
HAL Id: tel-03201363
https://theses.hal.science/tel-03201363v1

Submitted on 18 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning approaches to rank news feed updates
on social media

Sami Belkacem

To cite this version:
Sami Belkacem. Machine learning approaches to rank news feed updates on social media. Artificial
Intelligence [cs.AI]. Université des Sciences et de la Technologie Houari Boumediene Alger, 2021.
English. �NNT : �. �tel-03201363�

https://theses.hal.science/tel-03201363v1
https://hal.archives-ouvertes.fr


People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research
University of Science and Technology HOUARI BOUMEDIENE

Faculty of Electronics and Computer Science

PhD Thesis
Presented to obtain the Doctorate degree

In : Computer Science
Specialty : Artificial Intelligence

By : BELKACEM Sami
Subject

Machine learning approaches to rank news feed
updates on social media

Publicly defended, on 12/04/2021, before a jury composed of :
M. AZZOUNE Hamid Professor at USTHB President

M. BOUKHALFA Kamel Professor at USTHB Thesis supervisor

M. BOUSSAID Omar Professor at Univ of LYON 2 Thesis co-supervisor

M. BOUYAKOUB Fayçal Professor at USTHB Examiner

M. VALENTE de OLIVEIRA José HDR at Univ of Algarve Examiner

Mrs. ALIANE Hassina MRA at CERIST Guest



To my parents. . . .



Acknowledgements

First of all, I thank the almighty god Allah, who gave me the ability, the strength, and
the patience to accomplish this modest work.

I would like to express my deep gratitude and sincere thanks to my supervisors, Prof.
Boukhalfa Kamel and Prof. Boussaid Omar, for the scientific contribution, the time and
effort they devoted to my supervision, the invaluable support, and the appropriate assis-
tance they so kindly provided to conduct this work during all years of the thesis project.

I would like to thank and express my sincere appreciation for the jury mem-
bers, namely the jury president, Prof. Azzoune Hamid, and the examiners, Prof.
Bouyakoub Fayçal, Prof. Valente de Oliveira José, and Dr. Aliane Hassina, for the
time and effort they devoted to reading my thesis and the honor they do to me by
agreeing to evaluate my thesis dissertation. I am very glad and honored to be examined
by such high-level experts.

I would like to thank each of my former teachers at USTHB university for the
noble work they accomplish every day, transferring their knowledge and expertise to
students. I had great teachers and mentors during my years at USTHB, each one of
them contributed to the knowledge I have acquired so far.

I would like to express my gratitude to all my friends and colleagues at USTHB
university, especially Hadj Ameur Mohamed, Sellam Abdallah, and Brahimi Mohamed,
for their moral support, precious advice, and help during the whole period of this project.

I cannot end without thanking my family, my sister, brother, parents, and all
members of the small and large family. Thank you all for always being by my side.

To all of you, thank you.



Abstract

Today, social media such as Facebook and Twitter are used by hundreds of millions
of users worldwide. Due to the large number of members and the large amount of
data posted and shared (messages, articles, videos, music, photos, etc.), users find
themselves overwhelmed by a large volume of updates in their news feed, also known
as the news stream. The news feed is typically displayed in reverse chronological order
from the most recent to the least recent update. In addition, several research works
have shown that the majority of the updates are considered irrelevant. Therefore,
large data volume and irrelevance make it difficult for users to quickly catch up and
interact with updates that may be of interest to them. To this end, based on the
prediction of a relevance score between a user and a new update unread in the news
feed, research work has proposed approaches to rank and display news feed updates
in descending relevance order. These approaches aim to provide recommendations
and help users quickly find relevant updates. In this thesis work, we first carry out a
state-of-the-art of the proposed approaches in the field of ranking news feed updates
according to several criteria: the features that may influence the relevance of updates,
the relevance prediction models, the training and evaluation of prediction models, the
target social media platforms, etc. The goal is first to show the advantages of the
proposed approaches, their limitations, and identify open research issues. Thereafter,
we propose and implement several intelligent machine-learning-based models to address
the limitations of the approaches proposed in the literature. The objective of the
proposed approaches is to collect and preprocess real data, extract the features that
may influence relevance, train personalized prediction models for each user, predict
relevance scores of news feed updates, and finally conduct in-depth experiments to
evaluate and validate the proposed models.



Résumé 
 

De nos jours, les réseaux sociaux tels que Facebook et Twitter sont utilisés par des 
centaines de millions d’utilisateurs à travers le monde. En raison du nombre important 
de membres et de la grande quantité d'informations postées et partagées (messages, 
articles, vidéos, musique, photos, etc.), les utilisateurs se retrouvent submergés par un 
grand volume d'informations dans leur fil d'actualité, appelé également flux de nouvelles. 
Le fil d'actualité est généralement affiché par ordre chronologique inverse, de 
l’information la plus récente à la moins récente. De plus, plusieurs travaux de recherche 
ont montré que la majorité de ces informations sont considérées comme non 
pertinentes. De ce fait, le grand volume de données et leur non-pertinence rendent 
difficile pour les utilisateurs de consulter et d’interagir rapidement avec les informations 
susceptibles de les intéresser. À cet effet, en se basant sur la prédiction d’un score de 
pertinence entre un utilisateur et une nouvelle information non consultée dans son fil 
d’actualité, des travaux de recherche ont proposé des approches pour trier et afficher les 
informations des fils d’actualité par ordre décroissant de pertinence. L’objectif de ces 
approches étant de fournir des recommandations et aider les utilisateurs à consulter 
rapidement les actualités pertinentes. Dans ce travail de thèse, nous effectuons d’abord 
un état de l’art des approches proposées dans le domaine du tri des fils d'actualité selon 
plusieurs axes: les facteurs influençant la pertinence des informations, les modèles de 
prédiction de la pertinence, l'apprentissage et l'évaluation des modèles de prédiction, les 
réseaux sociaux cibles, etc. Le but dans un premier temps étant de montrer les avantages 
des approches proposées, leurs limites, et identifier des ouvertures de recherche. Par la 
suite, nous proposons et implémentons plusieurs modèles intelligents basés sur des 
techniques d’apprentissage automatiques pour répondre aux limites des approches 
proposées dans la littérature. L’objectif des approches proposées est de collecter et 
prétraiter des données réelles, d’extraire les facteurs susceptibles d’influencer la 
pertinence, d’entrainer des modèles personnalisés de prédiction pour chaque utilisateur, 
de prédire les scores de pertinence des nouvelles actualités, et enfin d’effectuer des 
expérimentations approfondies pour évaluer et valider les modèles proposés. 
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Chapter 1

Introduction

1.1 Motivation

In the new century, the possibility for everyone to easily publish and share content with
the public through the World Wide Web has changed communication. For instance,
social media has transformed mass communication from the monopoly of the unidirec-
tional and traditional mass media such as the printing press, television, and radio to
multidirectional communication where everyone can participate. Indeed, social media
facilitated a shift from a consumer-oriented communication culture to a communication
culture of participation, from a world in which a small number of people report, create,
decide, and form opinions to a digital world in which everyone has opportunities to
participate. Nowadays, user-generated content made publicly available online becomes
an alternative news source. In combination with the achievements of the last decade
in hardware development, equipping a large part of the world population with mobile
devices with cameras and mobile access to the Internet, anyone can post something as
it happens to make it news if only enough users consider it relevant.

Nowadays, social media such as Facebook and Twitter produce massive streams
that can be analyzed for a wide variety of insights [1]. Indeed, such streams are referred
to as news feeds, which represent the primary feature through which users are exposed
to the latest updates posted on social media platforms. The news feed is typically
displayed in reverse chronological order from the most recent to the least recent update
and is particularly rich in terms of the large number of updates that users can produce
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Introduction

over time [2]. For example, according to the official social media report of 20201, the
average number of tweets sent per day is 500 million, which is around 5790 tweets
per second. Analogously, there are about 2.7 billion users on Facebook, with 67%
being daily active users. The analysis of massive data in news feeds poses numerous
challenges that are unique in social media analysis and mining [3]:

• The large amount of data that is continuously produced over time in large-scale
applications such as social media results in massive data streams.

• The social media data can be irrelevant and unreliable such that methods are
required to analyze the relevance and reliability of the data.

• The data often contains social structural information in addition to the textual
content of data such as social relationships and social interactions.

• The user-generated content on social media is short and noisy, unlike traditional
documents. For example, a tweet on Twitter is limited to 280 characters.

• The patterns in the data may evolve significantly over time. Therefore, the
analysis must be done dynamically in real-time.

The rapidly growing volume of data available on social media and their unique
specificity make it increasingly difficult for users to find the content they are looking
for in the news feed [4]. Indeed, from the tremendous amount of news feed updates
available online, users need to browse a large number of updates and then evaluate
their relevance. Furthermore, social media users are not only interested in updates
that refer to a specific topic. Independently of the topic, users may be interested in
criteria such as the popularity of the update and the social ties that link them to
the person who posted the update [5]. However, traditional search engines based on
query-dependent ranking do not sufficiently support users in this task because they
have two major weaknesses [1]: they require the user to specify search terms and neglect
the specificity of user-generated content on social media. Therefore, the challenge is to
develop solutions that help users cope with the massive amount of data in news feeds.
For instance, predict the relevance of news feed updates and establish a ranking based
on how likely users will find given updates interesting.

In recent years, the news feed has been studied extensively, not just in the text
1https://wearesocial.com/digital-2020
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1.2 Objectives

domain but also in the context of a wide variety of multi-dimensional applications such
as numerical and categorical data [6]. For example, the problem of performing recom-
mendations in social news feeds on Twitter has been studied in [7]. Indeed, because of
the sheer volume of such news feeds, it is crucial to present a small number of target
recommendations to recipient users. Moreover, in several research approaches, ranking
news feed updates in descending relevance order has been proposed as a solution to
help users quickly catch up with the relevant updates [8]. Unlike the chronological news
feed, the ranking process is done such that the most relevant updates are found at the
top of the news feed and the least relevant at the bottom [9]. To predict the relevance,
a large number of studies have investigated the combination of social, content, and
temporal features in different models [10]. These prediction models have to define and
extract the most suitable and efficient features. However, the field of ranking news feed
updates is still in its infancy, and significant scope exists in improving and designing
new methods that address the limitation of the approaches proposed in the literature.

In the last decade, recommender systems and online social networks have es-
tablished strong cooperation. Indeed, social media and recommendation systems both
aim at coping with the huge amount of data produced and shared by users through
online platforms, trying to maintain a high user engagement [11]. Furthermore, over the
last years, artificial intelligence and machine learning techniques have gained increasing
attention to handle the ever-growing data generated by various social media applications
[12]. The advancement of the machine learning field itself relies on large datasets, and
social media is an ideal data source for developing and testing new machine learning
techniques for the academic and industry communities [13]. The aim of this thesis
work is to propose machine-learning-based approaches to rank, recommend, and display
news feed updates in descending relevance order based on the prediction of a relevance
score between a user and a new update unread in the news feed.

1.2 Objectives

The overall objectives of this thesis are as follows:

• First, carry out a state-of-the-art of the classical approaches in recommender
systems in general, and the proposed approaches in the field of ranking news feed
updates in particular.

3
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• Second, compare and analyze the approaches proposed in related work according
to several criteria to show their advantages, their limitations, and identify open
research issues to which we will make contributions.

• Third, propose and implement several machine-learning-based models to predict
the relevance of news feed updates and address the limitations of the approaches
proposed in the literature.

• After that, collect and preprocess data in a programmed way on a social media
platform such as Facebook or Twitter to evaluate and validate the proposed
approaches with real data.

• Then, extract the features that may influence relevance, train personalized
prediction models for each user, and predict the relevance scores of news feed
updates.

• Finally, conduct in-depth tests and experiments to evaluate and validate the
proposed models.

1.3 Key contributions

The main contributions of this thesis are as follows:

• A survey on ranking news feed updates that was crowned by two international
conference papers, namely CSA 2016 and EDA 2017.

• Prospects for proposing several machine-learning-based models to address the
limitations of the approaches proposed in the literature.

• Data collection and preprocessing on Twitter to evaluate and validate the proposed
approaches with real data.

• Implementation and evaluation of several machine-learning-based approaches to
predict the relevance and rank news feed updates.

• An approach that leverages the user’s expertise to predict the relevance was
published in the international conference EDA 2018.

• Extension of the conference paper EDA 2017 in the Web of Science journal
International Journal of Data Warehousing and Mining (IJDWM).

4



1.4 Organization of the Thesis

• Extension of the conference paper EDA 2018 in the Web of Science journal Custer
Computing.

• A comparison of seven supervised prediction models was published in the inter-
national conference EGC 2020.

• A comparison of personalized and non-personalized prediction models will be
soon published.

• Prospects for further improving the proposed approaches in particular, and the
field of ranking news feed updates in general.

1.4 Organization of the Thesis

The organization of this thesis is as follows:

• Chapter 2 first presents and defines social media, including a brief history and
the main challenges due to the increasing amount of data. Then, the chapter
provides background on recommender systems and describes three main classical
recommendation approaches: content-based filtering, collaborative filtering, and
hybrid filtering. Finally, the chapter introduces and presents the machine learning
aspect, which is becoming increasingly important in the recommendation. In the
machine learning aspect, the chapter discusses the two main approaches used in
the learning process: supervised learning such as classification and regression,
and unsupervised learning such as clustering and dimensionality reduction.

• Chapter 3 first provides background on ranking news feed updates on social
media, including defining news feeds, presenting statistics on data volume and
irrelevance that confirm the need for ranking, and formalizing the ranking process.
Then, the chapter discusses work carried out in the field of ranking news feed
updates in both industrial and academic communities. Finally, the chapter
analyzes and compares the research works and exposes their advantages and
limitations according to four main criteria: (1) the features that may influence
relevance; (2) the relevance prediction models; (3) the training and evaluation
methods; and (4) the evaluation platforms. Finally, the chapter identifies several
open research issues to which we make contributions.
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• Chapter 4 first provides a reminder of the classical non-personalized approach
used in related work to rank news feed updates, which uses a prediction model
for all users. Then, to predict the relevance of news feed updates and improve
user experience, we use the random forest algorithm to train and introduce a
personalized prediction model for each user. Finally, we conduct a comparative
study by evaluating, analyzing, and comparing personalized and non-personalized
models according to six criteria: (1) the overall prediction performance of both
approaches to get a global overview of the most effective model; (2) the amount
of data in the training set to investigate the robustness of each model; (3) the
cold-start problem, which is a common problem in recommender systems; (4)
the incorporation of user preferences over time; (5) the model fine-tuning to
investigate the manageability of each model; and (6) the personalization of feature
importance for users.

• Chapter 5 first describes the context of the comparison on Twitter according
to a personalized approach that predicts the relevance of news feed updates.
Then, we select and describe seven supervised algorithms that have been used
in related work to predict the relevance. After that, we define a rigorous and
fair comparison methodology by selecting the best parameters of each algorithm.
Finally, to determine the most suitable models, we conduct a comparative study
by evaluating, analyzing, and comparing the selected algorithms according to
three criteria: (1) overall prediction performance of all algorithms to get a global
overview of the most effective models; (2) prediction performance on various
training set sizes to investigate scalability and the impact of data size on model
performance; and (3) the computing speed performance to have an insight into
the fastest models for eventual deployment in production.

• Chapter 6 first analyzes and discusses research work in the field of expert finding
on social media. Then, we propose a personalized approach that predicts the
relevance of news feed updates using supervised prediction models based on
random forest. The proposed approach leverages the author’s expertise that
we infer from the biography and the textual content the author has posted, in
addition to the four types of features used in related work: (1) the relevance of
the update content to the recipient’s interests; (2) the social tie strength between
the recipient and the author; (3) the author’s authority; and (4) the update
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quality. Finally, we conduct experiments to evaluate the proposed approach and
investigate the contribution of expertise to rank news feed updates.

• The conclusion (7) summarizes the main contributions, highlights the key results,
and discusses the advantages and limitations of the work. It also provides some
suggested directions and improvements for future research in the field of ranking
news feed updates.
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The work carried out in this thesis has been published in the following papers:

Journal papers

1. Sami Belkacem, Kamel Boukhalfa and Omar Boussaid, Expertise-aware news
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Indexed in: Web of Science
Impact factor: 3.458

2. Sami Belkacem and Kamel Boukhalfa, Ranking News Feed Updates on Social
Media: A Review and Expertise-Aware Approach, International Journal of Data
Warehousing and Mining (IJDWM), Volume 17, Issue 1, January 2021, DOI:
10.4018/IJDWM.2021010102
Publisher: IGI Global
Indexed in: Web of Science
Impact factor: 0.727

Conference papers

1. Sami Belkacem, Kamel Boukhalfa, and Omar Boussaid. News feeds triage on
social networks: A survey. In Proceedings of the 2nd International Conference
on Computing Systems and Applications (CSA), pages 34–43, December 13-14,
2016, Algiers, Algeria.
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État de l’art et Pistes de recherche, EDA - Conference on Business Intelligence
& Big Data, May 03-05, 2017, Lyon, France. vol. RNTI-B-13, pp.85-100.

3. Sami Belkacem, Kamel Boukhalfa, and Omar Boussaid, Leveraging expertise in
news feeds: A Twitter case study, EDA - Conference on Business Intelligence &
Big Data, October 04-06, 2018, Tanger, Morocco. vol. RNTI-B-14, pp.1-16.

4. Sami Belkacem, Omar Boussaid, and Kamel Boukhalfa, Ranking news feed
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Conference on Knowledge Extraction and Management, January 27-31, 2020,
Brussels, Belgium, vol. RNTI-E-36, pp.499-506.
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Chapter 2

Social media and recommender
systems

2.1 Introduction

Nowadays, every aspect of human life has been widely affected by social media. Every
day, an enormous amount of data and user-generated content are uploaded to online
social networks, which are analyzed and employed to improve the services provided by
these platforms [14]. Recommender systems and online social networks have established
strong cooperation in the last few years [15]. Indeed, both social media and recommen-
dation systems aim to cope with the huge amount of data produced and shared by
users through online platforms, trying to maintain a high user engagement [11]. This
cooperation is built upon the advantages that both systems can achieve: the increasing
request for personalization and the optimization of recommendation techniques by
exploiting the characterization of users and content derived from social media [16].
Recommender systems targeting the social media domain have been defined in the
literature as social recommender systems [15]. Recommender systems have first gained
popularity via their usage in e-commerce applications to help users identify, from an
overwhelming number of items, the products that best fit their personal preferences
[17]. Indeed, recommender systems perform the role of virtual experts who are keenly
aware of user preferences and tastes and correspondingly filter out a vast amount
of irrelevant data to identify and recommend the most relevant products [18]. For
example, a popular application of recommendation is movie recommender systems
such as Netflix that help users select, based on their tastes and preferences, a movie to
watch from a vast catalog of movies [17].
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Over the last decade, several algorithms have been developed for recommender
systems and make use of user feedback such as purchase histories, ratings, and re-
views to compute the recommendations [18]. In the meantime, the pervasive use
of social media has been generating massive data at an unprecedented rate where
the information overload problem became increasingly critical for both social media
users and researchers [14]. Indeed, social media data have three characteristics that
pose challenges for research [19]: First, social media data are large. For example,
user-generated content such as tweets, comments, posts, and reviews have contributed
to the creation of the concept of Big Data. Second, social media data can be noisy. For
example, spams and trivial tweets are abundant on Twitter. Third, data from online
social networks are dynamic, so that updates over short periods of time are common
and represent an important dimension to consider when dealing with social media data.
To effectively overcome these three challenges, social recommender systems have been
proven to be effective in mitigating the information overload problem and improving
the quality of user experience, as well as positively impacting the success of social
media [11]. Furthermore, artificial intelligence and machine learning techniques have
recently gained increasing attention to handle the ever-growing data generated by
social media [12]. Moreover, open access to data through APIs provides researchers
with unprecedented amounts of information to improve and optimize the performance
of machine learning techniques [19]. The advancement of machine learning itself relies
on large datasets, and social media is an ideal data source for developing and testing
new machine learning techniques for the academic and industry communities [13].

In this chapter, we first present and define social media, including a brief his-
tory and the main challenges due to the increasing amount of data. Then, we provide
background on recommender systems and describe three main classical recommendation
approaches: content-based filtering, collaborative filtering, and hybridization of the
two types of filtering. Finally, we introduce and present the machine learning aspect,
which is becoming increasingly important in the recommendation, as it overcomes the
limitations of classical recommendation systems that fail to cope with the increasing
data generated by social media applications and the unique specificity of their social
structural information. In the machine learning aspect, we discuss the two main
approaches used in the learning process: supervised learning such as classification and
regression, and unsupervised learning such as clustering and dimensionality reduction.
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The chapter is structured as follows: section 2.2 presents social media including a
brief history and main challenges, section 2.3 provides background on recommender
systems, section 2.4 introduces the machine learning aspect including supervised and
unsupervised learning, and section 2.5 concludes the chapter.

2.2 Social media

In 2020, 84% of Internet users and 49% of the world population are active on social
media1. On these social platforms, any user can post and share updates with individuals
from his social network [11]. There are two main aspects to define social media, the
sociological aspect and the technological aspect. First, from a sociological point of
view, according to Wassermann and Faust [20], a social network is a set of relationships
between social entities, individuals, or organizations. The contacts between these
individuals can be, for example, friendships, collaborative relationships, professional
relationships, etc. Fig. 2.1 represents a small social network in which the nodes
represent social entities, natural (individuals) or legal persons (organizations), and the
links represent the social connections between these entities. The links refer to the set
of relationships that unite entities that belong to the same social group as social media
users [21]. Indeed, social media users tend to have friend relationships and share their
opinions with other groups of users [16]. Second, from a technological point of view,
according to Kaplan and Haenlein [14], social media is the group of internet-based
applications that build on the ideological and technological foundations of Web 2.0
and that allow the creation and exchange of user-generated content on the web. The
most important user-related concepts on social media are as follows:

• The user’s personal page, where content posted by the user is displayed

• The news feed, where the user is exposed to content posted in his social network

• Social relationships: friends, followers, followings, etc.

• Social interactions: click, comment, like, share, etc.

• Explicit profile: username, location, language, biography, explicit interests, etc.

• Implicit profile: browsing history, interaction history, implicit interests, etc.
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Fig. 2.1: Social network representation

Social media gives users an easy-to-use way to communicate and network with
each other on an unprecedented scale and at rates unseen in traditional media [14].
The popularity of social media continues to grow exponentially, resulting in an evo-
lution of social networks, blogs, location-based social networks, etc. There are many
categories of social media including, but not limited to, social networking such as
Facebook and LinkedIn, microblogging such as Twitter, photo sharing such as Flickr
and Instagram, video sharing such as YouTube, and instant messaging such as Skype
and Yahoo! messenger [14]. The first social media site was introduced by Geocities in
1994, which allowed users to create their own homepages [3]. Since then, many other
social media sites have been introduced, each providing different services to millions
of people. These social platforms form a virtual world where individuals, content
entities, and interactions between individuals, between entities, between individuals
and entities coexist [14]. Due to their ease of use and the many benefits they bring,
social media platforms are experiencing a surprising increase in the number of users
[11]. Furthermore, the huge amount of data and resources related to the social actors
and their different interactions lead to information overload [3]. Hence, the increasing
amount of data requires extensive filtering and recommendation processes to ensure
that the data provided is of potential interest to users [16].

The vast amounts of user-generated content on social media can be mined and
analyzed by understanding social norms and models of user behavior and combining

1https://wearesocial.com/digital-2020
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them with the observations and measurements of this virtual world [12]. Indeed, social
media mining is the process of representing, analyzing, and extracting relevant patterns
from data in social media, resulting from social interactions [3]. Social media mining
is an interdisciplinary field encompassing different techniques from computer science,
data mining, machine learning, social network analysis, network science, sociology,
ethnography, statistics, optimization, and mathematics [3]. This field faces many chal-
lenges such as the big data phenomenon, obtaining sufficient samples, finding relevant
content, the noise removal fallacy, and the evaluation dilemma [14]. In addition, social
media mining provides the necessary tools to mine this virtual world for interesting
patterns. Some of the applications of social media analysis and mining are as follows
[12]: (1) analyze information diffusion; (2) fake news and spam detection; (3) identify
influential and expert users; (4) detect implicit or hidden communities in a social
networking site; (5) opinion mining and sentiment analysis; (6) understand the social
network evolution and changing entity relationships; (7) build and strengthen trust
among users or between users and entities; and (8) develop recommendation systems
for tasks ranging from buying specific products to content recommendations to friend
suggestions. In this chapter, we focus on the recommendation and provide in the next
section background on traditional recommender systems.

