
HAL Id: tel-03199908
https://theses.hal.science/tel-03199908

Submitted on 16 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy, economic and quality of service assessment
using dynamic modelling and optimization for smart

management of district heating networks
Manuel Betancourt Schwarz

To cite this version:
Manuel Betancourt Schwarz. Energy, economic and quality of service assessment using dynamic mod-
elling and optimization for smart management of district heating networks. Thermics [physics.class-
ph]. Ecole nationale supérieure Mines-Télécom Atlantique; Instituto superior técnico (Lisbonne),
2021. English. �NNT : 2021IMTA0234�. �tel-03199908�

https://theses.hal.science/tel-03199908
https://hal.archives-ouvertes.fr


 
 

 
 

Par/by                        Manuel BETANCOURT SCHWARZ 

 

 

Energy, Economic and Quality of Service assessment using 

Dynamic Modelling and Optimization for Smart Management of 

District Heating networks  

Thèse présentée et soutenue à / Defended in : Nantes, France le/on Fév. 15 2021 

Unité de recherche : GEPEA UMR CNRS 6144 

Thèse N° : 2021IMTA0234 

 

THESE DE DOCTORAT DE / DOCTORAL THESIS 
 

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE BRETAGNE PAYS DE 

LA LOIRE - IMT ATLANTIQUE  

ECOLE DOCTORALE N° 602 : Sciences pour l'Ingénieur  

Spécialité : Energétique, Thermique et Combustion 

 

ET/AND  

 

INSTITUTO SUPERIOR TÉCNICO DA UNIVERSIDADE DE LISBOA 

 

KTH ROYAL INSTITUTE OF TECHNOLOGY 

Subject : Energy Technology 

 

 

 

  

JURY/ COMMITTEE 

Rapporteurs / Reviewers :        Lieve HELSEN, Prof., KU Leuven, Belgique 

Sylvain SERRA, HDR, Maître de conférences, Université de Pau et des Pays de L’Adour, France 

 

Président/President:  Andrew MARTIN, Prof. KTH Royal Institute of Technology, Suède 

 

Examinateurs / Members :      Lieve HELSEN, Prof., KU Leuven, Belgique 

Sylvain SERRA, HDR, Maître de conférences, Université de Pau et des Pays de L’Adour, France 

 
Dir. de thèse / Supervisors :       Bruno LACARRIERE, Prof., IMT Atlantique, France 

     Carlos SANTOS SILVA, Prof., Instituto Superior Técnico da Universidade de Lisboa, Portugal 
 

Encadrant / Co-supervisor :          Pierrick HAURANT, Assoc. Prof., IMT Atlantique, France 
    



 
 

 
 

  



 
 

 
 

 

 

 

 



 
 

 
 

  



 
 

i 
 

Acknowledgments 

The present research is performed within the framework of the Erasmus Mundus Joint 

Doctorate SELECT+ program ‘Environomical Pathways for Sustainable Energy Services’ 

and funded with support from the Education, Audiovisual, and Culture Executive Agency 

(EACEA) (Nr 2012-0034) of the European Commission. Support from the IN+ strategic 

Project UID/EEA/50009/2013 is also gratefully acknowledged. This publication reflects 

the views only of the author(s), and the Commission cannot be held responsible for any use, 

which may be made of the information contained therein. 

Foremost, I would like to express my deep appreciation for my supervision team: Bruno 

Lacarrière, Carlos Auguto Santos Silva, Mohamed Tahar Mabrouk and Pierrick Haurant. 

Their ever-present guidance and their timely support were invaluable for the completion of 

this PhD. It is indisputable that I have become a better person, professionally and personally, 

through my interactions with you. I would also like to thank the reviewer members of my 

committee: Sylvain Serra and Lieve Helsen. 

My sincere thanks to Andrew Martin from the KTH, whose yearly evaluation always 

contributed towards the improvement of the research and who agreed to be part of my 

defense committee. Same for Chamindie Senaratne, Sandra Machado and Dominique 

Briand, whose role in the management of the PhD candidates always made it easy to get the 

equipment and funding needed for this research. Thank you also to Rui Costa Nieto, who 

gave me access to the heat network and database at the IST campus Tagus-Park. And special 

thanks to all the people and staff from IMT Atlantique, IST de Lisboa and the SELECT+ 

group whose assistance contributed to the completion of this project. 

Last but not least, I would like to express special thanks to my family: Manuel, Cristina, José 

Juan and María, who were there by my side at every step of this research and whose love 

made the distance separating México from France and Portugal feel non-existent. Genuine 

gratitude also to my friends, specially Getnet Ayele, Rita Silva and Leonie Partsch, whose 

company, inquisitive minds, and beautiful souls make every day an opportunity to grow and 

a joy to live.  



 
 

ii 
 

  



 
 

iii 
 

Table of Contents 

Table of Contents ............................................................................................................................ iii 

List of Figures .................................................................................................................................. vii 

List of Tables .................................................................................................................................... xi 

List of Equations ............................................................................................................................ xiii 

Acronyms….. ................................................................................................................................... xv 

Nomenclature and Symbols ........................................................................................................ xvii 

Foreword…… ................................................................................................................................ xxi 

Résumé Substantiel ...................................................................................................................... xxiii 

Long Abstract ............................................................................................................................... xxxi 

1 Introduction ............................................................................................................................ 1 

2 Literature Review ................................................................................................................... 9 

2.1 Modeling of DH systems ............................................................................................ 12 

2.2 Optimization of DH systems ..................................................................................... 14 

2.2.1 Linear Programming Formulation ....................................................................... 15 

2.2.2 Non-Linear Programming Formulation .............................................................. 16 

2.3 Evaluation of DH systems .......................................................................................... 19 

2.4 Literature review conclusions ..................................................................................... 22 

3 Methodology ......................................................................................................................... 25 

3.1 Modeling of DH systems ............................................................................................ 27 

3.1.1 The Dynamic Model............................................................................................... 29 

3.1.2 Modeling Heat Transport in Pipes ....................................................................... 31 

3.1.3 Modeling Heat Balance in a Node ....................................................................... 36 

3.2 Optimization of DH systems ..................................................................................... 38 

3.2.1 Dispatch Optimization .......................................................................................... 38 

3.2.2 Temperature Optimization .................................................................................... 41 



 
 

iv 
 

3.3 Evaluation of DH systems .......................................................................................... 48 

3.3.1 Energy Indicator ..................................................................................................... 48 

3.3.2 Economic Indicators .............................................................................................. 48 

3.3.3 Quality of Service indicators ................................................................................. 50 

4 Dynamic Model: Results and Discussion ......................................................................... 55 

4.1 Validation of the Dynamic Model ............................................................................. 55 

4.1.1 Pre-heating test results ........................................................................................... 57 

4.1.2 “Normal operation” test results ........................................................................... 62 

4.2 Delay, Losses and Thermal Inertia in DH networks .............................................. 67 

4.2.1 Temperature step increase in a pipe ..................................................................... 67 

4.2.2 Temperature step decrease in a pipe .................................................................... 69 

4.2.3 Temperature sinusoidal variation in a pipe ......................................................... 70 

4.2.4 Pipe Supply Factor .................................................................................................. 71 

4.3 Conclusion .................................................................................................................... 72 

5 DOft Optimization: Results and Discussion ................................................................... 75 

5.1 Oft-base: Optimization using HeatGrid and the Dynamic Model ....................... 81 

5.2 Oft 1: Optimization using HeatGrid, the Dynamic Model and the real losses .. 85 

5.3 DOft 2: Optimization using HeatGrid, the Dynamic Model, real losses, mean 

demands and NOMAD ............................................................................................... 88 

5.4 DOft 3: Optimization using HeatGrid, the Dynamic Model, the real losses, mean 

demands, NOMAD and the Pipe Supply Factor .................................................... 91 

5.5 DOft 4: Optimization using HeatGrid, the Dynamic Model, the real losses, mean 

demands, NOMAD, the Pipe Supply Factor and ±5°C T° constraint ................ 94 

5.6 DOft 5: Optimization using HeatGrid, the Dynamic Model, the real losses, mean 

demands, NOMAD, the Pipe Supply Factor and ±10°C T° constraint .............. 97 

5.7 DOft 6: Optimization using HeatGrid, the Dynamic Model, the real losses, 

NOMAD, the Pipe Supply Factor and a Sliding Window ................................... 100 



 
 

v 
 

5.8 DOft 7: Optimization using HeatGrid, the Dynamic Model, the real losses, 

NOMAD, the Pipe Supply Factor, a Sliding Window and Demand Response 103 

5.9 Temperature, deficit, surplus and PSF mapping ................................................... 107 

5.10 Conclusion .................................................................................................................. 112 

6 Evaluation of DH: Results and Discussion .................................................................... 115 

6.1 Energy Indicators ....................................................................................................... 115 

6.2 Economic Indicators ................................................................................................. 116 

6.3 Quality of Service Indicators .................................................................................... 120 

6.4 Conclusion .................................................................................................................. 126 

7 Application of DOTS to a Test Network using Real Data .......................................... 127 

7.1 Evaluation of the results ........................................................................................... 134 

7.2 Conclusion .................................................................................................................. 137 

8 Conclusions and Future Works ........................................................................................ 139 

Afterword….. ................................................................................................................................ 145 

Bibliography.. ................................................................................................................................. 149 

Annex…………………………………………………………………………………..153 

 

  



 
 

vi 
 

  



 
 

vii 
 

List of Figures 

Figure 1-1: Main Objective, Research Questions and Specific Objectives. ............................. 6 

Figure 3-1: Methodology diagram ............................................................................................... 28 

Figure 3-2: Example of an Oriented Graph and its adjacency matrix. .................................. 29 

Figure 3-3: Diagram of the Dynamic Model in graphic form and descriptive form. .......... 30 

Figure 3-4: Heat balance for the water inside element j of a pipe. ......................................... 32 

Figure 3-5: Heat balance for element j of the pipe. .................................................................. 33 

Figure 3-6: Thermal Circuit for an insulated pipe considering only one capacitance. ........ 35 

Figure 3-7: Representation of a node and its flows in a DH system. .................................... 37 

Figure 3-8: Diagram of the integration of HeatGrid with the Dynamic Model (Oft). ....... 42 

Figure 3-9: Diagram of integration of NOMAD, HeatGrid and the Dynamic Model (DOft).

 ................................................................................................................................... 47 

Figure 4-1: Network topology used ............................................................................................ 56 

Figure 4-2: Available power comparison at every node in the network for the FVN method 

and the Dynamic Model with CFL=1. ................................................................ 58 

Figure 4-3: Power available and Absolute Error at Node 3 for five CFL values using the 

FVN method. .......................................................................................................... 59 

Figure 4-4: Power available and Absolute Error at Node 6 for five CFL values using the 

FVN method. .......................................................................................................... 60 

Figure 4-5: Power available and Absolute Error at Node 3 for five CFL values using the 

Dynamic Model. ...................................................................................................... 61 

Figure 4-6: Power available and Absolute Error at Node 6 for five CFL values using the 

Dynamic Model. ...................................................................................................... 62 

Figure 4-7: Demand of every consumer node for the evaluated period. .............................. 63 

Figure 4-8: Spatial-Temporal distribution of the temperature in the supply network; Mass 

Flow rates for every pipe in the network. ........................................................... 65 

Figure 4-9: Temperature difference between supply and return side at every Node. ......... 65 



 
 

viii 
 

Figure 4-10: KPI for the two generation nodes and for the entire system. .......................... 66 

Figure 4-11: Delay and Inertia for a 1000m pipe during a step input from 60°C to 90°C with 

a mass flow rate of 35 kg/s.. ................................................................................. 68 

Figure 4-12: Delay and Inertia for a 1000m pipe during a step input from 90°C to 60°C with 

a mass flow rate of 35 kg/s.. ................................................................................. 69 

Figure 4-13: Delay and Inertia for a 1000m pipe during a sine input with a mass flow rate of 

35 kg/s. ..................................................................................................................... 71 

Figure 5-1: Network topology. .................................................................................................... 75 

Figure 5-2: Demand of the proposed network for the evaluated period. ............................. 77 

Figure 5-3: Generation, global PSF, Temperatures, Mass Flow Rates, total Surplus and 

Deficit for Oft-base. ............................................................................................... 84 

Figure 5-4: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for 

Oft 1.......................................................................................................................... 87 

Figure 5-5: Generation, global PSF , Temperature, Mass Flow Rate, Surplus and Deficit for 

DOft 2. ..................................................................................................................... 90 

Figure 5-6: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for 

DOft 3. ..................................................................................................................... 93 

Figure 5-7: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for 

DOft 4. ..................................................................................................................... 96 

Figure 5-8: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for 

DOft 5. ..................................................................................................................... 99 

Figure 5-9: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for 

DOft 6. ................................................................................................................... 102 

Figure 5-10: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for 

DOft 7. ................................................................................................................... 105 

Figure 5-11: Demand Response factor (Alpha). ...................................................................... 107 

Figure 5-12: Spatial Temporal distribution of temperature, individual and global PSF, and 

deficit and surplus per node for Oft-base. ........................................................ 110 

Figure 5-13: Spatial Temporal distribution of temperature, individual and global PSF, and 

deficit and surplus per node for DOft 7. .......................................................... 112 



 
 

ix 
 

Figure 6-1: Energy generation, energy efficiency, cost of generation, revenue and profit from 

supply, and source of the difference from revenue and profit for each 

optimization strategy. ........................................................................................... 119 

Figure 6-2: Number of interruptions per consumption node for each strategy. ............... 122 

Figure 6-3: Failure rate per consumption node for each strategy. ....................................... 123 

Figure 6-4: Repair rate per consumption node for each strategy. ........................................ 123 

Figure 6-5: Average duration of interruption per customer for each strategy. .................. 124 

Figure 6-6: SAIFI, SAIDI and CAIDI for each strategy. ...................................................... 125 

Figure 7-1: Demand for the simulated period. ........................................................................ 128 

Figure 7-2: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for 

for 1 week using Oft-base strategy. .................................................................... 130 

Figure 7-3: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for 

1 week using DOft 7 strategy. ............................................................................. 132 

Figure 7-4: Demand Response factor for the whole week.. .................................................. 133 

Figure 7-5: Demand Response factor for 12 hours of Tuesday. .......................................... 133 

Figure 7-6: Energy generation, energy efficiency, cost of generation, revenue and profit from 

supply, and source of the difference from revenue and profit for 1 week 

simulation. .............................................................................................................. 136 

 

  



 
 

x 
 

  



 
 

xi 
 

List of Tables 

Table 4-1: Characteristics of the pipes in the network. ............................................................ 57 

Table 4-2: Max Absolute and Relative Errors for different CFLs using FVN and the 

Dynamic Model. ...................................................................................................... 62 

Table 5-1: Pipe characteristics. ..................................................................................................... 76 

Table 5-2: Fuel price for the 3 heat plants. ................................................................................ 76 

Table 5-3: Simulation and optimization characteristics of each strategy. .............................. 78 

Table 6-1: SAIFI, SAIDI and CAIDI for each strategy. ........................................................ 125 

Table 7-1: QoS indicators for Oft-base and DOft 7. ............................................................. 135 

 

  



 
 

xii 
 

  



 
 

xiii 
 

List of Equations 

Equation 3-1: Darcy-Weissbach equation.................................................................................. 31 

Equation 3-2: Effective roughness. ............................................................................................ 31 

Equation 3-3: Heat balance inside a pipe element. .................................................................. 32 

Equation 3-4: Balance equations for the water inside a pipe element in explicit form. ..... 33 

Equation 3-5: Heat balance for a pipe wall. .............................................................................. 34 

Equation 3-6: Equations in Ax=B matrix form. ...................................................................... 34 

Equation 3-7: Equations for the Dynamic Model. ................................................................... 35 

Equation 3-8: Time Constant. ..................................................................................................... 36 

Equation 3-9: Average Heat Loss Coefficient. ......................................................................... 39 

Equation 3-10: Operation temperature calculation by HeatGrid. ......................................... 39 

Equation 3-11: Operation cost of the DH network. ................................................................ 39 

Equation 3-12: Mesh equation for the MADS algorithm. ....................................................... 43 

Equation 3-13: Objective function of DOft. ............................................................................ 44 

Equation 3-14: Energy generation. ............................................................................................. 44 

Equation 3-15: Deficit and Surplus. ........................................................................................... 45 

Equation 3-16: Energy efficiency. ............................................................................................... 48 

Equation 3-17: Generation cost, revenue and profit. .............................................................. 49 

Equation 3-18: Failure rate. .......................................................................................................... 51 

Equation 3-19: Repair rate. .......................................................................................................... 51 

Equation 3-20: Average duration of interruption per customer. ........................................... 51 

Equation 3-21: SAIFI. .................................................................................................................. 51 

Equation 3-22: SAIDI. ................................................................................................................. 52 

Equation 3-23: CAIDI. ................................................................................................................ 52 

Equation 3-24: Equivalent customers. ....................................................................................... 52 

Equation 4-1: Difference between supply and return temperatures at node k. ................... 63 



 
 

xiv 
 

Equation 4-2: Performance indicator of generation plant in node k. ................................... 63 

Equation 4-3: Pipe Supply Factor for time frame 𝑖. ................................................................ 71 

Equation 5-1: Alpha calculation for time step 𝑖. ..................................................................... 104 

  

  



 
 

xv 
 

Acronyms 

4GDH  4th Generation District Heating 

AENS  Average Energy not Supplied 

CAIDI   Customer Average Interruption Duration Index 

CAIFI   Customer Average Interruption Frequency Index 

CFL   Courant-Friedrich-Levy condition 

DH  District Heating 

DOTS Dynamic Optimization of DH for its Transition towards Smart Thermal   

Networks 

EENS  Expected Energy not Supplied 

ENS  Energy not Supplied 

FVN  Finite Volumes Node method 

GA  Genetic Algorithm 

H2020  Horizon 2020 

HG  HeatGrid 

ICT   Information and Communication technologies 

M&S  Modelling and Simulation 

MADS  Mesh Adaptive Direct Search 

NOMAD Nonlinear Optimization by Mesh Adaptive Direct Search 

PSF  Pipe Supply Factor 

PSO  Particle Swarm Optimization 

QoS  Quality of Service 

RC  Resistive, Capacitive circuit 

RES  Renewable Energy Sources 

𝑆𝑛𝐷  Surplus and Deficit function 

SAIDI   System Average Interruption Duration Index 

SAIFI   System Average Interruption Frequency Index 

STN   Smart Thermal Networks 

 



 
 

xvi 
 

 

  



 
 

xvii 
 

Nomenclature and Symbols 

DOTS nomenclature 

𝐶 thermal capacitance (J·K-1) 

𝐶𝑝 specific heat  (J·kg-1·K-1) 

𝐷𝑊 head loss   (m) 

𝑑 pipe diameter  (mm) 

∆𝑡 time step duration (s) 

∆𝑥 spatial discretization (m) 

𝑒𝑠 effective roughness 

𝑓𝑓 friction factor 

𝑔 gravity   (m·s-2) 

𝐻 global heat transfer  (W·m-2·K-1) 

coefficient    

𝑘 thermal conductivity (W·m-1·K-1) 

L length of the pipe (m) 

𝑚̇ mass flow rate  (kg·s-1) 

𝑚 number of branches 

𝑛 number of nodes  

𝑁 number of customers 

𝑃 power   (kW) 

𝑄 heat   (kWh)1 

𝑅 thermal resistance (K·W-1) 

Re Reynolds number 

𝑟 repair rate 

 
1 Or kW when specified. 



 
 

xviii 
 

𝑠 thickness  (mm) 

𝑇 temperature  (K) 

𝑈 average duration  

of an interruption 

𝑢 flow speed  (m·s-1) 

V volume   (m3) 

𝑧𝑑𝑒𝑝𝑡ℎ depth of burrowed (m) 

pipes 

MADS nomenclature 

𝑓 Objective function 

𝜒 MADS iteration 

𝑙 MADS iteration index 

𝑆𝑙 MADS set of evaluated points 

𝐷 𝑛 × 𝑛𝐷 real matrix 

Δ𝑙
ℎ scaling mesh size parameter 

𝑧 integer vector 

𝑛𝐷 finite fixed set of directions 

Δ𝑙
𝑝
 scaling parameter for polling 

 

Greek letters 

𝛼 demand response factor 

𝜂 efficiency 

𝜆 failure rate 

𝜌 density 

𝜏 time constant 



 
 

xix 
 

Sub-indices and super-indices 

𝑎 ambient 

𝑑𝑒𝑓 deficit 

𝐷𝑦𝑚 Dynamic Model 

𝑔 pipe index 

𝑔𝑟𝑜 soil 

ℎ search step in MADS 

𝑖 temporal index in Dynamic Model 

𝑖𝑛 variable value at input 

𝑖𝑛𝑠 insulation 

𝑗 spatial index 

𝑘 node index 

𝑙 iteration number in MADS 

𝑙𝑜𝑠𝑠 heat losses 

𝑜𝑝 optimization 

𝑜𝑢𝑡 variable value at output 

𝑝 polling step in MADS 

𝑅 return side 

𝑠 supply side 

𝑠𝑡 pipe 

𝑠𝑢𝑟 surplus 

𝑡 temporal index in DOTS 

  



 
 

xx 
 

  



 
 

xxi 
 

Foreword 

During the past ~250 years the planet has seen an unprecedented degree of change. The 

human species gained a control of its surroundings never seen before, becoming capable of 

transforming their environment rather than just inhabiting it. During this time humanity 

experienced the industrial revolution, which freed millions of people from basic activities to 

focus on art, science, leisure, or anything they fancied. This time saw the information 

revolution, granting unparalleled access to information to anyone with a linked device and 

the capability of instant communication. People left the fields and flocked to the cities, 

making it easier for everyone to obtain access to food, water, transport, electricity, health, 

education, and a myriad of other products and services. Never has humanity been as rich as 

a whole in history. 

But this change did not come for free. This seemingly unlimited access to information, 

communication, products, and services requires great amounts of energy to be sustained. 

Energy whose conversion leaves a dire mark on the planet, energy that is ever increasingly 

harder to obtain. This is not new for us humans; our advancements have usually come with 

an increase in energy use accompanied by an environmental toll. After food, wood was for 

millions of years our prime source of energy. As communities grew, forests disappeared. We 

then changed to coal, protecting our forests, and darkening our skies. Oil came next, clearing 

the skies by filling them with invisible pollutants and greenhouse gases… 

We are at a turning point for humanity. Our decisions today will have an impact lasting for 

generations to come. Many of us are aware of this and are trying to find a solution to the 

million-year old question: Can there be development without an increase in energy use? Can 

there be an increase in energy use without a negative environmental effect? Many possible 

solutions have been proposed, the one with the most traction is possibly the change to 

renewable sources of energy (RES). For millions of years, we have depended on fuels to 

harvest energy: wood, coal, oil, uranium. A change to RES is possible, but they require a 

change of paradigm as well. You cannot burn wind in a reactor whenever you want, you 

cannot feed sunlight to a furnace whenever you are cold, you cannot make it rain as you 

please. 
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Résumé Substantiel 

Mots Clés : Réseaux de chaleur, Modélisation Dynamique, Optimisation des Systèmes 

Dynamiques, Réseaux Thermiques Intelligents, Evaluation Energétique, Evaluation 

Economique, Evaluation de la Qualité de Service 

Le contexte de part croissante des Énergies Renouvelables (EnR), d’une production de plus 

en plus décentralisée, de bâtiments plus efficaces, de couplages de production multi-énergies, 

de systèmes énergétiques intégrés, de stockage…, en complément du déploiement croissant 

de réseaux de chauffage urbain basse température et de smart grids, exige une évolution dans 

la façon dont les réseaux d’énergie sont conçus et exploités. Avec une population mondiale 

de plus en plus urbaine, un nouveau modèle de ville est apparu : la Smart City. La Smart City 

est définie, entre autres composantes de sa définition, par un nouveau modèle de gestion de 

l'énergie qui vise à garantir l'approvisionnement en énergie de tous en atténuant l'impact sur 

l'environnement [1]. 

En milieu urbain, les trois utilisations les plus importantes de l'énergie sont l'électricité, les 

transports et la chaleur. Des trois, la chaleur correspond à la plus grande part de la 

consommation finale d'énergie, représentant environ 50% de la consommation dans les villes 

européennes [2]. Dans le cas des ménages européens, la chaleur représente plus de 75% de 

la consommation finale d'énergie. Cela fait de la chaleur et des réseaux de distribution de 

chaleur une cible importante pour mettre en œuvre des solutions d’efficacité qui réduiraient 

les coûts et permettraient le déploiement de sources d'énergie alternatives. 

La chaleur pour le chauffage domestique et commercial des locaux et pour l'eau chaude 

sanitaire peut être générée à plusieurs endroits de la ville et être utilisée via un réseau de 

distribution permettant la mutualisation des productions [3]. Ces réseaux de distribution de 

chaleur sont appelés réseaux de chauffage urbain (RCU en français et DH pour District 

Heating en anglais). La taille de ces systèmes varie d’un ensemble de bâtiments jusqu’à une 

ville complète. Historiquement, la gestion des réseaux DH a été considérée comme un 

problème statique où le contrôle opérationnel est réduit au minimum et le réseau n'est 

reconfiguré qu'occasionnellement [4] - [6]. 

Ce modèle de conception et de fonctionnement s'avère obsolète et incompatible avec le 

concept Smart City [7]. À l'avenir, le chauffage urbain devra connecter les bâtiments à faible 

consommation d'énergie via des réseaux basse température avec une efficacité accrue où les 
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énergies renouvelables et la production décentralisée sont intégrées [3]. Ces systèmes devront 

être économiquement et écologiquement durables. Pour ce faire, les réseaux de chaleur 

s'appuieront fortement sur les Technologies d’Information et de Communication (TIC). Par 

analogie avec les réseaux électriques intelligents, le réseau thermique intelligent (STN) 

s’appuiera fortement sur le couplage des TIC, de la modélisation et de la simulation (M&S) 

et de l'optimisation pour le suivi de la qualité de services, afin de permettre un échange 

d'informations rapide et un contrôle efficace [8]. 

Sur cette base, l'objectif principal de la thèse est de proposer un nouveau modèle de gestion 

de DH en combinant des outils de modélisation, de simulation et d'optimisation, pour une 

compatibilité future avec une gestion via les TIC (non abordée ici). Le but est de démontrer 

la possibilité de transition des systèmes DH vers STN en considérant la dynamique de 

distribution du système, en lien avec le service énergétique proposé aux consommateurs 

raccordés aux réseaux. Les résultats de cette recherche montrent les capacités des réseaux 

DH à devenir une partie intégrante du modèle énergétique local et plus en lien avec le concept 

de Smart City. 

Les travaux présentés ici prennent le réseau électrique intelligent comme point de référence 

pour proposer des solutions de gestion du réseau thermique plus efficace, tout en abordant 

les limites de l’analogie entre les deux systèmes de distribution. Ces différences proviennent 

notamment de la dynamique impliquée dans la distribution de la chaleur. Contrairement aux 

réseaux électriques, une variation de la production de chaleur nécessite un certain temps 

avant d'être perçue par les consommateurs selon leur position sur le réseau. De même, il 

existe une certaine inertie thermique du réseau qui impacte toute action de changement de 

l’état de ses variables de pilotage. Les travaux de recherche présentés ici prennent en compte 

cette spécificité et proposent un nouveau modèle de gestion de ces systèmes basé sur 

l'optimisation dynamique de la distribution, dans le but d’une sa transition vers des réseaux 

thermiques intelligents (ce modèle sera appelé DOTS (Dynamic Optimization of DH for its 

Transition towards Smart Thermal Networks) dans la suite du document). 

Le modèle DOTS est constitué de trois parties : la modélisation dynamique des réseaux de 

distribution des DH, l'optimisation du réseau de chaleur dans son ensemble et une évaluation 

multicritère de sa performance. L'approche de modélisation est basée sur la modélisation 

physique des réseaux DH à l'aide de graphes orientés et d'une méthode modifiée des volumes 

finis. L'optimisation est divisée en deux étapes : L'optimisation de l'ordre de mobilisation des 

différents systèmes de production (dispatch) et l'optimisation de la température de 
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génération. Le dispatch correspond à un ordre de priorité basé sur le coût de production et 

l'optimisation des températures de production est réalisée en minimisant la production totale, 

la demande non satisfaite (déficit) et l'excès de chaleur (surplus). L'évaluation globale du 

réseau de chaleur se fait au travers d’indicateurs énergétiques, économiques et de qualité de 

service. 

Le modèle de simulation, appelé Dynamic Model car il permet une simulation dynamique du 

réseau, donne des informations sur le délai entre la production de chaleur et sa disponibilité 

à chaque sous station, l'inertie thermique du réseau, l'énergie stockée dans les conduites, et 

sur la distribution en temps réel des températures dans les tuyaux. Pour aborder la dynamique 

du réseau, ce travail propose l'utilisation d'un nouvel indicateur de fonctionnement appelé 

Facteur de Charge des Conduites (PSF en anglais pour Pipe Supply Factor). Le PSF donne 

le rapport entre l'énergie entrant dans une conduite et l'énergie qui en ressort. Le modèle 

dynamique et le PSF doivent ainsi permettre à l'opérateur du réseau de chaleur (DHO) de 

connaître l'état de charge et de décharge des conduites du réseau et d'utiliser ces informations 

pour mieux ajuster la production et la distribution d’énergie, réduisant ainsi les surplus et les 

déficits subis par le réseau et améliorant la Qualité de Service (QoS) ainsi que l’efficacité 

énergétique du système. 

La partie optimisation de DOTS s'appelle DOft et combine deux niveaux d’optimisation via 

deux outils différents. L'optimisation de la production de chaleur (plus précisément du 

dispatch) se fait à l'aide de HeatGrid [9], un outil développé par IMT Atlantique qui utilise 

une variante de l'algorithme prédicteur-correcteur de Mehrotra pour sa routine 

d'optimisation. L'optimisation des températures de génération se fait à l'aide de NOMAD 

[10], un outil qui utilise l'algorithme MADS [11] pour l'optimisation. Ensemble, ils 

minimisent les coûts de production tout en minimisant la production totale, les déficits et les 

surplus dans tout le réseau. 

Les travaux présentés ici proposent également une stratégie d’évaluation des réseaux DH 

d'une manière holistique. Actuellement, les études portant sur l’optimisation de ces systèmes, 

ciblent principalement l'optimisation de son efficacité énergétique ou de sa performance 

économique. Les études axées sur la qualité de service (QoS) sont peu nombreuses et souvent 

traitées du point de vue de l'utilisateur final uniquement. Est proposé ici un cadre d'évaluation 

basé sur des indicateurs énergétiques et économiques existants, comme l'efficacité 

énergétique et le coût de fonctionnement par MWh de demande, mais aussi des indicateurs 

de qualité de service inspirés de ce qui existe pour les réseaux électriques (non encore 
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appliqués aux réseaux de chaleur). Ces indicateurs sont le System Average Interruption 

Frequency Index (SAIFI), le System Average Interruption Duration Index (SAIDI) et le 

Costumer Average Interruption Duration Index (CAIDI). Les SAIFI, SAIDI et CAIDI 

donnent des informations précieuses sur le fonctionnement du réseau DH qui permettent à 

l’opérateur (DHO) d'évaluer l'efficacité du système et d'ajuster la distribution d'énergie d'un 

point de vue plus systémique. 

Afin d’analyser la solution DOTS, les travaux présentent les résultats obtenus à partir de trois 

tests développés pour démontrer la fiabilité et les capacités du modèle dynamique et les effets 

de huit stratégies d'optimisation différentes réalisées avec DOft. Les huit stratégies 

d'optimisation sont évaluées en analysant l'impact des solutions proposées d'un point de vue 

énergétique, économique et de qualité de service. Les trois tests du modèle dynamique sont: 

1. Un test qui montre ses performances par rapport à la méthode existante Node 

Volumes Finis. 

2. Un test qui montre sa capacité à cartographier la distribution spatio-temporelle de la 

température dans un réseau DH lorsque les aspects dynamiques sont considérés. 

3. Un test qui montre sa capacité à rendre compte de l'inertie du système et des effets 

de cette inertie. 

Les huit stratégies testées à l'aide de l'optimisation DOft, sont : 

1. Oft-base : stratégie prenant en compte une température de génération fixe 

(température non optimisée), un fonctionnement en régime permanent et des 

coefficients de déperdition thermique moyens constants pour les canalisations du 

réseau. Chaque heure de fonctionnement est optimisée indépendamment des autres. 

Cette stratégie sert de référence pour les autres car c’est celle qui se rapproche le plus 

de la gestion classique des réseaux actuels. 

2. Oft 1 : stratégie prenant en compte une température de production fixe, un 

fonctionnement en régime permanent et des coefficients de perte de chaleur moyens 

variables pour les canalisations du réseau. Chaque heure de fonctionnement est 

optimisée indépendamment des autres. 

3. DOft 2 : stratégie tenant compte de l'optimisation de la température de production, 

du fonctionnement en régime permanent et des coefficients de déperdition 

thermique moyens variables des canalisations du réseau. Chaque heure de 

fonctionnement est optimisée indépendamment des autres. 
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4. DOft 3 : stratégie prenant en compte l'optimisation de la température de production, 

la dynamique de fonctionnement (retard, inertie et stockage à court terme dans les 

canalisations), et des coefficients de déperdition thermique moyens variables pour les 

canalisations du réseau. La période d'optimisation est étendue à trois heures pour 

garantir la convergence et chaque période est optimisée indépendamment des autres. 

5. DOft 4 : stratégie prenant en compte une optimisation de la température de 

génération sous contrainte (pas plus de ± 5 ° C d’écart entre les périodes 

d'optimisation), la dynamique de l'exploitation et des coefficients de déperdition 

thermique moyens variables pour les canalisations du réseau. La contrainte de 

température représente les systèmes qui donnent la priorité au contrôle du débit 

massique ou les systèmes dont les centrales de production ne peuvent pas avoir de 

variations rapides de leur température de fonctionnement. La période d'optimisation 

est étendue à trois heures et chaque période est optimisée indépendamment des 

autres. 

6. DOft 5 : stratégie prenant en compte une optimisation de la température de 

génération contrainte (pas plus de ± 10 °C d’écart entre les périodes d'optimisation), 

la dynamique de l'exploitation et des coefficients de déperdition thermique moyens 

variables pour les canalisations du réseau. La période d'optimisation est étendue à 

trois heures et chaque période est optimisée indépendamment des autres. 

7. DOft 6 : stratégie tenant compte de l'optimisation de la température de production, 

de la dynamique de fonctionnement et des coefficients de déperdition calorifique 

moyens variables des canalisations du réseau. L'optimisation est changée en une 

optimisation d'horizon, où l'horizon a une durée de trois heures et contient une 

fenêtre glissante d'une heure. Dans l'horizon, chaque pas de temps d'une heure est 

optimisé mais l'optimum est trouvé pour l'horizon, pas pour les pas de temps 

indépendants. Une fois qu'une solution est trouvée, l'horizon avance d'une heure et 

l'optimisation est répétée. De cette manière, toutes les optimisations sont connectées 

aux optimisations précédentes et suivantes. Cette optimisation est ici nommée 

optimisation d'horizon. 

8. DOft 7 : stratégie tenant compte de l'optimisation de la température de production, 

de la dynamique de l'exploitation, des coefficients de déperdition thermique moyens 

variables des canalisations du réseau et des capacités de réponse à la demande (DR) 

des sous stations. L'optimisation est changée en une optimisation d'horizon. 
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L'horizon est fixé à trois heures avec une fenêtre glissante d'une heure, ainsi toutes 

les optimisations sont liées aux optimisations précédentes et suivantes. 

Les résultats des trois tests du modèle dynamique montrent que, par rapport à la méthode 

Node Volumes Finis, il ajoute de la robustesse aux résultats lorsque l'on travaille avec une 

discrétisation spatiale fixe des tuyaux et il réduit également les temps de calcul tout en 

maintenant la précision. Les résultats ont également montré que même lorsque la 

température et les débits massiques au niveau des centrales de production sont connus, le 

nombre de variables et de phénomènes physiques rend difficile la connaissance de l'état du 

réseau en temps réel. Le modèle proposé montre sa pertinence, d’autant que, comme évoqué 

précédemment, de nombreux réseaux DH ont un monitoring limité focalisant 

principalement sur les centrales de production. 

Le modèle dynamique a également permis d'étudier les effets que le retard, les pertes et 

l'inertie thermique ont sur l'alimentation en énergie d'un système en dehors du régime 

permanent. Il quantifie le délai entre la génération et la fourniture de la chaleur au niveau des 

sous stations, mais prend en compte également le phénomène capacitif de tout tronçon de 

conduite du réseau, du fait de cette inertie. En effet, pour un tronçon de conduite donné, 

celle-ci affecte le profil de la sortie par rapport à son entrée, prolonge le retard et augmente 

ou diminue les pertes en fonction du sens de changement de température. Ces effets 

combinés sont généralement considérés comme un défi dans la gestion des réseaux de 

chaleur, mais peuvent être utilisés à l'avantage du système avec un contrôle approprié. Ces 

résultats justifient donc l'utilisation du modèle dynamique en combinaison avec des outils 

d'optimisation pour proposer et évaluer différents modes de fonctionnement des réseaux 

DH qui permettraient la transition de ce type de systèmes vers des réseaux thermiques 

intelligents. 

Pour l'optimisation DOft, les résultats montrent que la prise en compte de la dynamique du 

système permet de réduire substantiellement les surplus et les déficits du réseau, réduisant 

ainsi la production totale. Cela permet également de réduire le recours aux unités de 

production d’appoint et les coûts associés. DOft 6 permet ainsi de réduire le déficit de 

37,76% et l'excédent de 95,99% par rapport au scénario de référence (Oft-base), et DOft 7 

de réduire le déficit de 84,37% et l'excédent de 97,71% par rapport à la même référence. 

Néanmoins, les résultats montrent que l'utilisation du PSF peut conduire à des résultats 

négatifs si l'influence d'un pas de temps sur le suivant n'est pas prise en compte, ou si les 

bonnes contraintes ne sont pas appliquées. DOft 3, qui utilise le PSF sans aucune contrainte 
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et optimise chaque pas de temps indépendamment, voit la part de déficit augmentée de 

208,38% par rapport à Oft-base (scénarios de référence). DOft 5, qui optimise également 

chaque pas de temps indépendamment et qui a une contrainte qui permet plus de flexibilité 

entre les pas de temps, conduit à une augmentation du déficit de 303,50% par rapport à Oft-

base. Les résultats montrent que le PSF est un indicateur approprié pour suivre et tirer parti 

de l'énergie contenue dans les conduites de distribution, mais que les effets du retard et de 

l'inertie ne se limitent pas à des pas de temps individuels et influencent les futurs pas de 

temps d'optimisation. Cela peut conduire à des optimums individuels qui ne garantissent pas 

l'optimum global. Du fait de l'optimisation indépendante des différents pas de temps, cela 

peut même conduire à une dégradation cet optimum global, par effet cumulative. Pour éviter 

cette situation, les dernières stratégies d'optimisation de DOft proposent une optimisation 

d'horizon avec une fenêtre glissante (DOft 6 et DOft 7). De cette manière, l'optimisation de 

chaque pas de temps est liée aux résultats d'optimisation des pas de temps précédentes. 

Les résultats obtenus à partir de deux des stratégies d'optimisation (Oft-base et DOft 7) sont 

utilisés pour mettre en valeur les capacités du modèle dynamique à fournir les informations 

nécessaires pour cartographier la distribution spatiale et temporelle des températures et des 

flux de chaleur dans le réseau. Ces informations permettent de mieux comprendre les effets 

de la dynamique locale (chaque sous station et conduite) sur l'excédent et le déficit de 

production du système et de préciser les changements apportés par la stratégie d'optimisation 

de DOft 7. Ces résultats mettent en évidence à la fois la capacité du PSF des différentes 

canalisations à agir comme des indicateurs des flux thermiques dans le réseau, et, à la fois, la 

capacité du PSF global à être un indicateur systémique pour l'évaluation du fonctionnement 

du réseau. 

Pour l'évaluation de DOft, les résultats montrent que la mise en œuvre du PSF ainsi que 

l'optimisation de l'horizon (DOft 6 et DOft 7) conduisent à une production plus faible, une 

efficacité plus élevée, des coûts de production inférieurs et des revenus et des bénéfices plus 

élevés. DOft 6 augmente l'efficacité de 7,72%, augmente le chiffre d'affaires de 0,16 € / 

MWh-demande et augmente le profit de 3,63 € / MWh-demande par rapport à Oft-base ; et 

DOft 7 augmente l'efficacité de 4,95%, augmente le chiffre d'affaires de 0,33 € / MWh-

demande et augmente le bénéfice de 2,59 € / MWh-demande par rapport à la référence Oft-

base. De plus, les résultats montrent que la qualité de service est positivement impactée, les 

interruptions de service étant plus courtes et de moindre ampleur. C'est notamment le cas 

pour DOft 7, qui comprend également une mesure de flexibilité sous forme de Demand 

Response. Cela permet un rééquilibrage plus facile du réseau et des corrections d'interruption 
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plus rapides sans compromettre la qualité de service. DOft 7 a ainsi un SAIFI de 0.027, un 

SAIDI de 0.080 et un CAIDI de 3.66, tous inférieurs au cas de référence 

Après le test de DOTS pour les huit stratégies d'optimisation, deux d'entre elles ont été 

choisies pour une étude de cas utilisant le même réseau mais cette fois en utilisant les données 

de demande issues d’un réseau de chaleur de la ville de Nantes, en France. Les stratégies 

choisies sont Oft-base, qui se rapproche le plus à la gestion normale des systèmes DH 

existants, et DOft 7, qui a obtenu les meilleurs résultats lors du test. Cette étude de cas 

montre que dans un environnement plus réaliste, où la demande ne reste pas constante 

pendant la période d'optimisation, DOft 7 ne fonctionne pas aussi bien que dans les tests 

contrôlés, mais donne cependant de meilleurs résultats que les autres stratégies. La stratégie 

DOft 7 permet d’atteindre un rendement supérieur de 4,68%, d’augmenter le chiffre 

d'affaires de 0,47 € / MWh-demande et le bénéfice de 2,37 € / MWh-demande. Plus 

important encore, cela modifie considérablement la qualité de service du système. Avec DOft 

7, le nombre d'interruptions (SAIFI) passe de 0,12 interruptions par client et par semaine à 

0,85 interruptions par client et par semaine, principalement en raison du schéma de Demand 

Response utilisé. De plus, le fait de pouvoir anticiper les interruptions, plutôt que de les subir 

permet de réduire le CAIDI de 1h38 d'attente pour le client à seulement 23.42 minutes. Ceci 

est d'un intérêt important pour les travaux futurs, car être en mesure de gérer efficacement 

les interruptions du système peut conduire à de nouvelles améliorations dans l'exploitation 

du réseau. 

