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Abstract

Cross-docking is a strategy originally introduced to optimize operations inside a ware-
house as part of the optimization of the Supply Chain. Like traditional warehouses, products
are collected from numerous freight yards such that suppliers, factories, manufactures,etc., using
trucks, and are moved towards processing centers named cross-docks. At cross-dock yard, prod-
ucts first get unloaded on inbound dock doors. Afterwards, they are sorted according to their
destinations and are immediately transferred, using handling devices, to appropriate outbound
dock doors to be sometimes consolidated with other products of the same destination and are
reloaded into shipping trucks. Unlike traditional warehouse where storage period of products
is indefinite, for cross-dock, goods are unloaded and reloaded the same day without waiting in
temporary storage area or can wait less than one day. In this PhD thesis, we study an NP-hard
optimization problem raised by cross-dock referred to “Cross-dock Door Assignment Problem
(CDAP)”. The CDAP consists in assignment of incoming and outgoing trucks to inbound and
outbound dock doors of cross-dock, respectively. The goal is to minimize the total transporta-
tion cost inside the cross-dock. The standard quadratic formulation of the CDAP includes the
Generalized Assignment Problem as subproblem. In this dissertation, we perform an extensive
cross-docking literature review. Then, we carry out a broad analysis of the standard quadratic
formulation as well as the standard linearization of the CDAP. From this in-deph study, we
propose several new non standard Mixed Integer Linear Programming models for the CDAP. To
detect the best linear model among those we propose and those existing, we compare the per-
formance of these models on instances proposed in the literature. We next propose a Lagrangian
Relaxation approach to produce the best new lower bounds to optimal solution value. This La-
grangian Relaxation is applied to the model that produces the best LP relaxation bounds. The
Lagrangian dual is solved using a subgradient algorithm. According to the experiments it seems
that large-scale instances cannot be solved with an exact method in reasonable running times and
memory requirements. Thus, we propose and implement two heuristics based on “Probabilistic
Tabu Search” to operate efficiently with larger instances of the CDAP. To assess the effective-
ness of these proposed heuristics, we compare their performance, first between them and then
with recent heuristics in the literature. The results demonstrate the efficiency of the proposed
approaches on data sets from the literature.

Keywords: cross-docking, dock door assignment, mized integer programming, linear program-
ming relazation, lagrangian relaxation, subgradient optimization, heuristics, probabilistic tabu

search



Résumé

Le cross-docking est une stratégie utilisée pour optimiser les opérations a l'intérieur de ’entre-
pot dans le cadre de 'optimisation de la chaine logistique . Comme pour les entrepots tradition-
nels, les produits sont collectés depuis plusieurs origines de production tels que les fournisseurs,
les usines, les fabricants, etc., par des camions, puis ils sont acheminés vers des plateformes appe-
lées cross-docks. Arrivés au cross-dock, les produits sont d’abord déchargés sur des quais d’entrée
du cross-dock. Ils sont ensuite triés selon leurs destinations et sont immédiatement transférés,
a l'aide des matériels de manutention, vers des quais de sortie correspondants pour, quelques
fois étre consolidés avec d’autres produits allant a la méme destination et sont rechargés dans
des camions sortants. Contrairement aux entrepots traditionnels ou la durée de stockage des
produits est indéfinie, pour le cross-dock, ils sont déchargés et rechargés le méme jour sans at-
tendre dans la zone de stockage temporaire, ou peuvent attendre moins d’'un jour. Dans cette
thése, nous étudions le probléme d’optimisation NP-difficile apparaissant dans le cross-dock ap-
pelé “Cross-dock Door Assignment Problem (CDAP)”. Le CDAP consiste & affecter des camions
entrants et sortants, respectivement aux quais d’entrée et de sortie du cross-dock. Le but est
de minimiser le cofit total de transport & I'intérieur du cross-dock. La formulation quadratique
standard du CDAP inclut le probléme d’affectation généralisée comme sous-probléme. Dans cette
thése, nous effectuons une revue de littérature étendue du cross-docking. Nous nous concentrons
ensuite sur la modélisation mathématique du CDAP via une formulation quadratique standard,
ainsi que sur la linéarisation standard de ce modéle. A partir de cette étude approfondie, nous
proposons plusieurs nouveaux modéles linéaires non standard pour formuler le CDAP. Nous com-
parons ensuite ces modéles entre eux et ensuite avec les modeéles récents de la littérature afin
de déterminer le meilleur modéle linéaire. Nous proposons ensuite une Relaxation Lagrangienne
pour produire de meilleures nouvelles bornes inférieures a la valeur de la solution optimale. La
Relaxation Lagrangienne est appliquée au modéle qui produit de meilleures bornes inférieures
de la relaxation continue. Le dual lagrangien est résolu par l'algorithme du sous-gradient. Les
expérimentations montrent que les instances de grande taille ne peuvent pas étre résolues par
une méthode exacte en temps et ressources mémoires raisonnables. Nous proposons et implé-
mentons donc deux heuristiques basées sur la recherche taboue probabiliste pour pouvoir traiter
efficacement les instances de grande taille du CDAP. Pour évaluer efficacité de ces deux heuris-
tiques, nous comparons leurs performances, d’abord entre elles, ensuite avec celles d’heuristiques
récentes de la littérature. Les résultats obtenus montrent I'efficacité de nos méthodes sur des jeux
de données de la littérature.

