the simulation of modified SANISAND 

model. 

It is worth mentioning that the symbols of all variables in Section 3.6 and the previous Section 

2.4 referring to the SANISAND model are only meaningful in these Sections. Even if the same 

symbols in these Sections (2.4 & 3.6) appear in other Chapters or Sections, their meanings are not 

exactly the same. 

Table 3.5 Physical properties of Toyoura sand (VER 96) 

 Mean diameter 

(mm) 

Uniformity 

coefficient 

Maximum void 

ratio 

Minimum void 

ratio 

Specific gravity 

Toyoura sand 0.17 1.32 0.977 0.597 2.65 

Table 3.6 Simulation parameters adopted in modified model (VER 96) 

Category Parameters Symbol Value 

Elastic Elastic shear modulus G0 125.0 

 Poisson ratio ν 0.05 

Yield surface Opening of yield surface cone m 0.01 

Critical state line Critical back-stress ratio in triaxial compression Mc 1.25 

 Critical back-stress ratio in triaxial extension Me 0.89 

 Critical state line materials constant λ 0.019 

 Void ratio on critical state e0 0.934 

 Critical state line materials constant ξ 0.70 

Plastic modulus Positive materials constant about hardening modulus h0 881.25 

 Positive materials constant about hardening modulus ch 0.968 

 Material constant about stress image on boundary surface nb 1.1 

Dilatancy Dilatancy material constant A0 0.704 

 Material constant about stress image on dilatancy surface nd 3.5 

Fabric Fabric index constant zmax 3.0 
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 Fabric index constant controlling the pace evolution cz 1500.0 

Similarly, the FEM software Abaqus is used combining with the model of modified SANISAND 

for simulating the behaviour of Toyoura sand under undrained triaxial condition. The stress paths and 

shear stress versus shear strain curves on two different void ratios of samples implemented under 

undrained condition are illustrated in following Figure 3.13. 

 

(a) Stress path for sample e = 0.833 

 

(b) Shear stress versus axial strain for sample e = 0.833 
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(c) Stress path for sample e = 0.735 

 

(d) Shear stress versus axial strain for sample e = 0.735 

Figure 3.13 Simulation by Modified SANISAND versus experiments in undrained triaxial tests on 

samples of Toyoura sands (LAS 10; VER 96) 
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determined and shown in following Table 3.7. 

Table 3.7 Optimal parameters of Toyoura sands sample for new model 

Young’s modulus Eref 35 MPa 

Poisson’s ratio νref 0.25 

Inherent cohesion C0 6.9 Pa 

Failure cohesion Cf 8 kPa 

Inherent friction angle φ0 1° 

Failure friction angle φf 30° 

Limit dilatancy angle ψf 8° 

Reference pressure Pa 100 kPa 

Pressure exponent n1 0 / 0.2 

 Note that in Table 3.7, two values of pressure exponent are adopted for the situation of two 

different values of void ratio. After determining the optimal parameters, the same simulation 

processes are conducted in Abaqus with new model. The following Figure 3.14 shows the comparison 

results. 
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(b) Shear stress versus axial strain for sample e = 0.833 

 

(c) Stress path for sample e = 0.735 
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(d) Shear stress versus axial strain for sample e = 0.735 

Figure 3.14 Comparison results between new model and modified SANISAND model (n1 = 0 : 

isotropic elasticity) 
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about the influence of pressure exponent for undrained and drained simulations and the effect by 

sample density are also performed reasonable.  

 From the comparison results between the experimental drained triaxial test and Abaqus 

simulations, the new model can well simulate the actual problems by using a single set of optimal 

parameters, although there are some deviatoric values during predicting the variation of volume strain 

in higher confining pressure conditions.  

The tangent modulus is identical to the shear modulus in triaxial condition, and it is much useful 

in FEM calculation. From the evolution of tangent moduli’ simulations, the value of numerical 

simulation is quite close to the experimental data in the small axial strain procedure, whilst these two 

forms of data might not coincide well in the large strain stages although the tendencies are similar. 

The acceptable values of correlation coefficient between them also show the satisfying “fitting degree” 

and simulation.  

The incremental stiffness matrix becomes anisotropic when the experimentally determined 

parameter pressure exponent ‘n1’ has a non-zero value. These different anisotropies in elasticity 

domain owing to various values of ‘n1’ make a big difference on the response in terms of stresses and 

strains, even altering the tendency of hardening for undrained triaxial simulations. Besides, it seems 

that the density of soil affects the influence of stress-induced anisotropy on response of soil to a 

certain extent. However, for drained triaxial conditions, this kind of effect is quite tiny no matter what 

the density or initial confining pressure condition is. Drained triaxial responses are therefore more 

sensitive to plasticity model than the elastic model used. 

 At last, by comparing with a constitutive model with respect to anisotropic elasticity, i.e., 

modified SANISAND model, the simulation on Toyoura sands in undrained situation by new model is 

feasible. Although there are some deficiencies points at the plastic state, which the modified 

SANISAND model shows a better simulation effect at later stage of shearing process, our new model 

possesses the advantages of less total number and more accessible of parameters than modified 

SANISAND does. The new model shows better agreement for looser sample than for denser. 
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Chapter 4 – Second-order work analyses 

According to Daouadji (DAO 10), a synthesis of the works about the second-order work 

(expressed as W2) criterion has been done by various teams from several countries, and the 

second-order work criterion has also been proved to be closely related with the diffuse failure and the 

outburst of kinetic energy accompanied with the drastically increased strains and decreased stresses in 

sample. Prunier et al. (PRU 16) proposed a conception of proper stability criterion as a safety factor 

by adopting the second-order work criterion. Lots of research works has been done to prove that the 

second-order work criteria can be used to detect the diffuse failure of actual problems (DAO 10; DAR 

07; LAO 02; DAR 05).  

It is worth noting that the second-order work criterion is implemented under some limited 

physical preconditions: (1) the elastoplastic constitutive model should be non-associated; (2) the stress 

(or strain) state should be located inside the bifurcation domain; (3) the current loading direction 

should be included inside or on an instability cone; (4) mixed loading conditions are imposed. 

4.1 Formulation of W2  

 According to Hill’s stability criterion (HIL 58), the fact that the failure of homogeneous samples 

of soils could happen strictly within the classic plasticity limit of Mohr-Coulomb can be described 

properly. Hill also proved that a sufficient condition for stability of elasto-plastic medium should meet 

the following relationship. 

∫ {𝛿𝑠𝑖𝑗𝑑 (
𝜕𝑢𝑗

𝜕𝑋𝑖
) 𝑑𝑉0} > 0                           (4.1) 

For any displacement 𝑑𝑢, 𝑠𝑖𝑗 are the components of the nominal stress tensor and 𝛿𝑠𝑖𝑗 is the 

change of 𝑠𝑖𝑗 due to the arbitrary virtual displacement 𝑑𝑢. 𝑋𝑖 is the position vector in the initial 

configuration. 

Theoretically, the formulation of the second-order work (w2) on local or single element is the 

product of strain increment and stress increment under small strain assumption, i.e.,  

𝑤2 = 𝑑𝜎 ﹕𝑑𝜀                                 (4.2) 

In this formula, 𝑑𝜎  is the Cauchy stress tensor and 𝑑𝜀  is the linearised strain tensor, and the w2 
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represents the inner term in equation (4.1) when small strains and small geometrical changes are 

assumed. Meanwhile, when considering homogeneous problems, Hill’s condition might become as: 

𝑤2 = 𝑑𝜎 ﹕𝑑𝜀 > 0                              (4.3) 

This equation (4.3) could be also written as following formula in the notations where second-order 

tensors of strain and stress are expressed as a six-component vector. 

𝑤2 = 𝑑𝜎 
𝑡  𝑁(𝑑̃) 𝑑𝜎 > 0                            (4.4) 

In this equation, 𝑁(𝑑̃) is the rate-independent constitutive operator which connect the 𝑑𝜀 with 𝑑𝜎, 

while the left superscript ‘t’ is the transposed operator. 𝑑̃ = 𝑑𝜎/‖𝑑𝜎‖ is the loading direction which 

is closely related with the rate-independent constitutive operator before. It is worth noting that at the 

stage of very small deformation, all the eigenvalues of this operator are strictly positive and the relate 

soil stress state is wthin stable elasticity. But this kind of stable state will disappear when one of 

eigenvalues of operator vanishes. 

 In classical elasto-plastic models, the operator is piecewise linear in the stress rate space. 

Supposing that the tensorial zone is used to express a part of stress rate space in which 𝑁(𝑑̃) is linear, 

which means this kind of zone is independent from 𝑑̃. In such tensorial zone, we have the equation: 

𝑤2 = 𝑑𝜎 
𝑡  𝑁 𝑑𝜎 = 0 ↔  𝑑𝜎 

𝑡  𝑁𝑠 𝑑𝜎 = 0                   (4.5) 

This equation represents a general form of elliptical cone. 𝑁𝑠 is the symmetric part of 𝑁. In the 

principal stress rate space, the solutions of equation (4.5) depend on the eigenvalues of 𝑁𝑠 and are 

geometrically similar to the form displayed in Figure 4.1. For a given loading path, the solutions 

appear from zero in the order shown in Figure 4.1. That is to say, the solution is empty firstly because 

the sample is completely stable. Then a single unstable loading direction develops, accompanied by 

the cones of unstable loading directions growing until the plasticity limit. When a solution exists, 

loading paths which is included inside or on this kind of cone are unstable, while other loading paths 

are stable. This is the intuitive meaning of cone of unstable loading directions.  
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Figure 4.1 Solutions of equation: 𝛌𝟏𝐗
𝟐 + 𝛌𝟐𝐘

𝟐 + 𝛌𝟑𝐙
𝟐 = 𝟎, which is a reduction of the quadric 

𝐝𝛔 
𝐭  𝐍𝐬 𝐝𝛔 = 𝟎 (PRU 16) 

Moreover, a specific set of stress points where the solutions of equation (4.5) is reduced to only 

one unstable direction is called bifurcation domain limit. In fact, this limit is located inside the 

plasticity limit and closely depends on the loading path. Therefore, the limit of bifurcation domain 

according to the constitutive model of Darve (DAR 04) can be plot with a set of several deviatoric 

stress paths in the deviatoric plane which is displayed in Figure 4.2. 
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Figure 4.2 Limit of the bifurcation domain plotted in deviatoric plane for constitutive models of Darve, 

compared with plastic limit of Morh-Coulomb (PRU 09) 

 

In equation (4.2), this quantity of w2 can be directly computed at each integration point of a mesh. 

Therefore, this kind of mathematical positiveness of w2 is regarded as the subject of interest but not its 

intensity. Numerically, a real zero is not easy to obtain. Thus, a so-called normalized second-order 

work (expressed as w2n) has been proposed as follows. 

𝑤2𝑛 =
𝑤2

‖𝑑𝜎 ‖∙‖𝑑𝜀 ‖
                               (4.6) 

 It is easily found that the normalized second-order work ‘w2n’ is limited in the interval [-1; 1] and 

geometrically present the cosine value of the angle between the incremental stress and strain vectors. 

As a consequence, the value of w2n decreases monotonically when the stability of a homogeneous 

sample decreases. Therefore, w2n can be computed and adopted at each integration point of a finite 

element or node analysis to study the local stability of a body. 

 Since the second-order work for local stability and its normalized one can be obtained by the 

equations above, it is necessary to discuss the global second-order work. It is worth noting that the w2 

can be numerically integrated on one element according to Prunier, et al (PRU 16), and when 

assembling over the mesh we can obtain the global second-order work as following: 

𝑊2 = ∫ 𝑑𝜀
 

𝑉
𝑑𝜎 𝑑𝑉 = 

𝑡 𝑑𝑄 𝐾 𝑑𝑄 = 
𝑡 𝑑𝑄 𝑑𝐹 

𝑡                       (4.7) 

In this equation (4.7), 𝑑𝑄 and 𝑑𝐹 mean the global nodal incremental displacement and force, 

respectively, while the 𝐾 represents the global consistent tangent matrix. In sum, the form of 

equation (4.7) is similar with equation (4.2). Then the form of global normalized second-order work 

can be rewritten as when comparing with the local equation (4.6): 
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𝑊2𝑛 =
𝑊2

‖𝑑𝑄‖∙‖𝑑𝐹‖
                               (4.8) 

 In fact, at a given spatial position, the components of vector of nodal displacement do not depend 

on the size of adjacent elements. Thus the simple Euclidean norm of ‖𝑑𝑄‖ depends on the number 

of mesh elements. As a conclusion, this equation could be re-written as following expression for the 

integrated normalized second-order work: 

𝑊2𝑛 =
𝑊2

∫ ‖𝑑𝜎‖∙‖𝑑𝜀‖ 𝑑𝑉
 

𝑉

                             (4.9) 

 Note that equation of global normalized second-order work (W2n) matches the expression of local 

second-order work (w2n) in equation (4.6) when studying the homogeneous cases because of the 

constant integrands. According to Prunier et al (PRU 16), the quantity of W2n in expression (4.9) can 

be adopted theoretically as a safety factor to probe the global stability of a non-homogeneous problem. 

It means that when W2n is strictly positive the structure is stable. On the contrary, the structure is 

unstable. In sum, an effective failure accompanying with the sudden burst of kinetic energy depends 

on the control variables at the boundary.  

4.2 Stabilities analysis of axisymmetric model  

In Section 3.2, an axisymmetric Abaqus model was built with meshed elements. The response of 

stress and strain for cylindrical samples were tested and simulated in different confining pressures and 

drainage conditions. Although the direct variations process of stress and strain could be obtained from 

the simulation, including the rapid increasing and slight decreasing of deviatoric stress during the 

application of shear strain in some cases, it is still uneasy to reasonably judge the current state in 

progress. Therefore, the idea that combining the second-order work within our new model is proposed 

and utilized to probe the stability states of axisymmetric model in this Section. 

Similarly, the geometric size of axisymmetric model is same with the one in Figure 3.1, and the 

parameters used are the ones of looser sample (sample 2) in Table 3.4. Note that the formulation is 

purely mechanical without any effect of hydromechanics as no water is included, and the simulation is 

implemented with the classical undrained, i.e. isochoric, triaxial test. The response of homogeneous 

model simulated in terms of stress-strain relationship is shown in Figure 4.3 as followed. This figure 

is based on the situation of pressure exponent n1 = 0.1, and other valuable values of pressure exponent 
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have been simulated and proved presenting a similar result. 

 

(a) Response of model in the stress plane 

 

(b) Response in the stress and strain plane 

Figure 4.3 Response of undrained triaxial test simulation 

From the response of stresses and strain results, it is clear that this relationship presents a peak in 

the deviatoric stress q variable, but here it does not correspond to a softening trend, which is not our 

purpose in our work. Combining with the value changes of integrated normalized second-order work 

in Figure 4.4, it can be figured out distinctly that at the q peak, the value of W2n vanishes to zero and 

then turns to negative along the current loading path.  
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Meantime, a generalized flow rule (PRU 16) can be defined even though the current stress-strain 

state is strictly inside the classic plasticity limit. In this isochoric test, the constitutive relation can be 

defined as: 

𝑃 {
𝑑𝜀𝑦

𝑑𝜎𝑟
} = {

𝑑𝑞
𝑑𝜀𝑣

}                               (4.10) 

with the isochoric condition: 

 {
𝑑𝜀𝑦 = 𝑐𝑠𝑡 < 0

𝑑𝜀𝑣 = 0
                               (4.11) 

Note that 𝑃 corresponds to the global stiffness operator. At the q peak, this generalized flow rule can 

be rewritten as: 

𝑃 {
𝑑𝜀𝑦

𝑑𝜎𝑟
} = {

0
0
}                              (4.12) 

with  

{
𝑑𝜀𝑦

𝑑𝜎𝑟
} ≠ {

0
0
}                               (4.13) 

As a result, it is easy to conclude that the determinant of 𝑃 vanishes to zero at q peak point. 

After the q peak, the W2n is negative. In fact, before reaching the q peak, the loading path crosses 

a bifurcation domain limit which is related with a specific axial strain. At this axial strain, the 

determinant of 𝑁𝑠 is no longer positive, thus a cone of unstable loading direction appears. Note that 

during the period between this axial strain and the q peak, although the cone of unstable direction 

occurs, the loading path does not cross the cone, and the value of second-order work is still positive. 

Until the peak value, the second-order work vanishes and the stress-strain state becomes unstable. 
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(a) q – p plane 

 

(b) Global normalized second-order work along axial strain 

Figure 4.4 Response of stresses and change of W2n along the undrained triaxial test simulation 

4.3 Stabilities analysis of slope model  

4.3.1 Slope model established  

In this Section, we present a finite element analysis of slope stability problem. The numerical 

slope is designed in the framework of an actual engineering problem, and the slope parameters are 

adopted from Liao’s (LIA 08) previous work about the saturated and unsaturated seepage effect on the 
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slope stability. Hence the related slope Abaqus model is focused on a real engineering problem. The 

geometric shape, loading and boundary conditions of slope are illustrated in following Figure 4.5 and 

4.6. 

As we can see, it is also necessary to analyze this slope even though the height and length of 

slope is not quite huge. In order to analyze rigorously the slope stability, an expanding slope model 

which contains our typical real slope is established. The geometric size is illustrated in detailed.  

 

 

Figure 4.5 Geometric size of slope model 

Based on the real situation, some boundaries conditions should be limited on our numerical slope 

model. For the reason of reality, the left and right side of slope should be loaded with horizontal 

limitation which restrict the horizontal deformation but free the vertical deformation, while a vertical 

limitation is loaded at the bottom of slope for the vertical restriction. All these boundaries conditions 

are necessary for simulating the actual situation. 
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Figure 4.6 Boundary and loading conditions of slope 

According to the real case (LIA 08), the mechanical parameters of slope soil are shown in the 

following Table 4.1. In this table, the general mechanical parameters up and down the infiltration line 

including the densities are presented, as well as the permeability of soil and void ratios. Besides, some 

other parameters, such as the reference pressures and precision limitation values are determined based 

on the experimental data. Note that the values of Bp and Bc, which represent respectively the values of 

equivalent plastic strain for which half of the hardening / softening on friction angle and cohesion is 

achieved, is adopted as 0.003 and 0.01 based on the experimental data. Moreover, some different 

values of pressure exponent are also tried to explore different possibilities.  

 

Table 4.1 Actual mechanics parameters of slope model (LIA 08) 

Soil parameters Symbol Up level / Down level 

Young’s modulus E 17 / 10MPa 

Poisson’s ratio ν 0.3 / 0.35 

Inherent cohesion C0 5 kPa 

Failure cohesion Cf 19 / 21.5 kPa 

Inherent friction angle φ0 5° 

Failure friction angle φf 25.3° / 31° 

Limit dilatancy angle ψf 10° / 11° 

   

q

G

F
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Reference pressure Pa 100 kPa 

Precision limit Prec 0.001 

   

Permeability k0 1.e-20 / 1.e-8 m﹒d-1 

Void ratio e 0.35 / 0.3 

Density ρ 2337 / 2347 kg/m3 

 

4.3.2 Dry conditions  

In the cases of axisymmetric model simulation, the drained condition as well as the undrained 

condition was tested (see Section 3.5). The results of drained condition with different values of 

pressure exponents are not obvious as the results under undrained conditions. This interesting 

phenomenon leads to a meaningful conjecture: can this effect of pressure exponent reproduce on the 

slope model? For this purpose, a slope model under drained condition was simulated in this Section. 

In Table 4.2, the basic parameters for drained condition which means no restriction on the water 

flow and the volumetric changes are listed. It is also worth mentioning that the coupling between fluid 

and granular skeleton was not taking into account in this condition. The calculation here is in purely 

mechanical region. In this case, it is also related closely with the axisymmetric model mentioned in 

Chapter 3. 

