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ENS Paris-Saclay, Centre Borelli,

91190, Gif-sur-Yvette, France.
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Résumé

De nombreuses méthodes permettent de simuler numériquement la propagation d’une
onde dans un milieu complexe avec une excellente précision. Cependant, la prise en
compte des fluctuations du milieu de propagation requiert un traitement statistique
nécessitant un grand nombre d’appel à des codes de calcul souvent coûteux. Afin de
rendre accessible ces études nous proposons la construction d’un métamodèle basé
sur une décomposition en polynômes de chaos des modes normaux. Cette approche
permet de restituer les statistiques des signaux se propageant dans un milieu aléatoire
avec un coût de calcul moindre.
Les applications proposées dans cette thèse concernent la propagation d’ondes acous-
tiques dans l’atmosphère terrestre. En effet, les fluctuations météorologiques modi-
fiant considérablement les conditions de propagation, leur prise en compte est indis-
pensable. Le coût numérique de la simulation sur un domaine de plusieurs centaines
de milliers de kilomètres carrés justifie pleinement l’utilisation d’un métamodèle. Une
application à la localisation de source couplant ces techniques de métamodèlisation
avec une approche bayésienne est aussi proposée. En effet, le cadre bayésien permet
une résolution du problème inverse dans un cadre probabiliste capable de prendre en
compte les fluctuations du milieu et l’incertitude sur la localisation de la source.





Abstract

There exists many numerical methods to simulate wave propagation through com-
plex media with a very good precision. However, taking into account the fluctuations
of the propagation medium necessitates a statistical approach implying a prohibit-
ive numerical cost. To have those studies affordable, we propose the construction
of a metamodel based on a polynomial chaos decomposition of normal modes. This
approach presents the great advantage to give statistics of signals propagating in a
random medium at an affordable numerical cost.
Those results are illustrated with acoustic propagation in the atmosphere. In fact,
meteorological fluctuations have a critical impact on the propagation, it is therefore
essential to take them into account. The numerical cost of a simulation over thou-
sands of kilometers fully justifies the use of a metamodel. An application to source
localization is proposed to illustrate the joint use of a metamodel and a bayesian
inversion. The bayesian framework allows a resolution of the inverse problem in a
probabilistic context able to take into account the fluctuations of the medium and
uncertainties due to unknown source localization.
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2.1 Métamodélisation par polynômes de chaos . . . . . . . . . . . 7

2.2 Modélisation des incertitudes . . . . . . . . . . . . . . . . . . 8
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Chapitre 0
Motivations et synthèse des résultats
obtenus

Ce premier chapitre, en français, présente les motivations ayant conduites au projet de
recherche ainsi que les problèmes présentés dans les différents chapitres qui constituent
le manuscrit. Il s’agit ici de donner un rapide aperçu du travail mené pendant la thèse
en le replaçant dans son contexte applicatif.

1 Origines du projet de recherche doctorale

1.1 Les infrasons dans le système de surveillance internatio-
nal

Ouvert à la signature en 1996, le traité d’interdiction complète des essais nucléaires
(TICE) interdit tout essai nucléaire quelle que soit l’énergie dégagée. Un système
de surveillance international (SSI) a donc été développé pour enregistrer les explo-
sions à la surface de la Terre, qu’elles soient souterraines, atmosphériques ou sous-
marines. Pour cela, le SSI dispose de quatre types de capteurs : sismique (explosions
souterraines), hydroacoustique (explosions sous-marines), infrasonores (explosions at-
mosphériques) ainsi que des capteurs de concentrations en radionucléides permettant
quant à eux de distinguer une explosion conventionnelle d’une explosion nucléaire.
Nous nous intéresserons dans ce manuscrit à la technologie infrasonore qui repose
sur un réseau de soixante stations réparties dans 35 pays. Les stations infrasons sont
équipées de microbarographes capables de mesurer et d’enregistrer au niveau du sol
les variations de pression produites par la propagation des ondes infrasonores ou in-
frasons. Les infrasons sont des ondes acoustiques possédant une fréquence plus basse
que la borne inférieure de la bande de fréquence audible par l’oreille humaine qui
varie en général de 20 à 20 000 Hz. Ils sont produits aussi bien par l’activité hu-
maine (explosions, tirs de carrière, éoliennes, avions supersoniques, fusées, etc.) que
par des sources d’origine naturelle (éruptions volcaniques, orages, topographie, houle
océanique, écoulements atmosphériques, séismes, météorites, etc.).
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Les objectifs du centre international de données (CID) de Vienne qui traite l’en-
semble des données reçues sont : 1 – de détecter et distinguer tous les événements
malgré les différents bruits atmosphériques, 2 – d’associer les signaux reçus par
plusieurs stations et correspondant au même événement, 3 – localiser l’origine de
chacun des événements et 4 – caractériser les sources de ces signaux c’est à dire
calculer l’energie associée [Mialle et al., 2019]. La détection est basée sur un al-
gorithme de corrélation croisée [Cansi, 1995] qui utilise les mesures des différents
capteurs de chaque station. Les différentes détections sont ensuite associées automa-
tiquement pour former des événements qui seront ensuite étudiés par des analystes.
En 2010, Arora et al. ont proposé un algorithme d’inférence bayésienne pour associer
les détections et localiser les sources [Arora et al., 2010]. Cet algorithme était initiale-
ment développé pour les détections sismiques mais au vu des performances de cet algo-
rithme des travaux ont été initiés dès 2015 pour adapter cet algorithme aux spécificités
des infrasons. En effet, les stations infrasonores détectent de nombreux événements
d’origine naturelle qui présentent des arrivées supplémentaires. Par ailleurs, les incer-
titudes liées au milieu de propagation sont beaucoup plus importantes dans le cas de
la propagation infrasonore que dans le cas sismique ou hydro-acoustique.
En effet, pour les infrasons, les conditions de propagation sont déterminées par les
conditions météorologiques : l’évolution de la température et des vents en fonction
de l’altitude. Les conditions usuelles de températures favorisent la propagation in-
frasonores via la création de guides d’onde mais les profils de vent peuvent ensuite
accentuer ou empêcher cette propagation. Dans les deux cas, les caractéristiques de
l’onde reçue dépendront fortement des conditions météorologiques entre la source et
la station.

1.2 Variabilité atmosphérique et propagation infrasonore

Les ondes infrasonores peuvent se propager sur des centaines voire des milliers de
kilomètres. Sur de telles distances, la variabilité des conditions météorologiques se
répercute directement sur les signaux reçus. La prise en compte des données météorologiques
s’appuie sur les données atmosphériques transmises par le CEPMMT (Centre Eu-
ropéen de Prévision Météorologique à Moyen Terme) et des codes de propagation ou
de mécanique des fluides selon les cas. L’état de l’atmosphère est calculé au CEPMMT
à partir d’une méthode d’assimilation de données qui affine au mieux la représentation
en combinant modèles (lois physiques, etc.) et observations. Il subsiste des incerti-
tudes qui s’étendent sur plusieurs échelles spatiales et temporelles et qu’il est difficile
de quantifier. Aux échelles planétaires, ces incertitudes sont directement liées à la
variabilité naturelle du climat. À plus petite échelle, les incertitudes peuvent être
décrites sous la forme d’une composante aléatoire censée se substituer à la physique
non résolue dans les modèles du CEPMMT. Cette composante est relativement com-
plexe à modéliser puisqu’elle dépend de l’altitude, des sources qui en sont à l’origine
et des caractéristiques de l’écoulement à grande échelle.

Dans les codes de propagation, les données atmosphériques entreront en compte
via le profil de la vitesse du son dans l’atmosphère. En effet, celle-ci dépend des profils
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de température et de vent dans la direction de propagation :

c(z) =
√
γRT (z) + U (z) (1)

où γ est le coefficient de Laplace, R la constante des gaz parfaits, T (z) le profil de
température en fonction de l’altitude et U(z) le profil de vent dans la direction de
propagation. La figure 1 présente (à gauche) la variabilité de cette vitesse du son au
cours de l’année 2018 entre la station norvégienne I37NO et le site militaire de Huk-
kakero. Les profils des 1er janvier et juin montrent une différence marquée à partir de
40 km d’altitude. Cette différence s’explique par la présence d’un jet stratosphérique
à ces altitudes dont l’orientation change en fonction des saisons. Le site militaire de
Hukkakero est utilisé tous les étés pour détruire des munitions ; en 2018 ces explosions
se sont étalées du 16 au 27 août et la variabilité des profils de vitesse du son sur cette
période est indiquée en rouge sur la figure. La source est donc connue, elle est localisée
à 320 km de la station et correspond à une énergie de l’ordre de 20-30 t1. À droite de la
figure 1, l’enveloppe des signaux reçus à la station est représentée pour les différentes
années. Les sources étant identiques chaque jour, la variabilité observée traduit uni-
quement la variabilité des conditions atmosphériques. Au delà de la variabilité des
états atmosphériques décrits par les données du CEPMMT, les perturbations non
résolues par les modèles météorologiques ont un impact important sur la propagation
des infrasons [Waxler and Assink, 2019]. Parmi ces phénomènes physiques, les ondes
de gravités sont particulièrement actives autour de 50 km d’altitude [Chunchuzov and
Kulichkov, 2019].

Afin d’associer, localiser et caractériser précisément les événements explosifs à
l’aide des infrasons, il est donc central de savoir comment les signaux ont été modifiés
lors de la propagation. Pour cela, il faudrait être capable de calculer la fonction de
transfert liant le signal source et les signaux reçus à la station mais cette fonction
dépend des propriétés atmosphériques entre la source et la station au moment de
l’événement. Il est bien sûr illusoire d’espérer connâıtre précisément les conditions
météorologiques à tout temps et en tout lieu à la surface du globe2. Il convient donc,
en tâchant de la quantifier assez précisément, de prendre en compte la variabilité du
milieu de propagation comme une incertitude dont on souhaite mesurer l’impact sur
la propagation des infrasons.

1.3 Les différents modèles de propagation

Les techniques numériques de résolution de l’équation d’onde sont bien connues et
documentées depuis les années soixante-dix. Le développement de méthodes d’ordre
arbitrairement élevé a permis des simulations numériques avec des domaines compor-
tant jusqu’à 1010 mailles. En dépit d’un coût élevé, les techniques issues de la CFD

1L’énergie libérée lors d’une explosion est donnée en tonne de TNT (t), c’est-à-dire l’énergie
libérée par l’explosion d’environ une tonne de TNT.

2Cette impossibilité se comprend d’autant mieux si l’on prend en compte des phénomènes
aléatoires par nature : les couches turbulentes dans la basse atmosphère ou le déferlement des ondes
de gravité dans la moyenne atmosphère.
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Figure 1 : Variabilité de la vitesse du son entre la station I37NO et la base militaire
d’Hukkakero au cours de l’année 2018 (en gris) et du 16 au 27 août en rouge. Le profil
moyen cm présente une forme classique en W. À droite, les enveloppes des signaux
reçus à I37NO sont représentées pour les différentes expériences de 2014 à 2018. Le
cadre rouge correspond aux signaux reçus entre les 16 et 27 août.

(Computational Fluid Dynamics) sont peu adaptés à la modélisation de la propaga-
tion acoustique [Millet et al., 2007]. Dans ces techniques, la principale difficulté est
de maintenir l’équilibre dynamique de l’état atmosphérique, souvent imposé sous la
forme d’une condition initiale, tout en y propageant une onde acoustique. Une onde
acoustique peut en effet interagir avec l’écoulement atmosphérique pour produire des
ondes de différentes natures et un écoulement à grande échelle différent de celui qui est
imposé en condition initiale. Or, il est difficile de distinguer les comportements dus à
la perturbation acoustique de ceux qui sont la conséquence d’un déséquilibre de l’état
atmosphérique, en particulier lorsqu’on s’intéresse à des domaines qui s’étendent sur
plusieurs milliers de kilomètres. La communauté des géophysiciens utilise donc plutôt
des méthodes asymptotiques telles que le tracé de rayons [Drob et al., 2013, Hedlin
and Drob, 2014], la sommation de modes normaux [Millet et al., 2007, Bertin et al.,
2014, Lalande and Waxler, 2016, Assink et al., 2017] ou la résolution d’une approxi-
mation parabolique de l’équation d’onde [Klyatskin and Tatarskii, 1970, Ostashev
et al., 2019, Blanc-Benon et al., 2001].

Dans cette thèse nous utiliserons la décomposition en modes normaux qui s’appuie
sur le calcul des éléments propres (kn, φn) de l’équation d’onde :[

∂2

∂z2
+
ω2

c2

]
φn = k2

nφn (2)

où c(z) est la vitesse du son définie par l’équation 1. Ces modes sont les éléments
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Figure 2 : Pour une évolution en fréquence donnée en bleu, les différents modes
évoluent dans le plan complexe selon les trajectoires colorées. Les trajectoires en gris
correspondent aux modes du spectre continu (ou plutôt de sa discrétisation). Les
zones grisées correspondent aux différentes zones sur le profil donnant la vitesse du
son.

du spectre de l’opérateur différentiel défini ci-dessus3. Ce spectre se sépare en deux
parties : une partie discrète (les modes représentés en couleurs sur la figure 2) et
les modes issus de la partie continue (en gris sont représentés les valeurs propres de
l’opérateur discrétisé correspondant au spectre continu de l’opérateur différentiel).
Sur la figure 2, l’évolution des modes dans le plan complexe en représenté pour des
fréquences inférieures à 20 Hz. Les modes se situent dans le plan complexe car ω
possède une partie imaginaire permettant de souligner les différentes structures cor-
respondant au profil étudié [Bertin et al., 2014]. La figure 3 donne l’évolution en
fréquence des fonctions propres des modes représentés ci-dessus. Il est intéressant de
noter que ceux-ci sont confinés pour les fréquences les plus hautes avant d’osciller sur
tout le domaine. D’un point de vue acoustique, c’est la valeur de la fonction propre
au sol qui quantifie la contribution du mode. On peut donc définir une fréquence de
coupure – appelée cut-off frequency – en deçà de laquelle le mode ne contribue plus
acoustiquement.

Une fois calculés, ces modes acoustiques permettent de calculer le champ de pres-
sion dans le domaine fréquentiel :

p (ω) =
N∑
n=1

pn (ω) =
ŝ (ω) eiπ/4√

8π

N∑
n=1

φ2
n0(0)eikn0r√
Rkn0

(3)

où R est la distance de propagation et ŝ (ω) le spectre de la source. Pour obtenir
un signal temporel, il reste à effectuer une transformée de Fourier. On peut aussi

3Pour définir un opérateur différentiel il ne suffit pas de donner son expression mais il faut aussi
donner son domaine de définition. Ici le domaine sera R+ avec les conditions aux limites considérées
dans le problème de propagation.
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Figure 3 : Évolution fréquentielle des différentes fonctions propres associées aux
modes tracés en couleur sur la figure 2. Le trait en pointillé indique l’altitude du
maximum de vitesse du son. Sur la première ligne sont représentés les modes rouge,
bleu et vert et les modes violet, orange puis jaune sur la deuxième.

faire la transformée de Fourier de chacun des pn (ω) pour obtenir les paquets d’onde
associés aux différents modes. Ceux-ci sont représentés sur la figure 4 en conservant
le même code couleur que pour la figure 2. En sommant les différents paquets d’onde
on retrouve le signal obtenu en calculant la transformée de Fourier de (ω) comme le
montre la dernière ligne où les deux signaux sont superposés.

1.4 Sujet de la thèse

Afin de tirer profit des modèles de propagation dans les processus de localisation, nous
proposons d’en construire un métamodèle. Un métamodèle peut se définir comme un
modèle de modèle, moins coûteux à évaluer numériquement mais capable de restituer
les statistiques des grandeurs calculées par le premier modèle. Il existe différentes
méthodes pour construire un métamodèle mais dans tous les cas une première étape
consiste à calibrer le métamodèle en utilisant un nombre restreint d’appels au modèle
originel. Une fois calibré, le métamodèle peut être utilisé pour calculer des grandeurs
statistiques liées à la sortie du modèle : moments, probabilité de dépassement d’un
seuil par exemple.

L’objectif de cette thèse est donc de construire un métamodèle stochastique,
continu, capable de restituer, à moindre coût, des signaux infrasonores et leurs sta-
tistiques en tenant compte de la variabilité du milieu atmosphérique.
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Figure 4 : Calcul des différents paquets d’onde correspondant à chacun des modes
en couleur sur la figure 2. Obtenus pour une source située entre 15 et 20 Hz à 20 km
du récepteur. En noir le signal correspondant à la somme des 6 modes est représenté
avec la somme des six paquets d’onde superposée en gris.

2 Métamodèle de signaux propagés

2.1 Métamodélisation par polynômes de chaos

Il existe différentes méthodes pour construire un métamodèle, nous utiliserons ici
les polynômes de chaos [Wiener, 1938, Ghanem and Spanos, 1991]. L’idée est de
décomposer la sortie d’un modèle Y = F (X) sur une base de polynômes en la variable
(aléatoire) d’entrée X :

Y =
∑
j∈J

ajHj(X) (4)

où J est un ensemble fini et (Hj)j∈N est la famille de polynômes orthogonaux par
rapport à la mesure de probabilité de X. L’orthogonalité des polynômes permet de
calculer les coefficients (aj)j∈J de deux manières différentes. Soit par projection en
calculant le produit scalaire :

aj = EX [F (X)Hj(X)] (5)

ou alors par régression, le projeté orthogonal minimisant la distance entre la fonction
et l’espace d’approximation :

(aj)j∈J = argmin
(aj)∈R|J|

EX

(F (X)−
∑
j∈J

ajHj(X)

)2
 . (6)
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La valeur du métamodèle réside dans la capacité à estimer les coefficients (aj)j∈J en
utilisant peu d’appels à F . Ces estimations peuvent se faire de différentes manières
mais restent dans tous les cas sensibles à la dimension en entrée du problème.

2.2 Modélisation des incertitudes

Afin de simuler la propagation des infrasons dans une atmosphère réaliste, plusieurs
approches sont possibles. La première serait de partir de données historiques pour
simuler une variabilité représentative de celle observée précédemment [Assink et al.,
2013]. Une autre possibilité consiste à utiliser des modèles théoriques développés dans
le cadre d’études sur la dynamique de l’atmosphère [Cugnet et al., 2019]. Dans les
deux cas la démarche est la même, partir de l’état de l’atmosphère au moment de
l’évènement – fourni par les organismes météorologiques – et y ajouter une pertur-
bation aléatoire. C’est cette perturbation qui sera pour nous la donnée d’entrée du
métamodèle, ce sont donc ses propriétés qui nous ont guidées dans le choix des tech-
niques de métamodélisation. Une propriété importante qui nous a orienté vers les
polynômes de chaos est l’amplitude considérable que peut prendre cette perturbation
et qui écarte toute approche perturbative. Par exemple, le déferlement d’ondes de
gravité dans la stratosphère (i.e. entre 20 km et 60 km) peut conduire à des vents de
l’ordre de 50m.s−1. Toutefois, les perturbations ne peuvent se résumer à ces grandes
déviations et comportent aussi des structures plus fines (dues au caractère turbu-
lent de la couche limite planétaire par exemple) qui auront, elles aussi, un impact
important sur la propagation des infrasons.

Afin de concilier performance numérique et précision du métamodèle nous avons
décidé de scinder en deux la perturbation. Les grandes amplitudes seront prises
en compte par les polynômes de chaos et les structures plus petites par une ana-
lyse perturbative. Pour cela nous proposons de décomposer la perturbation (qui
mathématiquement est un processus stochastique) en série de Karhunen-Loève [Kac
and Siegert, 1947, Karhunen, 1947, Loeve, 1948]. Cette décomposition est basée sur
une décomposition spectrale de la matrice de covariance du processus. Ainsi, elle
sépare naturellement les différentes échelles et, en tronquant le développement, cela
permet de décrire les grandes déviations en utilisant un nombre limité de variables
aléatoires. En effet, les techniques de décomposition en polynômes de chaos restent
sensibles à la dimension des données d’entrée et seront donc d’autant plus efficaces
que le nombre de variables d’entrée sera petit. Les petites structures, représentées par
les termes d’ordre élevé de la décomposition Karhunen-Loève, seront pris en compte
dans un deuxième temps par une approche perturbative [Kato, 2013, Fouque et al.,
2007]. Cette approche est plus classique et nous verrons uniquement dans ce manuscrit
de quelle façon elle peut être associée avec l’utilisation des polynômes de chaos.

2.3 Le problème d’intégration en temps long

L’objet principal de cette thèse est donc la construction d’un métamodèle à base de
polynômes de chaos capable de restituer des signaux infrasonores après leurs propa-
gations dans une atmosphère perturbée. La principale difficulté vient de la restitution
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de signaux aléatoires pour des distances importantes. En effet, si les polynômes de
chaos sont très efficaces pour obtenir des métamodèles lorsque la quantité d’intéret
est scalaire, la restitution de signaux aléatoires se heurte au problème d’intégration
en temps long [Pettit and Beran, 2006, Le Mâıtre et al., 2010]. Dans sa formulation
la plus classique, le problème d’intégration en temps long concerne la convergence du
développement en polynômes de chaos de signaux aléatoires pour des temps longs.
En effet, pour des systèmes aléatoires qui dépendent aussi du temps, la convergence
du développement en polynômes de chaos dépendra aussi du temps. Cela signifie
qu’il n’existe pas de troncature du développement en polynômes de chaos qui per-
mette de représenter correctement le système pour tous les temps. Dans notre cas,
les événements mentionnés au paragraphe 1.1 sont sources de signaux impulsifs très
courts mais les distances de propagation très importantes posent un problème simi-
laire. Parmi les différents travaux proposés pour palier cette limitation nous avons no-
tamment testé l’approche proposée par Chu Van Mai et al. nommée time-warping [Mai
and Sudret, 2017]. L’idée est de considérer qu’il existe un temps propre à chaque
réalisation, ce temps est donc une variable aléatoire qui dépend du temps physique :

τ = kt+ φ. (7)

Dans l’expression précédente, k et φ sont des variables aléatoires dont on peut calculer
un métamodèle avec des polynômes de chaos. La transformation étant bijective on
peut l’inverser pour exprimer les signaux en fonction du temps τ . Les signaux restent
aléatoires mais en choisissant k et τ pour homogénéiser les différents signaux on peut
accélérer la convergence des polynômes de chaos. Pour chaque réalisation si(t) du
signal aléatoire, les réalisations ki de k et φi de φ sont ajustées pour maximiser la
ressemblance entre le signal si(kit+ φi) et une référence sr(t) :

(ki, φi) = argmin
(k,φ)∈R2

〈si(kt+ φ), sr(t)〉
‖si(kt+ φ)‖‖sr(t)‖

. (8)

Malheureusement, il n’est pas toujours possible de déterminer k et φ permettant
de transformer les signaux de manière adéquate. Pour illustrer ce phénomène, nous
allons considérer le cas d’une perturbation localisée entre 100m et 400m d’altitude
sur le profil utilisé dans la section précédente (figure 5-(c)). Cette perturbation étant
localisée, elle n’aura d’impact que sur la première des deux arrivées du signal comme
illustré sur la figure (a). Le deuxième mode étant un de ceux constituant cette première
arrivée, il est impacté par la perturbation. Nous avons appliqué l’algorithme de time-
warping au paquet d’onde associé au deuxième mode puis au signal total (figure 5-(b)).
Dans le cas du paquet d’onde simple, l’algorithme parvient sans peine à trouver k et
φ permettant de superposer les deux signaux. Pour le signal complet, en revanche,
l’algorithme ne trouve pas de k et de φ convenables car il ne peut améliorer la première
arrivée sans détériorer la deuxième.

Les signaux issus de la propagation atmosphérique étant constitués de plusieurs
arrivées avec des incertitudes différentes pour chacune, nous avons écarté cette tech-
nique. Nous retenons tout de même de cette étude la possibilité de travailler sur les
paquets d’onde isolément. C’est ce point de vue que nous avons adopté en travaillant
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Figure 5 : En modifiant uniquement la portion du profil située entre 100 et 400m (c)
seuls les modes concernés (dont le deuxième ici représenté) sont modifiés (a). Seule
la première des deux arrivées s’en trouve donc modifiée (a). L’algorithme de time-
warping permet de recaler les paquets d’ondes correspondant aux deux réalisations
si le nombre d’extrema est le même (a) mais ne peut donc pas recaler le signal total
(b) dont les deux réalisations sont trop différentes.

directement sur les modes acoustiques4. Ceux-ci portent en eux toute l’information
relative à la propagation et ont l’avantage d’être des quantités scalaires. Une fois
calculés, les développements en polynômes de chaos des modes acoustiques permet-
tront de générer les signaux temporels associés à l’aide d’une simple transformée de
Fourier en temps et d’une convolution avec le signal source. Cette approche présente
également le double avantage d’obtenir un métamodèle indépendant de la distance
de propagation et de la source utilisée. L’impact des petites structures se traduit
également au niveau des modes acoustiques par un couplage inter-modes qui peut
être calculé en utilisant les représentations en polynômes de chaos.

2.4 La dynamique des modes acoustiques

Les modes normaux semblent donc être les grandeurs pertinentes pour caractériser la
propagation atmosphérique en tenant compte des incertitudes. Cependant, la construc-
tion d’un métamodèle de ces modes acoustiques suppose d’être capable de les isoler et
de les suivre quelque soit la valeur de la perturbation [Ghosh and Ghanem, 2012, Ka-
laba et al., 1981, Georg et al., 2018]. La dynamique des modes acoustiques est inconnue

4aussi appelés modes normaux ils constituent une base de décomposition du champ de pression
adaptée aux structures atmosphériques.
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a priori et peut se révéler très accidentée ce qui rend difficile le suivi des modes. Il est
par exemple courant que deux modes s’échangent continûment et une discretisation
trop lâche pourrait manquer ce phénomène. Afin de suivre fidèlement les modes en
fonction de la perturbation sans obérer les performances du métamodèle nous avons
développé une technique de suivi adaptée à cette application en jouant sur le suivi
en fréquence. Les modes acoustiques apparaissent comme les éléments propres d’un
opérateur différentiel. Le spectre de cet opérateur possède une partie discrète et une
partie continue qui est en général négligée dans les applications infrasonores [Waxler,
2002, Waxler, 2003]. Pour des perturbations différentes la taille du spectre discret
peut être différente. Cependant, cesser de prendre en compte un mode induirait une
discontinuité dans le domaine fréquentiel et un bruit sur les signaux calculés ensuite.
En réalité, un mode ne disparâıt pas, il passe de la partie discrète à la partie continue
du spectre. Nous avons donc utilisé une couche artificielle appelée Perfectly Matched
Layer (PML) [Bérenger, 1994] pour fermer le domaine. En effet, la PML modifie la
partie continue en lui ajoutant une partie imaginaire [Olyslager, 2004] qui entrâınera
une atténuation du mode d’un point de vue acoustique. Cela nous permet donc de
continuer de prendre en compte le mode considéré sans que cela ait un impact sur les
signaux calculés.

Les échanges de modes mentionnés plus haut traduisent un changement phy-
sique de la propagation acoustique. L’altitude de réfraction des modes va changer
et, en conséquence, leur sensibilité à la perturbation changera également. Pour rendre
compte de ce changement de régime, nous avons également adapté le développement
en polynômes de chaos pour capturer ces différents régimes. En effet, ces échanges
de modes pour différentes réalisations de la perturbation se traduisent d’un point de
vue probabiliste par une distribution bimodale pour les modes concernés. Cette dis-
tribution bimodale rend la convergence des développements en polynômes de chaos
plus lente [Nouy, 2010, Soize, 2015], nous avons donc adapté notre métamodèle en
utilisant des développements différents pour chacun des régimes.

