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Résumé Dans cette thèse, nous implémentons les équations de Saint Venant
(SV), ou de Shallow Water, sur des grilles non structurées a�n de simuler des
écoulements de surface libre sur des bathymétries irrégulières, incluant inon-
dation et d'autres phénomènes complexes qui se produisent généralement dans
des applications hydrodynamiques. En particulier, nous voudrions simuler
avec précision les tsunamis, la propagation d'onde à grande échelle jusqu'à
l'inondation très localisé. À cette �n, nous utilisons deux méthodes qui sont
comparées en profondeur le long du manuscrit: la méthode des volumes �-
nis, très populaire dans la communauté hydrodynamique et hydraulique et
une technique plus récente appelée Distribution du Résidu appartenant à la
classe des schémas upwind multidimensionnels. Pour améliorer la résolution
de certaines caractéristiques de l'écoulement telles que le développement du
déferlement et les inondations à petite échelle, nous utilisons une adaptation
de maillage dynamique basée sur une redistribution des n÷uds de maillage,
aussi appelé adaptation de type r (r signi�ant "relocalisation"). La combinai-
son appropriée de cette méthode avec le solveur SV est généralement appelée
Méthode de Maillage Mobile. Parmi les nombreux algorithmes de maillage
mobile disponibles, nous proposons une forme Arbitrary Lagrangian Eulerian
(ALE) des équation SV qui permettent de faire évoluer les variables de �ux
d'une maille à l'autre de manière élégante. Dans ce contexte, nous soulignons
les principales contributions de la thèse:

1. Nous montrons l'importance de conserver toutes les propriétés standards
d'un solveur Eulérien SWE tel que la préservation du lac au repos et la
conservation de la masse également sur des maillages en mouvement.

2. Notre couplage ALE est comparé à l'approche de rezoning, avec une
légère augmentation de la performance globale de l'algorithme en termes
de précision et de temps CPU.

3. Nous étendons l'approche ALE sur la sphère a�n d'inclure l'e�et de la
courbure terrestre dans la dynamique de propagation des ondes à grande
échelle du tsunami.

4. la simulation du tsunami 2011 de Tohoku-Honsu devrait prouver que la
méthode de maillage mobile étudiée dans la thèse, bien que simple, pour-
rait être un bon candidat pour réduire le coût de calcul des simulations
de tsunami.

Title Adaptive techniques for free surface �ow simulations. Application to
the study of the 2011 Tohoku Tsunami.

Abstract In this thesis we implement the Shallow Water equations (SWEs)
on unstructured grids in order to simulate free surface �ow over irregular
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bathymetries, wetting/drying and other complex phenomena that typically
occurs in hydrodynamic applications. In particular we would to accurately
simulate tsunami events, from large scale wave propagation up to localized
runup. To this aim we use two methods that are extensively compared along
the manuscript: the Finite Volume method, which is very popular in the hy-
drodynamics and hydraulic community and a more recent technique called
Residual Distribution which belongs to the class of multidimensional upwind
schemes. To enhance the resolution of important �ow feature such as bore
development or small scale �ooding, we use a dynamic mesh adaptation based
on a redistribution of mesh nodes or r-adaptation (r stands for �relocation�).
The proper combination of this method with the �ow solver is usually referred
to as Moving Mesh Method. Among the many di�erent moving mesh algo-
rithms available we propose an Arbitrary Lagrangian Eulerian (ALE) form of
the SWEs which elegantly permit to evolve the �ow variables from one mesh
to the updated one.

Keywords Shallow Water Equations, Arbitrary Lagrangian Eulerian form,
Finite Volume, Multidimensional Upwind Schemes, tsunami simulations, mov-
ing mesh method, r-adaptation.

Mots-clés Équation de Saint-Venant, Description Arbitraire Lagrangienne
Eulérienne, Volume Finis, Méthode d'upwind multidimensionel, adaptation du
maillage de type-r.
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Introduction

Context of the thesis: the TANDEM project

The 11 March 2011 an earthquake of Mw 9.1 with epicenter o� the coast of
Tohoku triggered a tsunami on the eastern coast of the Honsu island. The dev-
astating wave has hit the coastal prefectures of Iwate, Miyagi and Fukushima.
It was the tsunami attack to cause the major part of damages and fatalities
(the Fire and Disaster Management Agency counted for 16,278 fatalities and
2,994 missing in Tohoku and Kanto regions). Among the damages, the accident
of the Fukushima Daichi Nuclear Power Plant (NPP) was the one that mostly
impressed the public opinion worldwide. In the Fukushima site, the designed
tsunami height, whose computation was based on a standard procedure Yanag-
isawa et al. [2007], was 6.1 [m]. The 11 March 2011 a tsunami wave 16 [m] high
hit the Fukushima Daichi NPP. The water �ooded in the site, causing the loss
of the cooling system which was followed by the hydrogen explosion of the re-
actors and by the subsequent propagation of radioactive material. In the days
that followed Japan government declared nuclear emergency and thousands of
people have been evacuated due to elevated radiation risk, evoking a scenario
similar to the Chernobyl accident in 1986.

This event mobilized the International Atomic Energy Agency (IAEA)
which asked for new security standards concerning the NPP located along
coastal regions. In France the design of new guidelines was particularly ur-
gent: 19 NPP are active and 5 of them (Blaye, Flamanville, Paluel, Penly and
Gravelines) are right on the Atlantic coast. In this context, the French Na-
tional Research Agency (ANR) launched the TANDEM project (Tsunamis in
the Atlantic and the English ChaNnel De�nition of the E�ects through numer-
ical Modeling) which has funded the present thesis. The objective was to study
the 2011 tsunami by numerical modeling and to de�ne the tsunami hazard for
the French coastal regions. 10 French partners were involved: among them
there were industrial companies (Electricté de France, Principia) and French
research institutions (University of Pau, BRGM, SHOM, Ifremer, IRSN and
INRIA). The project was structured in four parts or work-packages (WP):

• WP1 consists in a set of benchmarks to validate, compare and improve
the di�erent hydrodynamic softwares available among the partners. The
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idea was similar to the one of the Workshop on Long Wave Runup Model
IIW-LWRM [1995]: collect a series of existing laboratory tests for long
wave propagation and runup and check the ability of the hydrodynamic
solver (both the physical model and numerical method) to well reproduce
the experiments.

• WP2 studied the in�uence of uncertain parameters in the computation
of tsunami heights and �ooded areas. Sensitivity analysis on the com-
putational and physical parameters was conducted in order to provide a
quanti�cations of them. These includes mesh de�nitions as well as the
seismic source.

• WP3 was dedicated to the simulation of the 2011 Tohoku tsunami which
is widely recognized to be the largest instrumentally recorded earthquake
in Japan history. This fact will permit us: 1) to recover realistic initial
waveforms from seismic/tsunami data inversion 2) to compare the nu-
merical simulation against high reliable data.

• WP4 provided an inventory of all the possible tsunamigenic sources for
the French coast, the de�nition of possible tsunami scenario and their
numerical simulation.

This manuscript contributes to WP1, WP2 and WP3. The main objective
of the thesis consists in increasing the accuracy of hydrodynamic (and in par-
ticular tsunami) simulations through a mesh adaptation strategy, rather then
employ very high order schemes. This choice is motivated by the fact that, for
large scale tsunami simulations, static grids are inherently not e�cient. The
tsunami wave is localized in a certain area of the ocean, then crosses all the
ocean basin, shoals, steepens near the coastlines and inundates the land. To
enhance important features in tsunami simulations such as the resolution of
wave patterns during propagation and shoaling or the runup/rundown stages
in which �ne scale �ooding occurs, mesh adaptation could be the ideal can-
didate. In this thesis mesh adaptation will be achieved by redistributing (or
relocating) the same number of mesh nodes within the domain.

State of the art

Tsunami science and tsunami modeling

Tsunami science is a young science. A systematic study of the subject was
addressed only in the last �fty years. In the �rst studies (sixties) tsunamis
were approximated as a one dimensional long wave that arises after an impul-
sive sea�oor displacement. To develop a better understanding of the tsunami
ampli�cation, shoaling and runup in coastal areas, much attention was put in
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Introduction

the derivation of analytical solutions. The physical model was quite simple:
a long wave (a periodic wave, solitary waves or N-shaped waves) travels on a
constant depth before reaching a sloping beach on which runup and re�ection
occur. Even if simple, there were important unresolved questions such as the
role of non-linearity and dispersion in the wave transformation. The simplest
depth averaged model describing long wave propagation is the non linear Shal-
low Water equations (in this thesis abbreviated as SWEs). SWEs are derived
from the conservation of mass and momentum under the hydrostatic assump-
tion. It is assumed that the horizontal length scale of the �ow is much larger
then vertical one (the scale of the water depth); the consequence is that the
vertical dynamics can be neglected. Carrier and Greenspan [1958] resolved the
SWEs for various waveforms climbing a sloping beach. Later Synolakis [1987]
compared the analytical solution for a solitary wave with the experimental wa-
ter level pro�le created in a wave tank: he found that the SWEs approximated
very nicely the long (and non breaking) wave pro�les all along the runup pro-
cess. It was also found that this set of equations correctly describes non linear
wave transformation and wave breaking. The success of the SWEs made them
the most commonly long wave approximation for runup calculation. It was also
recognized that the lack of wave dispersion could give wrong wave propagation
results in deep water and shoaling. To include these e�ects, the Boussinesq-
type equations received considerable attention, see Peregrine [1967]; Sorensen
and Madsen [1992]; Nwogu [1994]. These e�ects are only relevant locally and
for landslide tsunamis. Here we will consider the SWEs as our set of governing
equations.

In the seventies we assisted to the advent of numerical methods to ap-
proximate the long waves equations. Finite Di�erence and Finite Volume,
originally developed for gasdynamics started to be applied to the simulation
of two dimensional wave propagation and runup on irregular bathymetries.

After the 1992 Flores tsunami and the 1993 Okushiri tsunami, a large
tsunami experiment was conducted by Briggs et al. [1995]. The physical model
consisted of a solitary wave hitting a a small scale reproduction of a conical
island that approximated the shape of the Babi island, strongly impacted
by the Flores tsunami. For the Okushiri event, an extreme tsunami runup
(30 [m]) was discovered in the Monai valley. This motivated a second tsunami
experiment that was performed at the CRIEPI laboratory (Japan) where the
complex three dimensional beach facing the Monai valley was reproduced with
high accuracy. We mention this two experimental set-up because nowdays
they become standard test-case for every numerical method approximating
long waves, included the SWEs solver that we propose in this thesis.

From the nineties the community of tsunami modelers start to meet in
Unites States at the Workshop on Long Wave Runup Models (IIW-LWRM
[1995] and IIIW-LWRM [2004]). In these occasions, improved physical mod-
els and more recent numerical methods that were developed meanwhile, were
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tested and analyzed against experimental data in order to obtain reliable nu-
merical tools with precise range of applicability. It was also realized that tidal
gauges where un�t to record a tsunami wave. A new system of tsunamometers
buoys to record tsunami height in deep ocean was implemented with an appro-
priate frequency response. In two thousands a tsunami forecasting system was
operational in the Paci�c Ocean. In 2003 there was the �rst warning cancella-
tion in Hawaii. After the megathrust earthquake of 2004 in Sumatra, numerical
modeling was mature to robustly simulate the complete tsunami event, from
generation to propagation and runup. Numerical models were able to explain
the large runups and destruction observed in coastal Thailand Ioualalen et al.
[2007]. When this thesis started in 2014, there were already many published
works on the numerical modeling of the Tohoku-Honsu tsunami, see Chen et al.
[2014]; Løvholt et al. [2012]; Shimozono et al. [2012].

Numerical methods in hydrodynamics

SWEs are of hyperbolic type, eventually with source terms to take into ac-
count di�erent e�ects such as bathymetry and friction. The hyperbolic nature
of the underlying equations have permitted to transfer earlier upwind Finite
Di�erence and Finite Volume (FV) methods, originally developed for the com-
pressible Euler equations of gasdynamics in the aeronautical community, to
hydrodynamics.

It was soon realized that there were speci�c issues. First and di�erently
from gasdynamics, there was the problem of embedding at a discrete level exact
solutions more complex then the trivial uniform �ow with constant depth.
The lake at rest, which results from the physical balance between hydrostatic
pressure and the pressure force played by the bottom on the �uid, emerged
as one of the most important state to be preserved numerically. This was a
way to prevent the unexpected rise of numerical oscillation in regions where
the �ow is at rest. Such schemes are called Well Balanced (WB). The work
of Bermudez and Vazquez-Cendon [1994] was pioneering in this area since it
established the link between upwinding of the source term and Well Balanced
property. This initial work in one dimension, has been led throughout the
years to many di�erent results allowing the construction of unstructured mesh
discretizations verifying the WB via an appropriate coupling of the numerical
�ux and numerical source terms Hubbard and Garcia-Navarro [2000], or based
on di�erent forms of the equations, as the well-balanced form of Russo [2001];
Kurganov and Levy [2002]; Chertock et al. [2017], or the so-called pre-balanced
form of Rogers et al. [2003]; Liang and Borthwick [2009]; Liang and Marche
[2009]. A review on Well Balanced can be found in Castro et al. [2017].

In coastal engineering, modeling the moving shoreline is a second impor-
tant issue. At the beginning, the shoreline was treated as a boundary condition
which is changing with time and it should be determined by the computations
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Introduction

itself. An alternative way, that proved to be simpler, is to include the wet/dry
interface in the computation, introducing the presence of cells of mixed type
where both dry and wet nodes appears. This method was �rst employed for
Finite Di�erence by Sielecki and Wurtele [1970]. Many years after, a robust
and e�ective treatment of wetting/drying was set in Brufau et al. [2002]. In a
Finite Volume context the situation with cells of mixed type can be treated as
a Riemann problem for which one state is wet and one state is dry, the solu-
tion consisting of a rarefaction wave advancing in the dry region and causing
�ooding. However unphysical oscillation may appear at the front especially for
the �ow speed: the �ow velocity in SWEs code is typically computed as the
ratio between discharge and depth, both small quantities at the shore, and this
lead to not accurate values. A depth threshold value is typically �xed avoiding
the computation of large velocities. Additional problems arise when bed slope
is present. It was recognized the di�culty of recovering the lake at rest for
WB schemes on a general irregular topography, since oscillation appeared at
the shore. Modifying the di�erence in the bathymetry level at the interface to
recover the equilibrium condition is a possible solution.

Another progress was the use of unstructured grids, which appears useful
also in hydrodynamics. Their inherent advantages respect to Cartesian grids
consist in the possibility to construct body �tted mesh and the �exibility when
exploiting local mesh re�nement. Unstructured grids are characterized by the
absence of preferential direction. We recall that the Godunov scheme, in two
dimensions, is based on a direct extension of the one dimensional scheme.
However, while in one dimension the cell normals are always aligned to the
wind direction, in two dimensions and unstructured grids this could be no
longer true and upwinding is created also in the crosswind direction to the
�ow. For this reason, there was much interest to construct multidimensional
upwind scheme with optimal di�usion property, see Roe and Sidilkover [1992].
The idea was to construct schemes directly in two dimensions, embedding the
multidimensional character of the physics into the numerical methods. This
was possible after that Roe [1982] had presented an alternative interpretation
of the one dimensional FV for linear advection. This work shed a new light
in the comprehension of upwinding and it was exploited to construct a class
of genuinly multidimensional scheme that are nowdays referred to as Resid-
ual Distribution (RD). After gasdynamics Deconinck et al. [2000], RD were
successfully extended to the SWEs by Paillere et al. [1998] and tested against
standard runup benchmarks in Ricchiuto and Bollerman [2009].

Very high order of accuracy is the next challenge for the hydrodynamic
codes. Although in this thesis we will stick to second order of accuracy, which
is standard nowdays for commercial codes, we mention the increasing attention
that the Discontinuous Galerkin and WENO methods have received in the last
years. A review of very high order schemes obtained with these two methods
can be found in Xing and Shu [2014].

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.

5



Moving Mesh Methods

h-re�nement is the most widely used technique to re�ne locally the mesh size.
The idea is very simple: based on some a posteriori error estimates, the mesh is
locally re�ned or coarsened adding or deleting points from the mesh. Originally
this technique was developed for structured Cartesian grids by Berger and
Colella [1989] under the name of Adaptive Mesh Re�nement (AMR). Nowdays
AMR tools are implemented in many geophysical codes such as GeoClaw Berger
et al. [2011] and Gerris Flow Popinet [2011]. They have been already tested
to improve 2011 Tohoku tsunami simulation accuracy in MacInnes et al. [2013]
and Popinet [2012].

For unstructured grids, h-re�nement (node insertion/deletion) can be per-
formed by appropriate local remeshing strategies, with impressive results shown
in Alauzet et al. [2007]; Isola et al. [2011]. In this thesis we have focused on
a more recent strategy of mesh adaptation for unstructured grids based on
nodes redistribution (or relocation). These are known as r-adaptation tech-
niques. We invite the interested reader to see the recent review of Budd et al.
[2009a]. Roughly speaking, these methods, always based on a posteriori error
estimates, cluster the points of a given reference mesh, keeping the mesh topol-
ogy and number of mesh points unchanged. Now days they are widespread in
the CFD community including aerodynamics Li and Petzold [1997], magne-
tohydrodynamics Tan [2007], multiphase �ow Chen et al. [2008], meteorology
Budd et al. [2009b] and recently they have been applied also to hydrodynamics
Zhou et al. [2013b]. The central idea is the one dimensional equidistribution
principle of de Boor [1973]. We search for a time dependent transformation
x = M(X, t) from a computational domain described by coordinate X to a
physical domain described by coordinate x. The map M should be computed
such that it equidistributes a monitor function (error estimates) m on the
reference domain, that is m∆x = ∆X. Given a uniform computational grid
∆X = const, if m is large (large error) the grid space ∆x is automatically
re�ned.

The main reasons behind the choice of r-adaptation can be summarized:

• Although very powerful, remeshing techniques requires much higher over-
heads and a very complex data structures. This results in a higher com-
putational cost, especially compared to a single step of an explicit dis-
cretization of the SWEs (as the one we will use in this thesis). On the
contrary, in r-re�nement, nodal movement is obtained by solving an ap-
propriate Moving Mesh Partial Di�erential Equation (MMPDE) whose
computational cost is of the same order of the CFD solver.

• the potential shown in the past for these techniques to capture shocks,
boundary layers and singularities. The MMPDE of Ceniceros and Hou
[2001], which is the one implemented in this thesis, merged this advan-
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Introduction

tages with a very e�cient implementation consisting in the resolution of
a sparse non-linear system.

• e�cient conservative/accurate remaps of �ow variables can be carried
out from one grid to the updated one Tang and Tang [2003]

We have to mention that r-adaptation is less developed and less understood
with respect to h-adaptation; The fact that mesh topology is �xed poses several
limitations: as stated in Budd et al. [2009a] it may never be possible to resolve
all of the �ne structures of a PDE as it evolves. Moreover great care has
to be put in the de�nition of the monitor function and in the choice of the
number of mesh points, since there is the serious risk that the nodes migrate
to regions with high gradient, leaving an extreme low number of mesh points
to approximate smooth structure of the �ow. Mesh tangling is another issue
that we will discuss and that deserves further studies.

In this thesis we will take an existing MMPDE (we said, the one of Ceniceros
and Hou [2001]) and we discuss extensively the coupling of the SWEs (or a
general �ow solver) with this MMPDE. In particular the SWEs and the MM-
PDE can be either solved simultaneously or alternately. The latter has been
successfully implemented by Huang and Russell [1999]. Historically, depend-
ing on the framework in which we evolve the SWEs, two di�erent alternate
algorithms were developed and they will be tested in this thesis.

The �rst is the rezoning method introduced in Tang and Tang [2003].
The SWEs are written in Eulerian framework and they are are solved on the
last updated �xed mesh at each time iteration. The advantage is that the
CFD solver can be treated as a black box; the drawback is that it requires a
remap/interpolation of the �ow variables on the updated mesh from the previ-
ous mesh. This operation may be quite expensive as it needs to guarantee the
same properties as the �ow solver itself (high order accuracy, non-oscillatory
character/positivity preservation, Well Balancedness, mass conservation).

At the opposite, one can evolve the �ow with an Arbitrary-Lagrangian-
Eulerian (ALE) formulation of the governing equations, as suggested e.g. in
Huang and Russell [1999]; Ni et al. [2009]. SWEs are rewritten in an arbi-
trary moving reference framework which follows mesh movement, see Donea
[1983]. The resulting scheme is interpolation free and the properties of the
�ow solutions are only determined by the scheme. However, a proper ALE
form of the numerical discretization has to be used. In particular, a well
known requirement for ALE discretizations is the compatibility with a Geo-
metric Conservation Law (GCL), which guarantees that no arti�cial volume
is produced in the computational domain due to mesh motion. The discrete
counterpart of this property is known as the DGCL (cf. Thomas and Lombard
[1979], Etienne et al. [2009] for an overview). Ideally, in Shallow Water �ows,
we have to ensure the satisfaction of both the DGCL, and of the WB, while still
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being able to conserve mass and momentum. Up to the our knowledge, this
issue has not been addressed yet and it widely discussed in this manuscript.

Tsunami simulation and earth curvature e�ects

There is a last key ingredient for performing large scale tsunami simulations:
earth curvature e�ects. In this thesis we have chosen to set properly the
SWEs in standard latitude-longitude curvilinear coordinates. This is the stan-
dard model for numerical weather prediction and ocean modeling. Within
this community, Finite Volume on the sphere has already received consider-
able attention, in the context of both Semi-Lagrangian methods and Eulerian
methods, see the review of Machenhauer et al. [2009]. In this thesis we will
refer to the latter class of schemes: the Eulerian FV based on the �ux form
of the SWEs implemented in Ullrich et al. [2010]; Rossmanith et al. [2004].
Recently Residual Distribution have been extended to curvilinear coordinates
only for steady problems Rossmanith [2013]. They appear to us very inter-
esting due to their simplicity to include the spherical geometry starting from
a code in Cartesian coordinate. We stress that our objective is the inclusion
of earth curvature in the tsunami dynamics. For this reason we don't need a
global scale modeling which means that the complication of the poles, where
the coordinate transformation become singulars, will be neglected.

ALE-SWEs are not much discussed in the literature. Although ALE bal-
ance law on manifold were already presented in Savidis et al. [2008], to the best
of the our knowledge this thesis represent the �rst attempt to set the SWEs
in ALE form on the sphere.

In geophysics mesh adaptation is gaining increasing popularity. Atmo-
spheric motion is a multiscale phenomenon and it is very hard, even with
modern supercomputers to capture all the scale of interest in a single compu-
tation. Since the works of Skamarock and Klemp [1992]; Behrens [1996], h-
adaptation on the sphere has strongly developed through AMR techniques, see
for example the recent McCorquodale et al. [2015]. Recently also r-adaptation
was reconsidered in order to increase the resolution of PDEs on the sphere. It
was recognized that the problem is much harder with respect to r-adaptation
in Cartesian coordinates. The main di�culty is related to �nd a unique map
from the computational sphere to the physical sphere Di et al. [2006]; Weller
et al. [2016]. We will bypass the problem taking advantage of the fact that
our domain is only a part of the whole sphere. We will discuss a naif approach
consisting in mapping a portion of the sphere into a plane.
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Main results of the thesis

We highlight directly the main contribution of this thesis. In the next section
we will detail each point with respect the structure of the manuscript.

1. We have developed an ALE Residual Distribution and Finite Volume
scheme for the SWEs on moving mesh. These schemes are Well-Balanced
and mass conserving.

2. The ALE approach has been tested (on standard long wave benchmarks)
against the popular rezoning method, showing a slight increase of the
overall performances in term of accuracy and CPU time. We have pro-
posed an improved version of the rezoning algorithm which uses a simple
linear advection scheme to interpolate the error estimate.

3. We have extended the ALE Residual Distribution and ALE Finite Vol-
ume for the SWEs to curvilinear coordinates.

4. We have run a moving mesh simulation of the 2011 Tohoku-Honsu tsunami.

In the following we provide also a list of the publications related to this
manuscript:

1. L. A., M. Ricchiuto. ALE r-adaptive methods for the Shallow Water
equations in curvilinear coordinates (in preparation).

2. L. A. and M. Ricchiuto. r-adaptation for Shallow Water �ows: conserva-
tion, well balancedness, e�ciency. (accepted at Computers and Fluids).

3. L. A., M. Ricchiuto and R. Abgrall. An ALE formulation for explicit
Runge-Kutta Residual Distribution. Journal of Scienti�c Computing,
190(34):1467�1482, 2014.

For completeness we mention another project in which the author was involved
during the three years of PhD. Always in the context of the numerical simu-
lation of long waves, we have investigated the large scale mechanism of tidal
bore formation in convergent alluvial estuaries. The work was inspired by the
experimental campaign in the Garonne river of Bonneton et al. [2015] in which
it was shown that the dominant dimensionless parameter for bore formation
appeared to be the dissipation one, which multiplies the frictional term of the
SWEs. Although the basic conditions are well known (large tidal range, shal-
low and convergent channel, low freshwater discharge), a parametric estuarine
classi�cation in terms of bore occurrence did not exist in the literature. It was
also generally accepted that tidal bores form in estuaries which amplify the
incoming tidal wave. We have numerically investigated the estuarine param-
eter space and proposed a new scaling for the SWEs equations that ensures
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a clear separation of the e�ect of non-linearity and friction dissipation. As
a consequence, we ended up with a set of dimensionless parameters de�ning
a space in which real alluvial estuaries developing bores are clearly divided
from those where bores are not observed. The formation process of an undular
tidal bore in such idealized convergent estuaries was reproduced by the use of
Boussinesq-type equations and dispersive e�ects on the local scale of the bore
were quanti�ed. For the interested reader, the published papers related to this
works are:

1. A.G. Filippini, L. A., P. Bonneton and M. Ricchiuto. Modeling analysis
of tidal bore formation in convergent estuaries. (submitted to European
Journal of Mechanics / B Fluids).

2. P. Bonneton, A.G. Filippini, L. A., N. Bonneton and M. Ricchiuto. Con-
ditions for tidal bore formation in convergent alluvial estuaries. Estuar-
ine, Coastal and Shelf Science. 172, 121-127, 2016.

Structure of the manuscript

Chapter 1 is devoted to present two existing explicit second order schemes for
the Eulerian Shallow Water equations (SWEs) on �xed unstructured grids.
They are a Residual Distribution scheme and a more classical Finite Volume
scheme which is used for comparison.

In chapter 2 we propose an Arbitrary Lagrangian Eulerian (ALE) form of
the SWEs allowing moving mesh simulations with wetting/drying fronts. In
order to do this, we systematically review the forms of the SWEs which are
best suited for preserving fundamental physical solutions on moving meshes
such as the lake at rest or a uniform �ow at constant depth. We use the
resulting model equations to provide second order ALE Finite Volume and
Residual Distribution discretizations. In particular we provide a simple recipe
to marry the preservation of the lake at rest and mass conservation on moving
meshes using a re-interpolation of the nodal bathymetry based on accurate
quadrature of the given bathymetric data.

In chapter 3 the ALE moving mesh method is tested against the popular
rezoning approach in which the Eulerian SWEs are solved on the last adapted
mesh and an appropriate interpolation permits to transfer the solution from
the previous mesh. We study the impact of cheaper and simpler interpolation
algorithms which retains all the desired discrete properties. A novel simple
ad-hoc error estimators allows to track the shorelines. Finally the ALE and
the rezoning moving mesh algorithms are evaluated in terms of CPU time for a
given resolution, using the standard benchmarks for near shore hydrodynamics
of the WP1.

10 Luca Arpaia



Introduction

In chapter 4 we will address the numerical approximation of the ALE-SWEs
in curvilinear coordinates. The validation of the partners' codes on the sphere
was not addressed in the TANDEM project. In particular the benchmarking
work-package WP1 did not foresee any test-case to validate the accuracy and
the Well-Balanced properties on the sphere. Firstly, we have chosen to set
properly the Eulerian SWEs in standard latitude-longitude curvilinear coordi-
nates. We will take cases from the standard test-suite of Williamson et al.
[1992] to validate our Finite Volume and Residual Distribution scheme for the
SWEs in curvilinear coordinates on unstructured grids. Secondly we have set
the ALE-SWEs on the sphere. A novel Finite Volume and Residual Distri-
bution approximation of the resulting equations is proposed. Third, a simple
moving mesh method will be established which allows point movements on the
sphere. Numerical tests show that our resulting moving mesh algorithm, can
improve the resolution of linear and nonlinear waves on the sphere, using a
limited number of mesh points.

Finally in chapter 5 we address the issue of WP3. We present �xed and
moving mesh SWEs simulations of the 2011 Tohoku-Honsu event. The nu-
merical tools developed along this manuscript will be compared with other
partners involved in the WP3. This should provide evidence that the moving
mesh method studied in the thesis, although simple, could be a good candidate
to reduce the large computational cost of tsunami simulations.

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.

11



12 Luca Arpaia



Chapter 1

Shallow Water equations:
continuous properties and
Well-Balanced approximations on
unstructured grids

1.1 Shallow Water equations

The use of Shallow Water equations (SWEs) is ubiquitous in hydrodynamics
and geophysics. SWEs is a nonlinear hyperbolic system of partial di�erential
equations that describes wave propagation in a �uid that is shallow relative
to the wavelength. SWEs can be derived from the conservation of mass and
momentum of a vertical �uid column under a crucial assumption, the so called
hydrostatic approximation. We consider the vertical �uid velocity negligible
and the horizontal velocity about constant along the the vertical coordinate
from the bottom to the free surface, which is true if the �uid depth is shallow
compared to the horizontal length scale. Moreover since the �uid is at rest
along the vertical coordinate the pressure is determined just by the weight
of �uid above, that is p = p(h), h here is the water depth. There are many
circumstances under which these hypothesis lead to a good approximation of
natural phenomena such as waves in the atmosphere, tides in ocean but also
breaking waves on a beach and, more important for us, tsunamis. If we think
of tsunamis generated by an o�shore quake, they are very long waves with
wavelength L in the order of ∼ 100 km, much larger then the water depth
D ∼ 1 km. See e.g. Benoit [2016]; Lannes [2016] for the scaling analysis.

A set of Cartesian coordinates x = {x1, x2} ∈ Ω de�ned on the orthonormal
basis {e1, e2} is given at this point. The vector basis de�ne a plane which we
assume that the water free surface in undisturbed condition lies on. Then, the
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1.1. Shallow Water equations

SWEs in engineering notation writes:

∂h

∂t
+
∂huj

∂xj
= 0

∂hui

∂t
+
∂T ij

∂xj
+ Si = 0

the repeated index j = 1, 2 is implied in summations and the index i = 1, 2
is the direction of the momentum equation. The momentum discharge vector
is de�ned as hu = hujej and the momentum �ux tensor is T = T ijeiej with
components T ij = huuij + 1

2
gh2δij. The source term includes the bottom

topography force and the frictional one

Si = h

(
g
∂b

∂xi
+ cFu

i

)
b(x) is the bottom topography, measured form the origin which is the undis-
turbed free surface level. cF is the friction coe�cient de�ned through Man-
ning's empirical formula cF = gn2‖u‖

h4/3
and n is the Manning number. We also

provide the vector form of the SWEs, which has the advantage of being more
compact

∂u

∂t
+
∂Fj

∂xj
+ S(x, u) = 0, (1.1)

u =

[
h
hui

]
, Fj =

[
huj

T ij

]
, S =

[
0

gh ∂b
∂xi

]
︸ ︷︷ ︸

Sb

+

[
0

cFhu
i

]
︸ ︷︷ ︸

Sf

(1.2)

We collect the �ux components in the �ux matrix F = [ F1 F2 ] ∈ R3 × R2.
Equations (1.1)(1.2) represents a non-homogeneous non-linear hyperbolic sys-
tem of partial di�erential equations. Given any vector ξ = ξiei, the �ux
Jacobian K(u, ξ) = ∂Fj

∂u
ξj admits a full set of real eigenvalues and linearly

independent eigenvectors, namely

K =

 0 ξ1 ξ2

c2ξ1 − uu · ξ u · ξ + uξ1 uξ2

c2ξ2 − vu · ξ vξ1 u · ξ + vξ2

 (1.3)

with eigenvalues λ(u, ξ)

λ1,3 = ujξj ± c‖ξ‖, λ2 = ujξj (1.4)

and c =
√
gh being the local wave celerity. The nonlinear eigenstructure gives

more insight about the physics of waves in the shallow water regime. Shallow
water waves are propagating at speed ±

√
gh relative to the �uid, thus wave in

deeper water moves faster. If the amplitude of the wave is not small compared
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1. Shallow Water equations: continuous properties and Well-Balanced
approximations on unstructured grids

to the water depth, the speed of every point may di�er due to the di�erent
height, leading to a distortion where the crest is moving faster respect to the
trough. Two typical hyperbolic phenomena occurs: the wave front steepens
(hydraulic jumps) and the tail �attens (depression). This can be clearly seen
for waves approaching the beach, at least before that the familiar breaking of
the wave occurs.

Later in the text we will also make use of the Jacobian at rest A = K(u = 0)

A(h, ξ) =

 0 ξ1 ξ2

c2 ξ1 0 0
c2 ξ2 0 0

 (1.5)

that admits the non-linear eigenvalues λ = ±c‖ξ‖ that characterize the acous-
tics of the system.

1.2 Conservation form

The SWEs (1.1)(1.2) constitute a balance law and allow to recover the integral
balance of of fundamental physical quantities such as mass and momentum.
For a �xed volume C with boundary ∂C and boundary normal n = njej we
can state integral conservation for the vector of conservative variables u:∫

C

u(x, t) dx =

∫
C

u(x, 0) dx

−
∫ t

0

(∫
∂C

Fjnjds+

∫
C

S dx
)
dt = 0 (1.6)

These are the most fundamental equations when the solution contains dis-
continuities. In this case, the di�erential form does not hold anymore but
(1.6) still admits weak solutions corresponding to the Rankine-Hugoniot jump
conditions, see Bernetti et al. [2008]:

s[h] = [hu]

s[hu] = [hu] +

[
1

2
gh2

]
− 1

2

(
h2
L − (hL − (bL − bR)2)

)
where we de�ned the jump of any scalar φ across the discontinuity as [φ] =
φR − φL and the shock velocity as s. As we can see, the bathymetric term
disappears when the bottom is at least piecewise continuous bR = bL. On the
contrary, in presence of a bottom jump bR 6= bL, this term play an important
role in Rankine-Hugoniot relationship and in the resolution of the Riemann
problem. It has been shown that a standing wave in correspondence of the
bottom jump appears, see Bernetti et al. [2008], Alcrudo and Benkhaldoun
[2001].
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1.3. Shallow Water entropy

Being conservative is a delicate issue for every numerical method approx-
imating conservation laws. It means that the numerical solution satis�es the
integral form of conservation laws, mimicking what the exact solution does.
For conservative methods, one can hope, as the mesh is re�ned, that the nu-
merical solution converges to the weak solution of (1.6) and, even in presence
of a discontinuity, we compute the correct wave speed. This was proved by
Lax and Wendro� [1960].

1.3 Shallow Water entropy

An hyperbolic equation should be supplied by some conditions, which ensure
that the weak solution of the problem is physically correct. These conditions
are called entropy conditions because in gasdynamics the correct weak solution
is selected by the second principle of thermodynamics which states that the
entropy of a system must be non increasing with time. For SWEs, the role of
the entropy is played by the depth-integrated total energy per unit mass, see
Tadmor and Zhong [2006]

E(u) = h

(
gh

2
+ gb+

‖u‖2

2

)
A conservation law for the SW energy can be obtained projecting mass and
momentum equations (1.1), on the so called entropy vector

Ψ =
∂E

∂u
= [ (h+ b)g − ‖u‖

2

2
u v ]T

We obtain the conservation of energy:

∂E

∂t
+
∂ψj

∂xj
= 0 (1.7)

where the entropy �ux is ψ = ψjej with components ψj = ujE + 1
2
ujgh2.

However if we go back to the complete set of physical equation with viscosity,
then we can argue that the admissible solution should be the one in the van-
ishing viscosity limit. Lax [1972] demonstrated that the vanishing viscosity
limit for a system of conservation law with positive convex entropy ∂2

uuE > 0,
is equivalent to an entropy inequality. For the SWEs this is

∂E

∂t
+
∂ψj

∂xj
≤ 0 (1.8)

(1.8) states that the energy, in absence of boundary conditions, cannot grow.
And this is a physical criteria that prevent from picking up unphysical weak
solution, such as expansion shocks. Moreover (1.8) states that the energy is
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1. Shallow Water equations: continuous properties and Well-Balanced
approximations on unstructured grids

conserved whenever the solution is smooth, but it is dissipated across discon-
tinuities. We will see that this fact is used in numerical methods to detect
shock waves in the domain. Finally (1.8) can be seen as stability condition for
the SWEs. Given a certain norm of the energy ‖E‖V (Ω) , entropy inequality
corresponds to:

‖E(t)‖V ≤ ‖E0‖V
where ‖E0‖V is the norm of the energy at the initial time.

1.4 Maximum principle, entropy stability and

water depth positivity

Consider for a while, the following scalar hyperbolic equation that conserves
the variable u(x, t), for a general non-linear �ux function F (u):

∂u

∂t
+
∂F j

∂xj
= 0, x ∈ Ω, t ∈ [0, T ] (1.9)

L∞ stability or maximum principle holds for the exact solution:

min
x∈Ω

u(x, 0) < u(x, t) < max
x∈Ω

u(x, 0), ∀t ∈ [0, T ] (1.10)

The above condition is very important when one searches for approximate so-
lution uh ≈ u. In particular, maximum principle is used to have precise bounds
on the numerical solution which in turn avoids the computations of oscillatory
discontinuous solution, see the work of Zhang and Shu [2010] on maximum-
principle-satisfying high order schemes. This stability property cannot be au-
tomatically extended to the non-linear system case since the same maximum
principle is not trivial for the general problem described by (1.1). However
(1.10) remains important. Historically, numerical methods have been studied
and tested in the scalar case, where a non-linear stability theory is available.
Only later, scalar methods were extended to the system case, more or less
straightforwardly. Even if we do not have any guarantees that the stability
property will work well as in the scalar case, this approach was successful.
To cope with the obstacle of L∞ stability many researchers investigated other
types of stability. An important class of methods are, for example, entropy
stable schemes (Osher [1984], Tadmor [1987]), which aim to mimic the phys-
ical constraint that the energy cannot increase. By adding a certain amount
of numerical viscosity, entropy stable schemes can verify a discrete inequality
analogue to the entropy one (1.8).