Table 4.2 Mechanical parameters for slope model under drained condition 

Soil parameters Symbol value 

Young’s modulus E 20MPa 

Poisson’s ratio ν 0.25 

Inherent cohesion C0 5 kPa 

Failure cohesion Cf 10 kPa 

Inherent friction angle φ0 5° 

Failure friction angle φf 40° 

Limit dilatancy angle ψf 10° 

Density ρ 1800 kg/m3 
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Since the model geometric size, parameters and those boundary conditions are illustrated before, 

the slope model should be meshed into various small computing elements. Theoretically, the more 

quantity elements it is meshed, the more accurate the result of simulating is. But instead, the more 

time the computing process needs. After several tentative of computation, a better method of mesh is 

decided as following Figure 4.7. 

 

Figure 4.7 Mesh graph of slope model 

Note that the smaller size of mesh elements along the slope and near the top and toe of slope are 

made for more accurate computing results, for the reason that these areas are thought as unstable 

zones under loadings according to actual cases. 

In this model, the parameters are adopted in the Table 4.2, and the geometric size, boundary 

condition and the meshing elements are shown before. Note that these parameters are related with the 

test within axisymmetric model which is just involved with the deformation and pressure variation. It 

is not closely corresponding to real slope situation which contains the complex drainage condition. 

Only the drained condition which is set and represented by releasing the restrictions of void ratio and 

saturation ratio is taken into account. 

In this model, after setting up parameters, two general steps were added below the initial fixed 

computing step. The natural gravity should be set up in the first step for reality, and then the line 

pressure should be added at the top edge of slope in the second step for testing the stability of 

landslides. Moreover, an optional step could be added after these two necessary steps in case of 

insufficient pressure. For example, the loaded pressure could be enhanced when the original value is 

Node 1 Node 2 
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not enough to cause some response, seen Figure 4.8. In this case, the loaded pressure is increased 

gently from the value of 100 kPa (step 2) to 1000 kPa (step 3). Before that, the boundary conditions 

(vertical and horizontal limitations) are also set up in the initial fixed computing step. The following 

procedure is the Mesh model which is introduced before, and considering the boundary condition and 

loading path, the slope simulation could be seen as computation of plane strain. 

 

(a) Case 1 without concentrated pressure at the top of slope 

 

(b) Case 2 with concentrated pressure at the top of slope 

Figure 4.8 Slope simulation cases for drained condition 

  

 

 

Initial step: 

STEP 

Step 1 (gravity): 

Step 2 (loading 1): 

Step 3 (loading 2): 

CONDITION 

Boundary condition (vertical + horizontal limitation) 

Boundary condition + gravity 

Boundary condition + gravity + line loading 1 

Boundary condition + gravity + line loading 2 

STEP 

Initial step: 

Step 1 (gravity): 

Step 2 (loading): 

Step 3 (loading): 

CONDITION 

Boundary condition (vertical + horizontal limitation) 

Boundary condition + gravity 

 

Boundary condition + gravity + line loading 1 + concentrated pressure 1 

 

Boundary condition + gravity + line loading 2 + concentrated pressure 2 
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4.3.2.1 Slope simulation with line load only 

For simulation case 1, a series of computation were made firstly with the zero value of pressure 

exponent (n1 = 0). Typically, the stress state and deformation at the final stage of simulation were 

taken into account detailedly. In addition, the value of normalized second-order work which involves 

to the local stability of slope was also illustrated in the curves. The following Figure 4.9 presents these 

simulation results. Note the value of deformation factor is 1. 

 

(a) S-Mises stress (unit: Pa) 

 

(b) Deformed mesh  
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(c) Normalized second-order work 

Figure 4.9 Simulation results at the final step for drained case 1 without concentrated pressure (n1 = 

0) 

 

 

In Figure 4.9c, a contour plot limit was set up for the convenience of demonstration of negative 

normalized second-order work value. By using this method, the positive value of w2n will be shown in 

grey color, while the zero and negative w2n will be colorfully marked instead. With this way, the 

colorful zone in the slope equips a negative value of w2n, which means the appearance of some 

instabilities. 

Moreover, the simulation results with different value of pressure exponents are shown as follows. 
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(a) S-Mises stress (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Normalized second-order work 

Figure 4.10 Simulation results at the final step for drained case 1 without concentrated pressure (n1 = 

0.1) 
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(a) S-Mises stress (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Normalized second-order work 

Figure 4.11 Simulation results at the final step for drained case 1 without concentrated pressure (n1 = 

0.2) 
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(a) S-Mises stress (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Normalized second-order work 

Figure 4.12 Simulation results at the final step for drained case 1 without concentrated pressure (n1 = 

0.3) 
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(a) S-Mises stress (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Normalized second-order work 

Figure 4.13 Simulation results at the final step for drained case 1 without concentrated pressure (n1 = 

0.4) 
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(a) Node 1 

 

(b) Node 2 

Figure 4.14 Evolution of normalized second-order work and mean pressure in drained case 1 

 

From the Figures 4.9 to 4.13, and Figure 4.14, it is not hard to find out the difference of 

normalized second-order work w2n and mean load for each node between various values of pressure 

exponent is not obvious under drained condition. Coincidentally, this comparison result is similar with 

the result of axisymmetric model simulation in the same drained condition in Section 3.5. 

Note that there are some numerical noises of w2n detected by the quantity at the left top surface. 
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This numerical problem is probably caused by the sensitivity of constitutive model with specific 

parameter and boundary condition. In fact, the horizontal displacement is limited at the left boundary. 

Therefore, some points near the surface can burden the traction force when the pressure loaded. This 

phenomenon can also happen no matter the existence of concentrated load or drainage condition. 

4.3.2.2 Slope simulation with concentrated load 

For more persuasive evidence, a concentrated pressure is loaded at the top of slope (node 2), i.e. 

case 2. In this case, a potential instability incident of slope might happen. Therefore, a similar 

simulation will be done and the results will be shown in the following figures. For the sake of 

simplicity, only three values of pressure exponent are adopted.  
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(a) S-Mises stress (unit: Pa) 

 

(b) Deformed mesh  

 

(c) Normalized second-order work 

Figure 4.15 Simulation results at the final step for drained case 2 with concentrated pressure (n1 = 0) 
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(a) S-Mises stress (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Normalized second-order work 

Figure 4.16 Simulation results at the final step for drained case 2 with concentrated pressure (n1 = 

0.2) 
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(a) S-Mises stress (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Normalized second-order work 

Figure 4.17 Simulation results at the final step for drained case 2 with concentrated pressure (n1 = 

0.4) 
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(a) Node 1 

 

(b) Node 2 

Figure 4.18 Evolution of normalized second-order work and mean load in drained case 2 

 From the simulation results of case 2, even though a high variable value of concentrated pressure 

was loaded at the top of slope and inducing a more obvious instability state, the slope did not show 

any sign of failure from both local and global point. In fact, the slope failure under drained condition 

is not our purpose here. 
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By combining case 1 and case 2, it is easy to find out that there is no obvious local and global 

failure at the final loading phase, even at the top of slope. Although a sudden change of quantity and 

sign of stress occurs at node 1 on the top surface when the pressures are loaded, the local node display 

a stable state gradually which does not affect the stable state of global slope. All these changes are 

also coincident with the evolution of normalized second-order work. 

The evolution of w2n or mean pressure for both case 1 and case 2 is quite similar for different 

values of pressure exponent n1. That means the effect of n1 on the local and global state variation is 

not obvious under the drained condition. This is also closely related with the situation in Section 3.5 

on the test of axisymmetric model. 

Meanwhile, the different value of pressure exponent relates to different degree of stress-induced 

anisotropy based on the conclusion of Chapter 3, and then we can also conclude that the 

stress-induced anisotropy arising as the natural consequence of our new hyperelastic model shows 

small influence on the slope stability under drained condition. 

4.3.3 Partly saturated condition  

Being different with the drained condition, the undrained condition is much closer with reality 

than the drained condition. This situation usually happens during the rain seasons or a short 

construction period. All these features cause that this kind of case is complicated and hard to simulate 

using numerical method. Therefore, the slope for undrained situation is different from the drained one 

despite that the general geometric sizes of slope are the same. A saturation line is added in the centre 

of slope, accompanied with a different method that the model is meshed. The following figures 

present the geometric sizes and new mesh conditions. Note that an analysis point, namely node 3, is 

placed near the slope and also above the saturation line. 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI133/these.pdf 
© [L. HU], [2020], INSA Lyon, tous droits réservés



Chapter 4 – Second-order work analyses 

 
 

115 

 

Figure 4.19 Geometric size of slope for undrained test 

 

Figure 4.20 Mesh graph of slope for undrained situation 

Specifically, the different settings for undrained test are concentrated on two points. The first one 

is about the saturation line and saturation degree. The setting of saturation line is based on the actual 

engineering, and the saturation degree below the line is adopted as 1 while the one above the line is 

0.5. The second point is about the permeability and the void ratio which are detailed and illustrated in 

the Table 4.1.  

In the following undrained test, a line pressure was loaded at the top of slope like the drained test 

did. Similarly, this pressure was divided and loaded step by step with a maximum value of 1000 kPa. 

Theoretically, the simulation won’t stop until the case of numerical divergence occurs, in which 

situation the maximum load imposed at the final step appears. The figures below (4.21-29) show these 

simulation results of undrained test with different values of pressure exponent. The sub figures (a) and 

48 m

1
5

 m

20 m

20 m

2
1

 m

4 m

3
 m

Node 3 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI133/these.pdf 
© [L. HU], [2020], INSA Lyon, tous droits réservés



Chapter 4 – Second-order work analyses 

 
 

116 

(b) present the shear stress and total deformation at the end of load process respectively. The 

important variable equivalent plastic strain which is a consequent product of shear stress and not very 

good for the stability is illustrated in the (c) sub figure, while the value of normalized second-order 

work w2n is shown in the (d) sub figure. 

 

(a) S-Mises (unit: Pa) 

 

(b) Deformed mesh  

 

(c) Equivalent plastic strain 
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(d) Normalized second-order work 

Figure 4.21 Simulation results at the final step under undrained condition (n1 = 0) 

 

 

(a) S-Mises (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Equivalent plastic strain 
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(d) Normalized second-order work 

Figure 4.22 Simulation results at the final step under undrained condition (n1 = 0.02) 

 

 

(a) S-Mises (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Equivalent plastic strain 
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(d) Normalized second-order work 

Figure 4.23 Simulation results at the final step under undrained condition (n1 = 0.04) 

 

 

(a) S-Mises (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Equivalent plastic strain 
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(d) Normalized second-order work 

Figure 4.24 Simulation results at the final step under undrained condition (n1 = 0.06) 

 

 

(a) S-Mises (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Equivalent plastic strain 
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(d) Normalized second-order work 

Figure 4.25 Simulation results at the final step under undrained condition (n1 = 0.08) 

 

 

(a) S-Mises (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Equivalent plastic strain 
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(d) Normalized second-order work 

Figure 4.26 Simulation results at the final step under undrained condition (n1 = 0.1) 

 

 

(a) S-Mises (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Equivalent plastic strain 
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(d) Normalized second-order work 

Figure 4.27 Simulation results at the final step under undrained condition (n1 = 0.2) 

 

 

(a) S-Mises (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Equivalent plastic strain 
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(d) Normalized second-order work  

Figure 4.28 Simulation results at the final step under undrained condition (n1 = 0.3) 

 

 

(a) S-Mises (unit: Pa) 

 

(b) Deformed mesh 

 

(c) Equivalent plastic strain 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI133/these.pdf 
© [L. HU], [2020], INSA Lyon, tous droits réservés



Chapter 4 – Second-order work analyses 

 
 

125 

 

(d) Normalized second-order work  

Figure 4.29 Simulation results at the final step under undrained condition (n1 = 0.4) 

 

From these figures 4.21-4.29 above, a significant difference between these simulations is obvious 

and clear, although only one set of parameters are adopted. In all cases, the simulation stops before the 

maximum value of load is imposed because of the numerical divergence, and apparently different 

values of pressure at the end process show up, as well as the maximum shear stress, seen Figure 4.30. 
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(b) Maximum shear stress 

Figure 4.30 Maximum stresses at the end of loading process for different n1 

From these sub figures (c) and (d), it is easily found that the influence zone which is the area near 

the slope top shows an obvious equivalent plastic strain and negative value of normalized 

second-order work in most cases. Meantime, this influence zone is also the area where the maximum 

shear stress locates. For higher quantity of n1, there is no negative value of w2n at the end of loading 

process, but a dramatically decreasing value of w2n can also present a sudden change of slope. For 

example, the evolution of normalized second-order work at node 3 in the case of n1 equaling to 0.1 is 

presented in the following Figure 4.31. Even though the final value of w2n does not reach at 

numerically zero at all, the divergence also happens because of the drastically decreasing. This 

conclusion is coincident with the modeling results of Nailed wall by Prunier et al (PRU 16). Besides, 

few numerical noises are also detected at the left top surface of slope like the drained condition does. 

These are caused by the same reason that traction forces occur because of the fixed horizontal 

limitation at the left boundary. 
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Figure 4.31 Evolution of normalized second-order work at node 3 in undrained condition 

 

In sum, for different values of pressure exponent, the failure states and the maximum shear 

stresses at the end of loading process are diverse, although only one set of parameters are adopted. 

This feature is highly consistent with the axisymmetric model simulation in the Section 3.4. As 

mentioned before, the non-zero value of pressure exponent is closely related with stress-induced 

anisotropy. Thus, different values of n1 refer to various level of stress-induced anisotropy. As a result, 

the anisotropy which is induced during the loading process can also cause a significant influence on 

the response of slope like the axisymmetric does. 

4.4 Second-order work results  

4.4.1 Stability modeling with W2n 

In the process of loading on the top of slope, a line normal pressure is imposed until the 

numerical divergence of computation in Abaqus happens, as it mentioned in last Section. This 

simulation can be useful to estimate the bearing capacity on the slope top in different conditions, but 

also verify the feature of integrated normalized second-order work. In those sub figures (a) in Section 

4.3.2, note that the intensity of stress is relatively high in the influence zone near the top of slope. 

Coincidentally, the equivalent plastic strain in this area in sub figures (c) is also obvious comparing to 

other zones, which is similar but not identical to the unstable zones described by the value of local 
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normalized second-order work w2n illustrated in sub figures (d). It is also worth noting that the total 

unstable zone is litter vaster than the zone of equivalent plastic strain. As a consequence, it can be told 

the shear mechanism which is initiated is not the only destabilizing mechanism. 

Since it is well explained that the failure mechanism is qualitatively well correlated with the one 

described by the equivalent of w2n, however, the weak zones depicted by normalized second-order 

work and equivalent plastic strain are not strictly identical. This is due to the complex behavior of 

soils. As a consequence, it is preferable to analyze results with the second-order work quantity. In fact 

the theoretical background highlighted in the Section 4.1 and numerical verification illustrated in the 

Section 4.2 prove this kind of physically well-founded meanings of second-order work criterion.  

In this work, the post-failure states won’t be discussed which remains as an open scientific 

question. But it can be reasonably assumed that when the unstable points fully merge, an effective 

failure would take place. 

The following figures are the results when the pressure exponent n1 equals to zero. The value of 

W2n at each step is obtained directly from the numerical simulation. 

 

Figure 4.32 Evolution of integrated second-order work in undrained case with n1 = 0 

 

 For the convenience of observation, another combined figure of W2n and the pressure imposed at 

the top surface is presented as follow Figure 4.33. From this figure, it is clearly illustrated the 

evolution of W2n and the corresponding pressure imposed on the top surface. The value of maximum 

pressure loaded is obvious and related with the one which has been shown in the Figure 4.30 (a). 
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Meantime, the variation of W2n during the process of load, especially at the final loading stage, is 

concision and distinct. Although the W2n decreases monotonically during the whole loading process 

except few bounds in these figures, its final value does not reach at the numerical zero. However, 

being similar with the normalized second-order work w2n, a dramatically decreasing of W2n at the final 

stage of loading appears, and at this moment computation divergence happens. Also, after combining 

Figures 4.21, 4.32 and 4.33, the slope failure occurs at this point. 

 

Figure 4.33 Evolution of W2n with respect to the pressure imposed with n1 = 0 

 

 In this case (n1 = 0), the numerical model we established and used will transform from the 

non-linear hyperelastic-plastic model into a linear elastic incremental elastoplastic one. And this one 

corresponds to the numerical and experimental work by Prunier et al (PRU, 16). 

In sum, it can be concluded that during the process of loading, W2n tends to decrease gradually. 

Nevertheless, the less obvious increase of stability described by W2n at the beginning of the loading 

phase may seem illogical. This fact can probably be explained by the adaptability of the soil due to its 

hardening rules during the first steps of loading. Then after this first stability gain, as the loading 

increase, W2n decreases more or less monotonically, which seems to make sense. When the value of 

W2n becomes negative, an effective failure occurs. Another occasion, for example the undrained case 

in this Section, a failure can be also indicated when the divergence happens while W2n is not 

numerically zero but decreasing drastically. In this moment, a local or global failure pattern appears. 
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600 700

W
2

n

σy (kPa)

n1 = 0

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI133/these.pdf 
© [L. HU], [2020], INSA Lyon, tous droits réservés



Chapter 4 – Second-order work analyses 

 
 

130 

with our new model is reasonable and feasible theoretically and experimentally. 

4.4.2 Influence of pressure exponent on W2n 

As it is described before, the variable pressure exponent n1 in our new constitutive model equips 

the influence on the response of stress and strain of soil. While the variable pressure exponent 

corresponds to the fabric tensor of stiffness matrix in our elastoplastic model. Consequently, a 

stress-induced anisotropy in the stiffness matrix as well as the response appears naturally when the 

stress is imposed under the condition of non-zero value of pressure exponent. These features have 

been proved and introduced in the Chapter 3. 

Under this situation, an assumption that the pressure exponent can also affect the influence of 

global normalized second-order work W2n on the stability detecting of slope is proposed. After 

comparing the relevant results on the axisymmetric and slope model, and under two different drainage 

conditions, the undrained test on the slope is adopted for the convenience of observation. 

 

 

 

Figure 4.34 Evolution of W2n in undrained slope simulation 
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Figure 4.35 Evolution W2n with respect to the pressure imposed 

 

From Figure 4.34 and 4.35, it is clear that before the sudden change of W2n, the effect of different 

pressure exponents on the evolution of W2n is not obvious, which means the slope stability degrees 

before failure with different values of n1 are quite similar. In our case, the pressure exponents 

referring to the induced anisotropy cause less effect on the total slope stability. Note that, the global 

normalized second-order work W2n is calculated based on new model, and it is also suitable for the 

non-homogeneous problems. This feature maybe due to the reason of complex soil mechanics that can 

causes less difference of global integrated second-order work on all of nodes until a local or global 

failure happens. 

Another important result is that the final pressure imposed at the top surface of slope gets smaller 

when the value of n1 increases to a certain extent. That means the slope failure happens in an earlier 

time with lower loaded pressure at the top surface when the degree of stress-induced anisotropy 

becomes higher. In other words, the stress-induced anisotropy on stiffness matrix based on Houlsby 

hyperelastic formulation causes significant difference of response of stress and strain of slope under 

undrained condition combined with a yet simple plasticity model. This difference may only be 

reflected in one local place, or possibly in the whole slope. Within this range of pressure exponent, the 

anisotropic stiffness matrix in new constitutive model seems to weak the stability of slope. 
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4.5 Conclusion 

In this framework, the feature of second-order work, especially the global integrated 

second-order work are introduced and discussed detailedly. Then for the purpose of numerical 

application, its formulation is re-written by FORTRAN language as a user-defined subroutine 

command within the Umat format of new constitutive model to cooperate with Abaqus tool. Hereafter, 

the ability of second-order work was testified and verified firstly in the simulation of axisymmetric 

model, then moving to the computation of slope stability with different loading, boundary, and 

drainage conditions. At last, the effect of variable pressure exponent in new model on the integrated 

second-order work’s feature was also discussed precisely to some extent. 