2.3 Recommender systems

Internet users make a variety of decisions on a daily basis, such as buying a product,
purchasing a service, watching a movie, adding a friend on social media, reading a
given content, etc. [15]. Due to the large amount of data, users face many options to
choose from. Indeed, the many and diverse options, the pursuit of optimality, and the
limited knowledge and time that each user has create a desire for external help [21].
Occasionally, users resort to search engines for recommendations [11]. However, the
results in search engines are rarely tailored to the particular preferences of users and
are query-dependent, i.e. independent of the individuals who search for these queries
[21]. To overcome this problem, algorithms and applications have been proposed and
developed to help users decide easily, rapidly, and more accurately. Indeed, the latter
algorithms are designed to recommend personalized and individual-based items that
are tailored to the preferences of each user, such that the same query issued by different
users should result in different recommendations [16]. These algorithms are called
recommendation algorithms or recommender systems [18].
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Traditional recommender systems attempt to recommend items based on vari-
ous signals from users, such as aggregated ratings of items, product purchase histories,
and user interactions [18]. On the other hand, a social recommendation system makes
use of the social network and related user profile information in addition to the tra-
ditional recommendation means [15]. Indeed, a social recommendation system is
based on the hypothesis that people who are socially connected are more likely to
share similar interests [16]. Furthermore, users can be easily influenced by the friends
they trust and prefer their friend recommendations to random recommendations [21].
The objectives of social recommendation systems are to improve the quality of the
recommendation and alleviate the problem of information overload on social media [15].
Examples of social recommendation systems include book recommendations based on
reading lists of friends on Amazon and friend recommendations on Twitter and Facebook.

A recommender system consists of two basic entities: users and items such as
articles, books, movies, etc., where users can provide their opinions about items via
ratings [11]. Formally, we denote the users by U = {u1,u2 , · · · ,uM }, where the number
of users is |U| = M , and denote the set of items being recommended by the system by
I = {i1, i2, · · · , iN } , with |I| = N . A recommendation algorithm takes a set of users U

and a set of items I and learns a function f such that [17]:

f : U × I → R (2.1)

In other words, the algorithm learns a function that assigns a real value to each
user-item pair (u,i), where the value indicates how interested the user u is in the item
i. Indeed, this value often denotes the rating given by the user u to the item i [11].
Note that the recommendation algorithm is not limited to item recommendations and
can be generalized to recommending people and material such as ads or contents [16].
A typical recommendation engine processes data through the following three phases:
collection, storing, and filtering [17]:

1. Collecting the data: collect explicit and implicit user data. The explicit data
consist of data inputted directly by users, such as ratings and comments on items.
On the other hand, the implicit data consist of the user’s order history, browsing
history, page views, clicks, etc.
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Fig. 2.2: Classical approaches in recommender systems

2. Storing the data: construct and store for users and items a vector, matrix, or
model containing the information collected in the first step. The preferences
known by users are generally characterized by their appreciation of the items
already consulted.

3. Filtering the data: filter the data to get the relevant data required to provide
useful recommendations to users. For this matter, a recommendation algorithm
that suits the recommendation engine is used.

Classical recommendation algorithms have a long history on the web [18]. In recent
years, with the emergence of social media sites, recommendation algorithms have been
provided new information, such as user profile and friendship information, news feed
updates, social interactions, etc. [16]. The classical recommendation approaches are
defined as follows (see Fig. 2.2) [17]:

• Content-based filtering: based on the description of items similar to items already
appreciated by the user [22].

• Collaborative filtering: based on the collective user ratings on items [23].

• Hybrid filtering: combines content-based and collaborative filtering approaches
[24].

In the rest of this section, we review the three classical recommendation approaches
mentioned above and discuss their advantages and disadvantages.
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2.3.1 Content-based filtering

In content-based filtering, the system is based on the assumption that a user’s interest
should match the description of the items that are recommended [22]. In other words,
the more similar the item’s description to the user’s interest, the higher the likelihood
that the user will find the recommendation of that item interesting. Indeed, content-
based recommender systems implement this idea by measuring the similarity between
an item’s description and the user’s profile information. The higher the similarity, the
higher the probability that the item is recommended [11]. To create a user profile, the
system focuses on two types of information: the model of the user’s preferences and
the history of the user’s interactions with the recommender system [25].

To formalize the content-based method, both user profiles and item descriptions
are first represented by vectors using a set of k keywords [18]. After vectorization, the
item j can be represented as a k−dimensional vector Ij =

(
ij,1, ij,2, . . . , ijk

)
and the

user i as the vector Ui =
(
ui,1,ui,2, . . . ,ui,k

)
. To compute the similarity between the

user i and the item j, the following Cosine similarity can be used between the two
vectors Ui and Ij [17]:

sim(Ui, Ij) = cos(Ui, Ij) =
∑k

l=1 ui,lij,l√∑k
l=1 u2

i,l

√∑k
l=1 i2

j,l

(2.2)

In content-based recommendation, the top-most similar items to a user are computed
and then recommended in the order of similarity. Indeed, there are four main steps to
recommend items in content-based approaches [17]:

1. The system gathers information about items. For example, in a movie recom-
mender system, this would be the movie title, genre, actors, producers, etc.;

2. The user is asked to rate some items. For example, binary scales in terms of
likes/dislikes or some numeric scale from 1 to 5 can be used for capturing the
user’s ratings;

3. The user’s profile is built based on the information gathered in the first step
and the rating provided in the second step. Different machine learning and
information retrieval techniques can be used for this purpose. User profiles are
updated as more information about user preferences is observed and are highly
dependent on the learning method employed;
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4. The system matches the content of unrated items with the active user’s profile
and assigns a relevance score to each item based on a measure of similarity.

Content-based filtering has been widely used in recommender systems thanks to its
many advantages, some of which are mentioned in the following [17]:

• The model only exploits user interactions and content description of items to
generate recommendations. Indeed, interactions made by other users are not
needed such that items can be recommended based on their descriptions even
if they have not been rated by any user. Therefore, the model can deliver
recommendations in item cold-start scenarios.

• The model can capture the specific interests of a user even if the user has a
unique taste and recommend niche items that few other users are interested in.

• It is possible to explain the results of the recommendations by providing the set of
content similarity features that caused an item to appear in the recommendation
list. These features increase the transparency of the system and indicate whether
the user can trust the recommendations.

However, despite its advantages, content-based filtering suffers from several disad-
vantages, some of which are mentioned in the following [17]:

• The performance of the model is tied to the number and type of description
features associated with items. Indeed, domain knowledge is often required,
and enough information about items, which is not always available, should be
gathered to discriminate items appropriately.

• The model recommends items similar to items that the user has previously
interacted with and cannot provide different and unexpected suggestions. Indeed,
content-based models suffer from overspecialization and are not able to provide
novel or serendipitous recommendations.

• Building a consistent user profile requires gathering enough user interactions with
items, making content-based filtering approaches unsuitable for cases where only
a few interactions are available such as in new user cold-start scenarios.
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Table 2.1: User-Item rating matrix

Lion King Aladdin Mulan Anastasia

Mohamed 3 0 3 3

Ahmed 5 4 0 2

Meriem 1 2 4 2

Aicha 3 ? 1 0

Yacine 2 2 0 1

2.3.2 Collaborative filtering

In collaborative filtering, a user-item rating matrix is given where each entry is either
unknown or is the rating assigned by the user to an item [23]. For example, Table 2.1
is a user-item rating matrix where ratings for some cartoons are known and unknown
for others, indicated by question marks. For instance, on a review scale of 5, where 5
is the best and 0 is the worst, if an entry (i, j) in the user-item matrix is 4, that means
that the user i liked the item j.

In collaborative filtering, the aim is to predict the missing ratings in the user-item
matrix and recommend the items with the highest predicted ratings [18]. The prediction
can be performed directly by using previous ratings in the matrix. This first approach is
called memory-based collaborative filtering because it employs historical data available
in the matrix [23]. Alternatively, an underlying model or hypothesis can be assumed
to govern the way users rate items. The model can be approximated and learned from
the data and then be used to predict other ratings. This second approach is called
model-based collaborative filtering [23]. In the rest of the section, we describe each
approach and discuss the advantages and disadvantages of collaborative filtering.

2.3.2.1 Memory-based filtering

Memory-based collaborative filtering consists of two methods such that one of the
following assumptions, or both, are assumed to be true [23]:

• User-based filtering: users with similar previous ratings for items are likely to
rate future items similarly
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• Item-based filtering: items that have previously received similar ratings from
users are likely to receive similar ratings from future users

In both cases, users or items collaboratively help filter out irrelevant content. To
determine the similarity between users or items, two commonly used similarity measures
are the Cosine similarity and the Pearson correlation [17]. Indeed, let ru,i denote the
rating that the user u assigns to the item i, r̄u the average rating for the user u, and
r̄i the average rating for the item i. The Cosine similarity between two users u and v

is calculated using Equation 2.3 [17]. Note that the similarity between two items is
calculated in the same way.

sim(Uu,Uv) = cos(Uu,Uv) = Uu ·Uv

∥Uu∥∥Uv∥
=

∑
i ru,irv,i√∑

i r2
u,i

√∑
i r2

v,i

(2.3)

The Pearson correlation coefficient between two users is given by Equation 2.4 [17].
Note that the similarity between two items is calculated in the same way.

sim(Uu,Uv) =
∑

i (ru,i − r̄u)(rv,i − r̄v)√∑
i (ru,i − r̄u)2

√∑
i (rv,i − r̄v)2

(2.4)

In user-based filtering, the model finds similar users who have similar ratings for
similar items, then the target user’s rating for the item he has never rated is predicted.
On the other hand, in item-based filtering, the model finds similar items to items the
target user has already rated, then the target user’s rating for the item is predicted.
For example, to predict the rating of a user u on an item j, the most used measure for
the prediction is the weighted sum given by Equation 2.5 [23]. The equation considers
Nu, the most similar neighbours to the user u who have rated the item j. Note that
memory-based filtering uses all available ratings to make predictions, so as the number
of users and items increases, the complexity of processing becomes exponential [18].

ru,j = r̄u +
∑

v∈Nu
sim(Uu,Uv)∗ (rv,j − r̄v)∑
v∈Nu

sim(Uu,Uv) (2.5)

2.3.2.2 Model-based filtering

Model-based filtering assumes that an underlying model governs the way users rate
items [23]. The aim is to learn the model from the rating data and then use the
model to predict the missing ratings in the user-item matrix. Latent factor models
[26] are a state-of-the-art methodology for model-based collaborative filtering. The
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basic assumption is that there exists an unknown low-dimensional representation of
users and items where user-item affinity can be modeled accurately [23]. For example,
the rating that a user gives to a movie might be assumed to depend on a few implicit
factors such as the user’s taste across various movie genres. Matrix factorization
techniques [27] are a class of widely successful latent factor models that attempt
to find weighted low-rank approximations to the user-item matrix, where weights
are used to predict missing entries. There is a large family of matrix factorization
models based on the choice of the loss function to measure approximation quality,
regularization terms to avoid overfitting, and other domain-dependent formulations [17].

Among a variety of matrix factorization techniques, we focus on a well-established
technique based on Singular Value Decomposition (SVD) [28]. SVD is a linear algebra
technique that, given a real matrix X ∈ Rm×n m ≥ n, factorizes it into three matrices
U , Σ, and V T as given by Equation 2.6 [28].

X = UΣV T (2.6)

Where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n is a di-
agonal matrix [28]. The product of these three matrices is equivalent to the original
matrix X, which means that no information is lost.

Then, the best rank-k approximation of the matrix can be computed by cal-
culating the SVD of the matrix, taking the first k columns of U , truncating Σ to the
first k entries, and finally taking the first k rows of V T [17].

Finally, given the user-item matrix X, its noise can be removed by computing
Xk from X and obtaining the new k-dimensional user space Uk or the k-dimensional
item space V T

k [17]. In this way, the most similar user or item neighbors can be
computed based on similarity distances in this k-dimensional space. The similarity in
the k-dimensional space can be computed using the Cosine similarity or the Pearson
correlation [17] (see Equations 2.3 and 2.4).

2.3.2.3 Advantages and disadvantages

Collaborative filtering provides many advantages over content-based filtering, some of
which are as follows [17]:
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• The model does not require domain knowledge as required in content-based
recommender systems. Indeed, collaborative filtering generates recommendations
by only considering the implicit feedback of users in the user-item matrix.

• The model can make different recommendations outside the preferences of indi-
vidual users to help them discover new interests. For example, a user who loves
action movies can also enjoy watching a romantic movie that similar users have
enjoyed.

• The model captures more information about user preferences over time, which
results in improved recommendations.

However, despite its advantages, collaborative filtering suffers from several disad-
vantages, some of which are as follows [17]:

• The performance of the model suffers under user and item cold-start problems
where new users and items have no ratings. The new item problem is known as
the early-rated problem since the first user to rate the item gets a little reward.

• The percentage of ratings assigned by users to items is very small compared to
the percentage of ratings the system has to predict. Therefore, the prediction
accuracy of the model suffers in this case from data sparsity.

• There can be users in the system with unusual or unique tastes compared
to the rest of the community. In this case, the model would produce poor
recommendations for these users.

2.3.3 Hybrid filtering

Since content-based and collaborative filtering approaches rely on different input sources
to make recommendations, each one of them has its advantages and disadvantages.
Therefore, hybrid methods have been proposed to get the best of both approaches [24].
Indeed, hybrid methods assume that various sources of input are available at the same
time, which allows the use of different recommendation approaches in one framework
and avoids the limitations of each approach when used separately [18]. On the other
hand, competitions such as the Netflix Prize highlighted that the best results are often
achieved when different recommendation algorithms are combined in a single model
[29]. Hybrid methods can take various forms, and an existing classification covering
the main trends of hybrid recommendation is presented in the following [25]:
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• Combine separate recommendations by several recommendation algorithms to pro-
vide a single recommendation using methods such as weighted linear combinations
and voting schemes.

• Incorporate content-based characteristics into collaborative filtering approaches.
For example, user-based filtering can be adapted to compute similarities using
content-based user profiles.

• Incorporate collaborative characteristics into content-based filtering approaches.
For example, collaborative filtering can be applied to a group of content-based
user profiles for text recommendation.

• Develop a unifying model that incorporates content-based and collaborative
characteristics. In this scope, several approaches have been proposed, such as
a unified probabilistic method for combining collaborative and content-based
recommendations.

In this section, we have seen that the choice of one classical recommendation
approach is strongly linked to the problem being addressed and the data available to
the recommendation system. In the next section, we introduce the machine learning
aspect, which is becoming increasingly important in the recommendation. Indeed,
machine learning can overcome the limitations of classical recommendation systems
that fail to cope with the increasing data generated by social media and the unique
specificity of their social structural information (social relationships, social interactions,
etc.) compared to traditional items such as articles, books, movies, etc.

2.4 Machine learning

In recent years, with the evolution of the field of recommender systems and the in-
creasing popularity of machine learning and social media, researchers have studied
the use of machine learning algorithms to provide social media users with better
recommendations [13]. Indeed, classical recommendation approaches are unsuitable
to analyze the enormous amount of real-time social data produced by social media
[12]. In contrast, machine learning approaches can play an important role in over-
coming this problem as the advancement of the machine learning field itself relies on
large datasets, and social media is an ideal data source for developing and testing
new machine learning techniques [13]. For example, machine learning algorithms can
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process the historical data about user interactions and learn a model that can compile
a ranked list of all items available for recommendation for each user based on the
information encoded in their profile [19]. The highly ranked items can then be recom-
mended to the corresponding user based on how likely this user will consume these items.

Machine learning is an application of artificial intelligence (AI) that provides
systems the ability to automatically learn and improve from data and experience
without being explicitly programmed [30]. Learning is known as the process of knowl-
edge acquisition. Humans naturally learn from experience because of their ability to
reason. In contrast, computers do not learn by reasoning but with algorithms [31].
Machine Learning simulates human learning and allows computers to identify and
acquire knowledge from the real world and improve the performance of some tasks
based on this new knowledge. More formally, Carbonell et al. [32] define machine
learning as follows: "A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P , if the performance of the
program at tasks in T , as measured by P , improves with experience E". Although the
first concepts of machine learning originated in the 1950s, it was studied as a separate
field in the 1990s [30]. Today, machine learning algorithms are used in several areas
besides computer science, including business, advertising, medicine, etc. [33].

In machine learning, the features are the input variables used by the machine
learning model to perform a specific task [31]. The features are usually numerical.
For example, in spam detection algorithms, the features may include the presence or
absence of some email headers, the email structure, the language, the frequency of
specific terms, the grammatical correctness of the text, etc. [34]. Feature engineering
is the process of using domain knowledge to create input variables that help machine
learning algorithms perform better [35]. Correctly performed, feature engineering can
help increase the predictive power of the model. Indeed, feature engineering is one of
the most important steps in creating a good machine learning model [34].

In the literature, different machine learning algorithms have been proposed to
solve a wide range of problems [30]. However, according to the no free lunch theorem
[36], no single machine learning algorithm is better than all the others on all problems.
Indeed, some algorithms perform very well in some specific problems, but no algorithm
performs well in all problems. Moreover, each algorithm has its advantages and dis-
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advantages such as flexibility, complexity, interpretability, overfitting tendency, times
for learning and predicting, tolerance to a large number of features, minimal required
data, number of hyperparameters2, etc. [34]. Therefore, choosing the right algorithm
depends mainly on the problem. For example, the category such as image recognition,
sentiment analysis, text classification, etc., the type such as classification, regression,
clustering, etc., the number of features, the size of the data, etc. [33]. Most of the
time, it is common to try different well-known machine learning algorithms and se-
lect the best one that works best for a particular problem by a validation technique [33].

Machine learning algorithms can be classified into two main classes based on
the approach used in the learning process: supervised and unsupervised learning. In
the rest of this section, we discuss each approach in more general terms, while we
discuss their use in the field of ranking news feed updates in the chapter 3.

2.4.1 Supervised learning

In supervised learning algorithms, the class attribute values for the dataset are known
before running the algorithm. This dataset is called labeled data or training data
[31]. In the training data, the instances are tuples in the format (x,y), where x is an
input feature vector, and y is the output class attribute, commonly a scalar [30]. The
supervised learning approach builds a model that maps an input x to an output y.
The task is roughly to find a mapping function m(.) such that m(x) = y [33]. The
model is also given an unlabeled dataset called test data, in which instances are in the
form (x,?) where y values are unknown [31]. Given the function m(.) learned from the
training data and an input feature vector x of an unlabeled instance, the model can
compute m(x), which is the prediction of the label for the unlabeled instance [30].

The supervised learning process is described in Fig. 2.3. The process starts with
labeling data in the training set, where both features and the desired output of the
labels are known. A supervised learning algorithm is then run on the training set
in a process known as induction [34]. In the induction process, the model is trained
and generated such that the resulted model learns to map the input feature values
to the output corresponding to the class attribute values. Then starts the deduction
process [34]. In the latter, the model is used on a test set to predict the corresponding

2The ”knobs” to tweak during successive runs of training a model.
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Fig. 2.3: The supervised learning process [37]

class attribute values, which are initially unknown. For example, consider the task of
detecting spam emails. A set of emails is given in the training data where users have
manually identified and labeled spam versus non-spam emails. The task is to use a set
of features such as words in the email (x) to identify the spam/non-spam status (y) of
unlabeled emails in the test data. In this case, y = {spam, non-spam}.

According to the type of the output class attribute, supervised learning can be
divided into classification and regression problems. Indeed, when the class attribute
values are discrete, it is called classification. On the other hand, when the class
attribute values are continuous, it is called regression. In the rest of this section, we
briefly discuss both classification and regression methods.

2.4.1.1 Classification

In classification, the class attribute values are discrete such that the computer program
is asked to specify which of the k categories some input instances belong to [38]. For
example, in classification in Fig. 2.43, the black line represents a classification function
that classifies input instances into two categories, such that k=2, which corresponds to
a binary classification problem. To solve a classification task, the machine learning
algorithm is asked to produce a function f :Rn → {1, . . . ,k} [30]. Indeed, when y = f(x),
the model assigns an input instance described by a vector x to a category identified by
the numeric code y [31]. There are other variants of the classification task, for example,

3https://www.javatpoint.com/regression-vs-classification-in-machine-learning
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Fig. 2.4: Classification vs. Regression

where the function f outputs a probability distribution over classes [30]. An example
of a classification task is object recognition, where the input is an image described as a
set of pixel brightness values, and the output is a numeric code identifying the object in
the image, e.g. 0 for a cat and 1 for a dog [33]. Another example is the Willow Garage
PR2 robot, which acts as a waiter that recognizes different kinds of drinks and deliver
them to people on command [39]. There are several algorithms that are commonly
used to solve classification problems [38]. Later in the chapter 5, we describe some
important classification algorithms such as logistic regression [40], decision trees [41],
Naive Bayes [42], random forest [43], artificial neural networks [33], etc.

2.4.1.2 Regression

In regression, the class attribute values are real numbers. The regression analysis is
used to understand the relationship between two or more variables of interest and
examines the influences of one or more independent variables on a dependent variable
[34]. Indeed, regression analysis allows for a better understanding of the specific ways
a dependent variable is affected by an independent variable. In short, the regression
answers how the dependent variable changes when varying one of the independent
variables, while other independent variables remain unchanged [30]. For example,
the stock market value of a company can be predicted given information about the
company, such that the stock value is the class attribute and the information about
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the company are the features. The stock market value is continuous, which means
that a regression algorithm must be used to predict it. The input to the regression
method is a dataset where attributes are represented using x1,x2, . . . ,xm, also known as
regressors, and the class attribute is represented using Y , also known as the dependent
variable, where the class attribute is a real number [34]. The goal is to find the
relationship between the class attribute Y and the vector X = (x1,x2, . . . ,xm). For
example, Fig. 2.4 visualizes a linear regression function across a specified dataset3. The
black line represents the linear regression function and expresses the rate of change
among the data points. There are several algorithms that are commonly used to solve
regression tasks [30]. Later in the chapter 5, we describe some important regression
algorithms such as decision trees [41], artificial neural networks [33], Support Vector
Machine [44], Gradient Boosting [45], etc.

2.4.2 Unsupervised learning

In unsupervised learning algorithms, a dataset is provided without labels and without
a training set, and a model is used to draw inferences, discover hidden patterns, and
learn useful properties of the structure of the dataset [46]. This is in contrast to
supervised learning techniques, such as classification or regression, where a model is
given a training set of inputs and a set of observations and must learn a mapping
from the inputs to the observations. Unsupervised learning is commonly used to find
interesting patterns and draw conclusions from the unlabeled data when the output
labels are not known in advance [30].

The unsupervised learning process is described in Fig. 2.5. The process starts
with unlabeled data and no training set, where the features are known, and the desired
output of the labels is unknown. Then, an unsupervised learning algorithm is run on
the input row data to identify patterns within the data and categorize the input objects
based on the patterns that the algorithm has identified [46]. The algorithm analyzes
the underlying structure of the dataset by extracting useful information or features
[30]. Indeed, unsupervised learning algorithms are expected to develop specific outputs
from the unstructured inputs by looking for relationships between each sample or input
object [34]. For example, suppose that a machine learning algorithm has access to user
profile information on a social media. By using an unsupervised learning approach,
the algorithm can separate users into personality categories, such as outgoing and
reserved, allowing the social media company to target advertising more directly at
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Fig. 2.5: The unsupervised learning process [37]

specific groups of users. Unsupervised learning tasks typically involve clustering and
dimensionality reduction, which we discuss in the following.