For the SWEs, another stability condition is a physical constraint: the
positivity of water depth h ≥ 0. Preserving the positivity of water depth is
an important stability condition for numerical methods since the uncontrolled
occurrence of negative depth leads soon to the code breakdown. We will discuss
positivity preserving schemes (Bouchut [2004]) later in this chapter.
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1.5. Lake at rest

1.5 Lake at rest

In the context of Shallow Water �ows, an important role is played by the so-
called "lake at rest" state which, denoting the free surface level η = h + b, is
the particular steady solution characterized by the two invariants :

hu = 0, h+ b = η0 = const (1.11)

A numerical method approximating (1.1)(1.2) is said to enjoy the C-property
or also to be Well-Balanced if (1.11) is also an exact steady solution of the dis-
crete equations. In other words, Well-balanced schemes provide a discrete
analog of the balance between hydrostatic pressure and the pressure forces
exerted by the bottom

∂Fj

∂xj
+ S = 0

allowing to preserve (1.11) exactly at the discrete level, Bermudez and Vazquez-
Cendon [1994].

1.6 Discrete approximation

1.6.1 Notation for mesh, geometry and unknowns

Consider an unstructured discretization of the spatial domain Ω composed by
non overlapping triangular elements. We will denote the grid (or mesh) by
Th, hK being the local reference element length (mesh size, hereinafter). K
is the generic triangle, |K| its area and nj = nmj em is the normal to the j-th
face of the triangle scaled by the corresponding edge length (see �g.1.1). For
every node i of the triangulation, Di denotes the subset of triangles containing
i. With a little abuse in the notation j ∈ Di is the set of nodes j sharing
an edge with node i. We then denote by Ci the median dual cell obtained
by joining the gravity centers of the triangles in Di with the midpoints of the
edges meeting in i, its area is

|Ci| =
∑
K∈Di

|K|
3

In a Finite Volume context we de�ne also the boundary of the median dual
cell as the interface ∂Ci =

∑
j∈Di ∂Cij. The interface belonging to nodes i, j,

denoted as ∂Cij, is the union of two segments connecting the baricenters of
the neighboring triangles K 3 i, j with the midpoint of the edge ij (cf. right
picture in �g.1.1). Cij is the area delimited by ∂Cij and by the two segments
joining i with the gravity centers of the elements K 3 i, j. Both Cij and ∂Cij
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can be split over the neighboring triangles. We de�ne the normal and the area
associated to the interface ij

nij =
1

2

∑
K3i,j

nKij , |Cij| =
∑
K3i,j

|CK
ij |

with |CK
ij | =

|K|
6
. We highlight the following geometrical relationship between

nodal normals and interface normals:

1

2

∑
j∈K,j 6=i

nKj = −n
K
i

2
=

∑
j∈K,j 6=i

nKij (1.12)

Figure 1.1: Left: Nodal normal de�nition. Center: Finite Volume dual cell.
Right: dual cell interface with normals.

With the subscript i we distinguish discrete variables from continuous ones.
It is a widespread convention in literature, however we note that engineering
notation with sub/superscripts to denote vector and tensor components, could
confuse the reader. In the following, we will specify whenever standard sum-
mation does not apply. For the Finite Volume method we will evolve in time
approximations of cell averages of conservative variables over the standard
median dual cells and we denote the average as ui. On the contrary, the Resid-
ual Distribution method evolves values of the unknowns at mesh nodes. For
simplicity, we shall still denote these values as ui.

1.6.2 Finite Volume for SWEs

Finite Volume (FV) is the most popular class of schemes for the discretiza-
tion of hyperbolic PDEs in computational hydrodynamics. An exhaustive
monograph on FV for hyperbolic problem is LeVeque [2004] and a review of
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FV methods for the SWEs can be found in Toro and Garcia-Navarro [2007].
Here we present the standard well balanced node-centered unstructured scheme
based on Roe's linearized Riemann solver as it has been developed by Nikolos
and Delis [2009]. This scheme proved to successfully simulate complex prob-
lems with irregular topography and inundations. The FV idea is to break the
domain into many volumes Ci. The solution is then averaged within every cell
with

ui(t) =
1

|Ci|

∫
Ci

u(x, t) dx (1.13)

and it is updated by a discrete integral balance, equation (1.6)

un+1
i = uni −

∆t

|Ci|
∑
j∈Di

Rij(uni , u
n
j )

where we have
Rij = Fij + Sij (1.14)

with Fij a numerical approximation of the �ux along ∂Cij and Sij an approx-
imation of the integral of the source term on Cij.

Fij =
1

∆t

∫ tn+1

tn

∫
∂Cij

Fjnjds dt, Sij =
1

∆t

∫ tn+1

tn

∫
Cij

Sdx dt

After the averaging step, a Riemann problem is de�ned at each interface.
Numerical �uxes can be computed if the complete solution of the Riemann
problem is achieved, typically through the resolution of a non-linear system.
Note, however, that the exact solution of the Riemann solution seems to be
redundant since the same solution is roughly averaged just at the end of the
time step. For this reason one can think to replace the exact Riemann Problem
with an approximate one. The seminal idea consists in linearizing the �ux
∂Fj

∂xk
= ∂Fj

∂u
∂u
∂xk

. In this work we use the original Roe linearization Roe [1982].
Recalling expression (1.3), Kij = K(u?ij,nij) will be the �ux Jacobian evaluated
at the interface Roe state u?ij. Within this hypothesis, the Riemann solution
consists in the superposition of simple or p-waves. Numerical �ux evolves
according to the sum of p-waves entering the median dual cell through the
interface, each one carrying a jump in the solution equal to Wp:

Fij(ui, uj) = Fi · nij +
m∑

p=1,αp<0

Wp = Fi · nij + K−ij (uj − ui) (1.15)

= Fj · nij −
m∑

p=1,αp>0

Wp = Fj · nij − K+
ij (uj − ui) (1.16)

Please note that the above scalar products are standard ones and the summa-
tion convention does not apply in the above formula and in the ones which
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follow. Matrices are computed through eigenvalues decomposition, e.g. K+
ij =

RijΛ
+
ijLij. To obtain expressions (1.15) and (1.16) we have decomposed the

total jump in the solution as follows:

Wp = αpλprp, αp = (uj − ui) lp

rp, lp are respectively the p-th right and left eingenvectors and are referred, as
the eigenvalues λp, to the Roe state at the interface, e.g. λp = λp(u?ij,nij).
Averaging expression (1.15) and (1.16) we have the numerical �ux:

Fij = Fij(ui, uj) =
F(uj) + F(ui)

2
· nij −

∣∣Kij

∣∣
2

(uj − ui) (1.17)

this scheme is known as Roe scheme. Second order of accuracy is achieved with
a piecewise linear reconstruction of the vector of conservative variable over the
dual cell. In practice we have replaced, in expression (1.17), nodal values ui and
uj with linearly reconstructed ones at the cell interface, respectively ŭi and ŭj.
We have combined this with a Green-Gauss reconstruction Nikolos and Delis
[2009]; Delis et al. [2011]. We will refer to this linear second order scheme as to
the FROMM scheme, LeVeque [2004]. If necessary in the reconstruction step,
a slope limiter is used to enforce monotonicity

ŭi = ui +
1

2
l(ui, uj,∇ui)

with l, the Van Albada limiter Van-Albada et al. [1982]. The resulting scheme
is a two dimensional implementation of the MUSCL scheme of Van-Leer [1979].

To march in time with second order of accuracy we use an explicit Runge-
Kutta two (eRK2); the FV discrete evolution equations reads:

u∗i = uni −
∆t

|Ci|
∑
j∈Di

Rij(un) (1.18)

un+1
i = uni −

∆t

|Ci|
∑
j∈Di

(
Rij(un)

2
+
Rij(u∗)

2

)
(1.19)

Conservation

From the solution decomposition in simple waves (1.15) and (1.16), it is clear
that Roe linearization ensures conservativeness. By de�nition the jump in the
�ux is:

(Fi − Fj) · nij = Kij(u?ij,nij) (uj − ui)

and thus (1.15) and (1.16) coincide with the consequent exact conservation at
the interface. An advantage of the numerical �ux (1.17) is that conservation
is true for any linearization, for example the simple arithmetic average u?ij =
1
2
(ŭi + ŭj). This fact will guarantees the method is conservative even in more

complex cases for which the Roe average is not directly available, as we will in
chapter 4.
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Positivity of water depth

Perthame and Shu [1996] have shown that Godunov method applied to the
Euler equations of gasdynamics, (with exact or approximate Riemann solver)
preserves density and pressure positivity, with a rigorous CFL condition. They
also presented second order pressure/density positivity preserving schemes but
some other requirement on the reconstruction should be assured. In this work
to avoid the appearance of negative depths, following Nikolos and Delis [2009]
we propose to switch to a �rst order scheme when approaching regions dry
regions with an appropriate CFL condition, see (1.38). The limiter is modi�ed
according to the de�nition given in Ricchiuto and Bollerman [2009]:

l∗ = l(ui, uj)e
− hK
Lref

href
hmin (1.20)

the exponential factor takes into account the occurrence of dry areas. Lref is
the domain reference length; href is the maximum depth at t = 0; hmin is the
minimum depth among hi and hj. It is always of order one but it quickly tends
toward zero where h is small.

Source terms

Non di�erential source terms in (1.1) includes only friction. For second order
of accuracy, we can use pointwise values Si = S(xi, ui) and approximate the
numerical source as

Sij =

∫
Cij

S(x, u) dx = Si|Cij|,
∑
j∈Di

Sij = Si|Ci|

which corresponds to linearly reconstruct also the source term. More complex
treatments can be constructed, especially when increasing the accuracy to more
then second order.

Well-Balancedness

It is widely recognized that the numerical treatment of the bathymetric source
term is as important as that of advective terms. In fact, this particular term
contained in the numerical source Sij, in addition to not spoil the accuracy of
the advective part, it should preserves of the Well-Balanced property discussed
in section 1.5. The �rst attempt to a well-balanced source term was due to
Bermúdez and Vázquez Bermudez and Vazquez-Cendon [1994] who tried to
incorporate the bathymetry source term into Roe method. A second important
cornerstone was the extension from �rst to second order accuracy proposed
by Hubbard and Garcia- Navarro Hubbard and Garcia-Navarro [2000]. We
present here the main conclusions of this last reference. They distinguished
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two contributions, the �rst balancing the central part of the �uxes, and the
second the upwind dissipation term:

Sbij = Scij + S∗ij (1.21)

We de�ne the following average values

h−ij =
h̆i + hi

2
, hij =

h̆j + h̆i
2

and the bathymetry variation vectors

∆b−ij =

 b̆i − bi
0
0

 , ∆bij =

 b̆j − b̆i
0
0

 (1.22)

moreover we recover the de�nition (1.5) (Jacobian at rest) to introduce A−ij =
A(h−ij,nij), Aij = A(hij,nij). The centered component of the source can be
now written as

Scij = A−ij∆b−ij +
1

2
Aij∆bij (1.23)

Concerning the upwind balancing term, the original de�nition given in Bermudez
and Vazquez-Cendon [1994]; Hubbard and Garcia-Navarro [2000] leads to the
following expression

S∗ij = −sign(Kij)

2
Aij∆bij (1.24)

The proof of Well-Balancedness rests on the property of the Roe average and
the fact that, on the lake at rest state, we have Kij = Aij. On each edge

Rij =
F(ŭj)− F(ŭi)

2
· nij + (F(ŭi)− F(ui)) · nij −

|Aij|
2

(ŭj − ŭi)

+
1

2
Aij ∆bij + A−ij ∆b−ij −

sign(Aij)

2
Aij∆bij = 0

Using the fact that, on the selected equilibrium, (F(ŭj)− F(ŭi))·nij = Aij(ŭj−
ŭi) we can sum each term of the numerical �ux with the corresponding bathy-
metric term. Note now that ŭj − ŭi + ∆bij = 0 by hypothesis.

�

1.6.3 An introduction to Residual Distribution

At the beginning of the eighties, Roe's research on the multidimensional ex-
tension of Godunov method brought him to formalize FV into a form called
Fluctuation Splitting Roe [1982, 1987]. This has paved the way to the de-
velopment of multidimensional upwind schemes and to what today is referred
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as Residual Distribution (RD). The main ideas behind RD are recalled here,
with the main purpose of introducing de�nitions that will be used extensively
in the manuscript. The interested reader can �nd the rigorous foundations of
the method in Deconinck and Ricchiuto [2007] and a recent review in Abgrall
and Ricchiuto [2017]. We start from the FV framework, which the reader is
more con�dent with, and, as Roe actually did, we develop the concept of �uc-
tuation. We write a general �ux (e.g. Roe �uxes with MUSCL reconstruction
(1.17)) compactly as

Fij = H(ŭi, ŭj)

and we decompose them in the contribution of each element, the FV update
writes:

un+1
i = uni −

∆t

|Ci|
∑
j∈Di

H(ŭi, ŭj)

= uni −
∆t

|Ci|
∑
K∈Di

∑
j∈K,j 6=i

H(ŭi, ŭj)

since
∑

j∈DiH(ui, ui) = Fi ·
∑

j∈Di nij = 0 we can add the following term:

un+1
i = uni −

∆t

|Ci|
∑
K∈Di

∑
j∈K,j 6=i

(H(ŭi, ŭj)−H(ui, ui)) (1.25)

This step seems arbitrary but it is not. In fact, in each element, we are
implicitly making use of a very special �ux. Using the property (1.12) allow
to show that:

−
∑

j∈K,j 6=i

H(ui, ui) = −
∑

j∈K,j 6=i

Fi · nij = −Fi ·
∑

j∈K,j 6=i

nij = Fi ·
ni
2

= −
∑

j∈K,j 6=i

Fi ·
nj
2

that is, we are taking into account also the numerical �uxes along half the edges
with vertex i in common. This contributions cancels out between the elements
sharing the same edge and do not modify the original scheme. However, sum-
ming over the vertexes, the internal numerical �ux contribution disappears for
the conservation of an element and we are left with

ΦK =
∑
i∈K

∑
j∈K,j 6=i

(H(ŭi, ŭj)−H(ui, ui)) = −
∑
i∈K

∑
j∈K,j 6=i

H(ui, ui)

= −
∑
i∈K

∑
j∈K,j 6=i

Fi ·
nj
2

=
1

2

∑
i∈K

Fi · ni ≈
∫
∂K

F · n ds
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which is a second order quadrature formula approximating the �ux balance
over the element K. We call this quantity �uctuation of the element K. The
FV scheme could be seen as de�ning a proper splitting or distribution ΦK

i of
the �uctuation, such that: ∑

i∈K

ΦK
i = ΦK

so that we don't loose consistency property Fij(u, u) = F(u) · n. The split
�uctuation for FV writes (dropping superscript K in the residual notation, we
take it for granted)

ΦFV
i =

∑
j∈K,j 6=i

(H(ŭi, ŭj)−H(ui, ui)) (1.26)

and veri�es the consistency condition. Substituting the de�nition (1.26) in
(1.25) we get a reformulation of the standard FV method in Godunov form

un+1
i = uni −

∆t

|Ci|
∑
K∈Di

ΦFV
i (1.27)

We call this compact update as the �uctuation form of FV. The solution is
evolved at each time step according to a balance of element's �uctuations
rather then interface's �uxes. All this may seem just a trivial exercise but the
promising aspect is that an abstract geometrical interpretation of upwinding
arises, that is, the directions in which we distribute the �uctuation with re-
spect to the direction of simple waves celerities. We can in fact generalize the
splitting step and create new schemes with improved properties. For example,
this fact is used to introduce upwinding in a more clever way. Indeed early
experiments demonstrated that, for multidimensional problems, �rst order RD
were less di�usive then �rst order FV Roe and Sidilkover [1992]; Paillere et al.
[1998]. We also remark that FV, as they have presented in section 1.6.2, have
been implemented in the RD form (1.27) and not in the classical �ux form.

RD prototype scheme

Once we have presented FV in �uctuation from (1.27), the last e�ort consists
in generalize the splitting procedure and to consider a splitting operator di�er-
ent from (1.26). These lead us directly to the RD approximation of hyperbolic
systems such as the SWEs (1.1) and which is constructed with the following
three steps: given an approximation of conservative variables at the nodes
ui(t) = u(xi, t), we introduce the following continuous numerical approxima-
tion

uh(x, t) =
∑
i∈Th

ϕi(x)ui(t) (1.28)

{ϕi}i∈Th will be the standard P 1 continuous piecewise linear Lagrange kernel.
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• For each element K, compute the �ux balance, called �uctuation:

ΦK(uh) =

∫
∂K

Fj(uh)n
jds+

∫
K

S(uh,x) dx (1.29)

• Split the �uctuation in contributions, one for each node of the element,
through an appropriate distribution matrix βKj

ΦK
j :
∑
j∈K

ΦK
j = ΦK , or ΦK

j = βKj ΦK (1.30)

for consistency reason it is clear that ⇒
∑

j∈K β
K
j = I3.

• envoy at each node of the element the corresponding split �uctuation,
updating progressively the solution at vertexes. At the end, the RD
method reads

|Ci|
dui
dt

+
∑
K∈Di

ΦK
i = 0, ∀i ∈ Th (1.31)

In �gure (2.6) there is a sketch which summarize the three successive steps.
The key properties of the method are determined by the de�nition of the split
�uctuation, or, if you prefer, by the distribution matrix. In the following
paragraph we relate the properties of the distribution matrix to stability and
accuracy results. Leaving apart a rigorous treatment of the stability and ac-
curacy analysis, we will try instead to highlight basic concepts. We hope that
this could help the reader in a better comprehension of the RD results.

Figure 1.2: The abstract steps to construct a Residual Distribution approxi-
mation.
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Conservation

RD approximate integral balance law (for an equivalence with the weak form
and a bridge with the continuous Finite Element method, see Ricchiuto and
Abgrall [2010]). If the divergence form of the equation is used, conservation
can be incorporated quite naturally. To check this statement, we sum (1.31)
over all the nodes i ∈ Th

∑
i∈Th

(
|Ci|

dui
dt

+
∑
K∈Di

ΦK
i

)
= 0

We can develop the advective part with the consistency condition contained
in (1.30)∑

i∈Th

∑
K∈Di

ΦK
i =

∑
K∈Th

∑
j∈K

ΦK
j =

∑
K∈Th

∫
∂K

Fjnjds =

∫
∂Ω

Fjnjds

we have assumed that numerical �uxes are continuous along the triangle edges
∂K such as it happens in the continuous Finite Element method. Integrating
in time with U(t) =

∑
i∈Th |Ci|ui(t) we get

U(t) = U(0)−
∫ t

0

∫
∂Ω

Fjnj dsdt

which states that we have exact conservation over the full domain if the con-
sistency condition is veri�ed and if numerical �uxes cancel out at the element's
edges. Note that this is a continuity condition for Fj that is satis�ed by sev-
eral de�nitions of the discrete �ux. We will use reinterpolation of �ux's nodal
values.

Positivity

Consider again the scalar conservation law (2.65). For linear schemes the scalar
�uctuation φKi can be put in a linear compact form

φKi =
∑

j∈K,6=i

cKij (ui − uj) (1.32)

one can easily check that, if the coe�cients are positive cKij > 0, then any up-
date in the form (1.31) assures that local maxima are not increasing du/dt < 0
and local minima are not decreasing in time du/dt > 0. This is known as Lo-
cal Extrema Diminishing (LED) property. Going further, many time schemes
under CFL condition, allow the update (1.31), to verify the discrete maximum
principle (1.10) with precise bounds for all the time tn, n ∈ [0,M ]. Using the
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�uctuation (1.32), we construct, for each element, a positive contribution to
the solution:

un+1
i =

(
1− ∆t

|Ci|
∑

j∈K,j 6=i

cKij

)
uni +

∑
j∈K,j 6=i

∆t

|Ci|
cKijuj =

∑
j∈K

aKijuj

un+1
i can be written as a convex combination of the solution at the previous

time step, enforcing the positivity of the coe�cients aKij . These schemes are
said to be Positive (P). For scalar LED-RD under a proper CFL condition, L∞
stability follows

min
j∈Th

u0
j < uni < max

j∈Th
u0
j , ∀i ∈ Th,∀n ∈ [0,M ]

The direct extension of Positive RD to the system case was successful in prac-
tice. However we mention that the extension of the stability result could be
misleading. First of all, the existence of a maximum principle for a system
of non-linear conservation laws is not a trivial task. This does not mean that
a non oscillatory behavior near discontinuities is desired/expected. If we ex-
tend the positive analysis to systems, it is not easy to handle with the LED
condition, this time applied to a matrix Cij < 0. To avoid this di�culties, it
is necessary to searches for some conditions relying on entropy consideration
(we have seen that should always decrease) but this is beyond the scope of
the brief paragraph, see Barth [1996]; Ricchiuto [2005]. Instead, for the SWEs
much attention should be put to preserve the physical constraint of water depth
positivity. In section 1.6.5 we will proof that a positive RD scheme applied to
(1.1) preserves this property.

Linearity Preserving

We introduce now Linearity Preserving (LP) schemes which were developed
for the accuracy analysis of RD. However the reader more familiar with FV
will �nd analogies with the k-th exactness schemes of Barth. We consider a
steady scalar problem with a smooth exact solution v such that

∂F j(v)

∂xj
+ S(x, v) = 0

Keeping the notation of (1.28), vh is the continuous piecewise polynomial ap-
proximation of v obtained with a general Lagrangian basis {ϕi}i∈Th of order q.
First we give a trivial de�nition. For steady scalar problem a numerical scheme
is q-th order accurate if the truncation error is of order TE(vh) = O(hqK). The
local truncation error in RD case writes

TE =
∑
i∈Th

ϕi
∑
K∈Di

φKi (vh)
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with φKi being the split residual in scalar notation. Less trivial is the fact
that the truncation error estimate TE(vh) = O(hqK) is veri�ed if the split
�uctuation is

φKi = O(hq+1
K ) (1.33)

the proof can be �nd in Deconinck and Ricchiuto [2007]. Given continuous
and q-th order accurate �ux and source terms approximations, [F 1

h , F
2
h ] and

Sh, for a smooth exact solution one has also that

φK =

∫
∂K

F j
hn

j ds+

∫
K

Sh dx = O(hq+1)

Now we can take advantage of the RD formalism. The fundamental relation
φKi = βKi φ

K (here in the scalar notation) leads to the concept of Linearity
Preserving schemes. RD schemes are LP if the distribution coe�cients are
uniformly bounded with respect to the solution and data of the problem, hence
exists a constant C such that

max
K∈Th

max
j∈K

βKj < C ∀φK , vh, v0
h

Using (1.33) we deduce that, for q = 2 (piecewise linear Lagrange basis), a
scheme which is linearity preserving is second order accurate at steady state.
All these results extend directly to the system case, in particular to the SWEs.

Distributions

Through a proper choice of the distribution matrix/distributed �uctuation,
many classical schemes can be recovered. The FV scheme with Lax Friedrich
(LxF) �uxes is important for its ability to compute non oscillatory discontinu-
ous solutions and to have, at least on some variables Perthame and Shu [1996],
precise bounds. The LxF �uctuation writes

ΦLxF
i =

1

3
ΦK +

∑
j∈K,6=i

αK

3
(ui − uj) , αK = max

j∈K
Kj

in the scalar case, the di�usion parameter αK is chosen to verify the positiv-
ity (P) requirement of the coe�cients. For systems one can take some upper
bound within the time step to the the largest absolute value of the �ux Jaco-
bians evaluated in the nodes of an element. Unfortunately LxF is only �rst
order accurate. Using the necessary condition of LP schemes, a root to the
construction of non linear schemes which are LP and P consists in limiting
the unbounded coe�cients of a P scheme. We have used the PSI limiter of
Deconink et al. [1993]

ΦLLxF
i =

∑
m=1,3

βmi
(
lTmΦLxF

i

)
rm, βmi =

(
lTmΦLxF

)+∑(
lTmΦLxF

j

)+ (1.34)
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where the apex LLxF stands for Limited LxF scheme. Formally this scheme
is linearity preserving and positive. However, things turned out not so simple.
Discontinuity are well handled while in smooth regions we encounter poor
accuracy with wiggles. These oscillations can be seen as the rising of some
unexpected destabilizing phenomena. Source of energy instability might be
introduced by the PSI limiter. A possible solution to cure the problem is
suggested by Abgrall [2006] is to add a SUPG term (which is LP but not P).
The SUPG scheme of Hughes and co-workers (see Hughes and Brook [1982];
Hughes et al. [2010] and references therein for details) can be written in terms
of �uctuations:

ΦSUPG
i = βSUPGi ΦK , βSUPGi =

1

3
+ KjT (1.35)

with T =
(∑

j∈K |Kj|
)−1

. A limiter tune the streamline upwind di�usion

introduced. The �nal distribution for such a scheme called LLxF stabilized or
brie�y LLxF-SUPG reads

ΦLLxF−SUPG
i = (1− δ(uh)) ΦLLxF

i + δ(uh)ΦSUPG
i

The limiter is based on the energy considerations of section 1.3. Ricchiuto and
Bollerman [2009] propose the following heuristic de�nition

δ = min

(
1,
Eref‖uref‖|K|
|φKE |Lref

)
with φKE an approximation of the entropy/energy �uctuation and is obtained
projecting the �uctuation on the entropy vector φKE = ΨT · ΦK . When the
solution is smooth enough, we can scale the energy �uctuation as φKE ∼
Eref‖uref‖|K|L−1

ref . On cells where the solution is discontinuous the energy
�uctuation becomes singular, φKE →∞ and δ → 0.

Source terms

The treatment of source term is very simple and e�ective in the RD framework.
In fact, one could think to include every source term in its wave propagation
algorithm, see LeVeque [1998]. While, for FV, this could be laborious, for
RD it results automatic. According to the �rst step of RD algorithm (1.29),
general source terms can be integrated with Gaussian quadrature formula with
the prescribed order of accuracy (second for us):

ΦK
S =

∫
K

S(x, u) dx = |K|
Nq∑
q=1

ωqSq

Then it is added to the �uctuation and split automatically with the distribution
matrix of the advective scheme. For explicit schemes however, once should
take into account these terms in the stability analysis and extends the CFL
condition in presence of the source.
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1.6.4 Explicit RD Runge-Kutta two scheme

The accurate simulation of unsteady problems, is crucial in many coastal and
geophysical applications. We search for a time discretization that gives second
order of accuracy and, in particular that leads to an explicit scheme in order
to compare the results with the FV-eRK2 presented in section (1.6.2). For
unsteady RD, the time derivative, once added to the �uctuation, de�ne the
element's residual

ΦK(t) =

∫
K

duh
dt

dx+

∫
∂K

Fj(uh)n
jds+

∫
K

S(uh,x) dx

and we denote it with the same symbol of the �uctuation, adding the super-
script (t) to underline the presence of the temporal derivative. We hope that
this does not generate confusion. The time part leads to the appearance of a
mass matrix, (see Caraeni and Fuchs [2002] for a discussion on mass matrices)
that must be inverted locally:

βKi

∫
K

duh
dt

dx =
∑
j∈K

mK
ij

duj
dt
, mK

ij =

∫
K

wiϕj dx

with wi a Petrov-Galerkin test function chosen such that a coherent RD split-
ting for the time part is recovered βKi =

∫
K
wi dx.

In this thesis we have implemented the explicit Runge Kutta 2 or Predictor-
Corrector (PC) scheme, described in Ricchiuto and Abgrall [2010]. Through
an e�cient mass-lumping strategy, the RD-eRK2 scheme allows to march in
time explicitly and without the unnecessary additional cost of inverting the
mass matrix. The algorithm follows:

1] Predictor step: for each element K ∈ Th

• Compute the residual ΦK(1) = ΦK(unh).

• Distribute the residual to the nodes of K such that
∑

j∈K Φ
K(1)
j = ΦK(1)

• Compute the �rst order prediction of the solution, denoted as u∗

u∗i = uni −
∆t

|Ci|
∑
K∈Di

Φ
K(1)
i (unh) (1.36)

2] Corrector step: for each element K ∈ Th

• Compute the residual

ΦK(2) =
1

2

(
ΦK(unh) + ΦK(u∗h)

)
+

∫
K

u∗h − unh
∆t

dx
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1.6. Discrete approximation

• Distribute the residual to the nodes of K such that
∑

j∈K Φ
K(2)
j = ΦK(2)

• Compute the second order correction from

un+1
i = u∗i −

∆t

|Ci|
∑
K∈Di

Φ
K(2)
i (u∗h, u

n
h) (1.37)

1.6.5 Residual Distribution for SWEs

Trough this manuscript, we will compare the eRK2-FV method for the SWEs
proposed by Nikolos and Delis [2009] to an RD discretization of the same
system recently suggested by Ricchiuto [2015]. The numerical resolution of
the SWEs with RD schemes poses two major issues. The �rst is numerical
preservation of positive depths. The second is is the accurate discretization of
source terms, bathymetry and friction up to now, recalling that we would like
to embed at a discrete level the exact balance in the case of lake at rest.

Positivity of water depth

For SWEs simulations, the positivity of water depth is a physical constraint.
We study the LLxF �uctuation, with a limitation performed as if we were in
the scalar case, which means equation by equation, or R = L = I3 in (1.34).
This variant is interesting because Ricchiuto and Bollerman [2009] showed
that it preserves the positivity of water depth. We repeat the proof for sake
of clarity only for the predictor step. The reader can �nd the complete proof
in the reference. The distributed �uctuation for the mass equation writes

φLLxFi =
φLLxFi

φK
φK

φLxFi

φLxFi =
βLLxFi

βLxFi︸ ︷︷ ︸
γi

(
1

3
φK +

αK

3

∑
j∈K,6=i

(hi − hj)

)

= γi

(
1

6

∑
j∈K

hjuj · nj +
αK

3

∑
j∈K,6=i

(hi − hj)

)

= γi

(
1

6
ui · ni +

2αK

3

)
hi +

∑
j∈K,j 6=i

γi

(
1

6
uj · nj −

αK

3

)
hj

we remark that we have put the LLxF �uctuation into the form (1.32) which
is particularly suited to �nd local bounds of the numerical solution. Each

32 Luca Arpaia



1. Shallow Water equations: continuous properties and Well-Balanced
approximations on unstructured grids

element contributes with its residual to the update

h∗i = hni −
∆t

|Ci|
φLLxFi

=

(
1− ∆tγi

|Ci|

(
ui · ni

6
+

2αK

3

))
hi +

∑
j∈K,j 6=i

∆tγi
|Ci|

(
αK

3
− uj · nj

6

)
hnj

= aKii h
n
i +

∑
j∈K,j 6=i

aKijh
n
j

h∗i > 0 is positive if the extra-diagonal coe�cients aKij > 0, which �x a lower
bound to the LxF dissipation parameter

αK >
1

2
uj · nj, ∀j ∈ K, 6= i

We have neglected ∆tγi
|Ci| because it is always positive. Moreover it is necessary

to enforce a CFL condition to have the positivity of the diagonal coe�cient
aii > 0

∆t <
3|Ci|∑

K∈Di

(
1
2
ui · ni + 2αK

)
Ricchiuto [2015] shows that the PC scheme given by (1.36) and (1.37) with

LLxF �uctuation ΦLLxF
i , veri�es the positivity of water depth hn+1

i ∀i ∈ Th,
for the following choice of the LxF parameter and time step

αK =
1

2
max
j∈K
‖uj‖max

j∈K
‖nj‖, ∆t < min

i∈Th

|Ci|∑
K∈Di α

K
(1.38)

if the limitation procedure (1.34) is carried out equation by equation, that
is R = L = I3 in (1.34). Ricchiuto [2015] uses this result to avoid negative
depth and selects how to perform the limiting according to the water depth.
In particular when h � 1 he switchs to a scalar version of LLxF scheme for
each equation {

R = L = I3 if minj∈K hj < CH
R, L else

Well-Balancedness

For FV we have seen that bathymetric source terms are approximated in the
same fashion of the �uxes, in order to recover exactly at a discrete level the
balance between topographic and hydrostatic terms. This idea have been
incorporated into the residual approach almost naturally, as done for any other
source terms, see section (1.6.3) and Ricchiuto et al. [2007]; Ricchiuto and
Bollerman [2009] and references therein). In the lake at rest case u = [ η0 −
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1.6. Discrete approximation

b 0 0 ]T , one should check that trivially ΦK = 0. That is, that the boundary
integral of the hydrostatic term in the �ux balances exactly the integral of the
topographic source:

ΦK =

∫
∂K

Fj(uh)n
j ds+

∫
K

Sb(uh, bh)

=

[
0∫

∂K
1
2
gh2

hn
jds

]
+

[
0∫

K
ghh

∂bh
∂xi
dx

]
= 0 (1.39)

This is true under the hypotheses of exact integration w.r.t. the linear variation
of depth and bathymetry. In practice we have transformed∫

∂K

1

2
gh2

hn
jds =

∫
K

ghh
∂hh
∂xi

dx

and then we used a second order quadrature formula to approximate both the
hydrostatic and the bathymetric term.

1.6.6 Wet/Dry cell treatment

The treatment of the wetting/drying phenomenon is crucial in many coastal
applications. For example, in tsunami simulation, rundown and �ooding stages
are crucial and must be accurately reproduced to predict runup heights and
inundated areas after the tsunami attack. Wetting and drying in Shallow
Water simulations is an active subject of research which is discussed thoroughly
in Brufau et al. [2002, 2004]; Delis et al. [2008] and Ricchiuto and Bollerman
[2009] for the FV and RD methods respectively. The interested reader is
referred to these references for all details. We limit ourselves to highlight the
main di�culties and to introduce the implementation details along with the
reference. First, we de�ne a partially dry cell or wet/dry cell as an element of
triangulation on which the water depth passes from a positive value to zero. We
note that the treatment of these regions requires the introduction of two small
quantities. The �rst is a threshold value CH , such that a node is considered
dry if hi ≤ CH . This arti�ce avoids the computations of unphysical wet cells
with 0 < h � 1. The second, is a cut-o� required to modify the mass �uxes
and velocities close to dry cells. This value will be denoted here by CU , and
CH � CU . CH is a small quantity compared to the scale of the phenomenon,
for real scale simulation is in the order of CH ≤ 10−4m. The choice of CU is less
trivial as it can depends on the particular problem, Ricchiuto and Bollerman
[2009] relates this threshold coe�cient to the mesh size hK :

CU =
h2
K

Lref

with the domain reference length Lref already de�ned above. A second aspect
concerns the preservation of Well-Balanced property in presence of partially
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dry cells. On these particular cells, the linear representation of the water depth
generates a spurious momentum �ux that spoils WB. As in Brufau et al. [2002],
the problem is cured by using, only for the dry nodes, a modi�ed value of the
bathymetry. In particular, in the computation of the element's residual (RD)
or interface's �ux (FV), we de�ne for wet-dry cells, the maximum water height
at the wet nodes

ηKmax = max
j∈K,hj>0

(hj + bj)

and based on this values we arti�cially correct of the bathymetry value at dry
nodes according to the following modi�cation

bi = ηKmax, if bKi > ηmax

such that well-balanced is recovered.

Adaptive techniques for free surface �ow simulations. Application to the
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Chapter 2

Well-Balanced conservative
methods for the Shallow Water
equations in ALE form

In the �rst part of the chapter we introduce basic kinematics relationships
that are involved in the formulation of the SWEs in Arbitrary Lagrangian
Eulerian (ALE) framework. The reader can �nd these formulas in almost
every book on continuum mechanics, we refer for example to Chadwick [1976].
In the second part we use the kinematics relationships to write the SWEs in
a framework which is not Eulerian nor Lagrangian but it is arbitrary. We
discuss di�erent forms of the ALE-SWEs with respect to the accomplishment
of Well-Balancedness and mass conservation at a discrete level. Finally it is
presented a possible implementation of ALE Finite Volume and ALE Residual
Distribution. A few test cases will con�rm theoretical expectations.

