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“If it had been any different, if I had been born just one minute later, or been in the 

wrong pace at the right time or vice versa, the life that I've lived and come to love would 

not exist. And that is a situation that I would not want to consider in the slightest.” 

 

Slash. 
 

 

 

 

 

 

 

 

 

 

 

 

 
À Jeannot. 

 





V 
 

Contents 

 

CONTENTS..................................................................................................................................................................... V 

ACKNOWLEDGMENT ................................................................................................................................................... VII 

LIST OF FIGURES ........................................................................................................................................................... IX 

LIST OF TABLES ............................................................................................................................................................ XV 

NOMENCLATURE ...................................................................................................................................................... XVII 

GLOSSARY .................................................................................................................................................................. XIX 

GENERAL INTRODUCTION ..............................................................................................................................................1 

CHAPTER 1: REVIEW OF FLUID-STRUCTURE INTERACTION IN A CONTEXT OF FUEL ASSEMBLY BOW (INTERACTIONS 5 
AND 6) .........................................................................................................................................................................13 

CHAPTER 2: TOWARD A WATER GAP MODEL TO PREDICT REDISTRIBUTIONS NEAR THE GRIDS .................................25 

CHAPTER 3: CONSTRUCTION OF A FLUID-STRUCTURE MODEL FOR A WHOLE FUEL ASSEMBLY ..................................53 

CHAPTER 4: USING FUEL ASSEMBLY MODEL TO DEPICT LARGER SCALES BEHAVIORS .................................................87 

CHAPTER 5: FROM MECHANICS TO NEUTRONICS: REPRODUCING LARGE DEFLECTIONS AT THE FA SCALE TO ACCESS 
NEUTRONIC CONSEQUENCES (INTERACTION 1) ......................................................................................................... 117 

CHAPTER 6: BASIS OF A DETERMINISTIC APPROACH TO DEPICT DEFORMATIONS WITH LARGE WATER GAPS ......... 139 

CONCLUSION AND OPEN PROSPECTS ........................................................................................................................ 167 

APPENDIX A: DERIVATION OF THE UP FORCE ............................................................................................................ 177 

APPENDIX B: ESTIMATION OF THE LATERAL FORCE APPLYING ON THE FA BUNDLE THROUGH THE PRESSURE DROP
 ................................................................................................................................................................................... 181 

APPENDIX C: DERIVATION OF THE EXTENDED BERNOULLI’S PRINCIPLE .................................................................... 185 

APPENDIX D: VALIDATION OF THE CHANNEL MODEL ................................................................................................ 191 

APPENDIX E: MODEL 0 AND THE ASSOCIATED FORCE ............................................................................................... 199 

APPENDIX F: PHORCYS, A NETWORK-BASED TOOL DESIGNED FOR FLUID REDISTRIBUTIONS ................................... 205 

REFERENCES ............................................................................................................................................................... 227 





VII 
 

Acknowledgment 

 

Je profite de ces quelques mots en français pour pouvoir remercier les personnes qui 

ont (grandement) contribué à l’écriture de cette thèse. 

 

Tout d’abord, je souhaiterais remercier Claire, ainsi que Valérie, pour m’avoir accueilli au 

sein de DYN et du SEMT. J’ai trouvé au sein du laboratoire une ambiance optimale pour 

suivre une thèse. Cette dernière a été grandement facilitée par la compagnie de mes 

collègues du BodyBuil’dyn ! Je remercie également Nicolas Dorville, Pierre Gavoille, Céline 

Guenaut et Loïc de Carlan pour m’avoir accueilli à divers moments au cours de la thèse au 

STMF et au SERMA. 

 

Naturellement, je poursuis avec mon directeur de thèse, Vincent. Je le remercie pour sa 

gentillesse, sa réactivité, son écoute, et pour toutes nos conversations qui ont été 

productives. Ses diverses relectures, ainsi que ses conseils, ont été fort utiles. Je le salue 

également pour sa transmission de l’engouement pour la publication, qui, je pense, a plutôt 

bien fonctionné ! Promis, à l’avenir, j’éviterai de vouloir faire passer mes articles pour des 

flyers marketing d’une célèbre marque de latrines. 

 

Vient ensuite mon encadrement de thèse, constitué d’une dreamteam qui a 

remarquablement supervisé ce projet de thèse. Premièrement, Jérome. Je pense lui devoir 

une grande partie du travail fait durant ces trois dernières années. De DIVA+G aux multiples 

propositions d’améliorations de modèles, jusqu’à l’idée même de Phorcys, cela a été une 

réelle force de l’avoir à mes côtés. Tes qualités humaines (tu es un brave gars) sont à la 

hauteur de tes qualités techniques, et franchement je te remercie pour ça, ce fut juste un 

véritable honneur et un immense plaisir de bosser avec toi ! Ensuite, Guillaume. Cela fait 

maintenant 5 ans que je le connais (déjà), et – rendons à César ce qui … - il fut l’un des piliers 

fondateurs de ce sujet. Je ne cesserai tout de même d’être surpris par les diverses qualités 

humaines de ce curieux gourou. Merci d’avoir été là, et de ne pas t’être perdu dans un 

occulte lieu péruvien en cours de route ! Complètent l’équipe Bertrand et Olivier, mécanicien 

et hydraulicien de la team IFS. Bertrand, je te remercie pour ta transmission de connaissances 

en mécanique, ainsi que pour le temps que tu as pris à modifier ton code pour le nourrir 

goulûment de sorties Phorcys. En plus d’être à la source du couplage IFS, cela a été un 

honneur d’être ton partenaire de bande-dessinée. Olivier je te remercie pour tes (très) 

nombreuses idées proposées, et ta bonne humeur ! Ta passion effrénée pour les sciences 

est rafraîchissante.  

 

J’ai également une pensée pour toutes les personnes que j’ai pu torturer de questions 

(la liste n’est bien sûr pas exhaustive !). Au STMF je remercie André, Ulrich, et Yannick pour 

leurs collaborations sur la CFD et les maillages. Au SERMA je remercie notamment Karim, 

Nicolas, et François pour l’apprentissage d’AP3, d’Alamos et les débogages qu’ils ont pu 

entreprendre ! 

 

Cette thèse ne serait pas ce qu’elle est sans les diverses personnes qui ont rendu ces 3 



 

VIII 
 

années aussi agréables. Notamment mes collègues DYN, que je remercie pour leur accueil 

(je citerais volontiers l’intégralité du labo, mais ça serait long !), et les doctorants que j’ai pu 

rencontrer au cours de cette période et qui ont réussi à me supporter autant de temps 

(Roberto, Alexis, Huan, Gianluca, Alexandre, …). 

 

I warmly acknowledge Pr. Grégoire Allaire who chaired the jury of my PhD defense. I also 

want to express my gratitude to Dr. Marcus Seidl and Dr. Pierre Moussou, who agreed to 

review my thesis. Last but not least, I thank Pr. Elsa Merle and Pr. Eric Dumonteil for accepting 

to investigate my work. It was a real pleasure and honor to discuss with you all. 

 

J’accorderais une mention spéciale à mes partenaires de la section musique du CEA, avec 

qui nous avons partagé de longs (très longs) moments, et qui m’ont permis de jouer sur 

plein de concerts en parallèle de la thèse (Greg, Arnaud, Franz’, Thom, …). 

 

Je finirai par ma famille. Je ne saurai jamais les remercier assez pour leur soutien éternel 

et indéfectible. Ils ont toujours été là, dans les hauts, comme dans les bas. C’est une réelle 

chance de vous avoir, et pour cela : merci. 



IX 
 

List of figures 

 

Figure 0-1 - Schematic of a PWR (source: [1]) ................................................................................... 1 

Figure 0-2 - Schematic of a reactor pressure vessel (source: [2]) ........................................................ 2 

Figure 0-3 - Left, schematic of a FA and its RCCA, middle, photo of a FA (source: World Nuclear 

Association), right, grid zoom in (source: Framatome) ....................................................................... 3 

Figure 0-4 - Left, bowed fuel assembly (length of ~4m), right, dropped off fuel assembly (source: 

[11, 12]) ................................................................................................................................................ 4 

Figure 0-5 - Assemblies bow observed on an EDF's 1300MWe nuclear core [3] ............................... 5 

Figure 0-6 - C-shaped and S-shaped assembly bows observed at Ringhals [21] ................................ 6 

Figure 0-7 - In-reactor bow influencing mechanisms (from [22] and [2]) .......................................... 6 

Figure 0-8 - Physical interactions during assembly bow ..................................................................... 9 

Figure 0-9 - Single assembly sensibility analysis for several values of burnup [9]........................... 11 

Figure 0-10 - Subjects of interest for our research area ..................................................................... 12 

Figure 1-1 - Coordinate system for an unbowed FA ......................................................................... 13 
Figure 1-2 - Axial forces on a FA ...................................................................................................... 14 

Figure 1-3 - The independence principle [42] [34], original inclined flow (left), force carried by the 

crosswise component of the flow (right) ............................................................................................ 15 

Figure 1-4 - The Eole mock-up (in [28]) ........................................................................................... 16 

Figure 1-5 - Streamlines from a LES simulation [30] ....................................................................... 17 

Figure 1-6 - Lateral force caused by the flow across the grid ............................................................ 18 

Figure 1-7 - FUP according the angle of inclination ........................................................................... 19 

Figure 1-8 - Pressure deviation leading to a lateral force .................................................................. 19 

Figure 1-9 - Core redistributions upstream from the grids ................................................................ 21 

Figure 1-10 - Inner grid portion (adapted from [48])......................................................................... 21 

Figure 1-11 - Two different designs for outer straps (a) one vane in two fuel rods (b) one vane 

between each fuel rod (b) (figure from [27]) ..................................................................................... 22 

Figure 1-12 - Cluster 2x2 of FAs considered by Yan [27] ................................................................ 22 

Figure 1-13 - (left) cross bundle mass flow at different axial levels, (right) associated evolution 

axially [27] ......................................................................................................................................... 23 

Figure 1-14 - Possible behaviors of the flow upstream from the grid ............................................... 23 

Figure 2-1 - Geometry considered for the area between two grids .................................................... 26 

Figure 2-2 - Hydraulic network representing the possible pathways at the grids level (model 1) .... 29 

Figure 2-3 - Stagnation point setting up upstream from the convergent-diffuser .............................. 30 

Figure 2-4 - Additional lateral resistance due to cross-flows through the rod bundle (model 3) ...... 32 

Figure 2-5 - General layout of an inclined flow passing through a rod bundle ................................. 32 

Figure 2-6 - Description of the mesh (𝝀 = 5 mm here) and boundary conditions used in the CFD 

simulations ......................................................................................................................................... 35 

Figure 2-7 - Position of the probes of pressure drop.......................................................................... 36 

Figure 2-8 - Pressure drop as a function of the water gap thickness.................................................. 36 

Figure 2-9 - Pressure peak underneath the CD for 𝝀 = 1 mm Color map of pressure/density 

(𝑷𝒂. 𝒌𝒈 − 𝟏. 𝒎𝟑) .............................................................................................................................. 37 
Figure 2-10 - Flow rate (a) and axial mean velocity (b) as a function of the water gap thickness .... 38 

Figure 2-11 - Streamlines in the water gap for 𝝀 = 1 mm ................................................................. 38 

Figure 2-12 - Clip planes used for post-processing of local lateral flow rates and subdivision into 

sub-surfaces ........................................................................................................................................ 39 

Figure 2-13 - Lateral flow rates calculated for a water gap width of (a) 1 mm and (b) 20mm ......... 39 

Figure 2-14 - Lateral average velocity for a water gap width of (a) 1 mm (b) 20 mm ...................... 40 

Figure 2-15 - Pressure drop as a function of leak length (for several row numbers) when λ = 1 mm

 ............................................................................................................................................................ 40 

Figure 2-16 - The DIVA+G mock-up ................................................................................................ 41 



 

X 
 

Figure 2-17 - Models vs DIVA+G: flow rates in (a) the water gap and (b) the grids (uncertainty 

ranges are plotted over experimental points) ..................................................................................... 43 

Figure 2-18 - Models vs DIVA+G: pressure drop, absolute uncertainties are indicated over 

measurements’ points ......................................................................................................................... 43 

Figure 2-19 - Flow rate in the CD computed with perturbed input parameters ................................. 45 

Figure 2-20 - Sobol indexes and 95% confidence intervals for 𝑸𝒄𝒅𝑸𝒕𝒐𝒕 (a) and ∆𝑷𝒈𝑸𝒕𝒐𝒕𝟐 (b) 
obtained with 100 000 calculations with Model 2 in the context of DIVA+G experiments ............. 45 

Figure 2-21 - Pressure peak term 𝜟𝑷𝒄 obtained by Model 2 when varying 𝝀 and 𝑪𝒈 only ............. 47 

Figure 2-22 - Sobol indexes and 95% confidence intervals for ∆𝑷𝒄 obtained with 100 000 
calculations with Model 2 in the context of real PWR fuel assemblies ............................................. 47 

Figure 2-23 - Streamline upstream from the CD with fuel rods ........................................................ 48 

Figure 2-24 - Sobol indexes and 95% confidence intervals for 𝜟𝑷𝒕𝒐𝒕 obtained with 100 000 
calculations with Model 3 in the context of real PWR fuel assemblies ............................................. 48 

Figure 2-25 - Evolution of the flow rates and pressure drops along with hl for different values of λ
 ............................................................................................................................................................ 49 

Figure 2-26 - Evolution of the lateral pressure drop along with λ for different values of hl ............. 50 

Figure 2-27 - Evolution of the upstream pressure drop along with λ for different values of hl ......... 50 

Figure 3-1 - Sketch of the difference between 𝑺𝒄𝒅 (left), and 𝑺𝒅𝒚𝒏 (right) in the convergent C1 .. 54 
Figure 3-2 - Distribution of local loss in the convergent ................................................................... 55 

Figure 3-3 - Distribution of local pressure losses .............................................................................. 56 

Figure 3-4 - Pressure profiles (Pa) drawn from CFD simulations and models, 25 pressure probes are 

used along the CD .............................................................................................................................. 57 

Figure 3-5 - Illustration of the 𝑭𝑽 components ................................................................................. 59 
Figure 3-6 - CFD simulation with 3 FAs [49] Central assembly marked by a red scalar .................. 59 

Figure 3-7 – Pressure (Pa) in the gaps [49] ........................................................................................ 60 

Figure 3-8 - Network set up for Bieder's calculations ....................................................................... 61 

Figure 3-9 - Results of simulations with setups 1 (A) and 2 (B) ....................................................... 61 

Figure 3-10 - Lateral force on a grid with respect to 𝜟𝝀 ................................................................... 63 

Figure 3-11 - 𝑭𝑽𝟏 components (U. Bieder’s case of study) .............................................................. 63 
Figure 3-12 - Fv1 composition (test case) ......................................................................................... 64 

Figure 3-13 - Schema of the bundle flow in the FA .......................................................................... 65 

Figure 3-14 - The MISTRAL mock-up (left), associated hydraulic loops (right) (from [28]) .......... 66 

Figure 3-15 - Network of the MISTRAL experiment ........................................................................ 67 

Figure 3-16 - MISTRAL’s campaigns ............................................................................................... 68 

Figure 3-17 - Comparison of two approaches at local scales ............................................................ 70 

Figure 3-18 - Schematic view of height between the approaches ...................................................... 71 

Figure 3-19 - Different solutions to join the two approaches, (B) and (C) differing from the 

expression of the axial resistance used for the FA in the inner bundle loop ...................................... 72 

Figure 3-20 - Hypothesis of (C) ......................................................................................................... 73 

Figure 3-21 - FA scale model gathering local scale models .............................................................. 74 

Figure 3-22 - Experimental apparatus from [75] ............................................................................... 75 

Figure 3-23 - Inlet (left) and outlet (right) flow boundary conditions from [75] ............................... 75 

Figure 3-24 - Network implemented for the tests .............................................................................. 77 

Figure 3-25 - Redistribution rates in the fuel assembly (FA) and its bypasses (BP) ......................... 78 

Figure 3-26 - Example of mechanical framework of a FA as seen in [78] ........................................ 79 

Figure 3-27 - Coupling between Phorcys and Cast3M ...................................................................... 80 

Figure 3-28 - Grids displacements (FA bow) .................................................................................... 81 

Figure 3-29 - Differential deformation .............................................................................................. 82 

Figure 3-30 - Dimensionless hydraulic loads exerting on the fuel assembly (A) one-way (B) two-

way ..................................................................................................................................................... 82 

Figure 3-31- Dimensionless components of the forces 𝑭𝑩 (A) and 𝑭𝑽 (B) ..................................... 83 
Figure 3-32 - Differential bow of the test case (A) associated forces (B) ......................................... 84 

file:///C:/Users/Stan/Downloads/Proposition_stan_2e_depot.docx%23_Toc67316043


 

XI 
 

Figure 4-1 - Schematic of a row of FAs ............................................................................................. 88 

Figure 4-2 - Network for a row of FAs .............................................................................................. 88 

Figure 4-3 - Equivalence of cross-sectional ratio .............................................................................. 89 

Figure 4-4 - Example of core inlet velocity (color map related to magnitude) for two different cases: 

unshifted (left), shifted with non-operating loop 4 (right) [13] ......................................................... 90 

Figure 4-5 - Example of hydraulic top and bottom conditions of velocity in the literature from (left) 

[9] (right) [16] .................................................................................................................................... 90 

Figure 4-6 - Insight into an inlet profile of velocity and probed velocities (𝑽𝟏, 𝑽𝟐, …) .................. 91 
Figure 4-7 - (A) Homogenous conditions (B) Horvath’s conditions (C) parabolic conditions (D) 

Shifted conditions .............................................................................................................................. 92 

Figure 4-8 - (Top) forces (bottom) deformations – Condition A ....................................................... 93 

Figure 4-9 - (Top) forces (bottom) deformations – Condition B ....................................................... 95 

Figure 4-10 - (Top) forces (bottom) deformations – Condition C ..................................................... 96 

Figure 4-11 - (Top) forces (bottom) deformations – Condition D ..................................................... 98 

Figure 4-12 - Bow pattern at the end of the cycle measured and computed, from [50] .................. 100 

Figure 4-13 - Layout of the successive hydraulic calculations, rows 𝑵𝒙 are indicated through the 

filling color, rows 𝑵𝒚 are indicated through the line color ............................................................. 101 

Figure 4-14 - Layout of the two components reconstruction (in orange, FA (𝒊, 𝒋); in green, FAs in 

row 𝑵𝒙 = 𝒊 ; in blue FAs in row 𝑵𝒙 = 𝒋  ; in white, unused FAs for (i, j) force calculations) ...... 102 

Figure 4-15 - Elementary fuel assembly for 3D redistribution ........................................................ 103 

Figure 4-16 - 3D 3x3 cluster of fuel assemblies (view from Paraview) .......................................... 103 

Figure 4-17 - Planar loops equation (left), 3D loop equations (right) ............................................. 104 

Figure 4-18 - Bundle crossing from volume 1 to volume 2 (left), associated network in the plane 

𝒆𝒙, 𝒆𝒚 (right) .................................................................................................................................... 106 

Figure 4-19 - 𝒗𝒕 calculation layout .................................................................................................. 107 
Figure 4-20 - Method 4's features (new branches in red) ................................................................ 108 

Figure 4-21 - (left) velocities (m/s) in test 5 (right) velocities (m/s) for test 2 ................................ 110 

Figure 4-22 - (left) scattet plot of 𝑴𝑫𝑭𝑳 (right) histogram of 𝑴𝑫𝑭𝑳(𝟐, 𝟏) .................................. 112 

Figure 5-1 - View of a PWR bowed fuel assembly [12] .................................................................. 118 

Figure 5-2 - Public domain information about fuel assembly bowing and axial deformation [3] ... 118 

Figure 5-3 - Typical first order (left) and second order (right) deformed shape of a fuel rod 

(represented as an equivalent beam for the sake of simplicity, with neutral fiber displayed in thick 

black line) ......................................................................................................................................... 120 

Figure 5-4 - Conservation of the length of the neutral fiber of the rod (in red) between the straight 

rod on the left and the deformed rod of the right ............................................................................. 121 

Figure 5-5 - Illustration of the toroidal reference model.................................................................. 122 

Figure 5-6 - Stacking modeling with corrective length to ensure total length conservation ........... 122 
Figure 5-7 - Illustration of segments modeling accounting for actual rod curvature....................... 123 

Figure 5-8 - Length correction to keep mass quantity, with segment 2 lengthened to close non 

overlapping areas ............................................................................................................................. 124 

Figure 5-9 - Typical central symmetric second order shape of the neutral fiber with two maximal 

deflection points at respective coordinates (fm, -zm) and (zm, -fm) ................................................... 126 

Figure 5-10 - Illustration of TRIPOLI-4® modeling through segments for planar symmetric second 

order rod deformation (vertically shrunk view stemmed from T4G viewer) .................................. 127 

Figure 5-11 - Considered geometry and boundary conditions for the first order comparison case 

(lateral, top and bottom boundaries are set to reflection, Y-axis boundaries are set to translation) 128 

Figure 5-12 - Illustration of computational models for first order deformation, with distinction 

between the inner part of the rod with fuel properties and the lateral part with cladding properties 

(from left to right: cut torus (reference), segments, and stacking, scales not conserved for the sake of 

clarity). The fuel-clad gap is too small to be observed on the figure. .............................................. 128 

Figure 5-13 - Neutron production rate in U5 for stacking and segment modeling compared to 

reference ........................................................................................................................................... 130 

file:///C:/Users/Stan/Downloads/Proposition_stan_2e_depot.docx%23_Toc67316055
file:///C:/Users/Stan/Downloads/Proposition_stan_2e_depot.docx%23_Toc67316056
file:///C:/Users/Stan/Downloads/Proposition_stan_2e_depot.docx%23_Toc67316057
file:///C:/Users/Stan/Downloads/Proposition_stan_2e_depot.docx%23_Toc67316058


 

XII 
 

Figure 5-14 - Neutron absorption rate in U8 for stacking and segment modeling compared to 

reference ........................................................................................................................................... 130 

Figure 5-15 - keff coefficient for stacking and segment modeling compared to reference............... 131 

Figure 5-16 - Computational performance in terms of batches per second, for segment and stacking 

modeling and reference toroidal modeling ...................................................................................... 132 

Figure 5-17 - Representation of high-slope sections with stacked cylinders; leaking surfaces 

between fuel core (in red) and moderator (in blue) ignoring the cladding (in grey) ....................... 133 

Figure 5-18 - Considered geometry and boundary conditions for the second order comparison case 

(lateral, top and bottom boundaries are set to reflection, Y-axis boundaries are set to translation) 134 

Figure 5-19 - Illustration of computational models second order deformation, with distinction 

between the inner part of the rod with fuel properties and the lateral part with cladding properties 

(from left to right: cut torus (reference), segments, and stacking, scales not conserved for the sake of 

clarity). The fuel-clad gap is too small to be observed in the figure. ............................................... 134 

Figure 5-20 - Neutron production rate in U5 for stacking and segment modeling compared to 

reference ........................................................................................................................................... 135 

Figure 5-21 - Neutron absorption rate in U8 for stacking and segment modeling compared to 

reference ........................................................................................................................................... 135 

Figure 5-22 - keff coefficient for stacking and segment modeling compared to reference............... 136 

Figure 6-1 - Total cross-section of U238 from [99]......................................................................... 140 

Figure 6-2 - Example of gap card used by Berger [108] ................................................................. 142 

Figure 6-3 - Displaced central FA in a a cluster of 3x3 BWR FAs, from [115] .............................. 143 

Figure 6-4 - FA and surrounding gaps ............................................................................................. 144 

Figure 6-5 - Nominal geometry ....................................................................................................... 145 

Figure 6-6 - Different solutions to enlarge a gap with fixed boundaries ......................................... 146 

Figure 6-7 - Introduction of a 𝜟𝝀 water gap at the east of FA33 ..................................................... 147 

Figure 6-8 - 𝜟𝝀 water gap and inert material ................................................................................... 148 
Figure 6-9 - Geometries of one FA, from left to right: self-shielding, flux, homogenization ......... 148 

Figure 6-10 - Geometry used for the self-shielding (~2 103 regions, 264 fuel rods and 25 guide tubes 

per assembly) ................................................................................................................................... 150 

Figure 6-11 - Geometry used for the flux calculation (~1.6 104 regions per assembly) .................. 150 

Figure 6-12 - Geometry used for the homogenization (one macro-region per fuel rod) ................. 151 

Figure 6-13 - Monte Carlo geometry as seen by the T4G viewer .................................................... 152 

Figure 6-14 - (A) Multiplication factor keff evolution (B) production rate induced by U5 (FA33) 

(σT4<1% for rates, σT4<30pcm for keff) ............................................................................................ 153 

Figure 6-15 - Cross-sections’ homogenization from APOLLO3® lattice ........................................ 156 

Figure 6-16 - Mini-core with two enlargements .............................................................................. 157 

Figure 6-17 - Configurations of interest for the core solver (different colors are used to distinguish 

the regions, i.e. repeated in each FA half-quarters but including different gap settings) ................ 159 

Figure 6-18 - Volume-integrated fission rates in the geometry (A-4) ............................................. 161 

Figure 6-19 - Volume-integrated fission rates in the geometry (B-2) ............................................. 162 

Figure 6-20 - Volume-integrated fission rates in the geometry (C-1) ............................................. 164 

Figure 6-21 - Volume-integrated fission rates in the geometry (D-2) ............................................. 165 

Figure 7-1 - Subject environment .................................................................................................... 167 

Figure 7-2 - Flow rates visualization with Paraview (15-FAs row calculation with Phorcys), a scale 

threshold has been chosen to highlight axial flow rates in FAs (in green-red gradation) ................ 170 

Figure 7-3 - Example of a 1300 MW core calculation with Method 1 in Phorcys, from left to right: 

axial flow rates in FAs (Paraview), directions of total lateral forces, norm of total lateral forces at 

floor 3 ............................................................................................................................................... 170 

Figure 7-4 - Feasibility test case of ten thousands FAs (norm of total lateral forces) ..................... 171 

Figure 7-5 - (top) deformations stemming from a FSI coupling with shifted inlet conditions, 

(bottom) field of gaps parameters λ sent to APOLLO3® to preset the cross-sections and the 

associated flux in group 4 ................................................................................................................ 174 

Figure 7-6 - (left) field of gaps parameters λ used to preset the cross-sections (right) associated 



 

XIII 
 

resulting fission rates ....................................................................................................................... 174 

Figure 7-7 - 3D fuel assemblies (SALOME), from left to right: 3D overall view, axial cross section, 

zoom in the 2D axial cross section ................................................................................................... 175 

 

Figure A-1 - Lateral force caused by the flow across a grid ............................................................ 177 

Figure B-1 - Problem treated (V) ..................................................................................................... 181 

Figure C-1 - System ......................................................................................................................... 185 

Figure C-2 - Elementary surface ds ................................................................................................. 186 

Figure D-1 - geometry considered for the area between two grids .................................................. 191 

Figure D-2 - Mesh built with CAST3M........................................................................................... 195 

Figure E-1 - Additional lateral resistance due to cross-flows through the rod bundle (model 3) .... 199 

Figure E-2 - Force value with respect to the grid displacement ...................................................... 200 

Figure E-3 - Sensitivity of 𝜟𝑷𝑪𝟏 .................................................................................................... 202 
Figure F-1 - Phorcys' logotype (ASCII art) displayed when the package is imported .................... 205 

Figure F-2 - Illustration of the loops ................................................................................................ 206 

Figure F-3 - Illustrative network - continuity .................................................................................. 211 

Figure F-4 - Illustrative network – energy ....................................................................................... 213 

Figure F-5 - Runing a flow rate calculation with LTM ................................................................... 214 

Figure F-6 - Simplified structure ..................................................................................................... 216 

Figure F-7 - Illustrative example for usage ...................................................................................... 217 

Figure F-8 - Building up nodes and elements .................................................................................. 217 

Figure F-9 - Results of first commands ........................................................................................... 218 

Figure F-10 - End of the script ......................................................................................................... 219 

Figure F-11 - Results of the end of the script .................................................................................. 220 

Figure F-12 - Illustration of an elementary mesh to calculate forces .............................................. 221 

Figure F-13 - Illustration of the lateral velocity variation in the bundle .......................................... 223 

Figure F-14 - Cross-sections entailed by the forces ......................................................................... 225 

 

file:///C:/Users/Stan/Desktop/these/docs_these/Proposition_stan.docx%23_Toc60919703
file:///C:/Users/Stan/Desktop/these/docs_these/Proposition_stan.docx%23_Toc60919704
file:///C:/Users/Stan/Desktop/these/docs_these/Proposition_stan.docx%23_Toc60919705
file:///C:/Users/Stan/Desktop/these/docs_these/Proposition_stan.docx%23_Toc60919706




XV 
 

List of tables 

 

Table 0-1 - Phenomenology of the assembly bow - asymmetries, recognized causes and 

consequences ........................................................................................................................................ 7 

Table 1-1 - Examples of bundle forces order of magnitude .............................................................. 17 

Table 1-2 - Examples of lateral grid forces order of magnitude ........................................................ 20 

Table 2-1 - Inputs for sensitivity analysis of Model 2 in the context of DIVA+G experiments ....... 44 

Table 2-2 - Inputs for sensitivity analysis of Model 2 (∗ only) and 3 in the context of real PWR fuel 
assemblies .......................................................................................................................................... 46 

Table 3-1 - CFD setups ...................................................................................................................... 60 

Table 4-1 - Test cases for 3D comparison ....................................................................................... 109 

Table 4-2 - Comparison of methods 1, 2 and 3 ................................................................................ 111 

Table 4-3 - Comparisons with method 4 .......................................................................................... 112 

Table 4-4 - Comparisons of methods (redistribution time).............................................................. 114 

Table 5-1 - Compiled results for both semi-discrete approaches and three values of deflections (10, 

20 and 25 mm): deviation for production rate (in %), absorption rate (in %) and keff coefficient (in 

pcm). For rates:  < 0.1 %, and for keff:  < 15 pcm. ..................................................................... 132 
Table 5-2 - Compiled results for both semi-discrete approaches and three values of deflections (10, 

20 and 25 mm): deviation for production rate (in %), absorption rate (in %) and keff coefficient (in 

pcm). For rates:  < 0.1 %, and for keff:  < 15 pcm. ..................................................................... 137 

Table 5-3 - Main conclusions of the evaluation of stacking and segment approches to represent first 

and second order bowing patterns .................................................................................................... 138 

Table 6-1 - Comparison of reaction rates |T4-AP3|/T4 for different gaps and FAs (σT4 < 1%) ...... 154 

Table 6-2 - Comparison of reaction rates in FA33 east quarter |T4-AP3|/T4 for different gaps and 

FAs (σT4<1%) ................................................................................................................................... 155 

Table 6-3 - Numerical tests for each configuration ......................................................................... 159 

Table 6-4 - Comparison of reaction rates in FA33 |T4-AP3|/T4 and keff in the cluster - config. (A)   

(σT4<1% for rates, σT4<30pcm for keff) ............................................................................................ 160 

Table 6-5 - Comparison of reaction rates in FA33 east quarter |T4-AP3|/T4 - config. (A)  (σT4<1%)

 .......................................................................................................................................................... 160 

Table 6-6 - Comparison of reaction rates in FA33 |T4-AP3|/T4 and keff in the cluster - config. (B)    

(σT4<1% for rates, σT4<30pcm for keff) ............................................................................................ 161 

Table 6-7 - Comparison of reaction rates in FA33 east and north quarter |T4-AP3|/T4 - config. (B) 

(σT4<1%) .......................................................................................................................................... 162 

Table 6-8 - Comparison of reaction rates in FA33 |T4-AP3|/T4 and keff in the cluster - config. (C)  

(σT4<1% for rates, σT4<30pcm for keff) ............................................................................................ 163 

Table 6-9 - Comparison of reaction rates in FA33 east, north and south quarter |T4-AP3|/T4 - 

config. (C) (σT4<1%) ........................................................................................................................ 163 

Table 6-10 - Comparison of reaction rates in FA33 |T4-AP3|/T4 and keff in the cluster - config. (D)    

(σT4<1% for rates, σT4<30pcm for keff) ............................................................................................ 164 

Table 6-11 - Comparison of reaction rates in FA33 east quarter |T4-AP3|/T4 - config. (D) (σT4<1%)

 .......................................................................................................................................................... 164 

Table 7-1 - Scales, and related models ............................................................................................ 168 

 

Table D-1  - Relative deviation INS compared to Cast3M .............................................................. 196 

Table D-2 - Relative deviation INS compared to Cast3M ............................................................... 196 

Table D-3 - Relative deviation between 1D and Cast3M ................................................................ 197 

Table F-1 - Example of file exported ............................................................................................... 224 





XVII 
 

Nomenclature 

Below we summed up the main notations which can be found in the manuscript. 

 

Notation Meaning (usual unit) 
𝑸𝒊 Volumetric flow rate of section i (m3.s-1) 

𝑸𝒊
𝟎 Flow rate upstream from section i (m3.s-1) 

𝑲𝒊 Hydraulic resistance of section i (Pa.m-6.s2) 

𝑺𝒊 Upstream cross section of section i (m2) 

𝝆 Density of the fluid (kg.m-3) 

𝝀 Minimum width of the water gap (m) 

𝜦 Width of the convergent-diffuser’s base (m) 

𝑳 Depth of the convergent-diffuser (m) 

𝜶 Angle of the convergent-diffuseur (rad) 

𝑯 Length of the rectangular channel (m) 
𝒇 Darcy friction factor 

𝜻𝟏 Local coefficient due to convergent narrowing 

𝜻𝟑 Local coefficient due to diffuser enlargement 

𝑪𝒈 Loss coefficient of the grid 

𝑵 Number of crossed fuel rods rows 

𝜽 Inclination of the flow with respect to the vertical direction 

𝝃(𝜽) Coefficient of the Eole correlation 

𝜷 Pitch-to-rod diameter ratio 

𝒉𝒍 Leaking length (m) 

𝝌𝒊 Cross-sectional ratio of section i 

𝒑 Pressure (Pa) 

𝑷𝒊 Pressure at point i (Pa) 

𝜟𝑷𝒊 Irreversible total pressure loss in section i (Pa) 

𝒗 Velocity distribution (m.s-1) 

𝑽𝒊 Mean – bulk - velocity at point i (m.s-1) 

𝑯𝒊 Head at point i (m) 

𝑭𝒁 Lift force (N) 

𝑭𝑽 
Lateral force induced by the difference of pressure around the grid 

(N) 

𝑭𝑼𝑷 
Lateral force induced by the flow being put in the upright position 

through the grid (N) 

𝑭𝑩𝒖, 𝑭𝑩 
Lateral force induced by cross-flows through one bundle, mean of 

𝐹𝐵𝑢 upstream and downstream one grid 

𝑭𝑴𝟑_𝟏, 𝑭𝑴𝟑_𝟐 
Forces on the rods (respectively at the left and right hand side) due 
to redistribution towards the gaps, upstream from the grids (N) 

𝒌𝒆𝒇𝒇 Multiplication factor 

𝝓 
Flow angle of incidence with respect to the bundle horizontal plane 

(rad) 

𝝍 Angular flux (cm-2.MeV-1.sr-1.s-1) 

𝜱 Scalar flux (cm-2.MeV-1. s-1) 

𝝈𝒊 Microscopic cross-section for reaction i  (barn) 

𝜮𝒊 Macroscopic cross-section for reaction i (cm-1) 

𝝉𝒊 
Reaction rate i (cm-3. s-1 if energy integrated, and s-1  if volume 

integrated) 





XIX 
 

Glossary 

 

Name Meaning 

AP3 Abbreviation for APOLLO3® 

APOLLO3® Neutronic multi-purpose code (CEA, EDF, Framatome) 

CASMO5 Lattice physics code for modeling PWR and BWR fuel (Studsvik) 

Cast3M Structural mechanics code (CEA) 

CD 
‘Convergent-diffuser’, geometrical space shaped by two adjacent 

spacer grids of a fuel assemly 

CEA 
The French Alternative and Atomic Energy Commission, French 

public government-funded research organization 

CMSLINK5 Linking data code (Studsvik) 

Code_Saturne Computational Fluid Dynamics software (EDF) 

DES Division of Energies (CEA) 

DIVA+G 
Mock-up set up for the thesis, consisting in two 3D-printed grids 

facing each other in a middle of which lies a variable gap 

DM2S Systems and Structure Modeling Department (CEA) 

DYN Dynamics Studies Laboratory (CEA) 

DYN3D 
Code solving both neutron kinetics along with two-phase 

thermal hydraulics for LWR steady states and transients (HZDR) 

EDF 
Électricité de France, French multinational electricity utility 

company 

EOLE 
Test section with FA mock-up studied for losses due to cross-

flow in bundles 



 

XX 
 

FA 
Fuel Assembly, component of a nuclear core made of 

subcomponents including fuel rods, guide tubes, grids, and nozzles 

FLICA4 Sub channel, thermal-hydraulic code (CEA) 

FR Fuel Rod, element of a fuel assembly carrying the fuel pellets 

Framatome French nuclear reactor business 

FSI Fluid-Structure Interaction 

Gen I, II, III, IV 
Design generation of nuclear reactors, from the early prototypes 

(I) to the most advanced concepts (IV), most of them currently in 
service worldwide belong to Gen II 

GT 
Guide tube, element of a fuel assembly made for receiving the 

rod cluster control assembly 

HERMES T Hydraulic loop at the CEA Cadarache 

MISTRAL Mock-up regarding cross-flows in one FA 

Paraview 
Multi-platform data analysis and visualization application 

(Kitware) 

PETER Hydraulic loop used in Erlangen (Framatome) 

Phorcys 
Python library developed during the thesis, dedicated to solving 

hydraulic networks 

RCCA Rod Cluster Control Assembly 

Salome 
Post- and pre-processing platform for numerical simulations 

(CEA, EDF, Open Cascade) 

SEMT Mechanical and Thermal Studies Service (CEA) 

SERMA Reactor Studies and Applied Mathematics Service (CEA) 



 

XXI 
 

SERPENT 
Multi-purpose three-dimensional continuous-energy Monte 

Carlo particle transport code (VTT) 

SIMULATE5 
3D steady-state multi-group code for the analysis of PWRs and 

BWRs (Studsvik) 

STMF Fluid Mechanics and Thermal Hydraulics Service (CEA) 

T4 Abbreviation for TRIPOLI-4® 

TrioCFD Computational Fluid Dynamics software (CEA) 

TRIPOLI-4® Monte-Carlo neutronic code (CEA) 

URANIE Uncertainty analysis plateform (CEA) 

VisIt 
Interactive parallel visualization and graphical analysis tool 

(LLNL) 

 



1 
 

 General introduction 

 

1. Pressurized water reactors (PWR) and fuel assemblies (FA) 
 

Nuclear power plants operation is basically the same as a thermal power station. In other 

words, electricity is obtained through heat energy. The latter is generated by nuclear fissions 

occurring in the nuclear reactor, and more specifically, in its core. Light-water reactors (LWR) 

are nuclear reactors using light water (ordinary water in comparison with heavy water – 

deuterium oxide) as both neutron moderator and coolant. The most common current types 

of LWR are the Pressurized Water Reactors (PWR) and the Boiling Water Reactor (BWR). In 

the BWRs, the coolant is heated and directly turned into steam inside the nuclear core. This 

steam is then used to drive the steam turbine. By rotating, the latter finally products electric 

power through a generator. 

 

The PWRs are by far the most widespread type of reactor in the civilian nuclear world 

establishing a total net electrical capacity of about 300 GWe, and also constitute the whole 

French nuclear plants1. They differ from the BWRs in that the pressure inside the primary 

coolant loop (maintained through a pressurizer) is high enough to avoid boiling. Instead, the 

coolant after heating in the core flows into the steam generators. There, the water contained 

in a secondary circuit evaporates thanks to the heat exchange with the primary loop.  The 

steam produced can finally drive the turbine. A third system cools the secondary coolant 

down with external water collected from the sea or a river. Its condenser turns the steam 

back to liquid. Figure 0-1 presents a schematic of a classical PWR. 

 

 

Figure 0-1 - Schematic of a PWR (source: [1]) 

If one focuses closely on the reactor pressure vessel (see Figure 0-2 for an exhaustive 

layout), the coolant is flowing from the inlet nozzles into the lower part of the core, below 

the lower core plate (the lower plenum). Then, it goes successively through the lower core 

plate, the nuclear core, and finally can exit the pressure vessel through the outlet nozzles 

                                                 
1 https://pris.iaea.org/PRIS/WorldStatistics/OperationalReactorsByType.aspx 

https://pris.iaea.org/PRIS/WorldStatistics/OperationalReactorsByType.aspx
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after passing the upper core plate.  

 

 

Figure 0-2 - Schematic of a reactor pressure vessel (source: [2]) 

The nuclear core itself is made of fuel assemblies (FA), where nuclear fission reactions 

produce heat. The latter is passed on the coolant thanks to convection (the coolant 

temperature rises by almost 30°C, from bottom to top of the core). The mean coolant 

velocity is around 5 m/s (Reynolds number of 5.105). Standing approximatively 4 meters high 

by 20 centimeters wide, the fuel assembly consists in a set of indivisible components (see 

Figure 0-3 for a schematic and photographs of components). The structure of the FA is made 

of the following elements. The bottom nozzle secures the connection with the lower core 

plate. The upper core plate is pressed against the top nozzle springs which guarantees a 

good support to the FA to counteract important axial fluid forces when the coolant flows 

from side to side. In the middle, guide tubes link both nozzles together. They permit the rod 

cluster control assembly (RCCA) insertion to monitor nuclear reactions. Spacer grids, also 

known as mixing grids, are distributed over the guide tubes every half meters approximately. 

Every spacer grid is connected to the guide tubes by means of spot-weld connections, except 

the bottom one which is directly supported by the nozzle. The grids have three features. 

First, they mechanically couple every guide tube in the FA, secondly they retain the fuel 

elements (fuel rods) spacing, and finally, they comprise mixing vanes which sharpens the 

coolant mixing downstream to improve the heat exchange between the fuel and the water 
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in the core.  

 

  

Figure 0-3 - Left, schematic of a FA and its RCCA, middle, photo of a FA (source: World 

Nuclear Association2), right, grid zoom in (source: Framatome3) 

 

The structure of the FA supports a bundle of fuel rods, which are bound to the grids 

through the support of springs and dimples. Fuel rods are composed of an external cladding, 

the fuel pellets, and are filled with an inert gas like helium under pressure. 

 

2. Phenomenology of fuel assembly bow in the PWR 
 

The deformation of the assemblies, first noticed in 1994 after IRI (Incomplete control Rod 

Insertion, corresponding to the incomplete insertion of the RCCA) [3], is a problem for both 

exploitation (IRI, delicate removal of assemblies in the core ...) [4, 5, 3], but also for operation, 

because it has consequences on the power of the core [6]. Figure 0-4 shows a photo of a 

deformed assembly, and another which can no longer be inserted on the lower core plate 

due to its deformation. One has to know that fuel assembly bow is observed ex-core, and 

after handling, so that only a residue of the deformation can be noticed. Three phenomena 

are often reported to explain fuel assembly bow: the creep of the assembly and the guide 

tubes, the growth of the assembly under neutron flux, as well as hydraulic forces [3, 7, 8, 9, 

10]. 

 

                                                 
2 https://www.world-nuclear.org/ 
3 https://inis.iaea.org/collection/NCLCollectionStore/_Public/42/026/42026962.pdf 

https://www.world-nuclear.org/
https://inis.iaea.org/collection/NCLCollectionStore/_Public/42/026/42026962.pdf
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Figure 0-4 - Left, bowed fuel assembly (length of ~4m), right, dropped off fuel assembly (source: 

[11, 12]) 

 

One of the causes involved would therefore be the hydraulic forces exerted by the fluid 

circulating in the reactor primary circuit, and being applied to the fuel assemblies in the 

reactor core. Indeed, several reasons can a priori explain the origin of forces in the core, such 

as for example a theoretically axisymmetrical distribution of velocity at the core inlet [13, 14, 

15], which can, under certain conditions (startup procedure, failure of a GMPP, downcomer 

eccentricity…) be asymmetrical [13], causing the appearance of cross velocities. It is also 

assumed that the outlet velocities are symmetrical with respect to an axial vertical plane, due 

to the position of the hot leg output nozzles [16, 8]. 

 

As we have said, several effects are involved in the multiphysics ecosystem of assembly 

bow. The diversity of deformations encountered in the core reflects the multitude of different 

causes that can impact the deformation. One observes in Figure 0-5 the numerous 

possibilities of deformation noted on a 1300 MWe nuclear core. Figure 0-5 (a) and (b) show 

the direction of the deformation at a given altitude (grid height). Figure 0-5 (c) represents 

all the deformation axially at the location of the corresponding assembly. In 4-loop reactors, 

the deformations are generally oriented radially at the bottom of the core, and follow two 

symmetrical directions at the top of the core [3]. 
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Figure 0-5 - Assemblies bow observed on an EDF's 1300MWe nuclear core [3] 

 

This distribution of deformations can be explained by the distribution of lateral hydraulic 

forces in the core [3]. Indeed the radial (axisymmetric) distribution of the deformations at 

the bottom of the core, and plane symmetrical at the top of the core, corresponds to the 

velocity profiles generally given at the core inlet (axisymmetric) and outlet (symmetrical) core 

[13, 14, 15, 8, 17, 16]. Thus, the shape of the deformation of an assembly depends very much 

on its successive positions (cycle after cycle) in the core, and burnup has a very weak 

influence [8, 3]. The effect of burnup is felt locally at the level of the deformations generated 

on the guide tubes [3, 10, 12, 18]. New types of fuel assemblies and core loading maps tend 

to limit assembly bow [5, 3]. 

 

Figure 0-6 represents two deformations measured in the Ringhals-3 reactor. One "C" 

(right), and the other "S" (to the left). It is shown that these two types of deformation 

predominate in the core [3, 6, 19, 20]. 
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Figure 0-6 - C-shaped and S-shaped assembly bows observed at Ringhals [21] 

 

We propose to classify through three scales (vessel, core, assembly) in Table 0-1 the 

proven effects/phenomena (in red) and plausible candidates, cause or consequence of the 

deformation (in black). The latter are found out in the literature. These can be either 

neutronic, mechanical or hydraulic effects. Among the proven effects, we find the bow-

influencing mechanisms as reported in [22]. Among the candidates, we find various 

phenomena which can plausibly lead to an asymmetry in the core, including hydraulic forces. 

 

Wanninger in [22] adapted an original background from [2] to highlight the main in-core 

fuel assembly bow influencing mechanisms through a very convenient representation 

(Figure 0-7). 

 

 

 

Figure 0-7 - In-reactor bow influencing mechanisms (from [22] and [2]) 
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Scale Effects or phenomena 

Vessel 

Transient / dysfunction of a primary circuit pump [23, 13, 4] 

Injection of the Chemical and Volumetric Control System [4] 

Influence of the downcomer – eccentricity defect? [13] 

Influence of the lower plenum – axisymmetric distribution of 

velocity profiles at the core inlet + plausible change of the velocity 

profile according to the downcomer geometry and the cold leg flow 

rates? [13, 8] 

Influence of the upper plenum – distribution of the velocity 

profile along a median plane (not axisymmetric) because of the hot 

leg nozzles position [8, 16, 17] 

Asymmetric transient of boron and neutronic consequences 

caused can be linked to assembly bow [6] 

Core 

Inter-assembly and wall gaps branches do not depict the same 

pressure loss [16] 

Baffle jetting [5, 24] 

Leak flow rates through the guide tubes dashpot [25] 

Irradiation growth [10, 7, 9, 22, 3] 

Assembly and guide tube creep [10, 7, 9, 22, 3] 

Thermal expansion  [10, 22] 

Fuel assembly stiffness [22] 

Inter-assembly contacts [8, 22, 3] 

Hold-down forces and fuel assembly weight (~7kN) [26, 10] 

Handling related forces [8] 

Pre-existing bows coming from previous cycles [8, 16] 

Assembly 

Fuel rod – grid joints [22] 

Guide tube – grid joints [22] 

Grid spring relaxation [22, 9] 

Grid upstream flow redistributions depending on the grid de-

sign [27] 

Bundle cross-flows and thus flow inclination [28, 29, 8] 

Slanted flow put in the upright position across the grids [30, 9, 

22] 

Neutronic consequences of the deformation and the associ-

ated boron concentration [6, 19, 20, 31, 32] 

Table 0-1 - Phenomenology of the assembly bow - asymmetries, recognized causes and 

consequences 

 

Amongst those effects, the author [22] reported on a couple of main bow influencing 

mechanisms and classified them between bow-enhancing mechanisms and bow-inducing 
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mechanisms. Bow-inducing mechanisms are those which are at the origin of bow by creating 

bending moments in the structure. Bow-enhancing mechanisms are those which cannot 

trigger the bow by themselves, but have an important influence on how and how fast it is 

promoted. The contribution of every single effect is drowned in the numerous interaction 

with every others. According to Wanninger, the coupling between all phenomena along with 

the in-core coupling of the fuel assemblies themselves potentially lead to counter-intuitive 

and self-amplifying effects and could explain the occurrences of strongly deformed cores 

with asymmetric bow patterns. The author classified the main mechanisms as follows: 

 Thereby, hold-down forces constitute a bow-enhancing mechanism. In fact, the 

hold down force generates a compressive load on the fuel assembly, originated 

from the top nozzle springs compression against the upper core plate. This axial 

force reduces the lateral stiffness of the fuel assembly and thus enhances the 

lateral deformation provoked by external loads and the lateral creep rate. Those 

forces are too small compared to the critical buckling load to directly induce fuel 

assembly bow. 

 Structural irradiation growth can be both bow-enhancing and bow-inducing. It 

is bow-enhancing as the fast neutron irradiation tends towards lengthening 

axially the guide tubes (in zircaloy) because of their anisotropic crystal lattice, and 

thus the whole fuel assembly. This growth can compress the top nozzle springs 

and thus increase the previous hold-down forces indirectly. However, it is also 

bow-inducing as fast neutron flux lateral gradients within one assembly can 

lengthen its guide tube unequally and thus cause bending moments in the 

structure leading to a deformation. 

 Structural creep is a bow-enhancing and bow-inducing mechanism. It is a long-

term time dependent plasticity effect like irradiation growth. In our context, creep 

is based on crystal lattices microscopic effects creating plastic strain in the same 

direction as a pre-existing stress, coming from external loads. Thus, creep is a 

mechanism which enhances a permanent deformation of the fuel assembly, but 

calls for external bow-inducing forces. As well as growth, flux gradients within one 

single assembly can induce a deformation. 

 Structural relaxation is a bow-enhancing mechanism. In fact, the grid spring 

preload progresses during the fuel assembly operation. At the beginning of the 

life of the fuel assembly, the preload is high so that all fuel rods are held during 

handling, but it decreases all operation long. As a result, the coupling between 

the fuel rods and the fuel assembly structure is reduced as well as the fuel 

assembly stiffness. The creep deformation rate thus increases and enhances the 

whole bow. On the other side the relaxation breaks up the bow effect of the top 

nozzle springs by decreasing the hold down forces. 

 Thermal loads are a bow-inducing effect as they create bending moments due 

to differential thermal expansion between the fuel assembly elements. Thermal 

expansion is a reversible effect, yet, it might introduce perturbations into the 

system of coupled fuel assemblies as stated by Wanninger. Otherwise, a gradient 

of temperature may also affect creep and relaxation processes. Because of a 

lateral power gradient -mostly regarding the fuel rods, the guide tubes are cooled 
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properly and put up with axial gradients-, fuel assemblies can undergo a 

permanent bow because of different creep strains. Also, the axial gradient of 

temperature regarding the coolant generates different grid spring relaxations 

along the assembly height. These are mainly bow-enhancing effects. 

 The inter-assembly contact comes up several times. First, it couples the whole 

system of fuel assemblies so that the deformation of one assembly may 

propagate over the whole core. Secondly, it limits the permanent deformation. A 

contact of a bowed assembly against an unreformed one may reduce its 

permanent deformation in time. Thirdly, it restricts the maximal deflection. As said 

by Wanninger, within one row the deformation is limited to the cumulative gap 

sizes between the fuel assemblies in the row (which can evolve over the operation 

because of the growth of the spacer grids). As soon as a contact is established, 

one can say that this effect is bow-inducing. 