In the Section 4.1, the local second-order work w2 is shown and can be integrated numerically 

over a given volume using the finite element method. This integration leads to the original expression 

of Hill’s stability criterion. Then a formulation to normalize this globally integrated second-order 

work is proposed. This normalization makes the global second-order work W2 independent from the 

current incremental loading intensity. Thus, the evolution of global normalized second-order work W2n 

with a loading program is better interpretable. This work can be used for homogeneous or 

non-homogeneous problems. Moreover, the feature that the normalized quantity decreases 

monotonically with the loss of stability theoretically makes it as a global safety factor with the limit 

value of stability of 0 instead of 1. It is then more general and more physical than the numerical 

divergence of the computation. 

In later Section, the function of W2n as a detecting tool of stability was firstly used in an 

axisymmetric model under the undrained condition. A “loose” sample under this classical undrained 

triaxial test was investigated. It is found that the integrated normalized second-order work W2n within 

our new model can well describe the sample stability. When the numerical quantity of W2n decreases 

to zero, the failure happens. 

Then, a real engineering case of slope stability detecting was presented. In this simulation, an 

analysis of stability of slope under drained condition was studied firstly. Although there was a 

concentrated pressure apart from the line pressure imposed near the top of slope, the difference on the 

response of stress and strain, or the local normalized second-order work in the unstable zones for 

different value of pressure exponents, is not obvious. This is coincidentally corresponding to the 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI133/these.pdf 
© [L. HU], [2020], INSA Lyon, tous droits réservés



Chapter 4 – Second-order work analyses 

 
 

133 

simulation on axisymmetric drained model. Then the results under the undrained (isochoric) condition 

show a big diversity. It is found that obvious difference of w2n in the influence zones is detected for 

different pressure exponents. Even though the value of w2n does not decrease to the numerical zero, a 

dramatic decreasing can also cause the divergence of computation. At this moment, a local or global 

failure with a burst of kinetic energy occurs. 

In the last Section, the effect of pressure exponent on the feature of W2n was investigated. It is 

found that before the occurrence of failure, the influence on the global normalized second-order work 

is small, but becomes obvious at the final loading stage. To some extent, the maximum sustainable 

pressure imposed on the top surface of slope at the failure stage drops during the increasing of 

pressure exponent. 
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Chapter 5 – General conclusion and perspectives 

5.1 General conclusion 

 In this work, our new constitutive model that gathers the main basic features of soil behavior was 

developed. This model allows a given soil to be described with only one set of parameters, for 

example from a loose to a dense state or from a normally consolidated to an over-consolidated state. 

This feature is useful for taking into account initial states or for observing a change in the main 

behavior due to a large change in the confining loading conditions. The major conclusion are drawn 

below in details. 

 In Chapter 2, our new model was established in the framework of original Plasol model 

introduced by Barnichon. By replacing the elastic part of Plasol model with a hyperelastic model 

proposed by Houlsby, the new model equips the features as follows: (1) accurate representation for the 

frictional behavior of granular materials; (2) obedience of the First Law of Thermodynamics or 

guarantee thermodynamic acceptability about the elastic part of constitutive model; (3) proper 

integration algorithm to correct the overflow problems of plastic strain in the plastic part of 

constitutive model; and (4) emphasis of the influence of anisotropy of elastic behavior even though 

the initial elastic matrix is isotropic. 

 In Chapter 3, the new model and original Plasol model are re-written into numerical language, 

i.e., Fortran, which is usable when implementing with Abaqus simulation. After building the similar 

model with experimental tests, simulations under undrained and drained conditions were conducted 

and compared with experimental results. The results show that the new model can well simulate the 

actual problems by using a single set of optimal parameters, although there are some deviatoric values 

during predicting the variation of volume strain in higher confining pressure conditions. Moreover, the 

value of tangent modulus in numerical simulation is quite close to the experimental data in the small 

axial strain procedure, whilst these two forms of data might not coincide well in the large strain stages 

although the tendencies are similar. The more important point is that when the internal variable 

pressure exponent ‘n1’ equals to a non-zero value, the incremental stiffness matrix becomes 

anisotropic due to the progress of shear strain which corresponds to the natural phenomenon in 

geo-engineering. Also, it has been verified that different anisotropies in elasticity domain owing to 
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various values of ‘n1’ make a big difference on the response in terms of stresses and strains, even 

altering the tendency of hardening for undrained triaxial simulations. Besides, it seems that the density 

of soil affects the influence of stress-induced anisotropy on response of soil to a certain extent. 

However, for drained triaxial conditions, this kind of effect is quite tiny no matter what the density or 

initial confining pressure condition is. Finally, the comparison between new model and modified 

SANISAND model, our new model equips the features of less total number and more accessible of 

parameters although the fitting degree in plastic domain is not as well as modified SANISAND 

model. 

 In Chapter 4, the application of new model with second-order work criterion was used in the 

simulation of slope safety. Firstly, the formulas of local normalized second-order work w2n and the 

global normalized second-order work W2n were proposed and tested in an axisymmetric model under 

undrained condition. It is found that the integrated normalized second-order work W2n within our new 

model can well describe the sample stability. When the numerical quantity of W2n decreases to zero, 

the failure happens. Secondly, a real engineering case of slope stability detecting was presented. In the 

drained case, the difference of stress-strain response, or the change of local normalized second-order 

work in unstable zone is not obvious. But in undrained case, it is found that obvious difference of w2n 

in the influence zones is detected for different pressure exponents. Even though the value of w2n does 

not decrease to the numerical zero, a dramatic decreasing can also cause the divergence of 

computation. At this moment, a local or global failure with a burst of kinetic energy occurs. Last, the 

investigation results about the effect of pressure exponent on the feature of W2n shows that before the 

happening of failure, the effect of ‘n1’ on W2n is quite low. But it becomes obvious at the final loading 

stage. To some extent, the maximum sustainable pressure imposed on the top surface of slope at the 

failure stage drops during the increasing of pressure exponent. 

5.2 Perspectives 

Although lots of work about the new constitutive model for granular materials has been done, 

few future works could be considered in these aspects:  

(1) Change of new model for cyclic test. The tests of cyclic loading have been tested and verified 

for new model, however it does not work well because the plastic part of model which has the implicit 
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backward Euler integration algorithm is not suitable for cyclic loading test. 

 (2) Taking the anisotropic dilatancy into account. In this work, the fitting degree of new model on 

Toyoura sands at the plastic shearing stage is not good enough as the modified SANISAND model 

does. The most important reason is that the modified SANISAND model considers the anisotropic 

dilatancy as well as the anisotropic elasticity. Therefore, a modification taking the anisotropic 

dilatancy into account in new model can improve reasonably the simulation effect at the plastic 

shearing stage. 

(3) Application of new model on various materials and drainage and boundary conditions. In this 

work, the application of new model was implemented on the axisymmetric model and full size slope. 

Strain-controlled method was mianly adopted and tested here. For more information, the 

stress-controlled simulation could be done for comparison as well. Moreover, the more complex 

drainage condition, for example, the continuous rain in the slope safety situation could be also 

explored as well. 
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Appendix A — 

Original Plasol model  

IMPLICIT INTEGER(I-N) 

IMPLICIT REAL*8(A-H, O-Z) 

CHARACTER*80 CMNAME 

DIMENSION STRESS(NTENS), STATEV(NSTATV), & 

DDSDDE(NTENS, NTENS), DDSDDT(NTENS), 

DRPLDE(NTENS), & 

STRAN(NTENS), DSTRAN(NTENS), TIME(2), PREDEF(1), 

DPRED(1), & 

PROPS(NPROPS), COORDS(3), DROT(3, 3), DFGRD0(3, 3), 

DFGRD1(3, 3), & 

JSTEP(4)     

!=============================================

========================== 

!     Jacobian Matrix 

!=============================================

========================== 

AE=PROPS(1)    ! Young's modulus 

ANU=PROPS(2)    ! Poisson's ratio 

   ! PROPS(10): E, Nu, Bp, Bc, C0, Cf, PhiC0, PhiCf, Psi, 

Pa. 

ALAMBDA=AE*ANU/((1.D0+ANU)*(1.D0-2.D0*ANU))  ! 

Lamé's first parameter 

AMU=AE/(2.D0*(1.D0+ANU))   ! Lamé's second 

parameter 

DO J=1,NTENS 

  DO I=1,NTENS 

    DDSDDE(I,J)=0.D0 

  ENDDO 

ENDDO 

SELECT CASE (NTENS) 

 CASE(6)     ! For 3D problems 

          DDSDDE(1,1)=ALAMBDA+2.D0*AMU 

          DDSDDE(2,2)=ALAMBDA+2.D0*AMU 

          DDSDDE(3,3)=ALAMBDA+2.D0*AMU 

          DDSDDE(4,4)=AMU 

          DDSDDE(5,5)=AMU 

          DDSDDE(6,6)=AMU 

          DDSDDE(1,2)=ALAMBDA 

          DDSDDE(1,3)=ALAMBDA 

          DDSDDE(2,3)=ALAMBDA 

          DDSDDE(2,1)=ALAMBDA 

          DDSDDE(3,1)=ALAMBDA 

          DDSDDE(3,2)=ALAMBDA 

CASE(4)    ! For 2D problems 

    DDSDDE(1,1)=ALAMBDA+2.D0*AMU 

          DDSDDE(2,2)=ALAMBDA+2.D0*AMU 

          DDSDDE(3,3)=ALAMBDA+2.D0*AMU 

          DDSDDE(4,4)=AMU 

          DDSDDE(1,2)=ALAMBDA 

          DDSDDE(2,1)=ALAMBDA 

END SELECT 

 

CALL   Original_Plasol (DDSDDE, STRESS, STRAN, 

DSTRAN, NTENS, PROPS(1:10), STATEV(1), STATEV(2), 
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STATEV(3), STATEV(4)) 

       

RETURN 

END SUBROUTINE UMAT 

 

subroutine Original_Plasol (Deijkl, SigB1, EpsiB1, DeltaEpsi1, 

ntens, props(1:10), Epsip, kB(1), kB(2), kB(3)) 

 !!! 'Epsip' is the only one 'state variable' , i.e. 'STATEV' in 

ABAQUS materials property 'depvar'. 

 implicit none 

 integer :: i, j, n, iter 

 double precision :: Epsip, Epsiv, Epsis, p, q, Val, DeltaLamda, 

& 

                     Isig, IIsig, f, pi 

 double precision, dimension(10) :: props 

 !!! 'props' is related to 'PROPS', it contains: E, Nu, Bp, Bc, C0, 

Cf, PhiC0, PhiCf, Psi, Pa 

 double precision, dimension(6,6) :: Deijkl 

 double precision, dimension(6) :: DeltaSigB 

 double precision, dimension(ntens) :: SigB, EpsiB, 

DeltaEpsi,SigB1, EpsiB1, DeltaEpsi1 

 double precision, dimension(3) :: kB 

pi = acos(-1.d0) 

SigB = SigB1 

 SigB(4) = dsqrt(2.d0)*SigB1(6) 

 SigB(5) = dsqrt(2.d0)*SigB1(5) 

 SigB(6) = dsqrt(2.d0)*SigB1(4) 

 ! 

 EpsiB = EpsiB1 

 EpsiB(4) = dsqrt(2.d0)/2.d0*EpsiB1(6) 

 EpsiB(5) = dsqrt(2.d0)/2.d0*EpsiB1(5) 

 EpsiB(6) = dsqrt(2.d0)/2.d0*EpsiB1(4) 

 ! 

 DeltaEpsi = DeltaEpsi1 

 DeltaEpsi(4) = dsqrt(2.d0)/2.d0*DeltaEpsi1(6) 

 DeltaEpsi(5) = dsqrt(2.d0)/2.d0*DeltaEpsi1(5) 

 DeltaEpsi(6) = dsqrt(2.d0)/2.d0*DeltaEpsi1(4) 

! calculate the Stress 

 EpsiB = EpsiB + DeltaEpsi 

 SigB = SigB + Deijkl*DeltaEpsi 

! start the corrector procedure 

 n = 0 

 do 

   n = n+1 

   call DP_in_Original_Plasol(Deijkl, props(5), props(6), 

props(4), props(8), props(7), props(3), SigB, kB, Epsip, Val, Isig, 

IIsig, f, DeltaLamda, DeltaSigB) 

    if (f>0.d0) then 

      Epsip = Epsip+Val*DeltaLamda 

      kB(1) = 

props(5)+(props(6)-props(5))*Epsip/(props(4)+Epsip) 

      kB(2) = 

props(7)+(props(8)-props(7))*Epsip/(props(3)+Epsip) 

      kB(3) = kB(2)-(props(8)-props(9)) 

! 

      SigB = SigB-DeltaSigB 

    else 

      DeltaSigB = (/0.d0, 0.d0, 0.d0, 0.d0, 0.d0, 0.d0/) 

    endif 

   if(maxval(abs(DeltaSigB))<1.d-3 .or. n>5.d1) exit 
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 enddo  

! 

 SigB1 = SigB 

 SigB1(4) = 1.d0/dsqrt(2.d0)*SigB(6) 

 SigB1(5) = 1.d0/dsqrt(2.d0)*SigB(5) 

 SigB1(6) = 1.d0/dsqrt(2.d0)*SigB(4) 

end subroutine Original_Plasol 

 

subroutine DP_in_Original_Plasol(Deijkl, props(5), props(6), 

props(4), props(8), props(7), props(3), SigB, kB, Epsip, Val, Isig, 

IIsig, f, DeltaLamda, DeltaSigB) 

 implicit none 

 double precision, dimension(10), intent(in) :: props 

 double precision, intent(out) :: Val, Isig, IIsig, f, DeltaLamda 

 double precision, dimension(6), intent(out) :: DeltaSigB 

 double precision, intent(in) :: Epsip 

 double precision, dimension(6), intent(in) :: SigB 

 double precision, dimension(6,6), intent(in) :: Deijkl 

 double precision, dimension(3), intent(in) :: kB 

 double precision, dimension(6) :: devsig, dfdSig, dgdSig, A2 

 double precision :: pi, m, mg, k, dfdPhiC, dfdC, dPhiCdEpsip, 

dCdEpsip, A1 

 pi = acos(-1.d0) 

! 

 Isig = sum(SigB(1:3)) 

 devsig = SigB-Isig/3.d0*(/1.d0, 1.d0, 1.d0, 0.d0, 0.d0, 0.d0/) 

 IIsig = dsqrt(5.d-1*dot_product(devsig, devsig)) 

 ! 

 m = 

2.d0*sin(kB(2)*pi/1.8d2)/(dsqrt(3.d0)*(3.d0-sin(kB(2)*pi/1.8d2)

)) 

 k = 

6.d0*kB(1)*cos(kB(2)*pi/1.8d2)/(dsqrt(3.d0)*(3.d0-sin(kB(2)*p

i/1.8d2))) 

 f = IIsig+m*Isig-k 

 ! 

 mg = 

2.d0*sin(kB(3)*pi/1.8d2)/(dsqrt(3.d0)*(3.d0-sin(kB(3)*pi/1.8d2)

)) 

 dfdSig = m*(/1.d0, 1.d0, 1.d0, 0.d0, 0.d0, 

0.d0/)+devsig/(2.d0*IIsig) 

 dgdSig = mg*(/1.d0, 1.d0, 1.d0, 0.d0, 0.d0, 

0.d0/)+devsig/(2.d0*IIsig) 

 ! 

 dfdPhiC = 

2.d0*Isig/dsqrt(3.d0)*(cos(kB(2)*pi/1.8d2)/(3.d0-sin(kB(2)*pi/1.

8d2))+& 

           

cos(kB(2)*pi/1.8d2)*sin(kB(2)*pi/1.8d2)/(3.d0-sin(kB(2)*pi/1.8

d2))**2.d0)-& 

           

6.d0*kB(1)/dsqrt(3.d0)*(sin(kB(2)*pi/1.8d2)/(3.d0-sin(kB(2)*pi/

1.8d2))+& 

           

(cos(kB(2)*pi/1.8d2))**2.d0/(3.d0-sin(kB(2)*pi/1.8d2))**2.d0) 

 dfdC = -3.d0*m/tan(kB(2)*pi/1.8d2) 

 dPhiCdEpsip = 

pi/1.8d2*(props(8)-props(7))/(props(3)+Epsip)-pi/1.8d2*Epsip*

& 

 (props(8)-props(7))/(props(3)+Epsip)**2.d0 
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 dCdEpsip = 

(props(6)-props(5))/(props(4)+Epsip)-Epsip*(props(6)-props(5))/

& 

               (props(4)+Epsip)**2.d0 

 ! 

 Val = dsqrt(3.d0)/3.d0 

 ! 

 A2 = matmul(Deijkl,dgdSig) 

 A1 = dot_product(dfdSig,A2) 

 DeltaLamda = 

f/(A1-Val*(dfdPhiC*dPhiCdEpsip+dfdC*dCdEpsip)) 

 DeltaSigB = DeltaLamda*A2 

end subroutine DP_in_Original_Plasol 
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Appendix B — New model  

!=============================================

========================== 

! UMAT for Houlsby_Plasol    

!=============================================

==========================           

   SUBROUTINE 

UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,& 

      RPL,DDSDDT,DRPLDE,DRPLDT,& 

      

STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPR

ED,CMNAME,& 

      

NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DRO

T,PNEWDT,& 

      

CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,

KINC) 

! 

!      INCLUDE 'ABA_PARAM.INC'      

!       

      IMPLICIT INTEGER(I-N) 

      IMPLICIT REAL*8(A-H,O-Z) 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV),& 

      

DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTE

NS),& 

      

STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DP

RED(1),& 

      

PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFG

RD1(3,3),& 

      JSTEP(4)  

      DIMENSION Smn(6), DDSDDE1(6,6), STRESS1(6) 

!=============================================

========================== 

!     Jacobian Matrix 

!=============================================

========================== 

! PROPS(12): E, Nu, n1, Bp, Bc, C0, Cf, PhiC0, PhiCf, Psi, Pa, 

Prec      

 AE = PROPS(1) 

 ANu = PROPS(2) 

 An1 = PROPS(3) 

 APa = PROPS(11) 

! 

 Ak1 = AE/3.d0/APa/(1.d0-2.d0*ANu) 

 Ag = AE/2.d0/APa/(1.d0+ANu) 

! 

SELECT CASE (NTENS) 

CASE (6) 

   S11 = STRESS(1) 

   S22 = STRESS(2) 

   S33 = STRESS(3) 

   S12 = STRESS(4) 

   S23 = STRESS(5) 

   S31 = STRESS(6) 

CASE (4) 

   S11 = STRESS(1) 

   S22 = STRESS(2) 

   S33 = STRESS(3) 

   S12 = 0.D0 

   S23 = 0.D0 

   S31 = STRESS(4) 

END SELECT 

! 

SELECT CASE (NTENS) 

 CASE (6) 

   STRESS1 = STRESS 

 CASE (4) 

   STRESS1(1) = STRESS(1) 

   STRESS1(2) = STRESS(2) 

   STRESS1(3) = STRESS(3) 

   STRESS1(4) = 0.D0 

   STRESS1(5) = 0.D0 

   STRESS1(6) = 0.D0 

END SELECT 

! 

