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Cross-docking is a strategy originally introduced to optimize operations inside a warehouse as part of the optimization of the Supply Chain. Like traditional warehouses, products are collected from numerous freight yards such that suppliers, factories, manufactures,etc., using trucks, and are moved towards processing centers named cross-docks. At cross-dock yard, products first get unloaded on inbound dock doors. Afterwards, they are sorted according to their destinations and are immediately transferred, using handling devices, to appropriate outbound dock doors to be sometimes consolidated with other products of the same destination and are reloaded into shipping trucks. Unlike traditional warehouse where storage period of products is indefinite, for cross-dock, goods are unloaded and reloaded the same day without waiting in temporary storage area or can wait less than one day. In this PhD thesis, we study an NP-hard optimization problem raised by cross-dock referred to "Cross-dock Door Assignment Problem (CDAP)". The CDAP consists in assignment of incoming and outgoing trucks to inbound and outbound dock doors of cross-dock, respectively. The goal is to minimize the total transportation cost inside the cross-dock. The standard quadratic formulation of the CDAP includes the Generalized Assignment Problem as subproblem. In this dissertation, we perform an extensive cross-docking literature review. Then, we carry out a broad analysis of the standard quadratic formulation as well as the standard linearization of the CDAP. From this in-deph study, we propose several new non standard Mixed Integer Linear Programming models for the CDAP. To detect the best linear model among those we propose and those existing, we compare the performance of these models on instances proposed in the literature. We next propose a Lagrangian Relaxation approach to produce the best new lower bounds to optimal solution value. This Lagrangian Relaxation is applied to the model that produces the best LP relaxation bounds. The Lagrangian dual is solved using a subgradient algorithm. According to the experiments it seems that large-scale instances cannot be solved with an exact method in reasonable running times and memory requirements. Thus, we propose and implement two heuristics based on "Probabilistic Tabu Search" to operate efficiently with larger instances of the CDAP. To assess the effectiveness of these proposed heuristics, we compare their performance, first between them and then with recent heuristics in the literature. The results demonstrate the efficiency of the proposed approaches on data sets from the literature.

Résumé

Le cross-docking est une stratégie utilisée pour optimiser les opérations à l'intérieur de l'entrepôt dans le cadre de l'optimisation de la chaine logistique . Comme pour les entrepôts traditionnels, les produits sont collectés depuis plusieurs origines de production tels que les fournisseurs, les usines, les fabricants, etc., par des camions, puis ils sont acheminés vers des plateformes appelées cross-docks. Arrivés au cross-dock, les produits sont d'abord déchargés sur des quais d'entrée du cross-dock. Ils sont ensuite triés selon leurs destinations et sont immédiatement transférés, à l'aide des matériels de manutention, vers des quais de sortie correspondants pour, quelques fois être consolidés avec d'autres produits allant à la même destination et sont rechargés dans des camions sortants. Contrairement aux entrepôts traditionnels où la durée de stockage des produits est indéfinie, pour le cross-dock, ils sont déchargés et rechargés le même jour sans attendre dans la zone de stockage temporaire, ou peuvent attendre moins d'un jour. Dans cette thèse, nous étudions le problème d'optimisation NP-difficile apparaissant dans le cross-dock appelé "Cross-dock Door Assignment Problem (CDAP)". Le CDAP consiste à affecter des camions entrants et sortants, respectivement aux quais d'entrée et de sortie du cross-dock. Le but est de minimiser le coût total de transport à l'intérieur du cross-dock. La formulation quadratique standard du CDAP inclut le problème d'affectation généralisée comme sous-problème. Dans cette thèse, nous effectuons une revue de littérature étendue du cross-docking. Nous nous concentrons ensuite sur la modélisation mathématique du CDAP via une formulation quadratique standard, ainsi que sur la linéarisation standard de ce modèle. À partir de cette étude approfondie, nous proposons plusieurs nouveaux modèles linéaires non standard pour formuler le CDAP. Nous comparons ensuite ces modèles entre eux et ensuite avec les modèles récents de la littérature afin de déterminer le meilleur modèle linéaire. Nous proposons ensuite une Relaxation Lagrangienne pour produire de meilleures nouvelles bornes inférieures à la valeur de la solution optimale. La Relaxation Lagrangienne est appliquée au modèle qui produit de meilleures bornes inférieures de la relaxation continue. Le dual lagrangien est résolu par l'algorithme du sous-gradient. Les expérimentations montrent que les instances de grande taille ne peuvent pas être résolues par une méthode exacte en temps et ressources mémoires raisonnables. Nous proposons et implémentons donc deux heuristiques basées sur la recherche taboue probabiliste pour pouvoir traiter efficacement les instances de grande taille du CDAP. Pour évaluer l'efficacité de ces deux heuristiques, nous comparons leurs performances, d'abord entre elles, ensuite avec celles d'heuristiques récentes de la littérature. Les résultats obtenus montrent l'efficacité de nos méthodes sur des jeux de données de la littérature.
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Introduction

In today's competitive market where customers require short delivery time of their orders, Supply Chain (SC) with only classic distribution centers such that warehouses, is not enough to meet customers' requirements. Although warehouses remain involved and needed, when they are used alone they can not efficiently meet customers' need. In a typical warehouse, products are received at warehouse yard, then, they are inspected and stored into pallet racks waiting customers' orders. When a customer order is received into warehouse system, the product concerned by the order is retrieved from storage area it is stored and operations related to that order are started until it is loaded into shipping truck. Therefore, the main operations in a typical warehouse are receiving, inspection, storage, order-picking, shipping, etc. The interested readers can view the details in [START_REF] Agustina | A review : mathematical modles for cross docking planning[END_REF]; [START_REF] Bartholdi | Warehouse and Distribution Science[END_REF]; [START_REF] Van Belle | Cross-docking : State of the art[END_REF].

Two of those warehousing operations, namely storage and order-picking are the most expensive because of the highest cost of inventory holding and intensive workforce, see e.g., [START_REF] Bartholdi | Warehouse and Distribution Science[END_REF]; [START_REF] Van Belle | Cross-docking : State of the art[END_REF]; [START_REF] Ramaa | Impact of warehouse management system in a supply chain[END_REF]; [START_REF] Habazin | Order Picking Process in Warehouse : Case Study of Dairy Industry in Croatia[END_REF].

Nowadays new strategies are implemented to fulfill warehouse gaps. Those new strategies help to improve the functioning of Supply Chain while remaining costs saving, see e.g., [START_REF] Stalk | Competing on Capabilities : The New Rules of Corporate Strategy[END_REF]; Ladier and Alpan (2016a); [START_REF] Nguyen | Wal-mart's successfully integrated supply chain and the necessity of establishing the triple-a supply chain in the 21st century[END_REF]. However, those strategies raise other new problems, many of which are combinatorial optimization problems.

The emergence of new effective methods of resolution helps to solve those combinatorial optimization problems raised and adapt the Supply Chain against the increasing of customers' requirement. Cross-docking is one of strategic and innovative techniques implemented along Supply Chain. This strategy aims to eliminate the two expensive operations products handling devices inside cross-dock like forklifts, pallet jack, etc., the products are immediately transferred to output dock doors to be loaded into shipping trucks. Accordingly, the CDAP can be represented with inputs parameters that are a set of incoming trucks and a set of outgoing trucks to be docked on sets of inbound and outbound dock doors of cross-dock, respectively, with the goal of to look up an optimal assignment of those incoming and outgoing trucks on inbound and outbound dock doors, respectively, This dissertation is composed by 6 chapters and is organized as follows. The chapter 2 presents the main operations into warehouse, the cost incurred by operations and how big pallet are split into small units and the movement of those units. Among those warehouse's internal operations, the two most costly operations are reviewed.

The chapter 3 covers the state of the art for the cross-docking strategy. This chapter describes in more details cross-dock warehouse and the strategies involved by crossdocking ; the three levels of decision such that strategic, tactical and operational. The studies related to those decision levels include optimization problems like cross-dock network design (strategic level), cross-dock layout design (tactical level), dock-door assignment, truck scheduling, etc. (operational level). We detail different combinatorial optimization problems that arise in operational decision level because we focus on an operational optimization problem. Afterwards, we emphasize on Cross-dock Door Assignment Problem that is the case of study of this dissertation.

The chapter 4 is a broad development of two articles, a published journal and a conference articles. In this chapter, we carry out a broad analysis of a standard quadratic mathematical formulation proposed in [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] and a standard linearization for CDAP based on the linearization made in [START_REF] Fortet | Applications de l'algèbre de boole en recherche opérationelle[END_REF]. Then, we propose eight new non standard MILP models for the CDAP. To detect the best MILP model among those we proposed and the models recently proposed into the literature, we have performed an exhaustive empirical analysis using benchmark data sets from literature introduced by [START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF]. Those MILP models are implemented and solved using CPLEX solver into Java environment. Afterwards, we choose one MILP model to which we apply a Lagrangian Relaxation (LR) procedure. The goal of the Lagrangian Relaxation approach is to find new and better lower bounds on the optimal solution value. We use sub-gradient optimization algorithm to solve the Lagrangian dual model. The same benchmark data sets, [START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF], are used to evaluate the performance of our Lagrangian Relaxation approach. The results of Lagrangian dual are compared with those given by LP relaxation of the corresponding MILP model and the recent results given by Lagrangian Relaxation from literature, [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF]. The Lagrangian Relaxation model is solved using CPLEX solver and the sub-gradient optimization algorithm is implemented into Java environment.

The chapter 5 is also a large development of a published journal article. In this chapter, we implemented in Java environment two heuristics based on Probabilistic Tabu Search.

We have referred those heuristics to PTS1 and PTS2. Our probabilistic algorithm is based on Tabu Search proposed by [START_REF] Glover | Future paths for integer programming and links to artificial intelligence[END_REF]. We use Probabilistic Tabu Search (PTS) to solve efficiently large scale instances of CDAP for which there is so far no exact method that can solve them. We embedded an exploration heuristic to this algorithm for neighborhood exhaustive exploration avoidance. We have carried out computational experiments to analyse on the one hand the performance of PTS1 and PTS2 between and on the other hand we compare their performance with recent heuristics from literature.

The chapter 6 closes this dissertation with a general conclusion and draws up future research directions. The conclusion and future works are followed by two appendices that give, in tables, the detailed computational results and by a bibliography.

Chapter 2

Warehouse operations management 

Introduction

A Supply Chain (SC) can be defined as a sequence of processes through which products flow from upstream (suppliers) into large pallets namely pallet-load to downstream (customers) into small units or into pieces. Warehouses as well as cross-docks are the intermediate points of Supply Chain where products are unloaded, inspected and managed before shipping. Those distribution centers are considered as inventory buffer points that link the flow of products between suppliers from upstream and customers to downstream.

Chapter 2. Warehouse operations management

Products flow and units handling

In Supply Chain, products are handled generally in small boxes while they are moving down from upstream to downstream. From upstream, products flow in large boxes e.g., in pallet-load. At each move to downstream, a pallet-load is successively broken down and sometimes repalletized into small units such that carton, inner pack, unit, etc., until it can no longer be divided, see e.g., Figure 2.1 below. 

Warehouse operations

The Figure 2.2 is a schematic representation of the main operations that are handled in a typical warehouse. It gives the general pattern of product flow inside typical warehouse.

A warehouse is designed to have enough storage area to store incoming products from suppliers, that implies a rigorous management of storage space. The products can come from various freight yard into pallet-load and are shipped into cartons. Other products can arrive at warehouse into cartons and shipped into inner-packs, sometimes into pieces.

The shipment into cartons or inner-packs,...will depend on the customers commands and whether products concerned by the customers commands are shipped to the same destination or not. This deep division of pallet-load requires more labor. Generally the smaller the handling unit, the greater the handling cost, see e.g., [START_REF] Habazin | Order Picking Process in Warehouse : Case Study of Dairy Industry in Croatia[END_REF]; [START_REF] Bartholdi | Warehouse and Distribution Science[END_REF]. At the arrival, the products are received and inspected, those for which arrival coincides with customer's orders are not stored, they go immediately to next

Warehouse operations

Figure 2.2 -Typical warehouse operations, [START_REF] Bartholdi | Warehouse and Distribution Science[END_REF] operations for shipping, that is, direct put-away to primary operation (see Figure 2.2).

The time products spend in warehouse storage area is not known in advance. When customer order is received into Warehouse System, the product concerned by this customer order is retrieved from storage area and is picked for being loaded into shipping trucks (order-picking). We can summarize the process as follows:

When products arrive at warehouse

• Inspection : checking damaged products

• Receiving : reorganization and repackaging

• Put-away : direct put-away to reserve or to primary When customer order is received

• Order-picking : preparing customer order

• Accumulation, sorting and packing

• Shipping

These main activities are briefly described in the following subsections.

Inspection and receiving

Arrival of products is notified and unloading starts. Cartons are scanned, products are inspected to raise possible exceptions such that damage, wrong description etc., any exception is notified. Large cartons are broken into small ones before being put-away for storage or being put-away to primary. When the large boxes are broken, additional boxes with small size are sometimes needed for repackaging, see e.g., [START_REF] Bartholdi | Warehouse and Distribution Science[END_REF].

Put-away

The operation put-away to primary happens when the arrival of products coincides with customer order, therefore the products concerned by the order are immediately handled for shipping. For put-away to reserve, products are stored into a specified location area of warehouse during indefinite time. For this operation, an appropriate storage space is determined. This is important because it makes easy to retrieve pallet from its location area upon the reception of customer order for this product. The put-away to reserve operation requires more labor to move product until its storage space. Before put-away to reserve operation, an inventory of storage areas is performed to know occupied, available areas and where everything is stored, see e.g., [START_REF] Habazin | Order Picking Process in Warehouse : Case Study of Dairy Industry in Croatia[END_REF]. Storage area of a product is scanned to make easy finding when it will be ordered.

Order-picking

When a customer order is received into warehouse system, an inventory of products is performed to verify if the customer order is possible for shipping. 

Accumulation, sorting and packing

Accumulation involves putting together different orders of a given customer in single package (packing). Before accumulation, orders are sorted according to their destinations.

Those operations need a great precaution in order to meet customer's order accuracy.

Shipping

If all checks related to an order are done, it is ready to be loaded into shipping truck.

The shipping process is not expensive compared to operations detailed above.

Conclusion

In this chapter, the flow of products from upstream to downstream into Supply Chain and the management of large pallet-loads into small packs have been presented. The main operations of a warehouse have been reviewed. Among those operations, we have shown that storage and order-picking are the most expensive due to the highest cost of inventory holding and intensive labor, respectively. In the next chapter, we are going to make the state of the art for cross-docking showing the improvement of cross-docking strategy on classical warehouse. Afterwards we are going to focus on the main combinatorial optimization problems that are raised by cross-docking strategy. We emphasize on Cross-dock Door Assignment Problem (CDAP) that is the case of study of this dissertation.

Chapter 3

Cross-docking and Supply Chain In this chapter we describe in more details cross-docking in Supply Chain and how some transportation companies have managed to lower their cost after having implemented cross-docking. Different decisions classified in three levels to successfully implement the cross-docking are also discussed in this chapter. A literature review for most combinatorial optimization problems raised by cross-docking strategy is conducted. Finally, the combinatorial optimization problem tackled in this PhD thesis is described and different variants of this problem are also discussed.

Introduction

In Supply Chain, products packaged in cartons or other packaging materials are moved from one point to another point. Thereby, a carton of products is brought to travel a certain distance that separates the point upstream to the point downstream. Logistic or Supply Chain is then defined as a sequence of processes consisting of moving products from upstream to downstream and vice versa, in other words from producer to final customer and in reverse logistic, from the final customer to the producer. That is, Supply Chain Management (SCM) is the set of methods, resources and processes that are used to manage and improve the Supply Chain performance. The goal of a Supply Chain manager is to estimate the exact need at each stage, from the production of the finite products until delivery to the final customers.

At each step of flow of product until to its final destination, a supply chain cost is incurred. This cost can be expressed in several ways such that a function of distance that the product must travel from the point of production to the point of destination or vice versa, the damage that the product may incur during its displacements, the delays or distance that incurs transportation equipment used to deliver product from one point to another, the cost of storage of the product in a warehouse, etc. To try to optimize this cost, an important question is raised and need to be efficiently answered : how to move down products from upstream to downstream at very low cost ? Behind this question, several other questions and decisions can be listed, such that the best time and the frequency for the move, the best path to be taken in the logistic network, at what dock door of the platform to allocate mean of transportation, etc. This question does not only address to the means of transportation, but also the organization aspects.

The ultimate goal of Supply Chain is to meet the customer requirements, i.e, a high ser-

Cross-docking definitions

vice level, a short delivery time and a customer order accuracy with a minimum cost knowing that customer satisfaction is a key performance indicator in logistic. Cross-docking is one of strategies that helps to tackle those challenges.

Cross-docking definitions

Generally, the consumer goods factory produces the same consumer good in very large quantities. Then, these quantities of a given product are loaded until truck is fully loaded.

The trucks fully loaded are sent to storage warehouses which can be located either near the factory or retail store or somewhere else in the network of suppliers, retailers and customers. In fact, retail store and customers generally do not need a high volume of the same product. Usually, small stores and customers need a small quantity of each product supplied by a storage warehouse. In the storage warehouse, the product are stored for unknown time. In addition, during the time the product is stored, it does not generate a profit. On the contrary it incurs an inventory holding which is one of the two most expensive operations in warehouse as mentioned in chapter 2.

Cross-docking is an alternative dynamic and Just-in-Time strategy which consists to transfer directly the products from trucks that come from different suppliers (called incoming trucks) to trucks going to different retailers and customers (called outgoing trucks) without storing those products. If shipping truck of a product is not available on the yard, that product will need to be stored for a while into a temporary storage area of the platform. Unlike classical warehouse, the storage time cannot exceed more than a day, sometimes products are stored for less than an hour, see e.g., [START_REF] Bartholdi | The best shape for a crossdock[END_REF]; [START_REF] Agustina | A review : mathematical modles for cross docking planning[END_REF]; [START_REF] Van Belle | Cross-docking : State of the art[END_REF]; [START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF]. To cope with this non storage of products, cross-docking strategy is involved for the products whose final retailers and customers are already known in advance before they leave the suppliers. That is, origins and destinations of products are known in advance. The fact products are not stored or can be stored for few hours in platform accelerates their flow from their origins going through distribution center to their respective destinations. Accordingly, all costs that were related to the storage and order picking operations namely inventory holding cost and intensive labor cost, respectively, are significantly reduced or completely dropped. This is the key difference between cross-docking strategy and classical warehouse.

In [START_REF] Van Belle | Cross-docking : State of the art[END_REF], the authors give a general definition of cross-docking as "the process of unloading freight from inbound vehicles and loading these goods into out- and screened to identify their end destinations. Afterwards, the pallets are moved to outbound dock doors of cross-dock terminal using manual material handling devices such that hand pallet truck, forklift, electric pallet truck, etc., see e.g., Figure 3.2, or using an automated mode such that a network system of conveyor belts. To outbound dock doors side, products can be consolidated with those in pending for the same destination and are loaded into outgoing trucks that are already docked. After loading operation, the products can then make their way to the final destinations. Generally, the number of incoming and outgoing trucks by period is larger than the number of dock doors of cross-dock. A dock 

Companies implementing cross-docking

Cross-docking strategy has been implemented and has lowered the cost for several transportation companies. For instance, the distribution chain company Wal-Mart in US is cited to be on the top of position of retailer companies to begin implementation of the cross-docking in the retail sector in the late 1980s. Wal-Mart success began by defining the goals that were consisting to provide to customers the access to quality of goods, to make those goods available where and when customers need them, to develop a cost structure that enables competitive pricing, to build and maintain a reputation for absolute reliability, for more details, readers can refer to [START_REF] Stalk | Competing on Capabilities : The New Rules of Corporate Strategy[END_REF]; [START_REF] Nguyen | Wal-mart's successfully integrated supply chain and the necessity of establishing the triple-a supply chain in the 21st century[END_REF].

The following paragraph is the citations of [START_REF] Stalk | Competing on Capabilities : The New Rules of Corporate Strategy[END_REF] about the success of Wal-

Mart company :

"The key to achieving these goals was to make the way the company replenished Chapter 3. Cross-docking and Supply Chain inventory the centerpiece of its competitive strategy. This strategic vision reached its fullest expression in a largely invisible logistics technique known as 'cross-docking'.

In this system, goods are continuously delivered to Wal-Mart's warehouses where they are selected, repacked, and then dispatched to stores, often without ever staying in inventory space. Instead of spending valuable time in the warehouse, goods just cross from one loading dock to another in 48 hours or less." [START_REF] Stalk | Competing on Capabilities : The New Rules of Corporate Strategy[END_REF] In [START_REF] Bartholdi | The best shape for a crossdock[END_REF], the authors stated that the transportation company Home Depot has operated cross-docking in Philadelphia that serves more than 100 stores in the Northeast. But, before using cross-docking, Home Depot used to order each store separately from suppliers and the orders were sent directly to Home Deport stores in partially loaded truck known as Less Than TruckLoad (LTL). Now, to reduce the costs, the company uses cross-docking. Here is how Home Deport has processed to reduce transportation costs from suppliers to its facility and from facility to retailers. Therefore, instead of using LTL, all the orders are consolidated among the stores on suppliers side and are 

Cross-docking decision levels

Even though cross-docking offers significant cost saving, like any functional system, it is not a complete package of solutions for all the problems of the Supply Chain. In fact, cross-docking success, when this strategy is used appropriately, depends on how well the transportation network is designed and managed. For instance, the success of cross-docking depends on how well the network of cross-docks (cross-docking network) is located to connect origins and destinations of products together. Therefore, the success of an individual cross-dock is influenced by how well is designed, exploited and managed the whole network of cross-docks in which that individual cross-dock is located, see e.g., [START_REF] Yang | An analysis of factors affecting cross docking operations[END_REF]. Other factors that affect an individual cross-dock are for instance the size, shape, number of dock doors of the platform ; the number of handling devices used inside cross-dock, the time spent by material handling devices traveling between dock doors pair while they are moving pallets, congestion caused by the movements of those material handling devices, etc. Therefore, to successfully plan, design, implement and manage a cross-dock, several decisions are to be made. Those decisions are classified in three levels, namely, strategic, tactical and operational.

Strategic level decisions

The decisions to be made at the strategic level are long-term decisions and are usually concerning physical characteristic of cross-dock. Those decisions are taken in order to strengthen the time span of the cross-dock and to influence further operations inside the platform. Some examples of strategic decisions to be taken into account when planning to design cross-docking are as follows:

The cross-docking network refers to a network of one or several cross-docks connected together. It is a subsystem of supply chain formed by one or several cross-docks with inbound and outbound transport routes and the stakeholders connected to the crossdocks by those routes, see e.g., [START_REF] Buijs | Synchronization in cross-docking networks : A research classification and framework[END_REF].

The location of an individual cross-dock geographically in cross-docking network and in the network of suppliers, retailers and customers is an important strategic decision. To learn more about location of cross-dock, we refer the interested reader to e.g., [START_REF] Agustina | A review : mathematical modles for cross docking planning[END_REF]; [START_REF] Van Belle | Cross-docking : State of the art[END_REF].

The Layout design of a cross-dock is also an important physical characteristic. Once location of individual cross-dock in cross-docking network is determined, the decision concerning the layout of cross-dock has to be made. The layout design of a cross-dock refers to the shape, the size and the number of dock doors of a cross-dock. The interested reader can refer to the extensive overview made on cross-docking concept in [START_REF] Van Belle | Cross-docking : State of the art[END_REF]. As far as shape is concerned, cross-docks have a lot of variety of shapes which are usually described by a letter such that I, L, T, H, U, E and X. Usually the number of dock doors imposes the shape that must have a cross-dock.