Mots-clés: cross-docking, affectation des quais, programmation en nombres entiers mixtes, re-
lazation continue, relazation lagrangienne, algorithme du sous-gradient, heuristiques, recherche

taboue probabiliste
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Chapter 1

Introduction

In today’s competitive market where customers require short delivery time of their
orders, Supply Chain (SC) with only classic distribution centers such that warehouses,
is not enough to meet customers’ requirements. Although warehouses remain involved
and needed, when they are used alone they can not efficiently meet customers’ need. In
a typical warehouse, products are received at warehouse yard, then, they are inspected
and stored into pallet racks waiting customers’ orders. When a customer order is received
into warehouse system, the product concerned by the order is retrieved from storage
area it is stored and operations related to that order are started until it is loaded into
shipping truck. Therefore, the main operations in a typical warehouse are receiving,
inspection, storage, order-picking, shipping, etc. The interested readers can view the
details in ( ) ( ); ( ).
Two of those warehousing operations, namely storage and order-picking are the most
expensive because of the highest cost of inventory holding and intensive workforce, see
e.g., (2011); (2012); (2012);

(2017).

Nowadays new strategies are implemented to fulfill warehouse gaps. Those new stra-
tegies help to improve the functioning of Supply Chain while remaining costs saving, see
e.g., ( ); ( ); ( ). However, those stra-
tegies raise other new problems, many of which are combinatorial optimization problems.
The emergence of new effective methods of resolution helps to solve those combinato-
rial optimization problems raised and adapt the Supply Chain against the increasing of
customers’ requirement. Cross-docking is one of strategic and innovative techniques imple-

mented along Supply Chain. This strategy aims to eliminate the two expensive operations
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of warehouse because, for cross-docking products are transferred to their respective des-
tinations the same day. As products are transferred immediately, cross-docking strategy
shorten delivery time which is the most requirement for customers. In this PhD. thesis,
we focus on one of combinatorial optimization problems raised by cross-docking strategy.
That combinatorial optimization problem is concerning the management of a particular

warehouse referred to cross-docking facility or cross-dock.

Many definitions of cross-docking appear in the literature review, see e.g.,

( ); ( ) ( ). As warehouses, cross-
docking is concerning to transfer products coming from various freight yards such that
suppliers, factories, manufacturers, etc. The products are immediately transferred from
inbound to outbound dock doors of cross-dock without going through temporary storage
area, or even though some of these products can go through temporary storage, they
spend there just less than one day, see e.g., ( );

( ). Sometimes products are required to be transferred within less than an hour, refer
to e.g., ( ). Thus, cross-docking facility is simply a transit area

into which products “cross-dock” the facility to be shipped to the respective destinations.

