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Résumé

Les réseaux de fibre sont une structure omniprésente dans les tissus biologiques. Ils sont

bien souvent présents dans les structures chargées d’assurer un support mécanique à

l’organisme en question. En effet, un réseau de fibre offre un compromis intéressant

entre la quantité de matière ou la masse de la structure et la résistance mécanique

au chargement. On retrouve ces structures aussi bien au niveau macroscopique, où ils

sont l’ingrédient principal des tissus mous, qu’au niveau microscopique, en tant que

constituants des structures collagèniques ou du cytosquelette. Ainsi, les réseaux de fibres

forment des structures très hiérarchisées, où les fibres d’un niveau du réseau forment le

réseau d’un niveau inférieur. Au sein des tissus biologiques animaux, la minéralisation du

tissu constitue une caractéristique importante de la réponse mécanique du tissu. Les tissus

minéralisés, à savoir, les os, exhibent une réponse mécanique dure et cassante, tandis que

les tissus non-minéralisés comme la peau ou le tendon affichent une réponse mécanique

molle et hyperélastique. Dans ce manuscrit, nous nous concentrons sur la modélisation de

tissus mous non-minéralisés, tels que les structures collagèneuses. Alors que les paquets

de fibres de collagène constituent un indicateur important du comportement mécanique

de la structure, la matrice de tissu conjonctif qui assure l’interconnection du réseau,

assure quant à elle des fonctions importantes dans le stockage de l’énergie. Un travail de

modélisation réaliste doit donc prendre en compte aussi bien le comportement des fibres

que celle de la structure d’interconnection. La réponse mécanique macroscopique des
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tissus collagèneux résume les intéractions fibres-matrice. Lors d’un chargement mécanique,

le réseau de fibre exhibe une réponse en forme de “J”. Cette réponse mécanique peut

être classiquement décomposée en trois étapes: le “pied”, le “talon” et la phase linéaire.

Lors de la première étape, ou le “pied” de la courbe, le réseau peut être déformé sans

augmentation significative de la force dans le matériau. Cela correspond au dépliement

des ondulations microscopiques au sein du matériau. Lors de la deuxième étape, ou le

“talon” de la courbe, les fibrilles de collagène au sein du réseau s’alignent pour suivre la

direction de sollicitation du matériau et la distance latérale entre les fibrilles diminue

alors. On observe une augmentation exponentielle de la force au sein du réseau. Enfin,

lors de la phase linéaire de la sollicitation, les fibrilles de collagène elles-mêmes sont

sollicitées, donnant lieu à une réponse raide et linéaire, caractéristique de l’élasticité

des fibrilles. En outre, des résultats expérimentaux sondant l’intéraction fibres-matrice

suggère l’existence d’un mécanisme de dommage réversible au sein du réseau de fibres

collagèneuses. Les structures en réseau de fibre existent aussi bien dans les tissus mous à

l’échelle macroscopique, qu’à l’échelle microscopique au sein des structures constitutives

des fibrilles de collagène ou bien matérialisé au sein des cellules par le cytosquelette.

L’objectif de ce travail de thèse est de proposer un modèle unidimensionnel basé sur

la microstructure physique des réseaux de fibres afin d’obtenir une compréhension du

comportement mécanique des réseaux de fibres biologiques. Le modèle est basé sur une

description de fibres glissant les unes par rapport aux autres et interagissant via des

ponts qui se comportent comme des ressorts. Ces ponts peuvent s’attacher et se détacher

de manière stochastique avec un taux de détachement qui dépend de la force subie.

L’attachement et le détachement dynamique des têtes d’intéraction, lorsqu’elles sont

sommées, donne les propriétés mécanique à l’échelle de la fibre, à travers les variables

telles que la vitesse de glissement de la fibre ou la force totale ressentie par la fibre.

Comparé aux modélisations existantes, notre travail met en jeu une configuration en

8



glissement dynamique des fibres, ainsi que des sites d’attachement discrets ne permettant

l’attachement qu’à des endroits localisés de la fibre. Ainsi, nous faisons un choix de

modélisation qui implique un potentiel harmonique pour l’attachement des têtes et une

localisation spatiale finie de ce potentiel, qui donne naissance à une zone de détachement

forcé en dehors de la localisation du site. Le détachement des ponts est basé sur la diffusion

thermique hors d’un puit de potentiel suivant la théorie de Kramers. Cette théorie donne

un contexte physique à la dynamique du détachement ainsi qu’une dépendance naturelle

du détachement au chargement via l’inclinaison du paysage énergétique par la force de

chargement. Ainsi, plus le pont d’attachement est chargé, plus la barrière énergétique

de sortie est inclinée dans la direction du mouvement. Le taux de détachement est

ensuite donné par l’exponentielle de l’opposé de la barrière d’énergie à surmonter. Cette

barrière existe dans les deux sens de l’axe du mouvement et donne lieu à deux taux de

détachement, qui sont sommés pour obtenir le taux de détachement total du système, qui

augmente au fur et à mesure qu’une tête s’éloigne du site d’attachement et qui est infini

une fois que la tête est étirée hors de la localisation spatiale du site d’attachement. Ce

taux qui est obtenu de la théorie de Kramers est valable tant que le temps mis par la tête

pour atteindre l’équilibre est rapide comparé au temps de sortie par la barrière d’énergie,

c’est-à-dire que le site d’attachement représente un minimum bien défini de l’énergie du

système attaché. Finalement, ces descriptions de l’attachement et du détachement sont

appliquées à un système exhibant une fibre face à un enchâınement de sites périodiques.

On montre que dans certains cas, on peut appréhender ce système de N têtes face à

une infinité de sites d’attachement périodique comme plutôt N systèmes face à un site

d’attachement avec des conditions de bord périodiques. Le modèle donne deux modes de

contrôle du système : un contrôle à vitesse imposée, appelé système dur, et un contrôle

à force imposée, appelé système mou. Notre travail permet également de visualiser le

comportement du système à travers une simulation stochastique. Les simulations offrent
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deux algorithmes, chacun adapté à la méthode de contrôle du système, en système dur

ou mou et respectant la causalité dans chacun des modes. Les résultats de la simulation

sont explorés via la visualisation des données sortantes de la simulation, qui servent

de support pour l’investigation paramétrique du comportement du modèle et ancrent

l’interprétation physique des résultats. En particulier, l’influence de l’espacement des

sites d’attachement du système, un point caractéristique du modèle, est examiné. De

même, nous explorons l’effet de chargements complexes (transitoires, cycliques, etc.) qui

représentent les chargements physiologiques des tissus fibreux.
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1 Introduction

1.1 General Introduction

Fibre networks are ubiquitous structures in the make-up of biological tissues. Most organs

which appear continuous to the naked eye have an underlying microstructure made of

various types of fibre networks. In this work we aim to give a model that accounts for

the mechanical properties of structures, which possess a fiber network microstructure. In

order to take into account the rearrangement potential of fiber network microstructure,

we propose a model with elements capable of bonding and debonding stochastically. We

then develop a stochastic simulation scheme to perform simulation of the behaviour

of a one-dimensional fibre system. The behaviour of the system under various loading

conditions can then be examined.

1.2 Macroscopic Fibre Networks in Biology

In this section, we aim to give the reader an overview of fibrous structures at the tis-

sue level to serve as a biological justification of the design choices made in the fibre

network model presented further on. Due to the imperative of the growth process, life

structures, both plant and animal, are simultaneously a form—they have a distinct shape

and function— and material—they are a constitutive part of a larger structure. This

is a way of saying that biological structures are hierarchical in nature [1]. In contrast
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with human engineering where construction of strong and stiff structure may employ

bulk metals or alloys such as steel, natural structures rely mostly on composite materials,

which is where fibre network come into its own offering these properties with relatively

low material density.

In the plant realm, wood is one such network, composed of hollowed-out tubes of cellulose

as shown on figure 1.1. The tubes themselves are the walls of the plant cells which grow

Figure 1.1: Hierarchical structure of spruce wood. (a) Cross-section of the wood showing

earlywood (EW) and latewood (LW). Scanning electron microscopy of the

fracture surface of spruce wood. Sketch of the crystalline structure of a cellu-

lose micro-fibril. From Fratzl et al. [2].

into the structure, then die and hollow out, leaving the stronger cellular wall behind.

These cell walls give the mechanical properties of the wood and are made of a cellulose

fibre network, embedded in a hemicellulose and lignin matrix [3]. Wood, viewed at the
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centimetre level is therefore a cellular material, where cellular arrangement and dimen-

sions regulate the mechanical properties at the macroscopic level. As an example, wood

layers in the trunk is further arranged with an alternating thick and thin annual layers,

participating in the orthotropic properties of the wood [1]. Another striking example of

macroscopic fibre networks not based on hydrocarbons is the skeleton of glass sponges

of the euplectella species, shown on figure 1.2. These sponges possess skeletons made

Figure 1.2: Structure of a whole euplectella oweni specimen. BH=body height, typically

of the order of 100 mm. The zoom on the left hand side shows the network

of silica fibres constituting the mechanical support of the sponge body. From

Saito et al. [4].

entirely out of siliceous minerals, despite the usual brittleness of these materials. In fact,

tests have shown that the natural silica glass skeleton of these animals possess superior
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flexibility and toughness compared to man-made glass rods of similar dimensions [5].

This is attributed to the complex reinforcing structure visible on the network of the

skeleton [1].

Finally, in the animal realm, we focus on tissues formed by network arrangements of

collagen, since this particular family of fibre is ubiquitous in animal tissues. Bone is

one such tissue. The hierarchical structure of bones has been described in a number of

reviews [6, 7, 8], where bones are generally divided into three groups: long bones such

as the femur, short bones such as vertebrae and plate bones such as the skull. The mi-

crostructure of these vary with long bones possessing dense mineralized cortical zones

and spongy trabecular zones, short bones being mostly composed of trabecular bone

whereas plate bones have a succession of plywood-like lamellae. The mineral crystals

present in bone tissue are hydroxyapatite, a mineral composed of calcium, phosphate and

hydroxyl groups: Ca5(PO4)3OH. The variations at the end of the hierarchy scale belie a

common structure at the dozens of nanometre fibril scale. Indeed, the trabecular, cortical

or lamella structures are themselves various geometrical arrangements and density of

organic collagen fibres, interspersed with mineralized particles, as illustrated on figure 1.3.

Variations in mineral density and fibril alignment of the same underlying components are

responsible for the variety of bone micro and macro-structure, as shown by tomography

analyses [9].

Tendons are another example of animal tissue composed of collagen fibres. The underlying

collagen fibres constituting tendon tissue are the same as in bone, except that they do not

contain mineral elements (with some exceptions such as in turkey leg tendon [10, 11, 12]).

The mineralization of the tissue creates a large difference in mechanical response, where

mineralized tissue responds in a hard and brittle way, whereas non-mineralized tissue have

a soft and hyper-elastic response [13]. In this work, we focus mainly on non-mineralized

soft tissues. Tendons are typically composed of type I collagen fibres embedded in an
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Figure 1.3: Representation of the structural relation between collagen fibres and mineral

crystals. At the molecular fibril level, minerals follow fibril alignment and

are nucleated at the gap site between two collagen fibrils. From Hodgens et

al. [9]. 15



extracellular matrix of hydrated chains of proteoglycans. As shown schematically on

figure 1.4, this collagen-proteoglycan composite forms fascicles which themselves form

bundles, ultimately constituting the tendon tissue. Tendons play a mechanical support

Figure 1.4: (a) Tendon is made of parallel assemblies of collagen fibres (F), itself a triple

helical assembly of tropocollagen molecules (M). (b) The tendon fascicle

can be considered as a composite material, made of type I collagen fibres

embedded in an extracellular matrix, subjected to a total mechanical strain

εT . (c) Part of the total strain is transmitted to the proteoglycan-rich matrix

(pg), while the rest εF is transmitted to the fibrils (F). (d) The triple helix

of tropocollagens which constitute a collagen fibril are staggered by an axial

spacing of 67 nm. This creates gap zones (G) and overlap zones (O) in the

collagen molecule. From Fratzl [2].

role for muscle and bones and also store kinetic energy at various locomotion related

zones such as in the Achilles tendon [14]. Furthermore, tendon fibre bundles follow a

pronounced alignment along the muscle contraction direction. While the properties of col-

lagen bundles is an important predictor of mechanical behaviour, it has been shown [15]
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that the properties of the connective matrix, which allow sliding between collagen fasci-

cles, as shown on figure 1.4 (b), (c) and (d), also play an important role in energy storing.

Tendons which have a more active role in locomotion show superior elasticity overall in

the connective matrix.

Furthermore, the macroscopic mechanical response of tendon, shown on figure 1.5 can

be interpreted with respect of its fibre network microstructure. Three distinct phases

Figure 1.5: Stress strain curve of the tendon. The different response phases are visualized

(a) at the microstructure level using polarized light and (b) schematically

represented. From Fratzl [1].

of the stress-strain response can be singled out: toe, heel and linear phases [13], with a

classical interpretation as follows. In the toe phase, the tendon can be stretched without

significant increase in stress; this is the phase where the microscopic folds in the collagen

fibres, or “crimps”, are stretched out. In the heel phase, the alignment of collagen fibrils
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is straightened out and lateral distance between fibrils decreases. Finally, in the linear

region, the fibril themselves are solicited mechanically, giving a linear and stiffer response.

Furthermore, synchrotron X-ray diffraction experiment of loaded tendon tissue [16] has

shown that overall strain in the loaded tissue is greater than the strain observed in

individual fibrils, thus implying that significant sliding exists in the extracellular matrix

connecting fibrils. Similarly, preconditioning of tendon fibres is associated with a drift

of the response curve towards increased strain for the same load [17, 18]. Experiments

show that this preconditioning drift is reversible [18]. Together, these experimental obser-

vations point toward the existence of a reversible damage mechanism in tendon tissues.

Recent ex-vivo multiscale experiments in skin [19] show a similar macroscopic behaviour

as in tendon, however the microscopic interpretation of the behaviour curve seems to be

different, as fibre re-orientation still seems to occur in the linear region.

Nevertheless, it is clear that relating the behaviour of the microstructure to the macro-

scopic tissue response is key to a thorough understanding of the mechanical properties

of collagenous soft tissues. Ultimately, we’ve seen that materials as different as wood,

bone or tendon, exhibit a remarkably similar underlying microstructure, which is that of

a fibre network joined together by a glue-like matrix, which is then loaded under shear.

This simple observation is one of the driving idea behind our modelling choices.

1.3 Microscopic Fibre Networks in Biology

1.3.1 Collagen Fibrils

We’ve seen that cross-linked fibre network models have widespread applicability in various

macroscopic biological tissues. Since biological tissues possess a highly hierarchical nature,

tissues which are structured as cross-linked fibre networks at the centimetre to millimetre

level also often possess the same structure of cross-linked network at the micrometre to
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nanometre level as illustrated in the tendon case (see figure 1.4). In fact, tendon is a

member of soft collagen rich tissues, together with skin, arteries, cornea, and so on. All

these tissues share the property of being made out of collagen fibres, as seen on figure 1.6.

Each collagen molecule consists of an amino acid sequence coding for an α-chain and has

Figure 1.6: Natural hierarchy of the collagen molecule, from the α chain precursor at the

nanometre scale, to the millimetric collagen fibre. Adapted from Bancelin [20].

a length of around 300 nm and an approximate diameter of 1.5 nm [21, 22, 23, 16, 24, 25].