2.1 Basic kinematics

Since the �uid motion is columnar, we will use the word �uid column or �uid
particle without distinction. A point Q occupies a certain position identi�ed
by the vector x which can be expressed in Cartesian coordinates with standard
summation

x(Q) = x1e1 + x2e2 ≡ xiei

e1 and e2 de�ne the horizontal plane where the undisturbed �uid lies. We
de�ne also e3 as the the vertical axis in the upward direction. Along e3,
we measure the �uid depth h(x) and the bathymetry b(x). The �uid free
surface follows as η = h+ b, see �gure 2.1. Within the Shallow Water context,
we call material �uid B, a set of �uid columns that can be put in bijective
correspondence with the points of a certain con�guration B lying on a plane.
We distinguish the particles P ∈ B from the points Q ∈ B. Please note
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2.1. Basic kinematics

Figure 2.1: De�nition of axis x1/x3 , water depth h, bathymetry b, free surface
η with respect to an arbitrary origin. On the right, a water column/particle
P .

that the bold font will be used in the following for vector and tensors. In the
initial or reference con�guration we use index (·)0 to highlight that time is
�xed, t = 0. Although the notation changes from text to text, all along this
manuscript, particles in the reference con�guration are labeled by coordinates
in capital letter X(Q0), di�erently from particles in a speci�c con�guration
that are labeled by low case letters x(Q). We assume the existence of a function
such that

F0 : B→ B0, X = F0(P ) (2.1)

with ∃F−1
0 . As sketched in �gure (2.2), the body con�guration changes with

time. If, at each value of time is associated a unique con�guration B(t), then
the family of con�gurations is called motion of the �uid B:

F : B→ B, x = F (P, t) (2.2)

Combining relations (2.1) and (2.2) we obtain x = F (F−1
0 (X), t) or

B : B0 → B x = B(X, t)

We assume the function B to be continuously di�erentiable, thus a smooth
Jacobian of transformation can be de�ned

JB =
∂x

∂X
, JB = detJB

Particle collisions is avoided through the requirement ∃J−1
B , ∀P , or equiva-

lently detJB 6= 0. Furthermore we add the physical condition that material
volumes are positives, thus the determinant of the Jacobian will be strictly
positive JB > 0. A sketch of these relations can be found in �gure (2.2).
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Figure 2.2: A sketch of Eulerian, Lagrangian and ALE con�gurations.
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2.2. Lagrangian and Eulerian descriptions

2.2 Lagrangian and Eulerian descriptions

The �uid B is endowed with various physical properties associated to the par-
ticles P . These properties, represented by scalar φ, vector v and tensor �elds
T , can be either de�ned with respect to the reference con�guration or to the
actual one. In the former case, called Lagrangian framework, the independent
variable is X. For a scalar φ : B → R or φ0 : B0 → R this corresponds to

φ = φ ◦B = φ0 (X, t) Lagrange (2.3)

The pullback operator is useful because it transfer the �eld set from the actual
description to the reference one, highlighting the transformations φ = φ ◦ B :
B0 → B → R. The second part of the statement (2.3) is just a shorter notation
for the same concept φ = φ0 (X, t) : B0 → R and will be used in the following.
In presence of �uid motion, the material derivative of φ is the time rate of
change of φ measured by an observer which moves with the particle labeled
with X, where X(Q0) is the particle's position in the reference con�guration.
We will shorten it

dφ

dt
=
∂φ

∂t

∣∣∣∣
X

Lagrange (2.4)

Analogously, if we take x as independent variable

φ = φ0 ◦B−1 = φ (x, t) Euler

and the time derivative with respect to a �xed point labeled with x, is

∂φ

∂t
=
∂φ

∂t

∣∣∣∣
x

Euler

The velocity of the particle at point Q, u = ujej is calculated applying the
aforementioned de�nition of Lagrangian derivative (2.4), to the position x(Q).
Its components write

uj =
∂xj

∂t

∣∣∣∣
X

Using the pullback one can write the scalar φ with respect to the actual coor-
dinates and then derive:

dφ

dt
=
∂φ0

∂t

∣∣∣∣
X

◦B−1 =
∂φ

∂t

∣∣∣∣
x

+
∂φ

∂xj
∂xj

∂t

∣∣∣∣
X

=
∂φ

∂t

∣∣∣∣
x

+
∂φ

∂xj
uj

we get an important relationship between the Lagrangian time derivative and
the Eulerian one. Similar arguments can be used to transport time derivatives
of a vector v = viei

dvi

dt
=
∂vi

∂t

∣∣∣∣
X

◦B−1 =
∂vi

∂t

∣∣∣∣
x

+
∂vi

∂xj
uj
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During �uid motion the material volumes transforms according to dxm =
JBdX

m, with dxm = dx1dx2. From this fact stems the following relationship

∂JB
∂t

∣∣∣∣
X

= JB
∂uj

∂xj
(2.5)

or, more compactly ∂t|X JB − JB∇ · u = 0. The proof can be found in every
textbook on continuum mechanics.

2.3 Arbitrary Lagrangian Eulerian kinematics

To embed adaptive mesh deformation in the numerical solution of (1.1)(1.2)
an appropriate Arbitrary Lagrangian Eulerian (ALE) formulation will be used.
The objective of the next section is to recall some basic aspects related to ALE.
For more details concerning the ALE formalism, the interested reader can refer
to the original paper of Donea [1983] or to a recent review Donea et al. [2004].

We introduce an arbitrary con�guration A and we will refer to it as Arbi-
trary Lagrangian Eulerian (ALE). For us, A will be the con�guration which
the mesh is attached to. As for the body con�guration B, it belongs to a
Cartesian plane composed of points Q. The arbitrary con�guration in the
reference or initial state is denoted by A0 and the points Q̂ ∈ A0. If capital
letters are used for the reference con�guration, and lower case letters label
the actual con�guration, Greek letters are used to describe points in the ALE
con�guration, χ(Q̂). Moreover we are interested in arbitrary meshes attached
to a con�guration that changes with time A(t). If, to each value of time we
associate a unique arbitrary con�guration, we could assume the existence of a
function

A : A0 → A x = A(χ, t) (2.6)

As done for B, we require that A is continuously di�erentiable, and consider
the Jacobian matrix:

JA =
∂x

∂χ
, JA = detJA > 0 ∀Q̂ (2.7)

which means that also A cannot admit fractures, collisions and negative vol-
umes. From the point of view of a mesh cell, the occurrence of negative volumes
is also known as tangling, an urgent problem in ALE simulations. For example,
very often, when solving the motion of A(t), we cannot impose explicitly the
positiveness of the JA, thus we cannot avoid mesh tangling a priori. This will
be detailed in Chapter 3. For now, analogously to the particle/Lagrangian ve-
locity, we introduce the mesh/ALE velocity, which is the velocity of the point
Q which was lying, in the arbitrary reference domain, in χ(Q̂)

σj =
∂xj

∂t

∣∣∣∣
χ
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σ = σjej is arbitrary and independent of the �ow (in general). In the previous
paragraph we have transformed time derivative from the Lagrangian to the
Eulerian description B0 → B. Recalling brie�y that, for the scalar φ, the
following relations holds

φ = φ ◦ A = φ0 (χ, t) ALE (2.8)

φ = φ0 ◦ A−1 = φ (x, t) Euler (2.9)

We can do the transformation for the arbitrary con�guration A0 → A

∂φ

∂t

∣∣∣∣
χ

=
∂φ0

∂t

∣∣∣∣
χ

◦ A−1 =
∂φ

∂t

∣∣∣∣
x

+
∂φ

∂xj
∂xj

∂t

∣∣∣∣
χ

=
∂φ

∂t

∣∣∣∣
x

+
∂φ

∂xj
σj (2.10)

and an interesting relationship emerge between Lagrangian and ALE time
derivative:

dφ

dt
=
∂φ

∂t

∣∣∣∣
χ

+
∂φ

∂xj
(
uj − σj

)
(2.11)

The above relationship holds also for vector

dvi

dt
=
∂vi

∂t

∣∣∣∣
χ

+
∂vi

∂xj
(
uj − σj

)
(2.12)

The correct computation of ALE domain volumes in the transformation is as-
sured by the relation dxm = JAdχ

m or by the so-called Geometric Conservation
Law (GCL), which generalize (2.5):

∂JA
∂t

∣∣∣∣
χ

= JA
∂σj

∂xj
(2.13)

More compactly ∂t|X JA−JA∇·σ = 0. This can be interpreted as a constraint
that ALE Jacobian and the domain velocity both must comply during the
motion. As we will see in while, people involved in ALE simulations, are
particularly interested to respect explicitly the GCL. If integrated over a close
domain (2.13) represents a sort of volume/area conservation, which one must
also preserve at the discrete level.

2.3.1 ALE remap

Lastly, we note that for a steady function in Eulerian framework φ = φ(x), we
can write (2.10) imposing ∂tφ = 0

∂φ

∂t

∣∣∣∣
χ

=
∂φ

∂xj
σj (2.14)

This last equation represents the time variation of the function φ(x(t)) mea-
sured from an observer which is following the ALE domain motion x = A(χ, t).
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Summing eq. (2.14) (pre-multiplied by JA) to eq. (2.13) (pre-multiplied by φ)
leads to the conservative ALE remap equation for the function φ

∂JAφ

∂t

∣∣∣∣
χ

− JA
∂φσj

∂xj
= 0 (2.15)

2.4 Shallow Water equations in ALE form

We move away from a pure kinematic and inertial description of the �ow, and
we go back to hydrodynamics. Let us consider a shallow �uid column P in
B, with depth h and �ow velocity u. Forces of di�erent nature act on P .
In particular pressure term participates microscopically to momentum balance
and they can be added to advective �ux. The bottom topography exerts also
contact forces on the �uid, in particular pressure and frictional forces.

The transport formulas (2.11)(2.12) and the two volume conservation con-
straints, namely the �uid volume (2.5) and the geometric conservation law
(2.13), are used here to transform the �eld equations

∂JBh

∂t

∣∣∣∣
X

= 0 and
∂JBhu

i

∂t

∣∣∣∣
X

= JBF
i

in a general arbitrary framework coincident with the domain motion. The
SWEs write in this case (see also the Eulerian equations in (1.1)):

∂JAh

∂t

∣∣∣∣
χ

+ JA
∂

∂xj
(
huj − hσj

)
= 0 (2.16)

∂JAhu
i

∂t

∣∣∣∣
χ

+ JA
∂

∂xj
(
T ij − huiσj

)
+ JAS

i = 0 (2.17)

all vectors and tensors de�nitions hui, T ij, Si were already given in section1.1
of chapter 1. Always as in chapter 1, we provide the vector form of the SWEs

∂JAu

∂t

∣∣∣∣
χ

+ JA
∂

∂xj
(
Fj − σju

)
+ JAS(x, u) = 0, (2.18)

u =

[
h
hui

]
, Fj =

[
huj

T ij

]
, S =

[
0

gh ∂b
∂xi

]
︸ ︷︷ ︸

Sb

+

[
0

cFu
i

]
︸ ︷︷ ︸

Sf

(2.19)

Equations (2.18)(2.19) is a non-homogeneous hyperbolic system of partial dif-
ferential equations. In particular, given any vector ξ = ξiei the �ux Jacobian
KALE = ∂

∂u
(Fj − σju)ξj is

KALE(u,σ, ξ) = K− σjξj I3 (2.20)
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It admits a full set of real eigenvalues in the form λ(u,σ, ξ), namely

λ1,3 = (uj − σj)ξj ± c‖ξ‖ λ2 = (uj − σj)ξj

and linearly independent eigenvectors that does not change with respect to the
standard Eulerian SWEs ones.

2.5 Discrete ALE equations

The implementation of ALE Finite Element or Finite Volume poses a new
issue: the preservation of time accuracy and non-linear stability properties
on moving meshes. A naif extension of the �xed grid algorithm (without
worrying how to choose the mesh velocity, for example) does not assure that the
GCL requirement is veri�ed exactly and this may lead to spoil time accuracy
and to the rise of numerical instabilities. Guillard and Farhat [2000] proved
that satisfying the GCL is a su�cient condition for �rst order time accurate
simulation on moving meshes. We remark that, imposing a uniform �ow in
(2.18), gives back the GCL. Thomas and Lombard [1979] proposed in fact
to replace the GCL with the constraint of reproducing exactly uniform �ows.
The compliance of the GCL discretely is referred to as Discrete GCL (DGCL).
In our case, a numerical method approximating solutions of (2.18)(2.19) on a
moving mesh, is said to verify a DGCL if for S = 0, the state u = u0 = const
is an exact solution of the discrete equations. As we said, a numerical method
veri�es the DGCL if it also embeds an exact discretization of the GCL (2.13).
Even if one could think that it is trivially important to conserve the total
area of the computational domain, still the importance/bene�t of the GCL
remains quite controversial, see the summery of Etienne et al. [2009]. This
debate is important but, for the SWEs, the relevance of the DGCL lies in the
fact that, while avoiding the appearance of spurious oscillations, it becomes
a necessary condition to preserve some exact steady state on moving meshes,
which we are interested to. DGCL schemes will be of key importance to retain
Well-Balancedness on moving meshes.

At a discrete level we work on integral equations, thus it is important to
consider the integral form of the GCL. For example for a general volume V :

∂

∂t

∣∣∣∣
χ

∫
V

dx =

∫
V

σmnmds (2.21)

where the left hand side is discretized with the time scheme. It is thus crucial
to choose edge �uxes (right hand side) such that the above expression is an
identity. Of course at a discrete level, the closure of the problem will depend
on the speci�c time scheme used. In general we can say that the unknown are
the grid velocities at the edges and the con�guration on which we integrate.
Regarding these quantities in particular, Mavriplis and Yang [2006] show that
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the satisfaction of the DGCL is not a su�cient condition to have the prescribed
high order time accuracy. In particular edge velocities and con�guration should
be chosen coherently with the time scheme. That is, using the quadrature
points of the time integrator. Before going on we note that the grid velocity
is not completely free. In particular besides the constraints on the positivity
of the volume, we limit ourselves to a linear approximation of the mesh faces.
This means that only straight edges are allowed (no curved mesh). As a
consequence we take the velocity space to be contained in the P 1 linear �nite
element space

σ =
∑
j∈Th

ϕiσj (2.22)

with, as usual, {ϕi}i∈Th being the standard piecewise linear P 1 Finite Element
kernel. σj is the mesh velocity vector of the node j of the triangulation. Still
the grid velocity time history σ(t) is unknown and no hypothesis are made.

2.5.1 DGCL closure for eRK2

We consider explicit Runge Kutta type schemes, as the one presented in Chap-
ter 1. For every RK-stage the time lapse is just one, we go from n to n+1 and
the time discrete approximation of (2.21) for a polygon V , namely the DGCL,
writes [∫

V

dx

]n+1

−
[∫

V

dx

]n
= ∆t

∫
∂V

σmnmds

We can further manipulate, decomposing the left-hand side in the contributions
of each volume's edge

|V n+1| − |V n| = ∆t
∑
j∈V

υj (2.23)

where |V | is the area of the polygon, j ∈ V is an index over the set of polygon's
edges. The edges' velocities result:

υj =

∫
∂Vj

σmnmj ds (2.24)

and they are denoted, in a Finite Volume context, as interface velocities. The
question is how to verify (2.23) exactly, which means with an error driven by
machine roundo�?

Mavriplis and Yang [2006] and Isola et al. [2011], propose to evaluate ge-
ometrically the edge velocities from the volume swept by the corresponding
interface. We will use extensively their closure. We state the main conclusion
in the form of the following preposition.
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Proposition (DGCL). A numerical method approximating eq. (2.18) veri-
�es the DGCL constraint eq. (2.23), if each edge velocity is computed through
the (signed) area swept by the j-th edge of the polygon in one timestep ∆t

υj =
1

∆t

∫
Qj

dx (2.25)

where the quadrangle Qj is de�ned by vertexes xni ,x
n
k ,x

n+1
k ,xn+1

i , i and k de-
notes the two vertexes of the j-th edge. We use the convention that, if the
polygon is expanding, then the area swept is positive.

Isola [2012] explicitly developed the formula (2.25), and found the popular
midpoint closure proposed by Lesoinne and Farhat [1996]. We summarize the
main result contained in the last reference: a numerical method approximating
eq. (2.18) veri�es the DGCL constraint or eq. (2.23) if the midpoint con�gura-
tion V n+1/2 and constant nodal grid velocities are used to computed the ALE
�ux, that is replacing in (2.24) the following expressions

nmj =
nm,nj + nm,n+1

j

2
, σmj =

xm,n+1
j − xm,nj

∆t
(2.26)

For eRK2, the closure of Mavripils and Fahart collapses. However formally,
we prefer to maintains the notation of Mavriplis and Yang [2006] and (2.25)
because, in chapter 4, it will prove to be more �exible.

In the Finite Element case, the DGCL and the hypothesis (2.22) (σ ∈ P 1),
de�ne a constant mesh velocity divergence on the element. We take our control
polygon as the element itself V = K. We �x a con�guration Kt = K(t); the
DGCL writes

|Kn+1| − |Kn| = ∆t

∫
Kt

∂σj

∂xj
dx = ∆t

∫
K

dx

(
∂σj

∂xj

)
K

and we obtain a rule to compute the elemental divergence of the mesh velocity
vector: (

∂σj

∂xj

)
K

=
∆|K|

∆t|Kt|
(2.27)

2.6 Combining DGCL andWell-Balancedness on

moving meshes

For a balance law, the source term S is di�erent from zero, and the relevant
state to be preserved may not be u = const but η = const. Note in particular,
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that we may write (2.18) as

JA

(
∂u

∂t

∣∣∣∣
χ

− σj ∂u

∂xj

)
︸ ︷︷ ︸

H1

+u

(
∂JA
∂t

∣∣∣∣
χ

− ∂σj

∂xj

)
︸ ︷︷ ︸

H2

+JA

(
∂Fj

∂xj
+ S

)
︸ ︷︷ ︸

H3

= 0

Existing Eulerian discretization methods do embed integral (or even local)
variants of H3 = 0 (C-property) and ALE discretizations can provide exact
integral variants of H2 = 0 (DGCL). However, unfortunately Eulerian methods
are unable to embed exact integral (or local) forms of the advection equation
H1. So, in correspondence of steady equilibria, these methods will always have
a truncation associated to the term H1. On the other hand, at the continuous
level we ca use (2.14) to deduce that

H1 +
∂b

∂t

∣∣∣∣
X

− σj ∂b
∂xj︸ ︷︷ ︸

H4

=
∂η

∂t

∣∣∣∣
χ

− σj ∂η
∂xj

which is of course null when η is the invariant associated to the equilibrium
H3 = 0.

This suggests that a better form of (2.17) for computations on moving
meshes, is that obtained by summing Eq. (2.15) to Eq. (2.17). This leads to a
Well-Balanced ALE form of the problem reading

∂JAw

∂t

∣∣∣∣
χ

+ JA
∂

∂xj
(
Fj − σjw

)
+ JAS(x, u) = 0 (2.28)

w =

[
η
hui

]
(2.29)

In this case one can do much better job in the approximation of the lake at
rest solution. In particular, we can write (2.28) as

JA

(
∂w

∂t

∣∣∣∣
χ

− σj ∂w

∂xj

)
︸ ︷︷ ︸

H1+H4

+w

(
∂JA
∂t

∣∣∣∣
χ

− ∂σj

∂xj

)
︸ ︷︷ ︸

H2

+JA

(
∂Fj

∂xj
+ S

)
︸ ︷︷ ︸

H3

= 0

If η is constant any Eulerian method will be able to embed the condition
H1 + H4 = 0 while, choosing appropriate schemes verifying both the DGCL
and the WB, we will be able to satisfy all the compatibility requirements, and
preserve steady equilibria independently on the mesh movement strategy.

As a particular case and for completeness, we recall the pre-balanced form
of the Shallow Water equations of Rogers et al. [2003] which is obtained by
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introducing in (2.28) the modi�ed �ux and source functions

F̃j =

[
huj

T̃ ij

]
, S̃b =

[
0

gη ∂b
∂xi

]
(2.30)

with T̃ ij = huuij + 1
2
g (η2 − 2ηb). These de�nitions lead to the pre-balanced

(PB) ALE form of the shallow-water system reading

∂JAw

∂t

∣∣∣∣
χ

+ JA
∂

∂xj

(
F̃j − σjw

)
+ JAS̃(x, u) = 0 (2.31)

We recall that the this form satis�es the relation, see Rogers et al. [2003]

∂F̃(w; b)

∂w
=
∂F(u)

∂u

so the pre-balanced system has the same eigenstructure of the standard one.

2.7 Mass conservation on moving meshes

We now consider the additional constraint of conserving the total water mass
in the domain. We integrate, in space and in time, the mass conservation
equation in Well-Balanced form∫

Ω(t)

η(x(t), t) dx−
∫

ΩX

η(X, 0) dx+

∫ ∫
∂Ω(t)

(huj − ησj)nj ds dt = 0

Let H(t) be the total mass of water at time t, H(t) =
∫

Ω(t)
h dx, and de�ne

B(t) =
∫

Ω(t)
b dx, we can rewrite mass conservation statement separating the

terms in h and the terms in b

H(t)−H(0)+

∫ ∫
∂Ω(t)

(huj−hσj)nj dsdt+B(t)−B(0)−
∫ ∫

∂Ω(t)

bσjnj ds dt = 0

(2.32)
which states that, modulo the boundary conditions, we have conservation over
the full domain if the ALE remap equation (2.15) is satis�ed, namely if

B(t)−B(0)−
∫ ∫

∂Ω(t)

bσjnj ds dt = 0

So a scheme approximating (2.28) will be exactly mass conservative only if the
bathymetry is evolved according to an integral form of an ALE remap (2.15).
This is the strategy proposed in Zhou et al. [2013a]. However, as pointed out
in the same paper, this approach leads to changes in the bathymetric altitudes
which will depend on the scheme. For example, substantial smoothing of
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the bed slopes is observed. To deal with this issue, in Zhou et al. [2013a]
the authors propose to regularly re-initialize the bathymetric data. This will
however violate (14), and so a mass loss will be associated to each of these
re-initialization steps. Here we propose an alternative solution, allowing to
preserve mass down to almost machine accuracy. Assume for simplicity that
the domain boundaries are not moving, or that σ · n = 0 is veri�ed. We can
write the mass error at time t as

Emass = H(t)−H(0) +

∫ ∫
∂Ω

hujnj ds dt = B(0)−B(t)

We now remark that the two quantities on the right hand side are in principle
equal, as they are both approximations of the integral of b(x) over the do-
main. If the domain boundaries are not moving, this quantity should remain
constant in time. In practice however, these two integrals will be evaluated on
a moving mesh. This means that, even if both the domain of integration and
the data being integrated are constant, the quadrature points used will move,
so the result will not be the same. To be more precise, with the numerical
approximation, B(t) will be split in integrals over the set of median dual cell
areas. In case of standard FV or P 1 RD discretizations

B(t) =
∑
i∈Th

∫
Ci(t)

b dx =
∑
i∈Th

bi(t)|Ci(t)| (2.33)

with bi = b(xi(t)). Our idea is to compute di�erent nodal values bi 6= b(xi(t))
such that the total mass error is reduced by simply increasing the accuracy
which the elemental integrals are evaluated with. So we will set

∫
Ci(t)

b(x(t)) dx ≈ |Ci(t)|
Nq∑
f=1

ωqb(xq(t))

and we we will compute bathymetric nodal values

bi =

Nq∑
f=1

ωqb(xq(t)) (2.34)

in �gure 2.3 we provide a sketch of the treatment that we propose for the
bathymetry. Here it is essential to underline that b(xq), on the right hand
side, is a given high accurate (analytical or reference one, interpolated on a
�ne mesh) representation of the bathymetry. In case we employ only one
quadrature point that coincide with the node xq = xi we get back to the
standard choice (2.33).
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2.7. Mass conservation on moving meshes

Figure 2.3: Computing the bathymetry nodal values with the standard FV
method. pointwise value(left) and the method proposed here (right). Top)
quadrature points. Middle) 1D sketch of bathymetry values that are computed
from quadrature rule (2.34). Bottom) 1D sketch of analytical and computed
bathymetry integral.
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2.8 Mass conservation andWell-Balancedness in

presence of wet/dry cells

In presence of wetting/drying, there is a major complication related to the fact
that the volume containing water mass is moving, and its movement is a-priori
independent on the mapping de�ned by σ. Of course, in this case the �ow
equations are only solved in the wet region ΩW (t). So mass conservation now
reads∫

ΩW (t)

η(x(t), t) dx−
∫

ΩW,X

η(X, 0) dx+

∫ ∫
∂ΩW (t)

(
huj − ησj

)
nj ds dt = 0

Water depth and discharge are both null at the shoreline ∂IW while the ALE
�ux is null at the domain boundaries. So we choose to de�ne two boundary
regions ∂ΩW = ∂Ω ∩ ∂ΩW + ∂IW and write

H(t)−H(0)+

∫ ∫
∂Ω∩∂ΩW

hujnj ds dt+BW (t)−BW (0)−
∫ ∫

∂IW (t)

bσjnj ds dt = 0

The mass error, due to the deformation of the computational domain, becomes

Emass = −
(
BW (t)−BW (0)−

∫ ∫
∂IW (t)

σjnj ds dt

)
As before, this quantity is not zero, as we do not use the ALE remap to evolve
the (given) bathymetry. To link this residual error to the previous case, we
add and remove the following quantity:

Q = BD(t)−BD(0)−
∫ ∫

∂ID(t)

bσjnj ds dt

the sub-script ·D denoting integrals over the dry area. We �nally obtain

Emass = B(0)−B(t) +Q

The di�erence between the �rst two terms can be reduced as discussed before.
The reminder Q is a geometrical term associated to the deformation in dry
areas. Unfortunately, we are not able to guarantee any a-priori control on this
term, since, as we will see later, grid adaptation w.r.t. the shoreline bene�ts
from the possibility of exploiting points in the dry region. In this paper, this
geometrical factor arising from deformation in dry areas will be accounted for
by uniformly redistributing the mass excess/defect in the wet region.

A second non trivial issue related to wetting/drying and moving meshes is
the Well-Balancedness. To guarantee that the mesh movement does not spoil
the preservation of the lake at rest state close to partially wet cells, an ad-hoc
treatment is introduced. This procedure impacts the way in which the new
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Figure 2.4: Preservation of the lake at rest on wet/dry cells. Left: a node is
passing from wet to dry. Right. a node is passing from dry to wet.

water depth is computed from the free surface level obtained from the explicit
updates of the well balanced ALE schemes. Given values of ηni , and ηn+1

i ,
obtained from the discretization of the system 2.28 or equivalently 2.31, and
of bni , and b

n+1
i , obtained using the quadrature approach, we proceed as follows

1. ∀i ∈ Th compute the maximum water level of wet nodes belonging to the
neighbor cells:

ηmax,i = max
K∈Di

max
j∈K

hj>CH

ηj

CH was introduced in section 1.6.6 as a small threshold (CH � 1) to
de�ne dry nodes; if hi ≤ CH , then hi = 0.

2. ∀i set
∆bi = b∗i − bni (2.35)

with b∗i =

{
ηmax,i if i is dry and bni + CH > ηmax,i

bni otherwise

3. Compute the new water depth as

hn+1
i = max(0, ηn+1

i − bn+1
i + ∆bi) (2.36)

In the lake at rest, the value of ηn+1 obtained from the discretization of the
system 2.28 or equivalently 2.31 and to be substituted in (2.36) is ηn+1

i = ηni
∀i ∈ Th (the �ux/residuals are zero everywhere). As represented in �gure 2.4
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there are basically two situations for the lake at rest case in presence of a mesh
which is arbitrary moving. First a node can move from the wet side the dry
side of the interface. From step 2, a dry node has ∆bi = 0 (step 2 is not active).
So we have only step 3 that writes

hn+1
i = max(0, ηn+1

i − bn+1
i + ∆bi) = max(0, ηni − bn+1

i︸ ︷︷ ︸
<0

)

= 0

which is the correct value in the dry areas. Secondly there is the vice-versa:
a node moves from the dry to the wet side of the interface. This time, step 2
enforces the lake at rest:

hn+1
i = ηn+1

i − bn+1
i + ∆bi = bni − bn+1

i + ηmax,i − bni
= ηmax,i − bn+1

i

which is the exact water depth. This guarantees that a constant �at free
surface level is exactly preserved also near shorelines. In �gure 2.4 there is a
graphical representation of the lake at rest preservation.

2.9 Notation for time dependent geometry

In the ALE case the �ow unknowns have both explicit and implicit dependence
on time ui(t) = u(xi(t), t). A discrete evaluation, for example in tn, will be
denoted by uni = u(xi(t

n), tn). Also geometrical quantities and physical data
will change in time according to the movement of the mesh. Keeping the same
notation we have Cn

i = Ci(t
n), ∂Cn

i = ∂Ci(t
n) and bn = b(x(tn)).

2.10 ALE Finite Volume for SWEs

ALE-FV are of great interest for aerodynamics problems involving moving
boundaries such as aeroelastic simulations, see for example Lesoinne and Farhat
[1996]. ALE methods become succeful also in the context of mesh adaptation
since they can embed conservation very e�ciently for both r/h-adaptation,
see Isola [2012]. Instead, for the SWEs, ALE schemes are not very popular.
We believe that the main reason is that many scalar quantities involved in
the SWEs source term are inherently Eulerian, that is "�xed to the ground".
For example, the bathymetry b(x) or the friction coe�cient cF (x), that also
could vary in space. In the moving mesh case one should transport all this
information on the new meshes. This means a time consuming computation
of bn+1/cn+1

F at each timestep, trough an accurate interpolation or through the
remap equation (2.15). For an implementation of the ALE-FV for in hydrody-
namics, the reader can refer to the cell centered FV on moving mesh developed

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.

53



2.10. ALE Finite Volume for SWEs

in Zhou et al. [2013a], which is based on a �xed grid �ow evolution but with
an ALE remap for the interpolation step. Here we consider the standard well
balanced node-centered FV-MUSCL scheme introduced in chapter 1 and we
propose an ALE extension to approximate equations in the form (2.28). We
will show the equivalence between the scheme obtained using the well-balanced
form (2.28), and the pre-balanced formulation (2.31) with the de�nition (2.30).
The FV discrete evolution equations reads

|Cn+1
i |w∗i = |Cn

i |wn
i −∆t

∑
j∈Di

Rij(wn, bn) (2.37)

|Cn+1
i |wn+1

i = |Cn
i |wn

i −
∆t

2

∑
j∈Di

(
Rij(un, bn)

2
+
Rij(u∗, bn+1)

2

)
(2.38)

where we have again
Ri = Fij + Sij (2.39)

As in chapter 1, we use the Roe-type numerical �ux, this time for the well
balanced formulations (2.28). ALE �uxes are evaluated at the interface:

FALEij =
1

∆t

∫ tn+1

tn

∫
∂Cij

wσmnmds dt =
1

∆t

∫ tn+1

tn
wυij dt

and they can be incorporated automatically in the resolution of the Riemann
problem:

Fij(ui, uj) = Fi · nij − wiυij +
m∑

p=1,αp<0

Wp

= Fj · nij − wjυij −
m∑

p=1,αp>0

Wp

keeping in mind that, when decomposing the solution jump (1.6.2), one should
consider the velocity of simple waves is modi�ed according to the ALE eigen-
values, see for example Isola [2012]:

m∑
p=1,αp<0

Wp = (Kij − υij I3)− (uj − ui)

m∑
p=1,αp>0

Wp = (Kij − υij I3)+ (uj − ui)

with I3 the 3×3 identity matrix. At the end, the numerical �ux (1.17) will
result enhanced by:

Fij = Fij(ŭi, ŭj; b̆i, b̆j) =
F(ŭj) + F(ŭi)

2
·nij−υij

w̆j + w̆i

2
−
∣∣Kij − υij I3

∣∣
2

(ŭj−ŭi)

(2.40)
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Figure 2.5: DGCL for ALE-FV. Area swept by the interface Cij.

where, the ·̆ values denote linearly reconstructed values of a quantity. Following
the closure proposed in the previous paragraph, all the geometrical quantities
needed to evaluate Ri are obtained on the mid-point averaged mesh, while the
DGCL is de�ned by taking, in the expressions (2.23) and (2.24), V = Ci and
∂Vj = ∂Cij:

|Cn+1
i | − |Cn

i | = ∆t
∑
j∈Di

υij (2.41)

The following interface interface velocity stems from the application of (2.25)

υij =

∫
∂Cij

σmnm ds =
∑
K3i,j

∫
∂CKij

σmnm ds

=
1

∆t

∑
K3i,j

∫
QKij

dx (2.42)

with the quadrilateral QK
ij de�ned by vertexes xnGK ,x

n
ij,x

n+1
ij ,xn+1

GK
, see �gure

2.5.

2.10.1 Well Balancedness

The treatment of the bathymetric term does not change substantially with
respect to the �xed mesh case. The de�nitions (1.21),(1.22) and (1.23) are
valid. We only have to modify the upwind part (1.24) as follows:

S∗ij = −sign(Kij − υij I3)

2
(Aij − υij I3)∆bij (2.43)

since the ALE Jacobian has an extra term due to mesh motion. With these
de�nitions we have now the following characterization.

Proposition 1. The �nite volume discrete equations (2.37)-(2.38) with nu-
merical �ux and source respectively given by (2.40)(1.21) and with (4.32),
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(1.22), (1.23), and (2.43) verify the DGCL for constant b, and the Well-
Balanced both on moving and �xed meshes, provided that the same reconstruc-
tion procedure is used for u and b.

Proof. For constant b, and constant u0, the discrete equations reduce to
(2.41), which proves the �rst part (DGCL)

|Cn+1
i |un+1

i − |Cn
i |u0 = ∆t

∑
j∈Di

υiju0 ⇒ un+1
i = u0

For the second part, the proof rests on the property of the Roe average and
on the fact that, on the lake at rest state, we have Kij = Aij. In particular,
proceeding as in chapter 1

Fij =
F(ŭj)− F(ŭi)

2
· nij + (F(ŭi)− F(ui)) · nij − υijw0 −

|Aij − υij I3|
2

(ŭj − ŭi)

Sbij = A−ij ∆b−ij +
1

2
Aij ∆bij −

sign(Aij − υij I3)

2
(Aij − υij I3)∆bij

Note now that ŭj − ŭi + ∆bij = w̆j − w̆i which vanishes by hypothesis, so that
the last two terms cancel each other. The rest of the proof is almost iden-
tical to the scalar case, and uses the fact that, on the selected equilibrium,
(F(ŭj)− F(ŭi)) · nij = Aij(ŭj − ŭi) and the constancy of w = w0.

�

2.10.2 Source term upwinding: a bridge between WB
and PB form

Before moving on, it is interesting to note that the use of the FV discrete
equations obtained by using the pre-balanced form of the shallow equations
(2.31) are almost identical to those presented above which are instead derived
from (2.28). We neglect friction that does not play any role in deriving the
results that follows. First we de�ne

Rij = F̃ij + S̃bij (2.44)

Roe numerical �ux for the PB formulation:

F̃ij =
F̃(w̆j; b̆j) + F̃(w̆i; b̆i)

2
·nij − υij

w̆j + w̆i

2
−
∣∣Kij − υij I3

∣∣
2

(w̆j − w̆i) (2.45)

and for later purposes, we de�ne a non upwind numerical source term for the
PB equations:

S̃bij = Ã−ij∆b−ij +
1

2
Ãij∆bij (2.46)
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with (cf. equation (1.5)) Ãij = A(nij, ηij) where, in analogy with the notation
used so far, ηij = (η̆j + η̆i)/2. Similarly, we can also de�ne Ã−ij = A(nij, η

−
ij)

with η−ij = (η̆i + ηi)/2.
We observe the following equivalence:

Proposition 2. The Pre-Balanced upwind FV discretization obtained from
the pre-balanced form of the SWEs (2.31) with numerical �uxes (2.45) and a
non-upwind source term approximation (2.46) is equivalent to a minor mod-
i�cation of the Well-Balanced scheme which is always given by (2.37)-(2.38)
(with all the de�nitions contained) but setting in (1.21) the upwind source term
as:

S∗ij = −sign(Kij − υij I3)

2
(Kij − υij I3)∆bij (2.47)

instead of (2.43).

Proof. We rewrite the well balanced FV spatial discretization incorporat-
ing the new de�nition of source upwinding: (2.47) reads:

Rij =Fij + Sbij

=
F(ŭj)− F(ŭi)

2
· nij + (F(ŭi)− F(ui)) · nij − υij

w̆j + w̆i

2
− |Kij − υij I3|

2
(ŭj − ŭi)

+A−ij ∆b−ij +
1

2
Aij ∆bij + S∗ij

(2.48)

We now use the fact that de�nition (2.47) of S∗ij is such that when added to
dissipation of the numerical �ux one gets

− |Kij − υij I3|
2

(ŭj − ŭi) + S∗ij = −|Kij − υij I3|
2

(w̆j − w̆i) (2.49)

We exploit the continuous equivalence

∂Fj(u)

∂xj
+ Sb =

∂F̃j(w, b)

∂xj
+ S̃b

which is written here at discrete level:

(F(ŭj)− F(ŭi)) · nij + Aij∆bij = F̃(w̆j; b̆j)− F̃(w̆i; b̆i) + Ãij∆bij (2.50)

(F(ŭi)− F(ui)) · nij + A−ij∆b−ij = F̃(w̆i; b̆i)− F̃(wi; bi) + Ã−ij∆b−ij (2.51)

Finally, substituting (2.50),(2.51) and (2.49) in the well balanced FV spatial
discretization (2.48) we have

Rij = F̃ij + S̃bij (2.52)

with F̃ij de�ned as in (2.45) and S̃ij as in (2.46) which is exactly the pre-
balanced FV discretization otained from (2.31) (cf. Rogers et al. [2003]; Liang
and Borthwick [2009]; Liang and Marche [2009]).
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�

The last proposition shows that the well balanced discretization of Bermudez
and Vazquez-Cendon [1994]; Hubbard and Garcia-Navarro [2000] is equivalent
to the use of the pre-balanced form of the equation for a particular choice of
the upwind component of the source. The proposition also shows that another
viable alternative would be for example

S∗ij = −|Aij − υij I3|
2

∆bij (2.53)

which also leads to a well-balanced discretization (cf. proof of proposition 1).

2.10.3 Mass conservation on moving mesh

The bathymetric values bn+1
i (in the previous paragraph time dependency has

been dropped for clarity) are computed as explained in the previous section,
cf. eq. (2.34). For the FV method, the nodal values are obtained via Gaussian
quadrature formula over each sub-triangle CK

ij

bn+1
i =

1

|Cn+1
i |

∑
j∈Di

∑
K3i,j

|Kn+1|
6

Nq∑
q=1

ωqb
n+1
q

given bq = b(xq) with xq =
∑

j∈K λ
q
jxj and yq =

∑
j∈K λ

q
jyj. The baricentric

coordinates of the quadrature points λqj are de�ned over the sub-triangles CK
ij .

The one point quadrature with baricentric coordinate in i corresponds to a
constant approximation of the bathymetry function over the median dual cell
(zero order, r = 0) and coincides with the standard choice bn+1

i = b(xn+1
i ). In

the numerical experiments we will test the impact of �rst and second order
accurate formulas (denoted respectively r = 1, 2), in order to arbitrary decrease
the mass error.