2.4.2.1 Clustering

The most common unsupervised learning method is clustering analysis, which is used
for exploratory data analysis to find hidden patterns or grouping in data [47]. Typically,
a clustering algorithm requires a distance measure between instances such that the
input instances are put into different clusters based on their distance to other instances
[35]. The most popular distance measure for continuous features is the Euclidean
distance, which is calculated as follows:

d(X,Y ) =
√

(x1 −y1)2 +(x2 −y2)2 + · · ·+(xn −yn)2

=
√√√√ n∑

i=1
(xi −yi)2

(2.7)

Where X = (x1,x2, . . . ,xn) and Y = (y1,y2, . . . ,yn) are n-dimensional feature vectors
in Rn. The instances are grouped into clusters using the selected distance measure.
The clusters are usually represented by compact and abstract notations such as cluster
centroids [47]. Finally, the clusters are evaluated such that the goal is to obtain high
intra-cluster similarity and low inter-cluster similarity [34]. In other words, the objects
in the same cluster should be more similar than the objects in the other clusters.
There are many types of clustering algorithms depending on the methodology used to
partition the data [47]. In this section, we discuss partitional clustering algorithms,
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Fig. 2.6: K-means on a sample dataset, with k = 3

which are the most frequently used algorithms [34].

In partitional clustering, each instance is assigned to a cluster exactly once, and no
instance remains unassigned to clusters [47]. K-means [48] is a well-known example
of a partitional algorithm. The output of the k-means algorithm on a sample dataset
with k = 3 is shown in Fig. 2.64. In this figure, the dataset has two features, such
that the instances are visualized with colored points in a two-dimensional space. The
colors represent the clusters to which the instances belong. The k-means procedure is
described as follows [48]: "First, the algorithm starts with k initial centroids, which
are randomly chosen instances from the dataset. The initial random instances form
the initial set of k clusters. Then, each instance is assigned to a cluster based on its
distance to the centroid of each cluster. The calculation of distances from instances to
centroids depends on the choice of the distance measure. The Euclidean distance is the
most widely used distance measure (see Equation 2.7). After assigning all instances to
a cluster, the centroids are recomputed by taking the average of all instances inside
the clusters. Finally, this procedure is repeated using the newly computed centroids
until convergence". The most common criterion to determine convergence is to check
whether centroids are no longer changing [30]. This is equivalent to a stabilization
of the clustering assignments of instances. In practice, the algorithm execution can
be stopped when the Euclidean distance between the centroids in two consecutive

4https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning
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steps is bounded above by a small positive value ϵ [34]. K-means implementations try
to minimize an objective function. A well-known objective function is given by the
following squared distance error [48]:

k∑
i=1

n(i)∑
j=1

∥∥∥xj
j − ci

∥∥∥2
(2.8)

Where xi
j is the jth instance of the cluster i, n(i) is the number of instances in

the cluster i, and ci is the centroid of the cluster i [48]. The process stops when the
difference between the objective function values of two consecutive iterations of the
k-means algorithm is bounded by a small value ϵ. Note that k-means is highly sensitive
to the initial k centroids and that different clustering results can be obtained on a single
dataset depending on the initial k centroids [30]. This well-known problem can be
addressed by running k-means multiple times and selecting the clustering assignment
that is observed most often or is more desirable based on an objective function, such
as the squared error [34].

2.4.2.2 Dimensionality reduction

Dimensionality reduction is the transformation of data from a high-dimensional space
into a low-dimensional space that retains some meaningful properties of the original
dataset, ideally close to its intrinsic dimension [49]. In machine learning, dimensionality
reduction, also known as feature reduction, is the process of reducing the number of
features in a heavy resource computation without losing important information [33].
Indeed, reducing the number of features means that the number of variables is reduced,
making the learning task easier and faster. Feature reduction is divided into two pro-
cesses: (1) feature selection, which filters irrelevant or redundant features in the dataset;
and (2) feature extraction, which creates a smaller set of features that captures the
most useful information in the dataset [35]. The most popular dimensionality reduction
techniques are Generalized Discriminant Analysis, Autoencoders, Non-Negative Matrix
Factorization, and Principal Component Analysis [49].

Dimensionality reduction removes multicollinearity in large datasets resulting in
improvement of the machine learning model in use [30]. Another benefit of dimension-
ality reduction is that it makes data easier to visualize graphically, particularly when
the dataset is reduced to two or three dimensions [49]. Furthermore, an interesting
problem that feature reduction can help with is called the curse of dimensionality,
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which refers to a group of phenomena in which a problem may have so many dimensions
that the data becomes sparse [30]. Feature reduction is used to decrease the number of
dimensions, making the data less sparse and more statistically significant for machine
learning algorithms. For example, in the MNIST image dataset5, the pixels on the
image borders are often white, so it is possible to drop these pixels from the training
set without losing much information [35]. Moreover, two neighboring pixels are often
highly correlated. For example, two pixels can be merged into a single pixel with no
loss of information by taking the mean of the two-pixel intensities [35].

The most popular dimensionality reduction algorithm is Principal Component
Analysis (PCA) [50]. The algorithm performs a linear mapping of the data to a
lower-dimensional space in which the data variance is maximized [30]. Indeed, PCA
first identifies the hyperplane that lies closest to the dataset and then projects the
data onto it [35]. PCA learns a representation of data, which is based on two of the
following criteria: (1) a representation that has a lower dimensionality than the original
input; and (2) a representation whose elements have no linear correlation with each
other [50]. This is a first step toward the criterion of learning representations, whose
elements are statistically independent. To achieve full independence, a representation
learning algorithm must also remove the nonlinear relationships between variables [30].

2.5 Conclusion

In this chapter, we first presented and defined social media, including a brief history
and the main challenges due to the increasing amount of data. Then, we provided
background on recommender systems, which filter out a large mass of information to
help users find interesting items based on their tastes and preferences. Afterward, we
presented and described three main classical recommendation approaches: content-
based filtering, collaborative filtering, and hybrid filtering. Following this study, it turns
out that each approach has advantages but also disadvantages. Therefore, the choice
of one recommendation approach is strongly linked to the problem being addressed
and the data available to the recommendation system. Finally, we introduced and
presented the machine learning aspect, which is becoming increasingly important in the
recommendation, as it overcomes the limitations of classical recommendation systems
that fail to cope with the increasing data generated by social media and the unique

5http://yann.lecun.com/exdb/mnist/
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specificity of their social structural information. In the machine learning aspect, we
discussed the two main approaches used in the learning process: supervised learning
such as classification and regression, and unsupervised learning such as clustering and
dimensionality reduction.

In the next chapter, we introduce the field of ranking news feed updates on social
media and make a state-of-the-art of the existing approaches to show their advantages,
their limitations, and identify open research issues. The survey will then allow us
to propose several machine-learning-based models that address the limitations of the
approaches proposed in the literature.
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Chapter 3

Ranking news feed updates
(RNFU)

3.1 Introduction

Social media such as Facebook and Twitter are used by hundreds of millions of users
worldwide. These social platforms have experienced unprecedented popularity in the
past decade and have contributed significantly to increase levels of user-generated
content that have been fueling this growth [51]. Indeed, social media have become
rich and diverse sources of information that compete with and complement traditional
search engines in the diffusion of information [52]. Social media are designed to allow
any user to post and share content with individuals from his social network [53]. Due
to the large amount of data, users find themselves overwhelmed by updates displayed
chronologically in their news feed1, from most recent to least recent [54]. For example,
there are about 1500 new updates every day in the news feed of a typical Facebook
user2. Moreover, several research works have shown that most updates are considered
irrelevant [55]. For example, Paek et al. [56] asked 24 Facebook users from their
Microsoft organization to assign relevance scores to news feed updates. The overall
average score was close to 0. Hence, large data volume and irrelevance make it difficult
for users to catch up with the relevant updates in their news feed [4], especially for
users who have a great number of social relationships [52]. For example, it is estimated
that a standard Facebook user is likely to miss some relevant updates in the news feed
even if the user spends an average of 55 minutes a day on the social media platform [56].

1A list that allows users to follow updates about individuals from their social network.
2https://longform.org/posts/who-controls-your-facebook-feed
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In several research approaches, ranking news feed updates in descending rele-
vance order has been achieved based on the prediction of a relevance score between a
recipient user and a new update in the news feed [9]. A state-of-the-art covering three
different aspects has been carried out in [1]. The first aspect focuses on users who
produce information, users who read and benefit from this information, and the links
between the two. The second aspect focuses on the content of the information. The
third aspect concerns the structure of the underlying social network of users and the
information they produce. However, the work does not cover four important criteria:
(1) the features that may influence the relevance of updates to recipient users; (2) the
relevance prediction models; (3) the methods used to obtain training and evaluation
data; and (4) the target evaluation platforms. Based on these four criteria, and in
order to complete the state-of-the-art carried out in [1], the objective of this chapter is
to make a state-of-the-art of the existing approaches in the field of ranking news feed
updates, to show their advantages, their limitations, and identify open research issues.
The survey will then allow us to propose several machine-learning-based approaches
that address the limitations of those proposed in the literature. This leads us to formu-
late the following questions: what are the features that may influence the relevance
of updates to users on the one hand? On the other hand, from these features, what
model to use to predict the relevance of a new update in the news feed? Moreover, how
to train and evaluate the prediction model given that users do not explicitly provide
relevance scores for news feed updates? Finally, what social media platforms have been
targeted by existing work? Studying these questions is the subject of this chapter.

In this chapter, we first provide background on ranking news feed updates on
social media, including defining news feeds, presenting statistics on data volume and
irrelevance that confirm the need for ranking, and formalizing the ranking process.
Then, we discuss work carried out in the field of ranking and predicting the relevance of
news feed updates in both industrial and academic communities. Afterward, we analyze
and compare the research works and expose their advantages and limitations according
to four main criteria: (1) the features that may influence relevance; (2) the relevance
prediction models; (3) the training and evaluation methods; and (4) the evaluation
platforms. Finally, we identify open research issues to which we will make contributions.

The chapter is structured as follows: section 3.2 provides background on ranking
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news feed updates on social media, section 3.3 discusses work carried out in this area,
section 3.4 provides an analysis of existing work, section 3.5 discusses open research
issues, and section 3.6 concludes the chapter and proposes future work.

3.2 Background

In this section, we provide background information on ranking news feed updates on
social media, including defining news feeds, exposing statistics that confirm the need
for ranking, and outlining the ranking process.

Fig. 3.1: A user’s news feed on Twitter

3.2.1 News feed

According to Rader and Gray [57], and as shown in Fig. 3.1, the news feed is a list of
information (posts, tweets, status updates, etc.) that allows a user to follow updates
about individuals from his social network. Indeed, the news feed is the primary feature
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through which users are exposed to content posted on social media. It includes text
status updates, photos, videos, etc. [58]. For example, on a general public social
media such as Facebook or Twitter, a user’s news feed consists of updates about friends,
family members, pages the user has subscribed to, etc. [21]. On the other hand, on a
professional or academic social media such as LinkedIn or ResearchGate, a user’s news
feed consists of updates about contacts, colleagues, classmates, etc. [21].

Fig. 3.2: News feed update posted by Elon Musk on Twitter

On most social media, and as shown in Fig. 3.1, the news feed is displayed in reverse
chronological order from the most recent to the least recent update [2]. Usually, news
feeds do not support a keyword-based search for specific information needs, which
makes it difficult for recipient users to find relevant updates on topics of interest to
them [1]. Hence, the main disadvantage of the chronological news feed is that a user has
to read and browse through a large number of updates to be sure not to miss relevant
content [5]. Recipient users can unfriend, unfollow, or mute undesired connections
from their social network who flood their news feed with irrelevant content. However,
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the manual creation of rules and filters requires time and effort and only provides rigid
options that may turn off relevant updates from some users [1].

Fig. 3.2 shows the main components of a news feed update [58, 1]: (1) an au-
thor who posted the update; (2) a set of recipient users who can read and interact
with the update (click, comment, like, share, etc.); (3) a textual and/or multimedia
content; (4) a publication date; (5) mentions, or names preceded by at-sign "@", which
represent links to other users of the social media; (6) hashtags, or metadata markers
preceded by a hashtag "#", which describe the topic of the update; and (7) URLs to
websites or articles.

3.2.2 Statistics

In 2020, 84% of Internet users and 49% of the world population are active on social
media3. On these social platforms, any user can post and share updates with individuals
from his online social network (text messages, photos, videos, etc.) [53]. The increasing
popularity of social media, the ease of sharing content by users, and the expanding
number of social relationships have contributed to flooding the news feed concept [1].
Indeed, some statistics on news feeds may confirm the need for ranking, in particular,
statistics on the large volume of data and its irrelevance.

Volume The volume of user-generated content in news feeds is overwhelming and
constantly growing, and while time spent on social media sites has increased, the flood
of incoming updates still greatly exceeds the capacity of information that any user can
deal with. For example, there are about 1500 new updates every day in the news feed
of a standard Facebook user, and this can go up to 10,000 updates for users who have
hundreds of social relationships4. Because of the large volume of data on the photo and
video-sharing social media Instagram, users only see 30% of the updates in their news
feed5. In [59], 587 Twitter users answered a UK-based survey. The results showed that
66.3% of users feel that they cannot keep up with the large flow of updates in their
news feed. In [60], following a survey of 56 Twitter users from within Microsoft, the
results indicated that users have too many news feed updates. Kuang et al. [4] asked

3https://wearesocial.com/digital-2020
4https://longform.org/posts/who-controls-your-facebook-feed
5https://www.nytimes.com/2016/03/31/technology/instagram-is-changing-its-feed-but-calm-

down-not-yet.html
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1048 volunteers who are relatively active on the Chinese social media Sina Weibo to
participate in their experiments. Statistics showed that users receive in their news feed
an average of 56 newly posted updates per hour.

Irrelevance A number of research studies have shown that the incoming news feed
updates are of marginal or no interest to recipient users. For example, in order to
highlight the irrelevance of updates on Facebook, Paek et al. [56] asked 24 active users
from their Microsoft organization to assign relevance scores to news feed updates.
Similarly, Alonso et al. [61] asked 39 Twitter users, recruited from a crowdsourcing
platform that specializes in relevance judgment, to assign relevance scores to more
than 2000 updates. In both cases, the overall average relevance score was close to 0.
In [59], 587 Twitter users answered a UK-based survey. The results showed that 70.4%
of users have trouble finding the relevant updates in their news feed. In [60], following
a survey of 56 Twitter users from withinMicrosoft, the results indicate that users lose
the most relevant updates in a news feed of thousands of less useful updates. On
LinkedIn, Agarwal et al. [8] assert that the chronological news feed leads to a recent
but not necessarily relevant feed. Indeed, the authors ran an online test comparing the
chronological news feed with a relevance-based feed and found the click-through rate6

of the relevance-based news feed 43% higher than that of the chronological feed.

3.2.3 Ranking process

According to Shen et al. [5], ranking news feed updates on social media involves
sorting and displaying in descending relevance order the news feed updates of each
user. Nonetheless, we note that other terms can be used to refer to the ranking process,
such as reordering, recommendation, personalization, etc [1]. Indeed, as reported by
Berkovsky and Freyne [1], ranking news feed updates can be considered as either a
top-K recommendation or a re-ranking problem. Unlike the chronological news feed,
the ranking process is done such that the most relevant updates are found at the top
of the news feed and the least relevant at the bottom [8].

Berkovsky and Freyne [1] propose the following formalization of the problem
of ranking news feed updates. Let F(u) denotes all the updates unread by the recipient
user u that can be included in the news feed. The ranking process implies selecting

6The ratio of users who click on an item to the number of total users who view it.
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and displaying a subset K(u) ∈ F(u), such that |K(u)| ≪ |F(u)|, that corresponds
to the most relevant updates to u. The ranking procedure involves three steps:

1. predict and assign a relevance score to each new update i ∈ F(u);

2. select and display, in descending relevance order, the |K(u)| updates with the
highest relevance scores at the top of the news feed;

3. save or delete the remaining F(u)\K(u) updates.

The rest of this chapter focuses on the first step of the ranking process, which is the
most important. Fig. 3.3 describes the primary technique used to predict and assign a
relevance score to an update i ∈ F(u). This technique is based on a prediction model
that uses as input a set of features that may influence the relevance of the update i to
the recipient user u, to output a corresponding relevance score R(i,u) that measures
the relevance of i to u. Note that i is posted by an author user u’ ∈ A(u), such that
A(u) is the set of users who belong to the social network of u. In the next section, we
discuss work carried out to rank and predict the relevance of news feed updates.

Fig. 3.3: Prediction of a relevance score

3.3 Related work

Ranking news feed updates is being actively studied in both industrial and academic
communities. In this section, we discuss work carried out in each community.
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3.3.1 Industrial community

In the industrial community, Facebook, Twitter, and LinkedIn are making efforts to
rank and display news feed updates in descending relevance order. However, their
approaches are most often undisclosed due to commercial sensitivity and competition
between companies [1]. These companies further claim that their algorithms have
several limitations4 [54, 9]. For example, Will Oremus, a journalist at Slate.com, had
the rare privilege of meeting the Facebook team in charge of the news feed4. He stated
that the Facebook ranking algorithm combines hundreds of features to predict the
relevance of news feed updates, but the algorithm is still likely to provide updates
that users find irrelevant. Indeed, according to the journalist, following the ranking
performed by the algorithm, the Facebook team has been running a test in which it
shows hundreds of users the top update in their news feed alongside one lower-ranked
update, asking them to pick the one they would prefer to read. The Facebook team
acknowledged that the ranking performed by the algorithm corresponds ”sometimes”
to user preferences, declining to be more specific. When the results do not match user
preferences, Facebook says that points to an area for improvement.

Nonetheless, if Facebook, Twitter, and LinkedIn are interested in ranking news feed
updates, it is not only to satisfy users and retain them but also to boost the interaction
rate by promoting relevant updates that are likely to make users interact4. Indeed,
user interactions are the fuel that drives the economy of these companies as businesses
are more likely to advertise their products and services on an active social platform.

3.3.2 Academic community

Ranking and predicting the relevance of news feed updates has drawn much attention
over the past few years from researchers in the academic community. Indeed, we have
identified no less than 15 research works [56, 58, 62, 63, 2, 64, 65, 5, 7–9, 4, 66, 67, 55, 54].
In this section, we present and discuss the most representative recent works.

In an effort to reorder and recommend relevant tweets to Twitter users, Shen
et al. [5] and Chen et al. [64] proposed relevance prediction models that use five types
of features: (1) social tie strength between the recipient user u and the author user u’
(interaction rate, the similarity of social relationships, etc.); (2) the relevance of the
textual content of the update i and its hashtags to the interests of u; (3) the quality
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of i (length, popularity, the presence of URL, etc.); (4) the authority of u’ (followers
and followings count, seniority, etc.); and (5) the activity of u’ from the number of
tweets posted. In [5], the authors first modeled the relevance of tweets by minimizing
the pairwise loss of relevant and irrelevant tweets. Then, they used a supervised
regression model based on a Gradient Boosted ranking algorithm (GBrank) [68] to
predict continuous relevance scores for tweets. The model average pairwise reordering
accuracy (ACC ) was improved by 34.5% compared to the chronological model. On
the other hand, in [64], the authors used a probabilistic collaborative ranking model
based on latent factors to capture user interests and predict binary rating scores for
tweets. The model’s MAP (Mean Average Precision) was 76% and outperformed
several baseline methods, including the chronological model. The results showed that
recommended tweets attracted more attention than unrecommended tweets.

In order to predict the relevance of news feed updates on Facebook, Paek et al.
[56] and Lakkaraju et al. [62] proposed prediction models that exploit three types of
features: (1) social tie strength between u and u’ ; (2) the relevance of the textual
content of i to the interests of u; and (3) the quality of i. In [56], the authors learned
binary classifier models based on supervised Support Vector Machine (SVM) [44] to
predict the importance of news feed updates and friends. To obtain the training
and evaluation data of the prediction model, the authors asked 24 users to explicitly
assign relevance scores to their news feed updates. The model achieved the highest
classification accuracy at 69.7%. While in [62], the authors used a collaborative filtering
model based on latent factors to propose a scalable framework for constructing smart
news feeds based on predicting user-update relevance. To obtain the training and
evaluation data of the prediction model, user interactions in terms of comments were
used as implicit indicators of relevance. The model achieved a precision in the range of
61.11%, indicating that the latent joint model enables the discovery of new content
that is not in the immediate neighborhood.

In an attempt to rank tweets in order of relevance on Twitter, Uysal and Croft
[63], Feng and Wang [65], De Maio et al. [54], and Vougioukas et al. [55] proposed
supervised binary classifier models that use five types of features: (1) social tie strength
between u and u’ ; (2) the relevance of the textual content of i, its hashtags, mentions,
and URLs to the interests of u; (3) the quality of i; (4) the authority of u’ ; and (5) the
activity of u’ . First, in [63], the tweet ranking model is based on a coordinate ascent
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algorithm that predicts the likelihood that a recipient user retweets a tweet from the
news feed. The model average F1 score was 78.9% and outperformed several baseline
methods. In [65], the tweet ranking model is based on collaborative filtering matrix
factorization and predicts the likelihood that a recipient user retweets a tweet from the
news feed. The model’s MAP was 76.27% and outperformed several baseline methods,
including the chronological model. In contrast, in [54], the relevance prediction model
is based on an artificial neural network method attempting to re-adapt the ranking
by preferring the tweets that are likely interesting to the recipient user. The model’s
MAP and NDCG (Normalized Discounted Cumulative Gain) outperformed several
baseline methods, including the chronological model. Lastly, in [55], the prediction
model is based on logistic regression and predicts if the recipient user may find a
tweet interesting enough to retweet it. In experiments with a collection of 130K tweets
received by 122 journalists, the model average F1 score was 90% using the Pearson
correlation of the top ten features. In all previous work on Twitter, to obtain training
and evaluation data, user interactions with tweets in terms of retweets and replies were
used as implicit indicators of relevance.

In order to personalize news feeds on LinkedIn, Agarwal et al. [8] and Agar-
wal et al. [9] proposed supervised binary classifier models based on logistic regression
to predict the probability that a user clicks on a post from the news feed. In [8], the
proposed model uses three types of features: (1) social tie strength between u and
u’ ; (2) the quality of i; and (3) the diversity of the news feed by promoting diverse
updates and diverse author users. On the other hand, in [9], the proposed model uses
three types of features: (1) social tie strength between u and u’ ; (2) the relevance of
the textual content of i to the interests of u; and (3) the interaction rate of u with
updates similar to i posted by u’ , which provides a finer-grained social tie strength
between u and u’ . In the two previous works, to obtain training and evaluation data,
user interactions with updates in terms of clicks were used as implicit indicators of
relevance. The evaluation results showed that the click-through rate (CTR) of both
proposed models was improved compared to the chronological model.

In an effort to assign continuous relevance scores to news feed updates on the
Chinese microblogging social media Sina Weibo and recommend valuable tweets that
users are interested in, Kuang et al. [4] proposed a ranking model based on weighted
linear combinations with static feature weights. The model uses three types of features:
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(1) social tie strength between u and u’ ; (2) the relevance of the textual content of i
to the interests of u; and (3) the quality of i. To evaluate their approach, the authors
asked 1048 volunteers who are relatively active on Sina Weibo to explicitly assign
boolean values to news feed updates (True for relevant and False for irrelevant). The
model’s MAP was 75%, outperformed several baseline methods, and was improved by
57% as compared to the results of the chronological model.

In order to predict relevance scores and rank news feed updates on the social
network SocialBlue in [58], and an online health community in [2], the authors pro-
posed prediction models based on weighted linear combinations with static feature
weights. The proposed models exploit two types of features: (1) social tie strength
between u and u’ ; and (2) the relevance of the textual content of i to the interests of
u. In [58], the authors noted strong preferences for feed items presented at the top
of the result lists shown to users, with 50% of selections being made on feeds in the
top two positions in the feed lists and 75% of selections within the first five result
positions. In [2], the average accuracy was improved by 10% compared to the results
of the chronological model. In the two previous works, to obtain the evaluation data of
the prediction model, user interactions in terms of authentication, comments, messages,
etc., were used as implicit indicators of relevance.

In the next section, we present an in-depth analysis and synthesis of the pre-
vious research work according to four important criteria.

3.4 Analysis

According to the questions we asked in the introduction, our analysis of existing work
in the academic community revolves around four criteria: (1) the features that may
influence relevance; (2) the relevance prediction models; (3) the training and evaluation
methods; and (4) the evaluation platforms. Table 3.1 summarizes the analysis such that
the cells with the symbol “X“ indicate that the corresponding criterion was included
in the research work, and the empty cells indicate that the criterion was not included.
For reasons of readability, we annotate the research works in the table as follows: ’A’
for [56], ’B’ for [62], ’C’ for [58], ’D’ for [2], ’E’ for [63], ’F’ for [65], ’G’ for [5], ’H’
for [64], ’I’ for [4], ’J’ for [8], ’K’ for [9], ’L’ for [55], and ’M’ for [54]. In the rest of
the section, we provide a detailed analysis according to each of the four criteria.