3 Apport des gPC pour la localisation de sources

Les polynômes de chaos s’intègrent naturellement au cadre bayésien [Marzouk et al.,
2007, Marzouk and Najm, 2009, Marzouk and Xiu, 2009]. En construisant une base de
polynômes de chaos adaptée à l’a priori, il est possible d’estimer plusieurs paramètres
liés à un évènement donné (localisation, énergie, etc.). Cette approche présente un
intérêt dans le cadre des activités du Centre international de données (CID), dont le
bulletin final incorpore des données sismiques, hydroacoustiques et acoustiques d’une
grande qualité. Actuellement la fiabilité des renseignements qu’il est possible d’en
déduire est difficile à quantifier, même si certaines méthodes [Arora et al., 2013, Mialle
et al., 2019] ont récemment permis d’améliorer les performances des algorithmes au-
tomatiques. L’approche qui fait aujourd’hui référence repose sur la méthode du tracé
de rayons, elle permet d’accrôıtre le niveau de confiance via le pointé et l’identification
dans les signaux des arrivées associées à l’événement. Mais à cause de l’absence de
continuité dans la description géométrique, les arrivées sont souvent identifiées visuel-
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Figure 6 : Nombre de stations dont la vraisemblance est supérieure à la moyenne
(à gauche) et vraisemblance totale (à droite). L’événement correspond à l’explosion
d’une météorite au-dessus de la mer de Bering, le 18 décembre 2018 à 23h48 (mesure
NASA). À droite, les ellipses grise et verte correspondent à l’estimation faite par le
CID et en utilisant un modèle de propagation (empirique) de référence. À gauche,
les lignes représentent les grands cercles liant la source aux six stations de mesure
considérées ici.

lement, en extrapolant les résultats hors du domaine de validité5. Une représentation
des arrivées par des polynômes de chaos ne présente pas ce type de limitation.

L’approche qui a été développée dans le cadre de cette thèse, a consisté à tirer parti
d’une représentation des arrivées par des polynômes de chaos. En combinaison avec les
algorithmes de localisation et de caractérisation, ces métamodèles permettent de tenir
compte du contexte associé à chaque événement (état de l’atmosphère, incertitude liée
au pointé automatique des arrivées).

La Figure 6 illustre le gain obtenu, lors de la ré-analyse d’un événement qui s’est
produit le 18 décembre 2018, au-dessus du détroit du Béring. L’événement a été
mesuré par plusieurs stations, nous avons donc calibré un métamodèle par station,
chacun de ces métamodèles prenant en compte la variabilité due aux effets de projec-
tion. On parle en effet de projection car en fonction des positions possibles pour la
source, les profils de vent et de température seront différents mais l’azimuth de propa-
gation est également différent. La formulation bayésienne se base sur un a priori qui
se réfère à un jugement d’expert – qui pour nous sera la première localisation fournie
par le CID – et un terme de vraisemblance qui traduit l’adéquation entre les signaux
simulés et ceux mesurés. Les ellipses de confiance à 95%, et la vraisemblance, ont été
obtenues en modélisant les temps des arrivées par des polynômes de chaos, dont les
coefficients ont été estimés à partir de simulations très précises.

5Pour pallier les limitations liées à la méthode géométrique, plusieurs équipes se sont engagées
dans le développement de modèles de propagation empiriques. Ces modèles sont obtenus à partir
de résultats de simulations de signaux, en fixant une statistique de configurations atmosphériques.
Ainsi par construction, ces modèles ne permettent pas d’adapter les résultats à une configuration
atmosphérique précise.
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L’erreur associée à l’extraction automatique des temps d’arrivée est également
prise en compte. La figure 6 montre que les localisations produites par le CID (ellipse
verte), ou en utilisant un modèle empirique (en gris), ne sont pas compatibles avec
l’observation faite par la NASA (instrument MISR du satellite Terra). En outre, le
calcul des vraisemblances des différentes observables permet d’évaluer l’apport de
chaque station à la vraisemblance totale, et on constate ainsi que quatre stations
parmi six contribuent réellement à la localisation (Figure 6).
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Chapitre 1
Introduction

This introductory chapter is devoted to a presentation of uncertainty quantification
techniques which will be used to simulate efficiently the propagation of infrasound in
the atmosphere, taking into account its natural variability. We introduce Karhunen-
Loève decomposition to reduce the input dimension and illustrate how to decompose
atmospheric variability in practice. Then, the notion of metamodel is presented from
a general perspective, giving the objectives of building a metamodel and a description
of its main characteristics. The next chapters will explore the construction of a meta-
model adapted to infrasound propagation. We end this chapter with a presentation of
sensitivity analysis tools (Sobol’ indices and Shapley effects) that are useful to trace
the impact of uncertainties in the input parameters on the quantities of interest.

1 Motivation

1.1 Propagation Technology & CTBTO

The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) was created
after the signature of a treaty banning all forms of nuclear explosion. The role of
this organization is to monitor and detect all nuclear explosions on earth : in the
air, underground or underwater. To this purpose, the organization has developed
the international monitoring system which relies on four technologies : seismic (170
stations), hydroacoustic (11 stations), infrasound (60 stations) and radionuclide (120
stations). Among the three propagation techniques, infrasound is the most exposed
to medium variability ; for this reason, we will focus in this work on the infrasound
technology. A map of the infrasound stations is given on figure 1.1.

Infrasound is defined as sound at frequencies less than 20 Hz (i.e. below the audible
band of human ear). It has the ability to propagate over large distances with little
dissipation, for example the first historical observation of infrasound has been recorded
after the 1883 eruption of the Krakatoa volcano in Indonesia : it traveled around
the globe at least seven times, shattered windows hundreds of miles away, and were
recorded worldwide. More recently, a meteor entered the earth’s atmosphere near
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Figure 1.1 : Nearly 60 infrasound stations are implanted worldwide to register at-
mospheric explosions. (figure : P.Vanderbecken)

Chelyabinsk in Russia in 2013 and was detected in the US at 10 000 km [de Groot-
Hedlin and Hedlin, 2014].

In practice, the sensor array is connected to the International Data Center (IDC)
in Vienna, which operates continuously and in real time. The purpose of the IDC is
to analyze the detections of the stations and infer the characteristics of the events
(location, type of event for example). But the current IDC’s automated system, a
highly complex and well-tuned piece of software, still misses events, and about half
of the reported events are spurious. A large team of expert analysts post-processes
the automatic bulletins to improve their accuracy to acceptable levels. Difficulties
in processing all the data can be classified in three categories [Arora et al., 2013] :
(1) physical characteristics of a detection (time of arrival, duration of the signal . . . )
can change dramatically depending on atmospheric conditions ; (2) each detector is
subject to local noise that may mask true signals and cause false detections ; and (3)
many thousands of detections are recorded per day, so the problem of proposing and
comparing possible events (sub-sets of detections) is daunting.

Due to those considerations, an approach based on probabilistic inference has
been proposed in [Arora et al., 2013] to process seismic data. This method (called
NET-VISA) achieves a reduction of around 60% in the number of missed events
compared with the currently deployed system. It also detects some events missed
by the human analysts post-processing the IMS output. Interestingly, NET-VISA is
capable of dealing with those events without using any propagation model. To go one
step further, we propose in this work to take into account the propagation effects in
this probabilistic framework. For this purpose, we will use numerical techniques that
have been developped in a context of uncertainty quantification.
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1.2 Uncertainty Quantification

Recent development of computational facilities has increased the use of numerical
simulation for complex physical phenomena. Those simulations often involve many
parameters and the accuracy of such a model depends on the reliability of the input.
To characterize the precision of the numerical simulation, one has to study the impact
of the variability of the input parameters on the simulation results. Because the result
of a simulation can be postprocessed, we usually define the Quantity of Interest (QoI)
which is the final product we are interested in. A preliminary step is therefore to define
the QoI. If this definition is most of the time straightforward, it is of prime importance
because it will influence the entire study.

An Uncertainty Quantification (UQ) approach can be separated in three steps : 1 –
characterization of the input variability, 2 – propagation of this uncertainty through
the model in order to assess the impact on the quantity of interest, 3 – backward
uncertainty propagation or Bayesian calibration. The last step can be conducted when
physical measurements of the QoI are available in order to improve the knowledge on
the input variability.

2 Input parameters and atmospheric uncertainties

Characterizing the variability of the input requires some knowledge on the physical
parameters involved in the simulation. If data are available, a preliminary study can
be conducted to fit a probability distribution, otherwise we rely on experts’ opinion.
We may mention here the existence of non parametrical estimation [Wegman, 1972],
which allows to model the data variability without a priori informations on the shape
of the distribution.

2.1 Atmospheric uncertainties

Meteorological observation tools (satellites and ground stations) provide a very large
amount of data, which must be processed to produce the state of the atmosphere.
Meteorological centers use data assimilation methods to produce an initial state used
by numerical models to forecast the weather. To provide more precise data on the
atmospheric state, a reanalysis is provided a posteriori by the European Center for
Medium-Range Weather Forecasts (ECMWF). It consists in feeding the numerical
weather processes with weather observations collected to recreate past atmospheric,
sea- and land-surface conditions over specific time periods.

Figure 1.2 represents the annual variability of zonal and meridional winds in 2018.
Profiles are given by the ECMWF at the station I37NO, which is located in Norway.
This figure is useful to illustrate two simple facts : (1) fluctuations can be of great
amplitude especially for the zonal wind, (2) there are two regions where fluctuations
are more important : turbulence in the troposphere (at 8-18km) and the stratospheric
wind around 60 km, which changes direction during the year.

These meteorological data give an illustration of the variations of winds and tem-
peratures over one year. However, due to low resolution, both in space and time,
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Figure 1.2 : Annual variations of zonal (u) and meridional (v) winds during 2018
at I37NO station in Norway (red and blue lines represent −20m.s−1 and 20m.s−1).
Tropopause and stratopause correspond to local minimum and maximum of the tem-
perature profiles.

ECMWF data do not capture small structures, such as gravity waves (GW) [Le Pi-
chon et al., 2010, Drob et al., 2013]. Although the most prevalent sources of atmos-
pheric GW occur in the troposphere and initial wave amplitudes are relatively small,
these gravity waves propagate upward and their amplitude tends to grow as the re-
sult of exponentially decreasing air density. Thus, at certain locations and seasons in
the upper mesosphere and lower thermosphere (above 75 km), GW are the cause of
random variations of great amplitude.

Thus, for the purpose of infrasound propagation modeling, the unresolved atmos-
pheric gravity wave perturbations can be represented using stochastic models [Lott
and Millet, 2010, Lott et al., 2012, de la Cámara et al., 2014] and superimposed
on the resolved average background state, much in the same way that turbulence is
parameterized in aerodynamic drag calculations.

In order to reduce the cost of a numerical study, especially when many stochastic
input parameters are involved, we first need to reduce the input dimension d, which
is a priori infinite if we take the whole fields of wind and temperature.
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2.2 Reducing the input dimension

A problem with high-dimensional datasets is that, in many cases, only a small set
of variables have a significant impact on Y . Moreover, many algorithms are sensitive
to the input dimension and the curse of dimensionality1 makes it computationally
impossible to work with such data sets. As a consequence, many algorithms have been
developped to reduce the dimension of the parameters space. To deal with continuous
inputs (temperature and wind profiles in our case), one of the most widely used
technique is the Karhunen-Loève decomposition [Kac and Siegert, 1947, Karhunen,
1947, Loeve, 1948].

The idea of Karhunen-Loève (KL) decomposition is to decompose the stochastic
process on a basis formed by deterministic functions (coefficients will be random
variables).

The KL decomposition is defined for centered, mean-square continuous2 and square
integrable (i.e. in L2) processes (Xt)t∈D where D is the domain (D = R+ for us).

If we denote KX(s, t) = E[XsXt] the covariance function, we can introduce the
linear integral operator TKX :

TKX :L2(D) →L2(D) :

f 7→
∫
D

KX(s, ·)f(s) ds,
(1.1)

note that this integral is completely deterministic as it is defined using KX(s, t) which
is a deterministic function. From definition (1.1) it is easy to see that TKX is a linear
operator. Let us denote (λk, ek(t))k∈N its spectrum :∫

D

KX(s, t)ek(s) ds = λkek(t). (1.2)

Since the operator TKX is self-adjoint, the spectral theorem ensures that the ei-
genfunctions form a basis. Any stochastic process in L2(D) can be decomposed :

Xt =
∞∑
k=1

Zkek(t), (1.3)

where the coefficients Zk are given by the orthogonality property :

Zk =

∫
D

Xtek(t) dt. (1.4)

The orthogonality of the basis gives a decomposition in uncorrelated random va-
riables :

E[Zk] = 0, ∀k ∈ N and E[ZiZj] = δijλj, ∀i, j ∈ N, (1.5)

1Introduced by Richard Bellman, the curse of dimensionnality refers to all the phenomena arising
when the input dimension increases.

2(Xt)t∈D is mean-square continuous iif lim
ε→0

E
[
(Xt+ε −Xt)

2
]

= 0, which is equivalent to the conti-

nuity of the covariance function, see [Alexanderian, 2015] for technical details.

19



which allows computing directly the variance of the process :

var[Xt] =
∞∑
k=0

ek(t)
2 var[Zk] =

∞∑
k=1

λkek(t)
2,

∫
D

var[Xt] dt =
∞∑
k=1

λk.

(1.6)

This can be used to truncate the expansion (1.3) : to keep a proportion α of the
variance, one have to find the order N such that :∑N

k=1 λk
Var[Xt]

≥ α. (1.7)

The KL decomposition is closely related to the Principal Component Analysis
(PCA), which is widely used in data analysis. Assuming that we have a (sufficiently
large) number of realizations, we can empirically approximate the covariance matrix

of the process and compute its spectrum
(
λ̃k, ẽk(z)

)
k=1,..,N

(we denote with a ∼
empirical values). The perturbation can be decomposed on this basis :

Xz =
N∑
k=1

ξk

√
λ̃kẽk(z) (1.8)

The difficulty of this approach is to characterize the random variables (ξk)k=1,..,N .
The different realizations of Xz can be used to sample those random variables, com-
puting :

ξk(ω) =

∫
D

Xz(ω)
ẽk(z)√
λ̃k

dz, (1.9)

which can be used as the new input parameters for our model F .
Then the probability density function can be computed empirically using a kernel

method for instance. However, there is no reason for the sampling of Xz to ensure
a good representation of ξk. Moreover, when the process is gaussian, the random
variables (Zk)k∈N are independent but it will not be the case with empirical decom-
position.

In the case of infrasound propagating in the atmosphere, sound ducts produced
by the combination of temperature gradients and wind shear can be qualitatively de-
termined using the effective sound speed approximation in which the influence of the
wind is accounted for by adding the horizontal wind speed component in the direction
of propagation to the sound speed [Godin, 2002]. This approximation allows to consi-
der only a one dimensionnal input c(z) on which a perturbation can be superimposed.
Figure 1.3 shows a decomposition of the variability of an effective sound speed profile
perturbed by a GW field using a PCA. To produce this decomposition, 1000 realiza-
tions of GW have been produced using the global climate model (GCM) LMDz ([de la
Cámara et al., 2014]) and superimposed to an effective sound speed computed from
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Figure 1.3 : PCA of the variability an effective sound speed profile perturbed by rea-
lisations of GW. The basis functions ẽk(z) capture variability of different wavelengths
(on the first line). On the second line, the amplitude of the different PCA modes ‖ẽk‖
is shown in red and the cumulative proportion of the total variance is shown in blue.
The ten first terms of the decomposition capture 80% of the variance and are the
only ones whose amplitudes exceed 0.5% of the unperturbed profile amplitude.

real data. From the covariance matrix of these 1000 profiles, a PCA decomposition
has been computed and the functions ẽk(z) are plotted for k ∈ {1, .., 30}.

The truncation of this expansion can be done to preserve a fixed proportion (α)
of the variance of the initial perturbation. In our case, to keep all the variance of the
celerity profiles, we propose to treat the remaining terms as an additional perturba-
tion. This additional perturbation will be treated using perturbative techniques. As
an example on figure 1.3, the first 10 terms of the decomposition are of great am-
plitude and represent 80% of the variance, the other terms have a sufficiently small
amplitude to be consistent with a perturbative approach.

3 Modelling and Metamodelling

3.1 Models of propagation

One primary purpose of a model is to characterize the input-output relationship of
the system of interest—the input describes the relevant system properties and envi-
ronmental conditions, and the output describes quantities of interest of the related
problem. In this context, evaluating a model means performing a numerical simula-
tion that implements the model, computes a solution, and thus maps an input onto
an approximation of the output. For instance, the numerical simulation might involve
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solving a partial differential equation (PDE), or solving a system of ordinary diffe-
rential equations. Mathematically, we denote a model as a function F : X → Y that
maps an input X ∈ X to an output Y ∈ Y , where X ⊆ Rd is the domain of the model
inputs, with dimension d ∈ N, and Y ⊆ Rd′ is the domain of the model outputs, with
dimension d′ ∈ N. Model evaluations (i.e., evaluations of F ) imply computational
costs c ∈ R+ that typically increase with the accuracy of the output approximation.

For a given atmosphere, there exists different methods for simulating the propaga-
tion of an acoustic wave with different accuracies and different costs. The three basic
approaches to model the long-range propagation of acoustic waves are : the geometric
acoustics approximation or ray tracing [Drob et al., 2013, Hedlin and Drob, 2014, La-
lande and Waxler, 2016], the resolution of the wave equation (using normal mode
method [Millet et al., 2007, Bertin et al., 2014, Assink et al., 2017] or the parabolic
approximation [Klyatskin and Tatarskii, 1970, Ostashev et al., 2019, Blanc-Benon
et al., 2001]) and the resolution of Navier Stokes equations (with finite differences or
a finite element method [Sabatini et al., 2019a, Sabatini et al., 2019b, Sabatini et al.,
2016]). The ray tracing has the great advantage of reproducing the basic properties of
infrasonic signals observed during experiments with a rather low computational cost.
However, this approach is restricted to high frequency waves, and thus, fails to predict
some important mean flow refraction effects such as mountainwakes or jet streams
for example. For a downward refracting atmosphere, normal mode decomposition of
the acoustic wave equation can give a good approximation of the solution [Waxler
et al., 2017, Assink et al., 2017]. In all other cases the problem has to be solved with
direct numerical simulations [Sabatini et al., 2019a, Sabatini et al., 2019b] or other
computationally expensive techniques.

Every numerical method has its approximation error. In addition, the description
of the propagation medium brings its own sources of uncertainties. These errors on the
inputs X may be classified in two categories using the standard definition [Matthies,
2007, Der Kiureghian and Ditlevsen, 2009] :

• the epistemic (or reducible) uncertainties, which model mainly a lack of know-
ledge. In the case of atmospheric propagation, those uncertainties arise from
atmospheric specifications products.

• the aleatoric (or stochastic) uncertainties, which measure the intrinsic varia-
bility of a system. The atmosphere is a dynamical system in which natural
phenomena can evolve and change the propagation conditions.

3.2 Metamodels

Direct uncertainty propagation consists in propagating the variability of the inputs
through the numerical model to assess the impact on the QoI. The simplest method
to conduct such an analysis is Monte-Carlo simulation. This method is fairly simple
to implement, can be easily parallelized and more importantly is insensitive to the di-

mension d of the input. Nevertheless, the convergence of this method is in O
(

1/
√
N
)

where N is the number of sample, which is rather slow and only provides statistical
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Figure 1.4 : Polynomial fit of data points (xi, yi)i=1,..,6 defined by the expression :
yi = x2

i −xi + 0.5 + 0.05ηi, ηi ∼ N (0, 1) (dashed line gives the original polynomial). A
polynomial of order 1 under-fits the data (left), a good fit is obtained by a polynomial
of degree 2 (center) and a polynomial of degree 9 overfits the data (right), although
erremp is small.

estimators.
There exists many refinements to the classical Monte-Carlo simulations. The sim-
plest consists in using sampling strategies (such as Latin Hypercube Sampling (LHS)
[McKay et al., 1979] or Sobol’ sequence [Sobol’, 1967] ) to accelerate the convergence

to a O
((

log (N)d
)
/N
)

. In any cases those methods require many calls to the nume-

rical model which becomes prohibitive in the case of a computationally demanding
solver. For this reason, the development of alternative techniques has been an active
field of research in the recent years. Those techniques (called surrogate models or me-
tamodels) are designed to be more efficient than the classical Monte-Carlo approach
but are this time very sensitive to the dimension d. The idea is to calibrate a new
model F̂ : X → Y using a small number of runs of F in order to have a model F̂
easier to assess numerically and reproducing the statistical properties of F .

The natural definition of the error of the metamodel F̂ is called the generalization
error in statistical learning [Vapnik, 1995] and defined by :

err = E
[(
F (Xz (ξ))− F̂ (Xz (ξ))

)2
]
. (1.10)

In order to estimate this error, a natural method is to use the experimental design :(
ξ(1), . . . , ξ(N)

)
, used to calibrate the metamodel :

erremp =
1

N

N∑
i=1

(
F (Xz

(
ξ(i)
)
)− F̂ (Xz

(
ξ(i)
)
)
)2

. (1.11)

However, it is well-known that this estimation of the error is biased and conducts to
over-fitting, as figure 1.4 shows. To circumvent this problem, the idea is to quantify the
approximation of the metamodel on points that have not been used for the calibration.
There exists mainly two methods for validation :

23



• The first idea is to use a test set (ξ(t1), ..., ξ(tn)), and use the Q2 criterion to
quantify the behaviour of the metamodel on those points :

Q2 = 1−

n∑
i=1

(F (Xz

(
ξ(ti)

)
)− F̂ (Xz

(
ξ(ti)

)
))2

n∑
i=1

(F (Xz

(
ξ(ti)

)
)− E[F (Xz (ξ))])2

, (1.12)

when the model perfectly estimates the test values, Q2 = 1 and when Q2 = 0
it means that a constant value E[F (ξ)] can do as well as the model. Q2 can be
negative, in this case it means that a constant model is doing a better job than
the metamodel.

• In the case of a very expensive model F , a cross-validation technique can be
used [Stone, 1974, Geisser, 1975], it consists in dividing the sample into two
subsamples : one training set and one validation set. A refinement of this tech-
nique (called ν-fold cross-validation) consists in using a random partition of the
sample : the learning set will contain in turn all but one of the subset which is
considered as the test set. The generalization error is estimated for each of the
sets and then averaged over all possibilities. In the case of subsets of size 1, this
method is called Leave-One-Out.

3.3 Complexity of metamodels

Another interesting approach to analyze the performance of a metamodel can be found
in computational learning theory, a subfield of machine learning focusing on the ability
of algorithms to learn a model. To this purpose, the notion of probably approximately
correct (PAC) learning has been introduced by Leslie Valiant in 1984 [Valiant, 1984]
to characterize a concept which can be learned by an algorithm. Formally, a concept is
an application from a set of inputs to a set of outputs (which can be either a collection
of labels or a set of possible values) and a concept class C is a collection of concepts.

A concept class C is said to be PAC learnable if there exists an algorithm A that
uses random learning sets S of size m and positive constants δ and ε such that :
P(errS(A) < ε) ≥ 1 − δ where errS(A) is the generalization error of the algorithm
using sample S. If m is polynomial in 1/ε and 1/δ, C is said to be efficiently PAC
learnable.

Changing the viewpoint, we can ask what class of concepts can be learned by
a given algorithm. The Vapnik-Chevronenkis dimension (VC) for instance quantifies
the ability of a classification algorithm to shatter a set of points [Blumer et al., 1989].
In other words, it quantifies the capacity of a space of functions to be learned by
a statistical classification algorithm. The strength of the VC dimension is to give a
probabilistic upper bound on the test error. However, it only applies to classification,
which is not the classical use of metamodels.

The Rademacher complexity is a more modern notion of complexity [Koltchinskii,
2001, Bartlett and Mendelson, 2002] that is defined for real-valued functions – and
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Figure 1.5 : Rademacher complexity of Polynomial Chaos Expansion for different
sample sizes.

not only discrete-valued functions (as for VC dimension and PAC). Let F be a class
of real functions and S = (z1, .., zm) a sample drawn of independents and identically
distributed (from a distribution D) inputs, the empirical Rademacher complexity is
defined by :

R̂m(F) = Eσ

[
sup
f∈F

(
m∑
i=1

σif(zi)

)]
, (1.13)

where σi are random variables uniformly chosen over {−1, 1}. The Rademacher

complexity is then defined by : Rm(F) = ED
[
R̂m(F)

]
.

Intuitively, in formula (1.13) the supremum measures, for a set S and a random
vector σ, the maximum correlation between f(zi) and σi over all f ∈ F . Taking the
expectation over σ, we can then say that the empirical Rademacher complexity of
F measures the ability of functions from F (when applied to a fixed set S) to fit
random noise. The Rademacher complexity of F then measures the expected noise-
fitting-ability of F over all data sets S of size m.

The Rademacher complexity depends on the distribution attached to the sample
S. For a very general machine learning algorithm, this distribution is unknown but
in uncertainty quantification, a characterization of the inputs has been done before.

Figure 1.5 shows the Rademacher complexity computed for generalized Polynomial
Chaos (gPC) expansions using different sample size m. gPC is one of the techniques
used to build a metamodel, it consists in decomposing the QoI on a polynomial basis
adapted to the input distribution D. On figure 1.5, the Rademacher complexity in-
creases with the polynomial degree to a certain value and then remain stable. In fact,
the metamodel learns more from the sample when the polynomial degree increases,
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but this learning ability is all the same limited. The fact that the Rademacher com-
plexity decreases when the sample size increases is due to the definition : for a fixed
polynomial order, the approximation gives better results on a sample of small size.

4 Sensitivity analysis

If the purpose of a metamodel is to propagate the uncertainties, one of its classical
use is to conduct a sensitivity analysis of the QoI. It consists in studying the impact
of uncertainties of each input on the QoI. This analysis can be useful to test the
robustness of a result, to select the most relevant variables, to reduce the variance of
the QoI by working on the input variables.

4.1 Sobol’ indices

Variance-based decomposition has been introduced by the Russian mathematician
Ilya M. Sobol’ [Sobol’, 1993] and consists in decomposing the variance of the QoI into
the sum of the variances caused either by a single input or by the coupling between
several inputs. This approach is also called Global Sensitivity Analysis [Saltelli et al.,
2008], in opposition to Local Sensitivity Analysis, which consists in computing the
partial derivatives of the output with respect to the different input variables.

We assume that our problem can be written Y = F (ξ1, . . . , ξd), where Y is the
quantity of interest and ξ1, ξ2, . . . , ξd are independent variables taking values on the
unit hypercube of dimension d, Ωd. This last assumption stands only for convenience
and is not a limitation since every support can be transformed in the hypercube.
Some generalizations to dependent input variables ξ exist [Chastaing et al., 2015] but
are non-trivial and will not be discussed here.