2.11 ALE Residual Distribution for SWEs

While �rst ALE FV and FE methods dates back to many decades, RD scheme
in ALE framework are quite recent. Michler et al. [2002] achieved �rst order of
accuracy with an Explicit Euler time integrator and later Dobes and Deconinck
[2008] moved to high order time approximation such as BDF3 and Crank
Nicholson. In these references the common startegy to approximate the ALE
term is to split it into two contributions

∂(σjw)

∂xj
= σj

∂w

∂xj
+ w

∂σj

∂xj
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Michler et al. [2002] referred to this term as Geometric Source Term and dis-
cretize it in such a way to verify the DGCL. We will take advantage of the
above form and write the �uctuation as:

ΦK(wh, bh) =

∫
∂K

Fj(uh)n
jds−

∫
K

σj
∂w

∂xj
dx+

∫
K

S(uh,x) dx (2.54)

As for FV, the �uctuation is evaluated at the midpoint con�guration. Thus,
if not speci�ed, for us K = 1

2
(Kn +Kn+1) in the following. Keeping in mind

this, we provide directly the ALE extension of the eRK2-RD algorithm pre-
sented in section 1.6.4. We remark that it is in a form very close to the update
(1.36)- (1.37). The only remarkable di�erence is that the variable w appears
instead of u; this is a consequence of the results of section 2.12.1 which are
applicable to any scheme and thus holds also for RD. In order to verify WB
a numerical method should approximate the Well-Balanced form of the SWEs
(2.28):

1] Predictor step: for each element K ∈ Th

• Compute the residual ΦK(1) = ΦK(wn
h, b

n
h).

• Distribute the �uctuation to the nodes of K such that
∑

j∈K Φ
K(1)
j =

ΦK(1)

• Compute the �rst order prediction of the solution, denoted as w∗

w∗i = wn
i −

∆t

|Cn+1
i |

∑
K∈Di

Φ
K(1)
i (wn

h, b
n
h) (2.55)

2] Corrector step: for each element K ∈ Th

• Compute the residual

ΦK(2) =
1

2

(
ΦK(wn

h, b
n
h) + ΦK(w∗h, b

n+1
h )

)
+

∫
K

w∗h − wn
h

∆t
dx

• Distribute the �uctuation to the nodes of K such that
∑

j∈K Φ
K(2)
j =

ΦK(2)

• Compute the second order correction from

wn+1
i = w∗i −

∆t

|Cn+1
i |

∑
K∈Di

Φ
K(2)
i (w∗h,w

n
h, b

n
h, b

n+1
h ) (2.56)
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In Appendix D we provide the details that brought us to the above form
which essentially comes from an analogy with stabilized Finite Element method.
With respect to the �xed mesh algorithm, we are left with a new term into the
�uctuation (4.7) related to the ALE

ΦK,ALE =

∫
K

σj
∂w

∂xj
dx

The problem is that we have the elements' edge velocities rather then nodal
values, see section 2.5.1. As remarked by Etienne et al. [2009] this is a com-
mon problem for Finite Element methods since the DGCL provides a rule to
compute the divergence of the mesh velocity but not the velocity itself. Still
we can compute the above term as:

ΦK,ALE =

∫
K

(
∂σjw

∂xj
− w

∂σj

∂xj

)
dx

=

∫
∂K

wσjnjds−
∫
K

w
∂σj

∂xj
dx

We examine the �rst part. Edge �uxes are computed by quadrature formula.
At the same time, these �uxes should verify the DGCL. Following the closure
proposed in 2.5, we replace in (2.23) and (2.24), V = K and ∂Vj = ∂Kj and
the DGCL becomes:

|Kn+1| − |Kn| = ∆t
∑
j∈K

υj (2.57)

The velocity of the j-th edge (opposed to node j) comes from (2.25)

υj =

∫
∂Kj

σmnm ds =
1

∆t

∫
Qj

dx (2.58)

with the quadrilateral Qj de�ned by vertexes xni ,x
n
k ,x

n+1
k ,xn+1

i , see �gure 2.6.
Once υj are recovered, we share these velocities on the edge's quadrature points
through Gaussian weights q = 1, NQ∫

∂K

wσjnjds =
∑
j∈K

NQ∑
q

ωqwqυj (2.59)

The second term is computed using the constant divergence statement (4.43)∫
K

w
∂σj

∂xj
dx =

∫
K

w dx

(
∂σj

∂xj

)
K

=
∑
j∈K

∫
ϕj dxwj

(
∂σj

∂xj

)
K

=

∑
j∈K wj

3

∆|K|
∆t

(2.60)

where a weighted average solution on the cell appears.
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Figure 2.6: DGCL for ALE-RD. Area swept by the edge ∂Kj.

2.11.1 Well-Balanced on moving mesh

We give directly the following statement, which can be regarded as the exten-
sion of the Well-Balanced property for RD to moving meshes:

Proposition 3. The explicit predictor corrector residual distribution proto-
type (2.55), (2.56) with edge velocities (2.58) veri�es the DGCL for constant
b, and the Well-Balanced property both on moving and �xed meshes, provided
that the same linear piecewise continuous approximation is used for w, b and
consequently for u, and that all integrals involving these quantities are evalu-
ated exactly w.r.t. this variation.

Proof. To prove the �rst part (DGCL), we check that for constant bathymetry
and no friction, the splitting terms on the right-hand sides in (2.55) and (2.56)
are identically zero for a given constant state u0. We do the proof only for cor-
rector, the predictor is a particular case. We use the hypothesis that quadra-
ture formula for line integration are exact for P1 function, then the obvious∫
∂K
njds = 0 and the property of Gaussian weights

∑NQ
q ωq = 1:

ΦK(2) =

∫
K

u0 − u0

∆t
dx+ Fj0

∫
∂K

nj ds− u0

∑
j∈K

NQ∑
q

ωqυj + u0
∆|K|

∆t

= u0

(
∆|K|

∆t
−
∑
j∈K

υj

)
= 0

This is immediately shown if we compute the edge velocities with (2.58). We
have un+1

i = u0.
To prove the second part of the proposition (Well-Balancedness), we pro-

ceed in an identical manner, except that now we assume that we have a con-
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stant state w = w0. As before we consider only the corrector

ΦK(2) =

∫
K

w0 − w0

∆t
dx+

∫
∂K

Fjnj ds+

∫
∂K

Sb dx− w0

∑
j∈K

NQ∑
q

ωqυj + w0
∆|K|

∆t

= w0

(
∆|K|

∆t
−
∑
j∈K

υj

)
= 0

�

2.11.2 Mass conservation on moving mesh

In section 2.7 we have discussed the fact that mass conservation on moving
meshes is related on the accuracy of the bathymetric values (2.34). For RD
we used the following L2 type projection

bn+1
i =

1

|Cn+1
i |

∑
K∈Di

|Kn+1|
Nq∑
q=1

ωqb
n+1
q ϕq

The three points quadrature with baricentric coordinates in the triangle's ver-
tex corresponds to a piecewise linear approximation of the bathymetry function
over the triangles (�rst order, r = 1) and coincides with the standard choice
bn+1
i = b(xn+1

i ). In the numerical experiments we will test the impact of second
and third order accurate formulas (denoted respectively r = 2, 3).

2.11.3 Distributions

The distributions matrix can be extended directly from chapter 1. The SWEs
Jacobian changed, see (4.8), and this must be taken into the distribution opera-
tor, especially for the SUPG matrix contained in (1.35), and the Lax Friederich
parameter in (1.34).

2.11.4 Water depth positivity

The ALE-RD algorithm (2.55)(2.56) is in a form that closely resemble the
Eulerian-�xed mesh (1.36)(1.37). The result of water depth positivity pre-
serving can be extended using the same arguments of the proof contained in
Ricchiuto [2015]. There are however two issues that must be taken into ac-
count. First, the �uctuation is enhanced by the ALE term. Second, the mass
equation is written in the variable η and not h. The predictor update for the
mass equation from (2.55), followed by the WB correction (2.34) rewrites:

η∗i = ηni −
∆t

|Cn+1
i |

∑
K∈Di

φKi (2.61)

h∗i = max(0, η∗i − bn+1
i + ∆bi) (2.62)
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where ∆bi is de�ned in (2.35) and it is di�erent from zero only if i is dry.
As a consequence of the max operator, introduced to avoid negative depths
in the lake at rest, such an update is trivially positive. However let's try to
understand which is exactly the role of the max operator for a general situation
where the �ow is not at rest. We rewrite the update (2.61) in h and we separate
the ALE �uctuation in h and b. Always for the predictor step we have:

ĥ∗i = hni −
∆t

|Cn+1
i |

∑
K∈Di

φhi︸ ︷︷ ︸
I

−bn+1
i + bni −

∆t

|Cn+1
i |

∑
K∈Di

φbi︸ ︷︷ ︸
II 6=0

(2.63)

h∗i = max(0, ĥ∗i + ∆bi) (2.64)

where in every cell K, φhi is a splitting of the residual in h

φh =

∫
∂K

hujnjds−
∫
K

σj
∂h

∂xj
dx

as we see it is enhanced by the ALE part. Similarly, in every cell K, φbi de�nes
a splitting of the ALE residual in b:

φb = −
∫
K

σj
∂b

∂xj
dx

In 2.63, two parts can be put in evidence (within brackets). The last three
terms underlined, named with II, should correspond to the approximation of
the ALE remap equation for the bathymetry. They do not sum up to zero
because we have deliberately choose to not compute bn+1

i with the ALE remap
equation which means by:

bALEi = bni −
∆t

|Cn+1
i |

∑
K∈Di

φbi

We can de�ne II as:
II = bALEi − bn+1

i 6= 0

The �rst two terms on the right hand side of (2.63), named as I, have not been
addressed yet. Basically they represent the update as if we were evolving the
ALE mass equation in h, that is (2.16). With respect to solving the SWEs in
the water depth, the term II can be seen as a perturbation related to the fact
that we are not solving an equation for the bathymetry remap. Unfortunately,
we do not control the sign of this perturbation. Very roughly, in (2.62)

h∗i = max(0, I + II + ∆bi)

if II + ∆bi generates a negative water depth, the max operator nulli�es this
contribution automatically.
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However, it is important to ensure that I, the part of the mass equation
update in h, is still positivity preserving. This provides our ALE scheme of
a CFL condition that avoids negative depths in case of �at bathymetry and
ensures that negative contributions, which are roughly nulli�ed in (2.62), are
only due to a non-exact ALE remap of the bathymetry. The �uctuation φh

writes:

φh =
1

2

∑
j∈K

hjuj · nj −
∑
j∈K

hj

(
υi + υk

2
− 1

3

∆|K|
∆t

)
=

1

2

∑
j∈K

hjuj · nj −
1

3

∑
j∈K

hj

(
υi + υk

2
− υj

)

in last development we have used the DGCL (2.57). With respect to the
�xed mesh case of section 1.6.5 the ALE �uctuation is enhanced by the ALE
term which have been computed according to (2.59) and (2.60). We set for
simplicity:

υi + υk
2

− υj = υik − υj

As done in section 1.6.5 we write the LLxF �uctuation as:

φLLxFi = γi

(
1

6

∑
j∈K

hjuj · nj −
1

9

∑
j∈K

hj (υik − υj) +
αK

3

∑
j∈K,6=i

(hi − hj)

)

= γi

(
1

6
ui · ni −

1

9
(υjk − υi) +

2αK

3

)
hi

+
∑

j∈K,6=i

γi

(
1

6
uj · nj −

1

9
(υik − υj)−

αK

3

)
hj

for the de�nition of γi > 0 see always 1.6.5. We remark that we have put
the LLxF �uctuation into the form (1.32) which is particularly suited to �nd
local bounds of the numerical solution. Considering the contribution of each
element to the update (2.63) separately:

ĥ∗i = hni −
∆t

|Cn+1
i |

φLLxFi

=

(
1− ∆tγi

|Cn+1
i |

(
ui · ni

6
− υjk − υi

9
+

2αK

3

))
hni

+
∑

j∈K,j 6=i

∆tγi

|Cn+1
i |

(
αK

3
− uj · nj

6
+
υik − υj

9

)
hnj

= aKii h
n
i +

∑
j∈K,j 6=i

aKijh
n
j
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Figure 2.7: Linear Advection. Left: Lake at rest for the NO WB ALE for-
mulation and failing in verifying Well Balanced. Middle: comparison between
the numerical solution and exact one on the symmetry line x = 0.5. Right:
convergence order for the L2-norm of the error.

h∗i > 0 is positive if the extra-diagonal coe�cients aKij > 0, which �x a lower
bound to the LxF dissipation parameter:

αK >
1

2
uj · nj −

υik − υj
3

, ∀j ∈ K, 6= i

We have neglected ∆tγi
|Ci| because it is always positive. Moreover it is necessary

to enforce a CFL condition to have the positivity of the diagonal coe�cient
aii > 0

∆t <
3|Cn+1

i |∑
K∈Di

(
1
2
ui · ni − υik−υj

3
+ 2αK

)
For the corrector step, the positivity analysis can be carried out exactly in
the same fashion of Ricchiuto [2015] to which we refer for details (adding of
course the ALE �uctuations for the predictor and corrector step). In practical
calculation we have imposed:

αK =
1

2

(
max
j∈K
‖uj‖max

j∈K
‖nj‖+ 2 max

j∈K
υj

)
, ∆t < min

i∈Th

|Cn+1
i |∑

K∈Di α
K

2.12 Numerical experiments

2.12.1 Well Balanced

To illustrate some concepts and to better highlight certain numerical e�ects,
we reconsider the simpli�ed model (2.65). We add a general source to mimick
the SWEs. This model reads

∂u

∂t
+
∂F j

∂xj
+ S(u,x) = 0 , x ∈ [0, 2]× [0, 1], t ∈ [0, 1] (2.65)

where, for a given �ux vector F (u) = [F 1 F 2 ], the source term is de�ned as

S = aj
∂b

∂xj
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with b = b(x, y) a given function, and with the �ux Jacobian a = ∂F (u)/∂u.
The following de�nition of the �uxes will be used, F (u) = au, with a = [ 1 0 ].
Introducing the variable η = u+ b, equation (2.65) admits a non-trivial steady
state given by

u(x, y) + b(x, y) = η0 = const (2.66)

To test the WB property on moving mesh for the ALE formulation, we use
the simple case of linear advection of a smooth sinusoidal hill{

η0(x) = 1 + cos2 (2πr) if r ≤ 0.25, r =
√

(x− 0.5)2 + (y − 0.5)2

η0(x) = 1 otherwise

A pseudo-bathimetry is de�ned by b(x) = 0.8eψ(x,y) with ψ = −5 (y − 0.9)2 −
50 (x− 0.5)2. The following arbitrary mapping is used to move the mesh

xi(t) = X i + 0.1 sin (2πX1) sin (πX2) sin (2πt) i = 1, 2

We check the validity of the analysis of section on this scalar case by performing
a grid convergence study (halving the mesh sizes hK in the reference domain),
and by visually checking the preservation of the state η = 1. The computations
are run with the RD scalar scheme, but the FV results are almost identical.
The results are summarized in �gure 2.7. We can con�rm that: when no
perturbation is added, the well balanced ALE formulation (2.28) (ALE WB
in the �gures) preserves the constant state to machine accuracy (not shown in
the �gures), while the classical ALE form (2.19) (ALE NO WB in the �gure)
does not, as the left and middle pictures clearly show.

For the smooth perturbation (and pseudo-bathymetry) considered here we
observe second order of accuracy for both the formulations. However the pres-
ence of spurious oscillations in the �at region increase substantially the absolute
value of the error obtained with the unbalanced ALE form.

2.12.2 Accuracy

We consider the advection of a vortex problem proposed in Ricchiuto and
Bollerman [2009] to test the accuracy of the SWEs-ALE schemes. The spatial
domain is the square [0, 1]. The vortex is initially centered in (0.5, 0.5) and is
transported by a constant �eld u = [ 6 0] until it has crossed the whole domain
and get back to its initial position at T = 1/6. Periodic boundary conditions
are imposed. The computations have been performed on 5 unstructured grids
with the topology shown on �gure 3. The coarsest has mesh size h = 1/56.
The other 4 meshes have been generated independently, halving the mesh size
at each step. The following arbitrary mapping is used to move the mesh

x1(t) = χ1 + 0.1 sin (2πχ1) cos (2πχ2) sin
(

2πt
T

)
x2(t) = χ2 + 0.1 cos (2πχ1) sin (2πχ2) sin

(
2πt
T

)
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Figure 2.8: Vortex advection. 2nd level of mesh re�nement: original mesh and
transformed mesh. Mesh convergence for: left) RD. right) FV.
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Figure 2.9: Dambreak with circular hump. Left: bathymetry. Right: dimen-
sionless mass error for di�erent quadrature formula of the bathymetry integral.

2.12.3 Mass conservation

We perform the classical test benchmark, taken from Seaid [2004]. The set-up
consists in a square domain [0 × 200]2m with a dam, placed at x = 95m,
separating an upper and a lower bassin which contain water at di�erent levels,
respectively at 10m and 5m. To check our mass conservation correction (cf.
section 2.7) we have added a bathymetry shaped as a circular hump centered in
(x, y) = (0, 200) [m], and de�ned by an exponential law in the radial direction
(cf. left picture on �gure 2.9). We report on the right pictures on �gure 2.9
the mass error measured without any correction, and with corrections based on
di�erent quadrature formulas (for the de�nition of Emass, see always section
2.7. We can clearly see that we are able to preserve the total mass in the
domain practically up to machine accuracy.
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Chapter 3

r-adaptation for hydrodynamics

In this chapter, to enhance important features in hydrodynamics simulations
such as the resolution of wave patterns or the wetting/drying dynamics, we
employ mesh adaptation. We point out the obvious fact that mesh adaptation
introduces an additional level of complexity and must be used with great care
to be e�ective. To improve the accuracy of the second order RD/FV-eRK2
Shallow Water solver presented in chapter 1 and 2, we employ mesh adaptation
techniques based on nodes redistribution (or relocation) that are also known as
r-adaptation techniques. Roughly speaking, these methods move the points of
a given reference mesh, keeping the mesh topology and number of mesh points
unchanged. In fact in this simple description, it is hidden the main advantage
of r-re�nement with respect to h-re�nement: the data structure is unchanged
and e�cient conservative/accurate remaps of �ow variables can be carried out
from one grid to the updated one.

In the �rst part of the chapter we introduce the reader to r-adaptation (a
vast review can be found in Budd et al. [2009a]). In this framework we detail
the r-adaptive technique of Ceniceros and Hou [2001] which is implemented in
this thesis. A small variant in the de�nition of the error estimate is considered
to re�ne the mesh at the wet-dry interface. Once we have understood the tool
to move the mesh, in the second part of the chapter we deal with the problem
of resolving the SWEs (or general balance laws) on these moving grids. A
popular method is the rezoning algorithm of Tang and Tang [2003] which is
based on conservative ALE remaps. ALE remap is presented in 3.5 and permits
to interpolate the numerical solution among the di�erent grids. We also recall
that an elegant way to resolve the SWEs in an arbitrary reference framework
x = A(χ, t) has been presented in chapter 2. If we choose this arbitrary
reference to coincide with the grid transformation, then the solution on the grid
xn, u(xn, tn), is evolved directly on the new grid xn+1, u(xn+1, tn+1). Rezoning
and ALE algorithms (section 3.6) are tested on scalar problems in section 3.6.4.
From this �rst investigation we propose a third coupling algorithm which is a
cheaper variant of the rezoning approach. Finally, in section 3.7 we present
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3.1. Uniform mesh in metric space

the coupled algorithms in terms of accuracy, and CPU time for some classical
SWEs benchmarks.

3.1 Uniform mesh in metric space

The general idea in mesh generation is to exploit the fact that we can easily
generate a uniform mesh in a Riemannian space, which will correspond to
a non uniform physical mesh in the Euclidean space, which is used for the
computations. With respect to chapter 2, we switch from the term "actual"
to the term "physical" in order to highlight that this is the con�guration in
which our physical conservation law is settle. The physical space is opposed
to the computational space, which exists only to compute the mesh. At the
end, points in the physical mesh must be clustered where large gradients of the
solution appears. With a brief example taken from Alauzet [2010], we would
like to explain why a Riemannian metric space makes possible to obtain non
uniform mesh in the physical space. A manifold M can be seen as a surface
embedded in the Euclidean space E3 and described with Cartesian coordinates:

M =
(
x1, x2, x3(x1, x2)

)
(3.1)

with x1, x1 belonging to Ω ⊆ R2 an open region in the Euclidean plane . First
we consider a pair of auxiliary variable to parametrize the surface χ1, χ2 ∈
Ωχ ⊆ R2 such that

M =
(
x1(χ1, χ2), x2(χ1, χ2), x3(χ1, χ2)

)
We consider a straight curve γ ∈ Ω parameterized by the parameter t ∈ [0, 1]
which connects two points P,Q with P (x1, x2) and Q(x1, x2):

γ(t) = (x1(t), x2(t))

Its image c(t) on the surfaceM is a curve of R3 connecting two points lying on
M, R and S. Also the parametric coordinates can be assumed to be function
of the parameter t. The curve c(t) simply is:

c(t) = (x1(χ1(t), χ2(t)), x2(χ1(t), χ2(t)), x3(χ1(t), χ2(t))).

The length of the curve c(t) onM, is expressed by (A.14):

lM(P,Q) =

∫ 1

0

√
dχi

dt
Mij(t)

dχj

dt
dt

We assume now that we can construct a mesh such that for every edge PQ,
its arc length is constant, let's say unitary lM(P,Q) = 1. This mesh is said to
be uniform in the metric space. But its image on Ω corresponds to straight
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3. r-adaptation for hydrodynamics

Figure 3.1: An example taken from Alauzet [2010]: a uniform mesh in a metric
space and a non uniform mesh in Euclidean space.

edges with non unitary distance. If now we think to the plane Ω as a plane
with Euclidean metric, we have constructed a non uniform two dimensional
mesh. This illustrates why a Riemannian metric curves the space: a uniform
computational mesh corresponds to a physical mesh where points cluster if
curvature appears.

3.2 Elliptic Moving Mesh PDE

The theory of elliptic grid generation provides a suitable theoretical framework
for developing the set of PDEs that controls mesh movement, or moving mesh
PDEs (MMPDEs). For clarity we repeat here the main results contained in
Thompson et al. [1999], and we provide the expression of the MMPDE that
we chose among many, as a particular case of this general theory. Later we
will see that, at least for the general case, there is an analogy with the theory
of harmonic map, Ivanenko [1999].

We introduce two (unstructured), simply connected grids: the computa-
tional and the physical mesh. We recall from chapter 2 the ALE transforma-
tion which transforms the reference mesh into the actual one, see (2.6) and
(2.7):

A : A0 → A x = A(χ, t), JA =
∂x

∂χ

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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3.2. Elliptic Moving Mesh PDE

the map should be invertible and we assume JA = detJA > 0 to avoid negative
areas. Di�erently from what stated in chapter 2, we will assume here that
points Q̂ ∈ A0 and Q ∈ A do not lie in the Euclidean plane but that they
both A and A0 could belongs to a manifold in E3. As stated in Warsi [1999]
and Spekreijse [1999], in the context of mesh adaptation/generation we would
like to map a region of manifold calledM with local curvilinear coordinates χ
into a region of a two dimensional Euclidean plane E2 described by Cartesian
coordinates x. With respect to (2.6) we consider A0 ⊂ M and A ⊂ E2. We
put this in evidence in the de�nition of the ALE map:

A :M→ E2 x = A(χ, t) (3.2)

and we specify the parametric domain to which curvilinear coordinates belongs:

χ ∈ Ωχ ⊂ R2 and x ∈ Ω ⊂ R2

see �gure 3.1. As for the rest, we refer to them respectively as computational
and physical domain.

In the following, we will extensively make use of the concept of curvilinear
coordinates. We give in appendix A a brief review of tensor analysis and a list
of the formulas for divergence, gradient and Laplacian operator in generalized
coordinates. Concerning the notation we use the one of appendix A but with
di�erent letters. We assume that M is equipped with metric tensor M of
components Mij (

√
M =

√
detM ), inverse metric tensorM−1 of components

M ij and Christo�el symbols Γkij.
We start by considering the Laplacian of a scalar φ in the curvilinear co-

ordinates χ, see (A.13)

∇2φ = M ij

(
∂2φ

∂χi∂χj
− Γkij

∂φ

∂χk

)
(3.3)

We write the Laplacian of each physical component, separately. Setting in the
above equation φ = xα, we realize that

∇2xα = ei
∂xα

∂xi
· ej ∂x

α

∂xj
=

∂2xα

∂xj∂xj
= 0

and we have an equation for the physical coordinates

M ij

(
∂2xα

∂χi∂χj
− Γkij

∂xα

∂χk

)
= 0 (3.4)

This equation can be further manipulated setting always in (3.3), φ = χk:

∇2χk = −M ijΓkij
∂χk

∂χk

= −M ijΓkij
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3. r-adaptation for hydrodynamics

And we can write compactly a MMPDE for each physical coordinate

M ij ∂2xα

∂χi∂χj
+∇2χk

∂xα

∂χk
= 0

This is a set of uncoupled elliptic PDEs which gives back directly the grid in
the physical space. This system can be solved numerically.

What is done typically at this point is to generate grids in the computa-
tional domain imposing Poisson equations∇2χk = P k with control function P k

that can be assigned arbitrary. For general P k 6= −M ijΓkij, this is a generaliza-
tion of (3.4) and it could still represent a moving mesh generator, although the
transformation from a metric space has no more sense and the map x = A(χ, t)
is meant A : E2 → E2. We rewrite the MMPDE with control function:

M ij ∂2xα

∂χi∂χj
+ P k ∂x

α

∂χk
= 0 (3.5)

3.3 Moving Mesh PDE from Harmonic Maps

Dvinsky [1991] noted that elliptic meshes discussed in the previous paragraph
could be generated through the theory of harmonic maps, as formulated by
Eell and Sampson [1964]. We refer to appendix B for a brief digression on the
de�nition of harmonic map and the main statements. Keeping in mind that
the map is A : M → E2, we gain that one metric is Euclidean Hαβ = δαβ
(with δαβ the Kronecker's delta) and, as a consequence, the energy density for
the map (3.2) writes, see B.1:

e = M ijδαβ
∂xα

∂χi
∂xβ

∂χj
= M ij ∂x

α

∂χi
∂xα

∂χj

thus the energy functional writes

E(x) =
1

2

∫
M ij ∂x

α

∂χi
∂xα

∂χj

√
Mdχ (3.6)

which indeed admits the Euler-Lagrange equations, see (B.2)

M ij

(
∂2xα

∂χi∂χj
− Γkij

∂xα

∂χk

)
= 0

so we have found again (3.4). The advantage of the approach of Dvinsky con-
sists in the fact that it comes together with a prove of existence and unique-
ness of the map. The Hamilton-Yau-Shoen theorem (theorem HYS, Hamilton
[1975], Schoen and Yau [1978]) states that the map exists when the following
two conditions are veri�ed:

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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3.3. Moving Mesh PDE from Harmonic Maps

Figure 3.2: Examples of non convex physical domain in hydrodynamic simu-
lation.

1. The curvature of the physical con�guration A is non-positive, and

2. The boundary of the physical domain ∂Ω is convex.

The �rst condition is identically satis�ed by the physical con�guration because
A ⊂ E2. In addition, if the boundary of the physical domain is convex, then
the maps exists. We point out that, in hydrodynamics simulations this last
hypothesis seems to be a little too restrictive. Let's think for example to the
physical domains in �gure 3.2. For such cases we have no guarantees that a
map into the logical domain exists. This was a reason why, at the beginning,
much e�ort was spent in resolving the inverse map, that is

A−1 :M→ E2 χ = A−1(x, t)

Following Dvinsky [1991] and later Huang and Russell [1999], one can choose
A0 to have an Euclidean metric and A to be a region of a Riemannian manifold
M. A0 is �at with zero curvature and the convexity hypothesis is no more ur-
gent, since for the computational domain we can always take a convex domain.
Moreover, the HYS theorem guarantees the existence and the invertibility of
the map for a general metric. In light of this and for completeness with re-
spect to this small review on moving mesh methods, we report the (inverse)
MMPDE of Huang and Russell [1999] (given the complete Euler-Lagrange
equations (B.3) you may set Γαγδ = 0 and invert xα with χα)

∂

∂xi

(
M ij
√
M
∂χα

∂xj

)
= 0

which works also for non convex physical domain. Of course the drawback of
taking the mapping in the opposite direction is that we need to transform it,
somehow, back into the curvilinear coordinates x and this makes the resulting
equation much more complex.
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3. r-adaptation for hydrodynamics

3.4 MMPDE of Ceniceros and Hou

In the following we will stick to the direct map x = A(χ, t) and to the general
MMPDE (3.5) that the interested reader will �nd in Warsi [1999]. Consider
the following diagonal metric

Mij =
1

ω
δij

with
√
M = ω−1. The function ω is called monitor function. The inverse

metric is M ij = ωδij. We choose now the control function

P k =
∂ω

∂χk

and substitute in the MMPDE (3.5)

δijω
∂2xα

∂χi∂χj
+

∂ω

∂χk
∂xα

∂χk
= 0

ω
∂2xα

∂χi∂χi
+

∂ω

∂χk
∂xα

∂χk
= 0

We end up with the simple MMPDE �rst obtained by Ceniceros and Hou
[2001]:

∂

∂χi

(
ω
∂xα

∂χi

)
= 0 (3.7)

This mesh generator has many advantage, among them

1. it is a set of decoupled quasi-linear elliptic equations for which many
e�cient numerical methods are available

2. we obtain directly the physical coordinates of the mesh points.

Among the drawbacks there is fact that folded grids can occur. Another issue
is the control of the mesh quality, for example the element's skewness and the
mesh alignment with respect to the �ow direction. With the MMPDE (3.7)
based on diagonal metric ω−1δij, we have little control on these quantities. I
will brie�y detail this issue later. Originally, Ceniceros and Hou [2001] have
tested an implementation of (3.7) to improve the resolution of blow-up prob-
lems and heat convection. The results were promising since the method prove
to be computationally e�cient and capable to follow complex �ow evolutions
up to small scale phenomena. This approach has been quite successful, and it
has been used among the others, in Tang and Tang [2003], Chen et al. [2008]
and Zhou et al. [2013a].

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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3.4. MMPDE of Ceniceros and Hou

Ceniceros and Hou [2001] derived and presented equation (3.7) as the Euler-
Lagrange equation related to the following functional:

E(x) =
1

2

∫
Ωχ

ω
∂xα

∂χi
∂xα

∂χi
dχ (3.8)

It is worth to note that for this particular mesh generator with P k 6= −M ijΓkij,
we loose the analogy with harmonics maps, as we can see by checking the
di�erence with respect to the functional (3.6) →M ij

√
M 6= ωδij.

Finally we think it is interesting to write (3.7) with a sort of elastic analogy,
replacing the position with the displacement respect to the computational mesh
xα = Xα + δα:

∂

∂χi

(
ω
∂δα

∂χi

)
=

∂ω

∂χα
(3.9)

where Σαi = ωδij
∂δα

∂χj
is a pseudo elastic stress tensor, and the right hand side

act as force on the medium Fα = ∂ω
∂χα

. We remark that the monitor function
play a role in controlling both the sti�ness of the system and the force.

3.4.1 Boundary conditions

When solving problem (3.7) we will assume that the computational domain is a
closed polygon whose boundary ∂Ωχ is composed by the union of m segments.
∂Ωχ is mapped into the boundary ∂Ω and we further assume that it is invariant
to the transformation. For instance we will have no moving boundaries. In
particular we consider free-slip boundary conditions

δ · n = 0, χ ∈ ∂Ωχ (3.10)

with δ = 0 at the polygon's vertexes. A standard method to impose boundary
condition is contained in Tang and Tang [2003] where it is introduced a second
map A∂ : ∂A0 → ∂A which correspond to the trace of (3.2) on the boundary.
This mapping is then used as Dirichlet conditions to solve the transformation
for inner points. Alternatively as shown in Li et al. [2002] the variational for-
mulation could be complemented by a constraint equation to take into account
(3.10). We will however stick to form (3.9), written in terms of displacement,
which is suited to express directly the boundary conditions.

3.4.2 Monitor function

In general the metric tensor is related to the Jacobian of the transformation
which we called JA,M = JTAJA (see appendix A). The Jacobian controls size
and orientation of mesh elements. Following Huang [2006] we write JA using
the singular value decomposition (SVD):

JA = UΛV T (3.11)

76 Luca Arpaia



3. r-adaptation for hydrodynamics

where U and V are the orthogonal matrices associated with left and right
singular vectors and Λ is the diagonal matrix consisting of the singular values.
This decomposition has a geometrical meaning: U is a rotation matrix that
speci�es the orientation of physical mesh elements and Λ speci�es the size and
shape of these elements. Setting properly the SVD one can construct monitor
matrix to achieve certain properties of the elements, such as anisotropy and
skewness, see Alauzet [2010]. What we want to point out is the di�erence with
the diagonal metric ω−1δij that decouples completely the two directions. That
is, x1 and x2 are resolved independently with the scalar monitor function ω.
While this allows to achieve a quite good anisotropy, it does not guarantee the
re�ned control of the decomposition (3.11). In practice this means that we will
have limited control on mesh quality.

Now we go back to the de�nition of ω. A classical de�nition for scalar
problems, given by Winslow [1967], couples the mesh motion with the gradient
of the solution of the underlying PDE on the physical mesh: ω = ω(∇u). As
in Zhou et al. [2013b], we have selected the free surface η, in order to detect
free surface wave patterns and bore development. We propose the following
de�nition of the monitor function

ω =

√
1 + α (max (||∇η||∗, ||∇2η||∗))2 + δφ2 (3.12)

We see that when ||∇η||∗, ||∇2η||∗, φ → 0, the metric becomes the Euclidean
one Mij = δij and the mesh tends to the unperturbed state. ‖ · ‖ represent
normalized L2−norms computed as

||∇η||∗= min

(
1,

||∇η||
βmax||∇η||

)
, ||∇2η||∗= min

(
1,

||∇2η||
γmax||∇2η||

)
The coe�cients α, β and γ are free parameters, allowing to optimize the mesh
movement. Note that in all of the above formulas, the derivatives of η are
computed on the physical (moving) mesh, making problem (3.7) nonlinear.
In (3.12) we have also tested the in�uence of the Hessian of the free sur-
face and a tracking of the wet/dry interface. There are in literature some
examples of such front-tracking error functions. For example, in the con-
text of phase change problems, J.A.Mackenzie and W.R.Mekwi [2007] de�ned
ω = α/

√
β|x− xinterf |+ γ. This expression, like others, requires the knowl-

edge of the distance function from the interface, whose computation may be
quite costly. Here we propose a simpler approach explicitly exploiting the
knowledge that h→ 0 at the front. We have added a new term

φ = max(∇f(x),∇2f(x)) (3.13)

and f is a function which is constant everywhere except in the narrow region

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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3.4. MMPDE of Ceniceros and Hou

Figure 3.3: Example of mesh adaptation to the wet/dry interface.

where CH < h < CU :
f(x) = 0, if h(x) ≤ CH

f(x) = h−CH
CU−CH

, if CH < h(x) < CU

f(x) = 1, if h(x) ≥ CU

In �gure 3.3 we report an example to show how this technique may work. The
mesh is re�ned over the wet/dry cells and, due to the presence of the Hessian
norm in (3.13), it is also re�ned one cell after the interface in dry region. We
have added the Hessian contribution after having observed that a more spread
mesh re�nement at the interface, ensures robust �ooding simulation.

3.4.3 Mesh Smoothing

The smoothness of the mesh is measured in terms of the variation of the local
element's size hK over the domain Ω. More rigorously, given the map (2.6), a
mesh has degree of regularity r if the Jacobian J ∈ Cr(Ω) , see Budd et al.
[2009a]. Mesh regularity is important because it is widely recognized that
abrupt variation of the mesh size leads to a deterioration of the numerical
solution. Typically, meshes obtained by (3.7) are smooth, but, in presence of
non convex boundaries ∂Ω loss of regularity can occur, ultimately leading to
mesh tangling in extreme cases. Huang and Russell [1997] studied the property
of the following one dimensional equation:(

1− ν ∂2

∂X2

)
x = x̂

and demonstrated that x satis�es the following smoothness condition:

|J | =
∣∣∣∣ ∂x∂Xx−1

∣∣∣∣ < ν−2
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3. r-adaptation for hydrodynamics

The two dimensional extension can be found in Budd et al. [2009a] and reads:(
1− ν ∂2

∂X i∂X i

)
xαsm = xα (3.14)

This MMPDE is particularly e�cient to resolve because the operator

L = 1− ν ∂2

∂X i∂X i

can be inverted once on the computational mesh, and then used to compute a
smoother variation of a given mesh (typically the solution of (3.7)) as:

xαsm = L−1xα

To avoid mesh tangling at the corner of non convex domain, we have de�ned a
variable di�usion coe�cient based on the distance form the boundaries, dP,∂ =
d(xP , ∂). Since the boundaries do not move, the distance is computed once
and then successively interpolated.

νi = max

(
0, 100−

(
di,∂Ω

hk

)2
)

In �gure 3.4 we can see a case where smoothing is not applied and the mesh
tangles at the corner, while, applying a sequence of the two MMPDE (3.7) and
(3.14) at each time step, we observe a smoother mesh without tangling. We
remark that the above de�nition of the di�usion parameter is heuristic and
there is still no guarantee that tangling never occur.

3.4.4 Numerical resolution of MMPDE

In practice, given an initial mesh in the computational domain, the weak form
of (3.7) with boundary conditions (3.10) is discretized with a standard P 1

Galerkin �nite element method. We search for an approximate solution xh ∈ Vh
such that ∫

Ωχ

∂xαh
∂χm

ω
∂vh
∂χm

dχ = 0 ∀vh ∈ Vh, α = 1, 2

If we use continuous piecewise polynomials, the FE solution

xαh =
∑
j∈Th

ϕjx
α
j

{ϕi(x1, x2)}N1 is the Lagrangian basis and xαj coincides with the position of the
node labeled by j. The standard development is:∑

j∈Th

∫
Kχ

∂ϕj
∂χm

ω
∂ϕi
∂χm

dχxαj = 0 ∀i ∈ Th, α = 1, 2

Adaptive techniques for free surface �ow simulations. Application to the
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3.4. MMPDE of Ceniceros and Hou

Figure 3.4: Tangling for non convex domain. right) non smoothed mesh left)
smoothed mesh

Using the fact that ∂ϕi
∂χm

is constant on an element

∂ϕj
∂χm

=
1

2|Kχ|
nmj

We can write the algebraic system in terms of displacement δα = xα − χα.∑
j∈Th

aij δ
α
j = bαj ∀i ∈ Th, α = 1, 2 (3.15)

with:

bαj =
∑
j∈Th

aijχ
α
j

aij =
∑

K∈Di∪Dj

∫
Kχ

ω dχ
1

4|K|2
nmi n

m
j

Due to the dependence of ω on the derivatives of η on the new mesh, the weak
form (3.15) de�nes a nonlinear system of algebraic equations which needs to
be solved by means of some iterative procedure.

