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Abstract

The surge in the quantity of data produced nowadays made of Machine Learning, a subfield
of Artificial Intelligence, a vital tool used to extract valuable patterns from them and
allowed it to be integrated into almost every aspect of our everyday activities. Concretely,
a machine learning algorithm learns such patterns after being trained on a dataset called
the training set, and its performance is assessed on a different set called the testing set.

Domain Adaptation is an active research area of machine learning, in which the train-
ing and testing sets are not assumed to stem from the same probability distribution, as
opposed to Supervised Learning. In this case, the two distributions generating the train-
ing and testing data correspond respectively to the source and target domains. While
the supervised learning theory relies on the convergence of the empirical distribution of
the observed data to its true counterpart for establishing generalization guarantees, these
latter are hindered by the shift between distributions and by the lack of labels in the test-
ing set in the case of domain adaptation. Therefore, additional relatedness assumptions
between the domains are inevitable in order for the learning process to succeed.

Our contributions focus on three theoretical aspects related to domain adaptation
for classification tasks. The first one is learning with similarity functions, which deals
with classification algorithms based on comparing an instance to other examples in order
to decide its class. The second is large-margin classification, which concerns learning
classifiers that maximize the separation between classes. The third is Optimal Transport
that formalizes the principle of least effort for transporting probability masses between
two distributions.

At the beginning of the thesis, we were interested in learning with so-called (e,~, 7)-
good similarity functions in the domain adaptation framework, since these functions have
been introduced in the literature in the classical framework of supervised learning. This
is the subject of our first contribution in which we theoretically study the performance of
a similarity function on a target distribution, given it is suitable for the source one. Then,
we tackle the more general topic of large-margin classification in domain adaptation, with
weaker assumptions than those adopted in the first contribution. In this context, we
proposed a new theoretical study and a domain adaptation algorithm, which is our second
contribution. We derive novel bounds taking the classification margin on the target domain
into account, that we convexify by leveraging the appealing Optimal Transport theory, in
order to derive a domain adaptation algorithm with an adversarial variation of the classic
Kantorovich problem. Finally, after noticing that our adversarial formulation can be
generalized to include several other cases of interest, we dedicate our last contribution to
adversarial or minimax variations of the optimal transport problem, where we demonstrate
the versatility of our approach.
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Introduction

With the evolution of information technologies, data nowadays is being generated at a
continuously increasing pace. As a matter of example, one can think of the millions of
emails, website subscriptions, companies’ transactions, and hospitals’ medical information
of patients stored all around the world every single day. There is an undeniable appeal in
extracting valuable patterns from these data: an e-commerce website can propose better
recommendations to its customers based on their previous activities, and a hospital can
leverage the experiences of present patients to improve those of the future ones. What
unifies these different examples is wanting to transform experience gained from data to
expertise (Shalev-Shwartz and Ben-David, 2014), which is the main aim of the Machine
Learning field. In this vast sub-field of the general area of Artificial Intelligence, numerous
branches exist depending on the possible characteristics given, for instance, by the form
of the data, the way it is accessed, the underlying process generating it, and what pattern
one is looking seeking.

The work presented in this manuscript concerns offline learning, meaning that data is
accessed in one time as a fixed batch (as opposed to online learning) of input-output pairs,
and the pattern to search for is a rule that generates the output given the input. Moreover,
we focus on the case where the outputs’ possible values are finite and represent labels or
classes to which inputs (also called instances) belong. To approximate such a relation,
a hypothesis or a classifier is learned from the available data, i.e. it is refined until it
matches the observations. The goal behind such a procedure is to be able to make correct
predictions on new data not used in the learning process. A fundamental assumption
in the theoretical study of the above-mentioned setting is that training and testing data
stem from some unknown probability distributions. The question of whether the two sets
of data are generated by the same distribution defines two disciplines of machine learn-
ing: assuming the same distribution is the case of Supervised Learning, whereas allowing
the distribution of the testing data to be different defines the more challenging Domain
Adaptation setting. Supervised learning has been intensively theoretically analyzed in the
context of the statistical learning theory, where the main concern is the generalization of
a hypothesis learned from a finite sample to the whole generating distribution. The study
of domain adaptation is more recent and is motivated by real-world situations where the
data generating processes are subject to change, making the same distribution assumption
unreasonable, and where the labeling process is time-consuming or costly. In this case,
the training and testing distributions correspond respectively to a source and a target do-
mains. Typically, domain adaptation is convenient for situations where one has access to
an unlabeled newly generated test dataset that is much larger than the previously available
labeled source data sample. In this case, a part of the unlabeled target data can help the
learning process along with the labeled source data. Domain adaptation is an active re-
search area, and the scope of this work is its special case considering only one distribution
for the source domain (as opposed to Multi-source domain adaptation). The discrepancy
between the two domains’ distributions, along with the lack of label information for the
target data, make the domain adaptation problem much more difficult than supervised
learning. Moreover, there is intuitively no hope in trying to learn from two completely
unrelated domains: for example, a person who tries to learn a new language from a differ-
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ent group than hers cannot succeed without supervision. Conversely, she can successfully
guess the meaning of several words of a language related to her own based on the similarity
between words. This intuition is reflected in the domain adaptation theory that aims to
determine conditions reflecting the relatedness between the two domains and helping to
learn despite the distribution’s shift. Among these conditions, a low divergence between
the source and target domains is the common ground of almost all of the literature of
domain adaptation, with variations depending on the choice of this divergence. It is also
the goal of the striking majority of domain adaptation algorithms, where the two domains
are made close to each other via an alignment procedure, and the closeness, in this case, is
contingent on the choice of the divergence measure. One choice that has recently gained in
popularity is the Wasserstein Distance between probability distributions, associated with
the Optimal Transport problem. This latter is a formalization of the principle of least
efforts to the transport of probability mass between distributions.

Earlier in this introduction, we pointed out that we focus on classification tasks where
the possible values of the output are finite. There are several approaches to solve these
tasks, among which are those based on the “birds of a feather flock together” intuition,
i.e. they rely on the similarity of an instance to the rest of the data to decide its class.
Two popular algorithms in this regard are the k& Nearest Neighbors and the Support Vector
Machine algorithms: the former relies on distances and the latter on special functions
called kernels, both reflecting resemblance between instances. The two algorithms make
use of similarity functions, and these latter are fixed beforehand resulting in their po-
tential failure to capture hidden patterns in the available data. The question of when
does a similarity function suit the classification task at hand then arises naturally, and
one of the lines of work that answer it is the theory of (¢, v, 7)—good similarity functions.
Roughly speaking, these latter require the existence of some distribution generating land-
mark points, such that most of the instances are more similar on average to landmarks
having their label than to the ones with opposite labels. In this case, data can be mapped
to a new space when the classes are separable with a large margin.