In [START_REF] Bartholdi | The best shape for a crossdock[END_REF], the authors have focused on how the shape affects cross-dock performance. In view of this fact, they have studied different shapes of crossdocks with the purpose to find out what have to be the best shape for cross-dock. They have listed the commonly used shapes such that I, L, and T and other unused such that U, H and E. The authors conducted computational experiments on I, L, T, H, and X-shape cross-docks considering several characteristics such that the size, the shape, the flows concentration and a part of inbound dock doors. Through the results of their computational experiments, they concluded that performance of cross-dock depends on two factors such that the size and the shape and that most of cross-docks are I-shape, that is, long, narrow rectangles. The authors argued that for number of dock doors, I-shape is the best layout with few than about 150 dock doors on each of the two sides of cross-dock, T-shape is the best efficient for cross-dock with intermediate size, that is, between 150 and 200 dock doors and that X-shape is the best for approximately more than 200 dock doors.

In [START_REF] Stephan | Cross-docking[END_REF], the authors stated that L-shapes and H-shape crossdocks are less efficient than I-shape cross-docks because those cross-docks provide additional corners that not help improving traveled distance.

The cross-docks visited in Ladier and Alpan (2016a), seven out of the eight cross-docks are I-shape. In fact, all those cross-docks have less than one hundred dock doors where I-shape is the most efficient in accordance with [START_REF] Bartholdi | The best shape for a crossdock[END_REF]. Another reason that the authors argued to explain why all cross-docks are I-shape is that in France the biggest cross-docks are built by real estate agents who choose I-shape layout because it can be easy to divide when it comes to renting to logistic companies. This survey is a chapter of the thesis of [START_REF] Ladier | Scheduling cross-docking operations : Integration of operational uncertainties and resource capacities[END_REF].

Number of dock doors is also a strategic decision. Once the shape of cross-dock is defined, the number of dock doors must also be decided and how they are placed along the cross-dock, either on only one side or on two sides or on all the sides of the platform.

Clearly, the decision of shape is influenced by the size of the platform.

Internal transportation system is also a strategic decision that must be considered.

This decision is concerning how products are moved from inbound to outbound dock doors of the cross-dock. Thus, products can be moved either manually by workers using material handling devices, see e.g., Figure 3.2, or using an automated mode like a network system of conveyor belts or a combination of those two first internal transportation modes.

For more details about flow of products inside cross-dock, interested reader can refer to e.g., [START_REF] Stephan | Cross-docking[END_REF]; [START_REF] Van Belle | Cross-docking : State of the art[END_REF]; Ladier and Alpan (2016a). In Ladier and Alpan (2016a), the majority of visited cross-docks use internal transportation system in the following distribution: 63% of cross-docks use manual transportation, 13% use automated transportation mode and 25% use combined mode of transportation. For the visited cross-docks, the authors explained why an automated and combination modes are used widely more than what is stated in academic literature by the fact that when automated and combined transportation mode are used, some operational decisions are delegated to Information Technology (IT) system.

The number of material handling devices used inside cross-dock is also a strategic decision, refer to e.g., [START_REF] Agustina | A review : mathematical modles for cross docking planning[END_REF].

Tactical level decisions

Decisions made on tactical level are mid-term decisions for cross-dock. Those decisions influence directly operational decisions. Some of tactical decisions include:

Flow of products through cross-docking network configuration. Preemption is also a tactical decision. In individual cross-dock, operations manager must decide whether or not to allow ongoing unloading/loading of a truck to be interrupted.

If preemption is allowed, the unloading or loading of truck can be interrupted at any time, then the truck is put-away and is replaced by the next one. The uncompleted unloading/loading truck that has been put-away will be reassigned and processed later either to the same dock door or to an another dock door according to the case that minimizes the cost. The cost of moving away the truck from the dock door and the cost to back it for reassignment to dock door are taken into account. In Ladier and Alpan (2016a) no one of the visited cross-docks use preemption. 

Combined mode

The combination mode of service is the combination of exclusive and mixed mode. In the combined mode, a subset of dock doors works in exclusive mode and the rest of dock doors work in mixed mode, see e.g., [START_REF] Van Belle | Cross-docking : State of the art[END_REF]. The combined mode cannot be covered in practice because it would cause confusion between exclusive and mixed mode of dock doors,see e.g., Ladier and Alpan (2016a).

Operational level decisions

The operational level decisions are short-term decisions. Those operational decisions are made on daily or weekly basis by cross-dock operations manager. This decision level raises several questions related to the management of cross-dock operations. For instance, the question like how trucks will be unloaded when they arrive on cross-dock ? This question raises a set of decisions that must be made such that unloading will be done either manually using material handling devices or with automated system ; whether big cartons will be divided and repacked or not ; etc. Other questions like when unloading operation will start and when trucks leave cross-dock ? The cross-dock operations manager can decide, for example, either that all incoming and shipping trucks have to be available at the cross-dock ground from the beginning of operations until the end or at any time incoming truck arrives it is processed and as soon as it ends up being unloaded it leaves and outgoing truck leaves as soon as it ends up being loaded.

A cross-dock operations manager can decide also to ship goods directly from origins to destinations in the case all shipping trucks are available on the platform yard. In that case no product can go through temporary storage area. This is the case for frozen or fresh products that have to be shipped immediately to the respective destinations so that they are not damaged. The products that have been temporarily stored can be consolidated inside cross-dock with new arriving products of the same destination before being loaded into shipping truck. Other decision can be made about the number of material handling devices, that is, the fewer or more forklifts to use inside the cross-dock to handle shipments.

For all those operational decisions, the interested reader can refer to e.g., Ladier and Alpan (2016a), for the impact of operations manager decisions on the operational effectiveness of cross-dock, the reader can refer to e.g., [START_REF] Yang | An analysis of factors affecting cross docking operations[END_REF] in which the authors have used a computer simulation considering an I-shape cross-dock and forklifts as devices used to handle pallets inside the cross-dock.

Operational optimization problems

As we have just seen in Section 3.4.3 above, the operational level raises a lot of decisions that are made on daily or weekly basis. It is obvious that each decision raises one or more optimization problems so that if we solve this or these optimization problems,

we optimize the operational level of the cross-dock at the point where these problems have been solved. An optimization problem consists of finding the best solution among all feasible solutions. The best solution can be the shortest path, the shortest duration of operations (makespan), a maximum benefit using a minimum resource, etc. Those optimization problems are usually NP-hard. An optimization problem is NP-hard if it can not be solved optimally in polynomial time, i.e., reasonable time using a known polynomial algorithm, assuming P !=NP. To solve such problems, we use approximation algorithms such that heuristics that do not guarantee an optimal solution but an approximate solution in reasonable time.

As our study addresses one of the operational class of optimization problems, we perform in the following sections a large description of the main optimization problems that occur at the operational level of decision. Then we emphasize on the combinatorial optimization problem "The Cross-dock Door Assignment Problem (CDAP)" that we deal with in this PhD thesis as well as the configuration of the cross-dock to which we apply that 

The Cross-dock Door Assignment Problem

The Cross-dock Door Assignment Problem (CDAP) consists of assigning trucks to dock doors in order to optimize (minimize, maximize) operations inside the cross-dock. The schematic representation of those operations inside cross-dock is depicted in Figure 3.7.

The Cross-dock Door Assignment Problem assumes that all incoming and outgoing trucks are available on cross-dock yard before the beginning of planning the cross-docking operations. The objective is to minimize transportation cost inside the cross-dock by finding an optimal assignment of trucks dock doors. and departure time of each truck on and from cross-dock, respectively, the time at which each truck will be processed on dock door. A good scheduling of trucks to dock doors will cause a good flowing of products. Therefore, the makespan which is the total operational time span from the start of unloading the first incoming truck until end of loading the last shipping truck will be shortened and congestion inside the facility will be minimized. The objective of this optimization problem is to minimize the makespan. For more details, we refer the reader to e.g., [START_REF] Agustina | A review : mathematical modles for cross docking planning[END_REF]; [START_REF] Van Belle | Cross-docking : State of the art[END_REF].

Generally, in the standard CDAP, origin and destination of trucks are set, that is, the trucks coming from the same origin or serving the same destination are assigned to the same inbound/outbound dock door respectively while dock door capacity is still imposed.

In the case of the Truck Scheduling Problem, the trucks coming from the same origin or serving the same destination can be assigned to different dock doors if the assignment minimizes the makespan.

The Truck Scheduling Problem considers a deterministic environment in which all data are certain and reliable. That is, no condition can cause delay of trucks from arriving on time. Thus, arrival and departure time of each truck are fixed. Nevertheless, in realistic environment, the arrival or departure time of truck can be delayed due to several conditions such that traffic congestion, truck failure, road accidents, the weather, etc. Those life conditions make arrival time of truck to be uncertain. In [START_REF] Ladier | Robust cross-dock scheduling with time windows[END_REF] 

Trucks Sequencing Problem

Unlike Truck-to-dock Door Assignment and Truck Scheduling Problems, Truck sequencing problem does not take into account neither space dimension nor temporal dimension.

In fact, having the number of incoming and outgoing trucks greater enough than the number of inbound and outbound dock doors, only a part of incoming and outgoing trucks can be assigned and get unloaded and loaded simultaneously while excess incoming and outgoing trucks are put-away in waiting buffer until the previous assigned ones end up getting unloaded/loaded. Therefore, while waiting, all those trucks are sequenced into queue to influence the efficiency of the cross-dock. For instance, a product in incoming truck which is in waiting queue while the corresponding outgoing truck of this product is assigned on dock door ready to be loaded and can not be replaced by another outgoing truck, this kind of situations leads to a delay which affects the performance of the cross-dock. The Truck Sequencing Problem seeks to determine an optimal sequence or the order into which the waiting trucks are processed to dock doors and determines on which dock door exactly each truck is processed to improve cross-dock efficiency. That is, a truck is not assigned to a specific dock door but to any available dock dock according to the established sequence. For more details, we refer the interested reader to e.g., Ladier

and Alpan (2016a).

Transshipment Problem

This optimization problem looks for determining a good flow of products, on the one hand, between suppliers and cross-dock and on the other hand, between cross-dock and customers. This involves a good and tight synchronization between incoming and outgoing trucks. The purpose is to minimize the transportation, the penalty and the inventory costs in distribution network. The transshipment problem considers also the decisions made by operations' managers on how goods are moved inside the facility like if incoming goods can be consolidated in staging area with some goods present in temporary storage to complete the freight, see e.g., [START_REF] Alpan | Heuristic solutions for transshipment problems in a multiple door cross docking warehouse[END_REF]. In [START_REF] Miao | Transshipment problem with penalty in crossdocking distribution networks, Service Systems and Service Management[END_REF], the authors have studied the case of transshipment problem considering the fixed transportation schedules, that is, arrival and departure time for transportation schedules are fixed. On the one hand, the suppliers ship the packed products towards cross-docks through fixed transportation schedules, the cargoes can delay into facility for consolidation and the related inventory holding cost is applied as a penalty, the cargoes that will need inventory service at the last time point of its time horizon will incur the high inventory penalty cost. On the other hand, the customers receive their cargoes from cross-dock. In transshipment-inventory models, a frequent assumption is that a demand which cannot be fulfilled by one supply point can be completed through some other supply points. The goal is then to evaluate a control policy for replenishment. The total cost denotes transportation cost from suppliers to cross-docks, transportation cost from cross-docks to customers, the inventory cost and the penalty cost.

3.5. Operational optimization problems

Cross-dock Congestion Problem

Beside all those combinatorial optimization problems that arise within cross-docking, most of studies in literature review seemed to ignore the congestion issue of material handling devices inside the cross-docking terminal. However, this congestion is still a relevant problem and should be considered if we seek to manage the movement of material handling devices inside the cross-dock. In agreement with [START_REF] Shuib | A review on quantitative approaches for dock door assignment in cross-docking[END_REF], as the amount of incoming products entering into cross-dock increases, knowing in addition that the products have to be quickly handled inside the terminal in order to be immediately shipped, accordingly, the number of material handling devices must be multiplied and the speed up of movement of those handling devices is required to meet to goal of crossdocking strategy. This may create a congestion within the terminal. In Tsui andChang (1990, 1992), the authors stated that the longer it takes to empty an incoming truck, the more material handling devices are required and the more congested the dock door will be. Due to this, the congestion and interference of pallets handling devices inside the terminal increase. In Ladier and Alpan (2016a), the authors have stated that looking for minimizing total traveled distance inside cross-dock leads to group unloading and loading goods in the same area that generates the congestion and slowdowns the overall process.

Accordingly, within the cross-dock, seeking to minimize the congestion is in conflict with minimizing distance and vice versa.

In [START_REF] Yang | An analysis of factors affecting cross docking operations[END_REF], the auhors have performed a simulation in which they showed that a cross-dock with staging area at each inbound and outbound dock door reduce the dock door congestion inside terminal. The simulation showed that direct unloading/loading increases queuing of forklifts and congestion both at inbound and outbound sides of cross-dock while indirect unloading/loading reduces queuing and congestion and produces a higher throughput of pallets shipped from receiving side to shipping side but it requires a higher labor time to handle completely a pallet. Direct unloading/loading is applicable for pure cross-docking where unloaded pallets are directly sent to outbound dock door to be loaded into shipping trucks without going through temporary storage area. For a cross-dock with indirect unloading/loading, each inbound and outbound dock door have a staging area. Pallets are unloaded from incoming trucks to a staging area of inbound dock door and then are transferred from inbound staging area to staging area of outbound dock door, and finally from staging area of outbound dock door to be loaded into shipping trucks. Therefore, a pallet is picked up three times which consumes lot of can refer to e.g., [START_REF] Gue | Staging queues in material handling and transportation systems[END_REF] about the queuing of cross-dock's entities.

Vehicle Routing Problem with Cross-docking

In Supply Chain, goods are picked from various suppliers or other freight yards and are loaded into trucks and moved towards the distribution centers. In this case, the distribution center is referred to the cross-dock. Those goods have to be shipped to multiple destinations after having been sorted according to their respective destinations and sometimes consolidated into cross-dock. That is, the cross-dock is considered to be the In a given transportation network, the process of products picking from a defined node and products delivering to the customers in that transportation network is known under

Vehicle Routing Problem (VRP). The goal of VRP is to determine the number of vehicles to use in that transportation network, the optimal path that each used vehicle have to follow from suppliers to customers through cross-dock node.

An efficient optimization for the Vehicle Routing Problem may increase the throughput of the cross-dock. In [START_REF] Wen | Vehicle routing with cross-docking[END_REF], the authors proposed a vehicle routing problem with cross-docking using homogeneous vehicles for transportation of customers' orders via a cross-dock as a node. The objective was to minimize the travelling time of trucks taking into account the time window of each truck. The authors proposed a Mixed Integer Programming (MIP) model and a Tabu Search heuristic to solve the problem. The interested readers can also refer to [START_REF] Birim | Vehicle routing problem with cross docking : A simulated annealing approach[END_REF].

Cross-dock Door Assignment Problem

The NP-hard combinatorial optimization problem we tackle in this PhD thesis is an optimization problem referred to "Cross-dock Door Assignment Problem (CDAP)".

Truck scheduling, truck sequencing or transshipment problems are also concerned by 

Introduction

Cross-dock Door Assignment Problem looks for to optimize allocation of dock doors of cross-dock taking into account several factors, namely the shape, the flow of volume of pallets from incoming to outgoing trucks, those pallets cross the cross-dock from inbound to outbound dock doors. We start our study by tackling this optimization problem in general terms and further we describe different variants of CDAP as they have been proposed in Tsui andChang (1990, 1992); Cohen andKeren (2008, 2009); [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF]; [START_REF] Tarhini | Natural Optimization Algorithms for the Cross-Dock Door Assignment Problem[END_REF]. Afterwards we focus on the variants of this problem proposed in [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] . We choose this variant because it takes into account more real application such that the management of the capacity of dock doors. This optimization problem has also been studied in [START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF]; [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF] The authors in Tsui andChang (1990, 1992), have been the first to be interested and worked on the Cross-dock Door Assignment Problem. In [START_REF] Tsui | A microcomputer based decision support tool for assigning dock doors in freight yards[END_REF], the authors have proposed a basic bi-linear programming model for assigning receiving and shipping trucks to respectively inbound and outbound dock doors considering only assignment constraints both for dock doors and trucks. That is, according to the mathematical formulation, each inbound (respectively outbound) dock door is assigned to a single receiving (respectively shipping) truck and each receiving (respectively shipping) truck is assigned to a single inbound (respectively outbound) dock door. This assumes that the number of receiving (respectively shipping) trucks is equal to the number of inbound (respectively outbound) dock doors. In [START_REF] Tsui | An optimal solution to a dock door assignment problem[END_REF], the authors improved their former solution proposing a new solution based on Branch and Bound (B&B) algorithm.

In [START_REF] Bermudez | A genetic algorithm approach to door assignments in breakbulk terminals[END_REF], the authors have developed a Genetic Algorithm (GA) to solve the basic mathematical model introduced by [START_REF] Tsui | A microcomputer based decision support tool for assigning dock doors in freight yards[END_REF] in a breakbulk terminal to minimize the total weighted distance traveled inside the terminal composed by inbound and outbound dock doors and an open dock door. In Cohen andKeren (2008, 2009), the authors studied another variant of Cross-dock Door Assignment Problem. They extended the formulation proposed in [START_REF] Tsui | A microcomputer based decision support tool for assigning dock doors in freight yards[END_REF] by relaxing the assignment constraints between outbound dock doors and outgoing trucks. That is, the authors proposed a new mathematical formulation that allows several outbound dock doors to serve a single destination. In that new mathematical model, the capacity of each outbound dock door is set to be equal the capacity of a truck. At inbound side, they kept assignment constraint as in [START_REF] Tsui | A microcomputer based decision support tool for assigning dock doors in freight yards[END_REF]. Thus, the authors defined a new parameter for truck capacity, considering that tall trucks have the same capacity, and an additional decision variable. For a broad explanation, after a truck is unloaded, the freight is sent to corresponding destination at load dock door (outbound dock door). If the total freight sent to that destination exceeds the capacity of truck, the amount of that freight is split into several shipping dock doors that will be reserved to allocate that destination. We let recall that in the author's formulation, the capacity of each outbound dock door is equal the capacity of an outgoing truck.

In [START_REF] Tarhini | Natural Optimization Algorithms for the Cross-Dock Door Assignment Problem[END_REF], the authors proposed a slight change in the mathematical formulation of [START_REF] Tsui | A microcomputer based decision support tool for assigning dock doors in freight yards[END_REF]. In fact, [START_REF] Tarhini | Natural Optimization Algorithms for the Cross-Dock Door Assignment Problem[END_REF] include in their formulation an additional decision variable that controls the assignment of trucks on dock doors. That is, the objective function value will be distorted if any incoming truck was assigned to outbound dock door. As the problem is still hard for large instances, the authors proposed an evolutionary Scatter Search (SS) algorithm based on Genetic Algorithm metaheuristic to minimize the total traveled distance.

In [START_REF] Küçükoğlu | A mathematical model for truck-door assignment and product placement problem in cross-docking center[END_REF] Taking into account the increasing of amount of freights to handle on cross-dock yard, it is not practical for a dock door to allocate a single origin, even less to reserve several dock doors for a single destination. Accordingly, the configuration in Tsui andChang (1990, 1992) and those in Cohen andKeren (2008, 2009); [START_REF] Tarhini | Natural Optimization Algorithms for the Cross-Dock Door Assignment Problem[END_REF] are not suitable for realistic applications unlike the configuration considered in [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] • Incoming (respectively shipping) trucks are aggregated into origins (respectively destinations), i.e., from a given origin can come more than one truck and a given destination can be served by more than one truck.

• Assignment of origins and destinations instead of assignment of trucks.

• Each dock door can allocate more than one origin (respectively destination) as long as the capacity of dock door is not exceeded.

From the two side of an I-shape cross-dock, the resulting mathematical model can be seen as a bi-Generalized Assignment Problem (GAP) if we consider separately one side, see e.g., [START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF].

Due to the nature of the CDAP such that the large amount of freights to handle and the dynamic nature of freight flow patterns which increases the number of material handling devices to use for transferring pallets from inbound to outbound dock doors, increasing and arrangement of number of dock doors and assignment of trucks to dock doors, the Cross-dock Door Assignment Problem is a known NP-hard combinatorial optimization problem. In addition, as seen above, the variant of [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] that we deal with all along this dissertation includes the Generalized Assignment Problem as a sub-problem.

As GAP is an NP-hard combinatorial optimization problem, see e.g., [START_REF] Ross | A branch and bound algorithm for the generalized assignment problem[END_REF]; [START_REF] Sahni | P-complete approximation problems[END_REF], the CDAP is also NP-hard.

Background for CDAP and Literature review

A key difference between a classical warehouse and a cross-docking warehouse is that, unlike warehouses where products remain (sometimes for long duration) until they are ordered by final customers, the products handled by cross-dock are not permitted to remain on the platform beyond 24 hours, see e.g., [START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF], sometimes are required to be transferred within less than an hour, see e.g., [START_REF] Bartholdi | The best shape for a crossdock[END_REF]. As explicitly detailed in section 3.4, three classes of cross-docking problems can be summarized as follows : strategic problems determine a good location for the crossdock and its layout design ; operational problems determine the best assignment of truck to dock door, locations where goods will be temporarily stored, the best synchronization between arriving and departing trucks at the dock doors of the cross-dock etc. ; and tactical problems determine the flow of products through the cross-dock to minimize costs and make supply meet demand. The problems of truck-to-dock door assignment assume that there are enough dock doors to accommodate all incoming and outgoing trucks, that is, each truck may be assigned to dock door, therefore, for these problems time aspects are not taken into The second criterion considers whether and how capacity constraints are taken into account : In Tsui andChang (1990, 1992) and [START_REF] Tarhini | Natural Optimization Algorithms for the Cross-Dock Door Assignment Problem[END_REF], there are no limitations of capacities on the inbound and outbound dock doors ; In Cohen andKeren (2008, 2009) there are no limitations of capacities on inbound dock doors but only capacities of outbound dock doors are taken into account and dock door capacity is considered equal to the capacity of a truck ; In [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF], the authors extended the model proposed by [START_REF] Tsui | A microcomputer based decision support tool for assigning dock doors in freight yards[END_REF] considering capacity constraints on both inbound and outbound dock doors in order to take into account more realistic considerations. This what makes [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] model to be standard or generalized.

(i) (ii) (iii)
The third criterion is based on the layout design of a cross-dock as the specification of dock doors as either inbound or outbound dock doors. The so-called I-shape for cross-dock layout design is one of the most often considered shape in the literature, see e.g., Tsui andChang (1990, 1992); [START_REF] Gue | The effects of trailer scheduling on the layout of freight terminals[END_REF]; [START_REF] Bartholdi | Reducing labor costs in an ltl crossdocking terminal[END_REF]; [START_REF] Oh | A dock-door assignment problem for the korean mail distribution center[END_REF]; Cohen andKeren (2008, 2009). Figure 3.10 taken from our published paper in Gelareh [START_REF] Yu | Door allocations to origins and destinations at less-than-truckload trucking terminals[END_REF]. For other shapes of a cross-dock layout considered in the cross-dock literature we refer the reader to e.g., [START_REF] Bartholdi | The best shape for a crossdock[END_REF]. In this PhD thesis we deal with the CDAP where each dock door may serve more than one origin(respectively des- to determine optimal paths for commodities from origins to destinations via inbound and outbound dock doors. In that same work, the authors proposed some valid inequalities for the problem as well as a Lagrangian Relaxation heuristic to tackle large-scale instances.

In [START_REF] Nassief | A comparison of formulations and relaxations for cross-dock door assignment problems[END_REF], the authors presented a study on the standard CDAP as defined in [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] with and without load and unload times. They proposed several new formulations and a branch and price solution strategy.