The following decomposition is based on the work of Hoeffding [Hoeffding, 1948]
on the projection of Y on orthogonal subspaces :

Y = F0 +
d∑
i=1

Fi(ξi) +
d∑
i<j

Fij(ξi, ξj) + · · ·+ F1,2,...,d(ξ1, ξ2, . . . , ξd), (1.14)

with the following condition that implies orthogonality and thereby the unicity of
the decomposition :∫ 1

0

Fi1i2...is(ξi1 , ξi2 , . . . , ξis)dξk = 0, for k = i1, ..., is. (1.15)

The coefficients of the decomposition are defined as follows :

F0 = E(Y ), (1.16)

Fi(ξi) = E(Y |ξi)− F0, (1.17)

Fij(ξi, ξj) = E(Y |ξi, ξj)− F0 − Fi − Fj. (1.18)
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Once the function has been decomposed, if Y is squarely integrable, equation
(1.14) gives thanks to the orthogonality :∫ 1

0

[F (ξ)]2 dξ − F 2
0 =

d∑
s=1

d∑
i1<···<is

∫
F 2
i1...is

dξi1 . . . dξis . (1.19)

This expression has to be understood in terms of variance, if we denote Vi =

Varξi
(
Eξ∼i(Y | ξi)

)
and Vij = Varξij

(
Eξ∼ij (Y | ξi, ξj)

)
−Vi−Vj, then (1.19) can be

rewritten :

Var(Y ) =
d∑
i=1

Vi +
d∑
i<j

Vij + · · ·+ V12...d. (1.20)

This decomposition of the variance has the advantage to separate the effects of
the different inputs. From this expression we can define the first order Sobol’ index :

Si =
Vi

Var(Y )
. (1.21)

The same definition can be derived for higher order Sobol’ indices. However, there
are 2d indices and it is more convenient to use directly the total Sobol’ index STi
which consists in summing all the contributions involving ξi. If the sum of all the
Sobol’ indices is normalized thanks to (1.20), the sum of all the total Sobol’ indices
is greater than one :

d∑
i=1

Si +
d∑
i<j

Sij + · · ·+ S12...d = 1, (1.22)

d∑
i=1

STi ≥ 1. (1.23)

One can sometimes be interested in the second order Sobol’ index Sij, which
characterizes the effect of the interaction between the two input variables ξi and ξj.

From a numerical point of view, the simplest way to compute the Sobol’ indices
is based on Monte-Carlo simulation [Sobol’, 1993, Homma and Saltelli, 1996, Saltelli,
2002]. As we will see in the sequel, there exists more efficient methods based on
metamodeling techniques [Sudret, 2008, Marrel et al., 2009].

To compute the first and total order Sobol’ indices, one can proceed as follows :

• Generate two matrices A and B containing N realizations of the N inputs
variables (A and B are matrices of size N×d) and create matrix Ci, i = 1, . . . , d
whose columns are taken from B except the i-th one which is taken from A.

• Compute the images using the model F : yA = F (A), yB = F (B), yCi = F (Ci).

• The first-order and total order Sobol’ indices are given by :

Si =
yA.yCi − F 2

0

yA.yA − F 2
0

, (1.24) STi = 1− yB.yCi − F 2
0

yA.yA − F 2
0

. (1.25)
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As in the case of a classical Monte-Carlo estimation, the convergence of this estima-

tion is in O
(

1/
√
N
)

but can be accelerated using space-filling sampling techniques.

However, one advantage of Monte-Carlo simulations is the ability to obtain confidence
intervals.

To reduce the dimension of the input parameter space, one can use the Sobol’
indices to select the uncertain inputs which have the highest impact on the QoI.

4.2 Shapley effects

If Sobol’ indices are perhaps the most popular measure of sensitivity, their fundamen-
tal assumption of independence among inputs can be problematic for some applica-
tions. In our case, the input variables are given by the Karhunen Loève decomposition
and are not independent in the general case (independence is true only in the gaus-
sian case). To overcome this limitation, some recent studies advocate for the use of
Shapley effects [Song et al., 2016, Iooss and Prieur, 2017].

Shapley effects have been proposed in a context of sensitivity analysis by Owen
in [Owen, 2014]. Originally used in economics, the concept of Shapley effect has been
introduced in game theory. In this context, if we consider a game with a set of player
K = {1, 2, .., k} the Shapley value vi quantifies the incremental cost of including
players i in set J averaged over all sets J ⊆ K \ {i} for a given cost function c :

vi =
∑

J⊆K\{i}

(k − |J | − 1)!|J |!
k!

(c (J ∪ {i})− c (J )) . (1.26)

Notice that (k−|J |−1)!|J |!
k!

= 1
k

(
k−1
|J |

)−1
, this factor gives equal weight 1/k to all

possible size of subsets J of K \ {i} and equal weight
(
k−1
|J |

)−1
to all possible subsets

of size |J |. An important property of the Shapley values is its ability to sum to the
total cost :

k∑
i=1

vi = c(K). (1.27)

For sensitivity analysis purposes, the set of players K can be seen as the set of
inputs. For the cost function c (J ), one would want to quantify the variance of Y
caused by the uncertainties of the inputs in J . A basic property required for the cost
function is that : c(∅) = 0 and c (K) = Var (Y ). The Shapley effects will then sum
to the total variance thanks to (1.27). Owen proposed in [Owen, 2014] the following
expression for the cost function :

c̃ (J ) = Var (E[Y |XJ ]) , (1.28)

where XJ is the vector of input which indices are in J . Song et al. proposed
in [Song et al., 2016] another cost function c and proved that the Shapley value
associated to c is equivalent to the one defined with c̃ :
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Figure 1.6 : Shapley effects of the real and imaginary part of three modes from
stratosphere (in blue), mesosphere (in red) and thermosphere (in green).

c (J ) = E[Var (Y |X−J )], (1.29)

where X−J is the vector of input which indices are not in J . The advantage of
this second cost function is that it allows more efficient practical computation of the
Shapley effect. But in our case we cannot use directly the algorithm given by [Song
et al., 2016] because we do not have explicit formulations for the input distributions
but only a sample given by the PCA fitted on the data. In this context, a consistent
estimator has been proposed by Broto et al.3 [Broto et al., 2018].

On Figure 1.3, we have computed the decomposition of a wind velocity pertur-
bation induced by gravity waves. We kept ten random variables emerging from this
decomposition (the first eight modes and the 50th and 100th) as the input for our
propagation model. The choice of those ten KL-modes allows to keep a good pro-
portion of the perturbation variance and also to consider different spatial structures
in the profiles. The idea here was to investigate the impact of the different scales of
the perturbation on the different waveguides. As we will explain in chapter 1, our
QoI will be the acoustic modes that characterize the different waveguides. Figure 1.6
shows the Shapley effects of three particular modes : one in the stratosphere (with
a refraction altitude of around 40 km), one in the mesosphere (with a refraction al-
titude of around 80 km) and one in the thermosphere (with a refraction altitude of
around 100 km) at 0.1Hz. The dashed line represents the Shapley effects in the case
of equally important inputs. For the stratospheric and mesospheric modes, there is
not any input which stands out. However, it seems that the first four modes have a
greater impact than the six others on the thermospheric mode.

This preliminary study allowed us to introduce the kind of uncertainties at stake
for atmospheric propagation and a first illustration of their impact on the acoustic
propagation. However, this study remains incomplete and the purpose of this work
will be to show how metamodelling techniques can be used to study the impact on
the propagation (including the impact on the received signals) in a computationnally
efficient way.

3This estimation is available in the R package sensitivity and has been used to produce Figure
1.6.
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4.3 Sensitivity analysis applied to infrasound propagation

In the context of infrasound propagation, the inputs describe the fluctuation of the
atmospheric state, mainly due to the meteorological conditions. The output can be
at different stages, depending on the purpose of the simulation : it can be for ins-
tance the acoustic modes, quantities extracted from the temporal signal or another
quantites computed using the result of the simulation. We give here three examples
of application of sensitivity analysis to infrasound propagation computing the impact
of fluctuations of the input on different outputs :

1. the decomposition of the perturbation according to paragraph 2.2 separates
the different scales of the input, as a consequence, computing the Shapley ef-
fects (like in the previous paragraph) allows to distinguish which scales have an
impact on the different acoustic modes.

2. in the case of other quantities of interest such as time of arrival or duration of
the signal, a sensitivity analysis can be conducted to isolate the effect of the
different scales of the perturbation on the signal.

3. if, as in chapter 4, the propagation is used to localize an event using infra-
sound, the sentivity analysis can give information on the critical resolution of
the meteorological data necessary to a good localization.

Those three examples of application of sensitivity analysis are thought in the case
of a decomposition of the input separating the different scales. If, on the contrary, one
wants to study the impact of perturbations localized at a certain altitude, it could be
done by designing a profil with shape parameters that will be the inputs. This is the
case in chapter 3 where the impact of a nocturnal jet is studied.

5 Outline of the manuscript

The first chapter of this manuscript presents all the methods used in this work : the
modal decomposition for the acoustical decomposition, its practical implementation
and the framework of polynomial chaos, which is one of the methods used to build a
metamodel.

The second chapter presents an application to the planetary boundary layer with
a theoretical perturbation. The aim of this chapter is to show how the method can
be used on a simple case for which comparison with Monte-Carlo estimation are
affordable.

The last chapter deals with the problem of localization of a source detected by
the IMS. In this context, the use of a metamodel of the propagation makes affordable
a bayesian treatment.
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Chapitre 2
Modal Expansions

1 Wave equation

We start this methodological chapter on the wave equation whose derivation from
fluid mechanics is briefly recalled (with specifications used in the sequel) in a first
paragraph. The normal mode decomposition of the wave operator is presented using
spectral operator theory. Then, the numerical computation of the normal modes is
discussed with a presentation of both finite differences and spectral collocation me-
thod. This section ends with a study on the numerical precision of the normal modes
computation.

1.1 Atmospheric infrasound propagation

Infrasound generated by events of great amplitude can propagate over large distances
(up to thousands of kilometres) in the atmosphere thanks to the ducts created by
atmospheric temperature and wind speed gradients. The propagation is more efficient
in the lower ducts of the atmosphere, for which losses as a result of geometrical
spreading and absorption are minimal. In practice, tropospheric and stratospheric
waveguides are most influential in determining long-range propagation conditions.

Figure 2.1 illustrates the directionality of sound propagation. A stratospheric jet
(strong wind located at around 45 km) induces very different propagation conditions
depending on which side of the source (located in 0 on the figure) the receiver is
located. As the transmission loss representation suggests in figure 2.1, the received
signal will result from the superposition of different wavepackets, each one coming
from a different waveguide. Figure 2.2 shows the evolution of the propagation of an
impulsive signal in such an atmosphere. The direct arrivals vanish as the distance
increases but stratospheric (with a refracting altitude around 45 km) and thermo-
spheric (with a refracting altitude around 90 km) waveguides lead to respectively five
and two arrivals. The thermospheric arrival is attenuated by the absorption, which is
much more significant for high altitudes.
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Figure 2.1 : Sound propagation in an atmosphere with a stratospheric wind pro-
pagating from the right to the left. The resulting effective sound speed profiles are
presented (left, solid line for right to left profile and dashed line for left to right profile)
and the transmission loss at a frequency of 1Hz (right) for a source on the ground.

Figure 2.2 : Propagation of an impulsive signal in an atmosphere characterised by
the sound speed profile given on the left. Time scale has been translated using a
reference sound speed c0 = 330 m.s−1. The source signal has a central frequency at
0.4Hz.
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Equation for the propagation

A classical framework for simulating wave propagation relies on the linear wave equa-
tion [Waxler et al., 2017, Assink et al., 2017, Lalande and Waxler, 2016] obtained
from a linearization of the Euler equations. We are going to work in cylindrical co-
ordinates and thus write the linear wave equation for a pressure field p (r, z, t) in a
stratified medium of density ρ(z) with an horizontal wind velocity v(z) [Brekhovskikh
and Godin, 1999] :

Dt
[

1

c2
a

D2
t p−∆⊥p− ρ

∂

∂z

1

ρ

∂p

∂z

]
+ 2

(
dv

dz
.∇⊥

)
∂p

∂z
= 0, (2.1)

where Dt = [(∂/∂t) + v.∇⊥], ∇⊥ (respectively ∆⊥) being the gradient (respecti-
vely the laplacian) in the horizontal direction and ca(z) is the adiabatic sound speed :

ca(z) =
√
γrgT (z), (2.2)

where rg is the gas constant for air and γ the adiabatic index. We will neglect
the vertical wind shear, that cancels the second term in (2.1). Concerning the first
term, if we consider that the mean flow is close to the direction of propagation ~er
equation (2.1) can be approximated by :

1

c2

∂2p

∂t2
−∆⊥p− ρ

∂

∂z

1

ρ

∂p

∂z
= 0, (2.3)

where c(z) = ca(z) +
−−→
v(z).~er is the effective sound speed (with

−−→
v(z) a vector in the

direction of the mean flow and of magnitude v(z)). From this equation we can perform
a Fourier transform in time and therefore use the variable u(ω, r, z), solution of :[

ω2

c2
+ ∆⊥ +

∂2

∂z2
+H

]
u = 0, (2.4)

where H has the dimension of a frequency and writes :

H =
1

2

ρ′′

ρ
− 3

4

(
ρ′

ρ

)2

. (2.5)

In the applications of this thesis we will have a celerity around 300m.s−1 and frequen-
cies between 0.1Hz and 20Hz. With those conditions we have Hc2/ω2 � 1 and will
mainly use the following form of the wave equation :

∆u+
ω2

c2
u = 0, (2.6)

where ∆ = ∂2/∂z2 + ∆⊥ is the laplacian.
To solve the propagation problem we will need some boundary conditions describing
the behaviour of the pressure field when z = 0 and z → +∞. On the top of the
domain we will only require some bounded solutions (this will exclude exponentially
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increasing functions). At the ground, we will assume in this thesis that the ground is
perfectly reflecting waves. This imposes a Neumann homogeneous condition :

du

dz
(0) = 0. (2.7)

A more realistic modelling would consist in assuming that reflections on the ground
attenuate the propagation [Attenborough, 1988]. To take into account this attenua-
tion, a complex impedance Z(ω)1 is often taken, leading to a Robin boundary condi-
tion [Waxler, 2002] :

du

dz
(0) = −−iωρ(0)

Z(ω)
(ω)u(0). (2.8)

1.2 Normal modes decomposition

We are interested in solving the wave equation (2.6) in the case of a point source s(t)
located at r = 0, z = zs. This problem writes :

∆u+
ω2

c(z)2
u = δ(r)δ(z − zs)ŝ(ω), (2.9)

where ŝ(ω) is the Fourier transform of s(t). We will consider here that the medium
is invariant in the propagation direction and for this reason the effective sound speed
depends only on the vertical coordinate c = c(z). It is then natural to split the
Laplacian in two terms ∆ = ∂2

z + ∆⊥ and to define the differential operator L that
describes the vertical structures :

L =
d2

dz2
+

ω2

c(z)2
, (2.10)

whose domain writes :

D(L) =
{
ψ ∈ H2

(
R+
)
|ψ′(0) = 0, lim

z→∞
ψ(z) = 0

}
. (2.11)

With this definition, the left hand side of equation (2.9) becomes : Lu+ ∆⊥u.

The spectral measure associated to L

The idea of spectral decomposition is to build a unitary transformation F from the
’physical space’ D (L) to a ’spectral space’ that contains functions of the spectral
variable λ ∈ σ (L), where σ (L) is the spectrum of L. The strength of this transfor-
mation is to diagonalize L, in the sense that it converts the action of L into a simple
multiplication by λ : L = F∗λF .

The spectral theorem guarantees the existence of such a transformation F for
every self-adjoint operator, which is the case of L :

1As explained in paragraph 1.2 an important property is that the differential operator associated
with (2.6) is self-adjoint. With this complex impedance the operator is not a self-adjoint operator
anymore.
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Figure 2.3 : Computation of the spectral measure using either Cauchy (contour C)
or Stone formula (contour C ′).

(Lφ, ψ) = (φ,Lψ) , ∀φ, ψ ∈ D(L), (2.12)

where (, ) is the classical inner product in L2(R+).
More precisely, the spectral theorem ensures the existence of a spectral measure

E2 (also called resolution of the identity) such that :

Lφ =

∫
R
λ dEλφ ∀φ ∈ D(L). (2.13)

For practical computation of the spectral measure, Cauchy and Stone formulae
give expressions using the resolvent R(z) = (L − zId)−1 :

• (Cauchy formula) for a, b ∈ R,∀ε > 0, σ (L)∩]a−ε; a+ε[= σ (L)∩]b−ε; b+ε[= ∅
(i.e. a and b are not in the neighbourhood of the spectrum of L) :

E ([a; b]) = E (]a; b[) =
1

2iπ

∮
C
R(s) ds, (2.14)

where C is a closed contour around [a; b] which crosses the real axis in a and b ;

• (Stone formula) for a, b ∈ R such that a < b,

1

2
(E (]a; b[) + E ([a; b])) = lim

ε→0

1

2iπ

∫ b

a

(R (x+ iε)−R (x− iε)) dx. (2.15)

The Stone formula gives the general case, in particular it allows to compute the
contribution of the continuous part spectrum. However, it requires the expression
of the resolvent which is not known in the general case (a complete study has been
done by Christophe Hazard in the particular case of the Pekeris waveguide, which can
be derived analytically [Hazard, 2009]). For this reason, we will choose the Cauchy

2A spectral measure E is an application from the Borel subsets of R in the space of orthogonal
projection on an Hilbert space H which fulfils the classical properties of real measures :

1. E(∅) = 0 and E(R) = Id

2. E(
∞⋃
k=0

Ik) =
∞∑
k=0

E(Ik), for (Ik)k∈N disjoint Borel subsets of X (σ-additivity)

3. E(I ∩ J) = E(I)E(J) for I and J parts of X .
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formula using the residue theorem to compute the integral. It will only provide the
contribution of the discrete part of the spectrum but it has been shown that the
continuous contribution was negligible at the ground far from the source [Waxler,
2003].

In order to use those formulae, we need an expression of the resolvent R (ζ) for
all ζ ∈ C. We will use the following integral expression :

(R(ζ)φ)(z) =

∫
R+

γζ (z, z′)φ(z′) dz′, (2.16)

where γζ is the Green function :
γ′′ζ (., z′) +

(
ω2

c(z)2
− ζ
)
γζ (., z′) = δz′ ,

γ′ζ(0, z
′) = 0,

lim
z→∞

γζ(z, z
′) = 0,

(2.17)

where δz′ denotes the Dirac measure at z = z′. In order to compute the spectral
measure associated to our operator L using the Cauchy or Stone formulae we need to
know the dependencies of γζ in ζ. If we cannot have a closed expression for γζ because
it will depend on the profile c(z), we will still be able to express its contribution to
integral (2.14) using the residue theorem.

For a fixed z′ in R+, equation (2.17) can be written using the jump formula :

{
γ′′ζ
}

+

(
ω2

c(z)2
− ζ
)

+ σ0δz′ + σ1δ
′
z′ = δz′ , (2.18)

where {f} stands for the regular distribution associated to the function f and σ0

and σ1 are respectively the jumps of γζ and of its derivative in z = z′. Because δz′
and δ′z′ are independent, equation (2.17) gives σ0 = 1 and σ1 = 0.

On [0; z′] and [z′; +∞], we can define two solutions γ+ and γ− and the solution
on R+ will be a combination of those two solutions : γζ = Aγ+ +Bγ−. In z = z′, the
jump formula gives : {

Aγ+(z′)−Bγ−(z′) = 1,

Aγ′+(z′)−Bγ′−(z′) = 0.
(2.19)

We can define the Wronskian : W (z′, ζ) = γ+(z′)γ′−(z′) − γ′+(z′)γ−(z′). When
W (z′, ζ) 6= 0, the solution of system (2.19) writes :

A = γ−(z′)/W (z′, ζ),

B = γ+(z′)/W (z′, ζ),

and the solution of equation (2.17) is :{
γζ(z, z

′) = γ−(z′)γ+(z)/W (z′, ζ) for z > z′,

γζ(z, z
′) = γ+(z′)γ−(z)/W (z′, ζ) for z < z′.

(2.20)
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If we denote (ζi)i∈Z the zeros of the Wronskian W , then the former expression is
not valid on those points. However, one can notice that for such a ζi the solutions γ+

and γ− are proportional (γ+ = αγ−) and then the function defined by :{
γi(z) = γ+(z) for z > z′,

γi(z) = αγ−(z) for z < z′,
(2.21)

is a solution of the problem (2.17) on R+ and then ζi is an eigenvalue of L asso-
ciated to the eigenfunction γi. In fact, in this case the equality Lγi = ζiγi is valid on
the entire domain above and below z′.

With this expression for the Green function γζ , we can compute the spectral
measure associated with operator L using (2.14), (2.16) and the residue theorem.
Assuming that a and b fulfil the condition to use the Cauchy formula, and denoting
(ζi)i∈I the subgroup of eigenvalues encircled by the contour C 3 we have4 :

(E ([a; b])φ(z), ψ(z)) =
1

2iπ

∮
C
(R(ζ)φ(z), ψ(z)) dζ, (2.22)

=
1

2iπ

∮
C

(∫
R+

γζ (z, z′)φ(z′) dz′, ψ(z)

)
dζ, (2.23)

=
1

2iπ

∫
(R+)2

[∮
C
γζ (z, z′) dζ

]
φ(z′) dz′ψ(z) dz, (2.24)

=

∫
(R+)2

[∑
i∈I

Res (γζ , ζi)

]
φ(z′) dz′ψ(z) dz, (2.25)

where Res (γζ , ζi) is the residue of γζ in ζi. From expression (2.20) we deduce the
expression of the residue :

Res (γζ , ζi) =
γi(z

′)γi(z)

∂ζW (z′, ζi)
. (2.26)

The last difficulty is to compute the derivative ∂ζW (z′, ζi), Michael Bertin has
shown in his thesis [Bertin, 2014] that :

∂ζW (z′, ζi) = 2ζi

∫ ∞
0

γ2
i (z) dz. (2.27)

We will consider (as in [Waxler, 2002]) that eigenfunctions are chosen in order to
have this integral equal to one. This gives us the expression of the spectral measure :

3I is the subset of Z containing only the zeros of W circled by C
4we work here with real functions, this is why we have dropped the conjugate bar in the scalar

product in the following lines.
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(E ([a; b])φ(z), ψ(z)) =
∑
i∈I

∫
R+

γi(z
′)√

2ζi
φ(z′) dz′

∫
R+

γi(z)√
2ζi

ψ(z) dz, (2.28)

=
∑
i∈I

Fφ(ζi)F∗ψ(ζi). (2.29)

This expression was valid on an interval [a; b], an integration on R to include the
whole spectrum gives : (∫

R
dE(λ)φ, ψ

)
=
∑
i∈Z

Fφ(ζi)F∗ψ(ζi). (2.30)

As mentioned earlier, we have dropped here the contribution of the continuous
part of the spectrum which should add to this first term. This expression of the
spectral measure associated to L is useful to diagonalize the operator L :

Lu =

∫
R
λdE(λ)u =

∑
i∈Z

∫
R+

ζi
γi(z)u(z, r, ω)√

2ζi
dz =

∑
i∈Z

ζiû (ζi, r, ω) , (2.31)

where û (ζi, r, ω) = Fu(z, r, ω).

Resolution of equation (2.9)

We want to use the last expression (2.31) to solve equation (2.9). To this purpose, we
remind that equation (2.9) writes :

Lu+ ∆⊥u = δ(r)⊗ δ(z − zs)ŝ(ω). (2.32)

Thus, using (2.31), û is a solution of :

∑
i∈Z

ζiû (ζi, r, ω) + ∆⊥û (ζi, r, ω) =
∑
i∈Z

δ (r)Fδ (z − zs) ŝ(ω), (2.33)

=
∑
i∈Z

δ (r)
γi(zs)ŝ(ω)√

2ζi
. (2.34)

We have applied the definition of F given in (2.29) to δ (z − zs). On the left side we
recognise a classical Helmholtz equation with a constant coefficient ζi. This equation
solves using the cylindrical Hankel function of the first type H

(1)
0 and by linearity

each term of the sum writes :

û (ζi, r, ω) =
i

4

γi(zs)ŝ(ω)√
2ζi

H
(1)
0

(√
ζir
)
. (2.35)

One needs to apply the transformation F∗ to find the solution in the ’physical
space’ :
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u(z, r, ω) =
i

8

∑
i∈Z

γi(zs)γi(z)ŝ(ω)H
(1)
0

(√
ζir
)
. (2.36)

From expression (2.36) one only needs a Fourier transform in time to compute the
signal in time at a given altitude z and a distance r from the source.

In practice, to compute an acoustic field at large distances we use an approxima-
tion of the Hankel function which behaves asymptotically like a complex exponential :

H
(1)
0 (x) ≡

√
2

π

ei(x+π/4)

√
x

. (2.37)

1.3 Pseudo-spectrum

The aim of this work is to quantify the impact of a perturbation of the atmospheric
specification on the propagation. To this purpose, we are interested in the impact of
those perturbations on the spectrum of operator (2.10) and propose in this paragraph
to illustrate this impact using the pseudo-spectrum [Trefethen and Embree, 2005]. The
ε-pseudo-spectrum is defined for any ε ∈ R+

∗ :

σε (L) =

{
z ∈ C |

∣∣∣∣(zI − L)−1
∣∣∣∣ ≥ 1

ε

}
, (2.38)

with the convention that :
∣∣∣∣(zI − L)−1

∣∣∣∣ = +∞ when z ∈ σ (L). The pseudo-
spectrum of an operator contains the values of the complex plane that are near the
spectrum of the operator. At first sight there is no link with the perturbation of the
atmospheric specification but the link will be clearer with the following characterisa-
tion :

σε (L) =
⋃
L′∈Sε

σ (L+ L′) , (2.39)

where Sε is the set of linear operators whose norms are smaller than ε. In the
context of acoustic propagation, the perturbations will result in a modification of the
sound speed profile and the perturbed operator L can be decomposed as a sum of two
operators L = L0 + L1 where L0 is the classical operator (2.10) for the unperturbed
profile c0 and L1 defined by :

L1Ψ =

(
ω2

c(z)2
− ω2

c0(z)2

)
Ψ, (2.40)

where c(z) is the perturbed profile. Because L1 is a multiplicative operator, its
norm is directly given by :

η =

∣∣∣∣∣∣∣∣ ω2

c(z)2
− ω2

c0(z)2

∣∣∣∣∣∣∣∣ . (2.41)

Characterisation (2.39), gives the following result on the spectrum of the perturbed
operator L :
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Figure 2.4 : Pseudo-spectrum computed for different values of ε. The spectrum
(black dots) have been computed for the sound speed profile of figure 2.2 but for a
frequency of 0.1Hz (less expensive than 1Hz numerically). A complex term is added
to the frequency (=[ω] = 1) in order to correct the aspect ratio.

σ (L) ⊂ ση (L0) . (2.42)

To compute numerically the pseudo spectrum of a matrix (representing the ope-
rator) we give a last characterisation :

σε (L) = {z ∈ C | smin (zI − L) ≤ ε} , (2.43)

where smin(A) is the smallest singular value of matrix A.
Figure 2.4 shows the contour of the pseudo-spectrum for different values of ε,

highlighting the more sensitive eigenvalues. However, the pseudo-spectrum is a very
general tool and does not give any information for a specific perturbation (imposed
by data for instance). In fact, inclusion (2.42) is very large because Sη contains all the
possible operators of norms smaller than η and we are only interested in perturbation
by very specific operators of the form (2.40). Moreover, its computation requires to
compute a singular value decomposition at each point of the domain which becomes
unaffordable for large matrices.

1.4 Numerical computation of the spectrum

To compute numerically the spectrum of operator (2.10), the first operation consists
in bounding the domain. This operation is not insignificant because it changes the
nature of the operator whose resolvent becomes compact and the spectrum will only
be discrete. On top of that, a numerical discretization of operator (2.10) will trans-
form the problem in a computation of the spectrum of a matrix. To perform this
discretization, there exist several techniques and many refinement, but we will only
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present here the two most widely used techniques in a context of wave propagation :
finite differences (FD) and spectral collocation (SC). We will look next at the impact
of perturbations on the celerity profile on the spectrum. For this purpose, we need to
investigate first the precision of the numerical computation of the spectrum.