La combinaison de tous les résultats présentés montre bien le potentiel de la stratégie DOTS 

proposée. DOft 7 utilise une optimisation d'horizon pour prédire les futurs déficits (ou 

surplus) et adapte le fonctionnement des centrales thermiques pour préparer le réseau à y 

faire face, soit en augmentant la production pour « recharger » les canalisations avec un 

surplus d'énergie, soit en réduisant la production et utilisez la chaleur déjà présente dans les 

tuyaux. Pour réagir en temps réel aux variations intra-horaires de la demande, DOft 7 utilise 

la Réponse à la Demande comme complément pour limiter l’énergie fournie aux nœuds plus 

proches des centrales de production et préserver suffisamment d’énergie pour les nœuds plus 

éloignés. Cette stratégie réduit les coûts d'exploitation, augmente l'efficacité et propose un 

nouveau mode de gestion de la qualité de service, où les interruptions sont considérées 

comme acceptables si elles sont courtes et n'affectent pas le même client plusieurs fois de 

suite. Ces résultats indiquent la possibilité de la transition de la DH (existants ou nouveaux) 

vers le Smart Thermal Network et leur capacité à devenir partie intégrante du modèle Smart 

City. 
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Long Abstract 

Key Words: District Heating, Dynamic Modeling, Optimization of Dynamic Systems, Smart 

Thermal Networks, Smart City, Energy Evaluation, Economic Evaluation, Quality of Service 

Evaluation 

The increasing use of RES and the following increase in Distributed Generation, Low Energy 

Buildings, Multi-Energy Carriers, Integrated Energy Systems, Distributed Storage and the 

possibility of developing Low-Temperature District Heating, among others, is demanding a 

change in the way energy networks are conceived and operated inside an urban environment. 

With the global population migrating to cities, a new model has arisen within the global 

context of the Smart City. The Smart City is at its core a new model of energy management 

that aims at guaranteeing the supply of energy to everyone living in an urban space while 

mitigating the impact on the environment [1]. 

Within a city, the three most common uses of energy are electricity, transport, and heat. Of 

the three, heat usually has the largest share of final energy use, accounting for around 50% 

of the energy use in European cities [2]. In the case of European households, heat accounts 

for over 75% of the final energy use. This makes heat, and the heat distribution networks, 

an important target to implement strategies that would increase efficiency, reduce costs, and 

enable the implementation of alternative sources of energy. 

In any city, the heat for domestic and commercial space heating, and domestic hot water can 

be generated at designated locations and use a distribution network to make it available to 

the users through a network of pipes [3]. These heat distribution networks are called District 

Heating (DH). The scale of these systems varies from building facilities to a complete city. 

Historically the management of DH networks has been considered to be a static problem 

where operative control is kept to a minimum and the network is reconfigured only 

occasionally [4]–[6].  

This model of design and operation is proving to be outdated and not compatible with the 

Smart City concept [7]. In the future, District Heating is expected to connect low energy 

buildings through low-temperature networks with increased efficiency where renewable 

energies and distributed generation are smoothly integrated [3]. These systems are expected 

to be economically and environmentally sustainable.  To do so, DH will rely heavily on 

communication and control infrastructures. In analogy with the electricity Smart Grid, the 



 
 

xxxii 
 

Smart Thermal Network (STN) will depend on Information and Communication 

Technologies (ICT), Modeling and Simulation (M&S), and optimization for quality 

monitoring, timely information exchange and effective control [8]. 

Based on the relevance of Heat as one of the primary end-uses of energy in a city, and the 

still small amount of literature on the transition of DH into STN, the main objective of the 

present research is to propose a novel model for system management of DH by combining 

modeling, simulation, and optimization tools. This with the aim of demonstrating the 

possibility of DH systems to transition into STN by considering the distribution dynamics 

of the system and the active participation of the connected consumers. The results from this 

research show the capabilities of DH to become an integral part of the Smart City model. 

The present research takes the electricity smart grid as the starting point to propose the smart 

thermal network and addresses the differences existing between heat and electricity 

distribution systems. These differences arise from the dynamics involved in heat distribution, 

contrary to electricity grids, a variation done on the generation side of a DH network needs 

time before it is perceived by all the consumers of a network and time is needed before a 

previous status is dissipated and a new one instated. Taking these differences into 

consideration, the present research proposes a new model of system management named the 

Dynamic Optimization of DH for its Transition towards Smart Thermal Networks (DOTS). 

DOTS is constituted by three parts: the dynamic modeling of DH networks, the optimization 

of DH systems, and the evaluation of DH systems. The modeling approach is based on the 

physical modeling of DH networks using Oriented Graphs and a modified Finite Volumes 

method. The optimization is divided into two steps: The dispatch optimization and the 

generation temperature optimization. Dispatch is optimized through the cost of generation 

and the optimization of generation temperatures is optimized through the minimization of 

the total generation, the demand not satisfied (deficit) and the excess heat (surplus). The 

evaluation of DH is done through energy, economic and QoS indicators. 

The simulation model, named the Dynamic Model as it is capable of simulating the dynamics 

in the network, gives information on the delay between generation and supply, the heat 

inertia of the network, the energy stored in the connective elements of the system (pipes), 

and the real-time distribution of temperatures in the pipes. To address the dynamics in the 

network, the present research proposes the use of a new operation indicator named the Pipe 

Supply Factor (PSF). The PSF gives the ratio between the energy entering a pipe and the 

energy exiting the pipe. The Dynamic Model and the PSF allow the District Heating 
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Operator (DHO) to know the state of charge and discharge of the system’s pipes and use 

this information to better adjust generation and supply, thus reducing the surplus and deficits 

experienced by the network and improving the QoS and energy efficiency of the system. 

The optimization part of DOTS is named DOft and is carried out using two different 

optimization tools. The optimization of the dispatch of heat is done using HeatGrid [9], a 

tool developed by the IMT Atlantique that uses a variant of Mehrotra's predictor-corrector 

algorithm for its optimization routine. The optimization of the generation temperatures is 

done using NOMAD [10], a tool that uses the MADS algorithm [11] for the optimization. 

Together they give as result the mode of operation that minimizes generation costs at the 

same time as minimizing total generation, deficits, and surplus in the whole network. 

The present research identified an opportunity regarding the evaluation of DH systems in a 

holistic manner. Currently, studies on the optimization of DH focus primarily on optimizing 

its energy efficiency or its economic performance. Studies focused on the Quality of Service 

(QoS) are few and often are from the point of view of the end-user only. The present research 

proposes an evaluation framework based on existing energy and economic indicators, like 

energy efficiency and cost of operation per MWh of demand, but also QoS indicators that 

exist for electricity grids but that are not yet applied to DH networks. These last indicators 

are the System Average Interruption Frequency Index (SAIFI), the System Average 

Interruption Duration Index (SAIDI), and the Costumer Average Interruption Duration 

Index (CAIDI). The SAIFI, SAIDI and CAIDI give valuable information on the operation 

of a DH system that allow the District Heating Operator (DHO) to evaluate the effectiveness 

of the system’s supply and adjust the distribution of energy from a systemic point of view 

rather than a case by case scenario. 

To showcase the potential of DOTS, the present research presents the results obtained from 

three tests developed to demonstrate the reliability and capabilities of the Dynamic Model 

and the effects of eight different optimization strategies performed with DOft. The results 

from the eight optimization strategies are evaluated using the evaluation framework 

proposed in the present research to assess the magnitude of the impact each of them have 

on the distribution of heat from an energy, economic and QoS perspective. The three tests 

for the Dynamic Model are: 

1. A test that shows its performance compared to the existing Finite Volumes Node 

method. 
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2. A test that shows its ability to map the spatial-temporal distribution of temperature 

in a DH network when the dynamics are considered. 

3. A test that shows its ability to account for the inertia of the system and the effects 

that this inertia has. 

The eight strategies tested using the DOft optimization, together with their names, are: 

1. Oft-base: a strategy considering fixed generation temperature (temperature not 

optimized), steady state operation and constant average heat loss coefficients for the 

pipes in the network. Every hour of operation is optimized independently of each 

other. This strategy is set as the base for the comparison of all others as it resembles 

the normal operation of real DH networks the most. 

2. Oft 1: a strategy considering fixed generation temperature, steady state operation and 

variable average heat loss coefficients for the pipes in the network. Every hour of 

operation is optimized independently of each other. 

3. DOft 2: a strategy considering generation temperature optimization, steady state 

operation and variable average heat loss coefficients for the pipes in the network. 

Every hour of operation is optimized independently of each other. 

4. DOft 3: a strategy considering generation temperature optimization, the dynamics of 

the operation (delay, inertia, and short-term storage of the pipes), and variable 

average heat loss coefficients for the pipes in the network. The optimization period 

is extended to three hours to guarantee convergence and every period is optimized 

independently of each other. 

5. DOft 4: a strategy considering a constrained generation temperature optimization 

(no more than ±5°C between optimization periods), the dynamics of the operation, 

and variable average heat loss coefficients for the pipes in the network. The 

temperature constraint represents systems that prioritize mass flow control or 

systems whose generation plants cannot have quick variations in their operation 

temperature. The optimization period is extended to three hours and every period is 

optimized independently of each other. 

6. DOft 5: a strategy considering a constrained generation temperature optimization 

(no more than ±10°C between optimization periods), the dynamics of the operation, 

and variable average heat loss coefficients for the pipes in the network. The 

optimization period is extended to three hours and every period is optimized 

independently of each other. 
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7. DOft 6: a strategy considering generation temperature optimization, the dynamics of 

the operation and variable average heat loss coefficients of the pipes in the network. 

The optimization is changed to a three-hour horizon with a one-hour sliding window. 

Within the horizon, every one-hour time step is optimized but the optimum is found 

for the horizon, not the independent time steps. Once a solution is found, the 

horizon advances one hour and the optimization is repeated. In this way all 

optimizations are connected to the previous and the next optimizations. This is called 

a horizon optimization. 

8. DOft 7: a strategy considering generation temperature optimization, the dynamics of 

the operation, variable average heat loss coefficients for the pipes in the network and 

Demand Response (DR) capabilities. The optimization is changed to a horizon 

optimization. The horizon is set to three hours with a one-hour sliding window, thus 

all optimizations are connected to the previous and the next optimizations. 

The results for the three tests for the Dynamic Model show that, when compared to the 

Finite Volumes Node method, it adds robustness to the results when working with fixed 

spatial discretization of the pipes and it also reduces the computation times while maintaining 

the accuracy. The results also showed that even when the temperature and mass flows at the 

generation plants is known, the number of variables and physical phenomena make it hard 

to know the real-time status of the network without monitoring equipment or modeling tools 

like the one here presented. This is relevant as many DH networks have limited monitoring 

to assess the behavior of the system beyond the point of view of the generation plants. 

The Dynamic Model also allowed the study of the effects that the delay, the losses and the 

thermal inertia have on the energy supply of a system operating outside of the steady state. 

The delay increases the time between generation and supply, but also increases the time that 

a certain output persists after the input has changed. The inertia of the system affects the 

output’s profile compared to its input, extends the delay, and increases or decreases the losses 

depending on the direction of the temperature change. These effects together are usually 

considered a challenge in DH but may be used to the advantage of the system with proper 

control. These results justify the use of the Dynamic Model in combination with optimization 

tools to propose and evaluate different modes of operation of DH networks that would allow 

the transition of this kind of systems into Smart Thermal Networks. 

For the DOft optimization, the results show that considering the dynamics of the system 

can substantially reduce the surplus and deficits in the network, thus reducing the total 
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generation and its associated costs. DOft 6 reduced the deficit by 37,76% and the surplus by 

95,99% compared to the base case (Oft-base), and DOft 7 reduced the deficit by 84,37% 

and the surplus by 97,71% compared to Oft-base. Nevertheless, the results show that the 

use of the PSF can lead to negative results if the influence that one time step has on the next 

is not considered, or if the right constraints are not applied. DOft 3, which use the PSF 

without any constraints and optimized each time step independently, increased the deficit by 

208,38% compared to Oft-base. DOft 5, which also optimized each time step independently 

and which had a constraint that allowed more flexibility between time steps, increased the 

deficit by 303,50% compared to Oft-base. The results showed that the PSF is an appropriate 

indicator to keep track and make use of the energy inside the distribution pipes, but that the 

effects of the delay and the inertia are not limited to individual time steps and will influence 

future optimization time steps. This could cause individual optimum which do not guaranty 

the global optimum. Due to the independent treatment of the time steps, their accumulation 

can even cause a worst global solution like seen on DOft 3. To avoid this situation, the latest 

optimization strategies of DOft change to a horizon optimization with a sliding window 

(DOft 6 and DOft 7). In this way, the optimization of every time step is tied to the results 

of the previous optimization time steps. 

The results obtained from two of the optimization strategies (Oft-base and DOft 7) are used 

to showcase the capabilities of the Dynamic Model to provide the information needed to 

map the spatial and temporal distribution of temperatures and heat flows in the network. 

This information is used to better understand the effects of the dynamics in the surplus and 

deficit of the system and to focus the changes made by the DOft 7 optimization strategy. 

These results highlight the ability of the PSF of the individual pipes to act as indicators of 

the heat flows in the network, and the ability of the global PSF to be a systemic indicator for 

the evaluation of the network operation. 

For the evaluation of DOft, the results show that the implementation of the PSF together 

with the horizon optimization (DOft 6 and DOft 7) have lower generation, higher efficiency, 

lower generation costs, and higher revenue and profit. DOft 6 increases efficiency by 7,72%, 

increases revenue by 0,16 €/MWh-demand and increases profit by 3,63 €/MWh-demand 

compared to Oft-base; and DOft 7 increases efficiency by 4,95%, increases revenue by 0,33 

€/MWh-demand and increases profit by 2,59 €/MWh-demand compared to Oft-base. 

Moreover, the results show that the QoS is positively impacted, with the interruptions of the 

service being shorter and of lower magnitude. This is especially the case for DOft 7, which 

also includes a flexibility measure in the form of Demand Response. Having DR in the 
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network allowed for easier network re-balance and faster interruption corrections without 

jeopardizing the QoS. DOft 7 has a SAIFI 0,027 lower than Oft-base, a SAIDI 0,080 lower, 

and a CAIDI 3,66 lower. 

After DOTS was tested for the eight optimization strategies, two of them were chosen for a 

Case Study using the same network but this time using measured demand data from the DH 

network of the city of Nantes, in France. The chosen strategies were Oft-base, which 

resembles the normal management of existing DH systems the most, and DOft 7, which had 

the best results during the test. This case study showed that in a more realistic environment, 

where the demand does not remain constant during the optimization period, DOft 7 does 

not perform as well as in the controlled tests, but it is still capable of giving improved results. 

DOft 7 achieved 4,68% better efficiency, increased the revenue by 0,47 €/MWh-demand 

and the profit by 2,37 €/MWh-demand. Most importantly, it substantially changed the QoS 

of the system. With DOft 7, the number of interruptions (SAIFI) was increased from 0,12 

interruptions per customer per week to 0,85 interruptions per customer per week, mostly 

due to the DR scheme used. However, being able to plan the interruptions, rather than they 

appearing first and the system reacting later, allowed the CAIDI to be reduced from 1h38 

waiting time for the costumer to just 23,42 minutes. This is of important interest for future 

work, as being able to effectively manage the interruptions in the system can lead to further 

improvements in the operation of the network. 

The combination of all the results presented above show the potential of DOTS. DOft 7 

uses a horizon optimization to predict future deficits (or surplus) and adapts the operation 

of the heat plants to prepare the network to cope with them, either by increasing generation 

to “charge up” the pipes with extra energy or by reducing generation and use the heat already 

in the pipes. To react in real-time to the intra-hour variations of the demand, DOft 7 uses 

DR to limit the supply in the nodes closer to the generation plants and divert the energy to 

the nodes farther away. This strategy reduces the operation costs, increases efficiency, and 

proposes a new mode of QoS management, where interruptions are considered acceptable 

if they are short and do not affect the same costumer several times in a row. These results 

point at the possibility of the transition of DH into the Smart Thermal Network and its 

capabilities of becoming an integral part of the Smart City model. 

.  
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1 Introduction 

 

 

 

 

 

 

 

 

 

 

The increasing use of Renewable Energy Sources, Distributed Generation, Low Energy Buildings, Multi-

Energy Carriers, Integrated Energy Systems, Distributed Storage and the possibility of developing Low-

Temperature District Heating, among others, is demanding a change in the way energy networks are 

conceived and operated inside an urban environment. Just as people are studying technologies to better 

harness the power of RES, many others are studying how our understanding of energy use and its 

conversion processes should change. With the global population migrating to urban environments, a new 

model has arisen within the global context of the Smart City [12]. 

The European Commission defines Smart Cities as “a place where traditional networks and services are made 

more efficient with the use of digital and telecommunication technologies for the benefit of its inhabitants and business” [13]. 

This definition is broad, as the Smart City remains an evolving concept that tries to tackle as much of the 

urban struggles of a city as possible. However, at its core, the Smart City is a new model of resource 

management that aims at guaranteeing the supply of energy and other resources to everyone living in an 

urban space while mitigating the impact on the environment [1]. When it comes to energy, the Smart City 

proposes a model where the consumer adapts to the energy availability as much as the producer adapts 

to the costumer’s needs. When to produce, where to produce, when to consume, where to consume, 

when to store, where to store; all these activities become adaptable and flexible. To achieve this, the 

Smart City relies on an information and communication foundation that allows the free sharing of 
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information with the goal of enabling the systems to make decisions that will improve their performance 

as a whole [14]. In this model, Information and Communication Technologies (ICTs) together with 

computational Modeling and Simulation (M&S) play a preponderant role.  

In a Smart City, ICTs enable the access, storage, transmission, and manipulation of large amounts of data 

to provide the high information and communication requirements through the combination of 

equipment, software, signals, protocols, and regulations for the proper manual and automated operation 

and control of the system [8], [15]. M&S become a tool to develop data for the prediction and forecast 

of the behavior and performance of systems in different time frames, often using physical principles in 

combination with mathematical representations of the system being studied. For the energy sector of a 

Smart City, M&S is fundamental for decision making [16]. 

Energy distribution networks where real-time decisions are being made with data provided by ICTs and 

processed by M&S are commonly known as Smart Networks [17]. They form the backbone of the current 

effort to transition towards the Smart City. The Smart Network is a relatively new concept, but most 

authors [18]–[20] agree that Smart Networks are systems capable of: 

1) Making automated decisions concerning the current and future status of the network to guarantee 

its expected operation. 

2) Integrating all users connected to the network and enabling them to participate actively in the 

network’s activities. 

The overall objective is that the networks achieve higher efficiencies (economic and technical) and 

environmental sustainability while maintaining the Quality of Service (QoS). 

The Smart Network gained international attention when the electricity sector started to apply them in 

what we now call Smart Grids [21]. In a smart grid, multiple energy sources supply the electricity to 

consumers implemented with decision-capable mechanism like smart meters, smart appliances, and 

flexibility measures. Information is shared between consumers, producers, and the distribution network 

to give preference to RES and energy efficient resources without congesting the grid. Control tools and 

protocols are put in place to optimize the use of energy, reduce Green House Gases emissions, and 

guarantee the QoS [1], [21]. 

The study of Smart Grids relies heavily on M&S to predict their behavior before real implementation, as 

well as to develop the control needed for their operation. M&S is aided by optimization algorithms to 

find the best solutions to the problems studied. The combination of Modeling, Simulation and 

Optimization has proven to be a powerful tool on the development and transition of electrical networks 

into the Smart Grid. An example of this can be seen in [22]. In this work the authors describe a control 



 
 

3 
 

algorithm named “Unified Broadcast-Based Active Distribution Networks control” which uses the “Grid 

Explicit Congestion Notification Mechanism” to control and provide ancillary services in grids with 

dispersed generation by managing resources like transformers and electricity buses. The proposed system 

models the electricity network as a constrained optimization problem whose solution is the optimal nodal 

power adjustments and transformer positions. The solution from this optimization is fed to local 

controllers along the network via the notification mechanism. The local controllers react to the signals 

received to adjust the energy flows in the network, thus balancing the system and reducing congestion 

and losses. The authors of this study conclude that ICTs are determinant in the control of complex 

distribution systems, and control algorithms could reliably enable Smart Grids to take over the current 

top-down centralized energy systems. 

Several examples like this can be found on Smart Grids and the improvements they bring to the electricity 

distribution networks. Most of them use M&S in combination with optimization algorithms to 

demonstrate their effectiveness (see literature review). However, electricity is not the only component of 

the energy sector in a city. Within a city, the three most common uses of energy are electricity, transport, 

and heat. Of the three, heat usually has the largest share of final energy use, accounting for around 50% 

of the energy use in European cities [2]. In the case of European households, heat accounts for over 75% 

of the final energy use [23]. This makes heat an important target for strategies that would increase 

efficiency, reduce costs, and enable the implementation of alternative sources of energy and new modes 

of operation. 

In any city, the heat for domestic and commercial space heating and domestic hot water can be locally 

generated at the sites of consumption using natural gas, biomass, the sun, or electricity. However, it has 

been proven that in many cases it is better to have central locations for its generation and use a 

distribution network to make it available to the users [3]. Having centralized generation can lead to higher 

operational efficiencies, reduced capital cost of new developments and simpler distribution networks for 

other energy carriers. A centralized production also enables the investment in flue gas treatment, which 

is too expensive for distributed systems. In many instances heat is also already being produced as a by-

product of electricity generation, waste management and industrial processes; having a network to 

distribute this heat lowers the energy intensity compared to a city where this heat goes to waste and new 

heat is produced locally at the consumption sites. This heat distribution network is named District 

Heating (DH). DH is a system that supplies heat to different users connected to centralized and 

distributed heat generation units through a network of pipes. The scale of these systems varies from 

building facilities to a complete city. However, DH networks still lack widespread penetration in most of 

the world, including Europe, where DH supplies around 12% of the total space heating and domestic 

hot water demand. In the case of France, DH accounts for around 7% of the domestic and commercial 
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heat supply, but in accordance to the Heat Road Map for 2050, DH is expected to expand to provide at 

least 25% of this heat by the end of 2050 [24]. This calls for timely action in the development of new DH 

systems, as well as new forms of system management. 

Historically, the management of DH networks has been considered to be a static problem where 

operative control is kept to a minimum and the network is reconfigured only occasionally [4]–[6]. This 

model of design and operation is proving to be outdated [7].  In the future, district heating is expected to 

connect low energy buildings through low-temperature networks with increased efficiency; it is also 

expected that the heat, electricity and transport sectors will be coupled together, and that renewable 

energies and distributed generation will be smoothly integrated [3]. These systems are expected to be 

economically and environmentally sustainable.  To do so, DH will likely rely heavily on Communication 

and Control infrastructures, like Smart Grids do. In analogy with Electric Smart-Grids, Smart Thermal 

Networks will depend on ICTs, M&S and Optimization for quality monitoring, timely information 

exchange and effective control [8]. 

The implementation of Smart Networks into DH has been explored, but literature on the topic is scarcer 

than for Smart Grids. Studies exist on the integration of ICTs into DH and their transition towards Smart 

Thermal Networks, one of the most referenced is the work done by H. Lund et al. [3], where the authors 

present some key challenges for the 4th Generation District Heating (4GDH) with an emphasis on the 

role of ICTs and Smart Metering and Control to overcome these challenges. However, there is still 

uncertainty on if and how can DH networks make this transition. 

Based on the relevance of Heat as one of the primary end-uses of energy in a city and the lack of literature 

on the transition of DH into Smart Thermal Networks, the main objective of the present research is to 

propose a novel model for system management of District Heating by combining Modeling, Simulation, 

and Optimization tools. This with the aim of demonstrating the possibility of DH systems to transition 

into STN by considering the distribution dynamics of the system and the active participation of the 

connected consumers. The results from this research show the capabilities of DH to become an integral 

part of the Smart City model. 

The present research takes the electricity smart grid as the starting point to propose M&S solutions for 

smart thermal networks that consider the differences existing between heat and electricity distribution 

systems. In the case of electricity systems, generation, supply, and consumption happen at the same time. 

Generation and consumption are strictly linked and a change in one will be immediately sensed by the 

other. This is not the case in heat systems, where its distribution dynamics have a significant effect. If a 

variation is done on the generation side of a DH network, hours could pass before they are perceived by 

some of the consumers as the hot water takes time to travel through the pipe network (i.e. it takes 14 
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minutes for the water to traverse a 1 km-long pipe at a flow rate of 1.2 m/s). This delay between 

generation and supply changes the way that DH networks need to be operated, as a difference between 

supply and demand in a node far away from a generation plant could require a long time before it is 

solved. The delay is one of the reasons why the operative control of DH is often considered a static 

problem, and generation usually over-estimates the demand to guarantee that no deficits will exist. The 

second important difference between electricity and heat distribution networks is the inertia of the 

system. In heat networks, all decisions made in the past persist for a length of time in the network. No 

change made at any element of the system will have an immediate effect and time is needed before a 

previous status is dissipated and a new one instated. The combination of these two dynamic 

characteristics is a reason why DH networks are usually controlled on longer time steps, which help 

“absorb” these effects. 

For this reason, to reach the objective of the present research three research questions are formulated 

and answered: 

RQ 1: How can the dynamics of heat distribution be addressed, mitigated, or used in benefit of DH networks? 

As stated above, the dynamics of heat distribution differ from those of electricity and have a 

substantial effect on the operation of the network. Any new mode of operation must be able to 

handle the delay and inertia of DH, either reducing their negative effects or, if possible, use them to 

the advantage of the network. 

RQ 2: How can the system management of DH be improved to reduce costs, increase efficiency, and improve quality 

of service? 

The Smart City calls for a different mode of operation. It is not only necessary it improve the 

individual elements of a DH system, but also how they work and interact together. How could this 

be done in DH is a focus of the present research. 

RQ 3 How can we measure and evaluate the operation of DH from a system’s perspective? 

In a Smart City, energy networks are no longer viewed as providers of energy, but rather as providers 

of an energy service. Its players and its constitutive elements are no longer consider independently, 

but as part of a whole. The evaluation of this type of systems needs to be upgraded to include the 

new relevant aspects of it introduced by the Smart City. 

To give answer to these questions and achieve the main objective of the present research, three specific 

objectives are proposed (see Figure 1-1) and the methodology is defined. 
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SO 1: Development of a simulation model for DH systems based on the physical characteristics of the network that 

considers the dynamics of the system. 

The simulation model can address the dynamics of a DH system and give information on the delay 

between generation and supply, the heat inertia of the network, and the real-time distribution of 

temperatures in the pipes. 

SO 2: Testing of different optimization strategies to optimize the use of resources, the supply of energy and the Quality 

of Service. 

Different optimizations strategies are tested to explore the impact on the technical and economic 

efficiencies of the network as well as on the QoS. Each strategy is based on the results of the 

simulation model from the first specific objective to account for the dynamics of the system and 

mitigate their effect (or use them to the system advantage). 

SO 3: Development of the framework needed to evaluate the operation and performance of DH systems within the 

Smart City Scope. 

The present research identified a vacuum regarding evaluation frameworks for the assessment of 

DH systems performance in a holistic manner. For this reason, a novel evaluation framework based 

on indicators used in electricity grids and adapted to heat distribution networks is developed and 

proposed in the present research. 

 

Figure 1-1: Main Objective, Research Questions and Specific Objectives. 
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With the European countries aiming at expanding their DH infrastructure as part of H2020 and the 2050 

Heat Road Map, and the Smart City rising as a good alternative for urban energy systems, DH needs to 

be ready to face the new environment of the future. Especially now when the social environment and the 

social trends are changing how the users interact with the energy sector [25]. In developed 

countries/areas, people expect reliability and flexibility of the supply; low prices on the energy; and 

generation being done with environmentally friendly technologies that are preferably either aesthetic & 

quiet, or hidden to the view. They care about global warming, GHG, air pollution, etc. and react to new 

policies and legislation [26], [27]. 

Society is a capricious driving force for the transition to Smart Cities [27] and the social interpretation of 

what a Smart City means is as important as the available technologies [28]. Being capable to operate in a 

dynamic setting, where energy has become a service more than a product is a challenge that DH has to 

overcome to remain the relevant, energy efficient, environmentally friendly alternative that it promises to 

be. For this reason, it is imperative to develop the foundations for system management that will allow 

the DH to operate in the Smart City context and demonstrate that DH is up to the needs our future 

brings. 

The present research aims at this by developing and presenting a novel model for system management 

of DH that would ease its transition into Smart Thermal Networks and hence, our future. This work is 

presented in eight chapters. The literature review conducted for this research is presented in Chapter 2; 

the methodology followed in the present research is detailed in Chapter 3; the results obtained with the 

simulation model are presented in Chapter 4; the results for the different optimization strategies 

proposed are presented in Chapter 5; the results for the new evaluation framework are presented in 

Chapter 6; the results of a Case Study with real data from the city of Nantes are analyzed in Chapter 7; 

Chapter 8 concludes the present research. 
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2 Literature Review 

 

 

 

 

 

 

 

 

 

 

With the main objective of proposing a novel model for system management of DH by combining 

Modeling, Simulation, and Optimization tools, the literature review here presented focuses on the 

techniques, tools and software tools used in the DH area to model and simulate the operation of heat 

distribution networks, the characteristics of heat transport in pipes, and the optimization algorithms used 

to find optimum solutions to different optimization problems. Several commercial and free software 

already exist that can do this to some extent, and four of them are presented here and use as a benchmark 

for the contributions of the present research. These are TRNSYS, DER-CAM, HOMER and BoFiT. 

TRNSYS is a flexible software environment with a modular structure used to simulate the behavior of 

transient systems [29]. It is composed of two parts: 1) the engine that reads and processes the inputs, 

iteratively solves the system, determines convergence, and plots system variables, and 2) a library of 

components. TRNSYS works by modeling each of the components of a system and simulating their 

interactions. Each component can be selected from a library or created by the user. Existing components 

can also be modified to new specifications. This flexibility makes TRNSYS a good platform for the 

simulation of thermal and electrical energy systems and has been extensively used for this purpose. An 

example of TRNSYS applied to DH can be found in [30]. In this paper, the authors present their work 

to develop a detailed TRNSYS-Matlab model for the simulation of a large solar collector field used in a 

district heating application. They reproduce the actual control strategy for the regulation of flows in the 

solar plant with the results showing good agreement with field measurements. The elements of the model 
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(i.e. pipes) were simulated using TRNSYS, but as this software cannot solve problems of flow distribution 

in hydraulic networks, Matlab was used to evaluate the flow distribution in the different collector rows. 

The use of Matlab increased the agreement of the model with the measured data, but also increased the 

computation times. The authors recognize that the better levels of accuracy may not justify the longer 

computation times. Another example is found in [31], where the authors use TRNSYS to model four 

different substation types to generate realistic load profiles of consumer buildings. They use their model 

for carrying out dynamic simulations of the heat load of 11 fictitious buildings for domestic hot water 

preparation in new residential developments. The load profiles are obtained through a yearly simulation 

using DHWcalc, a tool for generating domestic hot water draw-off profiles built upon a statistical 

method. Their results show that during the preparation period, losses account for between 27% and 52% 

of the final energy demand. 

DER-CAM, which stands for Distributed Energy Resources Customer Adoption Model, is a techno-

economic model for the design of systems with distributed energy resources, like buildings or micro-grids 

[32]. It uses information like fuel prices and hourly demand in combination with the technologies’ 

specifications to propose the combination of technologies that should be adopted and how they should 

be operated. It is well versed to find the optimal selection, sizing, placement, and dispatch of distributed 

energy resources, while also considering actions like load shifting, peak shaving, and power exports. 

DER-CAM uses Mixed-Integer Linear Programming (MILP) for its optimization model, thus it requires 

the optimization problem to be described using linear formulation to be able to solve it. An example of 

the use of DER-CAM in DH is found in [33]. In this work, the authors present a DER-CAM model of 

an Austrian University Campus building where the model has been enhanced to consider building retrofit 

measures together with Distributed Energy Resources investment options to effectively optimize energy 

costs and CO2 emissions. According to the authors, DER-CAM was chosen as it is the only tool to their 

knowledge that considers passive improvements and DER technologies, and which can be used to 

compare the results to the existing building. The results obtained suggest that the global heat transfer 

coefficient of the building could be improved approximately 25% better than what it currently is. The 

authors conclude that the complexity of interactions between DER technologies and passive measures 

call for a holistic optimization approach that cannot always be found in existing software. 

HOMER, which stands for Hybrid Optimization Model for Multiple Energy Resources, is a tool 

developed for the design and the technical and financial evaluation of on-grid or stand-alone power 

systems that act as a micro-grid or as distributed generation [34]. This tool allows the user to consider a 

wide variety of energy conversion technologies that can act as centralized, distributed or off-grid 

generation. HOMER then simulates all possible combinations of the technologies selected and proposes 

the one or ones deemed most viable. HOMER’s simulations work on a time step between one minute 
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and one hour and can simulate up to an entire year. For the selection of the most viable system, HOMER 

features a trademarked optimization algorithm, HOMER Optimizer™, that identifies the least-cost 

options for micro-grids or other distributed generation electrical power systems. HOMER is well versed 

for the simulation of electricity systems but is incapable of considering the dynamics involved in heat 

distribution networks. Two clear examples for the use of HOMER can be found in [35] and [36]. In [35], 

the authors use HOMER Pro to propose a DG system for the region of the Baluchistan Seashore in 

Pakistan. HOMER Pro is used to compare a solar-wind-grid system to a solar-grid system, a wind-grid 

system, and a grid-only system. The systems are evaluated based on their power generation, emissions, 

net present cost, and average electrical production cost, which are outputs of HOMER. In [36] the 

authors propose to refine the hybrid electrical power supply of a single residence building located in 

Tamilnadu, India. The load is supplied using solar panels, wind turbines and a diesel generator. The 

simulation and optimization of the hybrid system are carried out using HOMER Pro to find the best 

combination of power sources to supply the demand at the lowest cost and with the lowest emissions. 

BoFiT is a software developed by ProCom that uses MILP to describe heat and power plant operations 

[37]. Different objectives can be optimized using BoFiT, like investment planning, trading flexibilities 

and production costs of the facilities. BoFiT requires hourly resolution and, similar to DER-CAM, 

assumes linear dependence between inputs. This gives BoFit the capacity, i.e., to determine the heat or 

power plant combination that will achieve the lowest costs for each hour of operation. An example of its 

application in the research of DG can be found in [38]. In their Master thesis, the authors present an 

evaluation of the Swedish energy system for the year 2025. They focus their work on electricity spot 

prices and how they will affect the operation of a CHP plant. They use BoFiT to build a model for the 

studied CHP plant and its connected DH network. The model is tested for six scenarios where the 

electricity spot price is set taking into consideration the access to future wind and nuclear power. The 

BoFiT model assumes linear dependence between inputs but not all components had linear behavior 

within the range of the study, so some of the model components were broken into sections where a linear 

relationship could be assumed. The results show that the electricity prices tend to be more volatile in 

2025 which would call for more control and regulation for the operation of this kind of systems. 

From the review on some of the existing tools, TRNSYS is a flexible modeling platform that can be used 

for modeling and then be combined with other optimization tools. DER-CAM, HOMER and BoFiT 

require Linear Programming formulation, which limits their ability to answer the research questions of 

the present research: “How can the dynamics of heat distribution be addressed, mitigated, or used in 

benefit of DH networks?” These three tools are well versed to optimize DH networks under steady state 

operation, but they struggle with the dynamics present in heat distribution. TRNSYS can model these 

dynamics, but it has to be paired with an optimization tool capable of solving the resulting non-linear 
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problem. The following literature review will address other approaches for the modeling, the simulation 

and the optimization of DH networks that will help achieve the main objective of the present research.   

Section 2.1 presents the review on modeling tools and approaches for the modeling of DH networks, 

section 2.2 presents a review of the optimization algorithms commonly used to solve DH optimization 

problems, and section 2.3 presents the literature, or rather, the lack of, on holistic evaluation frameworks 

for the assessment of the performance of DH networks including the QoS and customer satisfaction as 

well as energy and economic indicators.  

2.1 Modeling of DH systems 

Modeling is an effective tool to represent real physical phenomena under controlled conditions. When 

properly constructed and applied, mathematical representations of the physical phenomena through 

differential equations, and/or statistical models, give invaluable aid on obtaining information on systems 

without the need to physically build them. When it comes to modeling DH networks, two main 

approaches have been pursued in the literature: data-driven models and physical models [5]. Data-driven 

models are models that consider only the input and outputs of the system and do not need explicit 

knowledge of the physical behavior of the system. They are known for their speed but can present low 

accuracy on highly dynamic DH systems. Physical models are models that focus on the physical aspects 

of the system. In the explored literature, they are preferred for modeling DH when there are high or 

quick variations of the temperature, or when information from within the pipes is relevant (not only 

inputs and outputs). The present research focuses on physical models, as the information contained 

within the pipes is relevant for the proposed model of system management. 

Many examples of physical models exist in the literature, which can be classified according to their 

different approach. Some of the first methods were the element method, the characteristic method, and 

the node method. Both the element method and the characteristic method rely on discretizing the pipe 

into a finite number of elements and then computing each element individually by treating the flow of 

water as an advection-diffusion equation, where the output of one becomes the input of the next as to 

follow the temperature propagation. As early as 1979, [39] presented the QUICK scheme for  solving the 

heat transport equation using the element method. 

In the case of the node method, the outlet temperature is calculated based on the inlet temperature and 

the delay of the propagation. Both the element method and the node method are described in [40] and 

later were compared in [41] showing better and faster results for the node method. This method was used 

in [25] and [26] to model the Naestved DH system in Denmark. The model’s results are compared with 

the commercial software TERMIS and show that for near-steady state conditions no discernable 
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difference is made between the two, but the studied model has issues with sudden or large changes in the 

temperature and with long pipelines. 

Like the element method, the characteristic method discretizes the pipe but the equations for heat 

transport are transformed into an ordinary differential equation along the characteristic lines so a solution 

can be obtained. In [44] the authors propose a hybrid method where the momentum equation is solved 

using the SIMPLE2 approach [45]. The energy equation is solved with the method of characteristics in 

combination with Lagrange polynomial interpolation. The method is used to predict the propagation of 

the heat front and locations where a boiling boundary condition during the transient of the flow could 

occur with good results. A model based on the characteristic method was used in [46] to model the 

district heating system in Zemum, Serbia. In this work the thermal transient of a system is analyzed, and 

the results compared with measured data; results show less than 4°C difference between the two with no 

significant numerical diffusion. Another methodology based on this was later developed by [47] and 

validated with the DH network in the city of Linyi, China. The model was able to reproduce the behavior 

of the network with an error below 4% for the farthest nodes. A modified approach of the characteristic 

method is presented in [48], where the authors use a model based on the method of characteristics while 

considering the difference between the turbulent flow and the boundary layer. This approach shows low 

computational times and good accuracy (less than 1.2°C difference) at different values of Reynolds 

numbers and the model is further validated by data gathered from real pipes. 

Other methods have been proposed that have gains in computational speed, accuracy, or level of detail. 

The Function Method, presented in [5], considers the mass flow rate, the losses and the inertia to obtain 

the analytical solution to the transient energy equation by using the expansion of Fourier series. This 

method proves to be 37% faster than the Node Method while reducing the average error by 13%-45% 

during rapid changes in the temperature. A method to optimize the parameters used by the Function 

Method is proposed in [49], where the authors use measured data to find the equivalent pipe length that 

better approximates the output temperature of the pipes. A method using the polynomial approximation 

for the steady state model of a DH network is presented in [50] to find strategies to operate DH when 

there is uncertain or variable demand. The authors use this model to minimize the cost of generation in 

a DH network under different operation strategies. Finally, a modeling approach based on the Finite 

Volumes method is presented in [51]. This method, named the implicit upwind method, is compared to 

the characteristic line method and the authors conclude that the characteristic line is faster, but the 

implicit upwind method provides more information on the temperature distribution within the pipe. 

 
2 SIMPLE is a widely used algorithm to solve the Navier-Stokes equations in Computational Fluid Mechanics. 
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In [52] the authors present a model based on the standard TRNSYS Type 31 component, which is based 

on the Lagrangian approach. The model, named the plug flow model, is compared to a 1D and a 2D 

Finite Volumes model. The results show that the plug flow gives the same accuracy as the 1D model 

while using a rougher spatial discretization and presents lower sensitivity for long pipes. The need of 

fewer elements in the discretization also allows the plug flow model to be run much faster than the 1D 

model. This approach is later used by [53] to model district cooling networks where the results 

demonstrate that the model is reliable for its implementation during the design phase or the optimization 

of the operation. Another model based on plug flow was developed by [54]. The model was implemented 

in Modelica, compiled and simulated in Dymola, and made use of the Dassl solver. The results have the 

same accuracy as the exact solution of the one-dimensional problem model but are obtained faster due 

to the rougher spatial discretization of the pipes in the system. In [55] the authors present a thermo-fluid 

dynamic model that they use for the detailed simulation of large district heating networks. The model 

provides the evolution of pressure and temperature in each node and mass flow in each branch using the 

SIMPLE algorithm. The authors conclude that having information on the state of the network can be 

used to optimize the operation and management of a DH network as well as for peak demand shavings. 