The tropocollagen is made of a trimere of collagen, assembled in a triple helical coiled

coil, as illustrated on figure 1.6. The collagen molecules constituting the tropocollagen

are held together by weak non-covalent interactions between the hydrogen bonds of the

α chains. Tropocollagen is then assembled into fibrils at the microscopic scale, which are

themselves bundled as collagen fibres which are the building block of soft collagenous

tissues.

In order to understand the mechanical properties at the molecular level, simulations

of the molecular dynamics of the tropocollagen trimere have been performed [26, 27],

taking into account atomistic and chemical interactions between the collagen molecules

themselves and the surrounding water solvent. Such simulations can also be tuned to

take into account the effect of localized cross-links of varying density between collagen

monomeres [28]. Such tuning takes place by adjusting the interatomic potential at the
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cross-link location by a factor β to model the increased interaction between the chains.

The resulting stress-strain curves of the collagen molecule are given in figure 1.7 and

generally show that cross-link density affects the behaviour of the fibre at high strains

and causes brittleness in the molecule at high densities.

The assembly of collagenous structures follows a hierarchy, meaning that modelling

approaches at the fibril level can be applied at the collagen fibre level, where the junction

between molecules is no longer made of covalent cross-links, but rather a soft hydrated

extracellular matrix composed in large parts of proteoglycans.

Figure 1.7: Simulated stress versus strain for increasing values of cross-link density β.

β = 25 corresponds to an approximation of two covalent cross-links between

two tropocollagen chains. From Buehler [28].

1.3.2 Cytoskeleton Network

Another example of microscopic cross-linked network is the cell cytoskeleton. The cell

cytoskeleton is a collection of polymerizing fibres located inside the cell which, in most
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cell types, is responsible for much of the cell’s mechanical properties, as well as some

molecular transport within the cell [29, 30]. While the proteins that constitute the cy-

toskeleton fibres measure in the nanometre range, the polymerized structures formed

by these proteins may span the length of the cell, in the tens of micrometres. Three

families are generally distinguished within cytoskeleton fibres as visualised on figure 1.8:

the cable-like actin microfilaments, the rope-like intermediate filaments and the tube-like

microtubules.

Microtubules, as sketched in figure 1.9, are a head-to-tail assembly of α and β tubulin

Figure 1.8: Immunofluorescence micrograph of a rat fibroblast cell, stained for micro-

tubules (green), actin microfilaments (blue) and vimentin intermediate fila-

ments (red). From Pollard and Goldman [31].

dimers which is rolled on itself to form a hollow-tube. Microtubules generally originate
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Figure 1.9: Schematic of microtubule structure. Figure by Thomas Splettstoesser, CC-

BY-SA 4.0.

from a single nucleating point, the centrosome, and span the length of the cell. They

polymerize dynamically during normal cell life and play a role in intracellular vesicle

transport and cellular division. A way to gauge the flexibility of polymers is by their

persistence length, which is defined as the length beyond which correlation of a tangent

vector along the polymer is lost. Since microtubules behave as rigid tubes inside the

cell, they exhibit a high persistence length, on the order of the millimeter [29, 30], for a

diameter of around 25 nm.

Intermediate filaments comprise a family of proteins which are apolar assemblies of rope-

like coiled-coil dimers, as shown on figure 1.10. Intermediate filament families comprise

nuclear lamins, vimentin, desmin, keratins and neurofilaments and are generally found

in the cytoplasm of cells subjected to mechanical stresses. The diameter of intermediate

filaments is around 10 nm. Intermediate filaments exhibit lower persistence length com-

pared to other cytoskeleton fibres. These are in the order of the micrometre [32, 33, 34],

indicating that the filaments are flexible inside the cell. Mechanical tests on horsehair,
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Figure 1.10: Intermediate filament assembly. The monomer shown in (A) assembles into

a coiled coil dimer (B) through α-chains side interactions. (C) Dimers then

assemble to form staggered tetramers, which (D) bundle up laterally. (E)

the final assembly is a packed helical array of 16 dimers. The inset shows an

electron micrograph of isolated intermediate filaments. Figure from Alberts

et al. [29].
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which is composed of keratin, show softening of the connecting matrix, which is able to

resist sliding in the transverse direction when dry, but lets intermediate filaments shear

and glide past each other when hydrated [35, 30]. A cross-linked fibre model may account

for this phenomenon by integrating the matrix properties in the mechanical behaviour

of the cross-links.

Actin microfilaments are an assembly of the globular actin protein. The microfilament

has extensive monomer-monomer contact between alternating monomers, as well as large

rotation (166°), so the actin filament is more appropriately viewed as a double-stranded

right hand helix, with a diameter of 6 nm, as shown on figure 1.11. With a persistence

Figure 1.11: Diagram of actin three-dimensional structure, with the two protofilaments

shown in separate colours. Figure by Thomas Splettstoesser, CC-BY-SA

3.0.

length of around 10 µm, actin microfilaments which are shorter than the cell size behave

like cables: rigid in tension, but able to buckle under compression [36], while longer

filaments may bend due to thermal agitation [37]. Within the animal cell, actin micro-

filaments assemble to form a variety of structures, summarized in figure 1.12, most of

which play an important role in cell motility. At the front of the moving cell, a nearly

two-dimensional network of branched and cross-linked actin network polymerizes against

the membrane, forming the lamellipodium. Aligned parallel bundles of actin make up

filopodia which poke out of the lamellipodium and orients cell movement direction. A

layer of cross-linked actin coats the inner plasma membrane and plays an important role
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Figure 1.12: Various forms of actin assembly wihin the animal cell. i) Cell cortex, which

coats the inner plasma membrane. ii) Contractile stress fibre. iii) Lamel-

lipodium, the leading edge in cell movement. iv) Filopodium protrusion.

Adapted from Blanchoin et al. [38].

in maintaining and changing the cell’s shape. The interior of the cell itself contains a

three-dimensional network of cross-linked actin, along with contractile stress fibres which

connect to the exterior substrate at focal adhesion points. We hereby give a description

of the four types of assembled actin structure, summarized in figure 1.13. The presence

of a complex of 7 proteins, called Arp2/3 (for Actin related protein) causes rapid elonga-

tion of actin into a branched network, as seen on figure 1.13A. Indeed, as schematized

on figure 1.13A, capping proteins (CP) are needed to inhibit the growth of branches

from the Arp2/3 branching site in order to produce a network that is dense enough for

force production at the leading edge of the cell [39, 40, 41, 42, 43, 44]. Without these

capping proteins, the unchecked growth of branches will tend to form bundles, seen on

figure 1.13A which is less optimal than dense branched network for force production.

The actin branched network can therefore be viewed as a series of clustered subnetworks

which interact with each other via a spring-like structure, visualised in figure 1.13A.
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Figure 1.13: Different types of assembled actin structures and their mechanical descrip-

tion on the right, in grey. A: Branching in actin networks occurs at the

attachment site of Arp2/3 complexes, which are activated by nucleation pro-

moting factors (NPF). In the presence of capping proteins (+CP), a network

with shorter branches is formed, leading to entangled meshes. The entagled

subnetworks generate mechanical interactions which can be modelled by a

spring (in red) linking the subnetworks together. In the absence of capping

proteins (-CP) branches grow longer and can either align into antiparallel

bundles or bend and form parallel bundles. These stable parallel bundles

then behave as a solid body. B: Long cross-linkers create rigid links in the

actin network. The mechanical properties of these networks become depen-

dent of cross-linker kinetics and concentration. C: Short cross-linkers such

as formins or ENA/VASP proteins tie unbranched actin filaments together

into a parallel bundle. D: Myosin motors assemble anti-parallel bundles into

contractile units. From Blanchoin et al. [38].
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Another type of actin architecture is the cross-linked network, which is defined as actin

filaments cross-linked together by proteins other than the Arp2/3 complex mentioned

previously, as in figure 1.13B. Cross-linked networks, like those located in the cell cortex

are involved in maintaining cell shape and the mechanical integrity of the cell [45, 46, 47,

48, 49, 50]. As shown on figure 1.13B and C, the length of the cross-linking distance deter-

mines the structures formed in the end. Shorter cross-linkers such as fimbrin or fascin will

pack actin filaments into tight, parallel bundles, whereas longer cross-linkers like filamin

or α-actinin will form networks or bundles, depending on their concentration [51, 52, 53,

54, 55, 56]. Parallel bundles of actin filaments, as shown on figure 1.13C, are present in a

number of cellular structures, including filopodia, microvili and hair cell stereocilia [57,

49, 44, 58, 59]. Parallel bundles are made of actin filaments oriented with the same end

facing one direction, generally the cell membrane [45]. The cross-linkers hold bundles

tightly together but adjacent bundles are allowed to shear with respect to one another, as

seen in the case of stereocilia [60]. Anti-parallel bundles also exist within the cell. These

bundles, associated with myosin motors, are responsible for the contractile work done

by the cell. The resulting contractile units play an important role in cell shaping for cell

division and the establishment of stress fibre at the cell-cell and cell-matrix junctions [61,

62, 63, 64, 65, 66, 67]. We’ve seen that actin microfilaments assemble into either cross-

linked structures or bundles. That is to say that the various geometric configurations of

actin structures can be modelled by sliding fibres with interacting dynamic cross-links

to represent the dynamic reorganisation of actin architectures. Stochastic cross-links are

one way to represent the dynamically detaching and reattaching cross-links or branched

structures of actin microfilaments.
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1.4 Conclusion

We’ve described how fibre networks represent tissues with complex mechanical properties,

be it at the macroscopic scale with collagenous soft tissues or at the microscopic scale

with the cytoskeleton. This brings us to investigate the role of cross-links in the load

transmission of networks.
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2 Review of Modelling Approaches

In this chapter, we present an overview of modelling approaches which serve as a founda-

tion for the work presented herein. We first detail foundational work on static adhesive

clusters before examining work done on sliding surfaces.

2.1 Static Adhesive Clusters

The stability of adhesive molecular cluster was first discussed by Bell [68]. A molecular

adhesive cluster can be modelled by a series of Nt bonds near the adhesive surface.

Figure 2.1 summarizes the configuration of an adhesive cluster.

At anytime t, a number N (t) of the bonds are attached, and a number Nt −N (t) are

detached. Each bound bond can break at a rate koff and each detached bond can bind

at a rate kon.

When the system is loaded with a force F , it reacts by increasing the rate of unbinding

as koff = k0e
F
F0 , where F0 is a normalizing force of molecular scale (typically in the

order of pN) and k0 is the detachment rate at zero force. Meanwhile the binding rate kon

is unaffected. Bell uses this exponential dependence as a phenomenological expression

based on fracture mechanics, but this expression can be motivated by the Kramers theory

of thermally assisted escape from a metastable state [70, 71, 72, 73]. The idea behind

this force dependence is that the force F lowers the height Eb of the transition barrier

between a closed and an open bond, as shown on figure 2.2. Since the escape rate from the
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Figure 2.1: Schematic model of an adhesive cluster with Nt = 5 bonds capable of attach-

ment and detachment. From Safran and Schwarz [69].

reaction coordinate

free energy

Load F

Figure 2.2: Schematic energy profile of a bond which is tilted (dashed line) when an

external load F is applied. The resulting energy barrier between the different

conformational states is lowered, which increases the transition rate.
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closed state scales as exp
(
− EB
kbT

)
, where kBT is the energy scale of thermal fluctuations,

adding a force term to the energy changes the escape rate by a factor exp
(
Fxb
kBT

)
, where

xb is the distance between the energy minimum and the barrier so that F0 = kBT
xb

. This

viewpoint has been verified through dynamic force microscopy [70].

We now introduce the dimensionless time τ = k0t, force f = F
F0

and rebinding rate

γ = kon
k0

. Assuming a constant force f that is equally distributed among all bonds, the

following rate equation predicts the number of closed bonds N (t):

dN

dτ
= −Ne

f
N + γ (Nt −N) . (2.1)

While the second term in equation 2.1 is linear in the number closed bonds N , the first

term is highly non-linear and leads to some feedback effect on the system. When one

bond opens, the remaining closed bonds must share the remaining force applied on the

system, thus leading to a cooperative system. A bifurcation analysis of the system shows

that the system is unstable with no steady-state solution when the force exceeds a critical

value fc. This critical value occurs when [68]

fc = NtW
(γ
e

)
, (2.2)

where W (x) is the Lambert W function, or sometimes called the product logarithm,

defined as the solution to WeW = x. Figure 2.3 gives the critical force fc, plotted as a

function of γ = kon
k0

. As seen on figure 2.3, fc scales linearly with kon for small values

of kon. An adhesion cluster is therefore completely unstable with zero rebinding and its

stability grows in proportion with the degree of rebinding. For large values of kon, the

scaling becomes slow (less than logarithmic): once kon exceeds k0, large changes in kon

are required to significantly change the stability of the cluster.

Equation 2.1 in Bell’s analysis is a mean-field description which doesn’t include fluctuation

effects, which are expected to be significant in the biological context for small clusters [69].
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Figure 2.3: Critical force fc
Nt

plotted versus γ = kon
k0

, for Nt = 10, based on equation 2.2.

An extension of Bell’s analysis is the one-step master equation in the number i of bonded

cross-bridges, with 0 ≤ i ≤ Nt. The master equation gives the time evolution of the

probability pi (t) that i bonds are formed at time t [74, 75, 76, 77]:

dpi
dt

= r (i+ 1) pi+1 + g (i− 1) pi−1 − (r (i) + g (i)) pi . (2.3)

The two positive terms represent the tendency of bonds to enter the state i by dissociation

of a bond in state i + 1 and formation of a new bond in state i − 1 respectively. The

negative term is a loss term representing movement out of state i by dissociation to state

i− 1 and formation of a bond to state i+ 1. The rates corresponding to the Bell model

in equation 2.1 are

r (i) = ie
f
i , g (i) = γ (Nt − i) . (2.4)

The Bell equation 2.1 can be recovered from equation 2.3 if one calculates the average

number of formed bonds N = 〈i〉 in the limit of large system size [74, 69] (i.e. a Kramers-

32



Moyal expansion). Contrary to the deterministic equation 2.1, which predicts infinitely

long cluster lifetime below the stability threshold fc, the stochastic model in equation 2.3

predicts finite lifetime of the cluster for any value of the force. The average lifetime of

a cluster with Nt bonds can be calculated from the mean first passage time T for the

cluster to stochastically reach the absorbing state i = 0 [78]:

T =

Nt∑
i=1

1

r (i)
+

Nt−1∑
i=1

Nt∑
j=i+1

∏j−1
k=j−i g (k)∏j
k=j−i r (k)

. (2.5)

One of the features of the stochastic model is that it can be used to simulate single

trajectories, which are similar to an experimental realisation [69], (see figure 2.4).

The failures seen on figure 2.4 are abrupt due to the cooperativity in the system:

Figure 2.4: Selected trajectories simulated with the stochastic master equation model.

(a): Force below threshold f
Nt

= 0.25. Small clusters are unstable due to

fluctuations, whereas larger clusters are stable under force. (b): Force above

threshold f
Nt

= 0.3. All clusters are now unstable. Dotted lines represent

fitted N (τ) ≈ Neqe
−aτ . From Safran and Schwarz [69].
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once sufficiently many bonds are broken due to random fluctuations, the remaining

load on the system sends the cluster in a cascading failure until total detachment occurs.

Figure 2.4 (a) shows that small clusters are liable to fail even under the stability threshold

due to random fluctuations taking the system into a cascading failure mode. Under the

stability threshold, larger clusters are therefore more stable and may remain attached

during the whole simulation. Once the system is above the stability threshold, as in

figure 2.4 (b), all sizes of clusters are unstable.

The conceptual framework introduced by Bell shows how adhesion clusters can present

highly dynamic attachment and detachment and yet be stable up to a maximum force.