Finite Differences

The numerical discretization of the operator (2.10) consists in computing the deriva-
tives of an eigenfunction Ψ on equally spaced grid points (zj)j=1,..,Nd

. The first idea
that comes in mind is the finite differences method which consists in considering the
Taylor expansions of Ψ(zj+1) and Ψ(zj−1) to approximate the first derivative by :

Ψ′(zj) ≈
Ψ(zj+1)−Ψ(zj−1)

2h
, (2.44)

where h = zj+1 − zj is the step of the grid. By repeating the same operation, we
obtain the second order derivative :

Ψ′′(zj) ≈
Ψ(zj+1)− 2Ψ(zj) + Ψ(zj−1)

h2
. (2.45)

Using those discretizations of the derivatives we can write a discrete form of operator
L using a matrix-vector multiplication with constant entries :

L(FD) =



B +
ω2

c(z0)2

1

h2
0 . . .

1

h2
− 2

h2
+

ω2

c(z1)2

1

h2
0

0
1

h2
− 2

h2
+

ω2

c(z2)2

1

h2
0

...
. . .

0
1

h2
− 2

h2
+

ω2

c(zNd)
2

1

h2

0
1

h2
− 2

h2
+

ω2

c(zNd)
2



.

(2.46)
The first line encodes the limit condition (B), L(FD) is thereby the discretization
of operator (2.10) and its spectrum can be computed like a regular matrix. If this
technique is very simple to implement, it converges relatively slowly compared with
the spectral collocation.

Spectral Collocation

The idea of SC is a polynomial interpolation in unevenly spaced points that are chosen
to be adapted to the family of polynomials [Trefethen, 2000, Canuto et al., 2006]. We
will use here the Tchebychev polynomials Tj and the associated points :

41



sj = cos (jπ/N ′d) , j = 0, .., N ′d. (2.47)

The eigenfunction are then decomposed on the Tj :

Ψ(s) =
∑
j

ajTj(s). (2.48)

To compute their derivative, we start by decomposing the derivative of the poly-
nomial on the same basis :

T ′k(s) =
∑
j

qjkTj(s). (2.49)

This allows to decompose the derivatives of the eigenfunctions :

Ψ′(s) =
∑
j

bjTj(s), (2.50)

where

bj =
∑
k

akqjk. (2.51)

Like in the case of finite differences, we can write this decomposition using matrix
expression. To this purpose, we introduce matrices T and Q that compute respectively
the projection of Ψ and the derivation of the basis functions (the coefficients of Q are
the (qjk)j,k defined at (2.49)) :

a1

a2
...

aN ′d

 = T


Ψ(s1)
Ψ(s2)

...

Ψ(sN ′d)

 , (2.52)

and 
b1

b2
...

bN ′d

 = Q


a1

a2
...

aN ′d

 . (2.53)

With those two matrices, we can compute the differentiation matrix D = T−1QT
such that :
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Ψ′(s1)
Ψ′(s2)

...

Ψ′(sN ′d)

 = D


Ψ(s1)
Ψ(s2)

...

Ψ(sN ′d)

 . (2.54)

In the case of Tchebychev polynomials with Gauss-Lobatto-Tchebychev points
(defined at (2.47)) we can give the expression of the derivation matrix (lines are
indexed by i, columns by j) :

D =



2N ′d
2 + 1

6
. . . 2

(−1)j

1− sj
. . .

1

2
(−1)N

′
d

...
. . .

(−1)i+j

si − sj
...

−1

2

(−1)i

1− si
−si

2 (1− s2
i )

1

2

(−1)N
′
d+i

1− si

...
(−1)i+j

si − sj
. . .

...

−1

2
(−1)N

′
d . . . −2

(−1)N
′
d+j

1 + sj
. . . −2N ′d

2 + 1

6



.

(2.55)
We have computed the differentiation matrix for the set of points defined at (2.47)

that cover the interval [−1; 1]. To solve the physical problem, we need to change the
coordinates using the following expression :

zj =
1− sj

2
zmax. (2.56)

This transformation impacts the derivation matrix and we define D = JD, where
J = − 2

zmax
I is the jacobian matrix of the transformation. The discretized operator

will then write :

L(SC) = D2
+

ω2

c(zj)2
I. (2.57)

1.5 Discretization error

Both methods presented in the former paragraph give a matrix whose spectrum is
an approximation of the spectrum of the operator. However, the two methods are
not equivalent from a computational point of view. An important difference between
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Figure 2.5 : Celerity profile of the boundary profile defined in (2.59). c0 stands for
the celerity at the ground, a sets the celerity for high altitudes and H the height of
the boundary layer. Here, c0 = 340m.s−1, a = 0.7 and H = 250m.

finite-difference approximations to the eigenvalues and eigenfunctions of the operator
L defined in (2.10) and the Tchebychev approximations advocated here is their order
of accuracy. Finite-difference approximations give only a finite order of accuracy in
the sense that errors behave asymptotically like (∆x)p for some finite p when the grid
scale ∆x approaches zero. On the other hand, if the celerity profile is infinitely diffe-
rentiable, the Tchebychev polynomial approximations used here are of infinite order
in the sense that errors decrease more rapidly than any power of 1/N as N → +∞,
where N is the number of Tchebychev polynomials retained in the approximation
[Canuto et al., 2006]. Another difference comes from the global character of the spec-
tral collocation. Unlike finite differences, a singularity in the physical domain will
affect the convergence of the series and thereby the solution on the entire domain and
not only locally.

We are going to compute in this section the spectrum of the Helmoltz operator in
the case of a boundary layer celerity profile that can be computed analytically. We
use this example to validate the numerical methods and compare the performances
of spectral collocation and finite differences.

We introduce a boundary layer profile, characterised by a height parameter H and
a shape parameter a. The sound speed at the ground will be denoted c0. Acoustic
modes (k,Ψ) are characterised by the equation (2.10) :

d2Ψ

dz2
+

[
ω2

c(z)2
− k2

]
Ψ = 0, (2.58)

where :

c(z) =
c0√

1−a
cosh2( z

H )
+ a

. (2.59)

If we perform the change of variable z = z/H (with d2

dz2
= H2 d2

dz2
) and denote

k0 = ω
c0

, (2.58) becomes :
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d2Ψ

dz2 +

[
ν (ν − 1)

cosh2 (z)
− µ2

]
Ψ = 0, (2.60)

with ν = 1
2

+
√

1
4

+ (k0H)2 (1− a) and µ =
√
H2 (k2 − k2

0a).

If we transform this equation in z in an equation in u = tanh (z), we obtain the
classical Legendre differential equation :

(
1− u2

) d2Ψ

du2
− 2u

dΨ

du
+

[
ν (ν − 1)− µ2

1− u2

]
Ψ = 0. (2.61)

To obtain this equation we have transformed the derivatives in z in derivatives
in u : {

d
dz

= (1− u2) d
du

d2

dz2
= (1− u2)

[
−2u d

du
+ (1− u2) d2

du2

] (2.62)

and used the trigonometric relation : 1
cosh2(z)

= 1− tanh2(z).

Solution of equation 2.61 is given in [Abramowitz and Stegun, 1965, Olver, 1974] :
Ψ(u) = AP−µν−1(u), where P a

b is the associated Legendre function of the first kind and
A a constant of integration. To be a solution of the eigenvalue problem, function Ψ
has to fulfil also the boundary conditions. We give the spectrum in the two classical
case of Dirichlet and Neumann homogeneous.

Dirichlet homogeneous :

In the case of Dirichlet homogeneous conditions, we are looking for values of µ such
that P−µν−1(0) = 0. The expression of P−µν−1(0) is given in [Abramowitz and Stegun,
1965] and gives the following condition :

cos
(π

2
(ν − µ− 1)

) Γ
(
ν−µ

2

)
Γ
(
ν+µ+1

2

) = 0, (2.63)

but cos
(
π
2

(ν − µ− 1)
)

= sin
(
π
2

(µ− ν)
)

and using the relation Γ (z) Γ (1− z) =
π

sin(πz)
, we can write equation (2.63) :

π

Γ
(
1 + µ−ν

2

)
Γ
(

1+µ+ν
2

) = 0. (2.64)

Poles of the gamma function are located on the negative integers, hence :

µn = ν − 2n− 2, n ∈ N,

kn =

[(
ν − 2n− 2

H

)2

+ k2
0a

]1/2

, n ∈ N.
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Neumann homogeneous

We can conduct exactly the same study in the case of Neumann homogeneous condi-
tions. The value of the derivative at the ground of the associated Legendre function
is also given in [Abramowitz and Stegun, 1965] and gives the following condition :

sin
(π

2
(ν − µ− 1)

) Γ
(
ν−µ+1

2

)
Γ
(
ν+µ

2

) = 0, (2.65)

proceeding like in the Dirichlet case, we obtain the following condition :

π

Γ
(
µ−ν−1

2

)
Γ
(
ν+µ

2

) = 0, (2.66)

and the eigenvalues are given by :

µn = ν − 2n+ 1, n ∈ N,

kn =

[(
ν − 2n+ 1

H

)2

+ k2
0a

]1/2

, n ∈ N.

Numerical comparison

We can use this case to assess the numerical precision of the spectral collocation
and finite differences scheme. We have used the profile (2.59) with parameters c0 =
340m.s−1, a = 0.7, H = 250m, ω = 2π × 50s−1 and zmax = 2km. For the 30th first
eigenvalues, we have computed the eigenvalues with either a finite differences scheme
or a spectral collocation. In each case, the size of the matrix is set using a number of
points per vertical wavelength which is a characteristic length of the eigenfunctions.
In practice, for the case we are studying here, four points per vertical wavelength
corresponds to a matrix of size 1847 whereas twenty points per wavelength gives a
matrix of size 9239. As shown on figure 2.6, the spectral collocation is at the machine
precision even with only one point per wavelength whereas the finite difference method
converges more slowly.
From now on, we will use the spectral collocation method with four points per vertical
wavelength to compute the acoustic modes.

1.6 Numerical error

In the previous paragraph we were interested in the discretization error which is the
error resulting from the fact that a function of a continuous variable is represented in
the computer by a finite number of evaluations, in our case with vectors and matrices.
As we have seen with figure 2.6 discretization error can usually be reduced by using
a more finely spaced lattice, with an increased computational cost. In this paragraph
we are going to focus on the numerical error.
In fact, floating-point numbers represent only a subset of real numbers. As such,
floating-point arithmetic introduces approximations that can compound and have
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Figure 2.6 : Error of the computation of the spectrum in the case of a finite diffe-
rences scheme (FD) and a spectral collocation approach (SC) for different number of
points per wavelength.

a significant impact on numerical simulations. It is then natural to estimate the
precision of our computations in order to ensure the validity of our approach. The
method we have used [Demeure et al., 2021] consists in using pair arithmetic to assess
floating-point accuracy, representing each number using a couple (number , error).
The main building block of this method is the use of Error-Free Transformations.
To evaluate arithmetic operators and the square root function, it computes the error
produced by the operation using an error-free transformation, and combines it with
the error transmitted from the inputs using basic arithmetics. It gives the number of
significant digits using the following formula :

errnum (number, error) =
⌊
− log

( error

number

)⌋
. (2.67)

The implementation, called Shaman, only requires to change the types of the va-
riables (in C++5) and execute the script normally. We first give an example on a
very basic case : the computation of the integral of the cosine function between 0
and π/2 with the rectangle technique. The error, obtained comparing the numerical
result with the exact value of the integral, is plotted on figure 2.7 (in blue) as a
function of the number of rectangle. The red dots indicate the numerical error esti-
mated by shaman. For a small number of rectangles (≤ 100) the numerical error is
smaller than the discretization error of several orders of magnitude. But when the
number of rectangles increases, the numerical error increases as the discretization er-
ror decreases ; with a discretization containing more than one hundred rectangles the
error is only numerical. In the next chapters we are going to look at the impact of
a perturbation on the celerity profile on the acoustic modes. Therefore, we will need
to compute the modes for different celerity profiles and characterise their behaviours.
Before developing sophisticated techniques to capture the variability of the modes,
we need to check that the numerical error is not going to doom our efforts. We are
going to consider in this paragraph that the modes are random variables computed
using a celerity profile corresponding to a boundary layer profile with a random jet

5All the codes used in this thesis are in MATLAB but a part of them has been translated in
C++ for this study.
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Figure 2.7 : Absolute value of the error as a function of the number of rectangles
used for the integration of the cosine function between 0 and π/2 using the rectangle
method. Both axes are displayed in a logarithmic scale (figure : Nestor Demeure PhD
manuscript [Demeure, 2021]).

(see chapter 3 for a precise definition of the celerity profile and its perturbation). We
have selected nine eigenvalues to estimate their probability densities, given a fixed
perturbation of the profile. We have used two different methods to do so : Monte
Carlo and Polynomial Chaos (cf next section for a definition of the generalized poly-
nomial chaos (gPC)). Figure 2.8 shows the numerical error of our estimations of the
densities compared with the standard deviation of each eigenvalue. As expected, the
standard deviation estimated with gPC or Monte-Carlo is the same. However, the
numerical error is higher in the case of Polynomial Chaos estimation. In any case,
the numerical error is smaller than the standard deviation of each eigenvalue which
ensures that our uncertainty quantification will be meaningful.

2 Polynomial Chaos Expansions for wave propa-

gation

To take into account the physical fluctuations of the medium in our propagation
model, we have chosen to build a metamodel using generalized Polynomial Chaos
(gPC) expansions. This choice has been motivated by the necessity to capture a
variability of great amplitude in a probabilistic context. We present here the global
framework of gPC expansions and will give in the next chapter our strategy to couple
it with acoustic propagation.
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Figure 2.8 : Numerical error is computed for the different eigenvalues and compared
to their standard deviation.
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2.1 Polynomial Chaos expansion

The polynomial chaos expansion framework has been introduced in 1938 by Norbert
Wiener [Wiener, 1938] and has known a regain of interest with the publication of
the Ghanem and Spanos book [Ghanem and Spanos, 1991] in 1991. The modern use
of polynomial chaos consists in decomposing a random variable (named Quantity of
Interst, QoI) on a polynomial basis to conduct statistical studies when the model is
expensive to evaluate. The strength of generalized Polynomial Chaos (gPC) relies in
its ability to build a surrogate model of any second-order random field, as an infinite
functional series based on multivariate polynomials of random variables ; these random
variables parametrizing here the uncertain environmental information of the system.
Once the surrogate model at hand, it is possible to extract statistical properties
(mean, variance, global sensitivity indices, ...) of the QoI computed by the model, or
predict its value at very low cost for a new particular environmental scenario within
the range of variability.

The specific feature of polynomial chaos lies in the orthogonality of the polynomial
basis with respect to the joint measure of the input parameters distributions. We first
consider the case of one dimensional input ξ and a QoI Y depending on the input
throught a model F : Y = F (ξ), F : R→ R.

Orthogonal polynomials

If we denote by µ a probability measure on R and (Hn)n∈N a family of polynomials,
we will say that (Hn)n∈N is orthogonal with respect to µ if :

∀n,m ∈ N2,

∫
R
Hn(x)Hm(x)dµ(x) = γn1{n=m}. (2.68)

If ∀n ∈ N, γn = 1, the polynomials are called orthonormals.
The existence and the construction of such a family is ensured by the Gram-

Schmidt process6. From a numerical point of view, this process is unstable and in
practice recurrence relations can be found to compute the coefficients.

Once the family of orthonormal polynomials is computed, one still have to show
that the family is complete (i.e. dense in L2(R, µ)). In the case of a Gaussian variable,
the validity of this decomposition has been originally proven in an article of Cameron
and Martin in 1947 [Cameron and Martin, 1947]. It has been generalized to other types
of random variables [Xiu and Karniadakis, 2002] and even arbitrary distributions
[Soize and Ghanem, 2004]. We propose a proof here [Beck et al., 2005] in the case of
a measure fulfilling the condition :

∃α ∈ R∗+,
∫
R
eα|x|dµ(x) < +∞. (2.69)

The demonstration we propose here is not the original one of Cameron and Martin
but is using some complex analysis arguments and has the advantage of being quite

6A sufficient condition for the Gram-Schmidt process is that µ has an infinite support and∫
R x

ndµ(x) < +∞. It is usually the case for classical probability laws.
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synthetic. Let g ∈ L2(R, µ), we want to show that if :

∀n,
∫
R
xng(x)dµ(x) = 0, (2.70)

then g = 0. We will deduce that the family of (Xn)n∈N polynomials is complete. Then a
property of the Gram-Schmidt process is Vect (X i, 0 ≤ j ≤ n) = Vect (Hi, 0 ≤ j ≤ n) ;
this will show the completeness of (Hn)n∈N.

We will assume here that the measure µ is absolutely continuous with respect to
the Lebesgue measure, i.e. ∃ρ, ∀A ⊆ R µ(A) =

∫
A
ρ(x)dx.

We then define the function φ on R by φ(x) = g(x)ρ(x) and consider its Fourier
transform on R :

φ̂(ω) =

∫
R
g(x)e−iωxρ(x)dx.

We want to build the analytic continuation of φ̂ in a function Φ holomorphic on
Bα = {z ∈ C/|=[z]| < α/2} (α given by condition (2.69)).
Let h(x, z) = g(x)ρ(x)e−ixz, for z ∈ Bα we have |h(x, z)| ≤ e|x|α/2|g(x)|ρ(x) and by
Cauchy-Schwarz inequality we have :∫

R
e|x|α/2|g(x)|ρ(x)dx ≤

∫
R
e|x|αρ(x)dx

∫
R
|g(x)|2ρ(x)dx < +∞. (2.71)

Φ(z) =

∫
R
h(x, z)dx is well-defined on Bα and holomorphic by integration of a

dominated holomorphic function. We can compute the nth derivative of F :

Φ(n)(z) = (−i)n
∫
R
xng(x)e−ixzρ(x)dx, (2.72)

which in z = 0 gives :

Φ(n)(0) = (−i)n
∫
R
xng(x)ρ(x)dx. (2.73)

As a consequence of (2.70), ∀n ∈ N,Φ(n)(0) = 0 and the Taylor series expansion
gives Φ = 0 on a neighbourhood of 0. The uniqueness of the analytic continuation
(Bα being connected) implies that Φ = 0 on Bα. In particular on the real axis : φ̂ = 0.
The Fourier transform is injective so φ = 0 and then g = 0 since ρ is positive because
µ is a positive measure.

This result justifies the decomposition of all random variables of L2(R, µ) on the
family of orthogonal polynomials.

Approximation

In practice, Y = F (ξ) will be written as a truncated expansion on this polynomial
basis. If we denote ΠPY the polynomial expansion of Y ∈ L2(R, µ) truncated at
degree P the projection theorem gives :
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ΠPY = argmin
H∈Fn

‖Y −H‖L2(R,µ), (2.74)

where Fn is the set of polynomials with degree less than n. The practical com-
putation of the coefficients of the decomposition will be detailed in the next chapter
but the two possibilities rely on the orthogonality of the polynomials (projection) or
on this result of optimality (regression).

An interesting result gives a bound on the error depending on the regularity of
the function F . If we denote Dk the set of functions whose k first derivative exist and
have a finite L2−norm and ‖.‖Dk =

∑k
i=0 ‖.(i)‖2 then there exist a constant Ck such

that :

‖Y − ΠPY ‖2 ≤
Ck
P k
‖F‖Dk . (2.75)

Note that convergence is always in L2−norm, which does not imply the uniform
convergence. An illustration of this fact is the Gibbs phenomenon that occurs for non
smooth functions.

Multivariate polynomials

In the case of a multidimensional input (X ∈ Rd), we can work with multivariate poly-
nomials. Those polynomials are linear combination of monomialsXβ = xβ11 x

β2
2 . . . xβdd ,

where β = (β1, β2, . . . , βd) is called multi-index and |β| = β1 +β2 + . . .+βd the degree
of the monomial.

As in the one dimensional case, we need to build a orthogonal family of polynomials
with respect to the joint measure of the input X. However, the Gram-Schmidt process
does not give a unique family depending on the way the multi-indices are enumerated.
Then, we need to weaken the definition of orthogonal family limiting relation (2.68)
to polynomials of different degrees.

A simpler case arises when we look at independent inputs. In this case, the joint
measure is the product of the measures in each dimension and there exists a family
of strongly orthogonal polynomials. This family is obtained by taking the products
of univariate polynomials in each direction.

In the next chapters, inputs will always be independent random variables in order
to use this family of strongly orthogonal polynomials.

2.2 Practical computation of polynomial chaos expansion

Polynomial chaos [Wiener, 1938] and its generalization [Ghanem and Spanos, 1991]
has known a regain of interest in the last two decades for quantifying parametric un-
certainty propagation in a given model. The strength of generalized Polynomial Chaos
(gPC) relies in its ability to build a surrogate model of any second-order random field,
as an infinite functional series based on multivariate polynomials of random variables ;
these random variables parametrizing here the uncertain environmental information
of the system. Once the surrogate model at hand, it is possible to extract statistical
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properties (mean, variance, global sensitivity indices, ...) of the acoustic field quantity
of interest (QoI) computed by the model, or predict its value at very low cost for a
new particular environmental scenario within the range of variability.
The numerical requirement in deploying gPC lies in the calibration of the surrogate
model once the approximation space has been chosen. Two main classes of methods
may be identified : – 1. Galerkin (Intrusive) methods : probabilistic model is intro-
duced within the model partial differential equations and therefore the code needs to
be modified in order to solve the obtained stochastic system of equations ; – 2. Di-
rect (Non-intrusive) methods : the deterministic solver is seen as a black-box by the
stochastic approximation. It is then only possible to operate by means of input and
output data sampling. We will expose in this section the principle of non-intrusive po-
lynomial chaos decomposition and how we propose to use it in the context of acoustic
propagation.

Orthonormal polynomials

Let us consider a general probability space (Ω,F ,P) and a model output Y ∈
L2(Ω,F ,P) is the QoI. The idea is to represent, via iso-probabilistic transformations
or model reduction such as Karhunen-Loève decomposition for instance, Y = F (ξ; θ)
by a countable number of independent random variables ξ ∈ Rn representing the
uncertain parameters and θ ∈ Rn′ the deterministic ones. The model F may be very
elaborated but will only be considered as a mapping from the space of the inputs
into the space of the outputs. The uncertain inputs ξ = (ξ1, ..., ξn) are modelled by
independent random variables whose laws are given a priori. The aim of our gPC
expansion is to characterise the random variable Y .

The existence of gPC expansion is guaranteed for all the squarely integrable ran-
dom variables [Cameron and Martin, 1947] and relies on the construction of a polyno-
mial basis (Hk)k∈N orthogonal for the following scalar product using the probability
density ρξ(x) of the input variable ξ :

〈f, g〉 = E [f(ξ)g(ξ)] =

∫
Rn
f(ξ)g(ξ)dξ =

∫
Rn
f(x)g(x)ρξ(x)dx. (2.76)

For classical random variables, families of orthogonal polynomials are well-known
and part of the Askey-scheme [Xiu and Karniadakis, 2002] : Hermite polynomials for
normal distribution, Legendre for uniform distribution among others.

To compute those polynomials, a natural method is the Gram-Schmidt orthonor-
malization procedure. Starting from the canonical polynomial family (1, X,X2, .., Xn)
and computing the orthonormalization using the scalar product defined in (2.76).
Unfortunately, this procedure is unstable numerically and another method is used in
practice. It consists in looking for a recurrence relation to compute the coefficients. In
fact, every family of orthogonals polynomials (Hk)k∈N whose higher coefficient equals
1 fulfils a three term recurrence relation :

Hn+1(x) = (−βn + x)Hn(x)− αnHn−1(x), (2.77)
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with H0 = 1, H−1 = 0 and :

αn =

∫
RHn(x)2 dµ(x)∫

RHn−1(x)2 dµ(x)
, α0 = 1, (2.78)

βn =

∫
R xHn(x)2 dµ(x)∫
RHn(x)2 dµ(x)

. (2.79)

For instance we give the recurrence relations of two classical families of polynomials :
the Hermite polynomials (Hen)n∈N associated to normal law and Legendre polyno-
mials (Len)n∈N associated to uniform law.

Hen+1(x) = xHen(x)− nHen−1(x), (2.80)

Len+1(x) =
2n+ 1

n+ 1
xLen(x)− n

n+ 1
Len−1(x). (2.81)

Tensorisation of the basis

Since ξ are independent random variables, we can write its measure as : ρξ(x) =
ρξ1(x1) × ... × ρξn(xn) and as a consequence, Hk will be the product of univariate
polynomials (Pk)k∈N : Hk(X) = Πn

j=1Pα(k,j)(Xj), where α(k, .) is a multi-index spe-
cifying the degree of each univariate polynomial in the product. The orthogonality
property allows a simple definition of the coefficients of the gPC expansion (2.82) of
Y :

Y = F (ξ; θ) =
+∞∑
k=0

akHk(ξ) with (2.82)

ak = E[F (ξ; θ)Hk(ξ)] =

∫
Rn
F (x; θ)Hk(x)ρξ(x)dx. (2.83)

Instead of indexing the expansion of equation (2.82) on a single integer, one can also
make use of a multi-index notation that is equivalent. If Λp is an index set for multi-
index γ = (γ1, . . . , γn) ∈ Nn

0 , then PΛp ≡ span{Hγ | γ ∈ Λp} and we can then write

Hγ(ξ) =
∏n

i=1 P
(i)
γi (ξi) where P

(i)
γi is the γthi order basis function in dimension (i).

Using the notation introduced above, one can rewrite the truncated gPC expansion
approximating Y as follows :

Y =
∑
γ∈Λp

aγHγ(ξ) + eT (ξ), (2.84)

where eT is the remainder due to the modal truncation. If the functional to approxi-
mate is a random process, it may also depend on space, time or some other parameters
and in that case the gPC coefficients will be deterministic space-, time- or parameters-
dependent fields. We will restrict ourselves to tensor-product polynomial spaces PΛp ,
where Λp is an index set of degree p, and where P = dim(PΛp) ≡ #Λp will denote the
cardinality of the selected polynomial space. There are different ways of constructing
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Figure 2.9 : Graphical representation of multi-index in dimension 2 for p = 7. The
three differents strategies are : tensor product (TP) on the left, total degree (TD) at
the center and Hyperbolic Cross (HC) on the right.

the approximating polynomial spaces that will impact their cardinality : – 1. Tensor
Product (TP) : PTP

Λp
with index set ΛTP

p = {γ ∈ Nn
0 : ||γ||∞ ≤ p}, – 2. Total De-

gree (TD) : PTD
Λp

with index set ΛTD
p = {γ ∈ Nn

0 : ||γ||1 ≤ p}, or – 3. Hyperbolic

Cross (HC) : PHC
Λp

with index set ΛHC
p = {γ ∈ Nn

0 :
∏n

i=1(γi + 1) ≤ p + 1}. In this
thesis, without any loss of generality, we will be using approximation spaces of total
degree (TD), so Λp will refer to ΛTD

p in the following. And in the case of total degree
tensorization the size of the polynomial basis obtained is given by :

#ΛTP
p =

(n+ p)!

n!p!
. (2.85)

A key aspect of the stochastic polynomial approximation is to take advantage of the
regularity of the QoI in regards to the parametric uncertainty. Regression, (pseu-
dospectral) projection and interpolation (or stochastic collocation) are three possible
strategies to construct multivariate polynomial approximations. These approaches
rely on discrete and uncoupled model evaluations and have no conceptual difficulties
in treating non-linear problems. However, they face the same curse of dimensiona-
lity and lead to a number of function evaluations that scale exponentially with the
number of random dimensions.