As can be seen, many different approaches exist to model DH networks, each with their own pros and 

cons. Because the present research aims to be a Proof of Concept of the transition of DH into Smart 

Thermal Networks, models that provide detailed information on the network are preferred to those with 

faster computational times. For this reason, the present research develops a model based on the Finite 

Volumes method described in [51], which gives detailed information on the physical processes taking 

place in the pipes as well as their temperature distribution. 

2.2 Optimization of DH systems 

Optimization is an effective tool to find the values of the system’s variables that would give the best 

output given an objective function. Optimization has been extensively used in engineering sciences to 

maximize performances or minimize costs of products, processes, and services. Every optimization 

problem requires a realistic mathematical representation of the system to be optimized and an 

optimization algorithm. An optimization process often involves the evaluation of the objective function 

many times, exploring thousands or even millions of configurations, thus it is common to use the aid of 

a computer to run the simulations and use an optimization algorithm to find the best solution quickly. 

But even with a powerful computer, each optimization run could take hours, or days, to find a solution. 

For this reason, the choice of optimization algorithm as well as the computer program to implement it is 

of paramount importance. 
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In some cases, when the amount of simulations needed is limited, the optimization can be carried out 

using just a simple algorithm, like evaluating the objective function for a few random, or hand-picked, 

input variables. This technique is especially useful if the objective is to map the solution space or to do a 

parameter search. In [56] the authors propose a systematic model to optimize the temperatures in the 

primary distribution network and their connection to residual heat sources. They use their simulation 

model to map the temperature differences between the higher-temperature supply water and the lower-

temperature return water in the system. The curves for the consumption of each water pump are drawn 

and the minimal point of each scenario is considered to be the optimized solution. The results show that 

heat pumps in combination with residual heat sources can be used to reduce the need of coal-fired boilers 

used in Chinese DH systems, thus reducing polluting emissions. While this approach can be useful for 

some studies, in most cases a more complex optimization algorithm is needed to expedite the finding of 

a solution. 

Two main optimization formulations exist that can be used for solving optimization problems: 1) Linear 

Programming and 2) non-Linear Programming. As the name implies, Linear Programming deals with 

optimization problems where the objective function, and all the constraints, are linear. This kind of 

problems are the easiest and fastest to solve for low number of variables. However, if any of the functions 

of an optimization problem cannot be described using a linear function, non-Linear Programming is 

required to model the problem. 

2.2.1 Linear Programming Formulation 

In the case of DH, as well as in many other heat and power systems, the optimization problems are rarely 

linear. For this reason, it is a common practice to try to reduce the optimization problems so they can be 

described by linear programming formulation, or to solve them for a linear behavior of the system only. 

An example of this is presented in [57], where the authors aim at creating a decision support system that 

could assist district heating authorities in the management of their network. The evaluated time horizon 

is divided into several time steps and at each time step a linear programming-based approach is used in 

order to compute the optimal combination of heat power generated at the plants to meet a demand. The 

objective function for this research is the minimization of the energy production cost at the sources, 

which can be described as a linear function. The model is applied to the DH network of Beaulieu 

Malakoff, in the city of Nantes, France. The results show that economic savings can be achieved with 

this approach. 

In [9], the authors present a DH model designed to be coupled with an economical model and an 

environmental model to form a global strategic management tool suitable for ex-ante and ex-post multi-
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criteria evaluation of DH networks. This optimization problem minimizes the objective function that 

describes the global heating cost in a DH network over a time step using as constraints the thermal 

capacity of the pipes, the heat sources capacity and the energy balance of the system. At each time step, 

the network is simulated via a linear programming model using MatLab and the LINPROG solver. In 

[58] the authors propose a method for the numerical simulation of the hydraulics of a DH network 

operating in steady state. The modeling approach is based on an Applied Solution Algorithm. The authors 

report that this algorithm is suitable to solve their model, which is conformed of symmetric matrices of 

the system described by linear equations, using an iterative optimization process. In this study the authors 

use the DH network in the city of Zemum, Serbia, as the case study and concluded that it was possible 

to supply at the desired mass flow rates with lower pump pressure, saving in electricity costs. 

Linear programming is not only used in DH, but in other optimizations problems as well. In [59], the 

authors present a linear programming tool to determine the best investment decisions and operating 

strategy for the design and management of residential energy systems. The work considers five residential 

energy conversion systems: a cogeneration fuel cell, a natural gas boiler, a heat pump, photovoltaic panels 

and solar thermal collectors that work together with a battery and a heat tank for energy storage. The 

study uses linear programming to determine the investment and control decisions for a given set of 

weather conditions, energy use and cost data. The system is built on MatLab and solved using the simplex 

algorithm contained in the LINPROG function. Lastly, in [60] the authors present an optimization-based 

methodology for the evaluation of retrofit incentives using as a benchmark the wide data collection 

reported by the ENEA Italian Agency. They use two linear programming models, one to maximize energy 

savings and the other to minimize retrofit costs. The linear programming problems are solved by the 

freeware release of the Lindo solver that uses the Revised Simplex Method. 

2.2.2 Non-Linear Programming Formulation 

To solve optimization problems in DH networks described as non-Linear Programming problems, the 

Literature Review shows that a preferred approach is to use the metaheuristic algorithm named the 

Genetic Algorithm. Examples of this are plentiful in the literature. The study carried out in [61] uses a 

mathematical model developed by the authors to simulate the thermal and hydraulic characteristics of a 

DH system with variable speed pumps installed. They then propose two optimization horizons to 

guarantee the supply of the demand, a “coarse” optimization with a 1-2 hour horizon and a “fine” 

optimization with a 15-20 minute horizon. Due to the non-analytical and non-smooth characteristics of 

the hydraulic performance of a multi-source looped pipe network, the authors use the genetic algorithm 

to search the minimum operational cost of the system in both optimization steps. Its application to a DH 
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network in the city of Dezhou, China showed that the operation costs could be reduced up to 22% and 

the losses reduced by up to 12% compared to its normal operation. 

In [62] the authors propose an optimization model to find the lowest power consumption of distribution 

pumps in a DH network while ensuring the pressure head demands of all substations simultaneously. 

They use a genetic algorithm to find the minimum electricity consumption of all pumps in a heating 

scenario. Using the model to evaluate a system with renewable energy sources, the authors concluded 

that the pumps’ power demand can vary from 0.16% to 7.5% when the heat load from the renewable 

source changes 1%. The study presented in [63] shows a method for the optimization of DH networks 

with generation plants at multiple locations along the network. In this study, the proposed objective 

function of minimizing operating costs is a non-analytic, non-smooth, function, so the authors use the 

genetic algorithm to solve the problem. They use data from the already installed automated meters to 

optimize the production of all the generations plants simultaneously from a system’s point of view. The 

results are evaluated using a DH model that calculates the state of the network based on the temperatures 

and flows at the generation plants, which the authors state it can be applied to arbitrary DH networks 

with multiple heat plants. The optimization results show savings in fuel and pumping costs. 

In [64] the authors propose a method to optimize the thermal load of a district by acting directly on the 

demand profiles of buildings. The optimization aims to optimize the system by anticipating the future 

demand to minimize the thermal peaks. To do so, monitoring stations are used to gather data of the 

buildings load profile and buildings with similar demands are clustered in groups. The DH model is a 

one-dimensional model based on energy conservation equations that uses a graph approach for the 

network topology. The temperature and flows of the network are found using the SIMPLE algorithm 

and the optimization problem is solved by using GA. The results show that the peaks could be lowered 

around 14%. In [65] the authors present a study for the optimization of a solar community in Finland. 

The authors use TRNSYS to simulate the model and GA for the optimization. The authors use the 

MOBO optimization tool to optimize the Life Cycle Cost of the energy system of the community. The 

system is comprised of solar collectors, solar panels, centralized short-term storage, and a borehole 

thermal storage for seasonal storage. The results show that with more buildings connected, the storage 

system could provide as much as 44% of the heat demand and the electricity consumption could be 

reduced up to 80% when compared to the base case. The study also showed that improving the thermal 

insulation of the buildings was the cheapest option to improve the efficiency of the community. 

While GA was found to be the most common algorithm used in this literature review, other algorithms 

were also used when the authors deemed them more appropriate for their specific objective functions. 

In [66], the authors present an optimization model for integrated energy systems (heat, electricity, gas, 
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wind, etc.) based on the objective functions of minimizing the total production costs, minimizing the 

wind power curtailment rate, and minimizing the variance of the peak-valley electrical load. They model 

the load demand, the energy production, conversion, transmission and distribution, and the capacity for 

expansion as uncertain parameters. The expected access to renewable energy sources is based on previous 

knowledge, but its real supply ability is modeled as to be known after the operation of the system. To 

solve this system, the optimization problem is built on Matlab and the global optimal solution is found 

using the Particle Swarm Optimization algorithm (PSO). The model is applied to the city of Tianjin, 

China, where it was found that increasing the proportions of electricity and natural gas in the final energy 

use on the integrated energy system of the city achieved the optimal result of operation. Another example 

of PSO can be found in [67], here the authors present a model to propose an optimization strategy of 

space heating systems in residential and office buildings which can simultaneously offer simulation-based 

optimization of energy demand and supply. The model is based on dynamic hydraulic conditions together 

with real-time temperatures and has the objective function of minimizing operation cost while 

maintaining indoor comfort levels. The optimization is done using PSO and is performed using the 

GenOpt software. Their approach is tested in a campus area in Harbin, China. The results show that the 

optimization combined with the proposed control strategy can achieve average financial saving of 27.86% 

in daily total cost while maintaining the indoor thermal comfort. 

 A different approach for the optimization of systems described by non-linear equations is found in [68]. 

In this work the authors use the DH system in Xiong’an, China to present and compare two optimization 

models for the optimization of its operation. One of them is aimed at showing the difference in the 

results when social benefits are considered together with the operators’ profits. The first optimization 

model is called the Independent Optimization Model and it has the objective function of minimizing 

operation costs of each energy station independently; the second optimization model is called the 

Collaboration Optimization Model, which tries to achieve a global optimization for all energy stations by 

minimizing the overall operation cost. The formulation of the problem contains several nonlinear 

expressions; thus, the authors use piecewise linearization method to approximate the nonlinear equation. 

This turns the problem into a mixed integer and linear programming model that is solved using the 

Gurobi solver in GAMS. The authors conclude that the Collaboration Optimization reduces the primary 

energy use by 19.1% but loses 18.3% of the profits for the energy integrators and increases the profits of 

energy suppliers by 13.8%. 

In some cases, the optimization problem may have more than one objective function. When this is the 

case, it is common that the objectives conflict among each other. To solve this type of optimization 

problems, the multi-objective optimization algorithms can be used. These algorithms, instead of giving a 

single solution, give a Pareto front of solutions, where all the solutions contained in the Pareto front can 
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be considered as optimal and it is up to the designer to choose one. A solution is said to belong to the 

Pareto front if that solution cannot be improved in one of the objectives without decreasing the 

performance in another objective. 

In [69] the authors propose the use of multi-objective optimization with three objective functions 

covering resource efficiency, environmental impact and economic feasibility of the given solution to 

assess the impact of demand-side measures on optimum design as well as characterize the heat load 

profiles of consumers. The authors use the commercial software MatLab to test this holistic approach in 

the optimization of the design of a biomass heat plant. To achieve this, the authors also propose the use 

of a new indicator named the “load deviation index”. The results obtained show that demand-side 

measures do not always improve the performance of DH systems, but the optimization done through 

the multi-objective approach considering all three objectives simultaneously skips the need for weighting 

factors as in single-objective optimizations. 

In [70] the authors present a multi-objective optimization method to optimize the supply capacities and 

the operation of a DH network, including thermal storage, over one year. Three objectives are defined: 

the minimization of total cost, the minimization of carbon dioxide emissions and the minimization of 

exergy destruction. The simulation model is written in the open-source, free programming language called 

Julia and the linear programming solver named Clp is used to obtain the solution. This study is later used 

in [71] to propose an additional “exergy tax”, which penalizes systems with high exergy destruction (i.e. 

gas boilers). Results show that exergy, together with carbon tax, can effectively reduce natural gas 

consumption in heat-only boilers. 

As can be seen, in the literature review we can find many options for the optimization of DH systems. 

Due to the non-linear characteristics of heat distribution, non-linear, metaheuristic algorithms like GA 

and PSO are usually chosen to find the solution of DH optimization problems. Matlab is the most chosen 

software for running the optimization. However, other non-linear and metaheuristic algorithm exist that 

can be used to optimize the problem of heat distribution, like Meshed Advanced Direct Search (MADS) 

[72]. That they were not found in the literature as often does not disqualify them as possible solutions. 

2.3 Evaluation of DH systems 

As seen in sections 2.1 and 2.2, there are various ways to model a DH network and many different 

approaches to optimize its operation. . However, this literature review showed that most of the works do 

not optimize the system as a whole, but rather focus on a specific aspect of it (like minimizing energy 

generation and costs). Even when multi-objective optimization is used, the objectives often included just 

a single objective regarding the internal operation of the system with the others being versed towards 
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financial or environmental objectives. This literature review found that a gap exists for a specific 

framework to holistically evaluate the performance of DH network, especially when it comes to the 

combination of technical and economic objectives with the QoS. 

In the papers consulted for this thesis it was found that most DH systems are evaluated on technical 

terms, like energy production and energy use, or economical terms, like design, operation and/or 

development costs. An example of a system where the results are evaluated based on technical 

performance is found in [58]. In this work the authors developed a model based on loop equations that 

use the energy demand and the energy generation in a DH network to predict the necessary pump 

pressure heads. This information is used to calculate the mass flow rates in the different elements and 

their pressure loss. The objective is to find the lowest pressure head needed at the different pumps in the 

system that would satisfy the necessary flows. Another example can be found in [56], where the authors 

use the temperatures on the secondary side of a DH distribution network and the temperatures of 

Industrial Excess Heat to compute the electricity consumption of Heat Pumps that would transfer heat 

from the industrial side (lower temperature) to the secondary distribution side (higher temperature). The 

objective is to find the heat pump locations that would minimize the consumption of electricity. 

The review showed that nowadays most works evaluate their results by transforming the energy objective 

function into an economic function. In [61], the authors used predicted heat demands and heat generation 

of a DH system to calculate the hydraulic and thermal characteristics of a DH system (pressure head, 

pressure drop, temperatures, thermal losses). They use a genetic algorithm to determine first the mass 

flows at the substations, and subsequently the flows at the generation plants and the speed of the pumps. 

The objective function aims to optimize the power consumption of the pumps by minimizing the cost 

function of the system. The work presented in [63] uses the energy demand and the operating temperature 

and mass flow of the generation plants to compute pressure loss, flows and temperature at the nodes. 

Their study minimizes the cost of heat generation by varying the operation of plants with the objective 

function set as the cost of electricity and fuel. An example of a multi-objective optimization can be found 

in [70]. Here the authors used a model based on the demand, plant use and fuel cost to minimize the cost 

of operation, the emissions, and the destruction of exergy. The model includes the ability to optimize 

supply and heat storage too. 

While it is important to use technical and economic indicators to evaluate improvements to a DH 

network, they do not give enough information on any improvement on the QoS. The literature review 

shows that the lack of a comprehensive evaluation framework of DH systems originates partially on the 

absence of a clear definition of QoS for DH. In electricity networks, QoS is an old concept that has 

become an integral part of the operation of the electricity distribution networks, with several indicators 
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to measure it and real-life applications that are used to optimize operation, influence tariffs and define 

policy and regulation [73]. One major aspect of QoS in electricity is the concept of Continuity of Supply, 

which addresses the availability and the reliability of electricity. In the case of DH, the literature review 

shows a gap in indicators to measure and evaluate the continuity of supply of heat distribution systems 

and its effects in the operation of the DH network. The closest thing to continuity of supply evaluation 

in DH found in the literature was the concept of Flexibility. 

Flexibility can be defined as the capability of a consumer connected to a DH network to shift in time or 

magnitude its energy demand [74], which opens the possibility of a Demand Response (DR) strategy. In 

DH, consumers can be individual households, individual buildings, or aggregates of buildings. The 

flexibility of a consumer is strongly related to the thermal mass and the heat inertia of buildings, and thus 

impacted by the insulation, the energy efficiency of the building(s), and the actions of the people 

inhabiting them. An example of the impact of heat inertia on the flexibility of supply is presented in [75]. 

In this study the authors use a multi-agent system to control the heat load of various buildings in a 

dynamic way with the objective of keeping it below a threshold value to prevent the use of back-up units. 

The results show that it is possible to curtail up to 10% of the demand for short periods of time without 

the consumers noticing it. They also show that the cuts in supply can be made several times per hour 

depending on their magnitude, effectively reducing the demand of the substation around 4%. A more 

recent study is presented in [76]. Here the authors explore the potential of DR on the energy supply in 

buildings when accounting for the heat inertia. The results show that using the heat inertia of the buildings 

as short-term storage allows them to experience DR events, where supply is completely curtailed, for 

more than 1.5 hours before the inhabitants start feeling discomfort. 

In [77] the authors investigate the effect of implementing DR and Electrical Energy Storage on 

distribution systems. They focus their studies on energy payback, flexibility, and efficiency of storage. In 

[20] the authors present a strategy for building energy management when connected to a Smart Grid. 

They developed a model to predict the power demand of commercial buildings and the possible 

alterations to this demand in order to then simulate the thermal behavior of commercial buildings and 

use them as short-term energy storage to balance the power flows in the grid. 

These findings motivated the present research to develop an evaluation framework capable of 

considering the three objectives most sought after in the optimization of DH systems: maximization of 

energy efficiency, minimization of operation and generation costs, and optimization of flexibility 

measures without compromising the QoS. As this is not found for DH networks, the review turned to 

the existing electricity networks, in particular Smart Grids, to find the indicators that are used there to 

evaluate the performance of the system in terms of energy and QoS. 
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An overall review of what the electricity sector is doing to evaluate the performance of their distribution 

networks under the Smart City context can be found in [78]. In this review, the authors study the 

optimization of the installation of Distributed Generation (DG) to minimize the system losses, improve 

the voltage profile, enhance the system reliability, stability, and load ability etc. In the case of the reliability 

assessment, the authors found that it could be performed in terms of reliability indices. The authors note 

that the indices commonly linked with reliability in electrical networks are the SAIFI (system average 

interruption frequency index), SAIDI (system average interruption duration index), CAIFI (customer 

average interruption frequency index), CAIDI (customer average interruption duration index), AENS 

(average energy not supplied), ENS (energy not supplied) and EENS (expected energy not supplied). 

In [79] the authors describe an analytical methodology for reliability evaluation and enhancement of 

distribution system having distributed generation based on SAFI, SAIDI and CAIDI. The objective 

function of the optimization problem is the cost of modification for failure rates/repair times and the 

additional cost of expected energy supplied by DG. Differential Evolution, PSO and coordinated 

aggregation based PSO are used to solve the problem. In the study presented in [80], the authors explore 

self-healing mechanisms to minimize the impact of faults and outages on distribution grid, as these are 

being considered as one of the critical requirements for smart distribution networks. In this work the 

authors illustrate the benefits of the distribution power restoration method based on an approach named 

the Distribution Automation–Advanced Metering Infrastructure convergence approach. To optimize the 

reliability of the system, the authors also use three reliability indices: the SAIFI, the SAIDI and the 

CAIDI. 

From the literature review, the present research proposes that these three indicators used in electricity 

grids, the SAIFI, the SAIDI and the CAIDI, can be translated into DH indicators to formulate a 

comprehensive, holistic evaluation framework for DH. Instead of the AENS, ENS and EENS, the 

present research uses as indicators the Deficit and the Surplus of the network, as well as a new indicator 

here presented called the Pipe Supply Factor. The definition  for these last three indicators is presented 

in Chapter 3.  

2.4 Literature review conclusions 

The literature review found that, while different commercial and free software already exist for the 

simulation and optimization of DH systems, many of them are incapable of considering the dynamics 

present in the distribution of heat. For this reason, many studies conducted by different universities have 

proposed methods to model the dynamics of DH networks and then combine these models with an 

optimization tool or algorithm. One model for DH is the Finite Volumes method, which stands out for 
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having longer computational times but providing detailed information for the temperature and flow of 

the water along the whole length of the pipes, not only at the inputs and outputs. The modeling of DH 

can be done in existing tools specific for this, like TRNSYS, or in general tools, like MATLAB. Which 

one is selected depends on the characteristics of the problem being studied. 

Once the model is developed, it is common to pair it with an optimization algorithm. Depending on the 

objectives of the study, the optimization can have a single objective function or multiple. Depending on 

the formulation used to describe the problem, it is possible to use Linear Programming optimization 

algorithms, Mixed Integer Linear Programming optimization algorithms or non-Linear Programming 

optimization algorithms. Due to the characteristics of heat distribution in a DH network, it is common 

to linearize the equations using different approaches, the most common is assuming steady state for the 

distribution network. When steady state is not assumed and the dynamics are considered, GA and PSO 

were the two most common algorithms to solve this kind of problems. 

The most common objective functions found for the optimization routines were the minimization of 

generation and operation costs, the optimization of operational set-points for specific equipment, the 

minimization of development costs, and the minimization of emissions and/or environmental impact. 

Not many papers were found that focused on the optimization of the supply of heat and even less were 

found that were focused on the QoS provided to the consumers at the same time as the minimization of 

generation and operation costs. 

The literature review found a gap for the holistic evaluation of DH systems. While some energy and 

economic indicators are used for the optimization routines, they usually look at the system from the point 

of view of one of its actors only (i.e. heat producers or the DHO). This was especially noted in the lack 

of indicators to measure the QoS provided to the consumers of a DH system, where the closest term 

that was found was the concept of flexibility. This motivated this literature review to look at what the 

electricity sector is doing, where indicators for this can be found. The three most used indicators in 

electricity networks are the SAIFI, the SAIDI and the CAIDI. These three can be adapted to DH systems 

to allow the evaluation of the operation of a DH system from the perspective of the whole system, rather 

than from individual actors alone. 

From the literature review, it was found that an area of opportunity exists for the development of a 

simulation and optimization model that considers the dynamics of heat distribution. The optimization 

needs to focus not only on generation and operation costs, but also on the optimization of the supply of 

heat and on the optimization of the QoS delivered to the users connected to a DH network. The present 

research uses these findings together with its main objective, the proposal of a novel model for system 

management of District Heating by combining Modeling, Simulation, and Optimization tools, to develop 
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a comprehensive simulation and optimization tool named the Dynamic Optimization of DH for its 

Transition to Smart Thermal Networks (DOTS). The results from DOTS become a proof of concept 

that demonstrates the possibility of DH systems to transition into Smart Thermal Networks and their 

capabilities of integration into the Smart City model. 

 

 

  



 
 

25 
 

3 Methodology 

 

 

 

 

 

 

 

 

 

 

To demonstrate that it is possible to upgrade DH systems management within the scope of the Smart 

City, the objective of this work is to propose a model of control and operation of District Heating by 

combining Modeling, Simulation, and Optimization tools. The proposed model, named the Dynamic 

Optimization of DH for its Transition to Smart Thermal Networks (DOTS), is constituted by three parts: 

the modeling of DH systems, the optimization of DH systems, and the evaluation of DH systems. As a 

result of the literature review, the modeling approach selected is based on the physical modeling of DH 

networks using the Finite Volumes method. The optimization is divided into two steps: The dispatch 

optimization and the generation temperature optimization. Dispatch is optimized through the cost of 

generation, which can be described using linear functions. For this reason, linear programming 

optimization is used for its minimization.  

Generation temperatures are optimized through the minimization of energy generation, supply deficit 

and supply surplus. In DH, it is common that the supply does not always match the demand. When the 

supply cannot meet the demand, it is called a deficit; when the supply is higher than the demand and the 

extra heat cannot be used to feed any other consumers, it is called a surplus. The existence of a surplus 

or a deficit lower the efficiency of the DH system and, in the case of deficits, incur in economic and QoS 

losses. The supply is affected by the physical characteristics of the network, so its behavior needs to be 

described using non-linear formulation. For this reason, non-linear programming optimization is used 
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for the optimization of generation temperatures with the objective function of minimizing generation, 

deficit and surplus (thus maximizing supply). 

Finally, the evaluation of DH is done through energy, economic and QoS indicators. The energy 

performance of the DH system during the evaluation period is assessed through the total heat generated 

to satisfy the demand, and through the ratio of the heat generated to the demand satisfied (energy 

efficiency). The economic evaluation is done through the cost of generation, the expected revenue from 

the heat supplied, and the expected profit from the heat supplied. These three economic indicators are 

normalized to the total demand of the system for the evaluated period to make their comparison with 

other periods, and different systems, simpler. The QoS evaluation is based on the evaluation framework 

for Smart Grids and adapts three indicators from it: the system average interruption frequency index 

(SAIFI), the system average interruption duration index (SAIDI), and the customer average interruption 

duration index (CAIDI). 

The optimization routine within DOTS is named DOft and is carried out using two different 

optimization tools. The first is called HeatGrid [81], a tool developed by the IMT Atlantique based on 

Linear Programming that uses a variant of Mehrotra's predictor-corrector algorithm [82], a primal-dual 

interior-point method, for the dispatch optimization. The second tool is called NOMAD [10], which is 

based on non-Linear Programming and uses the MADS algorithm for the optimization of the generation 

temperatures. Both tools are described further in the methodology. The simulation software selected is 

MatLab, for being user friendly and adaptable to different programming languages. 

A summary of the methodology is depicted in Figure 3-1. As shown in this figure, the core of the 

proposed methodology is the Dynamic Model for the simulation of DH networks (yellow). This model 

gives the spatial-temporal distribution of temperature within time step 𝑖 of duration ∆𝑡𝐷𝑦𝑚, which 

combined with the mass flow rates gives the spatial-temporal distribution of powers. This information is 

what allows the present research to know the delay, inertia, real losses, and real supply, hence allowing 

for their optimization and evaluation. The two optimization tools are used together to determine the 

temperatures, mass flow rates and generation powers within time step 𝑡 of duration ∆𝑡𝑜𝑝 that would 

better supply the demand, at the lowest cost and with minimal waste (∆𝑡𝐷𝑦𝑚 < ∆𝑡𝑜𝑝). HeatGrid 

optimizes dispatch by minimizing generation costs (green) and NOMAD optimizes generation 

temperatures by minimizing overall generation, deficit and surplus (purple). DOft is capable of being 

used without the temperature optimization and is named Oft instead. The results obtained with DOft 

(or Oft) are evaluated through energy, economic and QoS indicators to assess their effectiveness, not 

only technical, but economical and qualitative too (blue). 
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The detailed description of each of the three steps is presented in the following sections. The modeling 

approach in section 3.1, the optimization in section 3.2, and the evaluation in section 3.3. 

3.1 Modeling of DH systems 

The first step in the modeling of DH systems is the mathematical representation of a DH network. This 

is usually done by a graph of nodes interconnected by vertices. Generation and consumption sites are 

represented by the nodes and the vertices represent the supply and return pipes buried underground. 

Nodes feed and take energy and mass from the vertices; the vertices transport the energy along the 

network. This approach has been used by many studies that aim at modeling DH. 

While there are different ways of translating the node and vertex model into mathematical form, a natural 

way of representing DH networks is using directed graphs. A directed graph is a set of objects (vertices 

and nodes) that are connected, each connection having a determined direction. In a directed graph all 

flows follow the direction of the connections. If the directed graph does not have a pair of symmetric 

vertices, meaning that there are no nodes connected in both ways, the graph is called an oriented graph. 

Oriented graphs transform the nodes and vertices topology into mathematical form by converting them 

into an adjacency matrix with 𝑛 nodes and 𝑚 branches. If two nodes are connected, this is denoted in 

the adjacency matrix with the number 1 or -1 (see Figure 3-2 bottom), if the nodes are not connected, 

then the intersection of line 𝑛 with column 𝑚 is zero. The direction of the flow between two nodes is 

indicated by the sign, 1 if the flow exits the node and -1 if the flow enters the node. An example of an 

oriented graph with eight nodes and nine pipes, together with its adjacency matrix, is shown in Figure 

3-2. 
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Figure 3-1: Methodology diagram. The Dynamic Model stands at the center (yellow). Its integration into HeatGrid 
becomes the Oft optimization (green). Integration of Oft with NOMAD creates DOft (purple). DOft and the 
Evaluation framework combine into DOTS (blue). 
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In this work, oriented graphs are used to determine the connections and the flows in the network. Each 

connection is then modeled using a variation of the Finite Volumes Node method (FVN) to simulate the 

heat transport in the pipes. Each node is modeled using continuity equations and a heat balance for the 

processes inside the nodes. The full model is named the Dynamic Model for simplicity and it is presented 

in section 3.1.1. The sub-model for the heat transport in the pipes is presented in section 3.1.2 and the 

sub-model for the heat balances in the nodes is presented in section 3.1.3.  

 

 

 

Figure 3-2: Example of an Oriented Graph (top) and its adjacency matrix(bottom). The nodes in the oriented graph 
are identified using letters (a – h) and the branches using numbers (1 – 9). In the matrix, the number “1” indicates a 
connection between the node and the branch, the sign indicates the direction of the flow: positive (outflow) and negative 
(inflow). 

3.1.1 The Dynamic Model3 

The Dynamic Model is meant to recreate the topology of the network, the node dynamics, the transport 

phenomena, and the heat losses. To achieve this, a combination of two sub-models is proposed. One 

 
3 Figures and Tables in sections 3.1.1, 3.1.2 and 3.1.3 were first published in [83] 
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sub-model evaluates the processes inside the nodes while the other sub-model evaluates the transport of 

energy through the pipes. The model allows for every node to have generation, consumption, storage, 

and flow joints and splits. These give the model the capability to represent various elements of the 

network like central and distributed generation, central and distributed storage, prosumers, etc. However, 

not all the possible elements will be explored in the present research. A simplified example of the 

operation of these two sub-models working together for a segment of a network can be seen in Figure 

3-3. In this figure, 𝑇 indicates temperature, 𝑚̇ mass flow rate, 𝐷 demand and 𝜂 heat exchanger efficiency. 

Subindex 𝑠 indicates the supply side and 𝑟 the return side of the network. Subindices 𝑖𝑛 and 𝑜𝑢𝑡 indicate 

input or output, respectively. The numerical subindex indicates the node the variable refers to. 

In this example two nodes are analyzed. Node 1 and Node 2 are consumption nodes, but Node 2 is an 

end of the line node, which means that any mass flow not consumed by the substation is injected directly 

into the return line. The resulting supply temperatures and mass flow rates from Node 1 are fed into the 

supply Pipe 1-2 towards Node 2. Because Node 2 is at the end of the line, its results are fed to the return 

Pipe 2-1, which in turn are fed into the return side of Node 1. This process is repeated for any number 

of nodes, always starting from the first upstream nodes to the end of the lines for the supply line and 

from the last downstream nodes to the first upstream nodes for the return line. In addition, it considers 

the existence of junctions and splits and calculates the respective heat and mass flows of each branch 

using the energy conservation and mass conservation equations for each node and pipe. The temperatures 

and mass flow rates are calculated for every time step 𝑖. 

 

Figure 3-3: Diagram of the Dynamic Model in graphic form (left) and descriptive form (right). 

For the modeling of the heat transport in the pipes, the present research proposes a model based on the 

FVN. Every pipe is discretized into finite elements. While the water resides within each pipe element, it 

will lose some of its energy due to the heat transfer occurring between the water and the walls of the 
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pipe. As time progresses, some of the water contained within the pipe elements will flow towards the 

next element; this water will be replaced by the same amount from the previous pipe element to maintain 

continuity. The amount of water that is replaced depends on the volume of the element and the mass 

flow rate of the hot water. This is the basis of energy transport in a pipe for the FVN. 

The pressure needed to maintain the mass flow is calculated using the Darcy-Weissbach equation for 

head loss in the pipe (see Equation 3-1). This equation can also be used to compute the hydraulic balance 

of networks with reversible flows in the pipes, like networks with a looped topology or networks with 

energy storage systems. 

Equation 3-1: Darcy-Weissbach equation. 

𝐷𝑊 =
4𝑓𝑓𝐿𝑢

2

2𝑔𝑑
 

In this equation 𝐿 is the length of the pipe, 𝑢 is the speed of the flow, 𝑔 is the gravity, 𝑑 is the diameter 

of the pipe and 𝑓 is the friction factor. This last parameter can be calculated using Equation 3-2, an 

explicit equation introduced by Barr [84], which provides accurate results for Reynolds numbers higher 

than 105. In Equation 3-2, 𝑒𝑠 is the effective roughness and Re is the Reynolds’ number. 

Equation 3-2: Effective roughness. 

𝑓𝑓 =
1

[−4𝑙𝑜𝑔10 (
𝑒𝑠

3.71𝑑
+
5.1286
𝑅𝑒0.89

)]
2 

The Dynamic Model can simulate the operation of a DH network and give as a result the spatial-temporal 

distribution of temperatures and energy, the real losses in the pipes and the real supply at the nodes in 

any kind of DH network configuration, including looped topologies with reversible flows. This makes 

the Dynamic Model a good asset to combine with an optimization routine to improve the operation of 

DH systems4. In the present research only branched configurations are studied, but ring and looped 

topologies can also be modeled using this methodology. The detailed description of each of the sub-

models that constitute the Dynamic Model are presented next. 

3.1.2 Modeling Heat Transport in Pipes 

The modeling of the heat transport in the pipes derives from the heat balance of the energy flows in a 

discretized pipe. The energy flow, or heat flow, is composed by two different components. The axial 

 
4 The present research focuses on Heat distribution networks. In the case of Cooling networks many of the same principles 
can be applied, and the methodology here presented can be adapted. 
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component, called advection, that carries the heat along the pipe by a medium (i.e., hot water), and the 

radial component, called conduction, in which heat is lost through the walls of the pipe. Each element of 

the pipe is described as a finite volume, i.e. at every instant each volume contains a mass of hot water 

determined by the element’s volume and the density of the water. The energy associated to the mass of 

hot water is the stored heat in the pipe.  

Mathematically this can be expressed as follows. Each pipe element has three associated heat flows that 

determine the change in its stored heat (∆𝑄𝑣𝑜𝑙). On the axial axis there are the heat that flows in from 

the upstream element (𝑄𝑖𝑛) and the heat that is passed on to the downstream element (𝑄𝑜𝑢𝑡). On the 

radial axis there is the heat that is lost through heat transfer during the time the water resides in the 

evaluated element (𝑄𝑙𝑜𝑠𝑠). This heat depends on the difference in temperatures between the pipe wall 

and the water. The heat balance for an element 𝒋 of the water in the pipe at time 𝒊 is shown in Equation 

3-3. 

Equation 3-3: Heat balance inside a pipe element. 

𝑄
𝑖𝑛𝑗

𝑖 − 𝑄
𝑜𝑢𝑡𝑗

𝑖 − 𝑄
𝑙𝑜𝑠𝑠𝑗

𝑖 = ∆𝑄
𝑣𝑜𝑙𝑗

𝑖         

To illustrate the flows, the diagram of the heat flows for the water is shown in Figure 3-4 and the diagram 

for the heat flows inside a pipe wall is shown in Figure 3-5. In these figures 𝑇 denotes temperatures; 𝑚̇ 

denotes the mass flow rate of the water; and 𝑄 denotes the heat flows. 

 

Figure 3-4: Heat balance for the water inside element j of a pipe. Red arrows indicate the heat flows and blue arrow 
indicates the mass flow. The dots indicate the average temperature of the element. Sub-index “w” stands for water, “st” for 
the pipe, “ins” for the insulation, “gro” for the ground, and “a” for ambient. Sub-index “j” indicates element in the 
spatial discretization and super-index “i” indicates moment in the temporal discretization. 
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Figure 3-5: Heat balance for element j of the pipe. Red arrows indicate the heat flows and blue arrow indicates the mass 
flow. The dots indicate the average temperature of the element. Sub-index “w” stands for water, “st” for the pipe, “ins” for 
the insulation, “gro” for the ground, and “a” for ambient. Sub-index “j” indicates element in the spatial discretization 
and super-index “i” indicates moment in the temporal discretization. 

Based on the systems presented in Figure 3-4 and Figure 3-5, the balance in Equation 3-3 can be 

expressed using the two variables for the system: the mass flow rate (𝑚̇) and the temperature of the water 

(𝑇𝑤). In explicit form, these can be seen in Equation 3-4 for each of the heat flows. 

Equation 3-4: Balance equations for the water inside a pipe element in explicit form. 

𝑄𝑖𝑛𝑗
𝑖 = 𝑚̇𝑖𝐶𝑝𝑤𝑇𝑤𝑗−1

𝑖−1 ∆𝑡𝐷𝑦𝑚

𝑄𝑜𝑢𝑡𝑗
𝑖 = 𝑚̇𝑖𝐶𝑝𝑤𝑇𝑤𝑗

𝑖−1∆𝑡𝐷𝑦𝑚

𝑄𝑙𝑜𝑠𝑠𝑗
𝑖 =

(𝑇𝑤𝑗
𝑖 −𝑇𝑠𝑡𝑗

𝑖 )

𝑅𝑤−𝑠𝑡𝑗
𝑖 ∆𝑡𝐷𝑦𝑚

∆𝑄𝑣𝑜𝑙𝑗
𝑖 = 𝜌𝑤𝐶𝑝𝑤𝑉𝑤 (𝑇𝑤𝑗

𝑖 − 𝑇
𝑤𝑗

𝑖−1
)

        

To solve the heat balance, it is necessary to know the temperature of the pipe wall (𝑇𝑠𝑡𝑗
𝑖 ). In the FVN 

method a second heat balance is made for the pipe wall as shown in Equation 3-5. In this case, the 

change of the energy in the pipe is caused by the heat transferred from the water to the pipe (−𝑄𝑙𝑜𝑠𝑠) 

and the heat transferred from the pipe to the environment (𝑄𝑠𝑡−𝑎). The former is indicated on the item 

at the right side of the equality in Equation 3-5 and the latter on the item at the left of this equality. In 

this equation 𝑇𝑎 is the ambient temperature (assumed to be constant in this work), 𝑅𝑤−𝑠𝑡𝑗
𝑖  is the thermal 

resistance between the water and the pipe, and 𝑅𝑠𝑡−𝑎 is the thermal resistance between the pipe and the 
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surroundings (including insulation resistance and soil resistance). For a full description of the equation 

used refer to the Annex. 

Equation 3-5: Heat balance for a pipe wall. 

𝜌𝑠𝑡𝐶𝑝𝑠𝑡𝑉𝑠𝑡 (𝑇𝑠𝑡𝑗
𝑖 − 𝑇𝑠𝑡𝑗

𝑖−1) = [
(𝑇𝑤𝑗
𝑖 −𝑇𝑠𝑡

𝑖
𝑗
)

𝑅𝑤−𝑠𝑡𝑗
𝑖 −

(𝑇𝑠𝑡𝑗
𝑖 −𝑇𝑎)

𝑅𝑠𝑡−𝑎
] [∆𝑡𝐷𝑦𝑚]   

Equation 3-3 and Equation 3-5 can be arranged in a 𝐴𝑥 = 𝐵 matrix, where 𝐴 and 𝐵 are the matrices 

describing the equations and 𝑥 the solution vector. Such system is shown in Equation 3-6. 

Equation 3-6: Equations in Ax=B matrix form. 

[
 
 
 
 
𝜌𝑤𝐶𝑝𝑤𝑉𝑤
∆𝑡𝐷𝑦𝑚

+
1

𝑅𝑤−𝑠𝑡𝑗
𝑖

−1

𝑅𝑤−𝑠𝑡𝑗
𝑖

−1

𝑅𝑤−𝑠𝑡𝑗
𝑖

𝜌𝑠𝑡𝐶𝑝𝑠𝑡𝑉𝑠𝑡
∆𝑡𝐷𝑦𝑚

+
1

𝑅𝑤−𝑠𝑡𝑗
𝑖

+
1

𝑅𝑠𝑡−𝑎]
 
 
 
 

[

𝑇𝑤𝑗
𝑖

𝑇𝑠𝑡𝑗
𝑖
] =

[
 
 
 
 𝑚̇𝐶𝑝𝑤𝑇𝑤𝑗−1

𝑖−1 + (
𝜌𝑤𝑉𝑤
∆𝑡𝐷𝑦𝑚

− 𝑚̇)𝐶𝑝𝑤𝑇𝑤𝑗
𝑖−1

𝜌𝑠𝑡𝐶𝑝𝑠𝑡𝑉𝑠𝑡
∆𝑡𝐷𝑦𝑚

𝑇𝑠𝑡𝑗
𝑖−1 +

𝑇𝑎
𝑅𝑠𝑡−𝑎 ]

 
 
 
 

 

To solve this system, it is necessary to make some considerations. The pressure wave propagates about 

1000 times faster than the temperature wave [47], the flow occurs under low velocity conditions and the 

fluid used in the heat networks is liquid water. In that case the following assumptions are made without 

significant loss of precision [46], [49]: 

• the flow is one-dimensional and incompressible; 

• the effects of hydraulic dispersion are neglected; 

• thermal diffusion, and axial heat transfer are neglected; 

• heat dissipation is ignored due to low velocity flows; 

• the specific heat at constant pressure (Cp) is constant in the evaluated range; 

• each element of the discretized pipe has a lumped mass with a single temperature; 

• heat inertia of insulation and ground are ignored. 