The model also features high cooperativity which occurs due to the fast redistribution

of force in the system when bond dissociation occurs. This cooperative mechanism also

takes place in other biological systems such as during force generation in muscles [79, 80]

or molecular cargo transport by molecular motors [81, 82]. The elasticity of the system

can also be depicted in an explicit continuum mechanics fashion [83, 84, 85, 86], such as

illustrated on figure 2.5. These models show that the stress distribution becomes localized

at the edges of the adhesion site. This localization of cracks leads to cascading failure

from the rim of the adhesion site inward toward the centre. As a result, both very large

and very small adhesion clusters are unstable, leading to the existence of an optimum

size of adhesion cluster.

2.2 Adhesion of Sliding Surfaces

Physical adhesion occurs not only to static surfaces, but also on surfaces in motion

relative to one another. This type of adhesion is especially relevant for fibre networks

or under the cellular lamellipodium, where the actin retrograde flow can move binding

molecules relative to the corresponding binding site on the extracellular matrix. Figure 2.6
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Figure 2.5: Illustration of a periodic array of adhesion clusters between two different

elastic media under inclined tensile stress. From Qian et al. [86].

Figure 2.6: Model for an adhesive cluster that bridges two surfaces in motion relative to

each other. From Safran and Schwarz [69].
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illustrates a minimal model for binding between two moving surfaces [69].

Experimental data shows that a biphasic relation exists between the traction force on

the substrate and the flow velocity in the cell [87, 88]. For mature adhesions, force is

linearly proportional to flow velocity, while for new adhesion sites an inverse relation

between force and flow is observed. Experimentally, the threshold flow value at which

the change occurs has been found to be around 10 nm/s and is insensitive to various

perturbations in the cell.

As in figure 2.6, the upper surface moves at a velocity v and each bond is modelled as

a spring with stiffness κ. Contrary to the stationary cluster, the governing parameter

of the model is now the velocity of the moving surface v and not the applied force F .

Moreover, each bond is now characterised by its dynamic elongation x, in addition to

being able to attach and detach stochastically. The elongation x increases with time for

every attached bond due to the moving surface. The probability that a bond is attached

pb (x, t) is therefore a function of both time and elongation of the bond. The overall

probability of a bond to be attached is

Pb (t) =

∫ +∞

−∞
pb (x, t) dx . (2.6)

From normalisation we also get that the unbinding probability pu is

pu (x, t) = 1− Pb (t) . (2.7)

For harmonic springs, the average traction on the surface is given by the first moment

of pb (x, t):

FT = Ntκ

∫ +∞

−∞
pbxdx . (2.8)

Regarding the evolution equation, an additional convective derivative term is present to

account for the change in extension due to the moving surface. The evolution equation

thus reads [89, 69]:

∂pb
∂t

+ v
∂pb
∂x

= pukon − pbkoff . (2.9)
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The master equation can then be solved at steady-state either analytically [90, 91] or by

numerical integration at steady-state [89]. Using the solution of the master equation 2.9 to

calculate the force applied on the system through equation 2.8, the force velocity diagram

of the system can be plotted, which gives the response of the system as a function of the

input velocity v. Models adopting this framework [89, 91, 69, 90] reproduce the biphasic

force-velocity curve obtained from experiments [88]. Figure 2.7 shows such a biphasic

Figure 2.7: Force-velocity relation between the dimensionless traction force fT and di-

mensionless flow V predicted by the minimal model for Nt = 25. Dashed line

is the analytic steady-state solution and symbols represent the result of the

stochastic simulations. From Safran and Schwarz [69].

force-velocity relation. One can see the first phase at low velocity where the system load

fT increases linearly with the velocity up to a maximum value after which the second

phase begins, where fT decays with applied V .

A similar concept of molecular friction, as modelled by transient stochastic linkers, has

been explored before in a non-biological context [92, 93]. More recently, this stochastic
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model has been implemented to describe biological adhesion [94, 95, 96]. Specifically,

these models describe the adhesion of actin filaments to the underlying substrate. The

presence of actin retrograde flow inside the lamellipodium and lamella of the cell is the

mechanism which introduces the sliding velocity between the substrate and the actin

filament. Besides the biphasic force-velocity relationship, these model introduce two

regimes for the dynamics of the system. The first regime which occurs at low-velocity is

called frictional slippage where the actin filament slides with dynamic friction. During

frictional slippage, there exists a quasi-linear relation between sliding velocity and force

exerted on the substrate. The second regime which occurs at higher velocity is the

stick-slip regime. In this regime, the force increases cyclically, with periods of stable

loading, then failure leading to an abrupt decrease of the force, then loading again, and

so on. The occurrence of these two regimes has been verified experimentally in the cell

lamellipodium [95].

The view of adhesion clusters can be extended to include the role of elasticity of the

anchoring bodies. This element finds its importance because cells are responsive to

changes of both cellular and environmental stiffness, mainly by changing the stability

of its adhesion sites. In particular, Sens [96] showed that by incorporating the elasticity

of the substrate into the adhesion system, cells can sense the rigidity of the adhesion

substrate. This is due to the fact that in a certain regime of actin flow, traction force on

the substrate becomes maximal for a finite value of the substrate modulus E∗. Once the

substrate becomes stiffer than E∗, although the force exerted per linker increases, the

bound fraction of cross-bridges goes down, causing an effective decrease in traction force.

The models described thus far all exhibit a control in velocity of the system, also called

a hard device. That is to say, the system reacts in response to a fibre sliding at a

fixed velocity. However, the system may also be driven in load, as a soft device. The

soft device exhibits a fixed total load and will slide to accommodate changes in the
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attachment/detachment configuration of the system. The key difference in the soft device

lies in the coupling of all the cross-bridges in the system. Indeed, whereas in the hard

device cross-bridge heads can be considered independently, in the soft device, when one

head detaches or attaches, it impacts all attached heads by shifting the total load in the

system. The sliding of the fibre to return to the imposed total load is therefore felt by all

attached heads and is the source of the coupling between all heads. This increases the

cooperative effects in the system by recreating a mean-field interaction between heads.

The impact of soft versus hard device is explored in muscle systems in the work of Caruel

et al. [97, 98, 99].

In closing, the fundamental work modelling surfaces sliding with respect to one another

has been laid, but some outstanding questions remain. In the following work, we propose

a fibre model, with the following features. The model will present a one-dimensional

system of two fibres sliding with respect to one another, with spring-like cross-bridges

ensuring the interaction between the two fibres. The cross-bridges are able to attach and

detach stochastically, with a load dependent detachment rate similar to the Bell cluster

models discussed previously. On the attachment side, the model will explore an area

which is not comprehensively discussed in previous models: the attachment to binding

sites. Indeed, our model will include periodic binding sites, where cross-bridges will be

able to attach, with an attachment rate dependent upon the distance between a cross-

bridge and a binding site. Next, our model will be able to explore experiments where

the driving parameter is the velocity of the fibre, as in the models described previously,

but also the total load of the system, which is a configuration seldom explored in the

previously mentioned models. Finally, the model will be put through a more complex

loading path, such as a cyclic loading to further give insight into the mechanical behaviour

of the system.
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3 Stochastic Model

In this chapter we will present the analytical basis of the sliding fibre model. In particular,

we start by describing the attachment and detachment scenario, first to a single binding

site, then to an array of periodical binding sites. Two versions of the model have been

developped: the initial one which was used for our first simulations and a corrected one

which satisfies the detailed balance.

3.1 System Description

In order to capture the essential behaviour of a fibre network, we model the interaction

between two rigid fibres in one dimension, sliding with respect to one another. A fibre has

binding sites along its length, to which elastic spring-like bonds can attach and detach

probabilistically based on the load it is supporting. The position of a single bond can

be tracked by the position σ̃ of its anchor point to the fibre and the position ỹ of its

head with respect to an arbitrary origin point, as shown on figure 3.1. When summed

together, the dynamical attachment and detachment of single bonds, described below,

give the mechanical properties at level of the fibres, such as sliding velocity ṽ or total

load F̃ .
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Figure 3.1: Schematics of interacting fibre system. 1 : Rigid fibre 2 : Binding site

3 : Spring-like bond

3.2 Attached Bond

A bond attachment can be thought of as the interaction between the head of the bond at

position ỹ and the binding potential Ṽbind of the site. As a modelling choice, we assume

that binding sites have a set spatial extension δ̃ and prescribe the shape of Ṽbind to be

that of a harmonic potential with a stiffness parameter κ̃. As shown on figure 3.2, this

limited spatial extension of the site means that there is a zone of forced detachment

outside of the binding zone. An attached head thus necessarily has a position ỹ within δ̃
2

of a binding site, i. e.
∣∣∣ỹ − b̃∣∣∣ ≤ δ̃

2 . The binding potential of a site in position b̃ is therefore

expressed as 
Ṽbind

(
ỹ, b̃
)

= 1
2 κ̃
(
ỹ − b̃

)2
+ Ṽ0 if

∣∣∣ỹ − b̃∣∣∣ ≤ δ̃
2 ,

Ṽbind

(
ỹ, b̃
)

is not defined if
∣∣∣ỹ − b̃∣∣∣ > δ̃

2 .

(3.1)

Next, an attached head generates loading on the fibre because it is connected to the

anchor point at position σ̃ via a spring with stiffness K̃ and rest length l̃0. This spring,

shown on figure 3.3, generates a load on the head which is responsible for its possible

detachment within the binding zone. The spring potential Ṽspring is1
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forced detachment

zone

forced detachment

zone

Figure 3.2: Potential of a binding site at position b̃ with a spatial extension δ̃, interacting

with a particle in ỹ

Figure 3.3: Potential of the bond spring, for a head in ỹ attached in the binding site b̃.
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Ṽspring (σ̃, ỹ) =
1

2
K̃
(
σ̃ − ỹ − l̃0

)2
. (3.2)

The total energy Ẽ of the attached head is therefore:

Ẽ(σ̃, ỹ, b̃) = Ṽspring (σ̃, ỹ) + Ṽbind

(
ỹ, b̃
)

=
1

2
K̃
(
σ̃ − ỹ − l̃0

)2
+

1

2
κ̃
(
ỹ − b̃

)2
+ Ṽ0 .

(3.3)

The total energy of the system is illustrated in figure 3.4. The more stretched the bond

forced

detachment

zone
forced detachment zone

movement

direction

Figure 3.4: Total bound potential Ẽ for a particle in ỹ, in the binding site located in b̃.

The moving upper fibre lowers the exit barrier of the head in the direction

of movement.

spring, the more Ẽ is shifted in the direction of movement and the higher the probability

of detachment. In the following work, we can omit the presence of the resting length l̃0,

1This expression makes the assumption that σ̃ > ỹ, namely that the head is trailing the bond anchor

along an axis pointed in the direction of movement.
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by performing a variable change s̃ = σ̃ − l̃0, giving

Ẽ(s̃, ỹ, b̃) =
1

2
K̃ (s̃− ỹ)2 +

1

2
κ̃
(
ỹ − b̃

)2
+ Ṽ0 , (3.4)

which is tantamount to having the corrected anchor point s̃ over the same position as

the head when the spring is unstretched. Furthermore, the origin point of the position

axis can be set at the binding site such that b̃ = 0, leading to

Ẽ(s̃, ỹ) =
1

2
K̃ (s̃− ỹ)2 +

1

2
κ̃ỹ2 + Ṽ0 . (3.5)

In order to determine the rate of detachment k̃− (s̃), we first express the energy barrier

∆Ẽ to overcome for detachment:

∆Ẽ± (s̃, ỹ) = E

(
s̃, ỹ = ± δ̃,

2

)
− E(s̃, ỹ = ỹmin) , (3.6)

where ỹmin is the bond head position at the energy minimum. Both a backward and

forward barrier ∆Ẽ− and ∆Ẽ+ are potential escape routes for the head, with asymmetrical

heights due to movement direction, as shown on figure 3.4. The minimum position ỹmin

can be determined from the relation

∂Ẽ

∂ỹ

∣∣∣∣∣
ỹ=ỹmin

(s̃) = 0 ⇒ ỹmin (s̃) =
K̃s̃

K̃ + κ̃
. (3.7)

Note in equation 3.7 that limκ̃→∞ ỹmin = 0: when the binding site potential is very stiff,

the energy minimum goes to b̃ = 0. That is to say, the stiffer Ṽbind is, the more the head

will be localised at the site position b̃.
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Let Ũ0 = κ̃δ̃2

8 be the maximum height of Ṽbind. Equation (3.6) then becomes2:

∆Ẽ± (s̃) =
1

2

K̃ (s̃∓ δ̃

2

)2

+ κ̃

(
± δ̃

2

)2

− K̃ (s̃− ỹmin)2 − κ̃ỹ2
min


= Ũ0 +

1

2

(
K̃δ̃2

4
∓ K̃δ̃s̃+

K̃2s̃2

K̃ + κ̃

)

= Ũ0 +
K̃δ̃2

2

(
1

4
∓ s̃

δ̃
+
s̃2

δ̃2

(
1

1 + κ̃

K̃

))
.

(3.9)

Using reaction rate theory [72, 73] (also called Kramers rate theory) for the escape of a

particle from a potential well under the effect of thermal fluctuations, we can give the

detachment rates k̃−± as

k̃−±(s̃) = k̃offe
−β̃∆Ẽ±(s̃) , (3.10)

where 1

β̃
= kBT̃ is the energy scale of thermal fluctuations and k̃off can be understood

as the intrinsic detachment rate or the detachment rate for a zero-energy barrier. k−− is

the backward rate of detachment and k−+ is the forward rate of detachment.

The final detachment rate, plotted on figure 3.5, is counted as the sum of forward and

backward detachment rates:

k̃− (s̃) = k̃−+ (s̃)+k̃−− (s̃) =


2k̃offe

−β̃
(
Ũ0+ K̃δ̃2

8

)
e
− β̃

2
K̃2

K̃+κ̃
s̃2

cosh
(
β̃
2 K̃δ̃s̃

)
if |s̃| < δ̃(K̃+κ̃)

2K̃
,

+∞ otherwise .

(3.11)

This rate obtained from reaction rate theory is valid as long as the time for the head

inside the potential well to reach equilibrium is fast compared to the escape time from

the barrier, i.e. the binding site represents a well-defined local minimum of the energy of

2The energy barrier for an arbitrary binding site position b̃ is

∆Ẽ±

(
s̃, b̃
)

= Ũ0 +
1

2

(
K̃δ̃2

4
+ b̃2

κ̃2

K̃ + κ̃
∓ κ̃b̃δ̃

)
+
s̃

2

(
2b̃

K̃κ̃

K̃ + κ̃
∓ K̃δ̃

)
+
s̃2

2

(
K̃

K̃ + κ̃

)
. (3.8)
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Figure 3.5: k̃− plotted against s̃. The behaviour of the function given in equation 3.11

outside of the validity of reaction rate theory is outlined with a dashed line.

Plotting parameters: k̃off = 1 , β̃ = 1 , Ũ0 = 1 , K̃ = 1 , κ̃ = 10 , δ̃ = 1 .
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the bond. This translates to the following criterion:

|ỹmin| <
δ̃

2
⇔ |s̃| <

δ̃
(
K̃ + κ̃

)
2K̃

. (3.12)

Beyond this validity limit there exists no local minimum of the bond energy within the

binding site anymore, so s̃ = ± δ̃(K̃+κ̃)
2K̃

is used as a cutoff beyond which a detachment

probability of 100% is enforced. This fact is also reflected in the shape of the function

describing k̃− (s̃) in equation 3.11, where the detachment rate increases with s̃ while

|s̃| < δ̃(K̃+κ̃)
2K̃

and starts decreasing with s̃ afterwards. This behaviour would be contrary

to our expectation that loading, and therefore detachment rate, increases monotonously

as s̃ increases for a bound cross-bridge.