Computation of the coefficients

The first way of determining the coefficients is by use of a Galerkin projection. One
can write, assuming the basis is orthonormal :

aγ = E [Hγ F (ξ; θ)] with γ ∈ Λp, (2.86)

making use of a quadrature in the case of a pseudospectral implementation. Many
quadrature families exist with different integration capabilities and (linear or expo-
nential) nodal growth. One may distinguish two classes of grids : – nested grids : this is
for instance the case of Newton-Cotes, Clenshaw-Curtis, Fejér and Gauss-Patterson-
Kronrod formulae, or – non-nested grids such as standard Gauss-type formulae.
Another way is to rely on linear regressions, e.g. [Choi et al., 2004]. The least-squares
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solution minimizes the residuals r in the L2−norm, here written in vectorial form :
r ≡ y −HΛpa and may be apprehended as an optimization problem :

a = argmin
a∈RP

‖y −HΛpa‖2, (2.87)

where HΛp is the measurement matrix corresponding to the gPC expansion in the
index set Λp evaluated on a sample (ξ(k))k∈{1,..,K}. The solution to (2.87) is obtained
by computing the following system written in matrix form :

a =
(
HT

ΛpHΛp

)−1

HT
Λpy, (2.88)

where y is a vector of observations of size K × 1, HΛp the measurement matrix of
size K × P with Hij = Hj(ξ

(i)), and a the vector of coefficients of size P × 1. There
has been a growing interest in understanding the conditions under which problem
(2.87) leads to accurate and stable (multivariate) polynomial chaos approximations
for data randomly and independently sampled according (or not) to their natural
orthogonality measures [Cohen et al., 2013, Migliorati et al., 2014, Hampton and
Doostan, 2015a]. More specifically, these studies focussed on the relation between
the required number of samples and the cardinality of the approximation basis for
different sampling measures. If one uses enough sampling points to be able to recover
the orthonormality of the basis functions, then (HT

ΛpHΛp) is the identity matrix and
the link between (2.88) and (2.86) becomes clear.
Other approaches propose to rely on adaptive greedier sampling strategies [Resmini
et al., 2016] or address the robustness issue of surrogate modeling in the presence of
noisy data samples [Langenhove et al., 2016].

2.3 The Long-term Integration Problem

For wave propagation in a random medium, a natural approach would be to de-
compose the temporal signals on a gPC basis. However, capturing the variability of
a time-dependent problem has always been a challenge when using gPC [Wan and
Karniadakis, 2006, Pettit and Beran, 2006, Le Mâıtre et al., 2010].

In fact, a classical example is the case of the free vibration of a linear undamped
oscillator [Mai, 2016, Le Mâıtre et al., 2010] : let us consider y (t, ξ) the time-dependent
displacement of the oscillator for a system with a random stiffness k = k0 + k1ξ, ξ ∼
U [−1, 1] and deterministic initial conditions :

y′′(t, ξ) + k (ξ)2 y(t, ξ) = 0,

y(t = 0) = 1,

y′(t = 0) = 0.

(2.89)

The exact solution is given by :

y(t, ξ) = cos(k(ξ)t). (2.90)
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Figure 2.10 presents the result of a classical time-frozen (i.e. one gPC development
at each time step) performed by Chu Van Mai in his PhD thesis. At every 0.5s until
50s, i.e. at t = 0, 0.5, 1, ..., 50s, he conducted N = 500 numerical simulations. Then
he computed gPC expansions of degree up to 10 and 30 in order to judge the effect
of the polynomial degree on the accuracy of the method.
Figure 2.10 shows that gPC of degree 10 are capable of predicting accurately the
expected values of the response at considered time instants. Regarding the standard
deviation, degree-10 gPC fail to capture the trend of the trajectory from t = 20s
onwards. Using polynomials of degree 30 only improves the estimation for the first
instants but finally fails in representing the standard deviation too.

The case of wave propagation is similar to this problem but with the distance
playing the role of time. In fact, our signal has always a compact support but the
stochasticity of the medium will impact the time of arrival and create the same kind
of uncertainty even with a simple signal. Moreover, in the case of sound propagation
in an inhomogeneous medium the signal can be severely distorted and the variability
due to a random medium will be even harder to capture with a simple time frozen gPC.

There have been many attempts to tackle this long-term integration problem and
we can divide them in two categories :

• Work on the basis : the first attempt has been to use high degree polynomials to
capture high order non linearities. But in order to maintain the gPC approach
relevant, one has to use techniques to limit the size of the basis [Lucor and
Karniadakis, 2004, Blatman and Sudret, 2010, Hampton and Doostan, 2015b].
Another approach has been to enrich the basis, introducing non polynomials
functions : absolute value, step function and inverse function [Ghosh and Gha-
nem, 2008], sine and cosine [Ghosh and Iaccarino, 2007], wavelets [Pettit and
Beran, 2006, Le Mâıtre et al., 2007].

• Try to capture the dynamics : this second approach tries to take advantage of
information about the dynamics (for instance for periodic systems see [Witte-
veen and Bijl, 2008, Le Mâıtre et al., 2010]). To adapt the decomposition to
the dynamics, time dependent polynomials have been introduced with different
approaches to set the time dependence [Gerritsma et al., 2010, Heuveline and
Schick, 2014, Luchtenburg et al., 2014]. Another interesting approach has been
to consider the time as a stochastic process [Mai and Sudret, 2017].
More recently, the use of autoregressive processes to capture the dynamics has
also been investigated [Mai et al., 2016, Spiridonakos and Chatzi, 2015].

In this work, we will adopt a strategy that could be classified in the second cate-
gory : use the acoustic modes to characterize the dynamics of wave propagation in a
random medium. With this strategy, we transform a time-dependent problem into a
random eigenvalue problem.
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Figure 2.10 : Performance of the gPC expansion in capturing the variability of
the oscillating function. First line present the approximation of the mean with gPC
of order 10 (left) and 30 (right). The second line present the approximation of the
standard deviation with gPC of order 10 (left) and 30 (right). (Source : Chu Van Mai
PhD Thesis, 2016.)

2.4 Polynomial Chaos method for acoustic modes

Building a metamodel of the acoustic modes will allow us to restitute signals at any
distance avoiding the long term integration problem. However, this method requires
to calibrate a metamodel for each eigenvalue and eigenfunction of operator (2.10).
Polynomial chaos expansions have proven to be efficient to capture the variability of
spaced random eigenvalues in comparison to the Monte-Carlo approach [Ghosh et al.,
2005, Ghanem and Ghosh, 2007]. The main difficulty arises in the case of a clustered
spectrum where closely spaced modes can switch and eigenvalues associated with
particular physical behaviors do not maintain the same ordering across statistical
realizations of the random system [Ghosh and Ghanem, 2012]. This phenomenon
occurs in the case of acoustic modes and needs to be investigated to restitute the real
variability of the signals in a random medium.

The simplest solution to this problem would be to ignore the switching and only
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rely on the ordering of eigenvalues but this would introduce non-smooth dependence
on the parameters. As we will see in the next chapter, our strategy will be to use
additional samples in order to track the eigenvalues even when the spectrum get
clustered in order to maintain a smooth dependance of the eigenvalues on the inputs.
This results in additional cost and penalizes the computational performance of the
metamodel but enables to keep low order gPC. On the contrary introducing non-
smooth dependence would necessitate polynomial of higher order to be captured and
thereby additional samples to compute the expansion.

To summarize the approach that will be explained in detail in the next chapter,
we are going to consider the acoustical modes as random variables depending on
the realization of the celerity profile. Polynomial chaos expansions of those random
variables can be computed and used as metamodel of the propagation in the random
atmosphere we are considering. This approach requires a careful tracking of the modes
under the perturbation but has the advantage to restitute signals at any distance and
for any type of source.
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Chapitre 3
Polynomial Chaos for Modeling Normal
Modes in Atmospheric Boundary Layers

The use of polynomial chaos for incorporating atmospheric boundary layer variability
into one-dimensional propagation models is investigated under the assumption that
environmental variability exhibits a separation into wind-driven large structures and
small-scale fluctuations, such as turbulence. The small-scale structures are described
by a stochastic process and the representation of the wave field then consists of an
expansion of normal modes that are represented in terms of orthogonal random poly-
nomials. Issues concerning implementation of this multi-scale formalism, the accuracy
of the approximation, and the computational burden necessary to evaluate the signal
statistics are addressed. Very favourable agreements between the present approach
and the usual Monte-Carlo approach are found. Furthermore, this approach offers an
efficient mean for connection between the environmental variability and the structure
of the propagated signals.

1 Introduction

Atmospheric Boundary Layers (ABLs) have been the subject of analytical, experi-
mental and numerical research due to their relevance to a wide class of applications.
Several field experiments [Wilson et al., 2003, Chunchuzov, 2004, Chunchuzov et al.,
2005, Kosyakov et al., 2019] have been conducted to study the influence of mesoscale
wind speed fluctuations on acoustic pulse propagation through the stable ABL and
recent works have shown that even moderate atmospheric variability has an impact
on acoustic propagation [Damiens et al., 2018]).

The ABL, which is the lowest part of Earth’s atmosphere, has been numerically
investigated by many researchers since the pioneering work of Deardorff in 1972 [Dear-
dorff, 1972] related to unstable ABLs. The variety of ABL processes, e.g. wind, diurnal
cycle, surface roughness, stratification, and Coriolis acceleration have led to numerous
fluid mechanics contributions in recent decades on surface-atmosphere interactions.
One key aspect of this problem concerns the behavior of the ABL at night. During
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the day, solar radiation warms the surface of the Earth and, under normal conditions,
the air temperature decreases with height. At night, however, this effect is reversed
and surface cooling leads to the formation of a stable and stratified inversion layer
with a potential for suppressing turbulent motions. The temperature inversion typi-
cally extends up to altitudes of a few hundreds of meters. Above the inversion there
is generally a strong geostrophic Low Level Jet (LLJ), also known as the nocturnal
jet [Whiteman et al., 1997, Garratt, 1994]. Similar stabilization of ABL turbulence is
seen in winter-time conditions and polar regions.

The meteorology of the stable boundary layer includes states of continuous turbu-
lence and intermittent turbulence [Businger, 1973]. Two prototypical states [Mahrt,
1998] are usually categorized : the weakly stable boundary layer and the very stable
boundary layer. The weakly stable boundary layer is normally characterized by windy
conditions such that the surface cooling is relatively low. The very stable boundary
layer is characterized by weak winds and clear skies that lead to strong net radiative
cooling at the surface. The weakly stable boundary layer is described by the Monin-
Obukhov similarity theory [Monin, 1970], in which turbulence, although reduced, is
continuous. On the contrary, the very stable boundary layer is characterized by global
intermittency where turbulence is reduced for periods that are long compared with
the time scale of individual eddies [Mahrt, 1989].

During the past few years a number of investigators [Waxler et al., 2008, Waxler,
2004, Waxler, 2002] studied the impact of a LLJ on ground to ground sound pro-
pagation. The downward refraction near the ground causes the propagation to be
ducted, suggesting that the long range propagation is modal in nature. This duct is,
however, leaky due to the upward refraction at high altitudes, and strongly affected
by the LLJ. At long ranges (tens of kilometers) the structure of the signal consists of
several distinct arrivals, built up by the superposition of many modes, followed by a
low frequency tail made up of fewer modes. There are downwind convergence zones in
which arrivals from the LLJ and from the nocturnal temperature inversion converge
and then separate. The convergence leads to anomalously large signals, that cannot
be predicted by the ray theory [Waxler et al., 2008]. At shorter ranges, however, the
signals are qualitatively similar to that obtained without LLJ. Since LLJ are always
observed in fair weather over flat land [Whiteman et al., 1997], the question arises
of the sensitivity of the arrivals to both the meteorological model and the associa-
ted uncertainties. This motivates the present research that addresses how the LLJ
and small-scale meteorological structures combine to produce qualitatively different
waveforms at short and long ranges.

In classical normal mode theory [Jensen et al., 1994, Brekhovskikh and Godin,
2012, Brekhovskikh and Godin, 2013], the slowly-varying mean-state approximation
is invariably used. Because of this, the full wave solution obtained for a given sound
speed profile cannot be simply connected to the solution obtained for another (si-
gnificantly different) sound speed profile. Except in the case of very-high-frequency
waves, if the sound speed profile changes then some wave components would actually
be moving with phase velocity larger than the sound speed which, as is well known,
would lead immediately to leaky modes. Thus, for the problem under consideration
here the classical approach must be modified to provide a smooth representation of
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each mode as the sound speed profile is varied. The procedure adopted is similar to
the method of [Damiens et al., 2018] and [Bertin et al., 2014], except that analytic
continuation of modes is obtained through adding a Perfectly Matched Layer (PML).
The LLJ is modelled using a Gaussian envelope whose amplitude and spread are ran-
domly changed, so that the acoustic frequency cutoff is a random variable as well.
The normal modes are expanded in terms of generalized Polynomial Chaos [Finette,
2006]. Small-scale structures are represented using a stochastic process with small va-
riance, which allows use of perturbation theory to model the mode coupling. Further,
unlike most of the works cited above, our approach enables the overall sensitivity of
arrivals to be decomposed into Sobol indices (i.e. fractions which can be attributed
to the amplitude and spread of the LLJ).

This chapter is organised as follows. In Section 2 a simplified model is introduced
to mimic temperature and wind velocity fluctuations in nighttime ABLs. In section 3
the theoretical approach used to represent sound propagation and scattering in the
ABL is described. In this chapter, the acoustic field is decomposed into normal modes.
The details of the calculation of normal modes using polynomial chaos, including some
technical aspects such as the ’mode switching’ phenomenon, are given in Section 4.
Section 5 discusses briefly applications and possible extensions of the approach.

2 The model environment

In this section, analytical forms are introduced to model the temperature and wind
profiles. The models are extracted from the classical literature on sound propagation
in the Atmospheric Boundary Layer (ABL) [Waxler, 2004, Waxler et al., 2008]. These
models are simple but sufficient to capture gross features that are expected to occur
in the ABL.

2.1 The meteorological model

The sound speed profile is obtained from a former study [Waxler, 2004, Waxler et al.,
2008] in which the propagation in nocturnal conditions was studied. The temperature
profile provides a natural duct that is accentuated by a nocturnal jet. The temperature
profile is given by an exponential model [Waxler et al., 2008], the wind profile follows
the Bussinger-Dyer model [Garratt, 1994] and the LLJ is modeled using a random
jet. The wind then writes :

u(z) = η
[
uBD(z) + ae−(z−zJ )2/σ2

]
, (3.1)

where η = 6.87, zJ = 250 m and uBD(z) is given by [Waxler, 2004]. Simplifying further
by using the effective sound speed approximation [Godin, 2002, Waxler et al., 2015],
the resulting effective sound speed is given by

c0(z) =
√
γrgT + u(z), (3.2)

where, for air, γ = 1.4 and rg = 287 K.m2.s−2. Figure 3.1 shows the resulting profiles
for the temperature, the wind and the effective sound speed profile.
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Figure 3.1 : From left to right, temperature profile, wind profile and effective sound
speed profile. The shaded area presents the variability due to the jet. The envelope
is delimited by u ± 2σu, where u and σu are the mean wind the standard deviation,
respectively.

In equation (3.1), the random parameters a and σ are assumed gaussian, with
a = N (1, 0.2) and σ = N (66.7, 10). These two parameters are the unique source of
randomness in the sound speed profile. In figure 3.1 the thick solid line is associated
with a = 1 and σ = 66.7. The first characteristic of this perturbation (which motivates
the choice of standard deviations of a and σ) is its great amplitude. In fact, the
variation of the sound speed profile is of around 5% of the mean profile which prevents
us from using a perturbative approach.

For sake of simplicity the LLJ is the unique source of variability in the present
study. While the ground impedance and the atmospheric absorption can also be consi-
dered as random, for low frequencies the impact of these phenomena on the signals
can be neglected.

2.2 Small-scale structures

In solving the propagation problem, the significance of small-scale fluctuations has
recently been underlined in various studies [Millet et al., 2007, Kulichkov et al.,
2010, Chunchuzov et al., 2011, Green et al., 2011, Drob et al., 2013]. These small-
scale fluctuations are typical of turbulent flow and should be considered. In order to
superimpose small-scale fluctuations onto large-scale meteorological variability, the
effective sound speed profile is assumed to be given by

c(z) = c0(z) [1 + εµ(z)] , (3.3)

where the mean state c0 corresponds to the atmospheric specifications, ε is a small
parameter and µ is a stationary random process with mean zero. c0 contains the
variability associated with the LLJ whereas the µ term describes the turbulent varia-
bility. This explains the presence of a small parameter ε that quantifies the amplitude
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difference between the two terms. The random process µ is the Ornstein-Uhlenbeck
process whose covariance function is given by

E [µ(z)µ(z′)] = exp
(
−λ−1|z − z′|

)
, (3.4)

where λ > 0 is the characteristic length-scale of the process (practically, “how far
apart” two points z and z′ have to be for µ to change significantly.)

The randomness introduced through equation (3.1), (3.2) and (3.3) implies a sta-
tistical treatment which can be numerically prohibitive. To circumvent this difficulty
we have chosen to separate two scales : the large amplitude perturbation taken in a
random c0(z) = c0(z, ξ), where ξ is (a, σ), and the small amplitude turbulent flow
modelled by the µ term. While the small-amplitude stochastic process can easily be
incorporated using the perturbation theory [Waxler et al., 2017], the treatment of
the random LLJ needs a more elaborate work, which is the subject of the following
sections.

3 Modal propagation in a random waveguide

In this section we recall the modal decomposition of a random acoustic field. This
decomposition is the building block used in the sequel to design a metamodel able
to restitute random signals. We also give technical details which are essential for
numerical application : the Perfectly Matched Layer allows seperating modes of dif-
ferent nature and the problem of mode switching needs to be understood to design
an efficient mode tracking algorithm.

3.1 Basic formulation

We use as our starting point the wave equation in cylindrical coordinates (r, θ, z),
where r and z are the distance from the source and altitude, respectively. The acous-
tic pressure is assumed to be initiated by a deterministic ground-based localized
disturbance of frequency ω.

For a fixed frequency, the acoustic far-field can be expressed in terms of the propa-
gating normal modes φn0 of the mean background profile c0(z, ξ) using equation (2.36)
of chapter 2 which writes in our case :

p(r, z, ξ;ω) =
N∑
n=1

pn(r, z, ξ;ω) =
N∑
n=1

un(r, ξ;ω)φn0(z, ξ;ω)√
r

, (3.5)

where the eigenmodes are solutions of[
∂2

∂z2
+
ω2

c2
0

]
φn0 = k2

nφn0, (3.6)

together with a Neumann boundary condition at z = 0. The subscript 0 refers to
modes computed using the mean profile c0(z). For convenience, we drop the explicit
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ω-dependence in the eigenvalues and eigenfunctions. Without loss of generality, the
corresponding eigenfunction φn0(z, ξ;ω) can be normalized so that∫ ∞

0

φn0(z, ξ)φl0(z, ξ) dz = δnl, (3.7)

for all possible ξ, where δnl is the Kronecker delta. For unbounded atmospheres,
the condition (3.7) requires a boundedness condition as z → ∞. Here, and in the
following, the continuous part of the spectrum of wave equation is neglected. This
is a correct approximation provided we are sufficiently far from the source [Waxler,
2002, Waxler, 2003].

From this point, since every term depends on ξ we are going to drop out the
dependance for reader’s convenience.

We introduce the right-going and left-going mode amplitudes a+
n and a−n defined

by

a±n (r) =
ikn0un(r)± u′n(r)

2i
√
kn0

e∓ikn0r. (3.8)

Substituting (3.3) in the wave equation, multiplying by φl0(z), and integrating over
the vertical domain z ≥ 0, we deduce from the orthogonality of the eigenmodes a
system of coupled differential equations for the mode amplitudes

da±n
dr

= ±iεω
2

2

N∑
l=1

Cnl√
kn0kl0

[
a+
l ei(kl0∓kn0)r + a−n e−i(kl0±kn0)r

]
, (3.9)

where the coupling coefficients Cnl are defined by

Cnl =

∫ ∞
0

µ(z)φn0(z)φl0(z)

c2
0(z)

dz. (3.10)

The weak uncertainties of the sound speed profile induce a coupling between
the propagating modes which becomes of order one after a propagation distance
of order ε−2. It is possible to carry out a complete asymptotic analysis as ε → 0,
including the coupling with the evanescent modes, in a general context or random
differential equations, and specifically for random waveguide problems. Substituting
the evanescent modes in terms of propagating modes in (3.9), we get an additional
term of order ε2. A detailed asymptotic analysis shows, however, that the coupling
with evanescent modes does not remove energy from the propagating modes. The
overall effect for the propagating modes is an additional dispersive term, which is
given in terms of the two-point statistics of the random process µ.

In the forward-scattering approximation, we neglect the left-going (backward)
propagating modes and consider the simplified coupled mode equation given by

dan
dr

=
iεω2

2

N∑
l=1

Cnl(r)e
i(kl0−kn0)r

√
kl0kn0

al, (3.11)

where the superscript + is dropped for convenience. Using the matrix form a′ =
Ha, this system can be solved using the propagator or transfer matrix, defined by

66



T′ = HT, starting from T(r = 0) = I. The (m,n) entry of the transfer matrix is
the transmission coefficient Tmn(R), i.e. the output amplitude of the mode m when
the input wave is a pure n mode with amplitude one. Using un

√
kn = aneikn0r, the

transmitted field reads

p(r, z) =
N∑
n=1

N∑
l=1

Tnl(r)al(r0)φn0(z)√
kn0r

eikn0r, (3.12)

where al(r0) is the projection of the incident wave (at r = r0) onto the lth mode.

3.2 Perfectly matched layer

In order to simulate wave propagation in the atmosphere, we need a proper nume-
rical wave handling due to the finite size of our computational domain. A common
technique in the field of wave simulation consists in adding an absorbing layer at the
upper boundary of the domain. One approach is the Perfectly Matched Layer (PML).
From a mathematical point of view, introducing this layer becomes equivalent to a
change of coordinates in the complex plane. This technique has been initially develo-
ped for finite difference time domain (FDTD) simulation ([Bérenger, 1994]) and then
adapted to finite element simulation. However the literature is scarce about the use of
this PML to modal expansion ([Olyslager, 2004]). An interesting impact of the PML
on the spectrum of the propagating operator is nevertheless reported. When Bérenger
introduced the PML in the context of electromagnetic simulation ([Bérenger, 1994]),
he proposed a split field formalism. But the PML became more popular thanks to its
reformulation as a complex stretching of the coordinates ([Chew et al., 1997]). In the
case of the wave equation, the stretching had been studied to integrate system with
singularities ([Boyd, 1985]).

Denoting H the original operator defined at (3.6) and H̃ the operator with the new
coordinates. H̃ is obtained with the complex stretching of the coordinates u = f(z) :

H =
d2

dz2
+

ω2

c(z)2
, (3.13)

H̃ =
1

f ′(z)2

d2

du2
− f ′′(z)

f ′(z)3

d

du
+

ω2

c(u)2
, (3.14)

where c(u) is the analytic continuation of the function c. Restrictions on f relate
to its imaginary part which has to be zero in most of the domain [0; zPML] and to
its smooth behaviour in the PML section [zPML; zmax] in order to avoid introducing
discontinuities. In our case, the PML section starts above the nocturnal jet : zPML =
0.6km. A possible function f was taken from [Zhu and Chen, 2013] :

f(z) = z +
15i

2

[
τ 2 − log(τ 2 + 1)

]
,

f ′(z) = 1 + i
15τ 3

1 + τ 2
,

f ′′(z) = i
15τ 2(τ 2 + 3)

(1 + τ 2)2
,

(3.15)

67



Figure 3.2 : Spectrum computed with a complex frequency parameter ω = 2π×20+
0.2i but without PML (left) and the same spectrum computed with a PML (center).
On the right, real parts of eigenfunctions corresponding to the discrete spectrum
(square) and to the discretization of the continuous spectrum (triangle). Only modes
of this second category are affected by the PML.

where τ =
(

z−zPML

zmax−zPML

)
+

. From this definition, we can make two statements. First,

the trapped modes are not affected by the PML : if (ki, φi) is a mode of the original
problem such that : ∀z ≥ zPML, φ(z) = 0 then it is straightforward to see that (ki, φi)
satisfies the eigenvalue problem for H̃ and is also a mode of the new problem. Second,
the modes that are impacted by the PML have an imaginary part on ki which leads
to an attenuation in the domain. Figure 3.2 shows the spectrum of the discretization
of operators H (in red) and H̃ (in blue) in order to see the modification – both on
eigenvalues and eigenfunctions – of the continuous part of the spectrum. Note that
the two spectrum exhibit a continuous contribution which is here discretized and, as
explained in the previous section, is not considered. The spectrum of the discretized
operator contains a subset corresponding to the discretization of the continuous part
of the original differential operator H. Thanks to the PML this subset is easy to
recognize since only the continuous spectrum will be affected by the PML [Olyslager,
2004]. It is worthwhile to specify that in this work, the frequency parameter ω is
treated as a Fourier-Laplace transform variable, ω = ωr + iωi, with a small positive
imaginary part ωi � 1. The reason is related to the temporal response, which is
obtained by applying the inverse Fourier transform along a path in the complex ω-
plane [Bertin et al., 2014]. For this reason, the eigenvalues kn(ω) lie in the upper
half of the complex k-plane as shown on figure 3.2 even on the left where there is
no PML but only a complex ω. This figure shows the impact of the PML on the
continuous spectrum. This impact has been studied more extensively in [Goursaud,
2010] and corresponds to a rotation in the complex plane. On the eigenfunction it is
worth noticing that the trapped modes (with a square) are not impacted by the PML
whereas modes above the jet are impacted.

In this work, we use a boundary value (or implicit) method for solving the eigen-
value problem. The wave equation is reduced to a linear algebraic equation using a
pseudo-spectral technique. The global eigenvalues are obtained by applying a spectral
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Figure 3.3 : Distribution of eigenvalues of operator 3.6 for 5000 realizations of the
random celerity profile at 20Hz. Histograms show empirical distributions of phase
velocities (top, in m.s−1) and imaginary part of the eigenvalues (left in logarithmic
scale, in m−1). Eigenfunctions corresponding to the eigenvalues encircled in black are
plotted on the right with the mean celerity profile (up to 1km).

collocation algorithm to the generalized eigenvalue problem. While care must be taken
to preclude spurious eigenvalues, it is worth mentioning that such an approach can be
applied to problems in which the eigenvalue appears nonlinearly so that the absorp-
tion can be considered within the same numerical framework [Bridges and Morris,
1984].

3.3 Random modes

The eigenvalues can be identified as the zeroes of a dispersion relation D (k, ω) that
depends on c0(z). In our case, c0(z) depends on the random variable ξ. As a result,
the eigenvalues kn and eigenfunctions φn are random variables and random functions.
Figure 3.3 shows five thousand spectra corresponding to five thousand realizations
of the sound speed profile c0 (z, ξ). The eigenfunctions1, plotted on the right, show
the interaction between the mode and the profile ; each mode is refracted at a certain
altitude. The modes trapped under the jet have much more variability than the one
located under the boundary layer (with a phase velocity around 348m.s−1), not im-
pacted by the variations of ξ. The modes with little variability aligned around a phase
velocity of 355m.s−1 and with an imaginary part between 10−3 and 10−5 correspond
to the discretization of the continuous part of the spectrum of (3.6).