 

The last effect are the hydraulic forces. The latter are obviously bow-inducing effects. 

They rely on a couple of intricate phenomena occurring in the core such as macroscopic flow 

redistributions brought in by inlet and outlet unalike behaviors, or local scale redistributions 

such as the massive redistributions in the grids upstream vicinity. Those effects are 

developed further in the thesis. 

 

3. Role of this subject within the industrial context 
 

As the previous section suggests, fuel assembly bow is an intricate multiphysical issue. 

All three classic fields of nuclear reactor physics are involved. To sum the problem up, Figure 

0-8 illustrates the interactions occurring during the FA bow over its operation cycles.  

 

 

Figure 0-8 - Physical interactions during assembly bow 

 

These interactions are: 
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 Interaction 1: the deformation (displacements and change of water gaps width 𝜆) 

affects the core neutronics. Enlargement and reduction of gaps lead to a change in 

the power locally. 

 Interaction 2: the flux affects the fuel assembly structure. It includes for instance the 

irradiaction creep and growth which evolve with the fluence Φ (time integration of 

the flux). 

 Interaction 3: the power 𝑞 generated in the fuel rods is transferred to the coolant. 

 Interaction 4: the material density influences neutronics, and cross-sections depend 

on the material temperature 𝑇. 

 Interaction 5: fuel assembly bow modifies the gaps width 𝜆 and thus the flow 

redistributions within the core. 

 Interaction 6: fuel assembly structures are affected by the coolant temperature and 

hydraulic forces induced by the coolant. 

 

We are interested in assembly deformation, which evolves on very long times (several 

days or months), dynamical effects are thus neglected. In addition, the FA displacement 

velocity is much lower than the fluid velocity in the cores, meaning that the interface velocity 

between the fluid and the structure is insignificant compared to the fluid velocity. In other 

words, the fluid system is characterized by motionless boundaries (which depend on the 

assembly position). This is the reason why those coupled coolant/assembly systems are 

considered as a quasi-static type of fluid-structure interactions. An equilibrium is thus to be 

found at every state point. As the fluid force over the FA is likely to be the main influencing 

parameter on the FA bow, especially for Beginning Of Life FAs (see the sensibility analysis 

Figure 0-9), interactions 6, and possibly 5 (for important returns of the FA bow on the 

redistributions – see [16]) are the most-studied interactions of the FA mechanics. In practice, 

temperature change due to bow is considered discretionary, first, because of the relatively 

low influence of the bow on the temperatures (see [6]), and second, because of the low 

impact of a temperature variation over the permanent deformation (see Figure 0-9). For 

these reasons interaction 3 is also not taken into account in the current work. 

  

The mechanical constitutive equations of the FA depend on the fluence endured by the 

structures for a fast neutron flux. Characteristic times of neutronics are much lower than 

every other physics involved in the phenomenon. For this reason it is currently common to 

run independent neutronic simulations to track the fluence through time for a given loading 

pattern, or simply time integrate a constant fast neutron flux distribution (see [22]). In return, 

choosing not to upgrade the FA positions in the neutronic calculations in response to creep 

and growth parameters can be justified for simulation regarding a limited amount of time 

(e.g. a core starting), when the fluence is negligible. For longer times, the deformations might 

impact the flux distribution in theory and thus the mechanical constitutive laws. At this stage, 

as the deformation of the assembly does not seem quite sensitive to a slight macroscopic 

change of neutron flux level (see Figure 0-9) over one FA cycle, it can be accepted not to 

update FAs position. However, one has to study interaction 1 anyway. First, regarding large 

gaps which may come across in a PWR, the latter interaction 1 is still little studied in the 

literature. Second, it is necessary to undertake the spadework for interaction 1 to eventually 
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contemplating the return of mechanics over neutronics (interaction 2). Third, to have access 

to important information regarding related operational issues (for instance quadrant power 

tilt in the core, or even impact of FA-scaled flux gradients on the deformation). 

 

 

 

Figure 0-9 - Single assembly sensibility analysis for several values of burnup [9] 

 

Interaction 4, resting upon the upgrade of fluid density and cross sections temperatures 

in the neutronics codes, has been compared in a previous study [6] and showed detectable 

effects. However, the latter seemed fully negligible compared to the effect related to the 

geometrical deformation (𝜆). For this reason, in a first attempt, this interaction is not 

considered as a matter of importance.  

 

Finally, creep and hydraulic forces appear to be the principle driving parameters of the 

final FA bow. Growth and hold-down forces become important at End Of Life FAs. The 

stiffness of the FA depends on a set of FA structural parameters. Wanninger analyzed its 

impact on the FA bow through a change of several parameters including for instance the 

guide tubes diameters, or the grid springs and dimples stiffness. This effect is particularly 

strong when irradiation did not kick off. 

 

Therefore, the role of this PhD thesis within this multiphysical environment is to 

investigate the remaining gray areas in the picture described above. Our involvement can 

thus be summed up through Figure 0-10. 
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Figure 0-10 - Subjects of interest for our research area 

 

In other words, a first part of this thesis will be dedicated to interactions 5 and 6 from 

chapters 1 to 4. We will look after the hydraulic redistributions mechanisms occurring in the 

core, especially the local scale redistributions upstream from the grids. In return, hydraulic 

forces, which seem to be a main driving effect of FA bow, are modelled on the basis of our 

own redistribution models. Chapter 1 deals with the phenomena to take into account in 

terms of hydraulics. The next three chapters are organized by scales. Chapter 2 dives deep 

into setting up models to depict local grid scale redistributions. Chapter 3 deals with the 

extrapolation of the latter models up to the fuel assembly scale. Finally, chapter 4 gives 

insights about core-related scales, including rows of FAs and the whole core. Further in the 

project, in chapters 5 and 6, we take an interest in strategies to study the impact of 

deformations onto the fuel assemblies neutronics (interaction 1). It is a worthy attempt as 

the change in water gaps surrounding the FA could properly estimate local neutronic 

features used for interaction 2. Also, as stated in [22], as the in-core neutron flux is 

measurable online, it could be an indirect way to confirm or deny the prediction of the core 

state of deformation which involves flux changes. Chapter 5 deals with exact modelling of 

the FA curvature with Monte Carlo codes’ native geometries at the FA and rod scales. 

Chapter 6 follows introducing a deterministic scheme to depict deflections at a core scale. 
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Chapter 1: Review of fluid-structure interaction 

in a context of fuel assembly bow (interactions 5 and 
6) 

 

 
 

It will be noted that ‘transverse hydraulic forces’ have not been listed as such in Table 

0-1 of the previous chapter, whereas they seem to be a major cause of the deformation [3, 

22]. Indeed, the efforts result from intricate in-core hydraulic redistributions, listed in the 

table: the axisymmetry of the inlet axial velocity profile, different gaps (inter-

assembly/assembly-wall), as well as the state of deformation of the core are all candidates 

for the appearance of crosswise velocities in the core, and for the formation of forces, which 

are exerted on the assemblies. 

 

Note that the thesis is concerned with a quasi-static context, in other words the 

deformation process is supposed to be long enough to be able to consider the evolution of 

the system as a succession of static states. The phenomena of vibration, occurring for 

example in a seismic setting [33], involving the speed and acceleration of the assembly, are 

therefore neglected. 

 

1. Usual decomposition of the hydraulic forces 
 

Two types of forces can be exerted on the assemblies, which are classically denoted axial 

and lateral at the fuel assembly scale. In the context of deformation, we are especially 

interested in lateral forces, that is to say lateral in relation to the axes of the core. We can 

see in Figure 1-1 what is meant by axial and lateral. 

 

Figure 1-1 - Coordinate system for an unbowed FA 

Highlights of the chapter 

 

 We introduce hydraulic forces of interest, and the associated hydraulic effect. 

 The grid design highly influences the flow in the vicinity of the grids. 

 Water gaps enlargement and reduction have to be taken into account in a fuel 

assembly bow context. 

 To depict redistributions at the grid scale, it is necessary to introduce a model 

depending on both the grid design and the bypass width. 
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At the assembly level, there are therefore lateral forces on the grids, and lateral forces 

on the rods (see for example [16, 8, 22, 28]).  

 

If the efforts are well distinguished, the way to compute them is not on the other hand 

always well highlighted. We will briefly present the idea for calculating the axial or lateral 

force associated with the assembly. We will then return in more depth to the different efforts 

in the suitable sections. 

 

2. Axial forces 
 

A force balance on a full FA highlight [26] that axial forces exerted by the flow above a 

cross-section of a FA are such that: 

 

𝐹𝑍 = 𝐹𝑁 − 𝐴 + 𝐺 (Eq. 1-1) 

 

Where 𝐹𝑁 is the reaction forces, 𝐹𝑍 is the lift force stemming from the flow going from 

bottom to top in the FA. 𝐴 stands for the buoyancy (hydrostatic force) and 𝐺 for the FA 

weight. Contributions of axial fluid forces can reach the same order of magnitude than the 

weight of the FA (i.e. about 103 kg). 

Figure 1-2 illustrates those forces. 

 

 

Figure 1-2 - Axial forces on a FA 

 

3. Lateral forces due to cross-flows through the rod bundle 
 

A couple of different authors were interested in the forces exerting on a single rod, and 

then on a bundle of rods through transposition. Among those authors we can quote [34] 

who showed that the normal force on a cylinder was proportional with respect to the drag 

coefficient multiplied by sinus squared of the angle of incidence.  In other words, the force 

is carried by the crosswise component of the incident velocity, this is called the 

independence principle (Figure 1-3). [35, 36] noticed that this model has limits, in that it does 

not reproduce well the pressure distribution around the cylinder. In terms of effort, this 

model was validated for angles higher than 10°, but no experiment was run below. 

Consequently, the model is not considered validated for quasi-axial flows. Without any 



 

15 
 

experimental value, Taylor [37] clarifies the principle for small angles. When it comes to 

purely axial flow, the drag force is a friction force. Considering the latter as constant for small 

angles, he projected the force on the cylinder normal vector and highlighted a term 

proportional to the sinus of the angle of incidence. The rod normal force is thus a sum of 

the independence principle term due to the lateral component of the velocity, and a 

frictional term. Expanding the latter model with a Taylor series shows that the normal force 

is to be linear for very small angles. However, [38, 39, 40] showed that the force is indeed 

linear with respect to small angles, but the slope is too low to be only due to friction. 

Recently, Divaret [38, 39] pointed out that friction only made up 10% of the normal force. 

The main component of the force is actually due to lift, also linear with respect to the angle.  

Divaret explains that it is possible to go from one single rod to a bundle of rods with the 

help of the Taylor model set up for a confined rod [37, 41]. The Taylor’s friction term can be 

estimated through the Darcy-Weisbach equation, while the independence principle term is 

more complex. It previously stood for the drag of the unconfined rod in pure cross flow. 

Païdoussis chose an equivalent velocity to make the most of the independence principle: he 

focused on a bundle traveled along by a potential flow where cylinder X is missing, then he 

averaged the velocity around the missing cylinder X. Divaret noted that the latter model 

tends toward underestimating the measured force, and might be called into question.  

 

 

 

Figure 1-3 - The independence principle [42] [34], original inclined flow (left), force carried by 

the crosswise component of the flow (right) 

 

More recently, Joly [43] went back over Divaret’s works and implemented them in the 

TLP (Taylor-Lighthill-Païdoussis) model. The author also introduces the FICEL mock-up 

(cluster of 3x3 rods), and the related CFD simulations. Both experiment results and CFD 

simulations were in agreement, thus Joly considered that the numerical model was reliable 

enough to be compared with the TLP results. Aside from the rods at the bundle inlet and 

outlet, the simulation results validated his model.  

 

The latter approaches are considered as ‘single-rod based’, as the transition toward the 

bundle is seen as an expansion from a single-rod to a bundle. Another approach is ‘row – 

based’. In other words, hydraulic efforts are pulled out from an average behavior on the rows 

of rods within a bundle. 
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The ‘row – based’ approach is particularly based on the Peybernès’ works [28] on inclined 

flows in fuel assemblies bundles. Here, the author took an interest in the pressure loss 

created by one whole row of fuel rods. To do so, he measured the loss induced by a 8 rods-

bundle, over 4 rows, in the Eole mock-up (Figure 1-4). Then, he can deduce the pressure 

drop of a single row averaging the results on four rows (Eq. 1-2). 

 

 

Figure 1-4 - The Eole mock-up (in [28]) 

 

𝛥𝑃𝑟𝑜𝑤(𝑉gap, 휃) =
Δ𝑃8rows − Δ𝑃4rows

4
=

1

2
𝜌𝐾⊥𝜉(휃)𝑉gap

2   (Eq. 1-2) 

 

Where 𝑉gap stands for the fluid velocity in the gaps between the rods, 𝐾⊥ is the pressure 

drop coefficient for purely transverse flows (휃 = 90°) and 𝜉(휃) is an experimental correction 

factor depending on the flow inclination. 

 

The main benefit of this method is to free ourselves from edge effects, and to probe the 

flow where it is not troubled. After a couple of measures with several velocities and angles, 

Peybernès found out a general correlation whatever the incident angle of the flow is (Eq. 

1-3).  

 

𝜉(휃) = (
sin(휃)

cos (
𝜋
4 −

휃
2)

)

1.7

 

 

(Eq. 1-3) 

 

This approach specifically deals with PWR FA bundles, and was validated in the MISTRAL 

mock-up. Although the boundary conditions of the experiment are called into question [30], 

the method is still used recently, particularly in the context of fuel assembly bow [22, 9]. 

Wanninger found satisfying results having implemented the Eole’s correlation within the 

code ANSYS CFX. 

 

As seen in Appendix B, the consequent force can be written as (Eq. 1-4) where 𝑁 is the 

number of crossed rows, and 𝑆𝐵 is the free lateral cross-section of the bundle (without rods). 

 

𝐹𝐵𝑢 = 𝛥𝑃𝑆𝐵 = 𝑁𝛥𝑃𝑟𝑜𝑤𝑆𝐵 
 

(Eq. 1-4) 



 

17 
 

 

For our PWR operation context, the following Table 1-1 gives orders of magnitude 

according to different references. 
 

Source Position in-core or in a row Force value (N) 

[9] Second bundle, assembly 5 

(row of 15 FA) 

5.101 

[44] Third bundle, assembly D9 

(core) 

2.102 

[45] Second bundle, assembly 2 

(row of 15 FA) 

5.100 

Table 1-1 - Examples of bundle forces order of magnitude 

 

4. Lateral forces due to inclined flows put in the upright position across the 
grids  

 

Leaning on the works of U. Bieder focusing on flows across spacer grids [30] (see Figure 

1-5), Wanninger [9, 22] assumes that inclined flows are totally made vertical downstream 

from the grids.  

 

 

 

Figure 1-5 - Streamlines from a LES simulation [30] 
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Figure 1-6 - Lateral force caused by the flow across the grid 

 

The problem is presented in Figure 1-6, 𝑣∞ is the incident mean fluid velocity forming an 

angle 휃 with the vertical axis. 𝑣90 is the velocity of the flow put in the upright position. 𝑆𝑖𝑛 

and 𝑆𝑜𝑢𝑡 are respectively the grid upstream and downstream cross-section. 𝑆𝑔 is the grid 

cross-section, such that 𝑆𝑖𝑛 = 𝑆𝑜𝑢𝑡 = 𝑆𝑔. Finally, 𝐹𝑈𝑃 is the lateral force due to the flow being 

put in the upright position inside the grid and 𝐹𝑧 represents the axial force due to the grid 

pressure drop. 

 

We can show that:  

 

{
 

 𝐹𝑈𝑃 =
1

2
𝜌 sin(2휃) 𝑆𝑖𝑛𝑣∞

2

𝐹𝑧 = ∬ 𝑝𝑑𝑆
𝑆𝑖𝑛

− ∬ 𝑝𝑑𝑆
𝑆𝑜𝑢𝑡

   (Eq. 1-5) 

 

The 𝐹𝑈𝑃 expression is obtained either through the Euler’s momentum conservation 

equation considering the fluid as perfect (flat velocity profile i.e. no shear), or through the 

Navier-Stokes momentum equation in Appendix A with a set of reasonable assumptions. 

(Eq. 1-5) corresponds to the expression of the lateral force also given by Wanninger in [22]. 

 

We plot 𝐹𝑈𝑃 as as 휃 evolves in Figure 1-7 for 휃 between 0 and 2.3 degrees (order of 

magnitude taken from [28]), 𝜌 = 700 𝑘𝑔. 𝑚−3 (order of magnitude of the density for an 

operating PWR whose pressure is set at 155 bar and temperature around 300°C), 𝑣∞ =

6 𝑚. 𝑠−1 (around the bulk velocity in the core). The force magnitude on this range is thus 

around 101 N. 
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Figure 1-7 - FUP according the angle of inclination 

 

5. Lateral forces induced by the water gaps 
 

In his works on the dynamical modeling of the fuel assembly [46], Ricciardi introduces a 

force induced by a pressure difference between the right and left side of the spacer grid. In 

fact, the author runs experimentations on a PWR fuel assembly within a hydraulic loop. To 

make his models fit better the tests results, Ricciardi introduces an added stiffness, in other 

words, a force whose value depends on the fuel assembly displacement and thus on the 

bypasses - also called water gap - thicknesses. As highlighted in Figure 1-8, this displacement 

is indeed directly related to the wall-assembly distances respectively named 𝜆1 and 𝜆2.  

 

 

Figure 1-8 - Pressure deviation leading to a lateral force 

This difference of water gap on each side of the spacer grid leads to a pressure difference 
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𝑃2 − 𝑃1, which itself leads to a lateral force of the following form: 

 

𝐹𝑉 = Δ𝑃𝑆𝑙𝑎𝑡,𝑔 (Eq. 1-6) 

 

Where 𝑆𝑙𝑎𝑡,𝑔 is the area of the grid outer straps, and Δ𝑃 is the pressure difference 𝑃2 − 𝑃1 

on each side of the grid, depending on both thicknesses 𝜆1 and 𝜆2. This force seemed of 

prime importance as it allowed Ricciardi to better fit his models compared to the tests he 

undertook. Joly [43], recently, also pointed out that adding an added stiffness term to the 

TLP model can improve the linear force distribution compared to an experiment run on a 

bowed fuel assembly. He also suspected the limit of extrapolating a cylinder behavior to a 

full bundle of rods, and especially invited the reader to take in interest in the grid role on 

the fluid forces distribution. 

 

Table 1-2 gives some orders of magnitude of the total lateral force (which thus can 

include 𝐹𝑉 and 𝐹𝑈𝑃) that one can find out about the spacer grids. 

 

Source Position in-core or in a row Force value (N) 

[9] First grid, assembly 3 (row of 

15 FA) 

1.101 

[44] Second grid, assembly H9 

(core) 

1.102 

[45] Second grid, assembly 2 (row 

of 15 FA) 

5.100 

Table 1-2 - Examples of lateral grid forces order of magnitude 

 

The present Ricciardi’s case deals with a specific case of bypasses located between a wall 

and a FA, and his approach simplifies several points. Among them we find the geometry 

considered as simple channel with frictional pressure loss and no fluid acceleration, as well 

as the equality of grid and bypasses pressure losses. In the next section we highlight that 

the grid geometry has a significate impact on redistributions occurring upstream from the 

grids, and has to be taken into account. 

 

6. Fluid behavior in the water gap between adjacent grids 
 

The last section establishes a connection with an important core effect: the coolant 

redistribution upstream from the spacer grids. In Figure 1-8 the axial flow which came up to 

a grid level had two choices: either going through the grid itself, or rather skirting it to the 

left or right hand side (in other words, in the water gap areas whose thicknesses are 

respectively 𝜆1 and 𝜆2). This redistribution is not trivial a priori, but can be modeled, like in 

[46], thanks to pressure loss coefficients regarding the three possible branches (grid and the 

two bypasses), and a simple hypothesis: the pressure losses of both branches are equal. 

In the core, there is not one single assembly surrounded by walls, but rows of assemblies 

as for instance in Figure 1-9. The axial flow at a grid level has still two choices: either going 

through the grid, or in the bypass. However, the latter can be an inter-assembly bypass 
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located between two successive FAs (FA-FA bypass), or a bypass located between a FA and 

the core shroud (FA-wall bypass as shown in the previous section). 

 

 

Figure 1-9 - Core redistributions upstream from the grids 

 

As mentioned previously in Ricciardi’s works, we can guess that this redistribution 

phenomenon depends on the pressure loss coefficient in each possible branch, i.e. grid or 

bypass, and thus on the geometry of the latter systems. Yet, the grid geometry, as well as 

the inter-grid geometry – outer straps geometry – whose designs comes under the 

jurisdiction of trade secret, is not evident. The grids comprise mixing vanes, springs, dimples 

and straps [47, 16]. A layout is available in Figure 1-10. 

The grids external parts are composed of outer straps and vanes, as shown in Figure 

1-11. 

 

Figure 1-10 - Inner grid portion (adapted from [48]) 

 

The influence of this external geometry on redistributions occurring in the core has been 

raised in the literature [27, 16, 49]. Stabel also reported on the FA design impact on the full 

FA behavior [50]. In his publication [27], Yan pointed out a lack of research regarding the 
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grids outer straps. He undertook a study dealing with the sensibility of the outer straps 

design on the axial flow. Those designs are shown in Figure 1-11.  

 

 

Figure 1-11 - Two different designs for outer straps (a) one vane in two fuel rods (b) one vane 

between each fuel rod (b) (figure from [27]) 

 

Yan considers a 2x2 cluster of fuel assemblies (Figure 1-12). He notices that pressure loss 

created by design 2 is 6.9% higher than the one created by design 1. Design 2 also leads to 

higher lateral velocities upstream from the grid, but less important downstream. In fact, we 

can observe in Figure 1-13 the cross flow rate evolution downstream from the grid which 

highly depends on the design studied. We can read into those results that the external 

geometry has an effect on the pressure drop along the water gap, and thus has an effect on 

the overall redistribution across the grid (Figure 1-13). 

 

 

Figure 1-12 - Cluster 2x2 of FAs considered by Yan [27] 
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Figure 1-13 - (left) cross bundle mass flow at different axial levels, (right) associated evolution 

axially [27] 

 

The lateral force due to a pressure difference around the grid depends on the pressure 

loss of the possible branches. The grid design and its external features are intricate by design. 

However, the geometry of the water gap has an important effect on the redistribution, and 

the associated pressure loss coefficient is not often studied (Wanninger, for instance, 

considers that it is zero [9, 22]). 

The most important parameter to take into account is probably the width of this region. 

The deformation indeed leads to an increase or a decrease of those inter-grid areas [46]. As 

also remarked recently in [51, 52], the redistribution toward the bypasses depends on their 

width (and on the fluid velocity). Consequently, combining the grid external geometry as 

well as the distance between them (Figure 1-14), the coolant redistribution and the force 

associated could be estimated, a posteriori. 

 

The latter phenomena, in view of the lack of references in the literature, embodies the 

basis of our future work in hydraulics. 

 

 

Figure 1-14 - Possible behaviors of the flow upstream from the grid 
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 Chapter 2: Toward a water gap model to 

predict redistributions near the grids 

 

 
 

1. The inter-grid area seen as a simple channel flow 
 

As mentioned above, the purpose of this section is twofold. On the one hand it aims at 

finding out the redistribution behavior upstream from the grid, on the other hand, it aims at 

estimating the related force 𝐹𝑉 (chapter 1) through the pressure field. This chapter has been 

published in [53]. 

 

A natural 1D-approach consists in modelling the fluid flow through the extended 

Bernoulli’s principle: 

 

𝑃A +
1

2
𝜌𝑉A

2 = 𝑃B +
1

2
𝜌𝑉B

2 + Δℙ (Eq. 2-1) 

 

Where 𝑃i stands for the static pressure at point i, Vi stands for the bulk velocity (or mean 

velocity). A and B are points located respectively upstream and downstream of the water 

gap. 𝜌 is still the fluid density, and finally Δℙ > 0 is the irreversible pressure loss between A 

and B. This principle traces the mechanical energy all channel long. For the special case of a 

perfect fluid Δℙ = 0, and energy conservation is reached. Appendix C derives the Bernoulli’s 

principle. The expression of Δℙ is widely accepted as the following form [54]: 

 

Δℙ = 𝐾𝑄𝑎 (Eq. 2-2) 

 

Where 𝐾 is an hydraulic resistance, 𝑄 is a volumetric flow rate, and 𝑎 is an exponent 

whose value depends on the formula adopted. The general formula presented above covers 

the whole sum of both frictional losses (i.e. energy dissipation per unit length due to the 

fluid rubbing against the duct wall) and local losses (i.e. energy dissipation due to sharp 

changes of the duct geometry).  

 

(Eq. 2-1) is a model of the bypass. This axial pathway is not evident, because the grid 

geometry is intricate, and depends on the core state of deformation - the closer the fuel 

assemblies get, the thinner the water gap is -. In order to simplify the real geometry of the 

Highlights of the chapter 

 

 Flow redistribution near the grids is investigated in the context of fuel assembly bow. 

 Semi-analytical models are built iteratively, their accuracy is assessed through 

comparisons with CFD and a dedicated experimental mock-up. 

 Accounting for stagnation points below the water gap is important. 

 Accounting for lateral friction across rods is recommended for narrow bypasses. 

 Sensitivity analysis performed thanks to the computational efficiency of the models. 
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outer straps keeping in mind the general shape of the grids, we assimilate water gap as a 

3D-extruded plane channel whose walls are flushed with the last rows of the two adjacent 

tube bundles. The guide vanes are represented by a bevel at both inlet and outlet of the 

latter channel. As seen before, the exact design of the vanes can vary, and the 3D extrusion 

does not account for the discontinuous, periodic, presence of guide vanes. Keeping those 

assumptions in mind, the angle and curvature of the adopted bevels are uncertain quantities. 

 

The system is thus made of three parts: a convergent (C1), a straight plane channel (C2) 

and a diffuser (C3). The whole region will often be referred as convergent-diffuser (CD) 

thereafter. The detail of this compound is shown in Figure 2-1.  

 

Figure 2-1 - Geometry considered for the area between two grids 

 

The geometry is characterized by the channel width (in nominal conditions 𝜆 ≃ 2.10−3𝑚), 

which is the main parameter of the gap between fuel assemblies. Those kind of geometries 

depend very much on the geometrical dimensionless number Λ/𝜆 where Λ is the width of 

both entrance and exit. The system is thus symmetric with respect to the horizontal and 

vertical mid-planes (so does design 2 in Figure 1-11). The latter two quantities are linked 

through: 

 

Λ = 𝜆 + 2ℎ ∙ tan(𝛼) (Eq. 2-3) 

 

Where ℎ in the height of both the convergent (C1) and the diffuser (C3), 𝛼 is the guide 

vanes angle. Those four parameters are such as Λ\𝜆 equals more or less 4.  𝐻 is the plane 

channel height, and finally 𝐿 is the length of the system along the y-axis. 

 

As the pressure drop induced by the latter geometry is not directly available in the 

literature, we decide to construct it. 
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 Pressure drop across C1 
 

In the convergent C1, we assume classically that the resistance is composed of both local 

and frictional parts. The total pressure loss across a “rectilinear converging bellmouth” is 

adapted from [55]: 

 

Δℙ1 =
1

2
𝜌 [

휁1

(𝐿𝜆)2
(1 −

𝜆

Λ
) +

1

2𝐿2cos(𝛼)
∫

𝑓(ℓ1(𝑧1), 𝑄) 

ℓ1(𝑧1)3

ℎ

0

 𝑑𝑧1] 𝑄2 (Eq. 2-4) 

 

Where 휁1 and 𝑓 are two coefficients for local and frictional losses respectively and 𝜌 is 

the fluid density. The local gap width ℓ1(𝑧1) is a linear map such that ℓ1(0) = Λ and ℓ1(ℎ) =

𝜆. We considered that 휁1 varied little enough on the range of commonly studied gap values 

𝜆 ∈ [0 mm;  20 mm] so that it could be treated as a constant. Usually we assume that 𝑓 is 

constant provided that the Reynolds number is high, however we chose not to make this 

unecessary assumption as Haaland came up with a computational-friendly correlation to 

assess 𝑓 [56]. It led us to write the frictional part in Eq. 2-4 as the integration from 𝑧1 = 0 to 

ℎ of the Darcy-Weisbach equation applied to a pipe with a linearly varying hydraulic 

diameter (and thus linearly varying bulk velocity). One can check that taking 𝑓 as a constant 

in Eq. 2-4 would have yielded the original Idel’Cik correlation [57]. 

 

 Pressure drop across C2 
 

The middle part C2 is a plane channel whose hydraulic diameter is 2𝜆. The flow resistance 

is then only due to friction. The Darcy-Weisbach equation directly gives the streamwise 

(linear) evolution of pressure loss in C2: 

 

Δℙ2 =
𝜌𝑓𝐻

4𝜆
(

𝑄

𝐿𝜆
)

2

 (Eq. 2-5) 

  

 Pressure drop across C3 
 

Similarly to part C1, this resistance in the diffuser C3 depends on a local and a frictional 

part. The frictional resistance is equal to that of Eq. 2-4 for reasons of symmetry. We obtain 

in Eq. 2-6 the streamwise evolution of the pressure loss across C3 in the same way as we did 

for C1:  

Δℙ3 =
1

2
𝜌 [

휁3

(𝐿𝜆)2
∙ (1 −

𝜆

Λ
)

2

+
1

2𝐿2cos(𝛼)
(∫

𝑓(ℓ1(𝑧1), 𝑄)𝑑𝑧1 

ℓ1(𝑧1)3

ℎ

0

 )] 𝑄2 (Eq. 2-6) 

 

 Conclusion: total resistance coefficient - Model 0 
 

We derive the total pressure loss coefficient of what we call Model 0 from the summation 

of Eq. 4 to 8:  
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𝐾CD =
Δℙ

𝑄2
=

𝜌

2(𝐿𝜆)2
[휁1 ∙ (1 −

𝜆

Λ
) +

𝑓𝐻

2𝜆
+ 휁3 ∙ (1 −

𝜆

Λ
)

2

+
𝜆2

cos(𝛼)
(∫

𝑓(ℓ1(𝑧1), 𝑄)𝑑𝑧1 

ℓ1(𝑧1)3

ℎ

0

 )] (Eq. 2-7) 

 

First, to ensure that the total loss induced by this formula is coherent, we compared the 

latter with a simple, nominal, 1D channel case (Appendix D). The loss development with 

respect to λ is put to the test further below, when redistribution occurs. 

Used to estimate lateral hydraulic forces due to pressure differences on each side of a 

spacer grid (see Appendix E), this initial model significantly overestimates the forces. This 

originates in the neglected, and unknown, fraction of the flow passing the grids level through 

the rod bundle rather than through the water gap, lowering the actual effect of the 

convergent-diffuser. 

 

2. Step-by-step construction of an advanced model of the flow redistribution 
 

 Model 1: distribution of the flow between the water gap and its 
surrounding grids 

 

In the Model 0, the flow is bound to circulate in separate domains, with some kind of 

impermeable boundary between the rod bundles and the water gap. Water particles initially 

inside one fuel assembly will go through the mixing grid and remain inside the assembly 

downstream of the grid. Water particles initally in the water gap between assemblies will go 

through the bypass between grids and continue along the water gap. 

In reality, when the gap width 𝜆 decreases a lot, the flow in the bypass dries up. On the 

contrary, when the gap width increases enough, water rushes from the rod bundles and 

towards the gap. Model 1 is designed to account for these two phenomena in addition to 

the convergent-diffuser system of Model 0. 

The grid is geometrically complex and modeling the behavior of the flow passing 

through it is a challenging task. Within this chapter, we stick to a simple expression of the 

irreversible pressure drop associated to the mixing grids in the following form Eq. 2-8: 

 

Δℙg =
1

2
𝜌𝐶g𝑉g

2 = 𝐾g𝑄g
2   (Eq. 2-8) 

 

Where 𝐶g is the coefficient of local resistance of the grid - values and experimental tests 

can be found in [58, 59, 60] -, 𝑉g is the bulk velocity upstream of the half-grids, 𝑄g is the 

volumetric flow rate crossing one half-grid and 𝐾g is the resistance given by Eq. 2-9: 

 

𝐾g =
1

2
𝜌

𝐶g

𝑆𝑔
2
   (Eq. 2-9) 

 

With 𝑆g being the flow cross-section upstream one half-grid. 
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Figure 2-2 - Hydraulic network representing the possible pathways at the grids level (model 1) 

 

Having developed adequate resistances for the convergent-diffuser (Eq. 2-7) and the 

grid (Eq. 2-9), we can set up a simple hydraulic network (Figure 2-2) representing the system 

of interest. It consists of two half-grids separated by a convergent-diffuser (meant for the 

water gap). Both half-grids are supplied with the same upstream flow rate noted 𝑄g
0 

(symmetric system), while 𝑄cd
0  is the upstream flow rate feeding into the convergent-diffuser. 

The leaking flow rate between the grids and the convergent-diffuser is named 𝑄l. The 

effective flow rates crossing the grids and the convergent-diffuser are respectively named 

𝑄g and 𝑄cd. The total outgoing flow rate leaving the system is named 𝑄tot. Applying the so-

called Kirchhoff hydraulic equations [54], i.e. the network mass conservation and energy, we 

obtain the following system of equations (Eq. 2-10): 

 

{

Δ𝑃cd(𝑄cd) − Δ𝑃g(𝑄g) = 0

𝑄g
0 + 𝑄l = 𝑄g

𝑄cd
0 = 2𝑄l + 𝑄cd

   (Eq. 2-10) 

 

By defining 𝑄tot = 2𝑄g
0 + 𝑄cd

0 , the system can be changed into Eq. 2-11: 

 

 

{
𝐾cd𝑄cd

2 − 𝐾g𝑄g
2 = 0

2𝑄g + 𝑄cd = 𝑄tot
 (Eq. 2-11) 

 

Basically, Eq. 2-11 shows that the splitting of 𝑄tot into 𝑄cd and 𝑄g does not depend on 

individual inlet boundary conditions 𝑄g
0 and 𝑄cd

0  but on their sum only. In other words, the 

geometry upstream of the grids level has no influence on the redistribution computed in 

Model 1 (see the equivalent network in Figure 2-2). Practically, when modifying 𝑄cd
0  and 𝑄g

0 

while keeping 𝑄tot constant, the leaking flow rate 𝑄l will adapt so that in the end 𝑄cd and 𝑄g 

remain the same (this is the meaning of the removed equation between Eq. 2-10 and Eq. 

Grid Grid CD 
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0  𝑄g

0 𝑄g
0 
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2-11). 

One can notice that the final system depends on two functions Δ𝑃g(𝑄g) and Δ𝑃cd(𝑄cd). 

It is non-linear in terms of unknowns 𝑄g and 𝑄cd, raised to the power of 𝑎 in the energy 

equation (𝑎 = 2 in our case). While an advanced algorithm could be necessary for larger 

non-linear systems (see for instance [61, 62] or [63]), this small one can be solved easily using 

any root-finding algorithm. It is however shown below that the predictions of this model 

deteriorate when considering low values of 𝜆. Indeed, when the CD’s thickness tends towards 

zero, CFD simulations show that a stagnation point appears, increasing the pressure drop in 

a way this model cannot reproduce, yielding the need for a second improving step in the 

proposed modeling strategy. 

 

 Model 2: stagnation point effect for thin water gaps 
 

When the CD gets very narrow (𝜆 ≃ 0), it acts as an opaque obstacle to the fluid, thus 

producing a stagnation point: the flow flees towards the grids, the CD upstream velocity 

decreases down to almost zero and the kinetic energy turns into a pressure peak at the inlet 

of the CD (Figure 2-3). 

 

Figure 2-3 - Stagnation point setting up upstream from the convergent-diffuser 

 

 

Therefore, we note that when 𝜆 is small enough, there is a conversion of the kinetic 

energy linked to 𝑉cd into a kinetic energy linked to 𝑉g. This observation introduces a ‘branch-

coupling’ term in the energy equation. 

Let us suppose that far from the obstacles, velocity 𝑉∞ and pressure 𝑃∞ are homogeneous 

(Figure 2-3). As explained above, in a stagnation point context, upstream grid pressure 𝑃g 

and CD pressure 𝑃cd are not equal anymore. Applying the Bernoulli equation along two 

distinct axial streamlines across the grid and across the convergent-diffuser, we obtain Eq. 

2-12: 
 

𝑃∞ 

𝑉cd
0 = 𝑉∞ 

𝑉cd ≃ 0 𝑉g 

𝑉g
0 = 𝑉∞ 

𝑃cd 𝑃g 
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{
𝑃∞ +

1

2
𝜌𝑉∞

2 = 𝑃g +
1

2
𝜌𝑉g

2

𝑃∞ +
1

2
𝜌𝑉∞

2 = 𝑃cd +
1

2
𝜌𝑉cd

2

 (Eq. 2-12) 

Which leads to: 

Δ𝑃c = 𝑃cd − 𝑃g =
1

2
𝜌(𝑉g

2 − 𝑉cd
2 ) (Eq. 2-13) 

 

The ‘branch-coupling’ term named Δ𝑃c appears linking both grid and CD dynamic 

pressures. This additional term can be added to the equation energy (Eq. 2-11) in order to 

take into account that the pressure drops in grid and CD are no longer equal but are now 

shifted from each other by a value of Δ𝑃c: 

 

Δ𝑃cd − Δ𝑃g = Δ𝑃c 

 
(Eq. 2-14) 

Introducing the flow rates 𝑄g and 𝑄cd, and the cross-section 𝑆cd of the CD upstream of 

the grids,  Eq. 2-14 becomes: 

 

𝐾cd𝑄cd
2 − 𝐾g𝑄g

2 =
1

2
𝜌(

𝑄g
2

𝑆g
2

−
𝑄cd

2

𝑆cd
2 ) (Eq. 2-15) 

 

We can then define the modified resistance coefficients as below: 

 

𝐾cd(𝜆) = 𝐾cd(𝜆) +
𝜌

2𝑆cd
2 (𝜆)

 (Eq. 2-16) 

𝐾g = 𝐾g +
𝜌

2𝑆g
2
 (Eq. 2-17) 

  

We thus obtain the final equation system for Model 2: 

 

{
𝐾cd𝑄cd

2 − 𝐾g𝑄g
2 = 0

2𝑄g + 𝑄cd = 𝑄tot
 (Eq. 2-18) 

 

One can remark that Eq. 2-18 (Model 2) is formally identical to Eq. 2-11 (Model 1), except 

that both resistance coefficients are increased by distinct constant offsets, which entails that 

Eq. 2-11 and Eq. 2-18 will yield different solutions. This means that the flow rate 

redistribution is modified when the stagnation point in taken into account (the added 

pressure drop is not the only outcome). 

 

 Model 3: lateral resistance due to the rods 
 

In the previous developments, the lateral obstruction due to the fuel rods presence was 

neglected and the fluid could switch among the grid and CD channels without any resistance. 

This means that in Models 1 and 2, the geometry upstream of the grids level has no actual 

influence on the flow redistribution. 
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In reality, an additional lateral resistance causes the total axial pressure drop to slightly 

increase.  CFD simulations show in the next section that the bypass pressure drop is for 

instance underestimated by approximately 10% in the case of a 1mm-thin bypass without 

fuel rods. Practically, the next evolution of the model, i.e. Model 3, includes the resistance 𝐾l 

for the leaking flow rate 𝑄l coming from the bypass and going to the grid through several 

rows of fuel rods (see Figure 2-4). 

 

 

Figure 2-4 - Additional lateral resistance due to cross-flows through the rod bundle (model 3) 

 

Quite intuitively, the coefficient 𝐾l depends on the 3D incidence angle of the leaking flow 

rate in a very complicated way. To provide a first approximation of this contribution, a 2D 

representation is chosen (see Figure 2-5), so that some results are available in the literature. 

As we have seen in chapter 1, in his work, Peybernès [28, 30] came up with a correlation for 

the lateral pressure drop across an inclined rod bundle, based on the Eole experimental 

results. The same correlation has also been used recently in [9] in a more global effort to 

estimate the hydraulic forces on PWR fuel assemblies. 

 

Figure 2-5 - General layout of an inclined flow passing through a rod bundle 
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As a reminder, the correlation states that the mean pressure drop per row is: 

 

Δ𝑃row(𝑉gap, 휃) =
1

2
𝜌𝐾⊥𝜉(휃)𝑉gap

2  (Eq. 2-19) 

 

Where 𝑉gap stands for the fluid velocity in the gaps between the rods, 𝐾⊥ is the pressure 

drop coefficient for purely transverse flows (휃 = 90°) and 𝜉(휃) is a correction factor 

stemming from the Eole installation operated at various incidence angles 휃, given by Eq. 

2-20 below: 

 

𝜉(휃) = (
sin(휃)

cos (
𝜋
4 −

휃
2)

)

1.7

 

 

(Eq. 2-20) 

After some computations, the resulting lateral pressure drop across 𝑁 rows of fuel rods 

is then given by: 

 

Δ𝑃l(휃) =
𝜌𝑁𝐾⊥𝜉(휃)𝛽2

2𝑆l
2 sin2(휃)

𝑄l
2 = 𝐾l(휃)𝑄l

2 

 

(Eq. 2-21) 

Where 𝛽 is the geometrical ratio of the gap velocity to the pitch velocity and 𝑆l the lateral 

rectangular surface over which the fluid transfer 𝑄l takes place.  

Writing 𝑆l = 𝐿ℎl with 𝐿 the total width of a fuel assembly (see Figure 2-1) and ℎl the 

corresponding height, we eventually give the following expression for 𝐾l: 

 

𝐾l(휃) =
𝜌𝑁𝐾⊥𝜉(휃)𝛽2

2𝐿2ℎl
2 sin2(휃)

 

 

(Eq. 2-22) 

In our context of multi-1D modeling, the incidence angle 휃 can be approximated from 

the ratio of the lateral velocity to the axial velocity in the upstream branch (i.e. grid or CD), 

which corresponds to the following expressions: 
 

휃 =

{
 
 

 
 tan−1 (

𝑆g|𝑄l|

𝑆l|𝑄g|
)        if 𝑄l < 0

tan−1 (
𝑆cd|𝑄l|

𝑆l|𝑄cd|
)      if 𝑄l > 0

 (Eq. 2-23) 

 

Using the newly added resistance to lateral flow, system (Eq. 2-18) becomes: 

 

{

𝐾cd𝑄cd
2 − 𝐾g𝑄g

2 − 𝐾l𝑄l
2 = 0

2𝑄g + 𝑄cd = 𝑄tot

𝑄g
0 + 𝑄l = 𝑄g

 (Eq. 2-24) 
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Unlike in previous models, the inlet flow rate 𝑄g
0 (or 𝑄cd

0 ) now plays an important role in 

the redistribution of 𝑄tot between 𝑄g and 𝑄cd, due to the presence of 𝑄l in the first equation 

of system (Eq. 2-24). This means that in Model 3, the geometry of the fuel assemblies 

upstream of the grids does have an influence on the redistribution. In practice, this is shown 

by the appearance of several new geometrical parameters, notably 𝛽, ℎl and 𝑁. The value of 

𝛽 can be easily calculated given the pitch and diameter of fuel rods. However, ℎl and 𝑁 

characterize the dimensions of the region where cross-flows take place between the water 

gap and the grids. As such, those two parameters are complex to estimate and are likely to 

depend on the bypass thickness 𝜆.  

 

3. Comparison with local CFD simulations 
 

 Presentation of the CFD models 
 

CFD simulations are carried out in order to validate our semi-analytical model. The local-

scale solutions provided by two different programs, namely TrioCFD [64] and Code_Saturne 

[65], are cross compared to produce reliable reference data. 

The geometry considered for the calculations is shown on Figure 2-6. It consists in two 

assemblies separated by a central bypass of adjustable thickness 𝜆 (1, 2, 3, 5, 10 and 20 mm). 

Two rods are represented along the y-axis while there are four and a half rods per assembly 

along the x-axis. The tube bundle regions use a rather fine mesh and the intricate geometry 

of the grids is not reproduced. Instead, we use a porous media approach with a coarser mesh 

and calibrate the source term in order to reach exactly the desired value of 𝐾g. For the same 

reasons, some volume inside the grids close to the convergent-diffuser is not meshed (see 

again Figure 2-6), since it would bring unwanted recirculation in the flow, thus increasing 

artificially the value of 𝐾g. 

The mesh is unstructured, consisting in 3D tetrahedral elements with two prismatic layers 

applied on surfaces with a no-slip boundary condition (fuel rods and outward faces of the 

grids, see Figure 2-6). As TrioCFD does not allow prismatic volumes, a specific version of the 

mesh was created where the prisms near the walls are split into five tetrahedrons. 

A mesh convergence study has been realized for the case 𝜆 = 5 mm. For both codes, four 

calculations have been run with various grid refinements whose 𝑦+ averaged on wall surfaces 

always laid in the [30; 100] range required by the wall function. Volumetric flow rates in the 

water gap and pressure drop across the grid exhibited deviations of less than 6% between 

all the meshes. We selected the second thinnest mesh considering it was a fair trade-off 

between accuracy and performance. It contains approximately 5.106 cells. 

All meshes and geometries were run with the SALOME software [66]. 

Symmetry boundary conditions are applied on each lateral side of the fluid domain (see 

Figure 2-6). Inside the grids, a symmetry condition is applied on all the lateral surfaces (which 

are mainly fuel rods) in order to disable friction that would otherwise increase the pressure 

drop artificially (𝐾𝑔 is defined explicitly as a source term, see above). Outside of the grids, a 

no-slip condition is applied on the fuel rods and on the convergent-diffuser walls (Figure 

2-6). An axial flow velocity of 6 m/s is imposed uniformly on the bottom inlet surface (the 
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Reynolds number based on bulk velocity and rod diameter is 105). Finally, a constant pressure 

is set on the top outlet surface (see Figure 2-6). 

Turbulence is handled by a standard k-ε RANS model accompanied by a wall function 

(1-scale model - log law for Code_Saturne and Reichardt for TrioCFD). We aim at reaching a 

steady state. 

Water density is 700 kg/m3, close to the operating value in a PWR. 

 

 

Figure 2-6 - Description of the mesh (𝝀 = 5 mm here) and boundary conditions used in the CFD 

simulations 

 Pressure drop across the grid 
 

The first physical value of interest is the pressure drop across the convergent-diffuser. 

Two different locations were probed, respectively called ‘middle’ and ‘bevel’ (Figure 2-7). The 

pressure drops obtained for the different CD thicknesses are plotted in Figure 2-8. 
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Figure 2-7 - Position of the probes of pressure drop 

 

 

Figure 2-8 - Pressure drop as a function of the water gap thickness 

 

Both CFD codes found that the pressure drop is almost the same for the ‘middle’ probe 

and for the ‘bevel’ probe. This means that the pressure hardly varies in the spanwise 

direction. 

 

Compared to CFD, Model 1 shows poor results below 𝜆 = 6 mm. As mentioned in section 

2, this discrepancy is related to the stagnation point at the entry of the CD, clearly visible in 

Figure 2-9 showing TrioCFD results in mid-plane for 𝜆 = 1 mm and not taken into account 

in the model. Model 2 logically performs better, with a relatively good agreement with both 

CFD reference results, even though a 25% deviation could be underlined for the smallest 

values of 𝜆. Finally, Model 3 yields excellent results for all values of 𝜆 between 1 and 20 mm, 

with the internal parameters given in section 5.  

 

It is worth putting emphasis on the CPU cost associated to one data point of Figure 2-8, 

reaching several days in the case of CFD versus a split second in the case of the semi-

analytical Model 3 (for basically the same results). 
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Figure 2-9 - Pressure peak underneath the CD for 𝝀 = 1 mm 

Color map of pressure/density (𝑷𝒂. 𝒌𝒈−𝟏. 𝒎𝟑) 

 

 Flow rate and mean axial velocity 
 

In this section, flow rate and velocity in the water gap obtained with CFD are compared 

to those given with the proposed semi-analytical models (see Figure 2-10). Since the mesh 

for CFD simulations only contains two rows of rods along the y-axis (see Figure 2-6), the flow 

rate must be rescaled to match the grid length 𝐿 used in the models (see Figure 2-1). 

 

Figure 2-10 (a) shows that Model 1 fails to reproduce the correct slope for the flow rate, 

but Models 2 and 3 give quantitatively accurate results. Model 3 stands out for its ability to 

stick to CFD curves even for the smallest values of 𝜆 (below 3 mm). 

 

The bulk velocity in the bypass at mid-height is plotted in Figure 2-10 (b). When 𝜆 

increases starting from very small values, a maximum is reached for 𝜆 ≃ 3𝑚𝑚 and the bulk 

velocity decreases thereafter. Model 1 does not reproduce this phenomenon as the bulk 

velocity keeps increasing with the bypass thickness. The modification brought in Model 2 

(branch coupling term for capturing stagnation points) is the key to capturing the physics 

correctly. In this case, again Model 3 allows to further tune the solution for small values of 𝜆 

to get very close to the reference curves. 
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Figure 2-10 - Flow rate (a) and axial mean velocity (b) as a function of the water gap thickness 

 

 Advanced calibration for parameters of Model 3 
 

As mentioned in section 2, Model 3 (i.e. integrating a resistance to the leaking flow 𝑄l) 

requires two empirical parameters to be set, namely the number of fuel rod rows 𝑁 and the 

height ℎl involved in the leak flow. 
 

 

Figure 2-11 - Streamlines in the water gap for 𝝀 = 1 mm 

First qualitative insights regarding these parameters are given by the streamlines in the 

vicinity of the grid for the flow coming initially from the water gap inlet boundary. An 

example is provided in Figure 2-11 for the streamlines obtained from the Code_Saturne 

simulation with a gap width 𝜆 = 1 mm. For this configuration, the redistribution (from the 

bypass to the grids) is initiated at a very small distance ℎl upstream of the obstacle. 
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Furthermore, the fluid enters only the first row of the rod bundle inside the grids, yielding 

𝑁 = 1 in this particular case. 

 

A more generic and quantitative approach is to calculate the lateral flow rate for 

successive rows upstream of the grids. The flow rates are calculated the same way as Yan 

[27]: clip planes are created parallel to the water gap for the first three rows and each of 

them is cut into several sub-surfaces along the bundle direction to estimate the evolution of 

the computed flow rates (see Figure 2-12 for the details). The first sub-surface is located 

between 0 and 5 mm upstream from the grids, and so on for the next 5 up to 30 mm 

upstream, with a 5 mm height each. The seventh and last sub-surface represents the lateral 

flow rate through the remaining geometry (between 30 mm and the 150 mm in the upstream 

direction). 

 

 

Figure 2-12 - Clip planes used for post-processing of local lateral flow rates and subdivision into 

sub-surfaces 

This post-processing has been applied to the simulations performed with TrioCFD, for 

the two extremum values of CD’s thicknesses (i.e. 𝜆 = 1 and 𝜆 = 20 mm) and the first three 

rows of fuel rods. 

 

 

Figure 2-13 - Lateral flow rates calculated for a water gap width of (a) 1 mm and (b) 20mm 
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Figure 2-14 - Lateral average velocity for a water gap width of (a) 1 mm (b) 20 mm 

 

Figure 2-13 and Figure 2-14 show the resulting flow rates and lateral average velocities 

respectively for both considered values of the water gap width. Absolute values are displayed 

for the sake of clarity in the comparisons, even though the fluid goes from the assembly to 

the bypass for the larger values of the water gap and in the opposite direction otherwise. 

The redistribution in the 1 mm-case (Figure 2-13 (a) and Figure 2-14 (a)) is strong near the 

grid (in agreement with what was observed on the streamlines of Figure 2-11), and for the 

first row of fuel rods. Actually, 60% of the total lateral flow rate occurs through surfaces 1 

and 2 (i.e. within the first centimeter below the grid) and for the first rod row only. The lateral 

average velocity is also quite important within the first millimeters (almost the same order 

of magnitude as the axial velocity), but drops quickly under 1 m/s after only 1.5 cm. The 20 

mm-case (Figure 2-13 (b) and Figure 2-14 (b)) shows smaller flow rates and they are more 

spread on all sub-surfaces. Only 30% of the total lateral flow rate is located within sub-

surfaces 1 and 2 for the first row and the lateral velocity in the vicinity of the grid is again 

significantly larger for the first row of rods. 