The Kramers rate theory is valid in the limit where the barrier to escape the binding site is

large with respect to the thermal energy. Thus, it imposes that ren = β̃/8
(
K̃ + κ̃

)
δ̃2 � 1.

In our initial simulations, we took a value of ren around 3. Although this is sufficient to

capture the qualitative features of our system, we have increased κ̃ when we simulated

the corrected model so that we had a ren larger than 10. Equation 3.11 also provides

length scales applicable to the system in question. One length scale is found in the factor

e
− β̃K̃2

K̃+κ̃
s̃2

of equation 3.11. The length is

l̃well =

√√√√kBT̃
(
K̃ + κ̃

)
K̃2

. (3.13)

Another length found in the factor cosh
(
β̃K̃δ̃s̃

)
of equation 3.11 is

l̃Bell =
kBT̃

K̃δ̃
. (3.14)

A third length scale is the detachment length

l̃detach =
δ̃
(
K̃ + κ̃

)
2K̃

. (3.15)

l̃detach gives the length beyond which forced detachment from the binding site occurs and

is therefore a measure of the size of a binding site.
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3.3 Detached Bond - Initial Model

We assume that a given affinity exists between detached heads and binding sites, such

that free heads attach themselves to a binding site with a constant rate k̃on while they

are within range of a binding site. However, since heads are thermally activated, they

themselves visit a range of position in the neighbourhood of the corrected anchor point

position s̃. The elongation x̃ of a detached bond therefore has a certain equilibrium

distribution, which grows wider as temperature increases. The assumption that detached

Figure 3.6: The probability of bonding to a single site can be determined by evaluating

the probability of a head to be within range of the binding site of size δ̃. f (x̃)

represents the probability density of the head to have an elongation x̃.

heads attach at a constant rate within the entire binding site thus reflects the fact that

the time taken to thermally reach the equilibrium distribution of x̃ is much faster than

the typical time to bind to a site. This is also in keeping with the assumption made

previously in reaction rate theory, that for attached heads, the escape time from the

binding potential is much slower than the thermal equilibrium time within the potential

well. However, an asymmetry in the model can be detected here: the attachment can
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occurs everywhere in the site, while the detachment occurs only in ±δ̃/2. This asymmetry

is the cause of the breaking of the detailed balance in this initial model. A more detailed

discussion on our choice to correct our model is done in the next section 3.4.

The attachment rate k̃+ to a binding site at position b̃ = 0 is then the intrinsic rate k̃on

weighted by the probability that the elongation distribution of the head overlaps with

the binding site, as illustrated on figure 3.6. This translates to

k̃+(s̃) = k̃on

∫ + δ̃
2

− δ̃
2

f(x̃− s̃)dx̃ = k̃on

∫ s̃+ δ̃
2

s̃− δ̃
2

f(x̃)dx̃ , (3.16)

where f is the probability density for a head to be at a distance x̃ of the resting-length-

corrected anchor point, as shown on figure 3.6. We posit an expression of f , with the

assumption that unbound heads reach their equilibrium position quickly relative to the

fibre movement speed. This leads to a Boltzmann distribution:

f(x̃) =
e−β̃K̃x̃

2∫ +∞
−∞ e−β̃K̃x̃2dx

=

√
β̃K̃

π
e−β̃K̃x̃

2
. (3.17)

A length scale associated to the detached system is therefore

λ̃ =

√
kBT̃

K̃
. (3.18)

λ̃ is the length associated with the width of the binding rate around the individual

binding sites. The binding rate k̃+ can therefore be expressed as

k̃+(s̃) = k̃on
1√
λ̃2π

∫ s̃+ δ̃
2

s̃− δ̃
2

e
−
(
x

λ̃

)2
dx̃ =

k̃on√
π

∫ (
s̃+ δ̃

2

)
/λ̃(

s̃− δ̃
2

)
/λ̃

e−x̃
2
dx̃ , (3.19)

as shown on figure 3.7.

Equation 3.19 can also be expressed in terms of the error function erf (x) = 1√
π

∫ x
−x e

−t2dt,

which is convenient when a numerical evaluation of k̃+ is needed:

k̃+ (s̃) =
k̃on
2

(
erf

(
s̃+ δ̃

2

λ̃

)
− erf

(
s̃− δ̃

2

λ̃

))
. (3.20)
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Figure 3.7: k̃+ plotted against s̃ for different values of λ̃.

Plotting parameters: k̃on = 1 , δ̃ = 1 .

Additionally, equation 3.20 gives an intuitive interpretation of the effect of the parameter

δ̃, the spatial site extension. As shown on figure 3.8, k̃+ can be seen as the difference

between two sigmoid-like error functions, horizontally shifted by an amount δ̃. Since δ̃ is

the distance separating two shifted error functions, it can be seen as a measure of the

“flatness” of the attachment rate peak. The bigger the value, the larger the maximum

zone of the binding site attachment rate, which is consistent with the fact that the spatial

extension of the binding site is increasing. Additionally, λ̃ can be seen as the variation

length of the error function.
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Figure 3.8: k̃+

k̃on
(plotted in grey), is the difference between two erf functions (plotted in

blue and orange) each shifted by an amount δ̃
2 from the origin. Plots are drawn

for (a) δ̃=1, (b) δ̃ = 4.5. Other parameters are k̃on = 1 , β̃ = 1 , K̃ = 1 .
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3.4 Detached Bond - Corrected to Respect the Detailed

Balance

3.4.1 Detailed Balance for our Initial Model

If we now assemble all the elements of the model, we have a model for the detachment rate,

and a model for the attachment rate. As pointed out in the presentation of the detached

bond modelling (section 3.3), the two descriptions are asymmetric microscopically. Indeed,

for the detachment, one doesn’t really distinguish the different localizations ỹ of the head,

assuming that they detach only at the border of the well. For the attachment, we explicitly

track the position of the head over the binding site, so that we define a binding rate at

each location of the head. Without further refinement of the model, this assumes that

the reverse process of the attachment for the position y is negligible with respect to the

detachment except at the positions ±δ̃/2.

To test the detailed balance, it is easier to consider a two-state picture, without writing

the detailed balanced at each y (which may also be done). We thus have 2 states: a

detached and an attached one. The detached state has a mean energy of 0, which is the

energy at the mean position of the spring alone (see eq. 3.2). The attached state has a

mean energy of

Ẽbind = Ẽ(s̃, ỹmin) =
1

2

κ̃K̃

κ̃+ K̃
s̃2 + Ṽ0, (3.21)

using the expression of 3.4 of the bound potential at its minimum 3.7. Thus the detailed

balance should impose that

k̃−

k̃+
∝ exp

(
β̃(Ẽbind)

)
∝ exp

(
β̃

2

κ̃K̃

κ̃+ K̃
s̃2

)
. (3.22)

In contrast to this, our ratio of attachment / detachment rates leads to

k̃−

k̃+
=

2k̃offe
−β̃
(
Ũ0+ K̃δ̃2

8

)
e
− β̃

2
K̃2

K̃+κ̃
s̃2

cosh
(
β̃
2 K̃δ̃s̃

)
k̃on
2

(
erf

(
s̃+ δ̃

2√
2λ̃

)
− erf

(
s̃− δ̃

2√
2λ̃

)) . (3.23)
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while the head is attached (|s̃| < δ̃(K̃+κ̃)
2K̃

). Obviously, these two expression of the ratio

of the attachment / detachment rates are different. This means that our model does not

satisfy the detailed balance. Thus, any state close to the equilibrium should be taken

carefully. In the dynamical considerations that we investigated in this thesis, this is

likely to have a limited impact on our results as the heads are dragged away from the

binding site. Thus, for most of the heads, the detachment occurs in a different region

than the attachment and an error on the attachment rate will thus have a limited impact.

Typically, the heads attach on a size λ̃. Their typical detachment rate will be in this

region around koff . So, the drag will dominate the detachment in the region near the

binding site if ṽ � λ̃k̃off . Most of the simulations done with the initial model satisfy

this condition (which translate into v > 0.7 using the nondimensionalisation of the next

section 3.5. Still, a corrected, thermodynamically exact model is also presented here.

3.4.2 Corrected Detachment Rate

To restore the detailed balance, we propose to replace the attachment rate k̃+(s̃) by

an expression satisfying the detailed balance. This choice leads to the fact that the

detachment rate is local, while our initial attachment rate was chosen as an integral

expression. Thus, modifying the detachment rate would have ask us to construct a local

model, feasible and maybe more relevant in our modeling frame but outside the scope of

this PhD work.

Therefore, we start from the detachment rate (Eq. 3.11 - for s̃ enabling a detachment

rate)

k̃− (s̃) = 2k̃offe
−β̃
(
Ũ0+ K̃δ̃2

8

)
e
− β̃

2
K̃2

K̃+κ̃
s̃2

cosh

(
β̃

2
K̃δ̃s̃

)
if |s̃| <

δ̃
(
K̃ + κ̃

)
2K̃

.
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We combine this expression with the detailed balance (Eq. 3.22):

k̃−

k̃+
∝ exp

(
β̃(Ẽbind)

)
∝ exp

(
β̃

2

κ̃K̃

κ̃+ K̃
s̃2)

)
. (3.24)

This imposes the expression of k+:

k̃+(s̃) ∝ k̃−(s̃) exp

(
− β̃

2

κ̃K̃

κ̃+ K̃
s̃2)

)

∝ 2 k̃off exp

(
−β̃Ṽ0 −

β̃

8
K̃δ̃2

)
cosh

(
β̃

2
K̃s̃δ̃

)
exp

(
− β̃

2

(
K̃2

K̃ + κ̃
+

κ̃K̃

K̃ + κ̃

)
s̃2

)

∝ 2 k̃off exp

(
−β̃Ṽ0 −

β̃

8
K̃δ̃2

)
cosh

(
β̃

2
K̃s̃δ̃

)
exp

(
− β̃

2
K̃s̃2

)
. (3.25)

So, an expression of k+(s) which satisfies the detailled balance is:

k̃+(s̃) = k̃on cosh

(
β̃

2
K̃s̃δ̃

)
exp

(
− β̃

2
K̃s̃2

)
. (3.26)

This expression of k̃− reflects the fact that the particle starts in average from 0 and has

to reach the points ±δ̃/2 to bind to the site, climbing the spring potential.

3.5 Nondimensionalisation

We rewrite all dimensioned quantities q̃ denoted with a tilde into non-dimensioned quanti-

ties q denoted without a tilde, by dividing dimensioned quantities by a reference quantity.

When choosing a reference quantity for normalisation, one rationale can be the existence

of a natural scaling parameter, such as a natural length scale. Another rationale is to

use quantities which fade in relevancy when looking at larger scale dynamics, most often

due to coarse-graining in the model response. The justification for this is simply to keep

the most relevant quantities at the forefront of visible equations. The final reasoning

we highlight for choosing a reference normalisation value is one of formal simplicity.

Sometimes a choice of non-dimensionalisation produces simpler equations in an aesthetic

sense. The latter two rationales are the ones used in this work to produce the following
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non-dimensionalisation of quantities. In our case, since the fibre network is described in

a generic fashion and includes no explicit empirical tie to a specific biological system, no

natural length scales appear at this stage. Possible length scales in our system is listed

below:

δ̃ , l̃well =

√√√√kBT̃
(
K̃ + κ̃

)
K̃2

, l̃Bell =
kBT̃

K̃δ̃
, l̃detach =

δ̃
(
K̃ + κ̃

)
2K̃

and λ̃ =

√
kBT̃

K̃
.

(3.27)

The reference length chosen is δ̃ the binding site spatial extension. This is done with

the expectation that δ̃, being likely the smallest length quantity next to ỹ, will play a

relatively lesser role in the whole system dynamics. Lengths are therefore rewritten as

s =
s̃

δ̃
. (3.28)

Next, the stiffness is normalised by K̃ the bond spring stiffness constant. This choice

is made due to the prevalence of K̃ in the various expressions derived previously. Fur-

thermore, in our assumptions, we adopt a point of view where the site stiffness κ̃ is

larger compared to the cross-bridge stiffness K̃. This is consistent with the view that

the binding site is localised in space. These reasons make K̃ a good candidate for the

reference stiffness. Stiffnesses are therefore rewritten as

κ =
κ̃

K̃
. (3.29)

Finally, the time normalisation can be chosen from either k̃on, k̃off or a combination

of both, such as k̃on + k̃off . Since no natural choice emerges, we choose a normalisation

which leads to the simplest expression possible, in this case based on k̃off . Binding rates

are therefore rewritten as

kon =
k̃on

k̃off
. (3.30)

Following the non-dimensionalisation choices made for length and stiffness, the following
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dimensionless energy constant β can be defined for convenience:

β = β̃K̃δ̃2 . (3.31)

This procedure gives, at b = 0, a dimensionless detachment energy barrier

∆E± (s) =
∆Ẽ±

K̃δ̃2
= U0 +

1

2

(
1

4
∓ s+

s2

1 + κ

)
, (3.32)

a dimensionless detachment rate

k− (s) =
k̃−

k̃off
=


2e−β(U0+ 1

8)e
β

1+κ
s2 cosh (βs) if |s| < 1+κ

2 ,

+∞ otherwise ,

(3.33)

and a dimensionless attachment rate

k+ (s) =
k̃+

k̃off

=
kon√
π

∫ √β(s+ 1
2)

√
β(s− 1

2)
e−x

2
dx

=
kon
2

(
erf

(√
β

(
s+

1

2

))
− erf

(√
β

(
s− 1

2

)))
.

(3.34)

Or for the corrected k+ which respects the detailed balance:

k+ (s) = kon cosh

(
β

2
s

)
exp

(
−β

2
s2

)
(3.35)

3.6 Multiple Bonds with Periodic Binding Sites

In the previous sections we described the system as it applies to fibres with a single cross-

bridge and a single binding site. We now extend this description to fibres presenting

multiple cross-bridges N facing infinitely periodic binding sites with inter-site distance d

(following our non-dimensionalisation convention, d = d̃

δ̃
) as illustrated on figure 3.9. One

of the most important feature of the periodic system is the change of reference used to

describe positions. All positions are now taken relative to the closest binding site instead
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moving

fibre

Figure 3.9: Interacting fibre system exhibiting periodic binding sites with periodicity d̃.

movement

direction

Figure 3.10: A system with periodic binding sites. Positions y0 and s0 are taken relative

to the closest binding site b̃0.
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of relative to a common origin point. We use the subscript 0 to denote positions taken

relative to the closest binding site. This gives rise to the relative head position y0, the

relative unshifted anchor position σ0 and the relative shifted anchor position s0 = σ0− l0.

As shown on figure 3.10, we adopt a sign convention whereby positions located before

the binding site with respect to the movement direction are taken negative, and positions

located after the site with respect to movement direction are taken positive.

These conventions are used in order to reduce the description of N bonds interacting

with infinitely periodic binding sites to N bonds interacting with a single binding site

over a single period d. Furthermore, the use of the closest binding site as origin of position

allows for the use of all previously derived expressions for attachment and detachment

rates of a single bond without loss of generality, by substituting the positions b, s and

y with the corresponding b0 = 0, s0 and y0. The dynamics of the system will thus be

computed, with some exceptions discussed below, for a system of N independent cross-

bridges interacting with a fibre of length d possessing a single binding site and exhibiting

periodic boundary conditions.

