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Abstract

The dynamic containment of an undesired network diffusion process, such as an
epidemic, requires a decision maker (DM) to be able to respond to its evolution by
taking the right control actions at the right moments. This task can be seen as
managing the allocation of a limited amount of resources to the graph nodes, with
the objective to reduce the effects of the process.

In this thesis we extend the Dynamic Resource Allocation (DRA) problem and pro-
pose a multi-round dynamic control framework, which we realize through two derived
models: the Restricted and the Sequential DRA (RDRA, SDRA). Contrary to the
standard full-information and full-access DRA considerations, the DM has limited
information and access (altogether in the RDRA, sequentially in the SDRA) to a
fraction of the nodes. The latter sequential aspect in the decision process offers a
completely new perspective to the dynamic diffusion process control, making this
work the first to cast the dynamic control problem as a series of specially designed
sequential selection processes.

In the Sequential Selection Problem (SSP), immediate and irrevocable decisions need
to be made by the DM as candidate items arrive randomly and get examined for one
of the limited selection slots available. However, standard SSP variants, such as the
very well-known secretary problem, begin with an empty selection set (cold-start) and
perform the selection process once over a single candidate set (single-round). These
two limitations are addressed in this thesis. First, we introduce the novel Warm-
starting SSP setting that considers having at hand a reference set, which is a set
of previously selected items, and tries to update optimally that set while examining
the sequence of arriving candidates. The Multi-round Sequential Selection Process,
the new online-within-online problem, is then introduced as a natural extension of
the warm-starting selection.

Both rank-based and score-based objective functions over the final selection are con-
sidered. A cutoff-based approach is proposed for the former, while the optimal
strategy based on dynamic thresholding is derived for the latter assuming that the
score distribution is known. These strategies are then put in comparison for their
efficiency in the traditional selection setting as well as in solving network control
problems that motivated this thesis. The generality of the introduced models allow
their application to a wide variety of fields and problems; for instance, reoccur-
ring recruiting processes, management of resources (e.g. beds, staff) in healthcare
units, as well as tackling difficult combinatorial problems under constrains, such as
the b-diversification problem found in data-stream processing applications (e.g. in
robotics or recommender systems).
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Chapter 1

Introduction (en français)

1 2

5 6

3

4

7

Figure 1.1: Représentation graphique (à gauche, c©Encyclopaedia Britannica, Inc.) et en
graphe (à droite) du problème du pont de Könisberg. Est-il possible de traverser les sept ponts

exactement une fois?

La première utilisation de graphe remonte à 1735, lorsque le mathématicien et
médecin suisse Leonhard Euler a résolu le problème du pont de Königsberg. Ce puz-
zle mathé-
matique, représenté sur la Fig. 1.1 met en scène sept ponts de chaque côté de deux
îles de la vieille ville de Königsberg, en Prusse. Il s’agit de savoir s’il est possible de
traverser la ville à pied de sorte que chaque pont soit traversé exactement une fois.
Euler a montré qu’un tel chemin n’existait pas, et a ainsi obtenu le premier résultat
de la théorie des graphes. En général, les graphiques s’avèrent plutôt utiles pour
la modélisation de problèmes mathématiques, et sont devenus un outil largement
utilisé et apprécié à cet égard au cours des dernières décennies. Pratiques pour
simplifier les systèmes complexes et leurs interactions, les graphes sont des hôtes
naturels aux processus de diffusion d’agent à agent, comme les épidémies [7] et la
diffusion d’informations [62]. Bien que le comportement de ces processus constitue
en soi un véritable domaine de recherche, un champ d’étude particulièrement in-
téressant concerne leur contrôle. Une décideuse (DM) est chargée de contrôler la
propagation d’un processus de diffusion donné, au mieux de ses capacités et de sa
puissance. Une poignée de solutions utiles et efficaces ont été apportées au fil des
ans qui, cependant, donnent un pouvoir optimiste et parfois irréaliste au DM.

La principale ambition de cette thèse est de contribuer à rendre ces outils plus
réalistes, et donc applicables à un plus large éventail de scénarios. Cela peut être
tenté en assouplissant les hypothèses de départ faites sur les décisions de contrôle
de la DM. Au cours de ce cheminement, nous avons rencontré des champs d’études
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Control of diffusion process on Graphs Sequential Selection Processes

…

…

Typical question: To which nodes should one assign the 
resources to get the fastest epidemic extinction ?

Evolving Process on Network

Budget of 
resources

Typical question: How to make a good candidate selection when 
sequential decisions have to be immediate and irrevocable ?

Sequential interviews of candidates for a job position

Figure 1.2: Schéma représentatif de l’idée clé de la thèse.

inexplorés dans des domaines de recherche très divers et inattendus, en particulier
dans la prise de décision et la sélection en ligne, ce qui a permis d’élargir notre
vision du problème initial. La Fig. 1.2 donne un premier aperçu de la connexion
fondamentale établie entre les deux principaux domaines de cette thèse. D’un côté,
il y a le problème du contrôle dynamique de processus de diffusion sur graphes
et de l’autre, celui de la sélection séquentielle. En essayant de rapprocher ces deux
mondes, nous avons découvert une lacune dans ce dernier, à savoir le manque d’outils
nécessaires à l’utilisation de techniques de Problème de Sélection Séquentielle (SSP)
dans le cadre du contrôle de diffusion. Nous avons essayé de combler ce manque
en introduisant des concepts innovants qui ont ensuite été utilisés dans notre étude
de cas principale. La sous-section suivante détaille l’exemple motivant avec une
brève description de chaque domaine, tandis que la dernière sous-section de cette
introduction résume les principales contributions de la thèse par chapitre.

Example de motivation

L’étude de cas originale qui nous intéresse met en scène une administratrice, ou
décideuse, qui gère un petit budget de ressources en les allouant à un sous-groupe
limité d’individus infectés dans le but de contrôler la propagation d’une épidémie non
désirée. De manière plus significative, imaginez une unité de soins de santé dédiée
au traitement des patients atteints d’une maladie contagieuse telle que la récente
COVID-19 qui a eu un effet pandémique. L’unité ne dispose que de quelques lits
disponibles pour couvrir les besoins des patients actuels et des personnes arrivant de
manière aléatoire. Il est facile de voir que, dans ce scénario, la DM (un membre du
personnel administratif, par exemple) décide quel(s) patient(s) doit/doivent recevoir
un lit en priorité au fur et à mesure de leur arrivée et de leur départ, c’est-à-dire
en temps réel. Il est évident que la DM ignore qui viendra plus tard et ne peut
raisonnablement pas retirer un lit à un patient qui vient de lui être attribué. En
général, l’aspect séquentiel de la stratégie de contrôle apparaît naturellement. C’est
une conséquence de la nature stochastique de la demande sous-jacente de ressources,
c’est-à-dire des arrivées séquentielles des individus demandant un traitement dans
l’exemple précédent. Nous voulons donc un modèle qui permette l’allocation de
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ressources en ligne, idéalement d’une manière qui interdise au DM d’avoir le pouvoir
irréaliste de connaître le système ou d’agir sur lui.

Contrôle d’épidémies

Faisons un bref détour du côté de la théorie des graphes. Ici, les interactions en-
tre agents sont généralement représentées par des arêtes (ou liens) qui relient des
sommets (ou nœuds); l’ensemble forme ce que nous appelons un graphe, c’est-à-dire
une structure mathématique qui modélise les relations par paires entre des entités
(objets, agents, etc.). Selon la nature des interactions entre les nœuds, par exemple
des contacts physiques, des amitiés virtuelles, un événement commun, etc., les arêtes
peuvent être dirigées (influence dans un seul sens) ou non dirigées (influence dans les
deux sens), pondérées (certaines interactions sont plus intenses que d’autres) ou non
pondérées (toutes les interactions sont d’importance égale). Les nœuds eux-mêmes
peuvent être dotés d’étiquettes qui font référence à leur appartenance à une classe.
Un grand nombre d’extensions de la structure de base du graphe ont été développées
et étudiées au fil du temps, c’est la raison pour laquelle elle constitue un outil si
puissant pour modéliser des interactions de différentes natures. Par exemple, les
agents peuvent très bien représenter des cellules du cerveau, des êtres humains, des
gares, etc.

Les graphes sont également des hôtes propices aux processus de diffusion, c’est-à-
dire aux phénomènes qui se propagent d’un nœud à un ou plusieurs de ses voisins.
Là encore, la nature du processus de diffusion dicte ses caractéristiques; disons par
exemple que nous voulons modéliser la propagation d’une rumeur, puisque l’agent
n’est pas censé oublier l’information une fois qu’il l’a apprise (c’est-à-dire « désap-
prendre »), le processus de diffusion se décompose en trois états. Le premier lorsqu’il
ignore la rumeur, le deuxième lorsqu’il l’apprend et peut la divulguer à ses voisins,
et le troisième lorsqu’il la connaît mais la garde pour lui et ne participe donc pas
à sa diffusion. Le modèle choisi pour ce scénario est similaire à celui utilisé pour
modéliser la propagation d’une maladie infectieuse contre laquelle un individu in-
fecté est définitivement immunisé une fois guéri, la rougeole par exemple. Il faut
noter que d’autres maladies infectieuses, comme par exemple un rhume, peuvent ne
nécessiter que deux états d’infection, car il n’y a pas de guérison perpétuelle. Ainsi,
un nœud infecté peut passer de l’état infecté à l’état sain (avec des taux prédéfinis),
et vice-versa.

Différentes actions et objectifs de contrôle peuvent être envisagés pour un proces-
sus de diffusion: maximiser la propagation, minimiser la propagation, trouver les
« noeuds d’amorçage » avec lesquels commencer la diffusion, c’est-à-dire ceux qui,
une fois infectés, permettent la diffusion la plus rapide, la plus large, ou inversement
la plus lente ou la plus facile à contenir, etc.

Pour revenir à notre cas, le problème peut être énoncé en termes de réseau et de
processus de diffusion comme suit: une DM, ou administratrice, est chargé d’allouer
séquentiellement un nombre limité de ressources aux nœuds d’un réseau afin de ré-
duire et/ou de contenir une propagation épidémique, sachant que ceux qui reçoivent
les ressources bénéficient d’une probabilité de guérison accrue.

Récemment, la crise COVID-19 a mis en évidence certains problèmes de gestion
quant à la manière de faire face à un tel processus de diffusion à l’échelle mondiale.
En l’absence de vaccins, la solution la plus simple pour contrôler la propagation, qui



4

a en fait été adoptée par la majorité des pays touchés, a été d’imposer une réduction
drastique des contacts au sein de la population avec un confinement obligatoire
au niveau national. Il apparaît rapidement que la capacité en lits de réanimation
de la plupart des pays serait largement dépassée si aucune mesure de confinement
n’était prise. Dans un projet commun COVID-19 (Appendix A), nous proposons
de diviser d’abord la population en deux catégories: les personnes qui auraient
besoin d’un lit de réanimation en cas d’infection (moins d’1% de la population), et
les autres, avant de quantifier l’impact de la qualité d’un tel classificateur sur les
stratégies de sortie. Dans la même veine, nous avons étudié, dans un autre projet
COVID- 19, la propagation de la maladie dans un hôpital disposant d’une unité
dédiée COVID-19, et plus précisément comment la diffusion peut être contrôlée et
contenue afin de minimiser le nombre d’unités, et donc d’individus, qui seraient
touchés par la maladie. En effet, tout le personnel médical (médecins, infirmières,
personnel administratif, etc.) qui a la possibilité de quitter l’hôpital, est un vecteur
potentiel de virus pour le reste de la population.

Sélection séquentielle

Comme indiqué précédemment, la plupart des modèles d’allocation des ressources
sur les graphe reposent sur le fait que la DM a un accès total aux nœuds du grpahe,
à tout moment. Cependant, dans la réalité, il est parfois assez difficile (voire im-
possible) d’y parvenir. Malgré leur efficacité à cibler les nœuds pertinents auxquels
assigner les ressources, ces modèles ne sont guère applicables à des cas réels, comme
expliqué précédemment avec l’exemple de l’unité de soins de santé. Cette restriction
nous a incité à chercher un moyen efficace de rendre ces modèles plus proches de sit-
uations réelles. Inspirés par un problème bien connu dans la communauté des SSPs,
présenté comme le Problème de la Secrétaire en 1961 par Lindley [79], nous avons
décidé de remédier au manque de réalisme des modèles de contrôle d’épidémies en
concevant un modèle qui intègre un processus de décision séquentiel, permettant
ainsi des actions de contrôle dynamiques.

Dans le problème initial des secrétaires, un nombre fixe et connu de candidats (ou
secrétaires, à l’époque) sont interrogés les uns après les autres par une DM qui décide,
immédiatement après l’entretien, soit d’engager le candidat, soit de le rejeter et de
poursuivre les entretiens. Le processus s’achève lorsque le candidat est embauché.
De nombreuses variantes de ce problème standard ont été développées au fil des ans
[52], notamment une qui traite de plusieurs postes au lieu d’un seul, et une autre
dont l’objectif est de minimiser la somme des rangs des candidats sélectionnés plutôt
que d’essayer de maximiser la probabilité d’engager les meilleurs, comme c’était le
cas dans la version originale. Notre idée initiale était de rechercher dans la littérature
des SSPs le cadre le plus adapté au problème d’allocation de ressources décrit plus
haut.

Nos recherches ont révélé deux différences notoires entre la configuration susmen-
tionnée et celles pré-existantes. Premièrement, dans notre cas, l’allocation des
ressources doit être dynamique, ce qui signifie qu’elle doit s’adapter aux change-
ments de l’état infectieux des nœuds pour être aussi efficace que possible, alors que
les SSPs classiques considèrent une seule séquence de candidats. Deuxièmement,
lorsque l’allocation des ressources est remise en question, la DM peut avoir besoin
de réaffecter les ressources qui sont déjà affectées à des nœuds à ce moment-là. En
d’autres termes, la sélection initiale n’est pas vide, contrairement aux processus de
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Figure 1.3: Concept clé d’un processus de sélection séquentielle à plusieurs tours (MSSP).
Le résultat de chaque tour de sélection fournit la présélection d’entrée du tour suivant. Plus de

détails dans Sec. 3.4.

sélection existants. Compte tenu de ces deux observations, nous avons décidé de for-
maliser un processus de sélection séquentielle qui tient compte des limites précédem-
ment mentionnées et qui, par conséquent, s’applique naturellement à notre problème
d’allocation dynamique de ressources contre la propagation d’une épidémie. Ce for-
malisme est présenté en détail au Chapitre 3.

Contribution par chapitre

Chapitre 2

L’état de l’art est organisé en trois sections. Les deux premières sections servent de
revue de littérature approfondie pour les deux principaux domaines de cette thèse, à
savoir les problèmes de sélection séquentielle et le contrôle d’épidémies. La dernière
section commence par une liste non exhaustive des applications les plus courantes
des SSPs, classées selon leur nature et les hypothèses qu’elles prennent en compte.
Elle se poursuit par des descriptions détaillées de quelques algorithmes pertinents
pour le SSP, classés par ordre chronologique.

Chapitre 3

L’objectif de ce chapitre est de planter le décor pour le reste du manuscrit. Il sert
donc de toile de fond pour les chapitres qui suivent, et contient des explications dé-
taillées du cadre construit au cours de ce doctorat. Les deux principales nouveautés
en termes d’environnement de travail, c’est-à-dire le formalisme de démarrage à
chaud et le formalisme de sélection séquentielle à tours multiples, y sont expliquées
en détail. Un exemple de schéma de ces deux concepts clés est donné par la Fig. 1.6.

Le Chapitre 3 commence par une tentative d’unification des problèmes de sélection
séquentielle avec une définition explicite, volontairement maintenue suffisamment
large pour couvrir un large éventail de situations sans perdre en pertinence. Après la
définition générique, l’étape suivante fut de se concentrer sur un cadre plus spécifique
dans lequel la nécessité de commencer avec un ensemble de sélection vide est retirée.
Elle partage également quelques hypothèses avec le cadre standard du problème des
secrétaires, à savoir:

– il est purement basé sur le classement, c’est-à-dire sur des comparaisons d’éléments
par paires et non sur des informations cardinales,
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– les candidats à la sélection arrivent dans un ordre arbitraire et aléatoire,

– les décisions sont immédiates et irrévocables, et

– chaque poste doit être pourvu à la fin du processus.

La nouveauté de ce cadre nous a permis de fournir une première analyse réfléchie
du mécanisme décrit, sous réserve d’hypothèses précises, justifiées en détail dans la
section associée.

Le processus de sélection séquentielle à tours multiples (MSSP), est alors proposé
comme une extension naturelle de la sélection de départ à chaud. Il consiste à
répéter une seule sélection séquentielle, chaque fois avec des éléments différents à
sélectionner, et son objectif global est de maintenir une bonne sélection dans le
temps. Cette tâche est particulièrement difficile lorsque la valeur de chaque élément
change d’un tour à l’autre d’une manière qui échappe au DM, et/ou lorsque, comme
cela est décrit en détail avec quelques exemples dans ce chapitre, un nombre im-
portant d’éléments précédemment sélectionnés n’est plus disponible, ce qui ajoute
apparemment une complication pour la DM qui doit les remplacer avant la fin de la
séquence actuelle (tour).

Chapitre 4

Inspiré du problème standard de la secrétaire (SP), nous donnons dans le deux-
ième chapitre une première proposition algorithmique pour résoudre le problème de
sélection séquentielle avec démarrage à chaud (WSSP), appelé Cutoff-based Cost
Minimization (CCM). Comme dans [39], l’algorithme sépare la séquence entière en
deux sous-séquences, la première est une phase d’apprentissage à partir de laque-
lle la DM recueille des informations précieuses sur l’ensemble de l’échantillon, bien
qu’elle ne puisse faire aucune sélection avant le début de la deuxième phase. CCM
est une version « démarrage à chaud » de l’algorithme standard du SP, qui utilise
le temps d’apprentissage optimal (c’est-à-dire la valeur de coupure optimale) en
fonction des principaux paramètres du problème. En effet, ayant à disposition un
ensemble de référence d’une taille donnée et en supposant un algorithme basé sur la
valeur de coupure, il n’est pas si aisé de déterminer si le temps d’apprentissage doit
être plus long ou plus court. Supposons que la DM sache que ce dernier ensemble
est « relativement bon », devrait-elle explorer davantage parce que le risque d’un
mauvais résultat est faible? Ou, au contraire, devrait-elle explorer moins puisque
l’ensemble fournit déjà une bonne « référence » au-dessus de laquelle des éléments
pourraient être sélectionnés? La Sec. 4.2.2 fournit des réponses à la fois empiriques
et analytiques à cette question, sous réserve d’hypothèses nécessaires.

Ce chapitre commence par une discussion sur l’algorithme que nous avons choisi,
avant d’entrer dans les détails techniques de l’algorithme. À notre connaissance,
à l’exception de l’algorithme standard SP, ou après avoir considéré des hypothèses
spécifiques qui ne correspondent pas à notre configuration, aucun algorithme basé
sur la coupure ne fournit de solution analytique pour la taille optimale de la phase
d’apprentissage, et cela est dû à la complexité combinatoire du problème. Quelques
papiers offrent une réponse empiriquement optimisée pour leur algorithme respectif,
mais dans ce chapitre, nous fournissons une approximation des paramètres du prob-
lème. Plus précisément, nous approximons l’espérance des principaux paramètres du
processus lors de l’utilisation de CCM, c’est-à-dire le seuil d’acceptation pour chaque
élément, le nombre de sélections et la fonction de regret qui y est définie. Nous en
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déduisons la valeur de coupure optimale compte tenu des principaux paramètres du
problème, en commençant par le cas où la qualité de l’ensemble de sélection ini-
tiale est moyenne; nous proposons ensuite une méthode de traduction qui permet
de déterminer la valeur de coupure optimale pour chaque valeur de cette qualité et
met en évidence certains résultats intéressants. En outre, nous calculons le rapport
concurrentiel de l’algorithme CCM et montrons qu’il se compare favorablement aux
algorithmes existants, en particulier lorsque l’aspect de démarrage à chaud est plus
important.

Une autre caractéristique intéressante du cadre proposé est que la DM est obligé de
remplir tous les créneaux vides (ressources non affectées) avant la fin de la séquence,
au lieu de devoir sélectionner au maximum un nombre donné d’éléments, ce qui
est généralement le cas. Cela soulève une certaine interrogation sur la meilleure
façon d’équilibrer la qualité des éléments sélectionnés et en même temps d’éviter
d’accepter par défaut le(s) dernier(s) élément(s) de la séquence, quelle que soit leur
qualité. À cette fin, nous proposons la variation lf-CCM (low failures-CCM) qui
permet d’éviter ce phénomène en comparant la sélection de l’algorithme étape par
étape à l’espérance à ce stade et de s’adapter en conséquence.

Enfin, le cadre du processus de sélection séquentielle à tours multiples introduit au
Chapitre 3 (voir Sec. 3.4) est utilisé pour comparer les performances de différents
algorithmes par le biais de simulations. Nous y montrons que le choix d’une valeur
de coupure est très important dans ce cadre et doit donc être soigneusement ajusté.

Chapitre 5

Le Chapitre 5 propose un autre cadre pour le WSSP, dans lequel la DM peut observer
les scores des éléments. Ces nouvelles informations modifient fondamentalement la
stratégie optimale de sélection en ligne, qui doit maintenant être adaptée aux ob-
servations réelles faites. Afin de construire une stratégie de sélection optimale, une
autre hypothèse est nécessaire, à savoir permettre à la DM d’apprendre la distribu-
tion des scores, ou même de la connaître à l’avance. Dans cette optique, la stratégie
séquentielle optimale utilise le principe d’induction à rebours et la programmation
dynamique pour générer un tableau des seuils d’acceptation optimaux, un pour
chaque étape du processus.

La nouveauté ici est l’incorporation de l’aspect de démarrage à chaud dans la solution
analytique présentée dans le chapitre. Nous avons également assoupli l’hypothèse
selon laquelle la DM doit connaître la distribution en proposant la même méth-
ode pour un contexte dans lequel l’information est partielle ou absente; une option
particulièrement utile lorsque la distribution des scores évolue dans le temps, par
exemple. Les performances des algorithmes sont, comme d’habitude, discutées par
le biais de simulations multi-tours.

Chapitre 6

Le Chapitre 6 se concentre sur l’exemple de motivation discuté dans la section
précédente, c’est-à-dire l’allocation séquentielle de ressources qui cherche à con-
tenir un processus de diffusion tel qu’une épidémie. Ensuite, la discussion aborde
les spécificités de cette première application avec des explications techniques sur
l’environnement de travail: sur le graphe accueillant le processus de diffusion, le
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type d’états infectieux considérés, et les actions et limites des stratégies de contrôle
existantes. Dans une tentative de résolution analytique du problème, nous avons
obtenu des équations qui régissent le processus stochastique à un niveau de contrôle
grossier et nous avons réalisé que, même dans cette simple étude de cas, nous devons
recourir à des approximations pour trouver une réponse sous forme finie.

La Sec. 6.3 est au cœur de cette thèse, elle présente l’idée conceptuelle et motivante à
partir de laquelle le reste du manuscrit découle, dûment formalisée dans les chapitres
précédents. En effet, l’hypothèse forte qui a été mise en place au cours de la dernière
décennie, et par laquelle l’administratrice, qui alloue les ressources, a un accès total
à la population, s’assouplit avec l’introduction de deux nouveaux modèles, rendant
le problème plus réaliste et donc plus applicable à des cas réels (par exemple dans
une unité de soins).

La section suivante se concentre sur la concrétisation du lien avec le SSP et met en
œuvre l’algorithme proposé au Chapitre 4, ainsi que d’autres algorithmes adaptés au
démarrage à chaud tirés de la littérature. Ensuite, la Sec. 6.5 étudie l’impact de la
performance de toute stratégie de sélection séquentielle sur l’espérance du nombre
d’individus infectés, au moyen d’une régression linéaire. Pour conclure, l’analyse
de sensibilité menée sur différents types de graphes, de stratégies de contrôle et
d’allocation, montre la robustesse de l’algorithme CCM proposé et la pertinence de
ce nouveau modèle.

Chapitre 7

Ce dernier chapitre se concentre sur les deux défauts de l’application précédente,
premièrement dû au fait qu’elle ne considère qu’une fonction objective additive,
c’est-à-dire que la valeur de chaque élément est indépendante des autres éléments;
et deuxièmement, qu’elle fonctionne sur des données purement générées pour les
arrivées séquentielles.

Dans le Chapitre 7, l’accent est mis sur un exemple spécifique, le problème de la
b-diversification, où le critère d’évaluation est non-additif, car la valeur de chaque
élément dépend de ceux qui ont été sélectionnés auparavant. Cela soulève naturelle-
ment des interrogations algorithmiques, d’autant plus que les articles arrivent de
manière séquentielle et ne peuvent être rappelés, ce qui exige une plus grande antici-
pation de la part de la DM. Plus précisément, dans le problème de la b-diversification,
la sélection finale doit être aussi « diversifiée » que possible, c’est-à-dire que les élé-
ments inclus doivent être éloignés les uns des autres, la notion de distance étant
donnée par exemple par une distance euclidienne. Afin de remédier à la deuxième
limitation, nous utilisons des données de environnementales réelles à grande dimen-
sion et comparons les performances de quelques algorithmes de l’état de l’art, décrits
en détail au Chapter 2, en situations réelles.
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Figure 1.4: Graphical (left, c©Encyclopaedia Britannica, Inc.) and network (right) represen-
tations of the Könisberg bridge problem. Is it possible to cross all bridges exactly once?

The first use of graphs can be traced back to 1735, when the Swiss mathematician
and physician Leonhard Euler solved the Königsberg bridge problem. This mathe-
matical puzzle, depicted in Fig. 1.4, stages seven bridges on either sides of two islands
of the old city of Königsberg, Prussia. The interrogation emerged of whether it was
possible to walk through the town so that each bridge would be crossed exactly once.
Euler showed that no such path existed, and by that he proved the first theorem
in graph theory. In general, graphs turn out to be rather useful for mathematical
problem modeling, and have grown to be a largely used and appreciated tool for
that matter in the past decades. Helpful for simplifying complex systems and their
interactions, graphs are natural hosts for agent-to-agent diffusion processes, such as
epidemics [7] and information spread [62]. Although the behavior of those processes
constitutes a proper research area by itself, a particularly interesting field of study
concerns their control. A decision maker (DM) is in charge of controlling the prop-
agation of a given diffusion process, to the best of her ability and power. A handful
of useful and efficient solutions have been brought over the years that, however, give
an optimistic and sometimes unrealistic power to the DM.

The main ambition of this thesis is to contribute towards making those tools more
realistic, and therefore applicable to a wider range of scenarios. This can be at-
tempted by relaxing the considered assumptions on the DM’s control decisions. On
this journey we encountered unexplored fields of study in quite diverse and unex-
pected areas of research, in particular in decision making and online selection, which
in turn extended our vision over the original problem. A first glimpse at the promi-
nent connection established between the two main fields of this PhD is displayed in
Fig. 1.5. On one side there is the problem of dynamic control of diffusion processes
in graphs and on the other that of sequential selection. By trying to bridge those
two worlds, we discovered a shortcoming in the latter, namely a lack of available
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Control of diffusion process on Graphs Sequential Selection Processes

…

…

Typical question: To which nodes should one assign the 
resources to get the fastest epidemic extinction ?

Evolving Process on Network

Budget of 
resources

Typical question: How to make a good candidate selection when 
sequential decisions have to be immediate and irrevocable ?

Sequential interviews of candidates for a job position

Figure 1.5: Representative scheme of the thesis key idea.

tools that are required for using Sequential Selection Problem (SSP) in the diffusion
control setting, which we addressed with the introduction of innovative concepts
that were then used in our main case study. The next subsection details the mo-
tivating example with a brief description of each field, while the last subsection of
this introduction summarizes the main contributions per chapter of the thesis.

Motivating example

The original case study we are interested in features an administrator, or decision
maker, who manages a small budget of resources by allocating them to a limited sub-
group of infected individuals aiming to control the spread of an undesired epidemic.
In a more meaningful way, picture a healthcare unit dedicated to treat patients of
a spreading disease such as the recent COVID-19 that caused a pandemic effect.
The unit only has a few available beds to cover the needs of both current patients
and randomly incoming individuals. It is easy to see that, in this scenario, the DM
(a member of the administrative staff, for instance) decides which patient(s) should
receive a bed in priority as they come and go, i.e. in an online fashion. Obviously
the DM ignores who will come later on and cannot reasonably withdraw a bed from
a patient who was just assigned to it. Generally, the sequential aspect of the con-
trol strategy appears naturally. It is a consequence of the stochastic nature of the
underlying demand for resource, i.e. the sequential arrivals of individuals asking for
a treatment in the previous example. We therefore want a model that allows for on-
line resource allocation, ideally in a way that forbids the DM from having unrealistic
power to know the system or act on it.

Epidemic control

Let us make a brief detour through graph theory. There, interactions between agents
are commonly represented by edges (or links) that connect vertices (or nodes); the
whole forms what we call a graph, i.e. a mathematical structure that models pairwise
relations between entities (objects, agents, etc.). According to the nature of the node
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interactions, for instance physical contacts, virtual friendships, a common event, etc.,
edges can be directed (influence only in one way) or undirected (influence in both
ways), weighted (some interactions are more intense than others) or unweighted (all
interactions are of equal importance). The nodes themselves can be equipped with
labels that refer to their membership to a class.

A large number of extensions of the basic network structure have been developed
and studied over time, which is why it constitutes such a powerful tool to model
interactions of various different natures. For instance, agents can very well represent
brain cells, humain beings, railway stations, etc.

Graphs are also conducive hosts for a diffusion process, i.e. a phenomenon that
propagates from a node to one or many of its neighbors. Here again, the diffusion
process’ nature dictates its characteristics; say for instance that we want to model
the propagation of a rumor, since the agent is not supposed to forget the information
once learned (i.e. to ‘unlearn’), the diffusion process breaks down into three states.
The first is when he is unaware of the rumor, the second st arts when he learns
the rumor and may disclose it to its neighbors, and the third is when he knows the
rumor but keeps it to himself and therefore does not participate in its diffusion.
The chosen model for this scenario is similar to the one used to model the spread
of an infectious disease from which an infected individual gets permanently immune
once cured, e.g. measles. Observe that other infectious diseases, as for example a
cold, might only need two infection states, as there is no perpetual cure. Thus, an
infected node may go from the infected state to the healthy state (with pre-defined
rates), and vice-versa.

Different control actions and objectives can be considered on a diffusion process:
to maximize the spread, minimize the spread, find the ‘seed nodes’ to start the
diffusion with, i.e. those that, once infected, permit the fastest diffusion, the widest,
or reversely the slowest or easiest to contain, etc.

Going back to our case, the problem can be enunciated in terms of network and
diffusion process as follow: a DM, or administrator, is in charge of sequentially
allocating a limited number of resources to the nodes of a network in order to reduce
and/or contain an epidemic spread, knowing that those who receive the resources
enjoy an increased healing probability.

Recently, the COVID-19 crisis demonstrated some management issues on how to
handle such a world-wide diffusion process. In the absence of vaccines, the easiest
solution to control the spread that was in fact taken by the majority of the affected
countries, was to enforce a drastic reduction of contacts among the population with
a mandatory country-wise lock-down. It quickly appears that most countries’ ICU
bed capacity would be largely exceeded if no measure for containment was taken. In
a shared COVID-19 project (Appendix A) we propose to first divide the population
in two categories: the individuals that would require an ICU bed upon infection (less
than 1% of the population), and the others, before quantifying the impact of the
quality of such a classifier on the exit strategies. In the same vein, we investigated,
in another COVID-19 project, the propagation of the disease in a hospital with a
COVID-19 dedicated ward, and more precisely how the diffusion can be controlled
and contained so as to minimize the number of wards, and hence of individuals,
that would be affected by the disease. Indeed, all medical staff (doctors, nurses,
administratives, etc.) who can leave the hospital, are potential virus vectors for the
rest of the population.
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Sequential selection

As mentioned before, most of the resource allocation models on graphs rely on
the fact that the DM has total access to the graph nodes, at any point in time.
However, in reality, this is sometimes rather difficult (even impossible). Despite their
efficiency to target the relevant nodes to which the resources should be allocated,
those models are therefore hardly implementable to real cases, as explained before
with the example of the healthcare unit. This limitation encouraged us to look for
an efficient way to make those models closer to real-life situations. Inspired by a
well-known problem in the SSP community, introduced as the Secretary Problem in
1961 by Lindley [79], we decided to address the lack of realism of epidemic control
models by designing a model combining a sequential decision process, and by that
create the possibility for dynamic control actions.

In the original Secretary Problem, a fixed and known number of candidates (or sec-
retaries, at that time) are interviewed one after the other by a DM who decides,
immediately after the interview, either to hire the candidate or to reject him and
pursue the interviews. The process ends when a candidate gets hired. Numerous
variants of this standard problem have been developed over the years [52], in par-
ticular one that deals with multiple job positions instead of one, and another one in
which the objective is to minimize the sum of the selected candidates ranks rather
than trying to maximize the probability of hiring the best, as it was the case in the
original version. Our initial idea was to look in the SSP literature for a setting most
adapted to the resource allocation problem depicted earlier.

Our research revealed two notorious differences between the aforementioned config-
urations and the already existing settings. First, in our case the resource allocation
must be dynamic, meaning that it should adapt to the changes in the infection
state of the nodes to be as efficient as possible, while usual SSPs consider a single
sequence of candidates. Second, when the resource allocation is questioned, the DM
might need to reallocate even the resources that are already assigned to nodes by
that time. In other words, the initial selection is not empty, contrary to existing
selection processes. Bearing those two observations in mind, we decided to for-
malize a sequential selection process that addresses the aforementioned limitations
and, consequently, applies naturally to our dynamic resource allocation problem, for
cases such as controlling an epidemic spread. This formalism is presented in detail
in Chapter 3.

Contribution per chapter

Chapter 2

The related work is organized in three sections. The two first sections serve as an
extensive literature review for the two main fields of this thesis, i.e. Sequential Selec-
tion Problems and Epidemic control. The last section starts with a non-exhaustive
list of the most common SSP applications, sorted by their nature and the assump-
tions they consider. It carries on with detailed descriptions of a few relevant SSP
algorithms, listed chronologically.
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Figure 1.6: Key concept of a Multi-round Sequential Selection Process (MSSP). The output
of each selection round provides the input preselection of the subsequent round. More details in

Sec. 3.4.

Chapter 3

The objective of this chapter is to set the scene for the rest of the manuscript.
Therefore it serves as a background for the chapters that follow, and contains de-
tailed explanations of the framework built during this PhD. The main two novelties
in terms of work environment, i.e. the warm-start and the multi-round sequential
selection formalisms, are thoroughly explained there. An example scheme of those
two key concepts is given in Fig. 1.6.

Chapter 3 starts with an attempt to unify Sequential Selection Problems (SSPs)
with an explicit definition, voluntarily kept broad enough to cover a large range of
settings without losing in relevance. Following the generic definition, the next step
undertaken focused on a more specific setting where the necessity of the process to
start with an empty selection set is withdrawn. It also shares a few assumptions
with the standard Secretary Problem setting, namely:

– it is purely rank-based, i.e. based on pairwise item comparisons and not on cardinal
information,

– candidates for selection arrive in arbitrary random order,

– decisions are immediate and irrevocable, and

– every job position should be filled at the end of the process.

The novelty of this setting empowered us to provide a thought-through initial anal-
ysis of the described mechanism, subject to precise hypotheses, justified in details
in the associated section.

The Multi-round Sequential Selection Process (MSSP), i.e. the new online-within-
online problem, is then proposed as a natural extension of the warm-starting selec-
tion. It iterates a single sequential selection, each time with different items to select
from, and its overall goal is to keep a good selection set through time. This task is
particularly difficult when the value of each item changes from a round to another
in a way that is unknown to the DM, and/or when, as is described in detail with
a few examples in this chapter, a significant number of previously selected items is
no longer available, which apparently adds a complication for the DM who must
replace them before the end of the current sequence (round).
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Chapter 4

Inspired by the standard Secretary Problem (SP), in the second chapter we give a
first algorithmic proposition for solving the Warm-start Sequential Selection Prob-
lem (WSSP), called Cutoff-based Cost Minimization (CCM). Similar to [39], it
separates the entire sequence into two subsequences, the first is a learning phase
from which the DM collects some valuable information about the whole sample,
though unable to make any selection before the second phase begins. CCM is a
warm-starting version of the standard SP algorithm, which uses the optimal learn-
ing time (i.e. the optimal cutoff value) according to the main parameters of the
problem. In fact, having a reference set of a given size and assuming a cutoff-based
algorithm, one may find it unclear whether the learning time should be longer or
shorter. Say the DM knows that the latter set is ‘relatively good’, should she ex-
plore more because the risk of a bad outcome is low? Or, on the contrary, should
she explore less since the set already provides a good ‘reference’ above which items
could be selected? Sec. 4.2.2 provides both empirical and analytical answers to this
question, under necessary assumptions.

This chapter starts with an argumentation on our chosen algorithm, before going into
further algorithmic technical details. To the best of our knowledge, except for the
standard SP algorithm, or after considering specific assumptions that do not match
our configuration, no cutoff-based algorithm provides an analytical solution for the
optimal size of the learning phase, and this is due to the combinatorial complexity of
the problem. A few papers offer an empirically optimized answer for their respective
algorithm, but in this chapter we provide an approximation of the parameters of the
problem. More precisely, we approximate the expectation of the main parameters
of the process when using CCM, i.e. the acceptance threshold for each item, the
number of selections, and the regret function defined therein. From the latter, we
infer the optimal cutoff given the main parameters of the problem, starting with the
case where the quality of the initial selection set is average; thereafter we propose
a /translation method that permits to derive the optimal cutoff for every value of
this quality and highlights some interesting results. In addition, we compute the
CCM algorithm’s competitive ratio and show that it compares favorably to existing
algorithms, especially when the warm-starting aspect is more important.

Another interesting characteristic of the proposed setting is that the DM is forced
to fill all empty slots (unassigned resources) before the end of the sequence, contrary
to having to select at most a given number of items, which is usually the case. This
raises some interrogation on how to best balance competitive selected items and at
the same time avoid accepting by default the last item(s) of the sequence regardless
their quality. To this end, we propose the low failures-CCM (lf-CCM) variation that
prevents this phenomenon from occurring by comparing the algorithm step-wise
selection to the expectation at that stage and adapt accordingly.

Finally, the Multi-round Sequential Selection Process setting introduced in Chap-
ter 3 (see Sec. 3.4) is used for performance comparison through simulations. There,
we show that the choice of a cutoff value matters a lot in a multi-round setting, and
should thereby be carefully tuned.
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Chapter 5

Chapter 5 proposes an alternative WSSP setting, in which the DM can observe
the items’ scores. This new information fundamentally changes the optimal online
selection strategy, that should now be adapted to the actual real-valued observations
made. In order to construct an optimal selection strategy, another assumption is
necessary, namely to allow the DM to learn the score distribution, or even to know it
beforehand. This in mind, the optimal sequential strategy uses backward induction
and dynamic programming to generate a table of optimal acceptance thresholds,
one for each step of the process.