Smn = STRESS1 - (S11+S22+S33)/3.d0*(/1.d0, 1.d0, 1.d0, 0.d0, 

0.d0, 0.d0/) 

P0Square = (S11+S22+S33)**2.d0/9.d0 + 

Ak1*(1.d0-An1)/2.d0/Ag*dot_product(Smn, Smn) 

! 

DO J = 1, 6 

   DO I = 1, 6 
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      DDSDDE1(I,J) = 0.D0 

   ENDDO 

ENDDO 

! 

DDSDDE1(1,1) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S11*S1

1/P0Square+Ak1* 

(1.d0-An1)+2.d0*Ag*2.d0/3.d0) 

DDSDDE1(2,2) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S22*S2

2/P0Square+Ak1* 

(1.d0-An1)+2.d0*Ag*2.d0/3.d0) 

DDSDDE1(3,3) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S33*S3

3/P0Square+Ak1* 

(1.d0-An1)+2.d0*Ag*2.d0/3.d0) 

DDSDDE1(1,2) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S11*S2

2/P0Square+Ak1* 

(1.d0-An1)-2.d0*Ag/3.d0) 

DDSDDE1(2,1) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S22*S1

1/P0Square+Ak1* 

(1.d0-An1)-2.d0*Ag/3.d0) 

DDSDDE1(1,3) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S11*S3

3/P0Square+Ak1* 

(1.d0-An1)-2.d0*Ag/3.d0) 

DDSDDE1(3,1) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S33*S1

1/P0Square+Ak1* 

(1.d0-An1)-2.d0*Ag/3.d0) 

DDSDDE1(2,3) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S22*S3

3/P0Square+Ak1* 

(1.d0-An1)-2.d0*Ag/3.d0) 

DDSDDE1(3,2) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S33*S2

2/P0Square+Ak1* 

(1.d0-An1)-2.d0*Ag/3.d0) 

! 

DDSDDE1(1,4) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S11*S1

2/P0Square) 

DDSDDE1(4,1) = DDSDDE1(1,4) 

DDSDDE1(1,5) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S11*S2

3/P0Square) 

DDSDDE1(5,1) = DDSDDE1(1,5) 

DDSDDE1(1,6) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S11*S3

1/P0Square) 

DDSDDE1(6,1) = DDSDDE1(1,6) 

DDSDDE1(2,4) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S22*S1

2/P0Square) 

DDSDDE1(4,2) = DDSDDE1(2,4) 

DDSDDE1(2,5) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S22*S2

3/P0Square) 

DDSDDE1(5,2) = DDSDDE1(2,5) 

DDSDDE1(2,6) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S22*S3

1/P0Square) 

DDSDDE1(6,2) = DDSDDE1(2,6) 

DDSDDE1(3,4) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S33*S1

2/P0Square) 

DDSDDE1(4,3) = DDSDDE1(3,4) 

DDSDDE1(3,5) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S33*S2

3/P0Square) 

DDSDDE1(5,3) = DDSDDE1(3,5) 

DDSDDE1(3,6) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S33*S3

1/P0Square) 

DDSDDE1(6,3) = DDSDDE1(3,6) 

! 

DDSDDE1(4,4) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S12*S1

2/P0Square 

+2.d0*Ag) 

DDSDDE1(5,5) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S23*S2

3/P0Square 

+2.d0*Ag) 

DDSDDE1(6,6) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S31*S3

1/P0Square 

+2.d0*Ag) 
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DDSDDE1(4,5) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S12*S2

3/P0Square) 

DDSDDE1(5,4) = DDSDDE1(4,5) 

DDSDDE1(4,6) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S12*S3

1/P0Square) 

DDSDDE1(6,4) = DDSDDE1(4,6) 

DDSDDE1(5,6) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S23*S3

1/P0Square) 

DDSDDE1(6,5) = DDSDDE1(5,6) 

! 

SELECT CASE (NTENS) 

CASE (6) 

   DDSDDE = DDSDDE1 

   ! 

 CASE (4) 

DO J = 1, NTENS 

     DO I = 1, NTENS 

       DDSDDE(I,J) = 0.D0 

     ENDDO 

  ENDDO 

DDSDDE(1,1) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S11*S1

1/P0Square+Ak1* 

(1.d0-An1)+2.d0*Ag*2.d0/3.d0) 

DDSDDE(2,2) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S22*S2

2/P0Square+Ak1* 

(1.d0-An1)+2.d0*Ag*2.d0/3.d0) 

DDSDDE(3,3) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S33*S3

3/P0Square+Ak1* 

(1.d0-An1)+2.d0*Ag*2.d0/3.d0) 

DDSDDE(4,4) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S12*S1

2/P0Square 

+2.d0*Ag) 

DDSDDE(1,2) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S11*S2

2/P0Square+Ak1* 

(1.d0-An1)-2.d0*Ag/3.d0) 

DDSDDE(2,1) = 

APa*(P0Square/(APa**2.d0))**(An1/2.d0)*(An1*Ak1*S22*S1

1/P0Square+Ak1* 

(1.d0-An1)-2.d0*Ag/3.d0) 

END SELECT 

!=============================================

========================== 

!     Stress calculation 

!=============================================

========================== 

CALL Houlsby_Plasol 

(DDSDDE1,STRESS,STRAN,DSTRAN,N

TENS,JSTEP,TIME,PROPS(1:12), Ak1, Ag, 

STATEV(1),STATEV(2:7),STATEV(8), 

STATEV(9), STATEV(10:12)) 

    

RETURN 

END 

! 

subroutine Houlsby_Plasol (Deijkl, SigB1, EpsiB1, DeltaEpsi1, 

ntens, jstep, time, props, k1, g,                               

                     Epsip, DeltaSig, p1, q1, kB) 

!  'STATEV' in ABAQUS materials property 'depvar'. 

implicit none 

integer :: n, ntens, i 

real*8 :: Epsip, Epsiv, Epsis, p, q, p1, q1, Val, DeltaLamda, Isig, 

IIsig, f, pi 

real*8, dimension(12) :: props 

! 'props' is related to 'PROPS', it contains: E, Nu, n1, Bp, Bc, C0, 

Cf, PhiC0, PhiCf, Psi, Pa, Prec 

real*8, dimension(6,6) :: Deijkl, Mo 

real*8, dimension(6) :: DeltaSigB, DeltaSig, SigB, EpsiB, 

DeltaEpsi, e0 

real*8, dimension(ntens) :: SigB1, EpsiB1, DeltaEpsi1 

real*8, dimension(3) :: kB 

INTEGER, dimension(4) :: jstep 

real*8, dimension(2) :: time 

real*8 :: C0, Cf, Bc, PhiCf, PhiC0, Bp, k1, g, Pa, n1, Psi 

real*8, dimension(6) :: devsig, dfdSig, dgdSig 

real*8, dimension(6) :: A2 

real*8 :: m, mg, k, dfdPhiC, dfdC, dPhiCdEpsip, dCdEpsip 

real*8 :: A1 

! 

pi = acos(-1.d0) 

Pa = props(11) 

n1 = props(3) 

! 
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Select case(ntens) 

case (6) 

!  'SigB, EpsiB, DeltaEpsi' are used for calculating during the 

iteration in the following context. & 

!  'SigB1, EpsiB1, DeltaEpsi1' are used for updating the value 

which is related with 'abaqus' 

      SigB = SigB1 

      SigB(4) = dsqrt(2.d0)*SigB1(6) 

      SigB(5) = dsqrt(2.d0)*SigB1(5) 

      SigB(6) = dsqrt(2.d0)*SigB1(4) 

! 

      EpsiB = EpsiB1 

      EpsiB(4) = dsqrt(2.d0)/2.d0*EpsiB1(6) 

      EpsiB(5) = dsqrt(2.d0)/2.d0*EpsiB1(5) 

      EpsiB(6) = dsqrt(2.d0)/2.d0*EpsiB1(4) 

! 

      DeltaEpsi = DeltaEpsi1 

      DeltaEpsi(4) = dsqrt(2.d0)/2.d0*DeltaEpsi1(6) 

      DeltaEpsi(5) = dsqrt(2.d0)/2.d0*DeltaEpsi1(5) 

      DeltaEpsi(6) = dsqrt(2.d0)/2.d0*DeltaEpsi1(4) 

! 

   case (4) 

   SigB(1) = SigB1(1) 

      SigB(2) = SigB1(2) 

      SigB(3) = SigB1(3) 

      SigB(4) = 0.d0 

      SigB(5) = 0.d0 

      SigB(6) = dsqrt(2.d0)*SigB1(4) 

! 

      EpsiB(1) = EpsiB1(1) 

      EpsiB(2) = EpsiB1(2) 

      EpsiB(3) = EpsiB1(3) 

      EpsiB(4) = 0.d0 

      EpsiB(5) = 0.d0 

      EpsiB(6) = dsqrt(2.d0)/2.d0*EpsiB1(4) 

! 

      DeltaEpsi(1) = DeltaEpsi1(1) 

      DeltaEpsi(2) = DeltaEpsi1(2) 

      DeltaEpsi(3) = DeltaEpsi1(3) 

      DeltaEpsi(4) = 0.d0 

      DeltaEpsi(5) = 0.d0 

      DeltaEpsi(6) = dsqrt(2.d0)/2.d0*DeltaEpsi1(4) 

end select 

! 

Mo = Deijkl 

do i = 1,3 

   Mo(i+3, i+3) = Deijkl(i+3, i+3)*2.d0 

enddo 

! 

EpsiB = EpsiB +DeltaEpsi 

Epsiv = sum(EpsiB(1:3))  

Epsis = 

dsqrt(2.d0/3.d0)*dsqrt(2.d0/3.d0*(EpsiB(1)**2.d0+EpsiB(2)**2.

d0+EpsiB(3)**2.d0- 

EpsiB(1)*EpsiB(2)-EpsiB(2)*EpsiB(3)-EpsiB(3)*Ep

siB(1))+EpsiB(4)**2.d0+EpsiB(5)**2.d0+EpsiB(6)*

*2.d0) 

e0 = 

(/(2.d0/3.d0*EpsiB(1)-1.d0/3.d0*EpsiB(2)-1.d0/3.d0*EpsiB(3)), 

(2.d0/3.d0*EpsiB(2)- 

1.d0/3.d0*EpsiB(1)-1.d0/3.d0*EpsiB(3)), 

(2.d0/3.d0*EpsiB(3)-1.d0/3.d0*EpsiB(2)- 

1.d0/3.d0*EpsiB(1)), EpsiB(4), EpsiB(5), EpsiB(6)/) 

p = 

Pa*(k1*(1.d0-n1))**(1.d0/(1.d0-n1))*((Epsiv+1.d0/k1/(1.d0-n1))

**2.d0+ 

3.d0*g*Epsis**2.d0/k1/

 (1.d0-n1))**(n1/(2.d0-2.d0*n1))*(Epsiv+1.d0/k1/(1.d0-n1

)) 

q = 

Pa*(k1*(1.d0-n1))**(n1/(1.d0-n1))*((Epsiv+1.d0/k1/(1.d0-n1))*

*2.d0+3.d0*g*Epsis**2.d0/k1/ 

(1.d0-n1))**(n1/(2.d0-2.d0*n1))*3.d0*g*Epsis 

if (Epsis == 0) then 

     sigB = p*(/1.d0, 1.d0, 1.d0, 0.d0, 0.d0, 0.d0/) 

  else 

  sigB = p*(/1.d0, 1.d0, 1.d0, 0.d0, 0.d0, 0.d0/)+ 

q*2.d0/3.d0*e0/Epsis 

endif 

! 

!---------------------------------------- 

! Starting the corrector procedure 

!---------------------------------------- 

n = 0 

 do while (n < 5.d1) 

n = n + 1 

!____________________________________ 

    C0 = props(6) 

    Cf = props(7) 

    Bc = props(5) 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI133/these.pdf 
© [L. HU], [2020], INSA Lyon, tous droits réservés



Appendix B — New model 

 
 

145 

    PhiCf = props(9) 

    PhiC0 = props(8) 

    Bp = props(4) 

    Psi = props(10) 

!_____________________________________ 

    kB(1) = C0+(Cf-C0)*Epsip/(Bc+Epsip) 

       kB(2) = PhiC0+(PhiCf-PhiC0)*Epsip/(Bp+Epsip) 

       kB(3) = kB(2)-(PhiCf-Psi) 

!_____________________ 

       Isig = sum(SigB(1:3)) 

       devsig = SigB-Isig/3.d0*(/1.d0, 1.d0, 1.d0, 0.d0, 0.d0, 

0.d0/) 

       IIsig = dsqrt(0.5d0*dot_product(devsig, devsig)) 

! 

       m = 

2.d0*sin(kB(2)*pi/1.8d2)/(dsqrt(3.d0)*(3.d0-sin(kB(2)*pi/1.8d2)

)) 

       k = 

6.d0*kB(1)*cos(kB(2)*pi/1.8d2)/(dsqrt(3.d0)*(3.d0-sin(kB(2)*p

i/1.8d2))) 

       f = IIsig+m*Isig-k 

! 

       mg = 

2.d0*sin(kB(3)*pi/1.8d2)/(dsqrt(3.d0)*(3.d0-sin(kB(3)*pi/1.8d2)

)) 

       dfdSig = m*(/1.d0, 1.d0, 1.d0, 0.d0, 0.d0, 

0.d0/)+devsig/(2.d0*IIsig) 

       dgdSig = mg*(/1.d0, 1.d0, 1.d0, 0.d0, 0.d0, 

0.d0/)+devsig/(2.d0*IIsig) 

! 

       dfdPhiC = 

2.d0*Isig/dsqrt(3.d0)*(cos(kB(2)*pi/1.8d2)/(3.d0-sin(kB(2)*pi/1.

8d2))+& 

                 

cos(kB(2)*pi/1.8d2)*sin(kB(2)*pi/1.8d2)/(3.d0-sin(kB(2)*pi/1.8

d2))**2.d0)-& 

                 

6.d0*kB(1)/dsqrt(3.d0)*(sin(kB(2)*pi/1.8d2)/(3.d0-sin(kB(2)*pi/

1.8d2))+& 

                 

(cos(kB(2)*pi/1.8d2))**2.d0/(3.d0-sin(kB(2)*pi/1.8d2))**2.d0) 

       dfdC = -3.d0*m/tan(kB(2)*pi/1.8d2) 

       dPhiCdEpsip = 

pi/1.8d2*(PhiCf-PhiC0)/(Bp+Epsip)-pi/1.8d2*Epsip* 

(PhiCf-PhiC0)/(Bp+Epsip)**2.d0 

       dCdEpsip = 

(Cf-C0)/(Bc+Epsip)-Epsip*(Cf-C0)/(Bc+Epsip)**2.d0 

 ! 

       Val = dsqrt(3.d0)/3.d0 

 ! 

       A2 = matmul(Mo,dgdSig) 

       A1 = dot_product(dfdSig,A2) 

       DeltaLamda = 

f/(A1-Val*(dfdPhiC*dPhiCdEpsip+dfdC*dCdEpsip)) 

       DeltaSigB = DeltaLamda*A2 

! 

if (f>0.d0) then 

     Epsip = Epsip+Val*DeltaLamda 

     SigB = SigB-DeltaSigB 

else 

     DeltaSigB = (/0.d0, 0.d0, 0.d0, 0.d0, 0.d0, 0.d0/) 

endif 

! 

if (maxval(dabs(DeltaSigB))-1.d0 < props(12)) exit 

! 

enddo 

!   

select case(ntens) 

 case (6) 

 ! Go back to 'SigB1'. The variable 'SigB' is just used for 

calculating in the context. 

       SigB1 = SigB 

       SigB1(4) = 1.d0/dsqrt(2.d0)*SigB(6) 

       SigB1(5) = 1.d0/dsqrt(2.d0)*SigB(5) 

       SigB1(6) = 1.d0/dsqrt(2.d0)*SigB(4) 

    ! 

    EpsiB1 = EpsiB 

    EpsiB1(4) = dsqrt(2.d0)*EpsiB(6) 

    EpsiB1(5) = dsqrt(2.d0)*EpsiB(5) 

    EpsiB1(6) = dsqrt(2.d0)*EpsiB(4) 

 case (4) 

    SigB1(1) = SigB(1) 

    SigB1(2) = SigB(2) 

       SigB1(3) = SigB(3) 

       SigB1(4) = 1.d0/dsqrt(2.d0)*SigB(6) 

    ! 

    EpsiB1(1) = EpsiB(1) 

    EpsiB1(2) = EpsiB(2) 

    EpsiB1(3) = EpsiB(3) 

    EpsiB1(4) = dsqrt(2.d0)*EpsiB(6) 
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    end select 

! 

end subroutine 
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Appendix C —  

Modified SANISAND model  

      subroutine umat(stress,statev,ddsdde,sse,spd,scd, 

     &  rpl,ddsddt,drplde,drpldt, 

     &  

stran,dstran,time,dtime,temp,dtemp,predef,dpred,cmname, 

     &  ndi,nshr,ntens,nstatv,props,nprops,coords,drot,pnewdt, 

     &  celent,dfgrd0,dfgrd1,noel,npt,layer,kspt,kstep,kinc) 

      implicit none 

      character*80 cmname 

      integer ntens, ndi, nshr, nstatv, nprops, noel, npt, 

     & layer, kspt, kstep, kinc 

      double precision stress(ntens), statev(nstatv), 

     &  ddsdde(ntens,ntens), ddsddt(ntens), drplde(ntens), 

     &  stran(ntens), dstran(ntens), time(2), predef(1), 

dpred(1), 

     &  props(nprops), coords(3), drot(3,3), dfgrd0(3,3), 

dfgrd1(3,3) 

      double precision sse, spd, scd, rpl, drpldt, dtime, temp,  

     &  dtemp, pnewdt, celent 

      integer prsw,elprsw,cons_lin,abaqus,chiara,check_ff,drcor 

      integer i,error,maxnint,nfev,mario_DT_test,inittension 

      integer nparms,nasvdim,nfasv,nydim,nzdim 

      integer nasvy,nasvz,nyact,nzact,plastic,testing 

      double precision dot_vect 

      double precision 

parms(nprops),theta,tolintT,dtsub,DTmin,perturb 

      double precision sig_n(6),sig_np1(6),DDtan(6,6),pore,PI 

      double precision 

deps_np1(6),depsv_np1,norm_D2,norm_D,tolintTtest 

      double precision eps_n(6),epsv_n,alphayield(6) 

      double precision 

norm_deps2,norm_deps,pp,qq,cos3t,ddum 

      double precision 

zero,tol_f,fact_thres,p_thres,stran_lim,eps_debug 

      double precision 

p_atm,ptshift,phimob,tol_f_test,youngel,nuel 

      double precision 

avoid,apsi,aec,yf_DM,fyield,psi_void_DM,Mb 

      double precision 

dummy,sdev(6),I1,alpha(6),cM,tau(6),gth,etanorm 

      double precision sinphinorm 

      parameter (nasvdim  = 36) 

      parameter (nydim    = 6+14) 

      parameter (nzdim    = 14) 

      parameter (tolintT  = 1.00d-3) 

      parameter (tolintTtest = 1.0d-2)  

      parameter (maxnint  = 50000) 

      parameter (DTmin    = 1.0d-18) 

      parameter (perturb  = 1.0d-4) 

      parameter (nfasv    = 1) 

      parameter (prsw     = 0) 

      parameter (cons_lin = 1) 

   parameter (abaqus = 0) 

    parameter (eps_debug = 0.9d-3) 

      parameter (zero = 0.0d0) 

      parameter (PI = 

3.14159265358979323846264338327950288) 

      parameter (fact_thres=0.000000001d0) 

      double precision  asv1(nydim-6),asv2(nzdim) 

      double precision  

y(nydim),y_n(nydim),z(nzdim),z_n(nzdim) 