45



Ranking news feed updates (RNFU)
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Facebook X X
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Table 3.1: Research work in the academic community
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3.4.1 Features that may influence relevance

We note that four types of features that may influence the relevance of the update
i, posted by an author u’ , to the recipient u were widely used in research work and
approved to be effective in the prediction (see Fig. 3.3):

• Features that measure the relevance of the textual content of i, its hashtags,
and mentions to the interests of u. Indeed, the features that match between
the update content and the recipient’s interests (inner product, cosine similarity,
number of common words, etc.) are the most intuitive and may serve as direct
predictors of relevance [4]. For example, if the user u is interested in football
and the update i talks about it, then i could be relevant to u.

• Features that measure social tie strength between u and u’ : interaction rate,
number of common friends, the similarity of interests, etc. The assumption is that
the update i could be relevant to the user u if u has a strong social relationship
with the user u’ [54]. Certainly, close friends tend to have common interests and
want to catch up with the latest updates from each other [55].

• Features that measure the authority of u’ : followers count, followings count,
listed count, seniority, etc. The assumption is that the update i could be relevant
to the user u if the author u’ has authority on the social media platform [65].
Indeed, Nagmoti et al. [69] state that if a user is important, i.e. has authority,
then his updates are also important. For example, updates from celebrities,
business leaders, journalists, and politicians are often adopted by most users [52].

• Features that measure the quality of i: length, popularity, the presence of URLs,
hashtags, multimedia content, etc. The assumption is that the update i could be
relevant to the user u if i is of high quality (formal, informative, popular, etc.)
independently of the personal interests of u [64].

3.4.2 Relevance prediction models

To predict the relevance of news feed updates, different methods and models have
been used by taking the features that may influence relevance as input to produce the
corresponding relevance scores as output. We note that two types of prediction models
were broadly used in research work: mathematical and supervised learning models.
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Mathematical models models that use mathematical tools, equations, and concepts
to model and predict social behaviors [70]. We identified two main types of mathematical
models: weighted linear combinations and collaborative filtering.

• In weighted linear combination models, to output a relevance score, the input
features are linearly combined and summed in mathematical equations by assign-
ing a static weight of importance to each feature according to assumptions made
by the authors of the corresponding research work.

• In collaborative filtering models, we first identified latent factor models [26], which
assume that the interactions between users and updates can be effectively captured
by a low-dimensional latent representation of the user/update interaction matrix.
Second, we identified matrix factorization models [27], which work by decomposing
the user-update interaction matrix into the product of two lower dimensionality
rectangular matrices. Indeed, latent factors and matrix factorization are widely
used in recommender systems as a class of successful collaborative filtering models
[23]. To predict relevance scores, these models attempt to find weighted low-rank
approximations of the user-update interaction matrix, where weights are used
to predict missing entries in the matrix. Note that the implicit and explicit
relevance scores can be used in the matrix instead of interactions.

Supervised learning models machine learning algorithms that infer a function
that maps an input social update to an output relevance score based on labeled training
data, consisting of a set of training examples [30]. In other words, the model is trained
with a history of updates that a user has found relevant or not to learn an underlying
prediction function, which is able to predict whether the user will find a given update
relevant. Indeed, supervised learning algorithms have been commonly used in related
work and seem appropriate to effectively rank news feed updates. We identified a
regression model (predict continuous relevance scores) based on a Gradient Boosted
ranking algorithm [68], and binary classification models (predict binary relevance scores,
relevant or irrelevant updates) based on Support Vector Machine (SVM ) [44], artifi-
cial neural networks [71], logistic regression [40], and a coordinate ascent algorithm [72].

Indeed, mathematical and supervised learning models are suitable to predict the rel-
evance of news feed updates since they are part of predictive analytical techniques [73].
Predictive analytics aims to model and analyze past user behaviors to make predictive
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assumptions about future outcomes [74]. However, to the best of our knowledge, no
comparison has been made to determine the most efficient relevance prediction models.

3.4.3 Training and evaluation methods

In research work, we identified two methods to get training and evaluation data of
relevance prediction models: an implicit method and an explicit method.

• Implicit method: by assuming that a user’s interaction (comment, like, share, etc.)
with an update involves its relevance to that user. This method has been widely
used for its ease of use since social media platforms offer by default different tools
to allow users to interact and exchange with each other. Moreover, this method
does not require much effort from users who naturally tend to interact with other
individuals. Indeed, according to the Maslow’s hierarchy of needs [75], the third
level of human needs is interpersonal and implies feelings of belongingness, which
include family, friendships, social interactions, etc.

• Explicit method: by asking users to assign relevance scores to their news feed
updates. This method has been little used since it has several limitations. Indeed,
according to Berkovsky and Freyne [1], it is not related to user interactions as
user feedback was obtained via a survey or specifically developed tools on the
one hand. On the other hand, this method is binding as it asks users to assign
relevance scores to a large number of updates. Hence, it is unreasonable to expect
users to assign relevance scores to updates unless it is rewarded. For example, in
[56], 24 Facebook users were financially compensated for their involvement in the
experiments.

3.4.4 Evaluation platforms

We find that most research works have used Twitter. Twitter is a widely used mi-
croblogging service with more than 340 million users worldwide7. It allows users to
communicate and share their latest updates using short messages of 280 characters
called tweets (see Fig. 3.2). The wide use of Twitter in related work is justified by:

• the popularity of Twitter as the most used microblogging service worldwide [76];

• the large flow of tweets encountered by users in their news feed [54];
7www.omnicoreagency.com/twitter-statistics/
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• the irrelevance of a large part of tweets [61];

• the fact that social data such as user profiles, social relationships, tweets, etc. are
public by default unlike other social media platforms such as Facebook, LinkedIn,
and Instagram [77]

• the availability of API for easy data crawling [1].

Following is the only type of social relationship between Twitter users such that
users who follow a user u are called followers of u, and users that u follows are called
followings of u. If the user u follows another user u’ , u will receive in the news feed,
also named home timeline, the tweets posted by u’ and the tweets u’ retweeted and/or
liked. Finally, a user can perform the following three actions to interact with a tweet
displayed in the news feed:

• Retweet: when the user wants to share the tweet with his followers;

• Reply: when the user wants to answer or comment on the tweet;

• Like: when the user wants to save the tweet in the "Likes" section.

Despite the advantages and the strengths of the different approaches proposed in
related work, we have identified some limitations and open research issues that we
discuss in detail in the next section.

3.5 Limitations and open issues

Following the analysis of research work, we found some limitations and identified some
open research issues, which we classify according to four criteria: (1) the features that
may influence relevance; (2) the relevance prediction models; (3) the training and
evaluation methods; (4) and the evaluation platforms.

3.5.1 Features that may influence relevance

As discussed in section 3.4.1, we have identified four types of features that may influence
the relevance of the update i, posted by an author u’ , to the recipient u (see Fig. 3.3):
(1) features between u and i which stand for the relevance of the content; (2) features
between u and u’ which stand for the social tie strength; (3) features of u’ which
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stand for the authority; and (4) features of i which stand for the quality. However, no
features have been used between u’ and i, which we believe can stand for expertise.

To the best of our knowledge, the features that measure the expertise of u’
in the topics of i have not been used in related work when predicting the relevance
of updates to recipient users. The assumption is that the update i could be relevant
to the recipient user u if the author u’ is an expert in the topics of i. According
to Wagner et al. [78], updates posted by experts, i.e. users with the relevant skill
or knowledge on a given topic, are often considered credible, important, and inter-
esting. For example, Elon Musk, one of the most famous heroes of the tech culture,
is known for his warnings about the risks of Artificial Intelligence and his updates
on this subject often attract the attention of users8. Indeed, unlike novice users, ex-
perts usually know what they are talking about when it comes to topics they master [79].

Although expertise has not been used when predicting the relevance of updates
to recipient users, the task of finding experts in specific topics has attracted much
attention from researchers as a separate field, especially with the increasing growth
of social media where novice and experts users coexist. Research on this topic has
made significant progress in the past few decades and various techniques have been
proposed. In the rest of this section, we present the most representative research work
that could be leveraged to infer expertise and predict the relevance of news feed updates.

Wagner et al. [78] first explored the usefulness of different types of user-related data
to make sense of the topical expertise of Twitter users. The authors then used topic
modeling based on user-related data to build and assess the computational expertise
models of users. The user-related data include: (1) aggregation of tweets a user au-
thored or retweeted; the assumption is that a user is likely to have expertise in topics on
which he frequently expresses his opinion; (2) the user biographical information, which
may contain self-reported information about the education, skills, career information,
etc.; and (3) information about user lists1; if a user is added to a list, the list label and
short description of the list will appear on the user’s profile. The detailed experimental
analysis demonstrated that topic annotations based on biographical information are sur-
prisingly similar to topic annotations based on the aggregation of tweets and retweets,
which indicates that users tend to tweet and retweet about topics they mention in their

8www.wired.co.uk/article/elon-musk-artificial-intelligence-world-war-3
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biography. Xu et al. [80] proposed a learning model that infers a target user’s topical
expertise on Twitter using four types of user-related data: (1) the textual content of
tweets posted by the target user; (2) the location and biography of users that the target
user is following; (3) the location and biography of users who follow the target user;
and (4) the textual labels and descriptions of Twitter lists that include the target user.
The experimental analysis demonstrated that each type of user data is effective for
user expertise inference, with variation in performance. Moreover, aggregating multi-
ple types of user data always achieved better performance than a single type of user data.

Liao et al. [79] explored differences between expert and novice users in infer-
ring the expertise of Twitter users. In three conditions, participants rated the level
of expertise of users after seeing: (1) only the textual content of tweets; (2) only the
contextual information including short biographical and user list information; and (3)
both tweets and contextual information. The experimental analysis demonstrated that
the judgments of experts were improved when both tweets and contextual information
were used. Moreover, adding tweets seemed to make little difference or even add nuance
to the expert judgment of novice users. Xu et al. [81] aimed to infer the expertise of
Twitter users based on their tweets. The work proposed a sentiment-weighted and topic
relation-regularized learning model to address this problem. The model first used the
sentiment intensity of a tweet to evaluate its importance in inferring a user’s expertise.
The intuition is that if a user can forcefully and subjectively express his opinion on a
topic, the user is likely to have a strong knowledge of that topic. Then, the relatedness
between expertise topics is exploited to model the inference problem. The intuition is
that if a user knows the Java programming language, for example, the user would be
closer to know the C programming language than a user who does not know Java. The
experimental analysis demonstrated that the tweet sentiment-based weighting scheme
and the topic relation regularizer make a stand-alone contribution to the model.

In the previous research work on expert finding, we notice that the biography
and updates posted by a user have been broadly used to accurately infer the user’s
expertise. Indeed, these two user-related data are complementary. On the one hand,
self-reported biographies may indicate explicit information about expertise such as
education, skills, career information, etc. On the other hand, updates authored by a
user may indicate implicit information about the expertise. The assumption is that a
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user is likely to have expertise in topics on which he frequently expresses his opinion.
These findings can be leveraged to predict the relevance of news feed updates.

3.5.2 Relevance prediction models

First, as discussed in section 3.4.2, we noticed that different supervised learning algo-
rithms such as Gradient Boosting, Support Vector Machine, logistic regression, and
artificial neural networks have been commonly used in related work and seem suitable
to rank news feed updates. However, no comparison has been made to determine
the most efficient relevance prediction models. Indeed, each related work intuitively
chooses one supervised learning algorithm, states that the other algorithms can be
used, and points out that it is out of the scope to compare different algorithms in their
work. Therefore, it would be interesting to evaluate and make a comparative study of
the supervised algorithms used in related work to determine the most accurate models.
Moreover, with respect to supervised learning methods, it would be worthwhile to
include decision trees [41] and random forest [43] algorithms in the comparison, which
are known to give good results in a wide range of problems. [34]

Second, as discussed in section 3.4.2, we have identified several research works that
use weighted linear combinations with static and non-personalized feature weights for
all users, where the weights were set according to assumptions made by the authors
of the corresponding work. However, user preferences are different on social media
[1]. Therefore, the feature weights should be set in a customized manner to rank news
feed updates in a personalized way according to each user’s preferences. Furthermore,
concerning supervised learning methods, we observed in related work that to train
a prediction model, data of all users were first merged as if there is only one user.
Then, a single non-personalized model has been trained on all data for all users. The
importance/weight of the features learned by non-personalized models is assumed to
be the same for all users, but such assumptions may not apply to some users. Indeed,
we believe that non-personalized models are useful to learn the overall interests of
the majority of users, but generalize such unrealistic assumptions to all users makes
it difficult to predict their individual preferences. By contrast, personalized models
should be trained on updates received by a particular user such that a separate model
is trained per user and then employed to provide user-specific relevance scores for each
new social update. Hence, we believe that using a personalized user-dependent model
could enhance and refine the news feed content provided to users.
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3.5.3 Training and evaluation methods

Since most research works have used the implicit training and evaluation method,
which assumes that a user’s interaction with an update involves its relevance, it would
be interesting to study and understand its relationship with the explicit method.
For example, investigate the correlation between user interactions and their explicit
relevance ratings to the news feed updates. Furthermore, in the case of no user
interaction, it would be interesting to include the reading time as an implicit indicator
of relevance. Indeed, Facebook states that the more time a user spends reading an
update, the more likely the update is relevant to that user9.

3.5.4 Evaluation platforms

Since most research works have used Twitter as an evaluation platform, it would be
interesting to exploit other types of social media that incorporate the news feed concept
but have not been addressed in related work. For example, social media platforms
such as Instagram, Flickr, and Pinterest on which photo-sharing is the aim.

In this thesis, we will focus like most related work on Twitter for the facilities it
offers, which we have discussed in detail in section 3.4.4. However, note that it will still
be possible to use the work on other social media platforms with some adaptations.
Furthermore, since the explicit training and evaluation method has several limitations,
we will use like most related work the implicit method for the facilities it offers, which
we have discussed in detail in section 3.4.3. Moreover, as discussed in section 3.4.2, we
will use supervised learning models, which have been commonly used in related work
and seem appropriate to effectively rank news feed updates.

In the contributions, in addition to the four types of features used in related
work, we will investigate the contribution of expertise to rank news feed updates.
However, before that, we need to answer the following questions: (1) should we use a
personalized or a non-personalized prediction model given that user preferences are
different on social media?; and (2) which supervised prediction model should we use
given that the effectiveness of the prediction depends partly on the chosen model?
In the chapter 4, to answer the first question, we will introduce a novel personalized
prediction model for each user and conduct a comparative study to evaluate and

9www.itespresso.fr/facebook-analysera-temps-lecture-publication-98813.html
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compare personalized and non-personalized models. In the chapter 5, we will analyze
and compare different supervised algorithms to determine the most suitable prediction
models to rank news feed updates. Finally, in the chapter 6, we will exploit the findings
of the two previous questions and answer the main question related to the contribution
of expertise. Hence, we will introduce an approach that leverages the author’s expertise
that we infer from the biography and the textual content the author has posted.

3.6 Conclusion

In this chapter, we first provided background on ranking news feed updates on social
media, including defining news feeds, presenting statistics on data volume and irrele-
vance that confirm the need for ranking, and formalizing the ranking process. Then, we
discussed work carried out in the field of ranking and predicting the relevance of news
feed updates in both industrial and academic communities. Afterward, we analyzed and
compared the research works and exposed their advantages and limitations according
to four main criteria: (1) the features that may influence relevance; (2) the relevance
prediction models; (3) the training and evaluation methods; and (4) the evaluation
platforms. Finally, we identified several open research issues to which we will make
contributions. Following the state-of-the-art, it appears that research in the field of
ranking news feed updates is not completely achieved. Indeed, several approaches
have been proposed, implemented, and evaluated. However, given the limitations we
identified, efforts must still be made to improve the ranking process.

In the contributions, to better rank news feed updates, we will first introduce
a personalized relevance prediction model for each user and compare it with the classi-
cal non-personalized model. Then, we will compare different supervised algorithms
used in related work to determine the most effective prediction models. Finally, in
addition to the features used in the literature, we will leverage the expertise of the
update’s author for the corresponding topics when predicting the relevance.
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Chapter 4

Personalized and Non-Personalized
models for RNFU: A comparative
study

4.1 Introduction

In several research approaches, ranking news feed updates in descending relevance
order has been proposed to help users quickly catch up with the content they may find
interesting [55]. For this matter, supervised prediction models have been commonly
used to predict the relevance of updates using labeled training data [82]. These models
analyze past user behaviors to predict whether they will find an update relevant or not
in the future [82]. However, in related work, to train a prediction model and predict the
relevance, data of all users were first merged as if there is only one user. Then, a single
non-personalized model has been trained on all data for all users. Indeed, according to
Vougioukas et al. [55], in non-personalized models, a single global model is typically
trained on a large collection of updates received by multiple users and the interactions
of all users to each update, e.g. the total number of retweets per tweet. The trained
global model is then used to assign a single user-independent relevance score to each
new update. By contrast, personalized models should be trained on updates received
by a particular user and the interactions of the particular user, e.g. whether or not the
user retweeted each tweet. Hence, a separate model should be trained per user and
then employed to provide user-specific relevance scores for each new tweet or, generally,
social update. We believe that non-personalized models are useful to learn the overall
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interests of the majority of users (e.g., users are likely to find relevant the tweets that
are similar to their own tweets), but generalize such unrealistic assumptions to all
users makes it difficult to predict their individual preferences. For example, a given
user might be more interested in new content that is different from his own tweets.
Indeed, Paek et al. [56] noticed in their study 44 cases in which several participants
had rated the same news feed post and found out that 82% of the cases differ in ratings
suggesting that the relevance judgment can be subjective.

In this chapter, we first present a typical approach to rank news feed updates
on Twitter and provide a reminder of the classical non-personalized models used in
related work. Then, to predict the relevance of news feed updates given that user
preferences and interests are different, we introduce a novel personalized prediction
model for each user based on the random forest algorithm. After that, we define a
fair and rigorous comparison methodology by selecting the best parameters of both
personalized and non-personalized models according to the collected data. Finally, we
conduct a comparative study by evaluating, analyzing, and comparing personalized and
non-personalized models on a real dataset crawled in a programed way from Twitter.
The comparison and evaluation results are presented and discussed according to six
criteria: (1) the overall prediction performance of both approaches to get a global
overview of the most effective model; (2) the amount of data in the training set to
investigate the robustness of each model; (3) the cold-start problem, which is a common
problem in recommender systems; (4) the incorporation of user preferences over time;
(5) the model fine-tuning to investigate the manageability of each model; and (6) the
personalization of feature importance for users.

The chapter is structured as follows: section 4.2 presents a typical approach to
rank news feed updates on Twitter, section 4.3 provides a reminder of non-personalized
prediction models, section 4.4 introduces our personalized model, section 4.5 discusses
the experiments we performed to compare both models and highlight the need for
personalization, and section 4.6 concludes the chapter.

4.2 Typical approach for RNFU

Let F(u) denotes tweets unread by the recipient user u that can potentially be
included in the news feed. Ranking news feed updates on Twitter implies selecting and
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displaying a subset K(u) ∈ F(u), such that |K(u)| ≪ |F(u)|, that corresponds to the
most relevant tweets to u. The rest of this chapter focuses on the most important step
of the ranking, which is predicting a relevance score to each tweet t ∈ F(u).

Fig. 4.1: Non-personalized prediction of a relevance score

Fig. 4.1 describes the primary non-personalized technique used in related work
to predict the relevance score R(t,u) of a tweet t ∈ F(u). This technique is based
on a supervised prediction model that analyzes labeled training data of tweets users
read in the past to predict if a recipient user u will find the tweet t relevant in the
future. Note that t is posted by an author user u’ ∈ A(u), such that A(u) is the set
of users that u follows. Let D(u) denotes a subset of tweets previously read by the
user u and D the overall labeled training data of all users. The training data of a
user u is a set of input-out pairs such that an input represents a vector of features
that may influence the relevance of a tweet t’ ∈ D to u, and the output represents
the relevance score R(t’,u). The primary technique involves three steps: (1) assign
relevance scores to tweets; (2) extract the features that may influence relevance; and
(3) train the prediction model. In this section, we describe each step according to
a typical approach that we implement and which is mainly driven by related work.
Indeed, at this stage, we adopt most of the principles already used in the literature in
a typical approach. The objective is first to broadly satisfy the same properties of the
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approaches proposed in related work. Then, make a comparison between the classical
non-personalized models and the personalized model that we introduce.

4.2.1 Relevance scores

The implicit training and evaluation method we use has been used by most related
work [1]. It assumes that a previously read tweet t’ ∈ D(u) is relevant to a user u if
u interacted with t’ . As given by Equation 4.1, predicting relevance scores results in
a binary classification problem. We believe that likes, as well as retweets and replies
which have been used in related work, are also implicit indicators of relevance.

R(t’,u) =

1 if u interacted with t’ (retweet or reply or like)

0 otherwise
(4.1)

We use the implicit method, which has been used by most related work, due to its
simplicity and the fact that the explicit method used by Kuang et al. [4] has several
limitations. Indeed, the explicit method is not related to user interactions on the one
hand as user feedbacks were obtained via a survey or specifically developed tools. On
the other hand, it is binding as it asks users to assign relevance scores to a large number
of tweets. Moreover, we split relevance scores into two bins, relevant and irrelevant,
because train a finer-grained classifier (e.g., t’ is very relevant if u retweeted, liked,
and replied to it) would be difficult as multiple user interactions with the same tweet
are not frequent [55]. Indeed, out of 26180 tweets, we found that only 5% and 0%
of tweets get respectively two and three types of interaction from the same user [83].
However, despite predicting binary classes, some machine learning models such as
random forest allow to predict the probability of classes, and therefore rank tweets by
relevance according to the probability of having class 1.

4.2.2 Features that may influence relevance

We extract, preprocess, and create from scratch 13 most relevant features according
to related work [83]. The features may influence the relevance R(t,u) of a tweet t,
posted by an author u’ , to the recipient u. The features 1, 2, 4, 5, and 7 are gradually
recalculated and updated as new tweets are injected into the news feed from least
recent to most recent. We thus simulate the evolution of the social media platform
over time. The features are summarized in Table 4.1 and divided into four categories:
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Table 4.1: Features that may influence relevance

Features that may influence relevance Type N◦

Relevance of

the content of t,

its hashtags, and

mentions to u

Relevance of the keywords of t to u Int f1

Relevance of the hashtags of t to u Int f2

Presence of u in the mentions of t Bool f3

Social tie strength

between u and u’

Interaction rate of u with tweets of u’ Float f4

Number of times u mentioned u’ Int f5

Authority of u’
Followers count / Followings count Int f6

Seniority in years Int f7

Listed (group) count Int f8

Quality of t

Length (# characters) Int f9

Presence of hashtags Bool f10

Presence of a URL Bool f11

Presence of a photo or a video Bool f12

Popularity (# retweets, replies, likes) Int f13

• Features that match between the content of t and the interests of u.

• Features that measure social tie strength between u and u’ . The assumption is
that t could be relevant to u if u and u’ are close friends.

• Features that measure the authority of u’ . The assumption is that t could
be relevant to u if u’ has authority. Indeed, the more important a user, the
important the tweets posted by that user.

• Features that measure the quality of t: length, popularity, the presence of
multimedia content, etc. The assumption is that t could be relevant to u if it is
of high quality.
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In the rest of the section, we provide a detailed description of each feature.