The novelty here is the incorporation of the warm-starting aspect in the analytical
solution presented in the chapter. We also relaxed the assumption which requires the
DM to know the distribution by proposing the same method for both a partial and
a no-information settings; a particularly useful option when the score distribution
is changing through time, for instance. The algorithms performances are, as usual,
discussed through multi-round simulations.

Chapter 6

Chapter 6 concentrates on the motivating example discussed in the previous section,
i.e. the sequential allocation of resources that aims at containing a diffusion process
such as an epidemic. Then, the discussion addresses the specifics of this first appli-
cation with technical explanations on the work environment: on the graph hosting
the diffusion process, the type of infection states considered, and the actions and
limitations of existing control strategies. In an attempt to solve the problem ana-
lytically, we derived equations that rule the stochastic process at a coarse-grained
level of control and realized that, even in this simple case study, we must resort to
approximations to find a closed-form answer.

Sec. 6.3 is at the heart of this thesis, it presents the conceptual and motivating
idea from which the rest of the manuscript arrows from, properly formalized by the
previous chapters. Indeed, the strong assumption that has been in place in the last
decade, and by which the administrator, who allocates resources, has total access to
the population gets relaxed with the introduction of two new models, rendering the
problem more realistic and thus more applicable to real cases (e.g. in a healthcare
unit).

The next section concentrates on making the link with SSP more concrete, and
implements the algorithm proposed in Chapter 4, along with other warm-start-
adapted algorithms from the literature. Then, Sec. 6.5 studies the impact of the
performance of any sequential selection strategy on the expected number of infected
individuals, by means of linear regression. To conclude, the conducted sensitivity
analysis on various types of graphs, control and allocation strategies, shows the
robustness of the proposed CCM algorithm and relevancy of this new model.

Chapter 7

This last chapter focuses on the two shortcomings of the previous application, firstly
with the fact that it solely considers a modular objective function, meaning where
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each item value is independent from the other items; and secondly, that it works on
purely generated data for the sequential arrivals.

In Chapter 7 an emphasis is given on a specific example, the b-diversification prob-
lem, where the evaluation criterion is non-modular, as every item’s value depends on
those selected before. This naturally raises algorithmic interrogations, especially as
items arrive sequentially and cannot be called back, requiring more anticipation from
the DM. More specifically, in the diversification problem, the final selection should
be as ‘diverse’ as possible, i.e. the included items need to be far away from each
other, where the notion of distance is given by, for instance, an euclidian distance.
In order to address the second limitation, we play with real high-dimensional envi-
ronmental data and compare the performance of some state-of-the-art algorithms,
thoroughly described in Chapter 2, in real-life situations.
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Chapter 2

Related work

2.1 Sequential Selection Problem

Various extensions of the basic Secretary Problem have been investigated; for non-
exhaustive surveys see [9, 52, 47]. While in the orignal setting decisions are imme-
diate and irrevocable, a few papers study the possibility for recall [90, 27], where
past solicitations are allowed, yet successful or unsuccessful. Importantly, a change
in the setting or in the objective function, changes also the optimal cutoff. As
mentioned before, in the ordinal model, the DM has information solely on to the
total order of the items seen so far. In addition to its robustness, this model allows
for elegant algorithmic solutions, see for instance [39, 67, 8, 5]. In some scenarios,
the DM can not only compute the relative rank of an interviewed candidate among
those examined earlier, but also assess candidate’s true quality score. This value,
sometimes referred as score, can be thought of as a random variable associated with
each candidate. In [13], candidates are drawn from a uniform distribution on [0,1]
but the DM can only rank candidates relatively to those she has seen before, i.e.
scores are unobserved, and the objective is to maximize the expectation of the score
of the selected candidate. They have shown that in this case, the optimal cutoff
becomes c∗=

√
n− 1 where the square-root stands for either the ceil or the floor.

On the other end, Robbin’s problem [23] seeks to minimize the expectation of the
rank of the selected candidate (note: low ranks are better). As of yet, no optimal
solution has been found for this particular problem, except for extreme cases where
the number of candidates is less or equal to n= 4 [31]. In the Gusein-Zade problem
[56, 50, 91], the DM’s objective is to select one of the r-best out of the sequence,
instead of selecting only the best as in the original version.

Notable variants are those related to multiple stopping, or simply b-choice, where the
DM has to select b candidates [67, 12, 76, 8, 21, 87]. In that case, the objective set
function can be modular (i.e. equivalent to adding up the independent application
of the function to the elements of the set), submodular [12, 44], or subject to ma-
troid constraints [45]. Non-modularity introduces interesting set evaluation aspects,
such as the complementarity or mutual-enhancement among the selected candidates.
Moreover, [2] maps the secretary problem to a high-dimension online linear program-
ming problem and proposes a near-optimal algorithm to solve it. Regarding modular
objective functions, [8] studies the b-choice problem with the objective to maximize
the sum of the scores of the selected candidates, when candidates arrive in a random
order, without assuming prior knowledge of the score distribution. An interesting
finding is that, when n tends to infinity, the optimal cutoff for this setting remains
c∗= bn/ec.
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In addition to the above, some selection strategies proposed are not cutoff-based.
An experimental comparison of simple and intuitive heuristics is provided in [98].
Furthermore, the Bruss’ odds theorem [22] introduces an algorithm where a candi-
date is said to be interesting when he is the best seen so far. In order to stop the
process and select a currently interviewed interesting candidate, the DM needs to
estimate the probability that he is the last interesting candidate, i.e. none better
will appear later. The strategy adapts accordingly during the selection process.

Besides, a few papers study the human capacity to learn the right cutoff after re-
viewing multiple independent candidate sets [54, 14], while in [101] two distinct aims
are considered: to maximize the probability of selecting the best, or to maximize
the expected score of the selected candidate. The selection process is repeated and
the DM tries to learn the candidates’ score distribution, while outputting an inde-
pendent selection after each round. That work concludes by stating that learning
the score distribution does contribute to the efficiency of the selection only w.r.t.
the second aim when considering an underlying uniform score distribution. In [87] a
table is precomputed containing the expected ‘reward’ for different number of steps
and different number of jobs. During the whole selection process, the DM refers to
that table to take decisions.

A rather different scenario concerns a startup company (or a new ambitious business
unit) which is initially funded by a handful of people but is about to grow larger.
The so-called hiring problem [21] refers to the SSP that aims at driving the optimal
growth of personnel using an adaptive selection threshold based on the already
employed items. Among heuristics, such as hiring above the worst or the best current
referents, hiring above the mean referent score shown to be the best performing
strategy. Similar settings where a set of selected candidates increases through time
are considered in [75, 58, 48], while [58] makes a thorough analysis of hiring above
the m-th best strategies.

Another interesting setting allows for contracts to have a fixed duration, thus to be
temporary, see [88], and is introduced as the temp SP in [48]. The improved algo-
rithm presented in [66] generalizes towards general packing constraints and arbitrary
hiring durations.

2.2 Epidemic control

Compartmental models have been extensively studied in epidemiology since early
last century. In recent years, they have gained much wider attention due to their
usually simple analytic formulations that can model modern problems related to
information diffusion and social epidemics, e.g. rumor spreading [62] and other social
contagions [59, 63]. Being able to control efficiently undesired diffusion processes
(DPs) is very crucial for public health and security. Yet, it is a difficult problem that
in fact gets instantly much more complicated the moment one starts including more
realistic constraints or objectives. This explains why most studies of the literature,
despite providing high-level insights about the phenomena, remain rather far from
being applicable in practice. A source of limitations is the theoretical interaction
model one considers, along with its network-wise abstraction level (e.g. macro- vs
microscopic modeling), which may be over-simplistic for the analyzed phenomenon.
Another source of shortcomings is the requirement for having information regarding
the system state, such as the infection state of nodes or the network connectivity.
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Finally, limitations come from the way a control model assumes it can intervene to
the DP, in a static or dynamic fashion to the evolution of the process.

Dynamic models for allocating medical resources are subject to wide investigation
[25, 80], for which [96] gives a convenient formalism with the introduction of the Dy-
namic Resource Allocation (DRA), a model for network control, originally developed
for SIS-like processes [86] (a node is either infected, or healthy without permanent
immunity). It distributes a limited budget of available treatment resources on in-
fected nodes in order to speed-up their recovery. The term dynamic as opposed to
static such as vaccinations [92], comes from the adaptive nature of the strategy; it
is not fixed in advance but evolves according to the infection state and possibly the
structural changes of the network. Since it is reasonable to assume that authori-
ties take real-time actions, we essentially focus on DRA strategies. Quite different
dynamic resource allocation strategies have been studied so far. One example is
the use of contact tracing that targets individuals who may have been in contact
with other infected individuals [18, 40], and is particularly effective when only a few
infected nodes remain.

Another example of DRA are the so-called score-based strategies that introduce
an elegant way, through a simple score value, of assessing the criticality of each
node individually for the containment of the DP. Then, the administrator (or DM)
only has to ensure that at each moment the resources will be spent on the infected
nodes with the highest scores. Among the proposed options, a simple yet efficient
local score is the Largest Reduction in Infectious Edges (LRIE) [96], which depends
on the infection state of the neighbors, hence it needs to be updated regularly
during the process. A second option, called priority-planning [97], computes offline
a priority-order of the network nodes, by considering the max-cut of a given list.
This order provides a fixed global score for all nodes, which can then be used by the
administrator to perform DRA. Note that the principle behind the LRIE has been
generalized to SIS-like models with competition [63]. In [82] scores are continuous
(called control signals) and are derived for each node with the purpose of minimizing
a loss function represented by a tradeoff between the cost of a treatment and the
cost incurred by infected nodes. The term dynamic as opposed to static comes
from the adaptive nature of the strategy; it is not fixed in advance but adapts to
the infection state and possibly the structural changes of the network. Since it is
reasonable to assume that authorities take real-time actions, we essentially focus on
DRA strategies in this thesis.

2.3 Main SSP applications

2.3.1 Fields of application

Applications expand from merely conceptual settings to concrete case-studies, usu-
ally related to robotics, sometimes in biology or social contexts. We build the fol-
lowing non-exhaustive list by first differentiating single selection (b= 1) to multiple
selections (b> 1). In fact, this distinction raises an interrogation on items’ aggrega-
tion, i.e. whether the worth of an item (or instance) depends on the bulk of selected
items or not. This leads to the second differentiation made in Sec. 2.3.1 with the
modular and non-modular objective functions. For each example of application, the
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Multi choice 
(b > 1)

Rank-based Score-based 

Single choice 
(b = 1)

Additive Non-additive

Rank-based Score-based Rank-based Score-based 

Sequential Selection 
 Processes

Figure 2.1: Organization chart of the main types of SSPs.

score distribution, the objective function, and the assumption(s) of the model are
made explicit.

Single-choice SSP (b= 1)

In the simplest scenario, only one instance of the stream is selected, i.e. b= 1, which
puts an end to the process since there is no point to continue examining candidates.
In this case, the objective function belongs to either of the following categories:

� Rank-based (ordinal): Each instance’s evaluation is made by pairwise comparison
with those seen before. In other words, the scores are considered ‘unobserved’ (i.e.
nonexistent); therefore, the score distribution is unknown and non-definable.

Examples:

– House hunting problem: the DM sequentially visits houses (or apartments) to
rent. In big cities, renting decisions should be made (almost) immediately if
the future tenant wants to avoid that the place becomes unavailable, thereby
choices are considered irrevocable. This particular problem often occurs in animal
groups (bees, ants, etc.) that must choose the best nesting site [51], as well as its
distributed version where multiple DMs examine the possible sites separately to
find potential nest candidates, before reaching a collective decision [99].

– Marriage problem: defined as above, by replacing instances with potential part-
ners and where there can be an increasing interview cost [11]. Note that, contrary
to the previous definition, in some papers the Marriage problem refers to a match-
ing problem between two groups of individuals and whose objective is to find a
stable match.

– Parking spot problem: defined as above, by replacing instances with parking spots
[71].

� Score-based: Each instance’s evaluation is made through the observation of a real-
valued score that represents its worth. The score distribution may be known or
unknown.

Examples:
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– Strategy-proof online single-item auction [57]: An auctioneer has a single good
to sell to a group of bidders, that dynamically arrive and depart. Each bidder
(or instance, in our context) has its own evaluation of the good, given through a
score. The problem is constructed so that each bidder’s dominant strategy, i.e. a
strategy that is better for himself regardless of how his opponents may play, is to
truthfully give its valuable information. Here, the scores are independently drawn
from a stationary distribution that is either known (full-information setting in
Sec. 5.3 therein) or unknown (no-information case in Sec. 5.1).

Multiple selections SSP (b> 1)

Here, the DM selects exactly b instances. Once again, the objective function is
divided into two subcategories, it is either additive or non-additive (subadditive or
superadditive).

� Additive: Each instance contributes in the exact same way in the final selec-
tion, regardless when it was accepted, or which instances have been selected so
far. The scores of the selected instances merely add up to give the score of the
whole solution. Formally, if φ : 2Ω→R is an additive set function over a finite set
Ω, such that, ∀B,A⊆Ω, then φ(A∪B) =φ(A) +φ(B). Alternatively, a function
is subadditive (respectively superadditive) if φ(A∪B)≤φ(A) +φ(B) (respectively
φ(A∪B)≥φ(A)+φ(B)).

Examples:

– Rank-based Multi-choice Secretary Problem [8, 5]: the DM is looking for candi-
dates to fill b empty job positions. Sometimes, scores are computed in an evalua-
tion grid (e.g. scores in [0,1]), bounding the score density.

– Health-care facilities [53, 15]: in an emergency service the number of resources of
a facility, such as beds or nurses, is limited and the demand is high as patients
are arriving dynamically.

– Epidemic control : this is about the control of the spread of an infectious disease
in an online fashion, by means of resource allocation. Again, the budget is very
limited compared to the demand, for instance vaccines [108].

– Strategy-proof online multiple-items auction [67]: similar to the single-item auc-
tion but where the DM has b items to sell.

� Non-additive: Each selected instance influences the value of the next instances
to come, for example a submodular objective function implies ‘diminishing returns’
i.e. the larger the set of selected instances, the less an additional selected instance
brings value. Note that selecting a new instance can also devalue the past selected
items, as shown in the following example.

Examples:

– The b-diversification problem [109]: a robot (the DM) of limited space capacity
goes along a pre-defined path and sequentially encounters environmental instances
to select from, e.g. insects, fishes, or rocks, etc. The DM must select b instances,
each represented by d∈N∗ features, out of the stream in order to maximize the
minimum ‘distance’ between the selected items (typically, an Euclidian distance)
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that quantifies the diversity level of the selection set. See Chapter 7 for a detailed
study.

– The gaussian-process regression problem [73, 83]: similar to the previous exemple,
except that instances are now sensors that measure environmental characteristics
of 2D locations, and the feature of interest (e.g., temperature or lightning) is
not observed as online decisions are made; hence at each sensor the DM solely
observes every other environmental feature, e.g. humidity, voltage, etc. The true
value of the feature of interest of the selected sensors is only revealed ex-situ and
the objective is therefore to learn the utility function that maps an instance to the
scalar of interest, e.g. the temperature. Thus, the DM’s goal is to select instances
that maximize the mutual information gain, a function of the entropy of each
element of the set.

– Kidney exchange [26]: a kidney exchange program enables matching of incompati-
ble donor-patient pairs via swapping with other incompatible donor-patient pairs,
sometimes through a chain of such pairs. The online version of this originally
offline problem allows for pairs to arrive sequentially, instead of being all indexed
in a pool.

– Network design: similarly to the previous setting, this example is related to bi-
partite matching. In particular, in internet-based systems that sell advertising
[70], the two-partite sets are nodes that respectively represent the website slots
(all available offline) and the sequentially arriving ads. Each incoming ad, when
arriving, also reveals its existing weighted edges with every slot node. The DM
must decide immediately whether to accept the ad, and if so, the slot node to
match it with. The overall goal is to maximize the final weight of the selected
edges.

2.3.2 Relevant algorithms from the literature

In an effort to later compare our algorithms with those already proposed in the
literature, we list in this section a couple of them that originally assume a multi-
choice SSP. In addition, for each of them we successively describe the nature of the
objective function (additive or non-additive), the assumptions they require, the al-
gorithmic procedure and finally the guarantees they provide, if any. Before starting,
here is a quick reminder on two categories of online strategies:

• Cutoff-based : it takes as input a given cutoff value c∈N; it rejects by default
the first c incoming instances, called the learning phase and then selects an
instance according to information gathered during the latter phase.

• Threshold-based : a particular case of cutoff-based strategies with c= 0. The
j-th arriving instance is accepted if its score beats a specified acceptance thresh-
old, denoted by Sacc.

j ∈R+.

Also, recall that the rank-based (or ordinal) modeling approach assumes that deci-
sions are based on the instances relative pair-wise comparisons only, rather than on
their real-valued scores, the former allowing for elegant solutions and robust regard-
less the underlying score distribution. The rank-based setting can be interpreted
with the implicit assumption that the DM cannot learn any valuable information
from the observed scores (sort of ‘dummy scores’) or that the DM cannot even
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observe those scores, and hence simply evaluates instances against each other (see
Remark 3 in Chapter 3).

KLEINBERG (2005)

In the algorithm presented in [67], which we call KLEINBERG here for simplicity,
the original objective function is additive and more precisely it is given by the sum
of the scores of the selected instances. As every variant of the secretary problem,
this assumes that instances scores arrive uniformly at random, such that no two
instances have the same value. It is implicitly assumed that the only purpose of
scores is to enable the comparison of instances, meaning that the evaluation is
essentially rank-based. The guarantee of KLEINBERG algorithm is given through
its competitive ratio, see Eq. 4.9, which is equal to 1−O(

√
1/b). In addition, it is

also claimed in the paper that the competitive ratio of any algorithm is 1−Ω(
√

1/b),
which gives, for instance 1−

√
1/5≈ 0.553≤E[ALG]/OPT for b= 5 resources. The

algorithm proceeds as follows: the DM draws a random valuem∼Binom(n,1/2) and
recursively applies the standard SP algorithm to select up to l= bb/2c candidates
among the first m candidates. After the m-th candidate, it selects every instance
that exceeds the l-th best seen during the first phase until the b positions are filled.

OPTIMISTIC (2007)

The OPTIMISTIC algorithm [8] was originally conceived for the knapsack Secretary
Problem in which every instance j has an associated weight w(j) in addition to the
standard value of its worth v(j). The knapsack constraint over the set of selected
instances S is such that

∑
j∈Sw(j)≤W , with W a given weight threshold, renders

the objective function non-additive. However since we do not generally consider a
knapsack constraint in this thesis, but an explicit set-size budget, the version of the
OPTIMISTIC algorithm we are interested in is the one presented for the unweighted
case, i.e. where w(j) = 1, ∀j, in Sec. 3 therein. Therefore the setting degenerates
to a additive objective function which is comparable to the rest of the methods
presented in this thesis. Similarly to the setting of the KLEINBERG algorithm
described above, each instance carries a score value, whose purpose is to allow for
instances comparison and from which no meaningful learning can be attempted, i.e.
the process intrinsically rank-based. The OPTIMISTIC guarantee is also presented
through its competitive ratio, see Eq. 4.9, that leans towards 1/e as n tends to
infinity; The algorithm is cutoff-based, and takes as a cutoff value c= bn/ec. The
acceptance threshold Sacc.

j is dynamic and depends on the instances’ arrival time
and potentially on the number of instances accepted so far. More specifically, the
threshold is equal to the relative rank of the b-th best recorded during the learning
phase when no instance has been accepted yet. An insightful comment on the
OPTIMISTIC algorithm concerns its appreciated fast and easy implementation.

Hiring-above-the-mean (MEAN) (2009)

The objective function of the MEAN strategy [21] differs a bit form the other strate-
gies presented so far. In the original setting, each incoming instance j≤n has a
quality score Qj ∼U(0,1); and the goal is to keep a good tradeoff between the qual-
ity and the speed of selection (here the motivation is recruiting). The worth of
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each instance’s being independent on those selected before, the objective function
is additive. Let the average quality of b+1 employees be denoted b y Ab (it stars
with A0 ∈ [0,1]). To quantify the rate of convergence of the latter and the rate at
which candidates are hired, the gap value Gb = 1−Ab is defined, which converges
to 0 almost surely when b goes to infinity. Among other results, the authors prove
that after b3/2 candidate interviews, the expected value for the mean gap for the
best b candidates is O(

√
1/b), which makes the strategy close to optimal given this

particular evaluation criterion. The MEAN algorithm is a threshold-based strategy
for which the dynamic acceptance threshold is the average score of the instances
selected so far, which adapts to each new selection. We also consider the MEDIAN
strategy presented in the same work where the acceptance threshold used is the
median score of those selected so far. However, the MEAN algorithm is the only
strategy out of those presented here that allows for a warm-start, hence why it is
included in this list.

SUBMODULAR (2013)

The work of [12] studies a general setting where the objective function is submodular,
i.e. the benefit of each instance selection is non-increasing as the set grows, see
Definition 16 in Chapter 7.

This way, a wide range of settings are allowed, the standard sum of scores being the
special case of the above statement with an equality. For the algorithm’s sake, n is
assumed to be a multiple of b, otherwise ‘dummy’ instances could be added at the
end of the sequence without loss of generality. In addition to a competitive ratio
of 1−1/e

7 , the paper provides a lower bound of b(1− 1/e) over the expected total
number of selected instances, since here, the setting enables at most b instances to
be selected, rather than exactly b as in [83]. The entire sequence of n candidates is
divided into bn/bc sub-sequences. In each of them, the standard SP is applied, i.e.
c=n/(be) instances are rejected by default at the beginning of each sub-sequence,
and at most one instance is accepted in [12] in every of them.

SINGLE-REF (2019)

The original objective function is additive. Similarly to the KLEINBERG and OP-
TIMISTIC algorithms, it is assumed that decisions are based on the instances’ total
order only, rather than on their real-valued scores. Guarantees are, again, presented
in the form of a competitive ratio that is shown to be optimal for b= 1 using the
SINGLE-REF algorithm [5], and equal to 0.4119 for b= 2, and hence better than the
standard 1/e. In addition, numerical computations show the monotonic increase of
the competitive ratio with the budget size b, reaching 0.6306 for b= 20, for instance,
and greater than the 0.5 threshold from b= 6 and on. The SINGLE-REF algorithm
is cutoff-based, and takes as input a cutoff value c and a fixed acceptance threshold
Sacc.
j , both empirically optimized according to the number of resources b. For in-

stance, when b= 5, then c= 0.2525 n and each candidate should beat the second best
recorded during the learning phase, while when b= 50, then c= 0.1536 n and each
candidate should beat the ninth best recorded during the learning phase. A large
table of these optimized parameters is provided in the paper. The SINGLE-REF
algorithm is attractive both analytically, by its plain combinatorial nature, and nu-
merically due to the fixed acceptance threshold that allows an easy implementation.
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Table of main notations for Chapter 3 and
Chapter 4
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Term/Symbol Description
1{condition} indicator function that gives 1 if the condition is true, otherwise

0
1[k] unit vector of length k
Pl(E) set of l-combinations of the finite set E, or simply Pl when E=

{1, ..., l}

B collection of information or items initially available to the DM
b∈N∗ budget of resources: number of work positions to manage
n∈N∗ number of candidates to appear
RN :R×RN →{1, ...,N} ranking function that gives to each element of a collection of N

values its rank when compared to the other value
Ṡ= (Ṡ(1), ..., Ṡ(b))∈Rb scores of the reference set from best to worst consistent with the

ordinal model
Ẋ= (Ẋ(1), ..., Ẋ(b))∈Rb absolute ranks of the reference set from best to worst
Ȧ0 = (Ȧ0,(1), ..., Ȧ0,(b))∈{0,1}b availability status of the reference set
r∈N number of resignations
S= (S1, ...,Sn)∈Rn candidates scores consistent with the ordinal model, in the order

of appearance
X= (X1, ...,Xn)∈Rn candidates absolute ranks in the order of appearance
A= (A1, ...,An)∈{0,1}n a specific sequence of decisions
φB :R×A→R+ regret function
φoff ∈R minimal obtainable cost by an offline oracle strategy
q ∈ [0,1] estimate measure of the average quality of the reference set com-

pared to the candidates
Ẋavail ∈{Ẋ(i) : Ȧ0,(i) = 1, ∀i≤ b}b−r available referents absolute ranks
Ãj =

∑j
i=1Ai number of new hires up to candidate j (included)

c∈N, c∗ ∈N cutoff, optimal cutoff value when us-
ing CCM, i.e. integer that spe-
cifies the size of the learning phase

Supd
j ∈{Ẋ,X1, ...,Xj}b updated reference set i.e. set of the b-best items known by the

DM after j interviews (Supd without subscript refers to Supd
c ,

i.e. the b-best known up to the end of the learning phase)
Sacc.
j ∈R score-based acceptance threshold i.e. value to beat for candidate

j in order to be accepted
γ0 ∈R+ expectation of the rank-based threshold at the beginning of a

WSSP
γj ∈R+ expectation of the rank-based threshold Rn+b(S

acc.
j ,{Ṡ,S})

gj(x) =P(Ãj−1 <x)∈ [0,1] prob. that less than x candidates have been accepted up to step
j−1

≡(γ0) settings of two instances are said to be γ0-similar if their reference
sets have the same ranks w.r.t. the rest of the sample

fj ∈{0,1} event of accepting a last incoming candidate at step j by default
(to fill empty job positions)

ρf ∈R failure rate i.e. sum of the number of failures divided by the
number of tests

µ̂j(c,r)∈R expected number of accepted candidates at step j given that
the total number of accepted candidates (i.e. at the end of the
selection) is greater or equal to r

Z ∈R2 area around the expectation of the number of accepted candi-
dates inside which the threshold γj is identical to that of CCM

wj ∈R thickness of zone Z
Dj ∈R parameter which determines how the threshold is updated when

a point lies outside the zone

k∈N∗ round number

Table 2.1: Index of main notations. Horizontal lines indicate groups of notations.
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Chapter 3

The Warm-starting Sequential
Selection Problem

3.1 Introduction

Since its introduction in the early 60’s, the Secretary Problem (SP) [39, 52, 47] has
been the most famous optimal stopping problem: n randomly incoming candidate
secretaries are interviewed one after the other for a job position. In each interview,
the decision maker (DM) acquires information about a candidate’s competence, and
by that compares him with the so far examined candidates. She can decide when
to terminate the process by selecting the last candidate interviewed. Although she
knows how many candidates will appear, the DM has no knowledge of who will come
later on, yet her decisions should be immediate and irrevocable after each interview.
This describes a Sequential Selection Problem (SSP1). The class of SSP problems
is attractive for theoretical analysis and for practical use, due to its generality and
evident relevance to online selection under realistic constraints. Same as in this
work, SSPs are usually presented in the intuitive recruitment context.

The goal of the original problem is to select none but the best among the sequence
of n candidates, while in each interview the DM only realizes the relative quality of
the examined candidate, that is his relative rank. The algorithm proposed in [39],
is a cutoff-based approach which comprises two phases: the learning phase where
a number (referred to as cutoff ) of candidates are automatically rejected, and the
selection phase where the first candidate ranked above the best recorded during the
first phase is hired (or the last one, by default). In essence, the former phase learns
a threshold that is subsequently used in the latter to spot the first candidate to beat
it. Significant advantages of any cutoff-based strategy is that they are intuitive and
easy to implement. The length of each phase is determined by the a cutoff value and
is subject to an exploration-exploitation trade-off that depends on the considered
objective function to optimize. For instance, the optimal cutoff for maximizing
the probability to find the best candidate is c∗=n/e for large n and constant c/n
ratio. Besides, when candidates have an underlying quality score, rather than a
relative quality like his rank among the already examined candidates, one may be
interested in maximizing the expectation of the score of the selected candidate. For
this objective function, and under the assumption that i) scores are uniformly drawn
from [0,1], and ii) scores are unobserved i.e. the DM can only see the candidates
relative ranks, the optimal cutoff is c∗=

√
n− 1 [13]. Note that the multi-choice

1Depending on the context, the last letter of the abbreviations SSP and the herein presented
MSSP may refer to the respective selection ‘Problems’ or the associated selection ‘Processes’.
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problem where the DM can select more than one candidate is a natural extension
of the above (see Sec. 2.1).

Motivation and contribution. Our motivation derives from real-world recruit-
ment processes that take place in large organizations or companies whose aim is
to dynamically adapt in their operating environments. Typically, an organization
has already many referents and the DM has the challenging task to keep the per-
sonnel as competitive as possible at any moment in time. Moreover, the DM has
to ensure that jobs are always assigned to referents. It is easy to see why such an
organization requires constant recruitment processes in parallel to their operation
cycle. This setting goes beyond the existing SSP models in literature that have two
important limitations, namely they consider a cold-start initialization where there is
no assignment of jobs at the beginning of the selection process and ii) they operate
in a single-round where only one sequence of candidates is processed.

To address these issues, we introduce a new online initialized problem that we call
Warm-starting SSP (WSSP): at the beginning of the selection, the DM has at hand a
reference set of referents for whom she knows the status of availability (referents are
allowed to quit their jobs just before the beginning of the interviews), and eventually
the average quality w.r.t. the candidates. In order to address the second limitation,
we propose a new online-within-online problem, theMulti-round Sequential Selection
Process (MSSP). Essentially, each round of the latter can be seen as a single WSSP
initialized with the items selected in the previous round; the overall goal being to
keep a highly-skilled set through time. As for the technical contributions, in this
chapter we analyze the Warm-starting SSP and derive analytical formulas for: i) the
initialization, specifically the expected rank of the referents (available or not) and
the minimal regret of an offline strategy.

Notations. A bold symbol denotes a vector, for instance, A = (A1, ...,Ak)∈Rk,
∀k∈N∗, in which with little abuse we omit the symbol of the transpose. The
concatenation of matrices is denoted by (A,B), and 1{·} is the indicator function,
which is 1 if the input condition is true, and otherwise 0.

3.2 A general class of Sequential Selection Processes

In a standard SSP, candidates for a job position arrive sequentially in random order.
The qualitative skills of each candidate can be assessed independently on his arrival
by the DM, allowing the relative ranking of the examined candidates against each
other. According to this evaluation, the DM chooses who to hire in order to optimize
a given evaluation criterion.

In the class of Generalized Sequential Selection Processes (GSSP) that follows, what
we call as Background B is essentially the context in which the selection process takes
place. It contains, among other elements, the set A of all possible actions the DM
can take (e.g. hire, fire, add in queue, put on standby, etc.). A set of assumptions
regarding the sequential arrivals and/or the decision process can be added to the
following definition, according to the context.

Definition 1. Generalized SSP (GSSP): Online selection process described by the
following elements organized in several categories:
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1. Background

B: collection of information known upfront by the DM, including the set A of all
possible actions the DM can take (e.g. hire, fire, add in queue, put on standby,
etc.).

2. Sequential Arrivals
– S = (Sj)j≥1: sequence of candidate scores s.t. Sj ∈S ⊂R, drawn from distribu-
tion fj , ∀j≥ 1.

3. Decision Process
– π= (πj)j≥1: policy, i.e. sequence of mappings from observations to decisions;

– A = (Aj)j≥1 : sequence of decisions regarding the candidates, according to the
policy πj, i.e. Aj =πj(Sj |S1, ...,Sj−1,A1, ...,Aj−1)∈A, ∀j.

4. Evaluation
– ` :S ×A→R+: loss function s.t. `(s,a) is the loss for taking decision a right
after observing s;

– L(S,A) =
∑

j≥1 `(Sj ,Aj): cumulative loss;

– Let P be the distribution of (S,A). The evaluation criterion, called regret, is
evaluated at the end of the process and defined as Φ(π) =EP [φB(S,A)], where:

φB(S,A) = |L(S,A)−φoff | ∈R+, (3.1)

and φoff is a baseline value.

With the high-level formalization of the GSSP class, we can summarize several well-
known processes, such as the indicative ones mentioned below.

3.2.1 Examples of well-known GSSPs

� Standard SP [39]: A GSSP setting with B= (b,n,A= {0,1}), where b= 1 is the
number of job position, n is the finite number of candidates, and a candidate is
either selected (hired, Aj = 1) or rejected (Aj = 0). It is assumed that decisions
are immediate and irrevocable, that candidates arrive in a random order, and that
their scores are unobserved so that the DM can only make pairwise comparison
between candidates. This is equivalent to having relative ranks as observations,
i.e. a triangular array (Xi,j) where Xi,j ∈{1, ..., j} is the relative rank of the i-th
incoming candidate after having examined j≥ i of them. The vector of absolute
ranks, evaluated at the end, is given by X = (X1,n, ...,Xn,n)∈Pn, where Pl is the set
of all permutations of the elements of {1, ...,n}. The evaluation criterion to maximize
is the probability to select the best candidate (the one with absolute rank 1 at the
end of the selection), which can be expressed by `(Xj,j ,Aj) =1{Xj,nAj = 1}, ∀j≤n,
therefore φoff = 0 and Φ =P(XTA = 1).

� Prophet inequality [74]: A GSSP setting with B= (b,n,A= {0,1}, f), where the
fj ’s are known a priori but not the realizations Xj . It is assumed that decisions
are immediate and irrevocable, and that scores are observed. Multiple objectives
have been investigated, in [65] it is to maximize the scores of the selected items, i.e.
`(Sj ,Aj) =SjAj and Φ =E[STA], while in [68] the selected items are subject to a
matroid constraint. Note that scores are not necessarily i.i.d.; in some settings an
adversary can choose the candidates’ arrival order.
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� Hiring problem [21]: A multi-choice GSSP setting where, by respecting the trade-
off between the rate of hires and the quality of the hired candidates, the objective is
to grow the company as much as possible while keeping maximal the average score
of the employees. The recruitment process has infinite horizon. Therefore we have
B= (b,n,A= {0,1}), where b→∞ and n→∞. Again, t is assumed that decisions
are immediate and irrevocable, and that observations are i.i.d. scores drawn from a
uniform distribution, i.e. Sj ∼U(0,1). Using the above formalism, the cumulative
loss after b hires is given by Lb(S,A) =−1

b

∑
j≥1 `(Sj ,Aj), where `(Sj ,Aj) =SjAj ,

and the objective is for the expected regret from Eq. 7.7, with φoff = 1, to conver-
gence towards zero w.r.t. b as fast as possible.

Remark 1. The number of job positions b and of candidates n are usually included
in the background B; (i.e. known by DM) however variants of the standard SP [102,
72] may involve an unknown number of candidates. Note that b> 1 is sometimes
referred to as a multi-choice or multi-stopping problem.

Remark 2. In most GSSP settings, the loss suffered at each decision is the score
of an accepted item, i.e. `(Sj ,Aj) =±SjAj, with a positive (resp. negative) sign if
the goal is to minimize (resp. maximize) the sum of scores. When the goal is to
maximize the loss (i.e. the payoff in this case), the regret is called reward. The
evaluation criterion is further detailed into two cases: 1) the ‘no regret’ case, where
the DM merely tries to optimize its selection i.e. for φoff = 0, and 2) the ‘with regret’
case, where the online selection is to be compared to the best associated offline strategy
πoff, where the DM knows the entire sequence of candidates beforehand, in this case
φoff = min

O∈πoff
φ(S,O) (or φoff = max

O∈πoff
φ(S,O) when the goal is to maximize the sum of

the scores).

3.3 Introducing the warm-start

3.3.1 Description and rules of the game

The Warm-starting SSP (WSSP) is a particular GSSP instance that overcomes the
limitations of standard cold-starting SSP frameworks. Its characteristics is to start
with a set of items at hand, called reference set and composed of referents, each of
them having also a status of availability. The total number of job positions deter-
mines the size of the reference set. Items can therefore be of two types, candidate
or referent. The value of each item is given by a real-valued score, however it is
not observed by the DM that can only make pairwise comparisons between items.
Although the referent’s availability status can be broad (e.g. on vacation, sick leave,
resigned, etc.), we only allow resignations, i.e. a referent is unavailable if he resigned
(leaving his position empty) and available otherwise (in other words, he is prese-
lected). In this paper, we work under the simple assumption that resignations are
independent. The DM therefore seeks highly-skilled candidates to 1) fill up empty
positions and 2) replace non-competitive available referents; by respecting the fol-
lowing specific constraints.

Assumption 1. On the sequence of arriving candidates:

1.A) Candidates arrive in arbitrary random order.
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1.B) Scores are not observed, the DM can only make pairwise comparisons between
items.

Assumption 2. On the decision policy:

2.A) The availability status is known upfront, and fixed throughout the process.

2.B) Decisions are immediate and irrevocable.

2.C) Every position must be filled at the end of the process (by a candidate or an
available referent).

Formal definition. We add a dot on top of a variable to refer explicitly to the
reference set, e.g. Ṡ = (Ṡ(1), Ṡ(2), ..., Ṡ(b))∈Rb gives the value represented by the vari-
able S (here, scores) of the referents in descending order: the best, the second best,
etc.

Definition 2. The ranking function RN :R×RN→{1, ...,N} gives to each element
of a collection of N values its rank when compared to the other values. Let Σ a finite
number set, then ∀s∈Σ : RN (s,Σ) =

∑N
i=11{Σi≤ s}.

Definition 3. Warm-starting SSP (WSSP): A particular GSSP with the following
characteristics:

1. Background

B= (n,b,A, Ṡ,Ȧ0), where the included elements are:
– n∈N∗: finite number of candidates to appear;

– b∈N∗: number of job positions s.t. b≤n;

– A= {0,1}: the set of possible actions the DM can take, respectively reject or
hire;

– Ṡ = (Ṡ(1), ..., Ṡ(b))∈Rb: reference set scores (sorted from best to worst for con-
venience);

– Ȧ0 = (Ȧ0,(1), ..., Ȧ0,(b))∈{0,1}b: availability status of the reference set s.t. Ȧ0,(i) =
1 if the i-th best referent is available.

2. Sequential Arrivals and 3. Decision Process as in Definition 1

4. Rank-based evaluation

The following simplified notation for the absolute ranks is written R(s) =Rb+n(s,(Ṡ,S)).