In this thesis, we address several limitations of the current state of research in domain
adaptation for classification problems. First, despite the strong and appealing intuition
behind learning with similarity functions, there is a lack of theoretical understanding
of these latter in the context domain adaptation. We tackle this limitation in our first
contribution where we provide novel results extending the (e,,7) framework to domain
adaptation. Second, most of the theoretical results in domain adaptation do not consider
the classification margin on the target domain. In fact, they essentially rely on the triangle
inequality for the considered loss function, which is not verified for loss functions intended
to maximize the classification margin. We address this problem in our second contribution
and use our theoretical contribution to propose a sound domain adaptation algorithm
where we compare the source and target distributions via an adversarial task-dependent
optimal transport term. This latter is studied more generally in our last contribution, in
which we solve several instances of the adversarial optimal transport problem and show
its practical interest.

Outline

The rest of the manuscript is divided into three parts. The first part, Background, provides
the reader with the current state of the art of the different topics that we address and is
comprised of two chapters.

Chapter 1 is dedicated to supervised learning, with a focus on large margin binary
classification. We briefly present some important results of the statistical learn-
ing theory, some reference algorithms and then we give an overview of learning with
(€,7,T)—good similarity functions.
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Chapter 2 addresses the more general domain adaptation field, where we start by defin-
ing the specific setting in which we are interested. Then, we present the main
assumptions of the domain adaptation theory, along with literature results showing
their sufficiency and necessity for the success of adaptation. In particular, we cover
several measures of divergence intended to compare the source and target domains.

The second part, Contributions, presents our work based on accepted submissions at
several peer-reviewed international conferences. The proofs for the different theoretical
results we provide are given either in their corresponding chapters when their length is at
most half a page, or are postponed to the following Appendices part. In the latter case,
we provide a short description of the proof’s idea in the main chapter.

Chapter 3 corresponds to our publications Dhouib and Redko (2018a.,b), where we study
(e,7,7)—good similarity functions in the domain adaptation setting. We establish
theoretical results relating the performance of a similarity function on both the
source and target domains. Then, we present a retrospective study in which we
explain why we abandon the (¢,~,7)—good similarities framework in the rest of the
thesis.

Chapter 4 is based on our publications Dhouib et al. (2019, 2020b), where we weaken
the assumptions of the previous chapter and study the performance of a classifier on
the target domain while focusing on the quality of separation between classes. We
present theoretical results that generalize some former work from the literature and
introduce a task-dependent variation of the Optimal Transport problem. We then
specialize the study to linear classification and empirically show its benefits.

Chapter 5 represents the work leading to our publication Dhouib et al. (2020a). It deals
with a min-max variation of the optimal transport problem that is a generalization
of the divergence term we obtained in the previous chapter. We propose an opti-
mization method to solve it and detail its variations according to different instances
of the considered problem.

The last part is for appendices containing either some prerequisites for reading the manuscript
or additional details on different parts of it.

Appendix A recalls some prerequisites that are necessary for reading this manuscript.

Appendices B, C and D provide more material for chapters 3, 4 and 5, respectively,
including the proofs of different theoretical claims, as well as some additional details
on the empirical evaluations.

Appendix E is based on our submission to the Machine Learning journal, in which we
theoretically study learning an (e, ~y, 7)—good similarity function via regression, and
which led us to the retrospective study presented in Chapter 3.

Appendix F encloses a summary of the current manuscript in French, as required by
the doctoral school EEA.

Notations

For the sake of readability and to allow a quicker recognition of the different types of
quantities used, we adopt the following notation conventions. The sets known mathemat-
ically as spaces (e.g. known vector spaces, hypothesis spaces...) are denoted in a \mathbb
font. The bold font is exclusively used for vectors and matrices, which are respectively
denoted by lower- and upper-case Latin letters. Scalars are denoted either by Latin or
Greek lower-case letters. Moreover, probability distributions are denoted using only the
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\mathcal font. These conventions, in addition to other notations, are summarized in the
next table.
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Chapter 1

Supervised Learning

Abstract Supervised Learning is arguably one of the most known machine learning set-
tings. In this chapter, we present this setting with a particular emphasis on the task of
binary classification. We start by formalizing notions that are needed to define a super-
vised learning problem and the performance measure used to assess whether the learning
in this context is successful. Then, we focus on supervised classification where the output
can only take a finite number of values. In particular, we highlight the role of scoring
functions and their associated classification margin to further review several generaliza-
tion bounds linking the empirical and true performances of a classifier at hand. This is
followed by a description of two famous classification algorithms, namely the Support Vec-
tor Machine and the k-nearest neighbors. Finally, after pointing out the role of similarity
functions in both of the presented algorithms, we review the general theory of learning
with (e,7,7)—good similarity functions and link it to both kernel learning and metric
learning frameworks.

Introduction

In this chapter, we introduce several notions related to supervised learning, a branch of
machine learning field that formalizes the idea of learning by example. Such learning
consists in inducing a relation between elements of a certain set and outputs associated
to them, based on observing examples of input-output pairs. These latter pairs are in
general the result of a certain experiment, where the outputs correspond to measurements
and the input to their respective configurations. The relation is commonly referred to as
a hypothesis, as one who observes such data puts forward a hypothesis on the mechanism
that links an input to its output. The complexity and the difficulty of describing such
a mechanism in certain cases of interest is what motivated the emergence of supervised
learning. For example, it is easy for an average person to recognize a previously known
object on a given image, even if the latter is encountered in a completely new configu-
ration with a change of perspective, of lights, or of orientation. However, attempting to
characterize any image of an object by a set of predetermined explicit rules would most
likely be a very difficult endeavor. Likewise, the expertise of a house pricing agent is the
result of years of experience, and it is not possible to predict the future house selling price
using simple rules. Mimicking such behavior lies at the core of supervised learning, as it
is of high interest to automate such decision-making processes using a set of previously
gathered observations.

Before proceeding to the formalization of supervised learning, we note that in the first
example, the goal is to identify to which class out of a finite set of possible classes a given
image that may belong to, making it a classification task, whereas in the second one, the
set of output values is infinite and continuous, corresponding to a regression task. In what
follows, we describe a general framework unifying these two cases, then we restrict our
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24 Chapter 1. Supervised Learning

interest to classification, and more precisely binary classification, with which most of this
manuscript is concerned. In the previous examples, the set of input-output observed pairs
is called a dataset, and in the most simple setting the input examples are characterized
by the same set of descriptors or features. As pointed out in Shalev-Shwartz and Ben-
David (2014), it is more convenient to call it a sequence rather than a set to account for
pairs that are observed more than once and we will use both terms interchangeably. Both
inputs and outputs are in a vast majority of cases encoded as real-valued vectors. Learning
the task associated to this data set consists in finding a hypothesis, or more precisely a
function, that is able to predict the output of a given input as accurately as possible,
even if the input at hand is not included in the provided data set, i.e. the hypothesis
has not “observed” the example before. This last requirement is called generalization,
as it assesses how the learned hypothesis generalizes to unseen data. In practice, since
the observed data is finite, one can find an infinite number of hypotheses that perform
well on it. The intuition of choosing the best one is in line with the principle of Occam’s
razor (Vapnik, 2006, Section 2.7.1) that suggests choosing the “simplest” one. This latter
intuition, as we will see, is tightly linked to the generalization of a given hypothesis.