Relevance of the keywords of t to u According to Shen et al. [5], keywords of
tweets posted by a user and/or with which he interacted implicitly reflect his topics
of interest and may serve as direct predictors of relevance. First, after removing
HTML characters and URLs in the textual content of the tweet t, we represent its
topics by keywords extracted using the DBpedia Spotlight annotation service1. This
annotation service is an open-source project for extracting structured semantic entities
from Wikipedia. More details are provided in [84]. This method has been proven not to
be compromised by the short and informal nature of tweets [85], unlike methods used
in related work, which are mainly based on TF-IDF [65, 55, 63] or a topic model [64, 5].
Each keyword in a tweet is represented by the URI2 (Uniform Resource Identifier)
corresponding to the annotated entity. In the tweet of Fig. 6.1 for example, using a
support = 20 and a confidence = 0.32, the annotation service outputs the following
keywords: China, Russia, Computer_Science, Artificial_Intelligence, World_War_III.
Finally, we propose to calculate this feature as follows:

f1(u,t) =
nbk(t)∑

i=1
P (u,ki(t)) (4.2)

Where:

• ki(t) is the i th keyword of t

• nbk(t) is the number of keywords of t

• P(u, ki(t)) is the number of times u has previously posted and/or interacted
(retweet, reply, like) with ki(t)

For example, if t has 2 keywords k1 and k2, and u has previously posted and/or
interacted 10 times with k1 and 5 times with k2, then the sum of the two values, i.e.
15, will be assigned to this feature.

Relevance of the hashtags of t to u According to Chen et al. [64], hashtags of
tweets posted by a user and/or with which he interacted implicitly reflect his topics of
interest and may serve as key predictors of relevance. To calculate this feature, we first
lowercase hashtags and then propose the following equation:

1http://demo.dbpedia-spotlight.org/
2A string of characters used to identify a resource.
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f2(u,t) =
nbh(t)∑

i=1
P (u,hi(t)) (4.3)

Where:

• hi(t) is the i th hashtag of t

• nbh(t) is the number of hashtags of t

• P(u, hi(t)) is the number of times u has previously posted and/or interacted
(retweet, reply, like) with hi(t)

For example, if t has 2 hashtags h1 and h2, and u has previously posted and/or
interacted 5 times with h1 and 3 times with h2, then the sum of the two values, i.e. 8,
will be assigned to this feature.

Presence of u in the mentions of t A tweet that mentions the user u is likely to
match his interests and be relevant. Feng and Wang [65] state that a mention serves to
draw a user’s attention to the corresponding tweet. The authors propose to calculate
this feature with a boolean variable.

Interaction rate of u with tweets of u’ According to Vougioukas et al. [55], if
u interacted (retweet, reply, like) frequently with tweets posted by u’ in the past, i.e.
u found the tweets of u’ relevant, then they tend to have a strong social relationship,
and thus u may find the tweets of u’ relevant in the future. We propose to calculate
this feature with the following equation:

f4(u,u’) = |Tweets posted by u’ with which u interacted|
|Tweets posted by u’ that u has previously read|

(4.4)

Number of times u mentioned u’ According to Chen et al. [64], if the user u
mentioned the user u’ in the past, then u pays attention to u’ , the two users may
thus have a strong social relationship. The user u may therefore find the tweets of u’
relevant in the future. Chen et al. [64] propose to calculate this feature by counting
the number of times u mentioned u’ in tweets he posted.

Followers count / Followings count Pan et al. [52] assert that users who have
authority such as celebrities, business leaders, journalists, and politicians tend to

64



4.2 Typical approach for RNFU

have more followers than followings. The authors propose to calculate this feature by
dividing the followers count of u’ by the followings count.

Seniority Shen et al. [5] state that senior users, i.e. users whose accounts were
created early on social media, tend to have more authority than new incoming users.
We propose to calculate this feature using Equation 4.5. The assumption is the longer
a user has been on the social media, the more experienced and authoritative the user
is, and the more relevant the tweets posted by that user.

f7(u’,t) = Year in which t was posted−

Year in which the account of u’ was created
(4.5)

Listed count Twitter lists allow users to organize people they follow into labeled
groups [86]. According to Duan et al. [87], the number of lists to which a user has
been added is an adequate representation of the authority on social media. Uysal and
Croft [63] propose to assign the list count of u’ to this feature.

Length Chen et al. [64] assert that a long tweet is likely to be more formal, more
informative, and of better quality than a short tweet. Vougioukas et al. [55] propose
to compute the length of the tweet t by its number of characters.

Presence of hashtags A tweet with hashtags can provide more information and
be of better quality. Indeed, hashtags help group tweets and conversations around a
similar topic so users can easily find and follow what interests them. Chen et al. [64]
state that the author spent time tagging the tweet thinking it might be useful. We
propose to calculate this feature with a boolean variable.

Presence of a URL De Maio et al. [54] state that since tweets are limited to 280
characters, users tend to include a URL to a website containing more details. According
to the authors, a tweet with a URL can give more information and be of better quality.
They propose to calculate this feature with a boolean variable.

Presence of a photo or a video Feng and Wang [65] assert that a tweet with
multimedia content can give more details and be of good quality. The authors propose
to calculate this feature with a boolean variable.
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Popularity Kuang et al. [4] state that the more users interact with a tweet, the
better its quality. We propose to calculate this feature as follows:

f13(t) = Number of retweets of t +
Number of replies to t +Number of likes of t

(4.6)

4.2.3 Relevance prediction model

The prediction model aims to analyze labeled training data of tweets users read in the
past to predict if they will find a tweet relevant in the future. Let S denotes the set of
recipient users. First, we generate training data instances for each recipient user u ∈ S
in the form of input-output pairs considering each previously read tweet t’ ∈ D(u). An
input represents a vector of features that may influence the relevance of t’ to u, and
the output represents the implicit relevance score R(t’,u). Then, we can either train
a personalized prediction model for each user u ∈ S, or merge all data as if there was
only one user to train a single non-personalized model for all users. The aim of both
approaches is to map new input features of a tweet unread by a user u to a relevance
score using a binary classifier learned from previously read tweets in the training set.
In the next section, we provide a reminder of non-personalized models.

4.3 Non-personalized models

According to Vougioukas et al. [55], in non-personalized models, a single global model
is typically trained on a large collection of tweets received by multiple users and the
interactions of all users to each tweet. The trained global model is then used to
assign a single user-independent relevance score to each new tweet. Fig. 4.2 describes
the primary technique used in related work to train a non-personalized prediction
model. First, historical user data, which consists of previously read tweets Di, are
merged and scaled to have feature values within the same range. Then, the overall
data D is shuffled as if there were only one user and no chronological order of tweets.
Finally, data is split into two sets to train the prediction model: a training set for
70% of the data and a test set for 30% of the remaining data to evaluate the performance.

Table 4.2 indicates the non-personalized models used in related work in contrast
to the personalized model we propose. The table shows that different supervised
algorithms were used: logistic regression [8, 9, 88, 55], Support Vector Machines [56],
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Table 4.2: Non-personalized models in related work vs. Personalized model

Research work Data Supervised algorithm A prediction model for

[63] 665 tweets Coordinate ascent algorithm

All users

[5] 816 users Gradient Boosting

[7] 675 users Naive Bayes

[55] 122 users logistic regression

[54] 2 users
artificial neural networks[67] 307 users

[66] 1000 users

[56] 24 users Support Vector Machines Each fold of data (5 folds)

[8]
LinkedIn users logistic regression Each partition of data (3 partitions)

[9]

Facebook

[88]
Trillions of examples

logistic regression,

artificial neural networks,

Gradient Boosting, etc.

Each demographic subset of users

Personalized model 46 users Random Forest Each user

artificial neural networks [88, 66, 67, 54], etc. In each work, a single algorithm was
used for either: all users [63, 5, 7, 66, 55, 67, 54], each fold/partition of data with five
folds [56] and three partitions [8], or each demographic subset of users [88]. In other
words, no related work has used a single model for each user, such that in the best
of cases, five models were used for all users in [56] and n models in [88], where n is
the number of demographic subsets of users. Furthermore, the models used in related
work use different sizes of data from 2 [54] to 1000 users [66]. Note that Facebook and
LinkedIn data science teams are an exception as they have access to millions of users
and trillions of examples [8, 9, 88]. The research work state that non-personalized
models benefit from a large collection of tweets in the training set. Each tweet is
represented as a feature vector that includes user-specific features. If two users receive
the same tweet, it will be represented by two different feature vectors, which allows
the model to produce different predictions per user for the same incoming tweet.

Nonetheless, since non-personalized models are trained on all data as if there is
only one user, the models may learn and generalize unrealistic assumptions (e.g., all
users are likely to find relevant the tweets that are similar to their own tweets). The
importance/weight of the features learned by non-personalized models is assumed to
be the same for all users, but such assumptions may not apply to some users. For
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example, a given user might be more interested in new content that is different from
his own. Indeed, Paek et al. [56] asked 24 participants to rate news feed posts and
noticed that 82% of ratings that concern the same tweets are different. This study
indicates that the relevance judgment is subjective as user preferences and interests are
different. Therefore, we believe that using a personalized user-dependent model could
be crucial to enhance and refine the news feed content. In the next section, we use
random forest to train and introduce a personalized prediction model for each user.

4.4 A personalized prediction model

In contrast to non-personalized models, personalized models should be trained on tweets
received by a particular user and the interactions of the particular user to each tweet.
Hence, a separate model should be trained per user and then employed to provide
user-specific relevance scores for each new tweet. Fig. 4.2 describes the technique we
use to train a personalized prediction model for each user and assign user-specific
relevance scores to tweets. First, we sort tweets by time and divide the training data
Di of each user u i ∈ S into two sets: a training set of the prediction model for the 70%
least recent instances and a test set for the 30% remaining most recent instances. The
purpose is to keep a chronological track of the relevance judgment of tweets by users
over time. Then, we use the training set of each user u i ∈ S to train the corresponding
random forest model M i. Random Forest [43] is a popular ensemble learning method3

for classification and regression problems that operate by constructing a multitude of
decision trees. We choose random forests as prediction models because they [89]: (1)
tend to result in powerful prediction models, especially for binary classification prob-
lems; (2) do not need data preprocessing; (3) do not require parameterization; (4) are
fast to train; (5) can handle a large number of features; (6) implicitly perform feature
selection; (7) seldom overfit; and (8) allow to compute feature importance in judging
the relevance of tweets by users. Note that at this stage, other supervised learning algo-
rithms are also applicable and that it is out of the scope of this chapter to compare them.

The aim of using a personalized random forest model for each user is to make
tailored recommendations, which may not coincide with the interests of the majority
of users that non-personalized models are trained to predict. Indeed, unlike non-

3A method that uses multiple machine learning algorithms to obtain better predictive performance
than could be obtained from any of the constituent learning algorithms alone.
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Fig. 4.2: Personalized and Non-Personalized models

personalized models, not only the feature vector is different for each user-tweet pair,
but also the feature importance/weight for each user. In other words, as a model is
trained on the data of a given user independently of the other users, the model learns
the individual user preferences and interests (e.g., a user interested in art is more likely
to find tweets with multimedia content relevant). Another reason to use a personalized
model for each user is to sort and split the corresponding train and test data by time.
Train the model on recent data allows to track changes in user preferences over time
and make time-sensitive recommendations accordingly. In the next section, we describe
the experiments we used to compare personalized and non-personalized models.

4.5 Experiments and comparison results

To compare personalized and non-personalized models and highlight the need for
personalization, we describe in this section: (1) the Twitter dataset we used in the
experiments; (2) the measures we used to evaluate the performance; (3) the methodology
we used in the comparison; and (4) the obtained results.
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4.5.1 Dataset

To collect real data on Twitter, we first randomly selected a set S of 46 Twitter users
so that each user met the following criteria:

• has a great number of social relationships, at least 20 followings, which we believe
is the minimum number. Ranking news feed updates is proposed to help these
kinds of users catch up with the relevant updates. Note that the average number
of followings is 72 followings per user;

• interacts (retweet, reply, like) frequently with tweets from the news feed with an
interaction rate greater than 10%, which we believe is the minimum rate. This
criterion is due to the use of the implicit training and evaluation method, which
assumes that user interaction with a tweet involves its relevance;

• English-speaking in order to use the English version of DBpedia Spotlight, which
is the most efficient [90];

• the tweets the user posts are public and visible to all users, unlike protected
tweets that are only visible to the followers.

Then, using Twitter Rest API 4, we collected over ten months all data needed for
the proposed approach: (1) the explicit profile of each recipient user u ∈ S, including
registration date, followers, followings, and listed count; (2) the explicit profile of each
user u’ ∈ A(u), such that A(u) is the set of users that u follows; and (3) the tweets
posted by each user u ∈ S and the tweets posted by his followings. Finally, the tweet
keywords were extracted using the English version of DBpedia Spotlight with a support
= 20 and a confidence = 0.32 (values determined through experiments).

Nonetheless, it is impossible to directly retrieve the news feed of a particular
user on Twitter and tell in case of non-interaction if the user has read a given tweet.
Therefore, to simulate the news feed of each recipient user u ∈ S, we used a variant of
the principle proposed by Feng and Wang [65] to select, D(u), the subset of tweets
posted by the followings of u that u may have read. The tweets read by u with which
he did not interact are considered irrelevant according to the implicit training and
evaluation method. Note that we did not select the tweets retweeted and/or liked by

4https://dev.twitter.com/rest/public
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the followings of u since the interactions of u with these tweets are redirected to users
who do not necessarily belong to the social network of u5. The variant is as follows:

• First, sort all the tweets posted by the followings of u in chronological order
from least recent to most recent;

• Then, for each tweet t’ with which u interacted using a retweet, reply, or like,
keep the chronological session defined by the tweet t’ , the tweet before t’ , and
the tweet after t’ ;

• Finally, after deleting duplicates, sort the selected tweets again in chronological
order from least recent to most recent.

The use of our variant resulted overall in 26180 tweets. Furthermore, the variant
resulted in about 35% interaction rate with tweets, with an average of 569 tweets and
a median of 343 tweets as training data instances for each recipient user.

4.5.2 Measures

First, as described in sections 4.3 and 4.4, we train random forest classifiers for both
personalized and non-personalized models using the corresponding training set with
70% of the data. Then, to evaluate the models using the corresponding test set with
30% of the data, we define the confusion matrix of Table 4.3 and present below the
related concepts [91]:

Relevance (R)
Predicted class

R = 0 R = 1

Actual class
R = 0 True Negative (TN) False Positive (FP)

R = 1 False Negative (FN) True Positive (TP)

Table 4.3: Confusion matrix

• True Positive (TP): # of relevant tweets correctly predicted relevant

• True Negative (TN): # of irrelevant tweets correctly predicted irrelevant
5If a user Karim retweet a tweet posted by Mohamed, and Mehdi retweet the retweet of Karim,

the retweet of Mehdi will be redirected to the tweet of Mohamed.
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• False Positive (FP): # of irrelevant tweets incorrectly predicted relevant

• False Negative (FN): # of relevant tweets incorrectly predicted irrelevant

After that, we use the weighted F1 score given by Equation 4.7 [91], which is a
popular measure for binary classification. The equation calculates the standard F1
score for each class and finds their average weighted by support, i.e. the number of
true instances for each class. This metric is suitable to evaluate the performance since
classes are slightly unbalanced with an interaction rate with tweets of about 35% for
each user. Moreover, we are interested in measuring the performance of predicting
both relevant and irrelevant tweet classes.

F = (Fr × (TP +FN))+(Fi × (TN +FP ))
TP +TN +FP +FN

(4.7)

Where:

• Fr is the standard F1 score for the class of relevant tweets

• Fi is the standard F1 score for the class of irrelevant tweets

4.5.3 Methodology

In the experiments, we first selected the best random forest parameters (number of
trees, maximum three depth, splitting criterion, etc.) for a fair comparison between
non-personalized and personalized models. Indeed, a random search was run over differ-
ent parameter values so that the parameters are optimized by a cross-validated search
over parameter settings. Random search is a widely used strategy for algorithm hyper-
parameter optimization that randomly samples values from the statistical distribution
of each parameter to select the values that give the best performance according to the
cross-validation [92]. In the K-fold cross-validation, the dataset is shuffled by default
and then split into K different folds. Each fold is then used once as a test set while the
K - 1 remaining folds form the training set [34] (see Fig. 4.3). The K evaluation results
can then be averaged to produce a single estimation. Therefore, to select the best
parameters, we used 5-fold cross-validation for the non-personalized model and 5-fold
time-series cross-validation for the personalized model, both performed on the train set
[91]. As shown in Fig. 4.3, a time-series validation was used for the personalized model
because it preserves the chronological order of tweets, unlike the non-personalized
model where data is shuffled. Indeed, in the time-series validation, the least recent
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data form the train set, and the most recent data are used as a test set.

Fig. 4.3: Cross-validation (left) and Time-series cross-validation (right)

Then, to study the algorithmic stability with several runs and small changes to
training data, we retrained and iterated the best models on 30 different random state6

values and evaluated them on the test set. The average F score was selected for both
personalized and non-personalized approaches.

4.5.4 Results

The comparison and evaluation results are presented and discussed according to six
criteria: (1) the overall prediction performance of both approaches to get a global
overview of the most effective model; (2) the amount of data in the training set to
investigate the robustness of each model; (3) the cold-start problem, which is a common
problem in recommender systems; (4) the incorporation of user preferences over time;
(5) the model fine-tuning to investigate the manageability of each model; and (6) the
personalization of feature importance for users.

First, Table 4.4 summarizes the pros and cons of non-personalized and personal-
ized models according to all evaluation results. The results show that introducing a

6A variable used in randomized machine learning algorithms to determine the random seed of the
pseudo-random number generator.
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Table 4.4: Personalized vs. Non-Personalized models

Non-personalized model Personalized models

PROS

- More data =⇒ A more robust model

- Address the problem of cold-start and inactive users

- Easy to fine-tune a single model

- Higher F score than non-personalized (80.85)

- Time-aware user preferences

- Different feature importance for each user

CONS

- Lower F score than personalized (77.73)

- Time-unaware user preferences

- The same feature importance for all users

- Less data =⇒ Less robust models

- The problem of cold-start and inactive users

- Difficult to fine-tune several models

personalized user-dependent model has improved the average F score by +3.12%, from
an F score of 77.73% with the non-personalized model to an F score of 80.85% with
the personalized model. Therefore, to make refined predictions and select the tweets
that might be relevant to a given user, it is more convenient to train a model on tweets
the user has found relevant in the past rather than including in the training process
tweets and behaviors about other users. Undoubtedly, tweets that are relevant to one
user are not necessarily relevant to another user, which illustrates the importance of
the personalized model we introduce to capture individual user needs and improve the
prediction accuracy. Time-aware user preferences are another advantage of personalized
models that makes them more accurate. Indeed, train the model on recent data allows
time-sensitive recommendations. The personalized models capture the chronological
evolution of user relevance judgment of tweets, which may change with time (e.g.,
a user may over time give less importance to popular tweets and more importance
to tweets related to his interests). In contrast, the non-personalized model used in
literature does not predict such behaviors since data of all users are merged and shuffled
as if there were only one user and no chronological order of tweets.

Second, we computed feature importance values7 [43] in both personalized and
non-personalized models, which are presented in Table 4.5 and Fig. 4.4 respectively.
Fig. 4.4 gives the average feature importance for all recipient users. As shown in the
figure, non-personalized models learn and provide an overview of the features that
influence the relevance judgment of tweets by users, which is useful to understand user
behaviors and the assessment of relevance in general. For example, the results show
that the top feature is the feature f 4 (0.5), the interaction rate of u with tweets posted

7Random Forest computes the importance of a feature as the normalized total reduction of the
criterion brought by that feature, also known as the Gini importance.
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Fig. 4.4: Non-Personalized feature importance

by u’ . Certainly, if u found tweets posted by u’ relevant in the past, then u may
find the tweets of u’ relevant in the future. The second most important feature is
the feature f 13 (0.15) which measures the popularity of the tweet. Indeed, the more
users interact with a tweet, the more likely it is to be of high quality. The third
most important feature is the feature f 3 (0.08) which tells whether u is mentioned in
the tweet t. Feng and Wang [65] state that a mention draws a user’s attention to a
tweet that is likely to match his interests. The results also reveal that the features f 5

(0.05) which represents the number of times u mentioned u’ in tweets he posted is
important. Indeed, if u mentioned u’ in the past, then they tend to have a strong
social relationship, and u may find the tweets of u’ relevant in the future. The results
also indicate that the features f 6, f 7, f 8, and f 12 (0.03, 0.05, and 0.02 respectively)
which measure the author’s authority are important. These features are consistent
with the observations in [69] that state that if a user is important, then his updates
could also be important. We further note that the features f 1 and f 2 (0.05 and 0.02
respectively), which measure respectively the relevance of the content of t and its
hashtags to u, are surprisingly not the most important. This proves that predicting
relevance scores is a difficult task because the most important features are not the
most intuitive. Finally, we notice that the features f 9, f 10, f 11, and f 12 (0.03, 0, 0.01,
and 0.01 respectively), which measure tweet quality, are not important since they are
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not related to users and do not take into consideration their preferences [65].

In contrast to non-personalized feature importance, Table 4.5 gives the personalized
feature importance for each recipient user. First, we note that feature importance
differs according to users, i.e. features that are important to one user are not necessarily
important to another user, e.g. the feature f 9 which stands for the tweet length is
very important to the user Red_or_MC1R when judging the relevance of tweets (0.22)
but not to the user Medium (0.02). Certainly, user preferences are different, and this
illustrates the gain brought by a personalized prediction model for each user, which
takes into consideration individual interests. Furthermore, we note that the features
learned as highly important by the non-personalized model are in fact not important
to all users. For example, the top feature f 4 (0.5), the interaction rate of u with tweets
posted by u’ , is important to many users when judging the relevance of tweets, indeed,
but not to some users, e.g. the users TheMuslimReform (0.01), LKrauss1 (0.02), and
bamwxcom (0.03). This proves that non-personalized models generalize unrealistic
assumptions to all users. In opposite, the personalized models we introduce allow
tailored recommendations that do not coincide with the preferences of the majority of
users that non-personalized models are trained to predict.

Despite all the improvements the personalized models have brought in, we ob-
serve from the evaluation results that the proposed approach has some limitations.
Fig. 4.5 presents the learning curve8 of the non-personalized model for all users and
the learning curve of the personalized model for the user ch402. The learning curves
of the 46 users in the dataset are quite similar; hence we selected one user as a case study.

First, Fig. 4.5 shows that the non-personalized model benefits from a large collection
of tweets in the training set compared to the personalized model (20000 against 400
tweets). Indeed, unlike personalized models which are trained on the individual data
of each user, the non-personalized model merges the data of all users, which allows it
to be trained on a large collection of tweets received by different users. Note that in
the dataset, there is an average of 569 tweets in the training database of each recipient
user and a median of 343 tweets.