– Ẋ =
(
Ẋ(1) =R(Ṡ(1)), ..., Ẋ(b) =R(Ṡ(b))

)
∈Rb: referents’ absolute ranks,

– X =
(
X1 =R(S1), ...,Xn =R(Sn)

)
∈Rn: candidates’ absolute ranks,

– Let P be the distribution of (X,A). The evaluation criterion, called regret, is
evaluated at the end of the process and defined as Φ(π) =EP [φB(X,A)], with:

φB(X,A) =
(
ẊTȦn+XTA

)
− min

(Ȯn,O)∈πoff,B

(
ẊTȮn+XTO

)
∈R+, (3.2)

where πoff,B=
{

(Ȯn,O)∈{0,1}b+n : ‖(Ȯn,O)‖1 = b
}

and Ȧn ∈{0,1}b is the
hiring decisions of the referents after n interviews of candidates.
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The first term in Eq. 3.2 is the sum of the ranks of the items to which jobs have
been assigned at the end of the selection. The second term is the minimal regret
achievable by an offline oracle strategy that, knowing the ranks, would select the
best out of the available referents2 (i.e. for some i: Ȧ0,(i) = 1) and the candidates,
see Eq. 3.6.

Remark 3. In this work we make no assumptions at all about the source and na-
ture of the scores (see Assumption 1.B)). This is why we consider unobserved scores
and adopt a rank-based criterion to assess the selection strategy, which is a standard
approach in nonparametric statistics [30]. This choice is motivated by real-life sce-
narios where observations might be noisy, the items score distribution changing, or
non-standard [109, 29].

Example. A DM manages b= 3 job positions and is about to interview n= 20
candidates, one after the other. Before these interviews, only the best referent
resigns (r= 1), and by that leaves one position empty, while the two others stay at
their positions, i.e. Ȧ0 = (0,1,1). Upon arriving, the first candidate is compared to
the referents; say he is better than all of them, i.e. has a relative rank of 1. The
DM decides to hire him, i.e. A1 = 1, and this candidate fills up the initially empty
position. Then, after some candidate rejections, the DM decides to hire the 15-th
incoming candidate (j= 15), because he is better than the worst available referent,
i.e. has a relative rank of 3. It follows A15 = 1 and Ȧ15,(2) = 0 since the second best
referent just got fired. The process goes on until the end of the sequence is reached,
or when all available referents have been replaced.

3.3.2 Initial analysis

Defining the quality

A natural question that arises from the existence of the reference set concerns the
‘value’ (or quality) of the referents compared to the candidates next to come. How
‘good’ is our initial set with respect to the arriving candidates? Besides, a notion
of ‘good’ should also be defined. We address the latter interrogation by introducing
the ‘goodness’ of Ẋ for X, called quality of the reference set and denoted as q (see
Definition 4). This parameter quantifies how the reference set ranks on average
compared to the candidates. Herein, we suppose that this parameter is provided in
advance to the DM, learned or estimated.
Definition 4. True rank-based relative quality of reference set (q): For a WSSP, q
is the average normalized rank of the b items of the reference set compared to the n
candidates:

q := 1−
1
b‖Ẋ‖1−1

n+b−1
, (3.3)

where Ẋ = (Ẋ(1) =R(Ṡ(1)), ..., Ẋ(b) =R(Ṡ(b))) are the referents absolute ranks, q ∈
]0,1[, with q→ 1 as the reference set gets better skilled and q= 1/2 corresponds to
the medium quality s.t. 1

b‖Ẋ‖1 = 1
2(n+b+1).

Other options to define the quality have been envisioned, as for instance, the fol-
lowing.

2The unavailable referents are unreachable, even for the oracle.
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� The DM knows the absolute ranks of each referent, i.e. the vector q = (q(1), ..., q(b))∈

]0,1[, where q(i) = 1− Ẋ(i)−1

n is the quality of the i-th best referent. This alternative
is the one with the most information in this rank-based setting, the DM knows, be-
forehand, how every referent ranks individually compared the the candidates to be
interviewed. This strong assumption makes it difficult to apply in most situations,
hence why we chose to discard it in this study.

� The DM knows the rank of the worse referent, i.e. q(b) = 1− Ẋ(b)−1

n . Here, the
assumption is that the worse candidate makes for the quality of the overall reference
set, which is a rather hard constraint, and might be unfortunate, if, for instance, he
is an outlier compared to the other referents.

� Although unobserved, the scores could also dictate the quality; i.e. the DM knows

the average score-based q=
1
b‖Ṡ‖1−Smin

Smax−Smin
. The DM would take advantage of this

definition of the quality solely if the evaluation criterion was defined through the
items’ scores, and not the absolute ranks as is the case here.

Offline analysis

Initialization and resignations. This analysis concerns the initialization of the
process, i.e. before the arrival of candidates, and is independent on the chosen strat-
egy. Although the status of referent’s availability can be broad (e.g. on vacation,
sick leave, resigned, etc.), we only allow resignations, i.e. a referent is unavailable if
he resigned and available otherwise.

Definition 5. Resignation, resignation number r∈N∗: Event by which a former
employee leaves his job position, occurring prior to the selection process. The DM
knows which employee are unavailable, i.e. who resigned and thus cannot be called
back, before the interviews start. The number of resignations is given by r := b−
‖Ȧ0‖1 ∈N.

In this paper, we work under the simple assumption that resignations are indepen-
dent. The DM has information about the average quality of the referents, but we are
particularly interested in the available ones, i.e. those with ranks Ẋavail = (Ẋ(i))i∈I ,
where I = {i : Ȧ0,(i) = 1}. These preselected referents might end up, if competitive
enough, in the final selection.

Proposition 1. Let a given WSSP starting with r≤ b resignations. The expectation
of the rank of the l-th item from the available reference set Ẋavail is given by:

E[Ẋavail
(l) ] =

γ0(b+1)l

b(b−r+1)
, ∀l≤ b−r (3.4)

where γ0 :=E[Ẋ(b)] = (1−q)2b(n+b−1)

b+1
+

2b

b+1
, (3.5)

s.t. γ0 is the expectation of the b-th item from the reference set Ẋ, and a function
of the relative quality q of the reference set.

Proof. Eq. 3.5 derives from the definition of the quality in Definition 4, and uses the
fact that E[Ẋ(i)] =

E[Ẋ(b)]

n i= γ0

n i, ∀i≤ b. The best available referent, i.e. with rank
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Figure 3.1: Example scheme of different initial states for a reference set of size b= 5, with
different resignations r∈{0, ..., b}. Mixed warm-starts differ from full state, in that when r 6= {0, b}

there is an additional variable on which referent(s) is (are) unavailable.

Ẋavail
(1) is therefore expected to have a rank at best γ0/b and at worst γ0(r+1)/b. He

has an expected rank of γ0/b iff the available item(s) are any of the b−1 below him
in the ranking, i.e. with a probability

(
b−1
r

)
/
(
b
r

)
. Then, he has an expected rank of

2γ0/b iff the best referent resigned and the r−1 other unavailable referents are any
of the b−2 below him in the ranking, i.e. with probability

(
b−2
r−1

)
/
(
b
r

)
. Finally:

E[Ẋavail
(1) ] =

r+1∑
i=1

P
(
Ẋavail

(1) =E[Ẋ(i)]
)
E[Ẋ(i)]

E[Ẋavail
(1) ] =

r+1∑
i=1

(
b−i

r+1−i
)(

b
r

) iγ0

b
=

γ0

b
(
b
r

) r+1∑
i=1

(
b− i

r+1− i

)
i ,

from the multiset relation
∑n

i=0

(
m+i−1

i

)
=
(
n+m
n

)
we obtain:

E[Ẋavail
(1) ] =

γ0

b
(
b
r

)((r+1)

(
b+1

r+1

)
−(b−r)

(
b+1

r

))
=

γ0(b+1)

b(b−r+1)
.

Using E[Ẋavail
(l) ] =E[Ẋavail

(1) ]l, ∀l∈{1, ..., b−r}, we obtain E[Ẋavail
(l) ] = γ0(b+1)l

b(b−r+1) .

Offline selection. It is desirable for any online algorithm to perform as close
as possible to the optimal offline case where the DM knows the b-best items and
can directly select them. Hence, we want our strategy to converge towards the
offline case and have φ as small as possible. The offline output φoff ∈R+ is given by
Definition 3 as:

φoff := min
(Ȯn,O)∈πoff,B

(
ẊTȮn+XTO

)
, (3.6)

where πoff,B=
{

(Ȯn,O)∈{0,1}b+n : ‖(Ȯn,O)T‖1 = b
}
.

Proposition 2. In the WSSP context, the expected minimal regret an offline algo-
rithm can achieve, by selecting the b-best out of the n+b−r candidates and available
referents, is:

E[φoff] =
b(b+1)

2
+
rb2(γ0 +r)

2γ2
0

, (3.7)
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where γ0 is given in Proposition 1.

The first term of Eq. 3.7 accounts for the standard average offline regret, i.e. the
sum of the b-best ranks, while the second represents the increase due to potentially
unavailable items from the b-best.

Proof. Proposition 2. We begin by deriving the variable η that gives the expected
number of unavailable referents that belong to the b-best. We know that the available
referents ranks are included in the overall referent ranks, i.e. Ẋavail

(l) ∈ Ẋ, ∀l≤ b−r,

hence if we write by L=
{
l∈{1, ..., b} | Ẋ(l) /∈ Ẋavail

}
the set of referents indices that

resigned, we get:

η=E

[∑
l∈L

1{Ẋ(l)≤ b}

]
=

b∑
l=1

P(l∈L)P(Ẋ(l)≤ b) =
r

b

b∑
l=1

P(Ẋ(l)≤ b)

=
r

b

b∑
l=1

1

{
γ0l

b
≤ b
}

⇔ η=
r b

γ0
.

In (Ẋ,X)∈Pn+b, candidates and reference set are ranked jointly, regardless if the
referents resigned or not. The optimal regret is defined as the average sum of the b-
best available ranks. If one of the unavailable referents is among the b-best, his rank
is replaced by the next best available rank (same for multiple unavailable referents),
which increases the expected offline regret. Formally:

E[φoff] =
b−η
b

b∑
m=1

m+

b+η∑
m=b+1

m= (b−η)
b+1

2
+ηb+

η(η+1)

2

=
b(b+1+η+η2/b)

2

⇔ E[φoff] =
b(b+1)

2
+
rb2(γ0 +r)

2γ2
0

.

3.4 The multi-round extension

3.4.1 Principle

We build upon the WSSP, and introduce the Multi-round Sequential Selection Pro-
cess (MSSP). This is a new selection framework whose novelty lies in that a selection
process takes place in multiple successive rounds and the global objective function is
optimized in each round given the output of the previous one. The environment of
the problem is set to be on a large population C of job-seekers. Namely, each round
is a WSSP Definition 3 instance on a sample of candidates of the population with,
as reference set, the final selection of the previous round, to which is individually
applied a given probability to resign. In the multi-round setting, resignations are
defined through this probability to resign Prk,i ∈ [0,1] that is the probability for node
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Figure 3.2: The timeline of a Multi-round Sequential Selection Process (MSSP). A new round
of sequential selection is launched when a new sample of candidates appears. The output of each

selection round provides prior knowledge to its next round.

i∈C that belongs to the final selection of round k−1, k≥ 1 to become unavailable
at the subsequent round k.

A non-exhaustive catalogue of useful forms taken by the resignation process is given
thereafter.

� Score-dependent: Prk,i∝
eSi,t∑
i e
Si,t

, ∀i∈C, ∀k≤K, i.e. candidates are more likely

to resign as they are more competent. This case might happen in a process that
encourages the highest scores to become unavailable. In the context of maintenance,
for instance, incoming candidates represent tasks to be complete, and their score
reflects the importance of achieving this task. At each round, the task with the
highest scores are therefore more likely to be unavailable, i.e. to be fixed.

� Time-dependent: Prk,i∝
k

K
, ∀i∈C, ∀k≤K, i.e. candidates are more likely to re-

sign as time goes by.

� Uniform: Prk,i =α∈ [0,1], ∀i∈C, ∀k≤K, i.e. the probability to resign is uniform
among the b items of the reference set.

Fig. 3.2 illustrates this selection framework. In addition to the resignations, the
MSSP allows for alterations of the score across the population of potential candi-
dates between two subsequent rounds implying i) changes in the shape of the score
distribution that leave the population ranking intact, ii) changes in the ranking
whereas the score distribution remains intact, iii) a combination of the previous.

Remark 4. When facing the issue of selecting b instances from a large data-stream
it might be efficient to split the data-stream into b warm-start rounds, so that each
round start with some valuable information of the previous rounds’ selection. This is
especially useful when the objective function is non-modular, i.e. when every item’s
worth depends on the instances selected before (see Chapter 7).
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3.4.2 Sampling from the population

The MSSP requires further assumptions: i) the environment is considered to be
fixed during each WSSP round, such that Sk ∈RN is the random variable that gives
the population’s scores at round k, ii) candidates for each round are obtained by
sampling from the population according to a given sampling function. The process
may have an arbitrary number of WSSP rounds. Therefore, the challenge for the
DM is to improve, or at least adapt, the personnel in the course of the multi-round
process: at the end of any round that is to have selected the b-best items she could
have chosen under the above assumptions and while respecting all the management
constraints described for a single round. We use the notations introduced in Sec. 3.3
and add a subscript k at each variable to refer to a precise round k, for instance nk
is the number of candidates at round k.

Since we want to give the reference set a meaningful contribution, i.e. even when all
of them resigned at round k, we impose Assumption 3 that guarantees that their
absolute ranks do not change drastically from a round to another.

Assumption 3. If Xk,i is the absolute rank of individual i among the population at
round k, then:

∃ε s.t. max
i

(|Xk−1,i−Xk,i|)< |C|ε, ∀k≥ 1, ∀i∈{1, ..., |C|}, (3.8)

where ε� 1, and regardless of the underlying score distribution. |Xk−1,i−Xk,i| ex-
presses how valuable the prior knowledge carried by the reference set is for round k
(the smaller the better).

Example. In Fig. 3.3, are displayed some examples of score distributions, fixed for
Fig. 3.3(a) and changing for all others, i.e. the interesting case where the population’s
scores are evolving from a round to another. This situation may occur when, for
instance, the population gains skill in a particular domain, leading to a shift in the
score distribution; or when the best-skilled job-seekers become even better, while the
worst become worse. In general, the employed selection strategy has to be robust
to such modifications. For this example, we work under Assumption 3 and with
the following choices: S1,j ∼U(0,1), i.e. scores are initially uniformly distributed
between 0 and 1, and Sk,j =Sk−1,j + ξk with ξk∼N (µk,σk) a gaussian noise. The
most commun changes are the drift Fig. 3.3(b), i.e. when the mean of the overall
population shifts, for instance when the entire population gains (or lose) skills as
group; the deflection Fig. 3.3(c), i.e. when the difference in skills increases among
the population; and a combination of the above Fig. 3.3(d) when both phenomena
are observed.

3.4.3 Estimating the quality

In the MSSP, the reference set for round k, is composed of the items that were
previously selected in round k−1, some of which may not be currently available. Set
q̂k to be the estimate of the true quality of the reference set qk. Simple estimations
can be computed by, for instance:

– comparing the reference set of round k to the candidates of round k− 1, k− 2,
etc., just before beginning that selection process;
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0.1, where K = 10 is the number of rounds.

Figure 3.3: Example of evolution of the score distribution at different rounds represented by
different colors k= {1,2,4,6,8,10}

– adjusting the estimation of the quality w.r.t. the current candidates as they ap-
pear;

– a combination of the above.

The investigation of this quantity is out of the scope of this work, hence we assume
that q̂k≈ qk. Nevertheless, we believe that it could be promising to adopt advanced
statistical machine learning methods that would focus on the estimation of qk in the
multi-round setting.

3.5 Conclusion

We start this manuscript with an attempt to unify the many existing definitions of
Sequential Selection Problem, by introducing the formal GSSP that allows for a wide
range of settings, as shown with a few examples. Secondly, we use this generalized
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notations to build the Warm-starting SSP, a novel setting that addresses the cold-
start limitations of standard settings, and for which we provide an offline analysis
of the initial state. Finally, we extend this warm-start option to a multi-round
context, where each round constitues a separate WSSP that starts with at hand,
i.e. as a warm-start, the final selection of the previous round. The warm-start
aspect introduced in the generalized SSP (GSSP) raised some algorithmic questions
regarding the online decisions, particularly in a multi-round setting where an ideal
algorithm would maintain an optimal selection in the course of multiple rounds,
rather than at the scale of a single selection round. For this reason, in the next
chapter we propose a novel algorithm, inspired by the standard Secretary Problem
algorithm, fully suited to any degree of warm-start considered. In addition, the
algorithm is robust to changes in the score distribution, as it was built by considering
the rank-based evaluation criterion proposed in Eq. 3.2.
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Chapter 4

The Cutoff-based Cost
Minimization algorithm

This section presents our novel algorithm for the WSSP problem described in Chap-
ter 3, the Cutoff-based Cost Minimization (CCM) strategy. It takes as input a cutoff
value c∈N that represents the size of the learning phase, i.e. the number of candi-
dates to reject by default, and from which the DM learns valuable information about
the overall sample. Note that this strategy merely constitutes a proposed response
to the WSSP in its most generic form. Thus, its main goal is to perform sufficiently
regardless of the problem parameters. An interested reader might find an algorithm
that is closer to the optimal case, although the latter remains unknown to this day
[23], provided that they consider extreme study cases.

4.1 Algorithm description

4.1.1 Cutoff-based strategy

Inspired by the original Secretary Problem algorithm, we develop the cutoff-based
Cutoff-based Cost Minimization strategy, see Alg. 1. Our motivation for constructing
a cutoff-based strategy relies on the following facts: i) the DM should somehow
define a value above which a candidate might be accepted, value that needs to be
consistent with the candidate sample (and not necessarily with the reference set),
hence the need to explore before making any decision, ii) in a finite-horizon settings
with limited and constrained budget, the DM should not rush into hiring since
decisions are irrevocable, and iii) the learning phase’s size should be fined-tuned to
the reference set quality.

The CCM strategy is the natural warm-start adaptation of the main sequential
selection algorithms in a rank-based setting, also referred to as ordinal (in contrast
to cardinal), for which the DM can only make pairwise comparison between items.
Such algorithms typically define two key parameters, 1) the cutoff value c∈N that
represents the size of the learning phase, i.e. the number of candidates to be rejected
by default, and 2) the acceptance threshold, or simply threshold, learned during the
former phase, and that indicates the value to exceed for selection. In the classical
Secretary Problem algorithm [39], both of these parameters are fixed, and with the
objective to maximize the probability of getting the best candidate, and knowing
the number of candidates n∈N∗, the algorithm is optimal. However, in a multi-
choice setting (b> 1) with the objective to minimize the sum of the selected items
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ranks, the strategy should be slightly adjusted. For instance, in [5] the cutoff value
is not fixed, but tailored to the budget b, while the threshold remains the same
for each candidate. Another no-less efficient approach, described in [8], set a fixed
cutoff (same as in the classical Secretary Problem) but rather considers a dynamic
candidate-wise threshold. In the CCM algorithm, the cutoff value is fine-tuned to
the problem’s parameters, while the acceptance threshold dynamic aspect evolves
according to the warm-start level of the setting, i.e. according to the resignation
number r (see Definition 6). By that, it constitutes a fitted combination of well-
functioning algorithms to the novel warm-start setting. The cutoff value being one
of the key parameter of CCM algorithm, the policy is written π(c) and the regret
φ(c).

4.1.2 Acceptance threshold

Derived from the learning phase, the CCM policy dictates a set of threshold values
specific to each job position (i.e. specific to each referent that filled them) that
candidates need to exceed to be accepted.

In practice, during the selection phase, the initial acceptance threshold for the can-
didates is set to be the score of the b-th best up to the end of the learning phase.
This set, called updated reference set, is defined as Supd

c = (Supd
(i),c)i≤b where each

term belongs to the concatenation of both the referents and the rejected candidates,
i.e. the c first candidates, hence Supd

(i),c ∈ (Ṡ,S1, ...,Sc) s.t. Supd
(1),c> ...>S

upd
(b),c , where

the available referent scores are denoted by Ṡavail = (Ṡ(i))i∈I , with I = {i : Ȧ0,(i) = 1}.
The acceptance threshold should be adapted to the scores of the available referents,
so that no position gets filled by a worse item. Note that, candidates are rejected
by default during the learning phase, hence the acceptance threshold is defined only
during the selection phase. In the rest of the paper, the number of candidates ac-
cepted up to step j (included) is denoted by Ãj =

∑j
i=1Ai. Under these conditions,

the acceptance threshold is defined as follows.

Definition 6. Step-specific acceptance threshold (Sacc.
j ): Score value to beat at step

j > c of the WSSP when the CCM policy is applied with cutoff value c:

Sacc.
j (c) :=

{
Supd

(b),c Ãj <r+
∑c

j=11{Sj ≥S
upd
(b),c};

Ṡavail
((b−l)) otherwise,

(4.1)

The second term in the condition is the number of candidates from the learning phase
that have been added in the updated reference set.

Remark 5. Recall that the DM does not observe item scores (Assumption 1), hence
in the ‘practical threshold’, scores represent the DM’s pairwise comparison between
items seen so far.

Following the definition of the acceptance threshold, the decision variable is therefore
given by:

Aj =1{j > c} 1
{
Ãj <b

}
1{Sj ≥Sacc.

j }, (4.2)

where the second indicator function ensures that no more than b items can be
selected. Understandably, job positions are sequentially reassigned by ascending
rank order of the remaining referents. The CCM algorithm is fully described in
Alg. 1, and an additional visual example is displayed in Fig. 4.1.
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Algorithm 1 The Cutoff-based Cost Minimization policy
Input: the number of b jobs, the number of candidates n , the number of resignations r, the refer-
ence set scores from best to worst Ṡ= (Ṡ(1), ..., Ṡ(b)), the initial vector of reference set availability
Ȧ0 = (Ȧ0,(1), ..., Ȧ0,(b)), and the cutoff value c.
Output: the set of final job assignment (Ȧn,A)

� Learning phase

1: A1,...,c← 0 // reject by default all c first candidates
2: Supd

c ← top_of_rank(b, (Ṡ,S1, ...,Sc)) // b-best from Ṡ and (S1, ...,Sc), in descending value
order

3: nrej←
∑c
j=11{Sj >S

upd
(b),c} // the nb. of candidates among the c first that beat the...

// ...threshold, i.e. here, the worst of the updated reference set
4: Ṡavail← (Ṡ(i))i∈I where I = {i : Ȧj,(i) = 1}1≤i≤b // initialize the selection with the available...

// ...reference set
5: l← 0 // the nb. of jobs assigned so far in the selection

� Selection phase

6: for j= c+1 to n do
7: if l <nrej+r then// set the acceptance threshold for the j-th candidate (see Definition 6)
8: Sacc.

j =Supd
(b),c

9: else Sacc.
j = Ṡavail

((b−l))
10: end if
11: if l < b and (Sj >Sacc.

j or j− l=n−r+1) then
12: Aj← 1
13: if l≥ r then
14: Ȧj,(b−l)← 0 // remove job from a referent
15: end if
16: l← l+1
17: else Aj← 0
18: end if
19: end for

Example. Consider the example of Fig. 4.1 with n= 8 candidates (top line) and
b= 4 job positions to manage. An item with a job position is represented by a blue
circle and a rejected candidate by a red circle. Say the learning phase is of size 2,
i.e. c= 2. The scheme reads from left (j= 0) to right (j=n= 8), i.e. each column
lists the items seen so far ordered by absolute ranks (rank 1 is the best). Initially,
the candidates with absolute ranks Ẋavail = (2,8,10) are available, whereas the ref-
erent with rank 4 resigned. Note that, in terms of ranks, the condition Sj >Sacc.

j ,
corresponds to the rank-based condition Xj <R(Sacc.

j ). Recall that the DM pro-
ceeds by pairwise comparison, i.e. instead of observing the absolute ranks (2,8,10)
she initially observes relative ranks (1,3,4), and update her knowledge with each
incoming candidate. According to the CCM algorithm, the updated reference set is
the set of the b= 4 best items seen at the end the learning phase (j= c= 2). There-
fore the absolute ranks of the updated reference set are R(Supd

2 ) = (2,3,4,8), and
hence the initial rank-based acceptance threshold for the third arriving candidate
is R(Sacc.

3 ) = 8. Again, the DM does not know this absolute rank at this stage, all
she knows is that a candidate gets accepted if he compares favorably to the item
associated with absolute ranks 8.

The first candidate of the selection phase (with absolute rank 9) is worse than the
item associated with absolute ranks 8: he is rejected, i.e. A3 = 0. The following
candidate with absolute rank X4 = 7 beats the acceptance threshold this time, and
takes the job that used to be assigned to the referent with rank 4, who initially
resigned. The 5-th candidate is also accepted since X5 = 6, and takes the job from
the referent with rank 10. When the 7-th candidate gets accepted, the rank-based
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Figure 4.1: A step-by-step deployment of the CCM policy for the WSSP. The indicated
candidate ranks refer to the true ranking of all twelve items, referents and candidates. The
top line gives the sequence of incoming candidates. The scheme reads from left (j= 0) to right
(j=n= 8), i.e. each column lists the items seen so far order by absolute ranks (rank 1 being the

best).

acceptance threshold becomes R(Sacc.
8 ) = 2, which is the rank of the worst (and here,

only) available referent that has not been replaced yet. In fact, it would be clearly
suboptimal to leave the acceptance threshold to the item associated to rank 8, since
it would mean accepting the last candidate with rank 5 and therefore replace referent
with rank 2. In the end, items with absolute ranks (1,2,6,7) have a job positions,
and only at this stage can the DM knows how well she performed, since relative and
absolute ranks are the same.

Remark 6. Due to the finite horizon, the DM might select candidates by necessity,
regardless their quality. This may occur in order to prevent having vacant positions
in the output when the very end of the sequence is reached.

4.2 Optimal CCM

In this section we provide an approximation of the optimal parameters of the CCM
algorithm, without claiming that it is the best achievable, but with strong empirical
guarantees that it is very close to the true parameters. The optimal CCM uses the
c= c∗ that minimizes the expected regret.

4.2.1 Optimal CCM for q=1/2

Analytical study

Let us now focus on the CCM algorithm and first consider that, on average, referents
have a medium quality i.e. q= 1/2. Indeed, the analytical computation of the main
variables of the problem is more challenging when q 6= 1/2. However, in Sec. 4.2.2)
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we present the translation method that ‘translates’ any setting of arbitrary q to one
where q= 1/2, for which we have the following analytical results.In the analysis,
the rank-based acceptance threshold R(Sacc.

j ) is replaced by its expectation, γj :=
E[R(Sacc.

j )]. All proofs of this subsection that are not in the main text can be found
in Sec. Technical proofs at the end of this chapter.

Lemma 1. Let a WSSP with n candidates, and a reference set of size b. Us-
ing Eq. 4.2, a candidate is accepted if his rank beats the rank-based threshold, γj =
E[R(Sacc.

j )], and less than b candidates have been accepted. The probability for the
number of accepted candidates at step j to be smaller than b, gc,j(b) :=P(Ãj−1<b),
is such that: ∣∣∣∣∣ P(Ãj−1<b)−

b−1∑
i=0

λij−1e
−λj−1

i!

∣∣∣∣∣< 2

j∑
i=1

p2
i , ∀ c+1≤ j≤n, (4.3)

where pj :=P(Xj <γj) =
γj−1
n+b and λj−1 =

∑j−1
i=c+1 pi. The proof uses the fact that,

the random variable Z̃j in Ãj = min(Z̃j , b) follows approximately a Poisson distri-
bution with parameter λj, and the bound is a straightforward application of [60].

Theorem 1. Applying the CCM algorithm with parameter c as cutoff value, given
that r referents resigned, and using Lemma 1, the WSSP exhibits the following fea-
tures:

• The expected rank-based acceptance threshold for candidate j is given by
γj :=E[R(Sacc.

j )] s.t.:

γj = γgc,j(∆)+
γ0(b+1)

b(b−r+1)

(
b−

j−1∑
i=1

γi−1

n+b
gc,i(b)

)
(1−gc,j(∆)), (4.4)

where γ :=E[R(Supd
(b),c)] = b(b+n)

b+c , ∆ = r+cγ−1
n+b and γ0 is given in Proposition 1.

• The expected number of new hires at the end of the selection Ãn≤ b:

E[Ãn] =

n∑
j=1

γj−1

n+b
gc,j(b) (4.5)

• The expected regret function to minimize, i.e. expected average rank of the selected
items:

E[φ(c)] =
1

(n+b)

n∑
j=c+1

gc,j(b)
γj(γj−1)

2
+

γ0(b+1)

2b(b−r+1)
(b−E[Ãn])(b+1−E[Ãn])−E[φoff],

(4.6)

where E[φoff] is the expected minimal offline loss defined in Proposition 2.

Eq. 4.6 holds a good approximation of the expected regret of WSSP when q= 1/2,
see Fig. 4.2. Recall that we want to find the optimal cutoff value c∗= argmin

c
E[φ(c)]

which is equivalent to finding c∗ s.t. ∂
∂cE[φ(c)]|c=c∗ = 0. Unfortunately, this equation

is analytically intractable unless approximations or restrictive assumptions are made,
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however we can easily spot c∗ numerically by tracking the lowest point of the curve
E[φ(c)] using Eq. 4.6, ∀b,∀n, and store the results in c∗(b,r,n).

Remark 7. Note that in practice Ãn is actually equal to max(Ãn, r) to avoid empty
positions at the end of the selection. An approximation of E[max(Ãn, r)] can be
found in the Appendix, as well as an empirical verification.

Example. Imagine a WSSP instance where n= 100 candidates are going to be
sequentially interviewed. The DM handles b= 5 job positions, each of them already
filled by available referents (i.e. r= 0) of average quality q= 0.75 w.r.t. to the can-
didates next to come. Using Theorem 1, the length of the learning phase is c∗=
b38.36c= 38, the expected average rank of the selected items is E[φ(c∗)]/5 = 2.60,
and the expected number of accepted candidates is E[Ãn] = 0.997. The latter is
low since the initial quality is quite good, hence the DM expect to fire only his
worse referent (available referent). Now, with the same setup of WSSP parameters
except with full resignations, i.e. r= b, we get c∗= b28.27c= 28, E[φ(c∗)]/5 = 3.40
and E[Ãn] = 5, which is coherent with the fact that all positions are initially empty.
The length of the learning phase is reduced compared that of the previous exam-
ple, implying a less competitive acceptance threshold. Justifiably, the DM is less
demanding on the quality of the accepted items, to avoid the risk of having to select
last incoming candidates by default, called a failure (see Sec. 4.3).

Empirical verification

In order to guarantee the accuracy of our analytical approximation E[φ(c)] in Eq. 4.6,
we simulate each WSSP scenario 10000 times, i.e. for a fixed number of candidates
n= 100 and a fixed reference set quality q= 1/2. The top row of Fig. 4.2 displays
a heatmap of the average empirical regret (simulated) w.r.t. the number of jobs
b (x-axis) and the value of the cutoff c (y-axis). The white plain line in each
heatmap follows the path of the lowest simulated value of the heatmap, referred
to as c∗sim(b) = c∗sim. These plots should be put in comparison with those in the bot-
tom row which show the heatmaps of the expected regret according to our analysis.
The white dashed line follows again the path of the lowest heatmap value, which we
denote as c∗(b) = c∗. From Fig. 4.2, it becomes clear that the law of large number
complies with the lemmas and propositions of Sec. 4.2 which are consistent in these
experiments. The results are then stored in a table of optimal cutoffs, c∗(b,r,n) for
q= 1/2, of dimension 3 each respectively corresponding to the number job positions,
resignations and candidates. An overview is presented in Tab. 4.1.

b= 1 b= 5 b= 10 b= 15 b= 20 b= 25 b= 30 b= 35 b= 40 b= 45 b= 50

r= 0 19 39 44 45 45 44 42 41 39 36 33
r= 0.25b 15 38 43 44 43 42 41 40 39 37 35
r= 0.50b 14 36 41 42 42 41 39 38 36 35 33
r= 0.75b 14 34 39 39 38 37 36 34 32 30 28
r= b 13 30 34 34 33 32 30 28 26 23 21

Table 4.1: Optimal cutoff c∗(b,r) for n= 100 candidates and an initial quality q= 1/2.
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Figure 4.2: Comparative heatmaps for the average empirical regret (left column) and the
expected regret (right column) derived from Theorem 1 over different resignation numbers r=
{0,0.1b,0.5b,b} from top to bottom line, and all for reference set quality q= 1/2. In each case,
the heatmap of the regret is presented over the parametrization of the cutoff value c and the

budget of resources (jobs), b.
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Figure 4.3: The optimal cutoff w.r.t. the number of jobs b (x-axis), according to the simulations
in plain lines and to our analytical approximation (see Eq. 3.2) in dashed lines for different values

of the relative quality of the reference set q= { 1
2
, 2

3
, 3

4
, 4

5
}, for n= 100 candidates.

4.2.2 Optimal CCM for arbitrary q

The translation method

In Sec. 4.2, we derived an analytical expression for E[φ(c)] given a relative quality
of the reference set q= 1/2. However, when q 6= 1/2, the analytical computation of
the WSSP’s main variables is highly complex. We introduce a rather simple trick to
efficiently overcome this difficulty. More specifically, we provide a way translate any
setting of arbitrary q to a γ0-similar setting where the quality of the reference set
is set to be q= 1/2 and for which we can use the results presented in Sec. 4.2. We
introduce a notion of similarity between two different settings’ reference set γ0 (see
Definition 7) and come up with what we call as the translation method described
below (see Proposition 3).

Definition 7. γ0-similarity: Suppose each WSSP instance, denoted by WSSP x,
starts with bx jobs positions filled with the available referents Ẋavail

x , and thereafter
interviews nx candidates using CCM (see Alg. 1) with the optimal cutoff value c∗x.
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Algorithm 2 Translation method between two WSSP settings
Input: the WSSP setting of interest, WSSPt (subscript t for ‘target ’ and, below, s for ‘source’),
and its main parameters: nt candidates, bt jobs, a reference set of a relative rank-based quality qt
from which rt resigned, and the vector c∗(bt,n) with the optimal cutoffs for any sequence length
n, for q= 1/2, as described in Theorem 1.
Output: the optimal cutoff c∗t for the WSSPt setting.

� Find a γ0-similar setting to WSSPt, let that be WSSPs

1: Require bs = bt = b, as in Definition 7
2: Impose qs = 1/2
3: Compute ns = b(nt+b−1) 1−qt

1−qs −b+1c, as suggested by Proposition 3

� Translate the setting WSSPs to WSSPt

4: Find the best cutoff value c∗s = c∗(b,ns) from the input vector
5: Compute c∗t = bc∗s nt+b

ns+b
c, according to Proposition 3

Then, the settings of two instances, WSSPx and WSSPy, are said to be γ0-similar
if their reference sets (even those unavailable) have the same ranks w.r.t. the rest of
the sample, regardless nx and ny:

WSSPx ≡(γ0) WSSPy if


bx = by,

rx = ry,

Ẋx = Ẋy⇒ γ0;x = γ0;y.

(4.7)

Proposition 3. Translation method: If WSSPx ≡(γ0) WSSPy, then:

c∗y = c∗x
ny+b

nx+b
and nx = (ny+b−1)

1−qy
1−qx

−b+1. (4.8)

Alg. 2 describes the overall translation algorithm. The plots in Fig. 4.3 indicate the
large agreement between the optimal cutoffs computed by our analytical translation
method and the cutoff empirically computed through simulations.

Examples. Let us illustrate the translation method with two examples.
� Imagine the DM deals with WSSPt, where no referent resigned, with nt = 100,
bt = 15, qt = 0.8, and she is interested in knowing c∗t . One possible γ0-similar setting,
WSSPs, has the following features qs = 1/2 and bs = bt = b= 15. Using Proposition 3
we get ns = b(nt+b−1) 1−qt

1−qs −b+1c= b114·0.2
0.5 −14c= 31; then using Theorem 1 we

compute c∗s numerically for ns = 31 (which is feasible as long as qs = 1/2) and get
c∗s = 9. Finally we obtain c∗t = bc∗s nt+bns+b

c= 22; the DM rejects the first c∗t
nt

candidates,
that is 22% of the total sample, before starting to select.

� Another example is made using a WSSPt setting where nt = 100, bt = 1, r,1 = 0, and
qt = 0.7. A γ0-similar setting, WSSPs, is when qs = 1/2, and bs = bt = b= 1. Using
Proposition 3 we get ns = b100·0.3

0.5 c= 60; then using our numerical result we get c∗s =

7. Finally, c∗t = bc∗s nt+bns+b
c= 11. In Sec. 4.2.2 we show that c∗=

√
n+1

2(1−q+ 1
n)
−1, ∀q,

which in this case, reads
√

nt+1

2
(

1−qt+ 1
nt

)−1 = 11. This is consistent with the result of

the presented translation method between WSSP settings.

Empirical study . For a fixed quality q, it is worth pointing out that c∗(b) is not a
monotonic function but rather has two distinct regimes indicated by the sign(∂c

∗

∂b ).
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This can be better explained as the following trade-off. Suppose fixed n and r (see
Fig. 4.3) and that we start with b= 1: increasing b would mean more jobs to assign,
hence, the DM should very quickly (w.r.t. budget increase) increase the length of
the rejection phase to make sure that she learns sufficiently before taking the many
decisions (regime ∂c∗

∂b ≥ 0). From a point and further, though, increasing b would
also mean a) to have a less competitive threshold (which depends on the quality of
the worst current referents), b) that the whole process becomes less selective as less
and less candidates need to be rejected, and c) to have a higher expected number of
resignations (if r > 0), which makes the exploration for the DM less safe. Hence, the
DM should start shortening her learning phase (regime ∂c∗

∂b < 0). The optimal cutoff
values get lower as the number of resignations r increases (see the curves across
the plots of Fig. 4.3), as well as with the decrease of reference set quality q (see the
compared curves in each plot of Fig. 4.3).

Relation between optimal CCM and q

Competitive ratio

As stated earlier, the optimal online selection strategy in the rank-based setting
remains – to this day – unknown for a reasonable number of candidates to evaluate.
In such cases, any proposed online strategy is rather compared to the offline strategy
that selects the b-best available items. A standard approach in the SSP literature
consists of computing the competitive ratio α that quantifies the distance between
an online algorithm’s payoff ALG and that of the associated offline algorithm OPT,
s.t.:

E[ALG]≥αOPT. (4.9)

Proposition 4. In the full warm-start setting, i.e. for r= 0 resignations and a
preselection of size b with average rank γ0, the competitive ratio α of the CCM
algorithm is given by:

α=
c∗

n+b
ln

(
n+b

c∗

)(
1− b2

2γ0

)
+
b2

2γ0
, (4.10)

and as such, α≥ 1/e. This means that the algorithm is at least 1/e-competitive.

Observe that, as γ0 gets higher, which means that the referents’ quality deteriorates,
the standard cold-start setting is retrieved, as well as the 1/e competitive ratio
(retrieved by replacing c∗ by (n+b)/e).