Using An = aneikn0r as our new variables, the system (3.11) reads

dAn
dr

= i

N∑
l=1

(
kl0δln + ε

ω2Cnl

2
√
kn0kl0

)
Al. (3.16)

1The decreasing amplitude of the eigenfunctions for an altitude higher than 800m is due to the
Perfectly Matched Layer (PML) detailed in the previous paragraph.
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This system is readily integrated to yield

An(r) = An(0)eikn0r

[
1 + iεr

ω2Cnn
2kn0

+ ε
∑
l 6=n

αln
Al(0)

An(0)
+O(ε2)

]
, (3.17)

where αln is bounded as r → ∞. Thus, using the slow coordinate variable R = εr,
and substituting (3.17) into (3.5), the perturbation expansion of the pressure far-field
at ground level (z = 0) simply reads

p (ω) =
N∑
n=1

pn (ω) =
eiπ/4√

8π

√
ε

N∑
n=1

φ2
n0(0)eikn0r√
Rkn0

[
1 + iR

ω2Cnn
2kn0

+O(ε)

]
, (3.18)

where we have used the initial condition An(0) = φn(0)eiπ/4/
√

8π that represents a
point source at r = 0, z = 0. For ε = 0, we recover the classical form of the impulse
response [Jensen et al., 1994] for large r. Note that, to leading order in ε, we only
get the diagonal elements of the matrix Cnl. Indeed, the more the diagonal terms
dominate, the more the expansion (3.18) is valid for large R. On the other hand,
given a typical propagation distance R, ε can be fixed for (3.18) to remain valid.

For small ε, we may use perturbation expansions to compute the eigenvalues kn,
assuming expansions of the form kn = kn0 + εkn1 + · · · and φn = φn0 + εφn1 + · · · .
Since the leading order kn0 depends only on the mean problem, it is determinate and
can be computed by replacing the random coefficient in (3.6) by its respective mean
value c0 ; the remaining coefficients knl (l > 1) being random. Upon substituting the
expansion of kn into (3.6), expanding in powers of ε and identifying terms of equal
orders of magnitude, one readily obtains kn1 = 1

2
ω2Cnnk

−1
n0 , which is the term being

multiplied by iR in (3.18). We conclude, as expected intuitively, that the variance of
p can be expressed in terms of variances and covariances of eigenvalue perturbations
kn1.

Figure 3.4 shows the link between the variability of p (ω) and the variance of
the signal. On the first line (a-d) the probability distribution of |pn(ω)| for the four
first modes is plotted as a function of the frequency f = ω/2π. The first mode (a)
has very little variability, it is the one located on the left (with a phase velocity of
348m.s−1) on figure 3.3, it is not impacted by the variablity of the LLJ. The black
solid line is the same on those four plots and represents the spectrum of the source
used to produce the signals presented on the second line (e-h). With light colors we
have plotted the total signal and variance at a distance of 50 km and the dark colors
plots are the signal and variance associated to only one mode. The variance has been
evaluated using the Monte-Carlo estimator with a sample of 5000 signals obtained for
5000 profiles randomly drawn. Even though signals associated with the first mode (e)
are very similar, there exists a small shift in time between one another, which gives
the plotted variance. For the first arrival, the three other modes (f-h) give almost all
the variance ; the covariance between the different modes seems to be negligible.

This variance decomposition shows why the acoustic modes are an interesting tool
to isolate the different contribution depending on the localization of the perturbation.
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Figure 3.4 : Probability density functions of the residuals associated to the first
four eigenvalues |pn(ω)|n=1,..,4 for a frequency between 0 and 20Hz and at 50 km from
the source are plotted in the first row. The spectrum of the source used to generate
signals in the second row is represented in black. The signal in black corresponds to
one realization at 50km of the whole signal (in gray) and for the corresponding mode
(in black) and (in red) the partial standard deviation and (in light red) the total
standard deviation.

In our case, we have located the perturbation on the nocturnal jet, only the three
modes interacting with the jet are sensitive to this perturbation.

3.4 The mode-switching model

In the presence of clustered eigenvalues, switching of the ordering of eigenvectors can
occur for a small change in the physical parameters, such as changing the frequency
or the profile shape. This particularity consists in the ability of two different modes
to suddenly switch when the parameters of the problem (either the frequency ω or
the random parameters ξ) evolve. This behaviour arises in many different context
and is sometimes called mode veering, it requires a special numerical treatment to be
able to track the two modes [Pierre, 1988, Kalaba et al., 1981, Adhikari and Friswell,
2004, Ghanem and Ghosh, 2007, Georg et al., 2018].

On figure 3.5 the evolution of two modes with the frequency is plotted on the left.
Each line corresponds to a different value of ξ (i.e. to a different profile). On the right,
the eigenfunctions associated to those two eigenvalues are plotted. The two modes
are associated with different acoustical situations : one is trapped under the jet and
will contribute to the propagation in the case (considered here) of a source at the
ground and the other case corresponds to an evanescent mode located mainly above
the jet. However, on the second line, each mode evolves continuously towards the
other situation. This phenomenon has practical implication especially when looking
at the statistics of a mode.
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Figure 3.5 : Spatial branches of two eigenvalues between 13 and 15Hz for two dif-
ferent profiles for phase velocity around c0 = 353.8839 m.s−1. < [φi(z;ω)2] for the
corresponding eigenfunctions are plotted on the right. The thick lines correspond to
the switching frequencies, framed on the plot with the eigenfunctions.

In paragraph 3.3, we have presented the pdf of |pn(ω)|n=1,..,4 computed with 5000
realizations. To be able to compute those pdf it has been necessary to identify in the
set of eigenvalues of each realization, the considered mode n. The same problem arises
when looking at the evolution of a mode as a function of the frequency to compute
for instance the signal associated to one mode (like in figure 3.4, e-h).

This problem also appears for instance when one wants to take into account the
horizontal variations of the atmosphere [Bertin et al., 2014, Damiens et al., 2018]. In
this case, pn depends on the integral of the mode alongside the propagation ; to com-
pute this integral, it is thereby necessary to identify a mode at each point of the range
discretization. A classical approach [Allemang, 2003] consists in looking at the scalar
product between eigenfunctions and associate the eigenvalues whose eigenfunctions
have the highest scalar product. Unfortunately, in our case the different eigenvalues
have very similar shapes and the scalar product can be very similar between two
different eigenfunctions. An option would be to discretize more finely but it would
increase drastically the numerical cost. Our approach is detailed in annex 4.2 and
relies on the continuous dependance of the eigenvalues in the parameters ω and ξ.

4 Polynomial chaos based metamodel

We have exposed in the previous chapter (section 2.2) the principle of generalized
Polynomial Chaos (gPC) expansions. We have also exposed the limitation due to
long term integration problem when it comes to oscillatory phenomena. We propose
in this section a method to circumvent this limitation. The first paragraph gives the
different steps of the construction of a metamodel based on the gPC expansion of the
acoustic modes. Under a stochastic perturbation the modes evolve in the complex
plane in a chaotic way, we explain in the second paragraph how we have proceeded
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to track them. Some special behaviours appear under certain condition such as an
exchange of two modes. This phenomenon can alter the convergence of the metamodel
and we propose in the third paragraph an adaptation of the metamodel to adress this
difficulty. The last paragraph explains how the perturbative treatment of the small-
scale perturbations can be treated coherently with the metamodel.

4.1 gPC representation of the acoustic modes

If polynomial chaos-based stochastic approximation has shown very good results for
many different applications, the method has issues in approximating a solution with
unsteady dynamics over a long time interval [Gerritsma et al., 2010, Branicki and Ma-
jda, 2013]. One potential mitigation of the problem is to increase the approximation
order [Lucor and Karniadakis, 2004, Hou et al., 2006, Ozen and Bal, 2017], but this
is problematic since the amount of work does not scale linearly with the order of the
polynomial basis functions and it becomes even more troublesome as the number of
random variables increases. Early works [Wan and Karniadakis, 2006, Gottlieb and
Xiu, 2008] have shown that even in the simple case of one-dimensional stochastic
scalar advection in uniform media, a truncated gPC approximation of constant order
produces an approximation error that increases linearly with time. In the case of wave
propagation in a random medium, the same limitation arises for long range propa-
gation. As a consequence, directly computing the gPC expansion of the stochastic
pressure field is doomed to failure. To circumvent this limitation some studies in un-
derwater acoustics have worked with an envelope function of the pressure field [Khine
et al., 2010, Finette, 2006, Creamer, 2006].
A main contribution of this work is to propose to work instead in the Fourier space
and to fine tune stochastic approximation of the normal modes decomposition of
the Helmholtz operator. The modal decomposition has the advantage to exhibit the
different waveguides of the considered medium which allows to study the impact of
localized perturbation on the propagation. The gPC framework has been investigated
for the study of random eigenvalue problems [Ghosh et al., 2005] and allows to take
into account great deviation.

In our case, the random inputs are the variables describing the variation of the
atmospheric boundary layer. It will be the shape parameters a and σ of the atmosphe-
ric boundary layer introduced in paragraph 2.1. Every realization of a and σ gives a
particular celerity profile that will be an input for the acoustic modal decomposition.
The quantity of interest Y is the acoustic output, it could be the signal itself or its
characteristics : amplitude, time of arrival or duration. As explained in paragraph 4.1,
our choice has been to decompose directly the acoustic modes and Y will be a vector
containing a set of modes.

In this work we propose to build a surrogate model using gPC expansion of the
normal modes. The calibration of the surrogate model is exposed in algorithm 1 and
can be summarized as follows :

1. The first step consists in defining an appropriate design of experiment (DoE)
(ξ(k))k∈{1,..,K}. This can be either a structured quadrature or a random sample
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Algorithm 1 Polynomial Chaos metamodel to generate random signals

Input: A random celerity profile c(z, ξ) with a model for uncertainties ξ.
1: Compute a design of experiment (DOE) (ξ(k))k∈{1,..,K} and the corresponding

celerity profiles c(z, ξ(k))k∈{1,..,K}.
2: Compute the spectra (kn(ω, ξ(k)), φn(ω, z, ξ(k)))k∈{1,..,K} for every point of the DOE

and every frequency.
3: Densify the DOE and compute the spectra on those additional points for the last

two frequencies.
4: for ω in {ωmax, ωmax−1} do
5: Track each mode in the random realisations of the spectrum for every value of

ξ(k) in the densified DOE.
6: end for
7: for k in {1, .., K} do
8: for ω in {ωmax, .., ω1} do
9: Track each mode at every frequency.

10: end for
11: end for
12: for ω in {ωmax, .., ω1} do
13: Compute the gPC expansions of the modes for each frequency using their values

on the DOE.
14: end for
15: Use the gPC expansions to generate an important sample of eigenvalues and

eigenfunctions.
16: Set the distance and the Fourier spectrum of the source signal. Use them in addi-

tion to the generated eigenfunctions and eigenvalues to compute the corresponding
sample of residual sums.

17: A Fourier transform will give the random signals.
Output: Set of random signals generated by the metamodel.
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depending on the elected strategy. Then comes the computation of the spectra
for the celerity profile associated to each configuration c(z, ξ(k))k∈{1,..,K}.

2. One then needs to gather all sample realizations pertaining to each eigenvalue
for every frequency (kn(ω, ξ(k)), φn(ω, z, ξ(k)))k∈{1,..,K}. This is not a trivial com-
putational task due to potential clustered spectrum redistribution induced by
the random medium. To tackle this difficult task we have developped a tracking
algorithm detailled in the appendix 4.2.

3. Finally, the gPC approximation has to be built, using either a projection or
a regression method. Cross-validation is used to select the optimal polynomial
degree, given the sample.

Once the expansions of the eigenvalues and eigenfunctions are converged and ac-
curate, they can be used at no cost in order to generate Green functions and temporal
signals p̂(t, R, ξ). It has to be emphasized that the surrogate model can be evaluated
at any distance and for any source without supplementary computational cost.

4.2 Tracking of clustered random eigenvalues

No matter the way gPC coefficients are computed (e.g. Galerkin projection or regres-
sion), a robust approach needs to make sense of the mapping between the quantity of
interest and the different realizations of the random input ξ. In our case, the quan-
tities of interest are the eigenvalues and eigenfunctions of the random propagating
operator, and for every input realization of ξ and every frequency, the entire spectrum
Λ(ω(i), ξ(j)) ≡ Λ(i,j) is computed. Overall, it takes the form of a collection of spectrum
sets {Λ(i,j)}i∈Jω ,j∈K .
In the following, the eigenspectrum mapping is determined based solely on the eigen-
values, the eigenfunctions mapping being straightforward thanks to their association
to the eigenvalues. Monitoring the evolution of a particular eigenvalue as a function
of the input parameter ξ (itself having multiple dimensions) and the frequency ω can
be a difficult task as the dynamic of the eigenvalues is a priori unknown. Indeed,
the closely spaced cluster of eigenvalues, due to the random perturbation, makes the
eigenvalues tracking intricate [Georg et al., 2018, Rahman and Yadav, 2011] across
the frequency range, with appearance of curve veering or mode switching [Ghosh and
Ghanem, 2012].
We propose a strategy for the eigenmode tracking based on vicinity measures : – we
first characterize the mapping of the eigenvalues for a given frequency, – then deter-
mine the mapping to the next frequency and – finally obtain the overall mapping for
all frequencies. More specifically, the approach summarises in three step, step 1 and
2 are illustrated on figure 3.6 and step 3 on figure 3.7 :

1. for a given frequency, one must identify the sample of all parameter realizations
pertaining to the same eigenvalue. This is facilitated by a densified version of
the original DoE and with the help of a vicinity measure in the complex plane.
The supplementary points added to the DoE will lengthen the computations
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but, as long as we do those additional computations for only two frequencies,
we will not slow down too much the all process.

2. for the next available frequency and a particular parameter realization, a modal
sorting is initialized using the sorted eigenvalues at the previous frequency (cf.
step 1.). The same tracking process across all parameter realizations is then
repeated for the new frequency as in the first step.

3. Once this sorting has been done across these two frequencies, use it as a starting
point to follow the eigenvalues over the entire frequency range. This sequential
progression is done by linearly extrapolating a predicted state at the current
frequency from the knowledge of the previous states at the two lower frequencies,
and then replacing it according to the current closest available eigenvalue.

Our strategy is general as long as we assume some type of continuous dependence
of the eigenvalues against both frequency ω(i) and parametric ξ(j) changes. Moreover,
our method relies on a measure of vicinity to follow an eigenvalue in the complex
plane. In order to work with a reliable distance, we first rescale the imaginary part
of the eigenvalues in order to have an aspect ratio close to one.

We now give a more detailed description of the method. We consider the set of
spectrum corresponding to the last frequency : {Λ(Nω ,j)}j∈K . For the first mode, we
determine an optimal path covering all the samples of the dense DoE, based on a
nearest-neighbor criterion. For ease of notation, we identify this path by the labels
sequence {j1, j2, . . .}. The elements of Λ(Nω ,j1) are then arbitrary labelled.
Moving to the next frequency dataset, every single eigenvalue from Λ(Nω ,j2) takes the
label of its nearest point in Λ(Nω ,j1). This operation is sequentially repeated in order
to label all the eigenvalues for each set from {Λ(Nω ,j)}j∈K\{j1,j2}. This explained why
we have densified the DoE in order to recover small variations along two consecutive
sets Λ(Nω ,j) and Λ(Nω ,j+1), and thereby avoiding wrong pairing.

At frequency Nω−1, we proceed exactly the same way, but the tracking/labelling
has to be coherent with the one of frequency Nω. To this purpose, we first need to
associate the closest neighbors of elements of Λ(Nω−1,j1) in Λ(Nω ,j1).

Once the numbering has been done for the last two frequencies, we select a par-
ticular realization j = j0 and label the spectra for all frequencies. To this end we
compute for each set Λ(i,j0), i < Nω − 1 the linear extrapolations of the eigenvalues,
computed from the two preceding sets Λ(i−1,j0) and Λ(i−2,j0). This provides an initial
guess that is corrected by searching for the nearest point in Λ(i,j0). To initialize this
process,we use the identification conducted for i = Nω and Nω − 1. This approach
across frequencies is repeated for all j ∈ K.
This technique is efficient if the evolution of the eigenvalues remains smooth over the
different parametric ranges. It is usually the case for the dependence in frequency but
it can be more complicated for the dependence in terms of the distribution of ξ. This
motivates the choice for a denser DoE at step 1. Because we only compute the spectra
on those points for the two last frequencies, the additional cost is not prohibitive.
On figure 3.7, we show the case of two switching modes. This phenomenon is quite
common and we will explain in the next paragraph how to deal with those switching

76



�

�
�

�

�
�

�

�

�

�

�

�

�� � � � �

� � � �

� � � �

�
�

�

�

�

� � �

������

������

������

�
� �

ξ1

ξ2

2

Figure 3.6 : Tracking the eigenvalues for a fixed frequency by crossing the quadrature
points. The smaller markers indicates the supplementary points added to densify the
quadrature to make tracking easier.

when computing the gPC expansions. Concerning the tracking of switching eigenva-
lue, our method revealed quite efficient thanks to the linear extrapolation (as we see
on figure 3.7 a simple vicinity measure would not be conclusive). The efficacy of the
method depends on the discretization in frequency but the Shanon theorem already
impose a tight sampling to generate correct continuous-time signals.

To conclude this paragraph on the tracking strategies let us explain why some
more classical methods have not revealed efficient in our case. A very classical way
to track the eigenmodes consists in using the normalized scalar product between
eigenfunctions :

〈φn, φl〉
||φn||||φl||

. (3.19)

A given eigenfunction is associated with the eigenfunction of the next frequency with
higher normalized scalar product. This method works very well when eigenfunctions
are sufficiently different but in the case of two switching modes the two eigenfunc-
tions look very similar and the technique fails. We have tried to adapt this method by
densifying the frequency sampling when this situation occurs (the value of the nor-
malized scalar product drops significatively which helps identifying this situation).
Unfortunately this led to an explosion of the computations around the frequencies
where some modes switch.

Another technique we have tried was to see the eigenproblem as an optimization
problem. For a given value k we solve numerically two differential problems consisting
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Figure 3.7 : Following eigenvalues in the frequency domain once the identification
has been done on Λi1 and Λi2 . The dashed lines represent the linear extrapolation
used to identify the modes in the last plane looking for the closest eigenvalue of each
cross. As illustrated on this figure our method remains reliable in the case of switching
eigenvalues.

in the Helmoltz equation starting from the ground or from the upper bound of the
domain. This results in two solutions φu and φd satisfying equation (3.6) replacing
kn by k and the boundary conditions at the ground and at the top. The function to
optimize is in this case :

D :C→ R

k 7→
∣∣∣∣ φu(zm, ω, ξ) φd(zm, ω, ξ)
∂zφu(zm, ω, ξ) ∂zφd(zm, ω, ξ)

∣∣∣∣ . (3.20)

where zm is a point around the middle of the domain. If D(k) = 0 it means that the
two solutions are proportionnal and k is an eigenvalue. This optimization formulation
can be used to track eigenvalues using the eigenvalue at the preceding point as a
starting point of the optimization at the current frequency. This method has the
advantage of computing only the eigenvalues we are interested in which could save
computational cost. Unfortunately the solution of the optimization algorithm is not
always the nearest eigenvalue of the starting point. It depends on the form of the
function and on the algorithm. We have observed the case of two close eigenvalues for
which the optimization ends on the same eigenvalue starting from both eigenvalue at
the preceding frequency. We have not tried to densifying the frequency sampling by
fear of an explosion of the computational time.
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4.3 gPC mixture for switching modes

The objective here is to build a continuous metamodel of the propagation despite the
switching phenomenon. In fact, the switching leads to the clustering of the response
depending on the values taken by the random perturbation (ξ1, ξ2). As a consequence,
the surface response (QoI function of (ξ1, ξ2)) will present a discontinuity separating
the two clusters (see 3.A for an illustration). If one computes a global gPC approxi-
mation of the response of the modal imaginary part for instance, high-order approxi-
mation will be needed in order to capture the jump in the response. This does not
only demand a large sample size in order to accurately build the approximations, but
it may also entails the quality of the approximation due to Gibbs-like phenomena
inducing large spurious oscillations of the response surface.
In fact, this different behaviour leads to a bimodal distribution which deteriorates
the convergence of a classical gPC [Nouy, 2010, Soize, 2015]. We propose to adopt a
more local approach by partitioning the parametric domain and construct multiple
metamodels based on different subsamples. The determination of this partition is key
and cannot be performed a priori based on the design of experiments (DoE). It has
to be determined based on the response sample. To this purpose, we use an indica-
tor function I(ξ1, ξ2) which will take a value of 1 or 2 depending where the mode is
localized. The location of the indicator discontinuity in the parametric space may be
somewhat complex to determine from the sample. A numerical stratagem we use is to
build a metamodel of this indicator function itself. Here, we use a kriging approach
which is more efficient for modeling discontinuous functions. The idea is to model the
unknown function as a realization of a gaussian process conditionally to the observed
points, its approximation being provided by the process mean M (ξ1, ξ2), with some
level of confidence given by its standard deviation Σ (ξ1, ξ2).
This gaussian regression provides us a metamodel of the indicator function :

Î(ξ1, ξ2) =

{
1 if M (ξ1, ξ2) ≤ 0.5,

2 if M (ξ1, ξ2) > 0.5,
(3.21)

but also a validity domain D, here empirically taken as :

D =
{

(ξ1, ξ2) ∈ R2 |Σ (ξ1, ξ2) < 1/3
}
. (3.22)

In fact, we consider that when the standard deviation is greater than 1
3
, the metamo-

del is not good enough to seperate the two regions : R1 = {(ξ1, ξ2) ∈ R2|I(ξ1, ξ2) = 1}
and R2 = {(ξ1, ξ2) ∈ R2|I(ξ1, ξ2) = 2}. Adaptive strategies exist to improve the ap-
proximation by proposing new optimal samples depending on the chosen optimality
criteria [Wan and Karniadakis, 2005]. Here, we keep the approach simple and do not
enrich the DoE.

The indicator function can then be used to approximate the eigenvalue in each
region using a different gPC expansion. Optimal polynomial order for each expansion
is obtained from cross-validation (Leave-one-Out technique) ; the classical gPC ex-
pansion has been truncated at order 6 whereas green and yellow surfaces have been
truncated at order 2 and 4. With a regression on each part of the surface response, we
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can obtain the coefficients of the two expansions (a(1)
γ )γ∈Λp on R1 and (a(2)

γ )γ∈Λp on
R2. Then, we can lump the information into a single expression for the metamodel :

=̂[k](ξ1, ξ2) = (2− Î(ξ1, ξ2))
∑
γ∈Λp

a(1)
γ Hγ(ξ1, ξ2) + (Î(ξ1, ξ2)− 1)

∑
γ∈Λp

a(2)
γ Hγ(ξ1, ξ2).

(3.23)
Exactly the same technique can be used for the real part and the eigenfunction, the
indicator function remaining the same, as it is set using global consideration on the
mode behaviour (based on the altitude of refraction).

This technique is essential on the case of long range propagation for which modes
frequently switch due to the variability of the stratospheric jet. Taking into account
the effect of this variability is essential to restitute the statistics of the different arrivals
of signal propagating on large distances (see 3.A).

4.4 gPC representation of the coupling coefficients

We have presented in the previous paragraphs of this section the polynomial decom-
position of the acoustic modes. Thanks to this decomposition we are able to simulate
efficiently the acoustic propagation in a ABL with a perturbation of great amplitude.
On the top of this simulation we want in this paragraph to take into account the
perturbation of the propagation due to the small-scale structures of the turbulent
flows modelled by the process µ(z). As explained in section 3.1, thanks to the small
amplitude of µ, the contribution can be added as a coupling effect through a coupling
coefficient Cnl.

The coupling coefficients Cnl depend on the realization of the profile c0(z, ξ) and
thereby on the random parameter ξ. It also depends on the realization of µ(z), the
small scale perturbation. We explain here how gPC decomposition of the eigenfunc-
tions can be used to compute the coupling coefficient. This means that there is not
any expensive computation to do to take into account the small scale structures on
top of a large scale perturbation.

In order to compute those coefficients, we introduce the Karhunen-Loève decom-
position of µ(z) :

µ(z) =
M∑
i=1

Xi

√
λiei(z), (3.24)

where (Xi)i=1,..,M are gaussian centered independent random variables, (λi, ei)i=1,..,M

are the eigenvalues and eigenfunctions of the covariance kernel. We suppose here
that µ(z) is a centered process that is why there is no mean term. In the case of
Ornstein-Uhlenbeck process (whose covariance is given by (3.4) the Karhunen-Loève
decomposition can be computed analytically.

By definition (3.10), the coupling coefficients Cnl depends on µ and on the ei-
genfunctions φn0(z, ξ) and φl0(z, ξ). Then, the gPC expansion of the eigenfunctions

φn0 =
+∞∑
k=0

α
(n)
k (z)Hk(ξ) can be use to compute Cnl (we drop the dependence in ξ and
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z from third line for convenience) :

Cnl =

∫ ∞
0

µ(z)φn0(z, ξ)φl0(z, ξ)

c2
0(z, ξ)

dz, (3.25)

=

∫ ∞
0

1

c2
0(z)

∑
i

Xi

√
λiei(z)

∑
j

α
(n)
j (z)Hj(ξ)

∑
k

α
(l)
k (z)Hk(ξ) dz, (3.26)

=

∫ ∞
0

1

c2
0

∑
i,j,k

√
λieiα

(n)
j α

(l)
k XiHjHk dz, (3.27)

=
∑
i,j,k

βi,j,kXiHjHk, (3.28)

where

βi,j,k =
√
λi

∫ ∞
0

eiα
(n)
j α

(l)
k

c2
0

dz. (3.29)

This expression gives a way of computing the coupling coefficients without any sup-
plementary cost, using the gPC coefficients of the eigenfunctions.

5 Applications of gPC metamodelling

In this section, we will use the case of sound propagation in an atmospheric boundary
layer to illustrate the use of gPC expansion in the context of atmospheric infrasound
propagation. We will also provide some comparison with statistics obtained by Monte-
Carlo simulations to numerically validate the convergence of our surrogate model.

5.1 Sensitivity based eigenvalues selection

For the acoustic modes, we compute the gPC expansions of the eigenvalues and of
the eigenfunctions at the ground. A first application of the metamodel concerns the
selections of acoustic modes depending on their acoustic contribution. In [Bertin et al.,
2014], it has been shown that the modes contributing the most are those with higher
sobol’ index. This property opens the way to model reduction by considering only the
most important modes as explained in the article. For this reason, the computation
of Sobol’ indices of the modes are a key quantity we can easily compute thanks to
the metamodel.

The acoustic modes depend on the random input parameters (ξ = (a, σ) ampli-
tude and spread) but also on the frequency ω. For low frequencies a cut-off appears
naturally, defined by ωco = <[k] × max c(z) ; the analytic continuation of the mode
can be defined under this frequency but has no physical interpretation. We have used
this analytic continuation to follow the modes on the entire range of frequency and
avoid thereby any discontinuity which would have limited the performance of gPC.
Before using those expansions to generate acoustical quantities such as Green func-
tions and signals, we first use the expansions to compute variances of each mode and
compute their sensitivity to the two inputs. To do so we have used the Sobol’ indices
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Figure 3.8 : Variance (left) and Sobol’ indices (right) associated to the real part of
the eigenvalues. Those quantities are represented for frequencies higher than the cut-
off frequency (i.e. when the phase velocity is higher than 365m.s−1). Solid (dashed)
lines refer to the amplitude (spread) parameter.

which have already been used in [Bertin et al., 2014] in a slightly different context.
The Sobol’ indices represent the sensitivity of the quantity of interest (in terms of
variance contribution) to the different inputs. It consists in decomposing the variance
of the quantity of interest (the acoustic modes in our case) into the sum of the va-
riances caused either by a single input or by the coupling between several inputs.
Mathematically, the first-order Sobol’ indices (assessing the impact of a single input
on the variance of the output) is defined as the conditional expectation of the output
conditionnaly to a given input (3.32). A key property of the gPC is their ability to
give a direct evaluation of those Sobol’ indices which are not straightforward to assess
otherwise. In fact, the variance of the output is given by the l2−norm of its gPC co-
efficients (3.31) and the Sobol’indices are obtained by summing only the coefficients
before a polynomial function of the considered input. In our case for each acoustic
mode kn, n = 1, .., 5 whose expansion writes (3.30), the mean, variance and Sobol’
indices are given by :

kn =
∑
γ∈Λp

aγHγ(ξ), (3.30)

E[kn] = a0, V ar(kn) =
∑

γ∈Λp\{0}

a2
γ , (3.31)

Si =
V ar(kn|ξi)
V ar(kn)

=
∑
γ∈Si

a2
γ, (3.32)

where Si ⊂ Λp is the set of indices such that such that Hγ(ξ) depends on ξi
2.