        tol_f=1.0d-6 

        tol_f_test=1.0d-6 

     check_ff=0 

     drcor=1 

     plastic=0 

     phimob=0.0d0 

     ptshift=0.0d0 

      error=0 

      if (ndi.ne.3) then 

        error=10 

      endif 

      nparms=nprops 

      call check_parms_DM(props,parms,nparms) 

 p_atm=parms(1) 

 p_thres=fact_thres*p_atm 

      elprsw = 0 

      if (prsw .ne. 0) then 

      endif 

      call define(nasvy,nasvz) 

      nyact = 6 + nasvy 

      nzact = nasvz 

      if (nyact.gt.nydim) then 

        error=10 
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      elseif (nzact.gt.nzdim) then 

        error=10 

      endif 

      pore = statev(29) 

      ptshift=parms(18)*parms(1) 

      do i=1,3 

          stress(i) = stress(i)-ptshift 

      enddo 

      call move_sig(stress,ntens,-1*ptshift,sig_n) 

      call move_sig(stress,ntens,pore,sig_n) 

      call move_eps(dstran,ntens,deps_np1,depsv_np1) 

      call move_eps(stran,ntens,eps_n,epsv_n) 

      norm_D2=dot_vect(2,deps_np1,deps_np1,6) 

      norm_D=sqrt(norm_D2) 

 if (eps_n(1).gt.eps_debug) then 

  chiara=1 

 end if 

      if (statev(7) .lt. 0.001) then 

            do i=1,6         

               alphayield(i)=zero 

            end do 

            call deviator(sig_n,alphayield,ddum,pp) 

           avoid=0 

            if(parms(19) .le. 5.0) then  

                   avoid=parms(19) 

            else if(parms(19) .gt. 5.0) then 

            apsi=parms(19)-10.0d0 

            

aec=parms(2)-parms(3)*(pp/parms(1))**parms(4) 

            avoid=aec+apsi 

            endif 

            statev(7)=avoid 

            do i=1,6         

               statev(i)=alphayield(i)/pp 

               statev(i+14)=alphayield(i)/pp 

            end do 

      end if 

      do i=1,nasvy 

        asv1(i) = statev(i-1+nfasv) 

      enddo 

      do i=1,nasvz 

        asv2(i) = statev(i-1+nfasv+nasvy) 

      enddo 

      call 

iniyz(y,nydim,z,nzdim,asv1,nasvy,asv2,nasvz,sig_n,ntens) 

      call push(y,y_n,nydim) 

      call push(z,z_n,nzdim) 

      if (elprsw.ne.0) then 

        call 

wrista(3,y,nydim,deps_np1,dtime,coords,statev,nstatv, 

     &              

parms,nparms,noel,npt,ndi,nshr,kstep,kinc) 

      endif 

      if((dtsub.le.zero).or.(dtsub.gt.dtime)) then 

        dtsub = dtime 

      end if 

      testing=0 

      if(kstep.eq.1 .AND. kinc.eq.1) testing=1 

      if(norm_D.eq.0) testing=2 

      nfev = 0 ! initialisation 

      if(testing.eq.1) then 

        call 

rkf23_upd_DM(y,z,nyact,nasvy,nasvz,tolintTtest,maxnint, 

     &         DTmin,deps_np1,parms,nparms,nfev,elprsw, 

     &        mario_DT_test, 

     &         error,tol_f_test,check_ff,drcor,p_thres,plastic) 

          if(error.ne.0) then 

            do i=1,nyact         

               y(i)=y_n(i) 

            end do 

            error=0 

          end if 

      else if(testing.eq.2) then 

            do i=1,nyact         

                  y(i)=y_n(i) 

            end do 

      else   !testing.eq.0 

        call 

rkf23_upd_DM(y,z,nyact,nasvy,nasvz,tolintT,maxnint, 

     &         DTmin,deps_np1,parms,nparms,nfev,elprsw, 

     &        mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      end if 

 if(mario_DT_test.eq.1) then 

 call wrista(4,y,nydim,deps_np1,dtime,coords,statev,nstatv, 

     &            

parms,nparms,noel,npt,ndi,nshr,kstep,kinc) 

 endif 

      if(error.eq.3) then 

        call 
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wrista(2,y,nydim,deps_np1,dtime,coords,statev,nstatv, 

     &            

parms,nparms,noel,npt,ndi,nshr,kstep,kinc) 

        if(abaqus.ne.0) then 

            pnewdt = 0.25d0 

        else 

           do i=1,nyact         

                  y(i)=y_n(i) 

           end do      

        endif 

 return 

      elseif(error.eq.10) then 

        call 

wrista(2,y,nydim,deps_np1,dtime,coords,statev,nstatv, 

     &              

parms,nparms,noel,npt,ndi,nshr,kstep,kinc) 

        call xit_DM 

      endif 

      if(dtsub.le.0.0d0) then  

       dtsub = 0 

      else if(dtsub.ge.dtime) then  

       dtsub = dtime 

      end if 

      statev(33)=dtsub 

      statev(34)=dfloat(nfev) 

      error=0 

      if(cons_lin.eq.0) then 

        norm_deps2=dot_vect(2,deps_np1,deps_np1,ntens) 

        norm_deps=dsqrt(norm_deps2) 

        theta=perturb*max(norm_deps,1.0d-6) 

        call 

pert_DM(y_n,y,z,nyact,nasvy,nasvz,tolintT,maxnint,DTmin, 

     &       

deps_np1,parms,nparms,nfev,elprsw,theta,ntens,DDtan, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      else 

        call tang_stiff(y,z,nyact,nasvy,nasvz,parms,nparms, 

     &         DDtan,cons_lin, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      endif 

 if(error.ne.0) then 

      endif 

      inittension=0 

      call 

check_RKF_DM(inittension,y,nyact,nasvy,parms,nparms) 

      if (inittension.ne.0) then 

           do i=1,nyact         

                  y(i)=y_n(i) 

           end do         

      end if 

      call solout(stress,ntens,asv1,nasvy,asv2,nasvz,ddsdde, 

     &            

y,nydim,z,pore,depsv_np1,parms,nparms,DDtan) 

      do i=1,nasvy 

        statev(i-1+nfasv) = asv1(i)  

      end do 

      do i=1,nasvz 

        statev(i-1+nfasv+nasvy) = asv2(i) 

      enddo 

      do i=1,6 

        sig_np1(i)=y(i) 

      end do 

      call inv_sig(sig_np1,pp,qq,cos3t) 

      statev(29) = pore  

      statev(30) = pp 

      statev(31) = qq 

      statev(32) = cos3t 

      cM=parms(6)/parms(5) 

      alpha(1)=y(7) 

      alpha(2)=y(8)  

      alpha(3)=y(9)  

      alpha(4)=y(10)  

      alpha(5)=y(11)  

      alpha(6)=y(12) 

      call deviator(sig_np1,sdev,I1,pp) 

      do i=1,6 

        tau(i)=sdev(i)-pp*alpha(i) 

      end do 

      call lode_DM(tau,cM,cos3t,gth,dummy) 

      etanorm=gth*qq/pp 

      sinphinorm=3*etanorm/(6+etanorm) 

      statev(33) = asin(sinphinorm)*180/PI 

      statev(34) = nfev 

      do i=1,3 

          stress(i) = stress(i)+ptshift 

      enddo 

      return 

      end 

      subroutine 

alpha_th_DM(flag,n,gth,psi,parms,nparms,alpha) 
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      implicit none 

      integer flag,nparms,i 

      double precision n(6),gth,psi,parms(nparms),alpha(6) 

      double precision M_c,mm,n_b,n_d 

      double precision M,alpha_th 

      double precision two,three,sqrt23 

      data two,three/2.0d0,3.0d0/ 

      sqrt23=dsqrt(two/three) 

      M_c=parms(5) 

 mm=parms(7) 

 n_b=parms(12) 

 n_d=parms(14) 

      if(flag.eq.1) then 

        M=M_c 

      elseif(flag.eq.2) then  

        M=M_c*dexp(-n_b*psi) 

      else 

        M=M_c*dexp(n_d*psi) 

      endif 

      alpha_th=M*gth-mm  

      do i=1,6 

        alpha(i)=sqrt23*alpha_th*n(i)       

      end do 

      return 

      end 

      subroutine check_crossing(y,y_tr,n,parms,nparms,prod) 

      implicit none 

      integer i,n,nparms 

      double precision dot_vect 

      double precision y(n),y_tr(n),parms(nparms) 

      double precision P(6),P1(6),dsig_tr(6) 

      double precision prod 

      call grad_f_DM(y,n,parms,nparms,P,P1) 

      do i=1,6 

        dsig_tr(i)=y_tr(i)-y(i) 

      end do ! i 

      prod=dot_vect(1,P,dsig_tr,6)   

      return 

      end 

      subroutine check_parms_DM(props,parms,nprops) 

      implicit none 

      integer nprops 

      double precision props(nprops),parms(nprops) 

      double precision p_a,e0,lambda,xi,M_c,M_e,mm 

      double precision G0,nu,h0,c_h,n_b,A0,n_d,z_max 

      double precision c_z,bulk_w,sinphi,PI,sinphiext 

   double precision zero 

      parameter(zero=0.0d0) 

      

parameter(PI=3.14159265358979323846264338327950288) 

      p_a=props(1) 

      e0=props(2) 

      lambda=props(3) 

 xi=props(4) 

      M_c=props(5) 

      M_e=props(6) 

      mm=props(7) 

      G0=props(8) 

      nu=props(9)  

      h0=props(10) 

      c_h=props(11) 

      n_b=props(12) 

      A0=props(13) 

      n_d=props(14) 

      z_max=props(15) 

      c_z=props(16) 

      bulk_w=props(17) 

      call push(props,parms,nprops) 

      if(parms(5) .gt. 5) then 

             sinphi=sin(parms(5)/180*PI) 

             parms(5)=6*sinphi/(3-sinphi) 

      else 

             sinphi=3*parms(5)/(6+parms(5)) 

      end if 

      if(parms(6) .gt. 5) then 

             sinphiext=sin(parms(6)/180*PI) 

             parms(6)=6*sinphiext/(3+sinphiext) 

      else if ((parms(6) .le. 5) .and. (parms(6) .gt. 0.01)) then 

             sinphiext=3*parms(6)/(6-parms(6)) 

      else 

             parms(6)=parms(5)*(3-sinphi)/(3+sinphi) 

      end if 

      return 

      end 

      subroutine define(nasvy,nasvz) 

      implicit none  

      integer nasvy,nasvz 

      nasvy = 14 

      nasvz = 14 

      return 
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      end 

      subroutine deviator(t,s,trace,mean) 

      implicit none 

      double precision t(6),s(6),trace,mean 

      double precision one,three,onethird 

      data one,three/1.0d0,3.0d0/ 

      onethird=one/three 

      trace=t(1)+t(2)+t(3) 

      mean=onethird*trace 

      s(1)=t(1)-mean 

      s(2)=t(2)-mean 

      s(3)=t(3)-mean 

      s(4)=t(4) 

      s(5)=t(5) 

      s(6)=t(6) 

      return 

      end 

      double precision function distance(alpha_k,alpha,n) 

      implicit none 

      integer i 

      double precision dot_vect 

      double precision alpha_k(6),alpha(6),n(6),delta(6) 

      do i=1,6 

        delta(i)=alpha_k(i)-alpha(i) 

      end do 

      distance=dot_vect(1,delta,n,6) 

      return 

      end 

      double precision function dot_vect(flag,a,b,n) 

      implicit none 

      integer i,n,flag 

      double precision a(n),b(n) 

      double precision zero,half,one,two,coeff 

      parameter(zero=0.0d0,half=0.5d0,one=1.0d0,two=2.0d0) 

      if(flag.eq.1) then 

        coeff=two 

      elseif(flag.eq.2) then 

        coeff=half 

      else 

        coeff=one 

      end if 

      dot_vect=zero 

      do i=1,n 

        if(i.le.3) then 

          dot_vect = dot_vect+a(i)*b(i) 

        else 

          dot_vect = dot_vect+coeff*a(i)*b(i) 

        end if 

      end do 

      return 

      end 

      subroutine 

drift_corr_DM(y,n,z,nasvz,parms,nparms,tol,switch2, 

     & mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      implicit none 

      double precision dot_vect 

 integer switch2,mario_DT_test 

      external matmul 

      double precision yf_DM 

      integer n,nasvz,nparms,i,n_drift,max_ndrift,switch 

 integer iter, itermax 

      integer error,check_ff,drcor,plastic 

      double precision tol_f,p_thres 

      double precision y(n),y0(n),y1(n), 

z(nasvz),parms(nparms) 

      double precision gradf(6),gradf1(6),gradg(6),gradg1(6) 

      double precision 

DDe(6,6),UU(6),VV(6),h_alpha(6),Kpm1,p1,pp1 

      double precision 

f0,tol,zero,one,denom,fnm1,p,three,onethird,f0_p 

 double precision factor,f1,p_atm 

      parameter(zero=0.0d0,one=1.0d0,three=3.0d0) 

      parameter(max_ndrift=10000, itermax=1000) 

      call push(y,y0,n) 

      f0=yf_DM(y0,n,parms,nparms) 

 onethird=one/three 

 p=(y0(1)+y0(2)+y0(3))*onethird 

      n_drift=0 

 switch=0 

 f0_p=f0/p 

 switch2=0 

      do while(f0_p.gt.tol) 

        fnm1=f0 

        n_drift=n_drift+1 

        call el_stiff_DM(y0,n,parms,nparms,DDe, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

        call grad_f_DM(y0,n,parms,nparms,gradf,gradf1) 

        call grad_g_DM(y0,n,parms,nparms,gradg,gradg1) 

   call matmul(DDe,gradg1,UU,6,6,1) 
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   call matmul(DDe,gradf1,VV,6,6,1) 

       call 

plast_mod_DM(y0,n,z,nasvz,parms,nparms,h_alpha,Kpm1, 

     & switch2,mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

 if (switch2.gt.zero) return 

        if(one/Kpm1.le.zero) then  

    error=3 

         return 

        end if 

   if(switch.eq.0) then 

  do i=1,6 

   y1(i)=y0(i)-Kpm1*f0*UU(i) 

  end do 

  do i=1,6 

   y1(6+i)=y0(6+i)+Kpm1*f0*h_alpha(i) 

  end do 

  do i=13,n 

   y1(i)=y0(i) 

  end do  

  f0=yf_DM(y1,n,parms,nparms) 

  if(f0.gt.fnm1) then 

   switch=1 

 p1=(y1(1)+y1(2)+y1(3))*onethird 

  else 

   call push(y1,y0,n) 

  end if   

   else 

  call push(y0,y1,n) 

  f0=yf_DM(y0,n,parms,nparms) 

  denom=dot_vect(1,gradf,gradf,6) 

 factor=one 

 f1=f0 

  do i=1,6 

   y1(i)=y0(i)-f0*gradf(i)/denom/factor 

  end do 

  do i=13,n 

   y1(i)=y0(i) 

  end do 

  pp1=(y1(1)+y1(2)+y1(3))*onethird 

   if(pp1.lt.zero)then 

    switch2=1 

    return 

   endif 

  f1=yf_DM(y1,n,parms,nparms) 

  call push(y1,y0,n) 

   end if 

   f0=yf_DM(y0,n,parms,nparms) 

   p=(y0(1)+y0(2)+y0(3))*onethird 

   f0_p=f0/p 

        if(n_drift.gt.max_ndrift) then 

   f0_p=0 

        end if   

 end do 

      call push(y0,y,n)       

      return 

      end 

      subroutine el_stiff_DM(y,n,parms,nparms,DDe, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      implicit none 

      integer i,j,n,nparms 

      double precision y(n),parms(nparms) 

      double precision p_a,G0,nu,ratio 

      double precision sig1,sig2,sig3,p,void 

      double precision coeff1,coeff2 

      double precision Kt,Gt,fe 

      double precision Id(6,6),IxI(6,6),DDe(6,6) 

      double precision zero,half,one,two,three  

      double precision pp,p_thres_E,tenm3 

      integer error,check_ff,drcor,plastic 

      double precision tol_f,p_thres 

      parameter(zero=1.0d0,half=0.5d0) 

      parameter(one=1.0d0,two=2.0d0,three=3.0d0) 

 parameter(p_thres_E=0.001d0) 

      call pzero(Id,36) 

      call pzero(IxI,36) 

      call pzero(DDe,36) 

      Id(1,1)=one 

      Id(2,2)=one 

      Id(3,3)=one 

      Id(4,4)=half 

      Id(5,5)=half 

      Id(6,6)=half 

      IxI(1,1)=one 

      IxI(2,1)=one 

      IxI(3,1)=one 

      IxI(1,2)=one 

      IxI(2,2)=one 

      IxI(3,2)=one 

      IxI(1,3)=one 
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      IxI(2,3)=one 

      IxI(3,3)=one 

      p_a=parms(1) 

      G0=parms(8) 

      nu=parms(9)  

      sig1=y(1) 

      sig2=y(2) 

      sig3=y(3) 

      void=y(13) 

      p=(sig1+sig2+sig3)/three 

 pp=p 

 if(p.lt.p_thres)then 

  pp=p_thres 

 end if 

      ratio=three*(one-two*nu)/(two*(one+nu)) 

      fe=(2.97d0-void)*(2.97d0-void)/(one+void) 

      Gt=G0*p_a*fe*dsqrt(pp/p_a) 

      Kt=Gt/ratio 

      coeff1=Kt-two*Gt/three 

      coeff2=two*Gt 

      do i=1,6 

        do j=1,6 

          DDe(i,j)=coeff1*IxI(i,j)+coeff2*Id(i,j) 

        end do 

      end do 

      return 

      end  

   subroutine f_hypoelas_DM(y,n,parms,nparms,deps,F, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      implicit none 

      external matmul 

      integer n,m,nparms 

      double precision y(n),parms(nparms),deps(6) 

      double precision depsv,void 

      double precision F(n),De(6,6),dsig_e(6) 

      double precision one 

      integer error,check_ff,drcor,plastic 

      double precision tol_f,p_thres 

      data one/1.0d0/ 

      call pzero(F,n) 

      void = y(13) 

      depsv=deps(1)+deps(2)+deps(3) 

      call el_stiff_DM(y,n,parms,nparms,De, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      call matmul(De,deps,dsig_e,6,6,1) 

      F(1)=dsig_e(1) 

      F(2)=dsig_e(2) 

      F(3)=dsig_e(3) 

      F(4)=dsig_e(4) 

      F(5)=dsig_e(5) 

      F(6)=dsig_e(6) 