4.2.3 Closed-form results for b=1

Imagine the following setup of WSSP parameters: the DM handles a single job posi-
tion (b= 1) already occupied by a referent (r= 0), with a given rank γ0 ∈{1, ...,n+1}
compared to candidates next to come, and that is known upfront. From Definition 4,
the DM also knows his quality q= 1− γ0−1

n ∈]0,1[. She then deploys the aforemen-
tioned CCM algorithm and by that must decide the length of the learning size, i.e.
the value of c. In this case, the regret in Eq. 3.2 becomes φ(c) = Ẋ(1)Ȧn,(1)+XTA−1;
the last term being the best rank an offline strategy could achieve, here the rank
1. Results from Theorem 1 are adapted to this case, and lead to the following
Theorem 2.
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Theorem 2. Let one job position be initially occupied by a referent of given rank
γ0 ∈{1, ...n} compared to the n∈N∗ candidates next to come. Applying the CCM
policy with a learning phase of size c≤n, the WSSP exhibits the following features:

• Expected rank of the best item (referent or candidate) seen up to the end of the
learning phase:

γ :=E[R(Supd
(1),c)] = min

(
γ0,

n+1

c+1

)
. (4.11)

• Expected number of new hires at the end of the selection Ãn:

E[Ãn] = 1−
(

1− γ−1

n+1

)n−c
. (4.12)

• Expected regret, i.e. the expected rank of the item that gets the job position:

E[φ(c)] =
γ

2
− γ

2

(
1− γ−1

n

)n−c
+γ0

c

n
−1. (4.13)

• Optimal cutoff value that minimizes the expected regret:

c∗=


√

n+1
2( γ0

n )
−1 γ0≥ 3;

0 γ0 = {1,2}.
(4.14)

i.e. c∗= argmin
c

E[φ(c)].

Note that, with q= 1/2 and n� 1 this gives c∗=O(
√
n), see [13]. The proof of the

theorem is detailed in Sec. Technical proofs at the end of this chapter. Also, when
γ0 = {1,2} the problem is trivial, either γ0 = 1 and the DM already has the best item
at hand or γ0 = 2 and the DM has the second best, hence should hire any candidate
that beats him to get the lowest possible regret.

Example. Let n= 100 be the number of candidates, and a referent that occu-
pies the job position with rank γ0 = 25. First, his quality is of q= 1− 25−1

n = 0.76,
which is quite better than average. Second, we compute the optimal cutoff by

c∗=

⌊√
100+1
2( 25

100)
−1

⌋
= b13.21c= 13; hence the DM should reject the first 13 candi-

dates before starting to select. Following the CCM policy’s procedure, the initial
acceptance threshold is set to be bmin(25, 101

14 )c= 7; i.e. no candidate with absolute
rank worse than 7 should be accepted during the process. Using those results, the
regret is expected to be γ

2 +γ0
c
n −1 = 7

2 +24 13
100 −1 = 5 which is far lower than the

initial rank 25 of the referent.

4.3 Adjusted policy: low failures-CCM

4.3.1 Algorithm description

In real-life scenarios the proportion of referents that resign compared to those who
stay is often relatively small; therefore, in the presented recruitment context, the
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more relevant results of this work concern situations where the number of resigna-
tions is small (e.g. 2r≤ b). However when the latter is quite high (i.e. most job
positions are empty), the DM might have to accept last arriving candidate (s) in
order to fill vacant positions, this event is called a failure (described in Definition 8)
and is similar to hiring random candidate (s) which ends up increasing the regret.

Definition 8. Failure and failure rate (fj): A failure at step j is the event of accept-
ing a last incoming candidate by default (to fill empty job positions) whose score did
not beat its associated threshold Sacc.

j , i.e. fj =1{j−Ãj−1 =n−r+1}1{Sj <Sacc.
j }.

The failure rate ρf is defined as the sum of the number of failures divided by the
number of tests.

Simulations show that in some settings the failure rate is indeed significant, for in-
stance it reaches ρf = 58% for b= 20, r= b, and q= 0.81. This phenomenon appears
due to the high quality of the updated reference set, i.e. the threshold becomes too
competitive and hence difficult to beat for most candidates. Our idea to mitigate
this effect is to estimate the expected number of accepted candidates at step j, de-
noted by µ̂j(c,r), given that the total number of accepted candidates (i.e. at the end
of the selection) is greater or equal to the number of resignations r; formally that
is: µ̂j(c,r) :=E[Ãj | Ãn≥ r], ∀j, i.e. there is no failure (see Proposition 5).

Proposition 5. The expectation of the number of candidates accepted at step j given
that there is no failure is given by:

E[Ãj | Ãn≥ r] =
1

1−gc,n+1(r)

(
b(1−gc,j+1(b))+

b−1∑
k=0

k(1−gj,n+1(r−k))
λkj e
−λj

(k−1)!

)
,

(4.15)
where λj =

∑j
i=c+1

γi−1
n+b and gi,j(x) :=P(Ãj−1−Ãi<x) (see Lemma 1).

Proposition 6. In the special case where b= 1 and r= b= 1, Proposition 5 becomes:

E[Ãj | Ãn = 1] := µ̂j =
1−(1− γ−1

n )j−c

1−(1− γ−1
n )n−c

, (4.16)

V[Ãj | Ãn = 1] = µ̂j− µ̂2
j ; (4.17)

where γ= min
(
γ0,

n+1
c+1

)
.

We use Proposition 5 to compute µ̂j(c∗, r), ∀j ∈{1, ...,n}, and compare it to the
current number of accepted candidates at step j (included), denoted by Ãj . From
this comparison we introduce the notion of zone in Definition 9, that we use to
adjust the threshold. In Fig. 4.4, that zone is shaded in gray, from light to dark,
according to the width of the zone.

Definition 9. Zone (Z): Interval around the expectation of the number of accepted
candidates inside which the threshold γj is identical to that of CCM. It is defined
between the two curves µ̂j +wj and µ̂j −wj where wj =w(j) is the function that
defines the zone’s thickness at step j.
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Figure 4.4: Expectation of the number of candidates accepted so far for n= 100 candidates
given that no candidate was accepted by default (black line). Number of jobs is b= 5 and the
reference set quality is q= 0.5. The zone (see Definition 9) is gray-shaded with, from light to

dark, wj =
{
b
(
1− j

n

)
, b

2

(
1− j

n

)
, 1− j

n

}
.

The threshold of this adjusted algorithm low failures-CCM (lf-CCM) is defined as:

ˆSacc.
j(c) :=


Supd

(b),c, µ̂j−1−wj−1≤ Ãj−1≤ µ̂j−1 +wj−1 (in the zone),

Supd

(m+D+
j−1),j

Ãj−1< µ̂j−1−wj−1 (below the zone),

Supd

(m−D−j−1),j
Ãj−1> µ̂j−1 +wj−1 (above the zone);

(4.18)
where Supd

(i),j ∈ (Ṡ,S1, ...,Sj) is the score of the i-th best seen out of the reference set

and up to the j-th candidate s.t. Supd
(1),j > ...>S

upd
(b),j , and m≤ b is s.t. Supd

(m),j =Supd
(b),c.

The D+
j−1 and D−j−1 functions define how the threshold will change provided that

a point (j, Ãj) is outside the zone Z. More precisely, when that point lies in the
zone, the threshold is constant and equal to Supd

(b),c. When it is below (resp., above)
the zone, then the threshold for the next candidate is reduced (resp., increased) by
bD+

j c (resp., bD
−
j c) positions from the former, as many times as needed until the

point is inside the zone again, and the threshold goes back to the original one (i.e.
Supd

(b),c) for the next candidate. Finally, dj =D+
j −D

+
j−1 =D−j −D

−
j−1 is the increment

in the position each time a point has been above (resp. below) the zone in a row.
For simplicity, we assume that an optimal cutoff value c∗ for CCM is also an optimal
cutoff value for lf-CCM.

4.3.2 Empirical study

Several points can be made from the comparison of CCM and low failures-CCM.
Firstly, adjusting the threshold using lf-CCM reduces effectively the number of fail-
ures, as well as the average regret (see Tab. 4.2), and hence lf-CCM is indeed more
robust to resignations. Concerning the function wj that gives the thickness of the
zone in lf-CCM, after a few trials we set it to the simple enough and efficient (com-
pared to more complex options): wj = b

2

(
1− j

n

)
.
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Strategy Prob. to resign
r/b

Failure rate (%)
ρf

Average regret
〈φ〉(c∗)

CCM 0.5 41.4% 6.05
1 57.8% 7.55

lf-CCM
wj = b

2

(
1− j

n

)
, dj = 1

0.5 1.7% 3.38
1 4.5% 4.02

lf-CCM
wj = b

2

(
1− j

n

)
, dj = e(j−v1)/v2

0.5 0.80% 3.15
1 2.70% 3.67

Table 4.2: We work with b= 5 jobs and a quality of reference set q= 0.9. For lf-CCM with
exponential increment, after empirical tuning, we use v1 = 82 and v2 = 14.

Finally, for Dj , the other parameter of lf-CCM that stipulates how the threshold
is changed when a point (j, Ãj) is outside the zone, we simulated using a simple
function that decreases (respectively increases) the threshold by one position at
a time, namely dj = 1, ∀j ∈{1, ...,n}, hence D+

j =λ+
j − j + 1. Having a constant

increment might not be the best option because it does not quantify how many
selection steps (i.e. candidate) are left, therefore we switch for an exponential incre-
ment dj = e(j−v1)/v2 , with v1 and v2 empirically computed constants. Its is indeed
more efficient at lowering both the regret and the failure rate ρf (see Tab. 4.2).

4.4 Simulations in a multi-round setting

4.4.1 The impact of the cutoff value

In the previous section we created the Cutoff-based Cost Minimization that aims
at selecting good candidates in a single-round horizon. In this section, we intend
to plug it in the multi-round setting (MSSP) introduced in Chapter 3 in order
to iteratively improve the DM’s selection. For the simulations of this section we
use the following parametrization. Firstly, each multi-round simulation considers a
population of |C|= 1000 items and for all rounds we set the number of candidates
to n= 100. Secondly, the resignation probability Prk = Pr ∈ [0,1] is considered to be
known in advance by the DM, and is kept constant for every round k and equal for
all referents.

Cutoff-choice, number of jobs and score distribution. Fig. 4.5 (b= 5) and
Fig. 4.6, (b= 50) display the average rank-based regret φk w.r.t. the round num-
ber k for different resignation probabilities. We note CCM∗ the Cutoff-based Cost
Minimization algorithm with optimal size of learning phase c= c∗. We first observe
that, regardless the resignation probability, our proposed cutoff c∗ (red curves) out-
performs other alternatives heuristics such as the case c= 0, hence the importance
of tuning the cutoff parameter c. As presented, MSSP allows for referents to quit
their job at the beginning of a round, with probability Pr. Notice that, the cut-
off c=n/e is a decent alternative to c= c∗ when Pr = 0 (see Fig. 4.5(a)), although
failing at reducing the regret when Pr = 1 (see Fig. 4.5(c)). Many resignations can
occur when the environment changes abruptly (e.g. company’s future, changes in
the job market, etc.), or when the time-interval between two subsequent rounds is
very long and more referents may happen to resign.
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Figure 4.5: Average regret φk w.r.t. the round number k, for n= 100 candidates, b= 5 jobs
positions, and the score distribution is Si,k ∼U(0,1). Each subfigure corresponds to a different

number of resignations r= {0,0.1b,0.5b,b}.

In Fig. 4.7, we use another underlying score distribution for the candidates, namely
an exponential distribution Exp(1). We still display the rank-based regret, which
shows that the CCM has consistent behavior, and is robust to a change in the
considered score distribution.

Resignations. Another observation on Fig. 4.5, Fig. 4.6 and Fig. 4.7 is that CCM
seems to struggle to make the regret converge towards zero, and as stated in Sec. 4.3
this effect is a consequence of being forced to select the last candidate(s) in order
to assign all vacant jobs (i.e. failure), hence the low failures-CCM. A comparison
of CCM and lf-CCM can be found in Fig. 4.8 and illustrates the fact that lf-CCM
is more efficient at improving the selection through rounds than CCM, although it
requires more adaptation from the DM.
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Figure 4.6: Average regret φk w.r.t. the round number k, for n= 100 candidates, b= 50 jobs
positions, and the score distribution is Si,k ∼U(0,1). Each subfigure corresponds to a different

number of resignations r= {0,0.1b,0.5b,b}.

4.4.2 Comparison with a few relevant algorithms from the litera-
ture

In Sec. 2.3.2 we presented a few relevant algorithms that are adapted to the multi-
choice problem. Here, those algorithms are implemented in a MSSP setting, and
compared against the CCM∗ algorithm. In addition and when the context allows
it, the parameters involved are translated according to the notations introduced in
this chapter.

– KLEINBERG (2005): The acceptance threshold for the j-th arriving candidate
is s.t. τj =Supd

(l),m , ∀j >m; where m∼Binom(n,1/2) and l= bb/2c.

– OPTIMISTIC (2007): The algorithm is cutoff-based, and takes as a cutoff value
c= bn/ec. The acceptance threshold τj is dynamic and is equal to the relative
rank of the b-th best recorded during the learning phase when no candidate has
been accepted yet, i.e. τj =Supd

(b),c for Ãj = 0, the b−1-th best when one candidate
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Figure 4.7: Average regret φk w.r.t. the round number k, for n= 100 candidates, b= 5 jobs
positions, and the score distribution is Si,k ∼Exp(1). Each subfigure corresponds to a different

number of resignations r= {0,0.1b,0.5b,b}.

has been accepted, i.e. τj =Supd
(b−1),c for Ãj = 1, etc. up to the last candidate

accepted.

– SINGLE-REF (2019): The algorithm is cutoff-based, and takes as inputs a cutoff
value c and a fixed acceptance threshold τj , both empirically optimized according
to the number of resources b. For instance, when b= 5, c= 0.2525 n and τj =

Supd
(2),c, i.e. each candidate should beat the second best recorded during the learning

phase, and when b= 50, c= 0.1536 n, τj =Supd
(9),c. A wide table of these optimized

parameters is provided in the paper.

Simulation results. Fig. 4.9 displays the average regret (rank-based) of each
algorithm using two different underlying score distributions, namely uniform, i.e.
Sj,k∼U(0,1),∀j,∀k (left column) and Gaussian, i.e. Sj,k∼N(0,1),∀j,∀k (right col-
umn). We also add Fig. 4.10 for a score-based version of the regret for the same
simulations. The CCM∗ algorithm (red curve) outperforms other existing strategies



64 Chapter 4. The Cutoff-based Cost Minimization algorithm

5 10 15 20

0

2

4

6

8

10

12

5 10 15 20

0

2

4

6

8

10

12

5 10 15 20

0

2

4

6

8

10

12

(c) Pr = 0.5

5 10 15 20

0

2

4

6

8

10

12

(d) Pr = 1

Figure 4.8: Average regret φk w.r.t. the round number k, for n= 100 candidates and b= 5
job positions. The score distribution is Si,k ∼U(0,1). The plain red curve uses CCM when all
others use lf-CCM. The parameters for the curve with triangle markers are v1 = 82 and v2 = 14.

in the literature in this multi-round setting. Note that, the OPTIMISTIC strat-
egy (for which c=n/e) is a decent alternative to CCM∗ when r= 0, i.e. Pr = 0
(see Fig. 4.9(a)), although failing at reducing the regret when r= b, i.e. Pr = 1 (see
Fig. 4.9(c)). As a final remark, observe that in this multi-round setting a dynamic
threshold, as in OPTIMISTIC (orange curve), always performs better than the fixed
threshold used in SINGLE-REF (yellow curve).

4.5 Conclusion

Following the well-known SP, we developed a cutoff-based strategy, the Cutoff-based
Cost Minimization (and the low failures-CCM improved version), composed of a
learning phase and a selection phase. Setting the optimal length of the former ac-
cording to the number of initially empty jobs is an intriguing question for which we
brought interesting and not always straight to see results. The rank-based regret
function that we used in the WSSP setting enables our algorithm to be efficient for
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Figure 4.9: Average rank-based regret φk w.r.t. the round number k for a budget of b= 5 jobs
and n= 1000 candidates. A different resignation probability is used in each row, namely: Pr = 0

(r= 0)(top row), Pr = 0.5 (middle row) and Pr = 1 (r= b= 5) (bottom row).

arbitrary candidate scores. We approximate analytically this objective function by
deriving the expectation of the main parameters of the problem (e.g. the acceptance
threshold, the number of accepted candidates, the regret, etc.). Secondly, we imple-
mented CCM in a multi-round framework (MSSP). Such a process was motivated
by the natural needs of real-world recruitment processes that are regularly trying to
improve the personnel of an organization or a company.
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Figure 4.10: Average score-based regret φk w.r.t. the round number k for a budget of b= 5
jobs and n= 1000 candidates. A different resignation probability is used in each row, namely:

Pr = 0 (r= 0)(top row), Pr = 0.5 (middle row) and Pr = 1 (r= b= 5) (bottom row).

The conducted simulations are consistent with our analytical work and demonstrated
that CCM is efficient in reducing the regret at the course of the multi-round process
while being robust to scores, resignations, or changes in the number of jobs.
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4.6 Appendix – Technical proofs

Proof of Lemma 1. Set pj =P(Xj <γj), Zj ∼Bernoulli(j−c,pj), and Z̃j =
∑j

i=c+1Zi.
Thus:

P(Ãj−1<b) =P
(
min

(∑j−1
i=c+1Zi, b

)
<b

)
=P

(∑j−1
i=c+1Zi<b

)
=P(Z̃j−1<b).

(4.19)
We have q= 1/2, hence (Ẋ,X) is uniformly distributed in {1, ...,n+b}. Therefore,
pj =

γj−1
n+b and since j≤n, j→∞⇒n→∞ thus, lim

j→∞

∑j
i=c+1(γi−1

n+b )2 = 0. Therefore

lim
j→∞

∑j
i=c+1 p

2
i = 0, in other words, the more candidates there are, the smaller the

probability for each of them to be accepted. Set σ2
j =
∑j

i=c+1 p
2
i and λj = pc+1+...+

pj . From Le Cam’s theorem [78, 100] we have
∑∞

k=0

∣∣∣∣P(Z̃j = k)− λkj e
−λj

k!

∣∣∣∣< 2
∑j

i=1 p
2
i ,

i.e. Z̃j follows approximately a Poisson distribution with parameter λj , and since
lim
j→∞

σ2
j = 0, the bound gets tighter as j→∞.

Proof of Theorem 1. We handle separately:

• First, we investigate the rank-based expected threshold to beat for the first in-
coming candidate just after the learning phase, γ :=E[Supd

(b),c]. The proof is done
by backward induction. We first consider the case where the number of rejected
candidates c is s.t. c=n; the updated reference set is composed of the b-best items
of (Ẋ,X) since every candidate has been rejected and their scores are stored in the
updated reference set. Thus γ(c=n) = b. Let us go one step ahead and consider
the case where c=n−1, which implies that γ= b if the candidate that has not
been examined is not among the b-best items, and b+1 if he is. Hence:

γ(c=n−1) = b
c

b+c
+(b+1)

b

b+c
,

and one more step ahead:

γ(c=n−2) = b

(
c

b+c

)2

+2(b+1)
b

b+c

c

b+c
+(b+2)

(
b

b+c

)2

,
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By recursion, we get:

γ(c) =

n−c∑
m=0

(
n−c
m

)(
c

b+c

)n−c−m( b

b+c

)m
(b+m)

=
1

(b+c)n−c

n−c∑
m=0

(
n−c
m

)
cn−c−mbm(b+m)

=
b

(b+c)n−c

n−c∑
m=0

(
n−c
m

)
cn−c−mbm+

1

(b+c)n−c

n−c∑
m=0

m

(
n−c
m

)
cn−c−mbm

=
b

(b+c)n−c
(b+c)n−c+

b(n−c)
(b+c)n−c

(b+c)n−c−1

⇔ γ(c) =
b(n+b)

b+c
.

The acceptance threshold is replaced by its expectation, in particular γ :=E[Supd
(b),c].

Hence δ= r+
∑c

j=11{Xj <S
upd
(b),c} becomes E[r+

∑c
j=11{Xj <γ}], i.e. ∆ :=E[δ] =

r+
∑c

j=1P(Xj <γ) = r+cγ−1
n+b . Then, the evolving threshold is γj = γE[1{Ãj−1<∆}]+

E[Ẋavail
(b−Ãj−1)

1{Ãj−1≥∆}]. In order to use the fact that E[Ẋavail
(l) ] =E[Ẋavail

(1) ]l,

∀l∈{1, ..., b−r}, in the proof we approximate Ẋavail
(b−Ãj−1)

by Ẋavail
(b−E[Ãj−1])

by con-

sidering that Ãj has a small variance, which is given by σ2
j−1. Therefore:

γj = γE[1{Ãj−1<∆}]+E[Ẋavail
(b−E[Ãj−1])

]E[1{Ãj−1≥∆}]+o(σ2
j−1)

= γP(Ãj−1<∆)+
γ0(b+1)

b(b−r+1)
(b−E[Ãj−1])P(Ãj−1≥∆)+o(σ2

j−1)

We have E[Ãj ] =
∑j

i=c+1E[Ai] =
∑j

i=c+1P(Ai = 1) =
∑j

i=c+1P(Xi<γi)P(Ãi−1<
b) ; hence:

γj = γgc,j(∆)+
γ0(b+1)

b(b−r+1)

(
b−

j−1∑
i=1

γi−1

n+b
gc,i(b)

)
(1−gc,j(∆))+o(σ2

j−1).

where gc,j(x) :=P(Ãj−1<x) is computed using Lemma 1.

• The score-based acceptance threshold τj is replaced by its expected rank-based
equivalent, γj , hence Eq. 4.2 becomesAj =1{j > c}1{Ãj−1<b}1{Xj <γj}, hence:

E[Ãn] :=

n∑
j=1

E[Aj ] =

n∑
j=1

P(Aj = 1) =

n∑
j=1

P(Xj <γj)P(Ãj−1<b)

⇔ E[Ãn] =

n∑
j=1

γj−1

n+b
gc,j(b).

Recall that from the definition the second bullet point, Ãn = max(Ãn, r), thus in
practice we use the following approximation E[Ãn] =E[Ãn1{Ãn≥ r}]+rE[1{Ãn<r}]≈
E[Ãn](1−gc,n+1(r))+ rgc,n+1(r), where gc,n+1(r) is defined in Lemma 1, see the
empirical verification in Fig. 4.11.

• Recall the definition of the regret φ := ẊTȦn+XTA−φoff. Set φ1 = ẊTȦn and



4.6. Appendix – Technical proofs 69

(a) r= 0 (b) r= 0.5b

Figure 4.11: Dotted lines show display the analytical number of new hires E[Ãn] given in
Eq. 4.5, while plain lines are the respective empirical Ãn, i.e. the average number of accepted
candidates in the simulations. Different colors depict scenarios with number of jobs being, from

bottom to top line, b= {1,9,17,25,33,41,49}.

φ2 = XTA that give respectively the reference set and the candidates contribution
to the regret. We start with the candidates, φ2 =

∑n
j=1XjAj . Its expectation is

given by E[φ2] =E[
∑n

j=1XjAj ]. We use the fact that Aj = 0, ∀j≤ c:

E[φ2] =
n∑

j=c+1

n+b∑
m=1

∑
a={0,1}

P(Xj =m,Aj = a)am

E[φ2] =
n∑

j=c+1

n+b∑
m=1

P(Aj = 1 |Xj =m)P(Xj =m)m

A candidate with rank higher than the threshold γj is rejected, hence:

E[φ2] =

n∑
j=c+1

γj−1∑
m=1

P(Aj = 1 |Xj =m)P(Xj =m)m.

A candidate with rank lower than the threshold is accepted if there were less than b
candidates accepted before him. Moreover, we use the fact that P(Xj =m) = 1

n+b
to write:

E[φ2] =
n∑

j=c+1

γj−1∑
m=1

P(Ãj−1<b)
m

n+b
=

n∑
j=c+1

γj−1∑
m=1

gc,j(b)
m

n+b

⇔E[φ2] =
1

n+b

n∑
j=c+1

gc,j(b)
γj(γj−1)

2
.

Following up with the reference set contribution, the regret associated with the
available referents that were not fired at the end of the selection is given by:

φ1 =

b∑
l=1

Ẋavail
(l) 1{l≤ b−Ãn}=

b−Ãn∑
l=1

Ẋavail
(l) .
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We suppose that variables Ãn and Ẋ(l) are independent ∀l, which is a reasonable
assumption since we consider a reference set with medium quality, i.e. medium
average rank, and we use E[Ẋavail

(l) ] = γ0(b+1)l
b(b−r+1) (see Proposition 1):

E[φ1] =

b−E[Ãn]∑
l=1

γ0(b+1)l

b(b−r+1)
=

γ0(b+1)

b(b−r+1)

b−E[Ãn]∑
l=1

l

⇔ E[φ1] =
γ0(b+1)

2b(b−r+1)
(b−E[Ãn])(b+1−E[Ãn]).

Finally the expected regret is given by:

E[φ] :=E[φ1]+E[φ2]−E[φoff]

E[φ] :=
γ0(b+1)

2b(b−r+1)
(b−E[Ãn])(b+1−E[Ãn])+

1

n+b

n∑
j=c+1

gc,j(b)
γj(γj−1)

2
−E[φoff],

which concludes the proof.

Practical implementation. As mentioned before, in the implementation last
accepted candidates are included in the following way: if at the end of the sample
the number of accepted candidates (i.e. Ãn) is smaller than the number of resig-
nations r, we add ‘extra’ candidates of medium rank and rescale the expectation
of the regret. Therefore, the regret rescale from φ=φ1 +φ2−φoff to:

φ=φ1 +1{Ãn≥ r}φ2 +1{Ãn<r}
n

n−r+E[Ãn]
φ3−φoff;

where a failure is given by the event {Ãn<r}, and where φ3 is given by φ3 =
φ2 + n+b+1

2 , i.e. it gives the regret associated with candidates accepted if there
was at least one failure at the end of the selection, the last term being the average
rank of a candidate accepted by default. Hence, in practice we have:

E[φ] =E[φ1]+P(Ãn≥ r)E[φ2]+P(Ãn<r)
n

n−r+E[Ãn]

(
E[φ2]+

n+b+1

2

)
−E[φoff]

E[φ] =E[φ1]+(1−gn+1(r))E[φ2]+gn+1(r)
n

n−r+E[Ãn]

(
E[φ2]+

n+b+1

2

)
−E[φoff],

where gn+1(x) :=P(Ãn<x) is given in Lemma 1.

Proof of Theorem 2. As in the proof of Theorem 1, we handle separately.

• The expected acceptance threshold when q= 1/2 is given in Eq. 4.4 by:

γ :=E[R(Supd
(b),c)] =

b(b+n)

b+c
.



4.6. Appendix – Technical proofs 71

When the referent has a rank of γ0 (which is known), q 6= 1/2, in fact q= 1− γ0−1
n ,

therefore, for b= 1 we get:

γ :=E[R(Supd
(1),c)] = min

(
γ0,

n+1

c+1

)
.

• Recall the formula for the regret:

φ=
(
ẊTȦn+XTA

)
− min

(Ȯn,O)∈πoff,B

(
ẊTȮn+XTO

)
∈R+,

where πoff,B=
{

(Ȯn,O)∈{0,1}n+b : (Ȯn,O)T1[n+b] = b
}
. Here, since there is only

one job position to manage, it is either occupied by a candidate, or by the initial
referent. Moreover, the offline term that accounts for the outcome of an offline
strategy that would see every item altogether as a batch simply becomes the best
rank, i.e. 1. In the end, we get:

φ=

n∑
j=1

XjAj +γ01{
n∑
j=1

Aj = 0}−1,

First, we want to evaluate the right-hand term, i.e. the probability of accepting no
candidate and keeping the preselected node. The important observation to make
when using the CCM strategy is that the event of not accepting any candidate is
the same as the event of having the best candidate among the c first. Indeed, if the
best individual (i.e. the one with rank equal to 1) is among the first c candidates,
he gets rejected, and becomes the acceptance threshold to beat according to CCM.
As he is the best, none of the next incoming candidates is accepted, and the
preselected individual keeps the job. Now, if the best candidate is not among
the rejected but the second-best is, the latter becomes the acceptance threshold,
and eventually the best candidate is accepted. Using similar reasoning for the
third, fourth, fifth-best and so on, we find that if the best candidate is not among
the c first candidates, at least one candidate is accepted. Hence we write the
expectation of the regret as:

E[φ(c)] =
n∑
j=1

E[XjAj ]+γ0P(“the best candidate is among the c first”)−1

E[φ(c)] =

n∑
j=1

n+1∑
m=1

P(Xj =m,Aj = 1)m+γ0

c∑
i=1

P(Xj = 1)−1

E[φ(c)] =
n∑
j=1

n+1∑
m=1

P(Aj = 1 |Xj =m)P(Xj =m)m+γ0

c∑
i=1

P(Xj = 1)−1.
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We set Ãj−1 =
∑j−1

i=1 Ai, and P(Xj =m) = 1
n1{γ0 6=m}, ∀m∈{1, ...,n+ 1} since

ranks are uniformly distributed among candidates. Note that the probability of
accepting a candidate given that his rank is worse than that of the threshold γ
is equal to zero. Otherwise, the probability for the j-th candidate to be accepted
is equal to the probability of not finding a suitable candidate before him (i.e.
Aj =1{Xj <γ}1{Ãj−1 = 0}, ∀j > c). Therefore:

E[φ(c)] =

n∑
j=c+1

γ−1∑
m=1

P(Ãj−1 = 0)
1

n
m+γ0c

(
1

n
1{γ0 6= 1}

)
−1

E[φ(c)] =
1

n

γ(γ−1)

2

n∑
j=c+1

P(Ãj−1 = 0)+γ0c

(
1

n
1{γ0 6= 1}

)
−1

No candidate is accepted up to step j if each of them is below the acceptance
threshold, i.e.:

E[φ(c)] =
1

n

γ(γ−1)

2

n∑
j=c+1

j−1∏
i=c+1

P(Xj ≥ γ)+γ0c

(
1

n
1{γ0 6= 1}

)
−1

E[φ(c)] =
1

n

γ(γ−1)

2

n∑
j=c+1

j−1∏
i=c+1

(
1− 1

n
(γ−1)

)
+γ0c

(
1

n
1{γ0 6= 1}

)
−1.

Set z= 1
n(γ−1), s.t. 0≤ z≤ 1:

E[φ(c)] =
1

n

γ(γ−1)

2

n∑
j=c+1

(1−z)j−c−1 +γ0c

(
1

n
1{γ0 6= 1}

)
−1

E[φ(c)] =
1

n

γ(γ−1)

2

1−(1−z)n−c

1−(1−z)
+γ0c

(
1

n
1{γ0 6= 1}

)
−1

E[φ(c)] =
γ

2

(
1−(1−z)n−c

)
+γ0c

(
1

n
1{γ0 6= 1}

)
−1.

Hence, in the non-trivial case γ0 6= 1:

E[φ(c)] =
γ

2
− γ

2

(
1− γ−1

n

)n−c
+
γ0

n
c−1.

• We now want to find the optimal cutoff c∗ s.t. ∂E[φ(c)]
∂c = 0 |c=c∗ . Starting with the

expression of the expected regret:

We distinguish two cases, either γ0<
n+1
c+1 or γ0≥ n+1

c+1 . Since γ= min(γ0,
n+1
c+1 ),

starting with the former gives γ= γ0, and therefore:

E[φ(c)] =
γ0

2
− γ0

2

(
1− γ0−1

n

)n−c
+
γ0

n
c−1.

The latter equation is always minimized at c= c∗= 0.
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Let us then focus on the second, more interesting, case where γ0≥ n+1
c+1 . In this

case γ= n+1
c+1 , hence:

E[φ(c)] =
n+1

2(c+1)
− n+1

2(c+1)

(
1−

n+1
c+1 −1

n

)O(n)

+
γ0

n
c−1

E[φ(c)] =
n+1

2(c+1)
− n+1

2(c+1)

(
1− n−c

n(c+1)

)O(n)

+
γ0

n
c−1

E[φ(c)] =
n+1

2(c+1)
− n+1

2(c+1)
e
O(n) ln

(
1− n−c

n(c+1)

)
+
γ0

n
c−1

E[φ(c)] =
n+1

2(c+1)
− n+1

2(c+1)
e
O(n) ln

(
1− 1− cn

c+1

)
+
γ0

n
c−1

E[φ(c)] =
n+1

2(c+1)
− n+1

2(c+1)
eO(n) ln(1−O( 1

c
)) +

γ0

n
c−1

Using ln(1−x)<−x, ∀ 0<x≤ 1, we get:

E[φ(c)] =
n+1

2(c+1)
− n+1

2(c+1)
eO(nc ) +

γ0

n
c−1

We have n+1
2(c+1)e

O(nc )≤ n
c e
O(nc ), and xe−x≤ 1 ∀x∈R, thus n+1

2(c+1)e
O(nc ) =O(1).

Finally, we write:

E[φ(c)] =
n+1

2(c+1)
+
γ0

n
c−1+O(1).

Deriving the expected regret, we get:

∂E[φ(c)]

∂c
=− n+1

2(c∗+1)2
+
γ0

n
.

Therefore:

∂E[φ(c)]

∂c
= 0 ⇒ n+1

2(c∗+1)2
=
γ0

n

⇒ c∗=

√
n+1

2
(γ0

n

)−1

⇔ c∗=

√
n+1

2
(
1−q+ 1

n

)−1.

Proof of Proposition 3. If two settings are γ0-similar, then the optimal proportion of
candidates to reject compared to the total number of items (reference set and candi-
dates) is the same for both settings which explains the first term of the proposition.
Using the definition of the relative quality of the reference set for two equivalent
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settings (see Definitions 4, 7), we get:

qx = 1−
1
b ||Ẋx||1−1

nx+b−1
= 1−

1
b ||Ẋy||1−1

nx+b−1
⇔ 1−qx =

(1−qy)(ny+b−1)

nx+b−1
.

⇔ nx = (ny+b−1)
1−qy
1−qx

−b+1.

Proof of Proposition 4. Let us replace each item absolute rank by its actual value
to match the definition of the competitive ratio. Thus, a rank X=m is replaced by
its value vm =n+ b−m so that the best (worst) item with rank X= 1 (X=n+ b)
has the highest (lowest) value v1 =n+ b− 1 (vn+b = 0). Using our formalism, we
have E[n+b−(φ+φoff)]≥αE[(n+b−φoff)]. Now when r= 0, the CCM acceptance
threshold reduces to that of the OPTIMISTIC algorithm proposed in [8]. In [5]
(Lemma 2.1 therein) it is shown that, using the OPTIMISTIC algorithm in a cold-
start setting, it holds α= 1

b

∑b
m=1 pm, where pm is the probability of accepting rank

m. In our case, either a referent (they are all available) or a candidate has the rank
m, namely pm :=P(Ȧ0,(l[m]) = 1) +P(Aj[m]

= 1), where l[m] and j[m] are the indices
respectively referring to the referent with rank m or the candidate with rank m, i.e.
Ẋ(l[m]) =m or Xj[m]

=m. Then, the first term gives P(Ȧ0,(l[m]) = 1) =
∑b

l=1P(Ẋ(l) =

m) =
(
γ0(l+1)

b − γ0(l−1)
b

)−1
= b2

2γ0
(see proof of Proposition 1), while the second term

gives, P(Aj[m]
= 1) =P(Aj[m]

= 1|Ẋ(1)≥ b)P(Ẋ(1)≥ b)+P(Aj[m] = 1|Ẋ(1)<b)P(Ẋ(1)<

b)≥P(Aj[m]
= 1|Ẋ(1)≥ b)P(Ẋ(1)≥ b), where P(Ẋ(1)≥ b) = (1− b

2γ0/b
). Observe that

the probability to accept a candidate with rankm≤ b given that the best referent has
a rank higher than b is necessarily larger than that of accepting a candidate with rank
m≤ b when considering a cold-start with n+b candidates, which is, from [8] (Lemma
2 therein), larger than c

n ln(nc ). Finally, we have α=
(
b2

2γ0
+ c∗

n ln( nc∗ )(1−
b2

2γ0
)
)
.
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Proof of Proposition 5. Set Z̃j =
∑j

i=c+1Zi where Zj ∼Bernouilli(j− c,pj) and set
λj =

∑j
i=c+1 pi, ∀j. We have E[Ãj | Ãn≥ r] =

∑b
k=0 kP(Ãj = k | Ãn≥ r). Hence:

E[Ãj | Ãn≥ r] =

b∑
k=0

k
P
(
min(Z̃j , b) = k,min(Z̃n, b)≥ r)

)
P(Ãn≥ r)

=
1

P(Ãn≥ r)

b∑
k=0

kP
((
{Z̃j <b,Z̃j = k}∪{Z̃j ≥ b,b= k}

)
∩
(
{Z̃n<b,Z̃n≥ r}∪{Z̃n≥ b,b≥ r}

))
=

1

P(Ãn≥ r)

b−1∑
k=0

kP
(
{Z̃j = k}∩

(
{Z̃n<b,Z̃n≥ r}∪{Z̃n≥ b}

))
+

b

P(Ãn≥ r)
P
((
{Z̃j <b,Z̃j = b})∪{Z̃j ≥ b}

)
∩
(
{Z̃n<b,Z̃n≥ r}∪{Z̃n≥ b}

))

=
1

P(Ãn≥ r)

b−1∑
k=0

kP
(
{Z̃j = k}∩{Z̃n≥ r}

)
+

b

P(Ãn≥ r)
P
(
{Z̃j ≥ b}∩{Z̃n≥ r}

)

=
1

P(Ãn≥ r)

b−1∑
k=0

kP(Z̃n≥ r|Z̃j = k)P(Z̃j = k)+
bP(Z̃j ≥ b)
P(Ãn≥ r)

=
1

P(Ãn≥ r)

b−1∑
k=0

kP(Z̃n− Z̃j ≥ r−k)P(Z̃j = k)+
bP(Z̃j ≥ b)
P(Ãn≥ r)

E[Ãj | Ãn≥ r] =
1

1−gc,n+1(r)

(
b(1−gc,j+1(b))+

b−1∑
k=0

k(1−gj,n+1(r−k))P(Z̃j = k)

)
.

From Le Cam’s theorem we have
∑∞

m=0 |P(Z̃j =m)−λmj e
−λj

m! |< 2σ2
j , and since lim

j→∞
σ2
j =

0, Z̃j tends a Poisson distribution with parameter λj , see proof of Lemma 1, hence:

=
1

1−gc,n+1(r)

(
b(1−gc,j+1(b))+

b−1∑
k=0

k(1−gj,n+1(r−k))
λkj e
−λj

(k−1)!

)
.