Because the Sobol’ indices are normalized by the variance of the output it is important
to look at the variance of each mode in order understand the range of frequency for
which the impact is more important. The variance is again easy to assess using the
gPC expansion of the given mode (3.31). Figure 3.8 shows in a logarithmic scale the
variance of each mode. The first thing to see is the respective arrangement of the
modes : the first mode has a smaller variance than the other modes for all frequencies

2For a detailed description of the Sobol’ indices of higher order, see Chapter 1, section 4.1.
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Figure 3.9 : Eigenfunctions centered on the phase velocity of the mode at two fre-
quencies : 10Hz on the left and 20 Hz on the right. There exist only three modes at
10Hz because we are under the cutoff frequency of the two others.

where they are defined. This observation is coherent with the location of the maximum
of variance at a frequency of 2.5Hz that corresponds to a range of frequencies for which
the mode interact with the jet whereas it is confined in the boundary layer for higher
frequencies (see figure 3.9).

An important factor when looking at the Sobol’ indices is the variation coefficient
of the inputs. In fact, it has to be of the same order for each input otherwise it would
artificially enlarge the sensitivity due to the parameter. In our case the standard
deviation of our normal laws has been chosen at 20% of the mean for the amplitude
and 15% for the spread. After this verification, we can look at figure 3.8 where the
evolution of the Sobol’ is presented. Each mode is plotted in a given color and the
dashed line represents the Sobol index relative to the spread whereas the continuous
line represents the Sobol index relative to the amplitude. It appears clearly that all
the modes have the same behaviour with a shift in frequency : for low frequencies
(here low frequencies means just above the cut-off) the amplitude of the jet is the
most influential factor whereas the spread gets more important for higher frequencies.
Again, this behaviour can be justified by looking at the interaction with the profile :
the amplitude of the jet has almost no impact on the boundary layer but a huge one
on the jet. On the contrary, the spread has an influence on the form of the sound
speed profile around the jet but also at lower altitudes. As a consequence, when the
mode is trapped under the boundary layer (for high frequencies), it is more sensitive
to the spread whereas the amplitude of the jet gets more influential at low frequencies
when the mode is located around the jet.
At last, it is interesting to note that the sum of the two Sobol’ indices is close to
one. This means that there is almost no interaction effect between the two variables.
In fact, interaction effects are measured by the second order Sobol’ indices that are
equal to 1− S1 − S2.

The key element to understand the evolution of the variance and Sobol’ indices
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shown on figure 3.8 is the interaction of each mode with the different parts of the
profile. In fact, we have used a very localized variability (it affects only the jet) and
the different modes account for contribution to the propagation of the different part of
the profile. To know the part of the profile interacting with the mode the key element
is the phase velocity (defined as vϕ = ω/<[k]). Figure 3.9 shows this phenomenon :
the eigenfunctions are plotted centered at the phase velocity of each mode at two
frequencies : 10Hz and 20Hz. The phase velocity decreases with the frequency, which
means that modes are interacting with the boundary layer for high frequencies and to
the jet for smaller frequencies before the cut-off. Then, the two random parameters
a and σ do not have the same impact on the profile. While a modifies essentially the
extremity of the jet, σ deforms the profile around the junction between the jet and the
boundary layer. Those two facts explain the shape of the Sobol’ indices on figure 3.8.
For instance, the third mode (in green) is almost only sensitive to the spread at 20Hz
whereas both amplitude and spread have an impact on this mode at 10Hz and the
amplitude is dominating for lower frequencies.

Concerning model reduction, the conclusion of this numerical example is the de-
pendance of the Sobol’ indices on the frequency range. In practice, the frequency
range is determined by the support of the Fourier transform of the source ; the mul-
tiplication with the sum of residuals will indeed remove all the effects occuring out
of this range. For example, if we look at figure 3.8, someone studying the impact of
the amplitude of the jet around 15Hz can focus on modes 4 and 5 whereas mode no2
will be the most important for someone looking at 5Hz.

5.2 Computing signal statistics

We have explained in chapter 2 the problem of long term integration for reproducing
random signals with a gPC metamodel. To circumvent this issue we have decided to
build directly a metamodel on the modes and, then, use the metamodel of the modes
to generate random signals. We give in this paragraph a numerical illustration of this
strategy, showing random signals whose quality does not depend on the distance of
propagation. To demonstrate the efficiency of our method we give a comparison of
statistics of signals generated using the metamodel with statistics from direct Monte-
Carlo simulations. For Monte-Carlo simulations the modes have been computed for
every simulation which led to much longer computations, affordable thanks to the
reduced height of the domain.

Before computing the signals one must deal with the complex part of the spectrum
induced by the imaginary part of ω. The spatial eigenvalues kj(ω) have been introdu-
ced as solutions of the dispersion relation when the contour F in the complex ω-plane
differs from the real axis. Although a straightforward interpretation is missing, the
temporal branches kj(ω) are objects that are naturally involved whenever the initial
contour is gradually displaced upward from the real axis. According to the frequency
shifting property of the Fourier-Laplace transform, the ground-based signal can be
obtained from the classical FFT algorithm (for ω = ωr ) together with the mapping
p(t) 7→ eωit.

If the computation of the complete signal is based on the Fourier transform of
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p (ω) given at eq. (3.18) multiplied by the Fourier transform of the source. Here, we
use a simplified source model defined by :

s(t) =
1

2
sin (ωs(t− 3σs) + π/2) exp

(
−
(
−t− 3σs

σs

)2
)
, (3.33)

with ωs = 2πfs where fs = 17Hz is the central frequency of the source and σs = 0.35s
sets the length of this source. The Fourier transform of this source is given by the
black line on the first row of figure 3.4, its support is included between 15 and 20 Hz.
We have chosen this type of source to be able to select a desired range of frequency
and decided to set fs = 17Hz to have five modes contributing to the signal (the
different contributions vanish under the cut-off frequency of each mode). We can also
compute the signal associated with only one mode by limiting the sum to pn (ω), the
resulting signal pn(t) is called the nth wavepacket.

Once reliable gPC expansions of eigenvalues/eigenfunctions at the ground have
been computed, they can be directly used to generate pressure signals. In fact, for
any random scenario ξ within the variability range, rather than solving the eigenvalue
problem for this celerity profile, we only need to inquire our surrogate model in order
to predict the appropriate spectrum utilized to produce the signals at the ground for
a given source and at a given distance.

Figure 3.10 shows the signals and their variances at three distances computed
either with the gPC expansions (in orange) and by computing the acoustic modes
(in blue). The source model for this simulation is given by equation (3.33) and for
the metamodel the gPC expansions has been used with an order 5. The very good
agreement validate the ability of the metamodel to produce signals with the statistics
implied by a certain perturbation of the medium. The very small number of runs used
to calibrate the metamodel (49 computations of acoustic modes) compared to Monte
Carlo simulations (5000 computations) advocates for the use of the metamodel for
statistical studies. In order to assess the convergence of our surrogate model we have
made the effort of generating with the full solver a validation dataset of solutions
for 5000 randomly selected inputs. It is then possible, for comparison purposes, to
generate from the surrogate model the same number of samples. A key property
of our metamodel is its ability to reproduce signal statistics for any source and at
any distance and figure 3.10 presents comparison of standard deviation for different
distances. Chosen measure of discrepancy is a normalized mean quadratic error :

err ≡ 1

maxt,i |pMC
i (t)|2

max
t

(
1

N

N∑
i=1

|pgPCi (t)− pMC
i (t)|2

)
, (3.34)

where p
(·)
i (t) is the ith wavepacket realization, evaluated either with the gPC expansion

or with the direct solver. We have computed this measure for each mode and for
different polynomial degrees. gPC results are accurate for degree ≥ 2, and as expected
the surrogate model gives better results for higher degree. Spectral convergence is
recovered for most cases as figure 3.11 shows. We have represented the convergence
for the different wavepackets (i.e. the signal associated with only one mode). This
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Figure 3.10 : Signals produced either by the metamodel (in orange) and the direct
simulation (in black) at different distances.The first line gives an estimation of the
standard deviation at different distances while the second line gives an example of
signal with the same time scale.

figure 3.11 confirms the spectral convergence of the gPC expansions and justifies the
very good agreement shown on figure 3.10 concerning the signals generated using
those expansions.

6 Conclusion

To simulate numerically the acoustic propagation through a turbulent boundary layer
taking into account the inhomogeneities of different amplitudes, we have presented
an approach separating the different scales. The modal decomposition of the acoustic
field allows to circumvent the problem of long term integration that arises when
studying random oscillatory phenomena. It also provides an easy way to take into
account perturbations of small amplitude on top of the large ones using perturbative
approach.

We have illustrated our method with the case of an atmospheric boundary layer
with a random jet and shown the convergence of the metamodel on the signals and
their variance. Our method enables reducing drastically the numerical cost in compa-
rison with Monte Carlo estimation : instead of 5000 simulations, we have been able
to compute the variance of the temporal signal with only 49 simulations. The main
limitation of this method comes from the necessity to follow the modes as functions of
the frequency but also as functions of the random parameters. In the case of complex
perturbations or in high dimension, this task can reveal very challenging.

To illustrate the usefulness of this kind of metamodels, we show in the next chapter
how it can be used to localize a source. To do so we have used Quantities of Interest
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Figure 3.11 : Mean square convergence error of the different wavepackets, cf.
Eq. (3.34) with N = 5000. The results are displayed for different gPC degrees (hori-
zontal axis). Spectral convergence is verified.

extracted from the signals and do not need to restitute entire signals. For this reason,
we have considered a slightly different approach and computed directly the gPC
expansion of the extracted quantites ; this avoids us a complex tracking.

However, in a high dimension problem where one would want to restitute the
entire signal our technique would be limited by the numerical tracking of the acoustic
modes. In this case, machine learning techniques provide an interesting framework to
improve the tracking and perhaps adapt our algorithm to more real-world cases.
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Appendix:

3.A gPC mixture for switching modes in the case

of long range propagation

In this chapter we have shown that modes can switch as perturbation varies. This
causes a change of regime which results in a discontinuity on the surface response (i.e.
the surface described by the mode as (ξ1, ξ2) vary). We have explained our method
in paragraph 4.3. We show in this appendix a numerical application in a slightly
different case : the impact of the variability of the stratospheric jet on the propagation
of infrasound over large distances. This is another framework where large deviations
of the wind flow occur and have to be simulated numerically to reproduce statistics
of the propagated signals.

The stratospheric jet has a decisive impact on the long distance propagation. Due
to its randomness, small stratospheric jet changes can lead to very different regimes
that are difficult to reproduce by a global approximation. Here, we propose a me-
thod to adapt the metamodeling in order to accurately capture this sensitive change
of behaviour. We will illustrate our approach with a theoretical atmosphere, where
the nominal effective sound speed profile is described by the sum of four gaussian
functions :

c(z) =
4∑
i=1

Ai exp

(
−(z − µi)2

2σ2
i

)
, (3.35)

with (Ai)i=1..4 = (−60, 70,−70, 300), (µi)i=1..4 = (25, 40, 60, 200)km and (σi)i=1..4 =
(20, 15, 20, 65)km. A random perturbation, also defined in terms of a gaussian function
centered in µ0 = 40km, with amplitude 0.03 × ξ1 and σ0 = 10 + ξ2km with (ξ1, ξ2)
two independant gaussian random variables, is added to the profile.

In order to build a continuous metamodel of the propagation through this me-
dium, we compute the acoustic modes at a frequency of 1Hz for a random sample
of 200 realizations of (ξ1, ξ2). On figure 3.12 we show the mean and standard de-
viation of the gaussian process conditionally to the 200 points computed using the
original model. We also show the changes in the mode behaviour which can be either
stratospheric or thermospheric : cf. corresponding eigenfunction on figure 3.12, and
this is confirmed by the clustering of the response depending on the values taken by
the random perturbation (ξ1, ξ2). Figure 3.12 shows a global gPC approximation in
blue and the two element gPC in green and yellow. The blue surface exhibits the
Gibbs-like oscillation leading to a poor quality of the approximation. Regarding the
performance, we can compare the statistics of the original sample with those given by
the two metamodels evaluated on a sample of 20 000 points (see Figure 3.13). If the
main statistics are globally the same, the number of extreme values is greatly reduced
with our new approach.
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Figure 3.12 : Metamodel of the indicator function (on the left) and the response
surface on the right with a classical gPC (in blue) and a two elements gPC (in green
and yellow) for the imaginary part of an eigenvalue.

Figure 3.13 : Comparison of the classical gPC regression with optimal order selection
and mixture of gPC
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Chapitre 4
Metamodeling for Propagation Based
Source Localization

Throughout this manuscript we have been concerned with constructing and exami-
ning gPC models of infrasound propagation, with the aim of computing waveforms
at the lowest possible CPU cost. Such models are valuable for processing data from
the International Monitoring System (IMS), which includes waveform sensor stations.
According to the classification proposed by [Mialle et al., 2019], the problem is gene-
rally divided in four main steps : detection (analysis of raw sensor data to detect and
classify signal arrivals at each station), association (of signals from different stations
that have presumably detected the same event), localization and characterization.
The first two steps are far from trivial and recently, they have been formulated using
Bayesian inference, using discrete detections as observations [Mialle et al., 2019, Mialle
and Arora, 2018, Arora et al., 2013] or waveforms [Moore and Russell, 2017]. In this
chapter we focus on the localization problem, using an approach that bridges the
gap between the Bayesian framework [Evans and Stark, 2002, Kaipio and Somersalo,
2006, Mohammad-Djafari, 1996, Tarantola, 2005] for solving the inverse problem and
metamodeling [Marzouk et al., 2007, Marzouk and Najm, 2009, Marzouk and Xiu,
2009] for updating the waveforms from the atmospheric state at the time of the event.

1 Introduction

In the last ten years, a number of methods have been developed to combine infraso-
nic observations with the aim of estimating a location and time for infrasonic source
events [Ceranna et al., 2009, Modrak et al., 2010, Blom et al., 2015]. In most source lo-
cation methodologies, arrival time and backazimuth (i.e. the azimuth from which the
observed signal appears to be generated) are combined in a manner which produces
an estimate of the source location and time. The Bayesian Infrasonic Source Loca-
lization (BISL) framework proposed by [Modrak et al., 2010] and applied by [Park
et al., 2014] uses Bayes’ theorem to combine detections across a spatially separated
infrasound network in order to estimate a spatial and temporal distribution describing
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the source event. The BISL method has been updated by [Blom et al., 2015] using
tools employed in directional statistics as well as a stochastic treatment of infrasonic
propagation. Bayesian inference has also been shown to be useful for solving the cha-
racterization problem [Blom et al., 2018]. Since theses methods primarily rely, at their
core, on minimization of the difference between observed and predicted quantities of
interest (QoI), the common thread through all these inverse problems is the need for
propagation models.

A propagation model can be described as a map F : X 7→ Y between a multi-
dimensional input vector X describing the source and at least one QoI, which is the
output vector Y of the model. Except the classification tasks, the output Y takes
continuous values as X is varied. The usual statistical approaches for estimating Y are
based on either generative models [Moore and Russell, 2017, Arora et al., 2013] or sto-
chastic propagation models [Blom et al., 2018, Blom et al., 2015, Marcillo et al., 2014].
These models can be constructed by numerically propagating infrasound through a
large suite of atmosphere specifications and defining a distribution for arrival characte-
ristics from the combined results. Using a pre-defined function from which arrivals are
expected to be realized [Marcillo et al., 2014, Morton and Arrowsmith, 2014] increases
the efficiency of the procedure without repeatedly updating the atmospheric state on
a case-by-case basis. But such stochastic models do not include current atmospheric
specifications knowledge and additional analysis is generally necessary to better refine
the source location estimate. Alternately, atmospheric specifications at the time of an
event of interest can be perturbed to improve agreement between infrasonic observa-
tions and propagation modeling predictions [Lalande et al., 2012, Arrowsmith et al.,
2013, Assink et al., 2013, Fricke et al., 2014]. Such methods typically use empirical
orthogonal functions (EOFs) constructed from a sequence of atmospheric specifica-
tions at a given location and compute the coefficients of the EOFs which correspond
to the atmosphere state most consistent with observations. However, estimating the
impact of a wide range of EOFs on the statistics of Y is computationally demanding.
Since many thousands of detections per day are recorded by national data centers,
this approach is not suited for continuous, real-time monitoring.

The approach set forth in this chapter for solving the localization problem is based
on a combination of Bayesian inference and metamodeling, which allows to replace
an original propagation model with an inexpensive-to-run but accurate metamodel.
Examples of approaches combining metamodeling and Bayesian inference have been
published by [Marzouk et al., 2007, Marzouk and Najm, 2009, Marzouk and Xiu,
2009] and a few others. In the present study we use polynomial chaos expansions
(PCE), which can be viewed as an interpretable machine learning regression algo-
rithm [Vapnik, 1995], to predict Y given the location x0 and time t0 of the infrasound
event. PCE can be used to derive estimates of various statistics of Y such as its
moments and its sensitivities to different components of X = (x0, t0) [Saltelli et al.,
2000]. The simulation data (i.e. the set (X,Y) of input values and corresponding
responses) are produced by a normal-mode-based model which belongs to the class
of the so-called full-wave models. Unlike high-frequency propagation models in which
expertise plays an important role in the interpretation of results, full-wave models
produce waveforms from which a large variety of QoI can be extracted using signal
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processing. It is worthwhile to point out that, under fixed computing budget, normal
mode expansions can be truncated using model reduction algorithms [Bertin et al.,
2014] so as to reduce the size of involved matrices in the numerical solving method.

The purpose of this chapter is to show that (i) a metamodel purely trained on
few simulated data yields reliable probability distributions of location and time of
real-world infrasound events, and (ii) the Bayesian inference problem can be reformu-
lated to incorporate both simulated data and uncertainties associated with extracting
the QoI (signal processing, arrival time picking, etc.). While for simplicity the QoI
are restricted to a single arrival time for each infrasound station, the generalisation
to multivariate outputs is straightforward. Another motivation for the present work
is to show that the event location can be updated using all the available knowledge
on the atmospheric state, including subgrid-scale stochastic processes (e.g., gravity
waves, turbulence, etc.). This is especially important since stochastic parameteriza-
tions [Berner et al., 2017] are an essential component of the models currently in use
in the operational weather centers, and neglecting this random component is known
to produce biases.

The chapter is organized as follows. Section 2 is dedicated to an overview of the
underlying theory. In section 3, this technique is applied to the localization of a bolide
that caused a huge explosion over the Bering sea, near Russia’s Kamchatka Peninsula,
on December 18th, 2018. The concluding section discusses applications and possible
extensions of the approach.

2 PCE-based Bayesian localization

2.1 The Bayesian framework

Localizing a point-like source occurring in the atmosphere consists in finding the
latitude x0, longitude y0 and altitude z0 characterizing the source position from de-
tections (Dj)j≤n recorded at n stations. For impulsive sources, it is often of interest
to represent the origin time t0 as an independent unknown variable. In the Bayesian
setting X = (x0, y0, z0, t0) and D = (D1,D2, . . .) are random vectors. Bayesian infe-
rence derives the posterior probability density function P(X|D) as a consequence of
two antecedents : a prior probability P(X) and a “likelihood function” describing the
probability of observing D under the assumption that X is valid. Bayesian inference
computes the posterior probability according to Bayes’ theorem, which reads as

π (X) = P (X|D) =
P (D|X) P (X)

P (D)
. (4.1)

In equation (4.1), the term P (D) is often considered as a normalization constant,
P(X) is the prior probability (i.e. the estimate of the probability of X before the data
D) and L (X) = P (D|X) is the likelihood function.

The likelihood function relating the detections with the source hypothesis can
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then be specified by the product P(D1|X)P(D3|X) . . .P(Dn|X), with

P(Dj|X) =
1

σj
√

2π
exp

[
−(Dj − Fj(X))2

2σ2
j

]
(4.2)

for j = 1, . . . , n, where Fj(X) ∈ R is considered as a single-valued function. Hence,
the simulated data Fj can be concatenated in a single vector F ∈ Rn containing the
infrasonic propagation characteristics and the standard deviations σj can be adjusted
for the different stations. It should be noted that the normal distributions in (4.2) can
be replaced by other distributions, depending on the model used to compute F(X).
Further, when several quantities of interest (e.g., arrival time, duration, amplitude,
etc.) are incorporated into Dj or when multiple infrasound arrivals are detected,
equation (4.2) should be adapted to a multidimensional framework. Here, and in the
following, the hypothesis parameter space is defined as the spatial source description
and each detection consists of a single observed arrival time.

The posterior probability density function (PDF) produced via the Bayesian ap-
proach can be analysed by computing a number of characteristics of the distribution.
The maximum a posteriori (MAP) solution is often used as an estimate of the event
location [Blom et al., 2015]. This location, which is defined by those parameter values
that maximize the posterior PDF, corresponds to the best guess for the source loca-
lization given the set of detections. It is referred to as XMAP in the following. Other
characteristics can be computed from the posterior PDF, such as confidence ellipses
or likelihood ratios. The way these ratios are used to assess the goodness of fit of two
different competing localizations is detailed in section 3.3.

2.2 Simulation-driven likelihood

For each station, computing the probability P(Dj|X) reduces to computing infrasonic
propagation characteristics under the assumption that the source location is specified
by X. The predicted arrival time for station #j can be decomposed into

Fj(X) = tj(x0, y0) + t0, (4.3)

where tj is the travel time, t0 is the origin time, and the altitude z0 of the source is
dropped for simplicity. The travel time depends on the location of the station, which
is fixed and denoted by xj = (xj, yj). The most commonly used estimate of tj is
obtained from

tj =
||x0 − xj||

cj
, (4.4)

where cj is the celerity and x0 = (x0, y0) is obtained from sampling the prior distri-
bution P(x0, t0) = P(x0)P(t0), for a fixed t0. Provided a suitable model for cj, and
using m source locations, the corresponding arrival times can be readily calculated
from (4.4) so as to obtain a vector tj of size m × 1. The celerity cj can be specified
by a statistical distribution (i.e. the probability of observing specific celerities) via
tapered box-car distributions [Blom et al., 2015]. Propagation modeling methods can
also be used to construct catalogues of propagation predictions at specific geographic

94



locations using historical atmospheric models [Marcillo et al., 2014, Morton and Ar-
rowsmith, 2014, Nippress et al., 2014, Blom et al., 2015]. However, the validity of
these models is restricted to the training data and thus, these models are not suited
to the study of a new particular atmospheric state, at a particular time.

The limitation inherent to statistical propagation models can be avoided by construc-
ting a polynomial approximation of (4.3) over the support of the prior distribu-
tion [Marzouk and Xiu, 2009]. This approximation then defines a surrogate posterior
probability density π̃(X) that can be estimated from a set {(x0i, tji), i = 1, . . . ,m} of
simulated data. If we denote {Hk(.),k ∈ Nd} the polynomial chaos basis, the arrival
time can be represented as

F̃j(X) =
∑
k∈N2

ajkHk(x0, y0) + t0, (4.5)

or, equivalently F̃j = t̃j + t0, with

t̃j(x0) =

|Λ|∑
k=1

ajkHkk(x0), (4.6)

where the coefficients ajk can be computed either by projection or regression, using the
orthogonality property1. Without any loss of generality, we use approximation spaces
of total degree and introduce, for this purpose, the index set Λ = {k ∈ N2 : ||k||1 ≤ d}.
Using the regression method, the coefficients of the expansion are determined from
the m simulated arrival times tji by solving the ordinary least square problem

aj = arg min
aj∈Rp

||tj −Haj||2, (4.7)

where the k-th component of aj is given by ajk and

||tj −Haj||2 =
1

m

m∑
i=1

tji − |Λ|∑
k=1

ajkHkk(x0i)

2

, (4.8)

with |Λ| = p = (2 + d)!/(2!d!), where d is the chosen maximum polynomial degree.
When the random vector x0 has a bivariate normal distribution with a diagonal co-
variance matrix, the polynomial chaos basis can be obtained from the tensor product
of univariate Hermite polynomials. If the input vector x0 has statistically dependent
components, constructing a basis of orthogonal polynomials is still possible, but com-
putationally demanding. For this reason, and because there is no reason why x0 and
y0 should be correlated, we use the assumption Cov(x0, y0) = 0 in the following.

Once the coefficients ajk have been computed, the travel time can be evaluated at
arbitrary values of x0 without resorting to additional simulations. It turns out that
solving the least square problem requires m > p. While the regression method tends

1The projection method consists in computing directly the scalar product whereas the regression
method uses the fact that orthogonal projection realizes the distance.
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to overfit the simulated data for large p = |Λ|, simpler models with fewer coefficients
can be constructed by sparse regression. Solving (4.7), the solution reads as aj = Gtj,

where the matrix G is defined by G =
(
HTH

)−1
HT, where Hik = Hkk(x0i). Then,

the posterior PDF can be split into

π̃(x0, t0) =
n∏
j=1

π̃j(x0, t0), (4.9)

where the posterior for station #j is

π̃j(x0, t0) =
P(x0)P(t0)

P(D)
P(Dj|x0, t0), (4.10)

with

P(Dj|x0, t0) =
1

σj
√

2π
exp

[
− 1

2σ2
j

(GtjH(x0) + t0 −Dj)
2

]
, (4.11)

where the components of vector H(x0) are defined by Hkk(x0) for k = 1, . . . , p.
Given a set of simulated arrival times, the present approach capitalises on po-

lynomial chaos expansion to produce a new version of the likelihoood, where the
computational model Fj(X) is replaced with an inexpensive metamodel that retains
the statistics of the output. For a given station and fixed t0, it can be shown that
the rate of convergence of π̃j to πj is greater than the L2 convergence rate of t̃j to tj,
as noticed by [Marzouk and Xiu, 2009], and is twice faster in the case of a uniform
prior [Birolleau et al., 2014]. More precisely, following [Marzouk and Xiu, 2009] and
using the Pinsker’s inequality, a straightforward calculation leads to

DKL (πj | π̃j) ≤ C‖GtjH(x0)− tj (x0) ‖L2 (4.12)

where DKL is the Kullback-Leibler (KL) divergence and C is a positive constant. It
is worthwhile to note that although the KL divergence is not a distance (because
it is not symmetric and does not respect the Minkowski’s inequality), an analogous
result [Lie et al., 2018] can be given in terms ot the total variation between two PDF.

3 Application to the Bering sea bolide

3.1 Recorded signals and detections

To validate our approach, we consider an event that was recorded by several IMS
infrasound stations on December 18, 2018. This event is known to correspond to a
small asteroid that entered the atmosphere at approximately 30 km.s−1 velocity, 69◦

elevation and 349◦ azimuth, and exploded at roughly 25 kilometers altitude over the
Bering Sea2. The event, the second largest of its kind observed in the past twenty
years, after the 2013 Chelyabinsk bolide, released an estimated 173 kilotons of energy.