1.1 Theoretical Framework

In this section, we formalize the intuition presented previously by introducing a rigorous
model of the process generating the observed data, the evaluation of a hypothesis that aims
at explaining it, and how to learn it to generalize well to previously unseen observations.

1.1.1 Observed Data

The data pairs are modeled as a sample or sequence S = {(x;,y;)}/",, where the inputs
x; and the outputs y; are elements of sets X and Y, respectively. In this setting, X is
known as the input or feature set, and is generally given by a bounded subset of some
metric space (Definition A.1.1). In the rest of the manuscript, we will consider the most
common case X C R", where n is the number of features describing each example. As
for the output values, Y will be a continuously infinite subset of RX for regression where
K € N* is the dimension of the output space, and Y = {¢;, - - - ¢k } for classification, where
K is the number of candidate classes. Commonly, a class is encoded by either a number
¢ =k € N, or a vector ¢, = ey, where ey, is the k™ vector of RX’s canonical basis.

The data generating process is modeled by a joint probability distribution D of the
couple (x,y) € XxY, i.e. (x,y) ~ D, and we write S ~ D™ for any sample S of m elements
drawn independently from D. In this case, the output value of y given x is not necessarily
deterministic, and consequently represents possible measurement noise, or the fact that the
considered features fail to completely determine the output. This latter scenario occurs due
to the fact that when collecting the data one is often ignorant of the link between inputs
and outputs (otherwise there’s no need for learning). In practice, probability distribution
D is observed only through the sample S, with an associated empirical discrete probability
distribution S which is uniform over the different data points. Formally, it is defined as:

. 1 &
= — . 1.1
S m ;6("17%)’ ( )

where J(4 . is the Dirac point measure associated with example (x,y). Taking the expec-
tation with this probability distribution is exactly taking the empirical mean over sample
S, i.e. for any measurable function f defined over X x Y, one has:

m

E[floy)] = > flxim) (12)

(x,y)~S i=1
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1.1. Theoretical Framework 25

Additionally, we will consider the conditional distribution of y given an example x
denoted by Dy|x, and the marginal distribution of inputs and outputs, respectively denoted
by Dx and Dy.

1.1.2 Hypothesis Space

A hypothesis is a function h : X — Y that represents a possible deterministic rule of
how the output values are generated from the input observations. A hypothesis is picked
from a predetermined possible infinite set, called the hypothesis space, and denoted by
H. It encodes a certain structure of candidate hypotheses and reflects a prior knowledge,
or similarly, a form of inductive bias (Shalev-Shwartz and Ben-David, 2014, Section 5.2),
that one has about the problem at hand. Hypotheses are often taken to be functions
with values in R™, whether the task is regression or classification with an a posteriori
transformation applied to“discretize” their values in the latter case. We will detail this
further in Section 1.2.3.

1.1.3 Task Performance

To assess the performance of a given hypothesis h, the classic approach is to use a function
[ :Y%2 - R, quantifying the disagreement between the value of h(x) and the observed
output value y. In other words, this function models the loss incurred by h when predicting
the value of y as h(x), hence [ is called a loss function. Aggregating the losses from
individual examples to the whole data set is usually done by calculating its mean value over
the data, or, more generally, its expectation over the generating probability distribution
D. The expectation of the loss [ incurred by a hypothesis is known as the [—risk in the
machine learning literature, as defined in the following definition.

Definition 1.1.1 (I—risk). Given a loss function I, the true' I—risk of a hypothesis h over
a probability distribution D is

€ (h) = E [lhx).v)]. (13)

In the case of empirical distribution S associated to sample S, the l—risk of h is called the
empirical [—risk over sample S, and is given by:

¢h= B (<)) = LS UG (1.4)
xyr i=1

The ability to measure the risk of a hypothesis is a basic requirement of learning
strategies that aim at minimizing it, as we will detail in the next section.

1.1.4 Learning the Task

Ideally, solving a supervised learning problem over a generating distribution D consists in
finding a hypothesis A* € H that disagrees the least with the observed outputs:

h* € argmin €, (h). (1.5)
heH
As we only have access to the sample S ~ D™ several approaches to approximate
mingcpy QEZD (h) empirically have been studied in the literature. We hereby present some
common strategies employed to learn a hypothesis hg that is expected to have a low
l—risk over D. Once it is learned, one can use it to predict, or infer, the output of a newly
observed instance x € X during the so-called inference step.

ICalling it “true” risk is due to the fact that it is calculated as if one had full access to the unknown
data generating probability distribution.
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26 Chapter 1. Supervised Learning

1.1.4.1 Empirical Risk Minimization (ERM)

According to the law of large numbers, the empirical risk converges to the true risk when
the number of available instances tends to infinity and thus provides a good proxy for
the latter. Consequently, it suggests a learning strategy that consists in searching for a
hypothesis minimizing the empirical risk, i.e.

hs € arg min (’Eg (h). (1.6)
heH

The minimization of the empirical risk over the choice of h can be seen in some cases as a
minimization of the negative log-likelihood of observing the data set S, where h represents
the parameters of the probability distribution that we try to estimate. In this case, the
introduced inductive bias corresponds to the parametric form of the considered probability
distribution and we refer the interested reader to Bishop (2006) for more details concerning
this viewpoint.

1.1.4.2 The Bias-Variance Trade-off

The empirical risk minimization approach is prone to overfitting: the resulting hypothesis
hgs can perfectly fit the observed sample S while having poor performance on the underly-
ing distribution D. This phenomenon is characterized by a high [—risk of hg on a sample
S’ # S generated from D that was not used for learning, and can be explained by one of
the two most common reasons. First, the sample S may be not representative enough of
the unknown distribution D: this may happen when S is not large enough or when the
output values are noisy, and thus gathering more examples helps in tackling this issue.
Second, even when S is large, overfitting can occur as a result of an excessive richness
of H implying that a small variation in the data set due, for instance, to changing a few
learning examples, may alter a lot the learned hypothesis. As a result, the performance of
hg varies significantly for different samples drawn from D suggesting that the performance
on sample S cannot be used as a faithful indicator of the performance on the whole distri-
bution. For this reason, overfitting is also referred to as a high variance or high complexity
problem.

To avoid overfitting, one must gather enough data and somehow restrain the considered
hypotheses from being too flexible. While the former point concerns the data collecting
process itself, the latter can be achieved by imposing some restrictions on the flexibility of
the considered hypothesis space. On the other hand, one must be careful when imposing
such restrictions as they may prevent the learned hypothesis from capturing complex
patterns in the data, resulting in poor performance on both the observed sample and
the true generating distribution. This phenomenon is called underfitting, or high bias, as
imposing restrictions on the considered hypotheses reflects the inductive bias that one has
towards H before starting to learn.