8A learning curve shows the validation and training score of an estimator for varying numbers of
training samples.
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Table 4.5: Personalized feature importance

User f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

Astro0Glen 0.02 0.04 0.0 0.39 0.06 0.13 0.07 0.1 0.04 0.01 0.01 0.0 0.14

Astro_Pam 0.05 0.06 0.03 0.23 0.06 0.09 0.05 0.1 0.09 0.01 0.03 0.02 0.2

bamwxcom 0.0 0.01 0.13 0.03 0.0 0.1 0.06 0.08 0.08 0.01 0.02 0.08 0.39

Baronatrix 0.03 0.01 0.0 0.21 0.0 0.11 0.09 0.15 0.12 0.01 0.04 0.01 0.23

BethStamper6 0.04 0.0 0.0 0.3 0.0 0.06 0.06 0.1 0.14 0.02 0.04 0.02 0.22

byudkowsky 0.03 0.0 0.0 0.14 0.12 0.21 0.05 0.12 0.17 0.0 0.01 0.0 0.14

ch402 0.03 0.0 0.01 0.19 0.02 0.11 0.07 0.15 0.13 0.01 0.02 0.01 0.25

demishassabis 0.06 0.0 0.02 0.25 0.0 0.09 0.23 0.09 0.08 0.01 0.01 0.0 0.17

eevil_abby 0.2 0.0 0.07 0.06 0.05 0.06 0.05 0.09 0.19 0.02 0.01 0.03 0.18

elonmusk 0.04 0.0 0.0 0.23 0.02 0.1 0.06 0.07 0.06 0.01 0.02 0.01 0.39

GeorgeHarrison 0.0 0.01 0.0 0.2 0.22 0.07 0.03 0.15 0.02 0.0 0.0 0.0 0.29

GilmoreGuysShow 0.03 0.0 0.0 0.1 0.0 0.14 0.08 0.19 0.13 0.02 0.07 0.01 0.22

gwern 0.03 0.0 0.0 0.21 0.01 0.16 0.07 0.11 0.08 0.04 0.01 0.0 0.29

homebrew 0.02 0.01 0.01 0.2 0.09 0.07 0.03 0.1 0.08 0.01 0.01 0.01 0.37

HybridZizi 0.04 0.0 0.0 0.3 0.0 0.11 0.06 0.13 0.1 0.02 0.03 0.02 0.21

jadelgador 0.08 0.01 0.0 0.29 0.04 0.07 0.05 0.09 0.03 0.01 0.0 0.01 0.33

JHUBME 0.05 0.04 0.11 0.17 0.13 0.08 0.04 0.11 0.07 0.01 0.0 0.0 0.19

JohnDawsonFox26 0.04 0.02 0.0 0.26 0.12 0.07 0.04 0.06 0.05 0.01 0.02 0.08 0.25

john_walsh 0.0 0.21 0.02 0.13 0.03 0.14 0.03 0.17 0.05 0.03 0.0 0.0 0.18

kilcherfrontier 0.01 0.12 0.12 0.27 0.07 0.07 0.04 0.19 0.03 0.0 0.02 0.0 0.06

LKrauss1 0.05 0.0 0.08 0.02 0.06 0.11 0.06 0.15 0.17 0.04 0.14 0.01 0.12

mastenspace 0.14 0.0 0.3 0.23 0.01 0.05 0.02 0.17 0.02 0.0 0.0 0.0 0.05

Medium 0.4 0.0 0.21 0.06 0.0 0.03 0.01 0.16 0.02 0.02 0.0 0.0 0.09

microphilosophy 0.13 0.01 0.0 0.11 0.01 0.12 0.16 0.08 0.1 0.02 0.01 0.01 0.25

MIRIBerkeley 0.23 0.0 0.0 0.09 0.04 0.09 0.18 0.12 0.08 0.01 0.01 0.0 0.15

NASAKepler 0.12 0.07 0.31 0.03 0.06 0.04 0.01 0.15 0.1 0.0 0.0 0.0 0.1

NASA_Wallops 0.08 0.05 0.03 0.11 0.02 0.07 0.0 0.18 0.03 0.0 0.05 0.0 0.38

newscientist 0.26 0.0 0.19 0.07 0.0 0.08 0.03 0.1 0.07 0.01 0.0 0.02 0.18

PattiPiatt 0.03 0.01 0.0 0.34 0.01 0.07 0.11 0.12 0.06 0.02 0.06 0.01 0.17

peterboghossian 0.05 0.01 0.06 0.23 0.03 0.08 0.05 0.13 0.1 0.01 0.02 0.01 0.22

rafat 0.03 0.0 0.03 0.18 0.0 0.11 0.04 0.11 0.08 0.01 0.03 0.04 0.33

realDonaldTrump 0.02 0.03 0.0 0.1 0.0 0.12 0.02 0.07 0.03 0.0 0.0 0.01 0.58

Red_or_MC1R 0.03 0.0 0.0 0.11 0.0 0.13 0.06 0.13 0.22 0.02 0.05 0.01 0.24

renormalized 0.03 0.0 0.0 0.16 0.0 0.11 0.07 0.13 0.13 0.0 0.06 0.01 0.3

RossTuckerNFL 0.03 0.0 0.22 0.2 0.05 0.09 0.09 0.13 0.04 0.01 0.02 0.02 0.11

RoxanneDawn 0.02 0.04 0.0 0.28 0.03 0.14 0.07 0.16 0.07 0.01 0.02 0.02 0.15

scimichael 0.06 0.03 0.0 0.32 0.0 0.14 0.04 0.12 0.05 0.01 0.0 0.0 0.24

SfNtweets 0.04 0.18 0.02 0.13 0.02 0.06 0.13 0.12 0.08 0.01 0.01 0.0 0.2

slatestarcodex 0.01 0.0 0.0 0.14 0.0 0.22 0.09 0.13 0.13 0.0 0.03 0.0 0.25

SLSingh 0.06 0.0 0.0 0.23 0.02 0.11 0.11 0.2 0.03 0.0 0.02 0.0 0.21

sxbegle 0.04 0.0 0.14 0.17 0.02 0.09 0.05 0.11 0.1 0.01 0.02 0.0 0.23

TeslaRoadTrip 0.05 0.01 0.0 0.23 0.0 0.12 0.06 0.1 0.04 0.01 0.02 0.03 0.34

TheMuslimReform 0.04 0.0 0.0 0.01 0.24 0.13 0.13 0.1 0.11 0.02 0.0 0.0 0.22

TheRickDore 0.01 0.02 0.22 0.1 0.0 0.12 0.03 0.11 0.08 0.02 0.05 0.02 0.2

USDISA 0.07 0.01 0.12 0.16 0.03 0.12 0.04 0.13 0.12 0.02 0.01 0.01 0.16

WestWingWeekly 0.04 0.02 0.14 0.21 0.11 0.09 0.04 0.07 0.08 0.01 0.01 0.01 0.18
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Fig. 4.5: Learning curves: Non-Personalized (left) vs. Personalized (right)

Second, the training and cross-validation curves in Fig. 4.5 indicate that both
personalized and non-personalized models converge, suggesting that the models are
able to learn to classify tweets according to their relevance. However, we notice that
train a non-personalized model on a larger training set makes it more robust and less
likely to overfit comparing to the personalized model. In other words, the training and
cross-validation curves of the non-personalized model converge to the same F score
value (76%), indicating that the model can generalize relevance predictions to unseen
tweets. As to the personalized model, which is trained on a smaller training set, we
observe that the model fits the training dataset too well with a high F score value
(90% ) and loses some of its ability to generalize to the cross-validation set with a lower
F score value (78%). Therefore, to make more accurate predictions to new and unseen
tweets, it would be advisable to use one of the many machine learning techniques to
prevent overfitting: regularization, early stopping, data augmentation, etc. [91].

Finally, another notable difference is that non-personalized models may work
better with new or inactive users, for which personalized models may have very few
training instances. Indeed, in such cases, the personalized model does not have infor-
mation about user preferences and interests to make specific recommendations. Hence,
it is important to suggest alternatives to address this common problem in recommender
systems known as the cold-start problem. Non-personalized models address this issue
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by default since the same model can be used to any user on the social media, even
new or inactive users. Lastly, it is easier for social media administrators/developers to
fine-tune and manage a single non-personalized model than fine-tuning a personalized
model for each user. For example, in our case, it was somewhat possible to look at
each of the 46 prediction models corresponding to the 46 recipient users, but this may
become more challenging as the number of users increases. In such a situation, it is
necessary to provide reliable automatic techniques to validate user models.

4.6 Conclusion

In this chapter, we first presented a typical approach to rank news feed updates on
Twitter and provided a reminder of the classical non-personalized approach that uses a
prediction model for all users. Then, to predict the relevance of news feed updates and
improve user experience, we used the random forest algorithm to train and introduce a
personalized prediction model for each user. After that, we defined a fair comparison
methodology by selecting the best parameters of both personalized and non-personalized
models according to the collected data. Finally, we conducted a comparative study
by evaluating, analyzing, and comparing personalized and non-personalized models
according to six criteria: (1) the overall prediction performance of both approaches
to get a global overview of the most effective model; (2) the amount of data in the
training set to investigate the robustness of each model; (3) the cold-start problem,
which is a common problem in recommender systems; (4) the incorporation of user
preferences over time; (5) the model fine-tuning to investigate the manageability of each
model; and (6) the personalization of feature importance for users. Following extensive
experiments on a dataset crawled from Twitter, the experimental results show that
a single non-personalized model for all users is easy to manage and fine-tune, is less
likely to overfit as it benefits from more data, and it addresses the problem of cold-start
and inactive users. On the other hand, the personalized models we introduce allow
personalized feature importance, take into consideration the preferences of each user,
and allow to track changes in user preferences over time. Furthermore, the personalized
models we propose give a higher prediction accuracy than non-personalized models.
These findings highlight the need for personalization to effectively rank the news feed,
promote relevant updates, and assist users by suggesting tailored content of interest.

In the next chapter, knowing that the effectiveness of the prediction and ranking
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depends partly on the chosen model, we first describe the context of the comparison on
Twitter according to a personalized approach that predicts the relevance of news feed
updates. Then, we select and describe seven supervised learning algorithms that have
been used in related work. Finally, to determine the most suitable models, we conduct
a comparative study by evaluating, analyzing, and comparing the selected algorithms.
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Chapter 5

Supervised learning algorithms for
personalized RNFU: A
comparative study

5.1 Introduction

In several research approaches, ranking news feed updates in descending relevance
order has been proposed to help users quickly catch up with the content they may find
interesting [55]. For this matter, different supervised learning models such as Gradient
Boosting, Support Vector Machine, and logistic regression have been commonly used in
related work and seem suitable to rank news feed updates [93]. Indeed, using labeled
training data, these models analyze past user behaviors to predict whether they will
find an update relevant in the future [91]. The purpose is to map new input features
of an update unread by a user to a relevance score using a function learned from
previously read updates in the training set. However, we found that each related work
intuitively chooses one supervised learning algorithm, states that the other algorithms
can be used, and points out that it is out of the scope to compare different algorithms
in their work [94]. According to the no free lunch theorem [36], no single machine
learning algorithm is better than all the others on all problems as each one of them
has its advantages and disadvantages such as flexibility, complexity, interpretability,
overfitting tendency, times for learning and predicting, tolerance to a large number
of features, minimal required data, number of hyperparameters, etc. Therefore, it is
common to try multiple models and select the one that works best for a particular
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problem. The key to a fair comparison of machine learning algorithms is ensuring that
each algorithm is evaluated in the same way on the same data [36].

In this chapter, knowing that the effectiveness of the prediction and ranking
depends partly on the chosen model, we first describe the context of the comparison on
Twitter according to a personalized approach that predicts the relevance of news feed
updates. Then, we select and describe seven supervised learning algorithms that have
been used in related work: Naive Bayes, logistic regression, decision trees, Gradient
Boosting, random forest, artificial neural networks, and Support Vector Machine. After
that, we define a rigorous and fair comparison methodology by selecting the best param-
eters of each algorithm according to the data. Finally, to determine the most suitable
models, we conduct a comparative study by evaluating, analyzing, and comparing the
selected algorithms. The comparison and evaluation results are presented and discussed
according to three criteria: (1) overall prediction performance of all algorithms to
get a global overview of the most effective models; (2) prediction performance on
various training set sizes to investigate scalability and the impact of data size on model
performance; and (3) the computing speed performance to have an insight into the
fastest models for eventual deployment in production.

The chapter is structured as follows: section 5.2 describes the context of the
comparison on Twitter according to a personalized approach that predicts the relevance
of news feed updates, section 5.3 describes the seven supervised learning algorithms
that we selected for the comparison, section 5.4 discusses the experiments we performed
to evaluate and compare the supervised models, and section 5.5 concludes the chapter.

5.2 Context of the comparison

Fig. 5.1 describes the personalized technique we introduced in the chapter 4 to predict
the relevance score R(t,u) of a tweet t ∈ F(u). This technique is based on a supervised
prediction model that analyzes labelled training data of tweets that u read in the past
to predict if u will find t relevant in the future. Let D(u) denotes a subset of tweets
previously read by u. The training data is a set of input-out pairs such that an input
represents a vector of features that may influence the relevance of a tweet t’ ∈ D(u)
to u, and the output represents the relevance score R(t’,u). The technique involves
three steps: (1) assign implicit relevance scores to tweets; (2) extract the features that
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may influence relevance; and (3) train the relevance prediction model. In this section,
we describe each step according to our personalized approach.

Fig. 5.1: Personalized prediction of a relevance score

5.2.1 Relevance scores

The implicit method we use assumes that a previously read tweet t’ ∈ D(u) is relevant
to a user u ∈ S if u interacted with the tweet t’ . Predicting implicit relevance scores
results in a binary classification problem:

R(t’,u) =

1 if u interacted with t’ (retweet or reply or like)

0 otherwise
(5.1)

5.2.2 Features that may influence relevance

We use the 13 most relevant features according to related work, which were previously
presented in section 4.2.2. The features may influence the relevance R(t,u) of a tweet
t, posted by an author u’ , to the recipient u. We recall the features in Table 5.1.

5.2.3 Relevance prediction model

Let S denotes the set of recipient users. First, we generate training data instances
for each user u ∈ S in the form of input-output pairs considering each previously read
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Table 5.1: Features that may influence relevance

Features that may influence relevance Type N◦

Relevance of

the content of t,

its hashtags, and

mentions to u

Relevance of the keywords of t to u Int f1

Relevance of the hashtags of t to u Int f2

Presence of u in the mentions of t Bool f3

Social tie strength

between u and u’

Interaction rate of u with tweets of u’ Float f4

Number of times u mentioned u’ Int f5

Authority of u’
Followers count / Followings count Int f6

Seniority in years Int f7

Listed (group) count Int f8

Quality of t

Length (# characters) Int f9

Presence of hashtags Bool f10

Presence of a URL Bool f11

Presence of a photo or a video Bool f12

Popularity (# retweets, replies, likes) Int f13

tweet t’ ∈ D(u). An input represents a vector of features that may influence the
relevance of t’ to u, and the output represents the implicit relevance score R(t’,u).
Second, we divide the training data of each user u ∈ S into two sets: a training set of
the prediction model for 70% of the first instances (the least recent ones) and a test set
for 30% of the remaining instances (the most recent ones). Finally, we use the training
set of each user u ∈ S to train a supervised prediction model. The purpose is to map
new input features of a tweet unread by u to a relevance score using a binary classifier
learned from previously read tweets in the training set. Different supervised algorithms
have been used in related work to train the relevance prediction model. In the next
section, we describe the selected algorithms that we consider in the comparison.
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5.3 Selected supervised learning algorithms

In the comparison, we first selected the following seven supervised algorithms that
have been used in several related works: Naive Bayes [7], logistic regression [8, 9, 55],
decision trees [95], Gradient Boosting [5], random forest [83], artificial neural networks
[66, 67, 54], and Support Vector Machine [56]. In this section, we describe each of
the algorithms briefly and refers to the corresponding related works that have used
them. Note that Naive Bayes and logistic regression can be used for classification
only, unlike the five other algorithms mentioned above, which can be used for both
classification and regression problems. However, as discussed in section 5.2.1, we recall
that predicting relevance scores of tweets is a binary classification problem. The rest
of the section therefore focuses on supervised classification.

5.3.1 Naive Bayes

In an attempt to improve the performance of the state-of-the-art collaborative person-
alized tweet recommendation model [64], Song et al. [7] introduced personal hashtags
to optimize BPR (Bayesian Personalized Ranking) [96] and creatively apply the model
into an online scenario. The Bayes theorem with independent assumptions between
features is the core concept of the Naive Bayes classifier [34]. The simplest approach of
the Bayesian network is Naive Bayes, in which all features of a dataset are independent
of the class variable value. Therefore, the Naive Bayes classifier can be considered
a Bayesian network where the class node has no parents, and each feature node has
the class as its sole parent. Naive Bayes classifiers build the model easily with no
complicated iterative parameter estimation [42]. Due to this characteristic, Naive Bayes
classifiers are useful for large datasets. Despite its simplicity, Naive Bayes classifiers
provide better results for complex real-world problems. Indeed, several studies on
the analysis of the Bayesian classification problem have shown that there are some
theoretical reasons for the unreasonable effectiveness of Naive Bayes, even on datasets
with substantial feature dependencies [34]. One of the strengths of Naive Bayes is that
it requires a small amount of training data to estimate the target function [42].

5.3.2 Logistic Regression

To predict the probability that a recipient user may find a tweet interesting enough to
retweet it, Vougioukas et al. [55] proposed a binary classifier based on logistic regression.
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Similarly, to personalize news feeds on LinkedIn, Agarwal et al. [8, 9] proposed large-
scale binary classifiers based on logistic regression to predict the click-through-rate of
each activity and generate three kinds of affinity scores: viewer-activity, viewer-actor,
and viewer-activity-actor. The term regression is defined as analyzing or measuring
the relationship between a dependent variable and one or more independent variables
[40]. Regression is defined by two types: linear regression and logistic regression, where
logistic regression is a generalization of linear regression such that the continuous
output variable is transformed into a discrete variable [97]. Indeed, logistic regression is
used to estimate binary or multi-class dependent variables where a boundary between
the classes exists. It is therefore used to classify the low-dimensional data having
non-linear boundaries. Logistic regression states that the class probabilities depend on
the distance from the boundary [34]. It also provides the difference in the percentage of
the dependent variable and provides the rank of features according to their importance.
Logistic regression is fast to train, seldom overfits, and is commonly used for applied
statistics, discrete data analysis, and event probability prediction [30].

5.3.3 Decision Trees

In an effort to predict the relevance of news feeds updates and leverage the author’s
expertise in addition to other features used in related work, we proposed in [95] a binary
classifier model based on decision trees. Decision trees are flowchart-like structures
that classify instances by sorting them based on feature values [41]. In an instance to
be classified, each node in a decision tree represents a test on a feature, each branch
represents the output of the test, i.e. a value that the node can have, and each leaf
node represents the class label. Instances are classified starting at the root node and
sorted based on their feature values until the leaf nodes [98]. The paths from the root
to the leaf represent relevance classification rules. In the decision process, the instances
are split into two or more sub-sample sets, which is decided by the most significant
splitter or differentiator in the input features [41]. Decision trees are fast to train
and to predict outcomes, they require little data preprocessing, and they are easy to
interpret with their visual representation, unlike most models that are black boxes [98].

5.3.4 Gradient Boosting

To predict continuous relevance scores for tweets, Shen et al. [5] first modeled the
relevance of tweets by minimizing the pairwise loss of relevant and irrelevant tweets.
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Then, they used a supervised regression model based on a Gradient Boosted ranking
algorithm (GBrank) [68] to learn a tweet ranking function. Gradient Boosting is an
ensemble learning method1 for regression and classification problems that produce
a prediction model in the form of an ensemble of weak prediction models, typically
decision trees [34]. Gradient Boosting combines the weak learners into a single strong
learner in an iterative fashion. The algorithm begins by initializing the ensemble with
a single weak model whose predictions can be pretty naive, then start the cycle. As
each weak learner is added, a new model is fitted to provide a more accurate estimate
of the output variable. The new weak learners are maximally correlated with the
negative gradient of the loss function associated with the whole ensemble [34]. Gradient
Boosting can approximate most nonlinear functions; it also addresses concerns about
multicollinearity problems, where there are high correlations between features [34].
Gradient Boosting has shown success in practical applications and various machine
learning and data mining challenges.

5.3.5 Random Forest

To compute feature importance and predict the relevance of news feed updates on
Twitter, we proposed in [83] a supervised model based on random forest to predict binary
scores for tweets. Random forest is an ensemble learning method for classification and
regression problems that operate by constructing a multitude of decision trees called
estimators, which each produce their own predictions [43]. Each tree is distinguished by
the sub-sample vector on which it is trained, and which is randomly selected with the
same distribution from the training set. This machine learning process is called bagging
[34]. Random forest uses averaging, i.e. takes the average of the predictions of the
individual estimators to improve the predictive performance and correct the decision
trees’ habit of overfitting [43]. The random forest algorithm has been extremely
successful as a classification and regression method in a wide range of prediction
problems such as data science, bioinformatics, 3D object recognition, etc. [99]. Random
forest is extremely robust, especially in the classification, it seldom overfits, implicitly
performs feature selection, and allows to compute feature importance [89].

1A method that uses multiple machine learning algorithms to obtain better predictive performance
than could be obtained from any of the constituent learning algorithms alone.
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5.3.6 Artificial Neural Networks

To represent tweets, user preferences, compute similarities between user preferences
and tweets, and rank tweets according to their relevance, Zhang et al. [66], Piao and
Breslin [67], and De Maio et al. [54] proposed different approaches based on artificial
neural networks. The general architecture of a neural network consists of three layers:
an input layer that defines the input value, one or more hidden layers that define the
mathematical function, and an output layer that defines the final outcome [33]. Each
layer consists of a large number of neurons that are interconnected through weights
such that each neuron has a mathematical function, called activation function, that
takes input from the previous layer and produces output for the next layer [30]. The
behavior of the ANN is defined by the values of the weights. Indeed, the weights of
the neural network to be trained are initially set to random values, then instances of
the training set are repeatedly exposed to the network as follows: First, the values
of an input instance are placed on the input units. Then, the output of the network
is compared to the desired output for this instance. Finally, all the weights in the
network are adjusted slightly in the direction that brings the output values of the
network closer to the values for the desired output [33]. Artificial neural networks are
applied to many real-life problems; one of their strengths is their robustness to outliers
and their ability to approximate any nonlinear function from data [34].

5.3.7 Support Vector Machine

To predict the relevance of news feed posts on Facebook, Paek et al. [56] learned Support
Vector Machine classifiers of news feed importance to identify predictive features related
to social media properties, the message text, and the user background information.
In support vector machine, each data point is interpreted as a p-dimensional vector,
such that the machine attempts to create a linear classifier by fitting the data point
inside a hyperplane with a p-1 dimension [44]. A hyperplane in an n-dimensional
Euclidean space is a flat n-1 dimensional subset of that space that divides it into two
separate parts [30]. Indeed, every input is turned into a point in n-dimensional space
where n is the number of features, and the value of each feature is defined as the value
of a unique coordinate on the hyperplane [34]. The classification is determined by
finding the hyperplane that most clearly separates the two classes [44]. Maximizing the
margin separating the support vectors and creating the largest distance between the
hyperplane and the instances on either side has been proven to reduce an upper bound
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on the generalization error [44]. Unlike logistic regression, the support vector machine
does not provide class probabilities but outputs a class identity. The key strength of
support vector machines is their ability to approximate complex non-linear functions
and to work well when there is a clear margin of separation between classes [34].

To the best of our knowledge, no comparative study was carried out to determine the
most suitable models as each related work intuitively chooses one supervised learning
algorithm without addressing the possible use of other algorithms that can be more
efficient. The no free lunch theorem [36] for supervised machine learning is a theorem
that essentially implies that no single machine learning algorithm is universally the
best-performing algorithm for all problems. Indeed, each algorithm has its advantages
and disadvantages such as flexibility, complexity, interpretability, overfitting tendency,
times for learning and predicting, tolerance to a large number of features, minimal
required data, number of hyperparameters2, etc. Hence, it is common to try different
models and select the one that works best for a particular problem using a validation
technique. In the next section, knowing that the effectiveness of the prediction depends
partly on the chosen model, we describe the experiments we performed to evaluate,
compare, and determine the most suitable algorithms to rank news feed updates.

5.4 Experiments and comparison results

To evaluate and compare the supervised models, we describe in this section: (1) the
measures we used to evaluate model performance; (2) the methodology we used in the
comparison; and (3) the obtained results.

5.4.1 Measures

In the experiments, we used the dataset described in section 4.5.1 and the concepts TP,
TN, FP, and FN defined in section 4.5.2. To compare model performance in predicting
the relevance of news feed updates, we first train a binary classifier model for each user
u ∈ S using the corresponding training set (70% of the least recent instances). Then, we
evaluate the model using the corresponding test set (30% of the most recent instances).
To do so, we use two popular measures for binary classification, the Accuracy given by
Equation 5.2 and the weighted F1 score given by Equation 5.3 [91].

2The ”knobs” to be tweak during successive runs of training a model.
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Accuracy = TP +TN

TP +TN +FP +FN
(5.2)

F = (Fr × (TP +FN))+(Fi × (TN +FP ))
TP +TN +FP +FN

(5.3)

Where:

• Fr is the standard F1 score for the class of relevant tweets

• Fi is the standard F1 score for the class of irrelevant tweets

5.4.2 Methodology

The experimentation was conducted using Python and the scikit-learn machine learning
library3, which includes various classification, regression, and clustering algorithms.

First, we annotated the supervised algorithms as follows: Naive Bayes (NB),
logistic regression (LR), decision trees (DT), Gradient Boosting (GB), random forest
(RF), artificial neural networks (ANN), and Support Vector Machine (SVM). Then,
since ANN and SVM require data scaling to prevent features in greater numeric ranges,
we normalized all feature values in the range [0,1] using the min-max scaling [100].
Moreover, for a fair comparison, we selected the best parameters of each algorithm with
a random search [92] and a 5-fold time-series cross-validation performed on the train
set [91]. A time-series cross-validation was used instead of the standard cross-validation
to preserve the chronological order of tweets (see section 5.2.3).