The computational experimentation shows that CDAP is extremely difficult to solve to optimality. As already introduced, the CDAP includes the Generalized Assignment Problem (GAP) as a sub-problem and the GAP problem is NP-hard. The GAP is a wellestablished field of research in terms of both modeling and solution approaches, and has been extensively studied in papers such as e.g., [START_REF] Chu | A genetic algorithm for the generalised assignment problem[END_REF]; [START_REF] Wilson | A genetic algorithm for the generalised assignment problem[END_REF]; [START_REF] Dıaz | A tabu search heuristic for the generalized assignment problem[END_REF]; [START_REF] Lorena | A constructive genetic algorithm for the generalized assignment problem[END_REF]; Yagiura, Ibaraki and Glover (2004); [START_REF] Bibliography Yagiura | A path relinking approach with ejection chains for the generalized assignment problem[END_REF]; [START_REF] Jeet | Lagrangian relaxation guided problem space search heuristics for generalized assignment problems[END_REF]; [START_REF] Woodcock | A hybrid tabu search/branch & bound approach to solving the generalized assignment problem[END_REF]; [START_REF] Liu | A scalable parallel genetic algorithm for the generalized assignment problem[END_REF]. In addition, several variants of the GAP have been proposed in the literature including the Multi-Resource GAP, see e.g., [START_REF] Yagiura | A very large-scale neighborhood search algorithm for the multi-resource generalized assignment problem[END_REF], the multi-level GAP, see e.g., [START_REF] Laguna | Tabu search for the multilevel generalized assignment problem[END_REF] (2008). In [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF], the authors establish a relationship between the Generalized Quadratic three-dimensional Assignment Problem (GQ3AP) and the CDAP and show that the CDAP can be solved as a GQ3AP.

Mathematical quadratic formulation for CDAP

The Cross-dock Door Assignment Problem can be described mathematically as follows.

On left side we are having a set M of incoming trucks named origins that have to be docked and unloaded at a set I of inbound dock doors and at right side we are having a set N of outgoing trucks named destinations to be docked to a set J of outbound dock doors.

The total amount of pallets delivered to each origin m ∈ M is s m > 0, s m is dispatched into small amounts of flows f m,n such that each flow f m,n ≥ 0 is destined to destination n ∈ N . Therefore, the total amounts of flows coming from origin m ∈ M and received by different destinations can be computed as s m = n∈N f m,n , ∀m ∈ M . In the same way, on the outbound dock doors side, each destination n ∈ N receives total amount of flows r n > 0. This amount r n is defined as the total amount of flows coming from different origins and destined to n ∈ N . Accordingly, r n is computed as

r n = m∈M f m,n , ∀n ∈ N .
The statements s m > 0 and r n > 0 means that no origin can enter to the facility empty nor no destination can leave facility empty. The capacity of each inbound dock door i ∈ I is denoted S i , this parameter represents the total number of origins with a quantity of load s m for each origin that inbound dock door i can allocate. Likewise, the capacity of each outbound dock door j ∈ J is denoted R j , it means the total number of destinations with quantity of load r n each destination that outbound dock door j is able to allocate.

For an I-shape cross-dock configuration, it is supposed that all dock doors have the same capacity, that is, ∀i ∈ I, j ∈ J, S i = R j . This variant of the CDAP we deal with in this PhD thesis considers that each subset M i : M i ⊂ M which denotes the subset of al origins assigned to inbound dock door i ∈ I and likewise each subset N j : N j ⊂ N which denotes the subset of all destinations assigned to outbound dock door j ∈ J are handled the same time. From above description of the optimization problem, we will use the following notations in the rest of this thesis: 

Sets

Decision variables

In order to formally model this combinatorial optimization problem, two binary decision variables are defined. On the left side of I-shape cross-dock a decision variable x m,i for managing assignment of the set M of origins to the set I of inbound dock door and on the right side of I-shape cross-dock a decision variable y n,j for managing assignment of the set N of destinations to the set J of outbound door.

∀m ∈ M, i ∈ I, x m,i =      1 if origin m is assigned to inbound dock door i 0 otherwise ∀n ∈ N, j ∈ J, y n,j =      1 if destination n is assigned to outbound dock door j 0 otherwise
The real model considered in thesis assumes the following configurations :

• Exclusive mode x m,i = 1 and destination n ∈ N is assigned to outbound dock door j ∈ J, i.e., y n,j = 1.

When the flow path is established, the used material handling device starts routing the flow f m,n from origin m ∈ M to destination n ∈ N through inbound and outbound dock doors pair (i, j) : ∀i ∈ I, j ∈ J.

According to the above sets, parameters and decision variables, the CDAP may be formally modeled as the following quadratic model Q as proposed in Zhu et al. ( 2009)

(Q)                                                    min f (x, y) = m∈M i∈I n∈N j∈J f m,n d i,j x m,i y n,j subject to : i∈I x m,i = 1, ∀m ∈ M j∈J y n,j = 1, ∀n ∈ N m∈M s m x m,i ≤ S i , ∀i ∈ I n∈N r n y n,j ≤ R j , ∀j ∈ J x m,i , y n,j ∈ {0, 1}, ∀m ∈ M, n ∈ N, i ∈ I, j ∈ J (3.1a) (3.1b) (3.1c) (3.1d) (3.1e) (3.1f)
The And the last constraint (3.1f) imposes the binary requirement on the decision variables (iii).

Some variants of the CDAP

We recall that the combinatorial optimization problem we are dealing with in this dissertation is related to assignment of trucks to dock doors of an I-shape cross-dock that uses an exclusive operating mode of dock doors. The standard quadratic formulation detailed above is originally proposed in [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF]. This mathematical formulation refers to real application where any inbound (respectively outbound) dock door is constrained to allocate more than one origin (respectively destination) respecting the dock door capacity, see e.g., the set of constraints (ii) and each origin (respectively destination) is assigned to one and only one dock door, see e.g., the set of constraints (i). In the following of this section, we present some variants of the CDAP (summary in Table 3.2) and we raise some of their limitations as regards to their real applications. (1990,1992) In this variant of CDAP, each dock door is assigned one truck and dock door capacity is not considered

Variants

The related model can not be applied in real applications given a lot of incoming/outgoing trucks exceeding number of dock doors Tarhini et al.

(

) 2016 
Same as Tsui andChang (1990, 1992), just a slight change of assignment of incoming trucks Same limitations as Tsui andChang (1990, 1992) Cohen and Keren (2008,2009) At inbound side, the same as Tsui andChang (1990, 1992), at outbound side, the feasible solution requires number of dock doors to exceed much enough number of outgoing trucks

This variant is the worst given that it requires additional dock doors than in Tsui andChang (1990, 1992), the resources (outbound dock doors) are mismanaged The proposed mathematical formulation by Tsui andChang (1990, 1992) seems not to be feasible in real applications. In fact, the formulation supposes that each inbound (respectively outbound) dock door allocates only one incoming (respectively outgoing) truck and that each incoming (respectively outgoing) truck is assigned to one inbound (respectively outbound) dock door. Only assignment constraints (i) are considered for both dock doors and trucks. The dock doors capacity is not taken into account, that makes this formulation unusable for real applications given the very large number of trucks to be assigned to dock doors which far exceeds the number of dock doors.

Tsui and Chang Model: In the quadratic model, the authors defined an additional decision variable to control only the assignment of origins to dock doors. The authors' mathematical model is depicted as follows:

Q t&c                                                    min f (x, y) = m∈M i∈I n∈N j∈J f m,n d i,j x m,i y n,j subject to : i∈I x m,i = 1, ∀m ∈ M j∈J y n,j = 1, ∀n ∈ N m∈M x m,i = 1, ∀i ∈ I n∈N y n,j = 1, ∀j ∈ J x m,i , y n,j ∈ {0, 1}, ∀m ∈ M, n ∈ N, i ∈ I, j ∈ J (3.2a) (3.2b) (3.
         m∈M x m,i ≤ 1, ∀i ∈ I n∈N y n,j ≤ 1, ∀j ∈ J (3.3a) (3.
Additional decision variable:

z m,i =      1 if incoming truck m ∈ M is assigned to inbound dock door i ∈ I
M AX if incoming truck m is assigned to any outbound dock door j ∈ J

Tarhini et al. model :

Q t :                    minimize m∈M i∈I n∈N j∈J f m,n d i,j x m,i y n,j z m,i
subject to :

(3.2b) -(3.2f) z m,i ∈ {1, M AX}, ∀m ∈ M, i ∈ I (3.4a) (3.4b)
The constraint (3.4b) is related to the additional integer variable. The variable will take value 1 for normal dock doors assignment, i.e., according to I-shape cross-docking facility, normal assignment imposes origins to be assigned to inbound dock doors and destinations to outbound dock doors. If any incoming truck is assigned to any outbound dock door which corresponds to abnormal assignment according to the authors in Tarhini et al.

(2016), z m,i will take a highest integer value, M AX, that will distort the value of the final solution.

Variant of Cohen and Keren

As for [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF], Cohen and Keren consider also the assignment of origins and destinations instead of trucks, see e.g., Cohen andKeren (2008, 2009). The authors take into account another criterion of assigning destinations to outbound dock doors as described below.

While each inbound dock door i ∈ I allocates one origin at time as in Tsui andChang (1990, 1992) truck. This number ν of trucks is equal to the number of load dock doors that are reserved to allocate the destination n. In that case, f m,n must be split and sent to ν load dock doors.

The split is a certain percentage of f m,n , however, all the splits of f m,n are not known in advance but are related to ν dock doors. In view of this fact, for any combination of n ∈ N and m ∈ M according to the flow f m,n between m and n, a new decision variable α m,i,j,n is defined to handle how the percentages of f m,n are sent to ν outbound dock doors. Those percentages are such that for all inbound dock door i ∈ I the percentages α m,i,j,n ×f m,n , α m,i,k,n ×f m,n , α m,i,l,n ×f m,n , . . . are sent from i to the shipping dock doors α m,i,j,n is the portion of f m,n that was originating from m unloaded at inbound dock door i, and moved to shipping dock door j. All combinations having receiving dock door i that was not assigned to origin m have α m,i,j,n = 0. The same case is true for all combinations having shipping dock door j to which destination n is not assigned. However, if m is assigned to inbound dock door i and n assigned to outbound dock door j we have 0 ≤ α m,i,j,n ≤ 1.

j, k, l, • • • ∈ J : j = k, k = l, j = l, etc.
Cohen and Keren model:

Q ck                                                                                min f (x, y, α) = m∈M i∈I n∈N j∈J d i,j f m,n α m,i,j,n x m,i y n,j subject to : i∈I x m,i = 1, ∀m ∈ M j∈J y n,j = [( m∈M f m,n )/D], ∀n ∈ N i∈I j∈J x m,i y n,j α m,i,j,n = 1, ∀m ∈ M, ∀n ∈ N m∈M x m,i ≤ 1, ∀i ∈ I n∈N y n,j ≤ 1, ∀j ∈ J i∈I m∈M n∈N x m,i f m,n α m,i,j,n y n,j ≤ C, ∀j ∈ J 0 ≤ α m,i,j,n ≤ 1, ∀m ∈ M, i ∈ I, n ∈ N, j ∈ J x m,i , y n,j ∈ {0, 1}, ∀m ∈ M, i ∈ I, n ∈ N, j ∈ J (3.5a) (3.5b) (3.5c) (3.5d) (3.5e) (3.5f) (3.5g) (3.5h) (3.5i)
The objective function (3.5a) minimizes the weighted distance traveled inside the crossdock by finding optimal flow in the case of several shipping dock doors for a single des- defines the classical integrality requirement of binary variables x m,i and y n,j .

In Tsui andChang (1990, 1992); [START_REF] Tarhini | Natural Optimization Algorithms for the Cross-Dock Door Assignment Problem[END_REF] the number of dock doors must be equal to the number of trucks and in Cohen andKeren (2008, 2009), at outgoing side a destination can be docked to more than one dock door, this requires the number of load dock doors to be big enough than the number of destinations. All those other variants of CDAP are still simplistic compared to the variant of [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] given that nowadays the amount of freights flow is still increasing day after day. Therefore, the number of trucks is big enough than the number of dock doors. The main ingredients for the variant in [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] is that the authors consider the management of resources that are dock doors. Each dock door, whether inbound or outbound dock door, is managed as knapsack able to receive more than one object increasing the profit of using the dock door considered as a knapsack.

Connections with other Assignment problems

In this section we present some Assignments problems and depict some connections between those problems and the CDAP standard problem we deal with in this dissertation.

Assignment and Generalized Assignment Problem

In [START_REF] Ross | A branch and bound algorithm for the generalized assignment problem[END_REF], the authors have given the first formal definition of Generalized Assignment Problem (GAP). They have described the GAP as a special case of classical Assignment Problem (AP). In fact, in the GAP, each task is assigned to one and only one agent while each agent can be assigned to more than one task. For broad details, a set of tasks have to be assigned to a set of agents where each agent has limited resources. The agent's resources can be for instance the number of hours per day. To be achieved, each task requires a certain amount of agent's resources. The importance of the Generalized Assignment Problem is not only its direct application but it appears as a sub-problem in many practical and complex combinatorial optimization problems in the literature, as for instance in our variant of the CDAP. [START_REF] Ross | A branch and bound algorithm for the generalized assignment problem[END_REF] mathematical formulation for the GAP is as follows. Let M = {1, 2, ..., |M |} refers to the set of tasks' index and I = {1, 2, ..., |I|} refers to the set of agents' index. The parameter c t,p is the cost incurred when task t ∈ M is executed or assigned to agent p ∈ I. To be completely executed a t,p refers to the amount of resource that task t requires from agent p and A p is the amount of resource available for agent p. A decision variable ε t,p is defined to ensure an optimal assignment of all tasks |M | to agents I ⊆ I, that is, whether a given task t ∈ M is executed by an agent p ∈ I or not.

Taking into account those sets and parameters above, the GAP is mathematically formulated as follows.

∀t ∈ M, p ∈ I, ε t,p =      1 if task t is assigned to agent p 0 otherwise (GAP )                                minimize t∈M p∈I c m,i ε t,p subject to : i∈I ε t,p = 1 ∀t ∈ M m∈M a t,p ε t,p ≤ A p ∀i ∈ I ε t,p ∈ {0, 1}, ∀t ∈ M, p ∈ I (3.6a) (3.6b) (3.6c) (3.6d)
The objective function (3.6a) minimizes the total cost when all tasks |M | are assigned to agents I ⊆ I, that is, the solution does not guarantee that all available resources will be used, this means that in optimal solution, some agents can still free of assignment. The assignment constraint (3.6b) ensures that each task t ∈ M must be assigned to one agent p ∈ I, the knapsack constraint (3.6c) ensures that an agent p can be assigned multiple tasks respecting the capacity A p of that agent. Constraint (3.6d) fixes the classical binary decision variable.

The Generalized Assignment Problems do not assume whether or not this task must be executed by this agent, those optimization problems just seek an optimal arrangement of tasks to agents until all tasks are assigned and completely executed with a minimal cost. Accordingly, the parameter a t,p is constant for each agent, that is, a t,p = a t and means the amount of resource required by task t regardless the agent p.

In comparison with an I-shape cross-dock and the variant of CDAP we deal with in this study, there is a relation between the Generalized Assignment Problem (GAP) and the Cross-dock Door Assignment Problem (CDAP). In fact, an inbound dock door i ∈ I

(respectively an outbound dock door j ∈ J) can be seen as an agent p ∈ I and an origin m ∈ M (respectively a destination n ∈ N ) can be compared to a task t ∈ M . On 3.6. Cross-dock Door Assignment Problem the two sides of I-shape cross-dock, volume of goods s m from an origin m (respectively volume of demand r n from a destination n) can be compared to the resource a t required by task t to be executed and the capacity S i of inbound dock door i (respectively capacity R j of outbound dock door j) can be compared to he capacity A p of the agent p, see e.g., [START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF]. Accordingly, CDAP includes GAP as sub-problem on each side of I-shape cross-dock.

In [START_REF] Ross | A branch and bound algorithm for the generalized assignment problem[END_REF]; [START_REF] Sahni | P-complete approximation problems[END_REF], the authors showed that the Generalized Assignment Problem is NP-hard. Accordingly, CDAP is also NP-hard. In addition, according to the computational experiments, the CDAP is still complicated using exact methods and more specially for large scale instances.

3.6.5.2 Quadratic and Generalized Quadratic Assignment Problems

The Quadratic Assignment Problem (QAP) is one of the difficult combinatorial optimization problems to solve using exact methods, especially when the size of the problem grows up. In [START_REF] Adams | A level-2 reformulation linearization technique bound for the quadratic assignment problem[END_REF], the authors have defined the QAP as following

QAP min        i∈N j∈N b i,j x i,j + i∈N i =k j∈N j =l k∈N l∈N c i,j,k,l x i,j x k,l : x ∈ X, x ∈ {0, 1}        (3.7a)
where:

x ∈ X ≡          x ≥ 0 : i∈N x i,j = 1, ∀j ∈ N j∈N x i,j = 1, ∀i ∈ N
The objective function and the constraints all gathered into (3.7a) minimize to total cost b i,j of implanting units |N | to location |N | (first term of objective) and the quadratic cost c i,j,k,l of material flow between a unit i implanted to location j and unit k implanted to location l (second term of objective function). The locations j and l are separated by a distance d j,l and the units i and k exchanges a flow w i,k . Therefore the cost c i,j,k,l = d j,l w i,k

denotes the weighted distance which corresponds to the product of flow w i,k between unit i and unit k with the distance d j,l between the location j and location l where unit i and unit k are implanted, respectively. The assignment constraints ensure that in each location j is implanted one unit i and each unit i is implanted in one location j. Those two constraints require that the number of units must be equal the number of locations.

In [START_REF] Hahn | An algorithm for the generalized quadratic assignment problem[END_REF], the authors have extended this model by formally modeling the QAP as a Generalized Quadratic Assignment Problem (GQAP).

Afterwards, using Reformulation Linearization Technique (RLT), the authors have proposed a linearization of quadratic objective function. Like GAP, the GQAP consider that locations j and l can allocate each one more than one unit respecting the capacity of each location. This implies that the number of units can be greater that the number of locations. Additional parameters such that location capacity, the space needed for each unit are defined.

• M : the set of units

• N : the set of locations

• a i,j is the space needed to implant unit i in location j

• b j is the available space for location j

Hahn et al. GQAP model :

GQAP min

       i∈M j∈N b i,j x i,j + i∈M i =k j∈N j =l k∈M l∈N c i,j,k,l x i,j x k,l : x ∈ X, x ∈ {0, 1}        (3.8a)
where:

x ∈ X ≡          x ≥ 0 : i∈M a i,j x i,j ≤ b j , ∀j ∈ N j∈N x i,j = 1, ∀i ∈ M The constraint i∈M a i,j x i,j ≤ b j , ∀j ∈ N
ensures that a location j can allocate several units i respecting location capacity b j while constraint j∈N x i,j = 1, ∀i ∈ M ensures that each unit i is implanted in one location. As the QAP is hard to solve mainly due the quadratic term, the GQAP is also hard to solve.

The common relation between GQAP and the variant of CDAP we deal with in this study is that both combinatorial optimization problems seek to minimize a quadratic objective function of a cross-product of binary decision variables while managing a finite amount of resources such that locations and dock doors, respectively. Moreover, in Hahn, Kim, Stuetzle, Kanthak, Hightower, Samra, Ding and Guignard (2008), it has been proved that Cross-dock Door Assignment Problem (CDAP) can be solved as Generalized Quadratic three-dimensional Assignment Problem (GQ3AP). The Standard formulation of CDAP presenting a quadratic term of the two binary decision variables x m,i and y n,j

and being hard to solve, some linearization techniques slightly similar to those used to linearize the GQAP have been employed to linearize the quadratic model of [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF].

We also took a look at the Reformulation and Linearization Technique (RLT) applied on 0-1 integer programming problem in [START_REF] Adams | Linearization strategies for a class of zero-one mixed integer programming problems[END_REF]. In Adams and Sherali reformulation, a new set of constraints is added for each variable x j as follows. For each constraints i∈N a i x i ≤ b of original problem, both constraints i∈N a i x i x j ≤ bx j and

i∈N a i x i (1 -x j ) ≤ b(1 -x j )
are added ; and for each constraint i∈N c i x i = d of original problem, the constraint i∈N c i x i x j = dx j is added. This RLT is known to produce the tight linear programming relaxation bounds, see e.g., [START_REF] Pessoa | Algorithms for the generalized quadratic assignment problem combining lagrangean decomposition and the reformulation-linearization technique[END_REF]. The intent was to apply Adams and Sherali [START_REF] Adams | Linearization strategies for a class of zero-one mixed integer programming problems[END_REF] RLT on the standard quadratic formulation of the CDAP Zhu et al. (2009) to confirm the tightness of the linear programming relaxation bounds of the standard CDAP. The computational results given by this RLT to the standard CDAP are not presented in this dissertation.

Conclusion

In this chapter we have defined cross-docking and we have given some applications in practice. The difference between warehouse and cross-docking and the strategies employed by cross-docking have been shown, among those strategies, cross-docking eliminates the two most costly operations of warehouses, namely storage and order-picking. The three decision levels, namely strategic, tactical and operational, used to successfully implement a cross-docking have been described. We then have focused on operation level to describe relevant optimization problems raised by cross-docking on that level including the optimization problem we deal with in this PhD thesis. We have emphasized on the combinatorial optimization problem referred to Cross-dock Door Assignment Problem (CDAP) that we tackle here. We have explained the complexity of CDAP due to the presence of crossproduct of binary decision variables and to the nature of CDAP. Some variants of this problem have been described and their mathematical formulations have been discussed and compared with the variant we tackle. A certain relation between the variant of CDAP we deal with here and other classes of assignment problems have been established. In the next chapter we are going to develop and present some new solutions, more precisely we develop new non standard Mixed Integer Linear Programming (MILP) models and we prove their equivalence as well as their equivalence to the standard linear MIP for CDAP. In this chapter, as widely developed into chapter 3, we tackle the variant of the Crossdock Door Assignment Problem (CDAP) proposed for the first time in [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF].

This variant of CDAP is an extension of the classical mathematical model introduced in Tsui andChang (1990, 1992) to take into account the management of dock doors as finite resources. We propose new Mixed Integer Linear Programming (MILP) formulations for the Cross-dock Door Assignment Problem, afterwards, we prove the equivalence between those new MILP models and carry out an extensive comparative study on benchmark data sets from the literature to compare performance between these models and with existing MIP models from literature. To the best of our knowledge, the best MILP model for the CDAP is the one we have proposed for the first time, the results of which are published in [START_REF] Gelareh | A comparative study of formulations for a cross-dock door assignment problem[END_REF]. Afterwards, we pick one of the proposed MILP models that gives a good compromise between the best lower bounds by the Linear Programming (LP) relaxation and running time consumption and then we apply a Lagrangian Relaxation (LR) approach to generate new and better lower bounds on the optimal solution value given by that MILP model. We use the sub-gradient optimization method to solve the Lagrangian dual problem. The computational results show that Lagrangian dual improves significantly the LP relaxation lower bound and the lower bound given by a recent Lagrangian Relaxation from literature, [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF]. However, this improvement is offset by an important increase of the computational effort needed to solve the relaxation especially when the size of the problem increases.

Introduction

As already pointed out in chapter 3, cross-docking is a strategy implemented into the cross-dock. We recall that a cross-dock is a type of warehouse in supply chain management that allows orders to be prepared without going through the phase of storing products in the warehouse and subsequently selecting them for delivery. We also recall that Crossdock Door Assignment Problem (CDAP) is concerning the management of fully loaded incoming trucks named origins that enter to a cross-dock facility and unload their products on inbound dock doors of that facility. The unloaded products are immediately sorted and organized according to their destinations and, using material handling devices inside the facility such that forklift, those products are immediately transferred to outbound dock doors to be loaded into outgoing trucks named destinations or delivery trucks for being distributed to final customers. Unlike classical warehouses, on cross-dock yard, products are unloaded and loaded without placing them in temporary storage. The goal of the CDAP is to assign origins on inbound dock doors and destinations on outbound dock doors so that the total transportation cost inside the cross-dock is minimized.

The standard quadratic formulation for the CDAP as proposed in [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] is hard to solve, even for small-sized instances. Because of the NP-hard character of the CDAP, most of the studies of this combinatorial optimization problem in the literature have been dedicated to developing efficient heuristic solution approaches to cope with large scale instances.

To the best of our knowledge, there are only three Mixed Integer Programming (MIP)

formulations for the CDAP in the literature, namely the standard MIP model and the MIP models proposed in [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF][START_REF] Nassief | A comparison of formulations and relaxations for cross-dock door assignment problems[END_REF]. In this chapter, we propose eight new non standard MILP models for the CDAP and demonstrate the mathematical equivalence of all 11 models, together with rigorously proving some of their properties. In order to detect which of these 11 models is the best, we conduct an extensive comparative analysis on benchmark instances from the literature, which discloses that the best MILP model is one proposed in this chapter for the first time. We further prove the equivalence of these formulations and identify their integrality properties. Finally, we perform an extensive comparative study of their performance on benchmark instances from the literature, reporting the number of instances solved optimally or not, upper bounds they provide, and CPU time consumed by a CPLEX MIP solver applied to each formulation. More precisely, the comparison of performance between the models is not done analytically as in Nassief et al. ( 2018), but empirically.