Proof of Proposition 6. Let us start by assessing what a failure is in this case. Since
b= 1, a failure means that, while evaluating the last candidate, none has been ac-
cepted, i.e. Ãn = 0, and therefore ‘no failure’ is the complementary event that hap-
pens with a probabilty 1−P(Ãn = 0). Hence, the expected number of accepted given



76 Chapter 4. The Cutoff-based Cost Minimization algorithm

that there were no failure is given by E[Ãj |no failure] :=E[Ãj |Ãn = 1]:

E[Ãj |Ãn = 1] =
∑

a={0,1}

aP(Ãj = a | no failure) =
P(Ãj = 1, Ãn = 1)

P(no failure)

=
P(Ãj = 1)

1−P(Ãn = 0)

=
1−
∏j
i=c+1P(Xi≥ γ)

1−
∏n
j=c+1P(Xj ≥ γ)

=
1−
∏j
i=c+1

(
1− γ−1

n

)
1−
∏n
j=c+1

(
1− γ−1

n

)
⇔ E[Ãj |Ãn = 1] =

1−
(

1− γ−1
n

)j−c
1−
(

1− γ−1
n

)n−c
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Chapter 5

The Warm-starting Dynamic
Thresholding algorithm

In Chapter 4, the proposed Cutoff-based Cost Minimization algorithm makes no
assumption on the distribution of candidates’ scores. It splits the process into two
phases: the learning phase in which the DM learns an acceptance threshold from
candidates that are getting rejected by default, and thereafter, the selection phase
which uses that threshold to accept or reject from the rest candidates. Despite
its biased rule, which is due to the disregard of the early-arriving candidates, the
strategy can be efficient and robust to score changes, provided an appropriately set
learning phase size.

Important to note, when the score distribution is known, i.e. in a full-information
case, the cutoff-based strategies are not optimal and policies derived from dynamic
programming are more suitable. In Nikolaev and Sofronov [87], dynamic program-
ming is employed to compute the optimal stopping rule for each candidate, i.e. the
score threshold to beat in order to be hired. Every candidate’s threshold depends
on his arrival time and on the number of jobs positions left to be filled.

In this chapter, we propose the Warm-starting Dynamic Thresholding (WDT) algo-
rithm that attributes to each incoming candidate a threshold value to beat according
to: i) its arrival time, ii) the current number of empty job positions, and iii) the
current number of positions occupied by initial employees (i.e. available employees
that can be replaced). The threshold value to beat is computed by means of dy-
namic programming, adapted to the warm-starting scenario. The algorithm is easy
to implement and gives each candidate a chance to be hired. WDT’s downside lies in
the assumption that the score distribution is known. We relax this requirement by
first considering the partial information case where the DM only knows the nature
of the distribution, and then the no-information case where the threshold is purely
rank-based.

5.1 Setting and rules of the game

As described in Sec. 3.3.1, r≤ b positions are initially empty as some employees
have become permanently unavailable, while the rest b−r are initially occupied by
existing employees that form a set called preselection. Available and unavailable em-
ployees constitute the reference set for the DM. For notation simplicity, and because
in this strategy we get no use of the scores of the unavailable employees, we consider
only the preselection scores given by Ṡ = (Ṡ(1), Ṡ(2), ..., Ṡ(b−r)). For convenience, the
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latter vector is considered to be sorted in decreasing order, i.e. Ṡ(1) and Ṡ(b−r) are
respectively the best and the worst scores of the preselected employees. Once the
j-th candidate arrives, the DM observes his score Sj ∈R, which, like all scores, is
assumed to follow a known distribution fS . The rules of the game that character-
ize this setting are similar to those of the rank-based setting (Assumption 1 and
Assumption 2), except for the observations that are now observed.

R1. Each decision (i.e. hire or not) shall be immediate and irrevocable, which
means that every position can be assigned (or reassigned) at most once through-
out the selection process.

R2. The DM must at least fill the empty job positions by hiring r candidates.

R3. Once no empty position is left, the DM can still hire an incoming candidate
by removing one of the employees of the preselection from his position (only
fire on hire).

The following definition is a score-based adaptation of the Warm-starting SSP
(WSSP) (see Sec. 3.3), where here the DM initially knows also the distribution from
which candidates’ scores are drawn.

Definition 10. A particular distribution-aware GSSP, with the following charac-
teristics:

1. Background

B= (n,b,fS , Ṡ), where the included elements are:
– n∈N∗: finite number of candidates to appear;

– b∈N∗, b≤n: number of resources;

– fS: the distribution generating candidates’ scores;

– Ṡ = (Ṡ(1), ..., Ṡ(b−r))∈Rb−r; Ṡ(j)∼ fS , ∀j: scores of the preselection.

2. Sequential arrivals and 3. Decision Process as in Definition 1 where Sj ∼ fS , ∀j;
4. Score-based evaluation

Let P be the distribution of (S,A). The evaluation criterion, called reward, is
evaluated at the end of the process and defined as Φ(π) =EP [φB(S,A)], with:

The reward is evaluated at the end of the process by:

φB= ṠTȦn+STA ∈R+, (5.1)

where Ȧn,(i) ∈{0, 1} indicating if the i-th preselected employee kept his position
after n candidate interviews.

Note that, since the DM is forced to fill the b positions by the end of the process, it
holds: ‖Ȧn‖1 +‖A‖1 = b.

5.2 Algorithm description

Here, we present the Warm-starting Dynamic Thresholding (WDT) method to solve
optimally the distribution-aware WSSP of Definition 10. Without loss of generality,



5.2. Algorithm description 81

S1 S2

2,3 
1T 2,3 

2T 1,3 
3T 0,3 

4T 0,2 
5T 0,2 

6T 0,1 
7T 0,1 

8T

…

SScore to beat for cand. j when X jobs are empty 
 and Y preselected have a job 

rejected/accepted candidate 
with score S

Legend

Empty Filled by a preselected

Jo
b 

po
si

tio
ns

Filled by a candidate

$T_1^{2,3}$ \hspace{0.0mm}  $T_2^{2,3}$  \hspace{0.0mm}  $T_3^{1,3}$ \hspace{0.0mm} $T_4^{0,3}$ \hspace{0.0mm} $T_5^{0,2}$ \hspace{0.0mm} 
$T_6^{0,2}$ \hspace{0.0mm} $T_7^{0,1}$ \hspace{0.0mm} $T_8^{0,1}$

/
Jobs:

S3 S4 S6 S8S5 S7

S

Figure 5.1: Demonstration of the WDT algorithm. The score of an incoming candidate,
Sj , is compared to an associated acceptance threshold TX,Y

j , where X and Y are respec-
tively the current number of empty positions and that of positions occupied by preselected
employees. Accepted candidates (blue circle) first fill empty positions and then, if they
are competitive enough, take a preselected employee’s positions (e.g. the 5-th candidate).

we consider non-negative i.i.d. scores Sj ≥ 0, ∀j, and that the best- (resp. worst-)
skilled individual has the highest (resp. lowest) score.

5.2.1 Threshold-based strategy

The idea behind the strategy is to find the optimal acceptance threshold Sacc.j ∈R
that the j-th arriving candidate should beat in order to be hired, ∀j ∈{1, ...,n};
see the example of Fig. 5.1. Note that, in order to be optimal, this threshold must
depend on the state of the ongoing selection process. Therefore, we write Tj =

T
Xj ,Yj
j , where Xj ∈{0, ..., r} positions are still empty and Yj ∈{0, ..., b−r} jobs are

still occupied by preselected employees, i.e. after j−1∈N∗ interviews and while the
j-th candidate is being interviewed. Using the notations of Definition 10 we get:

Xj := max

(
r−

j−1∑
i=1

Ai, 0

)
and Yj :=

r∑
i=1

Ȧj,(i). (5.2)

To simplify our notations, we omit the dependency of Xj and Yj to j, and we simply
write X and Y to refer to their value at the implied step j of the selection process.

Value function

The fundamental question remains how to compute the thresholds optimally. The
solution can be found via dynamic programming where the value function, which is
the expected value of the regret here, is computed for each possible scenario. Let
V X,Y
j ∈R be this value function when j−1∈N∗ candidates have been interviewed

so far.
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Before going into the method’s details, we can deduce the following remarks from
the rules that constrain the process:

Remark 8. The second rule, R2, implies that if X ≥n− j, then V X,Y
j = 0, ∀Y .

Thus, the last incoming candidates might be accepted by default, and this leads to
X = 0 when j=n.

Remark 9. R3 implies that if X 6= 0, then Y = b−r, ∀j.

Remark 10. From R2 and R3 we deduce that X and Y are non-increasing with
j: throughout the process the number of job positions assigned to candidates cannot
decrease, while those for the preselected employees cannot increase.

To compute V X,Y
j we work by means of backward induction. First, we consider

the extreme case that n candidates are automatically rejected, and compute the
value function V r,b−r

n . Here, either X = 0 and r= 0, i.e. each position is occupied
by a preselected employee, or V r,b−r

n = 0 because one or more positions are empty.
The induction then goes to the first non-zero value function, which is when n− r
candidates get automatically rejected: there, the only option is to hire the r last
candidates to arrive (see Remark 8), hence:

V r,b−r
n−r+1 =E

 n∑
j=n−r+1

Sj +
b−r∑
i=1

Ṡ(i)

= rµ+
b−r∑
i=1

Ṡ(i), (5.3)

where µ is the mean of the known score distribution fS .

One step back, V r,b−r
n−r is evaluated by accounting every option: either the (n−r)-th

candidate gets rejected and the last r candidates get hired, leading to the reward of
V r,b−r
n−r+1 (Eq. 5.3), or the (n−r)-th candidate gets hired and in this case we should,

again, present two options. The DM can lower by one either the number of empty
job positions, or the number of preselected employees that will keep their positions
at the end of the selection. This reasoning is generalized to the following recurrent
value functions ∀j ∈{1, ...n}:

V X,Y
j =E

[
max

(
V X,Y
j+1 , Sj +max(V X−1,Y

j+1 ,V X,Y−1
j+1 )

)]
. (5.4)

The first term in the outer max(·) corresponds to the option of rejecting the j-th
candidate, while the second term is the option of accepting him. Two observations
can be made: i) if the goal is to minimize instead of maximize the objective, then
max(·) should be replaced by min(·) functions; ii) results of [87], and specifically their
Theorem 3 in Sec. 3, can be retrieved by setting Y = 0 that implies V X,Y−1

j+1 = 0.

Recurrence relation

Thanks to our backward induction formulation, we enunciate a generic formula for
the recurrence relation of the value function.

Proposition 7. Let a WSSP with a population of i.i.d. scores S ∈ [α,β], each
drawn from a known distribution fS with cumulative distribution function FS(x) =∫ x
α fS(y)dy. Having processed j−1 interviews, X ∈{0, ..., r} job positions are empty
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Algorithm 3 Warm-starting Dynamic Thresholding (WDT)
Input: the evaluation table of the value function V X,Yj where b, r, and n are the numbers of
resp. job positions, initially empty among them, and sequentially incoming candidates; Ȧ0 =
(Ȧ0,(1), ..., Ȧ0,(b−r)) = (1, ...,1) is the initial status of the preselected employees.
Output: the set of final job assignments Ȧn ∈{0,1}b−r, and A∈{0,1}n.
1: X← r // nb. of empty jobs
2: Y ← b−r // nb. of jobs occupied by preselected employees
3: for j= 1 to n do
4: Tj←V X,Yj+1 −max(V X−1,Y

j+1 ,V X,Y−1
j+1 ) // see Proposition 8

5: if Sj >Tj then
6: Aj← 1 // accept candidate
7: if X > 0 then
8: X←max(X−1,0) // fill one empty position
9: else
10: Ȧj,(Y )← 0 // remove job from a preselected employee
11: Y ←Y −1
12: end if
13: else
14: Aj← 0
15: end if
16: end for

and Y ∈{0, ..., b−r} are occupied by preselected employees with scores Ṡ = (Ṡ(1), ..., Ṡ(b−r)).
Then, the recurrence relation of Eq. 5.4 becomes:

V X,Y
j −V X,Y

j+1 =ZX,Yj+1

(
FS(ZX,Yj+1 )−1

)
+

∫ β

ZX,Yj+1

sfS(s)ds, (5.5)

where ZX,Yj+1 :=V X,Y
j+1 −max(V X−1,Y

j+1 ,V X,Y−1
j+1 ), with initial condition given in Eq. 5.3.

The proof can be found in the Appendix 5.6

Optimal threshold . Evidently, the j-th candidate must be accepted if the value
function associated to the option of accepting him is larger than that of rejecting
him. According to Eq. 5.4, the latter amounts to choosing the optimal threshold
defined in the following proposition that maximize the expectation of the reward.

Proposition 8. Let a WSSP where j − 1 interviews have been processed, X ∈
{0, ..., r} job positions are empty, and Y ∈{0, ..., b− r} are occupied by preselected
employees. The optimal acceptance threshold for candidate j is defined as:

TX,Yj =V X,Y
j+1 −max(V X−1,Y

j+1 ,V X,Y−1
j+1 ). (5.6)

Essentially, the j-th candidate is accepted if his score beats the corresponding thresh-
old, i.e. Aj =1{Sj >TX,Yj }.

The WDT procedure works with the optimal threshold described above and is de-
scribed in Alg. 3.
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Y X V X,Y
1 V X,Y

2 V X,Y
3 V X,Y

4 V X,Y
5 V X,Y

6 V X,Y
7

0 1 0.893 0.886 0.879 0.871 0.861 0.850 0.836
2 1.719 1.702 1.683 1.661 1.636 1.606 1.571

1
0 0.907 0.902 0.897 0.891 0.885 0.877 0.869
1 1.756 1.742 1.729 1.712 1.694 1.673 1.650
2 2.547 2.523 2.496 2.465 2.431 2.391 2.345

Y X V X,Y
8 V X,Y

9 V X,Y
10 V X,Y

11 V X,Y
12 V X,Y

13 V X,Y
14

0 1 0.823 0.800 0.775 0.741 0.768 0.732 0.682
2 1.529 1.476 1.409 1.320 1.195 1.000 0.000

1
0 0.859 0.847 0.833 0.816 0.795 0.979 0.979
1 1.621 1.588 1.547 1.495 1.428 1.333 1.182
2 2.290 2.224 2.142 2.036 1.894 1.682 0.000

Table 5.1: Evaluation of the V X,Yj function at each step j= 1, ...,14. The distribution of the
scores is Sj ∼U(0,1), and there is b−r= 3−2 = 1 initially non-empty job position occupied by

an employee with score Ṡ(1) = 0.682.

5.3 Full, partial, and no-information settings

5.3.1 Some closed-form in full-information setting

For some specific score distributions, the cumulative and probability density func-
tions are easily computed, and allow the recurrence relation to get simplified. In the
following proposition, scores are drawn from an exponential distribution.

Proposition 9. Set Sj ∼Exp(λ), ∀j≤n. Then, Proposition 7 becomes:

V X,Y
j =V X,Y

j+1 +
e−λZ

X,Y
j+1

λ
, (5.7)

where ZX,Yj+1 =V X,Y
j+1 −max(V X−1,Y

j+1 ,V X,Y−1
j+1 ).

Consider now a setting where scores are drawn uniformly from (α,β).

Proposition 10. Set Sj ∼U(α,β), ∀j≤n. Then, Proposition 7 becomes:

V X,Y
j −V X,Y

j+1 =
ZX,Yj+1

2
−2αZX,Yj+1 +β2

2(β−α)
−ZX,Yj+1 , (5.8)

where ZX,Yj+1 =V X,Y
j+1 −max(V X−1,Y

j+1 ,V X,Y−1
j+1 ).

Example. Set α= 0 and β= 1, b= 3, r= 2, and n= 14. Tab. 5.1 displays the eval-
uation of the value function V X,Y

j at each step of the selection process. Recall
that, at the respective step j, X ∈{1, ..., b} is the number of empty job positions,
and Y ∈{0, 1} is the DM’s hiring decision. Now, imagine the following sequence of
scores: S = (0.498,0.858,0.749,0.398, ...) and Ṡ = (0.682) is the score of the prese-
lected employee. We are determining the acceptance threshold sequentially. Note
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that, since r 6= 0, V 0,0
j = 0. For the first incoming candidate, j= 1, r= 2 job posi-

tions are empty, i.e. X = 2 and b− r= 1 position is occupied by a preselected em-
ployee, i.e. Y = 1. The first candidate is rejected since T 2,1

1 =V 2,1
2 −max(V 1,1

2 ,V 2,0
2 ) =

2.523−max(1.742,1.702) = 0.781> 0.498. The second threshold reads T 2,1
2 =V 2,1

3 −
max(V 1,1

3 ,V 2,0
3 ) = 2.496−max(1.729,1.683) = 0.767< 0.858, which allows the accep-

tance of the second candidate. The following threshold is then, T 1,1
3 = 0.832, thus

the third candidate is rejected. The process continues this way until the sequence
is finished.

5.3.2 Rank-based strategy in no-information setting

When the score distribution is either unknown (no-information case), does not ex-
hibit a closed-form cumulative density function, or scores are simply not observed,
the DM can only rely on a relative evaluation of the candidates. In practice, she
can assign a relative rank to each incoming candidate by comparing him to those
already examined (let the best one be ranked first).

In that case, the acceptance threshold is rank-based, hence TX,Yj stands for the
absolute rank (which cannot be known, though) that the j-th candidate needs to
exceed to get selected. Conveniently, the absolute ranks of a set follow a discrete
uniform distribution that exhibits a closed-form description. Then, the threshold
value for the j-th candidate is computed using Proposition 8 and, following the same
reasoning as in Proposition 10, we get the following simplified expression:

V X,Y
j =V X,Y

j+1 −
ZX,Yj+1

2
−ZX,Yj+1

2(n+b−r)
, (5.9)

where ZX,Yj+1 =V X,Y
j+1 −min(V X−1,Y

j+1 ,V X,Y−1
j+1 ).

As mentioned, the DM cannot know the absolute rank of a candidate before finishing
all interviews. She can still, though, estimate it knowing his relative rank and by
taking into account the proportion of candidates that has already been examined.
More precisely, the j-th candidate has relative rank denoted by Zrel

j ∈N∗ after the
examination of j+ b−r individuals (including the preselected employees), and the
absolute rank denoted by Zabs

j that he would have after the examination of n+b−r
individuals. Hence, we set Zrel

j = j+b−r
n+b−rZ

abs
j and, thereby, the practical threshold of

relative rank that the j-th candidate must exceed to be accepted is:

τX,Yj =
j+b−r
n+b−r

TX,Yj . (5.10)

Example. Set b= 3, r= 2, and n= 14. Tab. 5.2 displays the evaluation of the value
function V X,Y

j at each step of the selection process. Consider a setting where the
DM does not observe each item’s s cores, but can only proceed to pairwise com-
parison, and for which the best (respectively worse) item has an absolute rank 1
(respectively n+ b− r= 16). Suppose that the two available employees have av-
erage rank of Ṡ(1) = Ṡ(2) = (n+ b− r + 1)/2 = 8.5. While arriving, the first can-
didate j= 1 is ranked compared to those two; and should have a relative rank
lower than τ1,2

1 = 1+3−1
14+1−1 (V 1,2

1 −min(V 0,2
2 ,V 1,1

2 )) = 3
14(9.387− 5.554) = 0.821 to get

accepted, which is not possible, therefore he is automatically rejected. Similarly,
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X Y V X,Y
1 V X,Y

2 V X,Y
3 V X,Y

4 V X,Y
5 V X,Y

6 V X,Y
7

0 1 2.261 2.361 2.476 2.606 2.758 2.935 3.146
2 5.558 5.825 6.127 6.474 6.875 7.344 7.903

1
0 2.243 2.341 2.453 2.580 2.727 2.899 3.103
1 5.318 5.554 5.820 6.121 6.466 6.865 7.332
2 9.387 9.823 10.31 10.87 11.51 12.24 13.10

X Y V X,Y
8 V X,Y

9 V X,Y
10 V X,Y

11 V X,Y
12 V X,Y

13 V X,Y
14

0 1 3.402 3.717 4.119 4.649 5.388 6.508 8.500
2 8.579 9.415 10.48 11.90 13.89 17.00 25.50

1
0 3.349 3.651 4.034 4.535 5.225 6.250 8.000
1 7.885 8.554 9.378 10.42 11.80 13.69 16.50
2 14.12 15.35 16.87 18.80 21.36 25.00 33.50

Table 5.2: Evaluation of the V X,Yj function at each step j= 1, ...,14. The distribution of
the scores is Sj ∼U [1,n+ b− r], and there are b− r= 3−1 = 2 initially non-empty job position

occupied by 2 employees of average rank Ṡ(1) = Ṡ(2) = (n+b−r+1)/2 = 8.5.

the second candidate should have a relative rank lower than τ1,2
2 = 4

14 4.003 = 1.143,
therefore, he is accepted if he is better than the first candidate, and both of the
preselected employees (i.e. Zrel

2 = 1), and rejected otherwise. The process goes on
until the sequence is finished.

5.4 Simulations

5.4.1 Simulations parameters

The WSSP setting is similar to that of Sec. 4.4 i.e. it takes as input the reference set
(containing available and unavailable employees) and the sequence of candidates,
and outputs a selection of size b. As stated before, a very interesting feature of this
configuration is that it enables multi-round applications where the output selection
of a round can be fed as input for the consecutive round.

In the simulations, a population of N = 10000 job-seekers is considered, and n= 100
interviews take place in each of theK = 10 considered rounds. The candidates’ scores
are drawn from a given distribution and remain fixed during the process. Again, the
preselected employees of the first round are chosen uniformly at random from the
population, and hence, carry an average quality score. We desire to compare our
online strategy, the WDT, to the best an offline strategy achieves, i.e. in the case
that the DM could examine the candidates altogether as a batch. Therefore, instead
of the reward, in the figures we plot the regret defined as φk = |φoff,k−φk|, ∀k≤K,
where φoff,k and φk are respectively the offline and online reward.

5.4.2 Comparing score distributions

Fig. 5.2 displays the average regret φk in different settings, namely Si,k∼U(0,1) (top
row) and Si,k∼Exp(1), ∀i,k (bottom row). Let us start by focusing on the plain
line curves, one of which is the RAND baseline (grey line) that decides for the hires
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Figure 5.2: Average regret φk versus the round number k. The number of job positions is
b= 5 for n= 100 candidates per round. Score distribution: uniform, Si,k ∼U(0,1) (top row);
exponential, Si,k ∼Exp(1), ∀i, ∀k (bottom row). The number of initially empty job positions
is r= 0 (left) and r= b= 5 (right). Magenta lines use WDT in full-information (plain line),

partial-information (dashed line) and no-information (dotted line) settings.

at random. A first straightforward observation is that the average regret has similar
inefficient behavior for both distributions. In the following description, we therefore
focus on the uniform distribution.

Secondly, the subfigures on the left assume r= 0, hence the process always starts
with b empty positions, whereas on the right it is assumed r= b, thus the process
starts with b positions occupied by preselected employees. In the first case, since
the employees do not quit their position in-between two subsequent rounds, the
DM cannot deteriorate the selection, and might even improve the set of employees
through time by replacing initial employees with more skilled candidates. The regret
naturally goes to zero, and it does go faster for the proposed WDT than for instance
the MEAN (see Sec. 2.3.2) or CCM∗ (see Sec. 4.2) strategies. In the second case
(r= 0), the regret does not necessarily converge towards zero; neither MEAN nor
CCM∗ manage to keep a low average regret. This phenomenon is explained as
follows: progressively, the average score of the employees of the previous round gets
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so competitive for the incoming candidates that it forces the DM to select the last-
arriving ones by default to prevent ending up with having empty positions after all
the interviews (see the rule R2 in Sec. 6.2).
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Figure 5.3: Average regret φk w.r.t. the round number k. The number of job positions is b= 50
for n= 100 candidates per round. The score distribution is uniform s.t. Si,k ∼U(0,1)∀i, ∀k. The
number of initial job positions is r= 0 (left) and r= b= 50 (right). Magenta lines use WDT in

full-information (plain), partial-information (dash) and no-information (dot).

5.4.3 Comparing information levels

In Fig. 5.2, we also show the performance of the algorithms for cases with different
levels of DM’s knowledge for the score distribution fS . In the full-information case
(plain line), fS is perfectly known. In the partial information case (dashed line),
DM knows only the shape of the fS (e.g. uniform, normal, exponential, etc.) and
needs to learn its parameters (e.g. lower and upper bounds, mean, etc.). Finally, the
no-information case (dotted line) is when the DM does not hold any information
about fS (e.g. the shape, as discussed in the example of Sec. 5.3.1), or not even a
way to compute an absolute score per candidate. In that case, the DM should rather
rely on relative ranks that are re-assessed after the examination of each individual
(see Sec. 5.3.1).
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We observe that, provided the DM knows the shape of the score distribution (i.e.
partial-information), the learning of its parameters throughout the rounds is rela-
tively fast, and the regret quickly converges to that of full-information (plain lines).
Here, the strategy is much slower in converging towards the full-information case,
which is achieved for r= 0 after approximately 40 rounds. The slow convergence is
due to the DM’s inability to estimate each candidate’s absolute rank before having
examined all other candidates (see Eq. 5.10).

5.4.4 Large budget size

In Fig. 5.3 are displayed the average regret when the number of job positions is quite
large compared to the number of incoming candidates, i.e. b= 50 positions for n=
100 candidates. Although the regret behaves similarly as for b= 5, each algorithm
goes faster towards a small regret when r= 0, that is because the sequential selection
problem is less difficult when the DM has a large budget compared to the number
of candidates to interview. Regardless, the strategy WDT still manages to maintain
a good selection through rounds.

5.5 Conclusion

In this chapter we presented a new algorithm, calledWarm-starting Dynamic Thresh-
olding (WDT), for the Warm-starting SSP (WSSP), considering the case where the
incoming candidates have scores following a known distribution. The proposed algo-
rithm is based on a dynamic programming approach and achieves optimal threshold
estimation at each step of the sequence of interviewed candidates. Experiments
have been performed in the multi-round setting, which is interesting for real-world
reoccurring recruitment processes. WDT demonstrated a clearly better performance
than existing algorithms, regardless the number of initially empty job positions. We
additionally proposed a rank-based dynamic programming alternative that can go
beyond the need of knowing perfectly the distribution that generates the scores, yet,
resulting in satisfying outcomes.

After a analytical study of the optimal algorithm when candidate scores are ob-
served, in the next chapter we investigate the first application of such warm-starting
processes, i.e. the Sequential allocation of resources for epidemic control.

5.6 Appendix – Technical proofs

For a fixed distribution Sj ∈ [α,β], ∀j≤n, and µ=E[Sj].

Proposition 11. Let a WSSP with a population of i.i.d. scores S ∈ [α,β], each
following a given distribution fS. Set FS(x) =

∫ x
α fS(x) to be its cumulative distri-

bution function. The situation is as follows, j− 1 interviews have been processed,
X ∈{0, ..., r} job positions are empty, and Y ∈{0, ..., b−r} are occupied by preselected
employees. The recurrence relation in Eq. 5.4 becomes:

V X,Y
j −V X,Y

j+1 =ZX,Yj+1

(
FS(ZX,Yj+1 )−1

)
+

∫ β

ZX,Yj+1

sfS(s)ds,
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where ZX,Yj+1 :=V X,Y
j+1 −max(V X−1,Y

j+1 ,V X,Y−1
j+1 ).

Proof. Let each candidate have an i.i.d. score Sj ∈R, ∀j≤n. The objective function
to maximize is the sum of the scores of the individuals with a job position at the
end of the selection.

We have:

V X,Y
j =E[max

(
V X,Y
j+1 ,Sj +max(V X−1,Y

j+1 ,V X,Y−1
j+1 )

)
]

V X,Y
j =V X,Y

j+1 P
(
V X,Y
j+1 −max(V X−1,Y

j+1 ,V X,Y−1
j+1 )≥Sj

)
+max(V X−1,Y

j+1 ,V X,Y−1
j+1 )P

(
V X,Y
j+1 −max(V X−1,Y

j+1 ,V X,Y−1
j+1 )<Sj

)
+

∫ β

V X,Yj+1 −max(V X−1,Y
j+1 ,V X,Y−1

j+1 )
sfS(s)ds

Set ZX,Yj+1 :=V X,Y
j+1 −max(V X−1,Y

j+1 ,V X,Y−1
j+1 ), and FS(x) =

∫ x
α fS(x) the cumulative

density function:

V X,Y
j =V X,Y

j+1 FS(ZX,Yj+1 )+max(V X−1,Y
j+1 ,V X,Y−1

j+1 )(1−FS(ZX,Yj+1 ))+

∫ β

ZX,Yj+1

sfS(s)ds

V X,Y
j =V X,Y

j+1 −Z
X,Y
j+1 +ZX,Yj+1 FS(ZX,Yj+1 )+

∫ β

ZX,Yj+1

sfS(s)ds

V X,Y
j =V X,Y

j+1 +ZX,Yj+1

(
FS(ZX,Yj+1 )−1

)
+

∫ β

ZX,Yj+1

sfS(s)ds.

Recurrence relation for a uniform distribution Sj ∼U(α,β), ∀j≤n, µ=
(α+β)/2.

Proposition 12. Set Sj ∼U(α,β), ∀j≤n. Proposition 11 becomes:

V X,Y
j −V X,Y

j+1 =
ZX,Yj+1

2
−2αZX,Yj+1 +β2

2(β−α)
−ZX,Yj+1 ,

where ZX,Yj+1 =V X,Y
j+1 −max(V X−1,Y

j+1 ,V X,Y−1
j+1 ).
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Proof. We have FS(s) = s−α
β−α and fS(s) = 1

β−α :

V X,Y
j =V X,Y

j+1 +ZX,Yj+1

(
ZX,Yj+1 −α
β−α

−1

)
+

1

β−α

∫ β

ZX,Yj+1

sds

V X,Y
j =V X,Y

j+1 −Z
X,Y
j+1 +

ZX,Yj+1

2
−αZX,Yj+1

β−α

+
β2−ZX,Yj+1

2

2(β−α)

V X,Y
j =V X,Y

j+1 −Z
X,Y
j+1 +

ZX,Yj+1

2

2(β−α)
+
β2−2αZX,Yj+1

2(β−α)

V X,Y
j =V X,Y

j+1 −Z
X,Y
j+1 +

ZX,Yj+1

2
−2αZX,Yj+1 +β2

2(β−α)
.

Recurrence relation for a discrete uniform distribution Sj ∼U{α,β}, ∀j≤
n, µ= (α+β)/2. The objective is to minimize the sum of the scores, that can be
seen as ranks.

V r,b−r
n−r+1 =E[

n∑
j=n−r+1

Sj +
b−r∑
i=1

Ṡ(i)] = rµ+
b−r∑
i=1

E[Ṡ(i)]

Note that here, ZX,Yj+1 =V X,Y
j+1 −min(V X−1,Y

j+1 ,V X,Y−1
j+1 ). Hence:

V X,Y
j =V X,Y

j+1 (1−FS(ZX,Yj+1 ))+(V X,Y
j+1 −Z

X,Y
j+1 )FS(ZX,Yj+1 )+fS

ZX,Yj+1 (ZX,Yj+1 +1)

2

V X,Y
j =V X,Y

j+1 −Z
X,Y
j+1 FS(ZX,Yj+1 )+fS

ZX,Yj+1

2
+ZX,Yj+1

2
.

More specifically, for ranks between α= 1 and β=n+b, we have FS(k) = k
n+b , and

f = 1
n+b , thus:

V X,Y
j =V X,Y

j+1 −
ZX,Yj+1

2

n+b
+

1

n+b

ZX,Yj+1

2
+ZX,Yj+1

2

V X,Y
j =V X,Y

j+1 −
ZX,Yj+1

2
−ZX,Yj+1

2(n+b)
.

Recurrence relation for an exponential distribution Sj ∼Exp(λ), ∀j≤n, µ=
1/λ.
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We have, α= 0, β= +∞, FS(s) = 1−e−λs and the truncated expectation is s.t.:∫ β

ZX,Yj+1

sfS(s)ds=

∫ +∞

ZX,Yj+1

sλe−λs

∫ β

ZX,Yj+1

sfS(s)ds=ZX,Yj+1 e
−λZX,Yj+1 +

e−λZ
X,Y
j+1

λ
.

Hence:

V X,Y
j =V X,Y

j+1 −Z
X,Y
j+1 e

−λZX,Yj+1 +ZX,Yj+1 e
−λZX,Yj+1 +

e−λZ
X,Y
j+1

λ

V X,Y
j =V X,Y

j+1 +
e−λZ

X,Y
j+1

λ
.





94

Table of notations for Chapter 6

Symbol Description

1{condition} indicator function that gives 1 if the condition is true, otherwise 0

G,V,N,E ,E network G= {V,E} of N = |V| nodes and E= |E| edges, where V, E are the
sets of nodes and edges

M∈RN×N network’s adjacency matrix s.t. Mij 6= 0 if node i is linked with an edge to
node j

Xt ∈{0,1}N infection state vector s.t. Xi,t = 1 if node i is infected at time t
NI
t ∈N∗ number of infected nodes at time t

b∈N∗ budget of control actions, i.e. resources to allocate to nodes
Rt ∈{0,1}N resource vector at time t s.t. Ri,t = 1 if a treatment is allocated to node i at

time t subject to ||A||= b
β,δ,ρ parameters of the DP
s :V →R scoring function s.t. Si,t ∈R is the score of node i at time t
T ∈R+ time-horizon
AN (T )∈R+ percentage of infected nodes from time t= 0 to time t=T

Ċt⊂V treated nodes at time t, i.e. RĊi,t
= 1, ∀i,∀t

k≤K round index s.t. tk is the time at which the k-th round occurs, and K is the
total number of rounds

π(I,A)∈{0,1}n control strategy for which the DM has information on the nodes of the set
I, and access to the nodes of the set A

n≤N,C⊂V node sample of size n at time t s.t. C1 is the first incoming candidate and
Cn the last of a round

Λ(c;n,x)∈{0,1} probability of observing sample c of size n for a given infection state x

φ∈R+ cost function to minimize
Roff ∈{0,1}N allocation vector that minimizes the cost for full access and info on the

sample i.e. I =A=C, subject to ||Roff||= b

Ṡ,SC⊂S= s(V) scores of the treated nodes, and of the candidate nodes respectively
∆NI

t ∈R+ difference between the expected number of infected nodes using an online
strategy and the corresponding offline strategy

e∈R online error, i.e. the expected sum of half false negatives (FN) and false
positives (FP) compared to an offline strategy

texct. first time at which every nodes are healthy
α∈ [0,1] fraction of the infected nodes that compose the sample
c∈N integer that specifies when to stop rejecting candidates called cutoff using

the CCM strategy
fS distribution of the network nodes scores

Table 5.3: Index of main notations.
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Chapter 6

Application to Epidemic Control

6.1 Introduction

The motivation of our work is to bring the score-based DRA modeling closer to
reality. In the majority of real-life scenarios, authorities have access to limited in-
formation regarding the network state, and can reach a limited part of the population
to apply control actions (e.g. deliver treatments). Even more importantly, the deci-
sion making process is essentially a sequence of time-sensitive decisions over choices
that appear and remain available to the administrator only for short time, also with
little or no margin of revocation. An intuitive paradigm to consider is how a health-
care unit works: patients arrive one-by-one seeking for care, and online decisions
try to assign the limited available resources (e.g. medical experts, beds, treatments)
to the most important medical cases [15, 61, 53]. By establishing a link between
the DRA problem and the sequential decision making literature, our work offers a
completely new perceptive to dynamic DP control. Among the existing Sequential
Selection Problems (SSP) that have been widely studied, the most well-known is
the Secretary Problem [47]. Our aim, however, is to propose a concordant match to
the DP control setting described above.

Concerning our technical contribution, we first present the Restricted DRA (RDRA)
model, in which each time the administrator can decide the reallocation of the
resources only among a random sample of currently reachable nodes. On top of
that, we next propose the special case of Sequential DRA (SDRA) where the latter
sample of nodes is provided with a random arrival order, forcing the administrator
to decide for the resource reallocation sequentially according to the characteristics of
the incoming nodes. We believe that the major achievement of our modeling is that
it manages to create a new playground where SSP algorithms can be incorporated
to the DP control, and this way makes control strategies more applicable in real
conditions. The implementation of existing online algorithms such as MEAN [21]
or CCM (see Chapter 4) leads to SDRA strategies that manage to reduce the DP
in a comparable fashion to the unrestricted DRA.

Decisions for
resource allocation

sam
pleap

pl
y

Network diffusion

Figure 6.1: Scheme of the network diffusion control problem.
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6.2 Dynamic Resource Allocation strategies

6.2.1 Network diffusion process

The interactions among a population of N individuals are modeled by a fixed net-
work represented by a graph G(V,E) of |V|=N nodes and |E|=E edges. The graph
structure is arbitrary; the reader might picture it as being a directed or non-directed,
weighted or unweighted graph, etc. Each entry Mij of the graph’s adjacency matrix
M∈RN×N , expresses the possible influence of node i on node j, s.t. Mij 6= 0 if node
i is linked with an edge to node j and may have an impact on him, and vice-versa.

The graph hosts an agent-based diffusion process (DP) that spreads from one node to
another. Conceptually, the sequential epidemic control framework that we present,
can apply to arbitrary DPs (even non-compartmental diffusion models), provided
that there is a means to assess the criticality of the graph elements (e.g. nodes)
for reducing the epidemic process. To simplify the presentation, we use a setting
for which such criticality assessment has been made possible in the literature. We
suppose that the DP in place is a continuous-time Markov process [86], so that
at each time instance t∈R+ there can be at most one event of node state change
in the network. More specifically, in this work we consider an SIS-like recurrent
epidemic, where nodes are either healthy (‘S’: susceptible to infection), or infected
(‘I’). The infection spreads from any infected node to its reachable healthy neighbors.
Nodes are equipped with self-recovery without ever achieving permanent immunity.
The infection state of the network is denoted by Xt = (X1,t, ...,XN,t)

T ∈{0,1}N ,
s.t. Xi,t = 1 if node i∈V is infected and 0 otherwise. In the rest of the paper,
X̄i,t = 1−Xi,t, and N I

t =
∑N

i=1Xi,t stands for the number of infected nodes in the
network at time t.

Remark 11. A similar study can be done with epidemics that exhibits more than
two infection states, for instance the SIR-like epidemic, in which nodes are healthy,
infected, or recovered (‘R’), and in the latter nodes are perpetually cured, or dead.

6.2.2 Resource allocation for controlling a DP

A DM has the mission to reduce the DP by managing a fixed budget of b∈N∗
resources that help the receiving nodes leaning towards the healthy state. The re-
sources are regarded as being reusable, non-storable through time, and non-cumulable
at nodes (i.e. at most one on each node). Resources might serve as treatments, doc-
tors, nurses, beds, etc. in an emergency service, in which allocation decisions have
to be made on-the-go. Minimizing the total number of resources required for re-
moving a particularly viral epidemic from a network [28], or investigating the link
between the number of resources and the expected time of extinction [35, 36] are the
main subject of a couple of papers. However, here we assume that, despite b�n,
distributing resources thoughtfully can achieve the extinction of the epidemic in a
finite time horizon. In other words, there exists an allocation strategy that manages
to extinguish the epidemic with a given set of parameters and hence the budget size
is not the main focus here.