Cross-docking strategy raises many combinatorial optimization problems that cannot

be solved in reasonable time (polynomial time) using only exact methods because of the
size and/or the practical constraints that make hard the resolution of those optimization
problems. In view of this fact, many recent works in the literature review showed that
the scientific community is increasingly turning to hybrid resolution techniques in which
the aim is to combine at the best the components of different exact methods, heuristics
and metaheuristics. Those combinatorial optimization problems are classified according to
three levels of decision namely strategic, tactical and operational, see e.g.,
( ); ( ). The combinatorial optimization problem we tackle in this
PhD. thesis belongs to the operational level of decision and it is referred to the Cross-
dock Door Assignment Problem (CDAP). The standard mathematical formulation
of this optimization problem has been introduced for the first time by ( ). We
are going to focus our works particularly on theoretical and methodological aspects and
will propose new innovative linear models and algorithms to solve efficiently that problem
that is a well-known NP-hard combinatorial optimization problem, refer to e.g.,

( ) about an NP-complete problem.

The Cross-dock Door Assignment Problem can be briefly described as follows : On

cross-dock yard, receiving trucks get their products unloaded on input dock doors. Using



products handling devices inside cross-dock like forklifts, pallet jack, etc., the products are
immediately transferred to output dock doors to be loaded into shipping trucks. Accor-
dingly, the CDAP can be represented with inputs parameters that are a set of incoming
trucks and a set of outgoing trucks to be docked on sets of inbound and outbound dock
doors of cross-dock, respectively, with the goal of to look up an optimal assignment of
those incoming and outgoing trucks on inbound and outbound dock doors, respectively,
that minimizes the total weighted distance traveled by products handling devices inside

cross-dock. In resolution approaches, we propose several new Mixed Integer Linear Pro-

CDAP

v

IS Resolution approaches | (Xarr, Yv)

v

gramming (MILP) models, a Lagrangian Relaxation approach and two heuristics based
on Tabu Search (TS) to solve the Cross-dock Door Assignment Problem (CDAP). The

proposed resolution approaches carry out :

e Assignment of a set M of all incoming trucks on a set I of inbound dock doors repre-

sented by a partition Xy s

e Assignment of a set NV of all outgoing trucks on a set J of outbound dock doors

represented by a partition Yy ;

All those proposed resolution approaches have proven a better performance to solve CDAP

than those recently proposed in literature review.

This PhD. thesis contains three contributions, two of them have been successfully pu-
blished and the third contribution is a manuscript in preparation for submission to the
publication. The first contribution entitled “A comparative study of formulations
for a Cross-dock Door Assignment Problem” has been accepted for publication
in December 2018 into The International Journal of Management Science (Omega) and
co-authored with Pr. Said Hanafi, Dr. Raca Todosijevi¢, Dr. Oualid Guemri, Pr. Fred
Glover and Pr. Shahin Gelareh (contribution order). The second contribution “A La-
grangian heuristic approach for the Cross-dock Door Assignment Problem” is
a manuscript under preparation for submission to publication. It is an improvement of
the conference article entitled “A Lagrangian Relaxation for Cross-dock Door As-

signment Problem” presented into 11 edition of Journées Polyédres et Optimisation
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Combinatoire (JPOC’11) co-authored with Pr. Said Hanafi and Mcf Christophe Wilbaut.
The third contribution “Probabilistic Tabu Search for Cross-dock Door Assign-
ment Problem” has been published in March 2019 into European Journal of Operational
Research (EJOR) and co-authored with Dr. Oualid Guemri, Pr. Said Hanafi, Dr. Raca

Todosijevi¢, and Pr. Fred Glover.