The choice of this procedure and its coupling with the �ow evolution equa-
tions plays a crucial role in determining the balance between the gain brought
by the adaptation procedure, and its cost overhead with respect to the evo-
lution of the �ow quantities with the explicit schemes discussed in chapter
2. In this regard it is worth noting that the eRK2-RD method is ten times
faster compared to the implicit version, Ricchiuto [2015]. For all these reasons,
we have chosen a simple explicit Newton-Jacobi iteration method, as in Chen
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3. r-adaptation for hydrodynamics

et al. [2008]. In particular, at each time step, the displacement δk = xk − xn
is computed from the following relaxed iteration

δ̂
k+1

i = δki −
1

aii

∑
j∈Di

aijx
k
j (3.16)

xk+1
i = xni + µiδ̂

k

i (3.17)

Note that the update (3.16) is equal to the one of Chen et al. [2008], but recast
in terms of displacements so to embed more naturally the boundary conditions.
As in the last references, to improve the control on the regularity of the mesh,
we have introduced a relaxation phase in the iterations. In particular, the
following de�nition of the relaxation parameter µi has been used (cf. also
Tang and Tang [2003], Chen et al. [2008])

µi = min (1,max (ϑ, τ ||∇ηi||))

To avoid nodes'depletion in regions with small solution variations, a threshold
for the sti�ness is tuned by �xing ϑ, if ϑ ∼ 0 the sti�ness in regions where
∇η ∼ 0 is strongly increased.

Finally, we recall that the entries of the sti�ness matrix aij depend on the
value of the monitor ω, and thus on the value of the solution on the new
grid. As a consequence an essential element of this method is a su�ciently
accurate projection step allowing to remap the discrete solution on the moving
mesh. This projection step has to be chosen very carefully, as it impacts the
overall accuracy, monotonicity, and cost of the computation. This issue will
be extensively covered in section 3.5.

3.4.5 Mesh Generation

We test the moving mesh algorithm de�ned by (3.16) on the benchmarks pro-
posed in Tang and Tang [2003]. The monitor function is computed according
to ω =

√
1 + αu2, with u assigned:

u(x, y) = exp(−8(x2 + 9y2 − 1)2) (3.18)

u(x, y) = exp(−100(y − x2 + 0.5)2) (3.19)

u(x, y) = 50 exp(−2500(x2 + y2) (3.20)

u(x, y) =

{
1 if y = x

0 if y 6= x
(3.21)

with x = x1 and y = x2. The reference domain is a square [−1, 1] × [−1, 1].
The iteration is repeated in the pseudo-time loop until convergence is reached.
For the �rst two smooth examples reported in �gure 3.5 we have set α = 100.
In the left picture of �gure 3.6 we show that also singularities are well handled
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Figure 3.5: Top) test (3.18). Bottom) test (3.19)

with a proper choice of the parameter. Finally always in �gure 3.6 on the
right, there is a test for an oblique shock: the zoom shows that anisotropy in
the direction of the shock is achieved without tangling occurrence.

3.5 High order projections from ALE remaps

As already said, the Newton-Jacobi iterations (3.16) and (3.17) require the
projection of the solution values on the last updated mesh. The problem have
already been formalized in section 2.3.1. We want to evaluate scalar and vector
properties of the �uid through the ALE transformation. For the vector of �ow
variables:

w = w ◦ A = w0 (χ)

82 Luca Arpaia



3. r-adaptation for hydrodynamics

Figure 3.6: Top) test (3.20). Bottom) test (3.21).
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3.5. High order projections from ALE remaps

We recall here the remap equation (2.15):

∂JAw

∂t

∣∣∣∣
χ

− JA
∂wσj

∂xj
= 0 (3.22)

and we remark that the interpolation has been formalized into a typical hy-
perbolic problem in which the solution is advected by the domain movement.
It is not a coincidence that it is usually referred to as advection remap.

The problem of computing updates for the solution values due only to the
mesh movement can be elegantly solved by using remaps generated by the same
schemes used to discretize the PDEs. Such a remap corresponds to the limit
for ∆t→ 0 of the schemes presented in sections 2.10 and 2.11 with a "frozen"
the �uid con�guration B(t∗), but letting the mesh con�guration A(t) continue
to move. This provides an instantaneous approximation to the conservative
ALE remap equation.

Practically, during the iterations (3.16) we generate a sequence of sub-grids
T k+1
h on which we want to interpolate the last available numerical solution. If

we are at the k-th iteration, the last available solution is wk
i = w(xki ).

FV ALE remap

For the FV scheme, taking the limit for ∆t → 0 of (2.37) we obtain the one
step projection over the sub-grid T k+1

h

|Ck+1
i |wk+1

i = |Ck
i |wk

i −
∑
j∈Di

Rij(wk) (3.23)

and

Rij(w) =
∑
j∈Di

(
−∆xij

w̆j + w̆i

2
−
|∆xij

∣∣
2

(w̆j − w̆i)

)
the interface velocity is replaced by an interface displacement (which coincides
with the area swept by the same interface):

∆xij =

∫
∂Cij

∆xmnm ds

∆xm = xm,n+1 − xm,n is the displacement of the interface during a single
time step. The advantage of this approach is that it retains all the properties
of the original method. A second order, non-oscillatory, well-balanced, mass
conserving projection can be obtained by applying the limited high-resolution
FV scheme, referred to as MUSCL in section 1.6.2. If the scalar, decoupled
nature of the projection equations (all quantities independently are transported
in the direction of the displacement) reduces the cost of these evaluations, it
still means that the cost of one projection will be that of a single step of the
FV scheme. As this may be repeated at every Newton-Jacobi iteration, this
cost may lead to an important overhead.
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3. r-adaptation for hydrodynamics

RD ALE remap

In the ALE remap the RD �uctuation de�nes

ΦK(wh) = −
∫
K

∆xj
∂w

∂xj
dx

We then take the limit ∆t→ 0 in the RD predictor step, see (2.55):

w∗i = wn
i −

1

|Cn+1
i |

∑
K∈Di

Φ
K(1)
i (wk

h)

with Φ
K(1)
i = ΦK(wk

h). For the corrector, see (2.56):

wk+1
i = w∗i −

1

|Cn+1
i |

∑
K∈Di

Φ
K(2)
i (w∗h,w

k
h) (3.24)

with

ΦK(2) =
1

2

(
ΦK(wk

h) + ΦK(w∗h)
)

+

∫
K

w∗h − wk
h

∆t
dx

We remark a di�erence with respect to FV. To obtain a second order remap the
two steps projection must be carried, making the RD remap less e�cient then
the FV one. We believe that this is related to the presence of the mass matrix.
With such a two steps projection, the non linear splitting ΦK

i = ΦLLxF−SUPG
i

of section 1.6.3 allows to project the �ow variables retaining all the properties
of the RD LLxF-SUPG scheme (second order, non oscillatory solutions, well-
balanced and mass conservation).

3.6 Adaptive algorithms

The coupling of the �ow solver with the mesh at each time step is non-trivial, as
the mesh equations depend on the solution on the (unknown) adapted mesh.
In particular the Shallow Water equations and the MMPDE can be either
solved simultaneously or alternately. The latter algorithm, generally speaking,
alternate at every time step the solution of the MMPDE and of the underlying
PDEs as follows:

• compute the monitor function based on the current solution

• evolve the MMPDE and compute the new mesh

• evolve the PDEs and compute the new solution

This has been successfully implemented by Huang and Russell [1999] showing
a signi�cant reduction of sti�ness problems with respect to the full-coupled
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3.6. Adaptive algorithms

approach. At the same time is it has been recognized that it can lead to a lag
in the mesh movement with respect to the physical features.

In this thesis, depending on the framework in which we evolve the PDEs,
two di�erent alternate algorithms are tested. If the PDEs are written in Eu-
lerian framework one gets the rezoning method suggested in Tang and Tang
[2003]. This approach is based on a sequence of mesh and �ow iterations.
It uses the mesh solver as a black box, the �ow equations being solved on a
(di�erent) �xed mesh at each time iteration. Its drawback is that, at each
time iteration, the �ow solver requires a remap/interpolation on the new mesh
which may be quite expensive as it needs to guarantee the same properties as
the �ow solver itself (high order accuracy, non-oscillatory character/positivity
preservation, C-property, mass conservation). At the opposite, once the grid
has been adapted, one can evolve the �ow with an ALE formulation of the
PDEs. In this case, the properties of the �ow solutions are only determined
by the scheme. In the moving mesh community this approach is called quasi
Lagrangian, see Huang and Russell [1998] and Cao et al. [1999]: time deriva-
tives are transformed along mesh trajectories and the resulting PDEs are a
non conservative form of our balance laws (2.18). Given a PDE in Eulerian
form

∂u

∂t
+ L(u,x, t) = 0

it can be transformed using the relationship between Eulerian and ALE time
derivative (2.10)

∂u

∂x

∣∣∣∣
χ

− ∂xj

∂t

∣∣∣∣
χ

∂u

∂xj
+ L(u,x, t) = 0

We note that this approach hides the GCL. The consequences is that, approx-
imation of the above ALE equations can represent exactly a constant uniform
�ow on moving meshes without the need to conserve the total mesh volume
along the simulation; this latter statement in fact is not an issue in Huang
and Russell [1998]. A combination of the alternate algorithm and the ALE
approach in conservation form can be found in Ni et al. [2009].

We have now all the basic blocks to perform adaptive mesh simulations.
These boil down to the �ow evolution equations (section 2.10 and 2.11) and
to the MMPDE, discussed in section 3.2. We propose hereafter 2 alternate
techniques, which are extensively tested in the numerical results. A weakly
coupled ALE method and a decoupled adaptation-evolution steps. Particular
cases of these two implementations have already been considered in literature
(see e.g. Tang and Tang [2003] and Ni et al. [2009] for the ALE). Here we will
compare their impact on the overall cost of the simulation, and on the quality
of the results. The set of nodes' coordinates is called x = {x1, ...,xi, ...,xN}
with N the number of mesh nodes. We used only kmax = 5 iterations of the
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3. r-adaptation for hydrodynamics

Newton-Jacobi method which, it is important to remark, do not ensure the
convergence of the iterative method within each time step. In practice they
are su�cient to get a good node re�nement.

3.6.1 Moving Mesh ALE algorithm (ALE)

In this approach the balance law is written using the ALE formulation directly
in a framework coincident with the moving domain. At every time step we get
the solution on the adapted grid, independently on the interpolation scheme
which is only needed now to evaluate the error monitor. The algorithms reads
:

Step 1. Taken a triangular mesh T nh , compute the vectors of nodal coordi-
nates xn, and the initial solution wn

h. Set the initial conditions for the
MMPDE, η1

h = ηnh and x1 = xn.

DO k=1,kmax=5

Step 2. Compute the monitor function ωk = ω(ηkh) and, in turn, the moving
mesh matrix aij = aij

(
ωk
)
. Move the mesh according to the Newton-

Jacobi iteration (Eq. (3.16) and (3.17)). At each iteration we get xk+1.

Step 3. Compute the interpolated free surface ηk+1
h according to the scalar

version of FV/RD projections, (3.23) or (3.24).

ENDDO

Step 4. Let xn+1 = xkmax+1 and T n+1
h = T kmax+1

h . Evolve the underly-
ing balance law in ALE framework with the FV/RD-eRK2 scheme, see

Eq. (2.38) or Eq. (2.56) on the grid T n+ 1
2

h .

Step 5. Let T nh = T n+1
h and wn

h = wn+1
h .

IF (t > T) EXIT

ELSE GO TO Step 1.

We see that the interpolated solution is only used to evaluate the error
function. As a consequence, we thought that the interpolation step can be
simpli�ed a great deal without a�ecting the quality of the solution, as the
numerical tests will con�rm.
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Figure 3.7: Moving mesh algorithms. Top) ALE. Middle) Rezoning (EUL1).
Bottom) Rezoning (EUL2).
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3. r-adaptation for hydrodynamics

3.6.2 Moving Mesh Eulerian algorithm/rezoning (EUL1)

In this case, the balance law is resolved numerically at every time step in a
purely Eulerian framework, and on a �xed mesh. The latter is then adapted
to the new solution and an accurate guess for the values of the last solution
on the new mesh is provided by the projection scheme. The algorithm reads:

Step 1. Taken a triangular mesh T nh , compute the vectors of nodal coordi-
nates xn, and the initial solution wn

h. Set the initial conditions for the
MMPDE, w1

h = wn
h and x1 = xn.

DO k=1,kmax=5

Step 2. Compute the monitor function ωk = ω(ηkh) and matrix aij = aij
(
ωk
)
.

Move the mesh according to the Newton-Jacobi iteration (Eq. (3.16) and
(3.17)). At each iteration we get xk+1.

Step 3. Compute the full interpolated solution wk+1
h according to FV/RD

projections, see (3.23) or (3.24).

ENDDO

Step 4. Let xn+1 = xkmax+1 and T n+1
h = T kmax+1

h . Moreover let wn
h =

wkmax+1
h , the interpolated solution over the new mesh. Evolve the under-

lying conservation law in Eulerian framework using the FV/RD-eRK2
scheme, see Eq. (2.38) and Eq. (2.56) with σ = 0, on the grid T n+1

h .

Step 5. Let T nh = T n+1
h and wn

h = wn+1
h .

IF (t > T) EXIT

ELSE GO TO Step 1.

Since this time the interpolated solution will act as the initial condition
for the new time iteration, great care has to be put in its computation. The
interpolation step does not have to spoil the accuracy property of the numerical
scheme. As a consequence, costly projections obtained from high resolution
non-linear schemes have to be used to ensure that the quality of the results is
not spoiled. Here ALE remaps based on high resolution schemes are used to
this purpose.

3.6.3 Modi�ed Moving Mesh Eulerian algorithm (EUL2)

In the previous algorithm, a double role emerges for the interpolation step.
Firstly we need an interpolated solution ηkh at every Newton sub-step in order
to evolve the mesh. Secondly we provide an interpolated solution wkmax+1

h
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3.6. Adaptive algorithms

on the �nal updated mesh in order to give a proper initial condition for the
�ow solver. If what we thought about the simpli�cation of the ALE remap
would be con�rmed by numerical experiments, then we could use a simpli�ed
version of the remap algorithm to project only the free surface variable for then
estimating the error. A full high resolution remap is used only after reaching
k = kmax in the adaptation loop, to perform the interpolation. For example
for FV:

|Cn+1
i |wkmax+1

i = |Cn
i |wn

i −
∑
j∈Di

Rij(wn
i )

3.6.4 Adaptive algorithms: e�ciency

To test the e�ciency of the di�erent coupling algorithms proposed in section
3.6 (ALE, EUL1, EUL2), we propose two scalar tests: linear rotation and
Burgers'equation. We would like to con�rm the feeling that, for ALE and
EUL2, the numerical resolution of the remap equation into the MMPDE could
be quite inaccurate (e.g. �rst order) without destroying mesh quality. Can
this result leads to more e�cient algorithms with respect to the classical re-
zoning/EUL1?

The following MMPDE parameters are used in all the tests α = 10, β =
γ = 0.15. We did not perform a systematic optimization relative to these
parameters. The value used correspond to those that visually provided the
best mesh.

Rotation

This is the classical rotation of a smooth sinusoidal hill, but with a source
term. We recall our general scalar balance law (2.65):

∂u

∂t
+
∂F j

∂xj
+ S(u,x) = 0 , x ∈ [−1, 1]× [−1, 1], t ∈ [0, π] (3.25)

where, for a given �ux vector F (u) = [F 1 F 2 ], the source term is de�ned as
in section (2.12.1)

S = aj
∂b

∂xj

this time with b(x, y) = 0.8eψ(x,y) and ψ = −5y2−5x2. The following de�nition
of the �uxes will be used, F (u) = au, with a = [−2y 2x ]. The initial condition
for the "free surface" η = u+ b is{

η0(x) = 1 + cos2 (2πr) if r ≤ 0.25, r =
√
x2 + (y − 0.5)2

η0(x) = 1 otherwise

We perform a grid convergence study, and investigate the dependence of the
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Figure 3.8: Rotation test. left) adapted mesh for the second level mesh. center)
adaptive FV. right) adaptive RD.

error on the CPU time. We perform the same test for both the RD and
FV scheme. In the left picture of �gure 3.10 and 3.9 the convergence curves
for the di�erent combinations of moving mesh algorithms and interpolations
schemes are reported. For the ALE algorithm and EUL2 (not shown in �g-
ure), we see that all the curves in blue color, corresponding to di�erent remap
schemes, are almost overlapped (dark blue is �rst order LxF/upwind FV, elec-
tric blue is a linear centered approximation, light blue is a second order scheme
SUPG/FROMM). On the contrary for the EUL1 algorithm there is only one in-
terpolation scheme which guarantees stable and second order accurate results,
actually the one which we evolve the PDE with, namely the SUPG/FROMM
scheme. We can summarize saying that, even if the interpolation of the monitor
function has a positive impact on the resolution of the MMPDE and reduces
mesh delay, the speci�c scheme used, weakly in�uences mesh con�guration.

In the right picture of �gure 3.10 and 3.9 the performances of the di�erent
algorithms are compared in terms of error/time. For the RD method, the
ALE algorithm shows the lowest CPU time for a �xed error level (roughly
80% faster then a �xed grid computation). The Eulerian algorithms are less
e�cient because the full two stage RK interpolation had to be implemented
(60% gain for EUL2 and 35% for EUL1). For the FV scheme the e�ciency of
the ALE and Eulerian algorithms is more similar (ALE and EUL2 80%, EUL1
70%). The reason is that, in this case, the second stage of the interpolation is
not necessary, Tang and Tang [2003]. Finally, for both RD and FV, the EUL2
represents a slight improvement respect to the EUL1 algorithm.

Burgers'equation

In this section we test test if the above conclusions are true when discontinuities
develop. Solutions with discontinuities are obtained with a Burgers equation
and discontinuous initial conditions. We set in (2.65) S = 0, F (u) = [ u

2

2
u2

2
].

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.

91



3.6. Adaptive algorithms

-2.1

-1.85

-1.6

-1.35

-1.1

-0.85

-0.6

-0.35

-0.1

 0.15

-2 -1.8 -1.6 -1.4 -1.2 -1

lo
g

1
0
(e

L
2
)

log10(hK)

O=1.8
O=1.5

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

 0

 1  1.5  2  2.5  3  3.5  4  4.5  5
lo

g
1
0
(e

L
2
)

log10(t)

Figure 3.9: Rotation test with RD. left) order of convergence. right) Error vs
CPU time.
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Figure 3.10: Rotation test with FV. left) order of convergence. right) Error vs
CPU time.
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3. r-adaptation for hydrodynamics

Figure 3.11: Burgers Equation com-
puted with LLxF-SUPG scheme on
�xed grid. Left: coarse mesh hK =
1/40. Right: �ne mesh hK = 1/100.

The initial condition is{
u0 = 1 if x ∈ [−0.6,−0.1]× [−0.35, 0.15]

u0 = 0 otherwise

A reference solution is computed on a �xed unstructured mesh with hK =
1/100, which is referred to as the �ne mesh. To test the e�ectiveness of the
adaptation algorithm, computations are performed on a �xed structured mesh
with element reference size hK = 1/40, which is referred to as coarse. A
good mesh re�nement is obtained in correspondence of the discontinuity. The
comparison between EUL1, EUL2 and ALE strategies is made for both the
scalar RD and FV.

From �gure 3.13 to �gure 3.20, the results for RD and FV are shown.
This time we have found that the interpolation step slightly a�ect the mesh
adaptation. We have reported the extreme cases where centered approximation
and �rst order remap scheme are used. We can observe that the �rst order
remaps produces slightly smoother mesh at discontinuities ; of course this is as
a consequence of the fact that we compute a smoother monitor function. The
reader may refer to Huang and Russell [1997] for the consequence of a proper
smoothing of the monitor function. For the ALE, the CPU time remains more
then two times smaller respect the one obtained with the �ne grid, while the
two solutions are downright comparable. The EUL2 algorithm is obtained
using a Galerkin remap into the MMPDE. The advantage respect to EUL1, in
term of CPU time, is clear from table (3.1). In particular for RD, the full two
stages eRK2 remap, makes for this test, the EUL1 not e�cient.

Using these results we highlight that:

• in the following numerical test cases, the EUL2 and ALE algorithms will
be used in their faster versions with inaccurate centered approximation
remap into the MMPDE.

3.7 r-adaptation for Shallow Water �ows

In the �nal section of the chapter we present a thorough study of the coupling
algorithms in terms of accuracy, and CPU time for both simple Shallow Wa-
ter academic problems and some classical benchmarks involving the long wave
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Figure 3.12: Burgers Equation com-
puted with MUSCL scheme on �xed
grid. Left: coarse mesh hK = 1/40.
Right: �ne mesh hK = 1/100.
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Figure 3.13: Burgers equation computed with ALE-RD with centered linear
projection scheme (GAL) to compute the error estimate in the MMPDE. Top)
adapted grid at �nal time, 20 equispaced solution isolines between 0 and 1.
Bottom) comparison of the solution along the symmetry lines and the lines at
y = 0.4

ALG. MESH (Nodes) RD [s] FV [s]

FIX-COARSE 6561 58.52 61.89
FIX-FINE 40401 619.75 647.51

ADAPT-ALE 6561 271.34 282.31
ADAPT-EUL1 6561 629.77 499.30
ADAPT-EUL2 6561 406.06 406.05

Table 3.1: Burgers'equation. CPU times.
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Figure 3.14: Burgers equation computed with ALE-RD with �rst order pro-
jection scheme (LxF) to compute the error estimate in the MMPDE. Top)
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y = 0.4
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adapted grid at �nal time, 20 equispaced solution isolines between 0 and 1.
Bottom) comparison of the solution along the symmetry lines and the lines at
y = 0.4
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Figure 3.19: Burgers equation computed with EUL1-FV with non linear pro-
jection scheme (MUSCL). Top) adapted grid at �nal time, 20 equispaced so-
lution isolines between 0 and 1. Bottom) comparison of the solution along the
symmetry lines and the lines at y = 0.4

100 Luca Arpaia



3. r-adaptation for hydrodynamics

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

η

x

EUL2-MUSCL

FIX, h=1/40

ADAPT, h=1/40

FIX, h=1/100

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

η

x

EUL2-MUSCL

FIX, h=1/40

ADAPT, h=1/40

FIX, h=1/100
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ALG. MESH (Nodes) RD [s] FV [s]

FIX-COARSE 7480 11.34 11.97
FIX-FINE 39130 185.00 207.14

ADAPT-ALE 7480 77.48 100.16
ADAPT-EUL1 7480 169.63 150.52
ADAPT-EUL2 7480 98.30 111.15

Table 3.2: Asymmetric dam-break. CPU times.

runup on complex bathymetries. In SWEs simulations, the MMPDE parame-
ters used in the monitor function (see section �3.2) are α = 20, β = γ = 0.10
and δ = 3α, unless otherwise speci�ed. For the relaxation parameters we used
τ = 3 and ϑ = 0.7.

3.7.1 Asymmetric dam Break

This classical test benchmark, taken from Seaid [2004], is used to test the
adaptive algorithm when bores develop. The set-up consists in a square domain
[0× 200]2m with a dam, placed at x = 95m, separating an upper and a lower
basin which contain water at di�erent levels, respectively at 10m and 5m.
The sudden break of the dam leads to a depression wave advancing in the
upper basin and a bore advancing in the lower basin. Two corners depression
interact, forming a deep trough at the inlet of the dam.

The test is run with both the FV and RD scheme, on a coarse triangula-
tion containing 14538 triangles and 7480 nodes, on a �ne one, containing 77302
triangles and 39130 nodes, and on the coarse mesh with adaptive mesh defor-
mation. The typical qualitative result obtained is provided in �gures 3.21 and
3.22. The pictures show the potential of this adaptation procedure to provide
with considerably fewer unknowns a better resolution of the breaking bore.

In �gures 3.23,3.24 a comparison between the ALE algorithm and the EUL1
and EUL2 is shown. For both RD and FV, the ALE algorithm shows a well
resolved bore and a correct computation of the trough with a signi�cant saving
in CPU time. As shown on table 3.2, the savings obtained with the ALE algo-
rithm go up to 60% for RD, and 50% for FV. For the RD scheme, the cost of a
two-step interpolation, makes the EUL1 algorithm ine�cient, thus the EUL2 is
a clear improvement. For FV both the interpolation based algorithms (EUL1
and EUL2) are not able of providing a considerable improvement in the reso-
lution of the peaks and the trough upstream the dam (x w 60 [m]), probably
due to excessive numerical di�usion in the interpolation. Some improvement
is instead observed with the ALE algorithm, which also gives a much sharper
capturing of the bore.

A second test is performed to provide qualitatively evidence that r-adaptation
could handle complex �ows. It consist in the simultaneous break of two sym-
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Figure 3.21: Asymmetric dam-break computed with RD scheme. 30 equis-
paced contour lines for h and adapted mesh.

Figure 3.22: Asymmetric dam-break computed with FV scheme. 30 equispaced
contour lines for h and adapted mesh.
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Figure 3.24: Asymmetric dam-break computed with FV scheme. Solution
along the straight line at y = 132.5 for the di�erent coupling. Left: ALE.
Middle: EUL1. Right EUL2.

metric dams. The solution and the resulting grids are shown in Fig. (3.25).
We observe the mesh re�ning to capture sharp bore interaction and vortex for-
mation.

3.7.2 Small perturbation of a lake at rest

We consider the classical test of a small perturbation over an elliptic exponen-
tial hump (se e.g. Seaid [2004]; Ricchiuto [2015] for details concerning the test
setup). This test allows to check the ability of the algorithms proposed to catch
relatively smooth wave patterns, and to conserve mass, and the lake at rest
state in the unperturbed regions. To run the test, we use a coarse triangula-
tion, containing 12142 nodes and 23852 triangles, and we compute �reference�
solutions on a �ner mesh, containing 50631 nodes and 100376 triangles.

The qualitative behavior of the methods proposed can be seen in �gures
3.26 and 3.27 (same contour lines drawn in all the pictures). We can see that
the mesh follows quite well the propagation and transformation of the waves,
providing, on the coarse mesh, a resolution very close to the reference one. No
numerical artifacts are observed in the unperturbed region, as a consequence of
the exact preservation of the lake at rest state. To perform a more quantitative
analysis we report in table 3.3 the CPU times of all the schemes, and the water
height along the line at y=0.5 on �gures 3.28 and 3.29. For clarity, only the
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Figure 3.25: Double symmetric dam break, t = 10, t = 35, t = 50. Solution
iso-lines and mesh computed with adaptive RD scheme.
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Figure 3.26: Small perturbation of a lake at rest (RD scheme). Solution isolines
at t = 0.24, t = 0.48 are shown for �xed grid and adaptive computations. Top:
�xed coarse grid. Middle: �xed �ne grid. Bottom: adaptive ALE scheme.

EUL2 method results are plotted in the latter �gures, the EUL1 algorithm
providing virtually identical solutions.

The cuts show how both the ALE and the rezoning algorithms provide
solutions close to the reference one. The CPU time savings w.r.t. the reference
are of the order of 70% for the ALE method, of 60% for the EUL2, and between
50% (for FV) and 40% (for RD) for the EUL1 algorithm.

Finally, �gure 3.30 shows a study of mass conservation, providing additional
proof that the corrections proposed allows to retain the physical mass in the
domain virtually to machine accuracy.
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Figure 3.27: Small perturbation of a lake at rest (FV scheme). Solution isolines
for t = 0.24, t = 0.48 are shown for �xed grid and adaptive computations. Top:
�xed coarse grid. Middle: �xed �ne grid. Bottom: adaptive ALE scheme.
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Figure 3.29: Small perturbation of a lake at rest (FV scheme). Solution at
t = 0.48 along line y = 0.5. Left: ALE. Right: EUL2.
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Figure 3.30: Small perturbation of a lake at rest. Dimensionless mass error for
di�erent quadrature formula of the bathymetry integral.

ALG. MESH (Nodes) RD [s] FV [s]

FIX-COARSE 12142 73.60 79.06
FIX-FINE 50631 711.08 827.72

ADAPT-ALE 12142 204.96 254.77
ADAPT-EUL1 12142 416.33 392.99
ADAPT-EUL2 12142 282.28 319.12

Table 3.3: Small perturbation of a lake at rest. CPU times.
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3.7.3 Runup on a conical island

This is a very classical benchmark for tsunami simulation models. It aims
at reproducing some of the experiments of Briggs et al. [1995]. We refer to
the above reference, and to Ricchiuto [2015]; Delis et al. [2008] for the test
setup. The parameter in the MMPDE are α = δ = 20, β = γ = 0.2. This
benchmark will allow to test the ability of the algorithms proposed to track
dry fronts, as well as the mass conservation correction. We have run the test
on two meshes, both progressively re�ned in the region of interaction between
the wave and the conical island. The coarse one, contains 10401 nodes, and
20580 triangles, with mesh sizes hK going from 0.5 to 0.2 meters. The �ne
mesh contains 37982 nodes, and 75594 triangles, with mesh sizes going from
0.3 to 0.08 meters. The �ne mesh results obtained with FV and RD are quite
close (cf. �gure 3.32), and similar to those typically shown in literature. They
have been used as a reference for those obtained on the coarse mesh, with
adaptive mesh deformation.

The qualitative behavior of the method is shown on �gure 3.33. The pic-
tures show the ability of the modi�ed monitor function to track both the in-
coming and refracting waves, and the moving wet/dry interfaces. The gauge
signals for the adaptive simulations are reported in �gure 3.34 for the gauges
g9 (upstream the island), g16 (lateral runup), and g22 (rear side runup). The
results obtained on gauges 9 and 22 show that, for both FV and RD, the
adaptive ALE algorithm provides results comparable to those obtained on the
�ne mesh. In particular, the interference between the two refracted waves that
causes the peak and highest runup values on the back of the island, is well
reproduced. This is also the case with the interpolation-based methods, which
provide practically the same results (only EUL2 show in the plots). In the RD
case, all the adaptive algorithms lead to a less impressive improvement in the
lateral runup gauge 16.

CPU times are reported on table 3.4. We can see that the ALE adaptive
computations allow still savings of the order of 71% w.r.t. the �ne mesh com-
putation. The percentages of CPU time reduction for the rezoning algorithms
are close to 66% for the EUL2 method, and to 37% (for RD) and 44% (for FV)
for the EUL1 algorithm. Lastly, the tables also report the % of the total cost
represented by the moving mesh algorithm alone including the re-computation
of geometrical quantities. These show that, while for the ALE the overhead
w.r.t. a �xed mesh simulation is of 40%, the EUL2 and EUL1 algorithms
counts for, respectively, 50% and 70% of the computation. This means that
more time is spent adapting the mesh than in computing the �ow. Clearly,
this is a consequence of the costly projection steps on which the method relies.

Finally, �gure 3.35 shows the study of mass conservation for this problem.
The pictures prove how a high accuracy correction of the nodal bathymetric
heights, combined with the redistribution of the spurious geometric mass gen-
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Figure 3.31: Conical island. Left: sketch of the computational domain with gauges.

Middle: static coarse mesh topology. Right: static �ne mesh topology.
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Figure 3.32: Conical Island computed with �xed �ne mesh: total water height η
signal registered at the gauges g9, g16, g22 and comparison with experimental data.

Figure 3.33: Conical Island: contour lines for total water height η and adapted

mesh at di�erent time instants, t = 6.0, 8.0, 10.0 [s]
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Figure 3.34: Conical Island: comparison between adaptive algorithms and �xed

grid computations. Total water height η signal registered at the gauges g9, g16, g22.

Left: RD scheme. Right: FV scheme.
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Figure 3.35: Conical island. Dimensionless mass error for di�erent quadrature
formula of the bathymetry integral.

ALG. Mesh (Nodes) RD[s] (%MMPDE) FV[s] (%MMPDE)

FIX-COARSE 10401 171.30 210.37
FIX-FINE 37982 1785.96 1959.02

ADAPT-ALE 10401 510.65 (38.8%) 574.52 (37.4%)
ADAPT-EUL1 10401 1115.98 (73.2%) 1086.66 (68.1%)
ADAPT-EUL2 10401 608.41 (51.3%) 653.14 (46.8%)

Table 3.4: Conical island. CPU times.

erated by the motion of dry nodes, allows to reduce the mass error practically
to zero.

3.7.4 Monai valley benchmark

This test involves the tsunami runup over a complex 3D bathymetry, and is
a standard test for tsunami simulation models Liu et al. [2008]. The exper-
iment that it reproduces was carried out at Central Research Institute for
Electric Power Industry (CRIEPI) in Abiko (Japan), and consisted of a 1/400
reproduction of the Hokkaido-Nansei-Oki tsunami of 1993 that struck Okushiri
Island, with disastrous consequences especially in the region of the Monai vil-
lage, on which the experiment itself focuses. For a full description of the setup,
including all the necessary data to run the test, and with the results from the
experiments, we refer to page of the center for tsunami research at NOAA
[1993]. We have run this test on the grids reported on the right pictures of
�gure 3.36, statically adapted to the bathymetric variations Ricchiuto [2015].
The coarse one contains 7000 nodes and 13720 triangles, with mesh sizes hK
ranging from 0.1 to 0.025 meters; the �ne mesh contains 36911 nodes and
18711 triangles, with sizes ranging from 0.05 to 0.01 meters. Note that the
prescribed uniform mesh size for this test is usually of 1.4 cm NOAA [1993].
We have used the �ne mesh results as a reference, to compare against the
solutions obtained with adaptive mesh deformation on the coarse grid.

The qualitative impact of the adaptation algorithms has been visualized on
�gure 3.36, which reports plots relative to the instant of maximum runup. The
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ALG. Mesh (Nodes) RD[s] (%MMPDE) FV[s](%MMPDE)

FIX-COARSE 7000 391.33 453.89
FIX-FINE 18711 2876.06 3301.62

ADAPT-ALE 7000 1179.23 (37.6%) 1466.02 (37.8%)
ADAPT-EUL1 7000 2930.10 (73.2%) 2454.45 (67.8%)
ADAPT-EUL2 7000 1408.25 (51.0%) 1565.96 (43.5%)

Table 3.5: Okushiri experiment. CPU times.

top rows report the �x grid results, while the bottom one shows the solution
on the adaptive grid, and the mesh itself. The moving adaptive result shows
a clear improvement in the re�ected bores, and, as we will see in more detail
shortly, runup heights very close to those obtained on the �ne mesh. Note
that this is a di�cult test for the r-adaptation, as the initial non-uniform
mesh size distribution leads to strongly anisotropic triangles in the adaptive
case, as clearly visible in the �gure.

As already remarked in Ricchiuto [2015], there is little in�uence of the mesh
size on the gauge signals. This is shown clearly by the water height signal in
gauge 7, reported for completeness in �gure 3.37. A much more interesting
quantity to look at is the runup plot, which is provided in the top row of �gure
3.38. In the pictures, the brown line represents the height of the maximum
runup observed in the experimental setup in the narrow gulley with a cove
at (x, y) ≈ (5.15, 1.875)[m] in the scaled down model. The �gure shows that
only with �ner grids the correct runup height can be reached, and that both
the ALE and rezoning methods allow to obtain the correct prediction on the
coarser grid. To corroborate this result, we have placed an additional gauge
(not present in the experiment). Its position is at (xg, yg) = (5.05, 1.9)[m], very
close to the maximum runup point. The water height time series in this gauge
are reported in the bottom row of �gure 3.38. These pictures con�rm that
the ALE algorithm is superior in allowing to retain the correct values of the
maximum water heights, even though failing in reproducing the exact shape
of the signal. The rezoning methods also provide a considerable improvement
over the coarse mesh result, with water heights very close to the reference.
CPU times are given in table 3.5.

Lastly, the evolution of the mass conservation error is reported on �gure
3.39. Again we can see the improvement brought by the corrections proposed
here.

3.7.5 Solitary wave on a shelf with an island

Finally, as an application to a more complex �ow, we consider a laboratory
experiment, conducted in the wave tank of the Oregon State University, involv-
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Figure 3.36: Okushiri experiment. Contour lines for h and mesh at t = 16.5 [s].
Top: �xed coarse grid. Middle: �xed �ne grid. Bottom: adaptive ALE scheme.
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Figure 3.37: Okushiri experiment: total water height η signal registered at the

gauges g7. Left: RD-ALE scheme. Right: FV-ALE scheme.
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Figure 3.39: Okushiri experiment. Dimensionless mass error for di�erent
quadrature formula of the bathymetry integral.

ing the solitary wave runup over a shelf with a conical island. The bathymetry
used here is a perturbed variant of the piecewise analytical one, provided within
the French TANDEM research program [http : //www − tandem.cea.fr]. A
3D view of the bathymetry is reported on �gure 3.40. For this benchmark
experimental time series of the water height are available in 9 gauges placed
upstream and downstream of the island, while velocities time series are pro-
vides in three gauges. For the set up of the test we refer to Lynett et al. [2010]
(cf. also Roeber and Cheung [2012]; Kazolea et al. [2014]). We will compare
�ow velocity components in the exact location where an acoustic doppler ve-
locimetry (ADV3) was installed. Two uniform meshes are used. The mesh size
of the �ner mesh is hK = 0.1 [m] and has been prescribed in the TANDEM
test case RS03 in order to compare di�erent codes. For the coarse mesh we
have chosen hK = 0.2 [m]. For this test case we used the following MMPDE
parameters: α = δ = 40 and β = γ = 0.075.