These considerations are similar to those taken in other works which report accurate results for the 

modeling of thermal networks [48], [54], [85]. 

While this method has proven to be useful, an improvement can be made by including the inertia of the 

heat transfer between its elements, as well as the storage capacity of the pipe. For this work we developed 

a modified method of FVN in which 𝑇𝑠𝑡𝑗
𝑖  is obtained using the electrical analogy of the system. The 

thermal conductivities are associated to electrical resistances, the heat capacities to electrical capacitances 

and the temperature gradients to voltage difference. The system can be solved as an RC circuit. The 

converted circuit for a pipe like the one shown in Figure 3-5 is shown in Figure 3-6: 
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Figure 3-6: Thermal Circuit for an insulated pipe considering only one capacitance. The resistors indicate a thermal 
resistance and the capacitor a thermal capacitance. The dots indicate the average temperature of the elements. The base line 
indicates the reference temperature of the circuit. 

In Figure 3-6, 𝑇𝑖𝑛𝑠𝑗
𝑖  is the temperature of the insulation and 𝑇𝑔𝑟𝑜 is temperature of the soil. 𝑅𝑤−𝑠𝑡𝑗

𝑖  is 

obtained from the convective heat transfer coefficient of the water and the area of contact between the 

water and the pipe, and half the thermal resistance of the pipe; 𝑅𝑠𝑡−𝑎 is obtained from the thermal 

resistances of the other half of the pipe, the insulation and the soil. 𝐶𝑠𝑡 is the heat capacitance of the pipe 

and is equal to: 𝐶𝑠𝑡 = 𝜌𝑠𝑡𝐶𝑝𝑠𝑡𝑉𝑠𝑡 where the values correspond to the density (𝜌𝑠𝑡), specific heat (𝐶𝑝𝑠𝑡) 

and volume (𝑉𝑠𝑡) of the material of the pipe, i.e. steel. The thermal resistance between 𝑇𝑔𝑟𝑜 and 𝑇𝑎 is 

calculated using the resistance equivalent for a cylindrical geometry and the shape factor for a constant 

temperature cylinder buried in a half infinite domain. 

The solution for the circuit in Figure 3-6 for the change from time step 𝑖 to time step 𝑖 + 1 can be found 

using the Laplace transform of the system. Using 𝑇𝑠𝑡𝑗
𝑖  as the reference temperature for the temperature 

change, the resulting system of equations can be seen in Equation 3-7.  

Equation 3-7: Equations for the Dynamic Model. 

[
 
 
 
𝜌𝑤𝐶𝑝𝑤𝑉𝑤

∆𝑡𝐷𝑦𝑚
+

1

𝑅𝑤−𝑠𝑡𝑗
𝑖 (

𝐶𝑠𝑡

∆𝑡𝐷𝑦𝑚
+

1

𝑅𝑠𝑡−𝑎
)

−
𝑒𝑥𝑝(−∆𝑡𝐷𝑦𝑚 𝜏⁄ )

𝑅𝑤−𝑠𝑡𝑗
𝑖

𝜌𝑠𝑡𝐶𝑝𝑠𝑡𝑉𝑠𝑡

∆𝑡𝐷𝑦𝑚
+
𝑒𝑥𝑝(−∆𝑡𝐷𝑦𝑚 𝜏⁄ )

𝑅𝑤−𝑠𝑡𝑗
𝑖

]
 
 
 

[

𝑇𝑤𝑗
𝑖+1

𝑇𝑠𝑡𝑗
𝑖+1
] =

[
𝑚̇𝐶𝑝𝑤𝑇𝑤𝑗−1

𝑖 + (
𝜌𝑤𝑉𝑤

∆𝑡𝐷𝑦𝑚
− 𝑚̇)𝐶𝑝𝑤𝑇𝑤𝑗

𝑖 + 𝐶𝑠𝑡𝑇𝑠𝑡𝑗
𝑖 +

𝑇𝑎

𝑅𝑠𝑡−𝑎

𝜌𝑠𝑡𝐶𝑝𝑠𝑡𝑉𝑠𝑡

∆𝑡𝐷𝑦𝑚
𝑇𝑠𝑡𝑗
𝑖

]  

In Equation 3-7, 𝜏 is the time constant of the system and is defined by Equation 3-8. 
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Equation 3-8: Time Constant. 

𝜏 =
𝑅𝑤−𝑠𝑡𝑗
𝑖 ∙ 𝑅𝑠𝑡−𝑎 ∙ 𝐶𝑠𝑡

𝑅𝑤−𝑠𝑡𝑗
𝑖 + 𝑅𝑠𝑡−𝑎

 

By solving this system of equations, it is possible to solve the heat balance for any pipe element 𝑗. 

Because this approach is based on Finite Volumes, the spatial and temporal discretization is important 

to guarantee stability and prevent numerical diffusion. To ensure the reliability of the results, the volume 

of the water evaluated in one element must be equal or greater than the volume of the flow of water 

entering the element. This constraint is known as the Courant-Friedrich-Levy condition (𝐶𝐹𝐿 =

𝑢∙∆𝑡𝐷𝑦𝑚

∆𝑥
≤ 1), where 𝑢 is the flow velocity, ∆𝑡𝐷𝑦𝑚 is the time step duration and ∆𝑥 is the spatial step 

length. If 𝐶𝐹𝐿 > 1 the system presents numerical instability, if 𝐶𝐹𝐿 < 1  the system presents numerical 

diffusion. 

In the Dynamic Model the temporal discretization is fixed during the whole simulation and can be set to 

any desired value. The spatial discretization is then calculated using the temporal discretization, the target 

CFL and the flow rate for each pipe at each time step. In this way, every pipe has their own spatial 

discretization at every time step of the simulation and thus the target CFL is always reached. Because the 

pipe’s spatial discretization may vary several times during each simulation, a check is made between time 

steps to ensure that the number of elements has not changed. If the discretization has changed, then the 

temperature distribution is updated to the new number of elements using quadratic interpolation. 

3.1.3 Modeling Heat Balance in a Node 

The next step is to model the processes that take place at the different nodes of a DH network. To 

illustrate the heat balance in a node, Figure 3-7 shows a substation node with a local heat source. In this 

figure we can see that, at every time step 𝑖, a node with local generation has six mass flow rates 

(𝑚̇𝑠𝑖𝑛  ;  𝑚̇𝑠𝑜𝑢𝑡  ;  𝑚̇𝑟𝑖𝑛  ;  𝑚̇𝑟𝑜𝑢𝑡;  𝑚̇𝑔𝑒𝑛;  𝑚̇𝑠𝑢𝑏) and eight temperatures 

(𝑇𝑠𝑖𝑛; 𝑇𝑠𝑜𝑢𝑡;  𝑇𝑟𝑖𝑛  ;  𝑇𝑟𝑜𝑢𝑡;  𝑇𝑔𝑒𝑛𝑖𝑛;  𝑇𝑔𝑒𝑛𝑜𝑢𝑡;  𝑇𝑠𝑢𝑏𝑖𝑛;  𝑇𝑠𝑢𝑏𝑜𝑢𝑡  ) that have to be determined: 

• In the supply side: Four temperatures (𝑇𝑠𝑖𝑛  ;  𝑇𝑠𝑜𝑢𝑡;  𝑇𝑠𝑢𝑏𝑖𝑛;  𝑇𝑔𝑒𝑛𝑜𝑢𝑡) and four mass flow rates 

(𝑚̇𝑠𝑖𝑛  ;  𝑚̇𝑠𝑜𝑢𝑡;  𝑚̇𝑔𝑒𝑛;  𝑚̇𝑠𝑢𝑏). The temperature of the water going into the substation heat 

exchanger is the same as the supply temperature at the input of the node. 

• In the return side: Four temperatures (𝑇𝑟𝑖𝑛  ;  𝑇𝑟𝑜𝑢𝑡;  𝑇𝑔𝑒𝑛𝑖𝑛;  𝑇𝑠𝑢𝑏𝑜𝑢𝑡) and four mass flow rates 

(𝑚̇𝑟𝑖𝑛  ;  𝑚̇𝑟𝑜𝑢𝑡;  𝑚̇𝑔𝑒𝑛;  𝑚̇𝑠𝑢𝑏). The temperature of the water going into the generation heat 

exchanger is the same as the return temperature at the input of the node. 
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Other nodes may have a different balance, i.e. a node connected to a back-up plant and no consumption 

has only two temperatures (𝑇𝑠𝑖𝑛 = 𝑇𝑠𝑜𝑢𝑡  ;  𝑇𝑟𝑖𝑛 = 𝑇𝑟𝑜𝑢𝑡) and two mass flows (𝑚̇𝑠𝑖𝑛 = 𝑚̇𝑠𝑜𝑢𝑡  ;  𝑚̇𝑟𝑖𝑛 =

 𝑚̇𝑟𝑜𝑢𝑡) while the back-up is not in operation. A special case would be nodes representing a junction or a 

split. In a junction, the node has in its supply side two mass flow rates with different temperature at its 

input and one mass flow rate with one temperature at its output. In a split, the node has in its supply side 

one mass flow rate with one temperature at its input but two different mass flow rates with the same 

temperature at its output. In the case of the return side, junctions become splits and splits junctions. For 

these cases, the energy balance must consider the energy conservation equations and the mass 

conservation equations for all inflows and outflows. 

 

Figure 3-7: Representation of a node and its flows in a DH system. Red arrow represents the supply side and the yellow 
arrow the return side. Sub-index “gen” denotes local generation and sub-index “sub” denotes the local substation. 
Generation and substation are represented by heat exchangers. 
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In the present research, the temperatures and mass flow at the secondary side of the heat exchanger are 

outside the scope and are not further analyzed. The same for the temperatures and mass flow on the side 

of the heat exchanger connected to the generation plant. The input mass flow rates and temperatures for 

the supply and return lines depend on their upstream nodes. The temperature and mass flow rates at the 

heat exchanger of the substation can be obtained once the demand (𝑄𝐷𝑘) and the heat exchangers 

efficiency (𝜂𝑘) are known (calculating the heat exchangers efficiency is outside the scope of this work, so 

it is assumed to be known). The output mass flow rates and temperatures of the supply and return lines 

can be calculated once their input temperatures and mass flows and the mass flow of the heat exchangers 

are known. 

3.2 Optimization of DH systems 

In the present research, the optimization of the DH system modeled as described in section 3.1 is carried 

out with two different methods. The optimization of the dispatch of heat is done using HeatGrid [9], a 

tool developed by the IMT Atlantique that uses a variant of Mehrotra's predictor-corrector algorithm for 

its optimization routine. The optimization of the generation temperatures is done using NOMAD [10], 

a tool that uses the MADS algorithm [11] for the optimization. Together they give as result the mode of 

operation that minimizes generation costs at the same time as minimizing total generation, deficits, and 

surplus in the whole network. The results obtained with the optimization are the basis of the present 

research to answer the research question: How, through mathematical modeling, simulation and 

optimization, can the dynamics of heat distribution be used to aid in the management of DH systems, 

reduce costs, and increase efficiency and QoS?  

3.2.1 Dispatch Optimization 

HeatGrid is based on Linear Programming formulation and is presented in [9]. This tool enables the 

modeling of networks with different architectures, energy sources, conversion technologies and demand 

structure simulating its operation over a determined period. It is especially useful in the case of networks 

with large-capacity generation units but little flexibility and/or networks where prices are varying during 

the simulation period. A short explanation of HeatGrid is presented here, but the reader is encouraged 

to see the original publication [9]. 

HeatGrid models the network using an oriented graph. This graph has n number of nodes and m number 

of branches. Each node stands for a substation or a heating plant in the network and each branch stands 

for the pair of supply and return pipes connecting the nodes. Each node incorporates either a heat source 

(heating plant) or a heat sink (substation). The basic network topology is provided to the model via a 
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simple graph format matrix which describes how the nodes and branches are linked together. At every 

time step 𝑡 each branch has a constraint on the maximum power that can flow through the branch and 

an Average Heat Loss Coefficient which is assumed to be a function of the handled power. The maximum 

power is a function of the temperature and mass flow in the branch. The mass flow is constrained to the 

maximum pressure that the branch can handle which depends on the pipe’s inner diameter, length, 

thickness and material. The Average Heat Loss Coefficient is defined as the ratio between the heat losses 

of the pipe, and the difference between the average temperature of the water inside it and the temperature 

of the environment (Equation 3-9). In other words, the Average Heat Loss Coefficient is the coefficient 

that, multiplied by the average temperature difference between the water and the environment, would 

give the heat losses of the pipe. 

Equation 3-9: Average Heat Loss Coefficient. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑒𝑎𝑡 𝐿𝑜𝑠𝑠 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
𝑄𝑙𝑜𝑠𝑠

𝑇𝑤−𝑇𝑎
  

The temperature at which the generation plants of the DH system operate are calculated by HeatGrid 

using the function presented in Equation 3-10. In this equation, 𝑇𝑠𝑚𝑖𝑛  is the minimum allowed supply 

temperature, 𝑇𝑠𝑚𝑎𝑥  is the maximum allowed supply temperature, ∑ 𝐷𝑘
𝑡

𝑘  is the total demand at time step 

𝑡, max
𝑡
(∑ 𝐷𝑘

𝑡
𝑘 ) is the maximum total demand during the whole simulated period, and 𝐻 is the global 

heat loss coefficient of the network, which is assumed known and constant by HeatGrid. 

Equation 3-10: Operation temperature calculation by HeatGrid. 

𝑇𝑠
𝑡 = 𝑇𝑠𝑚𝑖𝑛 + (𝑇𝑠𝑚𝑎𝑥 − 𝑇𝑠𝑚𝑖𝑛) ∗

∑ 𝐷𝑘
𝑡

𝑘

max
𝑡
(∑ 𝐷𝑘

𝑡
𝑘 ) ∗ (1 + 𝐻)

 

At every time step HeatGrid aims to determine two unknown variables: the heat flows transferred in each 

branch and the power production at each heat source. To find the values of these variables HeatGrid 

minimizes the objective function 𝑓 that describes the heat production cost of the whole network for 

every time step (Equation 3-11). In this equation 𝐶𝑜𝑠𝑡𝑘
𝑡  is the operation cost of each plant 𝑘 at time step 

𝑡; 𝑃𝑆𝑟𝑐𝑒𝑘
𝑡  is the heat produced at plant 𝑆𝑟𝑐𝑒𝑘 at time step 𝑡 and; ∆𝑡𝑜𝑝 indicates the duration of each time 

step. 

Equation 3-11: Operation cost of the DH network. 

𝑓𝑡 =∑ 𝐶𝑜𝑠𝑡𝑘
𝑡 × 𝑃𝑆𝑟𝑐𝑒𝑘

𝑡 × ∆𝑡𝑜𝑝
𝑡∈𝑆
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To calculate the values of these state variables HeatGrid uses three different types of constraints at each 

node: 

• Thermal pipes capacity       0 ≤ 𝑃𝑚𝑔 ≤ 𝑃𝑚𝑔
𝑚𝑎𝑥 

• Heat sources capacity         0 ≤ 𝑃𝑘
− ≤ 𝑃𝑆𝑟𝑐𝑒𝑘

𝑚𝑎𝑥  

• Energy balance                   𝑃𝑘
+ = 𝑃𝑘

− + 𝑃𝑘
𝐷 

𝑃𝑚𝑔  is the heat handled in the pipe 𝑔, 𝑃𝑘
− is the heat exiting node 𝑘, 𝑃𝑘

+ is the heat entering node 𝑘, and  

𝑃𝑘
𝐷 is the demand in node 𝑘. The objective function as well as the constraints are linear, so a linear 

programming model is chosen for its speed and simplicity. The optimization problem is solved by using 

a variant of Mehrotra's predictor-corrector algorithm [82], a primal-dual interior-point method. 

The number of state variables is 𝑚 + 𝑛, where 𝑛 is the number of node powers and 𝑚 is the number of 

branch powers. The optimization is run at each time step to simulate the network during operating 

conditions and return the best combination of heating sources and power flows in pipes. 

HeatGrid is capable of simulating branched and looped topologies with a variety of generation plants 

and technologies distributed all along the network. The costs of generation and the demand profiles can 

be set to consider diverse factors that change from time step to time step. Nevertheless, HeatGrid 

optimizes the power generation over a time step but cannot optimize the delivery of this power. All in 

all, the objective of HeatGrid is to evaluate energy performances over the long term while optimization 

routines are used at each time step to simulate short term management and control assuming steady state 

conditions. This optimization routine selects the best generation strategy to supply the demand at the 

lowest economic cost, thus optimizing the use of resources in the production of heat (economical 

dispatch). 

To overcome the limitation of steady state assumptions, the simulation model described in section 3.1 

is integrated into HeatGrid to improve HeatGrid’s results. This integration is done to extend optimization 

capabilities and applicability of both. The integration also allows the evaluation of the performance of a 

network using HeatGrid for the optimization of its dispatch. 

The combination of the Dynamic Model with HeatGrid is named Oft and it is done through the Oriented 

Graphs on which both models are based on. HeatGrid relies on an Oriented Graphs to determine the 

flows of mass and energy in the network but, due to the Linear Programming formulation, the transport 

of energy is considered to be instantaneous. The Dynamic Model also relies on an Oriented Graph to 

determine the flows of the network but feeds this information into a transport sub-model in order to 

calculate the real transport times and losses in the pipes. 
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It is proposed here to run HeatGrid, which will give the optimum plant operation to minimize costs, 

together with the Dynamic Model to evaluate the real supply of energy in the network. The Dynamic 

Model evaluates the real losses taking place in each pipe for every time step 𝑖; at the end of the HeatGrid 

optimization time step 𝑡, an updated Average Heat Loss Coefficient is calculated and fed into HeatGrid 

to adapt its generation plan to the real losses in the network. Because every change in HeatGrid’s 

operation plan will have an effect on the losses in the network, the integration of the models works in an 

iterative manner on which the updated loss coefficient is fed back into HeatGrid until convergence is 

found between the operation plan and the losses in the network (Error<0.02%). A visual diagram of this 

integration can be seen in Figure 3-8. 

3.2.2 Temperature Optimization 

One way of improving the supply of DH systems is by optimizing not only the dispatch of heat (done 

using HeatGrid), but also the way in which this heat is delivered. Heat plants supply heat as a function 

of temperature and the mass-flow rate at which water is being injected in a system. HeatGrid gives as a 

result the value of this function (Power) but does not optimize the effect of these variables, temperature, 

and mass flow rate, in the system. The integration of a new optimization routine that optimizes the effect 

of temperature and mass flow rate on the system can further increase the efficiency and reliability of DH 

networks. This optimization is called DOft. 

The effect of temperature and mass flow rate in the supply of the system is non-linear, as can be easily 

seen in some of the transport equations of the dynamic model, like Equation 3-7. This calls for the use 

of an optimization tool based on non-Linear Programming formulation to solve for the optimum 

temperature/mass flow rate operation values. The literature review presented in Chapter 2 found that 

the most common optimization algorithms used to solve the optimization problem of energy supply in 

a heat distribution network are the Genetic Algorithm and the Particle Swarm Optimization. In the 

present research the first algorithm to be tested was GA, but as the modeling approach is computationally 

intensive, it was found that the GA optimization routine could take 10 hours to optimize 24 hours of 

operation. 
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Figure 3-8: Diagram of the integration of HeatGrid with the Dynamic Model (Oft). 

In order to expedite the optimization cycle without losing accuracy or precision, a different optimization 

algorithm was tested and selected to use in DOft: The Mesh Adaptive Direct Search (MADS). MADS is 

an optimization algorithm used to solve constrained optimization problems where the objective function 

and constraints are evaluated using a simulation tool. In particular, we use the NOMAD tool, which 

stands for Nonlinear Optimization by Mesh Adaptive Direct Search [10]. NOMAD can efficiently 

explore the space of complex optimization problems, like the dynamic modeling of heat transport in DH 

network used in the present research. In this case, it was able to reduce the computational time by a factor 

of five. A short explanation of NOMAD and MADS is given here, but for further understanding see 

[11], [72]. 

The MADS algorithm generates an underlying series of meshes on the domain space and then performs 

an iterative, adaptive search on the meshes. A mesh is a subset of the search space delimited by the set 

in the real matrix. At every iteration, the mesh is defined by the union of the matrix and the set of points 

where the objective function has already been evaluated. During the search, MADS also controls the 
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refinement of the meshes. At each iteration MADS has the objective of finding a point on the mesh that 

improves the current best solution. If an iteration fails to find a better solution, it refines the mesh for 

the next iteration.  

In a MADS optimization, given an initial iterate 𝜒0 ∈ Ω, the algorithm tries to find a minimizer for the 

function 𝑓 by evaluating 𝑓Ω on some trial points. At each iteration a finite number of trial points are 

generated, the objective function value for each point is then compared to the current best value 𝑓Ω(𝜒𝑙), 

where 𝑙 is the iteration number. All the trial points evaluated on each iteration are contained within the 

current mesh. 

At iteration 𝑙, the current mesh is defined by Equation 3-12. 

Equation 3-12: Mesh equation for the MADS algorithm. 

𝑀𝑒𝑠ℎ𝑙 = ⋃{𝜒 + Δ𝑙
ℎ𝐷𝑧 ∶ 𝑧 ∈ ℕ𝑛𝐷}

𝜒∈𝑆𝑙

 

𝑆𝑙 is the set of points where the objective function 𝑓 had been evaluated at the start of the iteration, 𝐷 is 

a 𝑛 × 𝑛𝐷 real matrix, Δ𝑙
ℎ is a scaling mesh size parameter, 𝑛𝐷 is a finite fixed set of directions, 𝑧 is an 

integer vector where ℕ denotes non-negative integers. The objective of the iteration is to find a trial mesh 

point with a lower objective function value than the current best value 𝑓Ω(𝜒𝑙). If such a point is found, 

the iteration is considered successful and the trial point is called an improved mesh point. 

At each iteration, a finite number of points is evaluated for 𝑓Ω. If an improved mesh point is found the 

algorithm can be stopped, or a new iteration can be started to try to find a better point. The new iteration 

must have a scaling factor Δ𝑙
ℎ equal or greater than in the iteration before and use the new value of 𝑓Ω(𝜒𝑙) 

found in the previous iteration. This process is called a search. However, if no improved mesh point is 

found (unsuccessful iteration), a second step called poll is invoked before terminating the iteration. 

The polling step consists of a new iteration with a new mesh that is finer than the mesh used in the 

unsuccessful search by reducing the scaling factor Δ𝑙+1
ℎ . The iteration is initiated in any point 𝜒𝑙+1 ∈ 𝑆𝑙+1 

where 𝑓Ω(𝜒𝑙+1) = 𝑓Ω(𝜒𝑙). In this way, a better solution is searched for nearer to the current best 

solution. The main difference between MADS and similar algorithms, like the Generalized Pattern Search 

[86], is that it introduces a second scaling parameter, Δ𝑙
𝑝
, for the polling step such that Δ𝑙

ℎ ≤ Δ𝑙
𝑝
 for all 𝑙. 

This new scaling parameter must satisfy lim
𝑙∈𝐿
Δ𝑙
ℎ = 0 if and only if  lim

𝑙∈𝐿
Δ𝑙
𝑝 = 0 for any infinite subsets of 

indices 𝐿. 
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The search step is important because it gives MADS algorithms the flexibility to explore the search space. 

However, as the objective is to find the point that improves the current best solution, expansive search 

is not always the best. The poll step is not as flexible as the search step, but it is the basis on which MADS 

gains convergence and reliability on finding a better solution. 

As seen in the short explanation, MADS does not depend on the optimization function to find a solution. 

This makes it well versed to solve the problem of heat supply when considering its complex dynamics. 

New optimization variables had to be defined as well as a new Objective Function to be solved by MADS 

through the NOMAD tool.  

For the DOft optimization, the variables chosen were the temperatures at which each heat plant will 

operate. Because power is a function of temperature and mass flow rates, the combination of NOMAD, 

which defines the operating temperature, and HeatGrid, which defines the operating powers, will give 

the operating mass flow rates of the network. NOMAD will be used to optimize the temperature at which 

each heat plant supplies its power proposed by HeatGrid. Indirectly, this will give NOMAD control on 

the supply, as higher temperatures will translate to longer delay times and vice versa. 

The objective function for DOft is the minimization of the total energy generated plus the energy surplus 

that goes to waste, without incurring in a loss of QoS. Thus, NOMAD will propose the operating 

temperature at the generation nodes to minimize the losses and the effects of the inertia and the delay, 

and HeatGrid will propose the heat plant usage that complies with those values in order to reduce the 

network generation costs. 

The objective function proposed for DOft is presented in detail in Equation 3-13.  This equation is 

based on the energy generated during a time step and the deficit and surplus occurring during this time 

step. 

Equation 3-13: Objective function of DOft. 

𝑓Ω = [𝑄𝑔𝑒𝑛
𝑡 ∗ 𝑒𝑥𝑝 (

𝑆𝑛𝐷𝑡 ∗ 50

𝑄𝐷
𝑡 )] 

𝑄𝑔𝑒𝑛
𝑡  is the term referring to the heat generation and 𝑆𝑛𝐷𝑡 is a function of the surplus and the deficit. 

The first is defined in Equation 3-14 and the second in Equation 3-15. 

Equation 3-14: Energy generation. 

𝑄𝑔𝑒𝑛
𝑡 =∑𝑚̇𝑘

𝑖 𝐶𝑝(𝑇𝑘
𝑖 − 𝑇𝑟𝑘

𝑖 )

𝑖,𝑘
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Equation 3-15: Deficit and Surplus. 

𝑆𝑛𝐷𝑡 = 𝑐𝑡𝑒𝑠𝑢𝑟∑𝑠𝑢𝑟𝑝𝑙𝑢𝑠𝑘
𝑖

𝑖,𝑘

+ 𝑐𝑡𝑒𝑑𝑒𝑓∑𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑘
𝑖

𝑖,𝑘

 

𝑄𝑔𝑒𝑛
𝑡  as defined in Equation 3-14 indicates that the total heat generated within the optimization time 

step 𝑡 is calculated by adding the power generated at every node 𝑘 at each Dynamic Model time step 𝑖. 

The individual heat of each node is calculated by the product of their mass flow rate 𝑚̇𝑘
𝑖 , the heat 

capacitance of the water 𝐶𝑝, and the temperature difference between the supply temperature 𝑇𝑘
𝑖  and the 

return temperature 𝑇𝑟𝑘
𝑖 . This equation is only applied if the node has heat generation. 

𝑆𝑛𝐷𝑡 is a function of the surplus and deficits in the network. It is calculated by adding all surplus in all 

nodes and all deficits in all nodes at every time step 𝑖. The terms 𝑐𝑡𝑒𝑠𝑢𝑟 and 𝑐𝑡𝑒𝑑𝑒𝑓 are scaling factors 

that can be changed to give more weight to one term or the other. In the present research both are equal 

to one. 

In Equation 3-13 it can be seen that the term 𝑆𝑛𝐷𝑡 is part of an exponential function. This was done to 

use a single objective instead of a multi-objective optimization. The term 𝑒𝑥𝑝 (
𝑆𝑛𝐷𝑡∗50

𝑄𝐷
𝑡 ) is used to 

penalize the value of 𝑓Ω if the surplus and deficit function 𝑆𝑛𝐷𝑡 is large compared to the demand at the 

evaluated time step (𝑄𝐷
𝑡 ). To indicate that the largest accepted value of 𝑆𝑛𝐷𝑡 is 2% of the demand, it is 

multiplied by 50. 

With this function, NOMAD explores the different solutions given by HeatGrid depending on the 

selected operating temperature and chooses the one with the lowest heat generation. At the same time, 

it uses the results of the Dynamic Model to ensure that the solution has the best ratio between generation 

and supply, reducing any deficits or surplus in the system. The combination of the two formulations, 

Linear Programming for the linear functions and non-Linear Programming for the non-linear functions 

allowed the optimization to arrive to a solution in a fraction of the time that the same problem required 

when formulated only in non-linear formulation while retaining he same level of reliability. The diagram 

for this approach is presented in Figure 3-9.  

This approach increases the ability of the Dynamic Model to communicate information to the 

optimization cycles. It communicates the real losses to HeatGrid via an updated average heat loss 

coefficient and the difference in generation and supply to NOMAD via the deficit and surplus. Together 

with this, by combining NOMAD and HeatGrid, it can also communicate the inertia of the system to 

both. 
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Due to the Dynamic Model’s ability to track the energy distribution in the network, and the optimization’s 

ability to control this distribution, it is possible to use this information to allow the model to consider the 

energy in the pipes as a possible source to supply the demand or as a possible heat sink for short term 

storage. This is done by exchanging the Average Heat Loss Coefficient of the Network with a new 

coefficient named the Pipe Supply Factor (PSF). The PSF, which is explained in detail in section 4.2, is 

an indicator of the ratio between the energy entering a pipe and the energy exiting the pipe. This indicator 

can be used to take advantage of any heat already contained inside a pipe to reduce the generation for 

that period, or by increasing generation to prepare for a future expected surge in demand. Many DH 

systems already have pre-heating strategies, in which the temperature of the network is raised before an 

expected period of high demand (i.e. early morning). This strategy guarantees the QoS when the control 

of the network is based on steady state assumptions, but in practice it commonly increases the losses and 

the surplus. Contrary to this, the PSF is meant to allow the system to react to changes in the demand by 

taking into account the dynamics of the system. Considering the heat already in the pipes, or their storage 

capacity, can have an impact in generation and surplus, reducing both. 

Lastly, by keeping track of where the heat is in the network at all times, future deficits can be foreseen. 

If a faraway node is in danger of losing its QoS (see section 3.3.3), the optimization can be used to 

include the capability of forcing a short curtailment of energy in the nodes closer to generation to prevent 

a deficit in the more distant nodes, reducing the time that the network needs to regain its QoS. 

 



 
 

47 
 

 

Figure 3-9: Diagram of integration of NOMAD, HeatGrid and the Dynamic Model (DOft). 
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3.3 Evaluation of DH systems 

When working with optimization tools, it is important to have indicators to evaluate the effectiveness of 

the proposed solutions. DOft gives as its solution an operation strategy that minimizes the energy 

generation, the deficit, and the surplus, and finds the dispatch strategy that minimizes the costs of heat 

generation. However, to prove the viability of DH to operate within the Smart City context, it is necessary 

to evaluate the results within an evaluation framework that represents the magnitude of the benefits. For 

this reason, this work proposes a novel evaluation framework that will allow the quantification of the 

technical and economic gains achieved by the DOft optimization, as well as its impact in the QoS. As 

presented in Chapter 3, the Dynamic Model combined with DOft and the new evaluation framework is 

named DOTS (Dynamic Optimization of DH for its Transition to Smart Thermal Networks). The 

proposed evaluation framework is based on existing indicators of DH, as well as indicators that are not 

found in the literature to evaluate DH networks but are common in the evaluation of other networks like 

electricity grids. These indicators are: 1) energy indicators in the form of total energy generation and 

energy efficiency of the system, 2) economic indicators in the form of the generation costs per unit of 

demand, revenue per unit of demand and profit per unit of demand, and 3) QoS indicators in the form 

of the SAIFI, SAIDI and the CAIDI. 

3.3.1 Energy Indicator 

The first indication of an improved performance of the network is an increase in the energy efficiency. 

The energy efficiency of a DH network can be defined as the ratio between the energy supplied over the 

period of evaluation and the energy generated to supply this demand. In equation form it can be seen in 

Equation 3-16. 

Equation 3-16: Energy efficiency. 

𝜂𝑒𝑛𝑒𝑟𝑔𝑦 =
𝑄𝑠
𝑄𝑔𝑒𝑛

 

In this equation, 𝑄𝑠 is the heat supplied and 𝑄𝑔𝑒𝑛 the heat generated. With the optimization of the 

operation of the plants, it is expected that the energy generated, and the energy surplus will be reduced. 

This in turn will increase the efficiency ratio, creating an operating strategy with less waste. 

3.3.2 Economic Indicators 

In a real DH network, the costs of operation include the cost of the fuel, the cost of operation of the 

heat production facility, the cost of operation of the DH network, the cost of connection to the consumer 
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buildings and the costs pertaining to operation and maintenance. In the present research however, the 

objective is to propose a new model of system management through improved optimization and control 

of the network. The cost most affected by the model proposed is the cost of generation due to fuel 

consumption, so this becomes the first of two economic indicators used in this research. The second 

economic indicator comes from the expected revenues and profits the network operator may obtain from 

the supply of the heat. The cost of generation is given by HeatGrid as part of its optimization, but the 

expected revenues and profits require further assumptions and calculations. 

Real DH systems are usually state-owned natural monopolies, and the heat they provide is considered a 

public service, thus they are not allowed to make a profit from its supply [87]. The price the consumers 

have to pay is therefore composed of the different costs of the operation of the network, as well as the 

cost of future projects and investments, taxes and VAT, financial support and/or grants, and, in some 

cases, the cost of electricity (i.e. CHP plants). The revenue a DHO would get from the supply of heat is 

linked to the price the consumer has to pay depending on the variables above, and the profit would be 

zero. The full tariff systems however are outside the scope the present research. To evaluate the results 

this work proposes the use of a flat tariff for each kWh of heat supplied. This way, the revenue will be 

the product of this tariff and the supply, and the profit would be the difference between this revenue and 

the generation costs. Let it be clear, that even though the present research uses the term “profit”, it does 

not indicate that the DHO is making money out of its service, but rather the leftover cash after generation 

costs that would be used by the DHO to pay for other aspects of the network, like distribution costs, 

O&M and future investments. The equations for calculating generation costs, revenue and profit in the 

present research are shown in Equation 3-17. 

Equation 3-17: Generation cost, revenue and profit. 

𝐶𝑜𝑠𝑡𝑔𝑒𝑛 = 
∑ 𝑄𝑔𝑒𝑛𝑘 

(𝑘𝑊ℎ) ∗ 𝑓𝑢𝑒𝑙 𝑐𝑜𝑠𝑡𝑘(
€
𝑘𝑊ℎ⁄ )𝑘

𝐷𝑡𝑜𝑡𝑎𝑙  (𝑀𝑊ℎ)
 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 =
𝑓𝑙𝑎𝑡 𝑡𝑎𝑟𝑖𝑓𝑓 (€ 𝑘𝑊ℎ⁄ ) ∗ 𝑄𝑠 (𝑘𝑊ℎ)

𝐷𝑡𝑜𝑡𝑎𝑙  (𝑀𝑊ℎ)
 

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 (€ 𝑀𝑊ℎ⁄ ) − 𝐶𝑜𝑠𝑡𝑔𝑒𝑛(
€
𝑀𝑊ℎ⁄ ) 

𝑄𝑔𝑒𝑛𝑘 is the heat generated at each node 𝑘, 𝐷𝑡𝑜𝑡𝑎𝑙 is the demand for the whole period in MWh and 𝑄𝑠 

is the total heat supplied. The heat generation cost, the revenue and the profit are normalized to the 

demand to give equal ground for evaluation. This also allows their easier comparison to other systems 
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studied with the same methodology, even if they vary vastly in the size of the system, the number of 

generation plants or the demand.  

3.3.3 Quality of Service indicators 

There are different ways of defining the Quality of Service (QoS). In its broadest terms for DH, QoS is 

the ability to supply a demand, with a low response time and preventing any deficit. Due to the natural 

delay existing in DH networks, QoS can be a difficult thing to manage as the times are too long for 

reactionary control. However, the heat inertia of the systems connected to a DH network provides some 

flexibility on the supply, as deficits need to persist for some time before they are perceived by the 

consumers. 

In the present research, a new way of evaluation of the QoS from the primary side is proposed. The 

supply is divided into three levels, each indicating an overall status of the QoS for all customers connected 

to individual substations: 

• A level of 1 indicates that the system can supply the entirety of the demand, or that any existing deficits 

can be absorbed by the heat inertia of the building or managed with flexibility tools like load shifting 

or Demand Response (DR). To abide by results obtained in studies like [75], [76], [88], the maximum 

deficit allowed at each substation is of 1% of the instant demand to achieve a level of 1. 

• A level of 2 indicates that the deficit will not be perceived by the costumers if its duration is short but 

will cause discomfort if it persists. Depending on the type of building connected, the time a deficit 

can exist before it is perceived by the customer can vary a lot. For this study we propose to use a 

duration value on the lower end of the spectrum to guarantee the QoS to all buildings. In this work, 

to get a level of 2 the deficit must have a duration shorter than 10 minutes and always be below 10% 

of the instant demand. 

• A level of 3 indicates that the deficit will cause discomfort on the costumers and that no flexibility 

measure will be able to cover for it. This level is obtained under two circumstances: 1) a deficit lower 

than 10% of instant demand that persists for more than 10 minutes or, 2) the substation experiences 

a deficit higher than 10% of instant demand for any duration of time. 

The three levels of QoS by themselves are useful to evaluate the performance of the DH system at a 

certain moment in time. They can also become the foundation to evaluate the performance of a DH 

network over a period of operation when combined with the existing indicators for QoS in electricity 

grids. 
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Three indicators exist in electricity to evaluate the QoS of the grid: the System Average Interruption 

Frequency Index (SAIFI), the System Average Interruption Duration Index (SAIDI), and the Costumer 

Average Interruption Duration Index (CAIDI) [79]. Each of them shows a different perspective of the 

quality of the service provided by an energy network. The three indicators are based on the number of 

customers being served by one substation (𝑁𝑘), the failure rate of a substation (𝜆𝑘), the average duration 

of an interruption (𝑈𝑘), and the average time required to regain service (𝑟𝑘). The sub-index 𝑘 indicates 

each individual substation. The definition of 𝜆𝑘, 𝑟𝑘, and 𝑈𝑘 is shown in Equation 3-18, Equation 3-19 

and Equation 3-20. 

Equation 3-18: Failure rate. 

𝜆𝑘 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

Equation 3-19: Repair rate. 

𝑟𝑘 =
∑𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝑠
 

Equation 3-20: Average duration of interruption per customer. 

𝑈𝑘 = 𝜆𝑘 ∙ 𝑟𝑘 

The first indicator used, the SAIFI, is an indicator of the likely number of interruptions that a customer 

would perceive during the operation time. The numerical value of this indicator tells the likely number 

of interruptions that each consumer would experience in the period of evaluation, i.e. the average SAIFI 

for the electricity sector in Europe during the first half of the past decade was of ~2 interruptions per 

customer per year [73]. The SAIFI is defined by Equation 3-21: 

Equation 3-21: SAIFI. 

𝑆𝐴𝐼𝐹𝐼 =
∑ 𝜆𝑘𝑁𝑘𝑘

∑ 𝑁𝑘𝑘
 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑) 

The second indicator, the SAIDI, is an indicator of the average duration of the interruptions per 

customers. Its numerical value indicates the average time (usually hours) that the system experienced an 

interruption, , i.e. the average SAIDI for the electricity sector in Europe during the first half of the past 

decade was of ~240 minutes per customer per year [73]. It is defined by Equation 3-22. 
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Equation 3-22: SAIDI. 

𝑆𝐴𝐼𝐷𝐼 =
∑ 𝑈𝑘𝑁𝑘𝑘

∑ 𝑁𝑘𝑘
 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑝𝑒𝑟 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑) 

The third indicator, the CAIDI, is an indicator of the average time that a customer must wait for heat to 

be restored when an interruption to their service occurs, i.e. the average CAIDI for the electricity sector 

in Europe during the first half of the past decade was of ~120 minutes per interruption [73]. It is defined 

by Equation 3-23. 

Equation 3-23: CAIDI. 

𝐶𝐴𝐼𝐷𝐼 =
∑ 𝑈𝑘𝑁𝑘𝑘

∑ 𝜆𝑘𝑁𝑘𝑘
=
𝑆𝐴𝐼𝐷𝐼

𝑆𝐴𝐼𝐹𝐼
 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛) 

Two important considerations are made in this study. The first is the definition of interruption in DH. 

An interruption in electricity is very straightforward, as any interruption is immediately felt by the 

consumers. In the other hand, as presented above, interruptions can occur in DH without affecting the 

consumers. For this reason, we proposed the three levels of QoS and consider that an interruption occurs 

in DH whenever the QoS reaches a level of 3. The duration of each interruption is calculated as the time 

required for the QoS to go back to 1. 

The second consideration focuses on the scope of this research work. As DH networks are analyzed 

from the primary side point of view, no information on the final customer is available. For this reason, 

normalized values of customers are proposed to calculate the SAIFI, SAIDI and CAIDI. Each substation 

is assumed to have a number of customers related to their average demand and this number is normalized 

to the total demand as presented in Equation 3-24: 

Equation 3-24: Equivalent customers. 

𝑁𝑘 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑘

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
× 100 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 

Substations with a larger number of equivalent costumers have a greater impact on the value of the 

Indexes. By using 𝑁𝑘 to represent the number of equivalent customers connected to each substation, the 

impact of each substation will be balanced with its size. If information is available on the real number of 

consumers connected, it should be used to replace the value of 𝑁𝑘. 

The SAIFI, SAIDI and CAIDI give valuable information on the operation of a DH system. Due to the 

physical characteristics of DH, which cause a significant delay between generation and supply, it is 

common for a system to be operating above the required capacity and still be unable to satisfy the 
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demand. Other times, the changes in generation that reduced costs and supposedly increase efficiency 

leave some customers without access to heat for long periods of time. Many works try to address this 

from the consumer point of view and propose actions that can be done by the building managers or 

single users. Having indicators that allow the District Heating Operator (DHO) to evaluate the 

effectiveness of the system’s supply can help solve these issues from a systemic point of view rather than 

from a case by case scenario. 
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4 Dynamic Model: Results and Discussion 

 

 

 

 

 

 

 

 

 

 

In this chapter, the results obtained using the Dynamic Model to simulate DH networks are analyzed to 

assess its relevance and performance for the objective of coupling it with optimization. First, the Dynamic 

Model is validated on a network composed of six nodes and five pipes (Figure 4-1). This network is the 

same as used in [81], a predecessor of this work. The results from this test are analyzed to evaluate the 

ability of the Dynamic Model to describe the operation of DH systems, to map the spatial-temporal 

distribution of temperatures in the network, and to compare it with the existing Finite Volumes Node 

method (FVN). After the Dynamic Model has been validated, a single pipe will be tested for different 

operation conditions to analyze in depth the behavior of the delay, the losses and the thermal inertia of 

heat during its transport, and propose a possible application for it. 