We next propose a Lagrangian Relaxation approach that we apply to the best MILP formulation we proposed for the CDAP to produce a new lower bound on the optimal value and to improve the bound provided by the LP relaxation. The choice of that MILP model for Lagrangian Relaxation is based on a compromise between the LP bound and the processing time to obtain it. The proposed Lagrangian Relaxation relaxes the derived knapsack constraints (new capacity constraints) related to dock doors that have been added to strengthen that best MILP model. The Lagrangian dual problem is solved using the sub-gradient optimization algorithm. The results of computational experiments show that the Lagrangian dual model improves significantly the LP relaxation bound but still consuming more important CPU time than LP relaxation.

For solving the MILP and Lagrangian models, we have selected the CPLEX solver of IBM since it is one of the most effective solvers and because it is a good indicator of model performance, in the respect that if one model performs better than another using CPLEX then the same ranking of the models occurs when applying other leading solvers.

The rest of this chapter is organized as follows. In section 4.2, we describe the standard quadratic mathematical model originally proposed in [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] and the standard linearization of quadratic model. Then, we present the customary approaches to linearize this standard quadratic model of CDAP, that is, we describe the way we replace the cross-product of decision variables in the objective function and the standard MIP model for CDAP. In section 4.3 we introduce new sets of constraints and build new non-standard MILP models for CDAP. We additionally prove the equivalence of those new non standard MILP models between them as well as their equivalence to the standard MIP model presented in literature. In section 4.4, we deal with the integrality requirement on the additional decision variable used to linearize the quadratic objective function and prove that the relaxation of the integrality requirement on some variables will not affect the optimal solution value. In section 4.5 we present the Lagrangian Relaxation (LR) approach and the sub-gradient optimization method we use to solve the Lagrangian dual model.

In section 4.6, we provide an exhaustive comparative analysis of the MILP models in order to identify the best MILP model, afterwards, we provide Lagrangian dual results.

Computational experiments on both MILP models and Lagrangian Relaxation are carried out on the benchmark data set from the literature. The last section 4.7 of this chapter is dedicated to the conclusion.

Standard Formulation for the CDAP

In this section we present the standard quadratic formulation for the CDAP proposed in [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] together with the standard approach for linearizing this model. In addition, we present some valid equalities and inequalities for the resulting Mixed Integer Programming model.

Standard Formulation for the CDAP

Standard quadratic formulation

We recall that the standard quadratic formulation of the CDAP is as follows. Given a set M of incoming trucks (origins), a set N of outgoing trucks (destinations), a set I of inbound dock doors and a set J of outbound dock doors, each inbound/outbound dock door may serve more than one origin/destination respectively subjected to the dock doors' capacity constraints and to the assignment constraints of origins/destinations. If the origin m ∈ M is assigned to the inbound dock door i ∈ I and the destination n ∈ N is assigned to the outbound dock door j ∈ J, a transportation cost is incurred. The transportation cost is the product of d i,j and f m,n , where d i,j refers to the distance between inbound dock door i and outbound dock door j, and f m,n is the number of pallets moved from the origin m to the destination n. The total number of pallets delivered by an origin m ∈ M can be computed as s m = n∈N f m,n and the total number of pallets received at destination n ∈ N is computed as r n = m∈M f m,n . The capacity of an inbound dock door i ∈ I is denoted by S i and the capacity of an outbound dock door j ∈ J is denoted by R j . In order to formally model the CDAP, we use the binary decision variable x m,i to indicate whether origin m ∈ M is assigned to inbound dock door i ∈ I or not ; and the binary decision variable y n,j to indicate whether destination n ∈ N is assigned to outbound dock door j ∈ J or not.

According to those sets and decision variables, the CDAP is mathematically formulated in the model Q zh below, see e.g., [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF].

(Q zh )                                                    min f (x, y) = m∈M i∈I n∈N j∈J f m,n d i,j x m,i y n,j subject to : i∈I x m,i = 1, ∀m ∈ M j∈J y n,j = 1, ∀n ∈ N m∈M s m x m,i ≤ S i , ∀i ∈ I n∈N r n y n,j ≤ R j , ∀j ∈ J x m,i , y n,j ∈ {0, 1}, ∀m ∈ M, n ∈ N, i ∈ I, j ∈ J (4.1a) (4.1b) (4.1c) (4.1d) (4.1e) (4.1f)
In the objective function (4.1a), the quadratic cost c m,i,n,j = f m,n d i,j of product flow f m,n between origin m ∈ M and destination n ∈ N and the distance d i,j between inbound dock door i ∈ I and outbound dock door j ∈ J is linked by the quadratic term x m,i y n,j of binary decision variables x m,i and y n,j . The objective function (4.1a) minimizes the total transportation cost inside the cross-dock. The two sets of constraints (4.1b) and (4.1c) stand for assignment constraints constraints while the sets of constraints (4.1d) and (4.1e) are the capacity constraints. The last set of constraints (4.1f) imposes the binary requirement on the decision variables, see chapter 3 section 3.6.3.

Standard linearization for the CDAP

In this part, we depict the standard approach for linearizing the quadratic term x m,i y n,j in the quadratic model Q zh . The linearization most used and probably the most natural was first presented in [START_REF] Fortet | Applications de l'algèbre de boole en recherche opérationelle[END_REF]. It is sometimes called classic or standard linearization.

Given that a quadratic objective function is harder to solve than a linear objective, the quadratic mathematical formulation Q zh may be linearized by dropping the quadratic term x m,i ×y n,j of binary decision variables. Therefore, we introduce a new binary decision variable z m,i,n,j to replace the quadratic term and setting z m,i,n,j as follows:

z m,i,n,j = x m,i y n,j , ∀m ∈ m, i ∈ I, n ∈ N, j ∈ J
In this case of study of the CDAP, as told in chapter 3 this new introduced decision variable z m,i,n,j indicates whether a path Ω =< m -i -j -n > is established or not. Ω denotes a transfer path of flow f m,n of products from the origin m ∈ M to the destination n ∈ N according to whether m is assigned to inbound dock door i ∈ I or not and n is assigned to outbound dock door j ∈ J or not. That is, if an origin m ∈ M is assigned to inbound dock door i ∈ I, i.e., x m,i = 1 and a destination n ∈ N assigned to outbound dock door j ∈ J, i.e., y n,j = 1, the path Ω is established, this implies that, x m,i y n,j = 1 = z m,i,n,j (x m,i , y n,j and z m,i,n,j binary). In addition, to ensure that the new binary variable z m,i,n,j for all m ∈ m, i ∈ I, n ∈ N , j ∈ J satisfies its required property (e.g., z m,i,n,j = 1 iff

x m,i = y n,j = 1), the following constraints (4.2a)-(4.2d) need to be stated and added in the standard linear model M 0,0 for CDAP.

               z m,i,n,j ≤ x m,i , ∀m ∈ M, ∀i ∈ I, ∀n ∈ N, ∀j ∈ J z m,i,n,j ≤ y n,j , ∀m ∈ M, ∀i ∈ I, ∀n ∈ N, ∀j ∈ J z m,i,n,j ≥ x m,i + y n,j -1, ∀m ∈ M, ∀i ∈ I, ∀n ∈ N, ∀j ∈ J z m,i,n,j ≥ 0 ∀m ∈ M, ∀i ∈ I, ∀n ∈ N, ∀j ∈ J (4.2a) (4.2b) (4.2c) (4.2d)
Thereby, the resulting Mixed Integer Programming model M 0,0 is : are still the same as in Q zh model above. Constraints (4.3d) and (4.3e) ensure that if the origin m is not assigned to the receiving dock door i and the destination n is not assigned to the shipping dock door j, then the transfer path Ω cannot be established. On the other hand, if the origin m is assigned to the receiving dock door i and the destination n is assigned to the shipping dock door j, then the transfer path Ω is established due to constraints (4.3f)

(M 0,0 )                                                                              min g(z) = m∈M i∈I n∈N j∈J d i,j f m,n z m,i,n,j subject to i∈I x m,i = 1, ∀m ∈ M j∈J y n,j = 1, ∀n ∈ N z m,i,n,j ≤ x m,i , ∀n ∈ N, m ∈ M, i ∈ I, j ∈ J z m,i,n,j ≤ y n,j , ∀n ∈ N, m ∈ M, i ∈ I, j ∈ J z m,i,n,j ≥ y n,j + x m,i -1, ∀n ∈ N, m ∈ M, i ∈ I, j ∈ J m∈M s m x m,i ≤ S i , ∀i ∈ I n∈N r n y n,j ≤ R j , ∀j ∈ J x m,i , y n,j ∈ {0, 1}, ∀m ∈ M, i ∈ I, n ∈ N, j ∈ J. z m,i,n,j ≥ 0 ∀m ∈ M, i ∈ I, n ∈ N, j ∈ J.
The set of constraints that the MIP M 0,0 must satisfy can be decomposed into two sets : i ) the set of assignment constraints (4.3b) -(4.3f) and the constraints (4.3i) and (4.3j) on the decision variables which will be gathered into set as A 0 , and ii ) the set of capacity constraints (4.3g) -(4.3h) which will be gathered into set as C 0 .

Non Standard Assignment and Capacity constraints

In this section we present three sets of assignment constraints that are deduced from the set A 0 as a result of the valid equalities and inequalities as stated in the preceding section. Additionally, we prove the equivalence of these sets of constraints. We also present a set of capacity constraints deduced directly from the set C 0 and we prove the equivalence between the constraints gathered into those two sets.

Assignment constraints

In this part, we present some valid equalities and inequalities for the resulting Mixed Integer Programming model.

The next proposition provides some valid equalities for above model M 0,0 .

Proposition 4.3.1 The constraints of the following system

                   i∈I z m,i,n,j = y n,j , ∀m ∈ M, n ∈ N, j ∈ J j∈J z m,i,n,j = x m,i , ∀m ∈ M, n ∈ N, i ∈ I i∈I j∈J z m,i,n,j = 1, ∀m ∈ M, n ∈ N (4.4a) (4.4b) (4.4c)
are valid for the MIP M 0,0 .

Proof. The valid equalities (4.4a) and (4.4b) are directly deduced from constraints (4.3b) and (4.3c) by multiplying them by y n,j and x m,i , respectively. On the other hand, the valid equality (4.4c) is a direct consequence of the valid equalities (4.4a) and (4.4b) taking into account the constraints (4.3b) and (4.3c).

The two sets of valid equalities (4.4a) and (4.4b) imply that if the origin m is assigned to the inbound dock door i, then the commodity from the origin m to the destination n must be routed through inbound dock door i and some outbound dock door j ; similarly, if the destination n is assigned to an outbound dock door j, then the commodity from the origin m to the destination n must be routed through outbound dock door j and some inbound door i. The set of inequalities (4.4c) imply that the commodity from the origin m to the destination n is routed via a unique pair (i, j) of inbound dock door i and outbound dock door j.

The first set of assignment constraint that we present here is based on the observation that the nature of the problem implies that the large set of constraints (4.3f) may be replaced by a smaller one as stated in the next proposition.

Proposition 4.3.2 The constraints (4.3f) may be replaced by the set of equalities:

i∈I j∈J z m,i,n,j = 1, ∀m ∈ M, n ∈ N
Proof. Constraints (4.3f) ensure that if x m,i = y n,j = 1 then z m,i,n,j = 1 as well, otherwise they are redundant. On the other hand equalities i∈I j∈J z m,i,n,j = 1 for all m ∈ M, n ∈ N require that for each m and n there are unique i and j so that z m,i ,n,j = 1.

From constraints (4.3b) and ( 4.3c), it follows that for each m and n there are as well unique i and j so that x m,i = y n,j = 1. Taking into account constraints (4.3d) and ( 4.3e) we have z m,i,n,j = 0 if i = i or j = j and z m,i,n,j ≤ 1 if i = i or j = j . This implies that i = i and j = j and therefore if x m,i = y n,j = 1 then z m,i ,n,j = 1 .

As a consequence of the preceding property we obtain the following set of assignment constraints :

Assignment constraints A 1 : (A 1 ) :                                              i∈I x m,i = 1, ∀m ∈ M j∈J y n,j = 1, ∀n ∈ N z m,i,n,j ≤ x m,i , ∀n ∈ N, m ∈ M, i ∈ I, j ∈ J z m,i,n,j ≤ y n,j , ∀n ∈ N, m ∈ M, i ∈ I, j ∈ J i∈I j∈J z m,i,n,j = 1, ∀m ∈ M, n ∈ N x m,i , y n,j ∈ {0, 1}, ∀m ∈ M, i ∈ I, n ∈ N, j ∈ J. z m,i,n,j ≥ 0, ∀m ∈ M, i ∈ I, n ∈ N, j ∈ J.J. (4.5a) (4.5b) (4.5c) (4.5d) (4.5e) (4.5f) (4.5g)
The following corollary is a direct consequence of the preceding property.

Corollary 4.3.1 Assignment constraints A 0 and A 1 are equivalent.

Replacing the constraints (4.5c) and (4.5d) with equalities :

         j∈J z m,i,n,j = x m,i , ∀m ∈ M, n ∈ N, i ∈ I i∈I z m,i,n,j = y n,j , ∀m ∈ M, n ∈ N, j ∈ J
respectively we obtain the set of assignment constraints gathered into A 2

Assignment constraints A 2 : The equality (4.5e)

(A 2 ) :                                          i∈I x m,i = 1, ∀m ∈ M j∈J y n,j = 1, ∀n ∈ N i∈I z m,i,n,j = y n,j , ∀m ∈ M, n ∈ N, j ∈ J j∈J z m,i,n,j = x m,i , ∀n ∈ N, m ∈ M, i ∈ I x m,i , y n,j ∈ {0, 1}, ∀m ∈ M, i ∈ I, n ∈ N, j ∈ J. z m,i,n,j ≥ 0, ∀m ∈ M, i ∈ I, n ∈ N, j ∈ J.
i∈I j∈J z m,i,n,j = 1, ∀m ∈ M, n ∈ N
can be a result from (4.5a) and (4.5b). Therefore, the inclusion of equalities (4.6c) and (4.6d) together with (4.5a) and ( 4.5b) make constraints i∈I j∈J z m,i,n,j = 1 for all m ∈ M, n ∈ N redundant and therefore we do not need to include them in the set A 2 .

The equivalency of the sets of constraints A 1 and A 2 is then formally proved by the next proposition.

Proposition 4.3.3 Constraints A 1 and A 2 are equivalent.

Proof.

(⇒) From constraints (4.5e) we have that for each m ∈ M and n ∈ N there are unique i ∈ I and j ∈ J so that z m,i,n,j = 1. This, together with constraints (4.5a) -(4.5d), further implies that x m,i = 1 and x m,i = 0, i ∈ I, i = i as well as y n,j = 1 and y n,j = 0, j ∈ J, j = j. Therefore we have i ∈I z m,i ,n,j = y n,j = 0, j ∈ J, j = j and i ∈I z m,i ,n,j = y n,j = 1. Assignment constraints A 3 : Proof.

Similarly, we have

j ∈J z m,i ,n,j = x m,i = 0, i ∈ I, i = i and j ∈J z m,i,n,j = x m,i = 1. Consequently, constraints A 1 imply constraints A 2 .
(A 3 ) :                                i∈I z m,i,n,j = y n,j , ∀m ∈ M, n ∈ N, j ∈ J j∈J z m,i,n,j = x m,i , ∀n ∈ N, m ∈ M, i ∈ I i∈I j∈J z m,i,n,j = 1, ∀m ∈ M, n ∈ N x m,i , y n,j , z m,i,n,j ∈ {0, 1}, ∀m ∈ M, i ∈ I, n ∈ N, j ∈ J. z m,i,n,j ≥ 0, ∀m ∈ M, i ∈ I, n ∈ N, j ∈ J.
(⇒) Constraints (4.6a) and (4.6d) imply constraints (4.7c) and therefore constraints A 1 imply constraints A 3 .

(⇐) Constraints (4.7a) and (4.7c) imply constraints (4.6a), while constraints (4.7b) and (4.7c) imply constraints (4.6b). Hence, constraints A 3 imply constraints A 1 .

From propositions 4.3.2, 4.3.3 and 4.3.4 we have the following consequence.

Corollary 4.3.2 Assignment constraints A 0 , A 1 , A 2 and A 3 are equivalent.

Capacity constraints

Starting from the capacity constraints (4.3g) and (4.3h) gathered into a set C 0 as below :

(C 0 ) :          m∈M s m x m,i ≤ S i , ∀i ∈ I n∈N r n y n,j ≤ R j , ∀j ∈ J
as x m,i and y n,j are positive (x m,i , y n,j ∈ {0, 1}), we may derive the following set of valid inequalities :

(C 1 ) :          m∈M s m z m,i,n,j ≤ S i y n,j , ∀i ∈ I, n ∈ N, j ∈ J n∈N r n z m,i,n,j ≤ R j x m,i , ∀j ∈ J, m ∈ M, i ∈ I. (4.8a) (4.8b)
Indeed, these two sets of constraints are obtained by multiplying the capacity constraints (4.3g) and ( 4.3h) by y n,j and x m,i , respectively. In [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF] these two constraints are also considered as valid inequalities. The meaning of the newly established constraints is as follows. Constraints (4.8a) ensure that the total amount of commodities with the destination n routed via the inbound -outbound dock door pair (i, j) do not exceed the capacity limit of the inbound dock door i. Similarly, constraints (4.8b) ensure that the total amount of commodities with the origin m routed via the inbound -outbound dock door pair (i, j) respects the capacity bound of the outbound dock door j.

As already mentioned, the constraints gathered into set C 1 provide also valid inequalities in [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF]. In this section we go further and prove the equivalence between capacity constraints C 0 and C 1 for the CDAP. The proof is based on the fact that z m,i,n,j = x m,i y n,j and the observation that assignment constraints guarantee the existence of n ∈ N and j ∈ J such that y n ,j = 1 as well as the existence of m ∈ M and i ∈ I such that x m ,i = 1 (due to the problem definition).

Proposition 4.3.5 Capacity constraints C 0 and C 1 for the CDAP are equivalent.

Proof.

(⇒) Multiplying constraints (4.3g) by y n,j for all n ∈ N, j ∈ J, we obtain the following inequality m∈M s m z m,i,n,j ≤ y n,j S i , ∀i ∈ I, n ∈ N, j ∈ J, (using the fact thatz m,i,n,j = x m,i y n,j )

Similarly, we show that constraints (4.3h) imply constraints (4.8b).

(⇐) If we consider the constraint (4.8a), we have

m∈M s m z m,i,n,j = m∈M s m x m,i y n,j ≤ S i y n,j , ∀i ∈ I, n ∈ N, j ∈ J
Keeping in mind that there exist n ∈ N and j ∈ J such that y n ,j = 1 (this follows from assignment constraints) we have 

m∈M s m x m,i ≤ S i , ∀i ∈ I
M 0,0 3|I||J||M ||N | + |I| + |J| + |M | + |N | M 0,1 |I||J|(3|M ||N | + |M | + |N |) + |M | + |N | M 1,0 (2|I||J| + 1)|M ||N | + |I| + |J| + |M | + |N | M 1,1 |I||J|(2|M ||N | + |M | + |N |) + |M ||N | + |M | + |N | M 2,0 (|M ||N | + 1)(|I| + |J|) + |M | + |N | M 2,1 (|M | + |N |)(1 + |I||J|) + |M ||N |(|I| + |J|) M 3,0 |M ||N |(|I| + |J| + 1) + |I| + |J| M 3,1 |M ||N |(|I| + |J| + 1) + |I||J|(|M | + |N |) M 0,0 |M ||N ||I||J| + |I| + |J| + |M | + |N | M 0,1 |I||J|(|M ||N | + |M | + |N |) + |M | + |N | M 1,1 (|I||J| + 1)(|M ||N | + |M | + |N |)
Hence the constraints (4.3d) and ( 4.3e) are redundant in the MIP models M 0,0 , M 0,1 and M 1,1 .

As a consequence of the above proposition, we have three new MIP models M 0,0 , M 0,1 and M 1,1 obtained from the corresponding models M k,h by dropping the constraints (4.3d) and (4.3e). In the model M 1,0 the constraints (4.3d) and (4.3e) cannot be omitted because if this is the case, it will be missing a connection between variables z m,i,n,j and

x m,i on the one hand and variables z m,i,n,j and y n,j on the other hand. 4.1 provides the number of constraints in each of the 11 MIP models M k,h , for all k = 0, .., 3, h = 0, 1 and M 0,0 , M 0,1 , M 1,1 .

Comparing the number of constraints for each of these 11 MIP models shown in Table 4.1, it may be inferred that the number of constraints in the model M 2,0 is smaller than in any other model. As will be shown in Section 4.7 reserved for computational results, the reason why the model M 2,0 is solved the fastest is probably due the the fact it has fewer constraints than other models.

follow i ∈I,i =i z m,i ,n,j = 1 -α and j ∈J,j =j z m,i,n,j = 1 -α. Taking into account that i∈I j∈J z m,i,n,j = i∈I x m,i = j∈J y n,j = 1 (this chain of equalities is deduced by summing the constraints (4.6c) over set J and the constraints (4.6d) over set I noting that i∈I x m,i = 1 and j∈J y n,j = 1 ) we have

1 = i∈I j∈J z m,i,n,j ≥ i ∈I,i =i z m,i ,n,j + j ∈J,j =j z m,i,n,j + z m,i,n,j = 2 -α.
This implies α ≥ 1 which is a contradiction. Hence, the integrality requirement may be relaxed. Proposition 4.4.5 The integrality requirement z m,i,n,j ∈ {0, 1} in constraints A 3 may be relaxed.

Proof. Analogous to the proof of Proposition 4.4.4. Note that the preceding property of the z m,i,n,j variables in constraints A 3 has also been detected in [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF][START_REF] Nassief | A comparison of formulations and relaxations for cross-dock door assignment problems[END_REF]. Proposition 4.4.6 The integrality requirement may be relaxed on the variables z m,i,n,j ∈ {0, 1} for all m ∈ M, n ∈ N, i ∈ I, j ∈ J, in models M 0,0 , M 0,1 and M 1,1 .

Proof. The proof is a direct consequence of the preceding propositions and Proposition 4.4.1, which implies that in each of models M 0,0 , M 0,1 and M 1,1 constraints (4.3d) and (4.3e) may be deduced from the constraints in a model.

To the best of our knowledge, the standard MIP formulation M 0,0 was already considered in [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF], while another type of reformulation that looks like the model M 3,0 has been proposed in [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF]. On the other hand, the remaining MIPs have not been yet considered for solving the CDAP.

Lagrangian Relaxation for the CDAP

In section 4.7, computational experiments carried out on benchmark instances from the literature show that MILP model (M 2,0 ) min {g(z) : A 2 , C 0 } is the fastest model for CDAP known so far. We also recall that the derivative MILP model (M 2,1 ) min {g(z) :

A 2 , C 1 } is obtained by replacing initial capacity constraints (3.1d) and (3.1e) gathered into C 0 by (4.8a) and (4.8b) gathered into C 1 to strengthen M 2,0 . In [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF], the authors have considered the MILP model (M 3,0 ) min {g(z) : A 3 , C 0 } and instead of replacing the constraints (4.1d)-(4.1e) by (4.8a) and (4.8b) respectively, the authors have added them as redundant and they came out a new MILP model (M 3,0,1 ) min {g(z) :

A 3 , C 0 , C 1 } for CDAP. That resulting MILP model M 3,0,1 is too weak in term of processing time consumption. This is may be due to the big number of constraints, but it performs the same LP relaxation lower bound as M 2,1 .