Figure 3.41 shows visualizations of the wave patterns arising from this
complex interaction. In the �gure, the top row shows the results obtained
on the coarse grid. The second row reports the results on the �ne grid. The
ALE results, and the corresponding grids, are reported in the third and fourth
row. Figure 3.42 shows visualizations comparing the ALE results (top half of
the pictures, with snapshots of the video of the experiment, available online
[https : //www.youtube.com/watch?v = I4uTHWBpaZg]. The results are
those obtained with the RD scheme, but very close ones are obtained with
the FV method, not reported here due to shorten the presentation. The ALE
results on the coarse mesh provide a �ow description which is even clearer
of the one obtained on the �ne mesh, and clearly allows to resolve wave and
vortical structures otherwise absent on the �xed coarse grid simulations. The
comparison with the experimental snapshots shows a very satisfactory quali-
tative agreement with the patterns observed in the wave tank. Finally, �gure
3.43 provides the time series in gauge ADV3. We can see that the adaptive
simulation computes better resolved pro�les of the waves re�ected from the
bar. The gain in time is between 40-50% with respect to using a reference
mesh.
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Figure 3.40: Solitary wave on a shelf: 3D visulization of the bathymetry, the
scale of the z−axis is 5:1 with respect to x and y-axis

ALG. Mesh (Nodes) RD[s] (%MMPDE) FV[s] (%MMPDE)

FIX-COARSE 32954 1772.22 1285.57
FIX-FINE 130439 15204.03 13707.38

ADAPT-ALE 32954 8735.69 (47.2%) 6358.76 (48.3%)

Table 3.6: Solitary wave on a shelf. CPU times.

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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Figure 3.41: Solitary wave on a shelf (RD scheme). Solution isolines at t = 12,
17 and 25 [s] are shown for �xed grid and adaptive computations. First row:
�xed coarse grid. Second row: �xed �ne grid. Third and fourth: adaptive
ALE scheme.
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Figure 3.42: Solitary wave on a shelf (RD scheme). Snapshot at t = 12, 17 and
25 [s] of the numerical solution and of the video from the wave tank experiment
[https : //www.youtube.com/watch?v = I4uTHWBpaZg].

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20  25  30

u
 [

m
/s

]

t [s]

ADV#3: RD-ALE

FIX-FINE

FIX-COARSE

ADAPT-COARSE

Exp.Data

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20  25  30

u
 [

m
/s

]

t [s]

ADV#3: FV-ALE

FIX-FINE

FIX-COARSE

ADAPT-COARSE

Exp.Data

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  5  10  15  20  25  30

v
 [

m
/s

]

t [s]

ADV#3: RD-ALE

FIX-FINE

FIX-COARSE

ADAPT-COARSE

Exp.Data

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  5  10  15  20  25  30

v
 [

m
/s

]

t [s]

ADV#3: FV-ALE

FIX-FINE

FIX-COARSE

ADAPT-COARSE

Exp.Data

Figure 3.43: Solitary wave on a shelf: velocity components u, v registered at the

gauge ADV3.
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Chapter 4

ALE r-adaptive methods for the
Shallaw Water equations on the
sphere

The importance of setting the SWEs on the sphere stems from the fact that
Earth curvature impacts wave propagation on large scale, which is particularly
true for tsunami wave traveling for thousands of kilometers and crossing en-
tire oceanic basins. In �gure 4.1 the reader can �nd an illustrative example
which explains the importance of Earth curvature in the tsunami dynamics. In
this example we evaluate the computed free surface level for the 2011 Tohoku-
Honsu tsunami as it is recorded by a real buoy placed in northern Japan (left
picture). Two implementations of the SWEs are compared. In the right picture
of �gure 4.1 the red line refers to the Cartesian SWEs with Mercator coordi-
nates and the blue line refers to the spherical SWEs in lat-lon coordinates.
Only in the latter case we compute the correct arrival time of the leading
tsunami wave. On the contrary the same numerical discretization applied to
the Cartesian SWEs gives completely a erratic result.

We begin this chapter by presenting the SWEs in curvilinear coordinates.
Then we extend the ALE transport formulas and the volume transformation
statement (the GCL), developed in chapter 2 for Cartesian coordinates, to
general curvilinear coordinates. Using these results, the SWEs can be written
in a framework in which points moves arbitrary on a sphere. We discuss two
novel implementations (FV and RD) of the resulting ALE-SWEs which are
basically a development of the algorithms seen in chapter 2, see sections 2.10
and 2.11. A simpli�ed moving mesh method will allow mesh adaptation on a
portion of the sphere. Finally all the new code features (Eulerian RD/FV on
the sphere, ALE-RD/FV on the sphere, moving mesh, ALE coupling with the
moving mesh) are tested against standard benchmarks.
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Figure 4.1: Example of a SWEs tsunami simulation of the 2011 Tohoku-Honsu
event. In red) Cartesian SWEs with Mercator coordinates. In blue) spherical
SWEs with lat-lon coordinates.

4.1 SWEs in curvilinear coordinates

In the community of ocean modeling and numerical weather prediction the
�rst step is to set accurately the SWEs on a rotating sphere S2. There are
many ways to do that, each one with its own pros and cons. One of the most
popular approach Ritchie [1988]; Rossmanith et al. [2004]; Lauter et al. [2008]
is to take advantage of a parametric representation of the sphere in a covariant
vector basis. To allow a more complete understanding of this approach we have
included, in appendix A, basic concepts from tensor analysis and di�erential
geometry that are used here and in the following. At every point P ∈ S2

we �x an orthogonal but not orthonormal reference system with basis vectors
{g1, g2, g3} together with local curvilinear coordinates {z1, z2, z3}. We use this
notation to avoid confusion with standard Cartesian coordinates {x1, x2, x3}
adopted in all the previous chapters. A point P ∈ R3 which belongs to the
sphere and is speci�ed in Euclidean space by the vector of coordinates x, can
be expressed in curvilinear coordinates:

x = g1z
1 + g2z

2 + g3R

g1 and g2 de�ne the spherical surface where the undisturbed �uid lies. R is
sphere radius and g3 is the axis "going out from the sphere". Along it, we
measure the �uid depth h(z) and the bathymetry/topography b(z). The �uid
free surface follows as η = h+b. We straightforwardly de�ne the metric tensor
Gij = gi · gj and its determinant G = detG. Transforming the divergence
operator of the SWEs (1.1), in curvilinear coordinates (formulas (A.9) and
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(A.10)) we get:

∂h

∂t
+

1√
G

∂

∂zj

(√
Ghuj

)
= 0 (4.1)

∂hui

∂t
+

1√
G

∂

∂zj

(√
GT ij

)
+ Si = 0 (4.2)

hui are the components of the discharge vector hu = huigi and T = huuij +
1
2
Gijgh2 are the components of the �ux tensor huu = huuijgigj. We remark

that the velocity components are not de�ned in a unitary basis. This, however,
this allows to write the conservation laws in the compact form above. The
source term reads

Si = Gijgh
∂b

∂zj
+ cFhu

i + Siγ − Sic

Besides friction and bathymetry (�rst two addends), the source term includes
also a geometrical force due to Earth curvature and the �ctitious force associ-
ated to Earth rotation. The aforementioned geometrical force

Siγ = Γijk T
jk

comes from the transformation of the di�erential operator, see the appendix
A for the de�nition of the Christo�el symbol Γijk. The rotation of the Earth is
an important element in the dynamics of the atmosphere and ocean. Without
loss of generality we let the axis of rotation be the Cartesian z-axis e3. If we
solve the SWEs in the reference frame of the rotating Earth, we introduce in
the momentum equations a pseudo-force of the form

Sic = fεijhu
j

with f = 2Ω sinλ being the Coriolis parameter, λ the latitude and ε the 2D
Levi-Civita symbol. In all the experiments the Earth rotation rate is taken as
Ω = 7.292× 10−5 [s−1] unless it is di�erently speci�ed.

At this point the SWEs have the following non autonomous vector form

∂u

∂t
+

1√
G

∂Fj

∂zj
+ S(z, u) = 0, (4.3)

u =

[
h
hui

]
, Fj =

√
G

[
huj

T ij

]
, (4.4)

S =

[
0

Gijgh ∂b
∂xj

]
︸ ︷︷ ︸

Sb

+

[
0

cFhu
i

]
︸ ︷︷ ︸

Sf

+

[
0

ΓijkT
jk

]
︸ ︷︷ ︸

Sγ

−
[

0
fεijhu

j

]
︸ ︷︷ ︸

Sc

(4.5)

Equations (4.3)(4.4)(4.5) is a non-homogeneous hyperbolic system of PDEs.
Following LeVeque [1997], we remark that the �ux vector depends explicitly

Adaptive techniques for free surface �ow simulations. Application to the
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on the position making the system non-autonomous. If one multiplies (4.3)
by
√
G a capacity coe�cient appears in the time derivative. For these reason,

some authors speak about a capacity non autonomous form of the SWEs on
the sphere. The �ux Jacobian K(ξ, u) = ∂Fj

∂u
ξj is

K(ξ, u) =
√
G

 0 ξ1 ξ2

G11ghξ1 − uu · ξ u · ξ + uξ1 uξ2

G22ghξ2 − vu · ξ vξ1 u · ξ + vξ2

 (4.6)

for any vector ξ = ξjgj. Note that the scalar product that appears in the
expression above is not the actual inner product on the curved manifold but
simply u · ξ = ujξj. It become the same if the basis is orthonormal. The
Jacobian (4.6) admits a full set of real eigenvalues and linearly independent
eigenvectors. The eigenvalues are

λ1,3(u, ξ) =
√
G
(
u · ξ ±

√
gh‖ξ‖c

)
, λ2(u, ξ) =

√
Gu · ξ

where the norm is computed with respect to the inverse metric ‖ξ‖c =
√
ξiGijξj.

At this point we remark that the eigenstructure changes with respect to the
Cartesian case. Particularly important is the scaling factor Gij that multiplies
the acoustic part of the Jacobian, giving it the correct dimension. The Jacobian
at rest on the sphere reads (cf. expression ??):

A(ξ, h) =

 1
√
Gξ1

√
Gξ2

√
GG11gh ξ1 0 0√
GG22gh ξ2 0 0

 (4.7)

We mention that, starting from the work of Pons et al. [1998], many authors
that implement FV in covariant basis, prefer to go back to an orthonormal
framework (e.g. when solving the Riemann problem), namely Gij = δij and√
G = 1, we refer to Rossmanith et al. [2004] for the details of this approach

which requires a double projection: �rst to obtain the orthonormal Riemann
problem, then to go back to covariant �uxes. Here we propose to use directly
(4.6) which does not require these projections. After the resolution of the
standard orthonormal Riemann problem, the �uxes are projected back in the
covariant basis to update the solution of the SWEs in covariant formulation.

4.2 ALE in curvilinear coordinates

To extend the SWEs in curvilinear coordinates and in ALE framework, we
upgrade the kinematics relationships seen in chapter 2. The main results,
namely transport formulas between Eulerian, Lagrangian and ALE and the
volume/area conservation statements are recovered here for general curvilinear
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≈

Figure 4.2: A sketch of Eulerian, Lagrangian and ALE con�gurations on a
sphere.

coordinates. Up to the author's knowledge, the literature on the ALE balance
law on manifold is not very vast. The interested reader can �nd a detailed
treatment in Savidis et al. [2008].

4.2.1 Basic kinematics

We start this section setting the problem in the general case: a material �uid
B is a set of �uid columns ("particles") that can be put in bijective correspon-
dence with the points of a region B belonging to a di�erentiable Riemannian
manifold. We keep the same notation of chapter 2, the particles are P ∈ B
and the points Q ∈ B. We assign a local covariant vector basis {g1, g2} and
local curvilinear coordinates {z1, z2} to the tangent plane TQB de�ned at each
point Q. A point position is identi�ed by the vector z which can be expressed
in the local curvilinear coordinate system

z(Q) = z1g1 + z2g2 ≡ zigi

The covariant vector basis is sometimes expressed as {gi = ∂
∂zi
} ∈ TQB. The

initial or reference con�guration is denoted by B0 and the position of the point

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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Q0 in the reference con�guration is denoted by capital letters Z(Q0). For this
con�guration we assign a local covariant vector basis {G1,G2} and local chart
{Z1, Z2} to the tangent plane TQ0B0

Z(Q0) = Z1G1 + Z2G2

As B moves, we assume the existence of a function that transform the point
positions from the reference con�guration to the actual one. This function is
always called B, as in chapter 2:

B : B0 → B z = B(Z, t)

Even if in principle the reference and the actual con�gurations could belong to
di�erent manifolds, points for us will be always attached to the sphere, that is
B = S2

B and B0 = S2
B0 as sketched in �gure 4.2 and

B : S2
B0 → S

2
B

The function B is assumed to be continuously di�erentiable, thus a smooth
Jacobian of transformation can be de�ned

JB =
∂z

∂Z
(4.8)

In order to avoid particle collision we add the smoothness requirement ∃J−1
B ,

JB = detJB > 0. The relationship between Lagrangian and Eulerian time
derivatives for a scalar φ and a vector v modi�es as:

dφ

dt
=

∂φ

∂t

∣∣∣∣
Z

◦B−1 =
∂φ

∂t

∣∣∣∣
z

+
∂φi

∂zj
uj

dvigi
dt

=
∂vigi
∂t

∣∣∣∣
Z

◦B−1 =

(
∂vi

∂t

∣∣∣∣
z

+
∂vi

∂zj
uj + Γijku

jvk
)
gi

due to the presence of Christo�el symbols in the gradient de�nition, (see
(A.11)). The kinematic relation (2.5) expressing the derivative of a material
volume modi�es as follows in curvilinear coordinates

∂

∂t

∣∣∣∣
Z

(√
GJB

)
= JB

∂

∂zj

(√
Guj

)
= 0 (4.9)

or, more compactly ∂t|Z (
√
GJB) − JB

√
G∇ · u = 0. For us (4.9) will be the

time derivative of a material volume on the sphere. This result appears here
in a slightly di�erent form with respect to Savidis et al. [2008]. Since we prefer
the above form for future developments we prefer to give its proof.

Proof of (4.9). We extend a classical proof, see for example the lecture notes
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of Mantegazza [2012], to curvilinear coordinates. From the Jacobian de�nition
(4.8) we inherit dzm = JBdZ

m where we recall dzm = dz1dz2. Passing to
the transformation of area di�erentials on manifolds B0 → B, the statement
must be rewritten. We consider the de�nition of area di�erentials given in
appendix A. In the actual con�guration the in�nitesimal area on the tangent
plane writes, see eq. (A.15)(A.16)

da = |dz1 × dz2| =
√
Gdz1dz2 (4.10)

Taking the material derivative of (4.10):

∂

∂t

∣∣∣∣
Z

(√
Gdzm

)
=

∂
√
G

∂t

∣∣∣∣∣
Z

dzm + d
∂z1

∂t

∣∣∣∣
Z

√
Gdz2 + d

∂z2

∂t

∣∣∣∣
Z

√
Gdz1

=
∂
√
G

∂t

∣∣∣∣∣
X

dzm +
∂uj

∂zj

√
Gdzm

√
G =

√
G(z(t)) and we can use chain rule

∂

∂t

∣∣∣∣
Z

(√
Gdzm

)
=

∂zj

∂t

∣∣∣∣
Z

∂
√
G

∂zj
dzm +

∂uj

∂zj

√
Gdzm

= uj
∂
√
G

∂zj
dzm +

∂uj

∂zj

√
Gdzm =

∂

∂zj

(√
Guj

)
dzm

=
∂

∂zj

(√
Guj

)
JBdZ

m

Developing the left-hand side with
√
Gdzm =

√
GJBdZ

m we get:

∂

∂t

∣∣∣∣
Z

(√
GJB

)
= JB

∂

∂zj

(√
Guj

)
which is exactly (4.9). �

4.2.2 ALE kinematics in curvilinear coordinates

Mesh movement on the sphere will be accomplished through an arbitrary con-
�guration A called ALE which we assume it belongs to a di�erentiable mani-
fold. As for the material con�guration, A is composed of points Q. Its initial
or reference con�guration is A0, composed instead of points Q̂. A local coor-
dinate system {ζ1, ζ2} can be assigned in the neighborhood of every Q̂ such
that the point's position writes locally

ζ(Q̂) = ζ iγi

where {γi = ∂
∂ζi
} ∈ TQ̂A0 is the covariant vector basis. As in chapter 2 lower

case letters label the actual con�guration and Greek letters are used for the

Adaptive techniques for free surface �ow simulations. Application to the
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4.2. ALE in curvilinear coordinates

reference ALE con�guration. If, at each time value is associated a unique
con�guration, then the arbitrary con�guration will be in motion:

A : A0 → A z = A(ζ, t)

Although the ALE con�guration changes with time dragging unsteady mesh
movement, it will always belong to the sphere, that is A = S2

A and A0 = S2
A0
.

As sketched in �gure 4.2 we have:

A : S2
A0
→ S2

A

Using the de�nition of ALE time derivative ∂
∂t

∣∣
ζ
, the ALE/mesh velocity of

the point Q̂ can be introduced in the current vector basis σ(Q̂) = σjgj

σj =
∂zj

∂t

∣∣∣∣
ζ

One can then use the chain rule to recover the relationship between Eulerian
and ALE time derivative for scalars φ and vectors v, see (2.10) in Chapter 2:

∂φ

∂t

∣∣∣∣
ζ

=
∂φ0

∂t

∣∣∣∣
ζ

◦ A−1 =
∂φ

∂t

∣∣∣∣
z

+
∂φ

∂zj
∂zj

∂t

∣∣∣∣
ζ

=
∂φ

∂t

∣∣∣∣
z

+
∂φ

∂zj
σj (4.11)

∂vi

∂t

∣∣∣∣
ζ

=
∂vi0
∂t

∣∣∣∣
ζ

◦ A−1 =
∂vi

∂t

∣∣∣∣
z

+
∂vi

∂zj
σj (4.12)

As in Chapter 2, a useful relationship emerges between the Lagrangian time
derivative and the ALE one (4.11) and (4.12):

dφ

dt
=

∂φ

∂t

∣∣∣∣
ζ

+
∂φ

∂zj
(
uj − σj

)
(4.13)

dvigi
dt

=

(
∂vi

∂t

∣∣∣∣
ζ

+
∂vi

∂zj
(
uj − σj

)
+ Γijku

jvk

)
gi (4.14)

We take the ALE time derivative of an in�nitesimal area on the sphere. This
is called geometric conservation law (GCL):

∂

∂t

∣∣∣∣
ζ

(√
GJA

)
= JA

∂

∂zj

(√
Gσj

)
(4.15)

or, more compactly ∂t|ζ (
√
GJA)− JA

√
G∇ · σ = 0.

Proof. We don't repeat the proof that follows the one done in the previ-
ous paragraph. In fact, this is achieved replacing body reference quantities

128 Luca Arpaia



4. ALE r-adaptive methods for the Shallaw Water equations on the sphere

with arbitrary reference ones,
√
G0 with

√
Ĝ, JB with JA and dZ with dζ.

�
The GCL (4.15) is a geometrical relation between the ALE Jacobian and

the ALE velocity. One can check that the integral of (4.15) over the whole
sphere states the conservation of the area of the ALE domain. In the context
of the numerical solution of ALE-PDEs on the sphere, this corresponds to
preserve the total area of the mesh during the simulation. For this reason in
section 4.5 we will discuss how to preserve also its discrete counterpart.

4.3 ALE-SWEs in curvilinear coordinates

We consider now the �eld equations or balance laws for the water column in
curvilinear coordinates:

∂
√
GJBh

∂t

∣∣∣∣∣
Z

= 0 and
∂
√
GJBhu

igi
∂t

∣∣∣∣∣
Z

=
√
GJBF

i (4.16)

where F i represents the forces acting on the water column. We transform
them from a Lagrangian description to the ALE framework. To do this, we
can employ the transport formulas (4.13),(4.14), the area transformation rela-
tionships, (4.9),(4.15), all discussed in the previous sections. In order:

1. we transform the time derivative in (4.16) using (4.13) and (4.14)

2. we substitute (4.9)

3. we multiply the resulting expression by JA

4. �nally we add (4.15) multiplied in turn by h or hui

As a result, the SWEs in curvilinear coordinates in the ALE framework write:

∂
√
GJAh

∂t

∣∣∣∣∣
ζ

+ JA
∂

∂zj

(
huj −

√
Ghσj

)
= 0 (4.17)

∂
√
GJAhu

i

∂t

∣∣∣∣∣
ζ

+ JA
∂

∂zj

(
T ij −

√
Ghuiσj

)
+
√
GJAS

i = 0 (4.18)

As done in previous chapter we bene�t of the vector form to write them com-
pactly:

∂

∂t

∣∣∣∣
ζ

(√
GJAu

)
+ JA

∂

∂zj

(
Fj −

√
Gσju

)
+
√
GJAS(z, u) = 0, (4.19)

u =

[
h
hui

]
, Fj =

√
G

[
huj

T ij

]
S =

[
0

Gijgh ∂b
∂xj

]
︸ ︷︷ ︸

Sb

+

[
0

cFhu
i

]
︸ ︷︷ ︸

Sf

+

[
0

ΓijkT
jk

]
︸ ︷︷ ︸

Sγ

+

[
0

fεijhu
j

]
︸ ︷︷ ︸

Sc

(4.20)
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SWEs are written for the water depth h and depth-integrated momentum hu.
So far we have seen that this form is the appropriate one to conserve, at a dis-
crete level, total mass and momentum which remain for us the most important
quantities to be conserved. We will show that our numerical approximations
of (4.17) and (4.18) allow mass and momentum conservation on the sphere.
We also mention that in geophysical applications it could convenient to ma-
nipulate the SWEs in order to have discrete conservation of more interesting
quantities such as total energy or potential vorticity, see for example Ringler
and Randall [2002]. This is left for future work.

In chapter 2 we have seen that this form is not particularly suitable to
preserves the lake at rest on moving mesh. This is related to the fact that
solving the lake at rest in a moving reference framework corresponds to evolve
the ALE remap equation for the water depth h, to which it is associated a
discretization error. To cure this problem we introduced the ALE-WB and
ALE-PB form of the SWEs. The same can be done here. We write equation
(4.11) for the bathymetric function (does not depends explicitly on time b =
b(z))

∂b

∂t

∣∣∣∣
ζ

=
∂b

∂zj
σj

multiplying by JA
√
G and summing it to the (4.15) (multiplyed by b) we have

the ALE remap in curvilinear coordinates

∂
√
GJAb

∂t

∣∣∣∣∣
ζ

− JA
∂

∂zj

(√
Gbσj

)
= 0

If we add the ALE remap for b to the mass equation (4.17) we �nally obtain
the WB-ALE form

∂

∂t

∣∣∣∣
ζ

(√
GJAw

)
+ JA

∂

∂zj

(
Fj −

√
Gσjw

)
+
√
GJAS(z, u) = 0, (4.21)

u =

[
η
hui

]

4.4 Mesh and geometry in curvilinear coordi-

nates

Points on the sphere are represented by a proper parametrization {z1, z2}
through the use of geometrical mappings. From now on, we will use a stan-
dard latitude longitude (lat-lon) parametrization for which the de�nitions of
geometrical quantities that describes the sphere, including Jacobian, metric
tensor and Christo�el symbols are given in appendix C. We recall that for the
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4. ALE r-adaptive methods for the Shallaw Water equations on the sphere

sphere the aforementioned quantities are available in simple analytical expres-
sion. The main drawback of this approach is that it introduces a singularity at
the poles. Here we are not interested in the simulation of tsunamis that prop-
agate all around the globe and we will simply circumvent this issue solving the
SWEs far from the polar region: (z1, z2) ∈ [−180◦, 180◦] × [−75◦, 75◦] where
the metric coe�cients are well de�ned with lat-lon coordinates. We mention
that this is a big limit if one is interested in global circulation model where
it is urgent to accurately compute the solution at the poles. In this case the
use of di�erent grids such as the cubed sphere grid Ronchi et al. [1996], the
Yin-Yang grid Kageyama and Sato [2004] or rotated lat-lon grids, allows to
resolve the pole problem. The implementation of rotated lat-lon grids, see e.g.
Rossmanith [2013], is left for future work.

We consider a discretization of the spatial domain S2 composed by non
overlapping triangular elements which cover the sphere. For the mesh quanti-
ties, the same notation of chapter 1 is employed here, we refer to section 1.6.1
for the de�nitions. We just introduce a new notation for areas computed on
the sphere, for which we use capital italic font (e.g. A), in order to di�erentiate
these from areas de�ned in the parametric space, for which standard italic is
used as in 1.6.1. For instance the area of a spherical triangle and the median
dual cell on the sphere are denoted as

|K| =
∫
K

√
Gdz, |Ci| =

∑
K∈Di

|K|
3

(4.22)

Geometrical quantities computed in the parametric space are de�ned as in
Cartesian case. For clarity we repeat

|K| =
∫
K

dz, |Ci| =
∑
K∈Di

|K|
3

Finally we specify nj = nmj gm as the normal to the j-th face of the triangle
scaled by the corresponding edge length.

4.5 DGCL in curvilinear coordinates

A �rst look to the DGCL and its relevance for SWEs-ALE simulation has been
given in chapter 2. Here we come through the main de�nitions given in section
2.5 and extends them to general smooth manifolds (as the sphere). When
approximating the SWEs the most fundamental equations are the integral
ones. It is thus more useful to consider the integral GCL over a general control
volume V . The time discrete approximation of (4.15), namely the Discrete
Geometric Conservation Law (DGCL) writes:[∫

V

√
Gdz

]n+1

−
[∫

V

√
Gdz

]n
= ∆t

∫
∂V

√
Gσmnmds (4.23)
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4.5. DGCL in curvilinear coordinates

or more compactly, using spherical areas

|Vn+1| − |Vn| = ∆t
∑
j∈K

υj (4.24)

we have decomposed the left-hand side in the contributions of the three edges.
The edge velocity results:

υj =

∫
∂Vj

√
Gσmnmj ds (4.25)

In chapter 2 we have presented a class of DGCL numerical schemes for the ap-
proximation of plane SWEs based on previous work, see Mavriplis and Yang
[2006]. We have also seen that the presented closure collapses to the one of
Lesoinne and Farhat [1996]. A �rst di�erence when setting the problem in
curvilinear coordinates is that, for general metric tensor

√
G 6= 1, we cannot

de�ne the DGCL through the original characterization of Thomas and Lom-
bard [1979], i.e. the preservation of a uniform �ow. On the sphere one could
think to replace uniform �ows with the preservation of zonal/meridional �ows.
But, even general numerical schemes on �xed grid do not have this property,
so one could question the importance to have it on moving meshes. Let's say
however that we would like to conserve the total area of the mesh. In this
sense the proof of Farhat comes to be less general: elements' areas are com-
puted through quadrature formulas and it is hard to �nd proper quadrature
points in time and in space to evaluate the term

∫ tn+1

tn

∫
σjnjdsdt such that

eq.(2.23) results an identity (e.g. in this case midpoint does not assure exact-
ness). Instead the closure of Mavripils is the one that we prefer and, with a
minor modi�cation, allows to respect the GCL.

Proposition (DGCL in curvilinear coordinates) A numerical method ap-
proximating eq. (4.3) on a smooth manifold M, veri�es the DGCL constraint
or eq. (2.23) if each edge velocity is computed through the (signed) area swept
onM by the j-th edge of the polygon in one time step

υj =
1

∆t

∫
Qj

√
Gdz (4.26)

where the quadrangle Qj is de�ned by vertexes zni ,z
n
k ,z

n+1
k ,zn+1

i , i and k de-
notes the two vertexes of the j-th edge. We use the convention that, if the
polygon is expanding, then the area swept is positive.

A brief comment is necessary. Even if complicated analytical formulas ex-
ist to compute the area of a spherical quadrilateral, υj will be computed with
a quadrature formula to approximate the integral in (2.25). This means that,
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at a later stage, we have to enforce explicitly the DGCL (2.23) to compute the
spherical area in the new con�guration

|Vn+1| = |Vn|+ ∆t
∑
j∈K

υj

Up to the our knowledge this is the �rst attempt to �nd DGCL �uxes in
curvilinear coordinates for general metric.

4.6 Finite Volume for SWEs on the sphere

There are two main complications that one has to face when attempting to
solve the SWEs on the sphere: the �rst concerns the non-autonomous nature
of the SWEs on a manifold, and the second the resolution of the Riemann
problem in curvilinear coordinates. Although the literature on Finite Volume
schemes on the sphere is large Machenhauer et al. [2009], we refer, with respect
to the two aforementioned issues, to the Lax-Wendro� scheme of Rossmanith
et al. [2004], and more closely to the MUSCL-type scheme implemented in
Ullrich et al. [2010].

We will compute approximations of solution averages over the standard
median dual cells that we denote as ui

ui(t) =
1

Ci

∫
Ci

u(z, t)
√
Gdzm (4.27)

A common choice is to set Ci = |Ci|
√
Gi. Then we de�ne the numerical �ux

along the boundary of the dual cell ∂Cij and the numerical source on dual cell
Cij, such as in chapter 1 and 2:

Fij =
1

∆t

∫ tn+1

tn

∫
∂Cij

Fjnjds dt

FALEij =
1

∆t

∫ tn+1

tn

∫
∂Cij

wσmnm
√
Gds dt =

1

∆t

∫ tn+1

tn
wυij dt

Sij =
1

∆t

∫ tn+1

tn

∫
Cij

S
√
Gdx dt

The ALE-FV discrete evolution equations then reads:

|Cn+1
i |w∗i = |Cni |wn

i −∆t
∑
j∈Di

Rij(wn, bn) (4.28)

|Cn+1
i |wn+1

i = |Cni |wn
i −

∆t

2

∑
j∈Di

(
Rij(un, bn)

2
+
Rij(u∗, bn+1)

2

)
(4.29)
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4.6. Finite Volume for SWEs on the sphere

with Rij = Fij + Sij. Please note how the capacity coe�cient have been
naturally considered by applying the average preserving property (4.27). We
make use to the Roe-type numerical �uxes, as in the planar case (see (2.40))
(to which we refer for the notation):

Fij =
1

2
(F̆i + F̆j) · nij − υij

w̆j + w̆i

2
−
∣∣Kij − υij I3

∣∣
2

(ŭj − ŭi) (4.30)

Note that Roe �uxes have been tested in Ullrich et al. [2010] for the low
Mach number tests of Williamson et al. [1992] showing adequate accuracy. We
refresh the notation of chapter 2: Kij = K(nij, z

∗
ij) and Rij = R(nij, z

∗
ij) are

respectively the �ux Jacobian and the matrix of right eigenvectors, evaluated
with a Roe linearization z∗ij. Due to the spatially varying �ux function, the
property of the Roe average in so no more available, however, through the
numerical �ux (4.30), we still compute a local conservative solution that assures
Fij = −Fji. In our implementation we have used the following average

z∗ij =


hiGi+hjGj

2√
hiui
√
Gi+
√
hiuj
√
Gj√

hj+
√
hj√

hivi
√
Gi+
√
hivj
√
Gj√

hj+
√
hj

 (4.31)

For completeness concerning FV for spatially varying �ux function we mention
the di�erent perspective of Bale et al. [2002]. Their �ux wave decomposition
allows to truly takes into account the non autonomous nature of the �ux,
directly into the resolution of the Riemann problem.

To accomplish the DGCL, we follow the strategy described in section 4.5
which consist of computing spherical area swept by each interface of the dual
cell. The resulting interface velocities υij, de�ned in (4.25), are prescribed by
(4.26)

υij =

∫
∂Cij

σmnm
√
Gds =

∑
K3i,j

∫
∂CKij

σmnm
√
Gds

=
∑
K3i,j

∫
QKij

√
Gdz (4.32)

using the quadrilateral QK
ij de�ned by vertexes xnGK ,x

n
ij,x

n+1
ij ,xn+1

GK
. Once this

value is computed in the code, the dual cell area can be updated in the new
con�guration:

Cn+1
i = Cni + ∆t

∑
j∈Di

υij (4.33)
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FV algorithm in curvilinear coordinates

Although one can use the algorithm described in the previous section, addi-
tional di�culties arise in the resolution of the Riemann problem in generalized
coordinates. In particular the question of the basis in which we solve the Rie-
mann problem becomes urgent since the basis' vector is changing from point
to point. Using straightforwardly the Cartesian solver makes no sense. Indeed
the �ux jump at the interface between two dual cells has no meaning, being
the �ux Fi and Fj, composed by vectors and tensors de�ned on di�erent basis.
There is also second issue: the Finite Volume discretization of the geometric
source term related to Earth curvature.

Concerning the resolution of the Riemann Problem, Rossmanith et al.
[2004] propose to transform vectors Fi and Fj to a common coordinate system,
for example the coordinate system at the interface position zij, through the
action of parallel transport. We propose an extension of their algorithm and,
if possible, their conclusions to the case of unstructured grids. We de�ne the
parallel transport operator P on the vector u as the vector �eld tangent to the
curve parametrized by the geodesic parameter λ:

P (u) =
du

dλ

=
d

dλ
(umgm) =

dum

dλ
gm +

dzn

dλ

dgm
dzn

um =

(
duk

dλ
+
dzn

dλ
Γknmu

m

)
gk

Parallel transport is an operation that takes a vector u at a point A and
transports it to a point B along the curve zi(λ). Parallel transport accomplishes
this in such a way that u remains parallel to zi(λ). This constraint is the
parallel transport equation:

P (u) = 0 ⇒ duk

dλ
+ Γknm

dzn

dλ
um = 0

If one evaluate the linearization of the above expression at the interface gets:

ukij = uki +
∆λ

2

duk

dλ

∣∣∣∣
i

+O(∆λ2)

= uki −
∆λ

2

dzn

dλ

(
Γknmu

m
)
i
+O(∆λ2)

where the indexes m,n and k loop with standard summation convention while
indexes i and j represent the nodes; node i in particular is the node around
which we have performed linearization. Index ij denotes values at the interface
between node i and node j. We can transport the full vector of conservative
variables: [

h
huk

]
ij

=

([
1 0
0 I2

]
−

∆znij
2

[
0 0
0 Γknm

]
i

)[
h
hum

]
i
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4.6. Finite Volume for SWEs on the sphere

in our implementation we have simpli�ed ∆λdz
n

dλ
= ∆znij = znj − zni . We can

compactly write the discrete parallel transport operator which transports the
vector of conservative variable from node i to the interface ij:

uij = Pijui Pij =

[
1 0
0 I2

]
−

∆znij
2

[
0 0
0 Γknm

]
i

= I3 + Bij

de�ning a parallel transport matrix Pij. Once conservative variables are trans-
ported at the common interface, then the resolution of the Riemann problem
can be carried, through (1.15)(1.16) or (1.17) (chapter 1). Let us reconsider
the Riemann problem (on a �xed grid for simplicity) de�ned at the interface
between nodes i and j, both lying on a certain geodesic parametrized with λ.
The �uxes in these cells are Fi and Fj respectively. Let us apply the appro-
priate parallel transport matrices so that Fi and Fj both get (approximately)
represented in the coordinate basis at zij. Relations (1.15)(1.16) become:

Fij = PijFi · nij −
m∑

p=1,βp<0

Wp

= PjiFj · nij +
m∑

p=1,βp>0

Wp

Once the solution jump has been transported to the interface, it can be de-
composed in p-waves and resolved for the coe�cient αp

Wp = αpλprp, αp = lp (Pjiuj − Pijui)

First order numerical �uxes are written in a compact form

Fij =
1

2
(Fj + Fi) · nij −

1

2
|Kij|(uj − ui) + Sγij (4.34)

where the following terms can be isolated in a source

Sγij =
1

2
(BjiFj · nij + BijFi · nij)−

1

2
|Kij|(Bjiuj − Bijui) (4.35)

To obtain a formally second order update we can write numerical �uxes in the
following form

Fij =
1

2
(F̆j − F̆i) · nij + (F̆i − Fi) · nij −

1

2
|Kij|(ŭj − ŭi) + S̆γij

This approximate source term result enhanced by a second order correction:

S̆γij = Sγij + Sγ−ij
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Figure 4.3: Cartesian grid of Rossmanith et al. [2004] and quadrature points
for numerical approximation of the geometric source term

with the correction that writes:

Sγ−ij = Bij

(
F̆i − Fi

)
· nij

What does this source term S̆γij represent? On structured quadrilateral
(Cartesian) grids this corresponds to have directly an approximation for the
geometric source term Sγ in (4.3). In this case, the application of parallel
transport within the wave propagation algorithm produces a natural numer-
ical approximation of the geometric source term, which was the second issue
reported.

Proof. Consider a Cartesian grid on the sphere with the following nodes:

z1
i = z1

l +

(
i− 1

2

)
∆z1

z2
j = z2

l +

(
j − 1

2

)
∆z2

with z1
l , z

2
l is the lower left corner of the computational rectangular domain.

Let's consider a median dual cell area in �gure 4.3 centered in A = (z1
i , z

2
j ).