Formally, the difference between the best observed value of the risk mingecpy QEZS (h)
induced by S and H, and the best achievable true risk mingcyx QEZD (h) by a hypothesis

that is only required to be deterministic, can be decomposed as follows (Shalev-Shwartz
and Ben-David, 2014, section 5.2):

€ (hs)  — }freli&%(h) :gleiﬁ@lg(h)—G%(h*)ﬂL(’flz)(h*)—;LIel%{g%(h% (1.7)

best empirical

biased performance best true Estimation error Approximation error

unbiased performance

The first grouping bracket of the right-hand side (r.h.s) of Equation (1.7) reflects the
deviation between the empirical and the true best risks, with an inductive bias given by
the particular choice of hypothesis space H, and will converge to 0 as m goes to infinity
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under certain assumptions on H (Section 1.2.5). It is called the estimation error as the
empirical risk is an estimation of the true one. The second term, called the approxzimation
error, represents the capacity of the best hypothesis from H to approximate the function
in Y* achieving the best possible performance over the whole distribution D. While the
estimation error can be made arbitrarily small by gathering more data, picking the right
hypothesis space is a much more complex problem as one needs to make sure that it is
rich enough to decrease the approximation error, but not at the expanse of increasing of
the estimation error for a given sample S. The “richness” of a hypothesis space has been
theoretically formalized via the notions of Vapnik-Chervonenkis (VC) dimension (Vapnik
and Chervonenkis, 1971) and the Rademacher complexity (Koltchinskii and Panchenko,
2000), and plays a crucial role in controlling the convergence rate of the estimation error
towards 0. For a visual illustration of the bias-variance trade-off, we refer the interested
reader to Hastie et al. (2001, Figure 7.2).

1.1.4.3 Learning while Avoiding Overfitting

As we have seen in the previous section, one can tackle the overfitting problem by restrict-
ing the search space H. This idea is the motivation behind two learning approaches: the
structural risk minimization and the reqularized risk minimization.

Structural Risk Minimization (SRM) Introduced in Vapnik (1992), the structural
risk minimization consists in minimizing the risk, while penalizing the structure
of the considered hypothesis space. Concretely, a (possibly infinite) set of nested
hypothesis spaces

{Hl,l S I,Hz C HIL‘+1},

is fixed a priori, and a penalization pen(-) is applied to the i*" hypothesis space,
expressed as a function of the VC dimension of H (Definition 1.2.4). This penaliza-
tion, contrary to the minimum operator, is an increasing function for set inclusion,
implying that pen (H;) < pen (H;1). More formally, SRM consists in finding

hs € arg min E‘Eg (h) + pen (H;) . (1.8)
heH;
1<i<n

Consequently, the minimum risk is no longer a decreasing function of the chosen
hypothesis space (for set inclusion), and its choice relies on a trade-off between the
complexity of H; and the empirical risk value.

Regularized Risk Minimization (RRM) The idea is to penalize the searched hypoth-
esis at the learning time, via a regularizer (regularization function) R(-) which pe-
nalizes excessively flexible hypotheses:

hs € arg min Cilg (h) + AR(h), (1.9)
heH

where ) is a positive parameter controlling the trade-off between the empirical risk
minimization and the regularization strength. Using the notion of Lagrange multi-
pliers (Karush, 1939; Kuhn and Tucker, 1951), one can show that such procedure
is equivalent to empirical risk minimization over a subset of H, hence strengthen-
ing the bias in the hope of reducing the variance (Hastie et al., 2001, Section 7.3).
RRM is arguably the most used learning strategy in supervised learning and can be
interpreted as a mazimum a posteriori (MAP) estimation (Bishop, 2006).
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28 Chapter 1. Supervised Learning

1.2 Supervised Classification

From this section on, and unless stated otherwise, we will address the task of supervised
classification, for which the set of possible output values Y = (¢q,...,ck) is finite. We
will use a terminology proper to classification: for an input x, its class will be called its
label and the hypotheses will be called classifiers. We now introduce several other notions
used throughout the manuscript.

1.2.1 Decision Boundaries

Any classifier h : X — Y defines a partition of the input space X into regions Xj corre-
sponding to the inverse images by classifier h of the different classes in Y. Formally, we
have:

K
X=JXp, where Xj:=h"({c}). (1.10)
k=1
The boundaries between these regions are called the decision boundaries, as crossing them
changes the decision made about the class that should be predicted for a given instance.
The shape of these boundaries reflects the structure of the hypothesis space H: for linear
classifiers, they are hyperplanes, while for nonlinear ones they are more complex manifolds
that can “bend” to better respect the instances’ labels.

1.2.2 Assessing Classification Performance

Intuitively, the most straightforward way of evaluating a classifier h on a given data set is
to count the fraction of times it misclassifies data points, i.e. by computing the following
quantity:

S lhlxi) £ il (1.11)
i=1

The latter is exactly the empirical risk (’3%1 (h) associated with the loss function lp; defined
as

lor(y',y) =y # ul; (1.12)
and called the misclassification loss or the 0-1 loss. Of course, we can also consider the
true risk associated to ly1, which is equal to:

¢y ()= E [lon(h(x)y)= P [b(x)#y], (1.13)
(xy)~D (xy)~D
1.e. the probability of misclassification. For this particular loss, the best error achievable
by a measurable function from Y* (last term in Equation (1.7)) is known as the Bayes
error, and the classifier achieving it is called the Bayes classifier defined as follows:
hBayes(X) = ci=, where k™ € arg maxy g’ [y =ci] . (1.14)
~Dy|x

Despite the simplicity behind the definition of lpq, finding a hypothesis A that minimizes
its associated risk is an NP-hard problem due to two main reasons. First, the hypothesis
takes values in Y which is a finite set, making it discontinuous on X. Second, the ly; loss
is, in its turn, also discontinuous. It was shown that even for continuous hypotheses, the
minimization of the lo; risk is an NP-hard problem (Arora et al., 1997).

To make such optimization procedure tractable, the 0-1 loss is often replaced by a
surrogate that is convex in h(x), or more generally in the parameters defining h, in order
to benefit from efficient convex optimization techniques (Boyd and Vandenberghe, 2004;
Bubeck, 2015). We will return to this point when discussing binary classification. Also,
instead of searching for a hypothesis with a finite set of possible values, this assumption
can be relaxed, leading to the notion of scoring functions that we present below.
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1.2.3 Scoring Functions

The classic approach in classification is not to directly search for a classifier with values in
Y, but rather for a function with values in R¥, called a scoring function. The continuous
range of these functions’ values (as in regression) allows to encode more information when
compared to a traditional classifier. Indeed, if f(x) = (fi(x),..., fx(x)), then fi(x)
usually represents the confidence attributed by f for x to belong to class c;. What these
components exactly represent depends on the considered learning algorithm. For instance,

they can be equal to an estimation of the conditional probabilities of the labels, i.e.

(&= P ly=c

0
yNDY\x

where 0 is the parameters of the considered probability model. Or, they can be defined
by the distance to the decision boundary separating it from the closest different class, also
called the classification margin (Koltchinskii and Panchenko, 2002).

Formally, the classifier iy associated with a scoring function f is given by the following
rule:

hf(x) = cp= with E* € argmax fi(x), (1.15)
1<k<K

implying that it predicts the class for a given data point which the scoring function is most
confident about, similar to the rule behind the Bayes classifier defined in Equation (1.14).

In addition to the rich information they enclose, scoring functions benefit from appeal-
ing properties for the minimization algorithms, as they are smoother than finite-valued
classifiers.