 

Figure 2-15 - Pressure drop as a function of leak length (for several row numbers) when λ = 1 

mm 

To close this section, it is noticeable that parameters ℎl and 𝑁 cannot be chosen 

independently. Figure 2-15 plots the pressure drops in the CD determined by Model 3 for 

many different combinations of leak height ℎl and number of rows 𝑁, as well as the reference 

0

1

2

3

4

5

1 2 3 4 5 6 7

M
e

a
n

 v
e

lo
c

it
y

 (
m

/s
)

Surface number

(a)

First rod row

Second rod row

Third rod row

0

1

2

3

4

5

1 2 3 4 5 6 7

M
e

a
n

 v
e

lo
c

it
y

 (
m

/s
)

Surface number

(b)

0 5 10 15 20 25 30
250

350

450

550

650

750

Lateral leak height hl (mm)

C
D

's
 p

r
e

s
s

u
r

e
 d

r
o

p
 (

k
P

a
)

N=0 (model 2)

N=1

N=2

N=3

N=5

CFD (mean)



 

41 
 

value computed by CFD: several couples of values provide a good match, for instance 

(ℎl = 5 mm ; 𝑁 = 1), (ℎl = 10 mm ; 𝑁 = 3) or (ℎl = 15 mm ; 𝑁 = 5). The first one is probably 

the most relevant for small widths 𝜆, while the second one best describes the configurations 

where 𝜆 is large. However, it is still possible to keep constant values for ℎl and 𝑁 for all values 

of 𝜆. The sensitivity analysis in section 5 will help to assess the influence of these choices on 

the results produced by the semi-analytical models. 

 

4. Comparison with dedicated experimental results 
 

 Experimental mock-up 
 

In order to check that the previous semi-analytical models provide physically relevant 

results (in terms of pressure drop and flow rate distribution between the grids and the CD), 

a specific experimental setup was designed, named DIVA+G. Two half grids were 3Dprinted 

in plastic material. They consist of a thick plate filled with numerous holes arranged in a 

triangular pattern, allowing a controlled pressure drop while maintaining flow conditions as 

homogeneous as possible. The space between the half-grids uses the same simplified 

geometry for the water gap as the theoretical model described in section 2 (Figure 2-1). 

Several shims of various thicknesses allow modifying the distance between the half-grids 

(i.e. the water gap). All these elements are placed in the test section of an hydraulic loop 

(Figure 2-16). 

 

 

Figure 2-16 - The DIVA+G mock-up 

 

Two differential pressure probes are located on a side wall at the base of one of the 

grids, above and below it. The local mean axial velocity is measured thanks to Laser Doppler 

Velocimetry. Between 60 and 340 locations are probed, according to the water gap width. 
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This allows determining accurately the flow rate through the gap, and therefore the flow rate 

within the grids by difference with the total flow rate. The reader could find further details 

of the mock-up in [67]. 

 

 Parameters for Models 1 and 2 for DIVA+G 
 

In DIVA+G, metallic shims are successively added aside to put grids closer. As a result, 

the ratio between flow cross-sections inside the grids and at the inlet decreases as the water 

gap goes thinner. Using the correlation in [55] for thickened grids, we are able to match the 

pressure drop measurement when the gap is closed (𝜆 = 0). By extrapolation, it is possible 

to express the coefficient of local resistance 𝐶g - defined in (Eq. 2-8) - with the following 

relation (Eq. 2-25): 

 

𝐶g(𝜆) = 4.23 − 0.06𝜆 (Eq. 2-25) 

 

Here 𝜆 stands for the average width of the water gap, in millimeters. Likewise, the flow 

cross-section upstream of one half-grid 𝑆g can be evaluated thanks to the following equation 

(Eq. 2-26): 

 

𝑆g(𝜆) =
1

2
(𝑆0 − 𝐿𝜆) (Eq. 2-26) 

 

where 𝑆0 is the mock-up’s cross-section (see Figure 2-16). As mentioned above in the 

chapter, the pressure loss associated to crossing the grids is thus given by (Eq. 2-27): 

 

Δ𝑃g = 𝐾g(𝜆)𝑄g
2 =

1

2
𝜌𝐶g(𝜆)

𝑄g
2

𝑆g(𝜆)2
 (Eq. 2-27) 

 

Those functions are used to compute the solution for both Model 1 and Model 2. Model 

3 is obviously out-of-scope in this section since no rods are included in the DIVA+G mock-

up.  
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 Discussion of DIVA+G results 
 

 

Figure 2-17 - Models vs DIVA+G: flow rates in (a) the water gap and (b) the grids 

(uncertainty ranges are plotted over experimental points) 

 

Figure 2-17 represents the volumetric flow rate in the CD (a) and in the grids (b) as a 

function of 𝜆. Model 2 is in very good agreement with experiments, whereas Model 1 shows 

significant discrepancies for larger gaps, confirming the importance of the stagnation point 

modeling to account for the heterogeneity of the pressure field. 

 

 

Figure 2-18 - Models vs DIVA+G: pressure drop, absolute uncertainties are indicated over 

measurements’ points 

 

Finally, Figure 2-18 presents the pressure drop through the grids. In DIVA+G, this value 

is obtained through the two pressure sensors placed on both sides of the right half-grid (see 

Figure 2-16). Experimental measurements are here subjected to additional uncertainties 

probably due to non-uniform operating conditions in the loop over the complete test 

sequence stretching over one week approximately (see for instance the points for values of 

𝜆 of 1.6 mm, 4.5 mm and 20 mm). However, both Models 1 and 2 accurately reproduce the 

decrease of the pressure drop through the grid with the opening of the water gap. 

As a conclusion, the very good match between Model 2 and DIVA+G experimental data 
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(in terms of pressure drop and flow rates) is remarkable, all the more so as this version of 

the semi-analytical model needs no empirical parameter at all. It shows that the physics of 

the redistribution upstream of the grids is correctly understood and well captured by our 

semi-analytical models. 

 

5. Sensitivity analysis of the models 
 

This last section provides some early work illustrating the potential of the proposed 

semi-analytical approach in terms of advanced sensitivity analysis, made possible by the 

balance between accuracy for the phenomena of interest and computational efficiency. Two 

case studies are considered: first, the sensitivity of Model 2 results to variations of its internal 

parameters together with some of the DIVA+G experimental inputs, and second, a deeper 

dive into the inner workings of the Δ𝑃c and Δ𝑃l corrective terms resulting from the stagnation 

point modeling, through compared sensitivity analyses of Model 2 and Model 3. 

 

 Model 2 (applied to the DIVA+G experiment) 
 

In order to analyze the sensitivity of Model 2 and the experiment’s parameters, 100 000 

calculations were performed thanks to CEA’s Uranie uncertainty platform [68] with different 

values of input parameters (see section 2) to estimate the Sobol Indexes [69, 70]. The 

sampling is operated by a Latin hypercube method [71]. The different inputs are drawn from 

uniform distributions whose bounds are detailed in Table 2-1. In section 4, it was explained 

why the grid coefficient 𝐶g of the DIVA+G mock-up was a linear function of the water gap 

width 𝜆. However, in order to make the sensitivity analysis simpler [69], we act as if these two 

variables were uncorrelated. 

 
Input Minimum Maximum Comments 

𝝀 0.1 mm 20.5 mm  

𝑯, 𝒉, 𝜶 −10% +10% 

(Λ 𝜆⁄ ) thus varies up to ±20% for 𝜆 = 1 mm and ± 5% for 
𝜆 = 20 mm 

(this ratio plays a major role on the flow redistribution, see 

(Eq. 2-7)) 

𝜻𝟏 0.1 0.6 
+20% upper margin w.r.t. the sudden contraction (휁1 = 0.5 

when 𝛼 = 90°) 

𝜻𝟑 1 1.3 
휁1 = 1 is for a sudden expansion (𝛼 = 90°), 휁1 = 1.15 the 

nominal value 

𝑪𝐠 3.00 4.23 𝐶g depends on 𝜆 (see section 2) 

𝑸𝐭𝐨𝐭 −10% +10%  

𝝆 997 kg.m-3 1000 kg.m-3 Temperature variation between 5°C and 25°C 

𝝁 8 × 10-4 Pa.s 1.5 × 10-4 Pa.s Temperature variation between 5°C and 25°C 

𝜺 1 µm 100 µm 

휀 = 1 µm is typical steel, 휀 = 100 µm is an upper bound for 
3D-printed PETG 

(휀 is the wall rugosity, appearing in Haaland formula for 𝑓 
[56]) 

𝑺𝟎 = 𝑳 × 𝑾 −1 mm × −1 mm +1  mm × +1mm  

Table 2-1 - Inputs for sensitivity analysis of Model 2 in the context of DIVA+G experiments 
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The chosen outputs of interest are the volumetric flow rate fraction going through the 

water gap, i.e. 𝑄cd 𝑄tot⁄ , as well as the pressure drop divided by the square of total flow rate, 

i.e. ∆𝑃g 𝑄tot
2⁄ . Such nondimensionalization prevents any undesirable variation of 𝑄cd and ∆𝑝g 

which would be imputed solely to an increase or decrease of the total flow rate 𝑄tot going 

into the system. 

 

 
 

Figure 2-19 - Flow rate in the CD computed with perturbed input parameters 

 

Figure 2-19 represents the nondimensional flow rate in the CD, for both experimental, 

initial Model 2 calculation (with nominal values), and the 100 000 calculations results. It 

highlights that whatever the draw, the maximal relative deviation towards experimentation 

is around 20%. Keeping in mind that every single possible input variable has been considered 

and that they have been drawn uniformily in the whole range of admissible values, this is a 

very satisfactory result. First, it shows that a rational change in the models’ parameters will 

keep the solution (in terms of flow rate) in an acceptable range. Second, the distribution of 

the scattered results around the experimental values shows some robustness regarding the 

measurement errors. Finally, the shape of the scatter plot suggests that the flow rate is 

mostly a function of the thickness. 

 

 

Figure 2-20 - Sobol indexes and 95% confidence intervals for 𝑸𝒄𝒅 𝑸𝒕𝒐𝒕⁄  (a) and ∆𝑷𝒈 𝑸𝒕𝒐𝒕
𝟐⁄  (b) 

obtained with 100 000 calculations with Model 2 in the context of DIVA+G experiments 

0%

5%

10%

15%

20%

25%

30%

0 5 10 15 20

F
lo

w
 r

a
te

 f
r

a
c

ti
o

n
 Q

c
d
/Q

to
t

Water gap width λ (mm)

Scatter (100 000 calculations)

Model 2

Experiment

λ Cg ζ1 α ζ3 ε L h H µ ρ Qtot W
10-5

10-4

10-3

10-2

10-1

1

S
o

b
o

l 
in

d
e

x
e

s
 f

o
r

 Q
c

d
/Q

to
t

(a)

First

Total

λ Cg ζ1 α ζ3 ε L h H µ ρ Qtot W
10-5

10-4

10-3

10-2

10-1

1

(b)

First

Total

S
o

b
o

l 
in

d
e

x
e

s
 f

o
r

 ∆
P

g
/Q

to
t2



 

46 
 

To explicitly quantify the influence of the modelling parameters on the variation of 

𝑄cd 𝑄tot⁄ , first and total Sobol ( [69] or [72] in English ) are computed and displayed in Figure 

2-20(a). The first index associated to the thickness 𝜆 is indeed around 1. It means as 

anticipated in Figure 2-19 that the output can be considered in first approximation as a 

function of 𝜆 only, neglecting some small interactions with other inputs. Confidence intervals 

of the other inputs for the first index are too large to be discussed. However, according to 

the total indexes (whose confidence intervals are small enough to allow interpretation), one 

could see that 𝐶g, 휁1 and 𝛼 are the next three more influential inputs on the prescribed 

ranges, after the thickness 𝜆. There is no way to tell if those parameters step in alone or 

through their interactions, but their total effect stands out from the others. More specifically, 

caution must be exercised with regards to 𝐶g, as it was considered independent of  𝜆 to 

compute the Sobol indexes, whereas analyses from DIVA+G experimental campaign clearly 

concluded that these two parameters were strongly related (as such they should be 

considered as a same group of inputs [69]. Further correlation analyses could be performed 

to highlight this topic, but this goes beyond the scope of the current chapter. 

Figure 2-20 (b) indicates the Sobol indexes calculated for the output ∆𝑃g 𝑄tot
2⁄ . The 

remarks pointed out above are still relevant, and the four more influential inputs are the 

same. The difference is that the effect of  𝐶g is much more important in this case (see the 

total and first indexes) because the pressure drop is directly proportional to the loss 

coefficient. 

 

 Model 3 (and comparison to the simpler Model 2) 

 

The common distinctive feature of Model 2 and Model 3 is held in the Δ𝑃c corrective 

term, and Model 3 then stands out from Model 2 for the additional parameters introduced 

by the lateral resistance 𝐾l. It is interesting to analyze the sensitivity of Δ𝑃c = 𝑃cd − 𝑃g to 

different values of new inputs associated with 𝐾l and to compare with Model 2’s conclusions 

discussed above. Building on the results of Table 2-1, every parameter whose influence 

seemed negligible are now considered as constants. Simulations are otherwise analog to the 

ones performed in section 2. For Model 3, the inputs of the sensitivity analysis are listed in 

Table 2-2. 

 
Input Minimum Maximum Comments 

𝛌(∗) 1 mm 20 mm  

𝐂𝒈
(∗) 0.9 1.3  

𝛍 10-5 Pa.s 10-4 Pa.s 
Used to calculate the local Reynolds number in K⊥ 

(Eq. 2-22) 

𝐍 1 3 See Figure 2-11 

𝐡𝐥 1 mm 100 mm 
Linear probability density function (instead of uni-
form) in order to promote low values of h𝑙 (see Fig-

ure 2-11) 

Table 2-2 - Inputs for sensitivity analysis of Model 2 (∗ only) and 3 in the context of real PWR 

fuel assemblies 
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Figure 2-21 - Pressure peak term 𝜟𝑷𝒄 obtained by Model 2 when varying 𝝀 and 𝑪𝒈 only 

 

Figure 2-21 depicts the variance of Δ𝑃c obtained with Model 2 when varying λ and Cg 

only. One can notice that Δ𝑃c is either positive of negative according to the flow rate value 

in each branch. Thus, zero values obtained for λ around 7 mm correspond to equal velocities 

through the grid and the water gap (as shown by (Eq. 2-13)), which means a uniform flow. 

The dispersion induced by 𝐶g clearly increases as the thickness λ grows larger. The Sobol 

indexes associated to this sensitivity analysis are given in Figure 2-22. 

 

 

 

Figure 2-22 - Sobol indexes and 95% confidence intervals for ∆𝑷𝒄 obtained with 100 000 

calculations with Model 2 in the context of real PWR fuel assemblies 
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Figure 2-23 - Streamline upstream from the CD with fuel rods 

 

In the case of Model 3, the quantity of interest is Δ𝑃tot = Δ𝑃c + Δ𝑃l. Indeed, two effects 

are now are involved in the upstream pressure drop. This can be shown by applying the 

generalized Bernoulli principle on a streamline following the flow redistribution (Figure 2-23) 

for instance from the grid (point A, velocity 𝑉  𝐴 = 𝑉  g + 𝑉  l and pressure 𝑃A = 𝑃g) to the water 

gap (point B, velocity 𝑉  𝐵 = 𝑉  cd + 𝑉  l and pressure 𝑃B = 𝑃cd). The sign convention for Δ𝑃l 

comes from (Eq. 2-24): 

 

𝑃A +
1

2
𝜌𝑉A

2 = 𝑃B +
1

2
𝜌𝑉B

2 − Δ𝑃l (Eq. 2-28) 

 

which leads to the following formula for the total pressure drop: 

 

Δ𝑃AB = 𝑃cd − 𝑃g =
1

2
𝜌(𝑉g

2 − 𝑉cd
2 ) + Δ𝑃l = Δ𝑃tot (Eq. 2-29) 

 

(to be compared to (Eq. 2-13) which gives 𝑃cd − 𝑃g = Δ𝑃c in the case of Model 2). 

 

 

Figure 2-24 - Sobol indexes and 95% confidence intervals for 𝜟𝑷𝒕𝒐𝒕 obtained with 100 000 

calculations with Model 3 in the context of real PWR fuel assemblies 
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Figure 2-24 highlights Sobol indexes obtained for Δ𝑃tot. Once again, λ has by far the 

highest effect among all inputs. But in this new situation, the sum of all first indexes is not 

equal to 1, meaning that correlations exist between inputs. From ℎl indexes, it can be inferred 

that this input is unimportant alone but has a significant impact through interactions, most 

probably with λ. 

In order to grasp a better understanding of the roles of λ and ℎl, the same calculations 

have been performed considering all the other inputs as constants with nominal values. 

Quantities of interest such as  Δ𝑃c and Δ𝑃tot can therefore be visualized with smooth curves 

(instead of fuzzy scatter plots like in Figure 2-21 for instance). Figure 2-25 shows the 

evolution of Model 3 outputs along with ℎl (for different values of λ) whereas Figure 2-26 

and Figure 2-27 show their evolution along with λ (for different values of ℎl). 

 

 

 

Figure 2-25 - Evolution of the flow rates and pressure drops along with hl for different values of 

λ 
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Figure 2-26 - Evolution of the lateral pressure drop along with λ for different values of hl 

 

Figure 2-27 - Evolution of the upstream pressure drop along with λ for different values of hl 

 

One first observation is the presence of a singular point as both λ and ℎl approch zero, 

for which the upstream pressure drop Δ𝑃tot associated to the redistribution becomes 

potentially infinite. Actually, the singular term is rather Δ𝑃l. It makes sense because that 

singular point corresponds to a situation where almost all the incoming flow would be forced 

towards the grids (λ ≃ 0) by going through an extremely thin horizontal slit (ℎl ≃ 0). Hence, 

care must be taken so as not to choose too small a value for the ℎl parameter. We suggest 

to keep ℎl above 5 mm at the very least. 

On the opposite, when ℎl grows larger, Figure 2-25 and Figure 2-26 show that Δ𝑃l 

approach zero whatever the value of λ. In other words, Model 3 asymptotically tends towards 

Model 2 when ℎl becomes infinite. Actually, it is possible to observe on Figure 2-25 that the 
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evolutions of flow rates and pressure drops become somewhat unaffected by increasing ℎl 

beyond 3 cm.  

The loci where pressure drop curves of Figure 2-26 and Figure 2-27 cross the horizontal 

axis is almost a single point near λ ≃ 7 mm. When the water gap has this width, the axial 

flow profile is flat (𝑉cd = 𝑉g, with no cross-flow). Since it hardly depends on ℎl at all, even 

Model 2 or a poorly calibrated Model 3 would be able to predict this equilibrium value 

accurately. 

For intermediate values of ℎl (in the “reasonable range” between 5 mm and 5 cm), one 

can wonder how the redistribution term of Model 2, namely Δ𝑃c, blends in the one of Model 

3, namely Δ𝑃tot = Δ𝑃c + Δ𝑃l. When ℎl is between 5 and 50 mm, Figure 2-26 shows that the 

additional term Δ𝑃l increases (in absolute value) when ℎl gets smaller, staying below the 

asymptotic value of Δ𝑃c curve for Model 2 even so. Conversely, Figure 2-27 shows that Δ𝑃c 

decreases (in absolute value) along with ℎl, but not enough to compensate for the additional 

upstream pressure drop brought by Δ𝑃l. Everything boils down in the end to the total 

pressure drop Δ𝑃tot being slighted increased (in absolute value) when the length ℎl becomes 

smaller. One worthy observation is that the flow rate 𝑄cd in the water gap shows little 

dependence on ℎl. These results are the very purpose of Model 3 enhancements versus 

Model 2, aimed at tweaking the pressure axial profile without jeopardizing the good 

prediction of the flow rate redistribution, which was already validated for Model 2 by 

comparison to DIVA+G experimental data. 

 

6. Partial conclusion 
 

In this chapter, a series of different 1D hydraulic models of growing complexity were 

introduced to reproduce the flow redistribution upstream from the grids for two fuel 

assemblies separated by a water gap. All models are based on hydraulic networks, starting 

from the simple association of two pathways: one for the bypass, and one for the grids. The 

first model does not take into account the pressure peak which appears when the bypass is 

being closed, yielding a second model containing a modified energy equation to consider 

the effects of the identified stagnation point. Finally, a third model adds the lateral hydraulic 

resistance of the fuel rods, to further increase the accuracy of the network for small water 

gaps.  

Although Model 1 turns out to be far too simplistic, both Model 2 and Model 3 are well-

suited for reproducing the CFD results obtained with TrioCFD and Code_Saturne, with 

excellent agreement achieved by Model 3 even in the case of very narrow bypasses. Models 

1 and 2 were also compared to a dedicated experiment called DIVA+G consisting in two 3D-

printed porous grids facing each other, between which is located a bypass of varying 

thickness. Model 3 was not relevant in this case as there is no rod bundle in the mock-up. 

Model 2 accurately predicted flow rates and pressure losses measured in DIVA+G, validating 

the global strategy proposed to account for the flow redistribution upstream from the grids. 

As regards the improvements brought in Model 3 to account for the lateral obstruction due 

to the fuel rods, sensitivity analyses suggest that a particular attention should be paid to the 

choice of the ℎ𝑙 parameter, due to its significant influence on the pressure drop. 
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The next step of this work consists in building a model for the lateral forces acting on 

the fuel assembly, based on the computed flow rates and pressures. 
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 Chapter 3: Construction of a fluid-structure 

model for a whole fuel assembly 

 

 
 

1. Force model related to the pressure difference in surrounding water gaps 
 

 Axial pressure profile in the water gap 
 

In the previous chapter, a model has been designed to depict fluid redistributions 

upstream from the spacer grids. As we said in the introduction, it is necessary to assess fluid 

forces onto the FA structure. Now, we will see how to take advantage of the network results 

(i.e. the flow rate 𝑄 in the CD) to run pressure forces calculations. 

 

In what follows, we still consider the Bernoulli’s principle in the CD (Eq. 2-1). The pressure 

evolution relies on geometrical effects (acceleration/deceleration of the fluid), and also on 

irreversible pressure losses (Eq. 2-7).The axial profile of pressure in the water gap, in the 

convergent (C1), is modelled through the following equation (Eq. 3-1) (𝑧1 ∈ [0, ℎ]): 

 

𝑝𝐶1
(𝑧1) = 𝑝0 +

1

2
𝜌

𝑄2

𝑆𝑑𝑦𝑛(0)2 (1 −
𝑆𝑑𝑦𝑛(0)2

𝑆𝑑𝑦𝑛(𝑧1)2)

−
1

2
𝜌

1

2𝐿2 𝑐𝑜𝑠(𝛼)
∫

𝑓(ℓ1, 𝑄)

ℓ1(𝑧)3  𝑑𝑧 −
1

2
𝜌 휁1 (1 −

ℓ1

𝛬
)

 𝑄2

(𝐿ℓ1)2

𝑧1

0

 

(Eq. 3-1) 

 

In the planar channel C2, (𝑧2 ∈ [0, 𝐻]): 

 

𝑝2(𝑧2) = 𝑝𝐶2
(0) −

𝜌𝑓𝑧2

4𝜆
(

𝑄

𝐿𝜆
)

2

 (Eq. 3-2) 

 

In the diffuser C3, (𝑧2 ∈ [0, ℎ]): 

 

Highlights of the chapter 

 

 We compute the hydraulic forces 𝐹𝑉 from the redistribution model of chapter 2. 

 Their contribution at local scales are assessed by comparison with simulations and 

experiment. 

 A hydraulic model of the FA is set up through a reunion with both bypasses and 

inner-FA redistributions and validated hydraulically by comparison with a CEA 

experimental mock-up. 

 The coupling with an in-house mechanical code (using also forces described in 

chapter 1) produces an equilibrium state, validated by comparison with 

experiments. 

 The lateral force 𝐹𝑉 on the grid induced by redistribution has an important role on 

the final shape of the assembly. 
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𝑝𝐶3
(𝑧3) = 𝑝𝑧3

(0) +
1

2
𝜌

𝑄2

𝑆𝑑𝑦𝑛(0)2
(1 −

𝑆𝑑𝑦𝑛(0)2

𝑆𝑑𝑦𝑛(𝑧3)2
)

−
1

2
𝜌

1

2𝐿2 𝑐𝑜𝑠(𝛼)
∫

𝑓(ℓ3, 𝑄)

ℓ3(𝑧)3
 𝑑𝑧 −

1

2
𝜌 휁3 (1 −

𝜆

Λ
) (1 −

𝜆

ℓ3
)

 𝑄2

(𝐿𝜆)2

𝑧3

0

 

(Eq. 3-3) 

 

𝑆𝑑𝑦𝑛 is the real cross section of the fluid (keeping the fuel rods), at height z. We can 

analyze the difference between 𝑆𝑑𝑦𝑛 and 𝑆𝑐𝑑, which has been widely used before. Hydraulic 

resistances computed in the previous chapter are essentially based on idealized geometries. 

In that case, fuel rods were not considered in the cross sections used for the network 

calculation: the inter-grid area was thus a convergent-diffuser without any rods, it is 𝑆𝑐𝑑. 

However, to better depict fuel assembly bow, the lateral forces acting on the spacer grids 

must be as reliable as possible. To do so, the pressure profiles must be representative. The 

dynamic pressure variation, which plays a role in the profile, is to be as close as possible to 

a real core context. 𝑆𝑑𝑦𝑛, introduced in this part, is thus a real cross section in that it equals 

𝑆𝑐𝑑 at height 𝑧, but diminished by the appropriate portion of fuel rods. Figure 3-1 depicts 

the difference between both cross sections. 

 

 

Figure 3-1 - Sketch of the difference between 𝑺𝒄𝒅 (left), and 𝑺𝒅𝒚𝒏 (right) in the convergent C1 

 

We can make another remark. The local pressure loss terms (last terms of (Eq. 3-1) and 

(Eq. 3-3)), are, as their names imply, local. The point here is to distribute them on a distance 

ℎ. 

Regarding the convergent, at a given height z, the local loss induced is chosen as equal 

to the one induced by a convergent of height 𝑧, with 휁1 constant (see Figure 3-2). 
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Figure 3-2 - Distribution of local loss in the convergent 

 

This hypothesis expresses: 

 

𝑃𝐶1

𝑙𝑜𝑐𝑎𝑙 =
1

2
𝜌휁1 (1 −

ℓ1(z1)

Λ
)

𝑄2

(𝐿ℓ1(𝑧1))
2 (Eq. 3-4) 

 

Incidentally, one can notice that when 𝑧1 = ℎ,  we find back as in (Eq. 2-4): 

 

𝑃𝐶1

𝑙𝑜𝑐𝑎𝑙(𝑧 = ℎ) =
1

2
𝜌휁1 (1 −

𝜆

Λ
)

𝑄2

(𝐿𝜆)2
 (Eq. 3-5) 

 

Which is the expression of the local loss used in the hydraulic resistance, for the whole 

height of C1. For part C3, regarding the strong detachments in the diffusers entrance (see 

section 5 of [55]), it is hard saying that the expression of the local loss at height 𝑧 is the same 

as the one obtained with a diffuser of height 𝑧, because it would yield in a quadratic 

evolution of the loss coefficient. This is the reason why we will assume that its evolution is 

an analog of C1’s: 

 

𝑃𝐶3

𝑙𝑜𝑐𝑎𝑙 =
1

2
𝜌휁3 (1 −

𝜆

Λ
) (1 −

𝜆

ℓ3(𝑧3)
)

𝑄2

(𝐿𝜆)2
 (Eq. 3-6) 

 

In that, if 𝑧3 = ℎ: 

 

𝑃𝐶3

𝑙𝑜𝑐𝑎𝑙(𝑧 = ℎ) =
1

2
𝜌휁3 (1 −

𝜆

Λ
)

2 𝑄2

(𝐿𝜆)2
 (Eq. 3-7) 

 

Which is also the local loss used in the hydraulic resistance. 

We can illustrate those dimensionless distributions of loss by plotting in Figure 3-3 the 

local pressure losses in C1 and C3 divided respectively by 𝐿2𝜆2/2𝜌휁1𝑄2 and 𝐿2𝜆2/2𝜌휁3 (1 −
𝜆

Λ
) 𝑄2. 

 

 



 

56 
 

 

Figure 3-3 - Distribution of local pressure losses 

 

The global static pressure in the CD thus writes: 

 

𝑝:  𝑧 →  {

𝑝𝐶1
(𝑧) , ∀𝑧 ∈ [0, ℎ]

𝑝𝐶2
(𝑧 − ℎ) ,        ∀𝑧 ∈ [ℎ, ℎ + 𝐻]  

𝑝𝐶3
(𝑧 − ℎ − 𝐻) ,    ∀𝑧 ∈ [ℎ + 𝐻, 2ℎ + 𝐻]        

 (Eq. 3-8) 

 

 Comparison of the pressure profiles with CFD simulations 
 

Our profiles, in C1, C2 and C3 are compared with the same CFD simulations as presented 

in the previous chapter. We chose the 1, 5 and 20 mm cases, illustrating a wide range of 

water gaps widths. We inform the reader that the ‘bevel’ and ‘middle’ profiles were practically 

overlaid. The depth effect is thus almost nonexistent. For this reason, we only plotted the 

‘bevel’ profiles in Figure 3-4. Model 3 is used with the parameters (ℎ𝑙 = 5.10−3, 𝑁 = 1). 
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Figure 3-4 - Pressure profiles (Pa) drawn from CFD simulations and models, 25 pressure probes 

are used along the CD 

 

We express the following remarks: 

 

 For the 20 mm case, both models are close to the CFD simulations results, even 

though Model 2 slightly overestimates the pressure decrease by 16% when not 

corrected at all. 

 For the 5 mm case, CFD simulations with TrioCFD and Code_Saturne give profiles 

with a deviation reaching 30% from each other. Yet, such a difference was already 

observed for bulk velocities between both two codes at 5 mm, which is the width 

for which they differ the most. Our two models are located between CFD results. 

 For the 1 mm case, Model 2 underestimates importantly (by 40%) the pressure 

decrease. This is not surprising: we remind that Model 2 was superseded by Model 

3 precisely for the thinnest gaps. 

 

Generally, Model 3 gives a very good approximation of the pressure evolution in the 

convergent-diffuser. A compromise must be done before each calculation. Indeed, for larger 

gaps, Model 2 gives excellent results in terms of hydraulic redistribution (see DIVA+G for 

instance), but the calculation must be corrected all the same by Model 3 for improving the 

pressure profile. 

 

 Lateral force on the grid due to pressure differences 
 

From pressure profiles, the lateral force due to redistribution exerting on the grid is the 

following: 
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𝐹𝑉
     = 𝐿 (∫ (𝑝 − �̃�)𝑑𝑧

𝐿𝑡

0

) 𝑒𝑥     (Eq. 3-9) 

 

Where 𝐿𝑡 = 2ℎ + 𝐻, 𝑝 and �̃� being the static pressures at respectively the left and right 

hand side of the spacer grid. The integral in (Eq. 3-9), is not directly known. We rather have 

at our disposal the static pressure deviation between the two CD entrances (see Δ𝑝𝑡𝑜𝑡 in (Eq. 

2-29)). We can observe that both profile can be written as follows (Eq. 3-10): 

 

𝑝(𝑧) = 𝑝0 + 𝑝1(𝑧),   �̃�(𝑧) = 𝑝0̃ + 𝑝1̃(𝑧) (Eq. 3-10) 

 

Where 𝑝0 and 𝑝0̃, correspond with the static pressure ‘offsets’. 𝑝1 and 𝑝1̃ contain dynamic 

pressure variations, frictions, and distributed local losses. (Eq. 3-9) can thus be rewritten: 

 

𝐹𝑉 = 𝐿 (∫ (𝑝0 − 𝑝0̃)𝑑𝑧
𝐿𝑡

0

+ ∫ (𝑝1 − 𝑝1̃)𝑑𝑧
𝐿𝑡

0

)  (Eq. 3-11) 

 

In other words: 

 

𝐹𝑉 = 𝐿𝐿𝑡Δ𝑝𝑢 + 𝐿 ∫ (𝑝1 − 𝑝1̃)𝑑𝑧
𝐿𝑡

0

 (Eq. 3-12) 

 

Where Δ𝑝𝑢 is the total, upstream, static pressure deviation between both two 

convergent-diffusers surrounding one spacer grid. 

 

We can make two comments: 

 

 𝐿𝐿𝑡Δ𝑝𝑢 stands for the force component coming from the lateral static pressure 

deviation upstream from the grid, this term is related to lateral flows. 

 𝐿 ∫ (𝑝1 − 𝑝1̃)𝑑𝑧
𝐿𝑡

0
 stands for the force component coming from the CD geometry. 

It will be particularly dependent on the cross section variation and thus the width 

𝜆. 
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Figure 3-5 - Illustration of the 𝑭𝑽
      components 

 

Figure 3-5 shows those notions, with simplified profiles. In this example, 𝐿𝐿𝑡Δ𝑝𝑢 is 

positive, while 𝐿 ∫ (𝑝1 − 𝑝1̃)𝑑𝑧
𝐿𝑡

0
 is negative. 

 

 Validation of 𝐹𝑉 with CFD 
 

The case of study is 3 fuel assemblies in a row over one span between successive grids. 

Ulrich Bieder in [49, 73] realized such CFD calculations. The gaps widths were changed in 

order to study the fluid behavior in the grids vicinity (respectively named A, B and C). We 

can observe this setup in Figure 3-6 and Figure 3-7, where there is a 2mm gap between A 

and B, and a 5mm gap between B and C. Symmetric boundary conditions impose a 2 mm 

gap at the left A and at the right of C. 

 

 

Figure 3-6 - CFD simulation with 3 FAs [49] 
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Figure 3-7 – Pressure (Pa) in the gaps [49] 

 

 
Setup Gap A/B (mm) Gap B/C (mm) 

Nominal 2 2 
1 2 5 
2 3 7 

Table 3-1 - CFD setups 

 

Table 3-1 sums up the different cases studied by Bieder. 

From now on in the thesis, every network calculation is realized with Phorcys, a platform 

aiming at solving network-based formulations written in python. A detailed description of 

the code is available in Appendix F. 

 

We can make the following remarks: 

 

 The grid design as modelled by U. Bieder and C. Genrault comprises ‘holes’ across 

the outer straps (invisible on the figures). The latter, numbered 17 on every outer 

strap, aim at reducing pressure deviations on both sides of the grid. This geometry 

thus produces lower lateral forces compared to our semi-analytical 1D models, in 

which ‘intra-grid’ redistributions are not modelled. 

 U. Bieder uses a periodic box at the geometry inlet to obtain an established profile 

[49]. In our case, we will choose an homogenous profile of velocity at the inlet 

with a whole axial span. 

 In our network code Phorcys, the geometry could not be exactly the same as 

Bieder’s, because the lateral symmetry boundary conditions applied in the CFD 

simulations are not reproducible. Instead, our three 2D FAs are bordered by two 
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nominal bypasses (whose 𝜆 = 2𝑚𝑚). 

 As there is a difference of 103 to 104 between the viscous and pressure forces, 

only the pressure forces are presented, the viscous ones are openly negligible.  

 

The network set up is shown in Figure 3-8, in which we can see a flow rates map. Each 

FA is composed of two axial branches (in orange), and surrounded by a bypass (in blue). 

Every axial elements are bound together at one at the outlet, which stands for a free outlet 

(same pressure). Also, between two axial elements lies an intra-assembly element whose 

height is 𝐻𝑏~0.5𝑚 (based on the Eole correlation as explained above). Between each bypass 

and axial elements are found Model 3’s lateral elements also Eole-based (see the previous 

chapter). The latter are characterized by 𝑁 = 1 and ℎ𝑙 = 2.10−2𝑚 being constant for every 

calculation set up, which seems to be a consistent compromise between having ℎ𝑙 low for 

the smallest 𝜆, and ℎ𝑙 ∼ 3.10−2𝑚 where the redistribution network studied in the previous 

chapter appeared to reach its asymptotic behavior for pressure and velocity (Model 2).  

 

 

Figure 3-8 - Network set up for Bieder's calculations 

 

 Results 
 

In Figure 2-9, we find the comparisons for lateral forces exerting on grids A, B and C. 

 

 

Figure 3-9 - Results of simulations with setups 1 (A) and 2 (B) 

A B C

-60

-40

-20

0

20

40

60

F
o

r
c

e
 (

N
)

Fᵥ₂ Fᵥ₁

FUP CFD

A B C

-60

-40

-20

0

20

40

60

𝐹𝑉1
𝐹𝑉2

𝐹𝑈𝑃 𝐶𝐹𝐷

(A) (B) 



 

62 
 

 

𝐹𝑉1 is the force given by (Eq. 3-9). 𝐹𝑉2 is the same force as 𝐹𝑉1, but diminished by the 

ratio of the grid lateral cross section without the holes, to the lateral cross section including 

the holes (it equals ∼ 0.9). As said previously, the holes head toward decreasing the force 

equalizing the pressure on both sides of the grid. However, the ‘intra-grid’ redistribution is 

not taken into account in the models. The point is thus to figure out how close we can get 

to fine calculations (CFD) fiddling with the lateral cross section correction. This is a first step 

to a more global redistribution model of the grid, including intra-grid flows. 𝐹𝑈𝑃 stands for 

the upright position force presented in the hydraulic introduction (chapter 1) and used by 

some authors. In our model, it is estimated through lateral velocities in the intra-assembly 

lateral elements, axial velocities in the axial elements, and the grid cross section (Appendix 

F).  

Regarding the first setup, the forces behavior is well depicted. Initial total forces (i.e. 

𝐹𝑉1 + 𝐹𝑈𝑃), have a consistent order of magnitude compared to Bieder’s calculations (25% 

deviations), and are obviously overestimated as heralded above. Modified total forces (i.e. 

𝐹𝑉2 + 𝐹𝑈𝑃) are closer to the CFD results and thus lead to a better precision. In both cases, 

the force direction is correct for grids B and C (respectively positive and negative), but 

incorrect for grid A. Yet, the latter is insignificant; in fact it is lower than a residual force (a 

few Newtons) existing on an isolated grid in nominal conditions [49]. Consequently, 

discussing its direction makes no sense here.  

Regarding setup 2, the same remarks can be made. Directions as well as orders of 

magnitude are respected. The change in water gaps width is thus well depicted by our 

model, and the results are very good for both values of 2/5 and 3/7 mm. Globally, in these 

configurations, 𝐹𝑈𝑃 seems to stay in the background compared to 𝐹𝑉 . Apart from grid A in 

setup 1 where the whole effort is carried by 𝐹𝑈𝑃, the latter equals 10% of the total force at 

the most.  

Ulrich Bieder also plotted the lateral force with respect to a gap widening, benefiting 

from the symmetry conditions all around its geometry [73]. More specifically, regarding the 

two gaps surrounding the grid, one is locked with a nominal value of 2mm, while the other 

is equal to 𝜆. The water gap widening is thus defined as Δ𝜆(𝑚𝑚) = 𝜆 − 2. In concrete terms, 

to obtain  Δ𝜆 = 5 𝑚𝑚, the author considered the force exerting on grid C in setup 2 

(bounded to 7 and 2 mm gaps). Computation times of our 1D models are very short, in other 

words it is easy to compute as many simulations as the amount of different Δ𝜆. Thus, A/B 

has been fixed at nominal conditions (2 mm), whereas B/C was successively increased by a 

value Δ𝜆. The comparison of the force behavior due to an enlargement of the right gap is 

shown in Figure 3-10.  
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Figure 3-10 - Lateral force on a grid with respect to 𝜟𝝀 

 

At this time, we do not have access to Δ𝜆 higher than 5 mm for CFD calculations, however 

one can notice that the three curves are very similar below. Our values are once again 

overestimated for the same reasons as above: lack of holes in the outer straps, and lack of 

residual effort when Δ𝜆 = 0 𝑚𝑚, because of the mixing vanes.  

 

Next, in Figure 3-11, we break down 𝐹𝑉1 which seems to be the main part of the total 

lateral force compared to 𝐹𝑈𝑃 The system is the same as the one studied above. The 

component 𝐿𝐿𝑡Δ𝑝𝑢 expands continuously which is coherent with the fact that the wider the 

right gap is, the more important the flow is redistributed. On the other hand, the term related 

to the profiles  𝐿 ∫ (𝑝1 − 𝑝1̃)𝑑𝑧
𝐿𝑡

0
 is not that trivial. It is added to 𝐿𝐿𝑡Δ𝑝𝑢 when Δ𝜆 < 5 𝑚𝑚, and 

allays the total force when Δ𝜆 > 5 𝑚𝑚. Thus, this term is the source of the bell behavior 

observed for 𝐹𝑉1. Consequently, if ones does not take 𝐿 ∫ (𝑝1 − 𝑝1̃)𝑑𝑧
𝐿𝑡

0
 into account (which 

is not the case in the literature), it would lead in either underestimating 𝐹𝑉1 for the lowest 

variations of 𝜆, or overestimating 𝐹𝑉 for the highest variations of 𝜆. 

 

Figure 3-11 - 𝑭𝑽𝟏 components (U. Bieder’s case of study) 
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Another test, more realistic, can be simulated to deepen the behavior of the last few 

terms. It is about considering the same case (3x1 FAs), but this time, the central assembly is 

shifted between its two surrounding FAs. The structure displacement is thus limited to the 

two nominal values, i.e. -2/+2 mm. The results are given in Figure 3-12. In this case, the main 

part of the force is carried by the integral component. The strong fluid acceleration at low 𝜆 

(the ratio Λ/𝜆 is high) enhances indeed the CD profiles contribution – we remind that the 

ratio Λ/𝜆 is the main factor influencing the pressure profiles -. Note that the order of 

magnitude of 𝐹𝑉 is always around 10 to 100N. Also, as soon as |Δ𝑥| = 1.9 𝑚𝑚, the Reynolds 

number within the C2 channel section becomes lower than 5000: we can wonder about the 

consistency of the correlations (Haaland, convergent, diffuser) used for turbulent flows (we 

generally admit as valid our correlations when 𝑅𝑒 > 104). In actual fact, a laminar flow, hardly 

predictable before the calculation, is likely to appear locally for very ‘thin bypasses’. The fluid 

change of behavior is not taken into account in the code at the moment, we rather use the 

asymptotic behavior of turbulent flows correlations whose redistribution has been validated. 

We added a ‘TDP’ curve to the plot, standing for a third degree polynomial matching 𝐹𝑉 with 

a coefficient of determination 𝑟2 = 1. 

 

 

Figure 3-12 - Fv1 composition (test case) 

 

2. Force model related to cross-flow inside the bundle 
 

 Estimating the bundle force in a network 
 

Having considered the reliable results of a simple and fast network calculation (for the 

convergent-diffuser), we have chosen to adopt the same method thereafter. Because the 

row-based approach is clearly practicable in a network code (pressure drops), and its usage 

highlighted reliable results for FA bow, we will use it in our work. In fact, the same idea was 

undertaken for the Model 3 which also leant on the Eole’s correlation to estimate the lateral 

loss induced by the rods coming up to the water gap. For this very reason, the equation 
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giving the loss across a bundle is reminded below (Eq. 3-13): 

 

𝛥𝑃𝐵(휃) =
𝜌𝑁𝐾⊥𝜉(휃)𝛽2

2𝑆𝐵
2 𝑠𝑖𝑛2(휃)

𝑄𝐵
2 = 𝐾𝐵(휃)𝑄𝑙

2 

 

(Eq. 3-13) 

 

Where the Eole’s correlation is: 

 

𝜉(휃) = (
sin(휃)

cos (
𝜋
4 −

휃
2)

)

1.7

 

 

(Eq. 3-14) 

The main difference with Model 3 in terms of pressure drop lies in the expression of 𝑆𝐵 =

𝐻𝐵𝐿 (𝐻𝐵 being the bundle height) which stands for the full cross section of the bundle 

whereas it stood for the leak height related cross section for Model 3 (𝑆𝑙 = ℎ𝑙𝐿). Also, 𝑁, the 

number of rows, is explicitly defined as it now handles every single row crossed by the 

coolant (i.e. generally 17 for our designs, or 8 for a downscaled FA like the MISTRAL’s, below). 

 

The incident angle 휃 is chosen such as (Figure 3-13): 

 

휃 =

{
 
 

 
 tan−1 (

𝑆𝑔1
|𝑄𝐵|

𝑆𝐵|𝑄𝑔1
|
)        if 𝑄𝐵 > 0

tan−1 (
𝑆𝑔2

|𝑄𝐵|

𝑆𝐵|𝑄𝑔2
|
)      if 𝑄𝐵 < 0

 (Eq. 3-15) 

 

 

Figure 3-13 - Schema of the bundle flow in the FA 
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One can notice that the fuel assembly has been split into two axial elements by analogy 

with the CD redistribution model. 𝐾𝑎𝑥 is the axial hydraulic resistance associated with a full 

axial pathway from one assembly span to another (i.e. a friction loss term and the grid local 

term coefficient - 𝐾𝑔 -). As seen in Appendix B the force is written as follows: 

 

  

𝐹𝐵𝑢 = 𝛥𝑃𝐵(휃)𝑆𝐵 =
𝜌𝑁𝐾⊥𝜉(휃)𝛽2

2𝑆𝐵 𝑠𝑖𝑛2(휃)
𝑄𝐵

2 

 

(Eq. 3-16) 

In order to assess the relevance of the previous expression calculated in an operational 

network (which has not been assessed in the literature, unlike the correlation itself), we 

decide to redo the validation run by Wanninger [9], and Peybernès [28]. The two authors 

checked the correct implementation (respectively in ANSYS CFX and FLICA4) of the 

correlation through a test resting on the MISTRAL experiments (Figure 3-15). 

 

 

 

Figure 3-14 - The MISTRAL mock-up (left), associated hydraulic loops (right) (from [28]) 

 

The MISTRAL test section, within the THESEE hydraulic loop, aims at evaluating hydraulic 

efforts exerting on a 3 spans – 4 grids – nuclear fuel assembly made up of 8x8 fuel rods. An 

axial flow rate (further called 𝑄𝑎𝑝) is injected at the assembly foot, and a withdrawal flow rate 
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is extracted at the assembly top. Laterally, a cross flow rate is injected on the central bundle, 

and extracted on the other side. This way, the total lateral force is exerted on the central 

bundle, where a lateral inclination of the fluid is imposed.  

Two experimental campaigns were run. The first (A) one consisted in maintaining the 

axial flow at 125 𝑚3. ℎ−1 which approximately matches an axial velocity of 5 𝑚. 𝑠−1 in the 

bundle, while the cross flow rate ranges from 0 to 40 𝑚3. ℎ−1, leading to cross velocities 

ranging from 0 to 0.2 𝑚. 𝑠−1. The latter are chosen so they are typical cross velocities found 

out in a bundle of fuel rods in operational conditions. The second campaign (B) maintained 

the ratio axial flow rate / cross flow rate at 3 with axial flow rates ranging from 50 to 

125 𝑚3. ℎ−1. All tests are performed under ambient conditions.  

 

Figure 3-15 - Network of the MISTRAL experiment 

 

Figure 3-15 highlights the hydraulic network built with the Phorcys code through a 

dedicated dataset. One can notice that, for now, no redistributions exists with the wall/FA 

bypasses. The latter choice is based on the mock-up setup. First, the fuel assembly is stood 

up straight in the test section so that no gap differences exist around the fuel assembly. 

Second, the main crack of symmetry comes from the injection of 𝑄𝑐𝑝 within the central 

bundle, to that only a few imbalance in terms of axial flow might exist between the right and 

left bypasses. Thirdly, the sides of the assembly are confined so that the fluid tends toward 

remaining within the bundles according to Model 3. In other words, this test section only 

fosters forces applying on bundles, and events might unfold as if all the circulations were 

intra-assembly-based. 

Another remark is that only one lateral element is given for each assembly span. It 

implicitly implies that the pressure is homogeneous along 𝑆𝐵. In fact, porous codes or CFD 

codes would lead to a thinner discretization axially, but as we want to keep a macroscopic 

‘network approach’, we chose to only keep one element laterally. The results will tell if this 

assumption is acceptable or not: are our forces near to the experimental ones? 

Under these conditions, the total lateral hydraulic force is given by 𝐹𝐵𝑢 = ∑ 𝐹𝐵𝑢𝑖

3
𝑖=0  where 
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𝐹𝐵𝑢𝑖
 stand for every bundle related-force from span 1 to 3. The results of both campaigns 

have been gathered in Figure 3-16. 

 

 

Figure 3-16 - MISTRAL’s campaigns 

 

One can observe that both campaigns results are in good agreement with the Phorcys’ 

calculations. In the style of Wanninger [9] who validated this approach for a porous code, 

we can argue that the Eole correlation can be judged reliable for use in our network approach 

to estimate the lateral pressure drop in the PWR bundle and the associated force with one 

lateral element for each span. 

 

3. Force model related to the flow being put in the upright position 
 

The force 𝐹𝑈𝑃 introduced in chapter 1 stems from the behavior of the flow in the inner 

bundle cross-flow presented in the last section. It is indeed based on the inclined velocity 

inside the bundle being put in the upright position. As a result, the flow rates highlighted in 

the bundle approach (Figure 3-13) can give an estimation of this force. 

 

As a reminder, the forces 𝐹𝑈𝑃 can be valued thanks to (Eq. 3-17): 

 

𝐹𝑈𝑃 =
1

2
𝜌 sin(2휃) 𝑆𝑔 𝑣∞

2   (Eq. 3-17) 

 

In practice, the incident flow (of velocity 𝑣∞) which goes into the grid is not trivial. Its 

lateral component 𝑣𝑥 oscillates between 𝑉𝑋 (outside the rods) and 𝛽𝑉𝑋 (between two fuel 

rods), so does the angle 휃 which directly depends on the lateral component (see for instance 

7.1.3 for further details). As a consequence, the formula (Eq. 3-17) can reach two different 
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values defined by the two couples of variables giving the two extreme forces: 

 

{
  
 

  
 

(휃1, 휃2) = (tan−1 (
𝑆𝑔|𝑄𝐵|

𝑆𝐵 |𝑄𝑔|
) , tan−1 (𝛽

𝑆𝑔|𝑄𝐵|

𝑆𝐵 |𝑄𝑔|
)) 

(𝑣∞1
, 𝑣∞2

) = (√(
𝑄𝑔

𝑆𝑔

)

2

+ (
𝑄𝐵

𝑆𝐵
)

2

, √(
𝑄𝑔

𝑆𝑔

)

2

+ 𝛽2 (
𝑄𝐵

𝑆𝐵
)

2

)

 (Eq. A-1) 

 

With the notation introduced in Figure 3-13: 

 

{
𝑄𝑔 = 𝑄𝑔1      (𝑄𝐵 > 0)

𝑄𝑔 = 𝑄𝑔2       (𝑄𝐵 < 0)
 (Eq. A-2) 

 

Assuming that the mean lateral component of the cross-flow (defined by the average of 

the extreme values 𝑉𝑋 and 𝛽𝑉𝑋) can depict the force, we can show (7.1.3) that: 

 

𝐹𝑈𝑃
       =

1

2
(𝐹𝑈𝑃(휃1, 𝑣∞1

) + 𝐹𝑈𝑃(휃2, 𝑣∞2
))

 𝑄𝐵

| 𝑄𝐵|
 𝑒𝑥     (Eq. A-3) 

 

In practice, the post-processing of every force is calculated through an object called 

‘elementary mesh’ in Phorcys, defined at each FA span, for further details see Appendix F 

7.1.3. 

 

4. Combining local models to build up the FA 
 

As the reader may have understood two distinct hydraulic networks were built to model 

major redistributions occurring in the FA. The first one is the network focusing on 

redistributions between bypasses and grids (‘grid-focused’) and the second one is a network 

which deals with cross flows going through FA bundle sections from one side to the other 

(‘bundle-focused’). In Figure 3-17, we summed up the two different approaches which aimed 

at estimating the forces ‘V’ and ‘Bu’ on both the bundle and the grid. At first sight, those 

models are incompatible. With the first one, we focus on redistributions occurring at the grid 

scale, located between two nearby fuel assemblies. The other one rather focuses on cross 

flows occurring in the inner section of one FA, and the associated lateral hydraulic resistance 

based on the Eole correlation.   
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Figure 3-17 - Comparison of two approaches at local scales 

 

In a network the nodes represent one pressure. The nodes of the grid approach must be 

nearby the grids, whereas they lie ‘in the middle’ of the bundle height in the bundle 

approach. The question is: how do we make the most of those two separated models to set 

up a network at a full FA scale? 