Let's consider the vertical interface between node A and B = (z1
i−1, z

2
j ) where

n1 = −∆z2 and n2 = 0. Moreover

∆z1
i−1,i = z1

i − z1
i−1 = ∆z1 ∆zi,i−1 = z1

i−1 − z1
i = −∆z1

We consider the central part of the source term (4.35) that, on a Cartesian
grid reads

Sγi−1/2,j =
1

2
∆z1(−∆z2)

[
0

−a
2
Γkm1huu

m1

]
i−1,j

− 1

2
(−∆z1)(−∆z2)

[
0

−a
2
Γkm1huu

m1

]
i,j
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Let's consider the horizontal interface between node A and C = (z1
i , z

2
j−1)

where n1 = 0, n2 = −∆z1 and

∆z2
j−1,j = z2

j − z2
j−1 = ∆z2 ∆z2

j,j−1 = z2
j−1 − z2

i = −∆z2

and

Sγi,j−1/2 =
1

2
(−∆z1)∆z2

[
0

−a
2
Γkm2huu

m2

]
i,j−1

− 1

2
(−∆z1)(−∆z2)

[
0

−a
2
Γkm2huu

m2

]
i,j

Summing all the contributions from the four interfaces, taking into account
the source term appears with a minus sign in the global update (4.28):

Sγij = −∆z1∆z2

[
0∑

q1 ωq1aq1Γk1nhuu
1n
q1 +

∑
q2 ωq2aq2Γk2nhuu

2n
q2

]
≈

∫
∆z1

∫
∆z2
Sγ(z) dz

we get a quadrature formula for the integral of the geometric source term. Dif-
ferent quadrature points are used for the the two terms containing Christo�el
symbols Γk1m and Γk1m. For the �rst, quadrature points are placed on the mid-
point of the upper and lower edge of the rectangular dual cell, for the latter
the two quadrature points coincide with the midpoints of left and right edges,
see again �gure 4.3. Similar arguments hold for the upwind part. �

For unstructured grids such an approximation of the geometric source is not
obvious since the inclusion of parallel transport into the resolution of the Rie-
mann Problem can become complicated. In fact, taking the central part of the
source term (4.35) we have

BijFi · nij =

[
0

−a∆znij
2

Γkmnhuu
mqnqij

]
i

which includes but not coincides with a discretization of the geometric source
term. We will refer to this formulation as the one of Rossmanith et al. [2004]
since it is an extension of their work to unstructured grids.

An alternative yet simpler approximation of the geometric source consists
in approximating Sγ directly on the underlying grid as done by Ullrich et al.
[2010] on a structured grid. An extension of this last work to unstructured
grids consists in using the pointwise value:∫

Ci

Sγ
√
Gdz ≈ |Ci|

√
GiSγi = |Ci|

√
Gi

[
0

Γkmnhuu
mn

]
i

(4.36)

such a discretization is second order accurate. We have tested both the for-
mulations in �gure 4.4 for a circular hump propagating on a sphere. Even
if they provide similar accuracy, the complexity of (4.35), together with the
additional cost to include high order reconstruction, drove us to the implement
directly (4.36). This will represent the �nal implementation of the FV.
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Figure 4.4: Circular hump propagating on a sphere. Comparison between two
di�erent treatments of the geometric source term on the �xed unstructured grid
in the bottom-right picture. Dashed-blue) extension to unstructured grids of
the centered approximation of Ullrich et al. [2010]. Continuous-black) exten-
sion to unstructured grids of the wave propagation algorithm Rossmanith et al.
[2004]
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Well Balanced for moving mesh on the sphere

The discretization of the topography/bathymetry term follows what done for
plane Cartesian coordinates (see sections 1.6.2 and 2.10.1) which in turns con-
sisted in the upwind discretization of Hubbard and Garcia-Navarro [2000];
Nikolos and Delis [2009]. We distinguish two contributions Sbij = Scij +S∗ij. We
introduce the nodal di�erences

∆h =


hj − hi

0

0

 , ∆b =


bj − bi

0

0


and the following Jacobian at rest Aij = A(nij, hij) and A−ij = A(nij, h

−
ij) with

average values (see (4.7)):

hij =
h̆i
√
GiG

km
i + h̆j

√
GjG

km
j

2
, h−ij =

√
GiG

km
i h̆i +

√
GjG

km
j hi

2

The central part

Scij =
1

2
Aij∆b+ A−ij∆b

−
ij (4.37)

and the upwind dissipation term :

S∗ij = −
∣∣Kij − υij I3

∣∣
2

∆bij (4.38)

However for the FV scheme presented so far we cannot prove Well Balanced.
The reason is that we cannot use the Roe average property in the demon-
stration of (1.6.2), spoiling Well Balancedness. To cure this main problem we
have isolated the hydrostatic part of the �ux and the geometric source term.
Setting Π = 1

2
gh2 we have to approximate∫

Cij

PGijnj
√
Gdz +

∫
Cij

Γijk PG
jk
√
Gdz (4.39)

We now write the above quantity into a non conservative form. Putting the
�ux (�rst term) in divergence form and deriving term by term we get

1√
G

∂

∂zj

(√
GΠGij

)
= Γmmj

(
ΠGij

)
+
∂Gij

∂zj
Π +

∂Π

∂zj
Gij

where we have used relation (A.6). We add the metric term and using Ricci's
Lemma (A.7) the �rst, second and fourth term cancel out. We can simplify
expression (4.39):

Π

(
∂Gij

∂zj
+GijΓmmj

)
+
∂Π

∂zj
Gij + ΠΓijkG

jk = gh
∂h

∂zj
Gij
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It will be this non conservative form of the hydrostatic term that we approxi-
mate as ∫

Cij

√
GGijgh

∂

∂zj

[
0
h

]
dz =

1

2
Aij∆hij + A−ij∆h

−
ij

As in the Cartesian case two contributions appear, one related to �rst-order
piece-wise constant solution approximation, the second one comes from the
integration of the solution's variations due to the gradient-reconstruction. We
remark that the presence of variable-coe�cients in the matrix A makes the
non-conservative discretization no longer equivalent to the conservative one.
Strictly speaking, we are loosing exact conservation to the extent that Rankine-
Hugoniot condition are no more satis�ed exactly at a discrete level. We remark
however that the variation of the metric coe�cients are very smooth. This
problem of Well-Balanced scheme on the sphere is already known and we note
that our WB approximation on the sphere resembles to the work of Ullrich
et al. [2010]. For di�erent WB scheme for the SWEs on the sphere, we refer
to Rossmanith et al. [2004] and Yang and Cai [2011].

Now we have all the formulas to prove Well Balancedness with moving
meshes.

Proposition 1. The �nite volume discrete equations (4.28)-(4.29) with de�ni-
tions (4.30), (4.32),(4.37) and (4.38) veri�es the Well-Balanced property both
on moving and �xed mesh, provided that the same reconstruction procedure is
used for u and b.

Proof. For the constant lake at rest solution w0 = [const 0 0 ]T , numerical
�ux and the source term reduce to

Fij =
1

2
Aij ∆hij + A−ij ∆h−ij − υijw0 −

|Aij − υij I3|
2

(ŭj − ŭi)

Sij =
1

2
Aij ∆bij + A−ij ∆b−ij −

|Aij − υij I3|
2

∆bij

Note now that ŭj − ŭi + ∆bij = w̆j − w̆i which vanishes by hypothesis. We are
left with the DGCL

|Cn+1
i |wn+1

i = |Cni |wn
0 − w0∆t

∑
j∈Di

υij

which is veri�ed by hypothesis (4.33). This complete the proof:

wn+1
i =

(
|Cni | −∆t

∑
j∈Di

υij

)
w0

|Cn+1
i |

= w0
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�

We remark that the proof does not rely, as usually done for the Cartesian
coordinates, on the property of the Roe average, which again is not available
in this case.

4.7 Residual Distribution for SWEs on the sphere

Steady Residual Distribution have been extended to the rotating sphere in
Rossmanith [2013]. In this section we propose a high order extension for time
dependent problem on moving meshes. This is the �rst such generalization of
RD to our knowledge. To obtain second order of accuracy in time, we extend
the eRK2 ALE-RD of Arpaia et al. [2014] detailed in chapter 2 and appendix
D. Compared to FV, the extension to the sphere appears almost straightfor-
ward. In the following we provide directly the algorithm that we comment
extensively later:

Given the �uctuation, see (4.7):

ΦK(wh, bh) =

∫
∂K

Fj(uh)n
jds+

∫
K

σj
∂w

∂zj

√
Gdz +

∫
K

S(uh, z)
√
Gdz

If not speci�ed, for us K = 1
2

(Kn +Kn+1) in the following. Keeping in mind
this, the two steps writes

1] Predictor step: for each element K ∈ Th
• Compute the residual ΦK(1) = ΦK(wn

h, b
n
h).

• Distribute the �uctuation to the nodes of K such that
∑

j∈K Φ
K(1)
j =

ΦK(1)

• Compute the �rst order prediction of the solution, denoted as w∗

w∗i = wn
i −

∆t

|Cn+1
i |

∑
K∈Di

Φ
K(1)
i (wn

h, b
n
h) (4.40)

2] Corrector step: for each element K ∈ Th
• Compute the residual

ΦK(2) =
1

2

(
ΦK(wn

h, b
n
h) + ΦK(w∗h, b

n+1
h )

)
+

∫
K

w∗h − wn
h

∆t

√
Gdz (4.41)

• Distribute the �uctuation to the nodes of K such that
∑

j∈K Φ
K(2)
j =

ΦK(2)
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• Compute the second order correction from

wn+1
i = w∗i −

∆t

|Cn+1
i |

∑
K∈Di

Φ
K(2)
i (w∗h,w

n
h, b

n
h, b

n+1
h ) (4.42)

All the integral are still approximated via Gaussian quadrature. We believe
it is worth noting both the simplicity and the rigor of the RD extension from
Cartesian coordinates to curvilinear ones, specially if compared to FV. In
particular:

1. the heterogeneity of the medium is taken into account integrating the
coe�cient

√
G (hidden in the �uxes or in the area de�nition) with the

precision degree of the quadrature formula.

2. the geometric source term comes from the fact that the �ux is written
in curvilinear coordinates. As for any other source term, it is included
automatically in the wave propagation algorithm through the splitting
approach, see section 1.6.3. We recall that for FV an analogous approach
was much more complicated.

4.7.1 RD mass matrix computation on manifold

In this paragraph we detail the practical computation of the split residual
(4.41). In particular it is worth to report how we compute the unsteady term
in (4.41) since this could impact consistency and (we will see) conservation
properties on the sphere. First, we compute the following important quantities
as:

mGAL
ij =

∫
K

ϕiϕj
√
Gdz ≈ K

12
(1 + δij) |Kj| =

∫
K

ϕj
√
Gdz ≈ K

3
(4.43)

where the |K| has been de�ned in (4.22). We refer to mGAL
ij as the Galerkin

mass matrix. On Cartesian plane the above de�nitions collapse respectively
to the Galerkin mass matrix and to |Kj| = |K|

3
. In chapter 1 we have already

mentioned that the time discretization in RD methods is obtained from an
analogy with the theory of Finite Element. From the weak form it is well
known that an element mass matrix of the form

mK
ij =

∫
K

wiϕj
√
Gdz

emerges, where wi is the Petrov-Galerkin test function. Within a RD context,
it is important to build mass matrices which are consistent with the space
approximation, thus with a given set of distribution coe�cients. Assigned a
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certain distribution {βKi }i∈K , this consistency property is translated in the
following constraint on wi Ricchiuto and Abgrall [2010]:

βKi =
1∫

K

√
Gdz

∫
K

wi
√
Gdz (4.44)

which is veri�ed, for example, by:

wi = ϕi + βKi − ℵKi , mK
ij = mGAL

ij + |Kj|(βKi − ℵKi ) (4.45)

where ℵKi is:
ℵKi = |Ki||K|−1 (4.46)

With this in mind, we can treat separately the splitting of time residual (4.41).
Invoking the analogy RD/Finite Elements (4.44) we let a mass matrix appears,
mass matrix that can be computed with the consistent wi of (4.45). At the
end, the corrector residual (4.41) will be distributed according to:

Φ
K(2)
i = βKi

(
1

2

(
ΦK(w∗) + ΦK(wn)

)
+
∑
j∈K

Kj
w∗j − wn

j

∆t

)
+
∑
j∈K

δmK
ij

w∗j − wn
j

∆t

(4.47)

We see that the last two terms in the above splitting (4.47) are related to the
the three contributions of the mass matrix (4.45). In fact, two of them have
been grouped in the so-called dissipation matrix, see Ricchiuto and Abgrall
[2010]:

δmK
ij = mGAL

ij − |Kj|ℵKi (4.48)

4.7.2 ALE part

We treat the ALE residual as done in chapter 2:

ΦK,ALE =

∫
K

√
Gσj

∂w

∂zj
dz =

∫
K

(
∂
√
Gσjw

∂zj
− w

∂
√
Gσj

∂zj

)
dz

=

∫
∂K

√
Gwσjnjds−

∫
K

w
∂
√
Gσj

∂zj
dz

We examine the �rst part. Edge �uxes are computed by quadrature formula.
Moreover these �uxes should verify the DGCL which means that every edge
should sweep the area ∆tυj. We can split these areas on the edge quadrature
points through the weights∫

∂K

√
Gwσjnjds =

∑
j∈K

NQ∑
q

ωqwqυj

144 Luca Arpaia



4. ALE r-adaptive methods for the Shallaw Water equations on the sphere

while the second term using the usual passages∫
K

w
∂
√
Gσj

∂xj
dz =

∫
K

w
√
Gdz (∇ · σ)K

=
∑
j∈K

∫
ϕj
√
Gdz wj (∇ · σ)K

=
∑
j∈K

|Kj|wj
∆|K|
∆t|K|

=

∑
j∈K |Kj|wj

|K|
∆|K|
∆t

where a weighted average solution on the cell appears. Finally using de�nition
(4.43) for this term we get form∫

K

w
∂
√
Gσj

∂xj
dz =

∑
j∈K wj

3

∆|K|
∆t

(4.49)

4.7.3 Properties of the RD scheme

In the following we analyze some of the properties of the scheme proposed.

Conservation

Flows at geophysical scale are typically very smooth and for numerical methods
approximating very smooth phenomena, the veri�cation of Rankine-Hugoniot
conditions could be not as urgent as it was for coastal and hydraulic applica-
tions. However global conservation of the �ow variables on the sphere remains
an important issue. It is interesting to check the global conservation state-
ment for RD, in light of all the de�nitions given. For sake of clarity we take
the source term equal to zero, since it will not a�ect the analysis. We sum the
corrector (4.42) over all the nodes of the triangulation i ∈ Th:∑

i∈Th

Cn+1
i

wn+1 − w∗

∆t
= −

∑
K∈Th

∑
j∈K

Φ
K(2)
j

As seen in previous chapters, �uxes in divergence form cancel in the sums. On
the right hand side, (4.47) reduce to the sum of the unsteady terms and the
ALE term (4.49)

∑
i∈Th

Cn+1
i

wn+1
i − w∗i

∆t
= −

∑
K∈Th

∑
j∈K

βKj
∑
m∈K

w∗m + wn
m

2

∆|K|
3∆t︸ ︷︷ ︸

(4.49)

+
|K|
3

w∗m − wn
m

∆t


−

∑
K∈Th

∑
j∈K

∑
m∈K

δmK
jm

w∗m − wn
m

∆t
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Recalling the de�nition of the dissipation mass matrix (4.48), we observe that:∑
i∈K

∑
j∈K

δmK
ij (w∗j − wn

j ) = 0

if the following condition is veri�ed:∑
j∈K

mGAL
ij = |Ki| (4.50)

which is true for the de�nitions given in (4.43). Now we use consistency∑
j∈K β

K
j = I3:∑

i∈Th

(
Cn+1
i wn+1

i − Cn+1
i w∗i

)
= −

∑
i∈Th

∑
K∈Di

(
w∗i + wn

i

2

∆|K|
3

+
|K|
3

(w∗i − wn
i )

)
where we have also used again

∑
K∈Th

∑
j∈K =

∑
i∈Th

∑
K∈Di . We sum and

subtract
∑

i∈Th K
n
i wn

i to the left hand side and, using de�nition (4.22) we get:∑
i∈Th

(
Cn+1
i wn+1

i − Cni wn
i

)
= −

∑
i∈Th

∑
K∈Di

(
w∗j + wn

j

2

∆|K|
3
− |∆K|

3

w∗j − wn
j

2

)
which proves that we conserves the �ow variables over the sphere:∑

i∈Th

Cn+1
i wn+1

i =
∑
i∈Th

Cni wn
i

Well Balancedness for moving mesh on the sphere

The discretization of the hydrostatic term have to ensure the discrete balance
between hydrostatic and bottom forces when approximating a lake at rest �ow.
We can check that (1

2
gh2

h = Π for shortness):

ΦK =

∫
∂K

Fj(uh)n
j ds+

∫
K

S(uh, bh)
√
Gdz (4.51)

=

[
0∫

∂K
Πnj Gij

√
Gds

]
+

[
0∫

K
ghh

∂bh
∂zj

Gij
√
G

]
+

[
0∫

K
Π ΓijkG

jk
√
G

]
6= 0

the residual is not zero. Instead, for Cartesian coordinates (
√
G = 1) un-

der the assumption of P 1 and exact integration, the above statement is an
equality. Unfortunately, in generalized curvilinear coordinates we loose these
discrete equivalences because of the non linear metric coe�cients which spoils
the exactness of the integrals. As done for FV, it is convenient to rewrite the
hydrostatic pressure term in a non-conservative form

1√
G

∂

∂zj

(√
GΠGij

)
+ Γijk ΠGjk = gh

∂h

∂zj
Gij
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and then integrate exactly with respect to linear variation of h and b. One can
show the following result:

Proposition 3. The explicit predictor corrector residual distribution proto-
type (4.40), (4.42) with edge velocities (2.25) veri�es the Well-Balanced prop-
erty both on moving and �xed meshes, provided that the same linear piecewise
continuous approximation is used for w, b and consequently for u.

Proof. We do the proof only for corrector, the predictor is a particular case.
We impose w0 = [const 0 0 ]T into the residual (4.41) (∆w0 = 0):

ΦK(2) =

∫
∂K

Fj0n
j ds− w0

∑
j∈K

NQ∑
q

ωqυj + w0
∆|K|
∆t

+

∫
K

S0

√
Gdz

= w0

(
∆|K|
∆t
−
∑
j∈K

υj

)
+

∫
∂K

Fj0n
j ds+

∫
K

S0

√
Gdz = 0

where we have used the property of Gaussian weights
∑NQ

q ωq = 1 to develop
the second term. The term in brackets is zero if we compute the edge veloc-
ities with (2.25). We are left with the balance between hydrostatic �ux and
bathymetry terms. The �ux term is now transformed to a non conservative
form (4.52) which is more suited to accomplish Well Balancedness. We inte-
grate the �ux term in the divergence form and we can write the balance (4.51)
as [

0∫
K
ghh

∂hh
∂xj

Gij
√
G

]
+

[
0∫

K
ghh

∂bh
∂xj

Gij
√
G

]
= 0

which is zero if the same linear piecewise continuous approximation is used for
h, b. To have Well Balancedness it is su�cient to employ the same quadrature
formula for the two integrals. Under these hypothesis ΦK(2) = 0 and we have
wn+1
i = w0.

�

We remark that the integrals, even under the piecewise linear approximation,
cannot be computed exactly, spoiling exact conservation. This loss of con-
servation is the sense that Rankine-Hugoniot condition are no more satis�ed
exactly at a discrete level. However the integral that has to be computed is in
the following form: ∫

K

ϕiG
ij
√
Gdz
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The metric coe�cients, which are in�nitely smooth on the sphere, could be
expanded in Taylor series and the whole term could be integrated with an
arbitrary high degree of precision making the error much smaller then the
discretization error.

4.8 Moving mesh on the sphere

Although h-re�nement on the sphere has already received considerable atten-
tion (see the Adaptive Mesh Re�nement methods of Behrens [1996, 1998];
Hubbard and Nikiforakis [2003]), the moving mesh method on the sphere is a
quite recent subject of research. Up to the author's knowledge there are only
two published works: the harmonic map of Di et al. [2006] and the Monge-
Ampere equation of Weller et al. [2016]. In chapter 3 we have seen that a
powerful and general tool for mesh adaptation is the theory of harmonic map
(see also appendix B). Immediately one can think to use this general framework
to map from the computational manifold with its own metric to the physical
mesh which lie on a sphere (in the same fashion as we where considering, in
two dimensional case, the Euclidean plane):

A :M→ S2
A z = A(ζ, t), JA =

∂z

∂ζ

Unfortunately such a mapping violates the hypothesis of the HYS theorem:
the positive curvature of a sphere makes harmonic map not unique. Keeping
in mind that we will deal with problems at large scale but not at global scale
we can hope to simplify the problem. Weller et al. [2016] for example suggest
that a naif idea could be to project the mesh on a plane, adapt on the plane
with a certain MMPDE from the ones seen in chapter 3 and �nally project
back to the sphere. The same authors, which were always interested in global
circulation models, were then forced to move away from this because the prob-
lem was moved on how to impose proper boundary conditions to the mesh
node position, for examples at the poles. However, if one is not interested in
moving the mesh around the poles, this idea remains valid.

We assume that the computational domain is described by a certain parametriza-
tion of the sphere ζ with metric components γij and square root of the metric
tensor

√
γ. We consider then following direct transformation from the sphere

to a two dimensional Euclidean plane:

A : S2
A0
→ E2 z = A(ζ, t), JA =

∂z

∂ζ

We can extend the functional of Ceniceros and Hou [2001] with minor modi�-
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cations (recall the ALE notation ζ = ζ iγi)

E(z) =
1

2

∫
Ωζ

ωγi
∂zα

∂ζ i
· γj ∂z

α

∂ζj
√
γdζ

=
1

2

∫
Ωζ

ωγij
∂zα

∂ζ i
∂zα

∂ζj
√
γdζ (4.52)

to which the following Euler-Lagrange equations or MMPDE is related

1
√
γ

∂

∂ζ i

(
ω
√
γγij

∂zα

∂ζ i

)
= 0 (4.53)

This will be our MMPDE on the sphere. It consist, as in the two dimensional
case, of a decoupled system of PDEs. Minor modi�cation in the algorithm must
be done to implement the Laplace-Beltrami operator, see (A.13), instead of
the Laplacian. We recall also that

√
γ and γij are de�ned in the computational

domain (greek letters): they don't depend from that physical con�guration.
The only non-linearity is associated to the monitor function ω = ω(z) which
depends on the evolving underlying solution.

4.8.1 Mesh generation

The moving mesh algorithm de�ned by the sequence of iterations (3.16) can
be used to approximate our new MMPDE (4.53). We remark that, as done for
the CFD, we do not solve the MMPDE in the polar regions. Roughly speaking,
points will not move at the poles.

We extend the benchmarks proposed in Tang and Tang [2003] and tested
in section 3.4.5 to the sphere. The monitor function is computed according to
ω =
√

1 + αu2, with u assigned:

u(ψ, λ) = exp(−8(4ψ2 + 9λ2 − 1)2) (4.54)

u(ψ, λ) = 50 exp(−250(ψ2 + λ2) (4.55)

with ψ = z1 and λ = z2. The iteration is repeated in the pseudo-time loop
until convergence is reached. For the �rst smooth example reported on the left
of �gure 3.5 we have set α = 100. In the left picture of �gure 4.6 we show that
also singularities are well handled with a proper choice of the parameter.

4.9 Numerical experiments

4.9.1 Global steady state zonal geostrophic �ow

Case #2 from Williamson test suite Williamson et al. [1992] is a steady state
solution of (4.2) which allow to measure the order of accuracy of numerical
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Figure 4.5: Top) test (4.54). Bottom) test (4.55)

Figure 4.6: Zoom of test (4.55)
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Figure 4.7: Steady zonal �ow. Left: mesh 1-2 and 3. Right: �uid depth
isolines.
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Figure 4.8: Steady zonal �ow. Left: L2 error against mesh size. Right: �uid
depth pro�le along a meridional cut and the corresponding exact solution.

schemes in spherical coordinates and in presence of Earth rotation. It consists
of a zonal �ow with the corresponding geostrophic height �eld. Typically
several rotation orientations are speci�ed. In our case, in order to avoid �ow
entering/leaving the pole regions, only the case where the axis of rotation
coincides with the z-axis will be simulated. The velocity and height �elds are
initially (and for all time) given by:

h(z, 0) = h0 −
1

g

(
ΩRu0 +

u2
0

2

)
sin z2 sin z2

u1(z, 0) = u0 cos z2

u2(z, 0) = 0

with gh0 = 2.94 × 104 [m]2[s]−2 and u0 = 2πR
12days

. Simulation are performed
on 5 unstructured grids, halving the mesh size. The meshes are generated
always with the meshing software Gmsh Geuzaine and Remacle [1997-2017],
with the frontal algorithm (Mesh.Algorithm=6). In �gure 4.7 we can see the
mesh topology for the �rst three levels of mesh re�nement. The error norm
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is computed following Williamson et al. [1992]:

||e||L2 =

√∫ 2π

0

∫ π/2

−π/2
(h(z)− hex)2

√
Gdz

In �gure 4.11 we report the dimensionless error against the mesh size, after 5
days of computations, as speci�ed by always in Williamson et al. [1992]

l2 =
||e||L2

||hex||L2

For this steady case we have run only �xed mesh computations. We observe
that the error is of the same order of magnitude for FV and RD. For both
schemes it decreases with more then second order of accuracy, this being par-
ticularly evident for FV.

4.9.2 Advection of cosine bell

We revisit test case #1 from the Williamson test suite Williamson et al. [1992]
in order to assess numerical accuracy for unsteady problems and in presence
of mesh movement. A cosine bell is transported once along the equator (R =
6371220, g = 9.80616 and Ω = 0):

h(z, 0) =

[
h0
2

(
1 + cos πr

π/3

)
+ h0 if r < π

3

h0 otherwise

u1(z, 0) = u0 cos z2 (4.56)

u2(z, 0) = 0

where h0 = 1000 and u0 = 2πR
12days

. r is the great circle distance between z and
the center of the cosine bell zC :

r = R arccos
(
sin z2

C sin z2 + cos z2
C cos z2 cos(z1 − z1

C)
)

In general several orientations for the wind are speci�ed but so far we have
tried only the zonal con�guration to avoid interaction with polar regions. For
this test, Williamson propose to test the advective components in isolation.
We prefer to test all the SWEs using the technique of manifactured solution.
See appendix E for the derivation of the source term to be added to the SWEs
in order that (E.1) is an exact solution. Moreover, with respect to Williamson
original solution we have translated the initial height of h0 to avoid the ap-
pearance of dry regions. Simulation are performed on 5 unstructured grids
generated with the meshing software Gmsh, halving the mesh size. In �gure
4.9 there is an example of the grid topology for the �rst three levels of mesh
re�nement. With respect to the steady case, the order of accuracy fall below
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Figure 4.9: Advection of cosine bell. Left: mesh topology. Right: �uid depth
isolines.

Figure 4.10: Advection of cosine bell. 2nd level of mesh re�nement: original
mesh and transformed meshes at two di�erent instants.

the second order. RD seems to be slightly more accurate in terms of global
error and order of accuracy (1.88 against 1.78), see �gure 4.11.

To test the accuracy of the ALE scheme we have added an unsteady per-
turbation to the position of mesh nodes, see �gure 4.10. They will be mapped
according to:

z1(t) = ζ1 + 0.3 cos (ζ1) cos (ζ2) sin
(

4πt
T

)
z2(t) = ζ2 + 0.3 cos (ζ1) cos (ζ2) sin

(
4πt
T

)
Always in �gure 4.11, with dashed lines are reported the convergence lines for
the ALE scheme. We observe that, for both RD and FV, the unsteady and
arbitrary mesh perturbation does not spoil the order of accuracy.

4.9.3 Circular hump on a non rotating sphere

We consider the test contained in Rossmanith et al. [2004]. For the initial
conditions we place a �circular� depth disturbance at the equator:

h(z, 0) =

{
2 if arccos(cos(z1) cos(z2)) ≤ 0.2
0.2 otherwise

u(z, 0) = 0

This initial condition is symmetric about the point (z1, z2) = (0◦, 0◦). There-
fore, the solution should remain symmetric for all time. We will use two

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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Figure 4.11: Advection of cosine bell. Left: convergence for RD. Right: con-
vergence for FV.

semi-spherical grids: a coarse one with 7122 grid points and 14034 elements;
a �ne one with 39699 and 78900 elements. Isolines (only for FV) are plotted
in �gure 4.12 for the coarse and the �ne simulation (�rst two rows), showing
a good shock capturing and good symmetry in all radial directions.

Then the coarse mesh is used as the computational domain for a moving
mesh ALE simulation. The moving mesh parameter are α = 50 and β = γ =
0.15 for RD and α = 50 and β = γ = 0.3 for FV. In �gure 4.12 (last row)
we can observe that the meshes exhibit a strong adaptation on the shocks
and also a good symmetry in the radial direction. As a consequence the ALE
simulation provides a good resolution of both the inner and the outer shock,
of the order of simulation run on the �xed �ne mesh.

In �gure 4.13 we show some cuts of the �uid depth along the equator. In the
same �gure our FV and RD implementations are also compared against the nu-
merical solution of Rossmanith et al. [2004] which consists in a high-resolution
FV (Lax-Wendro� �ux with MC limiter) on a Cartesian grid composed of
34680 points. From the cuts and from the table 4.1 reporting the CPU times,
we can conclude that the moving mesh method is e�ective. We can observe
that the shock resolution improves with respect to the �xed coarse mesh and
we also see a consistent CPU time reduction with respect to the �xed �ne mesh
(58% for RD and 65% for FV).

4.9.4 Circular hump on a rotating sphere

This test case is also taken form Rossmanith et al. [2004]. It is an extension of
the previous one in presence of the sphere rotation. The dimensionless rotation
rate is Ω = 5. We have run this test with two semi-spherical grids: a coarse one
with 8361 nodes and 16488 elements and a �ne one with 46521 nodes and 92488
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Figure 4.12: Circular hump on a sphere. Snapshots of FV depth isolines (20
levels between 0 and 0.55) at di�erent times, t = 0.3, 0.6, 0.9. Top) coarse
mesh. Middle: �ne mesh. Bottom: adaptive ALE with adaptive mesh.

Adaptive techniques for free surface �ow simulations. Application to the
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ALG Mesh (Nodes) RD[s] (%MMPDE) FV[s] (%MMPDE)

FIX-COARSE 7122 34.58 34.70
FIX-FINE 39699 485.37 593.52

ADAPT-ALE 7122 201.05 (37.5%) 203.10 (38.0%)
Rossmanith 34680 -

Table 4.1: Circular hump on a non rotating sphere. CPU times.
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Figure 4.13: Circular hump on a sphere. Solution along a symmetry line.
Comparison between �x mesh simulations and adaptive ALE.
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elements. As before the coarse mesh represents the computational domain for
an moving mesh ALE simulation. The moving mesh parameter are α = 50
and β = γ = 0.1. In �gure 4.14 we report snapshots of the depth isolines
and of the adaptive meshes. This times mesh nodes are clustered both around
the shock waves and also near some smoother feature where high gradients
appear. We remark that, for this case, FV gives better and smoother result
with respect to RD where some oscillations appear (visible in �gure 4.14). This
is probably related to a non proper activation of the limiter and it subject of
current investigation.

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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Figure 4.14: Circular hump on a sphere. Snapshots of FV depth isolines (20
levels between 0 and 0.55) at di�erent times, t = 0.4, 0.8, 1.2. top) coarse
mesh. Middle: �ne mesh. Bottom: adaptive ALE.
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Figure 4.15: Circular hump on a sphere. Solution along a symmetry line.
Comparison between �x mesh simulations and adaptive ALE.
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Chapter 5

Tohoku-Honsu tsunami simulation

The 11 March 2011 a catastrophic earthquake of magnitude Mw9.0 ruptured
the plate o� the coast of the Tohoku region. This is usually referred to as the
2011 Tohoku-Honsu earthquake. Many authors that have studied the fault
rupture mechanism agree that the earthquake was compact with huge plate
slips concentrated near the trench axis, see Fujii et al. [2011]; Shao et al.
[2011]; Ammon et al. [2011]; Iinuma et al. [2011]; Satake et al. [2013]. We
will give a de�nition of the slip vector in 5.1.1, for now see �gure 5.1 for
an illustration of its physical meaning. Maximum slips may vary from one
author to the other but they stay in the range 30 − 70 [m]. The fact that
large slips occurred near the trench, at rather low depths, produced a large
sea�oor uplift that in turn triggered a devastating tsunami wave. At the end,
signi�cant damages occurred in the coastal prefectures of Fukushima, Myiagy
and Iwate and they were mostly caused not by the earthquake itself, but by
abnormal wave heights (up to 40 [m] in northern Japan) that overwhelmed
protection barriers, breakwaters and other sea defenses.

Very interestingly for us, the Tohoku-Honsu earthquake was the largest
instrumentally recorded earthquake in Japan history. A part from extensive
ground motion dataset, the tsunami was recorder by 10 nearshore GPS gauges,
32 tidal gauges and by the o�shore DART buoy system. All these data are
available online: for the GPS wave gauges data one can access the website
of the Nationwide Ocean Wave information network for Ports and Harbours
(NOWPHAS) NOWPHAS [2017]; the DART buoy data are available from the
website of the National Oceanic and Atmospheric Administration (NOAA)
NOAA [2017a]. Equally important was the post-tsunami �eld survey which
have been conducted meticulously along the coast of Japan. Inundation areas
as long as runup and tsunami height1 from in situ measurement, are reported

1Hereafter for the tsunami terminology we refer to the NOAA [2017b]:
Inundation area: an area that is �ooded with water.
Runup: Maximum height of the water onshore observed above a reference sea level. Usually
measured at the horizontal inundation limit.
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5.1. Initial waveform

Figure 5.1: Left) Fault geometry and nomenclature. Right) Approximation
of the fault plane in subfaults and approximated slip �eld, (to generate this
image we have used the software SlipReal Mai and Beroza [2002])

for example in Mori and Takahashi [2012]. This big amount of data helped
researchers in better understanding the phenomenon. For instance, data were
used to recover initial waveform; this inverse problem is explained in section 5.1
with all the physical hypotheses that are introduced. Both buoy data and and
�eld survey are also very useful to test the capability of hydrodynamics codes
in modeling the main physical features of a tsunami event. In section 5.2 and
5.3 we compare the accuracy of the numerical simulation against observations.

5.1 Initial waveform

The selection of the initial waveform is crucial to obtain realistic wave heights
and runups. First, the waveform depends on the fault's rupture dynamics.
Then the rupture pulse produces seismic waves which propagate to the sea�oor.
Finally the sea�oor displacement generates wave motion in the ocean up to the
free surface. The resulting waveform represents the initial condition for the
SWEs code. As we see the phenomenon is complex, involving non linear wave
propagation in di�erent media. Typically, in the context of tsunami modeling,
it can be simpli�ed using many physical assumptions.

5.1.1 Fault rupture model

First of all we need to understand how to properly account for the rupture
mechanism. The rupture geometry is described in the sketch in �gure 5.1. We

Tsunami height: the height, relative to a stated reference level, to which a particular location
at certain time instant is covered by water.
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can see two plates moving w.r.t one another having the fault surface ΩF as
interface; the movement is characterized by

• two angles: the strike angle formed between the nord and the alongstrike
direction and the dip angle formed by the horizontal and the downdip
direction

• an heterogeneous �eld of displacement vectors contained in the fault
plane. The relevant quantity is the module of the slip vector which is
simply called the slip and for us is d(x, t) ∈ R.

Fault's rupture is a complex phenomenon which depends from pre-rupture
stress condition, geometrical setting and frictional property of the fault which
are largely unknowns. To simplify the problem we approximate the scalar slip
�eld: the fault plane is subdivided in NF rectangular subfaults, each one with
its slip de�ned at the center di, i = 1, NF , see the right picture of �gure 5.1.
If the dynamics of the rupture is taken into account, the time domain is also
approximated and subdivided in multiple windows allowing a time dependent
activation of the subfaults. The approximated slip �eld di is also called source
model. The computation of the slip �eld di from available time dependent
data (both seismometeres and tsunamometers) is referred to as the inversion
problem. This inversion problem could be very hard to solve and strongly
depends on the algorithm used and on the data, leading to quite di�erent slip
�elds for the same earthquake/tsunami event. For the 2011 Tohoku tsunami
we have assisted to a proliferation of source models among which is quite
di�cult to select a better one. Moreover the choice of the speci�c inversion is
determinant to reproduce accurately wave heights and runups. This issue was
addressed recently in MacInnes et al. [2013] and in the TANDEM project. The
source model of Satake et al. [2013] emerged as one of the best for matching
both nearshore and o�shore height records as well as inundations.

Satake used 55 subfaults, each 50 [km] long and 50 [km] wide, only the
shallower column of subfaults having an halved width of 25 [km]. The strike
and slip angles are adopted from USGS W-phase inversion result (strike 193◦,
slip angle 81◦) while the dip angle varies along the depth from 8◦ for the
shallowest subfaults to 16◦ for the deeper ones. It has been realized that, for
great earthquakes, the rupture propagates over large distances in a �nite time,
in the order of a few minutes. To consider these time dependent e�ects in the
inversion, Satake et al. [2013] used a delayed rupture mechanism in such a way
that, at the end, a temporal variation of the slip �eld was included. 5 time-
windows were considered: every subfault activates at time m∆t+ td. The time
interval was set to ∆t = 30 [s] based on physical observations; m = 0, 1, 2, 3, 4
is an integer that represents each time-window and td = |xi|/Vr is a delay which
depends on the rupture velocity Vr and on the distance |xi| of the subafault's
center from the hypocenter. Satake computed 275 unknowns values of slip (55

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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subfaults to be computed at each of the �ve time windows) based on tsunami
waveform data (GPS buoys, tidal gauges and DART buoys). Practically, the
slip distribution obtained with this inversion algorithm is sampled every 30 [s],
from 0 [s] (the time origin is 14:46:18 Japan Standard Time) until 300 [s] when
the rupture mechanism stops. The result of the inversion can be found in the
original paper Satake et al. [2013] and we don't report them here. For clarity,
at each sampling time, the slip looks like the right picture of �gure 5.1.

5.1.2 Okada dislocation theory

Seismic wave propagation in principle can be performed with modern Finite
Elements techniques. In the tsunami community what is commonly done is to
work within the following simplifying hypotheses:

1. the earth is an elastic material

2. wave propagation is neglected and one computes an instantaneous equi-
librium con�guration.

The problem reduces to a classical dislocation problem van Zwieten et al. [2013]:
an elastic body contains a dislocation plane (fault plane) on which a discontin-
uous displacement instantaneously occurs. The question is which is the equi-
librium con�guration of the body after this discontinuous initial condition has
been imposed. An analytical solution exists for a �nite rectangular dislocation
plane immersed in a homogeneous half space (the domain boundary consists
of a �at surface and a far �eld boundary which is at rest; isotropy and homo-
geneity of the material are considered). This is the celebrated Okada solution
Okada [1985]. For earthquakes, the interesting quantity is the displacement at
the �at boundary which represents the sea�oor. The great advantage of this
approach is that we can easily implement the subfaults con�guration of Sa-
take. Due to linearity, we superpose at each point of the sea�oor the solution
related to each subfault displacement, as if it was acting independently from
the others. In this way, the slip distribution interpolated every 30 [s] is used as
initial condition for the Okada analytical expression to compute the sea�oor
displacement.