      F(13)=-(one+void)*depsv 

      return 

      end 

      subroutine 

f_plas_DM(y,n,nasvy,z,nz,parms,nparms,deps,kRK,nfev, 

     & switch2,mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      implicit none 

      integer n,nz,nasvy,nparms,i,nfev 

 integer switch2,mario_DT_test 

      double precision 

y(n),z(nz),kRK(n),parms(nparms),deps(6) 

      double precision F_sig(6),F_q(nasvy) 

      integer error,check_ff,drcor,plastic 

      double precision tol_f,p_thres 

 double precision zero 

 parameter(zero=0.0d0) 

      nfev=nfev+1 

      call pzero(kRK,n) 

      call 

get_F_sig_q(y,n,nasvy,z,nz,parms,nparms,deps,F_sig,F_q, 

     & switch2,mario_DT_test,error) 

 if(switch2.gt.zero) return 

      if(error.eq.10) return 

      do i=1,6 

        kRK(i)=F_sig(i) 

      end do     

      do i=1,nasvy 

        kRK(6+i)=F_q(i) 

      end do     

      return 

      end 

      subroutine 

get_F_sig_q(y,n,nasvy,z,nz,parms,nparms,deps,F_sig,F_q, 

     & switch2,mario_DT_test,error) 

      implicit none 

      external matmul 

 integer switch2,mario_DT_test 

      integer nparms,n,nasvy,nz 
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      double precision y(n),z(nz),parms(nparms),deps(6) 

      double precision 

Dep(6,6),HH(nasvy,6),F_sig(6),F_q(nasvy) 

      double precision zero 

      integer error,check_ff,drcor,plastic 

      double precision tol_f,p_thres 

 parameter(zero=0.0d0) 

      call 

get_tan_DM(y,n,nasvy,z,nz,parms,nparms,Dep,HH,switch2, 

     & mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

 if(switch2.gt.zero) then 

  return 

 endif 

      call matmul(Dep,deps,F_sig,6,6,1) 

      call matmul(HH,deps,F_q,nasvy,6,1) 

      return 

      end 

      subroutine 

get_tan_DM(y,ny,nasvy,z,nz,parms,nparms,Dep,Hep, 

     & switch2,mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      implicit none 

      external matmul 

      integer 

nparms,ny,nz,nasvy,i,j,switch2,iter,iter_max,switch4 

 integer mario_DT_test 

      double precision dot_vect,distance,psi_void_DM 

      double precision y(ny),z(nz),parms(nparms) 

      double precision De(6,6),Dep(6,6),Hep(nasvy,6),m(6) 

      double precision LL(6),LL1(6),RR(6),RR1(6),U(6),V(6) 

      double precision p_a,e0,lambda,xi,M_c,M_e,cM,mm 

      double precision G0,nu,h0,c_h,n_b 

      double precision A0,n_d,z_max,c_z,bulk_w 

      double precision sig(6),alpha(6),void,Fab(6) 

      double precision alpha_sr(6),alpha_b(6) 

      double precision s(6),tau(6),n(6) 

 double precision norm2,norm,I1,p,psi,cos3t,gth,dgdth 

 double precision b0,d_sr,hh,db 

      double precision Hplas,LDeR,Kp,Kpm1 

      double precision mtrR,brack_mtrR,tol_ff,tol_dil,Hvs 

      double precision 

h_alpha(6),h_fab(6),HH_alpha(6,6),HH_fab(6,6) 

 double precision yf_DM,ff0,chvoid 

      double precision zero,tiny,half,one,two,three,large,kappa 

      double precision onethird,twothird 

      integer error,check_ff,drcor,plastic 

      double precision tol_f,p_thres 

      

parameter(zero=0.0d0,one=1.0d0,two=2.0d0,three=3.0d0) 

      parameter(tiny=1.0d-15,large=1.0e15) 

 parameter(kappa=3.0d2) 

      data m/1.0d0,1.0d0,1.0d0,0.0d0,0.0d0,0.0d0/ 

 switch2=zero 

 switch4=zero 

 iter=0 

 iter_max=1e3 

      onethird=one/three 

      twothird=two/three 

      half=one/two 

      call pzero(Dep,36) 

      call pzero(Hep,6*nasvy) 

      p_a=parms(1) 

      e0=parms(2) 

      lambda=parms(3) 

 xi=parms(4) 

      M_c=parms(5) 

      M_e=parms(6) 

      mm=parms(7) 

      G0=parms(8) 

      nu=parms(9)  

      h0=parms(10) 

      c_h=parms(11) 

      n_b=parms(12) 

      A0=parms(13) 

      n_d=parms(14) 

      z_max=parms(15) 

      c_z=parms(16) 

      bulk_w=parms(17) 

 cM=M_e/M_c 

      do i=1,6 

        sig(i)=y(i)  

      end do !i 

      do i=1,6 

        alpha(i)=y(6+i)  

      end do !i 

      void=y(13) 

      do i=1,6 

        Fab(i)=y(13+i)  

      end do !i 
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      do i=1,6 

        alpha_sr(i)=z(i)  

      end do !i    

      call deviator(sig,s,I1,p) 

      do i=1,6 

        tau(i)=s(i)-p*alpha(i) 

      end do ! i 

      norm2=dot_vect(1,tau,tau,6) 

      norm=dsqrt(norm2) 

      if(norm.lt.tiny) then 

        norm=tiny 

      endif 

      do i=1,6 

        n(i)=tau(i)/norm 

      end do 

      call el_stiff_DM(y,ny,parms,nparms,De, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      call grad_f_DM(y,ny,parms,nparms,LL,LL1) 

      call matmul(De,LL1,V,6,6,1) 

      call grad_g_DM(y,ny,parms,nparms,RR,RR1) 

      call matmul(De,RR1,U,6,6,1) 

   if (dabs(p).gt.zero) then 

     chvoid=c_h*void 

     if(chvoid.ge.1) then 

             chvoid=0.99999 

     end if 

     b0=G0*h0*(one-chvoid)/dsqrt(p/p_a) 

   else 

     b0=large 

   end if 

      d_sr=distance(alpha,alpha_sr,n) 

   if (d_sr.lt.zero) then 

  call push(alpha,alpha_sr,6) 

   end if 

   if (d_sr.lt.tiny) then 

  d_sr=tiny 

   end if 

 hh=b0/d_sr 

      psi=psi_void_DM(void,p,parms,nparms) 

      call lode_DM(tau,cM,cos3t,gth,dgdth) 

      call alpha_th_DM(2,n,gth,psi,parms,nparms,alpha_b) 

      db=distance(alpha_b,alpha,n) 

      do i=1,6 

        h_alpha(i)=twothird*hh*(alpha_b(i)-alpha(i)) 

      end do 

  mtrR=-RR(1)-RR(2)-RR(3) 

      brack_mtrR=half*(mtrR+dabs(mtrR)) 

      do i=1,6 

   h_fab(i)=-c_z*brack_mtrR*(z_max*n(i)+Fab(i)) 

      end do 

      Hplas=twothird*hh*p*db 

 if(Hplas.gt.1e+15) then 

 endif 

      LDeR=dot_vect(1,LL1,U,6) 

      Kp=LDeR+Hplas 

 ff0=yf_DM(y,ny,parms,nparms) 

 if(mario_DT_test.eq.zero) then 

  if(LDeR.lt.zero) then 

  switch2=1 

  return 

  endif 

  if(Kp.lt.zero) then 

  switch2=1 

  return 

  endif 

 else 

  if(LDeR.le.zero) then 

  switch2=1 

  return 

  endif 

 endif 

 if(Kp.lt.zero)then 

 error=3 

 return 

 endif 

 call push(alpha_sr,z,6) 

      Kpm1=one/Kp 

      do i=1,6 

        do j=1,6 

          Dep(i,j)=De(i,j)-Kpm1*U(i)*V(j) 

        end do !j 

      end do !i 

      do i=1,6 

        do j=1,6 

          HH_alpha(i,j)=Kpm1*h_alpha(i)*V(j) 

        end do !j 

      end do !i 

      do i=1,6 

        do j=1,6 

          HH_fab(i,j)=Kpm1*h_fab(i)*V(j) 
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        end do !j 

      end do !i 

      do j=1,6 

        Hep(1,j) =HH_alpha(1,j)   ! alpha(1) 

        Hep(2,j) =HH_alpha(2,j)   ! alpha(2) 

        Hep(3,j) =HH_alpha(3,j)   ! alpha(3) 

        Hep(4,j) =HH_alpha(4,j)   ! alpha(4) 

        Hep(5,j) =HH_alpha(5,j)   ! alpha(5) 

        Hep(6,j) =HH_alpha(6,j)   ! alpha(6) 

        Hep(7,j) =-(one+void)*m(j)  ! void 

        Hep(8,j) =HH_fab(1,j)   ! Fab(1) 

        Hep(9,j) =HH_fab(2,j)   ! Fab(2) 

        Hep(10,j)=HH_fab(3,j)   ! Fab(3) 

        Hep(11,j)=HH_fab(4,j)   ! Fab(4) 

        Hep(12,j)=HH_fab(5,j)   ! Fab(5) 

        Hep(13,j)=HH_fab(6,j)   ! Fab(6) 

      end do !j 

      return 

      end 

      subroutine grad_f_DM(y,ny,parms,nparms,gradf,gradf1) 

      implicit none 

      double precision dot_vect 

      integer ny,nparms,i 

      double precision 

parms(nparms),y(ny),gradf(6),gradf1(6),del(6) 

      double precision mm,sig(6),s(6),r(6),I1,p 

      double precision alpha(6),tau(6),n(6) 

      double precision norm,norm2,v,vv 

      double precision one,two,three,sqrt23,onethird,small 

 double precision n1,n2 

      parameter(one=1.0d0,two=2.0d0,three=3.0d0) 

      parameter(small=1.0d-10) 

 parameter(n1=0.816496580927739,n2=-0.4082482904638

5) 

      data del/1.0d0,1.0d0,1.0d0,0.0d0,0.0d0,0.0d0/ 

      sqrt23=dsqrt(two/three) 

      onethird=one/three 

      call pzero(n,6) 

      mm=parms(7) 

      sig(1)=y(1) 

      sig(2)=y(2) 

      sig(3)=y(3) 

      sig(4)=y(4) 

      sig(5)=y(5) 

      sig(6)=y(6) 

      alpha(1)=y(7) 

      alpha(2)=y(8)  

      alpha(3)=y(9)  

      alpha(4)=y(10)  

      alpha(5)=y(11)  

      alpha(6)=y(12) 

      call deviator(sig,s,I1,p) 

      do i=1,6 

        tau(i)=s(i)-p*alpha(i) 

      end do ! i 

      norm2=dot_vect(1,tau,tau,6) 

      norm=dsqrt(norm2) 

 if(norm.lt.small) then 

 norm=small 

 endif 

      do i=1,6 

        n(i)=tau(i)/norm 

      enddo 

      if(dabs(p).lt.small) then 

        do i=1,6 

          r(i)=s(i)/small 

        enddo 

      else 

        do i=1,6 

          r(i)=s(i)/p 

        enddo 

      endif 

      v=dot_vect(1,r,n,6) 

      vv=-onethird*v 

      do i=1,6 

        gradf(i)=n(i)+vv*del(i) 

        if(i.le.3) then 

          gradf1(i)=gradf(i) 

        else 

          gradf1(i)=two*gradf(i) 

        endif 

      enddo 

      return 

      end 

      subroutine grad_g_DM(y,ny,parms,nparms,gradg,gradg1) 

      implicit none 

      double precision 

dot_vect,distance,psi_void,psi_void_DM 

      integer ny,nparms,i 

      double precision M_c,M_e,cM,A0 
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      double precision parms(nparms),y(ny),gradg(6),gradg1(6) 

      double precision sig(6),s(6),alpha(6),Fab(6),I1,p 

      double precision n(6),n2(6),tau(6),Rdev(6) 

      double precision Ad,alpha_d(6),dd    

 double precision cos3t,gth,dgdth 

      double precision void,psi,dil,dil3 

      double precision temp1,temp2,temp3,temp4 

      double precision norm,norm2 

      double precision zero,one,two,three,six 

 double precision half,sqrt6,onethird,small,del(6) 

 integer chiara 

      

parameter(half=0.5d0,one=1.0d0,two=2.0d0,three=3.0d0,six=6.0

d0) 

      parameter(zero=0.0d0,small=1.0d-10) 

      data del/1.0d0,1.0d0,1.0d0,0.0d0,0.0d0,0.0d0/ 

      sqrt6=dsqrt(six) 

      onethird=one/three 

      call pzero(n,6) 

      M_c=parms(5) 

      M_e=parms(6) 

      A0=parms(13) 

      cM=M_e/M_c 

      sig(1)=y(1) 

      sig(2)=y(2) 

      sig(3)=y(3) 

      sig(4)=y(4) 

      sig(5)=y(5) 

      sig(6)=y(6) 

      alpha(1)=y(7) 

      alpha(2)=y(8)  

      alpha(3)=y(9)  

      alpha(4)=y(10)  

      alpha(5)=y(11)  

      alpha(6)=y(12) 

      void=y(13) 

      Fab(1)=y(14) 

      Fab(2)=y(15) 

      Fab(3)=y(16) 

      Fab(4)=y(17) 

      Fab(5)=y(18) 

      Fab(6)=y(19) 

      call deviator(sig,s,I1,p) 

      do i=1,6 

        tau(i)=s(i)-p*alpha(i) 

      end do ! i 

      norm2=dot_vect(1,tau,tau,6) 

      norm=dsqrt(norm2) 

      if(norm.lt.small) then 

   norm=small 

      endif 

      do i=1,6 

          n(i)=tau(i)/norm 

      enddo 

      n2(1)=n(1)*n(1)+n(4)*n(4)+n(5)*n(5) 

      n2(2)=n(4)*n(4)+n(2)*n(2)+n(6)*n(6) 

      n2(3)=n(6)*n(6)+n(5)*n(5)+n(3)*n(3) 

      n2(4)=n(1)*n(4)+n(4)*n(2)+n(6)*n(5) 

      n2(5)=n(5)*n(1)+n(6)*n(4)+n(3)*n(5) 

      n2(6)=n(4)*n(5)+n(2)*n(6)+n(6)*n(3) 

      psi=psi_void_DM(void,p,parms,nparms) 

      call lode_DM(tau,cM,cos3t,gth,dgdth) 

      temp1=one+three*cos3t*dgdth 

      temp2=-three*sqrt6*dgdth 

      do i=1,6 

          Rdev(i)=temp1*n(i)+temp2*(n2(i)-onethird*del(i)) 

      enddo 

 temp3=dot_vect(1,Fab,n,6) 

 temp4=half*(temp3+dabs(temp3)) 

      Ad=A0*(one+temp4)    

      call alpha_th_DM(3,n,gth,psi,parms,nparms,alpha_d) 

      dd = distance(alpha_d,alpha,n) 

 if((psi.gt.zero).and.(dd.lt.zero)) then 

  dd=zero 

 endif 

      dil=Ad*dd 

      dil3=onethird*dil 

      do i=1,6 

        gradg(i)=Rdev(i)+dil3*del(i) 

        if(i.le.3) then 

          gradg1(i)=gradg(i) 

        else 

          gradg1(i)=two*gradg(i) 

        endif 

      enddo 

      return 

      end 

      subroutine 

iniyz(y,nydim,z,nzdim,qq1,nasvy,qq2,nasvz,sig,ntens) 

      implicit none 
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      integer i,nydim,nzdim,nasvy,nasvz,ntens 

      double precision y(nydim),z(nzdim) 

      double precision qq1(nasvy),qq2(nasvz),sig(ntens) 

      call pzero(y,nydim) 

      call pzero(z,nzdim) 

      do i=1,ntens 

        y(i) = sig(i) 

      enddo 

      do i=1,nasvy 

        y(6+i) = qq1(i) 

      enddo 

      do i=1,nasvz 

        z(i) = qq2(i) 

      enddo 

      return 

      end 

 subroutine 

intersect_DM(y0,y1,y_star,n,parms,nparms,tol_ff, 

     &    xi, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      implicit none 

      integer n,nparms,maxiter,kiter,i,kiter_bis,bisect 

      double precision yf_DM,dot_vect 

      double precision 

parms(nparms),y0(n),y1(n),y_star(n),y05(n) 

      double precision tol_ff,fy_star,err,dfdxi,dfdxi_m1,xi,fy05 

 double precision dxi, xip1 

      double precision 

sig0(6),sig1(6),dsig(6),P_star(6),P1_star(6) 

      double precision zero,one,half,three,onethird 

 double precision pp_star,low, fy11, fy00, xi_max, xi_i, 

pp05 

 double precision y00(n),y11(n) 

      integer error,check_ff,drcor,plastic 

      double precision tol_f,p_thres 

      

parameter(zero=0.0d0,one=1.0d0,half=0.5d0,three=3.0d0) 

 parameter(low=1.0d-10) 

      xi=one 

      maxiter=5000 

      kiter=0 

 bisect=0 

 kiter_bis=0 

      do i=1,6 

        sig0(i)=y0(i) 

        sig1(i)=y1(i) 

        dsig(i)=sig1(i)-sig0(i) 

      end do !i 

      call push(y1,y_star,n) 

      fy_star=yf_DM(y_star,n,parms,nparms) 

 onethird=one/three 

 pp_star=(y_star(1)+y_star(2)+y_star(3))*onethird 

      err=dabs(fy_star/pp_star) 

 if(pp_star.gt.one) err=dabs(fy_star)  

 if(bisect.eq.0) then 

      do while ((err.gt.tol_ff).and.(bisect.eq.0)) 

        kiter=kiter+1 

        call grad_f_DM(y_star,n,parms,nparms,P_star,P1_star) 

        dfdxi=dot_vect(1,P_star,dsig,6) 

  if (dfdxi.lt.low) then 

   bisect=1 

  endif 

        dfdxi_m1=one/dfdxi 

        dxi=-dfdxi_m1*fy_star 

        xip1=xi+dxi 

   do while ((xip1.lt.zero).or.(xip1.gt.one)) 

  dxi=half*dxi 

     xip1=xi+dxi 

   end do 

   xi=xip1 

        do i=1,n 

          y_star(i)=y0(i)+xi*(y1(i)-y0(i)) 

        end do !i 

        fy_star=yf_DM(y_star,n,parms,nparms) 

  if (fy_star.lt.zero) then 

   bisect=1 

  else 

  onethird=one/three 

  pp_star=(y_star(1)+y_star(2)+y_star(3))*onethird 

  err=dabs(fy_star/pp_star) 

  if(pp_star.gt.one) err=dabs(fy_star)  

  endif 

 if (kiter.gt.maxiter+1) then 

 err=0 

        end if 

      end do ! bottom of Newton iteration 

      if((xi.lt.zero).and.(xi.gt.one)) then  

        xi = zero 

        return  

 endif 
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 endif 

 if(bisect.eq.1) then 

 do i=1,n 

  y00(i)=y0(i) 

  y11(i)=y1(i) 

 enddo 

 fy00 =yf_DM(y00,n,parms,nparms) 

 fy11 =yf_DM(y11,n,parms,nparms) 

 do i=1,n 

  y05(i)=y0(i) 

 enddo 

 pp05=(y05(1)+y05(2)+y05(3))*onethird  

 fy05 =yf_DM(y05,n,parms,nparms) 

 err=abs(fy05/pp05) 

 if(pp05.gt.one) err=dabs(fy05)  

 do while(err.gt.tol_ff) 

  kiter_bis=kiter_bis+1 

  do i=1,6 

   y05(i)=half*(y00(i)+y11(i)) 

  enddo  

  fy05 =yf_DM(y05,n,parms,nparms) 

  pp05=(y05(1)+y05(2)+y05(3))*onethird 

  err=abs(fy05/pp05) 

  if(pp05.gt.one) err=dabs(fy05)  

  if(fy05.lt.zero) then 

   call push(y05,y00,n) 

  else 

   call push(y05,y11,n) 

  endif 

  if (kiter_bis.gt.maxiter+1) then 

   err=0 

    endif 

 enddo 

 do i=1,n 

  y_star(i)=y05(i) 

 enddo 

 xi_max=zero 

 do i=1,6 

  if((y1(i)-y0(i)).ne.zero) then 

    xi_i= (y05(i)-y0(i))/(y1(i)-y0(i)) 

    if(xi_i.gt.xi_max) then 

   xi_max = xi_i 

    endif 

  endif 

 enddo 

 xi = xi_max 

 endif 

      return 

      end 

      subroutine inv_sig(sig,pp,qq,cos3t) 

      implicit none 

      double precision sig(6),sdev(6),s2(6) 

      double precision I1,J2bar,J2bar_sq,J3bar,trs2,trs3 

      double precision pp,qq,cos3t,numer,denom 

      double precision zero,one,two,three 

      double precision onethird,half,onept5,sqrt3,tiny 

      double precision dot_vect 

      data zero,one,two,three/0.0d0,1.0d0,2.0d0,3.0d0/ 

      data tiny/1.0d-15/ 

      onethird=one/three 

      half=one/two 

      onept5=three/two 

      sqrt3=dsqrt(three) 