 

This question is quite intricate. Firstly because theoretically those redistributions, at local 

scales, do not really occur at the same ‘level’. One can argue that grid redistributions are 

even more local than inner bundle redistributions which occur along the full height of the 

bundle, so that we could almost consider grids’ models as  ‘more local’. Secondly, they imply 

different resistances. In fact, axial resistances in the grid approach only contain ‘grid loss 

coefficients’ (made of local and frictional components [58, 59]), whereas 𝐾𝑎𝑥 is a combination 

of both grid losses and the bundle friction outside the inner grid (which can be estimated 

thanks to the Darcy-Weisbach’ formula). In other words, an additional resistance is present 

in  𝐾𝑎𝑥 compared to 𝐾𝑔. The latter is due to the fact that inner bundle redistributions are 

assumed to happen within one full span (between 40 to 50 centimeters tall).  

 

The differences exhibited above are highlighted in Figure 3-18. As a matter of fact, the 

redistribution between fuel assemblies at the grid scale are depicted with the red arrow, and 

the inner bundle redistributions are depicted with the blue arrow. 
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Figure 3-18 - Schematic view of height between the approaches 

 

The term 𝛿𝑙 represents the difference of localization between the two approaches which 

we used to estimate the forces, the goal is to join the links. In order to join up the branches, 

different solutions can be suggested at this stage. The first one may be the most direct, yet 

quite raw, solution (A). It would consist in discretizing the full span in slices whose height 

can reach a value up to the same order as ℎ𝑙. Another try would be to neglect the friction 

part of 𝐾𝑎𝑥 so that 𝛿𝑙 = 0 to join the two parts (B). It could be a reasonable hypothesis given 

that a majority of the loss in 𝐾𝑎𝑥 lies in the grid loss (𝐾𝑔) (see for instance [22]). The last 

solution would be to conserve energy equations in each part (which were validated 

separately), along with a node joining (𝛿𝑙 = 0) (C). The solutions are summed up in Figure 

3-19. 
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Figure 3-19 - Different solutions to join the two approaches, (B) and (C) differing from the 

expression of the axial resistance used for the FA in the inner bundle loop 

 

Let us make some comments on those solutions. 

 

 Solution (A) is the most direct one. On the other hand, it can add up to 40/50 

elements per span to discretize homogeneously the height of the span. Additional 

purple elements between FAs are, in actual fact, almost useless as we saw that the 

redistribution in the bypasses occurred only nearby the grid level as the bypass 

seems to act as a barrier to cross flows [74]. Even neglecting the additional purple 

elements leads to 20/25 additional elements in total (in this case only the orange 

ones). Adding so many elements (more than 102 per FA) makes no sense in a 

network approach whose goal is specifically to estimate redistributions through 

macroscopic meshes so that otherwise a porous approach might be more 

appropriate. Of course one could argue that we could opt for ‘simplified approach 

(A’) splitting the bundle in two parts instead of 50 or more (one of ℎ𝑙 and one of 

𝐻𝐵 − ℎ𝑙), but the whole interest of this method would fade away because the 

maximal cross flow would be located in the 𝐻𝐵 − ℎ𝑙 section and almost no flow 

would cross the ℎ𝑙 section, which is similar to the other approaches. What is more, 
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as every other methods, it would assume an ‘homogenized’ single pressure along 

𝑆𝐵 when calculating the lateral pressure drops piloting the cross-flows. 

 Solution (B) is the easiest one, because neglecting axial friction compared to the 

grid local loss leads directly to 𝛿𝑙 = 0. The hypothesis would make sense as the 

friction loss in the bundles embodies less than 20% of the total axial loss. This 

method conserves the number of elements, but may lead to a little overvaluation 

of the axial flow rate due to the undervaluation of the loss. 

 Solution (C) is an hybrid one. On the one hand it conserves the number of 

elements, and on the other side conserves the energy equations in every section 

which were validated in an independent manner. In other words, as seen in Figure 

3-19, in terms of energy the grid branch is linked to a 𝐾𝑔1 resistance in the grid 

approach, whereas it is linked to a 𝐾𝑎𝑥 resistance (𝐾𝑔1 plus a span of axial friction 

on the rods) in the bundle approach. Formally, in Figure 3-20, the latter leans on 

the hypothesis that the bundle axial flow rate variation on 𝛿𝑙 is small enough so 

that the pressure loss associated to 𝐾𝑎𝑥 can be estimated only through 𝑄𝑔. In 

other words 𝑄𝑎𝑥1 ∼ 𝑄𝑎𝑥2 ∼ 𝑄𝑔1. 

 

 

Figure 3-20 - Hypothesis of (C) 

 

In every ‘case – i.e. simplified (A), (B), (C) – the main assumption is the same, the pressure 

is ‘homogenized’ along the lateral cross-section of the bundle 𝑆𝐵 with a value piloting the 

cross-flows intensity. It is indeed what infers the Bernoulli’s principle within one pipe. 

Considering that in lateral elements the pressure is ‘homogenized’ could be inadequate for 

chaotic variations of the pressure axially. This assumption was also used for the calculations 

undertaken for the MISTRAL experiments and the proximity of our results encouraged us to 

keep this assumption for the rest of the works. In what follows we have chosen to look at 

(C), with our code structure this solution is easy to cope with, so that we can refrain from the 

additional hypothesis in (B). On the other hand, a version simplified of (A) (two lateral 

elements within the bundle) would tend toward useless complication of the network 

structure, leading to similar results. 
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Finally we can draw a diagram of our simplified FA, using bundles and CD. The latter FA 

is depicted in Figure 3-21. 

 

 

Figure 3-21 - FA scale model gathering local scale models 

 

𝐿𝑆 stands for the stagnation point loop (correction of resistances with an equivalent one 

(Eq. 2-18)), this is due to Model 2 or 3. 𝐿 is an ‘inner-FA’ loop. For more information about 

the loops management see Appendix F. 

 

5. Validating the FA model behavior with a CEA experiment 
 

 The apparatus 
 

We now need to test the assembly model. The single assembly model can be assessed 

through a dedicated experiment. The latter has been presented a couple of times in the 

literature, including for instance [43, 75, 76]. Those experiments were performed with a full 

fuel assembly. It is made of 264 fuel rods (+25 guide tubes) of height 4.5 meters and a linear 

density of about 200 kg/m. Both guide tubes are welded to a top and bottom nozzle. The 

latter is located on a lower core plate which ensures injection through 4 injection tubes. The 

flow withdrawal in ensured by a square hole located in the upper core plate. The test section 

is eight times larger in the bow direction than in the other direction. More precisely, 20 mm 

gaps surround the FA in the mock-up in its bow direction, and only 5 mm gaps surround the 

FA the other way around. The FA grids are around 20 cm wide. 

 

The hydraulic loop containing the FA is the HERMES T loop. It puts single phase water 

into circulation and is designed to handle a full scale PWR 1300 MW fuel assembly (unlike in 

the MISTRAL or Eole tests for instance). The pump can supply up to 1200 𝑚3. ℎ−1 in terms of 

axial flow and 400 𝑚3. ℎ−1 in terms of cross-flow at 35 bar and 170°C. In other words, the 
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flow rate supplied can be the same as in real PWR conditions. The loop operates at a lower 

temperature than a real PWR (see the introduction), it enables better measurements. In the 

following operation, the temperature was set to 50°C only. Figure 3-22 and Figure 3-23 

highlight the experimental mock-up. 

 

 

Figure 3-22 - Experimental apparatus from [75] 

 

Figure 3-23 - Inlet (left) and outlet (right) flow boundary conditions from [75] 

 

Both dynamic and static tests were run. During the static ones, axial velocities were 

measured in the FA and its bypasses with a Laser Doppler Velocimetry (LDV) device. The 

values were probed between grids 2/3, 4/5, and finally 8/9. Measurements were done every 

2 mm in the spanwise direction in each bypass. The static tests, which interest us, are of two 

types. The first was performed with the FA at rest. The second, quasi-static, consisted in a 

slow displacement of grid 5 within a 1 cm range. We consider here the values standing for 

the maximum 1 cm displacement, right-oriented, imposed on the 5th grid through a 

hydraulic jack. The related force is measured with a load cell. The displacements of grids 2 

to 9 were measured thanks to Linear Variable Differential Transformer sensors. To find out 

further details about those experiments, we invite the reader to consider for instance [76] or 

[75]. 
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Contrary to other apparatus which can be found in the literature, for instance 

GLASSTRAN within the Framatome’s PETER loop in Erlangen [50, 16], this device is bounded 

by rigid walls. In other words, the bypass between the FA mock-up and its surrounding walls 

is FA-wall type, like external bypasses in a real PWR (next to the core shroud). One can then 

understand that the inter-grids areas in this case do not shape a convergent-diffuser, but 

rather a ‘half convergent-diffuser’. On paper, it is not exactly what have been validated 

above, which concerns inter-assemblies gaps. Theoretically, it is still possible to use our CDs, 

conserving the cross-sections reduction rate (χ𝑒𝑥𝑡 =  Λ/𝜆) imposed by this kind of external 

geometry. To do so, it is possible to double 𝜆, the derivation is quite direct: 

 

 χ𝑒𝑥𝑡(𝜆) =
𝜆 + ℎtan(𝛼)

𝜆
=

2𝜆 + 2ℎ𝑡𝑎𝑛(𝛼)

2𝜆
= χ𝑐𝑑(2𝜆) 

 

(Eq. 3-18) 

 

Yet, one must notice that using 2𝜆 elements is unreliable in this case. First, the 

equivalence remains, hydraulically speaking, an approximation compared to a real ‘half’ 

convergent-diffuser which has not been studied in this project. Secondly this approximation 

would imply elements whose thickness could overtake 6 cm. The latter value is much higher 

than the ones validated, and this would physically call for a need of higher ℎ𝑙 (which depends 

on 𝜆) which were not used for the validation neither. However, for such a range of very large 

gaps (more than 1 cm), the assumption χ𝑒𝑥𝑡(𝜆)~χ𝑐𝑑(𝜆) is still acceptable, because it only 

leads to deviations around 10 % (whereas the error reaches 60% for a nominal gap, and the 

hypothesis χ𝑒𝑥𝑡(𝜆)~χ𝑐𝑑(𝜆) would be raw). In other words, we will use in this part convergent-

diffusers for the redistribution, whose width equals 20 mm. 

 

The network used for the calculations are indicated in Figure 3-24. 
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Figure 3-24 - Network implemented for the tests 

 

At this stage, no specific model exists for the nozzles as we set up the FA directly from 

ours, thus we will directly inject the flow in the first assembly span (floor). It is not a strong 

hypothesis given the Fournier’s results [14] showing that lower core plate high-speed jets 

spread to the first grid. By a matter of symmetry, top boundary conditions are imposed on 

the 10th floor. The latter consist in a free outlet (equal pressure) at the top. The entrance flow 

rate of the test is injected through the bottom of the assembly (i.e. the flow rate in each half 

axial element of the FA is 50% of the total entrance flow rate, and the bypasses are dry). In 

practice there is always a little flow in the bypass – not exactly 0% - and the distribution of 

flow rates at the system inlet remains uncertain. To make sure that the bottom conditions 

were not ‘crucial’ to give a good estimation of the redistribution we changed by 5% the inlet 

distribution (consequently the inlet conditions are nearer to a homogenous velocity inlet 

conditions) and observed that the flow behavior was not very sensitive to this reasonable 

change (maximal deviation of 7% in terms of axial flow rates).  

 

Due to the system topology, the forces are calculated from the 2nd to the 9th floor. We 

know that the redistribution upstream from the first grid (and also the 10th) exerts a force, 

but their impact are rather small on the final assembly deformation because of their very 

small bending moments (they are close to the extremities) as observed by Wanninger when 

introducing the concept of ‘equivalent forces’ [22]. Thus, it justifies that one can reach a 

suitable bow without considering the first and last floors. This assumption is validated 

thereafter. Also, given the very important widths found in the system, there is no need to 

correct so much Model 2 hydraulically, to so that a ℎ𝑓 value of 5 cm (asymptotic value) is 

enough. Similar patterns of forces were found out for ℎ𝑓 values of 2 cm. 
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 Verification of hydraulic parameters through redistribution 
 

We can make sure that our choices are consistent comparing the velocities of both the 

tests and our FA model. In practice, LDV points in the tests were probed on a line, whereas 

our velocities are integrated on a cross-section, because they are bulk velocities. It is thus 

irrevocable that a deviation will exist between the tests raw results and our own results. 

 

Results [76] highlighted that the fluid mostly redistributes on the first third of the FA 

height and stabilizes thereafter. More precisely, the authors observed that the fluid tends 

toward going into the gaps all along its journey in the mock-up. It is coherent with our results 

at the grid scale (beyond 𝜆 = 7 mm the coolant ‘prefers’ to flow into the CD rather than the 

grids). It is yet necessary to make sure that our FA scaled model is able to reproduce such a 

behavior on its full height. Figure 3-25 shows the evolution of the velocities with respect to 

a couple of different entrance velocities. In the tests two lines of probes exist in each 

surrounding bypasses, for this reason there are two velocities for each bypasses (BP1 and 

BP2). 

 

Figure 3-25 - Redistribution rates in the fuel assembly (FA) and its bypasses (BP) 

 

For Phorcys’ results, we consider the numerical flow rate at the outlet of the CD N divided 

by Λ (and not 𝜆) when comparing to the experimental velocity measured in the bypasses 

between grid N/N+1, because in practice, a jet spreads from the outlet of the CDs for large 

gaps [67]. In other words, the closest velocity may be the one exiting the Nth CD. The 

experimental points are obtained averaging the line of velocities in each bypass. One can 

see that a slight difference appears between the two bypasses due to the asymmetry of a 

grid, this has already been noted in [76], and the difference seems to increase with the axial 

entrance velocity. Yet, such a difference is not directly observable in our network as the 

system is purely symmetric.  
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As remarked just above, an expected deviation between the model and the experiments 

is noticeable, above all in the bypasses. It is interesting to note that this deviation is almost 

constant for all velocities. This is certainly due to the difference between bulk velocity and 

local velocity on the line of measure, or maybe because inlet boundary conditions are not 

exactly the same. Results show that the network is able to reproduce well the behavior of 

the fluid: across its track over the top of the mock-up, the coolant tends toward gradually 

leaking into the gaps due to the important thickness of the bypasses (20 mm).  This behavior 

has been observed at the grid scale, but yet is noticed again at the FA scale. Also, it shows 

that using an unmodified CD for large bypasses is justified. 

 

 Coupled simulation of the assembly bow with the same hydraulic 
parameters 

 

The next step of this work is to see if the set of forces calculated on the full height of one 

FA through Phorcys is coherent. Unfortunately in this experiment, the forces are not probed 

as remarked by Joly [43]. In other words, we cannot ensure our forces reliability directly. Yet, 

the grid displacements were measured by LVDT sensors. Consequently we can validate our 

set of forces through the displacements brought about.  

 

To calculate displacements, it is necessary to bow the FA structure. The latter is not 

directly the subject of the current project, but an in-house code at CEA has been built up in 

the past to specially account for the FA mechanics. It consists in a software overlay leaning 

on the CEA’s code Cast3M [77]. The latter overlay is based on a framework (Figure 3-26) 

made of Timoshenko beams and contact elements including fuel rod-grid, guide tube-grid, 

or even inter-grid contact. For further details about simplified mechanical models of FA 

based on Timoshenko beams see [78] or [22]. 

 

 

 

Figure 3-26 - Example of mechanical framework of a FA as seen in [78] 
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Then, we need to couple Phorcys and Cast3M in a partitioned manner as both solver are 

used separately. In practice, we will further see that at this scale, a convergence is reached 

quickly so that a one-way coupling would give a good estimation of the converged state as 

agreed with [79, 22]. Generally, the main disadvantage of a two-way coupling is the higher 

computational time [80], but the hydraulic solver speed allows to directly opt for this 

method. It also guarantees energy conservation at the fluid-structure interface – see again 

[80] -, one-way couplings do not. 

 

 

Figure 3-27 - Coupling between Phorcys and Cast3M 

 

The coupling scheme is shown in Figure 3-27. The goal of the algorithm is to find out 

stationary equilibrium between the fluid and the structure. This fixed-point algorithm [81] is 

wholly adapted from Horvath’s [16], except that the author used a CFD solver whereas we 

use our network solver. The fixed-point initialization starts considering the previous 

mechanical equilibrium, which in our case consists in the assembly being bowed by the jack 

in standing water (5th grid shifted by 10 mm as said above). Then, hydraulic forces are pulled 

out from this initial state and are sent back to the mechanical solver. The other way around, 

the new set of gaps 𝜆 brought about by the deformation are updated in the hydraulic solver. 

Thus, a reciprocal process between the solvers is being instanced (two-way coupling). The 

iterations stop when the convergence criterion is reached, i.e. the maximal change in 𝜆 in 

the system is lower than the user-defined tolerance. 
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Figure 3-28 depicts dimensionless grids displacement. It represents the FA bow at the 

maximal path of the jack bounded to grid 5. The initial state (no flow) can be found through 

the blue curves. One can see that only few discrepancies exist between experimental points 

and the mechanical model: the bow is slightly underestimated before the 5th grid and 

overestimated afterward (reaching ~10% at grid 8). Nevertheless, the behavior when 

hydraulic loads are applied is coherent. In other words, those differences are conserved. One 

can also notice that experimental final states do not exactly match the same value as the 

initial state for grid 5. It can be explained by the fact that the device used for moving the 

jack was not the same as the device used for measuring the grids displacement.  

 

In what follows, we focus on the 5 m/s case because on the one hand, it is the closest 

condition to real PWRs, and on the other hand, the final shape of the FA is similar whatever 

the inlet velocity is. In order to assess the differential deformation of the FA due to the fluid 

forces compared to the initial state with no flow, we need to pick up the grid displacement 

measures leaning on the same base: we will consider the experimental displacements when 

the 5th grid displacement exactly equals the same displacement as imposed in the 

mechanical simulation (we remind that, in practice, this test was quasi-static). This will 

prevent from obtaining a no-null differential deformation at grid 5.  These differential 

deformations are highlighted in Figure 3-29. 
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Figure 3-29 - Differential deformation 

 

Numerical and experimental results are in very good agreement. The consequences of 

hydraulic loads are well depicted by the coupling involving the FA model set up previously. 

In other words, the set of forces calculated produces excellent results in term of mechanical 

deflection. Let us take an interest in the latter hydraulic loads.  

 

 

Figure 3-30 - Dimensionless hydraulic loads exerting on the fuel assembly (A) one-way (B) two-

way 

 

Figure 3-30 shows the hydraulic forces either (A) without iterating, (B) reaching a 

converged state (in only 6 iterations). In other words, in the first case, the mechanical 

deformation is obtained directly after a first application of loads, whereas in the second, 
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round-trips are performed between the solvers. The total sum reaches -1.23 in (A) and -1.44 

in (B), in other word the total lateral force only vary by 15% between the two cases. 

Compared with the force value exerted on the jack, it turns out that (A) is 11% away from 

the measured value, whereas (B) is only 3% away. The converged solution is thus nearer in 

terms of total lateral forces to the experimental value noted in the test, even if the one-way 

approach gives a good approximated solution. Some 𝐹𝑉 (at grid 3 and 4) changes sign 

between iteration 1 and 6, it is a trend already observed in [16]. The large value of forces at 

grid 5 is due to the metallic shims surrounding the grid 5 for the measure which strongly 

reduce the hydraulic diameter locally.  

 

It is interesting to note that bundle forces are higher than grid forces before grid 5, and 

lower afterward. Also, while the 𝐹𝑈𝑃 direction is the same as the cross-flow in the inner 

bundle (oriented toward 𝑄𝐵, see Figure 3-24),  𝐹𝐵 is a combination of a couple of different 

sub-forces: inner bundle force (𝐹𝐵𝑢), and outer bundle forces (again see Figure 3-24) due to 

redistribution through ℎ𝑙 (𝐹𝑀3_1 and 𝐹𝑀3_2), as indicated in Appendix F. Consequently they 

can have different signs (grids 6 and 7). The composition of 𝐹𝐵 is detailed in Figure 3-31 (A) 

as well as the composition of 𝐹𝑉 in Figure 3-31 (B). Both figures are plotted with the forces 

obtained at steady-state (Figure 3-30 (B)). 

 

 

 

Figure 3-31- Dimensionless components of the forces 𝑭𝑩 (A) and 𝑭𝑽 (B) 

 

One can notice that the inner bundle force 𝐹𝐵𝑢 follows the same shape as 𝐹𝑈𝑃 (Figure 

3-30). This shape is given by the inner lateral cross flow 𝑄𝐵. The latter tends toward going to 

the larger gaps (to the left before grid 5, and to the right afterward). Local bundle forces 

induced by the redistribution upstream from the grid (𝐹𝑀3_1 and 𝐹𝑀3_2) do not compensate 

in the first third of the assembly (𝐹𝑀3_1 > 𝐹𝑀3_2 ) so that the total force 𝐹𝐵 is oriented to the 

left hand side. In the top of the FA, 𝐹𝑀3_1 ∼ 𝐹𝑀3_2 so that the sign of 𝐹𝐵 is mainly given by 

𝐹𝐵𝑢. 

 

Globally, 𝐹𝐵𝑢 is quite lower than the other forces laterally. This is due to the test 
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configuration: only one FA is considered, there are no ‘macroscopic’ flows within assemblies 

as one could find in a row of FAs. In parallel, the flow tends toward leaking massively toward 

the gaps in the bottom of the FA (Figure 3-25), but unequally in function of the gaps width. 

This is the root of the imbalance between 𝐹𝑀3_2 and 𝐹𝑀3_1 before grid 5. 

 

As for 𝐹𝑉 , one can see that the term 𝐿 ∫ (𝑝1 − 𝑝1̃)𝑑𝑧
𝐿𝑡

0
 balances with 𝐿𝐿𝑡Δ𝑝𝑢 in the bottom 

of the FA. While 𝐿𝐿𝑡Δ𝑝𝑢 follows the negative total pressure gradient tendency (the flow is 

globally ‘attracted’ to the left where a bigger gap lies), it gets smaller as the flow rides the 

FA up because the redistribution decreases axially. 𝐿 ∫ (𝑝1 − 𝑝1̃)𝑑𝑧
𝐿𝑡

0
 is an unnerving force, 

with such large gaps it tends toward increasing the deflection. When 𝐿𝐿𝑡Δ𝑝𝑢 gets smaller 

within the FA last third, 𝐿 ∫ (𝑝1 − 𝑝1̃)𝑑𝑧
𝐿𝑡

0
  dominates 𝐹𝑉 . In other words, as 𝐹𝐵𝑢 plays a second 

order role in the top of the FA (grids 7 to 9), 𝐿 ∫ (𝑝1 − 𝑝1̃)𝑑𝑧
𝐿𝑡

0
  is the main origin of the FA 

upper half being deformed to the right hand side (and thus the root of the ‘S-shaped’ 

differential deformation). 

 

To further analyze the impact of 𝐹𝑉 , let us imagine another test case. We consider the 

same configuration, but every gap width is reduced by ten. The gaps are now 2 mm wide, 

and the deformation imposed is 1 mm. As the gap dimensions are reduced to ‘nominal’ 

orders, we can set ℎ𝑙 back to 2 cm (median value), and we impose χ𝑐𝑑(2𝜆) = χ𝑒𝑥𝑡(𝜆). The 

same value of velocity (5 m/s) was conserved to better highlight the only impact of the 

confinement. 

 

 

 

Figure 3-32 - Differential bow of the test case (A) associated forces (B) 

 

It is interesting to note that with this imaginary – more confined – case, the whole 

deformation is carried by 𝐹𝑉 . In this case, 𝐹𝑉 does represent a stabilizing force in that it is 

purely oriented toward the larger gaps. In other words, without the need of detailing the 

components, one can say that once again 𝐹𝑉 is a the root of the final shape of the 

deformation (one can notice that in the upper half the FA all forces are oriented positively 

except 𝐹𝑉). Of course, the case has no experimental reference because such a mock-up does 

not exist. We found out anyway the – gap equalizing - effect behavior of the FA subjected 

to nominal wall effects as found out in [16] for instance.  
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6. Partial conclusion 
 

In this section, we introduced our forces models in each component of a FA: 𝐹𝑉 and 𝐹𝐵, 

and 𝐹𝑈𝑃. The first one is obtained through pressure profiles in the CD and their integration 

along the total height 𝐿𝑡 = 2ℎ + 𝐻, while the second one 𝐹𝐵 (made of the forces in the inner 

bundle and upstream from the grid at the ℎ𝑙 scale, respectively named 𝐹𝐵𝑢,  𝐹𝑀𝑜𝑑3_1 and 

𝐹𝑀𝑜𝑑3_2) leans on existing works, above all [28] and [9]. It has been shown that it can give 

proper results when implemented in a network-based model through the MISTRAL 

experiments. 𝐹𝑈𝑃, standing for the upright position force, resulted in forces whose values 

reached 100 to 101 N. It is much lower than the other grid force 𝐹𝑉 . 

 

Secondly, we looked after experiments performed in the HERMES loop at CEA Cadarache 

[75].  Not only, our model can produce very satisfying results in terms of deformation, but 

we also pointed out the impact of the convergent-diffuser related force (𝐹𝑉) on the final 

equilibrium state. The change of behavior with a more confined, imagined, situation 

highlighted this impact. Practically, it was shown that the pressure force on grids (𝐹𝑉) was 

not always gap-equalizing (counter-balancing the deformation), as often stated. 

 

As we ensured that both models and forces could give good results at the FA scale, we 

can come along with a larger scale, i.e. the core scale (row of assemblies and full core). 
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 Chapter 4: Using fuel assembly model to 

depict larger scales behaviors 

 

 
 

1. Combining FA models to constitute a row of FAs 
 

 From one FA to a row of FAs 
 

In the previous part, we gathered local models to depict fuel assemblies hydraulic and 

mechanical behaviors through a coupled approach between our own code, Phorcys, and an 

in-house code developed at CEA. The model highlighted proper results in terms of hydraulics 

and bow. We also pointed out the role played by the grid force on the resulting shape of 

the FA bow. In this part, we assemble several FA models into a full row of FAs. This is a next 

step forward within our commitment to being able to depict hydraulic redistributions at a 

full core scale. We can yet make a remark about such scales. We do not possess detailed, 

parametric tests, for such greater scales. It means that no further experimental measures are 

available at this stage of the project. We can therefore formulate analysis, and compare 

qualitatively with respect to numerical results.  

 

A row of assemblies (M Floors, N FAs) is schematized in Figure 4-1. 

 

Highlights of the chapter 

 

 A row of fuel assemblies is set up through lining up single FA models. 

 A coupling is proposed with a home-based mechanical code and several 

inlet/outlet velocity profiles are suggested. 

 An accurate knowledge of the flow conditions is necessary to depict the associated 

pattern of deformations. 

 Several methods to extend the simulations to the third dimension are suggested, 

from the simplest to the more complex. 

 The simplest ‘row-by-row’ method presented in the literature seems appropriate 

in terms of forces to perform further two-way couplings, on the basis of test cases 

run with a mini-core. 
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Figure 4-1 - Schematic of a row of FAs 

 

The transition from one FA to a row of FAs is almost direct, because in these conditions, 

only 2D redistributions are considered and one can simply adjoin a couple of FA networks 

to build up a full row as done in [50] (Figure 4-2). However, one has to pay a certain attention 

to its construction. 

 

 

 

Figure 4-2 - Network for a row of FAs 
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 Contrary to the FA case, two distinct kinds of bypasses exist. The first one is the 

inter-grid area (FA-FA gap), it is exactly a convergent-diffuser that has been 

studied earlier in this manuscript. The second one is a FA-wall kind of bypass. In 

other words, two conditions on cross-sectional ratios must be considered. The 

first one stands for χcd(𝜆), and the second one lies in χcd(2𝜆) = χ𝑒𝑥𝑡(𝜆).  All gaps 

are generally of the same order of magnitude (i.e. ∼ 2 𝑚𝑚). It is the reason why 

the condition χcd(2𝜆) = χ𝑒𝑥𝑡(𝜆) is necessary, whereas the assumption χcd(𝜆) ∼

χ𝑒𝑥𝑡(𝜆) (considered for the experimental tests in chapter 3.5) is not acceptable for 

such dimensions of gaps. As explained in the previous chapter, it means for 

instance that if the external gap is 1 mm wide, then a 2 mm convergent-diffuser 

is solved instead (Figure 4-3). 

 Inlet and outlet boundary conditions are necessary given on the full range of the 

row. Unlike to previous cases where only one FA was concerned, here the flow is 

injected at the bottom of 𝑁 FAs, and extracted at the top. In other words, a couple 

of different adjustments have to be undertaken to fulfill the whole mass 

conservation within this system. The next section lays emphasis on this point. 

 A system composed of 𝑁 FAs is more unstable numerically than only one FA. It 

follows that the algorithm of fixed-point coupling must also be adapted. As stood 

by Horvath [16], it is necessary to correct the algorithm by introducing an under-

relaxation term [81]. The latter is such that every single displacement is relaxed 

through the result of the previous iteration. In the following, we adopted the same 

method advised in [16]. When exporting the inter-grid widths after a mechanical 

calculation, the gap 𝜆𝑖 obtained is corrected such as  𝜆𝑖
𝑛𝑒𝑤 = 𝜆𝑖

𝑜𝑙𝑑 + 𝜔(𝜆𝑖 − 𝜆𝑖
𝑜𝑙𝑑). 

Where 𝜆𝑖
𝑛𝑒𝑤 is the width at location 𝑖 which will be transmitted to hydraulics, 𝜆𝑖

𝑜𝑙𝑑 

is the width at location 𝑖 obtained at the previous iteration, 𝜆𝑖 is the width 

obtained after the mechanical calculation, finally 𝜔 ∈ ]0, 1] is the under-relaxation 

factor (when 𝜔 = 1, there is no relaxation). 

 

 

Figure 4-3 - Equivalence of cross-sectional ratio 

 

 Coping with the boundary conditions 
 

Boundary conditions are imposed on the top and bottom of the rows. Fostered by the 

literature, we set about imposing at the same time inlet and outlet velocities. Ideally, we 

could obtain the latter conditions with coupled calculations between the core, upper and 
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lower plena as undertaken in [14, 82]. Not only, such calculations are not part of our work, 

but also they would result in important calculation times at this time. It is the reason why, 

along with different authors including [16, 22], ideal velocity profiles are chosen. Those 

profiles usually rest upon findings on the flow within the upper and lower plena. Studies 

including [13, 14, 15] highlight that the flow in the lower plenum tends toward depicting a 

revolution paraboloid (axis symmetry), whose maximum can be potentially shifted due to an 

asymmetry of the pumps [13]. In the upper plenum, studies [17, 16] pointed a symmetry of 

the flow towards the hot-leg nozzles (plane symmetry). It is why the flow is often assumed 

to be higher at the center of the lower core. In the upper core, the flow is thus higher on two 

sides of the core, depicting an axial symmetry. 

 

 

Figure 4-4 - Example of core inlet velocity (color map related to magnitude) for two different 

cases: unshifted (left), shifted with non-operating loop 4 (right) [13] 

 

In terms of 2D rows, it turns out that the velocities are symmetrical with respect to the 

median plane of the core (Figure 4-5). 

 

 

Figure 4-5 - Example of hydraulic top and bottom conditions of velocity in the literature from 

(left) [9] (right) [16] 

 

In our case, it is also important to note that such conditions are not insignificant. 
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Figure 4-6 - Insight into an inlet profile of velocity and probed velocities (𝑽𝟏, 𝑽𝟐, …) 

 

We want to impose inlet bulk velocities 𝑉𝑖 following a certain analytical curve 𝑣 (Figure 

4-6), which depends itself on a couple of user parameter (mean velocity, min to max ratio, 

central shift,…): 

(𝑉1, 𝑉2, … , 𝑉𝑁) = (𝑣(𝑥1), 𝑣(𝑥2), … , 𝑣(𝑥𝑁)) 

 
(Eq. 4-1) 

Where the 𝑥𝑖 represent the centers of bypasses and fuel assemblies. We also impose 

outlet bulk velocities 𝑊𝑖 following an analytical curve 𝑤. 

 

(𝑊1, 𝑊2, … , 𝑊𝑁) = (𝑤(𝑥1), 𝑤(𝑥2), … , 𝑤(𝑥𝑁)) 

 
(Eq. 4-2) 

 

Even if the bulk velocitiy is prescribed at the bottom and the top, mass flows at inlet and 

outlet are not guaranteed to be conserved once discretized, in other words: 

 

∑ 𝑉𝑖𝑆𝑖

𝑖∈𝑖𝑛𝑙𝑒𝑡

= ∑ 𝑊𝑗𝑆𝑗

𝑗∈𝑜𝑢𝑡𝑙𝑒𝑡

 

 

(Eq. 4-3) 

 

Where 𝑆𝑖 are the associated cross-sections of either bundles or water gaps. In other 

words it remains a constraint which must be enforced. In order to satisfy (Eq. 4-1) and (Eq. 

4-2) with the constraint (Eq. 4-3) a Lagrange multipliers method has been implemented 

which is used at the beginning of the hydraulic calculation. It consists in setting up the 

Lagrange function 𝐿 = 𝑓 − 𝜆𝑔, where 𝑓 is a function to minimize, 𝑔 is the constraint and 𝜆 is 

a Lagrange multiplier. The solution (𝑉1, 𝑉2, . . , 𝑉𝑁,𝑊1, 𝑊2, … , 𝑊𝑁) is such as ∇𝑉1,..,𝑊𝑁,𝜆 𝐿 = 0. 

Outlet and inlet conditions are optimized at the same time. 

In the following pages, we will intend to analyze patterns of bow with four kinds of 

boundary conditions, which all have in common to impose a mean velocity of 5.5 m/s: 

 

 

(𝑥1, 𝑉1) 

(𝑥2, 𝑉2) 
(𝑥𝑁−1, 𝑉𝑁−1) 

(𝑥𝑁, 𝑉𝑁) 
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 Homogeneous conditions (𝑉 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) at the inlet and outlet. 

 Conditions proposed by Horvath [16], following a quartic polynomial (Figure 4-4) 

– authors considered a half row -. 

 Parabolic conditions (max to min ~15% as suggested in [13]). 

 Parabolic conditions with shifted entrance. 

 

Figure 4-7 sums up the conditions imposed and optimized beforehand with Phorcys. 

Although optimized points look like they fall upon the demanded curves, it is not strictly the 

case. The very small differences (valued at most 1%) allow to enforce mass conservations 

throughout the core. 

 

(A) (B) 

  

(C) (D) 

  

Figure 4-7 - (A) Homogenous conditions (B) Horvath’s conditions (C) parabolic conditions (D) 

Shifted conditions 

 

2. Analysis of a couple of different hydraulic conditions 
 

 Homogenous conditions (A) 
 

The interest of homogeneous conditions is that no redistribution due to the shape of 
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the profile occurs. The only redistributions are due to the difference in terms of axial loss 

coefficients between the bypasses wall-FA and FA-FA. 

 

The results are highlighted in Figure 4-8. The frames, given by Phorcys, are always 

organized as follows: at the top we find the forces at each floor (grid + bundle) (forces at 

iteration 1 in hatched lines and at equilibrium in plain colors) and at the bottom we find the 

associated deformations (dotted lines draw deformations at iteration 1 and full lines depict 

the deformation at equilibrium). Nominal gaps (2 mm) are defined between the FAs. 

 

In Figure 4-8 we find out the forces and deformations for homogeneous velocity profiles. 

Figure 4-8 - (Top) forces (bottom) deformations – Condition A 
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The results are very similar to the one already highlighted by Horvath. This configuration 

explicitly points out an impact of one-way and two-way couplings. The one-way coupling 

overestimates importantly the deformations such as external FAs touches upon the walls. 

Also, only the external FA is being deformed – strongly -, while the others undergo very small 

forces. As the iterations go on, the assemblies 2 to 14 progressively undergo forces due to 

the initial deformations of assemblies 1 and 15. As a result, at equilibrium, every FA is being 

deformed (with the highest deformation at the walls and the lowest at the center). Two 

remarks can consequently be made. Considering two-way coupling is important as it depicts 

a much different pattern of deformation, and homogeneous conditions can bow the row on 

their own. It is important to note that only deviations of pressure loss between wall-FA and 

FA-FA tends toward bowing the core following a ‘barrel’ pattern. Once again, the same 

conclusions were formulated in [16].  

 

In terms of forces, grids forces are much higher than bundle related forces. It is also a 

trend noticed in [16]. This tendency is explained by low macroscopic redistributions in the 

core, the only local redistributions being explained by the deviations of axial losses between 

the wall and external FAs. Thus, we find out similar patterns with a – much faster - network 

approach (Horvath used a CFD approach). 
 

 Horvath’s conditions (B) 
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In Figure 4-9, we considered boundary conditions as considered by Horvath, its model 

of profile being findable in [16]. Unlike previous homogeneous conditions, all assemblies are 

deformed at first iteration. FAs 1 to 4 and 12 to 15 are strongly bowed, whereas assemblies 

5 to 11 are less impacted. This is due to the gradient of velocity being quite important at the 

core left and right borders. External fuel assemblies also close external gaps (FA-wall) at first 

iteration. At equilibrium, deflections are reduced compared to iteration 1 even though they 

remain higher than deflections at homogeneous conditions. The latter remark has also been 

pointed out in [16]. A maximum gap of 3 mm is found out between assemblies 5 and 6 at 

mid-height. The overall pattern of deformations is once again a ‘barrel’ pattern. In terms of 

forces, they are obviously higher than the ones relying on homogeneous velocity profiles. It 

is interesting to note that bundle forces are almost as important as grid forces for FAs 2 to 

4 and 12 to 14 where the profiles gradient is the highest. Grid forces are very important 

compared to bundle forces regarding external FA, as noticed for homogeneous condition. 

This comes from the fact that these locations include the greater gradient in terms of 𝜆 

distribution (1𝜆 for FA-FA gaps, and  2𝜆 for FA-wall gaps to take into account the half-CD). 

However, this grid ‘superiority’ at the core shroud was also highlighted in the author’s results 

[16]. 

 

Once again, our semi-analytical models can depict very well the shapes noticed in the 

literature with a lower computational cost. As agreed with Horvath, a two-way coupling 

between mechanics and hydraulics seems necessary not to overestimate the bow pattern 

compared to one only path from hydraulics to mechanics. 

Figure 4-9 - (Top) forces (bottom) deformations – Condition B 
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 Parabolic conditions (C) 
 

 

 

In Figure 4-10 we find out the forces and deformations for an ideal parabolic velocity 

profiles. The results give very different results. Again, converged deflections are reduced 

compared to the first iteration. It is interesting to note that this time 5 gaps are closed, after 

Figure 4-10 - (Top) forces (bottom) deformations – Condition C 
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the 1st iteration, on each side of the row, and 4 gaps remain almost closed at equilibrium 

(𝜆 ∼ 10−4 𝑚). The latter phenomenon is also linked to higher forces. A maximal gap of 5 mm 

is found out, located between FAs 9 and 10 (and 5/6), at mid-height. 28 gaps possess gaps 

overtaking 4 mm, principally situated around the first and last quarter of the row. In other 

words, a great number of gaps have more than doubled with these hydraulic conditions. 

 

In terms of forces, the pattern is similar to the previous case. Higher forces are found on 

the top and bottom of the assembly, coherent with [22, 16]. As mentioned, the parabolic 

conditions involve higher forces, most likely because the velocity gradient is more widely 

distributed (from 4.9 m/s at the wall bypass to 5.8 m/s at the row center) than with the 

flattened profile of Horvath. Between the first and last quarter of the row, bundle and grid 

forces have the same order of magnitude. In addition, grid forces seem higher at the shroud 

vicinity.  

 

Globally, deflections seem to be very dependent on the velocity profiles, and a concrete 

knowledge of the boundaries seems necessary to fully depict the whole pattern (number of 

closed gaps, maximal and minimal mechanical deflections …). Yet, parabolic profiles could 

be seen as a mean to study macroscopic, qualitative tendencies at the core scale. 
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 Shifted conditions (D) 

 

In Figure 4-11, a shifted inlet profile of velocity is imposed compared to the previous 

condition (C). One can notice that the deformation tends to ‘flee’ the maximum of the 

entrance profile. In other words, maximal deflections are found at the right hand side of the 

row, whereas the maximum of the profile was shifted to the left. This effect is particularly 

important, given that 6 gaps are closed at the right hand side (𝜆 ∼ 10−4 𝑚). At first iteration 

7 gaps were closed. Once again, iterations reduce deflections. At the left hand side, the FAs 

Figure 4-11 - (Top) forces (bottom) deformations – Condition D 
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are much less impacted (no contact at all). This is due to the maximum velocity being shifted 

to the left: we noticed that less bow was noticed in the vicinity of the maxima. An interesting 

shape is the one on FA5. Its maximal deflection is clearly shifted to the top no longer at mid-

plane. This FA is a witness of the boundary conditions: maximum of entrance at its foot, thus 

almost no forces all way down its first half, and ‘normal reversed’ conditions at its top, and 

thus forces exist only in the second half. 28 gaps are higher than 4 mm, exactly like with (C) 

conditions, but the highest value reaches almost 6 mm, it is 1 mm more than the highest 

value reached with (C) conditions. The pattern is very similar to the one obtain by Wanninger 

at beginning of cycle with a shifted inlet velocity.  

 

In terms of forces, once again they are globally maximal at the top and bottom of the 

FAs (with the higher forces at the top), except FA4 to 7 whose forces are either higher at the 

top or at the bottom with respect to the boundary conditions. Forces at the right hand side 

are almost doubled with comparison to the left hand side ones. The latter remark is certainly 

due to the fact that the gradient of inlet velocity is higher at the right hand side given the 

shifted profile. 

 

In conclusion, with a macroscopic network-related approach, we reach satisfactory 

patterns in a reduced amount of time – always limited by the mechanical solution time -. 

Thus, even if a precise knowledge of inlet and outlet conditions is necessary to reach a 

satisfactory state of equilibrium, ‘ideal profiles’ of velocity let us observe qualitative bow 

patterns.  This approach could be judged reliable to give insights for sensitivity analyses, for 

instance in terms of hydraulic conditions, as we have done in this section. Its quantitative 

validation holds in the appreciation of real measures, which are inaccessible at this time. A 

future experiment which will be run at the CEA with 3 FAs (similar to the one explained in 

[83] in the PETER loop), could give measures to validate quantitatively the semi-analytical 

models developed at a row scale. 

 

3. From the row to the full core 
 

This section is a prospective work regarding possible methods to extend the 2D hydraulic 

description of the FAs to a full core. At this stage, no coupling has been performed between 

hydraulics and mechanics. 

 

 Method 1 – state-of-the-art – the ‘row-by-row’ model 
 

The use  of  hydraulic  network  models  for  simulating  FSI  systems  in  nuclear reactor  

cores  was  grounded  in  the  works  of  Stabel [50, 22]. The authors explained how to take 

the global hydraulic behavior of one fuel assembly into account through a preliminary 

calibration process with CFD simulations and experimental measures.  Their models have 

then been extended to simulate planar rows of fuel assemblies. 
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Figure 4-12 - Bow pattern at the end of the cycle measured and computed, from [50] 

 

However, estimating the forces on a 3D basis is not that simple.  The approach developed 

in [50] (further called the Row-By-Row approach or Method 1), is based on the sweeping of 

all rows in one core.  It is explained as the following: ’a total core may be represented by a 

number of row models oriented parallel to the two orthogonal directions of the core’.  In 

other words, by sweeping over all rows in one core, it is possible to find every behavior along 

the x- and y- axis. Stabel adds ‘Hereby it is assumed that the two directions may be treated 

independently on each other.  This is a strong assumption which must  be  justified  a  

posteriori  by  comparison  between  simulation  results  and measurement results of bent 

FAs’. 

 

The author tried the approach out on a 1300 MWe-like type of reactor (max of 15 

assembly per row, i.e.  2x15=30 rows to compute), which led to good agreement with core 

measurements (see Figure 4-12).  This model can be thus justified along with the hypothesis 

adopted (independence of the two orthogonal directions laterally in the core).  According to 

Stabel, the model allowed to get the bow macroscopic characteristics back ’such as core bow 

patterns, amount and distribution of bow amplitudes,  relationships  of  bow  to  FA  types  

or  fuel  management  schemes’. This  approach  is  the  most  intuitive  that  can  be  found  

out  to  obtain  the  two components of lateral forces on each assembly’s floor. 
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Figure 4-13 - Layout of the successive hydraulic calculations, rows 𝑵𝒙 are indicated through the 

filling color, rows 𝑵𝒚 are indicated through the line color 

 

Figure 4-13 shows the outline of the method as implemented in our own code. The idea 

is to split the system in vertical and horizontal rows along the x- (𝑁𝑦 rows) and y- axis (𝑁𝑥 

rows). For instance, all fuel assemblies depicted with green-filled cells belong to the row 

𝑁𝑥 = 2, as well as cells framed with yellow belong to the row 𝑁𝑦 = 3. Therefore, single color 

cells belong to rows fulfilling the condition 𝑁𝑦 = 𝑁𝑥. 

 

Hydraulic calculations are performed on every row, in the two orthogonal directions, and 

the related forces are exported in separate files for each row. When all files are available, the 

reconstruction of the two components is initiated. Let 𝐹 be a lateral force defined by 𝐹 =

 𝐹𝑥
    + 𝐹𝑦

    , with 𝐹𝑥
     and 𝐹𝑦

     the two components along each axis. 
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Figure 4-14 - Layout of the two components reconstruction (in orange, FA (𝒊, 𝒋); in green, FAs 

in row 𝑵𝒙 = 𝒊 ; in blue FAs in row 𝑵𝒙 = 𝒋  ; in white, unused FAs for (i, j) force calculations) 

 

If one considered the forces that apply on fuel assembly (𝑖, 𝑗) (see the associated cell in 

Figure 4-14). Then, the component 𝐹𝑥 is obtained through the results of cell (𝑖, 𝑗) in row 𝑁𝑦 =

𝑗 (in blue). This method resting upon the main assumption that the two orthogonal directions 

may be treated independently of each other, white cells (the ones on the diagonals) have no 

impact on the reconstructed force in cell (𝑖, 𝑗) as they belong neither to row 𝑁𝑥 = 𝑖 nor to 

row 𝑁𝑦 = 𝑗. 

 

 Method 2 – 3D redistribution – coolant flowing in straight lines 
 

The next method is similar to the row-by-row method, and more thorough at once. Its 

likeness lies in the assumption that the fluid flows along the two separate orthogonal 

directions, but these directions are coupled inside the FA (not in the water gaps). 

 

The graph is equivalent to the 2D approach in the x- and y- directions (see Figure 4-15). 

Nevertheless, every cross-section parameter (e.g. 𝑆𝑔, 𝑆𝑙, …) must be adapted as the network 

contains now four nodes in each FA. Consequently, from now on, every axial and lateral 

cross-sections are divided by two.  

 

As the coolant is supposed to flow in straight lines, elements based on 𝐾𝐵 and 𝐾𝑙 (both 

based on the Eole correlation [28]) only depends on the associated axial elements to which 

they are bounded. In other words, resistances are only defined in the planes (𝑒𝑥    , 𝑒𝑧    ) and 

(𝑒𝑦     , 𝑒𝑧    ) and their expression does not change comparatively to the 2D case (chapter 3). 
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Figure 4-15 - Elementary fuel assembly for 3D redistribution 

 

An example of a whole hydraulic network obtained for a 3x3 cluster of fuel assemblies is 

available in Figure 4-16. 

 

 

Figure 4-16 - 3D 3x3 cluster of fuel assemblies (view from Paraview) 

 

Fuel assemblies depicted in Figure 4-15 are colored in orange.  One can notice that this 

cluster is made up of nine elementary fuel assemblies gathered together end-to-end. 

 

At this point a remark should be set up on how energetic equations should be 

implemented in those particular 3D systems. The problem’s outline is illustrated in Figure 

4-17 as a practical example. 
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Figure 4-17 - Planar loops equation (left), 3D loop equations (right) 

 

At the left hand side of the Figure 4-17 a simple 2D network’s loop is highlighted, its 

energetic equation (0), is the following: 

 

Δ𝑃𝐴𝐵 + Δ𝑃𝐵𝐶 − Δ𝑃𝐶𝐷 − Δ𝑃𝐴𝐷 = 0 (Eq. 4-4) 

 

Where Δ𝑃𝑖 stands for the pressure drop in section 𝑖. Orientations are both indicated 

through arrows in the figure. Moreover, 𝑁𝑁 = 4 nodes equations (mass conservation) can be 

drawn out of the system, for a total of 5 equations. One node is actually redundant, if 𝑁𝑁 is 

the number of nodes, 𝑁𝐿 the number of loops and 𝑁𝐸 is the number of elements (branches), 

the Euler formula tells us that for a connected planar graph, 𝑁𝐿 + 𝑁𝑁 = 𝑁𝐸 + 1 (see Appendix 

F). We can thus show that one node equation can be written as a linear combination of the 

others. 

 

The right hand side of the Figure 4-17 is the same network but 3D – extruded along the 

z-axis. If one simply applied the Euler formula above, he would surely find a deviation of 1 

between both sides of the equation. The problem is that this classic formula is not available 

for non-planar graphs. 

 

However, diving into the loop equations can enlighten us about such a deviation. They 

are the following on every face except (0). 

 

 

{
 
 

 
 

𝛥𝑃𝐸𝐹 + 𝛥𝑃𝐹𝐺 − 𝛥𝑃𝐺𝐻 − 𝛥𝑃𝐸𝐻 = 0
𝛥𝑃𝐵𝐹 + 𝛥𝑃𝐹𝐺 − 𝛥𝑃𝐶𝐺 − 𝛥𝑃𝐵𝐶 = 0
𝛥𝑃𝐴𝐵 + 𝛥𝑃𝐵𝐹 − 𝛥𝑃𝐸𝐹 − 𝛥𝑃𝐴𝐸 = 0
𝛥𝑃𝐴𝐷 + 𝛥𝑃𝐷𝐻 − 𝛥𝑃𝐸𝐻 − 𝛥𝑃𝐴𝐸 = 0
𝛥𝑃𝐶𝐷 + 𝛥𝑃𝐶𝐺 − 𝛥𝑃𝐺𝐻 − 𝛥𝑃𝐷𝐻 = 0

 (Eq. 4-5) 
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Combining (1)-(2)+(3)-(4)-(5) we obtain: 

 

𝛥𝑃𝐴𝐵 − 𝛥𝑃𝐵𝐶 − 𝛥𝑃𝐶𝐷 − 𝛥𝑃𝐴𝐷 = 0 (Eq. 4-6) 

 

Which is the equation of loop (0). In other words, extruding the network in 3D leads to 

one loop equation which is a linear combination of the other loop equations. Extruding again 

along the z-axis would lead to the EFGH loop being redundant, and so on so forth by 

recurrence. 

 

Consequently, for a 3D network extruded along the z-axis, we will need all loops parallel 

to the planes (𝑒𝑥    , 𝑒𝑧    ) and (𝑒𝑦     , 𝑒𝑧    ), and only one layer of loops parallel to the plane (𝑒𝑥    , 𝑒𝑦     ), 

all the other layers being linear combinations of the other loops present in the system. 

 

 Method 3 – 3D redistribution – no lateral flow in the bypasses 
 

The network is the same as presented in Figure 4-15. We take into account 3D effects 

inside the bundle by adapting the lateral resistances based on the Eole correlation [28]. The 

aim is to consider oblique flows across the bundle no longer within independent, orthogonal 

planes, but in all three directions at the same time. 

 

As a reminder, a lateral pressure drop based on this correlation is based on the following 

equation: 

 

𝛥𝑃(휃) =
𝜌𝑁𝐾⊥𝜉(휃)𝛽2

2𝑆𝐿
2 sin(휃)2

𝑄𝐿
2 (Eq. 4-7) 

 

With 휃 being defined as the following: 

 

휃 =  

{
 
 

 
 tan−1 (

𝑆1|𝑄𝐿|

𝑆𝐿|𝑄1|
)     𝑖𝑓 𝑄𝐿 > 0

tan−1 (
𝑆2|𝑄𝐿|

𝑆𝐿|𝑄2|
)   𝑖𝑓 𝑄𝐿 < 0 

 (Eq. 4-8) 

  

 

With (𝑄1, 𝑆1) and (𝑄2, 𝑆2) being respectively the flow rates and axial cross-sections in the 

axial elements departing at the starting node and ending node (chosen by convention) of 

the bundle. (𝑄𝐿, 𝑆𝐿) is the cross flow and the related lateral cross-section (L = 𝐵 for inner-

bundle or 𝑙 for outer-bundle). 