(a) f1(x). (b) fa(x). (c) f3(x). (d) classifier hy(x).

Figure 1.1: From scores to classes: every component of scoring function f X - R3
represents the confidence accorded to its corresponding class. The color bars indicate the
value of fi(x) for k € {1,2,3}.

Remark In what follows and when clear from the context, we will also refer to scoring
functions as classifiers, even if they have a continuous set of values. Consequently, we
extend the domain of loss functions to R® x Y, allowing the first argument to be a scoring
function.

1.2.4 Binary Classification

When |Y| = 2, we fall into the setting of binary classification. Despite its apparent
simplicity, binary classification is the task that corresponds to many challenging real-
world applications of machine learning. It is also the main setting considered in the rest
of this manuscript.

1.2.4.1 Encoding the Labels

Since the number of classes is K = 2, the scoring function f takes its values in R?, whereas
hy takes its values in {c1, ca}. According to the decision rule given in Equation (1.15), the
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30 Chapter 1. Supervised Learning

binary classifier is given by

hf(x):{cl’ £ A0 > f2lx) (1.16)

co, otherwise.

If we use the labelling ¢; = 1,¢o = 0, then h(x) = [fi(x) > fo(x)]. In the particular
case where f1 and f represent the conditional probabilities of two classes, the previous
criterion reduces to [f1(x) > %] It is then sufficient to keep only the component f; to make
the prediction. Another interesting encoding is ¢; = 1,5 = —1 for which the terminology
negative and positive classes is used. In this case, h(x) = sgn (f1(x) — f2(x)) and one can
define the scoring function f = f; — fy instead of keeping the two components. These
different choices are summarized in Table 1.1.

Label encoding | Scoring function’s codomain Decision rule
{0,1} R? [f1(x) > fa(x)]
{0,1} [0,1] [f1(x) > 3]

{-1,1} R sgn (f1(x) — fa(x))

Table 1.1: Different encodings and decision rules for binary classification.

In what follows, we adopt the encoding Y = {—1,1}. As a result, we consider scoring
functions having values in R instead of R?. The value of the scoring function then rep-
resents the difference f; — fo and we denote it by f. Moreover, whether the prediction
agrees with the observed label boils down to whether y - f(x) > 0, i.e.

sgn(f(x)) =y & y-f(x)>0 (1.17)

1.2.4.2 Classification Margin

The scoring function f = fi — fo is the difference of confidences in the available classes,
and while comparing the two components (i.e. , comparing the value of f to 0) allows
to decide the class of an instance, one can also benefit from the information contained
in the continuous range of values of f; and fo to assess the confidence in the prediction.
This can be done by comparing this difference to a positive constant p > 0 representing a
margin parameter: stating that f; is greater than fs with a margin p sheds more light on
the confidence that one attributes to the made prediction. This intuition can be captured
in two different ways by introducing the notions of signed and absolute margins.

Signed margin We saw in Equation (1.17) that it is sufficient to compare y- f(x) to 0 to
see if f prediction for x agrees with label y. The quantity y- f(x) is called the signed
margin of f at x: if y = 1, then it measures how far f; is from f5, and inversely for
y=—1.

Absolute margin This notion characterizes the confidence of the scoring function f in
its own prediction, regardless of whether it is correct or not, and it is defined by
|f(x)], i.e. the absolute value of the signed margin.

For a generalization of margin theory to the multi-class case, i.e. for K > 2, we refer the
interested reader to Koltchinskii and Panchenko (2002).

1.2.4.3 Loss Functions

For Y = {—1,1}, the commonly used loss functions have the following form

I(h(x),y) = Ly - h(x)), (1.18)
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where £ is a non increasing function verifying ¢(t) L2% 0. This choice reflects the idea that
the larger is the signed margin of an example (x,y), the less h is penalized. In practice,
when one seeks to find the best classifier for a given dataset via a risk minimization
strategy, a convex £ is chosen. In Table 1.2, we list some popular loss functions having the
above-mentioned form and we illustrate them in Figure 1.2.

Loss name Notation 0(t) Convex?
Misclassification/0-1 lo1 [t < 0] No
Margin violation - [t < p] (where p > 0) No
Ramp - min <1, (1 - %) ) (where 8 > 0) No

+

Hinge I+ (1—-1t)4+ Yes
Softplus lsoft log(l + e_t) Yes
Exponential - et Yes

Table 1.2: Common loss functions for binary classification.

— == misclassification
margin violation
ramp

—— hinge

Py —— softplus
g = exponential
=
=
0
I
=
X \
= N
& —
p
T T T T T T T T
—4 -3 -2 -1 0 1 2 3 4

Figure 1.2: Common loss functions used in the binary classification setting where Y =

{~1,1}.

1.2.5 Generalization Guarantees

In this section, we formalize several notions mentioned in Section 1.1.4.2 by introducing
the rigorous definitions of the richness and complexity measures of hypothesis spaces and
by reviewing the existing convergence rates of the estimation error towards zero.

1.2.5.1 Probably Approximately Correct (PAC) Learning

Probably Approximately Correct (PAC) learning, introduced in Valiant (1984), is a the-
oretical framework defining what it means for a hypothesis space H to be learnable. It
formalizes the idea that given a large enough learning sample S ~ D™, the true risk asso-
ciated to the hypothesis hg learned from S is arbitrarily close to the minimum achievable
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true risk (i.e. the second term of the estimation error in Section 1.1.4.2). Since even large
samples can be non-representative of the distribution D (for example, imagine a very large
sample with elements having all the same label), PAC learnability takes the probability
of this latter event into account.

Definition 1.2.1 (PAC learnability). A hypothesis space H is PAC-learnable if for any
€,0 € (0,1), there exists m(e,d) € N such that if m > m(e,0), then for any probability
distribution D over X x Y, with a probability at least 1 — § over the draw of a sample
S ~ D™, we have:

¢ (hg) < min ¢h (h) +e. (1.19)

In other words, by learning a hypothesis hg from a sample S we will probably (with
a confidence level 1 — §) succeed in obtaining an approzimately (up to € > 0) correct
hypothesis (minimizing the true risk over H). The minimum m(e, §) verifying the former
requirement is called the sample complexity.

To prove PAC-learnability, a stronger requirement, called the uniform convergence
property, is commonly used. It requires that uniformly over all of the hypothesis space
H, the empirical and true risks of a given hypothesis are close to each other with a high
probability over the draw of sample S, as formalized by the following definition.

Definition 1.2.2 (Uniform convergence property). A hypothesis space H has the uniform
convergence property if for any €,6 € (0,1), there exists m(e,6) € N such that if m >
m(e,d), then for any probability distribution D over X x Y, with a probability at least 1 — 0
over the draw of S ~ D™,

sup | &) (h) — €
heH

L) <e (1.20)

The left hand side of Equation (1.20) reflects how much using sample S succeeds in
approximating the true risk of a hypothesis h € H uniformly over the choice of this latter.
It is then a measure of the ability of S to represent D w.r.t. learning a hypothesis from

H, the reason for which it is called representativeness of sample S (Shalev-Shwartz and
Ben-David, 2014, Section 26.1).