This dissertation is composed by 6 chapters and is organized as follows. The chapter 2
presents the main operations into warehouse, the cost incurred by operations and how big
pallet are split into small units and the movement of those units. Among those warehouse’s

internal operations, the two most costly operations are reviewed.

The chapter 3 covers the state of the art for the cross-docking strategy. This chap-
ter describes in more details cross-dock warehouse and the strategies involved by cross-
docking ; the three levels of decision such that strategic, tactical and operational. The stu-
dies related to those decision levels include optimization problems like cross-dock network
design (strategic level), cross-dock layout design (tactical level), dock-door assignment,
truck scheduling, etc. (operational level). We detail different combinatorial optimization
problems that arise in operational decision level because we focus on an operational op-
timization problem. Afterwards, we emphasize on Cross-dock Door Assignment Problem

that is the case of study of this dissertation.

The chapter 4 is a broad development of two articles, a published journal and a confe-
rence articles. In this chapter, we carry out a broad analysis of a standard quadratic
mathematical formulation proposed in ( ) and a standard linearization for
CDAP based on the linearization made in ( ). Then, we propose eight new
non standard MILP models for the CDAP. To detect the best MILP model among those
we proposed and the models recently proposed into the literature, we have performed
an exhaustive empirical analysis using benchmark data sets from literature introduced
by ( ). Those MILP models are implemented and solved using CPLEX
solver into Java environment. Afterwards, we choose one MILP model to which we apply a
Lagrangian Relaxation (LR) procedure. The goal of the Lagrangian Relaxation approach
is to find new and better lower bounds on the optimal solution value. We use sub-gradient
optimization algorithm to solve the Lagrangian dual model. The same benchmark data
sets, ( ), are used to evaluate the performance of our Lagrangian Re-
laxation approach. The results of Lagrangian dual are compared with those given by LP
relaxation of the corresponding MILP model and the recent results given by Lagrangian

Relaxation from literature, ( ). The Lagrangian Relaxation model is



solved using CPLEX solver and the sub-gradient optimization algorithm is implemented

into Java environment.

The chapter 5 is also a large development of a published journal article. In this chapter,
we implemented in Java environment two heuristics based on Probabilistic Tabu Search.
We have referred those heuristics to PTS1 and PTS2. Our probabilistic algorithm is
based on Tabu Search proposed by ( ). We use Probabilistic Tabu Search
(PTS) to solve efficiently large scale instances of CDAP for which there is so far no exact
method that can solve them. We embedded an exploration heuristic to this algorithm
for neighborhood exhaustive exploration avoidance. We have carried out computational
experiments to analyse on the one hand the performance of PTS1 and PTS2 between and

on the other hand we compare their performance with recent heuristics from literature.

The chapter 6 closes this dissertation with a general conclusion and draws up future
research directions. The conclusion and future works are followed by two appendices that

give, in tables, the detailed computational results and by a bibliography.
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2.1 Introduction

A Supply Chain (SC) can be defined as a sequence of processes through which pro-
ducts flow from upstream (suppliers) into large pallets namely pallet-load to downstream
(customers) into small units or into pieces. Warchouses as well as cross-docks are the in-
termediate points of Supply Chain where products are unloaded, inspected and managed
before shipping. Those distribution centers are considered as inventory buffer points that

link the flow of products between suppliers from upstream and customers to downstream.
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2.2 Products flow and units handling

In Supply Chain, products are handled generally in small boxes while they are moving
down from upstream to downstream. From upstream, products flow in large boxes e.g., in
pallet-load. At each move to downstream, a pallet-load is successively broken down and
sometimes repalletized into small units such that carton, inner pack, unit, etc., until it

can no longer be divided, see e.g., Figure 2.1 below.

I~ |
SHIPPING CARTON ~
INDIVIDUAL PIECE
IREGUIRED BY
CUSTOMER]

FI1GURE 2.1 — Pallet movement from upstream to downstream in a Supply Chain,

(2011)

UNIT PACK
UNiT OF ISSUE
10 CusTOMER)

2.3 Warehouse operations

The Figure 2.2 is a schematic representation of the main operations that are handled in

a typical warehouse. It gives the general pattern of product flow inside typical warehouse.