3.7 Attached Bond, Periodic Binding Sites

On a periodic system, each attached bond follows the behaviour described in section 3.2

with a detachment rate

k− (s0) =


2e−β(U0+ 1

8)e
β

1+κ
s20 cosh (βs0) if |s0| < 1+κ

2 ,

+∞ otherwise .

(3.36)

Attached bonds are considered similarly to section 3.2 with a forced detachment that is

enforced once |s0| ≥ 1+κ
2 . This means that attached cross-bridges do not follow periodic

boundary conditions. Indeed, if periodic boundary conditions were enforced, in the case

that the distance to the periodic boundary d
2 is smaller than the distance of forced

58



detachment 1+κ
2 , the detachment rate would start to erroneously decrease for d

2 ≤ |s0| ≤

1+κ
2 , as shown on figure 3.11. Intuitively, one knows that detachment rate can only

s0

k
-

forced

detachment

zone

forced

detachment

zone

Figure 3.11: Normalised detachment rate k− with enforced periodic boundary conditions.

k− (s0) does not grow monotonously with |s0|, so this periodic boundary

condition is not used in the model.

Plotting parameters: β = 1 , U0 = 1 , κ = 10 .

monotonously increase as the cross-bridge is loaded, therefore the boundary condition

with forced detachment, as in figure 3.5, is used instead of the periodic one.

3.8 Detached Bond, Periodic Binding Sites

In the case of detached bonds, the previous attachment rate derived in section 3.3 is

still valid when applied to a single period of the fibre, except that one must now take

into account the possibility of attaching to neighbouring binding sites. Indeed, should a

cross-bridge connect to a distant binding site, the starting load of the attached bond will

be higher than that of a bond attached to the closest binding site due to the increased

stretch of the bond spring. With regards to k+, we add the contribution of neighbouring
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sites to the expression of equation 3.34:

k+ (s0) =
kon√
π

+∞∑
i=−∞

k+
i (s0)

=
kon√
π

∞∑
i=−∞

∫ √β(s0+id+ 1
2)

√
β(s0+id− 1

2)
e−x

2
dx

=
kon
2

∞∑
i=−∞

(
erf

(√
β

(
s0 + id+

1

2

))
− erf

(√
β

(
s0 + id− 1

2

)))
,

(3.37)

where the binding sites i are numbered positively when a bound head contributes pos-

itively to the total load and negatively when a bound head contributes negatively, as

illustrated on figure 3.12.

In order to perform numerical computations, we naturally want to restrict bonding to a

moving

fibre

Figure 3.12: Binding sites are numbered relative to the binding site closest to the anchor

point of the bond (i = 0) . The site number is positive opposite the direction

of fibre movement and negative in this direction.

finite number n ≥ 0 of neighbours to the closest binding site, since k+ becomes vanish-

ingly close to 0 for far-off binding sites. The cutoff is chosen such that the probability of

attaching to a relevant neighbouring binding site, measured as a fraction of the maximum

of the closest binding site, must be above a certain threshold c. Due to the symmetry of

the binding rate function, for a given c, the total number of considered binding sites will
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be 2n+ 1, with n verifying

n = min

(
i ∈ N,

k+
(
s0 = d

(
1
2 + i

))
k+ (s0 = 0)

> c

)
. (3.38)

Typically, c = 1% is chosen. The shape of k+ and its sum components k+
±n is illustrated

for different d with c = 1%, inducing n = 0, 1, 2, 3 on figure 3.13. If n = 0, then only

the closest site is relevant. See figure 3.14 for an illustration using n = 0 and n = 1 for

c = 10%. The number of relevant binding site in a simulation is therefore a function

of the shape of the bonding probability function k+ and the binding site periodicity d.

Figure 3.15 illustrates this dependence on binding site periodicity for a given c.

As shown on figure 3.13, the smaller the intersite distance d, the higher the number of

relevant neighbours n contributing to k+. As d becomes small, the total attachment rate

k+ increases and becomes wider in shape, eventually becoming flat across the period

window. The plot of k+ (s0) on figure 3.16 shows how this flattening occurs as the value

of d decreases. Plotting the rate contributions of neighbouring binding sites, as done on

figure 3.13d, clearly shows that for numerous contributing neighbours, the total rate k+

flattens at a value equal to the sum total of the 2n + 1 maximum values of individual

binding sites. This is essentially the same as prescribing a constant attachment rate k+

and can be interpreted as the continuum limit of our discrete binding site model: when

binding site spacing d goes to zero, a detached cross-bridge can attach itself everywhere

and the k+ is a flat constant. Indeed, this approach is commonly adopted in models of

various adhesion problems in the literature, where detachment rate is described as load

dependent but attachment rate follows a constant rate. Such examples can be found in

the models of Bell [68], Odde et al. [94, 95], Schwarz et al. [74] or Sens [96].
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(a) Plotting parameters: kon = 1 , β = 1 , d = 5 , c = 1% .
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(b) Plotting parameters: kon = 1 , β = 1 , d = 2.5 , c = 1% .
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(c) Plotting parameters: kon = 1 , β = 1 , d = 1 , c = 1% .
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(d) Plotting parameters: kon = 1 , β = 1 , d = 0.8 , c = 1% .

Figure 3.13: Plot of k+ (s0) =
n
Σ

i=−n
k+
i showing individual terms k+

i for (a): n = 0, (b):

n = 1, (c): n = 2, (d): n = 3
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(a) Plotting parameters: ∆t = 10−4 , kon = 10 , β = 2 , d = 3 , c =

10% .

3.9 Population Equation

The evolution of the system can be described by a population equation describing the

evolution of the probability of being in a particular state of the system. We use pbi (s0, t)

to describe the probability of being bound to the site i while at a distance s0 from the

closest binding site. To obtain the evolution equation, we count the amount of heads

leaving the bound state in a space interval ds during a time dt. The number of heads

between s0 and s0 +ds bound at the site i at t is equal to pbi (s0, t) ds. We denote pui (s0, t)

the probability to unbind for a head attached at a binding site i at position s0 and time

t. We therefore have

pbi (s0, t+ dt) ds =k+
i (s0) pui (s0, t) dtds− k−i (s0) pbi (s0, t) dtds

+ ṡ0p
b
i (s0, t) dt− ṡ0p

b
i (s0 + ds, t) dt+ pbi (s0, t) ds ,

(3.39)
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(b) Plotting parameters: ∆t = 10−4 , kon = 10 , β = 2 , d = 1.5 , c =

10% .

Figure 3.14: The number of relevant binding sites is determined by counting all neighbour-

ing binding sites within the periodicity window which have an attachment

rate higher than c relative to the maximum rate of the closest binding site.

(a): When binding sites are spaced out, only the closest binding site has a

significant attachment rate and is the only relevant site for a given bond.

(b): When site spacing is denser, neighbours to the closest binding site do

have a significant binding rate when measured at the edges of the periodicity

window. Quantitatively, neighbours are considered relevant when their rate

at the edges of the window exceeds a ratio c of the highest value of the

closest site.
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Figure 3.15: Number of relevant binding sites as a function of periodicity given on a

log-log-plot, for a c value of 1%. The number of binding sites to consider

increases exponentially as the distance between sites decreases. Note that

the minimum number of relevant sites is 1, i.e. the closest site to the unbound

head. A nonlinear fit is shown as an orange line with parameter values of

y = 4.0x−1

Plotting parameters: kon = 10 , β = 2 , c = 1% .
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Figure 3.16: k+ (s0) plotted for decreasing values of d. Continuous line indicates values

inside the periodicity window ±d
2 , whereas dashed line indicates values

outside the periodicity window.

Plotting parameters: kon = 1 , β = 1 .
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where the two first terms are the result of bonding and debonding transiting in and out

of the bound i state. The next two terms are the convection terms going in and out of

the considered space interval of size ds. Dividing both sides by dsdt, we obtain:

pbi (s0, t+ dt)− pbi (s0, t)

dt
+ṡ0

pbi (s0 + ds, t)− pbi (s0, t)

ds
= k+

i (s0) pui (s0, t)−k−i (s0) pbi (s0, t) .

(3.40)

In the limit of infinitesimal ds and dt, we thus have

∂pbi (s0, t)

∂t
+ ṡ0

∂pbi (s0, t)

∂s
= k+

i (s0) pui (s0, t)− k−i (s0) pbi (s0, t) . (3.41)

Due to the nonlinear dependency of the k+
i and k−i on s0, the population equations are

nonlinear differential equations of pbi (s0, t).
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4 Simulation Procedure

4.1 Framework

The analytical model having being described in section 3, we now describe the framework

used to numerically simulate the system behaviour. A Monte-Carlo-type simulation is

chosen to represent the system dynamics where a discrete amount N of bonds will be

tracked inside a fibre section with periodic boundary conditions, as described in section

3.6. Relevant observations can be made while the system follows two different kinds of

loadings: either the relative velocity of the fibres v is imposed (sometimes called a hard

device [99, 98]) or the total load F is set while the fibre is free to adjust its position

(called a soft device [99]). In the first case F , is monitored while in the latter case, the

total fibre displacement stot is measured. stot is measured as opposed to v due to the

simulation moving in discrete time steps. An instantaneous velocity can be derived by

dividing stot by the timestep.

4.2 Hard Device Case

We’ve shown in section 3 that the relevant non-dimensionalised space variable to track

is the shifted anchor point position of the bond s.

For each detached bond, due to the periodic boundary conditions, one will keep track

of s0, its distance to the closest binding site. Meanwhile, for an attached bond, the
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attachment state of each bond—which we call the p-index—describes whether a cross-

bridge is attached to the nearest binding site or its closest neighbour, or its neighbour

once-removed, and so on... The p-index is thus a relative integer, with 0 for a detached

head, 1 for a head attached to the closest binding site, 2 for the neighbour of the closest

binding site, 3 for the neighbour once-removed of the closest binding site and so on,

so that the length of an attached bond is s0 + pd. The sign of the p-index is used to

distinguish binding site directions relative to the closest binding site, so that neighbours

with a positive contribution to the total load F have a positive p-index and neighbours

with a negative contribution have a negative p-index, following the convention set out in

figure 3.12.

Furthermore, periodic boundary conditions are not enforced on attached bonds, since

attached bonds can be stretched out of the periodicity window before hitting the forced

detachment zone.

s0, p and the simulation time t constitute the state variables which are tracked for each

head in the simulation. Finally, a couple of derived variables are stored in our simulation

as a convenience since they are widely used to interpret the model results. The first

one is the load generated by each individual bond f . Keeping in mind that the bond’s

stiffness constant K̃ is used as the force scaling and therefore K = 1, the value of f for

an individual bond is: 
f = 0 if p = 0 ,

f = 1
1+ 1

κ

((p− 1) d+ s0) if p > 0 ,

f = 1
1+ 1

κ

(pd+ s0) if p < 0 .

(4.1)

The second convenience variable is the total load F , which is simply the sum of individual

f values at each time step. Table 4.1 gives an overview of variables stored as an output

of the simulation. Note that due to the direct correspondence between s0 and f , only

the bond load is stored as a simulation output.
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Variable Symbol Value

time elapsed t scalar

bond load f N-length vector

p-index p N-length vector

Total load F scalar

Table 4.1: Variables stored as an output of the hard device simulation. Simulation inputs

are given in table 4.2.

4.3 Hard Device Simulation Procedure

The velocity driving of the hard device means that this simulation can be implemented

in a straightforward fixed time step manner. Foremost, a prescribed velocity v is given

to the system. A sufficiently small time step ∆t is chosen in order to visualize tran-

sient phenomena in sufficient detail and a number of iterations Ntimestep is simulated,

sufficiently to obtain a steady-state behaviour of the system. Here ∆t (see table 4.2)

is taken to be small with respect to the normalizing value of time variables 1

k̃off
(see

equation 3.30). Next, model parameters kon, κ, β and d are entered to account for the

attachment/detachment interactions described in section 3. A sufficiently large number

N � 1 of bonds is initialized in an initial configuration pinit = (φattached, φdetached) of

attachment fraction. The initial configuration pinit = (φattached, φdetached) is determined

by running a simulation with zero driving velocity and taking the final value of attached

and detached bond fractions. Finally, a neighbour criterion c is given which determines

the number of neighbouring binding sites to consider for attachment of a given bond. As

shown in section 3.8, the number of neighbours to consider specified by a periodic model
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is infinite with a vanishing bonding probability as distance to the bond becomes large.

For a given c, the number of relevant binding sites is given by the largest number n of

neighbours which verify the minimum criterion of equation 3.38, where a binding site is

considered in the simulation if its maximum bonding probability exceeds a fraction c of

the maximum bonding probability of the closest binding site. The general algorithm for

the hard device simulation is therefore:

(a1) Store the current values of output parameters as summarized in table 4.1.

(a2) For each cross-bridge, generate a random number uniformly distributed in [0; 1].

(a3) For each cross-bridge, update its p-index following the generated random number.

The generated number is tested against the probability of detaching if attached or

attaching if detached to all relevant binding sites. If the number is lower or equal

to the probability being tested, then the event happens and the p-index is updated

accordingly. If an attached cross-bridge moves out of the periodicity window, its

p-index is automatically incremented according to the multiplicity of d found in its

position s0.

(a4) For each cross-bridge, update its position s0 by an increment v∆t.

An example simulation trajectory is plotted in figure 4.1.

4.4 Soft Device

In the case of a soft device, the fibre is considered loaded at the extremity by a given force

F . Attachment or detachment events will then have a destabilising effect on the fibre,

increasing or decreasing respectively the load on the system. As a result, the whole fibre

will then shift by an amount stot sufficient to return to the prescribed load F , causing

an equally distributed shift to the anchor position s0 of all bonds. The direction of the
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Parameter Symbol Value

prescribed velocity v scalar

number of time step Ntimestep scalar

bonding ratio kon scalar

stiffness ratio κ scalar

energy constant β scalar

periodicity d scalar

time step value ∆t scalar

neighbour criterion c scalar

bond number N scalar

initial p-vector pinit 2-length vector

Table 4.2: Parameters given as input of the hard device simulation. Simulation output

of the hard device is given in table 4.1.
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t

F

Figure 4.1: Load versus time shown for an example trajectory of the hard device simula-

tion.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 10 , β =

2 , d = 1.5 , ∆t = 10−4 , c = 1% , N = 200 , pinit =

(0.28, 0.72) , v = 10 .

fibre shift is chosen such that a detachment event causes a positive shift in position s0.

The main output of the soft device simulation is therefore the positions s0 of the anchor

point of individual cross-bridges and the correction displacement ∆s required to return

to the prescribed load after a transition event.

The same procedure as in the hard device is adopted, where detached bond heads follow

periodic boundary conditions with respect to the closest binding site and attached heads

can be stretched indefinitely with regard to the closest binding site. Time elapsed t and

head p-indexes are also stored, as summarized in table 4.3
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Variable Symbol Value

time elapsed t scalar

bond positions s0 N-length vector

p-index p N-length vector

Correction displacement ∆s scalar

Table 4.3: Variables stored as an output of the soft device simulation. Simulation inputs

are given in table 4.4.

4.5 Soft Device Simulation Procedure

4.5.1 Time Step Incrementation

A soft device simulation cannot be run using a straightforward fixed time step approach.

Indeed, consider the following problem: one increments the simulation time by a fixed

time step ∆t. During this time frame, two detachment events occur. The first problem is

due to the feedback loop structure of the soft device: when an attachment or detachment

event occurs, the position of the whole system is shifted, which may, in turn, cause another

event and so on. Thus skipping in time to the end of a fixed time step breaks the chain

of causality that accurately portrays the simulation trajectory. Similarly, when multiple

events occur during a fixed time step, one has no way of distinguishing the order of these

events which, once again, is needed to maintain the causality of the simulation.