4.1 Validation of the Dynamic Model5 

The network used to validate the Dynamic Model contains two generation nodes (Nodes 1 and 2) and 

four consumer nodes (Nodes 3 – 6). Node 3 is a junction and a split, meaning that the mass flows coming 

from Nodes 1 and 2 will mix here and acquire a new temperature based on the energy conservation 

equations. The flow will then be divided into two new flows, one going to Node 4 and one to Node 5, 

both with the same temperature but mass flows determined by the downstream demands, the capacity 

 
5 All Figures and Tables in section 4.1 were first published in [83] 
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of the pipes, and the mass conservation equations. The pipes have been sized using the hydraulic balance 

of the system (Equation 3-1 and Equation 3-2) and their physical properties taken from a 

manufacturer’s catalogue [89], [90]. The pipes’ length and properties are described in Table 4-1. 

In Table 4-1, 𝑑 is the interior diameter of the pipe, 𝑠𝑠𝑡 is the thickness of the pipe, 𝑠𝑖𝑛𝑠 is the thickness 

of the insulation, 𝑧𝑑𝑒𝑝𝑡ℎ is the depth at which the pipes are burrowed, 𝑘𝑠𝑡 is the thermal conductivity of 

the pipe, 𝑘𝑖𝑛𝑠 is the thermal conductivity of the insulation, 𝑘𝑔𝑟𝑜 is the thermal conductivity of the soil, 

𝜌𝑠𝑡 is the density of the pipe and 𝐶𝑝𝑠𝑡 is the thermal capacitance of the pipe. 

The network is simulated for two different operation conditions:  

1) the “pre-heating” process, where the temperature of the network is raised while no demand 

exists (e.g. early in the morning to anticipate the peak demand). 

2) the “normal operation” of the District Heating network using heat demand data based on the 

real measurement from a network in the city of Nantes, France. 

For the first operation condition, two simulations are done, one using the FVN method and another 

using the Dynamic Model to compare the results. For the second operation condition, only the Dynamic 

Model is used. 

 

Figure 4-1: Network topology used. The network is composed of two generation nodes (Node 1 and Node 2) and 4 
consumer nodes (Nodes 4 – 6). Node 3 is a consumer, a junction, and a split at the same time. 

In these simulations, the generation plants are represented by their supply temperature, which is set to 

90°C for the whole simulation. The mass flows at the generation plants are also kept constant so each 

plant delivers power at a steady rate (8 kg/s for Node 1 and 6 kg/s for Node 2). Each consumer node is 

represented by a substation that takes flow from the supply line to feed a heat exchanger and returns the 

cooled flow to the return line. The modeling of the heat exchanger is outside the scope of this work, so 

the flow taken is a function of the temperature and the demand. In the case of pre-heating, the 
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consumption nodes are not supplied until their temperature reaches the network’s minimum supply 

temperature. 

Table 4-1: Characteristics of the pipes in the network. 

Pipe 

Length 𝑑 𝑠𝑠𝑡 𝑠𝑖𝑛𝑠 𝑧𝑑𝑒𝑝𝑡ℎ 𝑘𝑠𝑡 𝑘𝑖𝑛𝑠 𝑘𝑔𝑟𝑜 𝜌𝑠𝑡 𝐶𝑝𝑠𝑡 

(𝑚) (𝑚𝑚) (𝑚) (𝑊 ∙ 𝑚−1 ∙ 𝐾−1) (𝑘𝑔 ∙ 𝑚−3) (𝐽 ∙ 𝑘𝑔−1 ∙ 𝐾−1) 

1-3 5000 102.2 11.4 29 1 54 0.024 1.2 7850 465 

2-3 2000 90 10 26.5 1 54 0.024 1.2 7850 465 

3-4 750 73.6 8.2 36.5 1 54 0.024 1.2 7850 465 

3-5 1200 90 10 26.5 1 54 0.024 1.2 7850 465 

5-6 450 90 10 26.5 1 54 0.024 1.2 7850 465 

4.1.1 Pre-heating test results 

The first test consists of a simulation of the network after a time when the water inside was allowed to 

cool down. During the pre-heating, the network will re-circulate the water to the heat plants until it 

reaches a minimum set point temperature, after which the consumer nodes start to extract heat from the 

network. The simulation covers a period of five hours and it uses a 15s time step. The FVN and the 

Dynamic Model are simulated five times using a different fixed spatial discretization each time. Because 

the spatial discretization is fixed during these simulations, each discretization is linked to a different target 

CFL value (1, 0.95, 0.75, 0.5 and 0.3). The spatial discretization is kept constant as it is not an uncommon 

practice in the simulation of real systems. In this way, it will be possible to test the stability and precision 

of the two models. The ambient temperature is kept constant at 20°C for the duration of the simulation. 

The first two simulations to be compared are done using a target CFL value of 1. This value of CFL 

indicates that all the mass contained in a discrete volume is passed unto the next volume when the time 

step advances, greatly reducing the numerical diffusion. Simulating the network under the CFL=1 

constraint allows to compare the precision of the Dynamic Model to that of the FVN method. Figure 

4-2 shows the evolution of the power available at each consumer node obtained in the simulations. The 

FVN method took 724s to simulate and the Dynamic Model took 763s to run. Figure 4-2 shows one set 

of lines only as there is no perceived difference between the two approaches. This result confirms the 

validity of the Dynamic Model, i.e. for CFL=1 the dynamic model is equivalent to the FVN and the 

computational effort is similar (an increase of the computational time of only 2.8%). 
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From Figure 4-2 it can be seen that there is a delay between generation and supply and that it varies 

from 135 min to 170 min depending on the distance of the consumer node to the heat plants. Figure 

4-2 also shows a two-step profile, where the temperature rises, reaches a plateau, and then rises again to 

the normal operation temperature. This profile is explained by the difference in length between the pipes 

connecting Node 1 and Node 3, and the pipes connecting Node 2 and Node 3. Pipe 1-3 is 3 km longer 

than pipe 2-3, so the heat front from Node 1 arrives approximately one hour after the heat front from 

Node 2. 

 

Figure 4-2: Available power comparison at every node in the network for the FVN method and the Dynamic Model 
with CFL=1. Only one set of lines is presented as there is no visible difference between the two. 

Once the results from the Dynamic Model are validated against the FVN method using a CFL=1, four 

more simulations are performed varying the spatial discretization. Increasing the spatial discretization has 

4 effects:  

1) it reduces the CFL value, as not all flow in one element will be displaced each time step, 

2) it reduces the number of elements in the network, reducing the computational time, 

3) it increases the flexibility of the network, allowing for a wider range of flow rates without changing 

the discretization, and 

4) it increases the numerical diffusion, reducing the precision of the results. 

It is common to increase the spatial discretization to achieve a target combination of precision and 

simulation times. Models that retain their precision at lower CFL values are usually preferred over 

those that do not. 

The results for the simulations using target CFL values of 0.95, 0.75, 0.5 and 0.3 are summarized in 

Figure 4-3, Figure 4-4, Figure 4-5 and Figure 4-6. Figure 4-3 shows the results using the FVN method 

for the nearest node (Node 3) and Figure 4-4 shows the results using the FVN method for farthest node 
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(Node 6). In the top graph of these two figures it can be seen that as the CFL decreases, the slope of the 

graph changes. The numerical diffusion causes the simulation to overestimate the time the temperature 

starts rising and underestimate the time it reaches steady condition. To better visualize this, the bottom 

graphs in the two figures show the absolute error between the power available at each node and the 

power obtained with each simulation. Using the FVN method, the maximum error varies between 

13.44kW for CFL=0.95 and 265.9kW for CFL=0.3 when compared to CFL=1. 

 

Figure 4-3: Power available (top) and Absolute Error (bottom) at Node 3 for five CFL values using the FVN method. 
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Figure 4-4: Power available (top) and Absolute Error (bottom) at Node 6 for five CFL values using the FVN method. 

Figure 4-5 and Figure 4-6 show the results using the Dynamic Model developed in the present research. 

As before, in the top graphs the CFL value has direct influence on the numerical diffusion. However, 

with the Dynamic Model the numerical diffusion is less than with the FVN method. Looking at the 

bottom graphs in the two figures, the maximum error varies between 30kW for CFL=0.95 and 155.47kW 

for CFL=0.3. Interestingly, the error is larger for CFL=0.95 than in the FVN method but gets smaller as 

the CFL decreases. The maximum absolute error as well as the computation times for the different CFL 

values can be seen in Table 4-2. The time needed to obtain similar error with the FVN method, which 

requires a finer discretization of the pipe, is also presented in this Table. 
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Figure 4-5: Power available (top) and Absolute Error (bottom) at Node 3 for five CFL values using the Dynamic 
Model. 

These results show that the Dynamic Model has better robustness than the FVN method for smaller 

CFL values, although the FVN method has better accuracy for CFL values slightly lower than 1. As in 

dynamic systems the CFL can vary greatly during time, the robustness of the Dynamic Model is preferred 

when the system presents continuous changes in mass flow rates. In Table 4-2 it can also be seen that 

to obtain the same absolute error in the Dynamic Model with FVN, the computation times are an average 

of 3.5 times higher. 
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Figure 4-6: Power available (top) and Absolute Error (bottom) at Node 6 for five CFL values using the Dynamic 
Model. 

Table 4-2: Max Absolute and Relative Errors for different CFLs using FVN and the Dynamic Model. 

CFL 

Max Absolute Error 

kW 

Computation Time 

s 

FVN 
Dynamic 

Model 
FVN 

Dynamic 

Model 
FVN same accuracy 

1 0 0 716 736 N/A 

0.95 13.44 30.08 679 704 N/A 

0.75 87.00 76.36 666 696 2520 

0.5 173.13 99.74 663 682 2451 

0.3 265.9 155.47 664 672 2554 

4.1.2  “Normal operation” test results 

The second test simulates the network working under normal operation. To do this, real demand data is 

used. The data contains the demands for the day 02/12/2017, which can be seen in Figure 4-7. This day 
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was chosen as the demand is low compared to the size of the system, which causes low flows in the 

network increasing the residence time and thus, the losses. The demand is a mixture of residential and 

commercial buildings gathered every 10 min. The simulation is done with a time step of 60s, with the 

demand remaining constant during each 10-minute period.  

 

Figure 4-7: Demand of every consumer node for the evaluated period. 

During this test, the generation temperature is considered to remain constant during the simulated time 

of 24 hours. The consumer nodes extract energy from the supply side by deviating part of the mass flow 

to their own heat exchangers and injecting the cooled flow into the return side of the network. The return 

temperature (𝑇𝑠𝑢𝑏,𝑜𝑢𝑡) at each heat exchanger is assumed to be fixed at 40°C, except on the case of nodes 

at the end of a branch, where it can be higher if there is any surplus energy. To prevent heat waste caused 

by unnecessary surplus, the mass flows output from the generation units is varied to approximate the 

power generation with the demand and losses at every time step. 

The variables analyzed are the spatial-temporal distribution of the temperature in the network, the mass 

flow rates, the difference between supply temperature 𝑇𝑠
𝑖 and return temperature 𝑇𝑟

𝑖 at the nodes(see 

Equation 4-1), and the performance indicator 𝐾𝑃𝐼𝑘
𝑖  (see Equation 4-2). 

Equation 4-1: Difference between supply and return temperatures at node k. 

Δ𝑇𝑘
𝑖 = 𝑇𝑠,𝑖𝑛𝑘

𝑖 − 𝑇𝑟,𝑜𝑢𝑡𝑘
𝑖  

Equation 4-2: Performance indicator of generation plant in node k. 

𝐾𝑃𝐼𝑘
𝑖 =

𝑄𝑔𝑒𝑛𝑘
𝑖

∑ 𝑄𝐷𝑘
𝑖

𝑘

 

∆𝑇𝑘
𝑖 is used to assess the efficiency of the supply in the network. In an ideal scenario it should remain 

around a set value and vary only during a change in the demand, as the system operates under constant 
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temperature inputs. In a real scenario, the dynamics of the network will cause it to vary much more as 

the variation of the mass flow rates influence the losses and the delay creates deficits and surplus. Both 

the losses and the surplus decrease the ∆𝑇𝑘
𝑖 by reducing the available temperature at the node or increasing 

the temperature on the return side. ∆𝑇𝑘
𝑖 lower than the set value indicates lower efficiency of supply. 

𝐾𝑃𝐼𝑘
𝑖  is used to assess the efficiency of generation. If the system’s generation and demand match 

perfectly, the sum of the individual KPIs would be equal to one. But because of the losses in the network, 

the generation is generally higher than the demand and thus the KPI is higher than one. The higher the 

KPI is from 1, the more inefficient the generation is. If the KPI is lower than one, it could indicate that 

there is a deficit in the network. 

The chosen generation temperature for this case study is of 90°C. Figure 4-8 shows the spatial-temporal 

distribution of the temperature at the different nodes (top) and the mass flow rates in the different pipes 

(bottom), only one line is shown for each pair of supply and return pipes as their mass flow rates are the 

same but flow in the opposite direction. Figure 4-9 shows the temperature difference ΔT between the 

supply and return sides of the network at every node and Figure 4-10 shows the KPI ratio between the 

energy generated and the energy demand. 

The top graph of Figure 4-8 shows the mass flows in each pipe during the simulated period. The bottom 

graph of Figure 4-8 shows the temperature at the different nodes in the network. In this figure it can be 

seen that the farther away a node is from the generation plant, the lower its temperature will be due to 

losses in the network. In this case the losses are remarkably high, with a temperature drop of 8°C in the 

farthest-away node. This is due to the low mass flows in the network, increasing the residence time of 

the hot water inside the pipes. The insulation values of the pipes also play a role, which in this test are 

low for the system to exacerbate the dynamics of heat transport and validate the Dynamic Model. By 

comparing the two graphs, it can be noticed that the temperature difference between the supply side and 

the return side are lower when the mass flows are higher. This shows the importance of correctly sizing 

the pipes in a DH network to prevent long residence times of the hot water. 
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Figure 4-8: Mass flow rates for every pipe in the network (top); Spatial-Temporal distribution of the temperature in the 
supply network (bottom). 

 

Figure 4-9: Temperature difference between supply and return side at every Node. 
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Figure 4-10: KPI for the two generation nodes and for the entire system. 

Figure 4-9 shows the temperature difference between the supply and return lines at every node. As 

expected, the highest difference exists in the generation units at around 50°C and the smallest at the 

farthest away node at around 37°C. In the case of the generation plants, the variation of ΔT in Nodes 1 

and 2 is under 2°C for most of the system’s operation, but in a consumer node, like Node 4, it can be as 

high as 7°C. The high variation of ΔT at Node 4 can be explained by its position in the network’s 

topology. It is at the end of a branch (no nodes downstream of it), so any excess energy it receives will 

be injected directly into the return line reducing the local ΔT. It is important to highlight that even though 

the variation of ΔT at Node 4 indicates surplus of energy being wasted in the branch 3-4, no noticeable 

effect can be perceived by this on Nodes 1 and 2. If a network’s operation is based on monitoring the 

ΔT at the heat plants only, which is common in DH, inefficiencies can be hard to see. Real-time 

monitoring throughout the network is needed to have clear and true information on the performance of 

the operation strategy. 

Lastly, Figure 4-10 shows the KPI for the network as well as for each individual generation unit. From 

this graph it can be observed that the KPI of Node 1 is of ~80% and the KPI of Node 2 is of ~45%. 

The sum of the two is larger than 1, as can be seen in the added KPI line. By taking the arithmetic mean 

of the KPI during the 24 hours of operation, the result is 1.27, which means that on average 27% more 

energy is being injected into the system than is demanded by the connected users. 

These results show the ability of the Dynamic Model to track and map the spatial-temporal distribution 

of temperatures in a network, as well as offering a view of the effects that the delay, the losses and the 

thermal inertia have on the distribution of heat. In the following section a single pipe will be studied to 

analyze in depth the effects of these three characteristics of DH and a solution to include them into the 

optimization routine is presented. 
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4.2 Delay, Losses and Thermal Inertia in DH networks 

Section 4.1.1 shows the results obtained with the Dynamic Model when applied to a simple network 

during the pre-heating operation. As can be seen in Figure 4-2, these results show that even when the 

generation plants operate at a constant output, a delay exists between the time that energy is generated 

and the time that the energy is finally supplied. The results also show that the power curves for each 

consumer node present a slanted “s” shape while they rise from the initial state temperature to the new 

steady state temperature. These effects are caused by the losses through the pipe walls suffered during 

transport and by the thermal inertia of the system. 

The use of the Dynamic Model allows to explore the effects that the delay, the losses and the thermal 

inertia have on heat distribution and use its findings to propose new ways on which these dynamics can 

be mitigated and even turned into beneficial for the operation of DH systems, which are explored in the 

DOft optimization (Chapter 5). 

4.2.1 Temperature step increase in a pipe 

The first test is with a single steel pipe of 1000 m in length with an inner radius of 10.5 cm, a thickness 

of 0.45 cm and a polyurethane insulation of 6.8 cm in thickness. The pipe operates under a constant mass 

flow rate of 35 kg/s and a temperature step function that raises temperature from 60°C to 90°C at its 

input. The test is run for an hour with a 20 s temporal discretization and a 𝐶𝐹𝐿 = 1. The variables studied 

are the heat at the input of the pipe (𝑄̇𝑖𝑛), the heat at the output of the pipe (𝑄̇𝑜𝑢𝑡), the change in the 

heat contained in the pipe at every time step (𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑) and the losses through the walls of the pipe 

(𝑄̇𝑙𝑜𝑠𝑠). The step function occurs on minute 8 of the simulation, when power starts to be supplied to 

the pipe. 

The results from this test are presented in Figure 4-11. Here it can be seen that, while heat starts to enter 

the pipe on minute 8, the output does not show any change until minute 24, when the output heat starts 

to rise. The heat signal at the output of the pipe continues to rise until minute 30, when the pipe finally 

reaches steady state. The difference between the input and the output of the pipe shows the effects of 

the delay and the inertia on the transport of heat in a pipe. The delay caused by the distance between the 

input and the output of the pipe causes the heat front to arrive at the output 16 minutes later, and the 

inertia of the system, resisting the increase of the temperature, causes it to be delayed 5 minutes longer 

before the system reaches steady state. 
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Figure 4-11: Delay and Inertia for a 1000m pipe during a step input from 60°C to 90°C with a mass flow rate of 35 
kg/s. All variables are referenced to the base line of water at 60°C. 

The delay is easily explained, as it corresponds to a mass flow rate of 35kg/s through a pipe with a radius 

of 10.5cm that flows with a velocity of ~1m/s. This means that it would take a particle of hot water 16.48 

minutes to cross the 1000m of the pipe’s length.  

To understand the effect of the inertia it is necessary to look at the two other curves in Figure 4-11. The 

change in the heat contained inside the volume of the pipe between time steps (𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑) is depicted 

by the green line. In this test it can be seen that during steady state operation the change has a value of 

zero, but in the time between the step function takes place and the time steady state is regained, 

𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑 is constant, indicating that the energy contained in the pipe continuously rises. An interesting 

feature of this curve is that the magnitude of 𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑 is smaller than that of 𝑄̇𝑖𝑛, meaning that not all 

the energy going into the pipe remains in the pipe. This difference between 𝑄̇𝑖𝑛 and 𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑 is 

explained by the fourth curve presented in Figure 4-11: 𝑄̇𝑙𝑜𝑠𝑠 (which is depicted using a secondary axis 

for easier reading). In the same figure, 𝑄̇𝑙𝑜𝑠𝑠 increases significantly during the transition between steady 

states. This increase in losses is caused by the higher temperature difference between the water and the 

pipe when the heat front reaches a section of the pipe that previously contained colder water. This 

behavior between 𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑 and 𝑄̇𝑙𝑜𝑠𝑠 explains the inertia of the system, a greater temperature 

difference causes a higher heat flux from the water to the pipe and from the pipe to the ground. This 

heat flow remains high until all elements reach the new steady state temperatures. Because the heat front 

will always face the steeper temperature differences, it will experience the greater losses, explaining the 

slopes for 𝑄̇𝑜𝑢𝑡, 𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑 and 𝑄̇𝑙𝑜𝑠𝑠. 

When the time frame being studied is long enough, and the inputs are constant, the temperature 

difference between the input and the output of the pipe is dominated by the steady state losses, and the 
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delay and the inertia become negligible. This is a reason why in many studies steady state is always 

considered. It is interesting however to see what happens in the time between a change occurs and the 

time steady state is regained. Figure 4-11 shows that while the pipe is being “charged up” the losses 

increase too, increasing also the time needed to reach steady state. This effect is especially interesting 

when the step function marks a decrease rather than an increase in the input temperature/power. 

4.2.2 Temperature step decrease in a pipe 

Figure 4-12 shows the curves for 𝑄̇𝑖𝑛, 𝑄𝑜𝑢𝑡, 𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑 and 𝑄̇𝑙𝑜𝑠𝑠 for a pipe that experiences a sudden 

drop of temperature at its input flow, from 90°C to 60°C. 

 

Figure 4-12: Delay and Inertia for a 1000m pipe during a step input from 90°C to 60°C with a mass flow rate of 35 
kg/s. All variables are referenced to the base line of water at 60°C. 

Similar to Figure 4-11, Figure 4-12 shows that a delay exists between the heat signals at the input and 

the output of the pipe. The mass flow rate is the same for this case (35 kg/s), so the delay remains at 

16.48 min. This delay is extended three minutes by the inertia of the system, requiring a total time of ~20 

minutes to reach steady state. It is interesting to see that in this case, the duration of the effects of the 

inertia is reduced in half compared to the step increase in temperature (Figure 4-11). This can be 

explained by the temperature and the losses, the higher the temperature the greater the losses, thus an 

increase in temperature comes with an increase in losses and an extension for the time required to reach 

steady state. However, the most interesting thing from this figure comes from the curves for 𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑 

and 𝑄̇𝑙𝑜𝑠𝑠. Contrary to the previous case presented in Figure 4-11, where 𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑 was slightly lower 

than 𝑄̇𝑖𝑛 due to 𝑄̇𝑙𝑜𝑠𝑠, in this case 𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑 is negative. This indicates that the system is losing energy 

rather than gaining it, which makes sense as the power entering the pipe has dropped. However, 𝑄̇𝑙𝑜𝑠𝑠 

is also negative during the transition period; this would indicate that the system is gaining energy through 
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the pipe walls rather than losing it. While at first this may appear counterintuitive, this reflects the same 

inertia effect as in the step-increase case. As the now colder water flows into a section of the pipe that 

contained hotter water previously, the water interacts with the higher temperature pipe with the heat flow 

going from the pipe to the water. This effect is of particular interest, as it means that during a temperature 

increase the system should expect higher losses, but during a temperature decrease the losses would be 

lowered. 

While the effects of the delay and the inertia can be neglected when the system operates in steady state 

for long and continuous intervals of time, these tests showed that during the transition between steady 

states they have a perceivable impact. The delay keeps the output of the system operating at certain level 

for minutes (or even hours) after the conditions at the input have changed. The inertia of the system 

modifies the shape of the input’s profile, extends the delay and, most importantly, has a direct effect on 

the losses experienced by the system. This brings up the question: How does this affect the operation of 

a highly dynamic system? 

4.2.3 Temperature sinusoidal variation in a pipe 

To answer this question, the pipe from the previous two tests is used to test a non-constant input in the 

form of a sinusoidal function. As before, the test is initialized with the whole pipe having the same 

temperature, with the main difference being that the sinusoidal function is active from the first time step. 

The results of this test are shown in Figure 4-13. Like in the previous tests, while the input is higher than 

the output, the heat in the pipe increases and the losses remain high. If the output is greater than the 

input, the heat in the pipe decreases and the losses become negative. From this figure it is interesting to 

see that 𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑 and 𝑄̇𝑙𝑜𝑠𝑠 follow a similar pattern, but the magnitude of the negative losses is lower 

than the magnitude of the positive losses. This is due to losses to the environment always being present, 

even when some of the heat in the pipe wall is flowing into the water, making the losses appear as gains. 

From this figure it is also interesting to notice that none of the curves is in complete phase with another. 

𝑄̇𝑜𝑢𝑡 is delayed compared to 𝑄̇𝑖𝑛; 𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑 has a period equal to the time between 𝑄̇𝑖𝑛 − 𝑄̇𝑜𝑢𝑡 

changing sign and back again; and 𝑄̇𝑙𝑜𝑠𝑠 is slightly delayed to 𝛥𝑄̇𝑠𝑡𝑜𝑟𝑒𝑑. 

The results obtained in these tests highlight the importance of considering the delay and the inertia of a 

system when scheduling the generation at the heat plants in a DH network. In this particular case, when 

the input is changed it takes the system 20 min before it reaches steady state at its output. If the input is 

adjusted every hour, one third of the time will be spent in transition periods. In current DH networks it 

is common for the system to go through a period of pre-heating to compensate for this transition, starting 
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supply after the system has reached steady state. But in the more dynamic environment of the Smart City, 

DH systems will rarely operate at the same level for long enough for the steady state to be reached. 

 

Figure 4-13: Delay and Inertia for a 1000m pipe during a sine input with a mass flow rate of 35 kg/s. All variables 
are referenced to the base line of water at 60°C. 

In order to create a new model of DH system management that would operate reliable in a dynamic 

environment, it is important to account for the real supply, and not only the steady state expected supply, 

as many operating strategies currently do. However, the results also point at the combination of the 

inertia and the delay being able to work for the benefit of the system, maintaining the output for a certain 

period even when generation drops, thus preventing deficits in dynamic environments. 

As can be seen in Figure 4-12 and Figure 4-13, after generation is reduced there is still some time while 

the output remains at the level it was before. Just as generation can be started early to avoid a deficit in 

the supply, it could also be stopped early without compromising the QoS while preventing energy waste. 

In a dynamic environment the delay and the inertia can act as a short-term source of heat for the system. 

For this reason, a new indicator is proposed in the present research called the Pipe Supply Factor (PSF).  

4.2.4 Pipe Supply Factor 

The PSF is an indicator of the ratio between the energy exiting the pipe (𝑄𝑜𝑢𝑡) and the energy entering 

the pipe (𝑄𝑖𝑛) in a defined time frame (see Equation 4-3).  

Equation 4-3: Pipe Supply Factor for time frame 𝑖. 

𝑃𝑆𝐹𝑔
𝑖 = 1 −

𝑄𝑜𝑢𝑡𝑖𝑔
𝑄𝑖𝑛𝑖𝑔

 



 
 

72 
 

If the PSF is positive, it means that more energy entered the pipe than the energy that left it; if the PSF 

is negative, it means that more energy left the pipe than the energy that entered it. In steady state operation 

the PSF is always positive and it is equal to the average heat transfer coefficient of the pipe. In dynamic 

operation however, the PSF can get negative values, i.e., when generation drops after a period of high 

temperature operation. 

This characteristic of DH networks, the temporal disassociation between generation and supply caused 

by the inertia and the delay marks some opportunities to improve the management of DH. Firstly, in 

order to mitigate the delay when demand goes up and reduce the surplus when it goes down, the control 

strategy can consider past and future time steps to find the best strategy for the operation of the 

generation units. Secondly, the PSF can be used to modify the generation by increasing it if the PSF is 

higher than 1, or decreasing it if it is lower than 1, thus reducing the surplus and deficits experienced by 

the network and improving the QoS and energy efficiency of the system with it. This contrasts with the 

steady state models that optimize each time step independently.  

In the next chapter we demonstrate how the delay and inertia can be used to optimize the performance 

of DH network. 

4.3 Conclusion 

This section presented the results of implementing the Dynamic Model to compute the temperature 

distribution, in time and space, of a DH system during two different operations: pre-heating and normal 

operation. The results show the energy flows in the supply and return pipes. It can be concluded that 

using the Dynamic Model gives robustness to the simulations when working with fixed spatial 

discretization for a range of flows, reducing the computation times while keeping accuracy. 

By comparing the results to those obtained with the FVN approach, the use of the Dynamic Model to 

evaluate the operation of DH networks was validated. The Dynamic Model was then used to simulate a 

6-node network for a 24-hour period of normal operation. The results highlighted the importance of 

using tools like the one here presented to aid in the operation of the network, as simply monitoring the 

temperatures of the water in the generation nodes is not enough to determine the temperatures and 

powers in the rest of the network, especially on the far away nodes where any surplus or deficit could be 

attenuated on the return network and not be noticeable on the generation units. 

The results show also that even when the temperature and mass flows at the input nodes is known and 

time series exist to estimate the consumption at the middle nodes, the number of variables and physical 

phenomena make it hard to know the real-time status of the network without the appropriate tools. This 
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is relevant as many DH networks have limited monitoring to assess the behavior of the system beyond 

the point of view of the generation plants. 

The Dynamic Model also allowed the study of the effects that the delay, the losses and the thermal inertia 

have on the energy supply of a system operating outside of the steady state. The delay increases the time 

between generation and supply, but also increases the time that a certain output persists after the input 

has changed. The inertia of the system affects the output’s profile compared to its input, extends the 

delay, and increases or decreases the losses depending on the direction of the temperature change. These 

effects together are usually considered a challenge in DH but may be used to the advantage of the system 

with proper control. 

These results justify the use of the Dynamic Model in combination with optimization tools to propose 

and evaluate different modes of operation of DH networks that would allow the transition of this kind 

of systems into Smart Thermal Networks and their integration as part of the Smart City.  
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5 DOft Optimization: Results and Discussion 

 

 

 

 

 

 

 

 

 

 

The Dynamic Model presented in the Chapter 3 allows the tracking of the heat front in a DH network 

and the temperature distribution within the pipes. This is used to calculate the spatial-temporal 

distribution of temperatures, the delay, and the real supply at the consumer nodes. This information 

opens the possibility to use the Dynamic Model in combination with an optimization strategy to 

determine the best operational scheme for a DH network. 

To test the relevance of coupling the Dynamic Model with an optimization strategy a case study 

composed of a seven-node network with six connections is proposed. The topology of the network can 

be seen in Figure 5-1 and the characteristics of the pipes for this network are presented in Table 5-1. 

 

Figure 5-1: Network topology. The network contains three generation nodes (red) and four consumer nodes (blue). Node 
3 is a consumer and a junction; Node 4 is a consumer and a split. 
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Table 5-1: Pipe characteristics. 

Pipe 
Length ∅ 𝑠𝑠𝑡 𝑠𝑖𝑛𝑠 𝑧𝑑𝑒𝑝𝑡ℎ 𝑘𝑠𝑡 𝑘𝑖𝑛𝑠 𝑘𝑠𝑜𝑖𝑙 𝜌𝑠𝑡 𝐶𝑝𝑠𝑡 

(𝑚) (𝑚𝑚) (𝑚) (𝑊 ∙ 𝑚−1 ∙ 𝐾−1) (𝑘𝑔 ∙ 𝑚−3) (𝐽 ∙ 𝑘𝑔−1 ∙ 𝐾−1) 

1-3 5000 219.1 4.5 68 1 54 0.024 1.2 7850 465 

2-3 6124 406.4 6.3 111 1 54 0.024 1.2 7850 465 

3-4 5000 406.4 6.3 111 1 54 0.024 1.2 7850 465 

4-5 5000 219.1 4.5 68 1 54 0.024 1.2 7850 465 

4-6 5000 323.9 5.6 88 1 54 0.024 1.2 7850 465 

6-7 5000 323.9 5.6 88 1 54 0.024 1.2 7850 465 

This system contains two generation nodes (Nodes 1 and 2), one back-up plant (Node 6), and four 

consumer nodes (Nodes 3, 4, 5, 7). Node 1 is a 7 MW waste-to-heat generation plant, Node 2 is a 30 

MW gas plant and Node 6 is a 17 MW gas-fired back-up boiler. Nodes 3, 4, 5 and 7 are the result of 

aggregated commercial and residential consumers, thus only the backbone of the primary side of the 

network is considered. This is done to represent the point of view of the District Heating Operator 

(DHO), who usually only has access to the substations on the primary side. In Chapter 8, where future 

work is presented, the capability of escalating the methodology to include the secondary side of the 

network is discussed. 

For the case of the heat plants, each uses different fuels and operates at different efficiencies; thus, each 

has different fuel prices per kWh of heat. These can be seen in Table 5-2. For this test, the efficiency of 

the three heat plants is considered constant and the total cost of generation is only a function of the fuel 

price and the heat produced. Nevertheless, the model can incorporate efficiency functions for generation 

to better represent real implementation of the methodology. 

Table 5-2: Fuel price for the 3 heat plants. 

Heat Plant Fuel Fuel Price 

Waste Incinerator Urban solid waste 0.02 €/kWh 

Gas Plant Natural Gas 0.04 €/kWh 

Gas-fired Boiler Natural Gas 0.05 €/kWh 

To simulate the behavior of the proposed topology, treated demand data in 1-hour intervals from the 

days 21st and 22nd of February in the city of Nantes, France is used. The demand for this period is shown 
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in Figure 5-2. Nodes 3, 4 and 5 represent equivalent clusters of consumers and thus share the same 

demand. Node 7 represents a cluster of high-demand consumers. Only the primary side of the network 

is studied, so the configuration of the 4 clusters of consumers is not explored. The results from this 

section could vary once the topology of the secondary side is also considered. 

 

Figure 5-2: Demand of the proposed network for the evaluated period. 

The system operates to fully supply the demand of Node 5 from Node 4 before sending energy to Node 

6. In case Node 5 fully consumes the energy at the outlet of Node 4, the pipe between Node 4 and Node 

6 has zero flow and all the demand from Node 7 is supplied by the back-up boiler. In case there is enough 

energy to supply Nodes 5 and 7 at the outlet of Node 4, the generation at Node 6 would be zero. 

With this topology, DOft (or Oft if the generation temperature optimization is not used) will be tested 

for eight different optimization strategies. The strategies go from “steady state operation” (Oft-base) to 

“dynamic optimization with Demand Response capabilities using a sliding-window horizon” (DOft 7). 

All optimization strategies are initialized using the same conditions and allowed to run for six hours 

before the evaluated period, this is done to ensure that the initial conditions do not influence the results. 

It is important to mention that this work makes the assumption of having a “perfect forecast” of the 

demand, i.e. the exact demand curves presented in Figure 5-2 are known in advance. The evaluation of 

forecasting tools is outside the scope of this study. Table 5-3 presents a summary of the optimization 

strategies considered in this study.  
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Table 5-3: Simulation and optimization characteristics of each strategy. 

Strategy 

Name 
Characteristics 

Time 

step 

Steady state 

or dynamic 

Oft-base 
Linear Programming Optimization (HG) + The 

Dynamic Model (DM) 
1h Steady state 

Oft 1 HG + DM + Real Losses 1h Steady state 

DOft 2 

HG + DM + Real Losses + mean demands + 

non-Linear Programming Optimization 

(NOMAD) 

3h Steady state 

DOft 3 
HG + DM + Real Losses + mean demands + 

NOMAD + Pipe Supply Factor (PSF) 
3h Dynamic 

DOft 4 
HG + DM + Real Losses + mean demands + 

NOMAD + PSF + ±5°C T° constraint 
3h Dynamic 

DOft 5 
HG + DM + Real Losses + mean demands + 

NOMAD + PSF + ±10°C T° constraint 
3h Dynamic 

DOft 6 
HG + DM + Real Losses + NOMAD + PSF + 

sliding window 
1h Dynamic 

DOft 7 
HG + DM + Real Losses + NOMAD + PSF + 

sliding window + Demand Response 
1h Dynamic 

The first optimization strategy to be tested is the optimization of heat dispatch assuming steady state 

operation. In the present research this strategy is named “Oft-base” and it uses the existing tool HeatGrid 

to optimize the use of the three generation plants described above. Each time step is optimized 

independently, and for each steady state is assumed in the optimization routine. The losses in the network 

are calculated as a function of the steady state temperature of the pipes and the ambient temperature. 

The Dynamic Model presented in Chapter 3 is used to evaluate the results obtained from the 

optimization carried out by HeatGrid by measuring how neglecting the inertia and the delay affect the 

expected results. The results from this strategy will be used as the base of comparison for the other seven 

strategies. 

The second strategy to be tested is named Oft 1, which uses the Dynamic Model in combination with 

HeatGrid. The Dynamic Model is used to calculate the real losses of the network and with the losses it 

calculates an updated Average Heat Loss Coefficient (Equation 3-9). This updated coefficient is fed 

back to HeatGrid to increase the precision of the results. The optimization is run again in an iterative 
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manner until convergence between the current and updated Average Heat Loss Coefficients is reached. 

In this optimization strategy, steady state is considered, and each time step is optimized independently of 

each other. 

The next optimization strategy is DOft 2. This strategy includes the temperature optimization but 

continues to assume steady state conditions. HeatGrid is used to optimize the dispatch and NOMAD is 

now used to optimize the generation temperatures. For this strategy, the time step is increased from one 

hour to three hours. The optimization failed to reach convergence in the results with periods shorter than 

three hours as the maximum time for the system to reach steady state, and thus allow the objective 

function to consider the effects of the generation temperature, was of two and a half hours. The demand 

data for each three-hour time step is the average of the demand of the three individual hours. Steady state 

is considered for the HeatGrid optimization and each time step is optimized independently of each other. 

The inclusion of the NOMAD optimization in combination of the Dynamic Model allows to find the 

pair of temperature and mass flow rates that the generation plants need to minimize the negative effects 

of the delay and the thermal inertia. 

DOft 3 is the first to consider the thermal inertia of the distribution system as short-term storage. 

HeatGrid is used to optimize the dispatch of heat and NOMAD is used to optimize the temperatures at 

which each heat plant operates. The thermal inertia is included in the optimization routine by using the 

PSF of each individual pipe to replace the average heat loss coefficient used by HeatGrid (the PSF is 

introduced in Equation 4-3, section 4.2.4). This strategy continues to use three-hour time steps and 

each time step is optimized independently of each other. 

DOft 4 and DOft 5 follow the same optimization strategy as DOft 3, with the main difference of adding 

a constraint to NOMAD for the generation temperature. In DOft 4 the generation temperature of time 

step 𝑡 is constrained to be ±5°C of the generation temperature of time step 𝑡 − 1. In DOft 5 this 

constraint is relaxed to be ±10°C. The objective of these two optimization strategies is to assess the 

sensitivity of the generation temperature optimization. The time step for these two strategies continues 

to be of three hours and each time step is connected to the previous only through the temperature 

constraint.  

DOft 6 exchanges the temperature constraint for a sliding window optimization. The time step for 

HeatGrid is reduced back to 1 hour and NOMAD operates now on a 3-hour horizon with a time window 

sliding one hour each time step, thus concatenating all the optimization results to the previous and 

following optimizations. In this strategy, HeatGrid still operates under the assumption of steady state, 

but the shorter time frame for its optimization cycle coupled with the Dynamic Model and the sliding 

window optimization for NOMAD, allows to evaluate the system’s dynamics even when steady state is 
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never reached. This approach also maximizes the benefits from replacing the average heat loss coefficient 

with the PSF. 

DOft 7 uses the same strategy as DOft 6 with the inclusion of a new variable. In the previous strategies, 

each node would always extract as much energy from the network as needed to satisfy its own demand. 

This changes in DOft 7, where the Demand Response Factor (𝛼𝑘, see section 5.8) is introduced to limit 

the maximum amount of energy that each node can extract from the network. 𝛼𝑘 is calculated at the end 

of each optimization iteration as the individual factor for each node that would increase the local deficit 

but reduce the overall deficit of the network. This strategy mimics the implementation of a form of 

Demand Response. 

All DOft strategies try to minimize the power generation of the system while preventing any deficit or 

surplus in the network. The results for Oft-base and the other seven optimization strategies are shown 

in the following sections. They are presented in figures composed of five different graphs. The first from 

top to bottom depicts the Generation of each heat plant for the evaluated period. The dark blue area 

corresponds to the waste-to-heat plant on Node 1, the light blue area to the gas plant in Node 2, the red 

area to the gas-fired boiler in Node 6 and the green line represents the energy demand. The second graph 

shows the global PSF for the whole network: the present manuscript shows the global PSF instead of 

the individual PSF of each pipe, as it gives a good representation of the dynamics in the network and 

makes the graph easier to read.  The third graph shows the Temperatures at the generation nodes and 

the back-up. The purple line shows the generation temperatures at the waste-to-heat plant and at the gas 

plant, and the orange line shows the temperature at the node containing the back-up. This temperature 

is the combination of the generation at the back-up and the flow from the upstream nodes. The fourth 

graph shows the Mass Flow Rates of each pipe, represented by its unique color: Pipe 1-3 green, Pipe 2-3 

purple, Pipe 3-4 light blue, Pipe 4-5 dark blue, Pipe 4-6 red, and Pipe 6-7 orange. Finally, the fifth graph 

the Surplus and Deficits of the system: the orange area represents the surplus and the purple area the 

deficit. This color scheme remains constant for all the optimization strategies. The graphs are aligned 

vertically through the time axis, so a point in any one graph shows the same moment as the others. The 

x-axis at the bottom of the figure shows the time in minutes, with every 60 minutes representing one 

simulation time step. In DOft 2, DOft 3, DOft 4 and DOft 5 every 180 minutes represent one simulation 

time step, as in these strategies the time steps were extended. The y-axis scales of each graph are kept the 

same for better comparison between the different optimization strategies. 