The following of this section provides the Lagrangian Relaxation approach that we have used to exploit the MIP model M 2,1 so as to provide new lower bound to optimal solution value found so far. Lagrangian Relaxation is a well-known optimization method that has been significantly investigated to solve many optimization problems. It consists of reducing problem complexity by introducing hard constraints associated with their respective penalties as a part of objective function (Geoffrion;[START_REF] Geoffrion | Lagrangean relaxation and its uses in integer programming[END_REF][START_REF] Geoffrion | Lagrangean relaxation for integer programming[END_REF]. Lagrangian Relaxation has been used in Held andKarp (1970, 1971) to solve Traveling Salesman Problem (TSP).

The integral MILP model M 2,1 to which we apply Lagrangian Relaxation approach is defined as follows : Here, we propose a Lagrangian Relaxation procedure that relaxes the derived capacity constraints (4.9b) and (4.9c). For [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF], in the considered MIP model M 3,0,1 , the authors relaxed capacity constraints (4.9b) and (4.9c) together with assignment constraints (4.9f) -( 4.9g) in a Lagrangian way and solve Lagrangian dual model using sub-gradient optimization algorithm. The authors showed that the Lagrangian objective function can be decomposed into three sub-problems, each sub-problem in a space of the corresponding decision variable x m,i , y n,j and z m,i,n,j respectively. Unfortunately the Lagrangian lower bound found is worse. In fact, from the results of computational experiments, the lower bound value of Lagrangian dual is smaller than that of corresponding LP relaxation for all instances.

(M 2,1 )                                                                              min g(z) = m∈M i∈I n∈N j∈J d i,j f m,n z m,i,n,j subject to : m∈M s m z m,i,n,j ≤ S i y n,j , ∀i ∈ I, n ∈ N, j ∈ J n∈N r n z m,i,n,j ≤ R j x m,i , ∀j ∈ J, m ∈ M, i ∈ I. i∈I x m,i = 1, ∀m ∈ M j∈J y n,j = 1, ∀n ∈ N i∈I z m,i,n,j = y n,j , ∀m ∈ M, n ∈ N, j ∈ J j∈J z m,i,n,j = x m,i , ∀n ∈ N, m ∈ M, i ∈ I x m,i , y n,j , z m,i,n,j ∈ {0, 1}, ∀m ∈ M, n ∈ N, i ∈ I, j ∈ J. z m,i,n,j ∈ {0, 1}, ∀m ∈ M, n ∈ N, i ∈ I, j ∈ J.
In our case of study, the relaxation of the constraints (4.9b) and ( 4.9c) in a Lagrangian fashion has been motivated by the following findings : i ) some preliminary computational experiments showed that the optimal solution value when capacity constraints (4.9b) and (4.9c) are dropped is the same as the LP relaxation lower bound of (M 2,0 ) min {g(z) :

A 2 , C 0 } and the model is faster than LP relaxation of M 2,0 ; ii ) the LP relaxation lower bound of M 2,1 is better than that of M 2,0 for all instances, see e.g., Table A.5.

We define λ i,n,j , γ j,m,i ≥ 0 that stand for the Lagrange multipliers associated to each capacity constraints (4.9b) and (4.9c), respectively.

The Lagrangian Relaxation model can be stated as follows :

LR(λ, γ)                                                                    min l(λ, γ) = m∈M i∈I n∈N j∈J a m,i,n,j z m,i,n,j - n∈N j∈J b n,j y n,j - m∈M i∈I c m,i x m,i subject to : i∈I x m,i = 1, ∀m ∈ M j∈J y n,j = 1, ∀n ∈ N i∈I z m,i,n,j = y n,j , ∀m ∈ M, n ∈ N, j ∈ J j∈J z m,i,n,j = x m,i , ∀n ∈ N, m ∈ M, i ∈ I x m,i , y n,j ∈ {0, 1}, ∀m ∈ M, n ∈ N, i ∈ I, j ∈ J z m,i,n,j ≥ 0, ∀m ∈ M, n ∈ N, i ∈ I, j ∈ J
where :

• a m,i,n,j = d i,j f m,n + λ i,n,j s m + γ j,m,i r n • b n,j = i∈I λ i,n,j S i
• and c m,i = j∈J γ j,m,i R j

Solving Lagrangian Dual model

We let v(P) denotes the optimal value of a minimization optimization problem P and v(P) denotes the optimal value given by the usual LP relaxation of the same problem.

For any Lagrange multiplier µ, let LR µ denotes the Lagrangian Relaxation program for problem P. It is well known that LR µ provides a lower bound v(LR µ ) on the optimal solution value for the original linear problem. The goal is to find an optimal value µ that provides the best lower bound value by solving Lagrangian dual model related to the Lagrangian program LR µ . Let z D be the Lagrangian dual model associated to LR µ .

Theoretically, v(P) ≤ v(z D ) ≤ v(P).

In our case of study, the best possible lower bound is obtained by solving the Lagrangian dual program (D) below :

(D)    max z = v(LR(λ, γ)) subject to : λ, γ ≥ 0 v(M 2,1 ) ≤ v(D) ≤ v(M 2,1
), for all λ, γ ≥ 0 where :

• v(M 2,1 ) is the LP relaxation lower bound of the model M 2,1

• v(D) is the lower bound obtained by solving dual model D

• v(M 2,1 ) is the optimal solution value of the model M 2,1

The sub-gradient optimization method, see e.g., [START_REF] Shor | The rate of convergence of the generalized gradient descent method[END_REF]; [START_REF] Schirotzek | -1 (springer series in computational mathematics 3)-translation from the russian[END_REF]; [START_REF] Fisher | The lagrangian relaxation method for solving integer programming problems[END_REF], is one of the existing iterative algorithms to find good values for Lagrange multipliers. For a certain number of iterations, the sub-gradient optimization algorithm adjusts iteratively the value of Lagrange multipliers to the solution value that is the best or near the best lower bound. To solve the Lagrangian dual program D, we use the sub-gradient optimization algorithm, see e.g., [START_REF] Held | Validation of subgradient optimization[END_REF][START_REF] Fisher | The lagrangian relaxation method for solving integer programming problems[END_REF]. At each iteration, the sub-gradient optimization method depicted in algorithm 4.1 solves Lagrangian dual and updates Lagrange multipliers λ i,n,j and γ j,m,i to move Lagrangian lower bound value v(LR(λ, γ)) in direction of optimal solution value of original problem M 2,1 .

Algorithm 4.1 Sub-gradient Optimization Algorithm Parameters : Solve Lagrangian model LR(λ t , γ t )

1: LB ← -∞ ; U B ← Upper bound on v(M 2,1 ) ; 2: σ 0 ← 2 ; ← 10 -5 ; t ← 0 N count ← 0; N max 3: (λ 0 , γ 0 ) ← (0,
7: l(λ t , γ t ) ← LR(λ t , γ t ) {l(λ t , γ t ) is optimal value of LR(λ, γ) model at iteration t} 8: if (l(λ t , γ t ) > LB) then 9:
LB ← l(λ t , γ t ) 10:

N count ← 0 11: else 12: N count ← N count + 1 13: end if 14:
Compute the sub-gradient G(λ t , γ t ) of LR(λ, γ)

15:

Compute stepsize ϕ t ← σ t (U B-l(λ t ,γ t )))

||G(λ t ,γ t )|| 2 16:

Updates Lagrange multipliers (λ t+1 , γ t+1 ) ← M ax{0, (λ t , γ t ) + ϕ t .G(λ t , γ t )} 17:

if N count ≥ N max then {if no progress in more than N max iterations} 18:

α ← random(0, 1)

19:

if ασ t ≤ then 20:

σ t+1 ← σ 0 {reset σ t+1 to its starting value} Let (x * , y * , z * ) be an optimal solution of Lagrangian Relaxation LR(λ t , γ t ) obtained at iteration t, the sub-gradient of the associated function v(LR(λ t , γ t )) at that iteration

t is G(λ t , γ t ) = (G λ t , G γ t ) where:          G λ t i,n,j = m∈M s m z * m,i,n,j -S i y * n,j , ∀i ∈ I, n ∈ N, j ∈ J G γ t i,m,j = n∈N r n z * m,i,n,j -R j x * m,i , ∀i ∈ I, m ∈ M, j ∈ J
From sub-gradient algorithm 4.1 below, the stopping criteria are a maximum number of iterations, a maximum processing time to solve each instance and if the sub-gradient G(λ t , γ t ) equal to zero. If one of these criteria is met, the sub-gradient algorithm terminates (line 29) returning the best lower bound found so far (line 30). In this algorithm, LB stands for the lower bound on optimal solution value of M 2,1 . After a number of consecutive iterations nM ax without improvement of LB, the parameter σ t ∈ [0, 2] starting with σ 0 = 2 is decreased by a random value α ∈]0, 1[ and σ t is reset to its initial value 2 if it attains . The lines 3 and 4 define that sub-gradient algorithm starts by zero or by dual values of associated LP for Lagrange multipliers.

The upper bound U B is generated by a constructive heuristic. This heuristic begins by assigning in sequential way all origins on inbound dock doors. Afterwards, regarding origins assignment, each destination is then assigned in a greedy way. After this initial assignment, origins are removed from dock doors where they are assigned and are reassigned in a greedy way regarding destinations assignment.

Computational results

All tests presented in this section were conducted on a personal computer Intel(R)

Core(TM) with i7-6700HQ 2.60GHz CPU and 16GB of RAM, running Windows 10 OS.

To solve the MIP formulations and Lagrangian model we have used CPLEX 12.6.3 solver and the sub-gradient algorithm has been coded in Java IDE. The MIP formulations are compared in terms of the quality of the upper bounds they provide, and the CPU time consumed by CPLEX to solve an instance with a time limit set to 2 hours (7200 seconds).

Lagrangian Relaxation and LP relaxation lower bounds are compared as well as the CPU time consumed. For sub-gradient algorthmin 4.1 one of the two criteria, 2 hours or 2000 iterations has to be fulfilled for the algorithm to end. For testing purposes, 50 benchmark To generate the distance matrix, the I-shape cross-docking facility is assumed to have an equal number of inbound and outbound dock doors, i.e., |I| = |J|. Most of the applications instances have cross-docks with a width of 90 feet and dock doors with a width of 12 feet, which corresponds approximately to the proportion of 8 to 1. Therefore, in all instances distances range from 8 to 8+|I|-1. In addition, the I-shaped cross-dock has a rectangular shape, with receiving dock doors on one side and outbound dock doors on the other side. Therefore, rectilinear distances may accurately simulate distances traversed by the forklifts following clearly marked lanes, see e.g., [START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF]. This means that all instances are generated to correspond to a realistic situation. The capacity of each dock door is set to be equal to the total flow coming from all origins divided by the total number of inbound dock doors, plus the quotient of p% of the slackness of the total flow, where p ∈ {5, 10, 15, 20, 30}. More precisely, the dock door capacity is calculated using the following formula :

Slack = m∈M s m |I| * p% Dock door capacity = m∈M s m |I| + Slack = m∈M s m |I| (1 + p%)
The number of origins/destinations in the instances ranges from 8 to 20, while the number of inbound/outbound dock doors is between 4 and 10.

For the MIP formulations, the computational results are divided into two parts. In the first part we test the MIP models where integrality requirements on the variables z m,i,n,j are relaxed, while in the second part we keep the integrality requirements. We identify models with relaxed integrality requirements by denoting them as M k ,h where M k,h is the corresponding model with the integrality requirement intact.

a. https://tinyurl.com/yb6l6vmz

4.6.1 Comparison of models -with integrality requirement on variables z m,i,n,j relaxed

In Tables 4.2 and 4.3, we provide a summary of the results obtained by the 11 MIP models (with a relaxed integrality requirement on the variables z m,i,n,j ). By the convention that "solving " an instance means that a feasible solution is found, Table 4.2 provides summary results in terms of the number of instances solved (row "# instances"), the number of instances solved to optimality (row "# optimal"), the average optimality gap attained by CPLEX (row "gap"), the average CPU time used by CPLEX to solve an instance (row "CPU time") and the average number of nodes processed (row "# nodes").

Table 4.3 provides some detailed results for each class of instances for models that succeed in solving all instances. Instances with the same number of origins/destinations and inbound/outbound dock doors form a class. The number of origins/destinations and inbound/outbound dock doors in each class is given in the first column of the Table 4.3 in the form |N |×|I|. The remaining columns of the table report for each method the average solution value (column "value"), the average CPU time (column "CPU time") and the average optimality gap (column "gap") attained by CPLEX on each class. profile of M 2 ,0 starts to dominate that of M 3 ,0 . In addition, we observe that the largest deviation from the best solution value attained by model M 2 ,0 is about 0.25% less than the largest deviation from the best solution value attained by model M 3 ,0 . However, the difference between models M 2 ,0 and M 3 ,0 is not statistically significant, in terms of the optimality gap, as can be observed from the 95% confidence interval plot of the optimality gap (see Figure 4.1). On the other hand, if we compare CPU times in the performance profiles of M 2 ,0 and M 3 ,0 , we observe that the model M 2 ,0 clearly outperforms the model M 3 ,0 . The superiority of M 2 ,0 over M 3 ,0 in terms of CPU time consumed is established by a Wilcoxon signed rank test, refer to e.g., [START_REF] Wilcoxon | Individual comparisons by ranking methods[END_REF], which yields a p-value < 0.0001 (i.e., p = 5.3e -6 ). In view of these observations we may say that the model M 2 ,0 is better than any other model compared, especially if a high quality solution is sought in a short time. The results presented in Table 4.4 show that only 4 of 11 models enable CPLEX to provide a solution for each instance in the data set. These four models are : M 1,0 , M 2,0 , M 3,0 and M 1,1 . Of these, model M 1,1 enabled 34 instances to be solved to optimality, while the remaining three enabled 45 instances to be solved. More precisely, just on the class containing the largest instances, models M 1,0 , M 2,0 , M 3,0 failed to find optimal solutions and the best performance in terms of solution quality is exhibited by model M 2,0 (see Table 4.5). Further, if we compare the average optimality gap attained by using these 4 models, we see that the least average optimality gap is provided by M 2,0 (0.011%), while model M 1,1 yields the largest average optimality gap (0.024%). From the 95% confidence interval plot of the optimality gaps in Figure 4.4, we observe that there is no significant difference among these four models. Comparing the average CPU time consumed to solve an instance, model M 2,0 yields the least average CPU time consumed (841.08) which is significantly less than the average CPU time consumed when using model M 1,0 (1036.82), the second best of the models by this criterion. To further verify that M 2,0 is best in terms of solution quality and solution time performance, in Figures 4.5

M 0 ,0 M 0 ,1 M 1 ,0 M 1 ,1 M 2 ,0 M 2 ,1 M 3 ,0 M 3 ,1 M 0 ,0 M 0 ,1 M 1 ,
|N | × |I| M 0 ,1 M 1 ,0 M 2 ,0 M 3 ,0 M 0 ,1 M 1 ,
and 4.6 we draw the upper bound and CPU time performance profiles of models M 1,0 , M 2,0 , M 3,0 and M 1,1 using the approach described in the preceding section. These figures show that the graphs representing the upper bound and CPU time performance profiles of model M 2,0 lie above the others. The superiority of model M 2,0 over models M 1,0 and M 3,0 , the closest competitors in terms of CPU time consumption is confirmed by the Wilcoxon signed rank test which yields p-values of 5.48e -8 and 5.18e -9 by comparing M 2,0 and M 1,0 , and M 2,0 and M 3,0 , respectively. On the other hand, we recall that, in terms of the number of solved instances, the models M 0,0 and M 0,0 were the two worst, enabling CPLEX to solve only 38 and 41 instances, respectively.

The comparison results in the previous tables lead to some interesting observations.

We see that after relaxing the integrality restrictions on the variables z m,i,n,j , model M 1 ,0 is less efficient(causes CPLEX to perform less efficiently) than the corresponding model M 1,0 . However, model M 2 ,0 is better than its corresponding model M 2,0 regarding both solution quality and CPU time consumed. These observations lead to the conclusion that is difficult to say in the case of certain models whether it is better to relax the integrality requirement for some variables or not. However, it is interesting to observe that the standard linear MIP formulation M 0,0 is the weakest. It consumes a substantial amount of CPU time even for the simple instances, and additionally consumes a lot of memory for some instances. The associated MIP formulation M 0 ,0 behaves the same way in terms of memory consumption but is slightly faster in terms of running times. In sum, we conclude that the model M 2 ,0 is the best among those considered in this chapter 4, both with and without relaxing the integrality requirement. We emphasize once again that to the best of our knowledge, the " winning " models M 2 ,0 and M 2,0 are considered here for the first time.

The LP relaxations of models M 0,0 , M 0,1 , M 0,0 , M 0,1 are the weakest, yielding an LP relaxation value of zero on all instances. The average LP relaxation values of the remaining models as well as the average CPU times (in second) needed to obtain these values, over entire set of instances, are given in Table 4.6. As we can see the model M 2,0 exhibits the best compromise between LP relaxation value and CPU time consumption. This may explain why models M 2 ,0 and M 2,0 are the best. In addition, the results reported in Table 4.6 suggest that the behavior of the models detected in this chapter may be very similar to the behavior when some other MIP solver is used. The models M 0,0 , M 0,1 , M 0,0 , M 0,1 would be most likely the worst, while the models M 2 ,0 , M 2,0 , M 3,0 , and M 3 ,0 and M 1,0 would be most likely among the best. Expect the worst MIPs M 0,0 , M 0,1 , M 0,0 , M 0,1 which yield LP relaxation lower bound zero for all instances, we see in table 4.6 that all MIPs models M k,h , ∀k = 1, ..., 3 and h = 1 yield an average lower bound value slightly higher that the average lower bound of corresponding MIP M k,h , ∀k = 1, ..., 3 and h = 0. We can conclude that the two derived sets of constraints (4.8a) and (4.8b) impact improvement of the LP lower bound.

M 1,0 M 1,1 M 2,0 M 2,1 M 3,0 M 3,1 M 1,
Computational results of all 11 MIPs models and their performance are detailed on Appendix A. 

N x I BKS M 2,1 CPLEX M 2,1 LP M 2,1 LR , (λ 0 , γ 0 ) = (0, 0) M 2,1 LR , (λ 0 , γ 0 ) = (d(4.

Conclusion

In this chapter, we started the study of the Cross-dock Door Assignment Problem (CDAP) from the standard quadratic formulation of the problem and we have derived 11

nonstandard Mixed Integer Linear Programming (MILP) models for the CDAP. Eight of these 11 proposed MILP models are considered in this chapter for the first time. We prove the equivalence between all these models, with an integrality requirement imposed on the z variables, in the sense of admitting the same feasible and optimal solutions. We also establish results about the integrality properties of these models. These results further imply the equivalence of the models that have relaxed integrality requirement on the z variables.

To detect the best model among these 11, an exhaustive empirical study has been performed on benchmark instances from the literature, applying the CPLEX MIP software to compare the formulations in terms of the number of instances they enable to be solved to optimality, upper bounds they provide, and the CPU time consumed. The results reveal that the best model is one of the eight MILP formulations proposed in this study. In addition, we picked the MILP model that gives good compromise between LP relaxation lower bound and CPU time consumption and apply the Lagrangian Relaxation procedure that relaxes the capacity constraints. The goal was to produce new lower bounds on optimal solution value. Lagrangian dual was solved using the sub-gradient optimization algorithm. The lower bound given by our Lagrangian dual outperforms that given by LP relaxation and that given by Lagrangian dual from literature but the consumed processing time is important specially for large scale instances.

However, the challenge remains to identify an effective solution algorithm and model formulation for handling large scale instances whose solution remains elusive. A possible research direction is to propose a hybrid approach that combines the best model from those identified in this chapter with an existing or newly proposed heuristic algorithm.

This heuristic can be combined to the sub-gradient method to solve efficiently Lagrangian dual model.

The solutions proposed in chapter 4 are still weak for large instances of the Cross-dock Door Assignment Problem (CDAP). In this chapter, we propose and implements two novel heuristics that solve efficiently the CDAP. The proposed heuristics are evaluated on 99 benchmark instances from the literature, disclosing that our heuristics approaches outperform recent state-of-the-art approaches by reaching 45 previous best-known solutions in the literature and discovering 53 new best-known solutions while consuming significantly less CPU time.

Introduction

The heuristics that we have proposed are applied to an considering I-shape cross-dock.

We recall that for an I-shape cross-dock where the inbound dock doors are set at one side and the sets of outbound dock doors are set at the opposite side, fully loaded incoming trucks enter the cross-dock and unload goods at inbound dock doors and unloaded goods are immediately transferred to outbound dock doors to be loaded into outgoing truck the same day. For a broad description, literature review and mathematical formulation of the Cross-dock Door Assignment Problem, let's refer the readers to chapter 3 on section 3.6.

The CDAP is considered as an instance of an assignment problem as shown in [START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF]. Assignment problems are well-studied optimization problems that have given rise to numerous proposals for solution algorithms including both metaheuristics and exact methods, see, e.g., [START_REF] Pentico | Assignment problems : A golden anniversary survey[END_REF]. To briefly indicate some of the more salient contributions, variants of assignment problems that have received attention include : The Generalized Assignment Problem (GAP), see, e.g., [START_REF] Bibliography Yagiura | A path relinking approach with ejection chains for the generalized assignment problem[END_REF], the generalized quadratic assignment problem, see, e.g., [START_REF] Pessoa | Algorithms for the generalized quadratic assignment problem combining lagrangean decomposition and the reformulation-linearization technique[END_REF] and the quadratic threedimensional assignment problem, see, e.g., [START_REF] Hahn | The quadratic three-dimensional assignment problem : Exact and approximate solution methods[END_REF]. In [START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF], the authors observe a relationship between the Generalized Quadratic three-dimensional Assignment Problem (GQ3AP) and the CDAP we study here which discloses that the CDAP can be solved as GQ3AP.

Some Mixed Integer Programming formulations of the studied problem may be found in [START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF]; [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF][START_REF] Gelareh | A comparative study of formulations for a cross-dock door assignment problem[END_REF]. According to the computational results reported in the previous chapter, instances with up to 15 origins/destinations and 7 indoors/outdoors may be optimally solved by the CPLEX MIP solver within the time limit of two hours. However, the largest instances remain elusive The rest of the chapter is organized as follows. The next section describes the main ingredients of the proposed heuristics based on Probabilistic Tabu Search, including a procedure for constructing an initial solution, as well as the neighborhood structures used and efficient ways of exploring them. Section 5.3 presents the two Probabilistic Tabu

Search heuristics built on the ingredients described in the preceding section and Section 5.4

is dedicated to computational experiments to assess the merit of the proposed approaches.

Finally, Section 5.5 offers concluding observations.

Main ingredients of the Probabilistic Tabu Search approaches

In this section we present the main ingredients of our proposed Probabilistic Tabu Search heuristics with multiple neighborhood structures. First, we present the procedure used to generate an initial solution and then we describe neighborhood structures exploited by our PTS heuristics. In addition, we expose the data structures and updating procedures used in our implementation.

A solution of the CDAP is represented by partitions of M and N denoted by X and Y , respectively. Each element X i of X is a set containing all origins assigned to the inbound dock door i ∈ I. Similarly, each element Y j is a set containing all destinations assigned to the outbound dock door j ∈ J. More formally, using two binary variables defined as follows : x m,i and y n,j indicate whether or not an incoming truck m ∈ M is assigned to inbound dock door i ∈ I, and whether or not an outgoing truck n ∈ N is assigned to outbound dock door j ∈ J, respectively, the set X i and Y j may be expressed as :

X i = {m ∈ M : x m,i = 1} and Y j = {n ∈ N : y n,j = 1}
We note that some sets X i or Y j can be empty in a feasible solution.

The objective function (3.1a)

f (x, y) = m∈M i∈I n∈N j∈J d i,j f m,n
x m,i y n,j (see chapter 3 subsection 3.6.3) of a solution (X, Y ) may be computed as :

f (X, Y ) = i∈I j∈J m∈X i n∈Y j f m,n d i,j
Correspondingly, on origin side of I-shape cross-dock that we express by the letter τ = o, the cost incurred by assigning origin m ∈ M to inbound dock door i ∈ I for a given partition Y , may be expressed as

c o m,i (Y ) = j∈J n∈Y j f m,n d i,j (5.1a) 
and on destination side of I-shape cross-dock that we express by the letter τ = d, the cost of assigning destination n ∈ N to outbound dock door j ∈ J for a given partition X, may be expressed as

c d n,j (X) = i∈I m∈X i f m,n d i,j (5.2a) 
The amount of capacity S(X i ) (respectively R(Y j )) consumed at each inbound (respectively outbound) dock door with respect to the solution (X, Y ) is expressed as :

S(X i ) = m∈X i s m , ∀i ∈ I R(Y j ) = n∈Y j
r n , ∀j ∈ J

Constructive heuristic to generate an initial solution

We use the following procedure described in Algorithm 5.1 to build an initial solution. First, the procedure sorts the origins so that their numbers of pallets, s m , are in descending order of size, and then assigns these origins to the inbound dock doors in a random fashion (line 6) respecting the capacity constraint of these dock doors (line 4).