The solution to this causality problem is to increment the simulation time step by a

variable amount, exactly equal to the waiting time between each individual event. The

problem as described above finds a general solution in the Stochastic Simulation Algo-

rithm (SSA), also called Gillespie algorithm [100, 101]. The SSA appropriately models
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the soft device because unlike the hard device, no movement of the fibres occurs between

cross-bridge transition events. Since the system state does not change in-between tran-

sition events, it is appropriate to use an algorithm which skips in time between events,

provided that the event distribution is modelled properly.

4.5.2 Distribution of Waiting Times

The SSA calls for determining the distribution of the next time step within the algorithm.

Indeed, if one knows the distribution of the next time step, one can generate a sample from

this distribution, solving the problem “When does the next transition event occur?”. To

do this we model transition events as competing Poisson processes in time. Two general

hypotheses relative to stochastic processes are made:

1. Transition events occurring within separate time intervals are independent from

one another (Markov property).

2. Processes depend on the considered time interval and not on the absolute time

position. This property is the invariance with respect to time-translation.

Two further hypotheses relative to Poisson processes specifically are made [102]:

1. The probability that at least one transition event happens within an interval ∆t is

p (∆t) = k.∆t+ o (∆t) , (4.2)

where k > 0 and lim∆t→0
o(∆t)

∆t = 0.

2. The probability of two or more events happening at once is o (∆t). This hypothesis

can be satisfied in practice if transition events are rare or equivalently, according to

the previous hypothesis, by observing the process on a small enough window ∆t.

Using these hypotheses, we model the N transition processes by so many Poisson pro-

cesses, each with a transition rate per unit time ki. ki can be either a k+ or a k− depending
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on whether the cross-bridge number i is attached or detached. Each process describes

the evolution of random variable Xi (t) which is a waiting time between cross-bridge

transition events. As a starting point, we are looking to determine the expression of the

minimum of the N random variables Xi (t), which corresponds to the waiting time until

the soonest transition event. The following properties of Poisson processes are used [102]:

1. The waiting time of a Poisson process is exponentially distributed. The correspond-

ing probability density is

fi (t) = kie
−kit , (4.3)

with the probability:

P (t1 ≤ Xi ≤ t2) =

∫ t2

t1

fi (t) dt . (4.4)

2. The cumulative distribution function of a process is

Fi (t) = 1− e−kit , (4.5)

with the probability:

P (Xi ≤ t) = Fi (t) . (4.6)

We start by expressing the complementary of FMin{X1,X2,...,XN}, the cumulative distribu-

tion function of the minima of the processes Xi. We have the equality:

1− FMin{X1,X2,...,XN} (t) = 1− P (Min ({X1, X2, ..., XN}) ≤ t) . (4.7)
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Furthermore,

1− P (Min ({X1, X2, ..., XN}) ≤ t) = P (Min ({X1, X2, ..., XN}) > t)

= P (X1 > t,X2 > t, ...,XN > t)

=

N∏
i=1

P (Xi > t) (Xi are independent)

=

N∏
i=1

(1− Fi (t))

=
N∏
i=1

(
1−

(
1− e−kit

))
= e−t

∑
i ki

(4.8)

Finally,

FMin{X1,X2,...,XN} (t) = 1− e−t
∑
i ki . (4.9)

We have thus shown that this cumulative distribution function has the correct form for

a corresponding exponential probability density function with a parameter
∑

i ki. The

waiting time until the next transition event can therefore be obtained by generating a

random variate of a single Poisson process with a parameter that is the sum of all the

parameters of the competing processes.

4.5.3 Random Variate Generation

In order to generate a random variate from the exponential distribution of the waiting

time minima, we use the inverse method [103], where we compute the inverse function

of the cumulated distribution function of the exponential distribution. The cumulated

distribution function of the waiting time minima is

FMin{X1,X2,...,XN} (t) = 1− e−t
∑
i ki . (4.10)

This function can be easily inverted to

F−1
Min{X1,X2,...,XN} (u) = − ln (1− u)∑

i ki
. (4.11)
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Furthermore, since for u ∈ [0; 1], we also have û = 1− u ∈ [0; 1], the expression we use

to generate random variates is

F−1
Min{X1,X2,...,XN} (û) = − ln (û)∑

i ki
, (4.12)

where û ∈ [0; 1]. The simplicity of this expression renders it naturally suitable to be used

inside the SSA, as opposed to other methods such as the rejection method or the table

method [103].

4.5.4 Choice of the Transition Event

Before moving on with the Stochastic Simulation Algorithm, one final question must be

adressed. Once the waiting time until the next reaction has been determined, which of

the N cross-bridges is chosen to experience a transition event? Let Ni (t) be the random

variable counting the number of events happening to the i-th cross-bridge between 0 and

t. Similarly, N (t) will be the random variable counting the total number of events. The

probability for a specific cross-bridge i to have the minimal waiting time is

P (Xi = Min ({X1, X2, ..., XN})) = P (Ni (t+ dt)−Ni (t) > 0|N (t+ dt)−N (t) > 0) .

(4.13)

The SSA algorithm ensures that during one time interval dt, only a single event takes

place. This translates to

P (Xi = Min ({X1, X2, ..., XN})) = P (Ni (t+ dt)−Ni (t) = 1|N (t+ dt)−N (t) = 1)

=
P (Ni (t+ dt)−Ni (t) = 1 ∩N (t+ dt)−N (t) = 1)

P (N (t+ dt)−N (t) = 1)

=
P (Ni (t+ dt)−Ni (t) = 1)

P (N (t+ dt)−N (t) = 1)
(4.14)
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Using the property of a Poisson process, the probability of the random variable Ni (t)

being equal to m is given by P (Ni (t) = m) = (kit)
m

m! e−kit. Therefore,

P (Xi = Min ({X1, X2, ..., XN})) =
e−kidtkidt

e−
∑
i kidt

∑
i kidt

, (4.15)

which, when dt→ 0:

P (Xi = Min ({X1, X2, ..., XN})) =
ki∑
i ki

. (4.16)

We thus have the intuitive result that the probability of choosing a given cross-bridge i

as the next transition event is given by the weight of its transition rate relative to the

sum total of transition rates of all cross-bridges.

4.5.5 Soft Device Algorithm

The parameters given in input of the soft device simulation are summarized in table 4.4.

The general algorithm for the soft device simulation is as follows:

(b1) Store the current values of output parameters as summarized in table 4.3.

(b2) Check whether some cross-bridges have moved out of the Kramers validity zone

given by s0 = 1+κ
2 . If so, a detachment event happens right away (no waiting time)

to the cross-bridge with the highest s0, and go to (b6).

(b3) Generate a random number u uniformly distributed in [0; 1].

(b4) Generate a waiting time until the next reaction given by − ln(u)∑
i ki

.

(b5) Choose the cross-bridge to undergo a transition event by performing a weighted

random choice among all cross-bridges with the weight ki∑
i ki

for the i-th cross-

bridge.

(b6) Adjust the p-index of the cross-bridge undergoing the transition.
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Parameter Symbol Value

prescribed load f scalar

number of time step Ntimestep scalar

bonding ratio kon scalar

stiffness ratio κ scalar

energy constant β scalar

periodicity d scalar

neighbour criterion c scalar

bond number N scalar

initial p-vector pinit 2-length vector

Table 4.4: Parameters given as input of the soft device simulation. Simulation output of

the soft device is given in table 4.3.
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(b7) Calculate the change in system load ∆f that the transition would cause.

(b8) For each cross bridge, adjust s0 evenly by the correct amount to offset the loading

change ∆f and return to the prescribed load f .

(b9) Increment the simulation time by the generated waiting time and go back to (b1).

An example of simulated trajectory is plotted in figure 4.2.

t

sTot

Figure 4.2: Displacement stot versus time shown for an example trajectory of the soft

device simulation.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 10 , β =

2 , d = 1.5 , c = 1% , N = 200 , pinit = (0.24, 0.76) , f = 20 .
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5 Simulation Results - Initial Model

In this section we present the main results of the simulation of the sliding fibre system.

The steady-state regime and the transient regime of the hard device are examined, and

following that the results of the soft device are analysed. Finally, the influence of binding

site spacing as well as cyclic loading are investigated.

5.1 Hard Device

In order to get a sense of the behaviour of the system, we first perform a speed-driven

simulation, at a prescribed velocity v. The system will then exhibit a variable load F (t)

as a result of the various bonds attached to sites at a given moment and resisting the

movement. Figure 5.1 represents multiple trajectories of the simulation for the same pre-

scribed v. The load on the fibre initially increases linearly with time and then drops from

a peak value to a steady-state plateau. In this final regime, the load exhibits fluctuations

around a final value, which we denote by F∞.

5.1.1 Steady-State Regime

We first describe the steady-state regime, where the load fluctuates around a plateau

value F∞ and then we move on to describe the transient initial regime, where the load

peaks in a linear fashion.
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F∞

t

F
prescribed v = 10

1 2

Figure 5.1: Total load in the system F versus time t shown for multiple trajectories and

for prescribed velocity v = 10. F∞ visualizes the average value taken by F

once the permanent regime has been reached.

1 Transient regime. 2 Steady-state regime.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 10 , β =

2 , d = 1.5 , ∆t = 10−4 , c = 1% , N = 200 , pinit =

(0.28, 0.72) , v = 10 .
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Drawing, for various v, the average trajectories of at least n = 20 realisations, as done

in figure 5.2, confirms the generality of this behaviour and furthermore hints that the

prescribed sliding velocity v has a non-linear effect on the value of F∞. A wider overview

t

〈F〉

prescribed v

Figure 5.2: Average value 〈F 〉 (t) as a function of time t for increasing sliding velocity v.

Each curve is the average of n = 20 simulations.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 10 , β =

2 , d = 1.5 , ∆t = 10−4 , c = 1% , N = 200 , pinit = (0.24, 0.76) .

of the system behaviour can be obtained by looking at F∞ (v), drawn in figure 5.3, which

describes how much resistance at steady-state the system opposes to a given speed v of

solicitation. The force-velocity curve of the system is indeed non-monotonous: initially,

as the sliding velocity increases, the steady-state force of the system increases almost

linearly. After a given velocity however, F∞ stops increasing and begins a slower decrease,

as reported in the literature [96, 90].
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v

F∞

Figure 5.3: Steady-state load F∞ versus prescribed sliding velocity v. Bars indicate the

size of fluctuations at steady-state around the average F∞ value. These bars

are calculated as the standard deviation of F once steady-state has been

reached, averaged over all n = 20 trajectories of the simulation. Inset shows

a zoom around the peak of load-velocity curve. Simulation parameters as in

figure 5.2.
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A comparison of figure 5.2 and the corresponding fraction of attached bonds φattached,

shown in figure 5.4, seems appropriate to understand the underlying behaviour of the

system. Indeed, one should expect φattached to behave similarly to F , as

t

ϕattached
prescribed v

Figure 5.4: Average fraction of attached bonds φattached as a function of time, plotted

for different values of prescribed v. The initial state has 76% of the bonds

attached. Simulation parameters as in figure 5.2

F =

N∑
i

αpKs0 ,


αp = 0 if p = 0

αp = 1 if p 6= 0

(5.1)

with K = 1 according to the non-dimensionalisation convention. Therefore, the higher

φattached, the more bonds with αp 6= 0 and the higher the load generated. However,

figure 5.4 clearly shows a monotonous behaviour for the same range of prescribed v: the

faster the prescribed sliding, the smaller the amount of attached heads. This monotonous

behaviour continues uninterrupted at high speeds as shown in figure 5.4. A more detailed

look at the attachment state of bonds during the experiment reveals the source of this
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discrepancy. As discussed previously, we simulate only bonds in the range −d
2 to d

2 , but

bonds can be outside of this range. Bonds attached further along the fibre, naturally

produce a higher load on the system due to the increased stretch. Recalling equation 4.1:
f = 0 if p = 0 ,

f = 1
1+ 1

κ

((p− 1) d+ s0) if p > 0 ,

f = 1
1+ 1

κ

(pd+ s0) if p < 0 ,

a head which is attached farther from the closest binding site contributes a higher load—

in positive or negative—by an amount (p− 1) d if positive and pd if negative. Figure

5.5 shows the evolution of the p-index in the system for increasing velocity. A visual

survey of the figure shows two clear trends. First, from a steady-state where nearly three

quarters of bonds are attached, as v increases, the equilibrium clearly shifts to favouring a

steady-state where three-quarters of bonds are detached. This effect generates decreased

load as v increases. Second, among attached bonds, when v increases, higher p-indexes

are favoured, as evidenced by the gradual population of higher states. Since higher p

means higher stretch on a given bond, this effect results in increased load as v increases.

Therefore, the non-monotonicity of figure 5.3 seems to be the result of these two com-

peting effects, with the decrease of attached bonds being the most prominent at high

velocities.

Additionally, we put forward an intuitive explanation: introducing 〈s〉, the average elon-

gation of cross-bridges in the system, we have approximately

F ∝ K 〈s〉Nφattached . (5.2)

When v increases, bound heads are more stretched, so 〈s〉 increases, which increases

F , according to relation 5.2. Simultaneously, when the fibre velocity v increases, cross-

bridges spend less time being attached due to increased detachment rate with stretching.

This decreases φattached and therefore, according to relation 5.2, decreases F as well.
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The increase of bonds with higher p-indexes is the result of the larger rate of convection

of binding sites within the range of a given head. These results are consistent with those

found in Sens [96]. Taken as a whole, this phenomenon generates a testable prediction of

the model: were a real system to behave following this model, it would not only follow

the rheological force-velocity curve, but it would also exhibit increased load per bond or

per binding site, irrespective of the total load of the system. An experimental validation

of these results can be suggested: if one can generate a fiber network with stretch sensors

as linkers, such as Fluorescence Resonance Transfer (FRET) systems [104], the stretch

distribution and the average stretch value of the system can be accessed. One can then

experimentally verify the increase of 〈s〉 when prescribed v increases.
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v prescribed = 19
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Figure 5.5: Evolution of attachment and detachment fraction φ with respect to time for

various prescribed velocity. The p-index value indicates attachment state of

bonds: 0 for a detached head, 1 for a head attached to the closest binding

site, 2 for a head attached to the neighbour of the closest binding site and so

on... For visualisation purposes, the data has been down sampled by a factor

of 300, such that every square shown represents the average fraction over 300

time steps. Squares with an intermediate colour between transparent and

blue have a value φ < 1%. Simulation parameters as in figure 5.2.

5.1.2 Transient Regime

We now describe the transient regime observed in figure 5.1 (phase 1). The transient

regime is characterized by a quasi-linear increase in load F , then a rapid drop and a

small overshoot towards the value of F∞. Assuming a linear response for the transient

F (t), its slope increases near-linearly when v increases, as shown on figure 5.6. This

phenomenon can be more precisely visualized by charting the distribution of positions
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
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
=109v

Figure 5.6: Slope Ḟ of the transient F (t), assuming a linear increase, slope plotted against

prescribed sliding velocity v. A linear fit of the data is shown in orange.