      I1=sig(1)+sig(2)+sig(3) 

      pp=onethird*I1 

      sdev(1)=sig(1)-pp 

      sdev(2)=sig(2)-pp 

      sdev(3)=sig(3)-pp 

      sdev(4)=sig(4) 

      sdev(5)=sig(5) 

      sdev(6)=sig(6) 

      trs2=dot_vect(1,sdev,sdev,6) 

      J2bar=half*trs2 

      qq=dsqrt(onept5*trs2) 

      s2(1)=sdev(1)*sdev(1)+sdev(4)*sdev(4)+sdev(5)*sdev(5) 

      s2(2)=sdev(4)*sdev(4)+sdev(2)*sdev(2)+sdev(6)*sdev(6) 

      s2(3)=sdev(6)*sdev(6)+sdev(5)*sdev(5)+sdev(3)*sdev(3) 

      s2(4)=sdev(1)*sdev(4)+sdev(4)*sdev(2)+sdev(6)*sdev(5) 

      s2(5)=sdev(5)*sdev(1)+sdev(6)*sdev(4)+sdev(3)*sdev(5) 

      s2(6)=sdev(4)*sdev(5)+sdev(2)*sdev(6)+sdev(6)*sdev(3) 

      if(trs2.lt.tiny) then  

        cos3t=one 

      else 

        trs3=dot_vect(1,sdev,s2,6) 

        J3bar=onethird*trs3 

        J2bar_sq=dsqrt(J2bar) 

        numer=three*sqrt3*J3bar 

        denom=two*(J2bar_sq**3) 

        cos3t=numer/denom 

        if(dabs(cos3t).gt.one) then 
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          cos3t=cos3t/dabs(cos3t) 

        end if 

      end if  

      return 

      end 

      subroutine lode_DM(r,cM,cos3t,gth,dgdth) 

      implicit none 

      integer Argyris 

      double precision r(6),r2(6) 

      double precision trr2,trr3,J2bar,J3bar,J2bar_sq 

      double precision cM,n_VE,n_VEm1,numer,denom,cos3t 

      double precision tmp1,tmp2,tmp3,tmp4,tmp5,tmp6 

 double precision alpha,beta,gth,dgdth 

      double precision one,two,three 

      double precision onethird,half,sqrt3,tiny 

      double precision dot_vect 

      data one,two,three/1.0d0,2.0d0,3.0d0/ 

      data tiny,n_VE/1.0d-15,-0.25d0/ 

 data Argyris/0/ 

      onethird=one/three 

      half=one/two 

      sqrt3=dsqrt(three) 

      trr2=dot_vect(1,r,r,6) 

      J2bar=half*trr2 

      r2(1)=r(1)*r(1)+r(4)*r(4)+r(5)*r(5) 

      r2(2)=r(4)*r(4)+r(2)*r(2)+r(6)*r(6) 

      r2(3)=r(6)*r(6)+r(5)*r(5)+r(3)*r(3) 

      r2(4)=r(1)*r(4)+r(4)*r(2)+r(6)*r(5) 

      r2(5)=r(5)*r(1)+r(6)*r(4)+r(3)*r(5) 

      r2(6)=r(4)*r(5)+r(2)*r(6)+r(6)*r(3) 

      if(trr2.lt.tiny) then  

        cos3t=one 

      else 

        trr3=dot_vect(1,r,r2,6) 

        J3bar=onethird*trr3 

        J2bar_sq=dsqrt(J2bar) 

        numer=three*sqrt3*J3bar 

        denom=two*(J2bar_sq**3) 

        cos3t=numer/denom 

        if(dabs(cos3t).gt.one) then 

          cos3t=cos3t/dabs(cos3t) 

        end if 

      end if  

   if (Argyris.ne.0) then 

   gth=two*cM/((one+cM)-(one-cM)*cos3t) 

   dgdth=(1-cM)*gth/(two*cM)  

        else 

        n_VEm1=one/n_VE 

        tmp1=one/(two**n_VE) 

   tmp2=cM**n_VEm1 

        tmp3=one+tmp2 

        tmp4=one-tmp2 

   alpha=tmp1*(tmp3**n_VE) 

        beta=tmp4/tmp3 

        tmp5=(one+beta*cos3t)**n_VE 

        tmp6=one+beta*cos3t 

        gth=alpha*tmp5 

        dgdth=n_VE*beta/tmp6 

        end if 

      return 

      end 

      implicit none 

      integer i,j,k,l,m,n 

      do i=1,l 

        do j=1,n 

          do k=1,m 

          enddo 

        enddo 

      enddo 

      return 

      end 

      subroutine move_eps(dstran,ntens,deps,depsv) 

      implicit none 

      integer ntens,i 

      double precision deps(6),dstran(ntens),depsv 

      call pzero(deps,6) 

      do i=1,ntens 

        deps(i) = -dstran(i) 

      enddo 

      depsv=deps(1)+deps(2)+deps(3) 

      return 

      end 

      subroutine move_sig(stress,ntens,pore,sig) 

      implicit none 

      integer ntens,i 

      double precision sig(6),stress(ntens),pore 

      call pzero(sig,6) 

      do i=1,ntens 

        if(i.le.3) then 

          sig(i) = -stress(i)-pore 
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        else 

          sig(i) = -stress(i) 

        end if 

      enddo 

      return 

      end 

      subroutine norm_res_DM(y_til,y_hat,ny,norm_R) 

   implicit none 

      integer ny,i 

      double precision y_til(ny),y_hat(ny) 

      double precision err(ny),norm_R2,norm_R 

      double precision sig_hat(6),sig_til(6),del_sig(6) 

      double precision alpha_hat(6),alpha_til(6),del_alpha(6) 

 double precision Fab_hat(6),Fab_til(6),del_Fab(6) 

      double precision void_hat,void_til,del_void 

      double precision norm_sig2,norm_alpha2,norm_Fab2 

      double precision norm_sig,norm_alp,norm_Fab 

      double precision dot_vect,zero 

      parameter(zero=0.0d0) 

      call pzero(err,ny) 

      do i=1,6 

        sig_hat(i)=y_hat(i) 

        sig_til(i)=y_til(i) 

        del_sig(i)=dabs(sig_hat(i)-sig_til(i)) 

      end do 

      do i=1,6 

        alpha_hat(i)=y_hat(6+i) 

        alpha_til(i)=y_til(6+i) 

        del_alpha(i)=dabs(alpha_hat(i)-alpha_til(i)) 

      end do 

      void_hat=y_hat(13) 

      void_til=y_til(13) 

      del_void=dabs(void_hat-void_til) 

      do i=1,6 

        Fab_hat(i)=y_hat(13+i) 

        Fab_til(i)=y_til(13+i) 

        del_Fab(i)=dabs(Fab_hat(i)-Fab_til(i)) 

      end do 

      norm_sig2=dot_vect(1,sig_hat,sig_hat,6) 

      norm_alpha2=dot_vect(1,alpha_hat,alpha_hat,6) 

 norm_Fab2=dot_vect(1,Fab_hat,Fab_hat,6) 

      norm_sig=dsqrt(norm_sig2) 

      norm_alp=dsqrt(norm_alpha2) 

 norm_Fab=dsqrt(norm_Fab2) 

      if(norm_sig.gt.zero) then 

        do i=1,6 

          err(i)=del_sig(i)/norm_sig 

        end do 

      end if 

      if(norm_alp.gt.zero) then 

        do i=1,6 

          err(6+i)=del_alpha(i)/norm_alp 

        end do 

      end if 

      err(13)=del_void/void_hat 

      do i=1,6 

  if((Fab_til(i).ne.zero).and.(norm_Fab.gt.zero)) then 

   err(13+i)=del_Fab(i)/norm_Fab 

  end if 

      end do     

 norm_R2=dot_vect(3,err,err,ny) 

      norm_R=dsqrt(norm_R2) 

      return 

      end 

      subroutine pert_DM(y_n,y_np1,z,n,nasvy,nasvz,err_tol, 

     &                   maxnint,DTmin,deps_np1,parms, 

     &                   

nparms,nfev,elprsw,theta,ntens,DD, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      implicit none 

      integer elprsw 

      integer ntens,jj,kk 

      integer n,nasvy,nasvz,nparms,nfev 

      integer maxnint,mario_DT_test 

      double precision 

y_n(n),y_np1(n),y_star(n),z(nasvz),parms(nparms) 

      double precision err_tol 

      double precision theta,DTmin 

      double precision deps_np1(6),deps_star(6) 

      double precision dsig(6),DD(6,6) 

      double precision zero,three 

      integer error,check_ff,drcor,plastic 

      double precision tol_f,p_thres 

      parameter(zero=0.0d0,three=3.0d0) 

      call pzero(DD,36) 

      call pzero(y_star,n) 

      if(plastic.eq.0) then 

        call el_stiff_DM(y_np1,n,parms,nparms,DD, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      else 
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 do jj=1,ntens 

        call push(y_n,y_star,n) 

        call push(deps_np1,deps_star,ntens) 

       deps_star(jj)=deps_star(jj)+theta 

          if(error.ne.10) then 

            call 

rkf23_upd_DM(y_star,z,n,nasvy,nasvz,err_tol,maxnint, 

     &           

DTmin,deps_star,parms,nparms,nfev,elprsw, 

     &   mario_DT_test, 

     &           error,tol_f,check_ff,drcor,p_thres,plastic) 

          end if 

          do kk=1,ntens 

            dsig(kk)=y_star(kk)-y_np1(kk) 

            DD(kk,jj)=dsig(kk)/theta 

          end do !kk 

        end do !jj 

      end if  

      return 

      end 

      subroutine 

plast_mod_DM(y,ny,z,nz,parms,nparms,h_alpha,Kpm1, 

     & switch2,mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      implicit none 

      external matmul 

      integer nparms,ny,nz,i,iter,switch2,mario_DT_test 

      double precision 

dot_vect,distance,ref_db,psi_void,psi_void_DM 

      double precision y(ny),z(nz),parms(nparms) 

      double precision De(6,6),h_alpha(6) 

      double precision LL(6),LL1(6),RR(6),RR1(6),U(6),V(6) 

      double precision p_a,e0,lambda,xi,M_c,M_e,cM,mm 

      double precision G0,nu,h0,c_h,n_b 

      double precision A0,n_d,z_max,c_z,bulk_w 

      double precision sig(6),alpha(6),void,Fab(6) 

      double precision alpha_sr(6),alpha_b(6) 

      double precision s(6),tau(6),n(6),I1,p,psi,cos3t 

 double precision b0,d_sr,hh,db,gth,dgdth 

      double precision 

HHp,LDeR,Kp,Kpm1,norm2,norm,chvoid 

      double precision zero,tiny,one,two,three,large 

      double precision twothird 

      integer error,check_ff,drcor,plastic 

      double precision tol_f,p_thres 

      

parameter(zero=0.0d0,one=1.0d0,two=2.0d0,three=3.0d0) 

      parameter(tiny=1.0d-15,large=1.0e15) 

      twothird=two/three 

      p_a=parms(1) 

      e0=parms(2) 

      lambda=parms(3) 

 xi=parms(4) 

      M_c=parms(5) 

      M_e=parms(6) 

      mm=parms(7) 

      G0=parms(8) 

      nu=parms(9)  

      h0=parms(10) 

      c_h=parms(11) 

      n_b=parms(12) 

      A0=parms(13) 

      n_d=parms(14) 

      z_max=parms(15) 

      c_z=parms(16) 

      bulk_w=parms(17) 

   cM=M_e/M_c 

 switch2=zero 

 iter=0 

      do i=1,6 

        sig(i)=y(i)  

      end do !i 

      do i=1,6 

        alpha(i)=y(6+i)  

      end do !i 

      void=y(13) 

      do i=1,6 

        Fab(i)=y(13+i)  

      end do !i 

      do i=1,6 

        alpha_sr(i)=z(i)  

      end do !i    

      call deviator(sig,s,I1,p) 

      do i=1,6 

        tau(i)=s(i)-p*alpha(i) 

      end do ! i 

      norm2=dot_vect(1,tau,tau,6) 

      norm=dsqrt(norm2) 

      if(norm.lt.tiny) then 

        norm=tiny 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI133/these.pdf 
© [L. HU], [2020], INSA Lyon, tous droits réservés



Modified SANISAND model 

 
 

163 

      endif 

      do i=1,6 

        n(i)=tau(i)/norm 

      end do 

      call el_stiff_DM(y,ny,parms,nparms,De, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      call grad_f_DM(y,ny,parms,nparms,LL,LL1) 

      call matmul(De,LL1,V,6,6,1) 

      call grad_g_DM(y,ny,parms,nparms,RR,RR1) 

      call matmul(De,RR1,U,6,6,1) 

   if (dabs(p).gt.zero) then 

     chvoid=c_h*void 

     if(chvoid.ge.1) then 

             chvoid=0.99999 

     end if 

     b0=G0*h0*(one-chvoid)/dsqrt(p/p_a) 

   else 

     b0=large 

   end if 

      d_sr=distance(alpha,alpha_sr,n) 

   if (d_sr.lt.zero) then 

  call push(alpha,alpha_sr,6) 

   end if 

   if (d_sr.lt.tiny) then 

  d_sr=tiny 

   end if 

 hh=b0/d_sr 

      psi=psi_void_DM(void,p,parms,nparms) 

      call lode_DM(tau,cM,cos3t,gth,dgdth) 

      call alpha_th_DM(2,n,gth,psi,parms,nparms,alpha_b) 

      db=distance(alpha_b,alpha,n) 

      do i=1,6 

        h_alpha(i)=twothird*hh*(alpha_b(i)-alpha(i)) 

      end do 

      HHp=twothird*hh*p*db 

 if(HHp.gt.1e+15) then 

 endif 

      LDeR=dot_vect(1,LL1,U,6) 

      Kp=LDeR+HHp 

 if(mario_DT_test.eq.zero) then 

  if(LDeR.lt.zero) then 

  switch2=1 

  return 

  endif 

  if(Kp.lt.zero) then 

  switch2=1 

  return 

  endif 

 else 

  if(LDeR.le.zero) then 

   switch2=1 

  return 

  endif 

 endif 

 if(Kp.lt.zero)then 

 error=3 

 return 

 endif 

 call push(alpha_sr,z,6) 

      Kpm1=one/Kp 

      return 

      end 

      double precision function 

psi_void_DM(void,p,parms,nparms) 

      implicit none 

      integer nparms 

      double precision void,p,parms(nparms) 

      double precision p_a,e0,lambda,xi,ec 

      p_a=parms(1) 

      e0=parms(2) 

      lambda=parms(3) 

 xi=parms(4) 

      ec=e0-lambda*(p/p_a)**xi 

      psi_void_DM=void-ec 

      return 

      end 

      subroutine push(a,b,n) 

      implicit none 

      integer i,n 

      double precision a(n),b(n)  

      do i=1,n 

        b(i)=a(i) 

      enddo 

      return 

      end 

      subroutine pzero(v,nn) 

      implicit  none 

      integer n,nn 

      double precision v(nn) 

      do n = 1,nn 
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        v(n) = 0.0d0 

      end do ! n 

      end 

      subroutine 

rkf23_upd_DM(y,z,n,nasvy,nasvz,err_tol,maxnint,DTmin, 

     &           deps_np1,parms,nparms,nfev,elprsw, 

     &   mario_DT_test, 

     &           error,tol_f,check_ff,drcor,p_thres,plastic) 

      implicit none 

      integer elprsw,mario,switch2,switch3,mario2 

 integer mario_DT, mario_DT_test 

      integer n,nasvy,nasvz,nparms,i,ksubst,kreject,nfev 

      integer maxnint,attempt,maxnint_1 

      integer error,check_ff,drcor,plastic 

      double precision tol_f,p_thres 

      double precision y(n),z(nasvz),deps_np1(6) 

      double precision parms(nparms),DTmin,err_tol,err_tol_1, 

err_tol_n 

      double precision zero,half,one,two,three,four,six 

      double precision ptnine,one6,one3,two3,temp,prod,pt1 

 double precision z1(nasvz),deps_np1_star(6), z_k(nasvz) 

      double precision y_k(n),y_tr(n),y_star(n),yf_DM,y_k1(n) 

      double precision y_2(n),y_3(n),y_til(n),y_hat(n) 

      double precision p_atm,tol_ff,ff_tr,ff_k 

      double precision T_k,DT_k,xi 

      double precision kRK_1(n),kRK_2(n),kRK_3(n) 

      double precision norm_R,S_hull 

      double precision Fab(6),dev_fab(5),I1,f_p,absfp2 

      double precision 

pp,onethird,ptone,p_thres2,tol_ff1,pp_k,pp_tr 

 double precision 

ff_k_pp_k,ff_tr_pp_tr,pp_3,pp_2,pp_hat,ten,min_y_tr 

 double precision iter, pp_kk 

      

parameter(zero=0.0d0,one=1.0d0,two=2.0d0,three=3.0d0) 

      

parameter(four=4.0d0,six=6.0d0,half=0.5d0,ptnine=0.9d0) 

      parameter(pt1=1.0d-3,ptone=0.1d0,ten=1.0d1) 

      call pzero(y_k,n) 

      one6=one/six 

      one3=one/three 

      two3=two/three 

      plastic=0 

 mario = 0 

 mario_DT=0 

 mario_DT_test=0 

 iter=iter+1 

      call push(y,y_k,n) 

 call push(z,z_k,nasvz) 

      p_atm=parms(1) 

      tol_ff=tol_f*p_atm 

 ff_k=yf_DM(y_k,n,parms,nparms) 

 onethird=one/three 

 pp_k=(y_k(1)+y_k(2)+y_k(3))*onethird 

 ff_k_pp_k=ff_k/pp_k 

 if(pp_k.gt.one) ff_k_pp_k=ff_k  

 if (ff_k_pp_k.gt.tol_ff) then  

                call 

drift_corr_DM(y_k,n,z1,nasvz,parms,nparms,tol_ff, 

     &            switch2,mario_DT_test, 

     &            error,tol_f,check_ff,drcor,p_thres,plastic) 

 end if 

 deps_np1_star=deps_np1 

 call trial_state(y_k,n,parms,nparms,deps_np1_star,y_tr, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

 pp_tr=(y_tr(1)+y_tr(2)+y_tr(3))*onethird 

 if((pp_k.gt.(p_thres+p_thres))) then 

  do while(pp_tr.le.p_thres) 

   call 

trial_state(y_k,n,parms,nparms,deps_np1_star,y_tr, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

   pp_tr=(y_tr(1)+y_tr(2)+y_tr(3))*onethird  

   deps_np1_star=deps_np1_star*half 

  end do 

 elseif((pp_k.le.(p_thres+p_thres)) 

     &.and.(pp_tr.gt.(p_thres+p_thres))) then 

  deps_np1_star=deps_np1 

  call 

trial_state(y_k,n,parms,nparms,deps_np1_star,y_tr, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

  pp_tr=(y_tr(1)+y_tr(2)+y_tr(3))*onethird 

 elseif((pp_k.le.(p_thres+p_thres)) 