1.2.5.2 TUniform Generalization Bounds

Until now, the two parameters € and d were chosen arbitrarily, and it is the sample
complexity m/(e, d) that depended on them. Another option is to let m and § free and
to express the approximability parameter € as a function of the two. Additionally, some
results in the literature are not uniform over the choice of the underlying distribution
D, thus € may depend on it as well. With this re-parametrization, we give in the next
definition a general form of uniform generalization inequalities, which are a consequence
of the uniform convergence property (Definition 1.2.2).

Definition 1.2.3 (Uniform generalization bound). Given a hypothesis space H and a
probability distribution D, a uniform generalization bound has the following form.:

For any 6 € (0,1), with a probability at least 1 — & over the draw of sample S ~ D™,
the following holds
Vh e H, €5 (h) <€, (h)+e(D,H,4,m), (1.21)

m—00

where €(D, H, 5, m) 0.

In Equation (1.21), the gap between the true and the empirical risks of any hypothesis
h € H is controlled by €(D,H,d, m) that vanishes when one gathers more data. The
dependence on H is expressed via a complexity measure of this latter: the more complex
are the hypotheses from H, the larger is this term for a fixed m and the slower is the
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convergence towards the true risk. As for the dependence on D, it is introduced to cover
a general form of generalization bounds.

In what follows, we consider two particular cases of uniform generalization bounds
depending on the considered measure of complexity of H given by the Vapnik-Chervonenkis
dimension (Vapnik, 1992) and the Rademacher complexity (Koltchinskii and Panchenko,
2000).

Definition 1.2.4 (VC dimension). The Vapnik-Chervonenkis (VC) dimension of a binary
hypothesis space H is the size of the largest sample of elements from X that can be labeled
in all of the possible ways by hypotheses from H:

VO(H) := max{|A|; |A] < c0; A CX; |H(A)| =211, (1.22)

where
H(A) :={h(x); x € A; h € H} (1.23)

1s the set of all possible labelings of A by elements from H.

The VC dimension is a measure of the richness of the hypothesis space H and captures
from which sample size a hypothesis space H stops behaving like functions from Y¥, as
these latter can label any finite sample A C X in all of the possible 214l ways. It is
independent of the probability distribution D generating the data, which is not the case
for the next complexity measure.

Definition 1.2.5 (Rademacher complexity). Let 71, ..., be Rademacher random vari-
ables, i.e.

1
Plri=1]=Pri=-1=5, Vli<ism.

1. The empirical Rademacher complexity of a hypothesis space H associated to a finite
sample S C X is

Radg (H) := E

T1yeees Py T

sup— 3 rih(xi)] | (1.24)

m
heH M “—

2. The Rademacher complexity of a hypothesis space H associated to a sample size m

Rad,, (H) := Swﬂ%m [Radg (H)] . (1.25)

X

For a sample S, the empirical Rademacher complexity measures the ability of hypothe-
ses from H to correlate with random noise defined by the Rademacher random variables.
If the correlation is high, then the hypotheses are too flexible and may lead to overfitting.

Both introduced complexity measures help in quantifying the deviation of the true
[—risk from the empirical one, as stated by the following theorem.

Theorem 1.2.1. Given a binary hypothesis space H and the misclassification loss lo,
generalization bound of Equation (1.21) holds with e(D,H, §, m) defined:

o with the VC dimension

¢(D,H, 5, m) = 2\/ % <VC(H) log (V?gﬂ)) +log ;‘) (1.26)

e with the empirical Rademacher complexity

loo 1
¢(D,H,8,m) = Radg (H) + 3 ‘;imﬁ. (1.27)
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e with the Rademacher complexity

log

=

(DH,0,m) = (B [Rads ()] + 50

(1.28)

We note that in the first case, the generalization bound is independent of the prob-
ability distribution D, hence it holds uniformly over all the considered distributions in
addition to the hypotheses from H.

While the previous result concerns the 0-1 loss, different generalization bounds can
be derived for other loss functions, especially for those verifying the Lipschitz property
(Definition A.1.2). Moreover, the Rademacher complexity and VC dimension are related,
hence one can establish Rademacher bounds and then deduce VC bounds. We refer the
interested reader to Mohri et al. (2018, Chapter 3) for more details on these aspects.

1.2.5.3 Other Generalization Bounds

The uniform generalization bounds from the previous section do not take into account
the learning algorithm, as they hold uniformly over all of the hypotheses considered. By
algorithm, we mean any rule that takes a sample S ~ D™ and a hypothesis space H and
outputs a hypothesis hg, as in the case of ERM, RRM and SRM (Section 1.1.4).

Recent lines of work provided generalization guarantees that take into account the
algorithm used to produce a hypothesis in order to study its generalization. Among these
contributions, we cite:

Stability theory Introduced by Bousquet and Elisseeff (2002), this framework formalizes
the idea that if the loss associated to the output hypothesis of an algorithm does
not change too much under the removal of one element of the training sample S,
then the learned hypothesis has good generalization properties. More precisely, they
define uniform stability of a learning algorithm as follows.

Definition 1.2.6 (Uniform stability). A learning algorithm 2L has uniform stability
B > 0 w.r.t. a loss function | if for any finite sequence S C X x Y, and for any
ie{l,...,|S|}, we have

sup “(hS(X)>y) - l(hs\hy)’ < 57 (129)
(x,y)es
where S\ := S\ {(xi,4i)} and hg and hg. are learned by A from S and S\ respec-

tively.

If an algorithm verifies the previous definition, then its output hypotheses enjoying
the following generalization guarantee.

Theorem 1.2.2. Let 2 be an algorithm having uniform stability 8 and assume there
exists M > 0 such that for any S ~ D™ and any (x,y) € S, l(h(x),y) < M. Then
for any § € (0,1), with a probability 1 — & over the draw of S ~ D™, we have:

=

log
2m '’

¢l (hg) < €4 (hs) + 26 4 (4mpB + M) (1.30)

where hg is learned by A from S.

The authors show that this requirement is met by RRM (Section 1.1.4.3) algorithms
for loss functions verifying the Lipschitz property w.r.t. the first argument and when
the regularizer is a squared norm in a Reproducing Kernel Hilbert Space (RKHS,
Section 1.2.6.1). They also prove that for several classic algorithms, the stability
factor [ is inversely proportional to the number of samples, hence the generalization

bound enjoys an overall decay rate of \/—%
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Robustness theory Introduced in Xu and Mannor (2010, 2012), the main requirement
for an algorithm to enjoy generalization guarantees is that its output hypothesis
should have similar performance on instances that fall in the same set from an
partition of the X fixed beforehand, as formalized by the following definition.

Definition 1.2.7 (Algoritmic robustness). Given M € N and ¢ : (X x Y)™ — Ry,
an algorithm A is (M, e(-))—robust on D w.r.t. a loss function 1 if it is possible to
partition X x Y into M subsets {Z,}M | such that for all S ~ D™ and all (x,y) €
S, (x',y) ~D and 1 <k < M, we have:

(x,9), (x,y) € 2 = |I(hs(x),y) = Uhs(x'), )| < €(9), (1.31)

where hg is the hypothesis learned by 2 from S.