Simulation parameters as in figure 5.2.

s0 of attached heads for a given time, as done in figure 5.7. At t = 0, the attached heads

are spread out evenly around their binding site at s0 = 0, consistent with a uniform

initial condition (see figure 5.7a). When the fibre starts moving, as in figure 5.7b, the

whole distribution is convected to higher s0: most of the cross-bridges are being stretched

with only a few detaching and reattaching close to the binding site. This stretching of a

group of cross-bridges with little detachment is responsible for the quasi-linear increase

in load, which occurs until the block-stretching of cross-bridges is sufficient to induce a

mass detachment and subsequent reattachment. Mass detachment takes place because

attached cross-bridges can only be stretched for a finite amount before reaching the forced

detachment zone, as shown on figure 3.5. This means that the translation in space of the

initial condition can only go so far before triggering the forced detachment of individual

heads. Once mass detachment has occurred, cross-bridges are redistributed in a wider

bell-shaped curve, shown on figure 5.7c, typical of the steady-state regime. Another way
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s0

% attached heads

(a) t = 0

s0

% attached heads

(b) t = 0.05 tmax

s0

% attached heads

(c) t = 0.95 tmax

Figure 5.7: Histogram of the s0 distribution at 3 times of the simulation. (a): t = 0. (b):

t = 0.05tmax = 0.1. (c): t = 0.95tmax = 1.9.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 10 , β =

2 , d = 1.5 , ∆t = 10−4 , c = 1% , N = 200 , pinit =

(0.28, 0.72) , v = 10 .
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to represent this effect is to plot the density of s0 as a function of time, as in figure 5.8.
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(a) v = 1

(b) v = 10
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In figure 5.8a, no transient regime can be observed as the advection is slower than

attachment / detachment of the heads. Meanwhile, In figures 5.8b and 5.8c, transient

and steady state regimes can be clearly delineated. The transient regime is characterized

by a convection of a high proportion of attached heads with little detachment, whereas

in the steady-state the s0 distribution is wider and fluctuates within a large stable band.

Furthermore, we see that the prescribed sliding velocity v affects this behaviour. At low

v, the convection effect is weak and the system exhibits almost no transient regime and

shifts immediately to the stable, wide distribution of s0. At high v, the convection effect is

strong as shown by the fact that attached heads stay attached during the entire transient

regime. The transient regime is shorter, as the cross-bridges are stretched faster and the

load values reached are also higher. This behaviour indicates that the transient regime

is the signature of the interaction between the loading and a given initial condition. In

this case we also observe that the state where 〈F 〉 = 0 does not necessarily imply that

no cross-bridges are bound, rather bound cross-bridges can be attached but compensate

each other in applied loading.

Finally, one can also observe during the steady-state regime at high velocities, that

the system exhibits many small convection events with a sharp alternating of attached

convection and mass detachment. We suggest that these smaller convection episodes are

generated by random attachment events, where the stochastic nature of attachment /

detachment causes cross-bridges to be attached in group. These groups are then dragged

by the system, causing the convection signature mentioned previously.
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(c) v = 28

Figure 5.8: Density plots of the s0 distribution versus time for different sliding velocities.

(a): v = 1. (b): v = 10. (c): v = 28.

Simulation parameters: as in figure 5.7.
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5.2 Soft Device

5.2.1 Steady-state Regime

A load-driven experiment is performed, where one end of the system is given a prescribed

load and the fibre is free to slide in either direction. The loaded end of the fibre is taken to

be positive while the opposite direction is denoted negatively. When a single cross-bridge

attaches or detaches, it causes a change in total load F (an increase for an attachment

and a decrease for a detachment). The system will then adjust itself to return to the

prescribed load. This adjustment comes in the form of fibre sliding of a length ∆s. The

system is then at rest until the next attachment or detachment event occurs. We denote

∆s the fibre displacement caused by a single attachment / detachment event and stot the

aggregate displacement of the fibre.

Figure 5.9 represents multiple trajectories of the load-driven experiment for a single

prescribed f . For a constant loading, multiple trajectories of the same set of parameter

show a generally similar linear ramp response stot (t).

In order to visualise the ensemble behaviour of the load-driven system, we seek to represent

the average over all trajectories of the displacement stot versus time of the fibre. However,

as described in section 4.5, each simulation trajectory is drawn over a variable time step

distributed according to a Poisson process. This means that the time discretization of

each trajectory is different, preventing a straightforward averaging as with a fixed time

step. We therefore produce an interpolated curve of each trajectory through a first order

Hermite interpolation. The interpolated trajectories are then averaged over a fixed time

step to produce the averaged curve 〈stot〉 (t). The result, seen in figure 5.10, shows linear

sliding of the fibre with increasing speed as the prescribed loading f increases. Some

dispersion of the slope of the response is observed, as shown in figure 5.11a for f = 20

and figure 5.11b for f = 80.
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t

sTot

prescribed f = 20

Figure 5.9: Aggregate fibre displacement stot versus time t shown for multiple trajectories

and prescribed load f = 20.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 10 , β =

2 , d = 1.5 , c = 1% , N = 200 , pinit = (0.24, 0.76) , f = 20 .

Higher prescribed f , such as shown on figure 5.12, are excluded from figure 5.10 because

they present total detachment of the fibre during the simulation. Total detachment is

characterized by the rapid increase of stot, leading to a divergence in displacement. This

is due to cross-bridge detachment causing an increased load on the other attached heads,

leading to cascading detachment until all cross-bridges are detached. Figure 5.12 shows

that these trajectories present much shorter simulation time and higher variance due to

the onset of total detachment, making the averaging of such trajectories meaningless.

Using the average displacement 〈stot〉 from figure 5.10, one can obtain the average velocity

〈v〉 of the fibre as the slope of the curve 〈stot〉 (t). Using a linear fit of 〈stot〉 (t) we extract

the velocity v of the system which is used to plot the velocity-load curve as shown on

figure 5.13. Figure 5.13 intuitively shows that the higher the loading on one end of the

fibre the faster the sliding velocity of the fibre in the loading direction. The velocity-
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〈sTot〉

prescribed f

Figure 5.10: Aggregate fibre displacement 〈stot〉 averaged over 20 trajectories versus time

for different prescribed load f . All displacement are drawn for the same

number of iterations.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ =

10 , β = 2 , d = 1.5 , c = 1% , N = 200 , pinit =

(0.24, 0.76) , interpolation step: 10−2 .
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(b) f = 80.

Figure 5.11: Boxplot showing the dispersion of trajectories for two prescribed loads (a):

f=20 and (b): f=80. Boxes span the first to third quartile and the median is

indicated by a white line. Whiskers show max and min values and outliers are

shown as a dot. The orange line indicates the average aggregate displacement

〈stot〉.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 10 , β =

2 , d = 1.5 , c = 1% , N = 200 , pinit = (0.24, 0.76) .
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prescribed f = 90

Figure 5.12: Aggregate fibre displacement trajectories stot for a prescribed load f = 90.

The upward hook observed on the curves indicates total detachment of one

fibre from the other, i.e. 0 attached cross-bridge.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 10 , β =

2 , d = 1.5 , c = 1% , N = 200 , pinit = (0.24, 0.76) , f = 90 .
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f

〈v〉

Figure 5.13: Velocity of the system v plotted versus prescribed load f . Bars indicate

dispersion of velocity defined as the minimum and the maximum value of

the set of n = 20 trajectories.

Simulation parameters: Ntimestep = 2.104 kon = 10 κ = 10 β = 2 d =

1.5 c = 1% N = 200 pinit = (0.24, 0.76)
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force curve is plotted up to the point where the system experiences total detachment.

In this case, the curve is plotted up to f = 85 because some of the trajectories at that

prescribed loading are complete, whereas at f = 90, all of the trajectories exhibit total

detachment after a short number of iteration (around 10% of the prescribed Ntimestep).

Since the velocity-load curve is the inverse of the load-velocity curve plotted in figure 5.3,

one can compare the two by inverting the axes of the velocity-load curve in figure 5.13.

Figure 5.14 shows the juxtaposition of the load-velocity curves of both the hard and soft

device. One notes the general agreement between the two curves, up to the dispersion

v

F∞

Speed-controlled experiment

Load-controlled experiment

Figure 5.14: Juxtaposition of the load-velocity curve of the system in speed-controlled

experiments (in blue, see figure 5.3) and load-controlled experiments (in

yellow, see figure 5.13).

caused by the stochastic trajectories. Furthermore, the range of prescribed f that can

be plotted without total detachment stops around the maximal load region of the hard

device experiment. That is to say, starting from zero-load on the soft device, one can only

explore the low velocity branch of the load-velocity curve. As a perspective on future

work, one can suggest an experiment where a switch from hard device to soft device
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occurs for prescribed v > 10, to see whether the branch of higher velocity can be explored

by the soft device.

5.2.2 Transient Regime

Regarding the evolution of the soft device, we note that no transient regime is observed,

as can be seen in the distribution of s0 versus time in figure 5.15.
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(a) f = 10

(b) f = 40
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Figure 5.15 shows that for various value of the prescribed load f , the system settles in

a steady-state pattern immediately. The steady-state is characterized by a wide spread of

s0 around a stretched value. Strips of convected heads can be seen corresponding to the

stretching of a bunch of heads followed by mass detachment to return to the steady-state

s0 distribution. The effect of increased loading f can be seen as increasing the magnitude

of the dragging events, so that the distribution of s0 around the steady-state value widens.

5.3 Effect of Binding Site Spacing

One of the defining feature of our fibre interaction model is the presence of explicit,

discrete binding sites. This allows us to investigate the effect of binding site spacing on

the mechanics of the system. To this end, we plot the force-velocity curve—F∞ as a

function of v—on the speed driven hard device, for varying values of the intersite spacing

d, as shown on figure 5.16.

First we observe that all curves follow the same trend, with a quasi-linear increase in

F∞ at low velocity, a maximum and then a slower decay at high velocities. Next, we

observe that the decay of F∞ at high velocities generally follows a lower curve for higher

binding site spacing d. The first effect which explains this trend is what we call a steric

effect. Since the experiments are run at a constant amount of cross-bridges N , when

the spacing between binding sites d decreases, more binding sites become available for

the given amount of cross-bridge heads, as shown on figure 5.17, increasing the binding

probability. This results in a linear increase of F∞ as d decreases which is part of the

observed trend on figure 5.16.

The steric effect can be negated by plotting the normalized load multiplied by the

periodicity, as done on figure 5.18. Plotting F∞ × d (v) at low velocities reveals that at

the higher end of d, all curves collapse into a single curve, whereas for lower values of d,
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(c) f = 80

Figure 5.15: Density plots of the s0 distribution versus time for different imposed loads

f (a): f = 10, (b): f = 40, (c): f = 80.

Simulation parameters: Ntimestep = 2.104 kon = 10 κ = 10 β = 2 d =

1.5 c = 1% N = 200 pinit = (0.24, 0.76)
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F∞

periodicity d

Figure 5.16: F∞ versus v plotted for varying values of periodicity d.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 10 , β =

2 , ∆t = 10−4 , c = 1% , N = 200 , pinit = (0.24, 0.76) .

109



moving

fibre

N cross-bridge heads

binding site
d

(a) Large d

moving
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N cross-bridge heads

binding site
d
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Figure 5.17: Schematic representation of the periodic fibre system for (a): large and (b):

small distance d between binding sites. When the periodicity d decreases,

more binding sites per unit length become available, increasing the likelihood

of binding and, in turn, the total load F of the system.
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v

F∞ × d
periodicity d

Figure 5.18: Load velocity curves multiplied by the periodicity d. Curves beyond d = 2

show a collapse at low velocities.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 10 , β =

2 , ∆t = 10−4 , c = 1% , N = 200 , pinit = (0.24, 0.76) .
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F∞ × d increases with d. This is confirmed by plotting F∞ × d as a function of d (see

figure 5.19). More specifically, for d ≥ 5 the low-velocity curves collapse irrespective of d,

d

F∞ × d

prescribed v = 50

Figure 5.19: F∞ × d plotted versus the periodicity d.

Simulation parameters: as in figure 5.18

whereas for d ≤ 2, F∞× d grows as d increases. Our proposed explanation supposes that

for d� 1, binding sites are sparse, therefore adding a binding site increases the number

of attachable heads. We thus have the total load F equal to

F = Nbfper site , (5.3)

where Nb is the number of binding sites and fper site is the load per binding site. fper site

doesn’t depend on d, meaning that binding sites do not interfere with one another. Next,

we also have

Nb =
L

d
=⇒ Lfper site = dF = constant , (5.4)
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where L is the total length of the fibre. In contrast, when d � 1, the probability of

binding for a head is linked to the number of binding site in its neighbourhood. Therefore

d becomes a factor in the curve F∞ × d.

We suggest that the reason the curve collapse is only observed low velocities is that at

high velocities and high d, the fraction of attached heads becomes much lower and when

faced with less binding sites this makes the system more susceptible to the noise due to

discrete events making the average F∞ less meaningful.

5.4 Cyclic Solicitation

In this section we describe the behaviour of the fibre system in response to a cyclic

solicitation in hard device. Cyclic solicitation is induced by alternating the direction of

the traction speed. The number of iterations during which the fibre is moved in a single

direction is called the cycling interval and denoted icyc. From this we can derive the

cycling time tcyc, which is the duration spent moving in one direction of the cycle. The

tcyc verifies tcyc = ∆t × icyc, where ∆t is the time step of the simulation. Figure 5.20

showcases a sample trajectory of the system under cyclic movement for a cycling time

of tcyc = 0.1. Figure 5.21 represents the mean total load 〈F 〉 in the system versus time,

averaged over n = 20 trajectories, plotted for three values of tcyc (tcyc = 0.1, tcyc = 0.35

and tcyc = 0.5). For tcyc = 0.1, the system never leaves the quasi-linear regime and cycles

up and down linearly as time progresses. This is as expected, since the cycle duration

is shorter than the duration of the transitory regime (see figure 5.2). For tcyc = 0.5,

the system has time to reach steady-state, and a brief stable period can be observed

at the end of each cycle. The intermediate tcyc = 0.35 falls between the two previous

simulations: the reverse cycles occurs at the cusp between quasi-linear transient state and

steady-state. In each case, one observes a higher overshoot that occurs in the first cycle,
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F

Figure 5.20: Sample trajectory of a cyclic solicitation. Orange ticks indicate the position

in time where a reversal of the traction velocity occurs.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 10 , β =

2 , d = 1.5 , ∆t = 10−4 , c = 1% , N = 200 , pinit =

(0.24, 0.76) , v = 10 , icyc = 1000 iterations , tcyc = 0.1 .
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which is absent from the subsequent cycles. Furthermore, the cycles eventually move to

an average load 〈F 〉 which is symmetrical with respect to the zero-load horizontal axis

as shown clearly on figure 5.21a.
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(a) tcyc = 0.1 , Ntimestep = 2.104

t

〈F〉

(b) tcyc = 0.35 , Ntimestep = 4.104
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〈F〉

(c) tcyc = 0.5 , Ntimestep = 6.104

Figure 5.21: Averaged total load versus time for a cyclic solicitation of varying cycling

time tcyc (a): tcyc = 0.1, (b): tcyc = 0.35, (c): tcyc = 0.5. Orange ticks indicate

the position in time where a reversal of the traction velocity occurs.

Simulation parameters as in figure 5.20.

This phenomenon can be more clearly observed when plotting the averaged load 〈F 〉

versus the traveled distance l. This manifests itself on figure 5.22 as a convergence towards

a limit cycle as the cycling progresses, with an overshoot still visible on the first iteration

of the cycle. This progression to a limit cycle reproduces experimental loading assays in

collagen-rich tissues such as tendon [17] and skin [105].
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(a) tcyc = 0.1 , Ntimestep = 2.104

l

〈F〉

(b) tcyc = 0.35 , Ntimestep = 4.104
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〈F〉

(c) tcyc = 0.5 , Ntimestep = 6.104

Figure 5.22: Averaged load over multiple trajectories 〈F 〉 plotted versus travelled distance

l, for different values of tcyc.