     &.and.(pp_tr.le.(p_thres+p_thres))) then 

   call push(y_k,y_tr,n) 

 endif 

      ff_tr=yf_DM(y_tr,n,parms,nparms) 

 pp_tr=(y_tr(1)+y_tr(2)+y_tr(3))*onethird 

 ff_tr_pp_tr=ff_tr/pp_tr 

 if(pp_tr.gt.one) ff_tr_pp_tr=ff_tr 

      call check_crossing(y_k,y_tr,n,parms,nparms,prod) 
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      if (ff_tr_pp_tr.lt.tol_ff) then 

        call push(y_tr,y_k,n) 

      else 

 if(pp_tr.lt.p_thres) then 

 else 

         if ((ff_k_pp_k.lt.(-tol_ff)).or.(prod.lt.zero)) then 

  call 

intersect_DM(y_k,y_tr,y_star,n,parms,nparms,tol_ff,xi, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

            call push(y_star,y_k,n) 

   plastic=1 

         else 

         xi=zero 

  plastic=1 

         end if 

        T_k=xi      

        DT_k=(one-xi) 

        ksubst=0 

        kreject=0 

        nfev=0  

   attempt=1 

   maxnint_1=maxnint 

   err_tol_1=err_tol  

   err_tol_n=err_tol   

   switch3=0            

        do while((T_k.lt.one).and.(mario.eq.zero) 

     

&.and.(mario_DT.eq.zero)) !*****************************

***** 

          ksubst=ksubst+1 

          if((ksubst.gt.maxnint_1).or.(switch3.eq.1)) then 

   if(attempt.eq.1) then 

     maxnint_1=2.0*maxnint 

     err_tol_1=1000.0*err_tol 

             attempt=2 

     DT_k=1-T_k 

   elseif(attempt.eq.2) then 

     mario=one 

     call push(z1,z,nasvz) 

     call push(y_k,y,n) 

                    return 

   endif 

  endif 

  call push(z_k,z1,nasvz) 

  pp_kk=(y_k(1)+y_k(2)+y_k(3))*onethird 

          call f_plas_DM(y_k,n,nasvy,z1,nasvz,parms,nparms, 

     +                   

deps_np1,kRK_1,nfev,switch2,mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

          if(error.eq.10) return 

  if (switch2.eq.zero) then 

   temp=half*DT_k 

   do i=1,n 

   y_2(i)=y_k(i)+temp*kRK_1(i) 

   end do 

   pp_2=(y_2(1)+y_2(2)+y_2(3))*onethird 

   if(pp_2.gt.zero)then 

   call 

f_plas_DM(y_2,n,nasvy,z1,nasvz,parms,nparms, 

     +                 

deps_np1,kRK_2,nfev,switch2,mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

   if(error.eq.10) return 

   if (switch2.eq.zero) then 

    do i=1,n 

   

 y_3(i)=y_k(i)-DT_k*kRK_1(i)+two*DT_k*kRK_2(i) 

    end do 

   

 pp_3=(y_3(1)+y_3(2)+y_3(3))*onethird 

    if(pp_3.gt.zero)then  

     call 

f_plas_DM(y_3,n,nasvy,z1,nasvz,parms,nparms, 

     +                   

deps_np1,kRK_3,nfev,switch2,mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

     if(error.eq.10) return 

     if (switch2.eq.zero) then 

      do i=1,n  

     

 y_til(i)=y_k(i)+DT_k*kRK_2(i) 

      y_hat(i)=y_k(i)+DT_k* 

     &               

(one6*kRK_1(i)+two3*kRK_2(i)+one6*kRK_3(i)) 

      end do 

      call 

norm_res_DM(y_til,y_hat,n,norm_R) 

     

 S_hull=ptnine*DT_k*(err_tol/norm_R)**one3 

      if(norm_R.eq.zero) then 
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      endif 

      if ((norm_R.lt.err_tol).and.(attempt.ne.2).and. 

     &      (attempt.ne.3)) then      

  

 pp_hat=(y_hat(1)+y_hat(2)+y_hat(1))*onethird 

   if (pp_hat.lt.p_thres) then 

    mario=one 

   endif 

    if(drcor.ne.0) then 

        call 

drift_corr_DM(y_hat,n,z1,nasvz,parms,nparms,tol_ff, 

     &              switch2,mario_DT_test, 

     &              

error,tol_f,check_ff,drcor,p_thres,plastic) 

    end if 

   

 pp_hat=(y_hat(1)+y_hat(2)+y_hat(1))*onethird 

   if (switch2.eq.zero) then 

    call push(y_hat,y_k,n) 

    call push(z1,z_k,nasvz) 

    T_k=T_k+DT_k; 

    DT_k=min(four*DT_k,S_hull) 

    DT_k=min((one-T_k),DT_k) 

   endif  

   end if 

  if ((norm_R.lt.err_tol_1).and.(attempt.eq.2) 

     &   .and.(switch2.eq.zero)) then      

  

 pp_hat=(y_hat(1)+y_hat(2)+y_hat(1))*onethird 

   if (pp_hat.lt.p_thres) then 

    mario=one 

   endif 

    if(drcor.ne.0) then 

        call 

drift_corr_DM(y_hat,n,z1,nasvz,parms,nparms,tol_ff, 

     & switch2,mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

    end if 

   if (switch2.eq.zero) then 

    call push(y_hat,y_k,n) 

    call push(z1,z_k,nasvz) 

    T_k=T_k+DT_k; 

    DT_k=min(four*DT_k,S_hull) 

    DT_k=min((one-T_k),DT_k) 

   endif !switch2.eq.zero 

  end 

if !(norm_R.lt.err_tol_1).and.(attempt.eq.2).and.(switch2.eq.zero

) 

   if((norm_R.gt.err_tol).and.(attempt.ne.3) 

     & .and.(switch2.eq.zero)) then 

             DT_k=max(DT_k/four,S_hull) 

              if(DT_k.lt.DTmin) then 

     &             ' is too small, step 

rejected' 

      DT_k= one - T_k 

      mario2=1 

      switch3=1 

              end if 

           end if 

  if((norm_R.lt.err_tol_n).and.(attempt.ne.3) 

     & .and.(switch2.eq.zero).and.(mario2.eq.one)) then 

  

 pp_hat=(y_hat(1)+y_hat(2)+y_hat(1))*onethird 

   if (pp_hat.lt.p_thres) then 

    mario=one 

   endif 

    if(drcor.ne.0) then 

        call 

drift_corr_DM(y_hat,n,z1,nasvz,parms,nparms,tol_ff, 

     & switch2,mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

    end if 

   if (switch2.eq.zero) then 

    call push(y_hat,y_k,n) 

    call push(z1,z_k,nasvz) 

    T_k=T_k+DT_k; 

    DT_k=min(four*DT_k,S_hull) 

    DT_k=min((one-T_k),DT_k) 

   endif !switch2.eq.zero 

  mario2=zero  

         end if 

   if (attempt.eq.3) then 

     if(drcor.ne.0) then 

    call 

drift_corr_DM(y_k,n,z_k,nasvz,parms,nparms,tol_ff, 

     & switch2,mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

         endif 

   call push(y_hat,y_k,n) 

              T_k=T_k+DT_k; 
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           end if 

   if (switch2.ne.zero) then 

    DT_k=DT_k/four 

               if(DT_k.lt.DTmin) then 

      DT_k= one - T_k 

      mario_DT_test=1 

              end if  

   endif 

 else 

  DT_k=DT_k/four 

             if(DT_k.lt.DTmin) then 

       DT_k= one - T_k 

      mario_DT_test=1 

              end if  

 endif 

  else         

             DT_k=DT_k/four 

    if(DT_k.lt.DTmin) then 

     DT_k= one - T_k 

      mario_DT_test=1 

               end if 

  endif 

 else 

  DT_k=DT_k/four 

    if(DT_k.lt.DTmin) then 

     DT_k= one - T_k 

      mario_DT_test=1 

               end if 

 endif 

 else 

  DT_k=DT_k/four 

   if(DT_k.lt.DTmin) then 

     DT_k= one - T_k 

      mario_DT_test=1 

               end if 

 endif 

 else 

  DT_k=DT_k/four 

   if(DT_k.lt.DTmin) then 

     DT_k= one - T_k 

      mario_DT_test=1 

               end if 

 endif 

        end 

do !*************************************************

**** 

       end if  

      end if 

 if(mario.eq.1) then !stop solution, keep current 

configuration 

     call push(z_k,z,nasvz) 

     call push(y_k,y,n) 

 else if(mario_DT.eq.1) then  !abort solution, keep 

previous configuration 

 else   

      call push(y_k,y,n) 

 call push(z_k,z,nasvz) 

 endif 

  if(drcor.ne.0) then 

 call drift_corr_DM(y,n,z,nasvz,parms,nparms,tol_ff, 

     & switch2,mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

     endif 

  if (switch2.ne.zero) then 

   return 

  endif  

      return 

     &' -pp_hat=',d12.4) 

      end 

      subroutine 

solout(stress,ntens,asv1,nasvy,asv2,nasvz,ddsdde, 

     +                  

y,nydim,z,pore,depsv_np1,parms,nparms,DD) 

      implicit none 

      integer nydim,nasvy,nasvz,nparms,ntens,i,j 

      double precision 

y(nydim),z(nasvz),asv1(nasvy),asv2(nasvz) 

      double precision 

stress(ntens),ddsdde(ntens,ntens),DD(6,6) 

      double precision parms(nparms),bulk_w,pore,depsv_np1  

      bulk_w=parms(17) 

      pore=pore+bulk_w*depsv_np1 

      do i=1,ntens 

  if (i.le.3) then 

          stress(i) = -y(i)-pore 

  else 

          stress(i) = -y(i) 

        end if 

      enddo 

      do i=1,nasvy 
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  asv1(i) = y(6+i) 

      enddo 

      do i=1,nasvz 

  asv2(i) = z(i) 

      enddo 

      do j=1,ntens 

        do i=1,ntens 

  if((i.le.3).and.(j.le.3)) then 

          ddsdde(i,j) = DD(i,j)+bulk_w 

  else 

          ddsdde(i,j) = DD(i,j) 

  end if         

        end do 

      enddo 

      return 

      end 

      subroutine 

tang_stiff(y,z,n,nasvy,nasvz,parms,nparms,DD,cons_lin, 

     &           error,tol_f,check_ff,drcor,p_thres,plastic) 

      implicit none 

      integer switch2,mario_DT_test 

      integer n,nasvy,nasvz,nparms,cons_lin 

      double precision y(n),z(nasvz),parms(nparms) 

      double precision DD(6,6),HH(nasvy,6) 

      double precision zero,three 

      integer error,check_ff,drcor,plastic 

      double precision tol_f,p_thres 

      parameter(zero=0.0d0,three=3.0d0) 

      call pzero(DD,36) 

      if(plastic.eq.1 .and. cons_lin.eq.1) then 

   call 

get_tan_DM(y,n,nasvy,z,nasvz,parms,nparms,DD,HH,switch2, 

     &    mario_DT_test, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

       else        

             call el_stiff_DM(y,n,parms,nparms,DD, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      end if  

      return 

      end 

      subroutine trial_state(y_k,n,parms,nparms,deps,y_tr, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic)                

      implicit none 

      integer n,m,nparms,mode,i 

      double precision y_k(n),parms(nparms),deps(6) 

      double precision y_2(n),y_3(n),y_tr(n) 

      double precision one,two,three,six 

      double precision kRK_1(n),kRK_2(n),kRK_3(n) 

      double precision DT_k,DTk05,DTk2,DTk6,DTk23 

      integer error,check_ff,drcor,plastic 

      double precision tol_f,p_thres 

      parameter(mode=1) 

      data one,two,three,six/1.0d0,2.0d0,3.0d0,6.0d0/ 

      DT_k=one 

      call f_hypoelas_DM(y_k,n,parms,nparms,deps,kRK_1, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

      if (mode.eq.1) then 

        DTk05=DT_k/two 

        DTk2=two*DT_k 

        DTk6=DT_k/six 

        DTk23=two*DT_k/three 

        do i=1,n 

          y_2(i)=y_k(i)+DTk05*kRK_1(i) 

        end do ! i 

        call f_hypoelas_DM(y_2,n,parms,nparms,deps,kRK_2, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

        do i=1,n 

          y_3(i)=y_k(i)-DT_k*kRK_1(i)+DTk2*kRK_2(i) 

        end do ! i 

        call f_hypoelas_DM(y_3,n,parms,nparms,deps,kRK_3, 

     &         error,tol_f,check_ff,drcor,p_thres,plastic) 

        do i=1,n 

          

y_tr(i)=y_k(i)+DTk6*kRK_1(i)+DTk23*kRK_2(i)+DTk6*kRK

_3(i) 

        end do ! i 

      else 

        do i=1,n 

          y_tr(i)=y_k(i)+DT_k*kRK_1(i) 

        end do ! i 

      end if 

      return 

      end 

      subroutine 

wrista(mode,y,nydim,deps_np1,dtime,coords,statev, 

     &           

nstatv,parms,nparms,noel,npt,ndi,nshr,kstep,kinc) 

      implicit none 

      integer 

mode,nydim,nstatv,nparms,noel,npt,ndi,nshr,kstep,kinc,i     
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      double precision y(nydim),statev(nstatv),parms(nparms) 

      double precision deps_np1(6),coords(3),dtime 

      if (mode.eq.2) then 

      endif 

 if(mode.ne.4) then 

     & 'element: ', noel, 'Integration point: ',npt 

 endif 

      if (mode.eq.2) then 

     &    coords(3) 

        do i=1,nparms 

        enddo  

      endif 

      if ((mode.eq.2).or.(mode.eq.3)) then 

      endif 

 if (mode.eq.4) then 

     & 'element: ', noel, 'Integration point: ',npt 

     &    coords(2),' x3 = ',coords(3) 

 endif 

      return 

      end 

      double precision function yf_DM(y,ny,parms,nparms) 

      implicit none 

      integer ny,nparms 

      double precision dot_vect 

      double precision y(ny),parms(nparms) 

      double precision mm,zero,one,two,three,sqrt23,norm2 

      double precision sig(6),s(6),trace,p,alpha(6),sbar(6) 

      

parameter(zero=0.0d0,one=1.0d0,two=2.0d0,three=3.0d0) 

      sqrt23=dsqrt(two/three) 

      mm=parms(7) 

      sig(1)=y(1) 

      sig(2)=y(2) 

      sig(3)=y(3) 

      sig(4)=y(4) 

      sig(5)=y(5) 

      sig(6)=y(6) 

      alpha(1)=y(7) 

      alpha(2)=y(8) 

      alpha(3)=y(9) 

      alpha(4)=y(10) 

      alpha(5)=y(11) 

      alpha(6)=y(12) 

      call deviator(sig,s,trace,p) 

      sbar(1)=s(1)-p*alpha(1) 

      sbar(2)=s(2)-p*alpha(2) 

      sbar(3)=s(3)-p*alpha(3) 

      sbar(4)=s(4)-p*alpha(4) 

      sbar(5)=s(5)-p*alpha(5) 

      sbar(6)=s(6)-p*alpha(6) 

      norm2=dot_vect(1,sbar,sbar,6) 

      yf_DM=dsqrt(norm2)-sqrt23*mm*p 

      return 

      end 

 subroutine xit_DM() 

 stop 

 return 

 end 

      subroutine inv_sig_full(sig,pp,qq,cos3t,I1,I2,I3) 

      implicit none 

      double precision sig(6),sdev(6) 

      double precision eta(6),eta_d(6),eta_d2(6) 

      double precision xmin1,xmin2,xmin3 

      double precision tretadev3,pp,qq,cos3t,I1,I2,I3 

      double precision 

norm2,norm2sig,norm2eta,numer,denom 

      double precision half,one,two,three,six 

      double precision onethird,threehalves,sqrt6,tiny 

      double precision dot_vect 

      data half,one/0.5d0,1.0d0/ 

      data two,three,six/2.0d0,3.0d0,6.0d0/ 

      data tiny/1.0d-18/ 

      onethird=one/three 

      threehalves=three/two 

      sqrt6=dsqrt(six) 

      I1=sig(1)+sig(2)+sig(3) 

      pp=onethird*I1 

      sdev(1)=sig(1)-pp 

      sdev(2)=sig(2)-pp 

      sdev(3)=sig(3)-pp 

      sdev(4)=sig(4) 

      sdev(5)=sig(5) 

      sdev(6)=sig(6) 

      if(I1.ne.0) then 

         eta(1)=sig(1)/I1 

         eta(2)=sig(2)/I1 

         eta(3)=sig(3)/I1 

         eta(4)=sig(4)/I1 

         eta(5)=sig(5)/I1 

        eta(6)=sig(6)/I1 
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      else 

        eta(1)=sig(1)/tiny 

        eta(2)=sig(2)/tiny 

        eta(3)=sig(3)/tiny 

        eta(4)=sig(4)/tiny 

        eta(5)=sig(5)/tiny 

        eta(6)=sig(6)/tiny         

      end if 

      eta_d(1)=eta(1)-onethird 

      eta_d(2)=eta(2)-onethird 

      eta_d(3)=eta(3)-onethird 

      eta_d(4)=eta(4) 

      eta_d(5)=eta(5) 

      eta_d(6)=eta(6) 

      norm2=dot_vect(1,sdev,sdev,6) 

      norm2sig=dot_vect(1,sig,sig,6) 

      norm2eta=dot_vect(1,eta_d,eta_d,6) 

      qq=dsqrt(threehalves*norm2) 

      I2=half*(norm2sig-I1*I1) 

      

eta_d2(1)=eta_d(1)*eta_d(1)+eta_d(4)*eta_d(4)+eta_d(5)*eta_d(

5) 

      

eta_d2(2)=eta_d(4)*eta_d(4)+eta_d(2)*eta_d(2)+eta_d(6)*eta_d(

6) 

      

eta_d2(3)=eta_d(6)*eta_d(6)+eta_d(5)*eta_d(5)+eta_d(3)*eta_d(

3) 

      

eta_d2(4)=eta_d(1)*eta_d(4)+eta_d(4)*eta_d(2)+eta_d(6)*eta_d(

5) 

      

eta_d2(5)=eta_d(5)*eta_d(1)+eta_d(6)*eta_d(4)+eta_d(3)*eta_d(

5) 

      

eta_d2(6)=eta_d(4)*eta_d(5)+eta_d(2)*eta_d(6)+eta_d(6)*eta_d(

3) 

      if(norm2eta.lt.tiny) then  

        cos3t=-one 

      else 

        tretadev3=dot_vect(1,eta_d,eta_d2,6) 

        numer=-sqrt6*tretadev3 

        denom=(dsqrt(norm2eta))**3 

        cos3t=numer/denom 

        if(dabs(cos3t).gt.one) then 

             cos3t=cos3t/dabs(cos3t) 

        end if 

      end if  

      xmin1=sig(2)*sig(3)-sig(6)*sig(6) 

      xmin2=sig(4)*sig(3)-sig(6)*sig(5) 

      xmin3=sig(4)*sig(6)-sig(5)*sig(2) 

      I3=sig(1)*xmin1-sig(4)*xmin2+sig(5)*xmin3 

      return 

      end 

      subroutine 

check_RKF_DM(error_RKF,y,ny,nasv,parms,nparms) 

      implicit none 

        integer error_RKF,ny,nasv,i,nparms,testnan,iopt 

        double precision y(ny),parms(nparms) 

        double precision sig(6),pmean,sig_star(6) 

        double precision I1,I2,I3,pp,qq,cos3t 

        double precision ptshift,minstress,sin2phim,tolerance 

        double precision OCR,omega,fSBS,sensit,cos2phic 

        double precision coparam,sin2phicco 

  testnan=0 

        do i=1,ny 

          call umatisnan_DM(y(i),testnan) 

        end do 

        if(testnan.eq.1) error_RKF=1 

      return 

      end 

      subroutine umatisnan_DM(chcknum,testnan) 

        double precision chcknum 

        integer testnan 

     if (.not.(chcknum .ge. 0. .OR. chcknum .lt. 0.)) 

testnan=1         

     if (chcknum .gt. 1.d30) testnan=1         

     if (chcknum .lt. -1.d30) testnan=1         

      if (chcknum .ne. chcknum) testnan=1         

        return 

        end   
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