The robustness-based generalization guarantee is then stated as follows.

Theorem 1.2.3. Let A be an (M, €(-))— robust algorithm on D w.r.t. a loss function
. Assume that for some constant B > 0, l(hg(x),y) < B for all (x,y) € X x Y.
Then, for any § € (0,1), with a probability 1 —§ over the draw of a sample S ~ D™,
we have

2 (10g 2M + log %)

¢l (hg) < €5 (hg) + €(S) + B\/ — , (1.32)

where hg is learned by A from S.

According to Xu and Mannor (2012), the SVM algorithm (Section 1.2.6.1), major-
ity voting-based algorithms and feed-forward neural networks (under Lipschitzness
assumptions) benefit from algorithmic robustness.

PAC Bayesian theory This framework addresses the learning problem from a funda-
mentally different point of view, by expressing a prior belief about the best hypoth-
esis for the learning problem at hand, formalized by a prior probability distribution
Py over h. The goal then is to learn a posterior probability distribution P over
H. Below, we present a generalization bound for the ly; loss due to Catoni (2007),
involving the Kullback-Leibler divergence (Definition A.2.8).

Theorem 1.2.4. Let Py be a prior distribution over H, let § € (0,1) and ¢ > 0.
Then, with a probability 1 — & over the draw of S ~ D™, we have for any probability
distribution P over H.:

E [e%(n)] < — (hgp[egl(h)}+KL(P‘PO)“°g35>. (1.33)

h~P 1—e¢ cm

In addition to the fact that this bound concerns the P—expectation of the [—risk

over H, the parameter c reflects a trade-off between the P—expected empirical risk

o1 : KL(P|Po) . . .
hEp [6 3 (h)] and a complexity term ———————. This trade-off has tight connec-
~ m

tions with the MAP estimation interpretation of the RRM learning rule (in fact,
connections to the SVM algorithm were shown in Germain et al. (2009)). Moreover,

choosing ¢ = \/% allow the r.h.s. to converge towards the empirical risk.

1.2.6 Some Notable Algorithms

In this section, we present two popular supervised classification algorithms: the support
vector machine and the k-nearest neighbors algorithms.
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1.2.6.1 Support Vector Machine (SVM)

Introduced in Boser et al. (1992); Cortes and Vapnik (1995), the SVM is a binary classifi-
cation algorithm (although it can be extended the multiclass setting) based on the idea of
finding a hyperplane that separates the instances of the two classes, while staying as far
as possible from them. Formally, the SVM aims to find an affine hypothesis from the set

H={h:x— (w,x)+b;weR" ||w|,=10b¢cR} (1.34)

that maximizes the minimal signed margin on the observed dataset S. The idea is por-
trayed in Figure 1.3, and consists in solving the following optimization problem:

max ( min y; - h(x;) | . (1.35)
heH \1<i<m
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(a) Several candidate classifiers successfully (b) The candidate maximizing the margin is
separate the two classes. The dashed lines chosen. The support vectors have red edges,
indicate the decision boundaries. and correspond to saturated constraints.

Figure 1.3: Hlustration of the idea behind the SVM algorithm, where the brown and blue
colors represent the two classes.

The previous problem is equivalent to the following quadratic programmming problem

(QP):

beR (1.36)
subject to  y;(wlx; +b) > 1, V1<i<m.

The feasible set of the previous problem is non empty if and only if the two classes are
linearly separable?, which is not always the case in practice. To tackle this limitation, the
constraints are relaxed (Cortes and Vapnik, 1995) via the introduction of non-negative
slack variables &;:

weR”?
beR

subject to & >0, yi(wai +b)>1-¢ V1l<i<m,

min CY» &+ HWH2
; ? (1.37)

2In fact, the constraints define a separating hyperplane between elements of the two classes.
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where C' controls a trade-off between minimizing the violation allowed by slack variables
and the norm of the classifier. The previous formulation is further equivalent to the
following problem:

] . . 2
vxv;%} C’z;l+(<w,x,> +b,yi) + |wl*. (1.38)
€ =

The latter formulation is an instance of RRM (Section 1.1.4.3), and the SVM algorithm
then boils down to solving a convex problem which is nonsmooth due to the non differen-
tiability of the hinge loss.

Dual formulation Arguably, the most popular method for finding the SVM classifier
is switching to its dual formulation that can be shown to have the following form:

min a"Ka—-1Ta
acl0,C]™ (1.39)
st. a'y=0,

where K € R™*™ with K;; = (x;,%x;) and 'y = (y1,.-.,Ym)" -

The dual formulation of the SVM problem is a QP problem, and can be solved using
standard convex optimization software. In practice, the Sequential Minimal Optimization
(SMO) algorithm (Platt, 1998) is widely used by SVM libraries.

The optimal vector w* has the following closed form:

m
wh = Z Q5 YiXi, (1.40)
i=1

where o, the solution of the dual problem, is often sparse in practice, meaning that most
of its components are zero. This implies that the classifier w* is a combination of only
a subset of the data points lying exactly on the margin boundary and commonly called
support vectors. These points can be used to compute the bias term b as well by noticing
that, since y? = 1, a saturated constraint can be equivalently written w’x; + b = y, and
theoretically any point at which the constraints are saturated is sufficient to determine
b. In practice, and for numerical stability, b is computed as an average over the set of p
support vectors (Bishop, 2006, Section 7.1.1):

b= Y (i — (W) (1.41)

i:a; >0

Kernel trick As mentioned above, the first formulation of SVM, called the hard-margin
SVM, admits a solution only when data is linearly separable. This limitation can be
dealt with by introducing the slack variables leading to a soft-margin SVM formulation.
However, even solving the relaxed problem can still result in poor performance when using
affine classifiers. To address this drawback, a common approach in machine learning is to
use a new data representation that can be given, for instance, by a mapping of the data to
a new feature space where the classes may hopefully become linearly separable. This idea
turns out to be particularly suitable in the context of the SVM algorithm since its dual
formulation only depends on the inner products between data instances used to define the
matrix K. This observation is what motivated the so-called kernel trick (Boser et al.,
1992) allowing the SVM dual to be defined for instances in high-dimensional and even
infinite-dimensional spaces, as long as it is possible to calculate the inner product between
two instances in such space. In other words, apart from the instances’ labels, the inner
products between instances is the only information needed to solve the SVM problem.
The idea of such inner products is well-suited for the case of Reproducing Kernel Hilbert
Spaces (RKHS) (Aronszajn, 1950), which are Hilbert spaces of real-valued functions over
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X, where for any x € X the evaluation mapping 7x : f — f(x) is continuous. By invoking
the Riesz representation theorem (Riesz, 1914), it can be represented by an inner product
. In other words, for an RKHS V, we have

Vx € X,3dkx € V. such that Vf eV, (f) = f(x)= (kx, )y - (1.42)

The idea behind the kernel trick is to map the data points from X to a certain RKHS V
via the mapping x — kx and then to consider an inner product in V, known as a kernel
function formally defined as follows.