To complete the DOTS model, the evaluation of the results using the proposed evaluation framework is 

presented in Chapter 6. 
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5.1 Oft-base: Optimization using HeatGrid and the Dynamic Model 

To be able to evaluate the improvements obtained with an optimization strategy, it is necessary to have 

a reference to which compare the results. In this study we use as comparative base the results of the DH 

operating under the strategy proposed by HeatGrid alone, which is the strategy that replicates the normal 

operation of existing DH the most. HeatGrid gives the dispatch, or generation plant usage, and the 

Dynamic Model is used to evaluate the spatial-temporal distribution of temperatures and the real supply 

in the proposed network. 

The results of Oft-base, presented in Figure 5-3 show important characteristics. First of all, by looking 

at the top graph alone it can be seen that the generation is always higher than the demand by a fair margin 

and that the back-up is only used when the maximum generation capacity of the other two plants has 

been reached. These two behaviors can be explained by understanding how HeatGrid, and many real 

networks, operate. Generation needs to be higher than the demand due to the heat losses the network 

experiences during the transport of the heat, however, the Average Heat Loss Coefficient of the network 

is usually overestimated to prevent any deficits from happening. This causes generation to be higher than 

it must be. The second behavior, that of the back-up only being used after the other plants have reached 

capacity, comes from the assumption of steady state operation. If the inertia and the delay are ignored, 

then generation and supply happen at the same time, indicating to the system that the demand at the 

farthest away node can be supplied instantly by any heat plant upstream from it. If the assumption that 

any heat plant can supply the demand is accepted, then the DHO will prioritize cheaper generation and 

the back-up will not be used until all other plants are at full capacity. 

In this same figure the demand and the generation temperature follow similar patterns (first and third 

graphs). In this strategy, HeatGrid proposes its own operating temperature for all heat plants based on 

the demand and the outside temperature. Having a temperature-controlled system operating under the 

assumption of steady state causes the temperature to rise when the demand increases and to fall when 

the demand decreases. The real systems however do not operate in continuous steady state. The inertia 

and the delay cause a temporal gap between supply and demand that can already be seen in the 

temperature profile at Node 6. The temperature at this node follows a similar pattern to the other two 

generation plants, but it is displaced in time. Between two and three hours in this case. This causes the 

energy being generated to not match the energy that is reaching the consumption nodes. This is indicated 

by the global PSF (second graph): here it can be seen that when demand, and thus generation, increases, 

the global PSF also increases, signaling that more energy is currently being charged into the pipes. When 

generation decreases then the global PSF decreases indicating that the pipes are being discharged. 
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This has substantial implications on the system as can be seen in the surplus and deficits curves (bottom 

graph). In this mode of operation, where steady state is assumed, when demand increases or decreases, 

generation immediately follows suit, but supply does not. Looking at the period between the 540th and 

720th minute, the demand is increasing accompanied by an increase in generation, but also by an increase 

in global PSF. The increase in global PSF indicates that more energy is currently in transit inside the 

pipes, and thus it has not yet reached the consumption nodes. Because the energy is still in transit, or 

being stored in the pipes, it is not reaching the consumer nodes and the system presents a deficit. This 

contrasts with what happens when the demand goes down, like between the 360th and the 540th minute.  

Here generation also decreases but, because there is still energy from the previous generation in transit 

in the system, so does the global PSF, being negative. This means that more energy than necessary is 

being supplied to the nodes, creating a surplus. 

A temperature-controlled system working under the steady assumption will not be able to properly supply 

the demand as it cannot account for the delay and the inertia. Surplus will exist when the demand 

decreases, and deficits appear when the demand rises. A similar magnitude change in the demand will 

not always cause the same change in the magnitude of the global PSF, the surplus or the deficit. This is 

most apparent at the 180th minute, where the surplus has a large increase and the global PSF a large drop 

after a seemingly smaller reduction in the demand. At this moment, the generation temperature decreases 

following the change in the demand, but as it can be seen on the fourth graph, the mass flow rate at the 

heat plants increases. This is of particular interest, as a change in the mass flow rate has a much faster 

effect in a DH network than a change in the temperature does. In this strategy, the increase in the mass 

flow rate accelerates the speed at which the pipes discharge the energy conserved from the previous, 

higher temperature, time step. The higher temperature water stored in the pipes combined with the higher 

water flow greatly increases the available energy at the consumption nodes in a time when they do not 

need it, causing a high surplus and wasted energy. Another interesting moment period in this network is 

during the 1 300th minute and the 1 480th minute, where a deficit and a surplus exist at the same time. 

This happens because the studied system has two end-of-the-line nodes: Node 5 and Node 7. The 

dispatch optimization in this strategy, which uses Linear Programming formulation, considers the mass 

flow rates and temperatures in each pipe constant. In reality the mass flows and the temperatures vary; 

this opens the possibility that the heat diverted from Node 4 to Node 5 is not enough and that the heat 

generated in Node 6 is higher than what is needed in Node 7. This shows the limitations of using only 

Linear formulation to optimize DH systems. 

These results highlight the importance of considering the delay and the inertia of DH systems. Demand, 

generation, temperature, and mass flow rate all have effects that are felt by the system at different times. 

If these times are disregarded, the management of the system becomes ineffective and inefficient, with 
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the surplus being as high as 17.5% of the demand and the deficit lasting for more than four hours. This 

emphasizes the current limitations of this strategy for the management of DH systems. Without any 

information on the status of the network, the systems usually over produces heat to cover for any 

potential deficits. This surplus consumes fuel, has an associated cost, and reduces the efficiency of the 

network. Nevertheless, this strategy can still cause a deficit due to the long transportation times of the 

network, especially when the demand rises. 

The following seven strategies tackle the problem from different perspectives, with the latest strategies 

considering higher levels of network functionality and ICT implementation.  



 
 

84 
 

 

Figure 5-3: Generation, global PSF, Temperatures, Mass Flow Rates, total Surplus and Deficit for Oft-base. 
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5.2 Oft 1: Optimization using HeatGrid, the Dynamic Model and the real losses 

The first strategy to improve the results is to use the Dynamic Model to calculate the real losses taking 

place in the network and feed them back to HeatGrid to improve its solutions. This is done by updating 

the average heat loss coefficient used by HeatGrid in its calculations. This optimization strategy works in 

an iterative manner in which HeatGrid proposes a generation scheme, the system is evaluated with the 

Dynamic Model, the new average loss coefficient is calculated, and it is fed back to HeatGrid. HeatGrid 

then proposes a new generation scheme and the process is repeated until the average heat loss coefficient 

calculated with the Dynamic Model and the average heat loss coefficient used by HeatGrid converge. 

This strategy aims to reduce the over generation of heat by working with more accurate coefficients. 

As before, the results are presented in a multi-graph figure aligned vertically for easier reading (Figure 

5-4). The top graph shows the generation at each heat plant and the demand. Here it can be seen that the 

results are like those obtained with Oft-base. Looking at the top graph, the generation continues being 

always higher than the demand and the back-up continues being used only when the other two heat 

plants have reached maximum capacity. 

The main distinction to Oft-base is that this time the difference between the heat generation and the 

demand for individual hours can vary more due to the updated average heat loss coefficient, which varies 

depending on the combination of temperature and mass flow rate. This is most visible between the 240th 

and 300th minute, where total generation and total demand are almost the same, while in Oft-base there 

was always a clear difference between the two. The rest of the results are very consistent with what was 

obtained with Oft-base. Like before, the system operates under the assumption of steady state. Rises and 

falls in demand are followed by rises and falls in generation temperature. Looking at the PSF graph 

between the 1200th minute and the 1620th minute, it can be seen that as demand increases, the global PSF 

rises, indicating that the heat entering the pipe is not yet reaching the output of the pipe, and a deficit 

appears; and as the demand decreases, the global PSF becomes smaller (to the point where it can turn 

negative), this indicates that more energy is exiting the pipe than it is entering it, and a surplus appears. 

As before, the surplus and deficits remain linked to the global PSF, but their magnitude is proportional 

to the mass flow rate. 

Several moments of interest exist in Figure 5-4 that reaffirm what was seen in Oft-base. Between the 

60th and 120th minute there is a drop in the mass flow rate which causes the surplus to become smaller 

but the global PSF to rise, showing how changes in mass flow have a greater short-term effect on the 

network than temperature changes. Another moment of interest happens between the 240th and the 300th 

minute, where the difference between generation and demand significantly decreases, from 2 500 kW in 
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the previous time step to 750 kW. During this period, the system operates at lower mass flow rate and 

temperature, which in turn reduces the average heat loss coefficient of the network and hence the 

generation needed to supply the demand. Between the 600th and the 1020th the demand increases at the 

beginning of the period but then remains somewhat constant, as a result the system first experiences a 

rise in the global PSF, and a deficit appears. However, as the demand remains at the same level for most 

of this period, generation temperature and mass flows stabilize. This causes the system to gradually 

approach steady state, lowering the global PSF and reducing the deficit until it turns into a surplus. After 

this period, the demand starts to fall again, further lowering the global PSF until it turns negative and 

increases the surplus. Lastly, between the 1 320th and the 1 380th minute, a surplus and a deficit occur 

again at the same time. Once more this is caused by the system failing to feed the demand in Node 5 with 

the flow from Node 4 and the back-up in Node 6 over-generating, causing a surplus in Node 7 while the 

deficit in Node 5 remains. 

This optimization strategy, using HeatGrid to minimize the cost of power plants and using the Dynamic 

Model to update the real losses occurring in the network, has little impact on the efficiency and efficacy 

of the system. In the scope of the Smart City, where highly dynamic distribution systems are connected 

with all their actors through communication networks that share real-time information, DH systems need 

more done to upgrade their operation and management. The next strategy presents an optimization 

strategy that not only tries to optimize the power generation of a DH system, but also the manner on 

which this power is delivered. This is accomplished by optimizing the temperatures at which each heat 

plant operates. 
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Figure 5-4: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for Oft 1. 
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5.3 DOft 2: Optimization using HeatGrid, the Dynamic Model, real losses, mean 

demands and NOMAD 

The previous strategy showed how HeatGrid in combination with the Dynamic Model can influence the 

energy generation of a DH system by using the expected average heat loss coefficient of the system rather 

than a previously set one. However, it also showed that the effect of this strategy is limited. The strategy 

presented in this section shows the results of an optimization strategy that not only aims at minimizing 

generation costs, but also at improving the supply of energy to the consumers to prevent surplus or 

deficits. This is achieved by including a second optimization routine that controls the temperatures at 

which the power plants operate while allowing HeatGrid to compute the powers and mass flows at the 

generation plants. The operating temperatures will be selected with an optimization routine; whose result 

aligns better with the internal needs of the network than basing the temperature on the demand alone. 

The optimization of the generation temperature is carried out using non-Linear formulation and the 

NOMAD tool. The results from this strategy are presented in Figure 5-5 through the same five, vertically 

aligned graphs as before. The main difference between Figure 5-5 and the previous two is the length of 

the time step. For the NOMAD optimization to converge it was necessary to increase the length of the 

time step enough to ensure that steady state is reached. For this reason, the time steps are lengthened to 

three hours instead of one and the demand used for both optimization algorithms is replaced by the 

mean demand of the period. Increasing the time step to guarantee steady state at the end of the period 

already shows strong consequences in the results. While generation remains higher than the demand for 

every time step, the global PSF never falls below zero. Instead, the global PSF rises slightly at the 

beginning of every new time step and then it slowly declines. As seen in section 4.2, as the system nears 

steady state operation the global PSF tends to the average heat loss coefficient value, which is what can 

be seen in these results. 

Also, important to notice in these results is the way the system manages the deficit and the surplus. First, 

it can be observed that the deficit and the surplus are significantly lower than they were for Oft 1 and 

Oft-base. This is a sign that the new strategy has positive effects on the system. The change in the strategy 

becomes even more apparent when looking at the temperature and mass flow rate graphs. In this strategy, 

temperature no longer follows the same pattern as the demand but is rather set by the optimization 

routine. Interesting to note is that during this period the solution gives a temperature profile that steadily 

rises as the simulation continues. The mass flow rates also present changes, while the output of the waste-

to-heat plant remains somewhat constant and very similar to the previous two strategies, the mass flow 

output at the gas plant in Node 2, now more closely follows the demand. These results are biased by 
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using the averaged demand over the three-hour period, but they still show promise on the effects that a 

different management strategy could have on DH systems.   

The surplus and deficit graph also show an insight on how DOft works. The NOMAD optimization tries 

to maximize effective supply by minimizing the deficit and the surplus. This approach affects the results 

for this strategy by now showing an alternation between deficit and surplus. The deficit always appears 

at the beginning of every time step and it is later followed by a surplus. This optimization strategy, while 

it does reduce the deficit and surplus, it also increases the number of times that a deficit will exist. Like 

on the previous strategies, during the times the back-up is used, a deficit and a surplus can occur at the 

same time. 

This optimization strategy clearly shows that having temperature control (and thus mass flow control) 

can have a positive impact on DH systems. A lower surplus indicates less energy waste and points towards 

lower generation costs. The increase in the number of times a deficit happens, however, shows an 

important limitation of this strategy. Even when the deficit is small compared to the local demand, it 

could mean that some customer will suffer a complete interruption of their service. If these deficits are 

not managed properly, the same group of customers would be left without heat several times during the 

day, which could be worse for the QoS than a single, longer, interruption. 

An aspect of DH systems that cannot be overlooked is their dynamics, like the delay and the inertia. As 

explained above, after each optimization time step, the pipes are full of hot water that can be used as an 

alternative source of short-term supply. This is explored in the next optimization strategy, which tries to 

take advantage of the energy already contained in the system to reduce even further the energy generation, 

the surplus and the deficit. This is done through the implementation of the global PSF as a replacer of 

the average heat loss coefficient. 
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Figure 5-5: Generation, global PSF , Temperature, Mass Flow Rate, Surplus and Deficit for DOft 2. 
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5.4 DOft 3: Optimization using HeatGrid, the Dynamic Model, the real losses, 

mean demands, NOMAD and the Pipe Supply Factor 

The heat inertia of the system, together with the delay, have historically been considered as a challenge 

on DH control. In simple terms, the delay is the time needed for a heat front to traverse a specific distance 

in the network, i.e. the time needed for a consumption node to receive the energy from a generation 

node. To overcome this, traditional systems try to forecast the demand to generate the energy before it 

is needed, but often they simply over-produce heat. The effects of delay can be mitigated by improved 

system management as shown on section 4.2. When a node’s demand changes there is a delay before 

the new generation reaches it, however, during this time supply continues. This supply is the result of the 

past decisions in the network and its thermal inertia. This optimization strategy aims at taking advantage 

of this inertia to act as a short-term source of heat when possible. In other words, this strategy uses the 

energy stored in the pipes from the previous optimization time step as an alternative heat source. This is 

integrated in the optimization via the PSF. If a pipe has enough energy to supply part of the demand, 

indicated by a negative PSF, this value will replace the average heat loss coefficient of the pipe in the 

dispatch optimization. This will cause HeatGrid to see the systems as having gains rather than losses, and 

it will reduce the energy generation consequently. While every pipe has its own PSF, the results presented 

show only the global PSF of the system as it serves as a good indicator to the combined effect of the 

individual PSF’s. 

The results for this optimization strategy are shown in Figure 5-6. The first thing that immediately jumps 

to the eye is that generation is no longer always higher than the demand. Between the 180th and the 360th 

minute, and between the 720th and the 900th minute, the heat generated in the system is lower than the 

system’s demand. Intuitively, this would look like a sure sign that the deficit will be high, but this is not 

the case. Results in the bottom graph,  

showing the surplus and deficit of the system, display smaller deficits during these periods than in others 

where generation is higher, and in both periods even a surplus is present. This is a direct effect of DOft 

using the PSF to adjust generation based on the energy already contained in the system. In both periods 

when the generation drops below the demand, the global PSF of the system is negative, indicating that 

the pipes contain stored energy that is being injected into the system and can be used as an alternative 

source of supply. 

These results already indicate that using the PSF to take advantage of the delay and the inertia could 

prove to be a good strategy. However, the rest of the results for this strategy point at it being flawed. 

Looking at the generation graph, with this strategy there are long periods of time where the back-up plant 
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is operating at high capacity, especially between the 900th and the 1 440th minutes. The back-up plant has 

the highest operation costs of all heat plants in the system, which already makes this strategy to be less 

desirable. But what shows the failure of this approach the most, is the surplus and deficit experienced by 

the system. As it can be seen in the bottom graph, as times advances, the surplus and the deficit grow 

larger in magnitude, with a distinct oscillation in which a period of deficit is followed by a period of 

surplus, each growing as the simulation continues. This behavior can be explained by looking at the 

generation temperatures and the mass flow rates of the system. 

Using this optimization strategy, the generation temperatures present an oscillatory pattern. As the 

simulation continues, the generation temperature alternates between higher and lower values. This is 

accompanied by a similar behavior of the mass flow rates. The mass flow output of Node 1 follows an 

inverse pattern as its temperature, increasing when the temperature falls (which makes sense as its power 

output is constant). In the case of the gas plant in Node 2, it is much more variable than in previous 

strategies. Between the 900th and the 960th minute it even drops considerably when the back-up takes on 

a significant share of the generation. These patterns tell the story of a system that, as it is generating heat, 

a good portion of it is being stored in the system. As times goes on, the energy stored in the system is 

enough to supply a fair share of the demand, so generation drops, and the energy of the system is mostly 

discharged. In the time step following the discharge of the heat in the pipes, the system finds it hard to 

supply the demand, so it over-generates to compensate. This increases the energy stored in the system 

and the cycle repeats itself. This characteristic, that of alternating between high and low generation 

periods, is detrimental for the system. Even when in individual time steps the generation is reduced and 

an increased in efficiency can be inferred, the use of the back-up and the increased deficits point at an 

overall reduction of the performance of the system. This optimization strategy proved to be a failure, but 

it showed a lot of promise in its potential. The main problem observed is that with the implementation 

of the PSF without any type of constraint, the system relied too much on the inertia during some periods, 

which in turn caused the network to make up for it by ramping up generation and over-using the back-

up plant in other periods. One way of counteracting this is by implementing constraints in the 

optimization algorithm to limit how much energy is charged or discharged from the pipes at each 

optimization time step. 
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Figure 5-6: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for DOft 3. 
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5.5 DOft 4: Optimization using HeatGrid, the Dynamic Model, the real losses, 

mean demands, NOMAD, the Pipe Supply Factor and ±5°C T° constraint 

As explained above, the present research has as one of its specific objectives to explore how the dynamics 

of DH can be mitigated, or even taken advantage of, with a new manner of system management. The 

results obtained in section 5.4 show that the inertia and the delay can have a positive impact on the 

network, but also a negative one if they are not properly considered. In this section, the optimization 

strategy from DOft 3 is repeated, but this time constraining the amount of energy that the system supplies 

from the heat stored in its pipes. This is done as a temperature constraint at generation, which limits the 

generation plants T° variation to ±5°C. This constraint ensures that every time step new heat is being 

injected into the network and that some of the supply will always come from the generation plants. 

The results for this strategy are presented in Figure 5-7. The first thing to be observed is that the results 

are better than in DOft 3. Looking at the top graph, it can be seen that periods where generation is lower 

than the demand continue to exist, but that this time the back-up plant is not used as often or at the same 

high capacity as in the unconstrained strategy. Looking at this graph in combination with the global PSF, 

whenever the global PSF is lower than zero, the generation is lower than the demand. If the strategy is 

working properly, then these same periods should also not present a high deficit. Focusing on the three 

periods where the global PSF is negative and the generation is below the demand (between the 360th and 

540th minutes, the 900th and 1 080th minutes, and the 1 440th and 1 620th minutes), it can be observed that 

these are also the periods with the lowest deficit of all. These results show that using the global PSF to 

account for the delay and the inertia can indeed reduce the energy generation of the system without 

negatively impacting the QoS. 

From Figure 5-7, it is also interesting to note that the surplus and deficit present a similar effect to that 

in DOft 2, with periods of surplus and periods of deficit alternating between each other. However, unlike 

all the previous strategies, there are moments where a surplus and a deficit coexist even when the back-

up is not in use. This is most observable between the 540th and 720th minute and the 1 800th and 1 980th 

minutes. These two periods present a constant deficit with two small spikes in the surplus. The 

explanation to this comes from the combination of three factors: 1) the formulation that HeatGrid uses 

to determine the flows in each pipe, 2) the real heat in the pipes and, 3) the real temperatures of the 

nodes. HeatGrid assumes steady state operation, which conflicts with the real flows and temperatures of 

the network. Each node is programmed to take as much energy as is necessary/available to satisfy its 

demand, but because the temperature of the water varies, so do the mass flow rates. During both periods 

the mass flow rate in Pipes 3-4, 4-6 and 6-7 has a small intra-period variation that coincides with a small 
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change in the global PSF. These indicate that there were pockets of hotter water between colder water, 

creating the small spikes. 

The results from this operation strategy confirm that it is possible to use the heat inertia of the network 

to the advantage of the system. However, they also show that the strategy is still not optimal. Several 

periods of deficit still exist and there are moments where the flows in the network are not perfectly 

balanced, like when both a deficit and a surplus exist. This can be attributed to the lack of 

“communication” between optimization time steps. This could cause individual optimum which do not 

guaranty the global optimum and whose accumulation can even cause a worst global solution (like seen 

on DOft 3). To overcome this, the optimizations could be interconnected. In this way, the results from 

a time step do not harm the operation of the next time step. Before exploring this, it is interesting to see 

what happens when the temperature constraints are relaxed to test the sensitivity of the system under 

this optimization strategy. The next section presents this same strategy but with a temperature constraint 

of ±10°C instead of ±5°C. 
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Figure 5-7: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for DOft 4. 
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5.6 DOft 5: Optimization using HeatGrid, the Dynamic Model, the real losses, 

mean demands, NOMAD, the Pipe Supply Factor and ±10°C T° constraint 

The strategy used to optimize DOft 3 showed that there is potential in using the PSF to improve the 

performance of DH in dynamic environments, but that it can also backfire if done incorrectly. 

Constraining the temperature change between time steps, as presented in  

DOft 4, improved the results, but is no clear indication of how sensitive a DH system is to this type of 

constraint. The objective of this strategy is to test the sensitivity of this optimization approach to a 

variation on the imposed constraints. The constraints are relaxed to ±10°C from ±5°C. 

The results for this strategy are shown in Figure 5-8. Looking at the top graph, it can be seen that relaxing 

the constraint of generation temperature by just 5°C is enough to once again see an increase in the use 

of the gas-fired boiler in the back-up plant. With this optimization strategy, the generation is sometimes 

lower than the demand, indicating that the delay and the inertia are being taken into account, but once 

again, as was the case in DOft 3, the back-up plant sees increased use and the deficits in the network 

remain high. Steps of 10°C at the generation plants of a DH system are not unlikely, so the results already 

show that this optimization strategy is not viable. DH systems are too sensitive to a temperature 

constraint and it would be highly likely that issues will arise if they are managed under this strategy. 

However, Figure 5-8 does present some interesting behaviors that are worth of being analyzed further. 

Looking at the period between the 180th and the 360th minute, the generation from Node 2 is reduced 

and the back-up plant in Node 6 supplies all the demand of Node 7. This is known by looking at the 

mass flow rate of Pipe 4-6, which is zero during this period. In the period immediately after this one, 

between the 360th and the 540th minute, the temperature at Node 6 drops drastically. During this time, 

the back-up is not in operation, so all the energy flowing into Node 6 comes from Pipe 4-6. However, 

for the whole duration of the previous period the flow of this pipe had been zero, so the hot water within 

the pipe was laying still, exchanging heat with the environment. As each period is three hours long, it was 

enough for the hot water contained in the pipe to lose a fair share of its heat. It is not until the end part 

of this time step that the temperature can be seen to rise again with the new hot flow finally reaching the 

node. From this period, it is also interesting to see that it is the first time that the global PSF changes sign 

mid-time step with such a high difference. This phenomenon is repeated during the following two time 

steps where similar conditions happen again. 

These results show once more that considering the inertia can have an impact but doing it improperly 

can render the results worse than doing nothing. Constraining the temperature is a possible solution but 

prone to errors due to its high sensitivity. A possible source for this limitation of the proposed strategy 
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is that each time step is optimized independently of the others, resulting in the accumulation of individual 

optima to cause a worst global solution. A way of addressing this is by linking the results from a specific 

time step to the results from previous or future time steps. This can be done by changing the optimization 

to an advancing horizon optimization with a sliding window to concatenate the results. 
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Figure 5-8: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for DOft 5. 
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5.7 DOft 6: Optimization using HeatGrid, the Dynamic Model, the real losses, 

NOMAD, the Pipe Supply Factor and a Sliding Window 

As seen in the previous sections, the consideration of the heat inertia of the system can lead to a reduction 

on the heat generation of a DH network. Nevertheless, considering each time step as independent of 

each other lead to inferior management strategies that overused the back-up plant and increased the 

number of deficits in the system. In the present research this is addressed by changing the optimization 

strategy to work using a horizon optimization with a sliding window rather than a temperature constraint. 

With a sliding window it is no longer necessary to use average values of the variables over a three-hour 

period and the optimization can go back to operate with 1-hour time steps. As the optimizations are now 

connected, it is also no longer necessary to constraint the generation temperature. To guarantee that all 

the effects of the optimized hour on the subsequent ones is considered, the window is set to a three-hour 

horizon, as this is the longest time required for the tested network to reach steady state with unvarying 

input conditions. Larger networks will require a wider horizon, but the basis here presented will not 

change. 

The results are shown in Figure 5-9. Observing the top graph three things are apparently relevant; the 

first is that there is a huge gap between generation and demand at the beginning of the results. All 

optimization strategies were initialized using the same conditions and allowed to run for a while before 

the evaluated period, this was done to ensure that the initial conditions did not influence the results. In 

this strategy, the previous time steps created the settings needed for a period of low generation. These 

results were consistent after several trials and are deemed reliable even though they appear strange. The 

second thing that is clearly visible is that the back-up plant is barely used. Except for a short period at 

the 24th hour of simulation, the back-up is always off; this indicates that with improved system 

management all heat can be supplied by the main heat plants and any transient deficits can be covered by 

the inertia of the system. Third, with this strategy the generation and demand profiles match each other 

more closely. This shows that not only the back-up is no longer needed as much, but the overall 

generation of the system has been reduced. Very interesting to see is the profile of the global PSF curve, 

while it has a large variation in the first hours of the simulation, once the generation settles to always 

being higher than the demand, the global PSF settles to a value very similar, if not equal, to the average 

heat loss coefficient. This immediately indicates that, even if the system is not operating in steady state, 

this optimization strategy gives results resembling steady state operation. 

Looking at the graph showing the generation temperatures, it is observed that the operating temperature 

at the main generation plants is almost constant for the whole period and it is lower than in all the 

previous strategies. These results not only demonstrate that with better system management it is not 
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necessary to vary the temperature at generation that much, but that it is possible to operate at lower 

supply temperatures; because losses are a function of the temperature, this helps explain how the 

optimization strategy is able to reduce the generation so much. This also explains the behavior of the 

global PSF, as the temperature is not changing between time steps, the temperature dynamics are not 

present. In this graph it can also be seen that at the beginning of the simulation, the temperature at Node 

6 is higher. This gives an idea of the operation of the network in the time steps before the presented 

results. The network was operating at a higher temperature and this is the reason why generation is so 

low at the beginning of the printed results; the system had a lot of inertia. 

In the graph showing the mass flow rate it becomes clear that the system is operating under mass flow-

based control rather than temperature-based control. During this period, the temperature at generation 

is kept constant while the mass flow varies to match the profile of the demand. Of note is the small steps 

seen in the first hours of simulation where the mass flow rate rapidly increases. During this time, the 

network had an elevated temperature, and the system supplied the demand by increasing the mass flow 

rate, to make use of this heat, rather than increasing generation. This explains the low generation seen in 

the top graph during the first hours of simulation. 

The last graph to analyze is the bottom one showing the surplus and the deficit. From this graph it is 

immediately easy to see that this strategy significantly reduces the surplus and the deficit experienced by 

the system during the simulated period. Except for the beginning of the simulation, where small spikes 

of both surplus and deficit exist, for most of the simulation both surplus and deficit are negligible. This, 

in combination with the rest of the results showing lower generation, lower operating temperatures and 

dynamic operation resembling steady state, show the power of having an appropriate strategy for the 

management of DH systems. 

However, within the scope of the Smart City, distribution systems do not operate independently from 

the users connected to it. In a Smart Network all actors connected to a distribution network participate 

in the exchange of information and decision making. This operation strategy has demonstrated that it is 

possible to operate a DH system in a more dynamic way, and that it is possible to use the system’s 

dynamics to aid the operation of the system itself. But to be fully integrated in a Smart City, DH networks 

need to be able to include the end-users in its operations too. 

The next and final strategy includes user participation in the management of the network through 

Demand Response. In this way individual users agree to curtail their energy use for a short period to 

improve the overall efficiency of the network. 
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Figure 5-9: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for DOft 6. 
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5.8 DOft 7: Optimization using HeatGrid, the Dynamic Model, the real losses, 

NOMAD, the Pipe Supply Factor, a Sliding Window and Demand Response 

The previous section demonstrated that it is possible to have a strategy for system management of DH 

that considers the dynamics to aid the supply of the system and increase response times. However, the 

results also show that surplus and deficit, though reduced, persist. In a branched system like the one 

studied in the present research, the deficits are always felt first and foremost by the consumer nodes the 

farthest away from a generation plant, as they have the longest delay to resume supply. Because this work 

is done in the scope of the Smart City, it is necessary to consider all the actors of a DH network, not only 

distribution and generation. This optimization strategy introduces the users of a network as active 

participants of the system. In this simulation, some of them agree to reduce or curtail their demand for a 

short period of time to help the network reach higher efficiencies and QoS at the farthest consumer 

nodes. 

The introduction of the consumer participation in the system is done in the form of DR. DR can be 

defined in a simple manner as the temporary reduction of consumption by the consumer. But in the case 

of DH, due to the thermal characteristics of the systems connected to it (usually buildings), the broader 

definition proposed in this research is the temporary reduction of consumption by the consumer or the temporary 

curtailment of supply by the DHO that would not change the state of comfort felt by the consumer. Implementing this 

into our model would allow to shift a deficit from a far node to a node closer to generation, thus making 

it easier for the system to balance out generation and supply. The way this is implemented in the 

optimization is that every node allows up to 5% deficit in its supply and the optimization uses this 

flexibility to better balance out the deficit among all nodes, given priority to assign a deficit to the nodes 

closer to a main generation plant. This flexibility is given the variable name alpha (𝛼) and each node is 

assigned a value 𝛼𝑘. If the system experiences a deficit at any time, the optimization finds the values of 

𝛼𝑘 for all consumer nodes that would minimize the deficit at the farthest away nodes using the function 

presented in Equation 5-1, where 0 ≤ 𝛼𝑘 ≤ 0.05. Non-consumer nodes have a fixed 𝛼𝑘 = 0, in 

Equation 5-1 the subindices 1,2,… indicate consumer node 1, consumer node 2,…,  where each 

consumer node is numbered from the closest to the main generation plants to the farthest. The reduction 

in supply of 5% (0.05) is large enough to cause a loss in the QoS of the node. This is done on purpose 

to see the difference on losing QoS at a node close to generation and at a node far away. 
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Equation 5-1: Alpha calculation for time step 𝑖. 

𝑖𝑓 ∑𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑘
𝑖

𝑘

> 0 
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The results for this strategy are presented in Figure 5-10. In the top graph it can be observed that the 

back-up has higher use than in DOft 6 and that most of it occurs during the same period that DOft 6 

had exceptionally low generation. While for DOft 6 the initialization of the optimization created the 

conditions for a period of low generation, in this strategy the same period now needed increased 

generation. These results already show that DR is influencing the operation of the system. From this 

same graph it can also be seen that generation and demand have similar profiles; with the resolution used, 

it is almost impossible to note the difference between the two in many periods. The global PSF graph 

also shows interesting results: at the beginning of the simulation, while the back-up operates, the global 

PSF increases. This is followed by a moment when the global PSF drops to a value close to zero, then 

rises until finally settling at a value close to the average heat loss coefficient of the network. 

Looking at the Temperature and Mass Flow Rate graphs helps explain the behavior of the global PSF. 

The temperature is almost constant during the whole studied period, and as the heat losses are more 

affected by the water temperature than the speed of the flow, they also remain almost constant. What 

varies the most during this time are the mass flow rates, but as was seen in DOft 6 and repeated here, 

having a horizon optimization with a sliding window to link the results of a time step to its past and its 

future does have a positive impact. This, in combination with DR, allows DOft 7 to propose a solution 

that maximizes supply throughout most of the system’s operation, greatly reducing the adverse effects of 

delay and inertia. This can be verified by looking at the bottom graph showing the surplus and the deficit. 

Other than two occasions at the beginning of the simulation, where a surplus is followed by a deficit, the 

surplus and the deficit remain low. This graph shows the power of the strategy presented in this section, 

and its effects. 
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Figure 5-10: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for DOft 7. 
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The DR scheme used for this strategy is implemented as a factor 𝛼𝑘 that reduces the energy taken by a 

substation to supply its demand. This will translate into reduction of supply to the final user or even a 

curtailment, which explains the deficits seen in Figure 5-10. The manner on which the DR is achieved 

by the secondary network is outside the scope of the present research but is part of possible future work. 

The DR factor 𝛼 for this simulation is shown in 

 

Figure 5-11. Any value higher than 0 indicates that power supply in the Node is reduced (𝛼 = 0.05 

indicates a reduction of 5%). In 

 

Figure 5-11 it can be seen that at the beginning of the period there is a moment where the Demand 

response calls for a 5% reduction at Node 3 and up to 1% reduction at Node 4. After the high initial 

values of 𝛼 in the first hour, Node 4 does not experience any Demand Response and Node 3 has a 

Demand Response lower than 1% for most of it. This small reduction in supply at Node 3 is mostly the 

deficit seen in Figure 5-10. 
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Figure 5-11: Demand Response factor (Alpha). 

An important take-away from the results obtained with this strategy is that the network is operating at a 

lower temperature. However, the demand has not changed. This means that the mass flow rates are 

higher than in Oft-base. For this specific network, the pipes can handle the increased flow (and associated 

pressure), but it is true that some existing networks will not be able to handle an increase like this. Because 

this work aims to be a proof of concept, these flows were accepted. 

Other than that, these results are promising. They confirm the original assumption that other forms of 

system management exist for DH that can increase its efficiency and QoS. Moreover, the system 

management strategy presented in this strategy can operate under a dynamic environment, taking 

advantage of the delay and the inertia for the benefit of the system. Most significant result of all, is that 

considering the dynamics and the active participation of users further increased the reliability of this kind 

of systems. These results strongly indicate that DH can be upgraded to be a constitutive component of 

the Smart City and that heat should not be forgotten in place of electricity. 

5.9 Temperature, deficit, surplus and PSF mapping 

The above sections presented the results for eight different optimization strategies. These results included 

the heat generated at every heat plant, the global PSF, the temperature of the nodes where a heat plant is 

located, the mass flow rates and the global deficit and surplus. In this section, two of the strategies are 

selected to present the results of the spatial and temporal distribution of temperature in the network, the 

PSF of each individual pipe, and the local surplus and deficits. These results show how the Dynamic 

Model provides the information needed to map the heat distribution in the network and how DOft 

makes use of this information to optimize the system. 

The two cases selected are Oft-base and DOft 7. These are selected for being the most similar to normal 

operation of DH systems (Oft-base), and the strategy with the best results presented in this research 
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(DOft 7). The results are once again presented in vertically aligned graphs with the top graph depicting 

the spatial/temporal distribution of temperatures in the network, the middle graph showing the individual 

PSFs of each pipe, and the bottom graph showing the deficit and the surplus for every node where they 

occur. 

The first optimization strategy to be analyzed is Oft-base. The results are presented in Figure 5-12. The 

top graph shows the temperature distribution in the network. As expected, in this graph it can be seen 

that the temperature profiles for each node are displaced in time depending on their distance to the 

generation plants, and that the temperature signal is lower than what it was at generation. These effects 

are caused by the delay, the inertia and the losses as explained in section 4.2. The middle graph of this 

figure shows the PSF for every pipe. From this graph something interesting can readily be observed. The 

global PSF has in general a larger period than the individual PSF of each pipe. Looking at the time 

between the 540th and 1020th minutes, in Figure 5-3 the global PSF rises, reaches a maximum, and then 

starts to fall. During this time, in Figure 5-12 the individual PSFs follow a similar pattern but at different 

moments in time and with a shorter duration. The PSF of Pipes 1-3 and 2-3 starts to rise at the 480th 

minute, reaches its maximum at the 600th minute, after which it starts to fall until it settles around the 

780th minute. This same behavior is seen in Pipe 3-4, starting at the 540th minute and ending at the 840th 

minute; Pipe 4-5 and Pipe 4-6, starting at the 600th minute and ending at the 1020th minute; and Pipe 6-

7, starting at the 660th minute and ending at the 1020th minute. These results show that the global PSF is 

an indicator of the heat as it advances through the network and it represents the combination of status 

experienced by the system during a period of time.  

These results, those of the individual and global PSFs, can further be explained by looking again at the 

top graph of Figure 5-12. Here it can be seen that the individual PSFs follow the temperature signals of 

the nodes they connect. The PSF of Pipes 1-3 and 2-3 rises as the temperature of Node 1 and Node 2 

increase compared to the temperature of Node 3, the PSF tends to the average heat loss coefficient when 

the temperature difference remains somewhat constant, and the PSF drops below zero when the 

temperature of Nodes 1 and 2 is lower than that of Node 3. This effect is the same for every two nodes 

and the pipe that connects them. But in the case of the global PSF, it was seen that it remains above the 

zero line as long as the generation temperature is above the network temperatures and falls below it when 

the generation temperature is below the temperatures of the network. In this strategy, the individual PSFs 

settle around a constant value at different moments (this value is close to the average heat loss coefficient 

of their respective pipes, as explained in section 4.2.4), but as can be seen in the global PSF presented 

in Figure 5-10, their combined effects do not allow the global PSF to have a constant value at any 

moment. This is caused by the global PSF representing the sum of effects in the network, and the system 
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changing too fast for all the network to operate near steady state at any one time, even when some pipes 

have already reached close to constant operation. 

Lastly, from Figure 5-12, the bottom graph shows the surplus and the deficit. This graph shows how the 

individual PSFs are great for mapping the network, but the global PSF is better for a general analysis of 

the whole network. This figure shows that a deficit exists between the 540th minute and the 720th minute. 

During this time, the generation temperature is increasing, but the rest of the network remains at a lower 

temperature, with the difference between Node 1 and Node 7 being as high as 6.5°C. At the beginning 

of this period, the global PSF is increasing, as well as the PSFs of Pipe 1-3 and Pipe 2-3. The PSFs of 

Pipe 4-5, Pipe 4-6, and Pipe 6-7 however, continue to be below the zero line. Looking at the top graph, 

while the network is increasing its temperature, these three nodes are still experiencing a decrease in their 

local temperature, causing the negative PSF. The temperature of Node 5 and Node 7 is too low to supply 

the demand, and thus a deficit exists. Once the heat front reaches these two nodes and their temperature 

starts to rise, they are finally able to better supply their demand, turning the deficit into a surplus when 

their temperature rises by ~5°C. What is very interesting to see from these two nodes, and the PSF of 

the pipes connected to them, is that the peak of the deficit and the peak of the PSF coincide, with the 

PSF being able to indicate that a deficit was occurring due to the heat not having reached the nodes yet. 

However, the global PSF had experienced its peak one hour earlier, when the deficit was just beginning 

to appear, already indicating that a larger deficit should be expected. This shows how the individual PSFs 

are a good tool to map a DH network, and how the global PSF is a good indicator of the sum of effects 

that the dynamics are causing in the system. In larger networks, the individual PSFs could also be used 

for local control of segments of the network, i.e. individual meshes or single branches, and a segment 

PSF could also be defined to represent the dynamics of the segment for distributed control. 
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Figure 5-12: Spatial Temporal distribution of temperature, individual and global PSF, and deficit and surplus per node 
for Oft-base. 

The second optimization strategy to be analyzed in this section is DOft 7. As in the previous strategy, 

the results are presented in vertically aligned graphs depicting from top to bottom the temperature 

distribution, the individual PSF and the individual surplus and deficit. These are shown in Figure 5-13. 

In this figure the y-axis has been changed to a smaller range compared to Figure 5-12. The two figures 

cannot be overlapped for comparison as was the case for the previous figures in sections 5.1 to 5.8, but 

the change in the y-axis makes the reading of the results easier. The first thing to note is the difference 

in the temperature profiles. While in Oft-base the temperature varied between 366K and 354K, with a 

maximum difference between nodes temperature of 7°C, with DOft 7 the generation temperature 

remained at 338K for most of the simulation. The temperature difference between the hottest node and 

the coldest was also reduced to half a degree centigrade. 
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From Figure 5-13, the most interesting thing to note is that having constant temperatures in the network 

causes the individual PSFs to be almost constant, as explained in section 4.2.4, This causes the PSF to 

settle at a value close to the average heat loss coefficient of the individual pipes (between 0.004 and 

0.011), as the PSF is only affected by the heat losses during steady state operation. The global PSF also 

remains at a value close to the average heat loss coefficient of the network (0.013). These results show 

an important effect of DOft 7. This optimization allowed the system to operate near steady state 

temperatures, even when everything else was varying. Because a change in the mass flow rate is felt at the 

same time by all the elements in the network, it makes the PSF to be constant and the control of the 

network easier. This can be seen in the bottom graph of Figure 5-13.  Where apart from a moment at 

the beginning of the simulation, the deficits and surplus are small compared to the demand, with the 

deficit never surpassing 2.8% of the instant demand and the surplus 4.1% of the instant demand. Also 

of note is that the deficits are spread between nodes 3, 5 and 7, instead of being concentrated in only one 

node. 
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Figure 5-13: Spatial Temporal distribution of temperature, individual and global PSF, and deficit and surplus per node 
for DOft 7. 