To find the best parameters of each algorithm, a random search was hence run over
different parameter values. Random search is a widely used strategy for algorithm hyper-
parameter optimization that randomly samples values from the statistical distribution
of each parameter to select the values that give the best performance according to
the evaluation measure [92]. Table 5.2 gives details about the model hyperparameter
optimization, including the distribution of the most important parameters for each
algorithm and the number of iterations we performed in the corresponding random
search. The description of the hyperparameters of each algorithm is provided in
Table 5.3, while more details are available in the scikit-learn documentation3. The

3https://scikit-learn.org/stable/
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Table 5.2: Model hyperparameter optimization

Supervised model Parameter distribution No of iterations in random search Related work

GB

loss: [deviance, exponential]

150 [5]

learning_rate: [0.001, 0.01, 0.1]

n_estimators: [15, 30, 50, 70, 100]

subsample: [0.5, 0.7, 1.0]

min_samples_split: [4, 7, 10, 13, 16, 19]

min_samples_leaf: [3, 7, 10, 13, 16, 19]

max_depth: [3, 6, 9]

max_features: [sqrt, log2]

RF

n_estimators: [15, 30, 50, 70, 100]

150 [83]

criterion: [entropy, gini]

max_depth: [3, 6, 9]

min_samples_split: [4, 7, 10, 13, 16, 19]

min_samples_leaf: [3, 7, 10, 13, 16, 19]

max_features: [sqrt, log2]

bootstrap: [True, False]

SVM

C: [1, 10, 100, 1000]
48 [56]kernel: [linear, rbf, poly]

gamma: [0.0001, 0.001, 0.1, 1]

DT

criterion: [entropy, gini]

150 [95]
max_depth: [3, 6, 9]

min_samples_split: [4, 7, 10, 13, 16, 19]

min_samples_leaf: [3, 7, 10, 13, 16, 19]

ANN

optimizer: [SGD]

54

input neurons: [13]

hidden neurons: [13, 30]

output neurons: [1] [66]

epochs: [15, 30] [54]

learn_rate: [0.1, 0.2, 0.3] [67]

momentum: [0.2, 0.4, 0.6]

dropout_rate: [0.1, 0.2, 0.3]

LG

penalty: [l1, l2]

70

[8]

dual: [False] [9]

C: [0.001, 0.01, 0.1, 1, 10, 100, 1000] [55]

solver: [newton-cg, lbfgs, liblinear, sag, saga]

NB - - [7]
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number of iterations we use is approximately chosen according to the number of
parameters of each algorithm and their distribution, i.e. the more parameters an
algorithm has and the denser their distribution, the greater the number of iterations
to perform. Note that ANN is an exception as it has many parameters to fine-tune,
but a single iteration is very computationally expensive.

Table 5.3: Hyperparameter description [101]

Hyperparameter Description

loss The loss function to be optimized

learning_rate The step size at each iteration while moving toward a minimum of a loss function

n_estimators The number of trees in the ensemble model

subsample The fraction of samples to be used for fitting the individual trees

min_samples_split The minimum number of samples required to split an internal node in a tree

min_samples_leaf The minimum number of samples required to be at a leaf node in a tree

max_depth The maximum depth of a tree

max_features The number of features to consider when looking for the best split of an internal node in a tree

criterion The function to measure the quality of a node split in a tree

bootstrap Whether bootstrap samples are used when building trees. If False, the whole dataset is used to build each tree

C The regularization parameter to reduce overfitting. The strength of the regularization is inversely proportional to C

kernel The kernel type to be used in the algorithm

gamma The kernel coefficient, which defines how far the influence of a single training example reaches

optimizer The training optimization algorithm to be used. The most common algorithm is Stochastic Gradient Descent (SGD)

input neurons The number of neurons in the input layer

hidden neurons The number of neurons in the hidden layer

output neurons The number of neurons in the output layer

epochs The number of iterations. One iteration is generally defined as one pass over the entire dataset

momentum A value that controls how much to let the previous weight updates influence the current weights

dropout_rate The proportion of neurons to be ignored during training to reduce overfitting

penalty The norm used in the penalization to penalize the logistic model for having too many variables

dual A parameter to use dual or primal formulation, Dual=False is preferred when n_samples >n_features

solver The training optimization algorithm to be used

Finally, to study the algorithmic stability with several runs and small changes to
training data, we retrained and iterated each model on 20 different random state4

values, then evaluated it on the test set. Therefore, we end up with 20 Accuracy and F
scores for each algorithm and then plot the corresponding boxplot and average scores.

4A variable used in randomized algorithms to determine the random seed of the pseudo-random
number generator.
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5.4.3 Results

The comparison and evaluation results are presented and discussed according to three
criteria: (1) overall prediction performance of all algorithms to get a global overview of
the most effective models; (2) prediction performance on various training set sizes to
investigate scalability and the impact of data size on model performance; and (3) the
computing speed performance to have an insight into the fastest models for eventual
deployment in production.

Overall performance Fig. 5.2 shows the comparison between the average Accuracy
and F scores for each algorithm, and Fig. 5.3 presents the boxplot of the comparison
between the algorithms trained and evaluated over 20 random state values. Fig. 5.2
indicates that the Accuracy scores are slightly higher than the F scores. Indeed, in
our dataset, the classes are unbalanced since the relevant tweet class represents only
about 35% of tweets for each user. The Accuracy measure gives slightly over-optimistic
results comparing to the F score because the latter is weighted by the number of
true instances for each class, unlike the Accuracy score. Therefore, we focus on the F
score in the rest of the section. First, both figures show that the scores differ greatly
depending on the algorithm, from average F scores of 80.7% and 80.68% with GB and
RF respectively, to 73.29% with NB. This corresponds to a performance gain of almost
+8% and confirms that comparing and selecting the most suitable supervised model is
critical to increase the efficiency of the prediction and ranking process. Moreover, we
note from Fig. 5.3 that SVM, LR, and NB remain stable even if retrained and iterated
over different random state values. Indeed, the learning process of these models does
not imply random sampling from data, unlike GB, RF, DT, and ANN [91].

Nonetheless, although GB and RF are less stable, we notice from Fig. 5.2 and
Fig. 5.3 that they outperform the other algorithms, with average F scores of 80.7% and
80.68% respectively. This highlights that ensemble learning models such as GB and
RF, which combine multiple learning algorithms to improve the overall performance,
are the most appropriate to predict the relevance of news feed updates. Moreover, this
confirms our intuition in the chapter 4 in which we used Random Forest because of its
many advantages. Note that both GB and RF combine multiple decision trees. The
results also reveal that SVM and DT perform well with average F scores of 77.49% and
77.63% respectively, but not as well as GB and RF. Indeed, both GB and RF combine
multiple decision trees to improve the predictive performance and correct the overfitting
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Fig. 5.2: Average Accuracy
and F scores

Fig. 5.3: F scores on 20 random
state values

tendency of the individual DT model, which tends to result in a long tree and loses its
ability to generalize to unseen data [89]. Regarding the SVM model, as in the case
study of ranking news feed updates, it has been proved that ensemble learning methods
such as GB and RF tend to perform better than SVM in clearly defined problems with
tabular data5, small to intermediate datasets, and a manageable number of features [91].

The results also indicate that ANN and LR perform moderately with average
F scores of 76.86% and 76.48% respectively. Indeed, ANN is computationally expensive,
and its architecture has many parameters that are difficult to fine-tune (number of
layers, activation function and number of neurons in each layer, etc.) [33]; the random
search hyper-parameter optimization we used could not cover the statistical distribution
of all parameters in the large search-space (see Table 5.2). Moreover, ANN requires
a considerable amount of data to achieve a good performance; in this case of study,
there is only an average of 569 tweets as training data instances for each user. Finally,
neural networks tend to perform very well with unstructured data such as text and
images, but not with tabular data such as our dataset [102]. Concerning LR, it is a
parametric machine learning algorithm since it assumes a linear functional form of the
prediction model [40]. Parametric algorithms such as LG are simpler as they make

5In machine learning, data can be categorized into unstructured data, which can be maintained in
formats that are not uniform, such as image and text, and structured data with the common tabular
rows and columns format.
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Fig. 5.4: Average F scores on various training set sizes

assumptions about the target function to make it easier to learn; they are faster to
train, require less data but are not as powerful as GB, RF, SVM, and DT, which
are non-parametric algorithms [103]. Non-parametric methods are more flexible as
they can learn any functional form from the training data, but have a higher model
complexity and require more data and training time [30]. Finally, we observe that NB
performs poorly with an average F score of 73.29%. This is certainly due to the strong
assumption this parametric algorithm makes about the independence of the features,
which do not hold in the case study of ranking news feed updates. Indeed, the value of
some features is dependent on the value of other features, e.g., the more followers a
user has (feature f 6), the more the user is listed in groups (feature f 8).

Performance on various training set sizes To investigate scalability and the
impact of data size on performance, we computed in Fig. 5.4 the average F scores on
various training set sizes: 25%, 50%, 75%, and 100% of the data. For each training
set size, we retrained and iterated each of the seven algorithms over 20 random state
values. First, the results highlight the huge impact of data size on the performance of
all algorithms as we notice a significant gain when using 100% of data compared to
25% of data, e.g. from an average score of 70.6% to 80.57% with GB, from 70.89% to
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80.69% with RF, from 68.93% to 77.49% with SVM, etc. The results also indicate that
the ranking of the most effective algorithms changes as we consider larger training set
sizes. For example, at first, when considering only 25% and then 50% of data, LR is
the first and then the second most efficient algorithm with average scores of 71.88%
and 74.96% respectively. Similarly, when considering 25% of data, we notice that NB
outperformed ANN and DT with an average score of 67.8% for NB against 64.57% and
66.32% for ANN and DT. Indeed, when the training set is small, parametric classifiers
such as LR and NB, which have a high bias/low variance6, have an advantage over
non-parametric classifiers such as GB, RF, SVM, ANN, and DT, which have a low
bias/high variance. Indeed, due to their flexibility in learning any functional form from
the training data, non-parametric classifiers tend to overfit small training sets and lose
their ability to converge and generalize to unseen data [30]. However, as the training
set grows with 75% and then 100% of data, we notice that low bias/high variance
classifiers start to win out so that LG moved from the second to the fourth and then
to the fifth most efficient algorithm win an average score of 76.74% and then 76.48%
respectively. Indeed, the increasing amount of data and its complexity fails to meet
the simplifying assumptions and low-model complexity of high bias classifiers such as
LG and NB, unlike low bias classifiers such as GB, RF, SVM, ANN, and DT, which
start to converge as training size increases [103].

Speed performance To compare computing speed, we calculated in Fig. 5.5 and
Fig. 5.6 the average training and predicting times for each of the seven algorithms
over 20 executions. In both training and predicting, a single run corresponds to the
algorithm execution time for all 46 users in the dataset, which corresponds to 18307
tweets for training and 7873 tweets for predicting. First, both figures show that the
fastest algorithm is DT with average training and predicting times of 0.04 and 0.0
seconds respectively. Indeed, one of the specifications of decision trees is to be very
quick to train and predict outcomes thanks to their flow-chart structure [98]. The
second fastest algorithms are NB and LR with average training and predicting times of
0.03 and 0.01 seconds for NB and 0.83 and 0.01 seconds for LR. Certainly, as they make
strong assumptions about the form of the learning function to make it easier to learn,
the simplicity and low model complexity of parametric algorithms such as NB and LG
make them faster to train and predict outcomes than non-parametric algorithms [103].

6The bias is the simplifying assumptions made by a model to make the target function easier to
learn, and the variance is the amount of changes in the target function if different training data was
used. The goal of machine learning algorithms is to achieve low bias and low variance.
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The results also indicate that SVM, GB, and RF are relatively fast in both training
and predicting with average training and predicting times of 1.28 and 0.08 seconds for
SVM, 1.93 and 0.02 seconds for GB, and 2.84 and 0.13 seconds for RF. Indeed, these
algorithms give overall good speed performance as long as the dataset is not too large
[30], which is the case in our study. Finally, the results show that ANN is extremely slow
in training and predicting than the other models with average training and predicting
times of 51.57 and 2.72 seconds. Indeed, due to its complexity and model architecture,
ANN is much more computationally expensive and time-consuming to train and pre-
dict outcomes than traditional algorithms, even with small to intermediate datasets [33].

Fig. 5.5: Average training time on 18307
tweets

Fig. 5.6: Average predicting time on 7873
tweets

5.5 Conclusion

In this chapter, we first described the context of the comparison on Twitter according
to a personalized approach that predicts the relevance of news feed updates. Then,
we selected and described seven supervised algorithms that have been used in related
work to predict the relevance. After that, we defined a rigorous and fair comparison
methodology by selecting the best parameters of each algorithm according to the data.
Finally, to determine the most suitable models, we conducted a comparative study
by evaluating, analyzing, and comparing the selected algorithms according to three
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criteria: (1) overall prediction performance of all algorithms to get a global overview of
the most effective models; (2) prediction performance on various training set sizes to
investigate scalability and the impact of data size on model performance; and (3) the
computing speed performance to have an insight into the fastest models for eventual
deployment in production. Following extensive experiments on Twitter, the results
highlight that selecting the most suitable supervised model is critical to increase the
efficiency of the ranking process. Furthermore, the results show that ensemble learning
models such as Gradient Boosting and Random Forest are the most appropriate to
predict the relevance of updates. Indeed, the comparison results showed that these
models are fast, scalable, and outperform the other algorithms in prediction. Moreover,
they become very accurate as the data size increases.

In the next chapter, we first analyze and discuss research work in the field of
expert finding on social media. Then, to investigate the contribution of expertise to
rank news feed updates, we propose a personalized approach that predicts the relevance
using supervised prediction models based on random forest. In addition to the features
used in related work, the proposed approach leverages the author’s expertise that we
infer from the biography and the textual content the author has posted.
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Chapter 6

Personalized expertise-aware
approach for RNFU

6.1 Introduction

As mentioned in the previous chapters, in most approaches, ranking news feed updates
in descending relevance order has been achieved based on the prediction of a relevance
score between a recipient user and a new update in the news feed [9]. These approaches
generally use four types of features that may influence relevance [104]: (1) the relevance
of the update content to the recipient’s interests; (2) the social tie strength between
the recipient and the author; (3) the author’s authority; and (4) the update quality.
We believe that using these features is necessary when predicting the relevance but
not sufficient. For example, updates on a specific topic authored by a novice user
may not attract the attention as much as updates posted by a recognized expert in
his field. Indeed, updates posted by experts, also known as topical influencers [77] or
topical authorities [105], are often considered credible, important, and interesting [78].
Therefore, leverage the author’s expertise could be all the more necessary to enable
recipient users to catch up with the valuable and trustworthy updates on specific topics.

Expertise information is usually not explicitly provided by social media users
[80]. Therefore, existing research methods primarily rely on implicit expert finding,
which aims at identifying users with the relevant knowledge or experience on a given
topic [86]. The expert finding is a critical problem that has been broadly studied in
many applications such as viral marketing, recruiting talent, link and user recommenda-
tion, and question answering [76]. The task of finding topical experts in networked data
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has been traditionally addressed by combining text mining with link analysis through
the network structure [53]. As regards social media, the main techniques used to infer
a user’s expertise leverage other user interactions with the textual content the user has
posted [106] as well as the user’s social behaviors, including user-generated content,
biographical information, social relationships, list memberships1, etc. [80]. Based on
existing work, to the best of our knowledge, the author’s expertise has not been used
before when recommending and predicting the relevance of updates to recipient users.
In this chapter, we propose a personalized approach to investigate the contribution
of expertise to rank news feed updates. In addition to other features used in related
work, the proposed approach leverages the author’s expertise that we infer from the
biography and the textual content the author has posted. The experimental results on
Twitter show that the features and random forest models we used overall succeed in
predicting the relevance of tweets with remarkable results for several recipient users.
Moreover, the results show that infer and introduce the author’s expertise has improved
the classical approach with a considerable gain in prediction for many users. The
feature importance also shows that expertise is ranked among the top features when
judging the relevance of tweets by recipients users.

The chapter is structured as follows: section 6.2 provides an analysis on expert
finding on social media, section 6.3 describes the proposed approach which uses the
author’s expertise in addition to other features, section 6.4 presents the experiments
we performed to evaluate our approach, and section 6.5 concludes the chapter.

6.2 Expert finding

To identify and find experts on social media, different research approaches have been
proposed in the expert finding field. According to the research work we presented in
section 3.5.1, we notice that the biography and tweets posted by a user have been
broadly used to accurately infer the user’s expertise. Indeed, these two user-related
data are complementary. On the one hand, self-reported biographies may indicate
explicit information about expertise such as education, skills, career information, etc.
On the other hand, the tweets authored by a user may indicate implicit information
about the expertise. The assumption is that a user is likely to have expertise in topics
on which he frequently expresses his opinion. We believe that these findings can be

1Lists that allow users to organize people they follow into labeled topical groups.
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leveraged to predict the relevance of tweets to recipient users. Indeed, as discussed
in section 3.4.1, the primary technique used to predict a relevance score to a tweet t
is based on a relevance prediction model that uses as input a vector of features that
may influence the relevance of t to the recipient user u, to output a corresponding
relevance score R(t,u) that measures the relevance of t to u. Four types of features
that may influence relevance were used in related work:

• Features that measure the relevance of the textual content of t to the interests
of u. Certainly, the features that match between the tweet content and the
recipient’s interests (inner product, cosine similarity, common words, etc.) may
serve as direct predictors of relevance.

• Features that measure social tie strength between u and u’ : interaction rate,
number of common friends, etc. The assumption is that t could be relevant to u
if u has a strong social relationship with u’ .

• Features that measure the authority of u’ : followers and followings count,
seniority, etc. The assumption is that t could be relevant to u if u’ has authority
on the social media. Nagmoti et al. [69] state that if a user is important, i.e. has
authority, then his tweets are also important.

• Features that measure the quality of t: length, popularity, the presence of
multimedia content, etc. The assumption is that t could be relevant to u if it is
of high quality (long, popular, formal, informative, etc.).

Based on existing work, the features that measure the expertise of u’ in the topics
of t have not been used when recommending and predicting the relevance of updates.
The assumption is that the tweet t could be relevant to the recipient u if the author
u’ is an expert in the topics of t. According to Wagner et al. [78], tweets posted
by experts, i.e. users with the relevant skill or knowledge on a given topic, are often
considered credible, important, and interesting. For example, Elon Musk is very famous
in the tech culture for his warnings about the risks of Artificial Intelligence, and his
tweets on this subject often attract the attention of users2 (see Fig. 6.1). Indeed, unlike
novice users, experts know what they are talking about when it comes to topics they
master [79]. Therefore, identifying experts could be crucial to allow users to catch up
with the valuable tweets on specific topics. In the next section, in addition to other

2www.wired.co.uk/article/elon-musk-artificial-intelligence-world-war-3
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features used in related work, we introduce our approach that leverages the author’s
expertise that we infer from the biography and the textual content the author has
posted. Note that the aim is not to propose a novel method that infers expertise but
rather to study its contribution to rank news feed updates.

Fig. 6.1: Tweet by Elon Musk on Artificial Intelligence (AI)

6.3 Proposed approach

The proposed approach takes as input a set of tweets F(u) unread by the recipient
user u that can be included in the news feed, to predict and output a relevance score to
each tweet t ∈ F(u). This approach is based on the personalized model we introduced
in the chapter 4 and uses supervised random forest classifiers as relevance prediction
models [43], which we found to be the most effective following the comparative study in
the chapter 5. In addition to the features used in related work, our approach leverages
the author’s expertise that we infer from the biography and tweets the author has posted.

Let denote by S the subset of recipient users for whom we apply the proposed
approach and D(u) a subset of tweets previously read by a user u ∈ S. In order to
train supervised and personalized prediction models based on random forest, we first
create a training database for each recipient user u ∈ S. The training database is a set
of input-output pairs, called instances, built considering each previously read tweet
t’ ∈ D(u). An input represents a vector of features that may influence the relevance
of a tweet t’ ∈ D(u) to the user u, and the corresponding output represents the
implicit relevance score R(t’,u) that measures the relevance of t’ to u. The proposed
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approach involves three steps: (1) assign implicit relevance scores to tweets; (2) extract
the features that may influence the relevance of tweets; and (3) train the relevance
prediction model. In this section, we describe each of the steps.

6.3.1 Relevance scores

The implicit method we use assumes that a previously read tweet t’ ∈ D(u) is relevant
to a user u if u interacted with t’ . Predicting relevance scores results in a binary
classification problem:

R(t’,u) =

1 if u interacted with t’ (retweet or reply or like)

0 otherwise
(6.1)

6.3.2 Features that may influence relevance

We extract, preprocess, and create from scratch 16 features that may influence the
relevance score R(t,u) that measures the relevance of a tweet t, posted by an author
u’ , to the recipient u. These features are summarized in Table 6.1 and divided into five
categories. Four categories of features were used in related work and were previously
presented in section 4.2.2, while we propose the features f6, f7, and f8 to compute
the fifth category corresponding to expertise. The features 1, 2, 4, 5, 6, 7, and 10 are
gradually recalculated and updated as new tweets are injected into the news feed from
least recent to most recent. In the rest of the section, we provide a detailed description
of the features f6, f7, and f8 that we use to compute expertise.

Publishing rate of u’ for keywords of t Xu et al. [81] assert that a user is
likely to have expertise in topics on which he frequently expresses his opinion. As we
represent the topics of the tweets by keywords extracted using DBpedia Spotlight, we
propose to calculate this feature using Equation 6.2. The assumption is that the author
u’ is an expert in the topics of t if he frequently posts tweets about these topics. We
recall that our aim is not to propose a novel method that infers expertise but rather to
study its contribution to rank news feed updates.

f6(u’,t) =
∑nbk(t)

i=1 Post(u’ ,ki(t))
nbk(t)×nbp(u’) (6.2)

Where:
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Table 6.1: Features that may influence relevance

Features that may influence relevance Type N◦

Relevance of

the content of t,

its hashtags, and

mentions to u

Relevance of the keywords of t to u Int f1

Relevance of the hashtags of t to u Int f2

Presence of u in the mentions of t Bool f3

Social tie strength

between u and u’

Interaction rate of u with tweets of u’ Float f4

Number of times u mentioned u’ Int f5

Expertise

of u’ in the

topics of t

Publishing rate of u’ for keywords of t Float f6

Interaction rate with keywords of t posted by u’ Float f7

Keywords of u’ biography and keywords of t Bool f8

Authority of u’
Followers count / Followings count Int f9

Seniority in years Int f10

Listed (group) count Int f11

Quality of t

Length (# characters) Int f12

Presence of hashtags Bool f13

Presence of a URL Bool f14

Presence of a photo or a video Bool f15

Popularity (# retweets, replies, likes) Int f16
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• ki(t) is the i th keyword of t

• nbk(t) is the number of keywords of t

• nbp(u’) is the number of tweets previously posted by u’

• Post(u’ , ki(t)) is the number of times u’ has previously posted ki(t)

For example, if t has 3 keywords k1, k2, k4 and u’ has previously posted 2 tweets t1
and t2, that have respectively the keywords k1, k2 and k1, k3, then the following value
will be assigned to this feature:

f6(u’,t) = 2+1+0
3×2 = 0.5 (6.3)

Interaction rate with keywords of t posted by u’ Li et al. [106] state that
tweets on specific topics authored by a recognized expert in his field may attract the
attention of users and get more interactions. Indeed, as shown in the example in Fig. 6.1,
the more knowledgeable a user is about the topic on which he has posted a tweet,
the more relevant and engaging the tweet is for users. Unlike the biography, which
may contain self-reported expertise indicators, the user interactions reflect external
expertise indications of a given user, i.e. the judgment of a user’s expertise by other
users. We propose to calculate this feature using Equation 6.4. The assumption is that
the author u’ is an expert in the topics of t if the followers of u’ have often interacted
(retweet, reply, like) with tweets that u’ posted on the same topics.

f7(u’,t) =
∑nbk(t)

i=1 Interaction(u’ ,ki(t))∑nbk(t)
i=1 Post(u’ ,ki(t))×nbf(u’)×3

(6.4)

Where:

• ki(t) is the i th keyword of t

• nbk(t) is the number of keywords of t

• Post(u’ , ki(t)) is the number of times u’ has previously posted ki(t)

• nbf (u’) is the number of followers of u’

• 3 is the maximum number of interactions a user can perform on t, which
corresponds to the case where the same user retweet, like, and reply to t
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• Interaction(u’ , ki(t)) is the number of interactions with tweets previously posted
by u’ that have the keyword ki(t)

For example, if t has 3 keywords k1, k2, k4, and u’ has 20 followers and has
previously posted 2 tweets t1 and t2, that have respectively the keywords k1, k2 and k1,
k3, and t1 and t2 have get respectively 35 and 15 interactions, then the following value
will be assigned to this feature:

f7(u’,t) = 50+35+0
(2+1+0)×20×3 = 0.47 (6.5)

Keywords of u’ biography and keywords of t According to Wagner et al. [78],
self-reported user biographies often contain information that indicates the expertise of
users such as their education, skills, career information, etc. We propose to calculate
this feature using Equation 6.6. The assumption is that the author u’ has expertise in
the topics of t if the biography of u’ includes keywords from the tweet t. For example,
if a user indicates in the biography that he graduated in Artificial Intelligence (AI) and
the user posts a tweet about AI, then the user is likely to have expertise in that tweet.

f8(u’,t) =

1 if |kb(u’)∩ k(t)| > 0

0 otherwise
(6.6)

Where:

• k(t) is the set of keywords of t

• kb(u’) is the set of keywords of the biography of u’ , extracted in the same way
as the keywords of tweets

6.3.3 Relevance prediction model

First, considering each previously read tweet t’ ∈ D(u) from least recent to most
recent, we create the training database instances of each recipient user u ∈ S in the
form of input-output pairs. An input represents a vector of features that may influence
the relevance of t’ to u, and the output represents the implicit relevance score R(t’,u).