 

Resting upon [84] and [85], a modification of the expression can be undertaken to 

consider 3D effects. Butterworth, based on porous media accounts, pointed out that the 

addition of a cos( 𝜙 ) factor seemed adequate to depict the pressure drop produced by an 

inclined flow rotated around the bundle of cylinders. In our example (see Figure 4-18), 𝜙 is 

the flow angle of incidence with respect to the bundle horizontal plane.  
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As a result, the general form of the bundle pressure drop seen by 𝑄𝐿 is the following: 

 

𝛥𝑃(휃) =
𝜌𝑁𝐾⊥𝜉(휃)𝛽2

2𝑆𝐿
2 sin(휃)2

cos(𝜙) 𝑄𝐿
2 (Eq. 4-9) 

 

Where 𝐾⊥ also becomes a function of 𝜙, as the norm of the velocity now includes the 

transverse velocity 𝑣𝑡.  

 

 

Figure 4-18 - Bundle crossing from volume 1 to volume 2 (left), associated network in the plane 

(𝒆𝒙     , 𝒆𝒚     ) (right) 

 

To calculate 𝑣𝑡, which will be used to calculate 𝜙 and the norm of the velocity, let us 

consider the network depicting the bundle crossing in Figure 4-18. The conventions in terms 

of flow direction are indicated through arrows. First, we need to choose the right flow rates 

𝑄𝑡. To do so, we need to check the sign of 𝑄𝐿. If 𝑄𝐿 is positive (node 1 to node 2 by 

convention), we will analyze the sign of the transverse flow rates linked to node 1 i.e. 𝑄𝑡
1 and 

𝑄𝑡
2; otherwise if 𝑄𝐿 is negative (node 2 to node 1) we will analyze the sign of the transverse 

flow rates linked to node 2 i.e. 𝑄𝑡
3 and 𝑄𝑡

4. Once the right node is isolated, we need to 

consider the flow rates leaving the node. To explain this step, let us consider that 𝑄𝐿 is 

positive, so the flow crossing the bundle is going from 1 to 2. In this case, the two transverse 

flow rates related to the pressure loss are 𝑄𝑡
1 and 𝑄𝑡

2 as explained above. From here five cases 

are possible. 

 

 If 𝑄𝑡
1 and 𝑄𝑡

2 are both positive, then it means that only 𝑄𝑡
2 is leaving node 1 and 

stands as the only candidate for determining 𝑣𝑡. 

 If 𝑄𝑡
1 and 𝑄𝑡

2 are both negative, it means that only 𝑄𝑡
1 is leaving node 1 and stands 

as the only candidate for determining 𝑣𝑡. 

 If 𝑄𝑡
1 is negative and 𝑄𝑡

2 is positive, it means that both 𝑄𝑡
1 and 𝑄𝑡

2 are leaving node 

1 and stand both as candidates for determining 𝑣𝑡. 

 If 𝑄𝑡
1 is positive and 𝑄𝑡

2 is negative, it means that no transverse flow rate is leaving 



 

107 
 

node 1 and consequently that 𝑣𝑡 is null. 

 If elements related to 𝑄𝑡
1 and 𝑄𝑡

2 do not exist at all (if node 1 is a bypass node for 

instance, where lateral flows are not allowed by this method), then 𝑣𝑡 is 

consequently null. 

 

Once candidates for 𝑣𝑡 have been identified on the basis of the node 1 way out, the 𝑣𝑡 

calculation relies in Figure 4-19. Node 1 is indicated in black, and every flow rates candidate 

are shown along their cross-sections. 

 

 

Figure 4-19 - 𝒗𝒕 calculation layout 

 

One can notice in Figure 4-19 that in some cases, 𝑣𝑡 (i.e.  the terms 𝑄𝑡
𝑖/𝑆𝑡

𝑖) does not apply 

on the 𝑆𝐿’s full height. For instance, if 𝑆𝑡
1 consists in an internal bundle cross-section (in 

green), and 𝑆𝑡
2 in a Model 3’s cross-section (in blue). Consequently, having Figure 4-19 as an 

example, the velocity inferred by the blue section must be balanced to depict the fact that it 

applies only on one reduced part of the red section. 

 

Let 𝑍𝑡 be the height related to 𝑆𝐿 along the z-axis. 𝑣𝑡 is given by the following averaging 

formula: 

 

𝑣𝑡 =
1

𝑍𝐿
∫ (𝑣𝑡

2 − 𝑣𝑡
1)𝑑𝑧

𝑍𝐿

 (Eq. 4-10) 

 

In other words, 

 

|𝑣𝑡| =
|𝑣𝑡

1𝑍𝑡
1∗ − 𝑣𝑡

2𝑍𝑡
2∗|

𝑍𝐿
 (Eq. 4-11) 

With, 

 

𝑍𝑡
𝑖∗ = {

𝑍𝑡
𝑖  𝑖𝑓  𝑍𝑡

𝑖 < 𝑍𝐿

𝑍𝐿  𝑖𝑓 𝑍𝑡
𝑖  > 𝑍𝐿

 (Eq. 4-12) 
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Finally, 𝜙 is obtained through: 

 

𝜙 = tan−1 (
|𝑣𝑡|𝑆𝐿

|𝑄𝐿|
)  (Eq. 4-13) 

 

 

 Method 4 – 3D redistribution – flow in the bypasses and corners 
 

The last method completes Method 3, adding: 

 

 Axially, coolant branches in the fuel assemblies corners (i.e. the bypasses shaped 

by the corners of the assemblies).  

 Laterally, coolant branches in the bypass.  

 

In broad strokes, the method authorizes the fluid to go in every possible direction. The 

added resistances are wholly based on common correlations that were used in this 

manuscript as no further studies were undertaken. In other words, the resistance located in 

the corner area of the FAs was chosen so that it is the local pressure loss associated with the 

reduction ratio of the cross-sections drawn out by each CD of the grids surrounding the FA. 

One has to notice that a null value in this area is forbidden: a null value would lead to all 

flow rates rushing through the corners axially. This reduction ratio is shown in Figure 4-20 

through the blue and green squares. Consequently, if all FAs touch each other, the corner is 

closed and the resistance becomes infinite. The idea is the same for corners nearby walls. 

 

 

Figure 4-20 - Method 4's features (new branches in red) 
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Unlike to previous methods where the flow crossed the FA from side to side, now it can 

go through the bypass in the span wise direction. The correlation used is utterly based on 

(Eq. 4-9) with the assumption that FAs move only a little (a few mm) compared to the bundle 

pitch so that the pitch-to-diameter ratio 𝛽 is conserved. Two elements are then introduced 

whose resistances are named respectively 𝐾𝑒 and 𝐾𝑐. The first one, consisting in 𝑁 = 15 rows 

of fuel rods, links intra-bypass points, whereas the second links the CD with the corner (𝑁 =

1). The latter choice is coherent with the adopted values of 𝑁 in the CD’s Model 3 (𝑁 = 1). 

 

This method finally takes into account every cross-section of the core which would be 

concerned by deformations. It is possibly one of the most advanced method realizable with 

the tools that we have at our disposal. At the moment it is thus considered as a reference 

compared to the three other methods. 

 

4. Comparison of the 3D methods 
 

Eight test case have been set up to compare every method with each other. They consist 

in a mini-core cluster of 8x8 nuclear fuel assemblies. This choice has been legitimate through 

a compromise between having enough fuel assemblies to represent a full industrial nuclear 

core, and being sufficiently fast to compute to be repeated several times. The mean axial 

velocity is 5.5 m/s, the density is 700 kg/m3 and the maximal deviation ratio (extremum-

mean)/mean of velocity is imposed at 5.10-2. 

 

In order to account for every physical effects occurring in a core, 8 cases were performed for 

every method. They are summed up in the following table: 

 

Test Shifted inlet 
Hyperbolic 

para. outgoing 
Deformation 

1 ✘ ✘ ✘ 

2 ✘ ✔ ✘ 
3 ✘ ✘ ✔ 
4 ✘ ✔ ✔ 
5 ✔ ✘ ✘ 
6 ✔ ✔ ✘ 
7 ✔ ✘ ✔ 
8 ✔ ✔ ✔ 

Table 4-1 - Test cases for 3D comparison 

 

Where, 

 

 Shifted inlet means that the maximum of the velocity parabolic profile coming in 

the core is shifted by 20% to cause an arbitrary substantial displacement (see 

Figure 4-21).  This displacement of the maximum of flow profile is a classic way to 

represent asymmetric core inlet boundary conditions.  This option allows to 

guarantee that the method correctly handles an incoming flow displacement. 

 Hyperbolic parabolic outgoing means that the outgoing velocity profile is turned 
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from a revolution paraboloid (the same as the entrance) to an hyperbolic one (see 

Figure 4-21).  The latter may be closer to a core’s realistic outgoing flow profile.  

This option allows to guarantee that the method correctly handles different 

outgoing profiles.  At this time, outgoing flows are indeed more unsung than 

incoming flows. 

 Deformation means that several water gaps were changed from their nominal 

value of 2 mm. An arbitrary C-shape bowing is therefore imposed on the (𝑁𝑥= 3, 

𝑁𝑦 = 3) fuel assembly, changing both east, west, north and south water gaps on 

every grid level.  This option allows to guarantee that the method correctly 

handles singularities provoked by a change in 𝜆. 

 

 

 

Figure 4-21 - (left) velocities (m/s) in test 5 (right) velocities (m/s) for test 2 

 

The goal of those methods is to evaluate the two components of the lateral force. We 

want to ensure here that every method is consistent with each other regarding this particular 

goal. Therefore, the main physical value which is going to be compared is the lateral 

magnitude of the force defined by: 

 

𝐹𝐿 = √𝐹𝑥
2 + 𝐹𝑦

2  (Eq. 4-14) 

 

Where 𝐹𝑥 and 𝐹𝑦 are the two lateral components defined by: 

 

{
𝐹𝑥 = 𝐹𝑈𝑃

𝑥 + 𝐹𝑉
𝑥 + 𝐹𝐵

𝑥

𝐹𝑦 = 𝐹𝑈𝑃
𝑦 + 𝐹𝑉

𝑦 + 𝐹𝐵
𝑦  (Eq. 4-15) 

 

𝐹𝐿 is calculated on every floor of grid in the system, on every fuel assembly. 

Consequently, there are too many values of 𝐹𝐿 in a 8x8 cluster simulation to be properly 

analyzed separately. That being said, one can understand that a statistical tool has to be 

used to compare two methods. The latter is the mean difference (further named 𝑀𝐷) 

between methods 𝑖 and 𝑗 scaled by the maximum 𝐹𝐿
𝑚𝑎𝑥 found in all methods, defined as 

follows: 
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𝑀𝐷𝐹𝐿
(𝑖, 𝑗) =

∑ |𝐹𝐿,𝑘
𝑖 − 𝐹𝐿,𝑘

𝑗 |
𝑁𝐹𝑙
𝑘=1

𝑁𝐹𝐿
𝐹𝐿

𝑚𝑎𝑥   (Eq. 4-16) 

 

Where 𝑁𝐹𝐿
 is the total number of lateral forces. As 𝐹𝐿 is a norm, its comparison is not 

able to tell about 𝐹𝑥 and 𝐹𝑦 directions. For this reason, 𝑁𝐹𝑥
 and 𝑁𝐹𝑦

 represent the respective 

numbers of 𝐹𝑥 and 𝐹𝑦 which do not have the same direction in all the system, between 

methods 𝑖 and 𝑗. 

 

 Number of the test 

Results of the 
comparison between 

method 𝒊 and method 𝒋 

Result of 𝑀𝐷𝐹𝐿
(𝑖, 𝑗) (%) 

Result of 𝑁𝐹𝑥
 Result of 𝑁𝐹𝑦

 

 

Table 4-2 gives the results for comparison between Methods 1, 2 and 3. A help to read 

the table is proposed just above. 

 

Test 
  

(i, j) 
1 2 3 4 5 6 7 8 

(3,2) 
0.77 0.41 0.76 0.40 0.84 0.53 0.81 0.51 

0 0 0 0 1 1 0 3 1 1 5 3 1 1 5 1 

(3,1) 
2.42 2.57 2.46 2.60 2.49 2.65 2.52 2.66 

0 0 0 0 0 0 1 6 9 9 16 10 8 8 15 8 

(2,1) 
2.59 2.96 2.63 2.98 2.87 3.16 2.84 3.13 

0 0 0 0 1 1 1 3 8 8 15 9 7 7 14 7 

Table 4-2 - Comparison of methods 1, 2 and 3 

 

First of all, one can say that the difference between Method 2 and 3 leads to very similar 

results in terms of 𝑀𝐷𝐹𝐿
 with very little scattering.  Maximal errors (~0.8 %) are obtained for 

outgoing conditions which might be the farthest from reality (tests 1, 3, 5 and 7). For test 8, 

which is a priori the most consistent according to reality, the 𝑀𝐷𝐹𝐿
 is only 0.51 %.  As a 

reminder, the only difference between the two Methods is the 3D resistance in the bundle. 

Those results tend to show that adding 𝑣𝑡 and the angle Φ does not seem to affect Method 

2 that much in terms of lateral forces. Compared to Method 2, Method 1 seems to be more 

detrimental with 𝑀𝐷𝐹𝐿
 around 3% for each test. Test 6 gives the maximum mean error with 

𝑀𝐷𝐹𝐿
= 3.16 %. In both cases, the flow is still going in straight lines.  The major difference is 

that Method 2 leads to 3D redistribution to fulfill the boundary conditions, whereas Method 

1 has to fulfill boundary conditions on every row. Figure 4-22 depicts the distribution of 

𝑀𝐷𝐹𝑙
(2,1) in the 8x8 cluster, and the associated histogram.  
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Figure 4-22 - (left) scattet plot of 𝑴𝑫𝑭𝑳
 (right) histogram of 𝑴𝑫𝑭𝑳

(𝟐, 𝟏) 

 

We can see that upper bounds are obtained near the top corner (𝑁𝑋 = 1, 𝑁𝑦 = 1) of the 

core, i.e. in the direction of the shifted inlet velocity. Relatively, it represents a 14 % deviation 

which is more than acceptable. 

Method 1 seems nearer to Method 3 than to Method 2 for every single test, with a 

maximum 𝑀𝐷𝐹𝐿
 of 2.66 % regarding tests 6 and 8. The only reason of this observation is that 

the boundary conditions processing in Method 1 leads to results closer to Method 3 with 

3D effects in bundle. One explanation is that Method 3 tends to foster diagonal 

redistributions due to the factor introduced in the bundles, the fluid sees less resistance and 

consequently forces along diagonals and thus seem reduced compared to Method 2. At the 

same time, Method 1 boundary conditions on extreme rows can be relaxed to fulfill mass 

conservation locally, leading to less redistribution and thus reduced forces on the same 

locations than Method 2. Finally, it is not surprising that Method 1 is nearer to Method 3 

than Method 2, because in vicinity of the cluster corners (where main deviations appear), 

both those two methods tend toward reducing forces compared to Method 2. 

 

One must have observed that some comparisons led to different directions of 𝐹𝑥 and 𝐹𝑦 

(𝑁𝐹𝑥
>0 and 𝑁𝐹𝑦

>0).  A deeper analysis shows that each time those cases occur for very low 

values of the two components (i.e. 𝐹𝑥 << 1 and 𝐹𝑦 << 1).  Thus, it can be inferred that for 

substantial values of 𝐹𝐿 every forces have the same direction and that core bowing patterns 

would be very much the same. 

Table 4-3 gives the results for comparisons regarding the method 4 with the 3 others. 

 

Test 
  

(i, j) 
1 2 3 4 5 6 7 8 

(4,3) 
3.98 6.28 3.88 6.15 5.40 7.26 5.13 7.00 

96 96 32 96 89 89 36 95 33 33 44 80 35 35 49 75 

(4,2) 
4.75 6.68 4.64 6.55 6.24 7.78 5.94 7.50 

96 96 32 96 90 90 36 92 32 32 49 77 36 36 54 74 

(4,1) 
4.22 5.50 4.13 5.38 5.21 6.25 4.96 6.02 

96 96 32 96 89 89 35 89 24 24 40 70 29 29 46 67 

Table 4-3 - Comparisons with method 4 
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Method 3 and Method 1 are the closest compared to Method 4 for every cases.  

Regarding Method 3, it is not surprising as the Method 4 is fully based on Method 3 with 

slight improvements to take into account lateral flows in the water gaps. However it is 

interesting to note that Method 1 (the simplest) performs better than Method 3 in terms of 

mean difference for tests 2, 4, 5, 6, 7, 8 i.e. every tests except 1 and 3. In other words, as soon 

as there is hyperbolic outgoing conditions or a shifted inlet, the row-by-row method is the 

closest to Method 4. Certainly, this is because those two methods reduce the redistribution 

in the FA: Method 4 authorizes the fluid to flow in other branches – lateral bypasses and 

assemblies corners – while Method 1 relaxes inlet and outlet boundaries constraints where 

mass conservation cannot be conserved. As a result, when every additional option is added 

(C-shaped assembly, hyperbolic outlet and shifted inlet) the row-by-row method gives best 

results compared to the last method. 

 

Regarding the numbers 𝑁𝐹𝑥
 and 𝑁𝐹𝑦

, differences appear between Method 4 and the 3 

others (Method 1, 2 and 3). The widest differences match the cases where no option is 

selected (test 1) with 𝑁𝐹𝑥
= 𝑁𝐹𝑦

= 96. At first sight, 96 represents an important amount of 

deviations between the components of lateral forces (i.e. ~15 % of every components).  

However a deeper analysis of this test shows that Method 4 almost cancels all forces in the 

central core (𝐹𝐿 ∼ 0), these forces being either positive or negative. More precisely, they 

reach very low value at floors 5 and 6. Whereas the other methods do not ‘cancel’ the forces 

for the same regions (𝐹𝐿 ≠  0), they can reach values of a few Newton (4 N). By neglecting 

forces lower than 5 N, both 𝑁𝐹𝑥
 and 𝑁𝐹𝑦

 become zero (in other words all methods give the 

same directions of forces in test 1). However, some other tests still conserve non-zero values 

of 𝑁𝐹𝑥
  and 𝑁𝐹𝑦

 with this ‘5 N filter’ even though it only affects 3 % of the components. A 

deeper analysis shows that it mainly concerns hyperbolic outgoing tests (i.e. 2, 4, 6, 8) and 

especially the x component (parallel to the outgoing flow) for forces still located at mid-

height (floors 5 to 6), and near to the core borders. In those areas, Method 4 also gives forces 

whose values are almost zero, whereas the other methods gives forces whose values are 

non-zero, comprised between 5 and 10 N (not affected by the filter). However, one has to 

keep in mind that it only concerns 3% of the total forces and those areas concern the lowest 

forces in terms of norm. In every case, it is reassuring to note that the introduction of the C-

shape deformed FA (and thus the introduction of singularities in terms of 𝜆) does not seem 

to impact the components (test 3 gives 𝑁𝐹𝑥
= 𝑁𝐹𝑦

= 0 with the 5 N filter). 

Let us analyze the computational time of each method. Table 4-4 gives the ratio between 

times elapsed during the redistribution calculation. 
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   Compared 
to 
 

Test 

1 2 3 4 

1 1    

2 6 1   

3 6 1 1  

4 11 2 2 1 

Table 4-4 - Comparisons of methods (redistribution time) 

 

As one can see, a clear difference appears between Method 1 and Method 2.  

Redistribution calculations in all the 16 rows (2x8 rows) of Method 1 is on average 6 times 

faster than the redistribution calculation in Method 2.  Method 2 and Method 3, which differ 

from the additional cos (𝜙) term added in the bundles resistance, are obviously running 

within a similar amount of time. Method 4 is much slower than the others (about 11 times 

slower than Method 1 for instance), because of the successive additions of every methods 

plus all additional elements peculiar to this method. Consequently, for the same numerical 

method (Wood’s LTM), for this size of core, Method 1 is distinguishable from the others 

through its time efficiency. 

 

The choice between the 4 proposed methods lies in a concession of having enough 

accuracy in terms of forces (so that the set of forces sent to mechanics is coherent), and 

considering time-saving calculations to be able to perform two-way coupling calculations 

which seem necessary to highlight proper bowing patterns. Even though Method 4’s 

calculation times could be certainly optimized at this stage, results show that the row-by-

row method (so called Method 1) initially proposed by Stabel in [50] seem adequate to be 

implemented in a further 3D coupling scheme, being both time-saving and close to Method 

4 in terms of forces. 

 

5. Partial conclusion 
 

In this section, we transposed FA network models to a row of 15 fuel assemblies. A 

coupling was realized between the structure and the fluid. Four types of velocity inlet and 

outlet profiles were considered to analyze the sensibility of the structure pattern. Having in 

mind a lack of experimental measures for this kind of scale, we compared, qualitatively, bow 

behaviors with respect to the literature. In particular, a couple of macroscopic tendencies of 

the row were depicted. Parabolic and Horvath’s profiles lead to the classical ‘barrel’ pattern 

as usually seen in the literature, with a difference lying in the number of FA affecting each 

other. Homogeneous profiles lead to forces exclusively located on external FAs at first 

iteration, and then lead to gap equalizing at equilibrium (similar to a barrel pattern). This 
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effect is well reproduced by the model. Finally, the FAs tendency to ‘flee’ the inlet profile 

maximum (the FAs move toward the right when the profile is shifted to the left) is again 

reproduced with the hydraulic model. Generally, one can put forward that the proposed 

coupling approach seems operational to uncover intricate bowing patterns. 

 

Moreover, we tried out to extend our models to the third dimension. We analyzed the 

set of lateral forces calculated by four 3D methods with increasing details, on the basis of a 

mini-core made of 8x8 fuel assemblies. It turned out that the 1st method (stemming from 

the literature [50]), leaning on a sweeping of 2D rows of FAs in two orthogonal directions, 

gives correct results besides being time-saving. In fact, its results are in good agreement 

with the more complex network set up (Method 4). At this stage, we consequently 

recommend this method for further coupling applications. Those results were consolidated 

only from a hydraulic point of view (no coupling in 3D at the moment), and through a couple 

of different conditions (boundary conditions, presence of 4 deformed bypasses through the 

introduction of a C-shaped FA). This comparison should be also reviewed by means of a full-

coupled approach (final state with a real pattern of bowed FAs as undertaken with the row). 

Finally, experimental measures as well as results drawn from finer simulations (at least porous 

simulations with similar conditions) would help to assess the validity of the row-by-row 

method. Even though our first sets of forces are coherent with patterns found out at the core 

scale, the fact remains that every single method has been compared to Method 4 as the 

reference, which remains a rather coarse simulation with large elements. 
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 Chapter 5: From mechanics to neutronics: 

reproducing large deflections at the FA scale to access 

neutronic consequences (interaction 1) 

 

 
 

A part of this manuscript chapter has been recently published in [86]. It comes from the 

works in the previous multi-physics Master’s thesis [6], which were reassessed and improved. 

 

Once the hydro-mechanical coupling is operational, the issue is to send the different 

hydro-mechanical parameters to a neutronic solver (both the set of gaps 𝜆 and the grid 

displacements) to be able to run multi-physical analyses. Actually, the most direct and 

convenient manner to reproduce at best large fuel assembly bows is going through a Monte 

Carlo approach. The latter indeed features, through the associated codes, a certain amount 

of different native 3D geometries to depict spatial curves induced by the grid displacements. 

At the FA scale, a Monte-Carlo calculation is fully realizable and comparable. It could also be 

a tool for validating further deterministic 3D approaches. 

 

1. Depicting fuel assembly bow with neutronics 
 

 Interest for taking fuel assembly bow into account within neutronic 
analyses 

 

Since assembly bow has been observed in a nuclear core following RCCA (Rod Cluster 

Control Assembly) insertion issues [3] in the early 1990’s (we remind in this section the profile 

of a bowed assembly in Figure 5-1 and pieces of available public knowledge information in 

Figure 5-2). Neutronic modeling of bowing has then received much attention, because of 

several significant consequences. Those include fuel cycle management [19, 20], ex-core 

instrumentation [31], safety regarding departure from nucleate boiling [87, 32], rod design 

evolution [88] (since neutronic effect also has in return an actual impact on mechanics, see 

for instance [7, 89]), and more generally core management policies [5]. The range of 

deformation can lead to 20 mm - wide water gaps within the core [90, 3, 88], representing a 

Highlights of the chapter 

 

 A strategy to depict FA shapes with neutronics is studied. 

 Semi-discrete 3D models for Monte Carlo neutronics proposed to handle fuel rod 

bow. 

 The 3D models accuracy is assessed through a comparison with a continuous 

toroidal model at the fuel rod scale. 

 The stacking model is easy to implement but yielding spurious effects for large 

bowing. 

 A new ‘segments’ model is proposed with fully mastered implementation 

framework. 
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reference value used further to validate the proposed models. In [31], the author considers 

a maximal deflection of 1 cm, leading to water gap openings of the same order of 

magnitude. Fuel assembly bowing patterns are also known to be classically C-shaped, or S-

shaped [3, 91, 21] - named respectively first order and second order deformation patterns 

later -, and in certain cases, calculations have shown that assemblies could undergo W-

shaped deformations [9]. Obviously, actual in-core assembly bowings are not ideal, in the 

sense that they are not literally C-shaped, S-shaped or even W-shaped. The first two patterns 

are nonetheless representative enough to provide the necessary evaluation of the proposed 

modeling strategy, built to handle thereafter any kind of deformations.  
 

 

Figure 5-1 - View of a PWR bowed fuel assembly [12] 

 

 

Figure 5-2 - Public domain information about fuel assembly bowing and axial deformation [3] 
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 Monte-Carlo modeling of rod/assembly bowing 

 
Monte-Carlo method is a stochastic way of simulating neutronics. It does not require 

meshing since equations of geometric surfaces are directly taken into account. Almost any 

geometry can be very accurately handled, yielding generally rather computationally 

demanding simulations, standing as reference solutions for complex situations. Monte-Carlo 

results are also classically used to validate deterministic meshed methods to be used for 

engineering purposes. This method has recently shown its reliability to model a PWR fuel 

assembly for parametric studies [92]. 

 

Recent developments in 2D Monte-Carlo simulation (core midplane) to consider bowing 

consists in shifting one entire rod horizontally from its initial pin cell position. For instance, 

in [19], authors consider a 3x3 pin cell lattice with SERPENT-2 [93], and shift the central rod 

to simulate a deformation, in [32] they consider a 7x7 pin cell lattice (also with SERPENT) and 

also shift the central rod. This action implicitly changes the moderating volume. The method 

remains similar at the scale of an assembly, considering a 3x3 lattice of assemblies, and 

shifting the central one [90, 20]. 

 

A recently presented 3D model divides the rod bowing in several cylindrical layers [19], 

and then shifts the layers independently to simulate a C-shaped deformation, demonstrating 

the feasibility of simulating 3D deformations with SERPENT-2 [93].  This model is then further 

used in a 3x3 assembly lattice (the assembly in the middle is made of 3D C-shaped rods), in 

a second article from the same author [20]. Even though this is not directly the topic of the 

section, a deterministic approach of assembly bowing is also presented in [20]. The next 

chapter of the manuscript deals with deterministic approaches. 

 

To contribute on this topic, this next chapter thus describes two Monte-Carlo 3D-models 

of one single fuel rod implementing approximate discrete representation of the rod. The first 

model (called stacking, see below) is very similar to the one used in [19], to connect with the 

identified state-of-the-art, while the second model is a new approach specific to the current 

chapter.  The obtained results for both models are compared and discussed using a 

comparison with a reference solution based on an exact geometric representation of the 

deformed rod available only for pure analytical C-or S-shape bowing. Upscaling from the 

rod to the fuel assembly is also considered, provided well-chosen hypotheses.  

 

Finally, all the simulations in this chapter are performed using TRIPOLI-4® software [94], 

developed at CEA. The cross sections library used is JEFF3.1.1 [95]. All simulations are 

normalized to a unit source, so that keff equals the production rate. 

 

 

 



 

120 
 

2. Efficient and accurate model of fuel assembly bowing for a Monte-Carlo 
neutronic solver 

 

 Modeling framework for rods and assemblies 
 

In terms of modeling of structures, TRIPOLI-4® software, and more generally classical 

Monte-Carlo simulation programs for neutronics, allows modeling a large number of 3D 

geometries through analytical shapes. A combination of toroidal shapes can be used to 

represent typical first order and second order bowing shapes of the rods, as illustrated in 

Figure 5-3, but this comes with a significant computational cost of the associated simulations 

(see Figure 5-16 later on) due the numerical overhead of geometrical operations involving 

toroid structures compared to classical shapes, especially when dealing with partial or 

complete assembly(ies) composed of numerous rods.  

Moreover, this strategy reaches a limit when considering the generic deformation of an 

assembly with no analytical expression usually available in MC codes. This justifies the need 

for alternative semi-discrete approaches able to handle any kind of transverse displacement 

along the rod, as stated in the Paragraph 2.3.  The idealized first order and second order 

bowing shapes in Figure 5-3 are yet of primary interest since they are compatible with 

TRIPOLI-4® modeler, and thus provide valuable reference solutions to evaluate the 

capabilities of the proposed extended modeling approaches. 

 

 
 

Figure 5-3 - Typical first order (left) and second order (right) deformed shape of a fuel rod 

(represented as an equivalent beam for the sake of simplicity, with neutral fiber displayed in thick 

black line) 

 

The characteristics of a deformed rod are deduced from the reference properties of a 

straight rod using the following set of basic hypotheses, derived from the Small Perturbation 

hypothesis, fully applicable with maximal deflection of 1 cm along ~4 m long rods (see [96] 

for some general elements about PWR fuel assembly design): 

 

1. The section of the deformed rod remains circular with a constant radius along the 
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rod equal to the radius of the straight rod and orthogonal to the neutral fiber. 

 

2. Under Hypothesis 1, the conservation of the total mass of the rod and of the 

density of the material yields the conservation of the volume between straight 

and deformed rod, and thus the conservation of the length of the neutral axis of 

the rod (as illustrated in Figure 5-4).   

 

 

 

 

Figure 5-4 - Conservation of the length of the neutral fiber of the rod (in red) between the 

straight rod on the left and the deformed rod of the right 

 

Practically, given a classical parametrization of the neutral fiber as a function 𝒇 (scalar 

function for plane strains or vector function with 2 components for generic 3D strains) of the 

vertical coordinate z, Hypothesis 2 writes: 

 

∫ √1 + ‖∇𝒇‖2𝑑𝑧 = 𝐻 
𝑧1

𝑧0

 (Eq. 5-1) 

 

Where z0 and z1 are the altitudes of the lower and upper ends of the rod respectively, H 

is the height of the straight rod. 

 

Finally, for further work involving a partial or complete fuel assembly built from a series 

of rods, it would be additionally assumed that all the rods have the same deformed shapes, 

corresponding to the global shape of the assembly, so that the results in the present chapter 

directly apply. This rather classical hypothesis is supported by the presence of several grids 

along the assembly, acting as spacers and keeping the pitch of the rod lattice constant (see 

again [96]). 

 

 Representation of deformed rods 

 
Toroidal reference model 

 

It corresponds to a simple arc shape, whose maximal deflection is given at mid-height. 

It is represented by a full torus (in black in Figure 5-5) cut by two planes (in green), so that 

the length of the resulting torus section is equal to the length of the straight rod. 
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Figure 5-5 - Illustration of the toroidal reference model 

 

First alternative modeling derived from the work of Li at al.: stacking modeling 

 

 

 

Figure 5-6 - Stacking modeling with corrective length to ensure total length conservation 

 

Stacking modeling, illustrated in Figure 5-6 is geometrically rather simple. It consists in 

"stacking" small vertical cylinders with their centroids located on the neutral fiber of the 

deformed rod. 

The advantage of such a method comes from the set of non-overlapping cylinders, all 

vertically oriented: the quantity of fuel in the straight rod is thus natively preserved. In return, 

the association of vertically oriented cylinders exhibits the following drawbacks: 

 

1. some severe discontinuities in the description of the rod can occur if too few 

cylinders are used in the area of maximal slope of the deformed rod introducing 

some important gaps in its modeling ; this can result in side effects regarding the 

global influence of the rod onto neutronics, 
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2. the total height of the cylinders and the actual length H of the rod are not equal 

(once the rod is deformed), as the sum of  the axial lengths of the cylinders is 

equal to the distance z1-z2 between both ends of the deformed rod, without 

taking its curvature into account, i.e., starting from (Eq. 5-2):  
 

∑ ℎ𝑖 = 𝑧1 − 𝑧2 ≠ 𝐻

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑠

𝑖=0

 (Eq. 5-2) 

 

One potential way to circumvent this last issue, especially for significantly bowed rods 

where it could alter the physical solution, is to introduce two “corrective” cylinders of very 

low height at the top and bottom of the stack to retrieve the right length of the rod (as 

shown in Figure 5-6).  
 

New alternative modeling for generic deformed shape: segments modeling 
 

This method models any deformation by discretizing the rod into small inclined 

cylindrical segments oriented according to the local curvature of the deformed rod, as 

illustrated in Figure 5-7. 

 

 

Figure 5-7 - Illustration of segments modeling accounting for actual rod curvature 

 

The discretization in segments consists in cutting the curve of the deformed rod into 

small inclined cylinders called “segments”, of axial length 𝐻/𝑛, where 𝐻 is the total length of 

the rod and 𝑛 the number of segments of the discretization.  

This representation defines implicitly a set of points 𝑀(𝑖) corresponding to the 

intersection of cylinder axis with the neutral fiber of the rod, so that a segment can be 

identified from the couple [𝑀(𝑖), 𝑀(𝑖 + 1)].  The orientation of Segment [𝑀(𝑖), 𝑀(𝑖 + 1)] is 

then obtained from the string between points 𝑀(𝑖) and 𝑀(𝑖 + 1) and the length is much 

more accurately conserved, with a linear convergence towards the exact conservation with 

respect to the number of segments.  

The proposed method yet exhibits some specific issues to be handled carefully to 
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perform robust and accurate Monte-Carlo simulations: 

 

1. segment cylinders are overlapping each other (see overlapping areas in Figure 9) 

in the general case due to inclination, which requires to give priority to one 

segment over another, 

 

2. the corollary of these overlapping zones is the existence of gaps (called “non-

overlapping” areas in Figure 5-7) which causes a violation of the conservation of 

the amount of fuel in the rod provided the segment cylinder radius equals the rod 

radius. 

 

These issues are solved by the following modeling guidelines: 

 

1. always use an odd number of segments,  

 

2. adjust the length of the segments with even identification numbers (id) to fill the 

spurious gaps as illustrated in Figure 5-8, 

 

3. within the Monte-Carlo solver, give priority to the segments with odd id over the 

segments with even id to cancel the potential overlapping conflicts. 

 

The length correction, denoted ε, for each segment can be deduced from a visualization 

of the default segment model built using the string lengths measured along the rod neutral 

fiber (for instance using T4G viewer of TRIPOLI-4®). It can also be computed in a 

preprocessing step from the initial length of the segment and the local curvature of the rod 

(however not implemented in this preliminary research). In the following paragraphs, the 

value of the correction is estimated for a maximal deflection of 20 mm and a number of 51 

segments, and kept constant for all configurations, with no visible side effects thanks to the 

priority established within the segments.  

 

 

 

Figure 5-8 - Length correction to keep mass quantity, with segment 2 lengthened to close non 

overlapping areas 
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Building computational models from actual assembly bowing data 
 

This last paragraph aims at concluding the current section dedicated to modeling 

strategies by giving some insights for processing industrial bowing data and building of 

relevant and accurate models taking them into account. Three engineering steps have thus 

to be considered.  

 

First, bowing measures, obtained on-site in an actual plant after core unloading for 

instance, provide the deflection of the full assembly at a discrete number of locations along 

its main axis. If this number is in accordance with the targeted number of discrete items used 

to describe one modeled rod, they can be used directly to position the centroids of the 

stacked cylinders or the approximating segments accordingly. Otherwise, a reconstruction 

of the shape of the assembly from the discrete data is necessary. 

This second step can be seen either from a purely mathematic point of view or from a 

mechanical one. Mathematically, it consists in choosing an interpolation function for the 

neutral fiber (the same for the assembly or the rods). When using polynomial functions, the 

order of the function is logically adjusted to the dominant shape observed in the original 

data, if any, resorting for instance to the basic classification provided in Paragraph 2.1. An 

alternative strategy is to deduce the shape of the assembly from a direct mechanical 

computation using a beam model for the assembly and introducing the measures as 

imposed displacements. In this case, a Timoshenko beam model is the most relevant choice, 

since the assembly can undergo large levels of shearing, and some constraints can be added 

to increase the fidelity to the industrial device. For instance, the curvature of the beam can 

be forced to zero at the grid levels to account for their effect as spacers in the assembly. 

 

The final step consists in automatically generating the datasets for Monte-Carlo 

simulation from the geometrical data reconstructed above.  

The complete automated process implemented in the current chapter is illustrated below 

for the significant case of a central symmetric second order analytical shape of the rod (see 

Figure 5-9). 
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Figure 5-9 - Typical central symmetric second order shape of the neutral fiber with two maximal 

deflection points at respective coordinates (fm, -zm) and (zm, -fm) 

 

The global deflection x is approximated along the vertical direction z through the 

polynomial expression: 

 

𝑓(𝑧) = 𝑎𝑧 + 𝑐𝑧3 (Eq. 5-3) 

 

 

With the set of coefficients given by: 

 

{

d𝑓

d𝑧
(𝑧𝑚) = 0

𝑓(𝑧𝑚) = −𝑓𝑚

, 𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔 𝑎 = −
3𝑓𝑚

2𝑧𝑚
, 𝑐 =

𝑓𝑚

2𝑧𝑚
3  (Eq. 5-4) 

 

Given the global shape of the neutral fiber of the rod, Hypothesis 2 provides the value 

for extremum vertical coordinates z0 through the solution of the non-linear equation: 

 

∫ √1 + (−
3𝑓𝑚

2𝑧𝑚
+

3𝑓𝑚𝑧2

2𝑧𝑚
3 )

2

𝑑𝑧 = 𝐻
𝑧0

−𝑧0

 (Eq. 5-5) 

 

 

 (Eq. 5-5) can be solved analytically using Formal Calculus software or in closed form. 

Once the reference shape of the rod is completely defined, segments are automatically 

generated taking into account the guidelines expressed in the previous paragraph. The 

model built from the conditions above is shown in Figure 5-10, with significant shrinkage 

along the vertical axis for illustration purposes (as stated in Paragraph 3.1, H is classically 

close to 4 m, for maximum deflection around 10 mm). 
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Figure 5-10 - Illustration of TRIPOLI-4® modeling through segments for planar symmetric 

second order rod deformation (vertically shrunk view stemmed from T4G viewer) 

 

3. Compared results for first order rod deformation 
 

The comparison is carried out in the case of French PWR 900 MW geometry. The length 

of the rods is thus H=3.658 m, with a lattice pitch of p=1.26 cm, and a fuel rod diameter of 

d=9.5 mm. The considered physical situation is given in Figure 5-11 and views of the 

computational models are given in Figure 5-12, with maximal deflections of  = 10 mm, 20 

mm and 25 mm. We define α = p-d. This situation illustrates an external bowed fuel rod with 

an increased water gap on the left and a fuel rod row on the right (following the same 

deflection). The neutron sources are distributed in the fuel volume inside the rod and 

neutrons are generated following a Watt fission spectrum. A maximum of 100 000 batches 

(20 discarded) of 10 000 particles has been set up for all simulations.  

 

 The toroidal analytical model provides the reference solution against which the semi-

discrete approaches (stacking and segments) are confronted. For the stacking or segment 

approaches, various numbers of discrete entities are considered, from 20 to 550 stacked 

cylinders and from 21 to 101 segments respectively, to better highlight the impact of 

discretization on both models. For the latter modeling, the length correction is computed 

once for the case with 51 segments and applied to all other configurations with commented 

results whenever necessary. 
 

Z 
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Figure 5-11 - Considered geometry and boundary conditions for the first order comparison case 

(lateral, top and bottom boundaries are set to reflection, Y-axis boundaries are set to translation) 

 

 

Figure 5-12 - Illustration of computational models for first order deformation, with distinction 

between the inner part of the rod with fuel properties and the lateral part with cladding properties 

(from left to right: cut torus (reference), segments, and stacking, scales not conserved for the 

sake of clarity). The fuel-clad gap is too small to be observed on the figure. 
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Selected quantities of interest for the assessment of the various models are neutron 

production rate in Uranium 235 (U5), neutron absorption rate in Uranium 238 (U8) and global 

keff coefficient for the chosen configuration. Conditions are close to the ones of a French 

900MW start: no previous irradiation, fuel in new condition, boric acid concentration of 1 440 

ppm, a 5% U5 enrichment (see [5, 10] for general statements about French PWRs). 3σ-error 

bars are associated in following graphics to all quantities resulting from Monte-Carlo 

statistics. It is noticeable that all performed simulations involved the same number of emitted 

neutrons. Deviations from the reference obtained with the toroidal model therefore derive 

only from differences in reaction rates. 

Detailed results are given in the next two paragraphs for the 20 mm-deflection situation, 

whereas results for all deflections are compiled in section 3.3. 

Remark 1: 

Adjusting vertical and horizontal scales in Figure 5-12 (and identically in Figure 5-19) 

logically results in some distortions of the elementary shapes implemented in the reference 

model and in the segment model. The torus does not appear as such due to the apparent 

modification of the angle between the extremum sections and the neutral fiber, and 2D-

projections of segments are transformed from rectangles into parallelograms. These visual 

artifacts do not affect the purpose of the proposed view, which is to highlight the major 

differences between the semi-discrete approaches and the reference, especially close to the 

interfaces between discrete entities. 

Remark 2:  

There would be no relevance in comparing the results presented below to results from 

a close configuration implementing a straight rod. The proposed test case is designed to 

compare the modeling approaches. The solution is greatly influenced by the arbitrarily 

chosen boundary conditions, with a fuel/moderator ratio given by the global geometry of 

the computational domain, so that the actual value of the multiplication factor is physically 

meaningless. The foreseen comparisons shall be performed in further research through the 

proper modeling of a partial or complete nuclear core configuration implementing potential 

bowing of some fuel assemblies. 

 

 Neutrons production and absorption rates 

 
Results for neutron production in U5 are provided in Figure 5-13, whereas results for 

neutron absorption in U8 are provided in Figure 5-14. 
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(a) Production rate (s-1) obtained with stacking modeling 

implementing 20 to 550  cylinders 

(b) Production rate (s-1) obtained with segment modeling 

implementing 21 to 101 segments 

Figure 5-13 - Neutron production rate in U5 for stacking and segment modeling compared to 

reference 

  
(a) Absorption rate (s-1) obtained with stacking modeling 

implementing 20 to 550  cylinders 

(b) Absorption rate (s-1) obtained with segment modeling 

implementing 21 to 101 segments 

Figure 5-14 - Neutron absorption rate in U8 for stacking and segment modeling compared to 

reference 

 

The segment modeling generally yields results much closer to the reference than the 

stacking modeling. The simulation with 51 segments (for which the actual correction is 

computed) is here the most accurate compared to the reference.  

As far as stacking modeling is concerned, the configuration with 400 cylinders provides 

the most accurate results compared to the reference, but the accuracy seems to decrease 

for higher numbers of cylinders, with no obvious explanation (see Paragraph 4.3 for further 

analysis). 

 

 Global keff coefficient 
 

If previous results provided insights about the proximity of behavior of the semi-discrete 

models compared to the reference, results in terms of keff coefficient have priority to actually 

evaluate their accuracy. They are given in Figure 5-15. 
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(a) keff obtained with stacking modeling implementing 20 to 

550  cylinders 

(b) keff obtained with segment modeling implementing 21 to 

101 segments 

Figure 5-15 - keff coefficient for stacking and segment modeling compared to reference 

 

Results obtained with segment modeling are again closer to the reference than those 

obtained with stacking modeling. It is noticeable that the latter seems to systematically 

underestimate the rod reactivity which could prove to be an issue when dealing with safety 

evaluations. Some fairly accurate results are yet observed for some high number of stacked 

cylinders (around 300) but they are difficult to predict and lack robustness since higher 

numbers can still produce large deviations. Taking into account that the computational cost 

of stacked cylinders is close to that of segments for the same number of elements (see Figure 

18), it demonstrates that segment modeling with the guidelines proposed in Paragraph 3.2.3 

should definitely be preferred to represent the bowed fuel rod in the present configuration 

(more accurate, with less elements).  

Looking deeper into segment modeling, the range of segment numbers producing 

accurate results is quite wide (from 51 to 71). Smaller numbers should be avoided, with a 

significant increase of the deviation from the reference when going down towards 21 

segments. Higher numbers around 100 segments do not show the expected accuracy, which 

can be imputed to the length correction which should be specifically computed for these 

configurations. Anyway, trying to retrieve some accuracy with high numbers of segments 

appears easily feasible but worthless since they come with higher computation cost than the 

accurate range identified above. Figure 5-16 shows simulation times (in terms of number of 

realizations, or batches, per second, with the higher the number, the better the 

computational performance). It can be observed the semi-discrete approach is more efficient 

than the reference for less than 71 segments, since rotated cylinders require less geometric 

operations than the toroidal shape to compute their interaction with neutrons. 
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Figure 5-16 - Computational performance in terms of batches per second, for segment and 

stacking modeling and reference toroidal modeling 

 

 Partial conclusion for first order rod deformation 
 

Results in terms of deviation for production rate (in %), absorption rate (in %) and keff 

coefficient (in pcm) with respect to the reference for both semi-discrete approaches and the 

three considered deflections are gathered in Table 5-1. For comparison purposes, the same 

‘lower’ range of number of discrete entities is chosen for stacking and segment modeling, 

i.e. 30 to 101.  

   
SEGMENT STACKING 

 Deflection  Deviation   Deviation    

Min Mean Max Min Mean Max 

U5 

(%) 

10 0.02 0.05 0.10 0.01 0.07 0.21 

20 0.01 0.05 0.12 0.08 0.21 0.41 

25 0.01 0.03 0.07 0.01 0.11 0.27 

U8 

(%) 

10 0.00 0.03 0.08 0.00 0.07 0.21 

20 0.01 0.05 0.13 0.03 0.22 0.43 

25 0.01 0.04 0.08 0.02 0.13 0.24 

KEFF 

(PCM) 

10 6.90 10.57 16.40 0.70 5.38 13.10 

20 0.20 2.47 4.40 14.00 20.73 35.60 

25 0.40 3.80 6.20 0.80 17.40 37.90 

Table 5-1 - Compiled results for both semi-discrete approaches and three values of deflections 

(10, 20 and 25 mm): deviation for production rate (in %), absorption rate (in %) and keff 

coefficient (in pcm). For rates:  < 0.1 %, and for keff:  < 15 pcm. 

 

These global results confirm the observations made for the specific case of the 20-mm 

deflection: for similar numbers of discrete entities, segment modeling is more accurate in 

almost all cases.  

Stacking approach shows low accuracy when the deflection increases, which can be easily 

understood with the schematics in Figure 5-17. Large deflections yields high slopes for the 

neutral fiber, especially when it crosses the initial axis of the straight rod. This tends to 
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increase the exchange surface between the fuel and the moderator while volume of fuel and 

moderator are still the same using stacking modeling. This could have an impact on reactions 

rates. 

The segment modeling should then be preferred in most cases involving dominant C-

shape rod deformation and if chosen for its easier implementation, the stacking approach 

should be restricted to small deflections.  

 

 

Figure 5-17 - Representation of high-slope sections with stacked cylinders; leaking surfaces 

between fuel core (in red) and moderator (in blue) ignoring the cladding (in grey) 

 

4. Compared results for second order rod deformation 
 

Clear conclusions could be drawn after considering first order deformation in previous 

section. The present section aims at confronting them with the significant case for which a 

reference solution is fully available, in the hope of being able to design solid guidelines for 

generic bowing patterns of rods and assemblies. 

 

A second order pattern is thus considered, especially introducing sections of higher 

slopes along the rod for the same level of deflection compared to first order deformation. 

The physical setup for TRIPOLI-4® is illustrated in Figure 5-18 (notations are the same as 

before) and views of the computational models are given in Figure 5-19. 
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Figure 5-18 - Considered geometry and boundary conditions for the second order comparison 

case (lateral, top and bottom boundaries are set to reflection, Y-axis boundaries are set to 

translation) 

 

 

Figure 5-19 - Illustration of computational models second order deformation, with distinction 

between the inner part of the rod with fuel properties and the lateral part with cladding properties 

(from left to right: cut torus (reference), segments, and stacking, scales not conserved for the 

sake of clarity). The fuel-clad gap is too small to be observed in the figure. 
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The quantities of interest are the same as those in the previous section. Detailed results 

are given for a deflection of 10 mm for each half of the second order bowing pattern, which 

yields a cumulative deflection of 20 mm along the rod, like for the first order bowing pattern 

above. Deflections of 20 mm and 25 mm are also considered, with results gathered in 

Paragraph 5.3. The geometric correction for the segment modeling is kept from the previous 

section in the case of 51 segments along the rod. 

 

 Neutrons production and absorption rates 
 

Results for neutron production in U5 are provided in Figure 5-20, whereas results for 

neutron absorption in U8 are provided in Figure 5-21. 
 

  
(a) Production rate (s-1) obtained with stacking modeling 

implementing 20 to 600  cylinders 
(b) Production rate (s-1) obtained with segment modeling 

implementing 21 to 101 segments 

Figure 5-20 - Neutron production rate in U5 for stacking and segment modeling compared to 

reference 

 

  
(a) Absorption rate (s-1) obtained with stacking modeling 

implementing 20 to 600  cylinders 
(b) Absorption rate (s-1) obtained with segment modeling 

implementing 21 to 101 segments 

Figure 5-21 - Neutron absorption rate in U8 for stacking and segment modeling compared to 

reference 

 

The observations made in section 3.1 still hold in the present situation, with amplified 

drawbacks for the stacking approach. The segment modeling again yields results close to 
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the reference and the length correction computed for 51 segments with the first order 

bowing pattern accurately apply in this case with the second order pattern. 

 

 Global keff coefficient 
 

Results for both modeling are given in Figure 5-22.  

 

  
(a) keff obtained with stacking modeling implementing 20 to 

600  cylinders 
(b) keff obtained with segment modeling implementing 21 to 

101 segments 

Figure 5-22 - keff coefficient for stacking and segment modeling compared to reference 

 

Observations from section 3.2 apply again. A significant discrepancy is observed when 

increasing the number of stacked cylinders over 200, which can be seen as an aggravated 

consequence of the complex neutron leakage process through singular interfaces between 

cylinders already mentioned above, since increasing the number of cylinders also increases 

the number of such interfaces. 

 

 Partial conclusion for second order rod deformation 
 

Like in section 3.3 for the first order deformation, results in terms of deviation for 

production rate (in %), absorption rate (in %) and keff coefficient (in pcm) with respect to the 

reference for both semi-discrete approaches and the three considered deflections are 

gathered in Table 5-2. The same range of numbers of discrete entities is chosen for stacking 

and segment modeling, i.e. 30 to 101. 
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SEGMENT STACKING 

 Deflection  Deviation   Deviation  
  

Min Mean Max Min Mean Max 

U5 

(%) 

10 0.00 0.02 0.02 0.05 0.12 0.20 

20 0.01 0.04 0.07 0.05 0.17 0.44 

25 0.04 0.13 0.33 0.01 0.14 0.35 

U8 

(%) 

10 0.01 0.03 0.05 0.03 0.10 0.19 

20 0.02 0.05 0.08 0.02 0.17 0.44 

25 0.05 0.13 0.32 0.01 0.15 0.34 

KEFF 

(PCM) 

10 0.90 2.73 7.00 2.30 6.26 10.70 

20 0.40 6.87 12.70 3.00 9.99 15.30 

25 0.10 6.25 13.20 10.30 18.70 33.70 

Table 5-2 - Compiled results for both semi-discrete approaches and three values of deflections 

(10, 20 and 25 mm): deviation for production rate (in %), absorption rate (in %) and keff 

coefficient (in pcm). For rates:  < 0.1 %, and for keff:  < 15 pcm. 