At each time instance t∈R+, the Dynamic Resource Allocation (DRA) [96, 97]
dynamically determines the resource allocation vector Rt = (R1,t, ...,RN,t)

T ∈{0,1}N
where Ri,t = 1 if a treatment is allocated to node i at time t and 0 otherwise; subject
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to
∑

iRi,t≤ b. The node state transitions of the homogeneous SIS model under
control are given by:

(healthy to infected) Xi,t : 0→ 1 at rate β
∑

jMijXj,t;

(infected to healthy) Xi,t : 1→ 0 at rate δ+ρRi,t,
(6.1)

where β is the contribution of any edge to the infection rate from an infected to-
wards a healthy node, δ is the self-recovery rate of each infected node, and ρ is the
contribution of a received treatment (if Ri,t = 1) to the node recovery rate. If we let
λi be the transition rate for node i in Eq. 6.1, then the mechanism generating DP
events (infection or recovery) is a Poisson process and the probability distribution
of the time intervals between events is given by:

p(∆t,λ) =λe−λ∆t, ∀∆t∈R+, (6.2)

where λ=
∑N

i=1λi is the sum of all node transition rates. Then, each node i∈V
can be the transitioning node with probability equal to λi/λ. Using the formalism
of [7], we write as pvu(∆t) :=P(N I

t+∆t = v |N I
t =u) the probability of going from u

to v number of infected nodes in a time interval ∆t, and we get:

pvu(∆t) =


b(u)∆t+o(∆t) v=u+1

d(u)∆t+o(∆t) v=u−1

1−(b(u)+d(u))∆t+o(∆t) v=u

o(∆t) v /∈{u+1,u,u−1},

(6.3)

where b(u) := b(N I
t =u) =β

∑
ijMijX̄i,tXj,t, (6.4)

d(u) := d(N I
t =u) =

∑
i(δ+ρRi,t)Xi,t. (6.5)

Note that, the resource allocation vector is constant within a time-interval ∆t. For
continuous-time, ∆t→ 0, and by using the Markov property P(N I

t+∆t |N I
0 , ...,N

I
t ) =

P(N I
t+∆t|N I

t ), the forward Kolmogorov differential equations are found for the prob-
ability of having n infected nodes at time t, denoted by pu(t):

dpu(t)

dt
= pu−1b(u−1)+pu+1d(u+1)−pu(b(u)+d(u)), (6.6)

for u= 1,2, ...,N , and dp0/dt= p1d(1). The evolution of the stochastic variables
of the problem are then derived from this standard equation. In particular, by
multiplying by n and summing over n, the equation that rules the evolution of the
epidemic becomes:

dE[N I
t ]

dt
=β E[XTMX̄]−δE[N I

t ]−ρE[XTR], (6.7)

where E[XTR] = min(b,N I
t ). In an attempt to solve this equation analytically in

the following section we consider the random assignment of the budget among the
infected nodes as resource allocation strategy.
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6.2.3 The dynamics of the SIS epidemic model with naïve/random
allocation strategy

As presented before, the random variable of interest in the stochastic SIS epidemic
model is the number of infected nodes at time t, N I

t , more precisely its expectation
E[N I

t ] for which we attempt to derive a closed-form equation. Let us start by
considering the following assumptions.

1. The graph is a random Erdös-Rényi (ER) where every node has approximately
the same degree, i.e. k̄≈ ki :=

∑N
j=1Mij , ∀i∈V.

2. The allocation of resources is coarse-grained, i.e. we apply the RAND strategy
for which the b nodes to receive a treatment are chosen at random among the
population of infected nodes.

3. When b>N I
t , the few remaining infected nodes can ‘accumulate’ more than

one resource to increase their recovery rate until N I
t = 0.

Note that those assumptions are usually not verified in real cases, but are taken as
a simple starting point for the analysis. By respecting the above constraints, we
multiply Eq. 6.6 by u, sum over u, and obtain:

dE[N I
t ]

dt
=β E[XTMX̄]−δE[N I

t ]−ρE[XTR]

dE[N I
t ]

dt
=βE[

∑
i

∑
jMijXj,tX̄i,t]−E[

∑
i(δ+ρRi,t)Xi,t]

dE[N I
t ]

dt
=β E[

∑
i k̄

NI
t
N X̄i,t]−δE[N I

t ]−ρb

dE[N I
t ]

dt
=
βk̄

N
E[N I

t (N−N I
t )]−δE[N I

t ]−ρb,

that finally leads to the evolution of the first-order moment:

dE[N I
t ]

dt
= (βk̄−δ) E[N I

t ]− βk̄
N

E[(N I
t )2]−ρb. (6.8)

We now multiply Eq. 6.6 by u2, sum over u, and similarly obtain the dynamic
equation for the second-order moment:

dE[(N I
t )2]

dt
= (βk̄+δ−2ρb)E[N I

t ]−2
βk̄

N
E[(N I

t )3]

+

(
2(βk̄−δ)− βk̄

N

)
E[(N I

t )2]+ρb.

(6.9)

It is easy to check that every moment equation depends on a higher order moment,
and thus the closed-form equation for the evolution of the expected number of in-
fected nodes cannot be computed, even in the simple coarse-grained allocation case.
In order to get some results, a first option is to use a moment closure technique to ap-
proximate the highest-order term, as in [81]. The two most common approximations
are the following:

Normal: E[(N I
t )3] = 3E[(N I

t )2]E[(N I
t )]−2(E[(N I

t )])3 (6.10)

Lognormal: E[(N I
t )3] =

(
E[(N I

t )2]

E[(N I
t )]

)3

. (6.11)
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A second option is to bound the expected number of infected nodes by using the
fact that E[(N I

t )2]≥E[N I
t ]

2, and thus that the mean of the stochastic SIS epidemic
model is less than that of the deterministic solution.

The conclusion is that, even in this simple case the closed-form equation of the
E[N I

t ] cannot be retrieved, unless restrictive assumptions are introduced. This thesis
primarily aims at showing the practical consequences of choosing different allocation
strategies on arbitrary networks, and therefore we make no assumptions on the
structure of the graph or on the expected evolution of the spread.

6.2.4 Scoring function

The score-based DRA assumes that there exists a scoring function s :V →R that
returns a score Si,t ∈R for each node i at time t, according to the mission, and
the nodes with the highest scores are those to receive the resources. This class of
strategies depends on the size of the available budget of resources and the efficiency
of each of them, as well on the ability of the scoring function in assessing correctly
the criticality of nodes.

The evaluation of the performance of a score-based strategy at time horizon T ∈R+

is the expected area under the curve (AUC) of the percentage of infected nodes
w.r.t. time:

AN (T ) =

∫ T

0

E[N I
t ]

N
dt ∈R+, (6.12)

By making this choice we acknowledge that the E[AN (T )] is more characteristic for
the effect of a strategy than, for example, the expected extinction time, E[texct.].

6.3 Sequential Dynamic Resource Allocation

The standard DRA strategies are build on a strong assumption whereby the DM
always has full information about the process and full access to the network, which is
apparently far from being realistic in most practical cases. To reduce this distance,
we introduce two models in the following sections. Their generality stems from the
fact that they assume the scoring function s to be a ‘black-box’ (hence out of our
main research focus here) that is appropriate for the studied network process. In this
context, this means that it is efficient in determining the criticality of an infected
node when asked. It then remains to the algorithmic part of a strategy to take the
decisions of resource reallocations to nodes that would be as much as possible valued
by the function s.

6.3.1 Restricted DRA

In the Restricted DRA (RDRA) model, only a fraction of nodes are reachable at
each moment. Let I be the set of nodes for which we have information and A the
set of accessible nodes, with I,A⊆V. We put forward two reasonable assumptions:
A1) the accessible nodes are always included in the set of nodes for which we have
information, i.e. A⊆I, and A2) at any time t∈R+, the treated nodes, Ċt = {i∈V :
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Figure 6.2: The sequential evaluation of candidates in the SDRA model.

Ri,t = 1} are accessible. The first notion to define for specifying the RDRA model
is that of a round.

Definition 11. Round k is a discrete event of reviewing and revising the allocation
of resources on the network. The series of rounds is defined by the sequence of time
instances (tk)∈RK+ , where t0 = 0, tK =T , and K is the total number of rounds.

Remark 12. A round-triggering process is considered to invoke the revision of the
resource allocation. In this thesis we restrict ourselves to a passive process, i.e. the
(tk)

′s are not decided or known to the DM in advance. However, an active process
can be an interesting addition to the RDRA strategy.

Generally, two subsequent rounds can be arbitrarily distant in time; i.e.

tk = tk−1 +δt, ∀k≤K, ∀δt> 0. (6.13)

During that time interval the allocation budget remains fixed and hence can become
suboptimal or even ‘wasted’ when resources stay on healthy nodes. This thesis
though, mainly deals with the impact of the allocation strategy on the evolution of
the spread. Hence the need to separate the effect of distant subsequent rounds from
the effect of a poor choice of resource assignment by a bad allocation strategy. Here,
more specifically, a new round is triggered whenever there is a change in the infection
state of the network, and thus, at most one node can recover or get infected between
two subsequent rounds. Formally, this is described by the following condition on
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the allocation events:
tk = tk−1 +δt∗, ∀k≤K, (6.14)

where δt∗ :=min(δt | ‖Xt+δt−Xt‖2 = 1). This assumption gets relaxed in Sec. 6.6.6
where more than one event can separate two rounds.

Since rounds are essentially a measure of time, each variable can be defined round-
wise, for instance we write Xk for the infection state at round k, i.e. at the time
instance tk.

Definition 12. The Restricted DRA (RDRA) strategy πk(I,A) is a DRA strategy
parametrized by the number of resources b∈N∗ and a scoring function s :V →R. At
any moment during a round k, the DM has information about the nodes of the set
I and simultaneous access to the nodes of the set A, in addition to those currently
treated, Ċk, more specifically: Ċk⊆A. The strategy outputs a resource allocation
vector, i.e. πk = Rk, ∀k≤K.

We consider as the default RDRA setting when I =A= Ck, where Ck is called
sample and is defined below. Choosing to define A or I otherwise, results in special
RDRA cases, while choosing I =A=V degenerates to standard DRA.

Definition 13. Node sample Ck is the set of accessible infected nodes at time tk,
Ck = (C1,k, ...,Cnk,k)⊂V. Its size nk = f(Xk)∈N∗ is given by f : {0,1}N→N∗, a
function of the infection state. The probability of observing a sample c⊂V, given
its size n∈N∗ and the network state x∈{0,1}N , is Λk(c;n,x) =P(Ck = c | |Ck|=
n,Xk =x). In short we write Ck∼Λk(n,Xk).

Typically, the number of accessible nodes is proportional to the number of infected
nodes in the graph, i.e. nk = bα

∑
iXi,kc, α∈ [0,1]. Similarly to the round triggering

process, although the size of the sample is known by the DM, it it still not of her
choice but it is generated. In a crisis scenario for instance, more candidate nodes
might ask for healthcare as the public awareness arises from watching the media.
Take as examples these two simple sampling functions, whereas more complicated
ones can be considered:

• P(i∈Ck) = nk
N 1{Xi,k = 1}, i.e. the sampling is uniform among the population

of infected nodes;

• P(i∈Ck) = e
Si,k∑
i e
Si,k

1{Xi,k = 1}, i.e. nodes with high scores have a highest prob-

ability to be sampled.

The RDRA’s assumption for simultaneous access to all the nodes of a sample in a
round remains far from being realistic. We next refine the access constraints and
present a model that processes the sample sequentially.

6.3.2 Sequential DRA

The Sequential DRA (SDRA) model does not reassign altogether the b treatments
as DRA and RDRA strategies do. Here, the round is further divided into nk time
intervals and the reallocation is performed sequentially at the time-scale of the round
duration. In each time interval one candidate of the sample is examined for getting
a treatment. Let the discrete index j ∈{1, ...,nk} characterize the sequential arrival
order of candidates, e.g. j= 1 and j=nk are respectively the first and last candidates
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Algorithm 4 DP control with Restricted and Sequential DRA
Input: N : population size; b: budget of resources; X0: initial infection state; p(x): transition
probability from state x to every other state; f : function that gives the number of accessible nodes;
Λ: p.d.f.of the sample; π: Restricted DRA strategy; isSequential : specifies if the strategy is RDRA
(false) or SDRA (true).
Output: X: final network state, R: final allocation of the resources
1: X←X0 // initialize infection state
2: R(randp(b,N))← 1 // initialize resource allocation
3: while sum(X) 6= 0 do
4: n← f(X) // compute the number of accessible nodes
5: Ċ← find(R = 1) // currently treated nodes
6: C∼Λ(n,X) // generate a node sample
7: if isSequential == true then
8: for j= 1...n do // loop of a selection round
9: R←π(Ċ,Cj) // update resource allocation sequentially
10: end for
11: else
12: R←π(Ċ,C) // update resource allocation altogether
13: end if
14: X←p(X) // update infection state
15: end while
16: return X, R

of round k. Since the administrator gains access sequentially to candidates, the
problem variables can depend on the index j ∈{1, ...,nk}.

Definition 14. The Sequential DRA (SDRA) πk(I,A) is the RDRA strategy de-
fined by the sequence πk(I,A) = (πk,1(I1,A1), ...,πk,nk(Ink ,Ank))∈{0,1}nk where Ij =
(C1, ...,Cj) and Aj =Cj , ∀j≤nk, providing a uniformly random arrival order of the
nodes of the sample.

The way the RDRA and SDRA models operate is described in Alg. 4, and an de-
ployment example is depicted in Fig. 6.2.

6.4 From DP control to a Multi-round Sequential Selec-
tion Process

6.4.1 Link with the Sequential Selection Problem

To the best of our knowledge, this work is the first to cast the dynamic DP control
as a problem where decisions are taken as in a Sequential Selection Problem (SSP).

We map the problem of DP control with SDRA to a succession of separate Warm-
starting SSPs (WSSPs) which were introduced in Definition 3. For convenience, in
these notations we drop the round subscript k within each WSSP, e.g. Ck becomes
C.

Definition 15. A particular distribution-aware GSSP (see Definition 15), with the
following characteristics:

1. Background

B= (n,b,s,Ċ), where the included elements are:
– n∈N∗: number of candidates to come,
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the result of the online selection to that of the offline selection used by RDRA.

– b∈N∗: fixed budget of resources,

– s :V →R: scoring function s.t. S = s(V)∈RN is the score vector of the entire
population.

– Ċ = (Ċ1, ..., Ċb)⊂V: the subset of the population, called preselection, to which
resources are initially allocated when a round begins, i.e. RĊi = 1, ∀i≤ b.

2. Sequential arrivals

– (C1, ...,Cn)∈Pn(V\Ċ): sequence of randomly incoming candidates for receiv-
ing a resource, where Pl(E) denotes the set of l-combinations of some finite
set E

3. Decision Process

– (RC1 , ...,RCn)∈{0,1}n: sequence of resource allocation decisions taken; giving
a resource to a candidate immediately withdraws it from a preselected node
(recovered or not), i.e. RCj = 1⇒∃ i≤ b s.t. RĊi = 0.

4. Score-based evaluation

Let P be the distribution of (S,R). The evaluation criterion, called regret, is
evaluated at the end of the process and defined as Φ(π) =EP [φB(S,R)], with:

The reward is evaluated at the end of the process by:

φB= STRoff−STR ∈R+, (6.15)

where Roff = argmaxR{STR |Ri = 0,∀i /∈A, |R|= b}.

The first term of the cost function in Eq. 6.15 defines the highest achievable score,
while the second one gives the score achieved by the taken sequential decisions. As
the sequence of incoming candidates is a random variable, E[φB/b] is the objective
function to minimize.

Some observations have to be made concerning our specific SDRA-to-WSSP map-
ping: 1) It translates the objective of the DP control (i.e. to minimize the percentage
of infected nodes through time) into an SSP objective (i.e. to minimize the expected
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cost function of the selected items), hence, ηt =E[ 1
N

∑
iXi,t] is closely related to

E[φB/b]. 2) During each WSSP instance, the administrator does not need to know
anything about the infection state of the network, and merely selects online. 3) The
final selection of a round may not exactly constitute the preselection of the following
one, specifically in case of recoveries of nodes that will not be any more part of the
preselection. Their resources are returned and become available for the candidates
of the round. 4) If the administrator has still unassigned resources while reaching
the end of the sequence of a round (for the triggering function we considered, this
can be at most one – see Remark 12 and below it), then they are by default given
to the very last candidates to appear.

6.4.2 SSP algorithms for DP control

In Sec. 6.4.1 we argued about plugging online algorithms from the SSP literature
into the SDRA model to sequentially control DPs. Here we focus on the algorithmic
part, in particular on two classes of online strategies:

• Cutoff-based : such a strategy takes as input a cutoff value c∈N; it first rejects
by default the first c incoming candidates, in a learning phase, and then selects
a candidate according to information collected during the first phase.

• Threshold-based : a particular case of cutoff-based strategies with c= 0. A
candidate is accepted if his score beats a specified acceptance threshold.

We chose an indicative algorithm from each class: the Cutoff-based Cost Minimiza-
tion (CCM) (see Chapter 4) and the Hiring-Above-the-Mean (MEAN) [21] (see
Sec. ??), whose objectives are to minimize the expected sum of the ranks (or re-
spectively, the expected sum of scores) of the selected nodes at the end of a round.

Cutoff-based Cost Minimization. The CCM algorithm is thoroughly explained
in Chapter 4 and is, for convenience, briefly explained again here. It takes as input a
measure of quality q ∈]0,1[ of the preselected nodes w.r.t. the sample. This measure
indicates how worthy the current resource allocation is. A high quality suggests
that the currently treated nodes are among the network’s most critical nodes for the
epidemic spreading. For this strategy, the administrator needs to value the selection
in terms of ranks instead of scores.

Let Ṡ = (s(Ċ1), ...,s(Ċb))⊂S be the scores of the candidates and SC = (s(c1), ...,s(Cn))⊂
S the scores of the preselected nodes. Using Definition 2, the rank-based cost func-
tion is defined as φσB,k =

∑
S∈SRn+b(S,(Ṡ,S

C)), where S = {Sj ∈S|Rj = 1}1≤j≤N .
In this thesis, we set qk =φσB,k−1/b, ∀k≤K, where φB,0 = 0.5. This way, the quality
of the preselected nodes in the k-th round is simply the sum of their ranks w.r.t.
to the sample of the previous round, when they were selected. This implies our as-
sumption that the item ranks are rather constant between two subsequent rounds.
Then, the table c∗(b,n,q)∈Nb×n is computed by tracking the lowest point of the
expected rank-based cost provided in Chapter 4 (see Sec. 4.2).

The algorithm proceeds as follows. The b-best scores recorded during the learning
phase of size c∗ are stored ordered in a reference set. Then, the acceptance threshold
starts at the worse score of the set and moves up each time a candidate is accepted,
pointing at the next higher score of a non-resigned employee. The process terminates
when the end of the sequence is reached. For simplicity, we refer to the CCM strategy
with c= c∗(b,n,q) as CCM∗. Note that the rank-based evaluation is particularly
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suited for the DP control, as nodes’ criticality scores are most likely changing through
time.

Hiring-above-the-mean. MEAN strategy [21] considers the average score of the
preselection as acceptance threshold, which is updated after each new selection. In
the original setting, each incoming candidate j≤n has a quality score Qj ∼U(0,1);
and the goal is to keep a good trade-off between the quality of the selection and speed
of hires. Let the average quality of b+1 employees be denoted as Ab (it starts with
A0 ∈ [0,1]). To quantify the rate of convergence of the latter and the rate at which
candidates are hired, they define a gap Gb = 1−Ab, which converges to 0 almost
surely when b goes to infinity. Among other results, they proved that after b3/2

candidate interviews, the expected value for the mean gap for the best b candidates is
O(1/

√
b), which makes the strategy close to optimal given this particular evaluation

criterion. Despite being more intuitive and easier to implement than CCM, this
strategy reaches its limit when the preselection is of poor quality with respect to
the sample (and probably also with all the population of care-seekers). We can also
consider another strategy presented in [21], where the acceptance threshold used is
their median score, MEDIAN.

6.5 Offline vs. Online

In our DP context, a strategy is called offline when it deterministically selects the
b-best reachable nodes and immediately assigns resources to them. As explained
earlier, the notion of ‘best’ is given by the ‘black box’ scoring function s :V →R,
which prioritizes nodes independently based on their criticality for the spread. On
the other side, an online strategy can only examine the candidate nodes one-by-one
(see Definition 14).

Before going further, let us clarify that for simplicity we add the superscript ‘off’ to
refer to the offline strategy associated to the online strategy Πk(C) that is implicitly
used. Also, the offline strategy defined in this way is only an indicator of which
nodes would have been selected by the oracle.

The main issue that arises from the link with SSP concerns the relationship between
the selection performance of an online strategy and the expected number of infected
nodes. This can be rather measured as a difference in the effect at the epidemic
compared to the corresponding offline strategy, namely ∆N I

t =E[N I
t −N

I,off
t ]. The

performance of an online selection strategy is quantified by its expected sum of false
negatives (FN) and false positives (FP) in the sequence, hence we define the online
selection error (or just error): ek = 1

2E[|Rk −Rk
off|]. ek is evaluated among the

subsequent rounds, right after a round’s selection is finalized. An online strategy
with guarantee can therefore be defined by providing a bound on either:

i) the expected number of errors over all rounds, s.t.:

1
b

∑K
k=1ek≤MK , with MK ∈R+, (6.16)

ii) or the expected cost at any k-th round, φB,k (see Eq. 6.15), written as φk =
Sk ·(Rk

off−Rk), s.t.:

E[φk]≤Lk, ∀k≤K, with Lk ∈R+. (6.17)
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This second bound is stronger as it is given round-wise. However, it requires a certain
knowledge of the score distribution. Going back to the DP, a thorough numerical
analysis lead us to the formulation of the following linear regression assumption.

Assumption 4. The expected difference in the percentage of infected nodes between
an online and an offline selection strategy through time is an affine function of the
online selection error though rounds, which is formulated as:∫ T

0

∆N I
t

N
dt= c1

(
K∑
k=1

ek
b

)
+c2, (6.18)

where c1≥ 0≥ c2 are constants that depend on the sampling size α (see Sec. 6.3.1),
and the epidemic parameters of the problem.

Suppose that an online strategy provides a bound on its expected number of errors
over the rounds and validates Eq. 6.16. Under the Assumption 4, one can deduce
the following bound on the AUC of the percentage of infected nodes:∫ T

0

∆N I
t

N
dt ≤ c1MK +c2. (6.19)

Suppose now that an online strategy provides a bound on the cost at round k and
validates Eq. 6.17. Observe that E[φk] =E[Sk · (Rk

off−Rk)]≥E[Smin,k1k · (Rk
off−

Rk)] = 2E[Smin,k]E[ek], where Smin,k is the minimum score over all candidates of
round k. Thus, Eq. 6.18 in Assumption 4 becomes:∫ T

0

∆N I
t

N
dt ≤ c1

(
K∑
k=1

Lk
2bE[Smin,k]

)
+c2. (6.20)

A short investigation of the role of the constants c1 and c2 can be found in the
simulations.

Example: online vs. offline selection – Fig. 6.3 displays an example of an online
selection round where two resources are initially assigned to the nodes of the prese-
lection (top-left in each subfigure). Suppose that the online strategy gives a resource
to incoming nodes with score higher than the average score of the preselection, here
with scores {0,−1} (the higher, the more critical they are). Scores of other infected
nodes appear when their turn in the sequence arrives and each of them gets ac-
cessed. The first candidate (j= 1) is not selected since his score of −1 does not beat
the threshold of 1

2(−1+0) =−0.5. The second candidate (j= 2), though, gets the
resource unit from the worse preselected node. The new score threshold to beat is
set to 0. The process continues, up to the last candidate (j=n). The final resource
allocation of an offline selection strategy is also shown (rightmost subfigure). Here,
the cost function for the online case is 1

bφB= (1 + 1)− (1 + 0) = 1, where the first
term is the highest achievable average score of the selection (i.e. the offline score),
and the second term is what the online strategy achieved. Regardless the scoring
function, an efficient SDRA strategy (online) should be as close as possible to the
associated RDRA strategy (offline) in terms of AN (T ) (see Eq. 6.12).
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Figure 6.4: Example of the evolution of the network infection state when considering the
dynamic scoring function LRIE and the static priority plan of MCM.

6.6 Simulations

6.6.1 Experimental setup

Network . The interactions among a population of N individuals are modeled by
a fixed, symmetric (undirected), and unweighted network with adjacency matrix
M∈{0,1}N×N where Mij = 1 only if nodes i and j are linked with an edge. The
connectivity structure is generated according to a scale-free (SF), a small-world
(SW), a community-structured (CS) network model, or a real network of Facebook
user-user friendships.

• In the SF type, the node degree distribution follows a power law, hence few
nodes are hubs and have much more edges than the rest. We use the Barabási-
Albert preferential attachment model [10] that starts with two connected nodes
and, thereafter, connects each new node to m∈N∗ existing nodes, randomly
chosen with probability equal to their normalized degree at that moment.

• In the SW type, nodes are reachable to each other through short paths. We
use the Watts-Strogatz model [107]: it starts by arranging the N nodes on
a ring lattice, each connected to m∈N∗ neighbors, m/2 on each side. Then,
with a fixed probability p∈ [0,1] for each edge, it decides to rewire it to a
uniformly chosen node of the network.

• In the CS type, nodes are grouped into sets that are densely connected inter-
nally and sparsely between groups. We use an hierarchical Erdös-Rényi model,
where the probability pl ∈ [0,1] for creating each edge reduces at each level l
as we move up in the hierarchy. At the lowest level there are 12 groups of 100
nodes, N = 1200 nodes overall (see Fig. 6.7).

For the two first types of generated networks, we use a small population size of
N = 100 individuals, which however is sufficient for our demonstration. Furthermore,
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by rescaling the epidemic parameters, the same phenomena can be reproduced in
larger networks. The model parameters to generate each network, are mentioned
explicitly in the associated figures.

Scoring function. In this section, we briefly expose a series of known scoring
functions that we used in our experiments:

• Random (RAND): selects nodes uniformly at random, among the infected
nodes.

• Largest Reduction in Spectral Radius (LRSR): selects each time the infected
nodes that lead to the largest drop in the first eigenvalue of the network’s
adjacency matrix [103].

• Largest Reduction in Infectious Edges (LRIE) [96]: selects the infected nodes
that minimize the number of infectious edges that connect an infected and a
healthy node. The associated score is the difference between the number of
healthy and infected neighbors of each node:

Si,t =
∑

j

(
MijX̄j,t−MjiXj,t

)
, (6.21)

recall that X̄i,t = 1−Xi,t, ∀j, t. This scoring function is derived from the min-
imization of the second order derivative of the expected number of infected
nodes w.r.t. time: d2E[NI

t ]
dt2

. LRIE is greedy and dynamic, since node scores
change each time the infection state and/or the network structure changes.

• Max-Cut Minimization (MCM) [97]: A priority planning strategy computes a
healing plan which is an ordering of the nodes that accounts for their criticality
w.r.t. the epidemic spread, and that is given prior to the beginning of the
diffusion. It is thereby a static scoring function. The resources are given to
the first b nodes of the plan, and once those nodes get cured, the resources are
reallocated to the next nodes of the plan. The MCM finds a node priority-
order with as low as possible max-cut (see Definition 6.22). For a network with
adjacency matrix M = (Mij)∈{0,1}N×N, the max-cut of a given priority-order
` is defined as:

CUT (`) = max
c=1,...,N

∑
i,jMij1`(i)<c<`(j), (6.22)

where `(i) is the order of node i in the plan. Finally, the scoring functions of
the infected nodes are given by:

Si =N+1−`(i), (6.23)

i.e. priority is given to nodes at the beginning of the ordering. Using such
a strategy, and under some specific assumptions, a bound over the expected
extinction time can be retrieved, defined as texct. = min(t,Xt = 0) ∈R+.

Example – In Fig. 6.4 is displayed the early evolution of the diffusion over the graph
G starting with full infection, i.e. X0 = (1, ...,1)T. The administrator manages dy-
namically b= 2 resources (blue nodes). Following the LRIE strategy, node scores
have negative initial values due to the full infection, which however increase as more
nodes recover. We can see that the two highest LRIE scores are spread across the
network, as in each score computation only local information is taken into account.
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On the other side, following the MCM strategy implies to first compute the priority-
order `= {E,D,B,C,A} that minimizes the max-cut, which is CUT (`) = 3 (between
nodes B and C) in this case, and provides fixed node scores.

Diffusion process and score-based DRA. The diffusion process we simulate
in our experiments is as described in Sec. 6.2.2 and with a fixed budget of b= 5
resources. In this SIS formulation we have dropped the self-recovery (i.e. δ= 0
in Eq. 6.1) in order to emphasize the role of the decisions taken by the compared
strategies. Concerning the scoring function, in the simulations we use both a static
and a dynamic scoring function, namely MCM and LRIE.

6.6.2 Comparing online strategies
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(a) Cutoff-based SDRA on SW
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(b) Threshold-based SDRA on SW
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(c) Cutoff-based SDRA on SF
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(d) Threshold-based SDRA on SF

Figure 6.5: Comparison of cutoff-based and threshold-based SDRA strategies, in terms of the
average percentage of infected nodes ηt through time, for SW (top row) and for SF (bottom row)
networks. The RDRA is shown for reference; for the same reason, the proposed SDRA-CCM is

also repeated in the right subfigure of each row.
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(b) SDRA, CCM∗ on SW
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(d) SDRA, CCM∗ on SF

Figure 6.6: The empirical p.d.f.fS of the node scores, at different different rounds k through
the multi-round process, for SW (top row) and for SF (bottom row) networks. The results refer
to the application of RDRA or SDRA (the CCM∗) strategies with the LRIE scoring function

(initialization with the same infection level in each row).

In the empirical study, our aim is to compare the performance of several DRA
strategies that follow Alg. 4. The offline selection strategy, which picks the reachable
candidates with the highest LRIE (resp. MCM) scores, is always plotted with a dark
blue (resp. light blue) curve as reference (see Figs. 6.5, 6.8, 6.9). Other colors imply
the sequential allocation of resources. At each round, a fraction α∈ [0,1] of the
infected nodes nt = bα

∑
iXi,tc is uniformly sampled and become accessible to the

administrator.

Fig. 6.5 displays the evolution of the average percentage of infected nodes with time,
using the compared DRA strategies on two network types. The SW type at the
top row, where on the left appears the cutoff-based CCM strategy with various
cutoffs, and on the right the MEAN and MEDIAN variations of the threshold-based
strategy. In both subfigures, CCM∗ is clearly the best performing approach. Here,
MEAN is a lot better than MEDIAN, however, on an SF network (bottom row), the
curves appear to be closer together and they do not differ in performance.
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Figure 6.7: Example of community-structured (CS) network with N = 1200 nodes and 12
groups.

To further investigate the behavior of the strategies, we plot in Fig. 6.6 the score
distribution fS (here from LRIE) for the infected nodes of the network at three
different rounds in the course of a multi-round process. The top and bottom rows
refer respectively to SW and SF networks. Fig. 6.6(a) and Fig. 6.6(c) show the fS
obtained using a RDRA strategy (blue curves in Fig. 6.5), while for Fig. 6.6(b) and
Fig. 6.6(d) the sequential strategy used is the CCM∗ (red curve in Fig. 6.5). Starting
from nearly identical fS per row at k= 1 (same initial infection level), we observe
that throughout the rounds the difference between the distributions of the RDRA
and SDRA strategies is larger for SW networks. This is as expected since in that
example the strategies have larger difference in performance. Moreover, for SF
networks, the fS leans towards a Gaussian-like shape, which explains why MEAN
and MEDIAN behave similarly, contrary to the more skewed shape obtained for a
SW network.

It is easy to see in these simulations that the network structure plays a crucial role in
the epidemic spread and sets the difficulty level to any strategy that tries to contain
it. Also, the highly evolving shape of the score distribution throughout the process
(rounds) illustrates the challenges that SDRA strategies need to address in order to
be sufficiently effective.

6.6.3 RDRA with different scoring functions

CS network . So far we have used the LRIE scoring function for the prioritization
of infected nodes. Here, we compare the behavior of the RDRA strategy when
using either one of the dynamic LRIE or the static MCM functions. In Fig. 6.8, the
percentage of infected nodes w.r.t. time is displayed for a CS network that exhibits a
hierarchical community structure, see [6]. Due to the large variation of edge density
that such networks exhibit, they usually require less resources than a graph with the
same number of edges but without community structure; in this case b= 17 resources
are enough for N = 1200 nodes. We notice that RDRA performs better with the
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(b) α= 0.05

Figure 6.8: Comparison of the performance of the RDRA with LRIE (dark blue) and MCM
(light blue). Average percentage of infected nodes w.r.t. time t, ηt for a CS network of N = 1200
nodes, 4 high-level groups, and 12 low-level groups, displayed in Fig. 6.7. The number of resources

is b= 17.

MCM scoring function than with the LRIE, as it is more efficient at targeting the
critical nodes. Fig. 6.8 shows the impact of the sampling size (left: α= 1; right:
α= 0.05). Despite the significant difference between the two sampling sizes, the
efficiency is only slightly reduced from one to the other.

Overall, in practice our framework seems to be able to translate the quality of
a scoring function to better performance in the constrained RDRA setting, and
its applicability remains high even when the sampling size is quite small. The
community graph used for simulations in Fig. 6.8 is displayed in Fig. 6.7, showing a
clear hierarchical structure with three levels of point density.

SW and SF networks. In Fig. 6.9, the simulations of Sec. 6.6.2 are repeated,
changing only the scoring function which now is MCM (RDRA appears in both
sides for reference). The two scoring functions, LRIE and MCM, give similar results
on SW and on SF networks. The noticeable difference concerns the SDRA strategy
for which the sequential CCM∗ (red curve) is almost identical to the CCM strategy
with c=

√
n−1 (green curve). In [13], the latter strategy is shown to be optimal for

node scores drawn from a uniform distribution (but unobserved by the administrator
who only makes pairwise comparisons). In order to verify this assertion, we displayed
in Fig. 6.10 the score distribution fS of the nodes w.r.t. the different rounds k. This
clearly seems to be more uniform-like than the Gaussian-like shape obtained with
LRIE, which explains well why the red and green curves are very close. Another
observation is the fact that nodes with the highest scores are treated before scores
with lowest scores (see orange bar plot), although some of them are still infected
(the tail of the orange bar plot) since re-infection might occur at the beginning of
the priority-order, especially in a graph without community structure. The results
on a SF network are very similar to Fig. 6.5(c) and Fig. 6.5(d) and are therefore
omitted due to space constraints.

Real networks. In the last simulations, in Fig. 6.11, we use a real network that
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(a) Cutoff-based SDRA on SW
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(b) Threshold-based SDRA on SW

Figure 6.9: Comparison of cutoff-based and threshold-based SDRA strategies. The Restricted
DRA is shown in light blue for reference; for the same reason, the proposed SDRA-CCM is also
repeated in the right figure. Average percentage of infected nodes ηt through time for SW

network.

contains Facebook user-user friendships1, which is larger than the synthetic datasets
used. A node is a user and an edge indicates a friendship between two users. Note
that from Sec. 4.4 in Chapter 4, using CCM with c= bn/ec is a decent alternative
to CCM∗ when few or no node recovered; it is therefore used in this simulation (red
curve). We deduce, from the positions of nodes on the circle of the layout, that any
node is easily reachable through a small number of jumps from another node, which
is characteristic of a SW network. For the simulations, we use the MCM scoring
function, slightly better than the LRIE. Despite an initial number infected nodes
of 20%, with only b= 16 resources for N = 2888 nodes the epidemic exploses when
the allocation strategy is not proper, e.g. when using the MEDIAN strategy (purple
curve).

The simulations of Fig. 6.12 are similar to those of Fig. 6.11 but focusing on the
LRIE instead of the MCM scoring function. On the left, RDRA strategies using
both scoring functions are compared, while on the right a comparison of different
sequential strategies using LRIE is presented. Contrary to Fig. 6.11 with MCM, the
sequential strategies here fail to reduce the epidemic spread when using the LRIE
scores.

6.6.4 Sampling size

As described, the sampling is performed on the infected nodes and so far we used an
arbitrary fixed ratio α. To analyze the impact of the sampling size on the efficiency
of the CCM∗ strategy, we plot in Fig. 6.13 the average percentage of infected nodes
w.r.t. time for various sampling ratios. We observe that the SDRA is less sensitive to
the sampling size on SF networks (right) than on SW networks (left). Furthermore,
regardless the network structure, increasing the sampling size does not improve
linearly the efficiency of the algorithm. In Fig. 6.14 is displayed the AUC of Eq. 6.12
for two different number of average neighbors k̄= {2,10}, and on each figure, for

1Available at: http://konect.uni-koblenz.de/networks/
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Figure 6.10: The empirical p.d.f.fS of the node scores, at different different rounds k through
the multi-round process, for a SW network. The results refer to the application of RDRA
or SDRA (the CCM∗) strategies with the MCM scoring function (initialization with the same

infection level)).

three different types of networks. Clearly, the difference between the network types
is more evident when the edge density of the network increases (right-hand side),
and the AUC is smaller for the SW type. This can be explained by the fact that in
this type of graphs, increasing the edge density merely reinforces the connectivity
within the hubs, i.e. aggregate of nodes, and hence assigning resources to those
critical nodes allows to reduce efficiently the spread. Note that, in this work we
consider a passive sampling that is purely random and does not follow any strategy,
however we might envision an adversarial sampling made by a malicious agent that
adapts to the administrator’s strategy. In this case, the worst case scenario plays an
important role in the strategy’s performance, using the CCM strategy for instance,
it occurs when the b-best candidates are the first incoming, since they are very likely
to be rejected by default.

6.6.5 Offline vs. online

In this section we investigate the linear regression hypothesis stipulated in Eq. 6.18 of
Sec. 6.5 by simulating the epidemic spread for different sequential selection strate-
gies. We then compare, for a fixed time horizon T , the expected percentage of
infected nodes through time, A∆N (T ) =

∫ T
0

∆NI
t

N dt, and the expected number of er-
rors through rounds, Ae(T ) =

∑K
k=1

ek
b , as displayed in Fig. 6.15. The lines represent

four different sampling sizes α= {1,0.5,0.4,0.2} from left to right.