Simulation parameters: as in figure 5.20.
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6 Results of the Corrected Model

In the previous result and discussion chapter, we used our initial model which doesn’t

satisfy the detailed balance. As pointed in the presentation of the model, we expected

this to be consequenceless as we consider only out-of-equilibrium situations in which the

heads are not in front of the attachment site. However, to really make sure that this

assumption was true, we redid the key simulations of the manuscript with our corrected

model. At the same time, we also increased the stiffness κ to really make sure that the

Kramer’s detachment rate is a valid assumption.

6.1 Hard Device

First, we redid the simulations in the hard device. The figure 6.1 reproduces the example

of a single trajectory (previously figure 4.1), while figure 6.2 gives a collection of differ-

ent trajectories for our new parameters (previously figure 5.1). Figure 6.3 (previously

figure 5.2) gives the behaviour of the total load F averaged over n = 10 trajectories.

Figure 6.4 (previously figure 5.3) gives the load-velocity curve of the hard device system.

Figure 5.4 (previously figure 5.4) gives the evolution of the averaged attached fraction of

bonds for increasing values of the prescribed velocity v. Figure 6.6(previously figure 5.6)

gives the evolution of the initial slope of the load Ḟ as a function of the prescribed

velocity v.
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F

Figure 6.1: Load versus time shown for an example trajectory of the hard device simula-

tion.

Corrected version of figure 4.1.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 100 , β =

2 , d = 1.5 , ∆t = 10−4 , c = 1% , N = 200 , pinit =

(0.18, 0.82) , v = 10 .

121



F∞

t

F
prescribed v = 10

1 2

Figure 6.2: Total load in the system F versus time t shown for multiple trajectories and

for prescribed velocity v = 10. F∞ visualizes the average value taken by F

once the permanent regime has been reached.

1 Transient regime. 2 Steady-state regime.

Corrected version of figure 5.1.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 100 , β =

2 , d = 1.5 , ∆t = 10−4 , c = 1% , N = 200 , pinit =

(0.18, 0.82) , v = 10 .
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〈F〉
prescribed v

Figure 6.3: Average value 〈F 〉 (t) as a function of time t for increasing sliding velocity v.

Each curve is the average of n = 10 simulations.

Corrected version of figure 5.2.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 100 , β =

2 , d = 1.5 , ∆t = 10−4 , c = 1% , N = 200 , pinit = (0.18, 0.82) .
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F∞

Figure 6.4: Steady-state load F∞ versus prescribed sliding velocity v. Bars indicate the

size of fluctuations at steady-state around the average F∞ value. These bars

are calculated as the standard deviation of F once steady-state has been

reached, averaged over all n = 10 trajectories of the simulation. Inset shows

a zoom around the peak of load-velocity curve. Simulation parameters as in

figure 5.2.

Corrected version of figure 5.3.
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ϕattached prescribed v

Figure 6.5: Average fraction of attached bonds φattached as a function of time, plotted

for different values of prescribed v. The initial state has 82% of the bonds

attached. Simulation parameters as in figure 6.3

Corrected version of figure 5.4.
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Figure 6.6: Slope Ḟ of the transient F (t), assuming a linear increase, slope plotted against

prescribed sliding velocity v. A linear fit of the data is shown in orange.

Simulation parameters as in figure 6.3.

Corrected version of figure 5.6.

6.2 Soft Device

Next we present the results of the corrected model for the soft device. Figure 6.7 (previ-

ously figure 4.2) presents a single trajectory of the soft device experiment, while figure 6.8

(previously figure 5.9) presents a collection of multiple trajectories for a prescribed f = 20.

Figure 6.9 (previously figure 5.10) presents the aggregate fibre displacement versus

time, averaged over n = 10 trajectories. Figure 6.10 (previously figure 5.13) gives the

velocity-load curve of the soft device system. Figure 6.11 (previously figure 5.14) gives

the juxtaposition of the force-velocity curve of both hard and soft device on the same

plot.
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Figure 6.7: Displacement stot versus time shown for an example trajectory of the hard

device simulation.

Corrected version of figure 4.2.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 100 , β =

2 , d = 1.5 , c = 1% , N = 200 , pinit = (0.18, 0.82) , f = 20 .

6.3 Discussion

As demonstrated by the figures corrected for the detailed balance, the results obtained are

very similar to those of the initial model. Qualitative features of the plots are identical and

lead to the same conclusions. This outcome confirms our hypothesis that the simulated

system operates far from equilibrium such that the breaking of detailed balance does not

affect the behaviour of the model significantly. The corrected model has the advantage of

being thermodynamically exact. However, unlike the initial model the corrected model

may only offers the possibility of attachment at the borders of the binding site. A more

advanced model could satisfy both the detailed balance and the possibility for a bond

to attach at each point of the binding site. This would require a modification of both k+

and k−.
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prescribed f = 20

Figure 6.8: Aggregate fibre displacement stot versus time t shown for multiple trajectories

and prescribed load f = 20.

Corrected version of figure 5.9.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ = 100 , β =

2 , d = 1.5 , c = 1% , N = 200 , pinit = (0.18, 0.82) , f = 20 .
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prescribed f

Figure 6.9: Aggregate fibre displacement 〈stot〉 averaged over 10 trajectories versus time

for different prescribed load f . All displacement are drawn for the same num-

ber of iterations.

Corrected version of figure 5.10.

Simulation parameters: Ntimestep = 2.104 , kon = 10 , κ =

100 , β = 2 , d = 1.5 , c = 1% , N = 200 , pinit =

(0.18, 0.82) , interpolation step: 10−2 .
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f

〈v〉

Figure 6.10: Velocity of the system v plotted versus prescribed load f . Bars indicate

dispersion of velocity defined as the minimum and the maximum value of

the set of n = 10 trajectories.

Corrected version of figure 5.13.

Simulation parameters: Ntimestep = 2.104 kon = 10 κ = 100 β =

2 d = 1.5 c = 1% N = 200 pinit = (0.18, 0.82)
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v

F∞

Speed-controlled experiment

Load-controlled experiment

Figure 6.11: Juxtaposition of the load-velocity curve of the system in speed-controlled

experiments (in blue, see figure 6.4) and load-controlled experiments (in

yellow, see figure 6.10).

Corrected version of figure 5.14.
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7 General Conclusion and Perspectives

7.1 General Conclusion

In this manuscript, we devised a mathematical model to describe the mechanical behaviour

of fibre networks.

The system described by the model is a generic fibre network represented by rigid fibre

elements sliding with respect to one another and interacting via spring-like cross-bridges.

We approach this system in a one-dimensional interaction as is suitable for a local

description of the network or for a system featuring unidimensional fibre bundles. We

are interested specifically in the case where the connecting cross-bridges can attach and

detach stochastically to specific binding points along the fibre.

To inform the model, we use reaction rate or Kramers theory [72, 73] to describe rates of

attachment and detachment of cross-bridge heads as a function of distance to the closest

binding site. Attachment and detachment rates are significant quantities because when

multiplied by a time interval, the give probabilities of attachment and detachment which

can be used in a stochastic simulation of the fibre system.

All this work is performed for fibres exhibiting a periodic arrangement of binding sites

which allow for the mechanical description of a uni-dimensional infinite fibre system.

Next, we give the blueprint to perform simulations of the mechanical model. We examine

two loading scenarios: one where the displacement of the fibre is fixed, called a hard device,
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the other where the total system load is fixed, called a soft device. For the hard device,

a straightforward fixed step algorithm is adopted, for which the system moves only at

increments of this time step. In the case of the soft device, since no movement occurs in the

system between attachment / detachment events, we implement the Stochastic Simulation

Algorithm [100, 101], which skips in time between transition events. Furthermore, we

show that these waiting times correspond to that of competing Poisson processes with a

parameter equal to the sum of the rates of all competing transition events.

We then examine the results of these simulations under varying loading conditions.

Under a hard device, the fibre system gives a load response which resembles a viscoelastic

response, with a transient, quasi-linear increase in force which peaks then falls to a

steady-state which exhibits large fluctuations around the steady-state value. Sampling

the mean steady-state value, that is the F∞, for a given prescribed velocity allows us

to derive the load-velocity curve of the hard device system. The load velocity curve is

shown to be non-monotonous, first increasing quasi-linearly with the prescribed velocity

and then following a slower decay at high velocities. By examining the attachment state

of the system in more detail, we show that this non-monotonicity is the result of two

competing effects: the initial increase in load is due to cross-bridges being attached at

a higher stretch state, whereas the eventual load decrease is due to the general ripping

effect at high speeds, where the total fraction of attached cross-bridges decreases at high

velocities.

Next, we investigate the transient state of the simulation. Looking at the distribution of

cross-bridge elongation shows that the transient quasi-linear state is the result of ballistic

transport of the cross-bridge heads, where the initial uniform distribution of elongation is

simply translated in space towards higher elongation. The end of the transient state and

the onset of steady-state is marked by the detachment and reattachment of a significant

number of cross-bridge heads at smaller elongations.
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Meanwhile, the soft device simulation shows a quasi-linear ramp response to prescribed

load without any transient regime. The total displacement stot can be linearly fitted to

provide a movement velocity in response to the prescribed load. This allows us to chart

a velocity-load curve that is analogous to the one in the hard device. The velocity-load

curve shows monotonously increasing velocity as prescribed loading grows, up until the

point where total detachment of the two fibres start occurring during the simulation.

The total detachment at high velocities means that only the low speed branch of the

load-velocity curve can be explored by the soft device. Our results show that the low

velocity branch of the soft device velocity-load curve is consistent with the one of the

load-velocity curve of the hard device.

Next, we examine the effect of binding site spacing on the behaviour of the system. Our

results show that generally, the load-velocity curve values increases when the periodicity

d decreases. Part of this increase is due to a steric effect, which indiscriminately increases

the load F when d decreases. When we eliminate the steric effect however, we see that

all curves above a threshold value of d collapse into a single master curve and for d under

the threshold value, we see a general increase in the load-velocity curve when d decreases.

We interpret this as the influence of the number of relevant binding site neighbours. For

d above the threshold value, the number of relevant neighbours is 0, so all force-velocity

curve behave the same way, irrespective of d. For d below the threshold value, decreasing

d brings more relevant binding site per unit length and more attachment probability,

thus increasing the value of the load-velocity curve.

Finally, the system is loaded cyclically in the hard device configuration, where the sliding

velocity is flipped periodically. All cycling configurations exhibit an evolution toward a

limit cycle, which is established gradually when the cycling occurs rapidly and immediately

when the cycling is slower.
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7.2 Perspectives

In this section, we suggest a few directions which future work can take to expand upon

the work presented herein.

First, further parametric study of the system can be performed. In particular the para-

metric study can be adapted to a biological system of interest such as the tendon at the

tissue level or actin bundles at the microscopic level. This adaptation can be done by

adjusting the values of parameters such as cross-link stiffness or binding site spacing to

realistic values for the corresponding biological system.

Next, the hard device system can be used to explore the high velocity branch of the

velocity-load curve. One would start the experiment in hard device at high sliding veloc-

ities and change the experiment control to a soft device mode. This would allow us to

check whether a branching or an instability of the velocity-load curve can occur at high

velocities.

In the case of cyclic solicitation, we suggest the following additional experiments. First,

taking fibre buckling into account by stopping fibre movement in soft device when the

experienced load f becomes negative. Second, a study of cycle reversibility can be per-

formed to check whether the system moves away from the limit cycle once reached or

not.

The final long-term goal of our work would be the construction of a fibre-level behaviour

law which would then be used to simulate an ensemble of connected fibres.
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[20] Stéphane Bancelin. “Imagerie Quantitative du Collagène par Génération de Sec-
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Titre : Mécanique multi-échelles des tissus mous
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Résumé : Les réseaux de fibre sont une structure
omniprésente dans les tissus biologiques, aussi bien
au niveau macroscopique, où ils sont l’ingrédient prin-
cipal des tissus mous, qu’au niveau microscopique,
en tant que constituants des structures collagèniques
ou du cytosquelette. L’objectif de ce travail de thèse
est de proposer un modèle basé sur la microstruc-
ture physique des réseaux de fibres afin d’obtenir une
compréhension du comportement mécanique des
réseaux de fibres biologiques. Le modèle est basé sur
une description de fibres glissant les unes par rapport
aux autres et interagissant via des ponts qui se com-
portent comme des ressorts. Ces ponts peuvent s’at-
tacher et se détacher de manière stochastique avec
un taux de détachement qui dépend de la force su-
bie. Comparé aux modélisations existantes, notre tra-
vail met en jeu une configuration en glissement dy-
namique des fibres, ainsi que des sites d’attache-
ment discrets ne permettant l’attachement qu’à des
endroits localisés de la fibre. Le détachement des
ponts est basé sur la diffusion thermique hors d’un
puit de potentiel suivant la théorie de Kramers. Cette
théorie donne un contexte physique à la dynamique

du détachement ainsi qu’une dépendance naturelle
du détachement au chargement via l’inclinaison du
paysage énergétique par la force de chargement. Le
modèle donne deux modes de contrôle du système :
un contrôle à vitesse imposée, appelé système dur,
et un contrôle à force imposée, appelé système mou.
Notre travail permet également de visualiser le com-
portement du système à travers une simulation sto-
chastique. Les simulations offrent deux algorithmes,
chacun adapté à la méthode de contrôle du système,
en système dur ou mou et respectant la causalité
dans chacun des modes. Les résultats de la simu-
lation sont explorés via la visualisation des données
sortantes de la simulation, qui servent de support
pour l’investigation paramétrique du comportement
du modèle et ancrent l’interprétation physique des
résultats. En particulier, l’influence de l’espacement
des sites d’attachement du système, un point ca-
ractéristique du modèle, est examiné. De même, nous
explorons l’effet de chargements complexes (transi-
toires, cycliques, etc.) qui représentent les charge-
ments physiologiques des tissus fibreux.

Title : Multi-scale mechanics of soft tissues

Keywords : soft tissues, mechanics; fiber networks; microstructure; stochastic simulation; statistical mecha-
nics

Abstract : Fibre networks are ubiquitous structures
in biological tissues, both at the macroscopic level
being the main ingredient in soft tissues and at the
microscopic level, as constituents of collagen struc-
tures or the cytoskeleton. The goal of this work is to
propose a model based on the physical microstruc-
ture of fibre networks in order to provide an unders-
tanding of the mechanical behaviour of biological fibre
networks. The current model starts from fibres sli-
ding with respect to one another and interacting via
spring-like cross-bridges. These cross-bridges can at-
tach and detach stochastically with a load-dependent
detachment rate. Compared to existing modelling ap-
proaches, this work features a dynamic sliding confi-
guration for the interacting fibres and discrete binding
sites which permit attachment on localised spaces
of the fibre. The detachment of cross-bridges is ba-
sed on thermal diffusion out of an energy well, follo-
wing the Kramers rate theory. This theory provides a
physical background to the detachment dynamics as

well as a natural load dependency in the tilting of the
energy landscape by the load force. The model pro-
vides two modes by which the depicted system may
be driven: an imposed velocity driving, called a hard
device and an imposed load driving, called a soft de-
vice. The work also provides a way of visualising the
behaviour of the model by performing a stochastic si-
mulation. The simulations provided present two algo-
rithms, each tailored to represent the driving of the
system, whether in hard or soft device, respecting the
causality in each of the driving mode. Simulation re-
sults are explored via data visualisation of simulation
output. These visualisation serve as an entry point
into parametric investigation of the model behaviour
and anchor the interpretation of the results into physi-
cal systems. In particular, the influence of binding site
spacing, one of the key features of the model, is in-
vestigated. We also investigate the effects of complex
loading paths (transitory, cyclic, etc.) which can be as-
sociated to the physiological loadings fibrous tissues.
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