5.10 Conclusion 

The results obtained throughout the eight strategies show that it is possible to operate DH networks 

accounting for their dynamics in a manner that reduces the generation (and thus fuel consumption) and 

prevents deficits from occurring (thus increasing the QoS as will be seen in the next chapter). Each 

strategy showed the power of combining modeling and optimization to improve DH system 

management, as well as new opportunities for DH operation. Using the heat inertia to the advantage of 

the system, using near-future horizons for a sliding window optimization, and using active costumers as 

a manner of system balancing, all proved to be implementable in DH systems and to have positive effects 

if done correctly.  
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Results also show the ability of DOft for mapping the spatial-temporal distribution of temperatures in 

the network as well as the PSF in all the pipes. Knowing how the heat is distributed in the network and 

the pipes in which it is in transit allows for better control and operation of the system. The heat and PSF 

maps give a clear picture of how the heat flows through a DH network and open the possibility for 

further applications that are not discussed here, like optimization of heat storage installation or the 

implementation of cogeneration plants.        

For this reason, the next chapter proposes a new framework of network evaluation that is applicable to 

any DH system and will aid the decision makers in investing on the transition to Smart Thermal Networks 

and the Smart City. 
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6 Evaluation of DH: Results and Discussion 

 

 

 

 

 

 

 

 

 

 

As a result of the literature review, the present research found a vacuum for the systemic evaluation of 

DH networks. This motivated the development of a novel evaluation framework based on energy, 

economic and QoS indicators. This framework is presented and explained in Chapter 3.3. By applying 

it to each of the strategies analyzed in Chapter 5, it is possible to compare them based on a reliable 

foundation and fully understand the gains obtained with each of the strategies, not only for the generation 

plants or the DHO, but for all actors connected to a DH network. 

The evaluation is presented in three sections: the energy evaluation is presented in section 6.1; section 

6.2 presents the economic evaluation of the strategies;  section 6.3 presents the innovative part of the 

evaluation framework, with the analysis of the QoS from a system’s point of view. All strategies are 

labeled with their numerals except Oft-base. For reference, each strategy is summarized in Table 5-3. 

6.1 Energy Indicators 

The total generation of the eight strategies is presented in the top graph of Figure 6-1. Each bar 

represents a strategy, and it is divided by the heat plant that provided the generation. The dark blue is the 

generation of the waste-to-heat plant, the light blue is the generation of the gas plant, and the red is the 

generation of the back-up plant. The green line represents the demand of the system for the whole period. 

In this graph it can be seen that DOft 6 is the only strategy where the generation is lower than the 
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demand; DOft 4, DOft 5 and DOft 7 have a generation that is slightly higher than the demand; and the 

rest all present higher generation that ranges between 66 MWh and 123 MWh higher than the demand. 

The energy efficiency is defined in Equation 3-16 in Chapter 3, this indicator tells how the energy 

generated during the evaluated period compares to the supplied demand. The lower this value is, the 

more waste that exists in the network. The energy efficiency for each of the optimization strategies is 

presented in the second graph of Figure 6-1. Here it can be seen that the best efficiency is obtained with 

DOft 6, followed closely by DOft 7 and DOft 4. The worst efficiency, with a value of 88,79% is obtained 

with DOft 3. Oft 1 and DOft 2 have efficiencies similar to Oft-base. DOft 3 is the first attempt to use 

the inertia of the system to act as short-term supply. In this strategy the system oscillated between periods 

of high and low generation as the energy stored in the network was emptied and replenished. Because 

each period of high generation had to make up for the deficit caused by the period of low generation a 

lot of energy was wasted, explaining the low efficiency. The efficiency of 101.61% obtained with DOft 6 

indicates that for the period of the simulation, part of the demand is being supplied by energy generated 

before the analysis. When the system is analyzed in a specific, short time frame, it is possible that previous 

generation is not accounted for which aids in increasing the efficiency of the network. 

These results show that the best efficiency values are obtained when the heat inertia of the system is 

considered in an appropriate manner. If this is done incorrectly, the results show that the system could 

suffer rather than benefit from it (DOft 3). Because the results presented in section 5.6 showed that the 

system can be very sensitive to the way this is addressed, we can conclude that while DOft 4 has the third 

best efficiency, this is misleading, as a change in the conditions can rapidly reduce the efficiency of the 

network. Also of note is the possibility of having an efficiency higher than 100%. This is caused by the 

delay and the inertia of the system, where some of the supply in the analyzed period comes from earlier 

generation. If longer periods of time are considered, i.e., one year, the effect of this will be too small to 

notice. The results obtained in the present research still hold true, as the aim is to prove that efficiency 

can be increased. 

6.2 Economic Indicators 

In the previous section, the generation and efficiency of the network were analyzed. An increased 

efficiency usually indicates lower generation, as less energy is wasted. This savings in energy can translate 

to economic savings associated to the cost of producing the excess energy in the lower efficiency 

strategies.  More so, a better management of the system can reduce the use of heat plants with higher 

fuel and operation costs, further reducing the costs of the system and increasing the economic savings. 
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In the present research the system has three different operating heat plants, each using its own fuel. The 

fuel costs are presented in Table 5-2. 

Figure 6-1 shows the results for the operation costs, the revenue, and the profit for each of the eight 

strategies, as well as an analysis of the source of the difference in profit. These indicators are defined in 

Equation 3-17. In the present research, the heat is sold to the consumer at a fixed tariff of 0.10 €/MWh. 

The operation costs are presented in the third graph of this figure and use the same color pattern as the 

top graph. The dark blue indicates the cost of the waste-to-heat plant, the light blue the cost of the gas 

plant, and the red the cost of the back-up plant. The green line shows the cost of a system where 

generation, supply and demand match perfectly, in other words, a system with no delay, no inertia and 

no losses. In the present research this is named Perfect Supply, and it represents the best, but physically 

impossible, scenario a DHO could expect. The costs in this graph are expressed as € per MWh of 

demand. Here it can be seen that all strategies have a higher cost of operation than the Perfect Supply 

base (35,84 €/MWh-demand) except for DOft 6, which is 0,44 €/MWh-demand lower. This is again 

explained by this strategy being the only one in which a significant part of the supply for the first hours 

of evaluation was generated before the period analyzed. In all the strategies most of the costs come from 

the gas plant, as it is the heat plant with the highest capacity and thus, the highest generation. For DOft 

3 and DOft 5, it can be observed that it is the increased use of the back-up what elevates the operation 

costs. DOft 4 and DOft 7 have the generation costs closest to the Perfect Supply with only a small 

difference caused by the use of the back-up. 

The next graph in Figure 6-1 shows the Revenue and the Profit. The revenue for each strategy is 

indicated in the light green bar and the revenue for the Perfect Supply is indicated by the burgundy line. 

The profit for each strategy is indicated by a dark green bar and with an orange line for Perfect Supply. 

The revenue comes from the supplying of heat, each MWh of demand met will create the revenue 

indicated by the dark green bar. The difference between this bar and the Perfect Supply revenue is caused 

by part of the demand not being met. The profit is this revenue minus the operation costs, the larger the 

deficit or the higher the operation costs, the lower the profit. The lowest profit is obtained with DOft 3, 

which is expected as this strategy has the lowest efficiency and the highest operation costs. DOft 6 and 

DOft 7 have the profits closest to Perfect Supply, with DOft 7 being 0,60 €/MWh-demand lower and 

DOft 6 being 0,44 €/MWh-demand higher. DOft 6 having higher profit than Perfect Supply seems 

counter intuitive, as Perfect Supply is the best scenario the DHO can hope for. This is explained by the 

limited time period that is studied. Enough of the demand of DOft 6 is supplied by generation that took 

place before the evaluated period, so its costs are not accounted for. In the operation of DH there will 

always be short periods where results like this can happen, with profit being higher than the best-case 
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scenario, but once longer time frames are studied, the savings at the beginning balance out with the rest 

of the operation. These results however do not cease to be interesting, even if they are misleading. 

The bottom graph of Figure 6-1 shows the origin of the differences in profit. As explained above, profit 

can be lost by higher generation costs or lower supply of the demand. From this graph it can be seen that 

for Oft-base, Oft 1, DOft 2, DOft 3 and DOft 7 most of the profit loss comes from higher generation 

needed to supply the demand. For DOft 4 and DOft 5, most of the lost profit comes from the higher 

use of the back-up plant. DOft 6 is a special strategy, as the use of the back-up incurs in some loss of 

profit, but the lower generation compensates for this, giving as a result a better profit for the studied 

period of time. It is also important to note that while the results obtained with DOft 4 look similar to 

those obtained with DOft 7, the results from Chapter 5.5 showed that DOft 4 has sensitivity to the 

temperature constraint. This sensitivity could cause different results on different evaluation periods and 

different systems. 
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Figure 6-1: Energy generation, energy efficiency, cost of generation, revenue and profit from supply, and source of the 
difference from revenue and profit for each optimization strategy. 
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All in all, the combination of these indicators shows how a better model of system management can 

benefit the operation of DH networks. Better control translates into better efficiencies and more effective 

supply, which in turn translates into higher revenues and better profit. These results also show that 

accounting for the inertia and the delay can create the conditions for a period of time where the efficiency 

and the profit are better than the best-case scenario. This situation however is not sustainable and will 

disappear if longer periods of time are evaluated. These results are encouraging and can lead to conclude 

that DOft 6 is the best strategy, as it has the best energy and economic results. However, a DH should 

not be evaluated form the point of view of the heat plants and the DHO only. The next section shows 

the implications of each optimization strategy on the QoS given to the consumers. 

6.3 Quality of Service Indicators 

Within the scope of the Smart City, all actors connected to a distribution network will play an active role 

in the management of the system. This includes the consumers as well as the generation plants and the 

distribution system operators. The present research found that there was a lack of an evaluation 

framework to assess the operation of a DH system beyond its energy and economic performances. For 

this reason, a new evaluation framework is proposed, which also considers the QoS delivered by the 

system from the system’s point of view. 

As presented and explained in the methodology in Chapter 3, an important part of the DOTS model is 

the evaluation framework, especially the evaluation of the QoS. The QoS evaluation for DOTS is based 

on the evaluation framework used in existing electricity networks. In these networks, the QoS indicates 

how likely it is for the system to curtail service to a customer and how long will a curtailment be when it 

happens. These curtailments are called interruptions, and they have a different definition in DH as they 

have in electricity. In electricity networks, an interruption exists the moment that a consumer ceases to 

receive supply. In the present research, an interruption in DH networks is defined as a curtailment that 

will cause discomfort on the costumers and that no flexibility measure will be able to cover for it. In DH, 

not all curtailments become an interruption of service.  

The indicators used for this evaluation are the SAIFI, the SAIDI and the CAIDI. These indicators use 

the information known from the primary side of the system to produce information from the customer’s 

perspective. This allows the assessment of the QoS delivered from the system’s point of view, which is 

something lacking in the literature The SAIFI indicates how likely it is for a customer connected to the 

system to experience an interruption, the SAIDI indicates the average duration of the interruptions per 

customer connected, and the CAIDI indicates how long is the customer expected to wait to regain service 

when they experience an interruption. In order to compute them, as described in Equation 3-21, 
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Equation 3-22 and Equation 3-23 in section 3.3.3, it is necessary know the number of interruptions, 

the failure rate, the repair rate, and the average interruption duration. The number of interruptions and 

the average duration of interruption per node are firstly computed from the results obtained with DOft 

and afterwards they are used together with the number of equivalent customers connected to each node 

to calculate the failure rate (λ), repair rate (r) and average duration of interruption per customer (𝑈). 

The number of interruptions for Oft-base and the seven optimization strategies is presented in Figure 

6-2. Here it can be seen that the strategies with the least number of interruptions per node are Oft-base 

and Oft 1. The most interruptions are present in DOft 3, DOft 5 and DOft 4, in this order. The results 

in this figure show that in all strategies, except DOft 7, all the interruptions occur at Nodes 5 and 7. 

These nodes are located at the end of their respective branches and show how a node becomes more 

vulnerable the farther away it is from a generation plant. An interesting strategy to analyze is DOft 7, this 

is the only strategy where interruptions occur in a node other than Nodes 5 and 7. As detailed in section 

5.8, the reduction in supply at a node product of the DR strategy could lead to a loss of the QoS, this is 

set this way on purpose to test the difference in losing QoS near a generation plant rather than far away 

from it. This strategy increased the total number of interruptions but decreased the interruptions in 

Nodes 5 and 7. 

With the number of interruptions, it is possible to calculate the failure rate of each node (𝜆𝑘). The failure 

rates are presented in Figure 6-3 and can be thought as the number of interruptions a consumer 

connected to a node will experience during the evaluated period. In this figure it can be observed that 

DOft 5, DOft 3 and DOft 4 are again the worst performing, having the highest failure rates. The best 

results for Nodes 5 and 7 are obtained with Oft-base, Oft 1 and DOft 7. It is interesting to see that from 

the failure rate perspective Oft-base and Oft 1 perform well, but at the expense of system efficiency as 

seen in section 6.1. Something of note is that in this figure, as well as Figure 6-2, DOft 6 no longer has 

the best results. This ties back to the results seen in Figure 6-1, where DOft 6 had the best efficiency 

and the lowest generation. Looking at the failure rate of DOft 6, it is obvious now that the increased 

efficiency came from the period of higher generation before the period being evaluated, which caused 

the lower generation seen at the beginning of the presented results (Figure 5-9). When evaluating DH 

systems, if the evaluation period is not significantly longer than the effects of the delay and the inertia, 

distortion in the results may occur due to the previous states of the network. 
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Figure 6-2: Number of interruptions per consumption node for each strategy. 

So far, Oft-base has the lowest number of interruptions and the lowest failure rate, this contrasts with 

the results presented in Figure 5-3, where it had a large deficit compared to the rest of the strategies. An 

explanation to this comes by looking at the results in Figure 6-4. Here it can be seen that Oft-base has 

the longest repair rate of an interruption in a node by a fair margin, with the longest one lasting 4.77 

hours. The strategy with the second longest repair rate is Oft 1 with 2.47 hours. DOft 2 to DOft 5 have 

similar repair rates and the shortest rates are found with DOft 6 and DOft 7. This makes sense, as the 

optimizations strategies for these last two strategies aimed at linking the individual optimizations to 

prevent deficits at the change of an optimization time step. These results also show that the repair rates 

of DOft 7 are the shortest of all the strategies, but DOft 7 is also the only strategy where Node 3 has a 

repair rate. Interesting to see is that the repair rate of Node 3 has the second shortest duration of 

interruptions from all the analyzed strategies, even when DOft 7 had a comparatively large number of 

interruptions at this node. 
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Figure 6-3: Failure rate per consumption node for each strategy. 

 

Figure 6-4: Repair rate per consumption node for each strategy. 

Once the number of interruptions and the repair rate are calculated for every node, it is possible to 

calculate the average duration of interruption per customer (𝑈𝑘). This is the result of the product of the 

failure rate and the repair rate as defined in Equation 3-20 and it is presented in Figure 6-5. In Figure 

6-3 Oft-base and Oft 1 had a los failure rate while DOft 3 and DOft 5 had the highest failure rates; in 

Figure 6-4 Oft-base and Oft 1 had the longest repair rates while DOft 3 and DOft 5 presented better 
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results comparatively. Once these results are taken together through 𝑈𝑘 the picture becomes clearer on 

the performance of each strategy. DOft 3, DOft 4 and DOft 5 have the longest interruptions, which are 

especially accentuated in Node 5. This makes sense as this node is not connected to a back-up plant, like 

Node 7. Oft-base and Oft 1 have better results, but they are no longer better than DOft 6 and DOft 7 

as they were in Figure 6-3. DOft 7 now clearly has the best results, with their average interruption 

duration per customer being a fraction of all the other strategies. It is important to note that 𝑈𝑘 is the 

interruption duration averaged by all the consumers connected to a node, the real time that an individual 

customer will suffer an interruption does not necessarily matches this value, as will be seen next.  

 

Figure 6-5: Average duration of interruption per customer for each strategy. 

The failure rate (𝜆)and the average duration of interruption per customer (𝑈) can be used to obtain the 

SAIFI, SAIDI and CAIDI indicators using the equations presented in Chapter 3. These indicators help 

translate the known information from the primary side into information from the connected customers. 

The higher the SAIFI, the higher the likelihood for a customer to experience an interruption during the 

evaluated period; the higher the SAIDI, the longer the average duration of interruption for every 

customer connected; the higher the CAIDI, the longer will a customer have to wait to have their supply 

restored. These results are presented in Figure 6-6 and Table 6-1. Here it can be seen that the smallest 

SAIFI is obtained with Oft-base, followed by Oft 1 and DOft 7.  The shortest interruptions are obtained 

with DOft 7 followed by DOft 6. The shortest heat restoration times for the consumers are also obtained 

with DOft 7 and DOft 6. Figure 6-6 is especially interesting because it shows the separation between 

the system’s perspective and the customer’s perspective by looking at the difference between the SAIDI 
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and the CAIDI. The SAIDI shows the duration of the interruption averaged through all the connected 

customers, as if every customer experienced a short interruption. The CAIDI shows that only some of 

the customers are affected by the interruption, thus extending the time that the interruption persists in 

reality. 

 

Figure 6-6: SAIFI, SAIDI and CAIDI for each strategy. 

Table 6-1: SAIFI, SAIDI and CAIDI for each strategy. 

 

SAIFI 
(interruptions per 
evaluation period) 

SAIDI 
(average interruption duration per 

customer) 

CAIDI 
(average time to regain 

service) 

Oft-base 0,024 0,098 4,033 

Oft 1 0,038 0,080 2,109 

DOft 2 0,114 0,108 0,945 

DOft 3 0,196 0,194 0,993 

DOft 4 0,144 0,171 1,189 

DOft 5 0,174 0,199 1,141 

DOft 6 0,128 0,064 0,504 

DOft 7 0,051 0,019 0,373 

The Oft-base appears to be a good strategy because it has a low chance for an interruption to happen 

(0.024 interruptions per customer per day), but if an interruption does happen, it takes the system a long 

time to react (0.098 hours per customer per interruption). This concludes in, if you are the customer 

experiencing the interruption, it could take 4.033 hours for the system to restore your supply. 

Comparatively, with DOft 7 the system will experience 0.051 interruptions per customer per day, but it 

will take only 0.019 hours per interruption 
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per customer for the system to react. This causes the customer to experience a lack of supply for only 

0.373 hours (23 minutes) if an interruption happens. With DOft 7 there is twice the chance for an 

interruption to happen, but the system will react in a fifth of the time, cutting the duration of the 

interruption to the customer by a factor of 10. 

6.4 Conclusion 

These results show the importance of a comprehensive framework for the evaluation of DH systems. 

Based on the energy efficiency and economic savings alone, it appears that the best operating strategy is 

the one used in DOft 6, where the participation of the consumers is not considered. However, the results 

obtained with the evaluation framework proposed in this research shows that the energy and economic 

indicators show only one side of the story. The inclusion of the users in the activities of the network, 

which is a fundamental aspect, has a significant impact on the main objective of any energy distribution 

network: the reliable supply of energy to its users. 
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7 Application of DOTS to a Test Network using Real Data 

 

 

 

 

 

 

 

 

 

 

The previous chapter presented the results obtained with DOft under different optimization strategies. 

From these results it is concluded that it is plausible to upgrade DH networks to operate within the Smart 

City context under a much more dynamic environment. It is also concluded that including the consumers 

as active participants in the system could have significant positive effects on the management and QoS 

of the system. These results however were obtained using clean data series in 1-hour intervals, which do 

not fully resemble the real heat demand in an operating network. To prove that the methodology 

introduced in the present research is valid for implementation in real networks, as well as in longer time 

frames, this chapter presents the results obtained with Oft-base and DOft 7 applied to a network with 

real data obtained from the city of Nantes, France. 

The period studied is comprised between the 3rd of December 2017 and the 10th of December 2017. The 

network being simulated remains the same presented in Figure 5-1, but the demand at each of the four 

substations comes from real measurements taken every 15 min in the DH network of the city of Nantes. 

These are shown in Figure 7-1. The present research did not make the measurements. The first thing to 

notice in this figure is the pattern of the demand. All days present two distinct peaks, a smaller one in the 

morrow and a larger one at the end of the afternoon. These peaks coincide with the morning demand 

and for the time between the returning home of people from school and work, and bedtime. These peaks 

are better defined during the working weekdays. On the weekend, when people remain home, the demand 

is higher across the whole day. The optimization of this period starts at 00h00 on 03/12/2017 and 
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continues until 06h00 on December 10th. The results here presented start at 06h00 on the 3rd of December 

to guarantee that the effects of the initial conditions have been dissipated. DOft 7 still uses 1-hour time 

steps (containing four 15-min periods) for HeatGrid, and a time horizon of 3 hours with a 1-hour sliding 

window for NOMAD to concatenate the optimizations contained within the horizon. 

 

Figure 7-1: Demand for the simulated period. 

The network is simulated with two different optimization strategies so the results can be compared. The 

first strategy is the one used for Oft-base in section 5.1 and the second one is the one used for DOft 7 

presented in section 5.8. As before, the results are presented in vertically aligned graphs containing from 

top to bottom: 

1. The heat generated at each heat plant and the demand profile. 

2. The global PSF. 

3. The generation temperature at the waste-to-heat and gas plants, and the node temperature at the 

back-up plant. 

4. The mass flow rates at each of the seven pipes. 

5. The surplus and deficit experienced by the system. 

The results for Oft-base strategy are presented in Figure 7-2 and the results for DOft 7 are presented in 

Figure 7-3. In the case of DOft 7, extra graphs for the DR factor 𝛼𝑘 are included in Figure 7-4 and 

Figure 7-5. 

Looking at the top graph of Figure 7-2, it can be seen that the results remain congruent with those 

obtained in section 5.1. The generation is always higher than the demand and the back-up is only used 

when the other two plants have reached max capacity. Looking at the second graph in this same figure it 

is observed that the global PSF also follows a similar pattern as before. When the demand increases and 

the generation follows, the global PSF also goes up, when demand and generation decrease, the global 

PSF goes down. This is especially relevant as it highlights again the biggest weakness of control strategies 
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that assume steady state. The increased generation used to match the demand is not going into the 

consumer nodes, but rather into the pipes of the system for its transport. The effects of this are clearly 

seen in the bottom graph of Figure 7-2, where large deficits exist every time there is a peak in the demand 

and surplus appear when the demand goes down. This behavior is common in existing DH networks, 

where in some cases the end-users have had to grow used to “wait for heat to be restored” in a regular 

basis. 

Lastly from Figure 7-2, it is interesting to see the curves for the temperature and the mass flow rates. 

Similar to Oft-base in section 5.1, the generation temperature at Nodes 1 and 2 closely follows the profile 

of the demand. The temperature on Node 6 however is displaced in time. This is a direct effect of the 

delay and inertia of the system that show once more why operating DH under the assumption of steady 

state is not a good idea. The energy needed to feed the consumption nodes is not arriving in time, and 

when it finally arrives, the demand has changed and a fraction of it ends up being wasted. Looking at the 

mass flow rates graph, the mass flows show more variation than previously, but it is still the temperature 

that follows the pattern of the demand. Interesting to see is how the mass flow rate in the pipe connecting 

Nodes 4 and 6 goes down every time there is an evening peak and the back-up is used. This could indicate 

that, having not being able to properly prepare for the higher demand, the system needs to divert more 

flow from Node 4 to Node 5 and the back-up is then required to supply more of the demand of Node 

7. As before, Figure 7-2 shows that an operation strategy like the one proposed as Oft-base is not 

optimal, presenting several deficits and a high waste of energy. 

Using DOft 7 on the same system gives the results presented in Figure 7-3. The demand is the same as 

for Oft-base, but it can immediately be observed that the generation has changed its pattern. Looking at 

the top graph, now the peaks on generation happen before the peaks of the demand on many occasions, 

indicating that the system is preparing in advance to the periods of high demand. It can also be seen that 

there are several periods where generation is lower than the demand, indicating once again that the system 

is making use of the energy  
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Figure 7-2: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for 1 week using Oft-base 
strategy. 
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stored in the pipes to supply part of it. The global PSF also shows a change in its profile, now it is more 

constant during several periods, indicating that the system is operating in near-steady state conditions, 

even if the environment remains dynamic. Also, the global PSF is still presenting positive and negative 

peaks, the positive peaks happen when the system is preparing for a high demand period by increasing 

generation, or when the back-up is being used. These periods are always followed by a negative peak, 

showing that the system is discharging the energy previously injected into the pipes. 

The effect of the DOft 7 optimization is clearer to see by looking at the bottom graph portraying the 

surplus and the deficit. Here it can be seen that the magnitude and the duration of both is significantly 

reduced, but now they appear more often. Especially in the case of the deficit, where a small deficit is 

almost always present. To explain this it is necessary to look at Figure 7-4, here it can be seen that in this 

optimization, where 𝛼𝑘 has no duration constraints and can be used as often as the optimization wants, 

Demand Response is used often. The DR factor is active in Node 3 for around two thirds of the time 

and in Node 4 for a third of the time. Figure 7-5, which shows a zoom-in for the period between Tuesday 

at 6h00 and Tuesday at 18h00, shows that 𝛼 can be continuously active for periods longer than one hour 

and/or be re-activated within a few minutes. At first this may appear as a limitation of the proposed 

optimization and an indication that time constraints are needed for the use of the Demand Response 

scheme. However, this is not the case, as the QoS results will show. It is important to remember that the 

Demand Response called for by 𝛼𝑘 is assumed to not be applied to all the consumers connected to the 

substation, but to a selected few. If enough consumers are part of the Demand Response initiative, then 

the reduction can be spread among them, where everyone suffers a short curtailment that won’t affect 

their QoS, rather than all of them experiencing a reduction that will affect the QoS. Each small deficit 

peak can be attributed to a single costumer, and they are so short that may not compromise their QoS. 

This is further explored below where the QoS indicators for this week of operation are presented.  

Lastly, it is interesting to look at the temperature and mass flow profiles for the system. In the 

optimization strategies presented in Chapter 5, DOft 7 led to a system operating at a mostly constant 

temperature. However, now that the system has larger demands that vary intra-hourly, faster than 

generation is adjusted, this is no longer the case. Figure 7-3 shows that the optimization still tries to keep 

the generation temperature as low as possible, but there are several times where the system needs to 

increase the temperature to satisfy the  
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Figure 7-3: Generation, global PSF, Temperature, Mass Flow Rate, Surplus and Deficit for 1 week using DOft 7 
strategy. 
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Figure 7-4: Demand Response factor for the whole week 

 

Figure 7-5: Demand Response factor for 12 hours of Tuesday. 

demand. By comparing the temperature graph to the global PSF and generation graphs, the periods of 

higher generation temperatures coincide with the increase in generation and the higher global PSF values. 

These periods usually appear before a peak in demand, demonstrating that DOft 7 uses the delay and the 

inertia of the system to prepare for periods where demand can be hard to supply by “charging up” the 

network. And as before, while the temperatures remain somewhat constant and rise only when needed, 

the mass flows vary much more and have a profile similar to the demand. Interesting to see in the mass 

flow rate graph are the several moments where the mass flow in Pipe 4-6 drops (red line) compared to 

the mass flow rate in Pipe 6-7, indicating that the back-up plant in Node 6 is supplying heat to Node 7. 

There are even two periods where the flow drops to zero and the back-up plants supplies the entirety of 

the demand in Node 7. These same periods can also be seen on the generation graph, where the red area 

indicates that the back-up is in use. This again shows the importance of having a horizon optimization, 

as there will be times when the generation plants are too far away from the nodes that require supply, 

and the back-up will be the only way of supplying the demand. Planning ahead however reduces the 

number of times that the back-up will take over. 
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Of special interest from the mass flows obtained from DOft 7 when compared to Oft-base, is that for 

DOft 7 (see Figure 7-3) the mass flows are between 50% and 75% higher than they were for Oft-base 

(see Figure 7-2). This increase in the mass flows creates a higher pressure drop in the pipes and could 

lead to the pipes being unable to handle the increased pumping pressure required. The increase in 

pumping pressure would also lead to higher operation costs of the network due to the increase in 

electricity consumption. In the present research, the proposed network topology was able to handle the 

new operation pressure and the pumping costs were neglected due to them being too low when compared 

to heat generation costs. However, in the case of the real implementation of this methodology, it could 

be the case where the pumping costs would rise to high, that new pumps would be required, or that the 

network would not be able to handle the new pressure. This could be solved by adding the maximum 

mass flows as a constraint to the supply temperature optimization and by including pumping costs in the 

dispatch optimization. All these factors will need to be considered when implementing this methodology 

to a different case. 

7.1 Evaluation of the results 

When compared to Oft-base, the new form of system management proposed in the present research 

achieves lower generation, avoids the use of back-up units, and obtains better QoS. Using a horizon 

optimization, the network can predict future deficits and prepare for them by storing energy in the pipes; 

using a Demand Response scheme, the network can react in real-time to deficits occurring by a mismatch 

between expected and real demands. The effects of this can be seen in Figure 7-6. 

The top graph of Figure 7-6 shows the total energy generation obtained with Oft-base and with DOft 

7. The dark blue area corresponds to the generation with the waste-to-heat plant, the light blue area to 

the gas plant and the red area to the back-up plant. The green line in this graph shows the total demand 

for this period. DOft 7 achieves lower generation than Oft-base, with most of the reduced generation 

coming from less use of the gas plant. This lower generation obtained with DOft 7 allows the system to 

increase the efficiency of the system in 4,68%, as can be seen in the second graph of this figure. The third 

graph shows the operation costs for the two strategies, which remain consistent to the generation results 

presented in the top graph. The use of DOft 7 reduces the costs of operation compared to Oft-base by 

1,90 €/MWh-demand. The fourth graph shows the revenue and profit for each strategy and for Perfect 

Supply. Here it can be seen that the revenues are similar for both optimization strategies, but the profits 

are higher for DOft 7. This difference is explained by looking at the bottom graph of Figure 7-6. Here 

it can be seen that the loss of profit caused by not meeting the demand is similar for both cases, but the 

profit lost due to increased generation is lower for DOft 7. 
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From this last graph it is important to note that while the profit loss due to not satisfying the whole 

demand is similar in both cases, the way the deficits occur in each of them is different. For Oft-base the 

deficits are few, but higher in magnitude, longer in duration and, most importantly, not planned. For 

DOft 7, the deficits are many, but small in magnitude and short in duration. These deficits also occur as 

part of the DR program implemented in the optimization algorithm, so they can be predicted by the 

DHO. This makes a significant difference in the QoS of the system. 

To finish evaluating the effects of DOft 7 on a DH system, it is necessary to look at the QoS indicators. 

As seen in Figure 7-4, DR, which reduces supply on some nodes to divert more energy to others, is used 

often during the studied week. In some cases, power was constrained to a node continuously for periods 

over an hour long. This could cause discomfort on the users, or even a complete loss of the QoS. To 

evaluate how this affects the consumers the indicators of SAIFI, SAIDI and CAIDI are used. The results 

for Oft-base and for DOft 7 are presented in Table 7-1. 

Table 7-1: QoS indicators for Oft-base and DOft 7. 

  

SAIFI 
(average number of 

interruptions per customer 
per week) 

SAIDI 
(average duration of 

interruptions per customer 
per week (h)) 

CAIDI 
(average duration of 

interruptions per 
customer (h)) 

Oft-base 0,128 0,158 1,230 

DOft 7 0,891 0,298 0,335 

In Table 7-1, it can be seen that, as expected, the SAIFI is higher for DOft 7 than for Oft-base, as the 

DR scheme is active very often. This causes the SAIDI to also be higher for DOft 7 than it is for Oft-

base, as more consumers are experiencing more interruptions. These results can be deceiving, as they 

make it look like DOft 7 has made things worse. The CAIDI however shows that with DOft 7, the time 

that a consumer is left without heat is just a quarter of that of Oft-base, with 20 minutes compared to 

1h23. These results are explained as follows: while Oft-base tries to maintain the QoS by over-generating 

energy, when it fails to properly predict the demand, it will take the system more than one hour to restore 

power to the affected consumers, who are usually those at the end of the a network branch. DOft 7 on 

the other hand reduces the supply in specific nodes to re-balance the network as best as possible, this 

creates more interruptions overall, but greatly reduces the time that a consumer is left without access to 

heat. The shorter times of service curtailment are achieved by distributing the interruptions throughout 

the network, where more consumers will experience shorter interruptions. The way DOft 7 behaves can 

be tuned to reduce the number of interruptions or their length, but for the purpose of the present research 

they are left “as is” to better see and understand the effects. 
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Figure 7-6: Energy generation, energy efficiency, cost of generation, revenue and profit from supply, and source of the 
difference from revenue and profit for 1 week simulation. 
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7.2 Conclusion 

The combination of all the results presented above paint the picture of the potential of the proposed 

management strategy of DH systems. The proposed methodology in the present research uses a horizon 

optimization to predict future deficits or surplus and adapts the operation of the heat plants to prepare 

the network to cope with them, either by increasing generation to “charge up” the pipes with extra energy 

or by reducing generation to prevent a surplus. To react in real-time to the intra-hour variations of the 

demand, the proposed methodology uses a Demand Response scheme to reduce or curtail supply in the 

nodes closer to the generation plants to divert this energy to the nodes farther away. This strategy reduces 

the operation costs, increases efficiency, and proposes a new mode of QoS management, where 

interruptions are considered acceptable if they are short and do not affect the same costumer several 

times in a row. Interesting from this model of operation is that interruption appear more often 

throughout the network but are significantly shorter. Depending on the physical characteristics of the 

buildings connected to the DH network, interruptions of 20, 30 or even 60 minutes could be deemed 

acceptable, increasing the efficiency and QoS of the system. 

The results also highlight the importance of implementing ICTs throughout a DH network. To achieve 

the results in the present research, information of the network is mandatory, and ICTs would play an 

indispensable role. Real-time information is needed to know the intra-hourly variations of the demand, 

data bases are needed to create demand profiles and time series and, in combination with artificial 

intelligence, to forecast the near future demand for the horizon optimization. Smart valves and controllers 

are also needed to control the supply of energy, allowing the system to set the flows at the substations 

and the implementation of the Demand Response scheme. 
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8 Conclusions and Future Works 

 

 

 

 

 

 

 

 

 

 

The present research has as its main objective the proposal of a novel model for system management of 

DH by combining Modeling, Simulation, and Optimization tools. The model developed and here 

presented is named DOTS (Dynamic Optimization of DH for its Transition to Smart Thermal Networks) 

and it is constituted by a dynamic model for the distribution of heat in a DH network, an optimization 

tool (DOft) and an evaluation tool. The results obtained from DOTS show that it is possible to change 

the way that DH is managed to increase the energy efficiency, reduce generation costs, and increase the 

QoS in dynamic environments. The results also show that having flexibility measures, like Demand 

Response, further increase the ability of DH systems to reliably operate in the dynamic environment 

studied in the present research. The results obtained with DOTS are good indication of the capability of 

DH systems to transition into Smart Thermal Networks and their integration into the Smart City model. 

The dynamic modeling of DH networks, which in the present research is done through Oriented Graphs, 

heat balance and a modified version of the Finite Volumes Node method, showed that the losses, the 

delay and the inertia have a significant impact on the real operation of the DH system, especially on 

networks with a long distance between generation and consumption. The losses reduce the energy 

available at the consumer nodes, the delay postpones the time this energy is available, and the inertia 

distorts the shape of the heat signal compared to its input at generation. This is in accordance with the 

findings of the literature review, where the inertia and the delay are considered challenges and/or 

constraints for the operation of DH systems. In the present research however, the inertia and the delay 
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were considered not as challenges, but as assets of heat distribution. Using the Pipe Supply Factor (PSF), 

an indicator developed and proposed in the present research, it is possible to model the delay and the 

inertia to make the pipes act as short-term alternative sources of heat (or short-term storage). This opened 

the possibility of doing the optimization of DH systems without assuming steady state for the transport 

equations of heat. 

The optimization part of DOTS is carried out by the developed tool called DOft (or Oft if the 

temperature optimization is not included). DOft is an optimization tool that uses two different 

optimization cycles, one for the dispatch of energy and one for the temperature of the energy dispatched, 

to find the mode of operation that would minimize the energy generation, the deficits, the surplus and 

the costs of generation simultaneously.  The dispatch optimization uses a cost function as its objective, 

which is described using Linear Programming formulation and is minimized using HeatGrid, an 

optimization tool that uses a variant of Mehrotra's predictor-corrector algorithm. The temperature 

optimization uses an objective function composed of the generation, the deficit, and the surplus. It is 

described with non-Linear Programming formulation and thus is minimized using NOMAD, an 

optimization tool that uses the MADS algorithm. The combination of the two formulations, Linear 

Programming for the linear functions and non-Linear Programming for the non-linear functions allowed 

the optimization to arrive to a solution in a fraction of the time that the same problem required when 

formulated only in non-linear formulation. The results from the combined formulation also had the same 

level of reliability as those obtained with a pure non-linear model. 

DOft and Oft are tested for eight optimization strategies, each strategy describing a different model of 

system management. The results show that considering the dynamics of the system through the PSF can 

substantially reduce the surplus and deficits in the network, thus reducing the total generation and its 

associated costs. DOft 6 reduces the deficit by 34,87% and the surplus by 95,99% compared to the base 

case (Oft-base), and DOft 7 reduces the deficit by 74,54% and the surplus by 97,71% compared to Oft-

base. Nevertheless, the results also show that doing an incorrect implementation of the PSF can lead to 

negative results, with DOft 3 increasing the deficit by 197,68% and DOft 5 increasing the deficit by 

275,65% compared to Oft-base. While the PSF is a reliable indicator, the effects of the delay and the 

inertia can easily transcend the optimization time step. Due to the independent treatment of the time 

steps, the accumulation of individual optima, which already cannot guarantee an optimal global solution, 

can even cause a worst global solution than with an optimization that does not consider the PSF (like 

DOft 3). To avoid this situation, the latest optimization strategies of DOft change to a horizon 

optimization with a sliding window (DOft 6 and DOft 7). In this way, the optimization of every time 

step would be tied to the results from the previous and the following time steps, evading the case where 

a local optimum worsens the global solution. 
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For the evaluation of the results from DOft, the present research proposes a new evaluation framework 

based on energy, economic and QoS indicators. The energy indicators used are the total generation and 

the energy efficiency (ratio between supply and generation). The economic indicators are the cost of 

MWh produced per each MWh of demand, the expected revenue per MWh of demand, and the expected 

profit per MWh of demand. The QoS is evaluated using indicators that already exist and are implemented 

in the evaluation of electricity distribution networks, but that are not yet used extensively in heat 

distribution networks. These are the SAIFI, the SAIDI and the CAIDI. The results show that the 

implementation of the PSF together with the horizon optimization (DOft 6 and DOft 7) have lower 

generation, higher efficiency, lower generation costs, and higher revenue and profit. DOft 6 increases 

efficiency in 7,99%, increases revenue by 0,16 €/MWh-demand and increases profit by 3,63 €/MWh-

demand compared to Oft-base; and DOft 7 increases efficiency in 5,21%, increases revenue by 0,33 

€/MWh-demand and increases profit by 2,59 €/MWh-demand compared to Oft-base. Moreover, the 

results show that the QoS is positively impacted, with the interruptions of the service being shorter and 

of lower magnitude. This is especially the case for DOft 7, which also includes a flexibility measure in 

the form of Demand Response. Having DR in the network allowed for easier network re-balance and 

faster interruption corrections without jeopardizing the QoS. DOft 7 has a SAIFI 0,027 lower than Oft-

base, a SAIDI 0,080 lower, and a CAIDI 3,66 lower. 

After DOTS was tested for the eight optimization strategies, two of them were chosen for a Case Study 

using real data from the city of Nantes, in France. The chosen strategies were Oft-base, which resembles 

the normal management of existing DH systems the most, and DOft 7, which had the best results during 

the test. This case study showed that in a real environment, DOft 7 does not perform as well as in the 

controlled tests, but it is still capable of giving improved results. DOft 7 achieved 4,68% better efficiency, 

increased the revenue by 0,47 €/MWh-demand and the profit by 2,37 €/MWh-demand. Most 

importantly, it substantially changed the QoS of the system. With DOft 7, the number of interruptions 

(SAIFI) was increased from 0,12 interruptions per customer per week to 0,85 interruptions per customer 

per week, mostly due to the DR scheme used. However, being able to plan the interruptions, rather than 

they appearing first and the system reacting later, allowed the CAIDI to be reduced from 1h38 of waiting 

time to regain service for the costumer to just 23,42 minutes. This is of important interest for future 

work, as being able to effectively manage the interruptions in the system can lead to further improvements 

in the operation of the network. 

The combination of all the results presented above paint the picture of the potential of DOTS. DOft 7 

uses a horizon optimization to predict future deficits (or surplus) and adapts the operation of the heat 

plants to prepare the network to cope with them, either by increasing generation to “charge up” the pipes 

with extra energy or by reducing generation and use the heat already in the pipes. To react in real-time to 
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the intra-hour variations of the demand, DOft 7 uses a Demand Response scheme to reduce or curtail 

supply in the nodes closer to the generation plants to divert this energy to the nodes farther away. This 

strategy reduces the operation costs, increases efficiency, and proposes a new mode of QoS management, 

where interruptions are considered acceptable if they are short and do not affect the same costumer 

several times in a row. These results point at the possibility of the transition of DH into the Smart City 

and lay a path for future work towards enabling the transition to the Smart Thermal Network and the 

Smart City to occur faster and more smoothly. 