 

These results, in terms of keff and rates, confirm that segment modeling should be 

preferred over stacking modeling, which must be restricted to very small deflections with 

second order deformation (a few mm).  

Concerning segment modeling specifically, the accuracy of the results obtained in both 

configurations suggests that this approach exhibits enough regularity and robustness to be 

extended as expected to mixed-type generic bowing patterns. 

 

5. Partial conclusions 
 

The present study proposed two semi-discrete approaches to represent the effect of fuel 

rod/assembly bowing onto neutronics, the first based on stacked vertical cylinders to 

approximate the curved geometry and the second implementing rotated cylinders, named 

segments, instead.  

Fully tested on C-shaped and S-shaped deformation patterns, both modeling can be 

used with a satisfactory accuracy for small deflections. However, despite specific constraints 

to build accurate datasets out of segments, especially related to the length correction 

requested to avoid gaps between consecutive segments, this latter approach produces more 

robust results when dealing with deflections of any shape and amplitude (see Table 5-3 for 

a full summary of the proposed evaluation). 
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Reference modeling built out of 
analytical shapes (torus and planes) 

Semi-discrete approaches 

Stacking modeling Segment modeling 

Easy to implement but restricted to 
basic bowing patterns 

Easy to implement for any kind of 
geometry 

Implementation possible for any 
kind of geometry with practical 
constraints to handle with care: 

length correction, priorities 
between entities to manage 

overlapping areas 

Exact representation of the 
geometry for the suitable bowing 

patterns 

Singular surfaces between stacked 
cylinders with spurious effects 

increasing with the bowing 
deflection (systematic keff 

underestimation  observed in 
particular) 

Fairly accurate representation of 
any curved geometry, assuming a 

relevant value for the length 
correction factor 

Non-applicable to actual in-core 
deformation patterns 

Accuracy and robustness for 
neutronics ensured only for small 
deflections in the case of complex 

bowing patterns 

Recommended approach for 
representing actual in-core 

rod/assembly bowing patterns and 
their effect onto core neutronics 

Table 5-3 - Main conclusions of the evaluation of stacking and segment approches to represent 

first and second order bowing patterns 

 

However, because of the associated computation time, these 3D Monte Carlo models 

can only be used for studies in limited scales (a few FAs). For a full core scale, the approach 

requires too many volumes (each fuel rod is split into tens of volumes), and a different 

strategy must be undertaken: it is necessary to adopt a 3D deterministic strategy. The models 

developed in this chapter could then be used as a reference for validation regarding a couple 

of FAs. 

In the next chapter, we lay the foundations of this further 3D deterministic modeling 

through the setting up of necessary elements within a 2D geometry. 
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 Chapter 6: Basis of a deterministic approach 

to depict deformations with large water gaps 

 

 
 

1. From the stochastic to the deterministic approach 
 

 About the deterministic features 
 

In the previous section we set up and validated models for the deformation of fuel rods. 

Each fuel rod can be gathered together to constitute a bundle of fuel assembly. Even though 

those models served for instance to highlight the weight of the deformation against the 

weight of related thermal hydraulics effects in a previous study [6], it is a priori not designed 

to depict power effects at a full core scale. The reason why such models cannot be used for 

larger scales is that the Monte-Carlo method is time-consuming: in such situations, it 

remains a reference method for validation. The segment methods could be contemplated as 

a mean for validation or for modeling rather limited scales (a couple of FAs). As a result, the 

other usual approach is the deterministic one. The latter is used to solve core-scaled systems 

through dedicated schemes [97]. Whereas the Monte-Carlo method solves the Boltzmann 

transport equation following a probabilistic approach, the deterministic approach lies in 

solving the same equation but through the discretization of space and energy. The integro-

differential equation (from [98]) is available in (Eq. 6-1): 

 
1

𝑉𝑛

𝜕𝜓(r, E, Ω, t)

∂t
+ Ω∇𝜓(r, E,Ω, t) + Σ(r, E, Ω)𝜓(r, E,Ω, t) = 𝑄(r, E, Ω, t) (Eq. 6-1) 

 

This equation represents a neutron balance equation. The first term stands for the 

Highlights of the chapter 

 

 For bigger 3D core calculations including large fuel assembly deformations and 

water gaps (up to 20 mm), a first 2D deterministic model is studied. 

 We assume the hypothesis that each pin-homogenized cross-section in one FA 

quarter only depends on the adjacent water gap width. The latter assumption will 

be assessed a fortiori to ensure the modeling trustworthiness. 

 Cross-sections were generated through lattice calculations for the east quarter of 

the central fuel assembly in a mini-core cluster of 5x5 assemblies, for different 

values of gap width. The lattice calculations are evaluated with the related 

stochastic calculations. 

 Through a core solver, the homogenized cross-sections are reinjected in all FA 

quarters of the mini-core, each characterized by the adjacent gap width. 

 Results highlight that the independency hypothesis of cross-sections in one 

quarter is valid for every test case run, and the strategy can be considered ready 

for further use. 
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neutron variation density per time unit (zero at steady-state), the second one is the 

streaming of neutron outside the considered volume, the third is the total reaction rate, 

made of scattering to another energy, and every kind of absorption. The different variables 

are: 𝜓, the angular flux, 𝑉𝑛 the neutron velocity module, the phase-space is defined by 

(r, E, Ω, t), with r being the location point, E the kinetic energy, Ω the unitary vector depicting 

the neutron direction and t the time. Finally, Σ is the total macroscopic cross-section (the 

sum of the isotopes density in the volume multiplied by their microscopic cross-section), 

and 𝑄 is the neutron source term, made of every positive contribution to the neutron 

balance: the fission rate, the scattering to E, and possibly an external source. 

 

One can estimate the number of degrees of freedom of the problem considering the 

three variables of interest. 

 

First, the cross-sections of any heavy isotopes highly depends on the energy. Uranium 

238, for instance, is the most abundant isotope in PWRs fuel. In order to assess its resonances 

in the epithermal domain (Figure 6-1), a few hundreds of energy groups are needed.  

 

 

Figure 6-1 - Total cross-section of U238 from [99] 

 

Second, in practice, an important amount of spatial cells in needed. As the typical size of 

the mesh size to capture flux gradients in a PWR fuel is about a couple of millimeters 

(dimension of a rod cladding), and a core is in the order of a few meters, one needs about 

109 spatial cells to draw the full core [98]. Another reason for such a mesh refinement is the 

self-shielding. In some regions, the flux variation is sudden. For instance, when neutrons, not 

entirely thermalized (epithermal energy), get back through the fuel pellet, they face U238 

whose absorption cross-section present resonances (see again Figure 6-1). As a result, in the 

outer ring of the fuel cell (tens of micrometers), the flux highly decreases for this energy 

range. 

 

Third, about 102 directions may be treated. 
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The problem dimension is thus 1013 (again see again [98]). Given the amount of degrees 

of freedom, two strategies can be considered: 

 

1. Direct calculations, i.e. without any simplification, through dedicated acceleration 

and massive parallelism (High Performance Computing) [100]. 

2. The reduction of the system dimension. In this one, more classical, the flux is 

solved for homogenized macro-regions and a limited number of energy groups 

(condensation). The latter approach is possible through a two-steps neutronic 

calculation scheme. In the first step, 2D fine calculations are performed (lattice 

calculations) taking into account every fuel heterogeneity. Then, defining macro-

regions (homogenization) and a reduced energy mesh (condensation), it is 

possible to set up homogenized cross-sections preserving the reaction rates 

calculated with the previous fine energy and spatial meshes. For instance, when 

cross-sections are homogenized at a fuel cell dimension, the thinnest cell (which 

was about a couple of millimeters wide), is now of the order of a centimeter. It is 

a preparation step for larger simulation. The next – second – step is thus the core 

calculation. It consists in simulating the whole – larger scaled – domain (a full core 

for instance), defined by the same macro-regions and configured with the 

homogenized cross-sections obtained at step one. An example of two-steps 

calculations is in [101]. 

 

 An insight into the tool 
 

The code used in this part is mainly APOLLO3® [102]. Developed at the CEA, APOLLO3® 

is a multi-purpose deterministic code, split into two parts specialized in both core and lattice 

calculations: 

 

 Lattice calculations can process both self-shielding and flux calculations taking into 

account heterogeneities. In the end they can generate homogenized, condensed, 

cross-sections which can be used for full core calculations. They are mainly based on 

Collision Probabilities and the Method Of Characteristics (MOC) through the TDT 

solver for instance [103]. An equivalence module is also available for the SuPer-

Homogenization (SPH) method [104]. In a nutshell, the latter is used for guaranteeing 

that core calculations using homogenized cross-sections – generated through lattice 

calculations - can reproduce the reference results found with lattice calculations. 

 

 Core calculations deal with higher scale systems, made of macro-regions defined 

previously along with the associated pre-generated cross-sections. Two solvers are 

available in APOLLO3® for computations: MINOS [105] and MINARET [106]. MINARET, 

used for core calculations in this section, can handle both SPN (Simplified-PN) and SN 

(Discrete Ordinated) methods, with unstructured meshes. 
 

The code is mainly written in C++ and FORTRAN90, and a computer overlay in Python 

facilitates the user’s data files writing [98]. 
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 Strategy of the water gaps enlargement modeling 
 

Whereas Monte Carlo codes have dedicated capabilities to directly model FA bow 

through 3D native elements [107, 108] (SERPENT-2, MNCP-5, TRIPOLI-4® see chapter 5), 

doing so in deterministic codes is a harder task: use of cross-sections libraries, extruded-3D 

geometries, codes optimized for straight FAs, are so many features driving deterministic 

modeling of bow more complex. In fact, some codes, like SIMULATE3, includes pre-defined 

functions to facilitate instantiation of FA bow, rather limited (unidimensional and constant) 

[11, 109]. The user could also define manually a ‘gap card’ in x- and –y directions to describe 

FA bow [108].  

An example of gap map as used by Berger is shown in Figure 6-2. However, the bowing 

itself is not simulated by the code; the bowed geometry is described only through the 

variation of pre-generated cross-sections [108]. At this stage we do not have further details 

on these cross-sections generation step. 

 

 

Figure 6-2 - Example of gap card used by Berger [108] 

 

A ‘delta gap model’ (DGA) was latter implemented in CASMO5 to generate cross-

sections of fuel assemblies with varying gaps [110]. The connection with the code 

SIMULATE5 (allowing ‘cosine and 3D shape’ bow models [11]) was performed thanks to the 

linkage code CMSLINK5. CASMO5 can also be used on its own to perform multi-assembly 

calculations without generating data for further application (in SIMULATE5 for instance). 

Contrary to neutron noise effects related to rod vibrations whose amplitude is rather small 

(~1 mm) (see [111] or [112, 113] with DYN3D), fuel bow can pass a couple of centimeters. In 

other words, in deterministic codes it means that the fuel assembly steps out of its initial cell: 

as soon as the FA displacement is higher than a half nominal gap (~1 mm) outermost rods 

of one FA overtake the FA dedicated space [114]. The latter remark leads to a couple of 

concrete and practical issues: 

 

 First, generating cross-sections with only one assembly leads to overemphasize the 
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gaps surrounding it. It does not represent in theory the flux seen by an isolated and 

deformed FA in a core set up.  

 Second, in order to provoke such gaps in a real configuration, one has to consider an 

important number of FA. It could be complicated to model such configurations in a 

lattice code, with a limited number of FA without isolating one displaced FA. 

 

For these reasons, Li in [107, 20], had to restrict the displacement of fuel pins and FAs in 

the calculations. In other words, as said by Li ‘For the channel bowing, the displacements are 

prohibited from crossing the mid-planes of the inter-assembly gaps in the case of no 

insertion of control blades’. The author thus used maximal displacements of 1.5 mm 

rightwards for the assembly model, and maximal diagonal displacements of 1.5 mm at the 

full core scale. Rochman [115] also restricted his FA displacement to 1.5 mm with the same 

code CASMO5 (Figure 6-3). However such displacements are too low to depict actual in-

core ones which can reach 20 mm. A couple of different other methods exist, with the 

assumption that all FAs stay straight (not bowed) but modifying instead densities or cross-

sections according to the gap increase [114, 116, 117]. The use of limited displacements is 

often associated with a need of modifying deeply the geometry otherwise, because fuel rods 

indeed crop adjacent cells. In the present chapter we thus propose a strategy to depict 

strong displacements, up to 20 mm. 

 

 

 

Figure 6-3 - Displaced central FA in a a cluster of 3x3 BWR FAs, from [115] 

 

 The proposed deterministic strategy to take FA bow into account 
 

In order to perform deterministic calculations, we have chosen a classical two-steps 

scheme, in 2D. The latter is mandatory as a future 3D modelling would be based on the same 

2D cross-sections. In other words, the current work is a prospective one toward a 3D 

deterministic modeling strategy. The first step consists in generating a library of cross-
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sections over a well-chosen geometry. We homogenize the cross-sections at the pin scale. 

Our assumption is that the fuel assembly quarter facing up to the adjacent water gap can be 

characterized by its thickness. The latter will have to be checked to ensure the modeling 

reliability. As a result, the four areas of the FA (let us say east, south, west and north) – see 

Figure 6-4 - contain cross-sections at the pin scale which only depend on the corresponding 

water gap (let us say 𝜆𝑒, 𝜆𝑠, 𝜆𝑤, 𝜆𝑛). 

 

 

Figure 6-4 - FA and surrounding gaps 

 

This assumption, which could be justified through the small mean free path in a PWR, is 

however rather strong given that it requires every FA quarter not being influenced by its 

adjacent neighbors at first order. Formally it assumes that every cross-section can be written 

Σ𝑖 = 𝑓(𝜆𝑖) (𝑖 being e, s, w or n). The latter is motivated by the number of calculation needed 

for further dependencies. In fact, dependency on two variables makes no sense as 

automatically, for instance if w depends on n, it necessarily also depends on s. 

Consequently, without the one-variable dependency, one would have to directly deal with 

three variables. Even more, the extreme case is dependency on every variable, i.e.  Σ𝑖 = 𝑓(𝜆𝑒, 

𝜆𝑠, 𝜆𝑤, 𝜆𝑛). However both three variables and four variables cases lead to a great sampling 

(for instance with 10 values of 𝜆, 1540 different combinations are necessary with 4 gaps and 

1000 with 3 gaps) to correctly describe cross-sections. Thus, we need a simplification to 

generate in a library, and this assumption is consequently Σ𝑖 = 𝑓(𝜆𝑖) as expressed above. 

 

After this assumption is investigated over a couple of physical values of interest, the next 

step will thus consist in running upper scale calculations while upgrading the field of 𝜆𝑖 

according to the two FA quarters surrounding it. 

 

2. Generating a library of cross-sections in a mini-core context 
 

We have chosen to run flux calculations at a core scale based on a classical two-steps 

scheme with APOLLO3®.  
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 The geometry 
 

In this context, we have decided to generate a cross-sections library leaning on a 

dedicated geometry taking on board gaps which can be up to 20 mm wide. The geometry 

of reference is the same as underlined in [114, 118], i.e. a cluster of 5x5 fuel assemblies. The 

latter choice is a compromise between having enough fuel assemblies to depict a full core 

behavior (given that flux effects of high deformations can spread over 4 fuel assemblies [6]), 

and the geometry is small enough so that the calculation can be run in affordable time (~10 

hours) with the code APOLLO3® while respecting memory limits. The corresponding nominal 

geometry is sketched in Figure 6-5. All geometries have been set up with the ALAMOS 

module of SALOME [119]. 

 

 

 

Figure 6-5 - Nominal geometry 

 

In the figure FAXY represents the FA on column X and row Y. By symmetry, FA11 and 

FA51 are respectively the same than FA51 and FA55. In the zoom in the fuel assembly at the 

right hand side, guide tubes (control rods not slotted) are present in cells filled with green 

plain color, whereas the gaps and fuel are present in cells filled with blue and dark red plain 

colors. At this stage the cluster is surrounded by reflective boundary conditions. A further 

use of cross-sections for full core calculations would lead to the introduction of leakage 

models. 

 

Considering that nominal gaps are 2 mm wide, the geometry with fixed boundaries can 

depict, in theory, gaps up to 1 + 1 + 4 ∗ 2 = 10 𝑚𝑚 pushing all FAs within one row to the 

core shroud (one millimeter on the shrouds – because of reflective boundary conditions -, 

and 2 between the FAs). With reflective boundaries it would lead to a 20 mm gap. On the 

other hand, the gap at the other end would be completely closed. 
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A less drastic solution would consist in pushing for instance 2 FAs to one way and the 3 

others at the other end (for instance in [114]), resulting in a 10 mm wide water gap. On the 

other hand, two gaps would be closed at each side of the row. The issue is summed up in 

Figure 6-6. 

 

 

Figure 6-6 - Different solutions to enlarge a gap with fixed boundaries 

 

With every solution leading to large gaps enlargement, every FA is displaced with closed 

gaps. The only way not to disrupt other FA is to limit its displacement in its dedicated space 

(i.e. a displacement limited to 1 mm [107]). However, an alternative solution can be proposed 

to isolate one FA without disrupting the others. The method is suggested hereafter. 

 

In order to generate localized gaps whose value can reach 20 mm, we will process as 

follows: 

 

 The gap located to the east of FA33 is changed. 

 To conserve nominal gaps values between assemblies FA43 and FA45, they are 

both shifted to the right hand side. 

 The water gap located at the east of FA53 is preserved. 

 

Under these assumptions, all happens as if only FA33 was disrupted in an infinite 

medium. The resulting geometry (at the mini-core scale) is shown in Figure 6-7. The values 

of gaps considered are 0, 0.4, 2, 3, 5, 8, 12, 16, 20 and 25mm. 
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Figure 6-7 - Introduction of a 𝜟𝝀 water gap at the east of FA33 

 

We can see that when fuel assemblies FA53 and FA43 are shifted to the right hand side, 

the nominal gap located between FA33 and FA43 widens so that its width becomes 𝜆 =

𝜆𝑛𝑜𝑚𝑖𝑛𝑎𝑙 + Δ𝜆 (𝑚𝑚). For a set of 𝜆 up to 20 mm, those calculation can reproduce a gap 

enlargement isolated at the east of FA33. Every other FA - except FA43 obviously – preserves 

its nominal gaps at the east, south, west and north. 

 

In practice, such a geometry is possible with a Monte Carlo code, for instance TRIPOLI-

4®. However, for a lattice code, which needs to proceed an infinite medium based on axes 

of symmetry, the protrusion shaped by FA53 at the right is not possible. In order to preserve 

this logic, the same geometry is modelled, but regions are added on the top and bottom of 

the protrusion to turn the shape into a classical rectangle. 

 

To fill up the new areas, we have chosen an inert material. In our case it is made of helium 

traces. The impact of this choice will be further assessed. The layout is in Figure 6-8. 
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Figure 6-8 - 𝜟𝝀 water gap and inert material 

 

The change introduced in this geometry for the APOLLO3® calculation does change the 

boundary conditions at the right. Even though no interaction happens in the inert material, 

the reflection is postponed further in the geometry. As a result, this geometry will need a 

validation afterwards with respect to a TRIPOLI-4® calculation (which can handle the 

protrusion) in order to ensure that its impact over the FAs is negligible.  

 

 From self-shielding to homogenization 
 

The flux calculation in lattice calculations generally go through three different inner steps 

along with three different geometries (Figure 6-9): self-shielding (STEP 1), flux calculation on 

a thinner mesh (STEP 2), and finally homogenization (and condensation) on a coarser mesh 

(STEP3). 

 

 

 

Figure 6-9 - Geometries of one FA, from left to right: self-shielding, flux, homogenization 

 

The configuration of interested is characterized as follows: 
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 The fuel assemblies’ composition is homogenous geometry-wide without 

previous irradiation. Every FA is composed of the same densities of isotopes. 

 The FA composition is only made of new fuel characterized by a 5% enrichment 

of uranium 235 (U5). No plutonium exists. 

 The boric acid concentration is 1800 ppm. 

 The conditions are thus close to a beginning of cycle (BOC) of a starting core (see 

[5, 10]) for general statements about French PWRs). 

 

Such a simplified composition is yet justified by the fact that tilt phenomena – which may 

result from FA bow - (increase of the Quadrant Power Tilt Ratio [120, 5]) may occur even at 

the start of the reactor [4]. 

 

STEP 1 – Self-shielding 

 

Regarding the self-shielding, the calculation is performed: 

 : 

 Through the Livolant-Jeanpierre model based on the slowing-down equation of the 

neutrons in a context of infinite and homogenous mixture.  

 The angular dependency is removed and thus self-shielding calculations are realized 

with P0 scattering cross-sections (i.e. isotropic scattering), see for instance [121].  

 The latter model factorizes the flux as a product between a slowly varying function 

(asymptotic flux) which is the solution of the slowing-down equation within the 

moderator, and another one being the fine-structure flux whose value is one outside 

of resonances while capturing the local behavior of the flux in the vicinity of cross-

sections peaks.  

 This factorization leads to the fine-structure equation which is often solved through 

the Collision Probability method. A space and energy equivalence is processed to 

obtain self-shielded cross-sections.  

Further details are available for instance in [97, 98, 122, 123]. 

 

In our case, the self-shielding is done on one single FA to preserve time and memory for 

calculations. Self-shielded isotopes are the ones presenting with resonances i.e. uranium 

isotopes (U8, U5), and natural zirconium and iron. 

 

A zoom in the geometry used for the calculations is available in Figure 6-10.  
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Figure 6-10 - Geometry used for the self-shielding (~2 103 regions, 264 fuel rods and 25 guide 

tubes per assembly) 

STEP 2 – Flux calculation 
 

After having introduced self-shielded cross-sections, it becomes possible to run a flux 

calculation with 281 groups of energy. In this part we make use of the MOC (Method Of 

Characteristics) available in the TDT solver of APOLLO3® lattice. P3 scattering cross-sections 

are used at this step (anisotropy degree of 3) as advised for instance in [124]. Consequently, 

unlike the previous step, the cells have to be refined and are thus split into eight sectors. 

 

A zoom in the geometry used is available in Figure 6-11. 

 

 

Figure 6-11 - Geometry used for the flux calculation (~1.6 104 regions per assembly) 
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STEP 3 - Homogenization 
 

Once the flux has been calculated in the refined mesh, the next and final step in the 

preparation of cross-sections is to condense and homogenize the cross-sections. 

Condensation consists in reducing the number of energy groups, while homogenization 

leads to considering macro-regions containing a ‘homogeneous dough’. The choice of 

macro-regions is up to the user through the geometry of homogenization, yet it is an 

important choice given that it will directly affect the elementary mesh of core calculations. 

Homogenization have long been performed at a full FA scale (all the FA cross-section is 

homogenized) [125], however improvements in technical specs have made homogenization 

at the pin cell become the norm. 

 

The geometry that we used for homogenization is shown in Figure 6-12. 

 

 

Figure 6-12 - Geometry used for the homogenization (one macro-region per fuel rod) 

 

 About step 2 – flux calculation – and comparison with reference 
simulations 

 

In fact, before pulling homogenized cross-sections from the calculation, we want to 

make sure that the flux calculation performed gives the same results as given in a reference 

code, TRIPOLI-4®, through the use of simple 3D-extruded straight rods. The Monte Carlo 

geometry is the same as shown in Figure 6-7. In other words, no inert material complete the 

deformed cluster as the code can handle so.  

 

In TRIPOLI-4® simulations the parameters are the following: 

 

 104 neutrons are simulated per cycle (batch size). 

 A maximum 105 cycles is demanded. 
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 80 cycles are discarded. 

 For the gap between FA33 and FA43 we chose values of 0.4, 2, 5, 12 and 20 mm. 

 

In practice, such a mini-core simulation is long with the Monte Carlo method, and no 

calculation ended up reaching the maximum of 105 cycles (because of the time allocated on 

the calculation server), but rather ~104 cycles. The layout is shown in Figure 6-13, the gaps 

surrounding FA33 were highlighted in light blue. One can see the coolant in dark blue, the 

fuel pellet in red and the cladding in green. In order to compare reaction rates, all APOLLO3® 

(AP3) calculations were normalized to the total production rate in the TRIPOLI-4® (T4) 

calculations. Error bars stand for 3σT4 intervals. 

 

 

Figure 6-13 - Monte Carlo geometry as seen by the T4G viewer 
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Figure 6-14 - (A) Multiplication factor keff evolution (B) production rate induced by U5 (FA33) 

(σT4<1% for rates, σT4<30pcm for keff) 

 

In Figure 6-14, we plot the comparison in terms of multiplication factor and integrated 

production rates in the disrupted central assembly FA33. The values are given with respect 

to the width 𝜆 of the gap at its west. 

As one can see, in terms of multiplication factor keff:  

 

 No calculation matches the ones given by the Monte Carlo method even including 

the error bar.  

 The difference between two points is quite constant whatever the value of the gap is. 

In other words, considering the uncertainty of about 20 pcm with the Monte Carlo 

method, the difference between both two approaches is constant for every 

considered gap (0.4, 2, 5, 12 and 20 mm).  

 The difference is around 130±10 pcm which is a result more than satisfactory for our 

case and our requirements when comparing deterministic results to stochastic ones 
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(best practice typically expects deviations lower than 200 pcm). 

This constant deviation between both methods can be due to a couple of simplifications 

or numerical schemes from the self-shielding step to the flux calculation one (for instance, 

meshing, self-shielding parameters, …).  

It means that in terms of keff the deviations are due to the deterministic model itself, and 

not the gap widening introduced. 

 

One can see in Figure 6-14(A) that 4 other points were added (respectively for 3, 8, 16, 

and 25 mm), these states serve as additional points to supply our future cross-sections 

library. 

In terms of local FA production rates, every point obtained with the deterministic 

approach is in the 3σ range obtained with TRIPOLI-4®. In order to further address the 

differences between both simulations, we compiled in Table 6-1 compiled results obtained 

for production rate in U5 (Figure 6-14 (B)) and absorption rate in U8 (as advised in [114]). 

 

λ (mm) 
Prod. U5 

(%) 
Abs. U8 

(%) 

FA33   

0.4 0.07 0.16 

2 0.27 0.58 

5 0.03 0.50 

12 0.16 0.21 

20 0.21 0.64 

FA55   

0.4 0.44 0.09 

2 0.30 0.21 

5 0.79 0.29 

12 0.53 0.69 

20 0.67 1.18 

Table 6-1 - Comparison of reaction rates |T4-AP3|/T4 for different gaps and FAs (σT4 < 1%) 

 

This table reads as the relative deviation between both codes with TRIPOLI-4® as the 

reference, for reaction rates, in two different FAs: 33 and 55. U5 production rate in FA33 has 

already been highlighted in Figure 6-14. The choice of FA33 and FA55 has been justified 

through their location: FA33 is the central assembly facing the gap widening, whereas FA55 

comes up to the inert material and is the direct witness of the change of boundary conditions 

at the right hand side of the geometry (Figure 6-8). 

 

First of all, one can notice that deviations are rather small, compared to our deterministic 

modeling expectations. The maximal one (1.18% in bold) is obtained for the U8 absorption 

in FA55 when the gap is 20 mm wide. In this extreme case the U8 rate given by AP3 is only ’20 

pcm’ far from the error bar. The deviation, in this assembly, increases as the gap widens. The 

latter is related to the inert material widening (the inert part is as wide as the gap). In terms 

of production rate, it is included in a [0.3, 0.8] range with a minimum reached for the nominal 

case (undisturbed geometry). It shows that postponing the reflection conditions by a gap 
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distance away has quite an impact on absorption for the wider widths, yet it remains fully 

acceptable. In other words, adding inert material still locally depicts the behavior of the 

original cluster as simulated by T4, even though a small deviation appears at the right hand 

side for both production and absorption rates. 

 

Regarding FA33, which is close to the gap, in terms of U5 the gap impact is invisible as 

highlighted above. Slight deviations appear for U8 regarding 2, 5 and 20 mm gaps. However, 

they remain widely acceptable (less than 5 pcm in terms of absolute deviation). 

 
λ (mm) Prod. U5 

(%) 
Abs. U8 

(%) 

East Qu. 
  

0.4 0.41 0.07 

2 0.31 0.62 

5 0.06 0.77 

12 0.39 0.33 

20 0.50 0.12 

Table 6-2 - Comparison of reaction rates in FA33 east quarter |T4-AP3|/T4 for different gaps and 

FAs (σT4<1%) 

 

Table 6-2 is a zoom in the east section of the FA33 (see Figure 6-13). It represents the 

quarter of the FA directly in contact with the gap enlargement. As one can see, the deviations 

are really small (the absolute deviation is about a few pcm). 

 

The results given by the flux calculation are satisfying with respect to the reference 

obtained with Monte Carlo. In other words, we can consider that these calculations can be 

the starting point to generate the library cross-sections. For a 20 mm gap a power increase 

in FA33 of 2% is observed, whereas it is about little less than 1% for 5 mm.  

 

 About step 3 – homogenization – 

 
From now on, the next inner step consists in homogenization and condensation. In our 

case, we will consider 20 groups of energy. To do so, we need a geometry of homogenization 

(Figure 6-12). The goal of this step is to generate the cross-sections associated with FA33, 

which will be used to depict the behavior of a core calculation in any configuration of 

interest. 
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Figure 6-15 - Cross-sections’ homogenization from APOLLO3® lattice 

 

Once the flux is obtained in all the geometry, we homogenize at the pin scale (Figure 

6-15). The goal of this step is to preserve the reaction rates, so that [125]: 

  

Σ𝑀,𝑔
̅̅ ̅̅ ̅̅ =

∑ V𝑚𝑚∈𝑀 Φ𝑚,𝑔Σ𝑚,𝑔

∑ V𝑚Φ𝑚,𝑔𝑚∈𝑀
=

∑ V𝑚Φ𝑚,𝑔Σ𝑚,𝑔𝑚∈𝑀

V𝑀Φ𝑀,𝑔
̅̅ ̅̅ ̅̅

 (Eq. 6-2) 

 

V𝑀 is the volume of region 𝑀, Σ𝑀,𝑔
̅̅ ̅̅ ̅̅  is the cross-section in group g in 𝑀 (see Figure 6-15), 

Φ𝑀,𝑔
̅̅ ̅̅ ̅̅  is the associated averaged flux. V𝑚 is the volume of micro-regions making up 𝑀 

(cladding, pellet, …), Σ𝑚,𝑔 is the cross-section in group g in 𝑚, and Φ𝑚,𝑔 is the associated 

flux. 

 

In APOLLO3®, The homogenized cross-sections Σ𝑀,𝑔
̅̅ ̅̅ ̅̅  are stored in a MPO 

(MultiParamOutput) in the form of a HDF file (a format to store large amounts of data).  

Each cross-sections obviously depends on the width λ as all Φ𝑚,𝑔 depend themselves on 

the water gap at the east of FA33 (Figure 6-15). Consequently, every Σ𝑀,𝑔
̅̅ ̅̅ ̅̅  is stored along 

with a ‘UserParameter’, in this case λ (state point). The code is then able to interpolate every 

Σ𝑀,𝑔
̅̅ ̅̅ ̅̅  according to the state points (as a reminder, we run calculations for λ=0, 0.4, 2, 3, 5, 8, 

12, 16, 20 and 25 mm). 
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 Toward the validation of the cross-sections’ independency 
assumption 

 

As mentioned above, nothing guarantees that the cross-sections only depends on one 

gap (in this case that Σ𝑀,𝑔
̅̅ ̅̅ ̅̅ = 𝑓(𝜆𝑒)), especially for large gaps. This assumption has to be 

checked a fortiori reusing the cross-sections when two gaps are changing together. 

 

 

Figure 6-16 - Mini-core with two enlargements 

 

For instance, in Figure 6-16 this means that the purple section of the FA only depends 

on the purple gap, and that the red section only depends the red gap.  

 

We also need to export cross-sections related to water regions, but the difference with 

fuel regions is that in theory they do not depend on the gaps width at all. Indeed, in those 

regions there is only one volume filled with water, so that (Eq. 6-2) simply gives Σ𝑀,𝑔
̅̅ ̅̅ ̅̅ = Σ𝑚,𝑔. 

 

3. Using one-variable dependent cross-sections within a 2D geometry in a 
core solver 

 

 Equivalence within a core calculation 
 

Once the library is generated, an intermediate step is necessary to ensure its reliability 

when used in a core context. In fact, when using the homogenized cross-sections in a core 

calculation, we do not find back the same reaction rates as obtained in the lattice calculation, 

because the averaged flux obtained in the lattice solver is not the same in the core solver. In 

other words, we need to modify the cross-sections so that the simulation run with macro-

regions gives the same reaction rates. 
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A set of so-called SPH (SuPer-Homogenization) factors [104] are thus associated with 

homogenized cross-sections to preserve the reactions rates obtained in the lattice 

calculation macro-regions. Equations of SPH factors 𝜇𝑀,𝑔 are (from [125]): 

  

Σ𝑀,𝑔 = Σ𝑀,𝑔
̅̅ ̅̅ ̅̅  𝜇𝑀,𝑔 (Eq. 6-3) 

 

Where Σ𝑀,𝑔 is the total cross-section in the macro-region 𝑀, used for the core calculation 

and 𝑔 is the group. Σ𝑀,𝑔
̅̅ ̅̅ ̅̅  is the lattice total cross-section obtained with a lattice calculation. 

In practice, only one reaction is essential as every reaction cross-section are proportional to 

the associated reaction rate. In APOLLO3® this is the total cross-section. The goal is thus to 

satisfy the following reaction rates equation (Eq. 6-4): 

 

ΦM,gΣ𝑀,𝑔 = ΦM,gΣ𝑀,𝑔
̅̅ ̅̅ ̅̅  𝜇𝑀,𝑔 = Σ𝑀,𝑔

̅̅ ̅̅ ̅̅  ΦM,g
̅̅ ̅̅ ̅̅  (Eq. 6-4) 

 

Where ΦM,g and ΦM,g
̅̅ ̅̅ ̅̅  are the core and lattice scalar fluxes (angular flux integrated in angle), 

𝜇𝑀,𝑔 is obtained through [98]: 

 

𝜇𝑀,𝑔 =
ΦM,g
̅̅ ̅̅ ̅̅

ΦM,g( 𝜇𝑀,𝑔)
 (Eq. 6-5) 

 

In practice, this equation (non-linear) is solved using a fixed-point algorithm included in 

APOLLO3®, for every groups and regions. We used the MINARET solver along with the SN 

method. Once the set of 𝜇𝑀,𝑔 preserving the reaction rates with respect to the reference 

calculation are found out, they are exported in the library to be taken into account in core 

calculations. 

This operation has been undertaken beforehand for our 10 state points (we run 

calculations for λ=0, 0.4, 2, 3, 5, 8, 12, 16, 20 and 25 mm as said in 2.4). 

 

 Configurations of interest 
 

Four configurations were undertaken to judge for gaps independency two at time. They are 

summed up below. 

 

 (A). Two water gaps (east and north) have the same value (𝜆𝑒 = 𝜆𝑛). 

 (B). The same water gaps vary but this time 𝜆𝑒 ≠ 𝜆𝑛. 

 (C). Is a test with 4 very different gaps in FA33 so that 𝜆𝑒 ≠  𝜆𝑛 ≠ 𝜆𝑠 

 (D). Similar to A., but the gap corner at the top right of FA33 is changed. To do so, 

FA45, FA54, FA44 and FA55 are also shifted by both right and top displacement value.  

 

Configuration (A) allows to notify if two quarters, characterized by the same cross-

sections can reproduce the reference calculation. In other words we, check the respective 

independency of the north and east gaps against each other. Configuration (B) allows to see 

if the change in 𝜆 is well reproduced by the library, and differs from configuration (A) in that 
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three different values of gap exist around the assembly. Configuration (C) includes 4 different 

gaps in the geometry (2, 5, 12 and 20 mm), including almost all studied gaps. Finally, 

configuration (D) has been set up to study the impact of a corner widening in the assembly 

with large gaps. In fact, in PWRs, the corners in the vicinity of the core center can widen due 

to FAs being deformed radially (the ‘barrel’ pattern). Other gaps were imposed to the 

nominal value (2 mm). Every configuration is represented in Figure 6-17. 

 

 

Figure 6-17 - Configurations of interest for the core solver (different colors are used to 

distinguish the regions, i.e. repeated in each FA half-quarters but including different gap 

settings) 

 

In fact, in the figure, we can see the domain with every related macro-regions as 

displayed by the APOLLO3® viewer. Every color stands for the material used in the region. 

One can see that each quarter of the FAs (east, north, west, and south) is repeated. 

However, each quarter’s materials are characterized by the user parameter 𝜆. The 

upgrade of these parameters are performed through a python class ‘assembly’ imported in 

an APOLLO3® dataset and used as a subroutine to manage fields and quarters related to 

each FA. 

The values for the numerical tests are summarized in Table 6-3. 

 

Configuration 𝝀𝒆 (mm) 𝝀𝒏 (mm) 𝝀𝒔 (mm) 

(A)    

(A-1) 0.4 0.4  

(A-2) 2 2  

(A-3) 5 5  

(A-4) 20 20  

(B)    

(B-1) 20 5  

(B-2) 20 12  

(C)    

(C-1) 20 12 5 

(D)    

(D-1) 5 5  

(D-2) 20 20  

Table 6-3 - Numerical tests for each configuration 
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Corresponding TRIPOLI-4® simulations were also performed for the same configurations, 

to serve as a reference. Every relative deviations of deterministic calculations will be given 

with comparison with the latter T4 calculations. 
 

 

 Results of configuration (A) 
 

Config. Prod. U5 
(%) 

Abs. U8 
(%) 

 keff (pcm) 

FA33 
  

Cluster  

A-1 0.11 0.38 A-1 138 

A-2 0.22 0.51 A-2 139 

A-3 0.16 0.04 A-3 123 

A-4 0.18 0.06 A-4 129 

Table 6-4 - Comparison of reaction rates in FA33 |T4-AP3|/T4 and keff in the cluster - config. (A)   

(σT4<1% for rates, σT4<30pcm for keff) 

 

Table 6-4 sums up the relative deviations between deterministic calculations and the 

stochastic reference, obtained for reaction rates in FA33 and multiplication factor in the 

cluster. 

 

In terms of multiplication factor, every deviation is included in the range [123, 139]. Given 

that the uncertainty about the TRIPOLI-4®calculations are about 20 pcm, one can argue that 

the deviation is the same for every calculation run. The latter matches the deviation of ~130 

pcm that was already observed for the lattice stage, it is thus conserved with APOLLO3® core 

and the model used for cross-sections (each quarter of assembly characterized by the 

adjacent gap). 

In terms of reaction rates in FA33, both codes are in good agreement. The maximal 

deviation is 0.51% obtained for absorption at nominal conditions. We could add that in this 

case the APOLLO3® value is 2 pcm far from the TRIPOLI-4®’s uncertainty interval. In other 

words, all values are almost mixed up. Thus at the assembly scale, one can say that our model 

reproduces quite well the effect for two varying gaps with a library set up for one 

independent gap.  

Let us zoom in on the east quarter of FA33 to analyze the same deviations (Table 6-5). 

The east quarter faces the gap enlargement, so does the north quarter. Yet, in this case 𝜆𝑒 =

𝜆𝑛, thus one quarter is enough. 

 
Config. Prod. U5 

(%) 
Abs. U8 

(%) 

East Qu. 
  

A-1 0.08 0.56 

A-2 0.28 0.57 

A-3 0.46 0.21 

A-4 0.59 0.28 

Table 6-5 - Comparison of reaction rates in FA33 east quarter |T4-AP3|/T4 - config. (A)  

(σT4<1%) 
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In the east quarter, locally, the simulations are in good agreement. The impact of the 

water gap must be limited enough so that the characterization per quarter seems correct to 

depict the impact on reaction rates. 

 

 

Figure 6-18 - Volume-integrated fission rates in the geometry (A-4) 

 

We see in Figure 6-18 the fission rates in the geometry. The impact of the maximal gap 

enlargement (Δ𝜆 = 18 𝑚𝑚 with 𝜆𝑒 = 𝜆𝑛 = 20 𝑚𝑚), is globally strong within the first external 

rows of FA33 (about 3, in accordance with [6]). The rise in fission rate does not seem to 

spread over adjacent quarters (west and south). Now, let us take in interest in configuration 

(B). 

 

 Results of configuration (B) 
 

Config. 
Prod. U5 

(%) 
Abs. U8 

(%) 
 Keff (pcm) 

FA33   Cluster  

B-1 0.13 0.30 B-1 142 

B-2 0.33 0.01 B-2 144 

Table 6-6 - Comparison of reaction rates in FA33 |T4-AP3|/T4 and keff in the cluster - config. (B)    

(σT4<1% for rates, σT4<30pcm for keff) 

 

Table 6-6 sums up the results obtained for reaction rates in FA33 and multiplication 

factor in the cluster in configuration (B). Two different cases were assessed: in every case the 

east gap is held constant (20 mm), whereas two values were imposed at the north, 5 and 20 

mm. Thereby, three very different values of parameters coexist at the same time in FA33, 

including the nominal value at the west and south gaps (a priori the most common value in 

a PWR). 

 

In terms of multiplication factor, the deviation is a bit higher than in Config. (A) and 
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almost constant for B-1 and B-2. However, seeing the uncertainty of tens of pcm, one can 

argue that the deviation is still constant compared with every previous cases. One cannot 

tell if this higher deviation is due to the presence of 3 different gaps. 

 

In terms reaction rate, every value pulled from the APOLLO3®calculation are included in 

the T4 uncertainty range. Thus, all value are mixed-up. Configuration (B) is thus well 

reproduced by our cross-sections library. A zoom in the north and east quarter is given in 

Table 6-7. 

 

Config. Prod. U5 (%) 
Abs. U8 

(%) 
Config. Prod. U5 (%) 

Abs. U8 
(%) 

East Qu.   North Qu.   

B-1 0.71 0.16 B-1 0.2% 0.58 

B-2 0.66 0.12 B-2 0.25 0.30 

Table 6-7 - Comparison of reaction rates in FA33 east and north quarter |T4-AP3|/T4 - config. 

(B) 

(σT4<1%) 

The maximal deviations observed are obtained for the production rate in the east quarter 

(where lies the maximal enlargement). For the production rate in B-1, in the east quarter of 

FA33 (going with the 0.71% deviation), the APOLLO3® value is only 5 pcm far from the 

TRIPOLI-4®’s uncertain interval. Globally, higher deviations are obtained for production 

compared to Table 6-5. This change could be attributed to the use of 3 different gaps from 

the library whereas FA33 only used 2 values of user parameter for configuration (A). 

 

 

 

Figure 6-19 - Volume-integrated fission rates in the geometry (B-2) 

 

In Figure 6-19, we can see that the impact on fission rates involved by two gaps 

enlargement is also held in the rows which are flushing the east and north gaps. This is 

coherent with the observation in configuration (A) where two large gaps were imposed. 

 



 

163 
 

To conclude, the configurations studied in (B) are well depicted by the quarter cutting 

proposed in the model, even with three different gaps. 

 

 Results of configuration (C) 
 

Even if the results seem to highlight an independency for every corner, in (C) every single 

gap have a different value. At the east we find a 20 mm gap, a 12 mm one at the north and 

finally a 5 mm one at the south. Obviously, the west gap equals the nominal value. 

 

Config. 
Prod. U5 

(%) 
Abs. U8 

(%) 
 keff (pcm) 

FA33   Cluster  

C-1 0.31 0.61 C-1 140 

Table 6-8 - Comparison of reaction rates in FA33 |T4-AP3|/T4 and keff in the cluster - config. (C)  

(σT4<1% for rates, σT4<30pcm for keff) 

 

Table 6-8 sums up the results obtained for reaction rates in FA33 and multiplication 

factor in the cluster in configuration (C). In terms of multiplication factor, the result is in a 

similar range compared to (A) and (B). In terms of reaction rates, both TRIPOLI-4®and 

APOLLO3® are very close to each other regarding this configuration. The rate for U8 

obtained with APOLLO3® is included in the error bar of TRIPOLI-4®, so does the rate 

obtained for U235 In other words the values are the same. 

 

In Table 6-9 we gathered the results regarding both north, south and east quarters.  

 

Config. 
Prod. U5 

(%) 
Abs. U8 

(%) Config. 
Prod. U5 

(%) 
Abs. U8 

(%) Config. 
Prod. U5 

(%) 
Abs. U8 

(%) 

East Qu.   North Qu.   South Qu.   

C-1 0.45 0.22 C-1 0.02 0.24 C-1 0.77 0.94 

Table 6-9 - Comparison of reaction rates in FA33 east, north and south quarter |T4-AP3|/T4 - 

config. (C) (σT4<1%)  

One can see that the east quarter induces higher rate deviations than the north one. It 

comes with a higher gap width at the east of 20 mm. However, one can notice that the south 

quarter implies even higher deviations. The latter could be explained by the independency 

hypothesis: in this case every quarter sees a different gap value. The south quarter, 

characterized with 5 mm, is surrounded by two large gaps at both north and east (of 12 and 

20 mm). Such values might involve overtaking flux effects over the south quarter, which is 

itself little disrupted compared to a nominal gap (delta of 3 mm). However one has to remind 

that such a configuration may be exaggerated, as such gaps are unlikely to arise in a core. 

Secondly, the related effect is less than 1%, which is limited compared to the assumption of 

independency. In Figure 6-20 we showed a map of fission rate in the configuration of 

interest. We can for instance notice the difference of gap enlargement impact between the 

east and the south. 

 



 

164 
 

 
 

Figure 6-20 - Volume-integrated fission rates in the geometry (C-1) 

 

 Results of configuration (D) 
 

In (D) the corner at the top right of FA33 is disrupted so that every FA from 45 to 55 

undergo a displacement along the x- and y- axis. 

 

Config. 
Prod. U5 

(%) 
Abs. U8 (%)  keff (pcm) 

FA33   Cluster  

D-1 0.05 0.58 D-1 132 

D-2 0.06 0.22 D-2 152 

Table 6-10 - Comparison of reaction rates in FA33 |T4-AP3|/T4 and keff in the cluster - config. 

(D)    

(σT4<1% for rates, σT4<30pcm for keff) 

 

In terms of multiplication factor, the deviation in D-2 is a bit higher than before. However, 

given the uncertainty interval, one can say that the deviation is still conserved compared to 

(A), (B) and (C). 

In terms of production rate in FA33, the deviation is almost nonexistent. In terms of 

absorption rates, the maximal deviation is 0.58% in D-1. It matches an APOLLO3® value 1 

pcm away from the TRIPOLI-4®uncertainty interval. In other words, at the FA33 scale the 

effect of the corner widening is quite limited. The latter must be explained by the rather 

limited impact in terms of rates in the FA (rows surrounding the corner), where the quarter 

are already characterized with large gaps. Let us go deeper in the west quarter of FA33 (Table 

6-11). 

Config. 
Prod. U5 

(%) 
Abs. U8 

(%) 

East Qu.   

D-1 0.41 0.69 

D-2 0.52 0.04 

Table 6-11 - Comparison of reaction rates in FA33 east quarter |T4-AP3|/T4 - config. (D) 

(σT4<1%) 
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In terms of local reaction rates, the maximal deviation is again obtained for D-1 regarding 

absorption (0.69%). Yet, the corresponding value of APOLLO3® is included in the uncertainty 

range of TRIPOLI-4®. Thereby, even locally in the east quarter FA33 the reaction rates are 

well depicted in the presence of a corner widening. 

 

 

Figure 6-21 - Volume-integrated fission rates in the geometry (D-2) 

In Figure 6-21 we can see that the effect of the corner widening in local and limited to a 

restricted number of rows surrounding the corner. This is the reason why our model is still 

valid for such corner changes. 

 

The configurations D-1 and D-2 are thus globally well reproduced in terms of reaction 

rates and multiplication factor by the quarter discretization and the associated homogenized 

cross-sections.  

 

4. Partial conclusion 
 

In this section we have studied a two steps neutronic scheme to depict the influence of 

fuel assembly bow. The first step consisted in generating a library of neutronic cross-sections 

homogenized at the pin cell scale, which is able to include any change of gap (from a closed 

gap to a 20 mm wide gap). To do so we set up a mini-core of 5X5 fuel assemblies and 

disrupted the gap at the east of the central assembly. In fact, to prevent us from generating 

a library taking into account the effects of the 4 surrounding gaps at the same time – which 

would lead in an important number of long calculations -, we made the assumption that one 

single gap was enough. The latter assumption implicitly guesses that each quarter of the FA 

(cut along its diagonals) is independent from each other. Consequently, we ran calculations 

for different sizes of gap (increases and decreases) in a lattice code and checked their results 

with respect to a reference (Monte Carlo simulations). Then we could homogenize the pin 

cells located in the east quarter of the FA. Doing so for several values of width, we obtain a 

consolidated library of cross-sections for all cells contained in one quarter depending on the 

adjacent gap width. 
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The second step is to use those cross-sections in core calculations. Every FA can then be 

cut in four quarters and each of them has cross-sections depending on the adjacent gap. To 

check the validity of gap independency, we considered a couple of different cases and 

compared them to Monte Carlo simulations. 

 

Deviations observed between APOLLO3® and TRIPOLI-4® in terms of reactions rates and 

keff are acceptable given the accuracy we look for our modeling. These results, highlighted 

the expected independency of each FA quarter, and also the lack of influence brought by a 

corner enlargement. This allows to use only one gap parameter for our homogenized cross-

sections library. 

 

All results obtained in this section make it possible to engage in a 3D full core modeling, 

including large water gaps up to 20 mm, using the MINARET Tetra solver (SN) in APOLLO3®
. 

 

Preliminary 2D calculations, in this chapter, highlight a maximal power increase provoked 

by a double 20 mm gap enlargement (compared to a nominal configuration) of 10% in the 

fuel assembly quarter facing the 20 mm gap, and about 4% in the whole fuel assembly.
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 Conclusion and open prospects 

 

1. A look back at the problematic 
 

In this manuscript we took an interest in an industrial well-known phenomenon in PWR 

nuclear cores: fuel assembly - static - bow. The latter addresses an important amount of 

operating issues among which we can cite the delayed action of the rod cluster control 

assembly, difficulties for the fuel assembly handling. 

 

Fuel assembly bow gives rise to a couple of different interactions between core physics. 

Consequently the subject is classified among multi-physical studies. Within all interactions 

whipped up by thermal hydraulics, mechanics and neutronics, we took on the so-called fluid-

structure interaction or FSI (interaction between thermal hydraulics and mechanics), and the 

linking of mechanics towards neutronics.  

 

The first interaction aims at depicting fuel assemblies’ deflection, based on a round-trip 

(two-way) coupling between forces induced by hydraulics, and in return the displacements 

of the fuel assembly. Those coupled interactions must be compared to deformation patterns 

observed ex-core. The second one aims at building up a link between the equilibrium 

resulting from the coupling itself and its impact onto core neutronics. The reason of studying 

such an interaction is twofold. In fact, aside from all operational related issues, fuel assembly 

bow might be at the root of azimuthal tilt phenomena in the core (asymmetry of the power 

with respect to the core quadrants) accelerating the burn-up locally. Moreover, even though 

it does not seem to be as important as others parameters over deformation at the moment, 

in order to further study the return from neutronics to mechanics along full cycles of 

operation, it is necessary as a first step to be able to deform geometrically the FAs in the 

neutronics calculation. 

 

The multi-physical environment of our work was summed up as follows (Figure 7-1), 

where 𝜆 stands for the set of gap widths in the core, and F for the set of hydraulic forces. 

 

 

Figure 7-1 - Subject environment 
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We gathered our proposal in terms of models for each interaction in Table 7-1. 

 

    Interaction 

 

Details 

Fuel assembly or lower scales Core scale (row/full-core) 

Interaction 

1 

Interaction 

5 

Interaction 

6 

Interaction 

1 

Interaction 

5 

Interaction 

6 

Modelling 
Stacking, 

Segments 

 

Framework 

of 

Timoshenko 

beams 

Hydraulic 

networks 

Cross-

sections with 

respect to 

adjacent gap 

Framework 

of 

Timoshenko 

beams 

Hydraulic 

networks 

Codes TRIPOLI-4® Cast3M Phorcys Apollo3® Cast3M Phorcys 

Table 7-1 - Scales, and related models 

 

2. About fluid and structure interactions (5 and 6) 
 

 Conclusion 
 

These interactions are obviously representing the main coupling, as hydraulic forces 

stemming from flow redistribution have a major impact on the final deformation of the fuel 

assembly. Our project mainly deals with interaction 6 and considered interaction 5 through 

the use of an in-house existing model. However both are necessary to strictly account for 

equilibrium states within the core cycles. 