5.1.3 Free surface motion

The free surface displacement is assumed to be identical to the static vertical
displacement of the sea�oor, basically as if the water would translate instanta-
neously. This rough assumption is classically justi�ed by several observations
(see the review in Dutykh et al. [2011]): since tsunamis are long waves, the
vertical dynamics can be neglected 2) elastic waves are much faster then grav-
ity waves (in the order of ten times faster), as a consequence the sea�oor
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Figure 5.2: Waveforms in [m] at t = 300 [s] used as initial condition for the
SWEs code and computed accounting for: left) only vertical sea�oor displace-
ment Right) both horizontal and vertical sea�oor displacement.

deformation is assumed to be instantaneous 3) the bathymetry has in general
mild slope, which means that the e�ect of horizontal sea�oor deformation is
negligible for tsunami generation.

For the 2011 Tohoku-Honsu earthquake the horizontal sea�oor displace-
ment was large near the trench axis. If large horizontal sea�oor displacements
occur where the bottom present a strong slope, such as in correspondence of
the trench, the tsunami wave can be ampli�ed by 30% Tanioka and Satake
[1996]. For this reason we have accounted also for the horizontal sea�oor dis-
placement into the computation of the waveform. A partner of the TANDEM
project, the Bureau de Recherche en Géologiques et Miniérs (BRGM) provided
us the free surface adding the horizontal displacement to the waveform.

Then the initial condition for the SWEs code is generated as follows. Start-
ing from the time origin, we impose the computed sea�oor displacement at
t = 0 [s] as initial condition for the SWEs code. This initial condition is
propagated and at every sampling time (30 [s]) the waveform related to the
interpolated slip is superposed to the propagating wave. Progressing this se-
quence of wave propagation and superposition of free surface displacement, we
obtain the waveform at t = 300 [s] which is then propagated up to the coast.
The initial waveforms at t = 300 [s] are reported for completeness in �gure 5.2
(with and without horizontal displacement).

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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Figure 5.3: Left) GPS buoy position. Right) Mesh topology. zoom of the
Japan coast and zoom of the Sendai bay.

5.2 Results with �tted mesh

We present the numerical simulation of the Tohoku-Honsu tsunami with the
Residual Distribution and the Finite Volume schemes developed in previous
chapters. The initial waveform does not include horizontal displacement, thus
it is the one of the left picture in �gure 5.2. A body �tted mesh was created
by Electricité de France (EDF) and provided to us within the partnership of
the TANDEM project. EDF made available also the results of the numerical
SWEs simulation that they run with the software Telemac2D. This is a Finite
Element hydrodynamics software developed at EDF and freely available online,
the reader may refer to Hervouet [2007]. The details concerning this Telemac2D
tsunami simulation can be found in Legal [2017]. This will allow a comparison,
for the same set-up of the Tohoku-Honsu event, of di�erent SWEs codes which
was one of the main objective of the TANDEM project.

The mesh has 1080181 elements and 547469 nodes with a strong variation
of the local mesh size that ranges from 100000 [m] to 120 [m] in the coastal
region, where the maximum resolution is necessary to correctly reproduce the
complex Japan's boundary. In �gure 5.3 the reader can appreciate the mesh
topology. The mesh is adapted to the bathymetry variation and to the distance
to boundaries. Re�ective boundary conditions are imposed everywhere along
the coastline.

In �gure 5.4 the simulated sea level displacement is compared against ex-
perimental data recorded by the GPS buoys, see �gure 5.3 to check the position
of the GPS buoys. The three numerical schemes provide similar free surface
levels. We can see in particular that both our RD and FV implementations
match well with the results produced by Telemac2D. We can underline that
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Figure 5.4: Comparisons of the simulated and observed sea level displacement
recorded at GPS buoys. The simulated curves refer to FV, RD and Telemac2D.

RD scheme is slightly less dissipative then FV, providing better resolved sec-
ondary peaks. The tsunami simulation agrees quite well with experimental
data, with an accurate computation of the arrival time of the leading wave
and well reproducing the complex interaction between incoming and trapped
waves. In �gure 5.5 and as observed by Chen et al. [2014], we see that the
elevation wave, once re�ected, undergoes a complex transformation: re�ected
waves travel parallel to the coast from north to south and from south to north
or focus to form higher waves such as it happens in the Sendai Bay (see the red
area in the last picture of 5.4). Always from �gure 5.4 we clearly see that all
the numerical simulations largely underestimate the �rst elevation wave peak,
up to 3.5 [m] error with respect to the observations at the GPS802. Aside
form this drawback we can conclude that the Shallow Water model reproduce
a realistic scenario for the Tohoku event. The tsunami wave was a weakly non-

Adaptive techniques for free surface �ow simulations. Application to the
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Figure 5.5: Snapshot of the simulated o�shore (RD) free surface level in meters
every one hour starting from time 14:51:18: t = 0:00, 1:00, 2:00 and 3:00.
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Figure 5.6: Snapshot of the simulated nearshore (RD) free surface level in
meters every twenty minutes starting from time 14:51:18: t = 0:00, 0:20, 0:40,
1:00 and 1:20.
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linear and weakly dispersive very long wave. It passes from the linear regime
in deep water (�gure 5.5) suddenly to the shallow water regime (�gure 5.6),
across the very steep shelf which characterize the bottom. We point out that
in none of the simulations we have observed a bore. Nonlinearity and non-
hydrostatic dynamics became instead important in localized shallow regions
where frequency dispersion and wave breaking have been observed in the real
event, see again the study of Chen et al. [2014]. Modeling these local e�ects,
for which Boussinesq-type equations together and a much �ner grid are needed,
is beyond the scope of the present study.

One possible explanation for the leading wave underestimation could be the
absence of the contribution of horizontal sea�oor displacement in the waveform
computation considered so far. Horizontal displacement has been included and
its e�ect can be analyzed by inspecting the GPS buoys in �gure 5.7. Actually
the computation of the �rst wave peak improves for all the buoys in the case
in which horizontal displacement is retained. In particular the wave height
recorded at the buoy G802 (where the highest tsunami height can be observed)
is one meter higher. Despite this improvement, maximum wave heights at the
buoys are still underestimated with respect to observation (up to 2.5 [m] at the
GPS802).

We have tried to improve the results with the moving mesh algorithm dis-
cussed in chapter 3 but, unfortunately, this was not immediate. First of all,
the topology of the mesh in �gure 5.3 is not suited for moving mesh computa-
tions due to the strong variation of the mesh size. Here, to perform a moving
mesh tsunami simulation, we have used a computational grid which is re�ned
smoothly as the boundary is approached. The minimum mesh size at the coast
is hk = 1000 [m] compared to a minimal size of 120 [m] of the mesh provided by
EDF, while the maximum is hk = 50000 [m]. The grid has 151650 nodes and
299207 elements. In the initial waveform it is not considered the horizontal
displacement. The moving mesh parameters, see section 3.4.2, are α = 50,
β = 0.1 and δ = 200.

The initial propagation of the tsunami wave and the corresponding mesh
movement are visualized in �gure 5.8. The images show snapshots of the initial
state, after 20′ and 40′. We can observe that mesh adaptation increases the
resolution of wave shoaling and allows to well capture the smooth wave pattern.
However as the wave interact with the boundary mesh tangling has revealed to
be more important then we expected. In �gure 5.10 we show typical tangling
situations at the boundaries that we have faced during the simulation. The
smoothing technique discussed in section 3.4.3 become fundamental to solve
this issue and avoid tangling in most situations. However to be able to perform
a full simulation without mesh tangling, an a posteriori automatic untangling
procedure has been set up. This procedure consist in an a-posteriori reduction
of the nodal displacement by locally increasing the value of the relaxation
parameter µi in equation (3.17). It is based on the following loop which ends
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Figure 5.7: Simulated (RD) free surface level recorded at GPS buoys with and
without sea�oor horizontal displacement in the waveform computation.
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5.3. Results with embedded mesh

when all the cells have been untangled:

1. we set a counter n = 0 and a constant relaxation factor µi = 1 ∀i ∈ Th.
Then we compute the relaxation step with (3.17)

xk+1
i = xni + δ̂

k

i

2. ∀K ∈ Th we check tangling. If there is no tangling the loops ends.
Otherwise, if one cell tangles |K| < 0 we �ag it and we compute its
center position xKG , then we set

n = n+ 1

τ = 2n2

and we compute for every node ∀i ∈ Th

µi = min

(
µi, 1− e

−
dG,i
hkτ

)
with dG,i the distance between the center of the tangled element and
node i.

3. we perform a new relaxation step (3.17):

xk+1
i = xni + µiδ̂

k

i

and we go back to step 2.

The simulated free surface level for the adaptive ALE simulation is reported
in �gure 5.11 where it is compared with the �xed grid simulation. We observe
that the moving mesh is slightly curing the excessive di�usion of the leading
tsunami wave encountered for the �xed mesh simulation. This should suggest
that the �xed computation obtained with the mesh of EDF is locally not
converged yet. As a �nal remark we note that the overall cost of the moving
mesh algorithm with the untangling procedure grows making it ine�ective.
For this reason we have moved to an embedded mesh that, in the benchmarks
of sections 3.7.3, 3.7.4 and 3.7.5, provided an accurate wave re�ection when
coupled with a strong mesh adaptation at the shoreline. In that cases tangling
was not an issue.

5.3 Results with embedded mesh

We have tested an embedded approach in which the whole coast has simply
been treated as a wet-dry boundary. We will in particular present simulations
preformed with our RD approach on both a �xed and a moving grid.

172 Luca Arpaia



5. Tohoku-Honsu tsunami simulation

Figure 5.8: Snapshot of free surface level (in meters) and corresponding moving
mesh re�nement every twenty minutes starting from time 14:51:18: t = 0:00,
0:20. and 0:40.

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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5.3. Results with embedded mesh

Figure 5.9: Snapshot of the simulated (ALE-RD) free surface level (in meters)
and corresponding moving mesh re�nement every twenty minutes starting from
time 14:51:18: t = 0:40, 1:00 and 1:20.

Figure 5.10: Examples of mesh tangling at the boundaries.

174 Luca Arpaia



5. Tohoku-Honsu tsunami simulation

-4
-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7

 38.5  38.75  39  39.25  39.5  39.75  40  40.25  40.5  40.75  41

[m
]

t [h]

GPS 801

FIX
ALE

Exp.Data

-4
-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7

 38.5  38.75  39  39.25  39.5  39.75  40  40.25  40.5  40.75  41

[m
]

t [h]

GPS 802

FIX
ALE

Exp.Data

-4
-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7

 38.5  38.75  39  39.25  39.5  39.75  40  40.25  40.5  40.75  41

[m
]

t [h]

GPS 803

FIX
ALE

Exp.Data

-4
-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7

 38.5  38.75  39  39.25  39.5  39.75  40  40.25  40.5  40.75  41

[m
]

t [h]

GPS 804

FIX
ALE

Exp.Data

-4
-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7

 38.5  38.75  39  39.25  39.5  39.75  40  40.25  40.5  40.75  41

[m
]

t [h]

GPS 804

FIX
ALE

Exp.Data

-4
-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7

 38.5  38.75  39  39.25  39.5  39.75  40  40.25  40.5  40.75  41

[m
]

t [h]

GPS 807

FIX
ALE

Exp.Data

Figure 5.11: Simulated (RD) free surface level recorded at GPS buoys with
�xed �tted mesh and ALE moving �tted mesh.
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5.3. Results with embedded mesh

In the above section we got the evidence that, for the Tohoku-Honsu event,
the horizontal displacements must be taken into account in the computation
of the initial waveform. For this reason, the initial condition considered in all
the tests of this section will include this e�ect and will coincide with the one
in the right picture of �gure 5.2.

With the embedded approach, friction becomes important during the in-
undation stage. It is well known that having accurate maps of the Manning
coe�cient (roughness maps) has a considerable in�uence on inundations, spe-
cially in densely populated areas. Here we will employ a simpler, yet widely
used approach of considering a constant Manning of n = 0.03125 [sm−1/3]. This
value represents land covered with coarse sand and is typically used when no
detailed roughness map is available Gayer et al. [2010].

First we have run a �xed grid computation with an unstructured embedded
mesh composed of 689861 nodes and 1379054 triangles. The mesh is adapted
to the bathymetry: the minimum local mesh size is at the coast (120 [m])
and the maximum mesh size is 5 [km]. We note that this grid is �ner with
respect to the �tted one detailed in the previous section and it is used here
to run a reference simulation. In �gure 5.12 the reader can �nd the simulated
free surface level at the buoys. As suspected from the previous paragraph, we
realize that the more re�ned mesh reduce numerical di�usion and the wave
pro�le of the leading wave appear much sharper. More importantly, the height
of the �rst wave is considerably closer to the experimental value with respect to
the result obtained with the �tted mesh of the previous section. A side e�ect
is that, due to the friction in the wetting/drying phase, the re�ected wave are
slightly damped.

With the embedded reference mesh we model also the �ooding of the Japan
coastal prefectures. We focus the attention on three bays in the south of the
Iwate prefecture: in �gure 5.13, as they appear from south to north, they
are the Kesennuma, Hirota and Ofunato bay. In �gure 5.14 we provide a
comparison between the inundated areas predicted by the RD scheme and the
surveyed areas for these three densely populated bays. With a mesh size of 120
meter we can say to have a good prediction of the runup process, except very
�ne scale �ooding such as the inundation of two narrow channels at the end of
Hirota bay. In the simulation they remain dry even if water was observed.

We test now if the moving mesh methods could provide the same resolution
of the reference simulation, using a coarser computational mesh. The compu-
tational mesh is adapted to the bathymetry but the minimum local mesh size
(in the proximity o the coast) is 360 [m], three times larger with respect to the
reference mesh. It results a computational mesh composed by 364864 nodes
and 728874 elements. The moving mesh parameters are α = 50, β = 0.1 and
δ = 200.

From �gure 5.15 to 5.20 we show the solution and the mesh, in an alternate
fashion, for a zoom of the physical domain close to Japan coast. The snapshots
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Figure 5.12: Simulated (RD) sea level displacement recorded at GPS buoys
with an embedded reference mesh.
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5.3. Results with embedded mesh

Figure 5.13: Simulated �ooding in the southern Iwate prefecture. Snapshot
of the numerical simulation (RD) at t = 0:00, 0:40 and 0:50. The picture in
bottom-right position is the embedded mesh with the coastline drawn in green.
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Figure 5.14: Left. Comparisons between simulated (RD) and surveyed �ooded
areas in the south Iwate prefecture.

of the free surface level and the corresponding adapted meshes are plotted every
twenty minutes at t = 00′ (�g. 5.15 and 5.16), t = 20′ ( (�g. 5.17 and 5.18) and
t = 40′ (�g. 5.19 and 5.20). We observe that the mesh points move and cluster
around the complex tsunami wave pattern. This becomes visible especially
when the wave shoals and the mesh points gather in correspondence of the
largest gradients of the incoming waves train. The shoreline is also detected
by the mesh. We recall that tangling at the coast was the main limitation of
the �tted method. In this embedded moving mesh computation tangling has
not occurred even without employing the smoothing step and the a-posteriori
relaxation implemented in the previous section. In �gure 5.21 we can observe
a closer zoom of a very complex coastline detected by the moving mesh method
without tangling. Finally from �gure 5.22 we can see that the simulated sea
level computed with the moving mesh at the wave gauges is similar to the
one computed with the reference. Mesh adaptation at the shoreline allows to
reproduce sharply the complex re�ection of the tsunami wave.

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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5.3. Results with embedded mesh

Figure 5.15: Snapshot of the free surface level (same color legend of previous
�gures) starting from time 14:51:18 at t = 0:00.
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5. Tohoku-Honsu tsunami simulation

Figure 5.16: Snapshot of moving mesh (same color legend of previous �gures)
starting from time 14:51:18 at t = 0:00.

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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5.3. Results with embedded mesh

Figure 5.17: Snapshot of the free surface level (same color legend of previous
�gures) starting from time 14:51:18 at t = 0:20.
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5. Tohoku-Honsu tsunami simulation

Figure 5.18: Snapshot of moving mesh (same color legend of previous �gures)
starting from time 14:51:18 at t = 0:20.

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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5.3. Results with embedded mesh

Figure 5.19: Snapshot of the free surface level (same color legend of previous
�gures) starting from time 14:51:18 at t = 0:40.
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5. Tohoku-Honsu tsunami simulation

Figure 5.20: Snapshot of moving mesh (same color legend of previous �gures)
starting from time 14:51:18 at t = 0:40.

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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5.3. Results with embedded mesh

Figure 5.21: Mesh adapted to a complex shoreline (Miyagi prefecture).
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Figure 5.22: Simulated sea level displacement recorded at GPS buoys with
�xed embedded mesh and moving embedded mesh.
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Conclusions

Summery of the thesis results

In this thesis we have analyzed the use of r -adaptation for the shallow water
simulation of complex wave interactions and wave runup on irregular bathyme-
tries.

In chapter 2 we have provided a thorough theoretical setting to construct
Well Balanced Finite Volume and Residual Distribution schemes on moving
grids with an ALE and a rezoning approach. This schemes includes a mass
conserving correction of the nodal bathymetric heights, based on a quadrature
of the given bathymetric data. Being based on the actual data, this correction
requires no re-initialization, as e.g. the ALE remap used in Zhou et al. [2013a]
which leads to a numerical deviation from the real bathymetric data. Both
simple academic test cases and long wave benchmarks have con�rmed our
theoretical expectations in terms of the conservation of steady equilibria and
mass conservation.

In chapter 3 we have coupled these schemes with the Laplacian-type r -
adaptation method of Ceniceros and Hou [2001] and we have investigated dif-
ferent coupling strategies between the �ow solver and the adaptation in terms
of accuracy and cost (CPU time). The delicate point is here the overhead of
the mesh adaptation method when the �ow solver is based on fully explicit
multi-stage methods. Our results show that, as long as possible, one should
stick to the use of a fully ALE method coupled with the mesh deformation
solver, used with a simpli�ed solution remapping for the error sensor. This
turns out to be the most e�cient in terms of accuracy for a given CPU time,
as well as the most robust in providing substantial improvements both for
smooth and non-smooth features, including an improved prediction of runup.
We have also proposed a simpli�ed rezoning method which allows to run the
�ow solver on a �xed mesh. The method proposed allows to save signi�cant
CPU time and can be used in situations where local remeshing is necessary,
and a full ALE method with �nite time step values cannot be used. These
results improve on, and complete the studies done in the past in e.g Tang and
Tang [2003]; Ceniceros and Hou [2001]; Ni et al. [2009]; Zhou et al. [2013a,b];
Chen et al. [2008] providing quantitative as well as qualitative elements.
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In chapter 4 we have extended the Shallow Water solver (both Residual
Distribution and Finite Volume) and the moving mesh method to curvilinear
coordinates. The Residual Distribution approximation enhances to unsteady
problems the scheme of Rossmanith [2013] and it is appealing due to its sim-
plicity and rigor in treating all the issues that the spherical geometry poses
such as the medium heterogeneity and the geometric source term. Numeri-
cal results show that the resulting ALE r-adaptive method can improve the
resolution of steep solutions of the SWEs on the sphere.

In chapter 5 we have employed r-adaptation to the simulation of the Tohoku-
Honsu tsunami. This includes the large scale wave propagation and coastal
�ooding. We show that with a combined use of r-adaptation an embedded
meshes it is possible to perform accurate tsunami simulations with a limited
number of mesh points.

Limitations and future perspective

Future developments will involve the extension of our analysis to both mul-
tistep and higher order methods, as well as the addition of dispersive e�ects,
based on the approach of Filippini et al. [2016]. The reduction of the adapta-
tion overhead obtained with the full ALE approach (and with the simpli�ed
rezoning) also opens the door to new developments. In particular, both the
underlying mesh adaptation method, as well as its discretization, and iterative
solution will be object of future work. Although successful we have observed
that the implementation of the simple Laplacian poses some strong limitation
on the control of mesh quality. A possible avenue is the combination of the
simple Laplacian approach used here, providing a very sharp approximation
of discontinuous features, with elastic deformation Stein et al. [2004] allowing
greater control on mesh quality. Concerning the discretization and resolution
of the MMPDE, improved iterative methods can certainly be bene�cial to pro-
duce grids with improved quality. In Tang and Tang [2003] it is mentioned
that the algebraic system is solved with Gauss-Seidel iterations, but no quan-
titative informations whatsoever are given w.r.t. the cost overhead, or of the
total cost of the adaptive simulations compared to a �xed �ne mesh one.

Future work will be also dedicated to overcome the pole singularity and
to propose a Residual Distribution method for global circulation model. The
pole problem for the moving mesh method is more complicated and necessitates
further study. However the work of Di et al. [2006] could be implemented to
then test the ALE-SWEs moving mesh method against benchmarks on the
whole sphere.
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Appendix A

Tensors, vectors and nabla
operators in curvilinear
coordinates

Notation for curvilinear coordinates

Consider a transformation from a Cartesian coordinate system x = {x1, x2, x3}
to a general curvilinear coordinates system z = {z1, z2, z3}

x = G(z)

The orthonormal basis in Cartesian coordinates is {ei} = {e1, e2, e3}. The
non-orthonormal covariant basis vectors is de�ned by {gj} = {g1, g2, g3}. A
vector x in Euclidean space can be expressed in curvilinear coordinates as

x = g1z
1 + g2z

2 + g3z
3 =

3∑
i=1

giz
i ≡ gizi

where the symbol ≡ means that we have used the standard summation con-
vention. The basis vectors of the curvilinear framework can be calculated from
the orthonormal basis associated to the Cartesian coordinate system

gi =
∂x

∂zi
=

3∑
j=1

∂x

∂xj
∂xj

∂zi
≡ ∂x

∂xj
∂xj

∂zi
= ej

∂xj

∂zi
(A.1)

The components ∂xj

∂zi
fully describe the transformation from cartesian to curvi-

linear coordinate system and they can be collected in a transformation tensor,
or jacobian

J =


∂x1

∂z1
∂x1

∂z2
∂x1

∂z3

∂x2

∂z1
∂x2

∂z2
∂x2

∂z3

∂x3

∂z1
∂x3

∂z2
∂x3

∂z3

 (A.2)
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which admits a determinant det(J) 6= 0. The contravariant basis is useful
to describe tangent plane to a given surface. Given a point P embedded in
cartesian space, the contravariant basis gk is perpendicular to the plane de�ned
by the covariant basis gi and gj in P . It is de�ned as

gk =
gi × gj

(gi × gj) · gk

The metric tensorG is composed of the coe�cients given by the scalar product
between the covariant basis vector

Gij = gi · gj

with determinant det(G) 6= 0. The inverse metric tensor G−1 is:

Gij = gi · gj

An important relation between the metric tensor and the jacobian G = JTJ .
In the following we will de�ne the square root of the determinant of the metric
tensor with

√
G which will mean:

√
G =

√
detG = detJ (A.3)

Physical components of tensors

Now, let v be a vector in the curvilinear framework, it can be written in the
covariant basis as v = vjgj, always using standard summation convention. For
our purposes it is useful also to de�ne physical components of a vector in a
unitary covariant basis. This means that the curvilinear basis vectors have to
be normalized

g∗i =
gi
|gi|

The vector reads

v = (vj|gj|)g∗j = v∗jg∗j

using the following components

v∗j = |gj|vj (A.4)

the star denotes physical contravariant vector components de�ned on the uni-
tary basis. For tensors T = T ijgigj the physical contravariant tensor compo-
nents in the unitary contravariant basis write

T ∗ij = |gi||gj|T ij (A.5)
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A. Tensors, vectors and nabla operators in curvilinear coordinates

Christo�el symbol

The 3× 3 second-kind Christo�el symbol reads

Γkij = gk · ∂gi
∂zj

We recall two important property of the Christo�el symbol which we will use
later in the text. The �rst one reads as follows

Γiij =
1√
G

∂
√
G

∂zj
(A.6)

the second important relationship is known as Ricci's Lemma and concerns
the derivative of the coe�cients of the metric covariant coe�cient Gij with
respect to zk. For us it will be useful the derivation with respect to zj. In this
particular case:

∂Gij

∂zj
= −GmjΓijm −GimΓjjm (A.7)

for the demonstration, see Nguyen-Shafer and Schmidth [2014].

Nabla operator in curvilinear coordinates

Nabla operator in a general curvilinear coordinates reads

∇ = gi
∂

∂zi
(A.8)

Given a scalar φ, a vector v and a second order tensor T , we list the nabla
operator in curvilinear coordinates that we use in this thesis. The divergence
of a vector v in curvilinear coordinates writes

∇ · v =

(
gi

∂

∂zi

)
· v =

1√
G

∂

∂zi

(√
Gvi

)
, i = 1, 2, 3 (A.9)

The divergence of a second order tensor is

∇ · T =

(
gk

∂

∂zk

)
· T =

(
1√
G

∂

∂zi

(√
GT ij

)
+ T ikΓjik

)
gj, i, j = 1, 1, 2

(A.10)
The gradient of a vector is

∇v =

(
gi

∂

∂zi

)
v = gjg

i∂v
j

∂zi
, i = 1, 2, 3 (A.11)

Finally the Laplacian of a scalar (also called Laplace-Beltrami operator) is
reported here with two di�erent formulas, both useful:

∇2φ = gi
∂

∂zi
·
(
gj
∂φ

∂zj

)
= Gij

(
∂2φ

∂zi∂zj
− Γkij

∂φ

∂zk

)
(A.12)

=
1√
G

∂

∂zi

(√
GGij ∂φ

∂zj

)
(A.13)

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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Elementay di�erential geometry

We consider a 2-dimensional Riemannian manifoldM. At a point R de�ned
by curvilinear coordinates {z1, z2}, R(z1, z2) let {g1, g2} be the vector basis.
In the nighbourhood of this point we construct a tangent plane.

Arc lenght between points in curvilinear coordinates

Consider now two points P (z1, z2) andQ(z1, z2) connected by a curve c parametrized
with t ∈ [0, 1]. The arc length of ds between the points Q and Q is given by(

ds

dt

)2

=
dx

dt
· dx
dt

= gi
dzi

dt
· gj

dzj

dt

ds =

√
dzi

dt
Gij

dzj

dt
dt

And the arc lenght of PQ is computed with a line integral from t = 0 to t = 1:

lM(P,Q) =

∫ 1

0

√
dzi

dt
Gij

dzj

dt
dt (A.14)

Surface area in curvilinear coordinates

The area di�erential of the tangent plane can be calculated using contravariant
components of an in�nitesimal displacement in the tangent plane

dx = dz1g1 + dz2g2︸ ︷︷ ︸
dz2

= dzigi (A.15)

We get

dA = |g1 × g2|dz1dz2

(A.16)

with |g1 × g2| =
√
G.
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Appendix B

Harmonic maps

We provide the de�nition of harmonic maps between Riemannian manifold, as
emerged from the work of Eell and Sampson [1964]. Given two Riemannian
manifoldM and N , the former is described by curvilinear coordinates χ with
metric tensor G while the latter is described by curvilinear coordinates x,
being H its metric. Let A :M→N be a smooth map. Let Ω be a domain of
M. We de�ne an energy functional in local coordinates:

E(x) =
1

2

∫
Ω

e
√
Gdχ

where the energy density is e = ||∇x||2. From (A.11), the gradient of a vector
is the following tensor:

∇x = gihα
∂xα

∂χi

computing its norm, the energy functional reads:

||∇x||2 = GijHαβ
∂xα

∂χi
∂xβ

∂χj

where standard summation convention is assumed. The energy functional
reads:

E(x) =
1

2

∫
Ω

GijHαβ
∂xα

∂χi
∂xβ

∂χj

√
Gdχ (B.1)

The map x = A(χ) is called harmonic if it is a critical point of the energy
functional. Moreover, the harmonic map is the solution of the following Euler-
Lagrange equation:

Gij

(
∂2xα

∂χi∂χj
− Γkij

∂xα

∂χk
+ Γαγδ

∂xγ

∂χi
∂xδ

∂χj

)
= 0 (B.2)

Here Γkij and Γαγδ denote the Christo�el symbols on M and N respectively.
Using (A.13) we get:

1√
G

∂

∂χi

(√
GGij ∂x

α

∂χj

)
+GijΓαγδ

∂xγ

∂χi
∂xδ

∂χj
= 0 (B.3)
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Appendix C

Lat-Lon coordinates

We consider a sphere S2 with radius R described by orthogonal curvilinear
coordinates {z1, z2} = {ψ, λ} whose basis are mutually perpendicular but not
unitary. z2 = λ is the latitude and z1 = ψ the longitude. A vector x

x = (R cosλ cosψ)e1 + (R cosλ sinψ)e2 + (R sinλ)e3

= x1e1 + x2e2 + x3e3

We got the transformation {xi} = G({zj})

x1 = R cos(z2) cos(z1)

x2 = R cos(z2) sin(z1) (C.1)

x3 = R sin(z2)

For lat-lon coordinates, the transformation tensor, according to equation (A.2),
is

J =


−R cosλ sinψ −R sinλ cosψ

R cosλ cosψ −R sinλ sinψ

0 R cosλ


The covariant basis results

g1 = (−R cosλ sinψ)e1 + (R cosλ cosψ)e2 + (0)e3 ⇒ |g1| = R cosλ

g2 = (−R sinλ cosψ)e1 + (−R sinλ sinψ)e2 + (ρ cosλ)e3 ⇒ |g2| = R

The metric tensor reads

G =

[
R2 cos2 λ 0

0 R2

]

with
√
G = R2 cosλ. The in�nitesimal area of a sphere is computed as

dA =
√
Gdz1dz2 = R2 cosλ dψdλ
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and Christofell symbols are

Γ1 = g1 · ∂gi
∂zj

=

[
0 − tanλ

− tanλ 0

]
, Γ2 = g2 · ∂gi

∂zj
=

[
sinλ cosλ 0

0 0

]
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Appendix D

Proof of the eRK2-RD-ALE
update

We extend the same steps contained in Ricchiuto and Abgrall [2010] to the
ALE framework. As the authors of the same paper underline, the procedure
to construct a second order explicit RD scheme is based on the following three
steps:

• analogy between RD and Stabilized Finite Element, valid for the P1 case

• step shifting operator for the time part in the stabilization bubble

• high order mass-lumping

The reader will �nd these steps in the following. The test function is wi =
ϕi + γi. Well-Balanced SWEs in ALE framework (2.28) are multiplied by the
the test function and integrated over the domain Ω. Using dxm = JAdχ

m and
the hypothesis that ∂t|χ ϕi = 0, one obtain the weak form (Galerkin)

∆k

∫
Ωi

ϕiw dx︸ ︷︷ ︸
I

+∆t

∫
Ωi

ϕi

(
∂Fj

∂xj
− σj ∂w

∂xj

)k
dx︸ ︷︷ ︸

II

−∆t

∫
Ωi

ϕiw
k ∂σ

j

∂xj
dx︸ ︷︷ ︸

III

= ∆t

∫
Ωi

ϕiSk dx︸ ︷︷ ︸
IV

the apex k is the RK stage,

k = 1 ⇒ ∆1 = [·]∗ − [·]n, [·]1 = [·]n

k = 2 ⇒ ∆2 = [·]n+1 − [·]n, [·]2 =
1

2
([·]n + [·]∗)

We have split the ALE term in a pure advective term and a Geometric Source
Term, as is commonly done in other RD-ALE discretizations Dobes and De-
coninck [2008]; Michler et al. [2002]. The next step is to add the contribution
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of the stabilization bubble: for this part we use a non conservative form, see
Arpaia et al. [2014], and secondly we use the step shifting operator ∆

k
instead

of the original ∆k. We mention that this approximation is necessary to end up
with a fully explicit scheme and does not spoil the formal order of accuracy.
The details can be found in Ricchiuto and Abgrall [2010]

k = 1 ⇒ ∆
1

= [·]n − [·]n

k = 2 ⇒ ∆
2

= [·]∗ − [·]n

The stabilization part is

∆t
∑
K∈Di


∫
K

γi
∆
k
w

∆t
dx︸ ︷︷ ︸

VK

+

∫
K

γi

(
∂Fj

∂xj
− σj ∂w

∂xj

)k
dx︸ ︷︷ ︸

V IK

=

∫
K

γiSk dx︸ ︷︷ ︸
V IIK


Now we can consider the sum of I and III:

I + III = ∆k

∫
Ωi

ϕiw dx−∆t

∫
Ωi

ϕiw
k ∂σ

j

∂xj
dx

=
∑
K∈Di

(IK + IIIK)

where we have decomposed the integral over neighbor elements. Using the fact
that wk = ∆̄kw/2 + wn, we can write on each element

IK + IIIK = ∆k

(∑
j∈K

∫
K

ϕiϕj dxwj

)
−∆t

∑
j∈K

∫
K

ϕiϕj
∂σj

∂xj
dx

(
∆
k
wj

2
+ wn

j

)

Moreover we can use the de�nition of constant divergence over the element,
eq.(4.43) ∫

K

ϕiϕj
∂σj

∂xj
dx =

∫
K

ϕiϕj∇ · σ dx

=

∫
K

ϕiϕj dx
∆|K|
∆t|K|

Wee see the Galerkin mass matrix mG
ij =

∫
K
ϕiϕjdx.

IK + IIIK = ∆k

(∑
j∈K

mG
ijwj

)
−
∑
j∈K

mG
ij

(
∆
k
wj

2
+ wn

j

)
∆|K|
|K|
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D. Proof of the eRK2-RD-ALE update

We follow exactly Ricchiuto and Abgrall [2010] and we perform mass lumping
that is

∑
j∈Km

G
ij =

∫
K
ϕidx = |K|/3 so that

IK + IIIK =
1

3
∆k (|K|wi)−

1

3
∆|K|wn

i −
∑
j∈K

1

2
mG
ij

∆|K|
|K|

∆
k
wj︸ ︷︷ ︸

V IIIK

Remembering that |Ci| =
∑

K∈Di
|K|
3

I + III = ∆k (|Ci|wi)−∆k|Ci|wn
j −

∑
K∈Di

∑
j∈K

1

2
mG
ij

∆|K|
|K|

∆
k
wj

= |Cn+1
i |∆kwi −

∑
K∈Di

∑
j∈K

1

2
mG
ij

∆|K|
|K|

∆
k
wj

for each element we rewrite VK = IXK +XK∫
K

γi∆
k
w dx =

∫
K

wi∆
k
w dx︸ ︷︷ ︸

IXK

−
∫
K

ϕi∆
k
w dx︸ ︷︷ ︸

XK

and then we sum IIK + IVK + VK + V IK + V IIK into the residual of element
K

Φ
K(k)
i =

∫
wi

∆
k
w

∆t
dx+

∫
wi

(
∂Fj

∂xj
− σj ∂w

∂xj

)k
dx+

∫
K

Skdx

we remark that we have computed the �uctuation at the k as it has been de�ned
in (4.7). We miss XK and V IIIK but they can be summed up together:

−
∑
j∈K

mG
ij∆

k
wj −

∑
K∈Di

∑
j∈K

1

2
mG
ij

∆|K|
|K|

∆
k
wj = −

∑
j∈K

(
1 +

1

2

∆|K|
|K|

)
mG
ij∆

k
wj

Lumping again this matrix:

−
∑
j∈K

(
1 +

1

2

∆|K|
|K|

)
|K|
3

∆
k
wj = −|Cn+1

i |∆k
wi

We de�ne ∆k −∆
k

= ∆̃k, the whole algorithm can be recast in compact form
as

∆̃kwi = − ∆t

|Cn+1
i |

∑
K∈Di

Φ
K(k)
i (D.1)

We obtain the two stage, for k = 1 the predictor (2.55) and for k = 2 the
corrector (2.56). �

Adaptive techniques for free surface �ow simulations. Application to the
study of the 2011 Tohoku tsunami.
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Appendix E

Manifactured source term

We construct a source term to run test case #1 from Williamson et al. [1992].
We impose in equation (4.2) the following advection bell travelling over a
background irrotatational velocity �eld a = ajgj

h(z, t) = f(z − at)
a1 = 1 (E.1)

a2 = 0

called "manifactured" solution. We get a residual:

∂f

∂t
+

1√
G

∂

∂zj

(√
Gfaj

)
= Sh

∂fai

∂t
+

1√
G

∂

∂zj

(√
Gfaaij

)
+Gijgf

∂f

∂zj
+ Γijk faa

jk = Shu

The continuity equation is sati�ed exactly:

∂f

∂t
+

∂

∂zj
(
faj
)

+
faj√
G

∂

∂zj

(√
G
)

= 0

Since ∂G
∂z1

= 0 we have

∂f

∂t
+

∂

∂zj
(
faj
)

= Sh = 0

which is an advection equation exactly sati�ed by the linear wave solution
(E.1). For momentum equation

ai
∂f

∂t
+

∂

∂zj
(
faaij

)
+
faaij√
G

∂

∂zj

(√
G
)

+Giigf
∂f

∂zi
+ Γikmfaa

km = Si

ai
(
∂f

∂t
+

∂

∂zj
(
faj
))

+Giigf
∂f

∂zi
+ Γikmfaa

km = Si
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The terms which are left represents a source term for the Shallow Water system

Si = Giigf
∂f

∂zi
+ Γikmfaa

km

These extra terms provide that (E.1) is an exact solution of the system. The
term gf∇f balances the nonlinearity nullifying the hydrostatic part and the
term Γkmfaa

km balances the geometrical term. The modi�ed shallow water
system writes

∂h

∂t
+

1√
G

∂

∂zj

(√
Ghuj

)
= 0

∂hui

∂t
+

1√
G

∂

∂zj

(√
Ghuuij

)
+Gijgh

∂η

∂zj
+ Γijk huu

jk = Si
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