A limitation of the present research, however, is that it studies the DH networks solely from the primary 

side and assumes that the secondary side and the final distribution is equipped to deal with the reductions 

in supply originated form the Demand Response scheme. Future work originated form this study includes 

the modeling and optimization of the secondary side and the final users. This will allow the inclusion of 

more detailed flexibility measures and capabilities by considering the thermal mass of the consumer 

buildings, the local generation and/or storage, and demand models to better represent the operation of 

the network within the Smart City context and guarantee that the QoS is never lost.  

As explained in Chapter 7, the results from DOft were left unconstrained on regard of the Demand 

Response scheme, which caused that most consumers in the studied network to experience on average a 

20 min interruption per week. These interruptions could be shortened and made less frequent with 

properly constraining the Demand Response function, but they were left as is as it opens the possibility 

to further the present research by studying the secondary side of DH. In future work, where the 

methodology is escalated to include the secondary side of the network as well as models for the thermal 

mass of the buildings and for the demand, the Demand Response function can be tuned to better improve 

the QoS by allocating the interruptions to the consumers with the most flexibility or shorter reconnection 

times. This approach however would increase the computational intensity of the simulations and may 

require better equipment or an alternative to the Dynamic Model here presented. 

Another limitation of the present research, as stated above, is that it does not consider the effects of 

distributed generation and storage. This would be important because, even though it has been proved 

that centralized generation of heat is better than distributed for DH networks, the electrification of the 

energy sector together with the trend to have distributed generation of electricity, could create the 

environment where heat would be produced locally at lower efficiency to act as a “dump” or “buffer” 

for excess electricity. Moreover, this could create the scenario where there is extensive distributed storage, 

either as installed capacity or as flexibility from the buildings. In this scenario, heat could act as a good 

tool to improve the efficiency of electricity networks by coupling heat and electricity networks via heat 

pumps and improved management of Combined Heat and Power plants (CHP). For real time control, 
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DH could create an opportunity for multi-layer control. Depending on the time frame of the action 

needed, the excess or lack of energy can be solved by using heat pumps to draw or dump energy into, 

from shortest term to longest, the inertia of the network, flexibility of buildings, local storage, and 

seasonal storage. This is especially attractive when heat storage is present, as heat is easier to store for 

long periods of time than electricity. 

Lastly, another limitation of the present research is the lack of demand models for the horizon 

optimization. The future demand of buildings, as well as their flexibility, can be obtained through physical 

models like the Dynamic Model here proposed to simulate the energy transport in a DH network. These 

models however can be computationally intensive and prone to error. In the future, with ICTs, Smart 

Metering and the Internet of Things, it is expected that there will be easy (and secure) access to the 

information of the individual consumers. This opens the possibility of data-driven models for the 

consumer side that would greatly improve the results from the methodology in the present research. It 

also opens the possibility for weather forecasting and for finding and locating faulty sensors. These 

models however were outside the scope of this research, but their selection and implementation appear 

as another good opportunity for the future work from this thesis. 

In the future the results from the present research could be used to develop a comprehensive tool for 

the optimization and evaluation of DH systems. This tool would include the Dynamic Optimization 

developed during this PhD and here presented and combine it with, or expand it, to include the secondary 

side and the final users. This would greatly increase the capability of the flexibility measures to increase 

efficiency and reduce costs without jeopardizing the QoS. This would also allow to consider variables as 

the thermal inertia of the buildings, access to local heat generation, access to local heat storage, CHP 

plants, among others, thus integrating this optimization with the electricity sector and further advancing 

into the realm of the Smart City. 

All in all, the results from the present research are an enticing indication of what the future of DH could 

look like. A future where the energy sectors and their various actors are better integrated and all of them 

cooperate to achieve a better, greener, more sustainable future. 
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Afterword 

This novel model of system management relies heavily on access to reliable information on the network, 

a communication infrastructure, and control devices to execute the necessary adjustments to the 

operation of the system. The access of information required comes in two levels: historical information 

and real-time information. Historical information, or long-term information which could be in the form 

of time series and databases, is needed to evaluate the systems as well as for forecasting the required 

generation and the expected demand. Historic consumption can be used to determine the yearly, seasonal, 

and even weekly demands. The demand profiles for longer extents of time do not need to be very precise 

and could be used in daily averages or weekly profiles. This information can aid the design of new 

networks, the expansion or refurbishment of existing ones, and prepare the system operators for an 

expected level of generation. This information however cannot give the exact amount of heat that will 

be consumed or that needs to be generated at each period of operation. 

To plan for generation and supply during a day of operation, the expected demand from the less precise 

yearly, seasonal, monthly, or weekly forecast can be updated with information from the previous hours. 

If data on demand, ambient temperature and QoS is available, it becomes easier to determine the 

generation needed for the next period of operation. If this information is combined with Artificial 

Intelligence, it can forecast the next few hours of demand and increase even further the efficacy and 

efficiency of the generation plan for the next hour. 

Real-time information can be used, not to plan, but to react to unforeseen circumstances. A drop or surge 

in the demand, interruptions in the network, loss of QoS, etc. have negative effects on the efficiency of 

the system and the comfort of the consumers. While historic information can be collected and stored 

two to four times per hour, real time information needs to be collected and shared more often than that, 

like every one or two minutes. This creates data bases that are too big for permanent storage and older 

data is frequently erased to make space for the more recent data. This information, however, can be used 

together with the Artificial Intelligence forecast to increase the precision of the prediction and allow the 

system to better manage its assets. 

To enable a DH system to handle the volume of information required for its operation within the Smart 

City scope, a solid communications infrastructure is needed. Monitoring equipment needs to be placed 

at the primary and secondary side substations and metering equipment at the final consumers. For historic 

data, measurements on mass flow rate and flow temperature need to be made, as well as on ambient 

temperature, time and date. This information needs to be stored, probably locally at first, and then sent 

to a centralized data center for processing, cleaning, and permanent storage. The frequency at which the 
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information needs to be collected and sent varies from network to network, but a collection rate of two 

to four times per hour with the data being sent once every hour is enough for an operating strategy as 

the one in the present research. 

For real-time data, the rate of collection and sharing of information is faster. As the information is put 

into service of the system in a more immediate manner, centralized data centers for processing and 

cleaning are not a viable solution. The system will often work with unclean data and, to prevent 

congestion of the communication channels, not all the system will have access to all the information. 

Because real-time information is only relevant if a correction needs to be made, nodes could refrain from 

sharing their data unless it is needed. This would give way for a distributed system of data collection and 

sharing, with nodes communicating only with those closest to them and only when needed. 

The amount, type and collection rate of the information required for operation under the Smart City 

concept calls for a robust communication infrastructure. This infrastructure would be constituted by 

different technologies each with specific objectives and tasks. The speed at which ICTs continue to 

evolve and develop make it impractical to name the specific technologies that could be use, as they may 

change in less than a year, but their expected functionality can be defined. Metering equipment needs to 

be installed at consumer level, giving information to the consumer and to the District Heating Operator 

(DHO) about their consumption. If the consumer agrees, indoor temperature and comfort could also be 

monitored and coupled with a flexibility program (like the Demand Response used in the present 

research), improving the decision-making capabilities of the building administrator or the DHO. If a 

drop of comfort or a surge of consumption are perceived, the information could be shared in real time 

with the building manager, secondary substation, and/or primary substation for quick decision making 

and network re-balance. If Smart Metering is not available and the DHO has access to building data only, 

the building substation could still be used a source of flexibility for the system. Though in this case all 

customers in the building would suffer a curtailment of service rather than just individual ones. 

Monitoring equipment would also need to be installed at the primary and secondary substations. The 

communications infrastructure at these substations would need to play two different roles. On the one 

hand, data on mass flow rate and temperature would be collected and shared with the DHO and/or the 

data giving the basis for the operation and control of the generation plants. In this way the ICTs act in a 

vertical, centralized manner giving as a result an hourly plan for the network and updated information on 

the long-term profiles of the system. On the other hand, this infrastructure should also be capable of 

communicating real-time in a more horizontal, distributed manner. In this way the system would be able 

to track drops or surges in demand, supply and QoS and react accordingly by exacting flexibility demands 
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from the consumers and enacting a network rebalance, like the Demand Response scheme proposed in 

the present research. 

Once the information to be collected is defined and the communications infrastructure for its exchange 

put in place, DH systems need to be equipped with the ability not only to make decisions based on data, 

but to act on those decisions. To enable DH to do something with all the information that will be 

exchanged in the Smart City environment, it requires to be equipped with actuators that change the real-

time operation of the system. These actuators could come in the form of smart valves that allow the 

DHO, the building administrator, or the final consumer to control the flow of hot water through their 

substations or heat exchangers. By controlling how much flow each substation can extract from the 

primary side, the network can be re-balanced to redirect energy to consumers farther away from the 

generation plants, as was demonstrated in the present research. If done correctly, this increases the 

efficiency of the system and reduces costs without compromising the QoS. Once the primary substations 

are set to optimum efficiency, the consumers in the flexibility program will allow the system to curtail 

their supply for a short time by letting their intake valves be automatically closed. 

While not directly addressed in the present research, the implementation of ICTs is fundamental to allow 

DH networks to transition into Smart Thermal Networks and the Smart City. The present research 

studied the primary side of DH networks and used modeling, simulation, and optimization to propose a 

novel model of system management on the assumption that the network had access to a communications 

infrastructure and smart valves. ICTs would allow the system to better forecast the short term demand 

of the network, allowing the application of a horizon optimization, and to know the real time status of 

the supply, allowing the implementation of a flexibility measure like Demand Response. It is already 

expected that ICTs would be an ever-present tool in the Smart City and thus, the future DH, proving the 

relevance of this work. 

 

  



 
 

148 
 

  



 
 

149 
 

Bibliography 

 

 

 

 

 

 

 

 

 

 

[1] R.-R. Schmidt, O. Pol, et J. Page, « Towards smart cities: Challenges and opportunities for thermal 
Urban networks », ResearchGate, vol. 10, no 1, sept. 2012, Consulté le: nov. 02, 2016. [En ligne]. 
Disponible sur: 
https://www.researchgate.net/publication/236895405_Towards_smart_cities_Challenges_and_o
pportunities_for_thermal_Urban_networks. 

[2] « Final energy consumption by sector and fuel in Europe », European Environment Agency. 
https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-
10/assessment (consulté le mai 24, 2020). 

[3] H. Lund et al., « 4th Generation District Heating (4GDH): Integrating smart thermal grids into 

future sustainable energy systems », Energy, vol. 68, p. 1‑11, avril 2014, doi: 
10.1016/j.energy.2014.02.089. 

[4] F. Bouhafs, M. Mackay, et M. Merabti, « Links to the Future: Communication Requirements and 

Challenges in the Smart Grid », IEEE Power Energy Mag., vol. 10, no 1, p. 24‑32, janv. 2012, doi: 
10.1109/MPE.2011.943134. 

[5] J. Zheng, Z. Zhou, J. Zhao, et J. Wang, « Function method for dynamic temperature simulation of 

district heating network », Appl. Therm. Eng., vol. 123, p. 682‑688, août 2017, doi: 
10.1016/j.applthermaleng.2017.05.083. 

[6] M. Vesterlund, A. Toffolo, et J. Dahl, « Optimization of multi-source complex district heating 

network, a case study », Energy, vol. 126, p. 53‑63, mai 2017, doi: 10.1016/j.energy.2017.03.018. 

[7] A. R. Mazhar, S. Liu, et A. Shukla, « A state of art review on the district heating systems », Renew. 

Sustain. Energy Rev., vol. 96, p. 420‑439, nov. 2018, doi: 10.1016/j.rser.2018.08.005. 

[8] V. c. Gungor et al., « Smart Grid Technologies: Communication Technologies and Standards », 

IEEE Trans. Ind. Inform., vol. 7, no 4, p. 529‑539, nov. 2011, doi: 10.1109/TII.2011.2166794. 



 
 

150 
 

[9] C. Marguerite, B. Bourges, et B. Lacarrière, « APPLICATION OF A DISTRICT HEATING 
NETWORK (DHN) MODEL FOR AN EX-ANTE EVALUATION TO SUPPORT A MULTI-
SOURCES DH », in Build. Perform. Simul. Assoc. 2013, Chambery, France, 28/08 2013, vol. 13, [En 
ligne]. Disponible sur: http://www.ibpsa.org/proceedings/BS2013/p_2433.pdf. 

[10] M. A. Abramson, C. Audet, G. Couture, J. E. D. Jr, S. L. Digabel, et C. Tribes, The NOMAD project. 
. 

[11] C. Audet, J. E. Dennis, et Jr., « Mesh adaptive direct search algorithms for constrained 
optimization », Siam J Optim, 2004. 

[12] M. Wissner, « The Smart Grid – A saucerful of secrets? », Appl. Energy, vol. 88, no 7, p. 2509‑2518, 
juill. 2011, doi: 10.1016/j.apenergy.2011.01.042. 

[13] « Smart cities », European Commission - European Commission. https://ec.europa.eu/info/eu-regional-
and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en 
(consulté le sept. 14, 2020). 

[14] R. Niemi, J. Mikkola, et P. D. Lund, « Urban energy systems with smart multi-carrier energy 

networks and renewable energy generation », Renew. Energy, vol. 48, p. 524‑536, déc. 2012, doi: 
10.1016/j.renene.2012.05.017. 

[15] V. c. Gungor, Bin Lu, et G. p. Hancke, « Opportunities and Challenges of Wireless Sensor Networks 

in Smart Grid », IEEE Trans. Ind. Electron., vol. 57, no 10, p. 3557‑3564, oct. 2010, doi: 
10.1109/TIE.2009.2039455. 

[16] D. Connolly, H. Lund, B. V. Mathiesen, et M. Leahy, « A review of computer tools for analysing 
the integration of renewable energy into various energy systems », Appl. Energy, vol. 87, no 4, p. 

1059‑1082, avr. 2010, doi: 10.1016/j.apenergy.2009.09.026. 

[17] M. Mourshed et al., « Smart Grid Futures: Perspectives on the Integration of Energy and ICT 

Services », Energy Procedia, vol. 75, p. 1132‑1137, août 2015, doi: 10.1016/j.egypro.2015.07.531. 

[18] E. Koliou, C. Bartusch, A. Picciariello, T. Eklund, L. Söder, et R. A. Hakvoort, « Quantifying 
distribution-system operators’ economic incentives to promote residential demand response », Util. 

Policy, vol. 35, p. 28‑40, août 2015, doi: 10.1016/j.jup.2015.07.001. 

[19] P. Rocha, A. Siddiqui, et M. Stadler, « Improving energy efficiency via smart building energy 

management systems: A comparison with policy measures », Energy Build., vol. 88, p. 203‑213, févr. 
2015, doi: 10.1016/j.enbuild.2014.11.077. 

[20] X. Xue, S. Wang, Y. Sun, et F. Xiao, « An interactive building power demand management strategy 

for facilitating smart grid optimization », Appl. Energy, vol. 116, p. 297‑310, mars 2014, doi: 
10.1016/j.apenergy.2013.11.064. 

[21] J. Crispim, J. Braz, R. Castro, et J. Esteves, « Smart Grids in the EU with smart regulation: 

Experiences from the UK, Italy and Portugal », Util. Policy, vol. 31, p. 85‑93, déc. 2014, doi: 
10.1016/j.jup.2014.09.006. 

[22] K. Christakou, « A unified control strategy for active distribution networks via demand response 

and distributed energy storage systems », Sustain. Energy Grids Netw., vol. 6, p. 1‑6, juin 2016, doi: 
10.1016/j.segan.2016.01.001. 

[23] « Energy consumption in households - Statistics Explained ». 
https://ec.europa.eu/eurostat/statistics-
explained/index.php/Energy_consumption_in_households (consulté le mai 24, 2020). 

[24] « Heat Roadmaps – Heat Roadmap Europe ». https://heatroadmap.eu/roadmaps/ (consulté le 
sept. 14, 2020). 



 
 

151 
 

[25] H. L. Sataøen, O. A. Brekke, S. Batel, et M. Albrecht, « Towards a sustainable grid development 
regime? A comparison of British, Norwegian, and Swedish grid development », Energy Res. Soc. Sci., 

vol. 9, p. 178‑187, sept. 2015, doi: 10.1016/j.erss.2015.08.011. 

[26] M. Nachreiner, B. Mack, E. Matthies, et K. Tampe-Mai, « An analysis of smart metering information 
systems: A psychological model of self-regulated behavioural change », Energy Res. Soc. Sci., vol. 9, 

p. 85‑97, sept. 2015, doi: 10.1016/j.erss.2015.08.016. 

[27] T. M. Skjølsvold, M. Ryghaug, et T. Berker, « A traveler’s guide to smart grids and the social 

sciences », Energy Res. Soc. Sci., vol. 9, p. 1‑8, sept. 2015, doi: 10.1016/j.erss.2015.08.017. 

[28] L. Vesnic-Alujevic, M. Breitegger, et Â. G. Pereira, « What smart grids tell about innovation 
narratives in the European Union: Hopes, imaginaries and policy », Energy Res. Soc. Sci., vol. 12, p. 

16‑26, févr. 2016, doi: 10.1016/j.erss.2015.11.011. 

[29] « Welcome | TRNSYS : Transient System Simulation Tool ». http://www.trnsys.com/ (consulté le 
oct. 02, 2020). 

[30] F. Bava et S. Furbo, « Development and validation of a detailed TRNSYS-Matlab model for large 

solar collector fields for district heating applications », Energy, vol. 135, p. 698‑708, sept. 2017, doi: 
10.1016/j.energy.2017.06.146. 

[31] H. Braas, U. Jordan, I. Best, J. Orozaliev, et K. Vajen, « District heating load profiles for domestic 
hot water preparation with realistic simultaneity using DHWcalc and TRNSYS », Energy, vol. 201, 
p. 117552, juin 2020, doi: 10.1016/j.energy.2020.117552. 

[32] « The Distributed Energy Resources Customer Adoption Model (DER-CAM) », The Distributed 
Energy Resources Customer Adoption Model (DER-CAM). https://gridintegration.lbl.gov/der-cam. 

[33] M. Stadler, M. Groissböck, G. Cardoso, et C. Marnay, « Optimizing Distributed Energy Resources 

and building retrofits with the strategic DER-CAModel », Appl. Energy, vol. 132, p. 557‑567, nov. 
2014, doi: 10.1016/j.apenergy.2014.07.041. 

[34] « HOMER Pro - Microgrid Software for Designing Optimized Hybrid Microgrids ». 
https://www.homerenergy.com/products/pro/index.html (consulté le oct. 02, 2020). 

[35] L. Khalil, K. Liaquat Bhatti, M. Arslan Iqbal Awan, M. Riaz, K. Khalil, et N. Alwaz, « Optimization 
and designing of hybrid power system using HOMER pro », Mater. Today Proc., juill. 2020, doi: 
10.1016/j.matpr.2020.06.054. 

[36] K. Balachander, G. Suresh Kumaar, M. Mathankumar, A. Manjunathan, et S. Chinnapparaj, 
« Optimization in design of hybrid electric power network using HOMER », Mater. Today Proc., sept. 
2020, doi: 10.1016/j.matpr.2020.08.318. 

[37] « BoFiT Optimization », ProCom EN. https://procom-energy.de/en/products/bofit-optimization/ 
(consulté le oct. 05, 2020). 

[38] L. Karkulahti et M. Mizgalewicz, « Optimization of a Combined Heat and Power Plant for the 
Future Electricity Market », KTH, Stockholm, Sweden, 2020. 

[39] « A stable and accurate convective modelling procedure based on quadratic upstream interpolation 
- ScienceDirect ». https://www.sciencedirect.com/science/article/pii/0045782579900343 
(consulté le avr. 12, 2019). 

[40] A. Benonysson, « Dynamic modelling and operational optimization of district heating systems », 
Technical Univ. of Denmark, Lyngby. Lab. of Heating and Air Conditioning, Denmark, 
Thesis/Dissertation NEI-DK-776, 1991. [En ligne]. Disponible sur: 
https://www.osti.gov/etdeweb/biblio/10133561. 



 
 

152 
 

[41] I. Gabrielaitiene, B. Bøhm, et B. Sunden, « Evaluation of Approaches for Modeling Temperature 

Wave Propagation in District Heating Pipelines », Heat Transf. Eng., vol. 29, no 1, p. 45‑56, janv. 
2008, doi: 10.1080/01457630701677130. 

[42] I. Gabrielaitiene, B. Bøhm, et B. Sunden, « Modelling temperature dynamics of a district heating 

system in Naestved, Denmark—A case study », Energy Convers. Manag., vol. 48, no 1, p. 78‑86, janv. 
2007, doi: 10.1016/j.enconman.2006.05.011. 

[43] I. Gabrielaitienė, B. Bøhm, et B. Sundén, « Dynamic temperature simulation in district heating 
systems in Denmark regarding pronounced transient behaviour / Danijos šilumos tiekimo sistemų 
modeliavimas, įvertinant nestacionarų temperatūros pasiskirstymą tinkle », J. Civ. Eng. Manag., vol. 

17, no 1, p. 79‑87, avr. 2011, doi: 10.3846/13923730.2011.553936. 

[44] V. D. Stevanovic et Z. Lj. Jovanovic, « A hybrid method for the numerical prediction of enthalpy 

transport in fluid flow - ScienceDirect », Int. Commun. Heat Mass Transf., vol. 27, no 1, p. 23‑34, janv. 
2000, doi: S0735193300000816. 

[45] S. Patankar, Numerical Heat Transfer and Fluid Flow. Taylor & Francis, 2018. 

[46] V. D. Stevanovic, B. Zivkovic, S. Prica, B. Maslovaric, V. Karamarkovic, et V. Trkulja, « Prediction 

of thermal transients in district heating systems », Energy Convers. Manag., vol. 50, no 9, p. 2167‑2173, 
sept. 2009, doi: 10.1016/j.enconman.2009.04.034. 

[47] S. Zhou, M. Tian, Y. Zhao, et M. Guo, « Dynamic modeling of thermal conditions for hot-water 

district-heating networks », J. Hydrodyn. Ser B, vol. 26, no 4, p. 531‑537, sept. 2014, doi: 
10.1016/S1001-6058(14)60060-3. 

[48] A. Dénarié, M. Aprile, et M. Motta, « Heat transmission over long pipes: New model for fast and 

accurate district heating simulations », Energy, vol. 166, p. 267‑276, janv. 2019, doi: 
10.1016/j.energy.2018.09.186. 

[49] X. Yuan, X. Yali, et W. Qiongyao, « Dynamic temperature model of district heating system based 

on operation data », Energy Procedia, vol. 158, p. 6570‑6575, févr. 2019, doi: 
10.1016/j.egypro.2019.01.073. 

[50] M. Hohmann, J. Warrington, et J. Lygeros, « A two-stage polynomial approach to stochastic 
optimization of district heating networks », Sustain. Energy Grids Netw., vol. 17, p. 100177, mars 2019, 
doi: 10.1016/j.segan.2018.11.003. 

[51] Y. Wang et al., « Thermal transient prediction of district heating pipeline: Optimal selection of the 

time and spatial steps for fast and accurate calculation », Appl. Energy, vol. 206, p. 900‑910, nov. 
2017, doi: 10.1016/j.apenergy.2017.08.061. 

[52] K. Sartor, D. Thomas, et P. Dewallef, A comparative study for simulation of heat transport in large district 
heating network. 2015. 

[53] T. Oppelt, T. Urbaneck, U. Gross, et B. Platzer, « Dynamic thermo-hydraulic model of district 

cooling networks », Appl. Therm. Eng., vol. 102, p. 336‑345, juin 2016, doi: 
10.1016/j.applthermaleng.2016.03.168. 

[54] B. van der Heijde et al., « Dynamic equation-based thermo-hydraulic pipe model for district heating 

and cooling systems », Energy Convers. Manag., vol. 151, p. 158‑169, nov. 2017, doi: 
10.1016/j.enconman.2017.08.072. 

[55] G. Elisa, S. Adriano, et V. Vittorio, « Thermo-fluid dynamic model of large district heating networks 
for the analysis of primary energy savings », Energy, août 2017, doi: 10.1016/j.energy.2017.07.177. 



 
 

153 
 

[56] Y. Li, J. Xia, Y. Su, et Y. Jiang, « Systematic optimization for the utilization of low-temperature 

industrial excess heat for district heating », Energy, vol. 144, p. 984‑991, févr. 2018, doi: 
10.1016/j.energy.2017.12.048. 

[57] R. Becerra, « A linear programming based model for strategic management of district heating 
systems », sept. 2018, Consulté le: sept. 12, 2018. [En ligne]. Disponible sur: 
http://www.academia.edu/9496086/A_linear_programming_based_model_for_strategic_manage
ment_of_district_heating_systems. 

[58] V. D. Stevanovic, S. Prica, B. Maslovaric, B. Zivkovic, et S. Nikodijevic, « Efficient numerical 

method for district heating system hydraulics », Energy Convers. Manag., vol. 48, no 5, p. 1536‑1543, 
mai 2007, doi: 10.1016/j.enconman.2006.11.018. 

[59] D. Lauinger, P. Caliandro, J. Van herle, et D. Kuhn, « A linear programming approach to the 

optimization of residential energy systems », J. Energy Storage, vol. 7, p. 24‑37, août 2016, doi: 
10.1016/j.est.2016.04.009. 

[60] L. Di Pilla, G. Desogus, S. Mura, R. Ricciu, et M. Di Francesco, « Optimizing the distribution of 
Italian building energy retrofit incentives with Linear Programming », Energy Build., vol. 112, p. 

21‑27, janv. 2016, doi: 10.1016/j.enbuild.2015.11.050. 

[61] H. Wang, H. Wang, Z. Haijian, et T. Zhu, « Optimization modeling for smart operation of multi-

source district heating with distributed variable-speed pumps », Energy, vol. 138, p. 1247‑1262, nov. 
2017, doi: 10.1016/j.energy.2017.08.009. 

[62] H. Wang, H. Wang, H. Zhou, et T. Zhu, « Modeling and optimization for hydraulic performance 
design in multi-source district heating with fluctuating renewables », Energy Convers. Manag., vol. 156, 

p. 113‑129, janv. 2018, doi: 10.1016/j.enconman.2017.10.078. 

[63] T. Fang et R. Lahdelma, « Genetic optimization of multi-plant heat production in district heating 

networks », Appl. Energy, vol. 159, p. 610‑619, déc. 2015, doi: 10.1016/j.apenergy.2015.09.027. 

[64] E. Guelpa, S. Deputato, et V. Verda, « Thermal request optimization in district heating networks 

using a clustering approach », Appl. Energy, vol. 228, p. 608‑617, oct. 2018, doi: 
10.1016/j.apenergy.2018.06.041. 

[65] J. Hirvonen, H. ur Rehman, et K. Sirén, « Techno-economic optimization and analysis of a high 
latitude solar district heating system with seasonal storage, considering different community sizes », 

Sol. Energy, vol. 162, p. 472‑488, mars 2018, doi: 10.1016/j.solener.2018.01.052. 

[66] C. Qin, Q. Yan, et G. He, « Integrated energy systems planning with electricity, heat and gas using 
particle swarm optimization », Energy, vol. 188, p. 116044, déc. 2019, doi: 
10.1016/j.energy.2019.116044. 

[67] M. Lu et al., « Operational optimization of district heating system based on an integrated model in 
TRNSYS », Energy Build., p. 110538, oct. 2020, doi: 10.1016/j.enbuild.2020.110538. 

[68] L. Wen, Z. Tian, J. Niu, R. Zhou, Q. Zhang, et Y. Cao, « Comparison and selection of operation 
optimization mode of multi-energy and multi-level district heating system: Case study of a district 
heating system in Xiong’an », J. Clean. Prod., vol. 279, p. 123620, janv. 2021, doi: 
10.1016/j.jclepro.2020.123620. 

[69] S. Coss, V. Verda, et O. Le-Corre, « Multi-objective optimization of district heating network model 
and assessment of demand side measures using the load deviation index », J. Clean. Prod., vol. 182, 

p. 338‑351, mai 2018, doi: 10.1016/j.jclepro.2018.02.083. 

[70] H. Dorotić, T. Pukšec, et N. Duić, « Economical, environmental and exergetic multi-objective 
optimization of district heating systems on hourly level for a whole year », Appl. Energy, vol. 251, p. 
113394, oct. 2019, doi: 10.1016/j.apenergy.2019.113394. 



 
 

154 
 

[71] H. Dorotić, T. Pukšec, et N. Duić, « Analysis of displacing natural gas boiler units in district heating 
systems by using multi-objective optimization and different taxing approaches », Energy Convers. 
Manag., vol. 205, p. 112411, févr. 2020, doi: 10.1016/j.enconman.2019.112411. 

[72] C. Audet, G. Savard, et W. Zghal, « A mesh adaptive direct search algorithm for multiobjective 

optimization », Eur. J. Oper. Res., vol. 204, no 3, p. 545‑556, août 2010, doi: 
10.1016/j.ejor.2009.11.010. 

[73] Council of European Energy Regulators, « 6TH CEER BENCHMARKING REPORT ON THE 
QUALITY OF ELECTRICITY AND GAS SUPPLY ». Council of European Energy Regulators, 
2016, [En ligne]. Disponible sur: https://www.ceer.eu/documents/104400/-/-/d064733a-9614-
e320-a068-2086ed27be7f. 

[74] Z. Ma, A. Knotzer, J. D. Billanes, et B. N. Jørgensen, « A literature review of energy flexibility in 
district heating with a survey of the stakeholders’ participation », Renew. Sustain. Energy Rev., vol. 123, 
p. 109750, mai 2020, doi: 10.1016/j.rser.2020.109750. 

[75] F. Wernstedt, P. Davidsson, et C. Johansson, « Demand side management in district heating 
systems », in Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems, 

Honolulu, Hawaii, mai 2007, p. 1‑7, doi: 10.1145/1329125.1329454. 

[76] W. Li, L. Yang, Y. Ji, et P. Xu, « Estimating demand response potential under coupled thermal 

inertia of building and air-conditioning system », Energy Build., vol. 182, p. 19‑29, janv. 2019, doi: 
10.1016/j.enbuild.2018.10.022. 

[77] Y. Zhou, P. Mancarella, et J. Mutale, « Modelling and assessment of the contribution of demand 
response and electrical energy storage to adequacy of supply », Sustain. Energy Grids Netw., vol. 3, p. 

12‑23, sept. 2015, doi: 10.1016/j.segan.2015.06.001. 

[78] P. Prakash et D. K. Khatod, « Optimal sizing and siting techniques for distributed generation in 

distribution systems: A review », Renew. Sustain. Energy Rev., vol. 57, p. 111‑130, mai 2016, doi: 
10.1016/j.rser.2015.12.099. 

[79] R. Arya, S. C. Choube, et L. D. Arya, « Reliability evaluation and enhancement of distribution 
systems in the presence of distributed generation based on standby mode », Int. J. Electr. Power Energy 

Syst., vol. 43, no 1, p. 607‑616, déc. 2012, doi: 10.1016/j.ijepes.2012.05.045. 

[80] B. P., R. K., et S. K.S., « Application benefits of Distribution Automation and AMI systems 
convergence methodology for distribution power restoration analysis », Sustain. Energy Grids Netw., 

vol. 2, p. 15‑22, juin 2015, doi: 10.1016/j.segan.2015.03.001. 

[81] C. Marguerite, B. Bourges, et B. Lacarrière, « INTEGRATED MODELS TO EVALUATE 
DISTRICT HEATING NETWORKS », DHC13, the 13th International Symposium on District Heating 
and Cooling September 3rd to September 4th, 2012, Copenhagen, Denmark, p. 6, avr. 09, 2012. 

[82] S. Mehrotra, « On the Implementation of a Primal-Dual Interior Point Method », SIAM J. Optim., 

vol. 2, no 4, p. 575‑601, nov. 1992, doi: 10.1137/0802028. 

[83] M. Betancourt Schwarz, M. T. Mabrouk, C. Santo Silva, P. Haurant, et B. Lacarrière, « Modified 
finite volumes method for the simulation of dynamic district heating networks », Energy, vol. 182, 

p. 954‑964, sept. 2019, doi: 10.1016/j.energy.2019.06.038. 

[84] D. Barr, « Technical note. two additional methods of direct solution of the colebrook-white 

function. », Proc. Inst. Civ. Eng., vol. 59, no 4, p. 827‑835, déc. 1975, doi: 10.1680/iicep.1975.3644. 

[85] I. del Hoyo Arce, S. Herrero López, S. López Perez, M. Rämä, K. Klobut, et J. A. Febres, « Models 
for fast modelling of district heating and cooling networks », Renew. Sustain. Energy Rev., vol. 82, p. 

1863‑1873, févr. 2018, doi: 10.1016/j.rser.2017.06.109. 



 
 

155 
 

[86] Y. S. Sherif et B. A. Boice, « Optimization by pattern search », Eur. J. Oper. Res., vol. 78, no 3, p. 

277‑303, nov. 1994, doi: 10.1016/0377-2217(94)90041-8. 

[87] S. R. Djørup et al., « District Heating Tariffs, Economic Optimisation and Local Strategies during 
Radical Technological Change », Energies, vol. 13, no 5, p. 1172, mars 2020, doi: 
https://doi.org/10.3390/en13051172. 

[88] K. Foteinaki, R. Li, T. Péan, C. Rode, et J. Salom, « Evaluation of energy flexibility of low-energy 
residential buildings connected to district heating », Energy Build., vol. 213, p. 109804, avr. 2020, doi: 
10.1016/j.enbuild.2020.109804. 

[89] « Set Pipes | District heating ». https://set.is/en/ (consulté le mars 30, 2021). 

[90] « Pre-insulated Steel Pipe ». https://www.cpv.co.uk/product-range/pre-insulated-pipe/hiline-pre-
insulated-steel (consulté le mars 30, 2021). 

 

  



 
 

156 
 

  



 
 

157 
 

Annex 

Heat Transfer Equations 

The equations for heat transfer from the water to the environment are a combination of the heat transfer 

equations for a pipe with internal flow, the thermal resistance for a compound cylinder and the thermal 

resistance for a cylinder buried in a semi-infinite medium. 

The heat transfer equation for a pipe with internal flow is based on the Nusselt number (𝑁𝑢), which 

gives the ratio between the convective and conductive heat transfer at the boundary of a fluid. The heat 

transfer coefficient (ℎ) is then calculated using this number, the thermal conductivity of the fluid (𝑘) and 

the diameter of the pipe (𝑑) (see Equation 0-1). 

Equation 0-1: Nusselt number. 

ℎ =
𝑁𝑢 ∗ 𝑘

𝑑
 

The calculation of the Nusselt number varies depending on the flow being turbulent, laminar or in a 

transition state. The type of flow can be calculated using the Reynolds number (𝑅𝑒) shown in Equation 

0-2, where 𝑢 is the flow velocity, 𝑑 is the diameter of the pipe and 𝜐 is the kinematic viscosity of the 

fluid: 

Equation 0-2: Reynolds number. 

𝑅𝑒 =
𝑢 ∗ 𝑑

𝜐
 

Once 𝑅𝑒 is known, the identities in Equation 0-3 can be used:  

Equation 0-3: Nusselt number identities. 

𝑖𝑓 𝑅𝑒 < 3 000 →  𝑁𝑢 = 3.66 

𝑖𝑓 3 000 < 𝑅𝑒 < 1 000 →  𝑁𝑢 = 0.023 ∗ 𝑅𝑒
4
5⁄ ∗ 𝑃𝑟0.3 (𝐷𝑖𝑡𝑡𝑢𝑠 − 𝐵𝑜𝑒𝑙𝑡𝑒𝑟) 

𝑖𝑓 10 000 < 𝑅𝑒 → 𝑁𝑢 =

𝑓𝑓
8 ∗

(𝑅𝑒 − 1000) ∗ 𝑃𝑟

1 + 12.7 ∗ (
𝑓𝑓
8
)

1
2⁄

∗ (𝑃𝑟
2
3⁄ − 1)

 (𝑃𝑒𝑡ℎ𝑢𝑘𝑜𝑣 − 𝐾𝑖𝑟𝑖𝑙𝑜𝑣) 
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Where: 

𝑃𝑟 =
𝐶𝑝 ∗ 𝜇

𝑘
 

𝑓𝑓 = (0.790 ∗ log 𝑅𝑒 − 1.64)−2 

In these equations 𝑃𝑟 is the Prandtl number calculated using the heat capacity of the fluid (𝐶𝑝), the 

dynamic viscosity of the fluid (𝜇) and the thermal conductivity of the fluid (𝑘). In this way it is possible 

to obtain the convective heat transfer coefficient for the water. 

This coefficient can be used to compute the thermal resistance of the water (𝑅𝑤) by using Equation 0-4: 

Equation 0-4: Thermal resistance of water. 

𝑅𝑤 =
1

ℎ ∗ 𝜋 ∗ 𝑑
 

The thermal resistance of the pipe and the insulation can be calculated using the equation for a cylinder’s 

wall shown in Equation 0-5: 

Equation 0-5: Thermal resistance for a cylinder's section. 

𝑅𝑐𝑦𝑙 =
ln (
𝑟2
𝑟1)

2 ∗ 𝜋 ∗ 𝐿 ∗ 𝑘
 

Where 𝑟2 is the external radius of the cylinder (pipe or insulation), 𝑟1 is the internal radius of the cylinder, 

𝐿 is the length of the cylinder’s section and 𝑘 is the thermal conductivity of the cylinder. 

The thermal resistance of the soil can be calculated with the resistance equivalent for a cylindrical 

geometry and the shape factor for a constant temperature cylinder buried in a half infinite domain (see 

Equation 0-6). 

Equation 0-6: Thermal resistance of the soil around a buried pipe. 

𝑅𝑔𝑟𝑜 =
log (

4 ∗ 𝑧𝑑𝑒𝑝𝑡ℎ
𝑑

)

2 ∗ 𝜋 ∗ 𝐿 ∗ 𝑘
 

Where 𝑧𝑑𝑒𝑝𝑡ℎ is the depth at which the pipes are buried and 𝑑 is the total diameter of the pipe (pipe and 

insulation). 

The equivalent thermal resistance of the whole system is given by the sum of these resistances as shown 

in Equation 0-7: 
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Equation 0-7: Equivalent resistance of a buried pipe with insulation and internal flow. 

𝑅𝑒 = 𝑅𝑤 + 𝑅𝑠𝑡 + 𝑅𝑖𝑛𝑠 + 𝑅𝑔𝑟𝑜 
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Résumé : Ces travaux considèrent les Smart Grid électrique comme point de départ pour proposer un 
nouveau modèle de gestion des réseaux de chaleur, baptisé Optimisation Dynamique des réseaux de 
chaleur pour une transition vers les Réseaux Intelligents (acronyme DOTS en anglais). Le modèle DOTS 
est constitué de trois parties : la modélisation dynamique des réseaux de distribution, l'optimisation du 
réseau de chaleur dans son ensemble et une évaluation multicritère de sa performance. La modélisation 
physique des réseaux est associée à une représentation en graphes orientés et à une méthode modifiée 
des volumes finis. En complément, ce travail propose l'utilisation d'un nouvel indicateur de 
fonctionnement dynamique appelé Facteur de Charge des Conduites (PSF en anglais pour Pipe Supply 
Factor). Le PSF donne le rapport entre l'énergie entrant dans une conduite et l'énergie qui en ressort. 
L'optimisation est divisée en deux étapes : L'optimisation de l'ordre de mobilisation des différents 
systèmes de production (dispatch) et l'optimisation de la température de génération. Le dispatch 
correspond à un ordre de priorité basé sur le coût de production et l'optimisation des températures de 
production est optimisée grâce à la minimisation de la production totale, de la demande non satisfaite 
(déficit) et de l'excès de chaleur (surplus). L'évaluation globale du réseau de chaleur se fait au travers 
d’indicateurs énergétiques, économiques et de qualité de service. Les résultats indiquent la possibilité de 
la transition des réseaux de chaleur (existants ou nouveaux) vers les Smart Thermal Networks et leur 
capacité à devenir partie intégrante du modèle Smart City. 
 
Title: Energy, Economic and Quality of Service assessment using Dynamic Modelling and Optimization 
for Smart Management of District Heating networks 

Keywords: District Heating; Dynamic Modeling; Optimization of Dynamic Systems; Smart Thermal 
Networks; Energy, Economic and Quality of Service Evaluation. 

Abstract:  Based on the relevance of Heat as one of the primary end-uses of energy in a city and the still 
small amount of literature on the transition of District Heating (DH) into Smart Thermal Networks, the 
main objective of the present research is to propose a novel model for system management of DH by 
combining Modeling, Simulation, and Optimization tools. This with the aim to be a proof of concept 
that demonstrates the possibility of DH systems to transition into Smart Thermal Networks and their 
capabilities of integration into the Smart City model. The present research takes the electricity smart grid 
as the starting point to propose a new model of DH system management named Dynamic Optimization 
of DH for its Transition to Smart Networks (DOTS). This model is constituted by three parts: the 
modeling of DH networks, the optimization of DH systems, and the evaluation of DH systems. The 
modeling approach is based on the physical modeling of DH networks using Oriented Graphs and a 
variation of the Finite Volumes method. The optimization is divided into two steps: The Dispatch 
optimization using linear programming formulation, and the Generation Temperature optimization using 
non-linear programming formulation. The evaluation of DH is done through energy, economic and, new 
to DH, Quality of Service (QoS) indicators. To account for the dynamics of heat distribution, the present 
research proposes the use of a new operative indicator named the Pipe Supply Factor (PSF) to allow the 
network to consider the delay times and the thermal inertia of the system. 
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