A warehouse is designed to have enough storage area to store incoming products from
suppliers, that implies a rigorous management of storage space. The products can come
from various freight yard into pallet-load and are shipped into cartons. Other products
can arrive at warehouse into cartons and shipped into inner-packs, sometimes into pieces.
The shipment into cartons or inner-packs,...will depend on the customers commands and
whether products concerned by the customers commands are shipped to the same desti-
nation or not. This deep division of pallet-load requires more labor. Generally the smaller
the handling unit, the greater the handling cost, see e.g., ( )

( ). At the arrival, the products are received and inspected, those for

which arrival coincides with customer’s orders are not stored, they go immediately to next

8
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Storage in service area
and
Pallet Picking

Case

Picking Broken Case

Picking

Inspection and
Receiving

Accumulation, Sorting & Packing

Shipping

FIGURE 2.2 — Typical warehouse operations, Bartholdi and Hackman (2011)

operations for shipping, that is, direct put-away to primary operation (see Figure 2.2).

The time products spend in warehouse storage area is not known in advance. When

customer order is received into Warehouse System, the product concerned by this customer

order is retrieved from storage area and is picked for being loaded into shipping trucks

(order-picking). We can summarize the process as follows:

When products arrive at warehouse

e Inspection : checking damaged products

e Receiving : reorganization and repackaging

e Put-away : direct put-away to reserve or to primary

When customer order is received

e Order-picking : preparing customer order

e Accumulation, sorting and packing

e Shipping

These main activities are briefly described in the following subsections.
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2.3.1 Inspection and receiving

Arrival of products is notified and unloading starts. Cartons are scanned, products
are inspected to raise possible exceptions such that damage, wrong description etc., any
exception is notified. Large cartons are broken into small ones before being put-away for
storage or being put-away to primary. When the large boxes are broken, additional boxes

with small size are sometimes needed for repackaging, see e.g.,

(2011).

2.3.2 Put-away

The operation put-away to primary happens when the arrival of products coincides
with customer order, therefore the products concerned by the order are immediately
handled for shipping. For put-away to reserve, products are stored into a specified location
area of warehouse during indefinite time. For this operation, an appropriate storage space
is determined. This is important because it makes easy to retrieve pallet from its location
area upon the reception of customer order for this product. The put-away to reserve
operation requires more labor to move product until its storage space. Before put-away to
reserve operation, an inventory of storage areas is performed to know occupied, available
areas and where everything is stored, see e.g., ( ). Storage area of a

product is scanned to make easy finding when it will be ordered.

2.3.3 Order-picking

When a customer order is received into warehouse system, an inventory of products
is performed to verify if the customer order is possible for shipping. The flow time is the
time elapsed from reception of customer order until the products concerned by the order
are loaded into shipping truck. A Warehouse Management System (WMS) is an impor-
tant software system used to manage and coordinate automatically the warehouse’s main
operations like keeping record of storage capacity, checking and updating stock, check
of a customer order against available quantity of the ordered product in stock, raising
shortage for a product and maintaining accurate inventory by recording warehouse tran-
sactions, etc. The WMS updates stock using real-time information, for instance Auto ID
Data Capture (AIDC) technology such that barcode scanner, mobile computers, Wireless
Local Area Network (WLAN), Radio Frequency Identification (RFID) to efficiently mo-

10
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nitor the flow of products. For other details, interested readers can refer to

(2012).

2.3.4 Accumulation, sorting and packing

Accumulation involves putting together different orders of a given customer in single
package (packing). Before accumulation, orders are sorted according to their destinations.

Those operations need a great precaution in order to meet customer’s order accuracy.

2.3.5 Shipping

If all checks related to an order are done, it is ready to be loaded into shipping truck.