The destinations are then assigned to the outbound dock doors using a greedy procedure in which the destinations are similarly sorted in descending order according to the total number of pallets r n they receive (line 10). After that, the destinations are assigned one by one to the outbound dock doors following the established order. This latter assignment is accomplished by assigning a destination n to a dock door j associated with the minimum assignment cost c d n,j (X), where c d n,j (X) depends on the given assignment of origins (lines 11-17). We have found that sorting the origins and destinations in this simple manner greatly enhances the algorithm's ability to find a feasible initial solution that satisfies the dock doors' capacities, although of course there is no guarantee that the solution will be feasible. Namely, some origins (destinations) may remain non-assigned to inbound (outbound) dock doors. If this happens, non-assigned origins (destinations) are assigned to inbound (outbound) dock doors in a greedy way so that the violation of the capacity constraints is minimized. To measure the violation of the capacity constraints the following function is used :

g(X, Y ) = i∈I max{0, S(X i ) -S i } + j∈J max{0, R(Y j ) -R j }
After that, in order to attain feasibility, we launch a PTS algorithm, whose steps are given in Section 5.3. In this case, the PTS considers g(X, Y ) as the objective function and may accept also infeasible solutions. Once a feasible solution is found, it is used as an initial solution for the PTS which works only with feasible solutions and uses the CDAP Select randomly an inbound dock door i ∈ I ; 7: 

X i = X i ∪ {m} ;

Neighborhood structures and move evaluation

X i =          X i -{m} if i = i X i * + {m} if i = i * X i otherwise (5.3a)
Analogously, for the destination side τ = d, a solution in the neighborhood of the current solution (X, Y ) is obtained by shifting a destination n ∈ N from its current outbound dock door j (n ∈ Y j ) to another outbound dock door j * ∈ J -{j} selected randomly among the k best outbound dock doors, that is, dock doors having the smallest costs c d n,j * . For the sake of completeness, we provide definitions of these moves as well: for each destination n ∈ N , we re-index the outbound dock doors j ∈ J -{j} so that

c d n,1 (X) ≤ c d n,2 (X) ≤ ... ≤ c d n,|J|-1 (X)
and let J k n = 1, ..., k be the set identifying the outbound dock doors j ∈ J -{j} with the k smallest values c d n,j (X). A neighboring solution (X , Y ) ∈ N d,k Shif t (X, Y ) is obtained by setting X = X (partition X still fixed) and selecting randomly j * ∈ J k n -{j} and for all j ∈ J setting

Y j =          Y j -{n} if j = j Y j * + {n} if j = j * Y j otherwise (5.4a)
Remark 1: if k = 1, the origin m (respectively the destination n) is transferred to the best i * inbound dock door (respectively to j * outbound dock door) , while if k = |I| -1

(respectively k = |J| -1), the origin m (respectively the destination n) is transferred to a randomly selected i * inbound dock door (respectively j * outbound dock door).

Swap moves

A swap move consists of exchanging trucks between two different dock doors. In our Swap (X, Y ) is obtained by setting Y = Y (partition Y still fixed), choosing i, i ∈ I with i = i , selecting P ⊆ X i such that |P | = p and Q ⊆ X i such that |Q| = q and for all h ∈ I setting

X h =          X h -P if h = i X h + Q if h = i X h otherwise (5.5a)
Similarly, for the destination side τ = d, a neighboring solution (X , Y ) ∈ N d,p,q Swap (X, Y ) is obtained by setting X = X (partition X still fixed), choosing j, j ∈ J with j = j , selecting P ⊆ Y j such that |P | = p and Q ⊆ Y j such that |Q| = q and for all h ∈ J setting

Y h =          Y h -P if h = j Y h + Q if h = j Y h otherwise (5.6a)
Remark 2: An elementary swap moves can be derived from the above definition by choosing p = 1 and q = 1.

The set of neighboring solutions generated by swap moves that affect sets X i and X i on origin side (respectively Y j and Y j on destination side) will be denoted by N

o,p,q X Swap (X i , X i ) (resp. N d,p,q Y Swap (Y j , Y j ))
. Using these definitions, on origin side (τ = o), we have :

N o,p,q Swap (X, Y ) = i,i ∈I,i =i N o,p,q X Swap (X i , X i )
and similarly, on destination side (τ = d), we have :

N d,p,q Swap (X, Y ) = j,j ∈J,j =j N d,p,q Y Swap (Y j , Y j )
In Section 5.2.2.4, we describe an efficient procedure to explore the swap neighborhoods.

Data structures to evaluate and update moves

To efficiently evaluate each move presented in the preceding section we use auxiliary data structures. By move evaluation we mean the change in the objective function caused by executing a certain move on a current solution. Here we present only a method to evaluate efficiently the shift moves, since each swap move (elementary or multiple) can be easily transformed into a set of shift moves.

From equation (3.1a) the objective function value of a solution (X, Y ) can be expressed as

f (X, Y ) = i∈I j∈J m∈X i n∈Y j f m,n d i,j
Using equation (5.1a), this can be rewritten as

f (X, Y ) = i∈I m∈X i c o m,i (Y ) (5.7a)
Or equivalently by equation (5.2a) :

f (X, Y ) = j∈J n∈Y j c d n,j (X) (5.8a) 
Again, we differentiate shift moves that affect origin -inbound dock door assignments (τ = o) and those that affect destination -outbound door assignments (τ = d).

First consider a shift move on origin side (τ = o), that transfers an origin m ∈ M from its current inbound dock door i (m ∈ X i ) to another inbound dock door i * ∈ I k m -{i}. The objective function change produced by this shift move is given by

∆ o (m, i, i * ) = f (X , Y ) -f (X, Y )
Using the expressions (5.7a) and (5.8a) we obtain

∆ o (m, i, i * ) = c o m,i * (Y ) -c o m,i (Y ) (5.9a)
Next consider a shift move on the destination side τ = d, that transfers a destination n ∈ N from its current inbound dock door j (n ∈ Y j ) to another inbound door j * ∈ J k n -{j}. The objective function change produced by this shift move is given by

∆ o (n, j, j * ) = f (X, Y ) -f (X, Y )
Similarly, using the expressions (5.7a) and ( 5.8a) we obtain Using expression (5.3a), we obtain

∆ d (n, j, j * ) = c d n,j * (X) -c d n,j ( 
c d n,j (X ) = c d n,j (X) + f m,n (d i * ,j -d i,j ) (5.11a) 
Similarly, after a shift move on the side τ = d, we have

c o m,i (Y ) = j∈J n∈Y j d i,j f m,n
Using expression (5.4a), we obtain 

c o m,i (Y ) = c o m,i (Y ) + f m,n (d i,j * -d i,j ) (5 
(X, Y ) is O( i.i ∈I,i =i |X i | p |X i | q
). Consequently, the exhaustive exploration of the union of neighborhoods N

o,p,q Swap (X, Y ), 1 ≤ p ≤ |X i | and 1 ≤ q ≤ |X i |, which we denote by N o Swap (X, Y ), has the complexity O( i,i ∈I,i =i 2 |X i |+|X i | ). However, if each solution in N o Swap (X, Y
) is feasible, then the best solution in this neighborhood can be found by an exploration of smaller complexity, as we demonstrate in the following proposition. 

( i.i ∈I,i =i |X i | + |X i |) if all so- lutions in N o Swap (X, Y ) are feasible.
Proof. Consider two sets X i and X i and define

X imp i = {m ∈ X i : ∆ o (m, i, i ) < 0} and X imp i = {m ∈ X i : ∆ o (m , i , i) < 0}
. By these definitions the best multiple swap move that affects sets X i and X i is the one that exchanges sets X imp 

( i.i ∈I,i =i |X i | + |X i |).
The preceding result does not hold if there is an infeasible solution in the neighborhood N o Swap (X, Y ). This can be demonstrated by a small example involving only 3 incoming trucks m 1 , m 2 and m 3 with loads s m 1 = 3, s m 2 = 5 and s m 3 = 8, respectively. Suppose we have only two incoming dock doors i 1 and i 2 both with capacity S i 1 = S i 2 = 10. Further, in the solution (X, Y ), assume trucks m 1 and m 2 with loads 3 and 5 are assigned to the first incoming door i 1 and truck m 3 with load 8 is assigned to the door i 2 . Then the neighborhood N o Swap (X, Y ) contains both feasible and infeasible solutions with respect to the capacity constraints.

Let ∆ o (m 1 , i 1 , i 2 ) > 0, ∆ o (m 2 , i 1 , i 2 ) < 0 and ∆ o (m 3 , i 2 , i 1 ) < 0.
Then if we use the procedure from the preceding proposition, only the move that exchanges trucks m 2 and m 3 between dock doors will be considered as a potential improving move, but this move is infeasible. Consequently, the current solution (X, Y ) would be the best solution. However, in the case that ∆ o (m 1 , i 1 , i 2 ) + ∆ o (m 2 , i 1 , i 2 ) + ∆ o (m 3 , i 2 , i 1 ) < 0, a swap move that exchanges trucks m 1 and m 2 from one side with a truck m 3 from the other side is an improving move. So, the procedure used in the preceding proposition may fail to reach the best solution if there is an infeasible solution in the neighborhood N o Swap (X, Y ).

However, to avoid an exhaustive exploration of the neighborhood N o Swap (X, Y ), which may be time consuming due to its large cardinality, but to be still able to find near best solution, we propose the following heuristic exploration of the neighborhood N o Swap (X, Y ). We consider two sets X i and X i and sort the origins in X i (respectively X i ) in ascending order with respect to ∆ o (m, i, i ) (respectively ∆ o (m , i , i)). Represent the established order by X i = {m 1 , m 2 , ..., m |X i | } and X i = {m 1 , m 2 ..., m |X i | }, respectively. Then the procedure tries to find the best improving move by exchanging sets L = {m 1 , m 2 , ..., m p }, 1 ≤ p ≤ |X i | and L = {m 1 , m 2 , ..., m q }1 ≤ q ≤ |X i |. The steps of the procedure are given in Algorithm 5.2. As will be shown in the computational results section, this procedure is able to find a solution which is the best solution or close to the best solution, while taking much smaller CPU time than an exhaustive exploration. Henceforth, when we speak of the swap neighborhood we refer to the set of solutions inspected by the procedure in Algorithm 5.2.

Algorithm 5.2 Exploration of Swap Neighbourhood (o, X i , X i ) 1: Sort the origins m ∈ X i in ascending order of the values ∆ o (m, i, i ) ; 2: Sort the origins m ∈ X i in ascending order of the values ∆ o (m , i , i) ; 3: Set N o X Swap (X i , X i ) = φ ; and L = φ; 4: for each m ∈ X i do 5: L = L + {m} ; L = φ 6: for each m ∈ X i do 7: L = L + {m } ; 8: if S(X i ) + S(L ) -S(L) ≤ S i and S(X i ) + S(L) -S(L ) ≤ S i then 9: (X , Y ) = (X, Y ) ; 10: X i = X i + L -L ; 11: X i = X i + L -L ; 12: N o X Swap (X i , X i ) = N o X Swap (X i , X i ) + (X , Y ) ; 13: end if 14: end for 15: end for 16: Return N o X Swap (X i , X i ) ;
Hence, the complexity of the procedure that explores the entire swap neighborhood of a solution (X, Y ) on the side

τ = o is O( i.i ∈I,i =i |X i ||X i | + |X i |log|X i | + |X i |log|X i |).
Remark 3: If there is no infeasible solution in the swap neighborhood of the current solution the heuristic procedure described in Algorithm 5.2 and the exhaustive exploration procedure return the same solution.

Analogous results hold for the exploration of the neighborhood N d Swap (X, Y ) and we will not bother to describe them.

Probabilistic Tabu Search

In this section we present the Probabilistic Tabu Search approaches we use to solve the CDAP. Probabilistic Tabu Search is a variant of the metaheuristic Tabu Search introduced in [START_REF] Glover | Future paths for integer programming and links to artificial intelligence[END_REF]. The main steps of our PTS procedure for solving the CDAP are presented in Algorithm 5.3. Starting from an initial solution, PTS is run until a predefined stopping criterion is met. The procedure presented in Algorithm 5.1 is used to generate an initial solution and afterwards it uses the following function to evaluate the visited solutions. At each iteration, our PTS approach constructs a candidate list N (X, Y ), selects a solution from it to be the new incumbent solution, updates the tabu list T L, the auxiliary data structures c o m,i (Y ) and c d n,j (X) (as explained in the preceding section) and the best solution found so far. To construct a candidate list N (X, Y ) and select a new incumbent solution we propose two approaches which lead to two different variants of PTS which we denote PTS1 and PTS2. In both variants the tabu list (T L) (referred to as short term memory in the original tabu search approach) is managed in the simplest way. The old incumbent solution (X, Y ) is added to the tabu list and if the size of the list is greater than l, the oldest solution in T L, added before the l most recent iterations, is deleted. Algorithm 5.3 Probabilistic Tabu Search : General Framework 1: Generate an initial solution (X, Y ) using the procedure in Algorithm 5.1 2: Assign any non-assigned trucks in a greedy way using the function g(X, Y ) ;

3: Set (X * , Y * ) = (X, Y ) ; T L = φ ; 4: while a stopping criterion is not met do 5: if (X * , Y * ) is feasible then 6: F (X, Y ) = f (X, Y ) ; 7: else 8: F (X, Y ) = g(X, Y ) ; 9: end if 10: N (X, Y ) = Construct_candidate_list(X, Y, T L) ; 11: (X, Y ) = Select_solution(N (X, Y ), F (X, Y )) ; 12:
Update matrices c o mi (Y ) and c d nj (X) ;

13:

Update tabu list T L ;

14: p = random(0, 1); end if solutions is very small. Moreover, the use of an auxiliary data structure or procedure would slow down the proposed heuristics.

(X , Y ) = argmin{F (X , Y ) : (X , Y ) ∈ N (X, Y )} ; 15: (X * , Y * ) = argmin{F (X , Y ), F (X * ,
Z Swap (Z, Z ) (where N τ Z Swap (Z, Z ) corresponds either to N o X Swap (X i , X i ) or N d Y Swap (Y i , Y i )
To choose a new incumbent solution, PTS1 uses the procedure in Algorithm 5.5, which simply selects the best solution in the candidate list as the new incumbent.

Algorithm 5.5 Solution Selection in PTS1 

1: Procedure Select_solution(N (X, Y ), F (X, Y )) 2: (X , Y ) = argmin{F (X , Y ) : (X , Y ) ∈ N (X, Y )} ; 3: Return (X , Y ) ; 5 
(X i , X i ) or N d Swap (Y i , Y i )
depending on the chosen side τ . As in the first variant, the procedure considers solutions to be admissible only if they are not in the tabu list T L.

Algorithm 5.6 Candidate list construction in PTS2

Procedure Construct_candidate_list(X, Y, T L) 1: Sort solutions in N (X, Y ) in increasing order with respect to the function F (X, Y ),

1: N (X, Y ) = φ ; 2: Select a side τ ∈ {o, d} at random ; 3: N (X, Y ) = N τ,1 Shif t (X, Y ) -T L ; 4: if no improving solution is available in N (X, Y ) then 5: N (X, Y ) = N (X, Y ) + N τ,1,1 Swap (X, Y ) -T L ; 6: end if 7: if no improving solution is available in N (X, Y ) then {multiple swap moves} 8: if τ = o then 9: L = {(X i , X i ) : i, i ∈ I, i = i } ; 10: end if 11: if τ = d then 12: L = {(Y j , Y j ) : j, j ∈ J, j = j } ; 13: end if 14: for each pair (Z, Z ) ∈ L do 15: Select the best solution (X , Y ) ∈ N τ Z Swap (Z, Z ) -T L ; 16: N (X, Y ) = N (X, Y ) + {(X , Y )} ;
i.e., F (X 1 , Y 1 ) ≤ F (X 2 , Y 2 ) ≤ ... ≤ F (X η , Y η ), where η = |N (X, Y )| ; 2: Let N * (X, Y ) = {(X k , Y k ) : F (X k , Y k ) < F (X, Y )} 3: if N * (X, Y ) = φ then η * = min(|N * (X, Y )|, b) ; 4: else 5: η * = b ; 6: end if 7: Select a solution (X , Y ) randomly from the set (X 1 , Y 1 ), (X 2 , Y 2 ), ..., (X η * , Y η * ) 8: Return (X , Y ) ;
(Column '% dev.'), and the number of instances in each data sets where heuristic and exhaustive exploration reach the same value (Column '#same.').

The outcomes show that the heuristic exploration is significantly faster than the exhaustive one as a result of evaluating significantly fewer solutions (as expressed in the proposition of Section 5.2.2.4). Despite evaluating fewer solutions, it is able to find solutions with a quality only slightly worse than that obtained with an exhaustive exploration, as evidenced by the fact that the average percentage deviations are 0.02% and 0.008% on setA and setB, respectively. In addition, it should be emphasized that on 71 out of 99 instances these two approaches return the same solution as final. After some tuning, the parameters of our algorithms are set in the following way. Both PTS1 and PTS2, use a stopping criterion that limits the number of iterations performed.

For both methods, the limiting number is set to 10 5 on SetA and to 2 × 10 5 on SetB. The parameter b of the selection procedures is set to 3 and the size of the tabu list is set to 5.2 we present the CPU time needed for CPLEX to solve the recent best MIP formulations M 2,0 and M 3,0 for CDAP (see chapter 4, section 4.6 of computational results), where column three (Column 'M 3,0 ') is taken from [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF] and column four (Column 'M 2,0 ') is taken from chapter 4, section 4.6. Remaining columns report the results of our heuristics.

On each instance our heuristics were executed 10 times recording the best solution value and the average solution value found in 10 runs, and the average CPU time spent in solving the instance. The averages of these values over the instances from the same test class are reported in Columns 'Best', 'Avg.', and 'CPU', respectively.

In Table 5.4, we report the total number of instances, over each data set, where the first approach in the comparison provides better, equal or worse solutions than the second approach in the comparison. For example, under the header PTS1 vs BKS, we provide the total numbers of instances where PTS1 offers better (Columns 'Best'), equal (Columns 'Equal'), and worse (Columns 'Worse') solution than BKS.

From the results presented for SetA instances in appendix Table B.1, we see that both origins/destinations and 10 indoors outdoors, CPLEX did not reach optimal solutions in two hours while the PTS algorithms provide better results in less than 10 seconds. This comparison with CPLEX results indicates the merit of using probabilistic tabu search for solving hard optimization problem such as CDAP.

On the other hand, on SetB, PTS1 outperforms the state-of-the-art methods, LS1 and LS2, in finding the best-found solution. On several instances even the average solution values reported by PTS1 are better than the best solution values found by LS1 and LS2 (see B.2 in the Appendix C). We also see that PTS2 performs very well on instances with 10 indoors/outdoors where it obtains results very close to those of PTS1, while consuming very little CPU time compared to PTS1. In addition, compared to the BKS method, PTS2 provides better solutions on 27 instances out of 49 instances.

Previous findings indicate that PTS1 outperforms the other approaches in terms of solution quality. In order to check if this superior performance is significant or not, we perform the Wilcoxon signed rank test, see e.g., [START_REF] Wilcoxon | Individual comparisons by ranking methods[END_REF]. The resulting p-values of 1.1101 × 10 -9 , 1.1101 × 10 -7 , and 6.7951 × 10 -9 when comparing PTS1 vs LS1, PTS1 vs LS2, and PTS1 vs PTS2, respectively, reveal the significance of the differences that establish the superiority of PTS1.

Comparing the running times of PTS1 and PTS2, we see that : PTS2 is better on instances with 10 dock doors (instances with reduced neighborhood structure) ; the methods are very similar on instances with 20 dock doors (where sometimes PTS1 is better than PTS2) ; PTS1 in general outperforms PTS2 in terms of running time on instances with 30 doors and on one instance with 43 doors, even though the neighborhood considered in PTS1 is much larger than the neighborhood considered in PTS2. On the other hand, the running times of our methods are much better than those of LS1 and LS2 (see Table B.2 in the Appendix C).

In the light of these results, we conclude that PTS2 is more suitable for small problems, while PTS1 is more suitable for large problems. We conjecture that the good performance of PTS1 on large instances may be explained by the fact that it explores a smaller neighborhood than PTS2, which enables it to achieve a better tradeoff between intensification and diversification than PTS2 within the same amount of time.

5.5. Conclusion

Conclusion

In this chapter, two Probabilistic Tabu Search heuristics have been presented to tackle the Cross-dock Door Assignment Problem (CDAP) that has important applications in supply chain management. Their main differences are embodied in the ways they generate candidate lists and accept solutions in each iteration. Our methods are implemented in an innovative manner using a new large swap neighborhood structure for solving either the CDAP or similar problems. In addition, a supporting heuristic is proposed to explore the large swap neighborhood efficiently. The merit of our proposed algorithms is assessed by comparing them with the most effective methods from the literature on two benchmark data sets, likewise from the literature. Computational tests disclose that our approaches significantly outperform the previously proposed methods by reaching 45 previous bestknown solutions and establishing 53 new best-known solutions over the full set of 99 instances. In addition, the CPU time consumed by our approaches is substantially less than consumed by the previous state-of-the art methods.

Chapter 6

Conclusions and Future works

Conclusions

All along this PhD thesis, our works focused on an NP-hard combinatorial optimization problem referred to "Cross-dock Door Assignment Problem (CDAP)" also known as "Truck-to-dock Door Assignment Problem (TDAP)".

Numerous studies have been performed and improved in order to solve the CDAP.

Because of the NP-hard character of the CDAP, most of researchers have turned to the implementation of heuristics based algorithm. According to the best of our knowledge, very few exact methods and mathematical formulations for CDAP have been proposed until now.

First, we focused on a broad analysis of two standard mathematical formulations proposed in the literature for CDAP, the first one is a standard quadratic formulation and the second one is the standard linear model. Further, other related mathematical formulations have been analyzed. However, those models remain too weak to solve the problem even for small instances. Our main idea has been to exploit those two standard models to mathematically formulate new linear models for the CDAP. Using mathematical theories of reformulation and linearization, we have mathematically formulated eight new nonstandard MILP models for the CDAP that we have implemented and solved using CPLEX solver. We then showed equivalence between those new nonstandard linear models as well as their equivalence with those in literature. An exhaustive empirical study has been conducted on benchmark data sets from literature. The results of computational experiments have proven that one of those eight new nonstandard linear models for Chapter 6. Conclusions and Future works CDAP is the best even compared to the those in literature. Afterwards, we carried out a Lagrangian Relaxation (LR) procedure with the aim to produce new lower bounds on optimal value. We selected the model for Lagrangian Relaxation on the basis of a good compromise between LP lower bound and CPU time consumption given by that model against MIP models performing the same LP lower bound. The Lagrangian dual is solved using the sub-gradient optmization algorithm. Computational experiments proved that the Lagrangian dual improved significantly LP lower bound and the lower bound given by Lagrangian Relaxation from literature.

Even though some of the proposed new linear models for the CDAP are good and our Lagrangian algorithm gives good lower bounds, those methods remain weak for large scale instances. Thereby, we proposed and implemented a heuristic based on Tabu Search 

Future works directions

The MIP models presented in the chapter 4 are applicable to pure cross-docks with fixed mode of dock doors in a pre-distribution environment without arrival and departure restrictions. Hence, a possible future research direction is to consider a less restrictive model that also takes into account availability of trucks, stochasticity of arrivals, uncertainty in contents of trucks.

Future works may also include adapting the models that we have presented in the chapter 4 to handle other cross-docking facility shapes and to carry out associated theoretical and empirical analysis.