Second, we divide the training database of each recipient user u ∈ S into two
sets: a training set of the relevance prediction model for 70% of the first instances (the
least recent ones) and a test set for 30% of the remaining instances (the most recent
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ones). The latter set will be used to evaluate the performance of the prediction model.

Finally, to create a personalized prediction model for each user u ∈ S, we use
the corresponding training set to train a supervised random forest classifier [43], which
fits several decision tree estimators [41]. The purpose is to use multiple decision trees
learned from previously read tweets in the training set to map new input features of
a tweet unread by the user u to a relevance score. The random forest algorithm has
been extremely successful as a classification and regression method in a wide range
of prediction problems such as data science, bioinformatics, 3D object recognition,
etc. [99]. In the chapter 5, we compared several machine learning algorithms used in
related work. We found that ensemble learning models such as Gradient Boosting and
Random Forest are the most suitable to predict the relevance of news feed updates.

Random Forest is an ensemble learning method3 for classification and regres-
sion problems that operate by constructing a multitude of decision trees [89]. Each
tree is distinguished by the sub-sample vector on which it is trained, and which is
randomly selected with the same distribution from the training set [43]. This method
uses averaging to improve the predictive performance and correct the decision trees’
habit of overfitting [89]. It outputs the class that is the mode of the classes in case
of classification and the mean prediction of the individual trees in case of regression
[89]. As discussed in section 6.3.1, we recall that predicting relevance scores of tweets
is a binary classification problem. The rest of the section therefore focuses on decision
tree and random forest classifiers. In this case study, as shown in Fig. 6.2, a decision
tree classifier for a recipient user u ∈ S is a flowchart-like structure in which a node
represents a test on a feature that may influence relevance, a branch represents the
outcome of the test, a leaf node represents the class label and relevance score of a tweet
t, and a path from the root to a leaf node corresponds to a relevance classification rule.
For example in Fig. 6.2, an illustration of a classification rule from the decision tree of
the Twitter user Medium is as follows: if the keywords of the tweet t are irrelevant
to the recipient u, and the interaction rate of u with tweets posted by the author u’
is lower than 50%, then the tweet t is irrelevant to u. Note that more details about
decision trees are provided in [41]. Regarding random forest classifiers, Breiman [43]
proposes the following definition:

3A method that uses multiple machine learning algorithms to obtain better predictive performance
than could be obtained from any of the constituent learning algorithms alone.
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Fig. 6.2: Decision tree for the Twitter user Medium

Definition. A random forest classifier consists of a collection of tree-based classifiers
{h(x , Θk), k = 1, ...} where the {Θk} are independent identically distributed random
vectors. Each tree in the forest casts a unit vote for the most popular class at input x.

According to the previous definition, as reported by Malekipirbazari and Aksakalli
[107], and as shown in Fig. 6.3, the random forest classifier methodology can be formally
described in the following three steps:

1. a random sub-sample vector Θk is created from the training set for the kth

decision tree. The independence property enforces that the random vector
Θk is independent of the past random vectors Θ1 ... Θk-1, but with the same
distribution;

2. multiple decision tree classifiers are build so that the kth tree is build using the
random vector Θk, resulting in a classifier h(x , Θk) where x is an input feature
vector.

3. to classify a new tweet from an input feature vector x, the tweet is presented to
each of the trees in the forest. Each tree first gives a classification output, i.e.
relevant tweet or not, then the forest chooses the classification having the most
votes. To combine decision tree classifiers {h1(x), h2(x), ... , hk(x)} using the
training set drawn randomly from the distribution of the random vector X, Y,
the margin function mg can be defined with the following equation:
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Fig. 6.3: The random forest methodology [107]

mg(X,Y ) = avkI(hk(X) = Y )−max
j ̸=Y

avkI(hk(X) = j) (6.7)

Where av is the average and I the indicator function [108]. The margin measures
the extent to which the average number of votes at X, Y for the right class
exceeds the average vote for any other class. Examples on the construction of
random forests are available in [89].

6.4 Experiments and results

To evaluate the performance of the proposed approach and investigate the contribution
of expertise to rank news feed updates, we describe in this section the measures used
to evaluate the performance and the obtained evaluation results.
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6.4.1 Measures

In the experiments, we used the dataset described in section 4.5.1 and the concepts
TP, TN, FP, and FN defined in section 4.5.2. First, as discussed in section 6.3.3, we
train a personalized random forest classifier for each recipient user u ∈ S using the
corresponding training set, which represents 70% of the least recent instances in the
training database. Then, we evaluate model performance using the corresponding test
set (30% of the most recent instances) and study the contribution of expertise to rank
news feed updates. To do so, we use the weighted F1 score measure denoted by F and
given by Equation 6.8 [91].

F = (Fr × (TP +FN))+(Fi × (TN +FP ))
TP +TN +FP +FN

(6.8)

Where:

• Fr is the F1 score for the relevant tweets class

• Fi is the F1 score for the irrelevant tweets class

Finally, to investigate the impact of expertise, we use the F score and the correspond-
ing test set of each user u ∈ S to perform experiments and compare two approaches:
our approach that uses the author’s topical expertise and a classical approach that is
the same as ours except that it does not use it. The contribution of expertise for a user
is denoted by C and given by Equation 6.9. Moreover, to investigate the importance of
the author’s expertise compared to other features used in related work, we compute the
importance scores of features when judging the relevance of tweets by recipient users.
As described by Breiman and Cutler [89], the importance of a feature is calculated as
the normalized total reduction of the criterion brought by that feature and is known
as the Gini importance. The higher the value, the more important the feature. More
details about the importance of features are provided in [89].

C = F with expertise−F without expertise (6.9)

6.4.2 Results

In the experiments, we first selected the best random forest parameters (number of
trees, maximum three depth, splitting criterion, etc.) with a random search [92] and
a 5-fold time-series cross-validation performed on the train set [91]. A time-series
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cross-validation was used instead of the standard cross-validation to preserve the
chronological order of tweets. To find the best parameters of both expertise and
non-expertise-aware models, a random search was hence run over different parameter
values. Finally, to study the algorithmic stability with several runs and small changes
to training data, we retrained and iterated both prediction models on 30 different
random state4 values, then evaluated the models on the test set. The average F score
was selected for both expertise and non-expertise-aware approaches.

First, Table 6.2 presents the average experimental results of the comparison between
the proposed expertise-aware approach and the classical approach, and Fig. 6.4 sum-
marizes the contribution of the author’s expertise for all recipient users. The results of
Table 6.2 show that our approach most often succeeds in predicting relevance scores of
tweets with an average F score of 81.59%. Furthermore, we point out that the proposed
approach gives remarkable results for several recipient users with an F score of more
than 90%: 100% for TheMuslimReform, 97.89% for john_walsh, 96.67% for SfNtweets,
etc. Certainly, this proves that the features and random forest models we used are
overall very effective to predict the relevance on the one hand, and on the other hand,
they are perfectly adapted to rank news feed updates for several users. The results
of Table 6.2 also show that our expertise-aware approach has overall improved the
classical approach by an average gain of +%2,71, from an average F score of 78,88%
to %81,59. Undoubtedly, this highlights that judging expertise, which has not been
considered in the academic and the industrial communities, is critical for recommending
relevant updates on particular topics. The results of Table 6.2 and Fig. 6.4 indicate
that the gain brought by the author’s expertise is positive for 63% of recipient users
when predicting the relevance of tweets. This suggests that the inclusion of expertise
enables to refine the prediction and maximize the relevance in news feeds for more than
three users out of five, which is significant. Moreover, we notice from Table 6.2 that
infer the author’s expertise made a high contribution to several users, e.g. +25.36% for
GilmoreGuysShow, +14.03% for LKrauss1, +10.3% for NASA_Wallops, etc. Indeed,
this confirms that infer expertise enables recipient users, especially users who value the
author’s proficiency, to catch up with the valuable and reliable content on specific topics.

4A variable used in randomized algorithms to determine the random seed of the pseudo-random
number generator.
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Table 6.2: Experimental results

User Number of instances F with expertise F without expertise C

Astro0Glen 1245 83,26 81,61 1,65

Astro_Pam 837 72,83 73,77 -0,94

bamwxcom 123 86,62 86,62 0

Baronatrix 220 76,43 77,79 -1,36

BethStamper6 760 72,57 71,93 0,64

byudkowsky 185 70,51 70,51 0

ch402 497 86,12 79,66 6,46

demishassabis 319 86,58 88,5 -1,92

eevil_abby 148 77,41 78,94 -1,53

elonmusk 303 91,13 92,34 -1,21

GeorgeHarrison 177 85,49 79,76 5,73

GilmoreGuysShow 105 90,2 64,84 25,36

gwern 771 69,54 70,26 -0,72

homebrew 1115 81,89 80,21 1,68

HybridZizi 1039 73,87 73,31 0,56

jadelgador 1401 84,46 81,82 2,64

JHUBME 516 90,45 89,18 1,27

JohnDawsonFox26 1649 79,69 80,04 -0,35

john_walsh 154 97,89 93,73 4,16

kilcherfrontier 708 85,77 81,69 4,08

LKrauss1 115 68,32 54,29 14,03

mastenspace 135 90,38 80,76 9,62

Medium 56 87,55 80,47 7,08

microphilosophy 112 65,04 67,3 -2,26

MIRIBerkeley 195 87,87 87,87 0

NASAKepler 86 83,23 74,84 8,39

NASA_Wallops 116 80,99 70,69 10,3

newscientist 281 78,66 75,74 2,92

PattiPiatt 1173 80,05 80,11 -0,06

peterboghossian 1388 74,83 69,96 4,87

rafat 782 81,87 81,53 0,34

realDonaldTrump 140 85,89 88,17 -2,28

Red_or_MC1R 306 72,09 69,26 2,83

renormalized 543 73,77 74,9 -1,13

RossTuckerNFL 772 89,21 87,11 2,1

RoxanneDawn 366 83,24 84,37 -1,13

scimichael 2940 79,87 78,45 1,42

SfNtweets 198 96,67 96,67 0

slatestarcodex 271 65,85 64,77 1,08

SLSingh 560 73,34 68,26 5,08

sxbegle 382 79,25 77,07 2,18

TeslaRoadTrip 1692 86,71 84,34 2,37

TheMuslimReform 27 100 100 0

TheRickDore 202 86,51 82,81 3,7

USDISA 522 76,19 71,48 4,71

WestWingWeekly 548 82,83 80,7 2,13

Average 569 81,59 78,88 2,71
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Fig. 6.4: The contribution of expertise (C) for all users

Second, we computed the average feature importance scores for all recipient users,
which are presented in Fig. 6.5. The results show that all the features we used are
important in judging the relevance of tweets. The results show that the top feature
is the feature f 16 (0.18) which measures the tweet’s popularity. Indeed, the more
users interact with a tweet, the more likely it is of high quality [4]. The second most
important feature is the feature f 4 (0.12), the interaction rate of u with tweets posted
by u’ . Certainly, if u found tweets posted by u’ relevant in the past, then u may find
the tweets of u’ relevant in the future [65]. The third most important feature is the
feature f 12 (0.11) which measures the tweet length. Indeed, a long tweet is likely to be
more formal, more informative, and of better quality [64] . The results also indicate
that the features f 6 and f 7 (0.07 and 0.09 respectively) which we introduced to infer
the author’s expertise from the tweets posted are extremely important. Undoubtedly,
tweets posted by a user have been used in several works to infer expertise [80], and
leveraging this expertise appears to be very effective to predict and judge the relevance
of tweets. Moreover, the results show that the features f 9, f 10, and f 11 (0.08, 0.06, and
0.1 respectively) which measure the author’s authority are very important. Indeed, if a
user is important, then his updates are also important [69]. We further notice that the
features f 1, f 2, and f 3 (0.05, 0.02, and 0.04 respectively) which measure respectively
the relevance of the content of t, its hashtags, and mentions to u, are not the most
important. This proves that predicting relevance scores is a difficult task because the
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Fig. 6.5: Average feature importance for users

most important features are not the most intuitive. Furthermore, we note that the
features f 5 (0.03) which represents the number of times u mentioned u’ in tweets he
posted is not very important. Indeed, it is not common for users to mention other
users, except for dialogues [55]. The results also reveal that the feature f 8 (0.01) which
we used to infer the author’s expertise from the biography is surprisingly not important.
This is probably due to the fact that users do not frequently change their biography
and that this feature is sparse since not all users provide a full description [105]. Finally,
we notice that the features f 13, f 14, and f 15 (0.01, 0.02, and 0.01 respectively) which
measure tweet quality are not really important since they are non-personalized features
that do not take into consideration the preferences of individual users [65].

Despite the improvements we have made, we observe that the proposed approach
has limitations for a small number of users. First, from Table 6.2, the experimental
results show that our approach gives modest results for a few users with an F score of
less than 70%: 69.54% for gwern, 68.32% for LKrauss1, 65.85% for slatestarcodex, and
65.04% for microphilosophy. The number of instances in the training database does not
seem to be the main cause. Indeed, a higher number of instances does not necessarily
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involves better results and vice-versa, e.g. an F score of %69,54 for gwern with 771
instances comparing to an F score of %87,55 for Medium with only 56 instances.
Therefore, we believe that these modest results are mainly due to: (1) the fact that we
do not have the browsing information of users, which is crucial to our approach. More
specifically, we are not sure whether a recipient user has read a tweet or not in case of
non-interaction. This certainly affects the results for both training and evaluation; and
(2) the implicit training and evaluation method and more precisely the FP measure,
which was on average 13 irrelevant tweets incorrectly predicted relevant, may wrongly
penalize our approach. Indeed, non-interaction does not always mean irrelevance. A
user can find a tweet relevant and choose not to interact with it, or simply miss it.

Second, from Table 6.2 and Fig. 6.4, the results show that infer the author’s
expertise has no contribution to 11% of recipient users when predicting relevance
scores of tweets, e.g. byudkowsky and SfNtweets. The results also indicate that the
gain brought by this feature is negative for 26% of users, e.g. -1.21% for elonmusk,
-1.53% for eevil_abby, and -1.13% for renormalized. We believe that these results
are due to: (1) other features that we did not use to infer the author’s expertise but
might be important for these recipient users when judging the relevance of tweets,
e.g. the author’s list memberships, the social relationships, etc. [80]; (2) the fact that
Twitter is a general public social media and not a specialized, professional, or academic
one. Indeed, different types of tweets are encountered by users in their news feed.
Some tweets are related to highly specialized areas where expertise is important, e.g.
technology, science, sports, etc., and some tweets are not, e.g. tweets about friends,
routine activities, personal experiences, etc. [86]; and (3) user information needs, which
are different on social media [79]. Certainly, a minority of recipient users may not give
importance to the author’s expertise when judging the relevance of tweets.

6.5 Conclusion

In this chapter, we first analyzed and discussed research work in the field of expert
finding on social media. Then, to investigate the contribution of expertise to rank news
feed updates, we proposed a personalized approach that predicts the relevance using
supervised prediction models based on random forest. The proposed approach uses
the author’s expertise that we inferred from the biography and the textual content
the author has posted, in addition to the four types of features used in related work:
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(1) the relevance of the update content to the recipient’s interests; (2) the social tie
strength between the recipient and the author; (3) the author’s authority; and (4)
the update quality. The experimental results on Twitter show that the features and
random forest models we used overall succeed in predicting the relevance of tweets
with remarkable results for several recipient users. Moreover, the results show that
infer and introduce the author’s expertise has improved the classical approach with a
considerable gain in prediction for many users. The feature importance also showed
that expertise is ranked among the top features when judging the relevance of tweets
by recipients users. All these findings indicate that leverage the author’s expertise
is critical for recommending valuable updates and maximizing the relevance in news
feeds. However, given the limitations we identified for some users, efforts must still be
made to improve the proposed approach.
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Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis, we addressed the problem of ranking news feed updates on social media
to provide recommendations and help users quickly find relevant updates from the large
and overwhelming stream of data. The aim was to propose machine-learning-based
approaches to rank and display news feed updates in descending relevance order based
on the prediction of a relevance score between a user and a new update unread in the
news feed. To address this problem, we have made several contributions.

In the first part of the state-of-the-art, we first identified the main challenges
on social media due to the increasing amount of data. Then, we provided background
on recommender systems and described three main classical recommendation ap-
proaches: content-based filtering, collaborative filtering, and hybrid filtering. Following
this study, it turns out that each approach has advantages but also disadvantages.
Therefore, the choice of one recommendation approach is strongly linked to the problem
being addressed and the data available to the recommendation system. Finally, we
introduced the machine learning aspect, which is becoming increasingly important
in the recommendation, as it overcomes the limitations of classical recommendation
systems that fail to cope with the increasing data generated by social media and the
unique specificity of their social structural information. In the machine learning aspect,
we discussed the two main approaches used in the learning process: supervised learning
such as classification and regression, and unsupervised learning such as clustering and
dimensionality reduction.
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In the second part of the state-of-the-art, we first provided background on ranking
news feed updates on social media, including statistics on data volume and irrelevance
that confirm the need for ranking. Then, we discussed research works carried out in
the field of ranking news feed updates and exposed their advantages and limitations
according to four main criteria: (1) the features that may influence relevance; (2) the
relevance prediction models; (3) the training and evaluation methods; and (4) the
evaluation platforms. Finally, we identified several open research issues. Following the
state-of-the-art, it appeared that research in the field of ranking news feed updates is
not completely achieved. Indeed, several approaches have been proposed, implemented,
and evaluated. However, given the limitations we identified, we found that efforts
should be made to improve the ranking process.

In the first contribution, we first provided a reminder of the classical non-personalized
approach used in related work to rank news feed updates, which uses a prediction model
for all users. Then, to predict the relevance of news feed updates and improve user
experience, we used the random forest algorithm to train and introduce a personalized
prediction model for each user. Finally, we conducted a comparative study of person-
alized and non-personalized models according to several criteria. The experimental
results on a dataset crawled from Twitter showed that a single non-personalized model
for all users is easy to manage and fine-tune, is less likely to overfit as it benefits
from more training data, and it addresses the problem of cold-start and inactive
users, which is a common problem in recommender systems. On the other hand, the
personalized models we introduce allow personalized feature importance for users, take
into consideration the preferences of each user, and allow to track changes in user
preferences over time. Furthermore, the personalized models we propose give a higher
prediction accuracy than non-personalized models. These findings highlight the need
for personalization to effectively rank the news feed, promote relevant updates, and
assist users by suggesting tailored content of interest.

In the second contribution, we first described the context of the comparison accord-
ing to a personalized approach that predicts the relevance of news feed updates. Then,
we selected and described seven supervised algorithms that have been used in related
work to predict the relevance. After that, we defined a rigorous and fair comparison
methodology by selecting the best parameters of each algorithm according to the
data. Finally, to determine the most suitable models, we conducted a comparative
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study by evaluating, analyzing, and comparing the selected algorithms according to
several criteria. Following extensive experiments on Twitter, the results highlight that
selecting the most suitable supervised model is critical to increase the efficiency of
the ranking process. Furthermore, the results showed that ensemble learning models
such as Gradient Boosting and Random Forest are the most appropriate to predict the
relevance of updates. Indeed, the comparison results showed that these models are
fast in both training and predicting, that they are scalable, and they outperform the
other algorithms in prediction on various training set sizes. Moreover, they become
very accurate as the data size increases.

In the third contribution, we first analyzed and discussed research work in the field
of expert finding on social media. Then, to investigate the contribution of expertise
to rank news feed updates, we proposed a personalized approach that predicts the
relevance using supervised prediction models based on random forest. In addition
to other types of features used in related work, the proposed approach leverages the
author’s expertise that we inferred from the biography and the textual content the
author has posted. The experimental results on Twitter showed that the features and
random forest models we used overall succeed in predicting the relevance of updates
with remarkable results for several recipient users. Moreover, the results show that
infer and introduce the author’s expertise has improved the classical approach with a
considerable gain in prediction for many users. The feature importance also showed
that expertise is ranked among the top features when judging the relevance of updates
by recipients users. All these findings indicate that leverage the author’s expertise is
critical to recommend valuable updates and maximize the relevance in news feeds.

7.2 Future work

The contributions we have made to predict the relevance and rank news feed updates
can be further improved in several ways. Indeed, some of the most promising research
directions and improvements are as follows:

• For now, like most related work, we only evaluated our approaches using the
implicit training and evaluation method, which assumes that a user’s inter-
action (retweet, reply, like) with an update involves its relevance. However,
non-interaction does not always mean irrelevance. For example, a user can find
an update relevant and choose not to interact with it. For further work, we
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intend to get explicit user feedback by asking their opinion on the predicted
relevance scores. Furthermore, it would be interesting to study and understand
the relationship between the implicit and the explicit method. For example,
investigate the correlation between user interactions and their explicit relevance
ratings to the news feed updates. Finally, in case of non-interaction, it would
be interesting to include the reading time as an implicit indicator of relevance,
based on the assumption that the more time a user spends reading an update,
the more likely the update is relevant to that user.

• Despite the high predictive accuracy obtained with the predictive features we
used, we believe that the proposed approaches can still be extended with other
features that may influence the relevance and that we did not use in this work.
For example, it would be interesting to integrate the freshness of news feed
updates in terms of date and time. Furthermore, concerning the expertise we
have introduced to predict the relevance, it would be worthwhile to include
other features that we did not use to infer the author’s expertise but might be
important for recipient users when judging the relevance of updates, e.g. the
author’s list memberships, the social relationships, etc. Finally, it would be
interesting to conduct a study to identify the characteristics of recipient users
who value expertise.

• Despite the many advantages that personalized models we introduced have
brought over the classical non-personalized models, we observed that non-
personalized models may still work better with new or inactive users, for which
personalized models may have very few training instances. Indeed, in such cases,
the personalized model does not have information about user preferences and
interests to make specific recommendations. Hence, it is important to suggest
alternatives to address this common problem in recommender systems known
as the cold-start problem. Non-personalized models address this issue by default
since the same model can be used for any user, even new or inactive users. To
address this problem, it would be interesting to propose a hybrid method that
takes the advantages of both personalized and non-personalized models.

• Despite the high performance, the speed, and the scalability of the random
forest algorithm we used, this algorithm remains a shallow learning model whose
performance depends partly on the manually extracted features. Artificial neural
network models have been used in related work to process the textual content so
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that the embeddings that have been used encode only information about the words
of the textual content of the updates. However, we have seen in this work that
other features such as those measuring the author’s authority and the social tie
strength between the author and the recipient are extremely important to predict
the relevance. To the best of our knowledge, deep neural network models that
automatically execute feature extraction have not yet been used to predict the
relevance of news feed updates. Therefore, for further improvement, it would be
interesting to study the feasibility of deep learning models to automatically extract
all the features that may influence relevance and compare their performance with
ensemble methods such as Gradient Boosting and Random Forest.
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