 

Regarding the linking from hydraulics to mechanics, it consists in evaluating hydraulic 

forces exerting on different sections of a FA span. We sorted them out into three main 

categories. 

 

The first one is based on internal forces acting on one mixing grid and was called 𝐹𝑈𝑃 

(for upright position). It is estimated through the fluid being put in the upright position 

inside the grid as suggested for instance in [30] through CFD simulations regarding non-

axial flows in an assembly span, and latter taken over by Wanninger when considering lateral 

volumetric source terms in a grid for porous modelling of a FA row [22]. From our results, 

we can argue that this force, which can be valued up to 101 N depending on the 

configuration of interest, seems to be of secondary order compared to the two others below. 

 

The second one leans on cross-flows in a FA bundle 𝐹𝐵. The latter force is split further 

into two parts. The first one is the force due to lateral pressure losses in the inner bundle 𝐹𝐵𝑢 

and the second one leans on leaking cross-flows stemming from local redistributions from 

the FA to its surrounding bypasses (or ‘gaps’). We pointed out that orders of magnitude of 

𝐹𝐵 could reach up to 102 N and are of great importance on the final bow. 

 

Finally, the third type of force (so-called 𝐹𝑉) regards the redistribution between bypasses 

and FAs and is due to the difference in pressure around one grid. It depends on the grid 
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displacement. For this reason is has often been attributed as an added stiffness of the FA. 

The role played by the grids on the FA shapes has been suspected in the literature [43] and 

has been at the center of attention of recent works, in terms of upstream redistributions [73, 

27] and related forces [46], but it has never been studied in such an extent as in our work. 

 

In our work, we especially focused on the bypass-FA redistribution. From a 1D model of 

the convergent-diffuser – Model 0 - (space area between grids) we built up a very simple 

model (Model 1) of the redistribution based on two 1D channels (branches or elements) one 

for the grid and one for the gap itself. Successive tries and comparisons led to two 

improvements for this initial model. The first one consisted in taking into account stagnation 

points effects when the gap closes up, through the addition of corrective terms in hydraulic 

resistances initiated from dynamic pressure deviations between the two branches (Model 2). 

Finally we added the lateral resistance of cross-flow in a few rows of fuel rods, based on the 

so-called Eole correlation [28], when going from one way to another (Model 3). The latter 

model also introduces the cross-section of leakage and a number of crossed rods. Models 2 

and 3 were validated with comparison with a CFD model, with a remarkable advantage for 

Model 3 regarding the lowest thicknesses of gap. Model 2 (which does not depend on 

anything but geometrical parameters) was validated on its own through a brand-new 

experimental mock-up made of two 3D printed grids in a middle of which lies a variable gap. 

From the flow rate and pressure drops we set up pressure profiles from the Bernoulli’s 

principle and compared them to CFD results. We highlighted that the force 𝐹𝑉 is thus the 

combination of a profile term and an upstream pressure drop term, and its value can be up 

to hundreds of Newton (the same order as 𝐹𝐵). 

 

Gathering both bypass-FA and inner FA-FA redistributions (with a lateral inner bundle 

also depicted by the Eole correlation) through hypotheses – including homogeneous lateral 

pressure – it is possible to obtain a full wireframe of one FA as undertaken in [50]. We made 

the most of this effort to program a hydraulic python package named Phorcys, solving our 

own hydraulic networks. This code is then two-way coupled with a validated in-house 

structural code of FA relying on a framework of Timoshenko beams and contact joints. The 

result of the coupling has been brought face to face with CEA’s experimental results and 

highlighted good agreement, hydraulically and mechanically, what strengthened our faith 

regarding the set of forces exported from Phorcys. We also pointed out the very important 

role of 𝐹𝑉 on the final shape of the FA, and emphasized that it could behave in ways 

previously undescribed in the literature (non gap-equalizing). 

 

Later on, we have studied qualitatively a coupling regarding a row of FAs (Figure 7-2) for 

a different set of incoming flows. A precise knowledge of boundary conditions seems of first 

importance to better highlight deformation patterns. At a core scale (mini core of 64 FAs), 

we demonstrated that lateral forces given by a simple ‘row-by-row’ method (so called 

Method 1), leaning on a vertical and horizontal sweeping of the rows in the core and already 

industrially-used [50] seems relevant to consider further IFS couplings. As no comparison 

with more detailed approaches has been done in the literature, we compared this method 

to more intricate ones and realized that the pattern of lateral forces was quite equivalent. In 
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practice, it is also clearly possible to simulate a full rounded-type industrial core (Figure 7-3).  

 

 

Figure 7-2 - Flow rates visualization with Paraview (15-FAs row calculation with Phorcys), a 

scale threshold has been chosen to highlight axial flow rates in FAs (in green-red gradation) 

 

 

Figure 7-3 - Example of a 1300 MW core calculation with Method 1 in Phorcys, from left to 

right: axial flow rates in FAs (Paraview), directions of total lateral forces, norm of total lateral 

forces at floor 3 

 

 Prospects 
 

An important amount of prospects could be proposed for all scales. 

 

At the grid scale, Model 3 uses parameters of leakage cross-section 𝑆𝑙 and number of 

crossed rods 𝑁. Even though we could have highlighted minor impact of 𝑁 on the 

redistribution, ℎ𝑙 plays an important role on the pressure drops (no role on flow rates) and 

results depend on its value. An asymptotic hydraulic behavior of Model 3 is also 

demonstrated for ℎ𝑙 from 30 to 50 mm, as results converge towards Model 2’s. As we 

observed a dependency of ℎ𝑙 and the gap width 𝜆, we always adopted ‘best-practice’ values 

of ℎ𝑙 (from 20 to 50 mm) according the system studied. A future work on constructing a 

direct law ℎ𝑙 = 𝑓(𝜆) in an industrial context could be necessary. 

In terms of external gap (FA-gap), we used modified or unmodified aspect ratios of cross-

sections of a convergent-diffuser, depending on the value of 𝜆, to account for ‘half-

convergent-diffusers’. A different study could be undertaken to dive deep into a dedicated 

hydraulic resistance and its validation. 

 

At the fuel assembly scale, we assembled bypass-FA redistributions and inner FA-FA 

models together with an assumption of homogenized lateral pressure. We could have 

chosen a refined axial discretization, what could be judged out of scope in a simplified – 
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coarser – network approach. It could be interesting to compare Phorcys results with porous 

– refined – approaches using our convergent-diffuser correlation. An existing model of 

Darcy-Forchheimer in Cast3M-Fluid could be reliable to do so. 

Also, we did not model the nozzles in this work. We considered that the fluid was injected 

or withdrawn through the first and last floors of the FA. Consequently, scanning different 

solutions for nozzle-related redistributions could be of interest in the future. 

 

At the core scale, our results on a row of 15 FAs are still qualitative given the lack of 

suitable experimental data. A mock-up of 3x1 fuel assemblies at the CEA could help out 

validating a model in such a configuration in the future. 

Regarding a full 3D core, a coupling with roundtrips between structure and hydraulics is 

still to be pursued. We only analyzed hydraulic forces and no whole coupling has been 

undertaken at this stage. Given the complexity of such a system, an important under-

relaxation factor might be necessary to make the fixed-point algorithm converge (or use 

another algorithm). In terms of computational time, the structural code may be the ‘limiting 

reactant’ currently and may lead to much longer simulations for two-way couplings. A more 

recent, un-optimized, version of Phorcys indeed succeeded in simulating a feasibility 

configuration consisting in a ten thousands FAs-core (100 x 100 FAs) with Method 1 (Figure 

7-4) within a limited amount of time (a few hours) and 1300 MWe core in only a few minutes; 

provided that the matrix is stored in memory with a CSC sparse formulation. From the 

mechanical side, the same framework of beams is used at the core scale (see Table 7-1). 

However, the use of reduced mechanical FA models studied under-way by Leturcq [126, 127, 

128] might tremendously improve mechanical computation times and authorize fast 

coupling in the near future. The latter would let us catch a glimpse on intricate sensibility 

analysis, relying for instance on the uncertainty platform URANIE. 

 

 

 

 

Figure 7-4 - Feasibility test case of ten thousands FAs (norm of total lateral forces) 

Aside from FSI, the EOLE correlation is used in 3D at the moment at the core scale. Such 

a core usage has been called into question for several configurations [30] due to the 

difference in terms of confinement between an experimental vein and a core environment. 

A proper attention could be paid to study a dedicated core correlation.  
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Finally, the more precisely we know the boundary conditions in terms of incoming flow, 

the more accurate the deformation patterns are. In our analysis of 3D forces in a core, we 

simply adjusted incoming planar profiles of velocity found out in the literature to the 3D 

core. In theory, a two-way coupling between a core model and a vessel (including plena) 

model is necessary to account for accurate boundary conditions. The latter coupling has 

been already realized in the literature [14, 82]. One could consider doing so with a simplified 

vessel simulated by a CFD code like TrioCFD, and a core simulated by Phorcys or any porous 

code. This would highly improve the 3D surface of velocity at the core inlet and outlet. 

 

3. About mechanics to neutronics (interaction 1) 
 

 Conclusion 
 

In this section, we give insights on the outcomes of deformation onto core neutronics. 

The latter could include at the same time static bow along with radio protection or core-

related issues like power tilts as well as vibration-induced noise. Neutronics deals most of 

the time with straight and undeformed geometries. With a growing interest in optimizing 

industrial systems considering fuel deformation over the past few years, the number of 

broadcast publications focused on deformed geometries has increased importantly, 

including Gen II/III reactors as well as and Gen IV ones [129].  

 

While a Monte Carlo approach often let the user unfold every kind of classical 3D 

volumes, the deterministic one is by design more complex geometrically-speaking. The 

different steps required by a classical deterministic scheme (self-shielding, generation of 

cross-sections, equivalence …) generally imply structured grids made of pin cells, and the 

third dimension at the core scale is often treated with axial extrusion. 

 

As a first attempt we highlighted that classical C and S-shapes can be depicted at the by 

the so-called segment method with a Monte Carlo code. While a stacking method, standing 

for a vertical stacking of axially-extruded cylinders, is often used in published material [19, 

108], we showed through parametric simulations that inclined segments are closer to a 

continuous – toroidal - reference whatever are the level of discretization and the assembly 

deflection. The latter segment method can serve as a mean for modelling spatially-limited 

scales as fuel rods or even a couple of FAs. It can also be seen as a reference for 3D 

simulations undertaken with deformed FA in a further deterministic modelling. Indeed, even 

though the stochastic approach is known as a validation mean for deterministic calculations, 

the Monte Carlo approach would probably be too time-consuming to reach suitable 

dispersion [130] (up to several weeks) for depicting a 3D full core with segments (except  if 

one has access to important computing resources, i.e. time and processors). For this reason 

a deterministic approach is preferred for full core calculations. 

 

The latter approach often relies on two different steps. First, a lattice calculation which 

can be fast and accurate enough to generate a cross-section library. Second, a core 

calculation which puts the latter library to good use. The core calculation is undertaken on a 
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homogenized geometry with a reduced number of energy groups (condensation), which 

authorizes reasonable simulation times.  

 

In order to take into account deformations, we proposed a way to generate cross-

sections at the pin scale. The latter approach is based on an assumption that each quarter 

of assembly could be independent from each other. In theory, when homogenizing, all fuel-

related cross-sections must depend on the different gaps surrounding one FA, i.e. four gaps 

respectively at the east, west, north and south. However, the number of calculations needed 

for taking into account all gaps increases importantly. In other words, if one considers a 

library leaning on 10 different widths of bypass to fill up a range of consistent values, it 

stands for about 103 combinations sampling. At a rate of a couple of hours for each 

calculation the generation could be intricate. As a matter of fact, this is the reason why we 

decided to prove that each quarter of assembly can be considered independent from each 

other with respect to several physical values. 

 

To do so, we set up homogenized cross-sections along with only one variable gap. We 

further reused this library on different test cases and highlighted that every core calculation 

depicted the reference given by the equivalent Monte Carlo calculation. This primary step is 

thus of importance to generate a library regarding any kind of deformation at the core scale 

and the associated neutronics core calculation. 

 

 Prospects 
 

At this stage, it becomes possible to perform a full core calculation in two dimensions 

with every possible deflection as soon as it conserves the set of 𝜆 values in the suitable range 

of generation. Through a subroutine, one can transfer hydro-mechanical results of a FSI 

coupling (displacements and bypasses’ widths) to a software dedicated to neutronics data 

setting like the ALAMOS module of SALOME [119]. A coupling on a row of 15 FAs with a 

shifted inlet velocity profile can be used as an example, as it is the only configuration 

available at the moment (Figure 7-5). The data of the equilibrium was exported to ALAMOS 

which can generate the appropriate mesh for APOLLO3® thanks to the structure 

displacements. Within an APOLLO3® dataset, a python subroutine can then map the set of 

𝜆 to every quarter of FA (see again Figure 7-5) to parameter the cross-sections. An example 

of flux map obtained in group 4 is also shown in Figure 7-5. In this example a maximal 

increase of power was observed at the west of FA8 of about 3%, and 1% in the whole 

assembly. An example of core data linking with arbitrary values of λ (once again, no fluid-

structure coupling is operational at this scale yet), is shown in Figure 7-6.  
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Figure 7-5 - (top) deformations stemming from a FSI coupling with shifted inlet conditions, 

(bottom) field of gaps parameters λ sent to APOLLO3® to preset the cross-sections and the 

associated flux in group 4 

 

 

Figure 7-6 - (left) field of gaps parameters λ used to preset the cross-sections (right) associated 

resulting fission rates 

 

Attention must be paid in order to account for core-scaled phenomena. It would be 

necessary to generate the same library in the lattice code with leakage conditions [131]. In 

fact, at the core scale, an amount of neutrons leaks from the core whereas we considered 

reflective conditions without leakage. The latter ones are necessary to be compared to 

Monte Carlo calculations in which leakage models remain a research area (see for instance 

[132]). 

 

What is more this scheme is at this stage available in 2D. A work is yet necessary to 

extend this approach for an additional dimension. At the moment, a research effort is set 

about using 3D unstructured geometries in the MINARET [106] solver of APOLLO3®. If 

possible, a simplified 3D geometry of fuel assemblies could be designed through a CAD 

software like SALOME [66]. The latter would consist in a partition of axial volumetric groups 
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to make out any macro-region and filled up with tetrahedrons elements (Figure 7-7). One 

could characterize each axial elements with respect to the averaged axial width of the 

adjacent water gap. In this case, the segment method along with a Monte Carlo code could 

be used as the validation mean, for instance regarding one fuel assembly. 

 

 

Figure 7-7 - 3D fuel assemblies (SALOME), from left to right: 3D overall view, axial cross 

section, zoom in the 2D axial cross section  

 





  

 

Appendix A: Derivation of the UP force 
 

 

Figure A-1 - Lateral force caused by the flow across a grid 

 

Let 𝑉 be the grid volume and 𝜕𝑉 = 𝑆𝑖𝑛𝑡 + 𝑆𝑜𝑢𝑡 + 𝑆𝑙1 + 𝑆𝑙2 its frontier. This volume contains 

the grid structure (bundle and straps) Σ of frontier 𝜕Σ , and the fluid volume 𝑉𝑓 of frontier 

𝜕𝑉𝑓
. Inside the fluid volume, the velocity at a point M is 𝑣 (𝑀) = 𝑣𝑥(𝑀) 𝑒𝑥    + 𝑣𝑧(𝑀) 𝑒𝑧    . 

The momentum conservation principle gives: 

 

𝜌(𝑣 . ∇𝑣 ) = 𝑑𝑖𝑣(�̿�)   (Eq. A-1) 

 

Where �̿� = −𝑝�̿� + 2𝜇�̿� =  −𝐼�̿� + 𝜇(∇𝑣 +𝑡∇𝑣 ),  𝜇 being the dynamic viscosity and 𝑝 the 

static pressure. 

If one integrates the latter formula over 𝑉𝑓: 

 

∭ 𝜌(𝑣 . ∇𝑣 )
𝑉𝑓

𝑑𝜏 = ∭ 𝑑𝑖𝑣(�̿�)𝑑𝜏
𝑉𝑓

  (Eq. A-2) 

 

Using the Green-Ostrograski theorem, and the continuity equation ∇. 𝑣 = 0: 

 

∯ 𝜌(𝑣 . 𝑛  )𝑣     𝑑𝑆
𝜕𝑉𝑓

= ∯ �̿�. 𝑛  𝑑𝑆
𝜕𝑉𝑓

  (Eq. A-3) 

 

Where  𝑛   is a  𝜕𝑉 normal vector. It follows: 

 

∯ 𝜌(𝑣 . 𝑛  )𝑣     𝑑𝑆
𝜕𝑉

+ ∯ 𝜌(𝑣 . 𝑛  )𝑣     𝑑𝑆
𝜕Σ

= ∯ �̿�. 𝑛  𝑑𝑆
𝜕𝑉

+ ∯ �̿�. 𝑛  𝑑𝑆
𝜕Σ

  (Eq. A-4) 
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With ∯ �̿�. 𝑛  𝑑𝑆
𝜕Σ

 known as  𝐹𝑠→𝑓
           . Giving that 𝑣 |𝜕Σ   = 0  , 

 

∯ 𝜌(𝑣 . 𝑛  )𝑣     𝑑𝑆
𝜕𝑉

= ∯ �̿�. 𝑛  𝑑𝑆
𝜕𝑉

+ 𝐹𝑠→𝑓
            (Eq. A-5) 

 

Developing both terms: 

 

∬ 𝜌(𝑣 . 𝑛  )𝑣     𝑑𝑆
𝑆𝑖𝑛

+ ∬ 𝜌(𝑣 . 𝑛  )𝑣     𝑑𝑆
𝑆𝑜𝑢𝑡

+ ∬ 𝜌(𝑣 . 𝑛  )𝑣     𝑑𝑆
𝑆𝑙1

+ ∬ 𝜌(𝑣 . 𝑛  )𝑣     𝑑𝑆
𝑆𝑙2

= ∬ �̿�. 𝑛  𝑑𝑆
𝑆𝑖𝑛

+ ∬ �̿�. 𝑛  𝑑𝑆
𝑆𝑜𝑢𝑡

+ ∬ �̿�. 𝑛  𝑑𝑆
𝑆𝑙1

+ ∬ �̿�. 𝑛  𝑑𝑆
𝑆𝑙2

+ 𝐹𝑠→𝑓
            

(Eq. A-6) 

 

We know that 𝑣 𝑆𝑙1
= 𝑣 𝑆𝑙2

= 0  , 

 

∬ 𝜌(𝑣 . 𝑛  )𝑣     𝑑𝑆
𝑆𝑖𝑛

+ ∬ 𝜌(𝑣 . 𝑛  )𝑣     𝑑𝑆
𝑆𝑜𝑢𝑡

= ∬ �̿�. 𝑛  𝑑𝑆
𝑆𝑖𝑛

+ ∬ �̿�. 𝑛  𝑑𝑆
𝑆𝑜𝑢𝑡

+ ∬ �̿�. 𝑛  𝑑𝑆
𝑆𝑙1

+ ∬ �̿�. 𝑛  𝑑𝑆
𝑆𝑙2

+ 𝐹𝑠→𝑓
            

(Eq. A-7) 

 

Along the x-axis, 

 

𝐹𝑠→𝑓
          . 𝑒𝑥    = −𝐹𝑈𝑃

= ∬ 𝜌𝑣𝑥𝑣𝑧𝑑𝑆
𝑆𝑜𝑢𝑡

− ∬ 𝜌𝑣𝑥𝑣𝑧𝑑𝑆
𝑆𝑖𝑛

− ∬ (𝑝 − 2𝜇𝜕𝑥𝑣𝑥)𝑑𝑆
𝑆𝑙1

− ∬ 𝜇(−𝜕𝑥𝑣𝑧 − 𝜕𝑧𝑣𝑥)𝑑𝑆
𝑆𝑖𝑛

− ∬ (−𝑝 + 2𝜇𝜕𝑥𝑣𝑥)𝑑𝑆 − ∬ 𝜇(𝜕𝑥𝑣𝑧 + 𝜕𝑧𝑣𝑥)𝑑𝑆
𝑆𝑜𝑢𝑡𝑆𝑙2

 

(Eq. A-8) 

 

To make the reading easier, we can note the mean of 𝜙 over the surface 𝐴: 

 

〈𝜙〉𝐴 =
1

𝐴
∬𝜙 dS

𝐴

 (Eq. A-9) 

 

We know that 𝑣 𝑆𝑙1
  = 𝑣 𝑆𝑙2

= 0   and 𝑣𝑥𝑆𝑜𝑢𝑡
= 0. Additionally, we assume that we can 

neglect the contribution of the pressure over 𝑆𝑙1 and 𝑆𝑙2, given the small lateral pressure loss 

in the grid compared to the dynamic pressure and that the cross-sections (𝑆𝑙1 and 𝑆𝑙2) are 

at least one order of magnitude smaller than 𝑆𝑖𝑛 and 𝑆𝑜𝑢𝑡. Finally, (Eq. A-8) becomes: 

 

𝐹𝑠→𝑓
          . 𝑒𝑥    = −𝐹𝑈𝑃 = −𝜌𝑆𝑖𝑛〈𝑣𝑥𝑣𝑧〉𝑆𝑖𝑛

+ 𝜇𝑆𝑖𝑛〈𝜕𝑥𝑣𝑧〉𝑆𝑖𝑛
 

+𝜇𝑆𝑖𝑛〈𝜕𝑧𝑣𝑥〉𝑆𝑖𝑛
− 𝜇𝑆𝑜𝑢𝑡〈𝜕𝑥𝑣𝑧〉𝑆𝑜𝑢𝑡

 

 

(Eq. A-10) 
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Let 𝑈 be the typical axial velocity, and 𝑈𝑡𝑎𝑛(휃) (휃 inclination angle of the fluid) the 

associated lateral velocity. Let 𝑒 be the length scale in both directions - in the bundle we 

could have distinguished each directions, but here the grid height is of the same order than 

the grid pitch -.  

 

Consequently, 

 

{
 
 

 
 

𝜌〈𝑣𝑥𝑣𝑧〉𝑆𝑖𝑛
∼ 𝜌𝑈2tan (휃)

 𝜇〈𝜕𝑥𝑣𝑧〉𝑆𝑖𝑛
∼ 𝜇〈𝜕𝑥𝑣𝑧〉𝑆𝑜𝑢𝑡

∼
𝜇𝑈

𝑒

𝜇〈𝜕𝑧𝑣𝑥〉𝑆𝑖𝑛
∼

𝜇𝑈

𝑒
tan(휃)

 

 

(Eq. A-11) 

 

In other words, we can neglect the viscous terms if the following conditions are fulfilled: 

 

{
𝜌𝑈2 tan(휃) ≫

𝜇𝑈

𝑒
𝜇𝑈

𝑒
≫

𝜇𝑈

𝑒
tan (휃)

 

 

(Eq. A-12) 

   

Thus, 

 

{
𝑅𝑒⊥ =

𝜌𝑒𝑈

𝜇
tan (휃) ≫ 1

tan(휃) ∼ 1

 

 

(Eq. A-13) 

The first condition is fulfilled, because the lateral Reynolds in the core is much higher 

than 1 (around 103), the second condition is also fulfilled as in practice tan(휃) ≪ 1. 

 

Consequently,  

 

𝐹𝑈𝑃 ≃ 𝜌𝑆𝑖𝑛〈𝑣𝑥𝑣𝑧〉𝑆𝑖𝑛
 

 

(Eq. A-14) 

Meaning that the force is mainly carried by the fluid inertia. The formula would give the 

well-known result (Eq. 1-5) if one applies uniform velocities to look after an order of 

magnitude. Another derivation would be to say that 〈𝜕𝑥𝑣𝑧〉𝑆𝑜𝑢𝑡
∼ 0 by stating that the velocity 

can be split into a mean and a fluctuation in the grid which represents a periodic media. 

 





  

Appendix B: Estimation of the lateral force applying 

on the FA bundle through the pressure drop 
  

The goal of this appendix is to explain how we deduced the bundle force expression 

thanks to the Peybernès’ correlation [28]. 
 

1. Preliminaries – forces exerted by a fluid phase within a solid phase 
 

 

Figure B-1 - Problem treated (V) 

 

The control volume 𝑉, whose frontier is 𝜕𝑉 = 𝑆1 ∪ 𝑆2 ∪ 𝑆3 ∪ 𝑆4, holds a solid phase Σ 

(frontier 𝜕Σ), and a liquid phase 𝑉𝑓 (frontier 𝜕𝑉𝑓
= 𝜕Σ ∪ 𝜕𝑉). The velocity 𝑣  is defined by ∀𝑀 ∈

𝑉𝑓,   𝑣 = 𝑣𝑥(𝑀)𝑒𝑥    + 𝑣𝑧(𝑀)𝑒𝑧    . Through a similar development – projection of the N-S equation 

-, and the same notations as found in Appendix A, the lateral force applying on Σ by 𝑉𝑓 is: 

 

𝐹𝑉𝑓→𝛴
            . 𝑒𝑥    = 𝜌𝑆1〈𝑣𝑥

2〉𝑆1
+ 𝜌𝑆2〈 𝑣𝑥𝑣𝑧〉S2

− 𝜌𝑆3〈𝑣𝑥
2〉S3

− 𝜌𝑆4〈𝑣𝑥𝑣𝑧〉𝑆4

+ 𝑆1〈 𝑝 〉𝑆1
− 2𝜇𝑆1〈 𝜕𝑥𝑣𝑥〉𝑆1

− 𝜇𝑆2〈 𝜕𝑥𝑣𝑧〉𝑆2
− 𝜇𝑆2〈 𝜕𝑧𝑣𝑥〉𝑆2

− 𝑆3〈 𝑝 〉𝑆3
+  2𝜇𝑆3〈 𝜕𝑥𝑣𝑥〉𝑆3

+ 𝜇𝑆4〈 𝜕𝑥𝑣𝑧〉𝑆4
+ 𝜇𝑆4〈 𝜕𝑧𝑣𝑥〉𝑆4

  

 

(Eq. B-1) 

 

Where: 

 

 For 𝑖 = 2,4;  𝑣𝑥𝑆𝑖
= 𝑣𝑥(𝑥, 𝑧 = 𝑧𝑆𝑖

) = 𝑣𝑥𝑆𝑖
(𝑥), et 𝑣𝑧𝑆𝑖

= 𝑣𝑧(𝑥, 𝑧 = 𝑧𝑆𝑖
) = 𝑣𝑧𝑆𝑖

(𝑥) 

 For 𝑖 = 1,3;  𝑣𝑥𝑆𝑖
= 𝑣𝑥(𝑥 = 𝑥𝑆𝑖

, 𝑧) = 𝑣𝑥𝑆𝑖
(𝑧), et 𝑣𝑧𝑆𝑖

= 𝑣𝑧(𝑥 = 𝑥𝑆𝑖
, 𝑧) = 𝑣𝑧𝑆𝑖

(𝑧) 

 

2. Analysis of the terms order 
 

The cross sections are of the same order i.e. 𝑆1 ∼ 𝑆2 ∼ 𝑆3 ∼ 𝑆4 = 𝑆. Let 𝑒 be the horizontal 

scale of variation (the rod scale), and 𝐿 the vertical scale of variation (the bundle height), we 
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assume that 𝑒/𝐿 ≪ 1. Like in Appendix A, 𝑈 is the typical axial velocity, and tan(휃) 𝑈 (with 

tan(휃) ≪ 1)  the associated lateral velocity. 

 

1.3. Analysis of the viscous forces 
 

{
 
 

 
 𝜇〈 𝜕𝑧𝑣𝑥〉𝑆i

∼
𝜇 tan(휃) 𝑈

𝐿

2𝜇〈𝜕𝑥𝑣𝑥〉𝑆i
∼

2𝜇 tan(휃)𝑈

𝑒

𝜇〈 𝜕𝑥𝑣𝑧〉𝑆i
∼

𝜇𝑈

𝑒

 

  

(Eq. B-2) 

 

As 𝑒/𝐿 ≪ 1, and tan(휃) ≪ 1, thus 
e tan(θ)

𝐿
≪ 1 and the brown terms are neglected against 

the orange ones.  

In the same way, 2 tan(휃) ≪ 1, and the green terms are neglected. 

 

It follows: 

 

𝐹𝑉𝑓→𝛴
            . 𝑒𝑥    ≃ 𝜌𝑆1〈𝑣𝑥

2〉𝑆1
+ 𝜌𝑆2〈 𝑣𝑥𝑣𝑧〉S2

− 𝜌𝑆3〈𝑣𝑥
2〉S3

− 𝜌𝑆4〈𝑣𝑥𝑣𝑧〉𝑆4

+ 𝑆1〈 𝑝 〉𝑆1
− 𝜇𝑆2〈 𝜕𝑥𝑣𝑧〉𝑆2

− 𝑆3〈 𝑝 〉𝑆3
+ +𝜇𝑆4〈 𝜕𝑥𝑣𝑧〉𝑆4

 

(Eq. B-3) 

 

In other words, the friction terms related to the variations of the axial velocity along the 

x-axis dominates the other terms of friction.  This is not a surprising result given that in the 

PWRs, the flow is quasi-axial, and that the pitch of the bundle is lower than the span pitch 

of a FA. 

 

2.3. Analysis of the inertial forces 
 

{
𝜌〈𝑣𝑥

2〉𝑆i
∼ 𝜌 tan(휃)2 𝑈2

𝜌〈𝑣𝑥𝑣𝑧〉𝑆i
∼ 𝜌 tan(휃) 𝑈2 (Eq. B-4) 

 

As tan(휃) ≪ 1, we can neglect the red terms against the blues ones. 

Thus: 

 

𝐹𝑉𝑓→𝛴
            . 𝑒𝑥    ≃ 𝜌𝑆2〈 𝑣𝑥𝑣𝑧〉S2

− 𝜌𝑆4〈𝑣𝑥𝑣𝑧〉𝑆4
+ 𝑆1〈 𝑝 〉𝑆1

− 𝜇𝑆2〈 𝜕𝑥𝑣𝑧〉𝑆2

− 𝑆3〈 𝑝 〉𝑆3
+ 𝜇𝑆4〈 𝜕𝑥𝑣𝑧〉𝑆4

 

 

(Eq. B-5) 

3.3. Comparison between the viscous and inertial forces 
 

{
𝜇〈 𝜕𝑥𝑣𝑧〉𝑆i

∼
𝜇𝑈

𝑒
𝜌〈𝑣𝑥𝑣𝑧〉𝑆i

∼ 𝜌 tan(휃) 𝑈2
 (Eq. B-6) 
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The division between the viscous and inertial forces leads to the crosswise Reynolds 

number 𝑅𝑒⊥ = 𝜌 tan(휃) 𝑈𝑒/𝜇. A substitution into the latter formula for operational values 

(we chose an angle of 1 degree, which might be a bit higher or lower depending on the 

position in the core) still leads to an order of magnitude of 103. In other words, the viscous 

forces due to the lateral variation of axial velocity are generally much lower than inertia in 

the crosswise direction, even for small angles. 

 

It follows: 

 

𝐹𝑉𝑓→𝛴
            . 𝑒𝑥    ≃ 𝜌𝑆2〈 𝑣𝑥𝑣𝑧〉S2

− 𝜌𝑆4〈𝑣𝑥𝑣𝑧〉𝑆4
+ 𝑆1〈 𝑝 〉𝑆1

− 𝑆3〈 𝑝 〉𝑆3
 

 

(Eq. B-7) 

Finally, the remaining forces are the pressure and inertial ones. 

 

4.3. Pressure forces and inertial forces 
 

 

{
〈 𝑝 〉𝑆𝑖

∼ 𝑝

𝜌〈 𝑣𝑥𝑣𝑧〉𝑆i
∼ 𝜌 tan(휃) 𝑈2 (Eq. B-8) 

 

(Eq. B-8) relates to a crosswise Euler number 𝐸𝑢⊥ = 𝑝/𝜌 tan(휃) 𝑈2. Its value in a PWR 

core equals 104. In other words, it mainly remains the pressure forces, higher than the inertial 

terms, which themselves are higher than the viscous terms. 

 

𝐹𝑉𝑓→𝛴
            . 𝑒𝑥    ≃ 𝑆1〈 𝑝 〉𝑆1

− 𝑆3〈 𝑝 〉𝑆3
 

 
(Eq. B-9) 

Given that generally 𝑆1 = 𝑆3 : 

 

𝐹𝑉𝑓→𝛴
            . 𝑒𝑥    ≃ 𝑆1(〈 𝑝 〉𝑆1

− 〈 𝑝 〉𝑆3
) (Eq. B-10) 

 

In other words, most of the bundle lateral force, in PWR conditions, may stem from the 

pressure drop related term, which itself can be estimated through the Eole correlation.





  

 

Appendix C: Derivation of the extended Bernoulli’s 

principle 
 

1. The system 
 

A part of the following content is based on courses dealing with real – viscous – fluids 

[133, 134, 135]. 

 

 

Figure C-1 - System 

 

The system is shown in Figure C-1, let us consider 𝑎𝑏𝑐𝑑 (located between cross sections 

𝑠1 and 𝑠2) as our control volume. After a time d𝑡 the fluid has gone to 𝑎′𝑏′𝑐′𝑑′. 

 

2.  Mass conservation 
 

Through mass conservation, within d𝑡, the elementary mass dm1 (contained in 𝑎𝑎′𝑑′𝑑) 

which entered the system during d𝑡, and the elementary mass dm2 (contained in 𝑏𝑏′𝑐′𝑐) 

which exited during the same d𝑡, must be equal. We will note this mass dm. This writes: 

 

𝜌𝑄1d𝑡 = 𝜌𝑄2d𝑡 (Eq. C-1) 

 

Where 𝜌 stands for the density, and 𝑄 for the volumetric flow rate. 

In other words: 

 

𝜌 ∬ 𝑣(𝑥, 𝑦)𝑑𝑠d𝑡
𝑠1

 = 𝜌 ∬ 𝑣(𝑥, 𝑦)𝑑𝑠d𝑡
𝑠2

  (Eq. C-2)  

 

Introducing the bulk velocity (or mean velocity) 𝑉: 
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𝜌𝑠1𝑉1d𝑡 = 𝜌𝑠2𝑉2d𝑡  (Eq. C-3) 

 

We know that: 

 

𝑉d𝑡 =
1

𝑠
∬𝑣(𝑥, 𝑦)d𝑡𝑑𝑠

𝑠

=
1

𝑠
∬d𝑙(𝑠)𝑑𝑠

𝑠

= 𝑙𝑚 (Eq. C-4) 

 

This is the mean distance travelled by the fluid on cross section 𝑠 during d𝑡. With this 

notation we can deduce: 

 

𝜌𝑙𝑚1𝑠1 = 𝜌𝑙𝑚2𝑠2 (Eq. C-5) 

 

3. Energy conservation 
 

We write the mechanical energy conservation as follows: 

 

 Δ𝐸𝑐 = 𝑊𝑝 + 𝑊𝑑 (Eq. C-6) 

 

Where 𝑊𝑝 is the pressure-volume work, and 𝑊𝑑 is the dissipative forces work. The 

potential energy is not taken into account here. 

 

1.3. Kinetic energy 
 

Kinetic energy contained in  𝑎𝑎′𝑑′𝑑 and 𝑏𝑏′𝑐′𝑐: 

 

 

Figure C-2 - Elementary surface ds 

 

𝐸𝑐 contained in infinitesimal volume is: 

 

d𝐸𝑐 =
1

2
𝑣2(𝑥, 𝑦)(𝜌𝑣(𝑥, 𝑦)d𝑡𝑑𝑠) (Eq. C-7) 

Thus energy in aa’d’d or bb’c’c is: 

 

𝐸𝑐 = ∬ d𝐸𝑐(𝑑𝑠) = ∬
1

2
𝑣3(𝑥, 𝑦)𝜌d𝑡𝑑𝑠

𝑠𝑠

 (Eq. C-8) 
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Introducing 𝛼 as the kinetic energy coefficient defined by: 

 

𝛼 =
1

𝑠
∬ (

𝑣

𝑉
)

3

𝑑𝑠
𝑠

 (Eq. C-9) 

It comes: 

 

𝐸𝑐 =
1

2
𝜌𝛼𝑉3𝑠d𝑡 (Eq. C-10) 

 

We know that: 

 

𝑠𝑉 =
d𝜏

d𝑡
 (Eq. C-11) 

 

Where d𝜏 is the volume aa’d’d or bb’c’c. We can write: 

 

𝐸𝑐 =
1

2
𝜌𝛼𝑉2dτ (Eq. C-12) 

In other words: 

 

𝐸𝑐 =
1

2
𝛼dm𝑉2 (Eq. C-13) 

 

Kinetic energy variation during d𝑡: 

 

Thanks to the latter result: 

 

Δ𝐸𝑐 =
1

2
𝛼2dm𝑉2

2 −
1

2
𝛼1dm𝑉1

2 (Eq. C-14) 

 

2.3. Pressure-volume work 
 

Considering a volume d𝑙, the pressure work is given as follows: 

 

δWp = −𝑝d𝑙 (Eq. C-15) 

 

In other words: 

 

Wp = ∫ 𝑝1𝑣1(𝑥, 𝑦)d𝑡𝑑𝑠
𝑎𝑎′𝑑′𝑑

− ∫ 𝑝2𝑣2(𝑥, 𝑦)d𝑡𝑑𝑠
𝑏𝑏′𝑐′𝑐

 (Eq. C-16) 

 

Noting <> the mean operator: 
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Wp = 𝑠1〈𝑝1𝑣1〉𝑠1
  d𝑡 − 𝑠2〈𝑝2𝑣2〉𝑠2

 d𝑡   (Eq. C-17) 

 

If 𝑝1 is homogenous on the cross section, such as 𝑝1(𝑥, 𝑦) = 𝑃1 

 

Wp = 𝑠1𝑃1〈𝑣1〉𝑠1
d𝑡 − 𝑠2𝑃2〈𝑣2〉𝑠2

 d𝑡   (Eq. C-18) 

 

In other words: 

 

Wp = 𝑠1𝑃1𝑙𝑚1 − 𝑠2𝑃2𝑙𝑚2   (Eq. C-19) 

Thus: 

 

Wp = d𝜏(𝑃1 − 𝑃2)  (Eq. C-20) 

  

3.3. Work of dissipative forces 
 

Combining (Eq. C-6), (Eq. C-14) and (Eq. C-20): 

 
1

2
𝜌𝛼1𝑉1

2 + 𝑃1 =
1

2
𝜌𝛼2𝑉2

2 + 𝑃2 −
𝑊𝑑

d𝜏
 (Eq. C-21) 

 

The term 𝑊𝑑/d𝜏 can originate from viscous friction, in this case it is a frictional loss. With 

Δ𝑃12 the related total pressure loss: 

 
𝑊𝑑

d𝜏
= −Δ𝑃12 = −

1

2𝐷ℎ
𝑓𝜌𝑉2𝐿 (Eq. C-22) 

 

The latter formula is the Darcy-Weisbach equation, which can be found back through 

dimensional analysis. 𝐷ℎ is the hydraulic diameter, 𝐿  the duct length, and 𝑓 is the Darcy 

friction factor, whose value is often calculated thanks to correlations. For laminar flows, an 

analytical expression directly gives 𝑓 = 64/𝑅𝑒. 

 

This term can also originate from abrupt change of geometry (sudden change of cross 

sections, bends …), we talk about local losses: 

 

Δ𝑃12 =
1

2
𝐾𝜌𝑉2 (Eq. C-23) 

 

Where 𝐾 is the local loss coefficient, which often only depends on the geometry for high 

Reynolds numbers. More generally, the extended Bernoulli’s principle is: 
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1

2
𝜌𝛼1𝑉1

2 + 𝑃1 =
1

2
𝜌𝛼2𝑉2

2 + 𝑃2 + ∑
1

2𝐷ℎ𝑖

𝑓𝑖𝜌𝑉𝑖
2𝐿𝑖 + ∑

1

2
𝐾𝑗𝜌𝑉𝑗

2

𝑘𝑖

 (Eq. C-24) 

 

Where 𝑗 and 𝑖 are respectively every local and frictional losses the fluid has to come 

across between 1 and 2. 

For turbulent flows, profiles are rather flat so that 𝛼 ≃ 1. In practice, 𝛼 is always 

considered equal to 1. 





  

Appendix D: Validation of the channel model 
  

The goal of this appendix is to demonstrate the relevance of the 1D channel construction 

(Model 0, see chapter 2) built upon the three parts C1, C2 and C3. 

  

1. Notations 
 

 

 

Figure D-1 - geometry considered for the area between two grids 

 

Figure D-1 gives the 2D layout of the problem. 

 

Let us define the linear maps ℓ1 ≡ ℓ1(𝑧1) and ℓ3 ≡  ℓ3(𝑧3) which are defined respectively 

by the points ℓ1(0) = Λ, ℓ1(ℎ) = λ; ℓ3(0) = λ and ℓ3(ℎ) = Λ. 𝑧1, 𝑧2, and 𝑧3 are the axial local 

variables which belong respectively to [0, ℎ], [0, 𝐻] and [0, ℎ]. 

Thanks to the notations introduced before in the thesis, we can then define local bulk 

velocities based on continuity: 

 

𝑉1(𝑧1) = 𝑉𝑒

Λ

ℓ1(𝑧1)
, 𝑉2(𝑧2) = 𝑉2 = 𝑉1(ℎ), 𝑉3(𝑧3) = 𝑉2(𝐻)

𝜆

ℓ3(𝑧3)
 (Eq. D-1) 

 

Where 𝑉𝑒 is the inlet bulk velocity. 
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2. Laminar flow 
 

Considering a laminar flow with the assumption of parabolic (Poiseuille) velocity profiles 

in sections C1, C2 and C3 can lead to an analytic 2D solution. It is an hypothesis for C3 where 

a separation may occur even for low Reynolds. With those conditions, it becomes possible 

to integrate the Navier-Stokes equations to get a pressure loss. 

Our model in laminar flow is adjusted with the right pressure losses. In fact, the Haaland 

correlation is not relevant for low-Reynolds flows. 

As mentioned above in the thesis, integrating the Darcy-Weisbach equation [57], with, 

this time, a use of a Darcy friction factor such as 𝑓 = 64/𝑅𝑒 [136], gives a laminar friction 

loss for Reynolds up to 2000. 

 

We are going to show in this section that the pressure evolution for a laminar flow can 

be directly pulled out from the – incompressible, permanent- Navier-Stokes equations if the 

fluid velocity is considered as parabolic in C1 and C3 (fluid perfectly attached). 

 

{
𝜌(𝑣 . ∇)𝑣 = −∇   𝑝 + 𝜇Δ𝑣 

𝑑𝑖𝑣(𝑣 ) = 0
 (Eq. D-2) 

 

Introducing 𝑣 (𝑥, 𝑧) = 𝑣𝑥(𝑥, 𝑧)𝑒𝑥       + 𝑣𝑧(𝑥, 𝑧)𝑒𝑧    , the momentum conservation equation can 

be projected onto the x and z-axis: 

 

{
 
 

 
 𝜌 (𝑣𝑥

𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑧

𝜕𝑣𝑥

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑣𝑥

𝜕𝑥2
+

𝜕2𝑣𝑥

𝜕𝑧2
)

𝜌 (𝑣𝑥

𝜕𝑣𝑧

𝜕𝑥
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑣𝑧

𝜕𝑥2
+

𝜕2𝑣𝑧

𝜕𝑧2
)

 (Eq. D-3) 

 

Straight plane channel – C2 

 

Let us start with the central part C2. We consider a Poiseuille flow between two vertical 

plates whose normal vectors are oriented toward the x-axis and located at 𝑥𝑚𝑖𝑛 = −
𝜆

2
  

and 𝑥𝑚𝑎𝑥 =
𝜆

2
. 

 

We assume the pressure gradient oriented toward the z-axis, and a velocity of the 

form  𝑣 = 𝑣𝑧(𝑥) 𝑒𝑧      (i.e. 𝑣𝑥 = 0 in the plane channel). 

The momentum conservation equations (Eq. D-3) thus turns into: 

 

𝜕𝑝

𝜕𝑧
= 𝜇

𝜕2𝑣𝑧

𝜕𝑥2
  (Eq. D-4) 

 

After integrating along the x-axis, and taking into account the wall condition, the 

Poiseuille profile writes: 
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𝑣(𝑧2) = 𝑣𝑚 (1 −
4𝑥2

𝜆2
)  (Eq. D-5) 

 

Where 𝑣𝑚 is the profile maximum: 

 

 

𝑣𝑚 = −
𝜆2

8𝜇

d𝑝

d𝑧
  (Eq. D-6) 

 

Thus: 

 

d𝑝 = −
8𝜇𝑣𝑚

𝜆2
 d𝑧  (Eq. D-7) 

 

In other words, between ℎ and 𝑧2 we find the Poiseuille equation between two plates. 

Finally: 

 

Δ𝑝(z2) = 𝑝(𝑧2) − 𝑝(ℎ) = − ∫
8𝜇𝑣𝑚

𝜆2
d𝑧 = −

8𝜇𝑣𝑚

𝜆2
𝑧2

𝑧0

0

 (Eq. D-8) 

 

Convergent – C1 

 

Given the shape of the cross section evolution, dealing with a uniaxial velocity would be 

a coarse assumption. Consequently, in this part 𝑣 (𝑥, 𝑧1) = 𝑣𝑥(𝑥, 𝑧1)𝑒𝑥       + 𝑣𝑧(𝑥, 𝑧1)𝑒𝑧    . 

 

We still consider a laminar flow, and a parabolic profile within the convergent. It comes 

that 𝑣𝑥(𝑥, 𝑧1) = ϕ(z1) (1 −
4x2

ℓ1
2 ) where ℓ1

2 depends on the altitude and ϕ must be determined. 

 

 Using the Green-Ostrograski theorem, the continuity equation (Eq. D-2) on a stream 

tube located between 0 and 𝑧1 writes: 

 

∬ 𝑣𝑧(𝑥, 𝑧1)𝑑𝑆 − ∬ 𝑣𝑧(𝑥, 0)𝑑𝑆 = 0
𝑧=0z=z1

 (Eq. D-9) 

 

Thus, 

 

∫ 𝑣𝑧(𝑥, 𝑧1)𝑑𝑥 −
ℓ1/2

−ℓ1/2

∫ 𝑣𝑧(𝑥, 0)𝑑𝑥
Λ/2

−Λ/2

= 0 (Eq. D-10) 

 

 

With 𝑣𝑒 the maximum of the entrance profile: 
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∫ 𝜙(𝑧1) (1 −
4𝑥2

ℓ1
2(𝑧1)

) 𝑑𝑥 −
ℓ1/2

−ℓ1/2

∫ 𝑣𝑒 (1 −
4𝑥2

Λ2
) 𝑑𝑥

Λ/2

−Λ/2

= 0 (Eq. D-11) 

 

ℓ1 does not depend on x, we finally find: 

 

ϕ: z1 →
𝑣𝑒𝛬

ℓ1(𝑧1)
 (Eq. D-12) 

 

We can find the velocity along the z-axis: 

 

vz(𝑥, 𝑧1) = 𝑣𝑒

Λ

ℓ1(𝑧1)
(1 −

4𝑥2

ℓ1
2(𝑧1)

) (Eq. D-13) 

 

With two velocity components, the continuity equation (Eq. D-2) gives: 

 

𝜕𝑣𝑥

𝜕𝑥
= −

𝜕𝑣𝑧

𝜕𝑧
=

𝑣𝑒Λℓ1
′ (𝑧1)

ℓ1
2(𝑧1)

(1 −
12𝑥2

ℓ1
2(𝑧1)

) (Eq. D-14) 

 

Then, we obtain 𝑣𝑥 as a primitive of x, combining with (Eq. D-12): 

 

𝑣𝑥(𝑥, 𝑧) = − ∫
𝜕𝑣𝑧

𝜕𝑧𝑥

=
𝑣𝑒Λℓ1

′ (𝑧1)

ℓ1
2(𝑧1)

𝑥 −
4𝑣𝑒Λℓ1

′ (𝑧1)

ℓ1
4(𝑧1)

𝑥3 + 𝜓(𝑧1) (Eq. D-15) 

 

 

𝜓: 𝑧1 → 𝜓(𝑧1) is a map function of  𝑧1 through integration with x. We have the boundary 

conditions 𝑣𝑥 (−
ℓ1

2
, 𝑧) = 𝑣𝑥 (

ℓ1

2
, 𝑧) = 0 because of the no-slip condition. Using the previous 

equation we find that for all 𝑧1, 𝜓(𝑧1) = 0. Remarking that ℓ1
′ (𝑧1) = −2 tan(𝛼) it comes: 

 

𝑣𝑥(𝑥, 𝑧1) =
2 tan(𝛼) 𝑣𝑒Λ𝑥

ℓ1
2(𝑧1)

(
4𝑥2

ℓ1
2(𝑧1)

− 1) (Eq. D-16) 

 

Combining (Eq. D-15) and (Eq. D-12) we finally have: 

 

𝑣 (𝑥, 𝑧1) =
2 tan(𝛼) 𝑣𝑒Λ𝑥

ℓ1
2(𝑧1)

(
4𝑥2

ℓ1
2(𝑧1)

− 1) 𝑒𝑥       + 𝑣𝑒

Λ

ℓ1(𝑧1)
(1 −

4𝑥2

ℓ1
2(𝑧1)

) 𝑒𝑧     (Eq. D-17) 

 

Diffuser – C3: 

 

The fluid velocity in this part is similar to the one obtained in C1. 

 

Once the velocity field is wholly solved, integrating (Eq. D-3) gives the pressure field. 
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3. Turbulent flow 
 

For turbulent flows, no analytical expression exists for the friction loss, it is then necessary 

to use the Darcy-Weisbach equation as well as a correlation for the friction coefficient 𝑓. We 

will consider the Haaland correlation (1983) [56] set up for turbulent flows so that 𝑅𝑒 > 2800 

as mentioned before. The local losses are adapted from [55]. 

The turbulent model is the following: 

 

 C1 contains both local and friction losses 

 C2 only contains a friction loss 

 C3 contains both local and friction losses 

 

The detail of the losses are depicted in chapter 2, consequently we will not explain them 

hereafter. 

 

4. Validation of the 1D model 
 

1.3. Laminar flow 
 

CFD Model: 

 

The CFD simulation has been run with the code Cast3M [77], the geometry represents 

the 1D channel that we set up in the thesis, but in 2 dimensions. The simulation has been 

run so that  𝑅𝑒 = 50 with a nominal (2 mm) gap. The mesh is given in Figure D-2.  

 

 

Figure D-2 - Mesh built with CAST3M 

 

 

Results: 

 

We compare the 2D analytical solution developed in section 2 (further called INS) against 

Cast3M results in terms of two different pressure losses: the pressure loss taken on the 

median line of the problem (𝑥 = 0), and the mean pressure loss (mean pressure on the inlet 

and outlet of the CD). 
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Model CAST3M (x=0) CAST3M (Pmean) 

INS (x=0) 2.26%  

INS (Pmean)  0.50% 

Table D-1  - Relative deviation INS compared to Cast3M 

 

Table D-1 highlights relative deviations between our direct integrations of the Navier-

Stokes equations (called INS), and the CAST3M calculation. The difference is globally very 

small, meaning two things: firstly, the hypothesis of the C1 and C3 profiles being parabolic 

seems relevant, and secondly, we can lean upon CAST3M to compare the 1D models within 

this layout. One can also notice that mean pressure and the pressure on 𝑥 = 0 are close. 

In Table D-2, we compare Model 0 of CD (see chapter 2) associated with adequate 

pressure losses against both CAST3M and INS. We also add a local loss, to observe the 

difference with a model only considering friction loss at low Reynolds.  