Definition 1.2.8 (Kernel function). A function K : X x X — R is called a kernel, if there
exists a reproducing kernel Hilbert space (RKHS) (V,(.,.)y) and a mapping ¢ : X — V
such that:

K(x,x) = ($(x). 6(x), (1.43)

According to Definition 1.2.8, K is characterized by an inner product after mapping
the data points from X to V via ¢. However, such a definition requires knowing both
V and ¢, where the latter may not be possible to represent numerically when V is an
infinite-dimensional space. This problem is solved by Mercer’s theorem, which character-
izes functions that are kernels without needing to know V or ¢.

Theorem 1.2.5. (Mercer, 1909) A function K : X x X — R is a kernel, if and only for
any vectors Xi,...,Xy, € X, the matriz K defined by K;; = K(x;,x;) is symmetric and
positive semi-definite (PSD).

We provide examples of some popular kernels in Table 1.3.

Name K(x,x') Parameters
Linear (x,x')
Polynomial (1+ (x,x')) degree b
Radial basis function (RBF)/Gaussian eIl v >0
Laplace e~ M=xlly v >0

Table 1.3: Examples of some commonly used kernel functions.

Although replacing x; by ¢(x;) in Equation (1.40) does not always allow to express w*
explicitely, it still can be done for a given instance at the inference step (Section 1.1.4):

(W o(x))y =D i (d(x1), 9(x))y = Y i K (x4, %). (1.44)
i=1 i=1

Bias-variance trade-off for SVMs According to the value of the parameter C' in
the SVM’s RRM formulation (Equation (1.38)), one can continuously move between the
underfitting and overfitting regimes as illustrated in Figure 1.4:

e For large values of C', one focuses on minimizing the slack variables £ (represented in
the RRM formulation via the hinge loss), at the expense of allowing the norm of the
vector w to be very large and, thus decreasing the separation margin. In this case,
the learned classifier might incur considerable changes by adding new data points
that violate the margin leading to a high variance problem.

e For small values of C, it is the minimization of the classifier’'s norm, and conse-
quently the maximization of the separation margin, that is privileged. The larger
is the demanded separation margin, the more restricted is the choice of candidate
classifiers.
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Aside from C, when using a non-linear kernel, other parameters can be directly related
to overfitting. For example, using a polynomial kernel with a high degree b leads to an
excessive flexibility and can induce a high variance problem.

From a theoretical point of view, the SVM algorithm has appealing generalization
properties, as the VC dimension of the class of affine classifiers in R" is finite and is
equal to p + 1 (Shalev-Shwartz and Ben-David, 2014, Theorem 9.2). In the case of the
{5 norm, corresponding to the most common formulation of the SVM, one can establish
a generalization bound that is independent of the input space’s dimension n by bound-
ing the Rademacher complexity in Equation (1.28). For more details on generalization
bounds for the formulation of the SVM with the /> norm, we refer the interested reader to
Shalev-Shwartz and Ben-David (2014, Section 26.3) and Bartlett and Shawe-Taylor (1999);
Bartlett and Mendelson (2002), and for other norms to Shalev-Shwartz and Ben-David
(2014, Section 26.4) and Kakade et al. (2009).

0.10
0.05
0.00
~0.05

~0.10

C =10"2. C=1.

Figure 1.4: Illustration of the impact of hyperparameter C for a non-linear SVM with
RBF kernel having v = 4. As C increases, the decision boundary becomes more flexible.

Other variations Using the RRM formulation of the SVM (Equation (1.38)) as a ba-
sis, several other variations of it have been proposed in the literature. For instance, the
hinge loss can be replaced by a squared hinge loss (1 —.)2 (Lee and Lin, 2013) to make
the problem smoother and more suitable for gradient-based optimization procedures, es-
pecially in the case of low-dimensional and abundant data. Other modifications include
adding a more sophisticated regularization term (Zhu et al., 2004; Wang et al., 2006). Fur-
thermore, the SVM algorithm was extended to settings different from supervised learning,
such as transductive SVM for semi-supervised learning (Joachims, 1999) and one-class
SVM for anomaly detection (Scholkopf et al., 2000).

1.2.6.2 k-Nearest Neighbors (k-NN)

The k-NN algorithm (Cover and Hart, 1967) is arguably one of the most intuitive super-
vised learning algorithms. It formalizes the idea that when instances are spatially close to
each other in the sense of some metric d : X? — R, (Definition A.1.1), then they should
belong to the same class. More formally, given a test instance x € X, let Ni(x) be the
set of the k closest instances to x from the training sample in the sense of metric d. We
define a scoring function f with components:

i =1 S W) =al (1.45)

Then, the class of x is given by:
h(x) := cxg+ where k™ = argmax fj(x). (1.46)

1<k<K
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40 Chapter 1. Supervised Learning

Hence, given the scoring function f, deciding the class of an element consists in finding
the class with the most of instances within the k neighbors. We immediately see that
the nearest neighbors classifier is not the result of a minimization procedure, and is rather
“learned” by the mere storage of the training data followed by a majority voting. Note that
from a theoretical point of view, the nearest neighbors scoring function (Equation (1.45))

can be seen as an empirical estimate of the class conditional probabilities Ig [y = ck]
X~y |x

(Bishop, 2006, Section 2.5.2), if these probabilities are constant in the neighborhood of x.

Bias-variance trade-off for k-ININ classifiers The number of neighbors & controls the
bias-variance trade-off for the k-NN algorithm. In fact, when using one neighbor to decide
an instance x’s class, one takes more risk of potentially picking an example that does not
represent the dominant class in x’s neighborhood in the input space. As k grows, there’s
less risk that the closest data to x are from different classes, leading to a better estimation
of x’s class membership. Finally, in the extreme case where k = m, we see that fi(x)

in Equation (1.46) becomes the empirical estimation of ]I;) [y = ck], i.e. the resulting
y~Dy

classifier is constant, associating to a testing point x the class with most of instances in
the training set. In this case, the flexibility of the classifier is lost leading to a high bias
problem. From a theoretical point of view, generalization bounds for the nearest neighbors
classifier were derived in several lines of work (Cover and Hart, 1967; Gottlieb et al., 2010;
Shalev-Shwartz et al., 2010).

1.3 Model Selection

In most cases of interest, finding a classifier by solving an optimization problem requires
some parameters to be fixed beforehand. For instance, for algorithms following the RRM
rule (Section 1.1.4.3), the regularization multiplier A has to be chosen, while for the kernel-
based formulation of the SVM and the k-NN algorithms one has to select the kernel
parameter (Table 1.3) and the number of the k neighbors, respectively. Such parameters
are often called hyperparameters, and they reflect some prior knowledge one has about the
problem at hand. They can also be viewed as additional degrees of freedom allowing to fine-
tune the used model to obtain its best possible performance. For example, by increasing
the regularization multiplier, one shrinks the search space towards a prior classifier (equal
to zero in most of the cases).

For any learning algorithm, a given configuration of its hyperparameters leads to a
different instance of the underlying optimization problem, and selecting the “good” con-
figuration w.r.t. to some performance measure is an instance of the model selection prob-
lem. The most commonly used appr