Example – Imagine a scenario with b= 5 treatments, N = 100 nodes, and that the
administrator examines sequentially half of them, i.e. α= 0.5 (see Fig. 6.15(a)). As
expected, the result of each strategy, i.e. a 2-d point, lies on a line with slope
coefficient c1 = 0.714 and intercept c2 =−52.14; therefore we get A∆N (T )≤ 0.714 ·
MK−52.14, which empirically verifies Assumption 4 (see Tab. 6.1 in the Appendix
for more examples). After only 5-6 rounds, the CCM∗ algorithm makes no more
than 1.5 errors on average for a fixed number of candidates nmax =αN = 50 and
b= 5 resources, which gives MK ≤ 1.5

5 K = 0.3 · 301 = 90.3; hence we get A∆N (T )≤
0.714 ·90.3−52.14 = 12.33 that should be compared with the maximum value over
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(b) RDRA and SDRA performance

Figure 6.11: The average percentage of infected nodes w.r.t. time t, ηt (right), on a real data
network of N = 2888 nodes from Facebook user-user friendships (left) using the MCM scoring
function. The light blue curve displays the associated non-sequential RDRA strategy. The

number of resources is b= 16.

301 rounds, that is AMAX
∆N (T ) = 301. Therefore, the error ratio is less than A∆N (T )

AMAX
∆N (T )

=

4.1% of the worse case scenario.

6.6.6 Allocation frequency

In Fig. 6.16 is displayed the average percentage of infected nodes for four different
allocation frequencies, the plain blue curve being the usual reference curve for which
the allocation matches exactly the events (infection or recovery) frequency, i.e. δt=
δt∗, see Eq. 6.14. The parameters are the following: the scoring function used is
the LRIE, the sampling size is α= 1 and, the budget size is b= 5 resources and the
number of nodes isN = 100. Note that, to simulate a continuous time process, we use
Eq. 6.2 for generating the time intervals between two events, and thereby δt∗ depends
on the parameters of the problem. As an indication, using the parameters mentioned
above and the diffusion process parameters shown in the figure, the average δt∗ is
almost constant through time and equal to 〈δt∗〉= 1,4.10−3.

For the dotted, dashed and star lines, the allocation interval time is respectively set
to δt= {3.10−3,4.10−3,5.10−3} in Eq. 6.13. More intuitively, the number of events
that are ‘skipped’, i.e. the average number of events in between two allocation times
(or rounds), from using those frequencies are shown in Fig. 6.16(b). The first remark

b/N = 0.05 b/N = 0.06
c1 c2 c1 c2

α= 1 0.68 -39 0.584 -18.7
α= 0.5 0.714 -52.4 0.579 -19.2
α= 0.2 1.03 -153 0.58 - 25.4

Table 6.1: Values of constants c1 and c2 for β= 3, ρ= 125 for a SW graph with p= 0.05 and
m= 5.
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(a) LRIE vs. MCM scoring function
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(b) LRIE scoring function

Figure 6.12: The average percentage of infected nodes w.r.t. time t, ηt, on a real data network
of N = 2888 nodes from Facebook user-user friendships. The number of resources is b= 16.

is that for those 3 frequencies the number of events skipped is on average small com-
pared to the N = 100 nodes of the network. However, the impact on the percentage
of infected nodes is huge, as seen in Fig. 6.16(a). This phenomenon is explained by
the following reasoning; if the event that happens is a recovery, then it can be only
from the resource allocation since there is no self-recovery in the simulations, and
thus if this event is ‘skipped’, one of the very few resource is assigned to an healthy
node, which is equivalent to working with b−1 resources.

The parameters used in Fig. 6.17 are similar to those used for the dashed line in
Fig. 6.16, i.e. with, among others, δt= 3.10−3. As usual, the curves that represent
performances of the RDRA using LRIE (left-hand side) and using MCM (right-hand
side) are respectively drawn in dark and light blue. Along with those, the SDRA
performances are also shown for the best-performing online selection strategies by
red (CCM), magenta (MEAN) and purple (MEDIAN) curves. Not surprisingly, the
MEAN strategy works a bit better with a more meaningful and dynamic scoring
function as LRIE compared to a static one as MCM.

Here it is clear that allowing a re-allocation of the resources every time there is a
change in the state of the network is essential for the epidemic spread.

6.7 Conclusion and discussion

This chapter aimed towards bringing Dynamic Resource Allocation (DRA) strate-
gies closer to meeting real-life constraints. We revisited their strong assumption
that the administrator has full information and access to all network nodes, at any
moment decisions takes place: anytime needed, she can instantaneously reallocate
resources to any nodes indicated by a criticality scoring function. We significantly
relaxed this assumption by first introducing the Restricted DRA model, where only
a sample of nodes becomes accessible at each round of decisions. Inspired by the way
decisions are taken while care-seekers arrive at a healthcare unit, we next proposed
the Sequential DRA model that limits further the control strategy so as to have only
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(b) SF network

Figure 6.13: The average percentage of network infection though time using the sequential
CCM∗ strategy (red lines), for various fixed sampling sizes. The blue curves display the associated

non-sequential RDRA strategy with full access to nodes at each round (i.e. α= 1).

sequential access to the sample of nodes at each round. This setting offers a com-
pletely new perspective for dynamic control: the administrator examines the nodes
one-by-one and decides immediately and irrevocably whether to reallocate resources
or not. This online problem is put in relation with Sequential Selection Processes
(see Chapter 3) where efficient algorithms have been presented for the selection of
items from a sequence for which little or no information is available in advance.
Finally, according to our simulations on SIS epidemics, where we compared the per-
formance of several variants of the above DP control models, we conclude that the
cutoff-based CCM∗ is a very promising approach for the setting of sequential DP
control.
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Figure 6.14: AN (T ) w.r.t. α, i.e. the ratio of infected nodes that get accessible at each round,
with b= 5 resources and N = 100 nodes. Dark, medium and light orange respectively stand for
an Erdös-Rényi (ER), a scale-free (SF), and a small-world (SW) network, each of them having

an average degree of k̄.
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Figure 6.15: At fixed time horizon T , the plots show the correlation between the expected
difference in percentage of infected through time using an online or the corresponding offline
strategy, A∆N (T ) (y-axis) and the expected number of errors through time, Ae(T ) (x-axis).
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Figure 6.16: The left and right figures represent respectively the average percentage of network
infection and the average number of events in between two re-allocation of resources through
time using different allocation interval time, namely δt= {3.10−3,4.10−3,5.10−3}, and where the
average time between two events is 〈δt∗〉= 1,4.10−3. All lines are offline RDRA strategies using

the LRIE scoring function.
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(a) LRIE scoring function
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Figure 6.17: The left and right figures represent the average percentage of network infection
through time using respectively the LRIE and MCM scoring functions. The time interval for
resource allocations is δt= {3.10−3}, with an average time between two events is 〈δt∗〉= 1,4.10−3

(similar to the dashed lines in Fig. 6.16).
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Chapter 7

The stream-based b-diversification
problem

7.1 Introduction

Collecting and analyzing large amounts of data has become increasingly common
and helpful for understanding complex and various systems. In particular, data
streams [], i.e. sequential arrival of data instances, are by nature difficult to handle,
especially when they have great length and/or frequency. The online nature of the
problem imposes new challenges to the static data preprocessing and data mining
methods. Most common difficulties include working with time and memory limita-
tions, dynamically adapt learning algorithms, or dealing with non-stationary data
streams that are the results of concept drift [93], i.e. time-dependent properties of
the incoming data. Most of the static preprocessing methods assume that either
the entire training set is available as a batch, or that data statistical characteristics
are not evolving over time, and sometimes both. Translating directly those static
techniques for data streams is therefore not clear.

In this chapter, we are interested in the online selection of a fixed and limited
number, still called budget, of such instances, which were referred to as candidates in
Chapters 3-5 and as nodes in Chapter 6. Here again, the stream is passively observed
by the DM as opposed to an active instance generation. Typically, less than 5% of
the instances are selected, due to storage constraints. By definition, a selection from
a stream is irrevocable since instances cannot be called back. For instance in the
online single-item auction which is a prevalent example of such problems and which
is described in Sec. 2.3.1, an auctioneer has to sequentially accept or decline bids
without possibility for recall.

The selection is subject to an evaluation criterion, i.e. a chosen function to optimize
throughout the process, hoping to be as good as possible at the end of it. Usually,
the utility is an additive function of the selected items, for instance the sum of the
selected items’ individual value, as was the case in the previous chapters. To be
more specific, the value of every item was given through ranks in Chapter 4 and
through scores in Chapter 5. In this chapter however, we focus on a more complex
setting for which the evaluation function is non-additive, meaning that every selected
item’s utility depends on the previously selected items. As a direct application, we
explore the widespread b-diversification problem (also known as b-dispersion problem
[24, 3]), formally introduced in a stream-based fashion in [109], and where the DM
wants to maximize the minimum distance between all selected items. The notion of
distance is inherent to each situation, and assumed known in advance by the DM,
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the more common being the euclidian distance. Although situations with limited
physical or memory space are frequently encountered, as in robotics, in geology, etc.,
few algorithms propose an easy to implement solution to this problem.

In this chapter, we study the stream-based b-diversification problem, and for that,
we translate the problem of selecting items from a data stream with a non-additive
objective function, into a score-based problem for which we can apply algorithms
from the literature. For the mapping to be efficient, we thus need to choose carefully
the scoring function to apply to every instance so that it represents adequately its
relevance in the final selection. Furthermore, we try the general idea introduced in
Chapter 3 to split the entire data stream into successive warm-starting rounds, this
way the algorithm can adjust to already selected instances and in fact this approach
seems to outperform the direct approach.

7.2 The MaxMin-diversification problem

7.2.1 Description

As mentioned before, to complete the SSP study proposed in this thesis the emphasis
is made on a problem with a non-additive objective function. A widespread example
of such non-additive function is the submodular function, see definition below.

Definition 16. Submodular function: Set function φ : 2Ω→R over a finite set Ω,
such that, ∀B,A⊆Ω with B⊆A and a⊂Ω\B, the following condition is satisfied:

φ(A∪{a})−φ(A)≤φ(B∪{a})−φ(B). (7.1)

In other words, the difference in the incremental value of the function that the
addition of a single element makes to an input set decreases as the size of the input
set increases.

The application that particularly stroke our interest is the b-diversification prob-
lem, also known as result diversification. A DM must select out of a large pool of
instances, a typically very small subset of them that are, altogether, as diverse as
possible. This way, the proposed set contains a wide range of options and is particu-
larly useful when handling users-query results [105], for instance. In [38] the notion
of diversity itself, that either represents dissimilarity, novelty or semantic coverage,
and more particularly the quantification of diversity is subject to close investigation.

In the Max-Sum diversification problem the objective is to maximize the sum of
the distance between the selected instances, while in the Max-Min diversification
problem the objective is to maximize the minimum distance between the selected
instances. Here, we chose to explore the latter as it ensures a stronger selection
output, in the sense that no two instances will be too ‘close’ if the selection strategy
performs well. This batch diversification problem has been proven NP-hard, however
a few papers propose efficient approximation algorithms [41].

Formally proposed in [109], the online version of the above problem requires more
adaptation from the DM, as instances are presented in a sequential fashion, rendering
decisions irrevocable. The DM’s initial knowledge only concerns the budget, i.e. the
number of instances to select, and the number of instances that compose the stream.



7.2. The MaxMin-diversification problem 123

The formal definition of the problem is as follows: out of a stream ofN ∈N∗ instances
X∈Rd×N presented one by one, a DM must select b∈N∗ of them (typically, b�N)
in order to maximize the minimum distance between any two items of the selected
set Ẋb⊆X. Let us first define the minimum distance between every pair of instances
that respectively belong to two sets U and V by:

D(U,V) = min
u∈U,v∈V,u 6=v

Dist(xi,xj), (7.2)

where Dist(xi,xj)∈R+ is the distance between instances xi and x−j. When both
instances belong to the same set, i.e. when U = V = Ẋb, the minimum distance
between every instance pair is written as:

D(Ẋb) = min
xi,xj∈Ẋb, i 6=j

Dist(xi,xj) (7.3)

Finally, the b-size best selection set is formally defined as:

Ẋ∗b = argmax
Ẋb⊆X,|Ẋb|=b

D(Ẋb), (7.4)

and the maximum distance associated to this set becomes D∗=D(Ẋ∗b).

The notion of distance is given according to the nature of the instances and the
objective function, typically an Euclidian distance is considered.

7.2.2 Mapping to a score-based Sequential Selection Problem

The first step that we take to investigate online selection from a stream is to translate
this type of process into a Generalized SSP (GSSP) (see Definition 1 in Chapter 3),
which is easier to handle by applying the algorithms used in the literature. The
principle of the mapping is to associate each instance to a score that translates its
worth for the DM in a way that represents how valuable the instance is for the
selection at a given moment

More formally, the scoring function s :Rd→R+ maps an instance to a real-valued
score. By that, we allow the DM to use any score-based or rank-based sequential
selection method. However, in the large majority of cases, the score distribution is
unknown a priori, and is likely to change depending on the choice of scoring function.
In this particular case, there is no ‘correct way’ to compute each instance’s score,
since, as stated before, the b-diversification problem is NP-hard, even in an offline
fashion; i.e. there is no single score that reflects the inherent value of an instance.

The goal here is therefore to propose a step-wise scoring function that is appropriate
to every instance. The score of the instance arriving at step j, Sj,k ∈R+, should
depend on the k≤ b instances accepted so far, written Ẋk = {ẋ1, ..., ẋk}⊆X, which
have been selected at positions {m1, ...,mk} of the sequence (hence, ẋl =xml , ∀l≤ k).
We propose the following score for the j-th arriving instance:

Sj,k =D
(
Ẋk, {xj}

)
∈R+, ∀j≤N, ∀k≤ b, (7.5)

which computes the minimum distance between this instance and every other pre-
viously selected instances.
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Figure 7.1: Example scheme of some steps of the irrevocable-choice b-diversification
problem. Here b= 3 instances must be selected out of N = 12. The first instance x1
(j= 1) is accepted by default, then possible selections are decided immediately according
to the instance score (inside the grey circle), i.e. their minimum distance w.r.t. to the

already accepted instance(s).

Note that, using the above definition, the score of instances is defined using the
current set of the k selected instances Ẋk, and hence, the scores of those selected
instances are being defined separately. Otherwise, the l-th selected instance would
have a score of Sml,k =D(Ẋk, {xml}) = 0 since xml ⊆ Ẋk, ∀l≤ k. Since it is mean-
ingless to assign a score to an instance when none has been selected yet, we assume
that, regardless the strategy used, the first incoming instance is always selected,
i.e. m1 = 1. This assumption is also considered in [109] (see Sec. 4.1.1) and the
conducted empirical study therein concludes that, as long as b is reasonably large,
the first instance selected has a marginal effect on the overall quality of the selection
when using their algorithm.

Then, in order to avoid null scores when k > 1, we propose the following to define
at any time, the score of the l-th already selected instance:

Ṡml,k =D
(
Ẋk\xml , {xml}

)
∈R+, ∀l≤ k, ∀k≤ b. (7.6)

The sequence of decisions A = (Aj)j≥1 regarding the instances is such that Aj = 1
if the j-th instance is accepted and 0 otherwise, in particular Am1 = ...=Amk = 1.
An algorithm’s performance is given through the following criterion (the reward)
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evaluated at the end of the process and defined as E[φ(S,A)], where:

φ(S,A) = min
1≤j≤N

(Sj,b Aj) = min
1≤l≤b

Ṡml,b :=D(Ẋb) ∈R+, (7.7)

with S = (Sj,b)j≤N the vector of instances scores at the end of the selection. The
DM’s goal is therefore to maximize the E[φ(S,A)].

Example. The scheme of an example is shown in Fig. 7.1, where the DM has
to select b= 3 instances out of N = 12 sequentially incoming instances. Say that
the algorithm chosen for this example starts by selecting the first instance (hence
m1 = 1). The score of the j-th arriving instance is the distance between that and
the initially selected instance. The acceptance threshold γj represents the minimum
score that the j-th instance should have in order to be selected. The algorithm
selects the j= 8-th incoming instance since its distance to the first selected instance
is Dist(x1,x8) = 4.8>γ8 = 4.1. This selection leads to a change in the acceptance
threshold for the next step (j= 9), where γ9 = 3.3 as the DM decides to relax the
acceptance threshold. Finally, the last instance selected is the j= 11-th one. At
the end, the selected instances are m1 = 1, m2 = 8 and m3 = 11, which gives a final
reward of φ= min(3.5,3.5,4.2) = 3.5. This can be put in comparison with the reward
of an offline strategy (it has access to the batch of all instances from the beginning)
that is worth φoff = 4.2 in this example.

7.3 Simulations

7.3.1 Including a warm-start

Let us now see the precise implementation of two of the algorithms described in
Chapter 2 that need careful adjustments to include the possibility of having a warm-
start.

� Hiring-above-the-mean (MEAN). Recall that the MEAN strategy needs the
score of at least one selected instance in order to operate, which is not obvious at the
very start of the stream, in fact Sm1,0 from Eq. 7.6 is not defined. To implement the
algorithm in this situation we then have two options, either i) the second instance is
selected as well by default, i.e. m2 = 2, and then the score of both two first instances
becomes their distance, i.e. Sm1,2 =Sm2,2 =Dist(x1,x2); or ii) the second instance
is rejected, i.e. m2 6= 2, but we keep as score of the selected instance the distance
between the two first instances, i.e. Sm1,1 =Dist(x1,x2), until another instance is
selected and then the score of the first instance is updated and becomes the distance
between that and the latter, i.e. Sm1,2 =Dist(x1,xm2). This second option is the one
implemented in the simulations. From k > 2 and on, an instance is accepted if its
score beats the average score of the selected instances, therefore the acceptance
threshold to beat for an instance when k≤ b of them have been selected so far is
given by γ= 1

k

∑k
l=1Sml,k.

� Cutoff-based Cost Minimization (CCM). Algorithms that consider a prese-
lection might also work in a warm-starting setting, i.e. a setting where the decisions
are made according to the instances that have been selected so far (see Chapter 3).
Hence, for those algorithms, as the CCM, we use the following method, discussed
in Sec. 3.4:
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– split the GSSP of N ∈N instances into K ∈N subsequences, i.e. rounds of size
n= bN/Kc (without loss of generality, we assume that k divides perfectly N), see
Fig. 3.2.

– Each round is initialized with information from the previous one, and thus con-
stitues a Warm-starting SSP (WSSP), see Chapter 3. For convenience, we take
K = b, i.e. during each round exactly one instance is selected, therefore the prese-
lection set at round k, i.e. the set of selected items so far in the previous rounds,
is given by Ẋk = {ẋ1, ..., ẋk}⊆X. The final selection is Ẋ = {ẋ1, ..., ẋb}∈Rd×b .

In addition, this strategy takes as input the quality of the selection set when k
instances have been selected so far. This is a relative measure of how good one of
the selected instances is compared to what remains to be seen from the sequence.
It is denoted qk ∈]0,1[, where qk→ 1 represents a good selection set. This notion
needs to be redefined in this context. Intuitively, in this diversification problem
we can tell that a single selected instance cannot have a ‘quality’ by itself, since it
essentially needs to be compared to other selected instances. Henceforth, the first
selected instance should not be considered ‘good’ or ‘bad’, and the quality is rather
set to the moderate q1 = 1/2. Originally the quality was defined as a function of
the rank of the selected instances compared to the following instances. Making the
analogy with Definition 4, we get:

Definition 17. Rank-based relative quality of the preselection set at the beginning
of round k (qk): when k−1 instances have been selected so far, the average rank of
the selected set compared to the n instances:

qk := 1−
1

k−1

∑k−1
l=1 R(Ṡml,k−1)−1

n
, (7.8)

where R(Ṡml,k−1) :=Rn

(
Ṡml,k−1,Σ = {Sn(k−2)+1,k−1, ...,Sn(k−1),k−1}

)
is the rank of

the l-th selected instance, computed during the k-th round, compared to the instances
scores that arrive at that round. The initial quality is set to q1 = 1/2.

The simulations from the following section are implemented with the low-failure ver-
sion of the CCM (lf-CCM) for which the acceptance threshold is given in Eq. 4.18

with b= 1, µ̂j and wj :=
√
V[Ãj | Ãn = 1] are determined in Proposition 6 of Chap-

ter 4, and using c= b
√
nc [13].

At every round of the lf-CCM algorithm, the entire learning phase requiresO(c log(c)d)
time, i.e. O (

√
n log(

√
n)d) operations, as it only sorts the c= b

√
nc first instances.

It takes O((n−c)d), i.e. O((n−
√
n)d) time to go through the selection phase, i.e. to

compare each d-dimensional instance to a fixed scalar score, without any adaptation
from the DM. Replacing a fixed acceptance threshold with a dynamic one requires
to compare every new instance with the sorted vector of already seen scores, hence it
needs O((n−c)d log(n)), i.e. O((n−

√
n)d log(n)) operations. The entire time com-

plexity of the lf-CCM algorithm is therefore O((N −
√
Nb/2)d log(N/b)), or more

simply O(Nd log(N)). Note that this is significantly lower than the O(N2(d+1)+
Nd(b+1)) complexity of the DYN-SIMPLEK algorithm built for the b-diversification
problem [109].

� Dynamic simplek (DYN-SIMPLEK). The algorithm proposed in [109] which
was built exclusively for the stream-based b-diversification problem. It relies on a
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heavy offline computation to derive an approximation of the acceptance threshold be
set by an offline strategy and hence, it does not necessarily constitutes an appropriate
‘online’ strategy for other practical cases where the DM should take quick decisions.

The so-called simplek algorithm [109] operates as follows: the DM systematically
rejects by default all first c= bN/2c instances and from them computes an accep-
tance threshold γ for the instances that will follow. This acceptance threshold is
found by binary search, it is set to the average between a lower bound –which is
at first the minimum distance among the batch of rejected instances– and an up-
per bound –which is initially the maximum distance among the batch of rejected
instances. If the number of instances which are more than (or exactly) γ away is
larger (respectively smaller) than b, the acceptance threshold becomes the upper
(respectively lower) bound, until exactly b instances are γ away. According to the
authors, this step takes O(cd) to store the c instances, then O(N2d) time to compute
the threshold. Here we denote this threshold by γoff ∈R+ since it requires a rather
costly offline computation to have been made. In the selection phase that follows,
the first arriving instance is always selected, i.e. m1 = bN/2c. Next, every instance
whose distance with the latter is greater or equal to the acceptance threshold γoff
gets selected until b instances are selected.

In order to avoid a high failure rate, which is approximately ρf = 35% using this
static acceptance threshold (see Sec 4.2.1 in the original paper), the authors pro-
pose the dynamic simplek (DYN-SIMPLEK). In this adapted version, the probability
distribution of the distance between future and selected instances, noted f , gets ap-
proximated by using past rejected instances as estimates for future instances. Note,
though, that this action is quite computationally heavy and considerably slows down
the online decision process. In the selection phase, the time complexity is O(Nd)
for every selection, i.e. O(Ndb) in total, and O(N) for every other rejected instance,
i.e. O((N −N/2− b)N) overall. Finally, the entire algorithm time complexity is
O(N2(d+1/2)+(d/2+bd−b)N).

The dynamic threshold γj at the current step j is set such that the area below the
pdf curve between that and to the right is b−k

N−j , where k is the number of instances
selected so far; i.e.

∫ +∞
γj

f(x)dx= b−k
N−j . Finally, the new acceptance threshold is set

to the minimum between that and γoff at each step j. This manipulation allows to
significantly reduce the failure rate, as shown in the next simulations.

7.3.2 Simulations results

Generated data

Inspired by the simulations of [109], we start with data from N = 5000 z-normalized
random-walks. The walks are reshuffled to produce 100 streams of N walks of the
original dataset ordered randomly.

In Fig. 7.2 is displayed the minimum distance between the set of b= 10 selected
instances using the different strategies described in Sec. 2.3.2, averaged over the 100
tests. The red line represents the median of each strategy, the blue box the quantiles,
the whiskers extend to the most extreme data points not considered outliers, and
the outliers are plotted individually with red dots.
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Figure 7.2: Minimum distance between the b= 10 selected instances on generated random
walks. The red line gives each strategy’s median, blue boxes are the quantiles and the outliers
are represented with red dots. The lf-CCM∗ and the WDT algorithms operate in b rounds.

Strategy Failure rates (%)
Random-walks Insects Fishes Rocks

KLEINBERG 94.0 92.4 73.8 88.2
OPTIMISTIC 87.0 83.4 59.8 62.6
MEAN 0.0 0.0 1.0 4.2
SUBMODULAR 100 96.2 77.8 87.6
SINGLE-REF 63.0 56.2 48.4 53.2
Dynamic simplek 0.0 1.4 1.8 6.4
lf-CCM 0.0 4.8 5.7 74.2
WDT (b rounds) 0.0 0.6 1.4 27.4
WDT (1 round) 100 100 61.0 97.0

Table 7.1: Table of failure rates ρf in % for different strategies (rows) and different datasets
(columns).

A striking result from the random walks simulations concerns the failure rates asso-
ciated to these simulations and stored in Tab. 7.1 (see the Random-walks column).
As the ratio between the budget of instances to select and the length of the sequence
is rather small (b/N = 2.10−3), the chances that the algorithm fail to fill all b= 10
empty slots should be, intuitively, quite low. The failure rates for the KLEINBERG,
OPTIMISTIC, and SUBMODULAR strategies are however surprisingly high (all
very close to 100%), and lead to a poor quality of the resulting selected sets. More
specifically, they achieve a median of approximately D≈ 16, when the median of a
strategy with a slightly better failure rate of 63% (see SINGLE-REF in Tab. 7.1)
already climbs to D≈ 20 (see SINGLE-REF in Fig. 7.2).

A second observation concerns the MEAN strategy, which always has the lowest
failure rate (see MEAN in Tab. 7.1), yet does not manage to output a high-quality
selection set (the median is at D≈ 17). This is due to the algorithm procedure; the
x1 is selected, x2 is rejected and the score of x1 becomes its distance to x2, then
subsequent instances are selected if their score is higher than the score of x1, hence
the acceptance threshold is initially rather low.
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Finally, the difference between a strategy that operates in a single round and one
that operates in b rounds by separating the entire sequence into b subsequences
in which a single instance is selected each time. A straightforward example is the
WDT algorithm that we purposely applied in both situations (see the two last rows
in Tab. 7.1). Note that the WDT algorithm is applied in the no-information setting,
i.e. it is the rank-based version of the algorithm (see Sec. 5.3.2 in Chapter 5) and
is therefore very fast to generate and to apply since it is not based on score values,
thus no p.d.f. has to be computed during the process. The failure rate of the WDT
applied in b rounds is significantly lower than that of a single round, which confirms
our intuition that separating a long sequence into b warm-starting subsequences
helps improving the final selection.

Real dataset

Fig. 7.3(a) displays the minimum distance between the set of b= 8 selected instances
of dimension d= 256 out of a stream of N = 1200 insects, using the same strategies
as in Fig. 7.2, averaged over 500 tests, this time using real-data provided again in
[109].

Fig. 7.3(b) and Fig. 7.3(c) uses real-data but from fishes and rocks respectively. In
the provided dataset, each row corresponds to an insect/fish/rock encountered on
the path, while each column gives the numerical value of every of the d features.

Unsurprisingly, the results on real-data comply with those on generated random
walks, i.e. the KLEINBERG, OPTIMISTIC, and SUBMODULAR strategies have
very high failure rates, and therefore perform poorly; while the lf-CCM algorithm
remains a suited alternative to the DYN-SIMPLEK. Moreover, the difference in
achievement gets smaller as the number of instances to select from decline. Observe
also that the algorithm which seems to have a low failure rate while maintaining
a good minimum distance is the b-rounds WDT algorithm (in a no-information
setting) for most datasets. However, the DYN-SIMPLEK is the best performing
algorithm on these sets of data, despite being rather computationally heavy which
renders it less practical than other faster algorithms, e.g. the SINGLE-REF, the
lf-CCM or the rank-based WDT algorithm.

7.4 Conclusion and discussion

This chapter investigated a non-additive multi-choice Sequential Selection Problem
application, namely the stream-based b-diversification problem. In this case, the
DM’s goal is to have, at the end, the most diverse selection set at hand. There are
several ways to define the set diversity, in this chapter we set that to be measured
as the minimum distance between elements of a set. Also as distance function
at element-level we regarded the standard Euclidian distance. After a thorough
description of this problem, we propose to translate it to a score-based SSP, for which
we can apply already existing algorithms that are described in previous chapters.

Secondly, the aforementioned algorithms’ performance are compared through simu-
lations based on real datasets and their respective limitations are highlighted. The
lf-CCM and WDT algorithms clearly present the better trade-offs between time
complexity and efficiency at maximizing the objective function.
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(a) Data from a sequence of N = 1200 insects with b= 8 resources
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(b) Data from a sequence of N = 200 fishes with b= 4 resources
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(c) Data from a sequence of N = 70 rocks with b= 5 resources

Figure 7.3: Minimum distance between the selected instances. Red is the median and blue
box the quantiles. The whiskers extend to the most extreme data points not considered outliers,
and the outliers are plotted individually with red dots. The lf-CCM ∗ and the WDT algorithms

operate in b rounds.







133

Chapter 8

Conclusion

This manuscript aimed at filling one of the existing gap between real-life control
of diffusion processes and their current modeling. To fulfill this objective, we first
needed to fill a lack in the field of sequential selection problems, with the introduction
of the Warm-starting SSP, a novel setting that addresses the cold-start limitations
of standard settings, and for which we provide an offline analysis of the initial state
in Chapter 3.

Then, we extend this warm-start option to a multi-round context, where each round
constitues a separate WSSP that starts with at hand, i.e. as a warm-start, the final
selection of the previous round. The warm-start aspect introduced in the generalized
SSP raised some algorithmic questions regarding the online decisions, particularly in
a multi-round setting where an ideal algorithm would maintain an optimal selection
in the course of multiple rounds, rather than at the scale of a single selection round.

The Cutoff-based Cost Minimization algorithm is next proposed as an answer to this
new setting in Chapter 4. Inspired by the standard Secretary Problem algorithm,
i.e. composed of a learning phase and a selection phase, CCM is fully suited to any
degree of warm-start considered. The rank-based regret function that we used in the
WSSP setting enables our algorithm to be efficient for arbitrary candidate scores.
We approximate analytically this objective function by deriving the expectation of
the main parameters of the problem (e.g. the acceptance threshold, the number of
accepted candidates, the regret, etc.). In the end, we implemented CCM in a multi-
round framework (MSSP). Such a process was motivated by the natural needs of
real-world recruitment processes that are regularly trying to improve the personnel
of an organization or a company. The conducted simulations are consistent with
our analytical work and demonstrated that CCM is efficient in reducing the regret
at the course of the multi-round process while being robust to scores, resignations,
or changes in the number of jobs.

In the subsequent chapter, the score distribution is now assumed to be known by the
DM. This assumption forces the DM to reconsider her selection strategy accordingly.
A new algorithm is therefore presented in Chapter 5, called Warm-starting Dynamic
Thresholding, and which applies to a score-aware WSSP setting, i.e. considering the
case where the incoming candidates have scores following a known distribution.
The proposed algorithm is based on a dynamic programming approach and achieves
optimal threshold estimation at each step of the sequence of interviewed candidates.
Experiments have been performed in the multi-round setting, which is interesting for
real-world reoccurring recruitment processes. WDT demonstrated a clearly better
performance than existing algorithms, regardless the number of initially empty job
positions. We additionally proposed a rank-based dynamic programming alternative
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that can go beyond the need of knowing perfectly the distribution that generates
the scores, yet, resulting in satisfying outcomes.

Chapter 6 goes back to the motivating example, i.e. bringing Dynamic Resource Al-
location strategies closer to meeting real-life constraints. We revisited their strong
assumption that the DM has full information and access to all network nodes, at any
moment decisions takes place: anytime needed, she can instantaneously reallocate
resources to any nodes indicated by a criticality scoring function. We significantly
relaxed this assumption by first introducing the Restricted DRA model, where only
a sample of nodes becomes accessible at each round of decisions. Inspired by the way
decisions are taken while care-seekers arrive at a healthcare unit, we next proposed
the Sequential DRA model that limits further the control strategy so as to have
only sequential access to the sample of nodes at each round. This setting offers a
completely new perspective for dynamic control: the DM examines the nodes one-
by-one and decides immediately and irrevocably whether to reallocate resources or
not. This online problem is then put in relation with previous chapters and par-
ticularly with the CCM∗ algorithm presented in Chapter 4 that is implemented in
this epidemic control case. Obviously, the Multi-round Sequential Selection Process
is naturally fitting for handling this new setting. Finally, according to our simula-
tions on SIS epidemics, where we compared the performance of several variants of
the above DP control models, we conclude that the cutoff-based CCM∗ is a very
promising approach for the setting of sequential DP control.

Finally, we investigated a non-additive multi-choice Sequential Selection Problem
application, namely the stream-based b-diversification problem in which the DM’s
goal is to have, in the end, the most diverse selection set at hand. After a thor-
ough description of this problem we compare the performances of a few relevant
algorithms from the literature through simulations based on real-data and highlight
their respective limitations.
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Personalised COVID-19 Isolation
and Exit Policies Based on
Machine Learning Predictions

Authors: Theodoros Evgeniou, Mathilde Fekom, Anton Ovchinnikov, Raphael
Porcher, Camille Pouchol, and Nicolas Vayatis.

Problem definition: In mid-2020, following social distancing measures due to
COVID-19, governments consider “exit", “deconfinement", and the like strategies
to relax the lock-downs. We study how that might be done by utilising machine
learning predictions of clinical risk.

Academic / Practical Relevance: Pandemics present existential threats to hu-
manity, much like climate change or nuclear proliferation do. Battling such threats
requires innovation, and we explore the extent to which the main innovation of the
last decades – machine learning and artificial intelligence – could help.

Methodology: We extend a standard susceptible-exposed-infected-removed (SEIR)
model to account for personalised predictions of clinical “severity" risk, defined by
the risk of an individual needing intensive care (ICU) if infected. We then simulate
differential exit policies using COVID-19 data and estimates for France as of early
May 2020.

Results: Simulations and sensitivity analyses indicate that an exit policy consid-
ering clinical risk predictions starting on May 11, the date chosen by the French
government, could enable to immediately relax isolation restrictions for millions of
the lowest-risk population, and consequently relax the restrictions on the remaining
population months faster – while abiding to the ICU capacity at all times. Exit poli-
cies without risk predictions would exceed the ICU capacity by a multiple, or they
should isolate a substantial portion of population for over a year to not overwhelm
the medical system at one of the waves of the infection.

Managerial Implications: Governments need to develop policies and invest in in-
frastructure to implement personalised isolation and exit policies based on machine
learning predictions at scale. This involves health data policies to train predic-
tive models and apply them to all residents, policies to support targeted resource
allocation to maintain strict isolation for high risk individuals, and the likes.
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Introduction

As of mid-2020, many countries have adopted non-pharmaceutical interventions,
such as isolation restrictions, or “lock-down" [69], to control the spread of COVID-
19. Epidemic models have been used to inform such policies [49, 46]. Governments
now consider relaxing these restrictions, but how to best do so is unclear. Some
approaches rely on immunity tests [89] or on test and tracing technologies [106]. We
studied a different approach that, instead of using (“ex post") immunity or diagnostic
tests, utilises (“ex ante") predictive technologies, such as machine learning, which
have been proven successful in other contexts. This approach can complement those
relying on immunity and diagnostic tests, or be considered independently.

The type of personalised isolation, or “confinement", and exit, or “deconfinement",
policy that we study is as follows. First, for each individual one predicts his or her
clinical risk score (e.g., the probability of experiencing symptoms severe enough to
require an ICU bed). Second, those with predicted scores above a certain threshold
are classified as “severe," or “high risk," and the remainder are classified as “mild,"
or “low risk." Third, those classified into the high risk group are subject to stricter
isolation and protection (“confined"), while those in the low-risk group to a softer
one, or none at all (“released"). In practice, this can be achieved by targeted allo-
cation of resources (e.g., providing masks and other personal protective equipment
(PPE), dedicated health support, free delivery of groceries and other necessities,
etc.) to the high-risk group, targeted government communication that differentiates
between high and low risk individuals, and other targeted policies.

The studied policies rely on the observation that per current estimates, the vast
majority of the population, >99% in France [95], do not experience severe symptoms
needing an ICU, if infected by Sars-Cov-2. Hence, should one be able to (i) determine
who the ∼1% of severe cases are, and (ii) perfectly and temporarily isolate and
protect them, the remainder would be able to return to a more-or-less normal life.
In such an ideal scenario, many low risk people would get infected and would infect
others, but none infected would have severe symptoms – as those would have already
been correctly identified and perfectly protected. The medical system would not be
overwhelmed, no one will die, and the society and economy would avoid a major
shock from the indiscriminatory lock-down that was implemented in many countries.

In practice, the effectiveness of such a personalised policy would depend on two crit-
ical imperfections: (i) risk prediction models might occasionally make mistakes, e.g.,
false positive and false negative errors, and (ii) isolation would also be imperfect, as
for example high-risk individuals, who should be isolated, may occasionally contact
those infected (e.g., due to PPE shortages or non-compliance), and the low-risk in-
dividuals, who would be able to continue normal life, may not do so (e.g., due to
fear).

We studied how these two imperfections impact the effectiveness of the aforemen-
tioned personalised pandemic isolation and exit policies. In order to do so, we
extended a standard epidemic model, namely a version of SEIR [77], to incorporate
personalised predictions of severity risk, defined as requiring an ICU bed if infected
(other definitions can be similarly used). Using simulations, we investigated how
prediction models for patient severity may inform policy in two scenarios. First,
when there is an ongoing outbreak as it was the case in France on the 17th of
March, 2020, when lock-down, or confinement, started. Second, when the outbreak
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has been curbed and progressive loosening of isolation policies (exit, or deconfine-
ment) may take place, as was the case in France starting from the 11th of May,
2020.

We did not attempt building a risk-model of our own. Rather, given the existing
research indicating differential impact of COVID-19 across patients, for example
depending on age, body mass index, hypertension, diabetes and other factors [55],
and the emerging risk models, such as referenced in [16] and [104], we assumed hy-
pothetical risk prediction models. We then studied the sensitivity of the simulation
results with respect to model discrimination akin to the models already developed.

To populate our simulation models, we used available COVID-19 estimates and data
from France as of May 2020 [32]. At the end of lockdown on May 11, there were about
2750 ICU beds occupied by people with COVID-19, with a peak at 7 148, compared
to the total roughly 10 000 capacity recently reached by the French health system.
We used current estimates with a reproduction number value of R0 = 2.9 prior to
lock-down, and 1.5 million people who had been immune or infected when it started
in France on March 17, 2020 [95]. Uncertainty was analysed using Approximate
Bayesian Computation.