 
Model INS 

(x=0) 
CAST3M 

(x=0) 
INS 

(Pmean) 
CAST3M 

(Pmean) 

1D – friction and local loss 0.60% 0.10% 2.40% 0.08% 

1D – friction loss 3.12% 2.64% 0.20% 2.46% 

Table D-2 - Relative deviation INS compared to Cast3M 

 

One can notice that deviations are all lower than 3%. The deviation is also reduced 

adding a local loss, except for INS (Pmean). The laminar flow interest lies in the possible 

comparison with a simple analytical model (INS). Those comparisons are fruitful, and 

encourage us to use CAST3M for the following state of the study. Also, one can note a 

decrease of deviations when adding the local loss, except for one case. All those decreases 

are a matter of a few percentages: almost all the loss can be assigned to the friction one, 

which is not really surprising considering a low-Reynolds flows. 

 

2.3. Turbulent flow 
 

CFD model: 

 

Now, CFD simulations are mandatory in the sense that no analytical models are 

conceivable for higher Reynolds flows. 

The calculations are again run with Cast3M, already used for the laminar calculation. 

Three simulations are performed for Reynolds of 5.103, 1.104 and 2.104. The turbulence is 

processed through an internal Spalart-Allmaras model. 
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Results: 

 
Model CAST3M (x=0) CAST3M (Pmean) 

𝑹𝒆 =  𝟓 𝟎𝟎𝟎   

1D – friction and local loss 19.30% 20.99% 

1D – friction loss 74.35% 74.89% 

𝑹𝒆 =  𝟏𝟎 𝟎𝟎𝟎   

1D – friction and local loss 13.75% 19.25% 

1D – friction loss 75.47% 77.03% 

𝑹𝒆 =  𝟐𝟎 𝟎𝟎𝟎   

1D – friction and local loss 11.27% 17.12% 

1D – friction loss 76.87% 78.40% 

Table D-3 - Relative deviation between 1D and Cast3M 

 

In Table D-3 we observe that: 

 

- Without the local loss, deviations are strong. It shows that the loss is mainly based on 

its local part and that without considering it, the results are not relevant. 

- The deviations are globally lower than 20% with local and friction losses. It means that 

the pressure loss with local losses give good results.  

- As previously, one can note that only a few dispersion exists between the mean and 

the axial pressure loss. 

- The deviations decrease along with the Reynolds number. It could stem either from 

the Darcy’s loss coefficient in the Haaland correlation whose area of validity is set 

above 𝑅𝑒 = 2300, or the local loss coefficients whose validity is 𝑅𝑒 > 104. Also, the 

Spalart-Allmaras model might be more efficient for higher Reynolds. 

 

According to the previous results, the 1D channel is thus considered pertinent for a wider 

use in laminar and in turbulent regimes. 





  

Appendix E: Model 0 and the associated force 
  

The goal of this appendix is to highlight the problem of Model 0, i.e. the 1D model of 

CD, without a parallel branch for the grid. 

 

1. The redistribution without grids 
 

 

Figure E-1 - Additional lateral resistance due to cross-flows through the rod bundle (model 3) 

 

In a first attempt, a first redistribution was based on Model 0. Working the assumption 

that forces could be estimated without taking into account the flow going through the grids. 

Thus, the set of equations is:  

 

{
Δ𝑃cd(𝑄cd) − Δ𝑃𝑐�̃�(𝑄𝑐�̃�) = 0

𝑄𝑐𝑑 + 𝑄𝑐�̃� = 𝑄tot

   (Eq. E-1) 

 

2. The associated force 
 

Under this hypothesis, the force 𝐹𝑉 is obtained directly through the geometrical 

component of the force. In fact, as no pressure difference exists between both branches, the 

term 𝐿𝐿𝑡Δ𝑝𝑢 is null. Having in mind the notations of chapter 3: 

𝐹𝑉 = 𝐿 ∫ (𝑝1 − 𝑝1̃)𝑑𝑧
𝐿𝑡

0

   (Eq. E-2)  

The calculation is run with the following conditions: 

 

 We are interested in an isolated grid displacement. Consequently, we consider two 

bypasses such as the sum of their width i.e. 𝜆 and �̃� is constant. In other words, 𝜆 +

�̃� = 4.10−2 𝑚. 

 Several values of 𝜆 are chosen between 1.10−4 and 3.9 10−3 𝑚.  

 𝑄𝑡𝑜𝑡 is calculated such as the entrance velocity equals 6 𝑚. 𝑠−1. 
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 𝜌 = 700 𝑘𝑔. 𝑚−1. 

 The force (Eq. E-2) is calculated through the flow rates calculated in (Eq. E-1). 
 

 

Figure E-2 - Force value with respect to the grid displacement 

 

Figure E-2 gives the evolution of the force value with respect to the displacement. As 

one can notice, the latter can reach 8 . 102𝑁 on its own. This value is much higher than the 

few orders of magnitude of total lateral force we could find out in the literature (see the 

introduction). Consequently, considering a global inflow into the inter-grid areas is 

misleading. In fact, the fluid bulk velocity could be overestimated in that when the water 

gaps tend toward shutting, a great amount of total flow rate at the inlet of the system might 

redistribute toward the spacer grids. The force direction is explained in the next section. 

 

3. Importance of the convergent pressure loss 
 

Model 0 includes three different parts. Their contribution depend on two parameters: 

the inlet velocity 𝑣 and the width of the channel 𝜆. 

In order to give insights on the force direction under reasonable hypothesis, we are 

going to show that the total pressure variation is dominated by 𝐶1. First we neglect the 

frictional loss in the system (see for instance Appendix D, for turbulent flows the local part 

is much higher). In this case, the total pressure variation given by 𝐶2 is null, and the system 

is reduced to the pressure variations – dynamic pressure and local loss - of 𝐶1 and 𝐶3 (see 

for instance (Eq. 3-1) and (Eq. 3-3)). We saw that the difference between those terms can be 

arranged as follows: 
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휂 =
1

𝜌𝑣2
(Δ𝑃𝐶1

− Δ𝑃𝐶3
) = Φ (

𝜆 + 𝐶

𝜆
)

2

+ Ψ (
𝜆 + 𝐶

𝜆
) − 𝜔 (Eq. E-3)  

 

Where 𝐶, is a geometrical positive constant, and Φ, Ψ and 𝜔 are positive constant 

depending on 𝜌. 

 

We easily show that: 

∀𝜆 > 0,
𝜕휂

𝜕𝜆
= −

1

𝜆3
(2Φ𝐶(𝜆 + 𝐶) + 𝐶Ψ𝜆 + 𝜔𝜆3) < 0 (Eq. E-4)  

Knowing that, 

 

{
lim
𝜆→0

휂 = +∞

lim
𝜆→+∞

휂 = Φ + Ψ − ω ∈ ℝ+ (Eq. E-5)  

We can deduce that the function 휂  is always positive, and that the pressure variation 

induced by 𝐶1 is always larger to the one induced by 𝐶3. 

 

A Taylor expansion when 𝜆 tends toward 0 shows that: 

 

Δ𝑃𝐶3
≃ 0.14 Δ𝑃𝐶1

  (Eq. E-6)  

In other words, for small 𝜆, 𝐶1 dominates the total pressure variation. 

 

4. Sensitivity of the pressure variation in the convergent 
 

As we know that 𝐶1 overlooks the total pressure variation, let us analyze now the 

influence of both 𝜆 and 𝑣 within Δ𝑃𝐶1
.(pressure difference between 0 and ℎ in (Eq. 3-1)). 

 

We need to know when: 

 

𝑑Δ𝑃𝐶1
(𝜆, 𝑣) ≥ 0 (Eq. E-7)  

The logarithmic derivative writes: 
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𝑑𝑙𝑛 (Δ𝑃𝐶1
(𝜆, 𝑣))

Δ𝑃𝐶1
(𝜆, 𝑣)

=
2𝑑𝑣

𝑣
+ 𝑓(𝜆)

𝑑𝜆

𝜆
 (Eq. E-8)  

 

With 𝑓 a function of 𝜆. We want to ensure in the end that: 

 

𝑑𝑣

𝑣
≥  −𝑓(𝜆)

𝑑𝜆

2𝜆
 (Eq. E-9)  

Integrating, we obtain that a positive variation of Δ𝑃𝐶1
(𝜆, 𝑣) is given by: 

 

𝑑Δ𝑃𝐶1
(𝜆, 𝑣) ≥ 0 ⟹ (𝜆, 𝑣)

∈ {(𝜆, 𝑣) /  𝑣 ≥ 𝑣0 (
𝜆

𝜆0
√(𝐾1 + 𝐾2𝜆0)/(𝐾1 + 𝐾2𝜆)) , 𝐾1, 𝐾2 ∈ ℝ , (λ0, 𝑣0) ∈ ℝ2} 

(Eq. E-10)  

In other words, from a point (λ0, 𝑣0), we can split the plane width/velocity in two zones: 

one where 𝑑Δ𝑃𝐶1
(𝜆, 𝑣) ≥ 0,  and thus the pressure loss increases, and one where the variation 

decreases. The frontier is defined by (Eq. E-10). 

 

Figure E-3 we plot the velocity in the inter-grid area with respect to its width. We also 

plot the frontier defined in (Eq. E-10) with (λ0, 𝑣0) = (2.10−3, 6) (nominal case where both 

flow rates in the bypasses are equal). 

 

 

Figure E-3 - Sensitivity of 𝜟𝑷𝑪𝟏
 

The competition between 𝜆 and 𝑣 is not trivial, it is difficult to predict Δ𝑃𝐶1
 a priori. Let 

0 1 2 3 4 5
0

2

4

6

8

10

12

λ (mm)

v
 (

m
/s

)

Model 0

Frontier

 𝑑Δ𝑃𝐶1
> 0

 𝑑Δ𝑃𝐶1
< 0



 

 

203 

 

us take Figure E-2 as an example. If the width to the right hand side decreases (i.e. the grid 

displacement is positive), the bypass to the right is located in the zone 𝑑Δ𝑃𝐶1
< 0, and the 

one to the left is located in the zone 𝑑Δ𝑃𝐶1
> 0. Therefore, the pressure at the right side of 

the grid is higher than the pressure at the left side. The force is thus negative. It is the other 

way around if the displacement is negative. We find back the result in Figure . In this case, 

the grid is thus attracted to the center like a mass bounded by springs (so called “gap 

equalizing” effect described in the literature).





  

Appendix F: Phorcys, a network-based tool designed 

for fluid redistributions 
  

Every single hydraulic simulation run in this manuscript has been computed with a tool 

programmed during this project, named Phorcys (Figure F-1), we found necessary to broadly 

explain how it works. 

 

 

Figure F-1 - Phorcys' logotype (ASCII art) displayed when the package is imported 

 

As no code aims specifically at solving those kind of systems at the CEA, we undertook 

to program it from scratch. Phorcys has been designed through a commitment of being 

easily configurable given a set of water gaps width. 

 

1. A reminder about steady-state grid networks 
 

The most famous examples of hydraulic networks lie in water distribution systems – also 

called pipeline networks - which represent a particular field of civil and environmental 

engineering. Other fields have used networks to pursue researches, like hemodynamics 

[137], or nuclear core physics [50]. Two main types of hydraulic network patterns exist. The 

first one are branching patterns, starting from a source, and branches are split into several 

sub-branches at each node, then finally finish with dead-ends (it is similar to a tree). The 

second one are grid patterns, where loops are defined. In other words, while there is only 

one possible way for the fluid in branching patterns (from the trunk to the branches like a 

tree), the fluid contained in branches – or elements – in a grid network is free to flow in more 

than one direction. Their solution requires iterative methods. Grid networks contain three 

types of different components: nodes, elements, and loops. All these components are related 

to each other through two types of equations: the node equations also called ‘mass 

conservation equations’ or ‘continuity equations’, and the loop equations also known as 

‘energy conservation equations’. In other words, a network is a hydraulic analogy to electrical 

circuits, except that, as we will see, it is nonlinear. In our context, we look after steady state 

solutions, but it is also possible to study unsteady solutions (see for instance [138] dealing 

with water hammer issues). 

 

1.3. Node equations 
 

The equation at node 𝑗  is [139] (Eq. F-1): 
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∑ 𝑄𝑖𝑗

𝑁𝑗

𝑖=0
𝑖≠𝑗

+ 𝑞𝑗 = 0 (Eq. F-1) 

 

Where 𝑞𝑗 is called the demand at node 𝑗 (sign + for a node inflow and – for a node 

outflow), 𝑄𝑖𝑗 is the flow rate through element 𝑖𝑗 (sign + for a node inflow and – for a node 

outflow), 𝑁𝑗 is the number of elements related to node 𝑗. Those are called ‘junction nodes’, 

in that it makes a junction between different hydraulic elements through continuity, in 

contrast with the fixed grade nodes (see below). 

 

2.3. Loop equations 
 

In practice, two kinds of loops exist in the literature, respectively called ‘primary loops’ 

(or ‘closed-loop’) and ‘open loops’ (also known as ‘pseudo-loops’), they are illustrated in 

Figure F-2. As explained by Wood [62], primary loops, are closed pipe circuits within the 

network which have no additional closed pipe circuits within them. According to Sarbu [139], 

open loops make the connection between two nodes whose head is known (also known 

‘fixed grade node’ by Wood [62]). 

 

 

Figure F-2 - Illustration of the loops 

 

Energy conservation equations in one loop 𝑚 can be summed up by [139]: 

 

∑ 𝜖𝑖𝑗Δ𝑃𝑖𝑗

𝑖𝑗∈𝑚

− 𝑓𝑚 = 0 (Eq. F-2) 

  

Where 𝜖𝑖𝑗 ∈ {−1,1} stands for the orientation of the element 𝑖𝑗 within the loop. If the 

element has the same direction as the convention adopted, 𝜖𝑖𝑗 = 1, otherwise its value is -1. 

Δ𝑃𝑖𝑗 is total pressure loss across element 𝑖𝑗, often written has a head ℎ𝑖𝑗 - as a reminder, 

head and total pressure are related to each other through ℎ𝑖𝑗𝜌𝑔 = Δ𝑃𝑖𝑗, they both are 

interpreted as the same physical and are often mixed up in the literature -. The 𝑓𝑚 expression 

depends on the type of loop considered (whether closed or open).  If one considers a closed-

loop where an energy is added (i.e. a pump): 
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𝑓𝑚 = ∑ 𝜖𝑖𝑗𝐻𝑝,𝑖𝑗

𝑖𝑗∈𝑚

 (Eq. F-3) 

  

With 𝐻𝑝,𝑖𝑗 = 𝐴𝑄𝑖𝑗
2 + 𝐵|𝑄𝑖𝑗| + 𝐶 being a typical pump curve. 

Otherwise, a simple closed-loop without any pump writes: 

 

𝑓𝑚 = 0 (Eq. F-4) 

 

For an energy conservation in an open-loop: 

 

𝑓𝑚 = Δ𝐸 (Eq. F-5) 

 

Where Δ𝐸 is the energy difference between the loop entrance and exit. 

 

As mentioned several times in this project, Δ𝑃𝑖𝑗 is a nonlinear term with respect to flow 

rate 𝑄𝑖𝑗, it marks the difference with a common electrical circuit where generally the current 

intensity is proportional to the potential difference through a ratio read as the electrical 

resistance. In hydraulic network, it only happens when we take an interest in laminar flows. 

In fact, for a laminar flow, one can show that the Darcy loss coefficient becomes 64/𝑅𝑒 

(known as the ‘Hagen-Poiseuille law’), and  Δ𝑃𝑖𝑗 becomes linear with respect to the discharge 

𝑄𝑖𝑗. Aside from this very special case  Δ𝑃𝑖𝑗 writes: 

 

Δ𝑃𝑖𝑗 = 𝐾𝑖𝑗𝑄𝑖𝑗
𝛼  (Eq. F-6) 

 

Where 𝐾𝑖𝑗 is the hydraulic resistance and 𝛼 the discharge exponent whose value depends 

on the formula adopted for the pressure drop. 𝐾𝑖𝑗 is an intricate map which contains every 

single parameter of the fluid physics crossing the element and its geometry (viscosity and 

element roughness through the Darcy or Fanning coefficient, cross section, hydraulic 

diameter, density, etc.).  

 

3.3. Relation between loops, nodes and elements 
 

The fundamental relation [61, 140] linking the number of nodes with the number of 

elements and loops is: 

 

𝑁𝐸 = 𝑁𝐿 + 𝑁𝑁 − 1 (Eq. F-7) 

 

Where 𝑁𝐸 is the total number of elements – or pipes – in the system (we will see that in 

our case 𝑁𝐸 also equals the number of equations), and 𝑁𝐿 the number of closed-loop. 𝑁𝑁 is 

the total number of nodes (junction of fixed grade), one is redundant. (Eq. F-7) can be 

derived from the Euler’s polyhedron formula [141].  
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2. Methods  
 

Many methods have been set up to solve pipeline networks, depending on the unknowns 

and the type of equations. The most famous ones are the loop-oriented, the node-oriented, 

the node-loop-oriented, and the pipes oriented methods. 

 

1.3. Loop oriented methods 
 

The loop-oriented formulation is most likely the most ancient one. It is often attributed 

to Hardy Cross (1885-1959), an American structural engineer author of the moment 

distribution method for structural analysis of statically indeterminate structures. The latter 

was then adapted as an iterative method to solve pipeline networks related systems [54]. It 

is historically the first method to calculate flow redistributions in large-scale water supply 

systems, it is also known as the single path adjustment method [62]. The Hardy Cross method 

aims at successively correcting the loop equations from an initial guess satisfying the 

continuity equations. The ‘single path adjustment’ method thus introduces a Δ𝑄𝑚 term in 

each loop 𝑚 independently whose expression is based on a Taylor expansion for small Δ𝑄𝑚 

compared to 𝑄𝑖𝑗 in (Eq. F-2):  

 

∑ 𝜖𝑖𝑗𝐾𝑖𝑗(𝑄𝑖𝑗 + Δ𝑄𝑚)
𝛼

𝑖𝑗∈𝑚

− 𝑓𝑚 ∼ ∑ 𝜖𝑖𝑗𝐾𝑖𝑗(𝑄𝑖𝑗
𝛼 + 𝛼𝑄𝑖𝑗

𝛼−1Δ𝑄𝑚)

𝑖𝑗∈𝑚

− 𝑓𝑚 = 0 (Eq. F-8) 

 

So that: 

 

Δ𝑄𝑚 =
𝑓𝑚 − ∑ 𝜖𝑖𝑗𝐾𝑖𝑗𝑄𝑖𝑗

𝛼
𝑖𝑗∈𝑚

∑ 𝛼𝜖𝑖𝑗𝐾𝑖𝑗𝑄𝑖𝑗
𝛼−1

𝑖𝑗∈𝑚

 (Eq. F-9) 

 

The method stops when the change in flows is satisfactory. An improvement of this 

method has been proposed latter in [142] to solve simultaneously the whole system through 

a matrix system. This formulation is based on the unknowns Δ𝑄𝑚 in each loop. 

 

2.3. Node oriented methods 
 

Those methods are based on the pressures and their adjustments. Cross was also the 

first to figure out this formulation through the single node adjustment which is similar to the 

single path adjustment method, but focuses on the pressures. An initial set of pressures is 

assumed, but does not have to fulfill any conditions [62]. The second step is to compute an 

adjustment factor which satisfies continuity of the flow. This adjustment factor is obtained 

through a gradient approximation. In other words, this method is the exact equivalent of the 

Hardy Cross method (the single path adjustment) but where the continuity equations are 

balanced, and the unknowns rely on the pressure adjustments. Many improvements have 

been undertaken since, like the simultaneous node adjustment method, the introduction of 

linearization within the node equations [143] or the variational formulation approach [139]. 
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Wood and Rayes, back in 1981, [62] advised against using the node-related approaches, 

for the sake of issues including convergence difficulties. Nielsen [63] later agreed with Wood, 

and discouraged the use of pressures as primary unknowns.  

 

3.3. Loop-node oriented methods 
 

Contrary to the previous formulations where we put the emphasis on one equation or 

the other, this class of methods consists in solving directly both node and loop equations 

without any adjustment.  The unknowns here are the flow rates in each element. This 

approach has been widely backed and spread by D.J. Wood at the time of the Fortran 

programming language expansion [61]. The resulting system contains exactly 𝑁𝐸 equations 

(sum of the node and loop equations), which can be solved through a dedicated numerical 

method (mainly Newton-Raphson or linear theory [63]). This formulation is explained in 

details thereafter. 

 

4.3. Pipe oriented methods 
 

The previous methods focus either on the flow rates, or the node pressures. Todini and 

Pilati [144] introduced a method to solve simultaneously for the pressure and the flow rates. 

Writing the node equations (Eq. F-1) with respect to the flow rates (Eq. F-6), one obtains 

𝑁𝑁 + 𝑁𝐸 equations which creates a larger system than the previous methods. One advantage 

of this method is to prevent from defining loops which might be a time consuming task 

[145].  

 

5.3. Other methods 
 

A couple of different approaches use more unfamiliar techniques to solve hydraulic 

networks. Among them, we can quote for example the extended linear graph theory (ELGT) 

[146, 147, 148] which leans on graph theory (introduction of an equivalent linear graph), or 

probabilistic methods based on a maximal entropy approach (see for instance [149]). 

 

3. Solving the node and loop equations in Phorcys 
 

 In Phorcys we chose to solve simultaneously the node and loop equations. In other 

words, we adopted a node-loop oriented method.  The reason why such a formulation has 

been adopted is double. First, they are based on only one kind of unknowns (flow rates), 

which is a good manner to access both flow rates – used for validation for instance - and 

related pressure drops – for forces and validation - through a very simple post-processing: 

a pressure drop in one element is obtained multiplying the flow rate and the resistance (Eq. 

F-6). In fact, reconstructing the pressure field at nodes afterward is not that useful for our 

applications. Second, the reliability of these formulations combined with a quite easy 

implementation (see the ‘Q-system’ of [150] or [151]) gives them enough credit without the 

need of searching for intricate approaches. For this reason, some authors still use them 
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nowadays. Actually, the system is solved directly as a whole without building up any ‘path’. 

Blended with the ‘linear method theory’ (LTM), the convergence is quickly reached, and is 

not really sensitive to the initial guess of flow rates in the whole system. Wood and Charles 

tested their method combined with ‘LTM’ on a large-scale network back in the days [61] and 

already pointed out its effectiveness compared to Newton-Raphson, or Hardy-Cross. This is 

the algorithm that we chose – even though others were tried out - . The only disadvantage 

of these methods leans on the fact that loops must be declared beforehand as stood 

previously in contrast with pipe oriented methods. Thereafter, we depict the different 

equations when no fixed-grade node exists in the system. 

 

1.3. Continuity equations for LTM 
 

Continuity equations, depending on nodes, only rely on (Eq. F-1) which can be seen as 

follows: 

 

{
 
 
 

 
 
 

∑ 𝑄𝑖1

𝑁1

𝑖=0
𝑖≠𝑗

= −𝑞1

…

∑ 𝑄𝑖(𝑁𝑁−1)

𝑁𝑁𝑁−1

𝑖=0
𝑖≠𝑗

= −𝑞(𝑁𝑁−1)

 (Eq. F-10) 

 

The terms used in this equation were already explained earlier in this section. As a 

reminder, there are 𝑁𝑁 − 1 unredundant equations with respect to a total of 𝑁𝑁 nodes in the 

hydraulic system. 𝑞𝑗 deals with the demand related to node  𝑗 (positive for an entrance, 

negative for an exit, or zero is the node is just a ‘junction’ without demand). 

 

In other words, the system can be summed up as follows: 

 

𝐴𝑡
̿̿ ̿ (

𝑄1

…
𝑄𝑁𝐸

) = (

−𝑞1

…
−𝑞(𝑁𝑁−1)

) = �̿� (Eq. F-11) 

 

Where 𝐴𝑡
̿̿ ̿  - dimension (𝑁𝑁 − 1, 𝑁𝐸) - is the continuity matrix (also known as the system 

topology matrix). It contains every interaction between nodes, and thus is responsible for 

the geometry of the network. �̿� - dimension (𝑁𝑁 − 1, 1) - is the vector of demand. A very 

simple network is proposed in Figure F-3 to illustrate the equations. 
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Figure F-3 - Illustrative network - continuity 

 

On this example, (Eq. F-10) turns: 

 

{
−𝑄1 − 𝑄2 = −𝑞𝐴

𝑄1 − 𝑄3 − 𝑄5 = 0
𝑄2 + 𝑄3 − 𝑄4 = 0

 (Eq. F-12) 

 

By the way, one can check that equation at node 𝐷 is a linear combination of the three 

others (knowing that necessarily 𝑞𝐴 = −𝑞𝐷 it can be obtained through equations ‘green 

minus red minus blue’). (Eq. F-11) thus turns: 

 

𝐴𝑡
̿̿ ̿

(

 
 

𝑄1

𝑄2

𝑄3

𝑄4

𝑄5)

 
 

= (
−𝑞𝐴

0
0

) (Eq. F-13) 

 

Where: 

 

𝐴𝑡
̿̿ ̿ = (

−1 −1 0 0 0
1 0 −1 0 −1
0 1 1 −1 0

) (Eq. F-14) 

 

2.3. Energy equations for LTM 
 

Energy equations rely on (Eq. F-2) and (Eq. F-6): 

 

{
 
 

 
 ∑ 𝜖𝑖𝑗𝐾𝑖𝑗𝑄𝑖𝑗

𝛼

𝑖𝑗∈𝑚1

− 𝑓𝑚1
= 0

…

∑ 𝜖𝑖𝑗𝐾𝑖𝑗𝑄𝑖𝑗
𝛼

𝑖𝑗∈𝑚𝑁𝐿

− 𝑓𝑚𝑁𝐿
= 0

 (Eq. F-15) 

 

Where (𝑚1, … , 𝑚𝑁𝐿
) are the different loops in the system. This system is nonlinear, due 
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to the 𝛼 index. The main idea behind the so called ‘linear theory’ as presented historically by 

Wood [61], is to write the pressure drop as (Eq. F-16): 

 

Δ𝑃𝑖𝑗 =  𝐾𝑖𝑗𝑄𝑖𝑗
𝛼 = 𝐾𝑖𝑗𝑄𝑖𝑗

𝛼−1 𝑄𝑖𝑗 (Eq. F-16) 

 

From this consideration, given a certain iteration 𝑘 ∈ ℕ of the algorithm, Wood writes: 

 

 Δ𝑃𝑖𝑗
𝑘 = 𝐾𝑖𝑗

𝑘𝑄𝑖𝑗
𝑘  (Eq. F-17) 

 

Where the resistance 𝐾𝑖𝑗
𝑘  at iteration 𝑘 is linearized as follows: 

 

𝐾𝑖𝑗
𝑘 = 𝐾𝑖𝑗(𝑄𝑖𝑗

𝑘−1)
𝛼−1

    (Eq. F-18) 

 

Consequently, (Eq. F-15) becomes at iteration 𝑘: 

 

{
 
 

 
 ∑ 𝜖𝑖𝑗𝐾𝑖𝑗

𝑘

𝑖𝑗∈𝑚1

𝑄𝑖𝑗
𝑘 − 𝑓𝑚1

= 0

…

∑ 𝜖𝑖𝑗𝐾𝑖𝑗
𝑘𝑄𝑖𝑗

𝑘

𝑖𝑗∈𝑚𝑁𝐿

− 𝑓𝑚𝑁𝐿
= 0

 (Eq. F-19) 

 

In other words, Wood turned the energetic system into a linear system at iteration 𝑘: 

 

𝐾𝑘 (
𝑄1

𝑘

…
𝑄𝑁𝐸

𝑘
) = (

𝑓𝑚1

…
𝑓𝑚𝑁𝐿

) = 𝑓 ̿ (Eq. F-20) 

 

Where 𝐾𝑘 - dimension (𝑁𝐿, 𝑁𝐸) - is the matrix of hydraulic resistances at iteration 𝑘. The 

right hand side term obviously equals a null vector when all loops are closed ones. 𝑓 ̿ - 

dimension (𝑁𝐿, 1) -, is the vector giving the energy conditions. By analogy with the 

continuity equations, let us illustrate the latter system on the same example (Figure F-4). 
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Figure F-4 - Illustrative network – energy 

 

On this example, there are two closed loops, and thus two energy equations: 

 

{
−𝐾1𝑄1

𝛼 + 𝐾2𝑄2
𝛼 − 𝐾3𝑄3

𝛼 = 0

𝐾3𝑄3
𝛼 + 𝐾4𝑄4

𝛼 − 𝐾5𝑄5
𝛼 = 0

 (Eq. F-21) 

 

The sign of the terms (𝜖𝑖𝑗) depends on the convention chosen for tracking the oriented 

loops. 

 

At iteration 𝑘: 

 

𝐾𝑘

(

 
 
 

𝑄1
𝑘

𝑄2
𝑘

𝑄3
𝑘

𝑄4
𝑘

𝑄5
𝑘)

 
 
 

= (
0
0
) (Eq. F-22) 

Where: 

 

𝐾𝑘 = (
−𝐾1

𝑘−1 𝐾2
𝑘−1 −𝐾3

𝑘−1 0 0

0 0 𝐾3
𝑘−1 𝐾4

𝑘−1 −𝐾5
𝑘−1) (Eq. F-23) 

 

3.3. Using the LTM algorithm 
 

In practice, the whole system of equations is obtained combining (Eq. F-11) and (Eq. 

F-20), i.e. gathering both node and loops equations. The whole system at iteration 𝑘 can be 

put into the following form: 

 

�̿�𝑘�̿�𝑘 = �̿� (Eq. F-24) 
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Where: 

 

�̿�𝑘 = (
𝐾𝑘

𝐴𝑡
̿̿ ̿

),   �̿�𝑘 = (
𝑄1

𝑘

…
𝑄𝑁𝐸

𝑘  
),   �̿� = (

𝑓̿

�̿�
) (Eq. F-25) 

 

The matrix �̿�𝑘 is square and its dimension is (𝑁𝐸, 𝑁𝐸) - we remind that 𝑁𝐸 = 𝑁𝐿 + 𝑁𝑁 −

1 -, it gathers the resistances and the geometry of the system. �̿�𝑘 is the vector of flow rates. 

Finally, �̿� includes the system constraints, its expression does not change with the iterations. 

 

The whole method is summed up in Figure F-5: 

 

 

Figure F-5 - Runing a flow rate calculation with LTM 

 

Let us make a couple of remarks. 

Firstly, at iteration 𝑘, a linear system has to be solved, because �̿�𝑘 is given by: 

 

�̿�𝑘 = �̿�𝑘−1
�̿� (Eq. F-26) 

 

In fact, the system (Eq. F-24) can be directly solved using a dedicated algorithm. In our 

case, Phorcys works as a Python package which leans on a couple of several other libraries. 

Among them we can quote Scipy, Numpy and Matplotlib for instance. Linear systems, put in 

an array form, can be solved with a dedicated Scipy function, which itself is a wrapper of 

Fortran’s library LAPACK (which uses LU decomposition). For larger systems, it can be 

necessary to use a sparse formulation for solving. �̿�𝑘 includes indeed a lot of unnecessary 

null values which is memory consuming. When changing the standard array format with a 

sparse format ‘CSC’, standing for ‘Compressed Sparse Column’, another dedicated solving 

function must be used. In this case this is a wrapper of C’s library UMFPACK (which uses 
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Unsymmetric MultiFrontal method). In practice, experience shows that the time spent for 

solving sparse systems and ‘standard’ systems is almost the same for relatively ‘large’ 

systems (let us say 𝑁𝐸 up to ∼ 103). However, for higher 𝑁𝐸, the memory can quickly fills up 

and the calculation ends up very slow. Using the sparse format is incredibly timesaving for 

high 𝑁𝐸 due to a huge amount of null values flushed out from the memory. 

 

Secondly, as stated by Wood himself, and further explained by Nielsen [63], this method 

can undergo oscillations when approaching the solution. In this case, Wood recommended 

to use what is called an ‘averaged LTM’, in other words, under-relaxing the solution at 

iteration 𝑘 with the solution obtained at iteration 𝑘 −1 [61, 147]: 

 

�̿�𝑘 → 
�̿�𝑘 + �̿�𝑘−1

2
  (Eq. F-27) 

 

This distinct improvement has been latter mathematically explained by Nielsen [63], who 

also recommended to use a ‘full LTM’ (i.e. without averaging) for first iteration and then 

‘averaged LTM’ considering the convergence properties of each method on its own. 

 

Thirdly, our systems mainly deal with fuel assemblies in a context of deformation. 

Hydraulically, this deformation holds in the width of the gaps surrounding the fuel 

assemblies. The models developed in the project depend on 𝜆, the convergent-diffuser width 

between two successive grids. This parameter characterizes 𝐾𝐶𝐷 the associated hydraulic 

resistance of the convergent-diffuser, which is part of the numerous ones in the matrix of 

resistances. In other words, one must previously provide a correct distribution of 𝜆 in the 

system to set up 𝐾𝑘(𝜆). 

 

4. Structure and usage 
 

1.3. Main classes and related objects 
 

The tool is still under development, and thus is subjected to future improvements. At the 

moment, three main classes are essential: the nodes, the elements, and the loops (Figure 

F-6). 
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Figure F-6 - Simplified structure 

 

The class Node is used for declaring nodes and their possible locations for further 

viewing. 

The class Element is used for declaring elements – pipes. Each object of type Element 

contains physical parameters such as its cross section, or the associated hydraulic diameter. 

Inherited classes from Element such as ‘Bypass_element’ contain additional parameters like 

the width 𝜆 and related methods. Element objects also have information on their arrival and 

departure nodes to which they are bound. In return, when instancing an Element object 

bound to two nodes, the latter are updated with information regarding elements departing 

from them, and arriving to them. 

The class Loop is used for declaring loops based on elements previously set up in the 

system. An inheritance class ‘Stagnation_point_loop’ is used for telling further calculation to 

create a modified resistance associated to certain elements within the loop. It is the case for 

redistributions upstream from spacer grids, where Model 2 introduces a modified resistance 

for both grids and convergent-diffuser. This modified resistance adds a kind of dynamic of 

pressure term, based on the cross section. Consequently, when building up energy equations 

for calculation, it is this resistance that is used. 

The class Calculation mostly deals with class attributes related to the network calculation, 

like the criterion precision.  

 

Some others classes exist, including the ones designed for core or row calculations, which 

automatically builds a network through repetitive pattern based on the other classes. We 

would also find methods to easily set up boundary conditions, or importing/exporting data 

(like a set of 𝜆, or demands). 

 

2.3. Illustrative example of use 
 

Let us get back to the textbook case based on Figure F-3. This system is interesting for 

illustrating and verifying the tool, because it is a well-known simplistic case whose solution 

can be easily obtained through a Hardy Cross method4. We consider the parameters shown 

                                                 
4 For instance, its analysis and solution are findable at https://en.wikipedia.org/wiki/Hardy_Cross_method.    

https://en.wikipedia.org/wiki/Hardy_Cross_method#:~:text=The%20Hardy%20Cross%20method%20is%20an%20application%20of%20continuity%20of,each%20junction%20in%20the%20pipe.
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in Figure F-7. 

 

 

Figure F-7 - Illustrative example for usage 

 

In Figure F-8 we can see how we handle nodes and related elements in a simple script. 

# -*- coding: utf-8 -*- 

""" 

Created on Sat Oct 31 

 

@author: Stan 

""" 

 

 

from Phorcys import NEL 

from Phorcys import plot3dnetwork as pltn 

from Phorcys import wood_ltm as fltm 

 

Node1=NEL.Node("A") 

Node2=NEL.Node("B") 

Node3=NEL.Node("C") 

Node4=NEL.Node("D") 

 

Node1.set_position([0,0,0]) 

Node2.set_position([1,1,0]) 

Node3.set_position([1,-1,0]) 

Node4.set_position([2,0,0]) 

 

Element1=NEL.Element("Q1",Node1,Node2,1.) 

Element2=NEL.Element("Q2",Node1,Node3,5.) 

Element3=NEL.Element("Q3",Node2,Node3,1.) 

Element4=NEL.Element("Q4",Node3,Node4,1.) 

Element5=NEL.Element("Q5",Node2,Node4,5.) 

 

pltn.plot_network() 
Figure F-8 - Building up nodes and elements 
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These commands first create the nodes separately, and set up their positions. Then, we 

build elements based on the previous nodes to reproduce the network in Figure F-7. The 

network is plotted afterwards. The result of the previous commands is in Figure F-9. 

 

 

++++++  

WELCOME TO PHORCYS  

++++++ 
 

 
 

 

 

 

******* 

******* 

******* 

YOU ARE ACTUALLY RUNNING THE CASE : C:/Users/Stan/.spyder-py3 /simple_test.py 

******* 

******* 

******* 

 
 

Figure F-9 - Results of first commands 
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The second part (Figure F-10) includes the boundary conditions definition, a verification 

of those demands (check if the sum of entrances equals the sum of exits). Then, we define 

loops, compute the system, print the flow rates and statistics, and finally plot flow rates and 

head losses (pressure losses). 

 

The results are shown in Figure F-11: 

 

 

 

 

 

 

Node1.set_new_boundary_condition(10.) 

Node4.set_new_boundary_condition(-10.) 

 

NEL.Node.check_boundary_conditions() 

 

Loop1=NEL.Loop("loop1") 

Loop1.set_new_element(Element1) 

Loop1.set_new_element(Element2) 

Loop1.set_new_element(Element3) 

 

 

Loop2=NEL.Loop("loop2") 

Loop2.set_new_element(Element3) 

Loop2.set_new_element(Element4) 

Loop2.set_new_element(Element5) 

 

 

 

fltm.compute() 

 

NEL.Element.print_all_flowrates() 

 

NEL.calculation.print_stats() 

pltn.plot_flowrates() 

 

NEL.Element.compute_headlosses() 

pltn.plot_headlosses() 

Figure F-10 - End of the script 
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As one can see, the flow rates are in agreement with the analytical results of the system4: 

𝑄1 =
10

3
𝐿. 𝑠−1, 𝑄2 =

10

3
𝐿. 𝑠−1, 𝑄3 =

20

3
𝐿. 𝑠−1,   𝑄4 = 

20

3
𝐿. 𝑠−1, 𝑄5 =

10

3
𝐿. 𝑠−1 . 

From now on, we will explain how we can pull forces out of the calculation. 

 

 

 

 

 

 

 

 

 

 

 

All good, mass conservation is ok 
During iteration 1, norm of the linear system is 17.560609328835945 

[…] 

During iteration 27, norm of the linear system is 8.462232874405907e-08 

System converged towards the demanded error 

Flow rates associated to each element : 

Q5 : 3.333333314292961 

Q2 : 3.3333333142929606 

Q3 : 3.3333333192600145 

Q1 : 6.666666626102394 

Q4 : 6.666666626102394 

wood_ltm calculation, iterations number : 27, time of calculation : 0.03399157524108887 s, 

Matrix dimension : 5x5 

 

 

Figure F-11 - Results of the end of the script 
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5. Evaluate hydraulic forces from a network calculation 
 

1.3. An elementary mesh to evaluate the forces 
 

As widely explained above, the network calculation gives a distribution of flow rates and, 

a fortiori, the pressure losses in the system through a simple operation. The question is then 

how can we value the different forces from such a flow rate distribution. 

To do so, we need to define what is called internally in Phorcys an “elementary mesh” 

from which all classic forces can be drawn up (Figure F-12). 

 

Figure F-12 - Illustration of an elementary mesh to calculate forces 

 

The elementary mesh is built upon two convergent-diffusers (named CD_1 and  CD_2),  

two  axial  elements  (named  Ax_Bundle_1  and  A_xBundle_2),  and three lateral elements :  

two outer elements from Model 3 (named Mod_3_1 and Mod_3_2) and one inner lateral 

bundle element (named Lat_Bundle). 

 

2.3. Forces inventory in the elementary mesh 
 

From here on we describe every force which can be set up from the data in one 

elementary mesh.  In what follows, 𝑆𝑖 stands for the entrance cross-section of element 𝑖, 𝑄𝑖 

the flow rate in element i, and Δ𝑃𝑖 the positive  pressure loss in element 𝑖. 

 

Axial forces 

 

The axial force drawn up from axial elements in one assembly’s span, namely 𝐹𝑍, is given 

below : 
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𝐹𝑍
     = Δ𝑃𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_1 𝑆𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_1

 𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_1

| 𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_1|
 𝑒𝑧    

+  Δ𝑃𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_2 𝑆𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_2

 𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_2

| 𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_2|
 𝑒𝑧     

(Eq. F-28) 

 

Lateral forces exerting on the bundle 
 

Two forces, respectively 𝐹𝑀𝑜𝑑3_1 and 𝐹𝑀𝑜𝑑3_2 are generated by the Δ𝑃𝑡𝑜𝑡 pressure losses 

terms (sum of Δ𝑃𝑙 and Δ𝑃𝑐 , see (Eq. 2-29) in chapter 2) through 𝑀𝑜𝑑3_1 and 𝑀𝑜𝑑3_2 elements 

occurring within a ℎ𝑙 height upstream from the grid: 

 

𝐹𝑀3_1             =
1

2
𝜌 ((

𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_1

𝑆𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_1
)

2

− (
𝑄𝐶𝐷_1

𝑆𝐶𝐷_1
)

2

+ Δ𝑃𝑙,𝑀𝑜𝑑3_1  
 𝑄𝑀𝑜𝑑3_1

| 𝑄𝑀𝑜𝑑3_1|
) ℎ𝐿𝐿 𝑒𝑥       (Eq. F-29) 

 

𝐹𝑀3_2
            =

1

2
𝜌 ((

𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_2

𝑆𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_2
)

2

− (
𝑄𝐶𝐷_2

𝑆𝐶𝐷_2
)

2

+ Δ𝑃𝑙,𝑀𝑜𝑑3_2  
 𝑄𝑀𝑜𝑑3_2

| 𝑄𝑀𝑜𝑑3_2|
) ℎ𝐿𝐿 𝑒𝑥        (Eq. F-30) 

 

In (Eq. F-29) and (Eq. F-30), we note that the forces are made of velocities coming from 

Δ𝑃𝑙 and the pressure loss within ℎ𝑙, Δ𝑃𝑙 (Eq. 2-29). 

 

And one force is induced by the inner bundle located below a grid, named 𝐹𝐵𝑢: 

 

𝐹𝐵𝑢
        =   Δ𝑃𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒𝑆𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒

 𝑄𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒

| 𝑄𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒|
 𝑒𝑥     (Eq. F-31) 

 

Lateral forces exerting on the grid due to coolant put in the upright position 

 

This force, 𝐹𝑈𝑃, has already been described in chapter 1. Knowing that we have access 

with the network to bulk velocities (let us say 𝑉𝑧 axially and 𝑉𝑥 laterally), we do not know the 

inner variations of velocity within the cross-sections. Considering that axially, the velocity 

component equals 𝑉𝑧 in each point, we can reuse the equation found out in Appendix A. As 

a reminder, the general equation giving 𝐹𝑈𝑃 is the following: 

 

𝐹𝑈𝑃 = 𝜌𝑆𝑔〈𝑣𝑥𝑣𝑧〉𝑆𝑔
=  𝜌𝑆𝑔𝑉𝑧〈𝑣𝑥〉𝑆𝑔

 

 

(Eq. F-32) 

Where 〈𝑣𝑥〉𝑆𝑔
  is the mean of the lateral component on 𝑆𝑔. Again, we only have access to 

the inlet bulk velocity 𝑉𝑥. As a first approach it is a reasonable hypothesis thinking that 𝑣𝑥 

equals either 𝑉𝑥 or 𝛽𝑉𝑋 (where 𝛽 is the pitch to diameter ratio) accordingly to whether we 

consider a position between rods or not (see Figure F-13).  
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Figure F-13 - Illustration of the lateral velocity variation in the bundle 

 

Consequently 〈𝑣𝑥〉𝑆𝑔
∼

1

2
𝑉𝑋(1 + 𝛽). Injecting the latter expression in (Eq. F-32), all 

happens as if 𝐹𝑈𝑃 was the average of two forces (the one for the maximal value of lateral 

bulk velocity and the one for its minimal value) of the form ‘perfect fluid’ or ‘constant 

velocity’: 

 

𝐹𝑈𝑃 =
1

2
𝜌 sin(2휃) 𝑆𝑔 𝑣∞

2   (Eq. F-33) 

 

Where 𝜌 is the fluid density (𝑘𝑔. 𝑚−3), 휃 is the angle between the inclined flow entering the 

grid and the normal to the surface (𝑟𝑎𝑑), 𝑆𝑔 is the coolant cross-section upstream from the 

grid (𝑚2), 𝑣∞ is the norm of the velocity upsteam from the grid (𝑚. 𝑠−1).  

As said previously, 𝐹𝑈𝑃 may put up with non-trivial oscillations along the grid width, 

indeed the lateral component of the velocity vary successively from 𝑉𝑋 to 𝛽𝑉𝑋 in the bundle, 

and thus 휃 and 𝑣∞ too. The two couples of variables giving the two extreme forces are: 

 

{
 
 

 
 (휃1, 휃2) = (tan−1 (

𝑆𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒|𝑄𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒|

𝑆𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒|𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒|
) , tan−1 (𝛽

𝑆𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒|𝑄𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒|

𝑆𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒|𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒|
)) 

(𝑣∞1
, 𝑣∞2

) = (√(
𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒

𝑆𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒

)

2

+ (
𝑄𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒

𝑆𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒
)

2

, √(
𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒

𝑆𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒

)

2

+ 𝛽2 (
𝑄𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒

𝑆𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒
)

2

)

 (Eq. F-34) 

 

With: 

 

{
𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒 = 𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_1      (𝑄𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒 > 0)

𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒 = 𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_2       (𝑄𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒 < 0)
 (Eq. F-35) 

 

 

Consequently, 
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𝐹𝑈𝑃
       =

1

2
(𝐹𝑈𝑃(휃1, 𝑣∞1

) + 𝐹𝑈𝑃(휃2, 𝑣∞2
))

 𝑄𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒

| 𝑄𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒|
 𝑒𝑥     (Eq. F-36) 

 

Lateral force exerting on the grid due to difference of pressure in the bypasses 

 

The expression of the force 𝐹𝑈𝑃 is: 

 

𝐹𝑉
     = (𝐿𝐿𝑡Δ𝑃𝑢 + 𝐿 ∫ (𝑝1(𝑄𝐶𝐷_1) − 𝑝1̃(𝑄𝐶𝐷_2)) 𝑑𝑧

𝐿𝑡

0

) 𝑒𝑥      (Eq. F-37) 

 

Where 𝑝1(𝑄𝐶𝐷_1) and 𝑝1̃(𝑄𝐶𝐷_2) are respectively the pressure profiles on the left and right 

hand sides of the grid. In practice, Δ𝑃𝑢 is obtained through: 

 

Δ𝑃𝑢 = Δ𝑃𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒

 𝑄𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒

| 𝑄𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒|
 

+
1

2
𝜌 ((

𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_1

𝑆𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_1

)

2

− (
𝑄𝐶𝐷_1

𝑆𝐶𝐷_1
)

2

− (
𝑄𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_2

𝑆𝐴𝑥_𝐵𝑢𝑛𝑑𝑙𝑒_2

)

2

+ (
𝑄𝐶𝐷_2

𝑆𝐶𝐷_2
)

2

) + Δ𝑃𝑙,𝑀𝑜𝑑3_1  
 𝑄𝑀𝑜𝑑3_1

| 𝑄𝑀𝑜𝑑3_1|
+ Δ𝑃𝑙,𝑀𝑜𝑑3_2  

 𝑄𝑀𝑜𝑑3_2

| 𝑄𝑀𝑜𝑑3_2|
 

(Eq. F-38) 

 

As in (Eq. F-29) and (Eq. F-30), (Eq. F-38)Δ𝑃𝑢 is composed of the pressure losses Δ𝑃𝑙 and 

Δ𝑃𝑐 associated to 𝑀𝑜𝑑3_1 and 𝑀𝑜𝑑3_2 as well as the lateral pressure loss in the bundle 

Δ𝑃𝐿𝑎𝑡_𝐵𝑢𝑛𝑑𝑙𝑒. It represents, as said in chapter 3, the lateral upstream pressure loss between 

two successive CDs. 

 

3.3. Exporting data from elementary meshes 
 

When necessary, all data can be exported to a single text file. The latter has a format 

illustrated in Table . 

 

𝑁𝑥 𝑁𝑦 Floor 𝐹𝐵 𝐹𝑈𝑃 𝐹𝑉 𝐹𝑍 

1 1 1 5 2 -4 60 
1 1 2 -6 2 -6 65 
…       

Table F-1 - Example of file exported 

 

𝑁𝑥 and 𝑁𝑦 stand for the position of the fuel assembly in the core, Floor is the elementary 

mesh number axially. 𝐹𝑈𝑃, 𝐹𝑉 and 𝐹𝐴𝑥 match both definitions presented above. 𝐹𝐵 is a bit 

different.  It implies the sum of 𝐹𝑀3,1 and 𝐹𝑀3,2, which are located a couple of centimeters 

(along ℎ𝑙) underneath the grid, plus the mean of 𝐹𝐵𝑢 calculated on the considered 

elementary mesh and the one calculated above the grid (in the elementary mesh situated 

overhead).  In fact, in the mechanical code used for the deformation, the sum of all lateral 

forces are applied on one given grid.  As shown in Figure F-14, all forces exert on a surface 
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either on or beside the grid in one elementary mesh. 𝐹𝐵𝑢 is quite an exception. The force is 

exerting on cross-sections located on the bundle right below.  Averaging the two 

surrounding 𝐹𝐵𝑢 might head toward a better perception of the effect perceived by the grid. 

 

 

 

Figure F-14 - Cross-sections entailed by the forces 

 

In practice, 𝐹𝐵𝑢 calculated as such may underestimate the bundle a little bit (only 15 

‘inner’ fuel rods are taken into account so does 𝐾𝐵 calculated through the Eole correlation). 

A possible attempt in the future could be to include 17 fuel rods in 𝐾𝐵, at the risk of 

duplicating outer fuel rods in the vicinity of the spacer grid. 

 

In addition, one can also keep in mind that for 3D redistributions, both forces presented 

in the exported data (except 𝐹𝑍) would contain 2 components each, along the x- and y-axis. 
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Titre : Contribution à l’analyse multiphysique de la déformation d’assemblage 
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Résumé : La déformation des assemblages en cœur 

est un sujet d'intérêt pour la sûreté et l'exploitation 

du parc électronucléaire, en raison du risque 

d'augmentation du temps de chute des barres de 

commande, de difficultés (voire de blocages) lors de 

la manutention des assemblages, mais aussi de 

déséquilibre de la nappe de puissance (tilt) ou encore 

d'usure locale prématurée du combustible. Les 

phénomènes physiques couplés à l'origine de ces 

mécanismes de déformation, avec des effets 

collectifs à l'échelle d'un cœur complet, font encore 

l'objet d'analyses amont pour en identifier et 

comprendre les éléments prépondérants.  

Le présent sujet est dédié à l'étude détaillée de 

phénomènes multiphysiques à l'influence connue : 

l'interaction fluide-structure d'une part, définissant 

les conditions d'équilibre statique pilotant 

l'écoulement et la déformée de l'assemblage au 

premier ordre, et le couplage 

mécanique/neutronique d'autre part, influencé par 

les éléments précédents et contribuant sur des 

temps plus longs à l'évolution des caractéristiques 

du système complet (propriétés mécaniques de 

l'assemblage, répartition de température et de 

débit à l'échelle du cœur...). 

 

 

Title : Contribution to the multiphysical analysis of fuel assembly bow 
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Abstract: Fuel assembly bow in a nuclear core is a 

topic of interest for safety and performance of power 

plants, due to the potential increase of the drop time 

of rod cluster control assemblies, and potential 

difficulties to handle the assemblies. It may as well 

lead to quadrant power tilts or to early wear of the 

fuel rods. Some advanced analyses are still required 

to capture the coupled physical phenomena at the 

origin of theses deformations and the present thesis 

aims at studying in detail two classes of phenomena 

with a known significant influence.  

Fluid-structure interaction on the one hand, setting 

up the first ordrer equilibrium conditions 

governing the fluid flow and the shape of the 

assemblies, and the mechanics/neutronics 

coupling on the other hand, influenced by the 

former topic and contributing on a larger time scale 

to the evolution of the characteristics of the whole 

system (mechanical properties of the assemblies, 

global temperature distribution and flow inside the 

core...). 

 

 

 

 

 

  