Considering the PTS proposed in chapter 5, future work will examine the ways to exploit advantages of each of the proposed PTS heuristics by combining their best features within one scheme to yield other variants for solving CDAP. We envision that benefits 

For
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  that minimizes the total weighted distance traveled by products handling devices inside cross-dock. In resolution approaches, we propose several new Mixed Integer Linear Programming (MILP) models, a Lagrangian Relaxation approach and two heuristics based on Tabu Search (TS) to solve the Cross-dock Door Assignment Problem (CDAP). The proposed resolution approaches carry out : • Assignment of a set M of all incoming trucks on a set I of inbound dock doors represented by a partition X M,I • Assignment of a set N of all outgoing trucks on a set J of outbound dock doors represented by a partition Y N,J All those proposed resolution approaches have proven a better performance to solve CDAP than those recently proposed in literature review. This PhD. thesis contains three contributions, two of them have been successfully published and the third contribution is a manuscript in preparation for submission to the publication. The first contribution entitled "A comparative study of formulations for a Cross-dock Door Assignment Problem" has been accepted for publication in December 2018 into The International Journal of Management Science (Omega) and co-authored with Pr. Saïd Hanafi, Dr. Raca Todosijević, Dr. Oualid Guemri, Pr. Fred Glover and Pr. Shahin Gelareh (contribution order). The second contribution "A Lagrangian heuristic approach for the Cross-dock Door Assignment Problem" is a manuscript under preparation for submission to publication. It is an improvement of the conference article entitled "A Lagrangian Relaxation for Cross-dock Door Assignment Problem" presented into 11 th edition of Journées Polyèdres et Optimisation Combinatoire (JPOC'11) co-authored with Pr. Saïd Hanafi and Mcf Christophe Wilbaut. The third contribution "Probabilistic Tabu Search for Cross-dock Door Assignment Problem" has been published in March 2019 into European Journal of Operational Research (EJOR) and co-authored with Dr. Oualid Guemri, Pr. Saïd Hanafi, Dr. Raca Todosijević, and Pr. Fred Glover.
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 21 Figure 2.1 -Pallet movement from upstream to downstream in a Supply Chain, Bartholdi and Hackman (2011)

Figure 3

 3 Figure 3.1 -An example of a cross-dock with temporary storage, Gelareh et al. (2020)

  Figure 3.2 -Example of distribution center material handling devices

  loaded in full truck load quantities. That is, each truck (incoming truck) leaves vendor and comes to Home Deport facility fully loaded with consolidated orders, this is known as Full Truck Load (FTL). On a specific day in week, each of 100 Home Deport store places orders for each supplier or vendor at time. All the orders are consolidated on the supplier side and are loaded into fully loaded truck, then fully loaded trucks are sent to Home Deport cross-dock. As the orders arrive at cross-dock already consolidated, the workers are only transferring products to loading trucks (outgoing trucks or delivery trucks) destined to distribute them to individual stores, retailers or customers. Outgoing trucks are fully loaded with consolidated orders coming from many suppliers before leaving the cross-dock facility. Transportation cost is extremely reduced by the fact that incoming and outgoing trucks come in and leave cross-dock in fully loaded.Other examples of successful application of cross-docking in Europe are viewed in Ladier andAlpan (2016a). In this work, authors made a survey during which they visited eight transportation companies located in France that apply cross-docking strategy in their daily transportation activities. The authors compared the problems related to crossdocking that are studied in academic literature and application of cross-docking in those transportation companies visited. The goal was to compare academic study related to cross-docking and cross-docking application in industry. After the survey, the authors raised a certain gap between cross-docking in theory and in industry practice and gave some directions of research to bring literature closer to practice.
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 33 Figure 3.3 -One single network configuration,[START_REF] Zhang | Optimization and simulation of a cross-docking terminal[END_REF] 

(

  2016a), five out of eight visited cross-docks use mixed mode of service. The Figure 3.6 depicts the mixed mode of dock doors.

Figure 3

 3 Figure 3.6 -Mixed mode of door service, Shakeri et al. (2008)

Figure 3

 3 Figure 3.7 -Cross-docking facility operations,[START_REF] Stephan | Cross-docking[END_REF] 

  , the authors have proposed a Robust Truck-to-dock Door Scheduling Problem. For this variant of trucks scheduling, the authors have considered realistic conditions in the formulation of the problem taking the trucks arrival times as a decision variable. The authors concluded that the mathematical formulation of the Robust Truck-to-dock Door Scheduling Problem remains feasible and stable even though it faces those disruptions. Some combinatorial optimization problems combine Trucks scheduling and CDAP to benefit advantages of both optimization problems. The purpose is to determine when and at which dock door each incoming and outgoing truck will be handled in order to ensure the quick turnover and on-time deliveries. Therefore, a new combinatorial optimization problem referred to Truck-to-dock Door Scheduling Problem is raised. In[START_REF] Miao | Truck dock assignment problem with operational time constraint within crossdocks[END_REF], the authors have considered a combined CDAP with operational time constraint within cross-dock. In this problem, they considered also the time windows of arrival and departure of a truck, operational time for a cargo and the capacity of crossdock. The cargo whose shipment is not fulfilled in current cross-dock could be handled in another cross-dock where treatment capacity is available. The goal is to minimize the operational time of the cargoes to ship and the number of cargoes not shipped. The cost is the total operation time of cargoes and the total penalty incurred. The penalty cost occurs when a cargo misses the shipping truck or its shipping truck is not yet docked.Other works about CDAP combined with Truck Scheduling can bee viewed in e.g.,[START_REF] Ting | Dock assignment and truck scheduling problems at cross-docking terminals[END_REF]. For literature review and relevant works related to the scheduling of trucks on dock doors of cross-dock, we refer interested readers to e.g.,[START_REF] Boysen | Cross dock scheduling : Classification, literature review and research agenda[END_REF];[START_REF] Buijs | Synchronization in cross-docking networks : A research classification and framework[END_REF][START_REF] Gelareh | A branch-and-cut algorithm for the truck dock assignment problem with operational time constraints[END_REF];[START_REF] Lim | Truck dock assignment problem with time windows and capacity constraint in transshipment network through crossdocks[END_REF][START_REF] Miao | Applying an adaptive tabu search algorithm to optimize truck-dock assignment in the crossdock management system[END_REF];[START_REF] Miao | Truck dock assignment problem with operational time constraint within crossdocks[END_REF];[START_REF] Shakeri | A robust two-phase heuristic algorithm for the truck scheduling problem in a resource-constrained crossdock[END_REF].

Figure 3

 3 Figure3.8 -Single-stage or two-touch cross-dock,[START_REF] Gue | Staging queues in material handling and transportation systems[END_REF] 
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 5 Figure3.9 -A two-stage or multiple-touch cross-dock,[START_REF] Gue | Staging queues in material handling and transportation systems[END_REF] 

  the assignment of trucks to dock doors of the facility taking into account other factors like for instance the time window. In this dissertation, we focus more precisely on the optimization of the activity related to the cross-dock itself while supposing that some external elements have been decided previously. The corresponding problem is the Crossdock Door Assignment Problem whose the standard quadratic mathematical formulation has been introduced in[START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF].

  , the authors proposed a new variant of combinatorial optimization problem named "Truck-to-Door Assignment and Product placement Problem in Cross-Dock (TDAPP-CD)". In that study, the authors considered a Truck-to-dock Door Assignment Problem in cross-docking center with a temporary storage area. The study takes into account moving steps of products according to the product flow path: "inbound dock doors → temporary storage area → outbound dock doors". The authors proposed a Mixed Integer Programming model to minimize the total distance traveled by the product on the path.

  For a broad literature reviews in relation of other variants of cross-docking problems, we refer the interested readers to[START_REF] Boysen | Cross dock scheduling : Classification, literature review and research agenda[END_REF];[START_REF] Bellanger | Three-stage hybrid-flowshop model for cross-docking[END_REF];[START_REF] Bodnar | Scheduling Trucks in a Cross-Dock with Mixed Service Mode Dock Doors[END_REF];[START_REF] Hermel | A solution framework for the multi-mode resource-constrained cross-dock scheduling problem[END_REF];[START_REF] Küçükoğlu | The effects of crossdock shapes on material handling costs[END_REF];[START_REF] Küçükoğlu | A mathematical model for truck-door assignment and product placement problem in cross-docking center[END_REF].All along this dissertation, we deal with the variant of Cross-dock Door Assignment Problem in which a set of incoming trucks called origins come from various sources of products such as suppliers, manufacturers, factory, warehouses, other cross-docks, etc., and unload their pallets of products on a set of inbound dock doors, at which point unloaded pallets are sorted in a staging area based on their destinations. Finally, the pallets are directly transferred within the cross-dock using material handling devices such as forklifts to a set of outbound dock doors where they are or not consolidated with other products going on the same destination and loaded onto outgoing trucks called destinations. The goal of the Cross-dock Door Assignment Problem is to find the best assignment of origins (origin trucks) to inbound dock doors and destinations (destination trucks) to outbound dock doors so that the total cost of transporting pallets from inbound dock doors to outbound dock doors within the platform is minimized while it keeps satisfying a set of constraints. As already mentioned, the transportation cost is considered as the total weighted distance traveled inside the cross-dock by the used material handling devices.

Figure 3 .

 3 Figure 3.10 -Cross-dock : Exclusive mode of dock door, Gelareh et al. (2020)

  tination), capacity constraints are imposed on each dock door and I-shape cross-docking operations are allowed. This variant of the problem was introduced in[START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] as a standard formulation of CDAP and as an extension of the basic formulation of[START_REF] Tsui | A microcomputer based decision support tool for assigning dock doors in freight yards[END_REF]. In[START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF], the authors subsequently used the model of Zhu et al. (2009) to develop three heuristics, the first two are based on local search and the third is based on Convex Hull Relaxation (CHR). Recently, in Nassief et al. (2016), the authors proposed a Mixed Integer Programming formulation of the CDAP which consists

•

  M : Set of origins referring to incoming trucks • N : Set of destinations referring to outgoing trucks • I : Set of inbound (strip) dock doors • J : Set of outbound (stack) dock doors Parameters • s m : Available number of pallets from origin m ∈ M • r n : Number of pallets destined to destination n ∈ N from each origin m ∈ M • S i : Capacity of inbound dock door i ∈ I • R j : Capacity of outbound dock door j ∈ J • d i,j : Distance between inbound and outbound dock doors pair (i, j) • f m,n : Number of pallets flow from origin m ∈ M destined to destination n ∈ N f m,n is considered as the number of trips required by the material handling device to move pallets originating from origin m ∈ M assigned to dock door i ∈ I to destination n ∈ N assigned to dock door j ∈ J.

  • I-shape cross-dock • More vehicles than dock doors (in both sides !), i.e, |M | > |I| and |N | > |J| • A same count of vehicles input/output |M | = |N | • A same count of dock doors input/output i.e., |I| = |J| • No preemption • No interchangeability -each unit is assigned to a destination Let Ω =< m-i-j -n > be the flow path to move the amount f m,n from origin m ∈ M to destination n ∈ N through inbound and outbound dock door i ∈ I and outbound dock door j ∈ J. The flow path Ω will be established if both of the following conditions are fulfilled at the same time: origin m ∈ M is assigned to inbound dock door i ∈ I, i.e.,

  quadratic interactivity (transportation cost) which denotes the weighted distance by moving flow f m,n along distance d i,j between inbound dock door i ∈ I and outbound dock door j ∈ J from origin m ∈ M , when m is assigned to inbound dock door i, to destination n ∈ N when n is assigned to outbound dock door j is computed as f m,n × d i,j , i.e., the objective function (3.1a) sums up the total weighted distance traveled from all inbound dock doors |I| to all outbound dock doors |J| according to all distribution flows f m,n between all origins and all destinations. In the quadratic model Q, the number of constraints is computed as follows, |M | + |N | + |I| + |J| and the number of variables is computed as follows, |M ||I| + |N ||J|. In the quadratic mathematical model Q, objective function (3.1a) minimizes the total transportation cost inside the cross-dock taking into account the constraints (3.1b)-(3.1f) classified into three groups. The two sets of multiple choice constraints (3.1b) and (3.1c)ensure that each origin (respectively destination) must be allocated to one and only one inbound (respectively outbound) dock door, respectively. We group (3.1b) and (3.1c) into a set of assignment constraints (i). The two sets constraints (3.1d) and (3.1e) guarantee that the capacity of each inbound (respectively outbound) dock door is respected. We group (3.1d) and (3.1e) into a set of the capacity constraints or knapsack constraints (ii).

  (3.2a) and the assignment constraints (3.2b) and (3.2c) are similar to the objective function (3.1a) and assignment constraints (3.1b) and (3.1c) of previous standard model in[START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF]. The models Q T &C ofTsui and Chang (1990, 1992) and Q differ from each other to the constraints (3.2d) and (3.2e) which guarantee that each inbound (respectively outbound) dock door have to allocate a single origin (respectively destination). According to that mathematical formulation of Tsui and Chang, the model requires on left side the number of origins |M | to be equal to the number of inbound dock doors |I| and likewise, on the right side, the number of destinations |N | to be equal to the number of outbound dock doors |J|. Those requirements are due to the pairs of constraints (3.2b) and (3.2d) that handle trucks to dock doors on left side and (3.2c) and (3.2e) on right side of I-shape cross-dock. This problem configuration makes theTsui and Chang (1990, 1992) mathematical model unusable in real applications, for instance, in the case the number of inbound dock doors is greater that the number of incoming trucks, i.e., |I| > |M | and/or the number of outbound dock doors is greater than the number of outgoing trucks, i.e., |J| > |N |, fictitious incoming and/or outgoing trucks with zero quantities will be created.A slight more realistic configuration of Tsui and Chang model can be proposed to avoid those fictitious incoming and outgoing trucks by modifying constraints (3.2d) and (3.2e) related to assignment of dock doors as follows:

  3b)Those constraints (3.3a) and (3.3b) ensure that any inbound dock door i ∈ I (respectively outbound dock door j ∈ J) can allocate one incoming truck m ∈ M (respectively one outgoing truck n ∈ N ) or not. For the reverse case, that is, the number of incoming trucks is greater than the number of inbound dock doors, i.e., |M | > |I| and/or the number of outgoing trucks is greater than the number of outbound dock doors, i.e., |N | > |J|, the model Q T &C will be infeasible.3.6.4.2 Variant of Tarhini et al.In[START_REF] Tarhini | Natural Optimization Algorithms for the Cross-Dock Door Assignment Problem[END_REF], the authors proposed a new formulation of Cross-dock Door Assignment Problem directly based on the model introduced in[START_REF] Tsui | A microcomputer based decision support tool for assigning dock doors in freight yards[END_REF].

  , on outbound side, a single destination n ∈ N can be assigned to several loading dock doors j, k, l ∈ J. In fact, the freight flow f m,n destined to destination n is split and sent to load dock doors j, k, l to which n is assigned. It means that, in case the total freight flows r n = m∈M f m,n , ∀n ∈ N sent to destination n imposes several shipping trucks, the freight f m,n is split into several outbound dock doors j, k, l ∈ J to which those shipping trucks serving destination n are docked. That is, the capacity of dock door is considered to be equal to the capacity of a truck. The authors considered that the capacity C m of truck m ∈ M must respect the following condition n∈N f m,n ≤ C m , ∀m ∈ M and that shipping and incoming trucks have the same capacity. Therefore ν = ( m∈M f m,n )/C, ∀n ∈ N denotes the number of trucks serving the same destination n where C stands for the capacity of incoming (respectively shipping)

  tination. The constraint (3.5b) guarantees that any origin must be assigned to only one inbound dock door while the constraint (3.5c) ensures that each destination is assigned to enough loading dock doors, the constraints (3.5d) means that for each flow f m,n between origin m and destination n, the sum of percentages α m,i,j,n is equal to 1. The constraints (3.5e) and (3.5f) ensure that each inbound(respectively outbound) dock door can allocate one incoming (respectively outgoing) truck. The constraint (3.5g) guarantees that the total flows sent to a shipping dock door j cannot exceed the capacity of a truck. The constraint (3.5h) defines the bounds of the continuous variable α m,i,j,n .Constraint (3.5i) 

  (4.3b) -(4.3c) and the capacity constraints (4.3g) -(4.3h) 

(

  ⇐) Constraints (4.6c) and (4.6d) imply constraints (4.5c) and (4.5d), respectively. On the other hand, constraints (4.6a) together with constraints (4.6d) imply constraints (4.5e) ∀m ∈ M, n ∈ N and constraint (4.6b) together with constraint (4.6c) imply constraint (4.5e) ∀m ∈ M, n ∈ N . Consequently, constraints A 2 imply constraints A 1 . As already pointed out, the following constraints i∈I j∈J z m,i,n,j = 1, ∀m ∈ M, n ∈ N are redundant for the set A 2 . However, an interesting observation is that replacing constraints (4.6a) and (4.6b) by constraints i∈I j∈J z m,i,n,j = 1, ∀m ∈ M, n ∈ N leads to another valid set of assignment constraints, as follows.

  set of constraints is in the same format as the constraints already proposed in the paper of Nassief et al. (2016); Nassief (2017).Proposition 4.3.4 Constraints A 2 and A 3 are equivalent.

  The 11 MIPs have the same number of binary variables, i.e., |I||J||M ||N | + |I||M | + |J||N |. The Table

  0){λ, γ start by zero} 4: (λ 0 , γ 0 ) ← (d(4.9b), d(4.9c)){λ, γ start by dual value of associated LP} 5: repeat 6:

  instances a proposed in[START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF] were used. The authors have generated this data set in the following way. They filled the flow matrix (f m,n ), for all m ∈ M, n ∈ N with randomly generated integer values between 10 and 50 until 25% of the flow matrix was filled. It is assumed that a destination n will receive a flow of at least f m,n from one origin m which will send at least flow f m,n to one destination n. The process is repeated until all |M | origins and all |N | destinations are accommodated assuming |M | = |N |.

Figure 4 .

 4 Figure 4.3 -Performance profile-CPU times : integrality requirement on variables z m,i,n,j relaxed
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 62 Comparison of models -with integrality requirement on variables z m,i,n,j imposed Similary to Tables 4.2 and 4.3, in Tables 4.4 and 4.5 we again compare the preceding models but now with the integrality requirement imposed on the variables z m,i,n,j
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 4445 Figure 4.4 -95% confidence interval plot of the optimality gap-integrality requirement on variables z m,i,n,j imposed
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 63 Lower bounds comparison for M 2,1 and[START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF] 

4 :

 4 objective function, f (X, Y ) (see Section 5.3 for more details). Starting from this point, a candidate list N (X, Y ) is forced to contain only feasible solutions at each subsequent iteration. The procedure is depicted in Algorithm 5.1, it checks the capacity constraints of dock doors. Algorithm 5.1 Constructive heuristic 1: Create empty solution : X i = φ for all i ∈ I, and Y j = φ for all j ∈ J ; 2: Sort the origins m ∈ M in descending order of their s m values ; 3: for each m ∈ M do Let I = {i ∈ I : S(X i ) + s m ≤ S i } be the set of inbound dock doors that can receive the origin m ∈ M ;

  Sort the destinations n ∈ N in descending order of their r n values ; 11: for each n ∈ N do 12:Let J = {j ∈ J : R(Y j ) + r n ≤ R j } be the outbound dock doors that can receive the destination n ∈ N ; 13: if J = φ then 14:Let j = argmin{c d n,j (X) : j ∈ J } be the dock door with the smallest cost c d n,j (X) associated ; Return (X, Y ).

A

  solution (X, Y ) corresponds to a partition of the set of origins M and a partition of set of destinations N , respectively. The moves that define the neighborhood structure consist of transferring a truck from one dock door to another, and of exchanging two subsets of trucks between two dock doors. Hence, we define the neighborhood structures of the current solution N τ (X, Y ) that affect either the origins (side τ = o) or the destinations (side τ = d). For each side τ ∈ {o, d}, we denote by τ the opposite side of τ , i.e., if τ = o then τ = d and vice-versa. Specifically, we divide the moves into the following two types Shift moves and Swap moves. It is worth mentioning that we consider only feasible moves when defining the neighborhood structure. However, in the exceptional case where the solution returned by the initial solution procedure is not feasible, the algorithm accepts only moves that decrease infeasibility until a feasible solution is found. Then, only feasible moves are performed. 5.2.2.1 Shift moves For a given side (origin side τ = o or destination side τ = d), a shift move transfers a selected truck (origin or destination) from one dock door to another (inbound or outbound). For the origin side τ = o, a solution that is a neighbor of the current solution (X, Y ) is obtained by shifting an origin m ∈ M from its current inbound dock door i (m ∈ X i ) to another inbound dock door i * ∈ I -{i} selected randomly among the k best inbound dock doors, that is, dock doors having the smallest costs c o m,i * (Y ). More precisely, for each origin m ∈ M , we re-index the inbound dock doors i ∈ I -{i} so that c o m,1 (Y ) ≤ c o m,2 (Y ) ≤ ... ≤ c o m,|I|-1 (Y ) and let I k m = {1, ..., k} be the set identifying the inbound dock doors i ∈ I -{i} with the k smallest values c o m,i (Y ). A neighboring solution (X , Y ) ∈ N o,k Shif t (X, Y ) is obtained by setting Y = Y (partition Y still fixed) and selecting randomly i * ∈ I k m and for all i ∈ I setting

  of the expressions (5.9a) and (5.10a), a shift move can be evaluated in constant time O(1), if we make reference to the two matrices c o m,i (Y ) and c d n,j (X). Hence, to achieve this constant time computation of the objective function change ∆ o (m, i, i * ) and ∆ d (n, j, j * ), we need to update the two matrices c o m,i (Y ) and c d n,j (X) after each shift move. Let c o m,i (Y ) (respectively c d n,j (X)) be the value at entry (m, i) (respectively (n, j)) in the matrix c o m,i (Y ) (respectively c d n,j (X)) after a shift move. From equations (5.1a) and (5.2a) that provide the definitions of c o m,i (Y ) and c d n,j (X) respectively, we observe that the execution of a shift move on the origin side, τ = o, affects the matrix c d n,j (X) and vice versa. More precisely, after a shift move on the origin side, τ = o, we have c d n,j (X ) = i∈I m∈X i d i,j f m,n

  .12a) As a consequence, the complexity of updating ∆ o after a shift move on the origin side τ = d is O(|N | × |J|) and the complexity of updating ∆ d after a shift move on the destination side τ = o is O(|M | × |I|).

Proposition 5 .