Our simulations lead to the following main observations and the corresponding im-
plications:

1. Isolation and exit policies, when based on risk-model predictions, could be
substantially faster and safer. Utilising realistic parameter values and a high-
quality risk model at the upper-end of [16], simulations indicated that the
complete COVID-19 exit could be undertaken in 6 months, with only 30% of
population being under strict isolation for longer than 3 months – all with-
out overwhelming the medical system and exceeding the ICU capacity at any
point. In contrast, without such a model, simulations indicated that the com-
plete exit would take 17 months1 and 40% of the population would be subject
to strict isolation for over a year, or the ICU capacity will be exceeded by over
four times.
Implication: Governments should invest in individual health data infrastruc-
ture to make such models implementable at scale. That is, infrastructure to
not only collect and analyse data on a few thousand people who exhibited
symptoms and went to hospitals, but also the individual medical data on the
entire population to obtain health risk predictions for all residents; see [42]
for further discussion on the resultant data policies, privacy and other related
issues.

2. Even moderate-quality risk models could already bring non-insignificant re-
sults – that is, relaxing isolation for millions of people and months faster,
while abiding to the existing constraints on medical resources.
Implication: For immediate COVID-19 action focus on the “minimal viable
product" data and models that can be used at scale. For example, age, body
mass index, and hypertension and diabetes data – all of which can be assessed
at a nearby pharmacy for all people within weeks, can already be used with a
risk model such as in [16] to inform policies that could be relevant for practice.

1Such excessively long and massive lock-downs in the absence of a reasonable risk-model may,
in fact, be an under-estimate, e.g., [1] propose isolating all seniors for 18 months, and even that
hinges on the assumption that a vaccine will be developed by then.
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3. Personalised policies based on risk-model predictions are highly sensitive to
the protection level of confined people. Interestingly, the impact of protection
level of deconfined people on the simulated outcomes depends on the risk-
model quality. With a high-quality risk model, the optimal policy builds herd
immunity, if policy choices allow, which can be done faster when deconfined
people are less protected.

Implication: Personalise resource allocation to protect the confined, pre-
dicted high-risk, people: distribute them masks and other PPE, supply with
food and other necessities for free, prioritise testing those in contact with them,
etc.

4. Lastly, whether an individual is classified as high- vs low-risk changes over
depending on the state of the epidemic. The proposed personalised policy
combines the epidemic progression with the data-science principles, and op-
timally adjusts the high- vs/ low-risk classification threshold so as to ensure
safe and fast deconfinement.

Implication: A careful communication strategy is needed to convey such
personalised policies to the public.

This paper is organised as follows. First, because multiple research articles on
COVID-19 are published daily, we do not present a formal literature review; instead
some of us maintain an open-access repository of relevant literature with brief dis-
cussions here: https://github.com/MyrtoLimnios/covid19-biblio. Most of that literature
is from the medical and related sciences, but there is a growing body of work in
operations management too. [64] provides an excellent review. [17] and [37] are the
working papers on COVID-19 that we are aware of; more will likely come up soon.

Second, because our findings are based on numerical simulations, the code is avail-
able via GitHub at: https://reine.cmla.ens-cachan.fr/boulant/seair, and the detailed
description of the algorithmic details for how our model is implemented in the code
is provided in [19]. This forms a “code appendix" to our paper.

Lastly, to facilitate dissemination of our results for the general public, we cre-
ated a non-coding demo “simulator" for the differential policies that we study here:
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=305. It is pre-populated with the
default parameters for France used in our simulations, but one can change the pa-
rameters and simulate the pandemic exit policies for other counties/regions given
their respective situations.

Model

At a high level our model is a combination of a rather standard epidemiological
model (compartmentalised SEAIR) with an equally standard machine learning risk
model (binary classifier).

Extended SEAIR Model.

SEAIR is a deterministic model of ordinary differential equations (ODEs), which
considers 5 categories of individuals of the following types:

https://github.com/MyrtoLimnios/covid19-biblio
https://reine.cmla.ens-cachan.fr/boulant/seair
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=305
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• Susceptibles: those who have never contracted the disease;

• LatEnt, who have contracted the disease, but are asymptomatic and not yet
contagious;

• Asymptomatic, who have contracted the disease, and are asymptomatic and
contagious;

• Infectious, who have contracted the disease, and are symptomatic and conta-
gious;

• Recovered, who have had the disease and have become immune to it.

We extend this base-model in two ways. First, we add an explicit compartment for
people in ICU. Second, we split each compartment of the S, E, A, I, R categories
into four sub-categories, with the ICU compartment split in two. Together with
a compartment for people who died from the disease, they add up to a total of
23 compartments. The four subcategories correspond to the so-called “confusion
matrix" of the machine learning risk prediction model (see Table A.1): (i) True
Positives, who would actually experience severe symptoms upon infection needing
and ICU bed, and classified as high-risk and hence confined, (ii) False Negatives,
who would actually experience severe symptoms upon infection needing and ICU
bed, but classified low-risk and hence released, False Positives, who would actually
experience only mild symptoms upon infection not needing an ICU bed, but classified
high-risk and hence confined, and True Negatives, who would actually experience
only mild symptoms upon infection not needing an ICU bed, and classified low-risk
and hence released. Each individual falls into exactly one of these four groups,
but one’s membership in a group is determined endogenously by our model as is
explained in the next section.

Because this notation is critically important going forward, we reiterate that the
policy we study confines those who are predicted to have high-risk, and releases
those who are predicted to have low-risk. As any model, our (assumed) prediction
model makes mistakes, and therefore both the confined and the released groups
contain a mix of actually severe- and actually mild-symptom individuals. The sub-
and super-scripts j= {s,m}, for (actually) “severe" vs “mild", and i= {c,r}, for
“confined" (i.e., predicted severe) vs “released" (i.e., predicted mild), designate the
sub-categories in each compartment. For example, S(r)

s refers to susceptibles who
are released, but will get severe symptoms when infected; S(r) refers to all released,
and so on.

We use ρ∈ [0,1] as the control parameter of our policy, denoting the proportion
of individuals who should be released, i.e., those classified by the risk model as
the low-risk group (correctly or incorrectly) and therefore subject to low isolation
restrictions. We initially consider a single-release policy (in which we optimise over
a scalar ρ), and then extend the analyses to multiple release epochs, in which we
optimise over a vector {ρ0,ρ1, ...} released at times {0, t1, ...}.

The impact of the differentiated isolation restrictions on people’s behaviour is cap-
tured by two behavioural parameters: δr, for the group with low isolation restric-
tions, i.e., released, and δc, for the group with high isolation restrictions, i.e.,
confined; 0≤ δr <δc≤ 1. These parameters capture a level of “protection," which
may aggregate several factors such as respiratory and hand hygiene, how much a
person has lowered the number of exits from home and social interactions, etc.
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Note, that how individuals in group i= {r,c} reduce their chances of contracting
the disease not only depends on δr and δc, but also on the proportion of people in
each group, ρ and 1− ρ. The so-called “contact rates," cr and cc for the released
and confined groups – important parameters in “standard" epidemiological models
satisfy 1− ci = (1− δi)× ((1−δr)ρ+(1−δc)(1−ρ)) , i∈{r,c}. These parameters
have been used in the literature modelling the current lock-down, e.g., [34, 32]. Our
approach is fully aligned with those, as we endogenise contact rates per the preceding
equation.

A

E(r)

E(c)S(c)

S(r) Im

Is ICU

R

D

(1−δr)βIe

(1−δc)βIe

ε

ε

σ

σ

γm

η α

γs

Figure A.1: Simplified schematic of the risk-extended SEAIR model, showing rates
of passage from the different compartments. Displayed compartments are the released
susceptibles, S(r), the confined susceptibles, S(c), the released latent, E(r), the confined
latent, E(c) the asymptomatic, A, the infectious with severe symptoms requiring ICU, Is,
the infectious with milder symptoms, Im, the people in Intensive Care Unit, ICU , as well
as those who died from the disease, D, and those who recovered and are immune, R. All

parameters may be found in Table A.2.

Figure A.1 presents the simplified schematic of the SEAIR side of our model, which
corresponds to the following set of ODEs (reduced from the full set of 23 equations
for ease of exposition2); all parameters are in Table A.2:

Ṡ(r) =−(1−δr)βIeS(r)

Ė(r) = (1−δr)βIeS(r)−εE(r)

Ṡ(c) =−(1−δc)βIeS(c)

Ė(c) = (1−δc)βIeS(c)−εE(c)

Ȧ= εE−σA
İm =σAm−γmIm
İs =σAs−ηIs
U̇ = ηIs−(γs+α)U

Ṙ= γmIm+γsIs

Ḋ=αU.

Here the effective number of contagious people is Ie = (1− δr)(A(r) + I(r)) + (1−
δc)(A

(c)+I(c)), and, given the so-called basic reproduction number R0, the transmis-
sion rate is β= R0

N0
× 1
p(σ−1+γ−1

m )+(1−p)(σ−1+η−1)
, which is derived by stability analysis

as in [34], using the so-called next generation matrix method [33].
2The full set of ODEs and the algorithmic details of their solution are presented in the “code

appendix" [19].
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Actual, s Actual, m

Model, s→ confine True Positives = False Positives =
1−ρ

(1−p)×
∫ 1
T fs(ω) p×

∫ 1
T fm(ω)

Model, m→ release False Negatives = True Negatives =
ρ

(1−p)×
∫ T

0 fs(ω) p×
∫ T

0 fm(ω)

1−p p

Table A.1: Confusion matrix of the risk model. fs,fm denote class-conditional predic-
tive distributions; T is the classification threshold, p is the proportion of people with mild
symptoms in the population, and ρ is the proportion of the released population – the

decision variable in our model.

Risk Prediction / Classification Model.

Our model requires identifying individuals at highest risk of severity and correspond-
ingly advising them to remain in strict isolation, while relaxing isolation restrictions
for individuals at lower risk. Such identification is done in two steps following the
common data science and machine learning approach. At step one, a risk-“score"
is obtained for each individual with a logistic regression, random forest, gradient
boosting, used in [16], or the like model. A standard metric to assess the discrim-
inating power of such models is the Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) curve [43]. At step two, individuals with risk scores
above a certain threshold, T , are classified as high-risk and are confined, and the
rest are classified as low risk and are released. T is determined endogenously so that
the the proportion of the released population equals ρ, which is, recall, the decision
variable in our model.

As mentioned in the introduction, we do not attempt training a risk-model of our
own. Training such models requires access to non-trivial personalised data, and
many research teams have better access to such data than we do. The goal of this
paper is to evaluate the efficacy of the personalised pandemic management assuming
such a model. Therefore, we create hypothetical risk models, which discriminating
powers (measured by the AUC) bracket existing models in the literature, e.g., [16].

To create a hypothetical risk model, let fs and fm denote the so-called “predictive
distributions" – the PDFs of the proportions of people having the severe and mild
symptoms, respectively, as predicted by the model. Together with the threshold,
T , and the proportion of the population with mild symptoms in the population, p,
fs,fm define the model’s confusion matrix per Table A.1.

As is evident from Table A.1, given ρ, p and “the model," i.e., fs,fm, the corre-
sponding classification threshold T ∗ is selected such that:

(1−p)×
∫ T ∗

0
fs(ω)+p×

∫ T ∗

0
fm(ω) = ρ. (A.1)

Let qFP and qFN denote the model’s false-positive and false-negative error rates;
i.e., qFP =

∫ 1
T ∗ fm(ω) and qFN =

∫ T ∗
0 fs(ω); for notational convenience we omit the

dependency of qs on T ∗, and through that, on ρ. Then (A.1) is equivalent to:

(1−p)×qFN +p×(1−qFP ) = ρ, (A.2)
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which highlights a key relationship of (any) classification model that we exploit.
Selecting a small ρ results in a small T ∗ and, thus, also a small qFN . Relatively
few people will be released, but very few of the released would be, by mistake,
actually severe. Increasing ρ would not only increase T ∗, hence releasing more
people, but it would also increase qFN , making a disproportional impact on the
number of people who would require an ICU. An increase in qFN will be smaller
for a higher quality, i.e., higher AUC, model than for a lower-quality one. This is
because AUC =

∫ 1
0 (1− qFN )dqFP and thus a higher AUC implies, ceteris paribus,

lower qFN at a given T .

Another important observation from Table A.1 is that the released individuals con-
sist of two groups: True Negatives and False Negatives. The latter will experience
severe symptoms upon infection, requiring ICU beds. However, they are not the
only group which will require ICU: because the confinement of the non-released is
imperfect (δc< 1), some of the True Positives will also get infected (and will require
ICUs). Setting a smaller ρ, decreases the number of FNs, but increases the number
of TPs, thus leading to a non-trivial relationship between selecting ρ, the resultant
threshold T ∗, and ICU demand. This relationship, further, depends on the model’s
quality (AUC).

The goal is to select ρ so that, given the model’s quality, confine only a few people,
yet not to violate the ICU bed capacity due to the errors made by the model in
identifying such people and due to imperfect confinement of the rest.

Connecting Risk and SEIR Models.

The risk-model connects with the SEAIR model as follows. For Q∈{S,E,A,I,U,R}
and a policy ρ, we re-scale the initial risk-independent epidemiologic conditions Q0

to account for the distribution of people in the four groups:

Q(r)
m (0)← p(1−qFP )Q0, Q(c)

m (0)← pqFPQ0,

Q(r)
s (0)← (1−p)qFNQ0, Q(c)

s (0)← (1−p)(1−qFN )Q0.

This results in the starting “day 0" conditions for the 23 compartments in the ex-
tended SEAIR model, which all depend on ρ:

(S(r)
m ,E(r)

m ,A(r)
m , I(r)

m ,R(r)
m ,S(c)

m ,E(c)
m ,A(c)

m , I(c)
m ,R(c)

m ,S(c)
s ,E(c)

s ,A(c)
s , I(c)

s ,U (c),R(c)
s ,S(r)

s ,

...E(r)
s ,A(r)

s , I(r)
s ,U (r),R(r)

s ,D)(0).

(A.3)

As we investigate policies changing over time, we also update the numbers of people
in each compartment when the decision-maker increases ρ from some value ρold to
ρnew, with corresponding false positive and false negatives rates qFPold , qFNold and qFPnew,
qFNnew, respectively:

Q(r)
m ←Q(r)

m +
qFPold −qFPnew

qFPold

Q(c)
m , Q(c)

m ←Q(c)
m −

qFPold −qFPnew

qFPold

Q(c)
m ,

Q(r)
s ←Q(r)

s +
qFNnew−qFNold

1−qFNold

Q(c)
s , Q(c)

s ←Q(c)
s −

qFNnew−qFNold

1−qFNold

Q(c)
s .
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Symbol Description Value(s) Reference

N0 total initial number of people in the population 6.7107

S0 total initial number of infected people in the population computed
E0 total initial number of exposed people in the population case-dependent estimated
A0 total initial number of asymptomatic people in the population case-dependent estimated
I0 total initial number of infected people in the population case-dependent estimated
U0 total initial number of people in ICU case-dependent known/estimated
R0 total initial number of immune people in the population case-dependent [95]/estimated
Imax hospital capacity for COVID-19 ICU beds 7 250 assumed
p proportion with mild symptoms (prior) 0.9932[0.9891−0.9961] [95]
β transmission rate computed
R0 basic reproduction number 2.9 [95]
ε waiting rate to viral shedding 1/3.7 day−1 [32]
σ waiting rate to symptom onset 1/1.5 day−1 [32]
η waiting rate from symptom onset to ICU 1/7 day−1 [95]
γm recovery rate from mild symptoms 1/2.3 day−1 [32]
γs recovery rate for people in ICU 1/17 day−1 [95]
α mortality rate for people in ICU 1/11.7 day−1 [95]

Table A.2: Simulation parameters used with relevant 95% confidence intervals.

Summary of Key Parameters and Data.

All parameters used in simulations are listed in Table A.2. Parameters for the initial
conditions S0, E0, A0, I0, U0 and R0 depend on the investigated scenario: “day 0"
is either set on March 17, 2020 – the first day of country-wide lock-down in France,
or “day 0" is set on May 11, 2020 – the beginning day for the lock-down exit.

The initial number of susceptibles S0 is computed as S0 =N0−(E0 +A0 +I0 +R0 +
U0).

The class-conditional predictive distributions are modelled as Beta distributions:
fs∼Beta(as, bs) and fm∼Beta(am, bm). In simulated scenarios, the no model refers
to am = bm = as = bs = 1, and otherwise we fix bs = am = 2 and vary3 as = bm. The
low AUC model refers to as = bm = 3 (AUC∼75%) and the high AUC model refers to
as = bm = 5 (AUC∼96%). These parameters are selected so as to bracket the “high"
(AUC∼82%) and “low" (AUC∼93%) models from [16]. For sensitivity analyses we
explore the range from as = bm = 2.5 (AUC∼65%) to as = bm = 6.5 (AUC∼99%),
further bracketing the range of models that are likely to be available in practice for
a disease like COVID-19.

Estimation of missing parameters and construction of confidence
intervals.

Most parameters are not known with certainty. To that end, we focused on the key
parameters driving the simulation results: the fraction p of individuals with mild
symptoms if infected, the reduction of contact rates during lock-down c, and the
numbers of people exposed/asymptomatic/infected at the beginning of lock-down,
on March 17.

We used Bayesian methods to estimate the joint distribution of these parameters by
comparing model predictions to the actual data for ICU occupancy from March 17
to May 11, 2020 obtained from the official portal of the French government: https:

//dashboard.covid19.data.gouv.fr. A noteworthy complication in using the standard
Bayesian methods is that the likelihood function for the resultant prediction errors
is unknown and likely highly non-trivial as the errors are not independent over time

3The symmetric ROC models that we considered are certainly not the only possible approach.
While working on this paper we explored multiple non-symmetric settings, and observed no quali-
tative impact on the simulation results.

https://dashboard.covid19.data.gouv.fr
https://dashboard.covid19.data.gouv.fr
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(intuitively, if one SIR-like curve is higher than another early in a time horizon, it
must get lower at a later time, etc.)

To deal with this complication we utilised Approximate Bayesian Computation
method (ABC) [85], which has been specifically designed for such situations. The
ABC method was implemented with the root mean standard error as a distance func-
tion [20], with a maximum error set at 1 000 beds over the 55 data points, which
corresponds to an “acceptance rate" of about 10%. We assumed the prior distribu-
tions to be independent with the following choices: Beta distribution for p with pa-
rameters (2265,15.6), fitting the mean and 95% confidence interval observed in [95],
uniform distribution for the total number of people exposed/asymptomatic/infected
on March 17 with range between 0.5 and 1.4 million (recall that 1.5 million of people
were estimated to be exposed/asymptomatic/infected/immune at that time), and
uniform distribution for c between 65% and 75%, which is consistent with [95].

The number of samples for the prior distribution for p and the initial number of
exposed/asymptomatic/infected at the beginning of lock-down E0 +A0 +I0 was set
at n= 10 000 (resp. 100 000 for robustness when computing means).

This led to around 1 000 (resp. 10 000) posterior samples as the acceptance rate
was at 10%. In order to reduce the parameter space, we have estimated the total
number of people exposed/asymptomatic/infected and inferred the number in each
state by using the fractions of the mean time spent in each category in the majority
population, i.e. that of people with mild symptoms. More precisely, this corresponds
to setting x := (1+ε

(
σ−1 +γ−1

m

)
)−1 and then

E0←x(E0 +A0 +I0), A0←
ε

σ
x(E0 +A0 +I0), I0←

ε

γm
x(E0 +A0 +I0).

The mean posterior values were found to be p∼ 0.993 and E0 +A0 + I0∼ 1200000
(for March 17). The mean posterior value for c was found to be c∼ 69.2%. Note
that the latter value is unused in our numerical experiments, since we investigate
scenarios with differentiated isolation policies.

We remark that by modelling uncertainty in p, we implicitly introduced uncertainty
in the risk model as the error rates qFN , qFP solve equation (A.2) where p is a
parameter. We acknowledge that other sources of uncertainty in risk models could
also exist4.

Simulations with 95% confidence intervals.

In all figures showing the evolution of the number of people in ICU (see Figure A.2),
the initial condition E0 +A0 +I0 and the proportion of people p not requiring ICU

4Uncertainty in risk models, i.e., in risk predictions and even in the classification threshold, could
be due sampling bias (e.g. clinical trial data used are not reflecting population data or electronic
medical records failing to account for the part of the population who was never admitted to the
hospital) or methodological bias (model misspecification, suboptimal machine learning/statistical
method used). To provide statistical guarantees on the risk estimators, it may be necessary to
compute confidence bands on the estimated ROC curve which will then lead to explicit confidence
bands on the risk model. Typical approaches to derive confidence bands are to perform error
propagation on distribution parameters (in a parametric framework), or to generate several ROC
curves and Precision-Recall curves through resampling and provide some bootstrap estimate of the
confidence band [84]. Resampling strategies may include label flipping (prediction uncertainty),
sample perturbation or shifting (sampling bias), etc. Lastly, the quality of a prediction model was
assessed by AUC; other measures also exist, [94].
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were sampled according to their posterior distribution. The mean curve of Figure A.2
is obtained by taking the average of all the sampled curves, while subsequent 95%
confidence intervals were derived by removing the 2.5% and 2.5% upper and lower
values for the computed number of ICU beds at each time.

Simulations with grid searches.

As some numerical experiments (see Figures A.3, A.4 and Table A.3) require grid
searches, we did not sample according to the posterior distribution for each scenario,
but rather computed mean values in order to ease the computational burden.

• March 17, 2020: simulations are operationalised as follows:

– the initial number of utilised ICU beds is known I0∼ 700, and the es-
timate for the total number E0 +A0 + I0 +R0∼ 1.5.106 is also available
from [95];

– therefore, we took the average over the posterior and obtained E0 +A0 +
I0∼ 1200000, resuting in R0∼ 300000 people;

– similarly, taking the mean along posterior samples resulted in the esti-
mate of p∼ 0.993;

– the ODE system was then integrated up until 200 days past March 17,
2020.

• May 11, 2020: simulations are operationalised as follows:

– sampling according to the posterior for p and E0+A0+I0, and integrating
the ODE system from March 17 to May 11, we obtained a sample of initial
conditions for May 11, of which we took the averages to obtain estimates
for all parameters,

– the ODE system was then integrated up until 200 days past May 11,
2020.

Results

We present the results of our simulations in three steps. First, we consider a partial
exit problem with a single release. Second, we explore the sensitivity of the single
release problem. Third, we consider the complete exit problem over multiple release
epochs, as well as discuss its sensitivity.

Partial exit with a single release.

Figure A.2 displays the number of individuals requiring an ICU bed w.r.t. time t.
The March 17 scenario is in the left column, the May 11 scenario is in the right.
Two risk models are considered: a “high" AUC∼ 95.99% (top row) and a low AUC∼
75.71% (bottom row), bracketing the performance of initial risk models developed
for COVID-19 [16, 104].

In each plot, ρ represents the maximal percentage of the population that is released,
i.e., submitted to lighter restrictions, which is assumed to correspond to δr = 0.1, in
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Figure A.2: Number of individuals requiring an ICU bed w.r.t. time t (days). Left
column starts on March 17 (the day of the initial lock-down in France), right column starts
on May 11 (the day when lock-down ends). The dotted line on the left column shows the
actual data for France from March 17 to May 11. Top row uses a risk prediction model
with high AUC∼ 95.99%, bottom row uses a risk prediction model with low AUC∼ 75.71%.

Without a model, ρ= 45% for March 17, and ρ= 55% for May 11.

such a way that the 95% confidence interval of the number of individuals requiring
an ICU bed when using the risk prediction model (green and orange curves) remains
below the maximum number of ICU beds assumed (7 250). In these first simulations,
the rest of the population is confined with stricter restrictions, δc = 0.9. Finally, the
red curves show the number of individuals requiring an ICU bed w.r.t. time if the
same ρ of population is released, but selected at random without any risk prediction
model.

Figure A.2 shows that a high-AUC model (green curve) allows for having 62% re-
leased (corresponding to a decrease of social interaction by 46%) from March 17 on,
while a low-AUC model (orange curve) enables only 53%. In France, with a popu-
lation of 67 million, these percentage differences correspond to ∼ 6 million people.
Perhaps more importantly, without a model, ρ= 45% for March 17 – a 17% and 8%
difference, respectively, or some 5 to 11 million people.

Plots for lock-down exit strategies (May 11) investigate the effect of the same risk
prediction accuracies. All differences (62% vs 53% vs 45% for March 17, 70% vs
60% vs 55% for May 11) are statistically significant at the 5% level. Lastly, without
a risk prediction model, the ICU beds demand greatly exceeds the current capacity
at either ρ.
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Sensitivity analyses of the single release policy.

Figure A.3 presents sensitivity analyses of the difference between the maximal per-
centage of people which may be released without exceeding ICU capacity for sev-
eral risk-prediction models, relative to the maximal percentage, but with no risk-
prediction model. The results are shown for both the March 17 and the May 11
scenarios. Sensitivity is tested with respect to the discrimination performance of
the risk prediction models (AUC) and the degree of isolation of the confined pop-
ulation (δc). We also alter the degree of isolation for the released population (δr)
across different plots.

As expected, the higher the discrimination of the prediction model, the bigger the
difference. However, the degree of isolation has different impact depending on who
is considered: for the confined population the stricter the isolation (the higher is δc)
the larger the impact of the risk prediction model. But for the released population
(δr = 0.1 or 0.2 in Figure A.3), the results are more intricate. It is often also better
to isolate more strictly, except when the risk prediction model is of very high quality
and the confined people are in very strict isolation. In those situations the optimal ρ
is large enough to achieve “herd immunity" (1− 1

R0
≈ 65%) which can be done faster

if the released population is less protected. The main implication of these analyses
is that it important to both assume in models and encourage in practice the stricter
isolation practices for the high risk population, for example by focusing distribution
of PPEs and other resources, strictly isolating nursing homes, etc., as this can not
only protect the high-risk group better, but also allow for more efficient / faster exit
from the pandemic for the rest.

Figure A.4 shows sensitivity analyses regarding the percentage p of the population
with severe symptoms upon infection (which we decrease from the posterior average
∼ 0.993 to 0.98) and the ICU capacity (which we increase from 7 500 to 15 000).
Other parameters are same as in Figure A.3.

First, as expected, the lower p the less the impact of a risk prediction model keep-
ing the risk-model AUC constant: given the limited ICU – and possibly other –
resources, a smaller p allows for a smaller range of percentages of the population
being released, making all differences between policies smaller in absolute terms.
Second, when we compare Figures A.3 (a) and (c) with Figures A.4 (a) and (c),
where the only difference is in the total ICU capacity, we see that the more ICUs
available the larger the impact of using personalised policies, keeping everything
else constant. More available resources allow for a larger range of percentage of
released people making the differences between policies – risk based vs not – larger
in absolute terms. Note that in all cases a risk prediction model approach allows
for confining fewer people: this is consistent with value of information related argu-
ments, as any test provides information which can be beneficial assuming everything
else (including behavioural aspects) kept constant.

Complete exit with multiple release epochs

Finally, we explored the implications of our simulation for gradual exit strategies.
To consider practical and realistic scenarios we solved the resultant optimisation
dynamic program allowing releases every 30 days at multiples of 5% of the popula-
tion, while ensuring that the maximum number of utilised ICU beds was at most 5
250. We found that implementing the full-blown confidence interval analyses as in
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Figure A.3: Difference in maximum possible percentage of people in low isolation with-
out hospital saturation. Maximal number of people in the low isolation group without
exceeding the limit of 7 250 beds, with a margin of 2 000 beds as imposed by typical 95%
confidence intervals, compared to the case of not using a risk prediction model. Plotted
as a function of the AUC of a risk prediction model and the protection level δc for people

recommended to be in isolation with stricter restrictions. p∼ 0.993 for all figures.

Figure A.2 was computationally intractable in the dynamic program setting. But
observing that the maximum confidence range in Figure A.2 was ∼ 2000 beds, we
reduced the ICU capacity from the “base-case" of 7 250 to 5 250 to account for
uncertainty in ICU demand.

Four epochs, March 17
High AUC Low AUC No
model model model

δc = 0.9 6 >12 >12
δc = 0.8 8 >12 >12
δc = 0.7 10 >12 >12

Three epochs, March 17
High AUC Low AUC No
model model model

δc = 0.9 7 >12 >12
δc = 0.8 11 >12 >12
δc = 0.7 >12 >12 >12

Four epochs, May 11
High AUC Low AUC No
model model model

δc = 0.9 6 11 >12
δc = 0.8 7 11 >12
δc = 0.7 9 11 >12

Three epochs, May 11
High AUC Low AUC No
model model model

δc = 0.9 6 >12 >12
δc = 0.8 8 >12 >12
δc = 0.7 12 >12 >12

Table A.3: Minimal time (in months) required for all people to exit isolation, starting
from March 17 or May 11, depending on δc, model quality and the number of epochs of

gradual deconfinement. δr = 0.1

Table A.3 shows the total number of months to release the entire population for dif-
ferent scenarios, keeping all other parameters constant: no model, low-AUC model,
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(b) March 17, p= 0.98
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Figure A.4: Difference in maximum possible percentage of people in low isolation with-
out hospital saturation. Maximal number of people in the low isolation group without
exceeding the limit of 15 000 beds, with a margin of 2 000 beds as imposed by typical 95%
confidence intervals, compared to the case of not using a risk prediction model. Plotted
as a function of the AUC of a risk prediction model and the protection level δc for people

recommended to be in isolation with stricter restrictions. δr = 0.1 for all figures.

high-AUC model, and for three different values of δc. We considered only gradual
releases in 3 or 4 epochs – the ICU system was overwhelmed when using only 2
epochs for most simulations. The main insight is that using no risk model would
require more than a year in all scenarios, while exit with risk-based models would
lead to relaxing restrictions for the entire population as fast as over 6 months.

Figure A.5 shows example gradual policies for May 11 corresponding to the four
epochs from Table A.3, and assuming δc = 0.9 as in Figure A.2. The insights com-
plement those for single release policies: with risk-prediction models. A smaller
percentage of the population may need to be confined; consequently, one could also
reach the moment when isolation measures could be lifted sooner.

For example, using the high-AUC model and without exceeding the ICU capacity
at any point, 65% of the lowest-risk population could be released on May 11 (“day
0"), followed by another 5% on July 10 (“day 60"), and yet another 20% on August
9 (“day 90"), and finally releasing the remaining 10% on November 7 (“day 180").
The resultant ICU demand is shown as a green line on Figure A.5a.

Implementing the same exit schedule without a model would lead to ICU demand of
nearly 20 000 beds (red line). In contrast, a capacity-abiding exit strategy without
a model (blue line) would require 17 months to reach full deconfinement. Only 50%
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Figure A.5: Examples of gradual schedules of relaxing isolation restrictions with and
without model-based risk predictions. High AUC model (green) and no model (red)
ρ= [0.65,0.7,0.9,1] and t = [60,90,180,600], no model (blue): ρ= [0.5,0.55,0.6,1] and t =
[30,120,510,600]. Vectors t = [t1, t2] give the population release schedules ρ= [ρ1,ρ2] as
follows: ρ1.100% of the population is released on day 0, then (ρ2−ρ1).100% are released

on day t1, etc.

of population could be in low isolation on “day 0” (May 11), another 5% on “day
30” (June 10), additional 5% on “day 120” (September 8), and the last 40% only
on “day 510” (October 3, 2021), or 11 months later than the similar risk-model-
based strategy. Such an extended isolation would also apply to many more people:
10% with the model versus 40% without; for France this means the additional ∼20
million people in isolation for the additional 11 months.

For both scenarios, Figure A.5b shows the percentage of the population that becomes
immune over time. Because the model-based policy releases larger portion of the
low-risk population and does so faster, it approaches herd immunity, allowing for the
ultimate protection against the disease. In contrast, herd immunity is not achieved
by a policy without the risk-model: the disease is suppressed, but could explode
again. In other words, assuming everything else constant, our simulations indicated
that, using risk prediction models, isolation restriction may be relaxed faster and
safer.

Discussion

Data-driven prediction models, which made large impacts in many areas the past
decades, can enable, among others, personalisation of policies for managing epi-
demic outbreaks. We studied how prediction models for the severity of symptoms
upon infection could be used in epidemic simulations to study the effect of non-
pharmaceutical policies, particularly isolation restrictions, during an outbreak. We
used COVID-19 data from France as of early May 2020 as an example, and provided
sensitivity analyses to understand how different parameters could impact pandemic
isolation and exit policies.

Simulations indicated that considering differential relaxation of isolation restrictions
depending on predicted severity risk can decrease the immediate percentage of the
population in France under stricter isolation by ∼ 5− 20% relative to not using
such risk predictions, and fasten the complete exit by several months, thus directly
impacting lives of millions of people.
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(a) Parameters (b) Results

Figure A.6: Screenshots of the demo simulator available here: https://ipolcore.ipol.im/
demo/clientApp/demo.html?id=305.

We made our simulation engine available to a broad, non-technical audience via an
interactive demo that is available at: https://ipolcore.ipol.im/demo/clientApp/demo.

html?id=305 and is illustrated on Figure A.6. The demo is pre-populated with the
model parameters for France that we used in this paper, but one can input the
parameters for other countries or regions and experiment with the envisioned pol-
icy parameters. We hope this demo facilitates the dissemination of our work and
raises awareness of the promise of personalised data-driven policies for pandemic
management.

Sensitivity analyses showed that the qualitative insights from our simulations are
robust to changes in risk prediction accuracy, percentage of severe-if-infected cases
in the population, availability of resources (such as ICUs), and social distancing.
Benefits increased when risk prediction accuracy increased, percentage of severe-if-
infected cases in the population decreased, availability of resources (such as ICUs)
increased, and the isolation of high-risk individuals increased. All results were devel-
oped using hypothetical risk prediction models for COVID-19, with discrimination
ranges in line with early indications from initial models developed as of early May
2020 such as [16, 104].

The proposed approach can also be adopted for other epidemic models, and person-
alisation can further be explored using this approach for policies other than isolation
restrictions. Moreover, predicted risk based isolation restrictions can be combined
with other policies such as test-based ones, e.g., [89, 106], possibly also using other
relevant prediction models, to limit the impact of outbreaks such as COVID-19. Fi-
nally, the same analysis can be done focusing on mortality or other outcomes instead
of ICU demand that we focused on in this paper.

Several caveats should be noted. First, epidemic models – and the conclusions
they may support – rely on a number of parameters, for example virus incubation
and recovery times and the basic reproduction number R0, while the effects of
policies also depend on healthcare system factors such as the availability of relevant
resources (e.g., trained personnel). Second, these parameters are uncertain and
evolve dynamically [4]; the resultant policies are therefore contingent. Observing
an ICU demand that is closer to an upper boundary of the confidence interval
may require the next wave to be delayed or involve a smaller release percentage
than out current simulations built from day zero suggest. Third, policy decisions

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=305
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=305
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=305
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=305
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require careful context-specific robustness analysis; however, using risk prediction
models can at worst make no significant difference while at best improve policies by a
significant margin, fixing all other conditions. Fourth, risk prediction models cannot
be used when, or for people, for whom the necessary data is unavailable. In this
case, simple models (e.g., based only on age and some reliable chronic disease data)
may need to be used, which may limit the benefits of the approach. Finally, risk-
predictions based policies using epidemic simulations should be developed taking into
account behavioural aspects that may both help and hurt any model predictions and
policy actions; ethical issues, fear, widespread non-compliance to isolation measures,
and the likes.

In conclusion, our simulations show that combining prediction models using data
science and machine learning principles with epidemiological models may improve
outbreak management policies. Governments should thus make substantial invest-
ments in the data infrastructure necessary to implement such models at scale, and
consider their predictions when developing pandemic isolation (confinement) and
exit (deconfinement) policies.
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Title: Sequential Resource Allocation for Network Diffusion Control

Keywords: Epidemic control, Sequential Selection Problem, Optimal stopping

Abstract: In this thesis we extend the Dynamic
Resource Allocation (DRA) problem and propose a
multi-round dynamic control framework, which we
realize through the derived Sequential DRA model
(SDRA). Contrary to the standard full-information
and full-access DRA considerations, at each inter-
vention round, the DM gains information and access
only a fraction of the nodes, in a sequential fashion.

Standard SSP variants, such as the very well-known
secretary problem, begin with an empty selection set
(cold-start) and perform the selection process once
over a single candidate set (single-round). These two
limitations are addressed in this thesis. First, we in-
troduce the novel Warm-starting SSP setting that
considers having at hand a reference set, which is a
set of previously selected items, and tries to update
optimally that set while examining the sequence of

arriving candidates. The Multi-round Sequential Se-
lection Process, the new online-within-online prob-
lem, is then introduced as a natural extension of the
warm-starting selection.

Both rank-based and score-based objective functions
over the final selection are considered. A cutoff-
based approach is proposed for the former, while the
optimal strategy based on dynamic thresholding is
derived for the latter assuming that the score distri-
bution is known. These strategies are then put in
comparison for their efficiency in the traditional se-
lection setting as well as in solving network control
problems that motivated this thesis. The generality
of the introduced models allow their application to
a wide variety of fields and problems; for instance,
reoccurring recruiting processes or management of
resources (e.g. beds, staff) in healthcare units.

Titre: Contrôle de processus de diffusion sur graphe avec Allocation Séquentielle de Ressources

Mots-clés: Contrôle d’épidémies, Problème de Sélection Séquentielle, Arrêt optimal

Résumé: Dans cette thèse, nous étendons le
problème de l’allocation dynamique de ressources
(DRA) et proposons un cadre de contrôle dynamique
multi-tours, que nous réalisons grâce au mod-
èle dérivé de DRA Séquentiel (SDRA). Contraire-
ment aux considérations standard d’information et
d’accès complets à l?environnement, à chaque cycle
d’intervention, la DM n?a d’accès qu’à une fraction
des nœuds, de manière séquentielle.

Les variantes standard de Processus de Sélection
Séquentielle (SSP), telles que le très connu prob-
lème de la secrétaire, commencent avec un ensemble
de sélection vide (démarrage à froid) et effectuent le
processus de sélection une fois sur un seul ensemble
de candidats (un seul tour). Ces deux limites sont
abordées dans la présente thèse. Tout d’abord, nous
introduisons le nouveau paramètre de démarrage à
chaud dans lequel la DM a un ensemble de référence
à portée de main, à savoir un ensemble d’éléments
préalablement sélectionnés. Le but est de mettre

à jour cet ensemble de façon optimale tout en ex-
aminant la séquence de candidats qui arrivent. Le
processus de sélection séquentielle à plusieurs tours
est ensuite proposé comme extension naturelle de la
sélection avec démarrage à chaud.

Des fonctions d’objectif basées sur le rang et le score
lors de la sélection finale sont prises en compte. Une
approche basée sur le seuil est proposée pour la pre-
mière, tandis que la stratégie optimale basée sur le
seuillage dynamique est obtenue pour la seconde,
en supposant que la distribution de scores est con-
nue. Ces stratégies sont ensuite mises en comparai-
son dans le cadre de la sélection traditionnelle ainsi
que pour la résolution de problèmes de contrôle sur
graphe. La généralité des modèles introduits permet
leur application à une grande variété de domaines et
de problèmes; par exemple, les processus de recrute-
ment récurrents ou la gestion des ressources (lits,
personnel, etc.) dans les unités de soins.
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