2Center for Near Earth Object Studies.“Fireballs.” Jet Propulsion Laboratory. Retrieved July
23, 2019. https ://cneos.jpl.nasa.gov/fireballs/
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The meteor-generated infrasound was recorded by 19 infrasound stations of the 49
certified IMS infrasound stations, ranging from 1030 km up to 15000 km away from
the location of the event, as reported in the Reviewed Event Bulletin (REB) of the
International Data Center (IDC). Further, 62 stations of the USArray Transportable
Array [de Groot-Hedlin and Hedlin, 2015] also monitored the event. On December 18,
NASA’s Terra satellite passed over the Bering Sea a few minutes after the large bolide
event’s peak brightness at 23 :48 :20 UTC. The Multi-angle Imaging SpectroRadio-
meter (MISR), one of the scientific instruments on Terra, consists of nine cameras
pointed at different along-track view angles, enabling multiangular views of Earth in
four spectral bands. Between 23 :51 :40 and 23 :58 :04 UTC, MISR’s nine pushbroom
cameras each observed, in succession, the debris cloud and its shadow. This set of
observations, apparently unique in MISR’s nearly 20-year record, offer exceptional
opportunities for the study of such an event. In the following, the localization given
by MISR is considered as the reference and noted XNASA. Similarly, the localization
provided by the IDC is noted XIDC

Due to the good low frequency detection capability of IMS infrasound stations at
the time of event, very-long-period acoustic signals, with dominant periods spanning
the 20 to 25 s interval, were clearly observed. While this event was theoretically
detectable at each of the existing IMS infrasound stations [Pilger et al., 2020], all
detections are not equal. In fact three main factors influence the infrasound signal
detectability : (1) the ducting behavior of the acoustic waves travelling from the
source to any of the globally distributed receivers ; (2) the daytime, during which the
signal arrival at the infrasound array takes place ; (3) the directivity of the station
towards the source. Ideal conditions correspond to quiet nighttime conditions, a 90◦

perpendicular direction towards the line source trajectory, and the availability of a
stratospheric ducting. Here, to avoid complications due to post-processing of noisy
signals, we restrict the detections used to localize the event to that provided by six
infrasound stations : IS53, IS30, IS18, IS56, IS57 and IS59. These stations are shown
in figure 4.1 as well as ten recent fireball events that occurred between summer 2018
and summer 2019. These events were selected and analyzed in the context of the
NEar real-time MOnitoring system (NEMO) project [Drolshagen et al., 2019]. This
selection is in good agreement with the fact that these events yielded the most energy
during the period of observation.

The usual approach to locate fireball events is based on the triangulation method,
which uses the detected backazimuths provided by the Progressive Multi-Channel
Correlation (PMCC) method [Cansi, 1995]. The backazimuths are projected along
the great-circle propagation path for three stations at a time so that if three inter-
section points are found, their geographical center gives the triangulation result. This
procedure can be subsequently repeated for all conceivable combinations of three sta-
tions that detected the event. The observed backazimuths can also be incorporated
in the Bayesian framework (via the detection vector D) together with a ray tracing
technique to compute infrasonic propagation characteristics [Assink et al., 2013, Blom
et al., 2015, Vanderbecken et al., 2020, among others]. For the event considered in
this chapter, however, the frequency is typically smaller than 0.5 Hz, a frequency for
which ray tracing is likely to introduce discontinuities in the predicted arrival times as
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Figure 4.1 : (a,b) Location of fireball events (circles) and positions of certified IMS
infrasound stations (rectangles). Stations and events are connected by lines if infra-
sound from an event was recorded at the respective stations ; the line is dashed, if the
detection is part of the REB. (b) Bering Sea event. From [Pilger et al., 2020].

the event location x0 = (x0, y0) is varied. Bearing this limitation in mind, we resort to
computing the pressure field using normal mode expansions at the locations xj of the
infrasound stations. Following [Bertin et al., 2014] and using cylindrical coordinates,
the Green’s functions are computed for each possible source location, using a Fast
Fourier Transform algorithm. The resulting signals can easily be computed using a
Ricker-like wavelet for representing the source function and applying the convolution
property. While the frequency of the source is fixed to ω0 = 0.2 × 2π rad.s−1 in this
work, this parameter can also be incorporated in X as well as any parameter that
may have an effect on the quantities of interest (QoI).

Although full-wave modeling is better suited for propagating low-frequency waves,
there is the question of how QoI can be extracted from complex, noisy signals. A
simple approach for determining an arrival time from a signal consists in computing
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Figure 4.2 : Recorded signals and regions of plausible arrival times for tropospheric
(yellow), stratospheric (blue) and thermospheric (red) infrasonic arrivals, obtained
using the tapered box-car celerity distributions of [Blom et al., 2015] and the locali-
zation provided by the International Data Center (IDC).

the moving root-mean-square (rms) over a sliding window of length τ = T/N , where
T is the duration of the signal and N is the number of samples. The arrival time
is then defined as the time for which the amplitude of the rms first exceeds a given
threshold, which is here specified by the product βAj, where Aj is the maximum
amplitude of the rms and β is fixed between 0 and 1. Figure 4.3 shows the arrival
time as a function of β for the recorded signals at IS53, IS30, IS18, IS56, IS57 and
IS59. The sample size is fixed to N = 1000 to reduce the sensitivity of the arrival
time to β. As might be expected, for sufficiently large values of β, the arrival time
slowly increases but, as β becomes smaller, smaller values of tj and larger sensitivity
occur. While each jump of tj(β) is related to a pattern in the signal, figure 4.3 shows
that the range of possible arrival times increases with increasing distance from the
source, except for the signal recorded at IS56. This effect is not purely due to distance,
it is also related to properties of the atmosphere along the source receiver path, as
section 3.2 shows. Nevertheless, for fixed τ , the uncertainty associated with arrival
time picking is incorporated in the probabilistic approach using

Fj(X; β) = tj(x0; β) + t0, (4.13)

where β is sampled from a normal distribution N(µβ, σβ) with a mean µβ and a
standard deviation σβ. It turns out that knowledge of the arrival time as β changes
randomly clearly allows a much deeper appreciation of uncertainty than is possible
by mere point estimates. This implies that σj in equation (4.2) depends on β, as well
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Figure 4.3 : Arrival times as function of β for each recorded signal and possible
values (red lines) for constructing the detection vector in (4.2).

as the posterior distribution P(X|D, β) and various other aspects of the distribution
(marginal distributions, confidence regions, etc.).

3.2 The propagation conditions

Following the detectability estimations provided by [Pilger et al., 2020], the event
is expected to be best observed at nearby stations in the Pacific Ocean and along
the eastern coast of Asia as well as the western coast of North America. In fact, the
predominant direction for stratospheric ducting (here, to the east on the northern
hemisphere) is less important for very strong events. Such events have a very low
dominant frequency, which leads to low atmospheric attenuation along propagation
paths of even many thousands of kilometers. Further, for strong events it is possible
that the ducted propagation takes place in both directions, upstream and downstream
the predominant stratospheric wind. It may take the shape of elevated ducting, when
propagating against the dominant wind direction.

For each source-to-receiver path, along-path wind speeds can be calculated using
the projection of the horizontal wind vector U into the direction from source to
receiver e0, where e0 = x−x0. The components of x are the longitude x and latitude
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Figure 4.4 : Maximum effective sound speed ratio Rz(x) over the region of interest
on december 19, 2018 (0h UT). The source location for calculating R is that provided
by the IDC and the contour Rz = 1 is represented by a solid black line. The green
and blue stars give the locations provided by the IDC and the NASA, respectively.
Each infrasound station is represented by a green triangle.

y, and x0 corresponds to the source location, which is given by the NASA (172.4 deg
and 56.9 deg, respectively) or the IDC (58.61 deg and 174.23 deg, respectively).
Propagation conditions can be quantified by the maximum value of the effective
sound speed ratio, which is defined by

Rz(x) = max
z0≤z≤z1

R(x, z) with R(x, z) =
ce(x, z)

ce(x, 0)
, (4.14)

where the effective sound speed is given by

ce(x, z) =
√
γrgT (x) + U(x, z).e0(x), (4.15)

where γ is the ratio of specific heats, rg is the gas constant for air and T is the ambient
temperature. Figure 4.4 gives the ratio Rz as a function of longitude and latitude,
using z0 = 40 km and z1 = 80 km in equation (4.14) for the source location estimated
by the IDC. The atmospheric specifications are obtained from the analysis provided
by the European Centre for Medium-Range Weather Forecasts (ECMWF). This ana-
lysis provides estimates, among other parameters, of atmospheric temperatures and
windspeeds with a horizontal resolution of 1.5 deg, and a vertical structure composed
of 91 points between the surface and a maximum altitude of approximately 80 km.

According to the classical ray theory, strong arrivals (totally ducted) are refracted
from altitudes for which the effective sound speed is larger than that at ground level,
i.e. R > 1. The contour Rz = 1 (solid black line in figure 4.4) splits the domain into
regions where sound waves propagate efficiently within the stratosphere (Rz > 1) and
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Figure 4.5 : (a,b,c) Effective sound speed-ratio profiles at the location estimated
by the IDC (blue) and averaged profiles (red) along the source-receiver path. (c,e,f)
Effective sound speed-ratio as a function of altitude and range for infrasound stations
IS53 (d), IS30 (e) and IS18 (f).

regions where the stratospheric waveguide weakens or disappear (Rz < 1). The ratio R
can be viewed as a simple parameterization of the stratospheric waveguide structure.
The along-path variability of the propagation conditions can thus be quantified by
R(r, z), where r is the distance from the source location, as estimated by the IDC.
Figures 4.5 and 4.6 show this ratio for altitudes below 100 km, using a combination
of cubic splines and empirical atmospheric models (HWM and MSISE) in the upper
layer, for z > 80 km. For northeastward propagation (IS53 and IS18), the ducting
layer is formed at altitudes above z = 40 km at source location and gradually spreads
downward as the range increases, except for IS30 for which we have R(0) < 1. The
along-path variability, in terms of the length of the interval mapped by Rz, is obtained
for the closest station (IS53) and given by ∆Rz ' 0.07. For eastward and southeast-
ward propagations the waveguides weaken along the path and may literally disappear,
as figure 4.6 shows. The along-path variability ∆R is given by 0.16, 0.17 and 0.16
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Figure 4.6 : (a,b,c) Effective sound speed-ratio profiles at the location estimated
by the IDC (blue) and averaged profiles (red) along the source-receiver path. (c,e,f)
Effective sound speed-ratio as a function of altitude and range for infrasound stations
IS56 (d), IS57 (e) and IS59 (f).

for IS56, IS57 and IS59, respectively. This strong along-path waveguide variability
restricts the signal celerities that can be supported by stratospheric waveguide pro-
pagation, thereby leading to shorter signals as the geometrical optics approximation
suggests [Green and Nippress, 2019]. Further, the stronger the waveguide, in terms
of R, the steeper the maximum launch angle at which acoustic energy can be turned
and returned to Earth’s surface. These steeper launch angle arrivals, which propagate
further and faster before returning to Earth’s surface, belong to the fast stratospheric
branch described by [Waxler et al., 2015].

As mentioned above, the profiles shown in figures 4.5 and 4.6 are obtained using
the IDC estimate for x0. For other source locations, the waveguide characteristics may
be inferred by suitably projecting the windspeed onto the plausible source-receiver
plane. When the source location is randomly selected, the effective sound speed profile
should be viewed as a random function and Rz, as a random variable. Figure 4.7 shows
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Figure 4.7 : (a,b,c,g,h,i) Mean ratio R̄ when the source location is picked randomly
around the IDC estimate. Blue and red solid lines are the profile at the source and the
averaged profile along the source-receiver path, respectively. The associated shaded
area gives the region between ±2σR. (d,e,f,j,k,l) Probability density functions of Rz.

the dispersion of the resulting profiles using 70 plausible locations picked randomly
around the IDC estimate. In this example the longitude and latitude are considered
as being uncorrelated and sampled using a bivariate normal distribution N(x0, σI),
with σ = 3 deg. The mean effective sound speed-ratio R̄ and the standard deviation σR
are computed with the profiles at the source (blue line) and with the averaged profiles
along the source-receiver path (red line). The corresponding locations are given in
figure 4.8. For each station, the kernel probability density estimate of the random
variable Rz is obtained using a normal kernel function. While sound waves remain
trapped in the stratospheric waveguide for eastward propagations, as figure 4.7 shows
for the paths to IS53, IS18 and IS56, some azimuths are more problematic when the
source location varies. For IS30 and IS59 (figures 4.7(b,h)), it is evident that a change
in x0 can affect acoustic ducting at source location, in terms of Rz (blue line). The
practical implication is that small uncertainties in the source location may result in
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Figure 4.8 : Source locations (full circles) used to calibrate the gPC metamodel.
The locations are sampled in the vicinity of the IDC estimate (?, green). Dashed lines
give the source-receiver paths for the six stations considered. The radius of the two
large circles correspond to two and three standard deviations from the mean a priori
location. The NASA estimate is identified by a red star.

large changes in the probability density functions of the QoI so that perturbation
theory is not applicable to compute the distributions. It is worthwhile to point out
that we should be cautious in practical inverse problems of relying solely on range-
independent propagation modeling, for if P(Rz|x0,x) were changing drastically over
the range in which P(x|x0) was appreciable, it would be important to know about
it. Thus, in principle, we should always make a study of P(Rz|x0,x) for a number
of profiles extracted along the source-receiver path and indeed, in the present case,
figure 4.7(k,l) show that two opposite conclusions, in terms of Rz, can be drawn from
the same set of source locations.

3.3 Localization estimates and confidence regions

For each of the 70 plausible locations given on figure 4.8 a complete simulation is
done which gives 70 times of arrival for each station. From this sample we have
computed the coefficients (ajk), polynomial chaos decomposition of the time of arrival,
at each station. With this operation we have a metamodel given the time of arrival
function of the source location for each station. This metamodel is very cheap from
a computational point of view and can be used to generate the surface response on a
thiner grid to get a precise localization.
To take into account the variability due to the extraction from the registered signals we
have taken a random β (defined in paragraph 3.1) : β ∼ N (µβ, σβ). This parameter is
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Figure 4.9 : Posterior distributions for different definitions of the threshold β. The
only difference between those three plots comes from the values of the parameter
(µβ, σβ) : (0.3, 0.2) on the top, (0.45, 0.3) on the left and (0.8, 0.22) on the right.

used to ajust the noise at each station : a sample of 1000 β gives a standard deviation
σj for the 1000 corresponding Dj, this σj is then used to compute the likelihood with
formula (4.2). Figure 4.9 give the marginal distributions for the location (x0, y0) and
the time of the event t0 for different values of the parameters (µβ, σβ). The ellipses give
the confidence region : according to the posterior distribution the event took place in
the smaller ellipse with a probability 0.95 and in the wider one with probability 0.99.
In the three configurations the time of the event seems close to the estimation given by
the NASA (in red), only the standard deviation of the estimation changes depending
on the value of σβ. The localization is more sensitive to the extraction process : the
size of the ellipses seems to depend on the ratio σβ/µβ and the maximum a posteriori
which would be the location proposed by the bayesian process can change of several
thousand of kilometers. To look at the impact of the different stations, we have
plotted on figure 4.10 the station whose partial likelihood π̃j(x0, t0, β) is maximal.
The directions of the different areas are globally orthogonal to the corresponding
source-to-receiver paths. The other map on figure 4.10 gives the number N(x) of
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Figure 4.10 : Station with a predominant contribution to the likelihood (on the
left) and number of station with significative contribution N(x) (on the right). Here,
(µβ, σβ) = (0.45, 0.3) for the two figures.

station with a significative contribution to the likelihood defined by :

N(x) =
n∑
j=1

ζj(x) (4.16)

where ζj is given by :

ζj(x0, t0, β) = 1 if π̃j(x0, t0, β) >
1

n
π̃(x0, t0, β), (4.17)

and ζj(x0, t0, β) = 0 otherwise. This second plot indicates that around the maxi-
mum a posteriori, the likelihood takes information from four different stations which
guarantees a more robust localization. We show on figure 4.10 the map only for
(µβ, σβ) = (0.45, 0.3) but the two other maps for (µβ, σβ) = (0.3, 0.2) and (0.8, 0.22)
give similar results. Consequently, this cannot be a criterium to choose the value of
(µβ, σβ).

4 Conclusion

We have shown in this chapter how polynomial chaos based metamodels can be used
in a bayesian inversion context to lacalize the bolide. Bayes’ theorem describes, in a
fundamental way, the process of learning from experience, and shows how knowledge
about the state of nature represented by X is continually modified as new data be-
comes available. Mathematically, Bayes’ formula is merely a statement of conditional
probability, and as such its validity is not in question. In practice, our inversion is
based on the signal of six stations of the IMS network and uses the time of arrival
as a quantity of interest. With this strategy we have been able to reduce the error
of localization from 220 km (for the IDC point) to less than 50 km for a certain
extraction of the times of arrival from the registered signals – and assuming that the
NASA point is exact. An important feature of the metamodel based approach relies
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in its low computational cost wich allows a fine grid computation of the posterior
probability distribution and thereby a better precision of the location estimation.
We have also emphasized the impact of the extraction of the quantity of interest.
In fact, signals registered at the different stations are affected by ambient noise and
by the measurement noise. Then the extraction of the quantity of interest (time of
arrival in our case) depends on arbitrary choices : where does the signal start ? Is its
maximum a relevant point ? How many arrivals do we consider ? We have shown in
this chapter that the uncertainty due to the extraction procedure is of similar am-
plitude to the impact of the propagation effects. We have modelled this uncertainty
using a random threshold for extracting the time of arrival however fine-tuning the
parameters of this random threshold remains an open question.

Possible other improvments of our method inculde the use of range dependant
simulations to take into account the atmospheric variability alongside the perturba-
tion [Damiens et al., 2018, Waxler et al., 2017]. Then, the metamodel only takes into
account the uncertainty associated with the localization although there exists many
other sources of uncertainties (in particular atmospheric variability [Drob, 2019, Wax-
ler and Assink, 2019, Chunchuzov and Kulichkov, 2019]). Adding more uncertainties
will increase the dimension of the perturbation and limit the benefit of using a meta-
model. To avoid increasing too much the dimension, a preliminary study (for instance
the Morris screening technique, like in Rojano et al. [Rojano et al., 2019]) can be
conducted to select the most influencing variables. Our inversion is only based on the
time of arrival although other quantities can be extracted from the signal. The benefit
of using more quantities to improve the localization needs to be investigated.
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Chapitre 5
Conclusion

We have explained in chapter 3 our method to design a metamodel able to return
signals propagating in a random atmosphere. Our approach is based on a spectral
decomposition of the random acoustic field :

p(r, z, ξ;ω) =
N∑
n=1

pn(r, z, ξ;ω) =
N∑
n=1

un(r, ξ;ω)√
r

φn0(z, ξ;ω), (5.1)

where the basis functions (φn0)n=1,..,N are the eigenfunctions of the Helmholtz operator
H :

Hφn0 =
d2φn0

dz2
+

ω2

c(z, ξ)2
φn0 = k2

nφn0. (5.2)

The decomposition on this basis characterizes the propagation, we have chosen to
build a metamodel of this basis by decomposing (φn0)n=1,..,N and (un)n=1,..,N on a
polynomial chaos basis. A great advantage of this method is the ability to restitute
random signals even for large distances despite the long term integration problem
(see chapter 2). In addition, our metamodel is valid for every source and every dis-
tance of propagation without any supplementary cost. The main limitation comes
from the necessity of tracking the modes impacted by the perturbation. Once the
metamodel is computed, the impact of the small scale part of the perturbation is
integrated by means of the coupling coefficients. The numerical impact of those co-
efficients and their dependence on the different components of the perturbation has
not been evaluated numerically in this thesis, their computation would enlighten the
role of those small scale perturbations. We have always considered in this work a
propagation model invariant in the propagation direction and a natural perspective
would be to consider range dependant simulations. However, range dependant modal
decompositions allow to take into account horizontal variations of the atmospheric
state as long as the horizontal inhomogeneities of the medium are small over a typical
acoustic wavelength [Pierce, 1965, Waxler et al., 2008]. This cannot be guaranteed in
the case of atmospheric variability, random perturbations can be of great amplitude
as illustrated by the gravity waves breaking in chapter 1.
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In decomposition (5.1), the stochasticity is brought both by the basis functions
and the coefficients of the decomposition. The dynamically orthogonal decomposi-
tion (DO) introduced by Sapsis and Lermusiaux [Sapsis and Lermusiaux, 2009] have
proposed a separation : a deterministic basis adapted to the physical phenomenon
and the stochastic coefficients characterizing the variability due to the randomness
of the parameters. In our case, this would give a single basis adapted to the acous-
tic propagation and to the uncertainty at the same time instead of decomposing the
acoustic basis on another stochastic basis. The dynamically orthogonal decomposi-
tion has been introduced in 2009 just before Cheng et al. introduce the bi-orthogonal
(BO) decomposition [Cheng et al., 2013a, Cheng et al., 2013b]. In both work the
objective is to construct the sparsest representation of a solution of a stochastic par-
tial differential equation exploiting its dynamics. Choi et al. have shown in 2014 the
equivalence of those two decompositions [Choi et al., 2014] and we are going to focus
here on the work of Sapsis and Lermusiaux. In our case, let us consider the evolution
of p(r, z, ξ), the random acoustic field, which depends on the altitude z, the range r
and the random parameters ξ, we drop the frequency ω that is supposed to be fixed
here :

∂Ψ(r, z, ξ)

∂r
= L [Ψ(r, z, ξ); ξ] , (5.3)

where Ψ(r, z, ξ) =

[
p(r, z, ξ)
∂p(r, z, ξ)

∂r

]
and L is a differential operator defined by :

L =

[
0 1

− ∂2

∂z2
− ω2

c(z,ξ)2
−1
r

]
. (5.4)

This operator models the acoustic propagation for cylindrical coordinates (r, z) for a
medium invariant in the propagation direction. This DO-decomposition is based on a
decomposition of the solution Ψ into a mean Ψ and a stochastic dynamical component.
The stochastic part is decomposed on an orthonormal basis (Ψi (r, z))i=1,..,s of the
subspace Vs = Span {Ψi, i = 1, .., s} where the stochasticity ‘lives’ and the coefficients
Yi (r; ξ) describing how the stochasticity evolves as the subspace changes alongside
the propagation,

Ψ(r, z; ξ) = Ψ (r, z) +
s∑
i=1

Yi (r; ξ) Ψi (r, z). (5.5)

This decomposition is more general than a classical gPC approach in the sense that
the basis is not known a priori but adapts to the dynamics. In fact, the evolution of
Ψi and Yi is governed by s + 1 deterministic PDEs based on the operator L. More
precisely the evolution of the basis Ψi is driven by an orthogonality condition :

∂Vs
∂r
⊥ Vs ⇔

〈
∂Ψi

∂r
; Ψj

〉
= 0, ∀(i, j) ∈ {1, .., N}2. (5.6)

The idea of this orthogonality relation is to avoid redundancy in the representation.
In fact, the variation of the stochastic coefficients Yi (r; ξ) can express exclusively the
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evolution of uncertainty within the space Vs. On the other hand, the variation of
the basis (Ψi (r, z))i=1,..,s expresses both the evolution of uncertainty within Vs and
also normal to Vs. Therefore, we see that the source of redundancy comes from the
evolution of uncertainty that can be described by both the variation of the stochastic
coefficients and the basis. This explains the restriction on the evolution of the basis
(Ψi (r, z))i=1,..,s : it has to be normal to the space Vs since the evolution within Vs can
be described completely by the stochastic coefficients.

In chapter 4, we have shown how a metamodel technique can be used to take ad-
vantage of propagation models in a localization process. The originality of this chapter
stands in the combination of bayesian inference method and polynomial chaos based
metamodel for the propagation part. The use of a metamodel is essential here due to
the numerical cost of a simulation on such distances. A great strength of our method
is to use full-wave signals, which carry much more information than ray tracing or
generative models used in other studies based on the bayesian approach [Moore and
Russell, 2017, Arora et al., 2013, Blom et al., 2018]. However, we have only worked
here with the time of arrival extracted from the signal and not the signal itself. Taking
into account other quantities of interest such as the amplitudes and the durations of
the signals would complete this study. Another advantage of the full-wave simulation
is to restitute multi-arrival signals when atmospheric conditions create different wa-
veguide. It was not the case for the Bering bolide but could be used to increase the
number of QoI (time between two arrival, amplitude ratio,. . . ). Then, only the uncer-
tainty due to the localization has been treated here : the uncertainty on the source
model as well as the impact of the atmospheric variability has not been assessed, this
could also improve the localisation.

A more complex question lies in the a priori part. We have been considering an
a priori based on informations given by the IDC seen as the expert judgment. The
importance given to this a priori compared to the simulation and the translation of
this expert judgment into a probability measure can be questionned. A possibility to
circumvent this issue could be to recursively consider the a posteriori as a new prior
and start again the computations with a new sampling adapted to this new prior.
This would lead to an increase of the numerical cost which could be affordable or
not depending on the convergence rate of such a method. But the convergence itself
needs to be studied first, depending on the structure of the likelihood.
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la précision de code de calcul. Theses, Université Paris-Saclay. [Cited on page 48.]
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Titre : Une approche spectrale de la métamodélisation multi-échelle appliquée à la pro-
pagation acoustique
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Résumé : De nombreuses méthodes per-
mettent de simuler numériquement la propa-
gation d’une onde dans un milieu complexe
avec une excellente précision. Cependant, la
prise en compte des fluctuations du milieu
de propagation requiert un traitement statis-
tique nécessitant un grand nombre d’appel
à des codes de calcul souvent coûteux. Afin
de rendre accessible ces études nous propo-
sons la construction d’un métamodèle basé sur
une décomposition en polynômes de chaos des
modes normaux. Cette approche permet de res-
tituer les statistiques des signaux se propageant
dans un milieu aléatoire avec un coût de calcul
moindre.
Les applications proposées dans cette thèse

concernent la propagation d’ondes acous-
tiques dans l’atmosphère terrestre. En ef-
fet, les fluctuations météorologiques modifiant
considérablement les conditions de propaga-
tion, leur prise en compte est indispensable.
Le coût numérique de la simulation sur un do-
maine de plusieurs centaines de milliers de ki-
lomètres carrés justifie pleinement l’utilisation
d’un métamodèle. Une application à la loca-
lisation de source couplant ces techniques de
métamodèlisation avec une approche bayésienne
est aussi proposée. En effet, le cadre bayésien
permet une résolution du problème inverse dans
un cadre probabiliste capable de prendre en
compte les fluctuations du milieu et l’incerti-
tude sur la localisation de la source.

Title : A Spectral Approach of Multi-Scale Metamodelling Applied to Acoustic Propa-
gation

Keywords : infrasound - normal modes - polynomial chaos - propagation in random media.

Abstract : There exists many numerical me-
thods to simulate wave propagation through
complex media with a very good precision. Ho-
wever, taking into account the fluctuations of
the propagation medium necessitates a statis-
tical approach implying a prohibitive numeri-
cal cost. To have those studies affordable, we
propose the construction of a metamodel based
on a polynomial chaos decomposition of normal
modes. This approach presents the great advan-
tage to give statistics of signals propagating in
a random medium at an affordable numerical
cost.

Those results are illustrated with acoustic pro-
pagation in the atmosphere. In fact, meteoro-
logical fluctuations have a critical impact on
the propagation, it is therefore essential to take
them into account. The numerical cost of a si-
mulation over thousands of kilometers fully jus-
tifies the use of a metamodel. An application
to source localization is proposed to illustrate
the joint use of a metamodel and a bayesian in-
version. The bayesian framework allows a reso-
lution of the inverse problem in a probabilistic
context able to take into account the fluctua-
tions of the medium and uncertainties due to
unknown source localization.
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