 5 2.1 The best solution within the union of swap neighborhoods N o Swap (X, Y ) can be determined with time complexity O

  from such a swap move by (X i,i , Y ). The generation of this solution requires O(|X i | + |X i |) operations, since sets X imp i and X imp i may be generated in linear time complexity O(|X i |) and O(|X i |), respectively. Consequently, the best solution in the neighborhood N o Swap (X, Y ) i.e (X * , Y * ) = argmin{f (X i.i , Y ) : i, i ∈ I, i = i } may be found with complexity O

  depending on the chosen side τ ). Solutions from the neighborhoods are chosen based on a random variable p generated in [0, 1] : if p ∈ [0, 0.6] the best solution from the neighborhood is chosen, if p ∈]0.6, 0.8] a solution among the b best ones is chosen, and finally if p ∈]0.8, 1] a random solution is chosen. The procedure considers solutions to be admissible only if they are not in the tabu list T L (see i.e. Algorithm 5.4) Algorithm 5.4 Candidate list construction in PTS1 Function Construct_candidate_list((X, Y ), µ, b, T L) 1: N (X, Y ) = φ ; 2: Select a side τ ∈ {o, d} at random ;

  Return N (X, Y ) ; To select a new incumbent solution, PTS2 uses Algorithm 5.7. The procedure first sorts the neighboring solutions of the solution (X, Y ) in increasing order with respect to the objective function (line 1). Then if the set of improving neighboring solutions N * (X, Y ) is not empty we set η * = min(|N * (X, Y )|, b), otherwise η * = b. After this, in line 7 the procedure selects at random one of the η * best solutions in the candidate list to be new incumbent solution. This means that in the case where improving solutions exist the choice is made among at most b best improving solutions. On the other hand, if there is no improving solutions, the choice is made among exactly the b best (non-improving solutions) in the candidate list. Algorithm 5.7 Solution Selection in PTS2 Procedure Select_solution(N (X, Y ), F (X, Y ), b)

(

  TS) to efficiently solve large scale instances of CDAP. We focused more precisely on Probabilistic Tabu Search (PTS). Depending on how candidate list of new solutions is built and the way a new incumbent solution is selected from the candidate list of solutions, we have proposed two approaches that leaded to two different variants of PTS that we denoted by PTS1 and PTS2 . The merit of our proposed PTS is assessed by comparing PTS1 and PTS2 with the most effective and recent algorithms from literature review on two sets of benchmark data set. Computational experiments demonstrated the efficiency of our algorithms.
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2.2 Typical warehouse operations,

  where the authors have proposed a generalized mathematical formulation that takes into account more realistic considerations. That is, in[START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] mathematical formulation, the authors take into consideration the capacity of each dock door and the fact that each origin (respectively destination) must be assigned to one dock door. That is, each inbound (respectively outbound) dock door can allocate more than one origin(respectively destination) and each origin (respectively destination) is assigned to one and only one inbound

(respectively outbound) dock door. Below are the considered outlines for the generalized mathematical formulation for

[START_REF] Zhu | New approach for the crossdock door assignment problem[END_REF] 

for the Cross-dock Door Assignment Problem:

Table 3

 3 

	.1 -The Cross-dock Door Assignment Problems, dock doors assignment strategy
	account.
	The Cross-dock Door Assignment Problems may be classified according to several cri-
	teria. The first criterion is based on the dock doors allocation strategy. Several types of

allocation restrictions are possible : The cited papers into column (i) of Table

3

.1 deal with the variant of CDAP where each dock door must serve only one origin(respectively destination) and each origin(respectively destination) must be assigned to only one inbound(respectively outbound) dock door ; the papers cited into column (ii) of Table

3

.1 deal with the variant of the CDAP where each inbound dock door serves only one origin at a time, but the same destination may be assigned to several outbound dock doors ; and the variant of CDAP dealt with into the works in column (iii) of Table

3

.1 consider a generalized case where each inbound (respectively outbound) dock door may serve more than one origin (respectively destination).

Table 3

 3 

.2 -The variants of Cross-dock Door Assignment Problem (CDAP) 3.6.4.1 Variant of Tsui and Chang
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		.1 -Number of constraints for each MIP model
	MIP	Total number of constraints

Table 4 .

 4 2 -Comparison of models -integrality requirement on variables z m,i,n,j relaxed

	1
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	1

3 -Comparison of models on each instance class -integrality requirement on variables z m,i,n,j relaxed

Table 4 .

 4 

	1

6 -Comparison of LP relaxations

Table 4

 4 

.7 summarizes the computational results of the Lagrangian Relaxation approach. The first column stands for the name of the instance class. For each class of

Table 4 .

 4 7 -Lower bounds comparison for M 2,1 and[START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF] 

	4.7. Conclusion

  5.2. Main ingredients of the Probabilistic Tabu Search approachesfor the CPLEX MIP solver and therefore there is a need for heuristic approaches.In this chapter, we develop two novel heuristics based on Probabilistic Tabu Search (PTS) utilizing a new neighborhood structure applicable both to CDAP and related problems to solve this NP-hard optimization problem.We recall that Tabu Search (TS) is a metaheuristic introduced by[START_REF] Glover | Future paths for integer programming and links to artificial intelligence[END_REF] that cross boundaries of feasibility or local. It guides a local search to explore the solution space beyond local optimality by using adaptive memory to create a flexible search. The two variant of PTS differ from each other in the way they construct a candidate list of solutions and accept new incumbent solutions. In addition, we propose a new extension of the swap neighborhood that allows the exchange of more than two elements and we design an efficient heuristic method to explore it. Extensive testing is performed on benchmark instances from the literature to assess the performance of our proposed approaches, showing that our PTS heuristics outperform the previous state-of-the art approaches by reaching 45 previous best-known solutions and discovering 53 new best-known solutions on a set of 99 instances. In addition, the CPU time consumed by our approaches during exploration these existing solutions and the 53 new best solutions is substantially less than that consumed by the previous state-of-the art methods. We also conduct tests to show that our heuristic exploration yields a good trade-off between solution quality and CPU time in comparison with exhaustive exploration of our new neighborhood structure.

  implementation, we consider two groups of swap moves : elementary swap moves and multiple swap moves. An elementary swap move consists of exchanging two different trucks between two different dock doors, while a multiple swap move consists of exchanging two subsets of trucks between two different dock doors.Formally, for the origin side τ = o, a neighborhood solution (X , Y ) ∈ N

	o,p,q

  The first PTS variant, denoted PTS1, constructs a candidate list N (X, Y ) using Algorithm 5.4. The procedure first selects side τ ∈ {o, d} at random. After that, it constructs a candidate list of size µ, selecting half of the solutions from the shift neighborhoods N

	16: end while
	17: Return (X * , Y * ) ;
	5.3.1 Probabilistic Tabu Search : Variant 1

Y * )} ; τ,k

Shif t (X, Y ) and half of the solutions from the swap neighborhood N τ

  .3.2 PTS : Variant 2 If there is no improving solution available to be added, it proceeds by adding solutions from the neighborhood N Swap (X, Y ). If still no improving solutions exist to be added, it adds to the candidate list the best solutions from the swap neighborhood N

	τ,1,1

The second PTS variant, denoted PTS2, constructs a candidate list N (X, Y ) according to Algorithm 5.6. The procedure first chooses a side τ ∈ {o, d}, at random, as a basis for building the candidate list. Then it adds to the candidate list solutions from the neighborhood N τ,1 Shif t (X, Y ). τ Swap (Z, Z ), which corresponds either to N o Swap

Table 5 .

 5 

1 -Heuristic vs. Exhaustive exploration of swap neighborhood

5.4.2 Comparison with methods from the literature

As a basis for comparison, we refer to the following four leading heuristics from the literature : two local search based heuristics, named LS1 and LS2, the Convex Hull Relaxation (CHR) heuristic proposed by

[START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF] 

and the Lagrangian Relaxation (LR) heuristic proposed by

[START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF]

.

  The BKS values inTable 5.2 are found by the LS1, LS2, CHR, CPLEX and LR heuristics, while the BKS values in Table 5.3 are found by LS1 and LS2. Tables 5.2 and 5.3 provide summary results over test classes while detailed results may be found in the Avg 10743.88 768.48 745.35 10741.86 10742.53 5.18 10741.86 10764.39 2.01 Table5.2 -Summary results on "SetA" instances origins/destinations and inbound/outbound doors. Therefore, the headings of Tables5.2 and 5.3 are defined as follows. The number of origins/destinations and inbound/outbound dock doors in each class is given in the first column in the form |N | × |I|. The second column is dedicated to BKS values. In columns three and four in Table

	|M |+|N |+|I|+|J| 16 each instance, our PTS heuristics are executed 10 times using different random seeds. . For PTS1, the size µ of the neighborhood N (X, Y ) is set to |M |+|N | 2 . On In Tables 5.2 and 5.3, we compare the results of PTS1 and PTS2 on SetA instances with the Best Known Solution (BKS) values reported in Guignard et al. (2012) and Nassief BKS M 3,0 M 2,0 PTS1 PTS2 CPU(s) CPU(s) Best Avg. CPU(s) Best Avg. 8x4 5120.8 0.35 0.15 5120.8 5120.8 3.50 5120.8 5120.8 9x4 5978.2 0.54 0.21 5978.2 5978.2 4.04 5978.2 5978.2 10x4 6319.8 0.93 0.38 6319.8 6319.8 4.61 6319.8 6319.8 10x5 6427.8 3.17 1.00 6427.8 6427.8 4.20 6427.8 6427.8 11x5 7555.6 4.24 1.64 7555.6 7555.6 4.73 7555.6 7555.9 12x5 7970.2 14.32 3.67 7970.2 7970.2 5.29 7970.2 7970.2 12x6 10449.8 80.48 26.09 10449.8 10449.8 4.84 10449.8 10453.1 15x6 13756.4 622.78 132.93 13756.4 13756.4 6.55 13756.4 13773.0 15x7 14688.8 3843.62 1044.73 14688.8 14688.8 6.13 14688.8 14703.0 et al. (2016). |N | × |I| 20x10 29171.4 7200.00 7200.00 29151.2 29157.8 7.89 29151.2 29342.0	CPU(s) 1.10 1.03 1.10 1.46 1.55 1.53 2.06 2.29 2.81 5.17

Table B .

 B 2 in the Appendix C). Comparing the best solutions found by PTS1 and PTS2, we see that PTS2 is better than PTS1 on 3 instances, ties with PTS1 on 3 instances, while on the remaining 43 instances PTS1 is better than PTS2. Comparing the average solution values of PTS1 and PTS2, we see that PTS1 outperforms PTS2 on 48 out of 49 instances (see Table
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MIP models and integrality properties

In this section we present MIP models that may be deduced by combining the assignment and capacity constraints presented in the preceding sections. In addition, we identify the integrality properties of these models.

Eleven MIP models

Having four equivalent sets of assignment constraints A k , for all k = 0, ..., 3 and two equivalent sets of capacity constraints C h , for all h = 0, 1 we come up with 8 different new MIP formulations. These 8 MIPs may be stated in general form as :

(M k,h ) min{g(z) : A k , C h }, for all k = 0, 1, 2, 3, for all h = 0, 1.

The following proposition enable us to generate three new MIP models. Proposition 4.4.1 The constraints (4.3d) and (4.3e) are redundant in the MIP models M 0,0 , M 0,1 and M 1,1 .

Proof. In models M 0,0 and M 0,1 constraints (4.3d) and (4.3e) are redundant since we seek to minimize the objective function and the objective coefficients in the CDAP are positive, that is, c m,i,n,j = f m,n d n,j ≥ 0, f m,n ≥ 0 for all m ∈ M, n ∈ N and d i,j > 0 for all i ∈ I, j ∈ J. In addition, in both models the equality z m,i,n,j = x m,i y n,j remains true even if we exclude constraints (4.3d) and (4.3e), due to the fact that the z m,i,n,j variables are bounded from below only by constraints (4.3f). Namely, if x m,i = y n,j = 1, then due to constraints (4.3f) z m,i,n,j will equal 1 as well, while otherwise z m,i,n,j takes the value 0 (again due to the fact that the objective coefficients in the CDAP are positive). The preceding reasoning leads as well as to the conclusion that in models M 0,0 and M 0,1 with excluded constraints (4.3d) and (4.3e), the integrality requirement on variables z m,i,n,j may be relaxed.

On the other hand, in the model M 1,1 the constraints 4.3d (resp. (4.3e)) force z m,i,n,j to be equal to zero if x m,i = 0 (resp. y n,j = 0). Since the parameters f m,n are positive and by consequence the data s m and r n are also positive, the capacities constraints (4.8a) and (4.8b) imply z m,i,n,j = 0 if x m,i = 0 or y n,j = 0.

Integrality properties of MIPs

This section provides properties which show that in all our MIP formulations the requirement z m,i,n,j ∈ {0, 1} for all m ∈ M, n ∈ N, i ∈ I, j ∈ J, can be relaxed to require just z m,i,n,j ∈ [0, 1] for all m ∈ M, n ∈ N, i ∈ I, j ∈ J. Proposition 4.4.2 The integrality requirement on variables z m,i,n,j ∈ {0, 1} for all m ∈ M, n ∈ N, i ∈ I, j ∈ J, in constraints A 0 may be relaxed. Moreover, the binary variables z m,i,n,j ∈ {0, 1} may be replaced by z m,i,n,j ≥ 0.

Proof. Suppose z m,i,n,j = α > 0 for some m ∈ M, n ∈ N, i ∈ I, j ∈ J. Then, due to constraints (4.3d) and (4.3e) we have x m,i = 1 and y n,j = 1 respectively. This further implies z m,i,n,j = α ≥ 1 from the constraint (4.3f) and therefore α = 1. The last statement is deduced from constraints (4.3d) and (4.3e), and the fact that the variables x m,i and y n,j are binary. Proposition 4.4.3 The integrality requirement z m,i,n,j ∈ {0, 1} in constraints A 1 may be relaxed.

Proof. Let suppose that we just impose requirement z m,i,n,j ≥ 0 and for some m ∈ M and n ∈ N and some i ∈ I and j ∈ J we have z m,i,n,j = α > 0. Because of constraints (4.5d) we have α ≤ 1. In addition, constraints (4.5c) and (4.5d) imply that y n,j = 1 and x m,i = 1. On the other hand, constraints (4.5a) and (4.5b) imply that y n,j = 0 for all j ∈ J, j = j and x m,i = 0 for all i ∈ I, i = i. This implies in turn that z m,i ,n,j = 0 for all j ∈ J, j = j, i ∈ I (from constraints (4.5c)) and z m,i ,n,j = 0 for all i ∈ I, i = i, j ∈ J (from constraints (4.5d)). Hence, taking into account constraint (4.5e) we have 1 = i ∈I j ∈J z m,i ,n,j = z m,i,n,j = α. Consequently, the integrality requirement z m,i,n,j ∈ {0, 1} in constraints A 1 may be relaxed. Proposition 4.4.4 The integrality requirement z m,i,n,j ∈ {0, 1} in constraints A 2 may be relaxed.

Proof. Suppose we impose requirement z m,i,n,j ≥ 0. Because of constraint (4.6c) we have z m,i,n,j ≤ 1. Suppose then for some fixed m ∈ M and n ∈ N and some i ∈ I and j ∈ J, we have z m,i,n,j = α ∈ {0, 1}. Then, this implies that y n,j = 1 and x m,i = 1 because of constraints (4.6c) and (4.6d). Hence, from constraints (4.6c) and (4.6d) From the reported results we observe that only models M 0 ,1 , M 1 ,0 , M 2 ,0 , M 3 ,0 , M 0 ,1 , and M 1 ,1 , enable us to solve all the 50 instances using CPLEX. Among them, models M 2 ,0 and M 3 ,0 are the best two, both yielding the best optimality gap (0.010%), solving the largest number (45) of instances to optimality and consuming the least CPU time on the average. Their superiority over the other models is also confirmed by a 95% confidence interval plot of the optimality gap (see Figure 4.1). The MIP formulation M 2 ,0 needed 745.35 seconds on average, while M 3 ,0 consumed 768.48 seconds to solve an instance. These values are about three times less than the average CPU time consumed by the next fastest formulation M 1 ,0 . On the other hand, the two worst models, in terms of the number of solved instances, turn out to be models M 0 ,0 and M 0 ,0 for which CPLEX was only able to solve 38 and 41 instances, respectively. In addition, we observe that all models M 0 ,1 , M 1 ,0 , M 2 ,0 , M 3 ,0 , M 0 ,1 , and M 1 ,1 are capable of optimally solving instances with up to 11 origins/destinations and 5 inbound/outbound dock doors.

However, only models M 2 ,0 and M 3 ,0 succeed in optimally solving each instance with up to 15 origins/destinations and 7 inbound/outbound dock doors. On the largest class of instances, model M 2 ,0 exhibits slightly better performance in terms of solution value than M 3 ,0 (see Appendix A). To further assess the performance of models M 0 ,1 , M 1 ,0 , M 2 ,0 , M 3 ,0 , M 0 ,1 , and M 1 ,1 which enable CPLEX to provide a solution for all instances considered, we use performance profiles as suggested in [START_REF] Dolan | Benchmarking optimization software with performance profiles[END_REF]. For each method two perfor-mance profiles are generated : one with respect to the best upper bounds found and the another with respect to the CPU times consumed. We denote the best upper bound by U M and denote the CPU time consumed in solving an instance by T M . Then, to compare U M or T M for different models, we compute the ratio R M M = M M / min M ∈M {M M }, where M M stands for U M or T M and M is the set of models to be compared. Therefore, the performance profile of model M with respect to metric R M M measured over each instance s in a set S is simply the graph of the cumulative distribution function, defined as :

In the graph, R M M values are given on the x-axis, while F M M values are given on y-axis. For each class of instances, the remaining nine columns LB, dev(%) and Time (in second) under M 2,1 LP , M 2,1 LR , (λ 0 , γ 0 ) = (0, 0) and M 2,1 LR , (λ 0 , γ 0 ) = (d(4.9b), d(4.9c))

stand for average lower bound value, deviation and CPU time (in second). The deviation expressed in percentage is computed as follows : dev(%) = 100(BKS -LB)/BKS.

The results in the 

In our implementation, we do not use any auxiliary data structure or procedure to avoid repetition of solutions in the candidate list. The reason is that the size of the candidate list is chosen to be much smaller than the size of the pool of candidate solutions (see computational results in Section 5.4) and therefore the probability of having repeated

Computational Results

In this section, we first compare the results of exhaustive and heuristic exploration of the swap neighborhood. The goal is to show that our heuristic exploration yields a good trade-off between solution quality and CPU time in comparison with exhaustive exploration. Following this, we compare our methods with the state-of-the art methods from the literature. Our approaches were implemented in Java and executed on a PC with 16 GB of RAM and using an Intel Xeon E3-1505M v5 processor with 2.80 GHz. For testing purposes, we have used the same benchmark data sets of the chapter 4 that are introduced in [START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF].

Later, the authors generated a new set of large-scale instances in the same manner. In the newly generated instances, the number of origins/destinations is chosen from {25, 50, 75, 100} and the number of indock doors/outdock doors is chosen from {10, 20, 30, 43}.

The first set of test problems is referred to as "SetA" and contains 50 instances, while the second (large-scale) set is denoted "SetB" and contains 49 instances. The name of each instance has the format 00x00S00, where the first 00 refers to the number of origins/destinations, the second 00 after x refers to the number of inbound/outbound dock doors and the last 00 after S is the slack. For example, the instance name 8x4S30 refers to an instance with eight origins, eight destinations, four inbound dock doors, four outbound dock doors and slack equal to 30%.

Comparison of exhaustive and heuristic exploration of swap neighborhood

In order to highlight the advantage of using our proposed heuristic exploration of the swap neighborhood presented in Algorithm 5.2, as contrasted to exhaustive exploration, we perform the following test. On each test instance we generate an initial feasible solution using Algorithm 5.1 and perform heuristic and exhaustive exploration of the swap neighborhood starting from this solution.

For comparison purposes we store the best solution value found, the CPU time consumed (in milliseconds) and the number of solutions evaluated by both approaches. 'value' and '#solutions'). In addition, we report the average percentage deviations of solution values found by heuristic exploration from those found by exhaustive exploration 20x10S10, 20x10S20, 20x10S30). Furthermore, the results reported (chapter 4) and [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF] show that instances with up to 15 origins/destinations and 7 indoors/outdoors are optimally solved by the CPLEX MIP solver within the maximum of 492 seconds. On these instances, the PTS algorithms were able to reach all optimal solutions in less than 8 seconds. Moreover, for instances with 20 will accrue from future works that study the impact of cross-docking facilities on vehicle scheduling in a supply chain by combining CDAP with the vehicle routing problem.

To benefit the advantages of models formulation and algorithms, a possible future research direction is to propose a hybrid approach that combines the best MIP model from those identified in chapter 4 with our newly proposed PTS and the combine PTS with the sub-gradient optimization method to tackle big instances in a Lagrangian fashion.

Appendix A

Detailed results of computational experiments on new MIP Models and

Lagrangian Relaxation for the CDAP

In this annex, we provide detailed results of computational experiments carried out on entire data sets referred to "SetA" for all mathematical models and Lagrangian Relaxation presented in the chapter 4. The mathematical models are run for several cases of test, once when integrality requirements on the 3 variables of the MIP models are imposed (see e.g.,Tables A.1, A.2, A.6a and A.6b), second case when the used linearization variable z m,i,n,j is the only one relaxed (see e.g., Tables A .3, A.4, A.7a and A.7b) and the last case we tested the models for LP relaxations (see e.g., Tables A.5). For Lagrangian Relaxation, detailed results are presented in Table A.8. The sign '-' in the Tables A.1, A.2, A.3, A.4

and A.8 implies that CPLEX could not provide a feasible solution within the imposed time limit. In the Tables A.6 and A.7 we perform Wilcoxon signed rank statistical tests for all of the models that are able to provide a feasible solution for tested instance. The tests are carried out to compare the superiority between models for each pair of models both for the solution quality and runtime.

A.1 Comparison of models -Integrality requirement on variables x m,i , y n,j and z m,i,n,j imposed

for each class of instances and general average Table A.1 -Quadratic model Q and linear models M 0,0 , M 0,1 , M 1,0 , M 1,1 and M 2,0

A.1.2 Linear Models M 2,1 , M 3,0 , M 3,1 , M 0,0 M 0,1 and M 1,1 for each class of instances and general average 

A.2 Comparison of models -Integrality requirement on variable z m,i,n,j relaxed A.2.1 MIP Models M 0,0 , M 0,1 , M 1,0 , M 1,1 , M 2,0 and M 2,1 class of instances and general average 

A.2.2 MIPs Models M 3 ,0 , M 3 ,1 , M 0 ,0 , M 0 ,1 and M 1 ,1 for each class of instances and general average Table A.4 -MIPs Models M 3 ,0 , M 3 ,1 , M 0 ,0 , M 0 ,1 and M 1 ,1

A.3 Comparison of models -LP relaxation

The Table A.5 below reports the experiment results of LP relaxation of all the MIP models presented in chapter 4. In this part we provide results of Wilcoxon signed rank test applied to each pair of models regarding both solution quality and runtime.

The corresponding p-values are provided in Tables A.6 and A.7. The p-value < 0.0001 means that there is significant difference between two models in the comparison, otherwise there is no significant difference. The models included in comparison are these that are able to provide a feasible solution for each test instance in the benchmark set.

M 2,0 0.07 -0.31 6.10e-05 M 3,0 0.81 0.31 -6.10e-05

M 1,1 1.20e-03 6.10e-05 6.10e-05 - 2016) is weak even compared with LP relaxation lower bound. 

CDAP

In this annex, we provide detailed results on entire data sets "SetA" and on large-scale set of instances referred to "SetB" given by our PTS1 and PTS2 algorithms.

In Tables B.1 and B.2, we compare results found by our heuristic approaches with those reported in the literature by other methods. For PTS1 and PTS2 we report the best solution value (Column 'Best') and the average solution value found in 10 runs (Column 'Avg.') as well the average CPU time (Column 'CPU'). In Table B.1, together with the best known solutions (Column 'BKS'), we report the CPU time needed for CPLEX to solve the recent best MIP formulations for CDAP. The first one (Column 'M 3,0 ') is taken from [START_REF] Nassief | A mixed-integer programming formulation and lagrangean relaxation for the cross-dock door assignment problem[END_REF] and the second one (Column 'M 2,0 ') is taken from Gelareh et al.

(2020) (See chapiter 4 section 4.5). The results reported show that instances with up to 15 origins/destinations and 7 indoors/outdoors are optimally solved by CPLEX MIP solver within the maximum time limit of 492 seconds. On these instances, PTS algorithms were able to reach all optimal solutions in less than 8 seconds. Moreover, for instances with 20 origins/destinations and 10 indoors/outdoors, CPLEX did not reach optimal solutions in two hours while the PTS algorithms provide better results in less than 10 seconds.

This comparison with CPLEX results, underscores the value of using Probabilistic Tabu

Search for solving hard optimization problem such as CDAP. In Table B.2, the results are compared with those of the LS1 and LS2 heuristics proposed by [START_REF] Guignard | Algorithms for the Cross-dock Door Assignment Problem[END_REF], which are the only two methods executed on the "SetB" instances so far. For LS1 and LS2

we report the best solution value (Column 'Cost') and the normalized CPU time. Since LS1 and LS2 were executed on a machine with an AMD Phenom 9600 processor with 2.31gigahertz, a machine with different characteristics than our machine, we normalize their running times using the approach described in Dongarra [START_REF] Dongarra | Performance of various computers using standard linear equations software[END_REF]) and data from http://www.cpubenchmark.net/. All comparisons were made according to the Passmark CPU Score (PCPUS). The running times were normalized by using our machine as the reference point, i.e., Norm.Time(Algo) = PCPUS (AMD Phenom 9600) × Time(Algo)