The shipping process is not expensive compared to operations detailed above.

2.4 Conclusion

In this chapter, the flow of products from upstream to downstream into Supply Chain
and the management of large pallet-loads into small packs have been presented. The main
operations of a warehouse have been reviewed. Among those operations, we have shown
that storage and order-picking are the most expensive due to the highest cost of inventory
holding and intensive labor, respectively. In the next chapter, we are going to make the
state of the art for cross-docking showing the improvement of cross-docking strategy on
classical warehouse. Afterwards we are going to focus on the main combinatorial optimi-
zation problems that are raised by cross-docking strategy. We emphasize on Cross-dock

Door Assignment Problem (CDAP) that is the case of study of this dissertation.

11
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In this chapter we describe in more details cross-docking in Supply Chain and how
some transportation companies have managed to lower their cost after having implemen-
ted cross-docking. Different decisions classified in three levels to successfully implement
the cross-docking are also discussed in this chapter. A literature review for most combi-
natorial optimization problems raised by cross-docking strategy is conducted. Finally, the
combinatorial optimization problem tackled in this PhD thesis is described and different

variants of this problem are also discussed.

3.1 Introduction

In Supply Chain, products packaged in cartons or other packaging materials are moved
from one point to another point. Thereby, a carton of products is brought to travel a
certain distance that separates the point upstream to the point downstream. Logistic or
Supply Chain is then defined as a sequence of processes consisting of moving products
from upstream to downstream and vice versa, in other words from producer to final
customer and in reverse logistic, from the final customer to the producer. That is, Supply
Chain Management (SCM) is the set of methods, resources and processes that are used to
manage and improve the Supply Chain performance. The goal of a Supply Chain manager
is to estimate the exact need at each stage, from the production of the finite products

until delivery to the final customers.

At each step of flow of product until to its final destination, a supply chain cost is
incurred. This cost can be expressed in several ways such that a function of distance that
the product must travel from the point of production to the point of destination or vice
versa, the damage that the product may incur during its displacements, the delays or
distance that incurs transportation equipment used to deliver product from one point to
another, the cost of storage of the product in a warehouse, etc. To try to optimize this cost,
an important question is raised and need to be efficiently answered : how to move down
products from upstream to downstream at very low cost ? Behind this question, several
other questions and decisions can be listed, such that the best time and the frequency
for the move, the best path to be taken in the logistic network, at what dock door of the
platform to allocate mean of transportation, etc. This question does not only address to

the means of transportation, but also the organization aspects.

The ultimate goal of Supply Chain is to meet the customer requirements, i.e, a high ser-

14
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vice level, a short delivery time and a customer order accuracy with a minimum cost kno-
wing that customer satisfaction is a key performance indicator in logistic. Cross-docking

is one of strategies that helps to tackle those challenges.

3.2 Cross-docking definitions

Generally, the consumer goods factory produces the same consumer good in very large
quantities. Then, these quantities of a given product are loaded until truck is fully loaded.
The trucks fully loaded are sent to storage warehouses which can be located either near
the factory or retail store or somewhere else in the network of suppliers, retailers and
customers. In fact, retail store and customers generally do not need a high volume of the
same product. Usually, small stores and customers need a small quantity of each product
supplied by a storage warehouse. In the storage warehouse, the product are stored for
unknown time. In addition, during the time the product is stored, it does not generate
a profit. On the contrary it incurs an inventory holding which is one of the two most

expensive operations in warehouse as mentioned in chapter 2.

Cross-docking is an alternative dynamic and Just-in-Time strategy which consists
to transfer directly the products from trucks that come from different suppliers (called
incoming trucks) to trucks going to different retailers and customers (called outgoing
trucks) without storing those products. If shipping truck of a product is not available on
the yard, that product will need to be stored for a while into a temporary storage area of
the platform. Unlike classical warehouse, the storage time cannot exceed more than a day,
sometimes products are stored for less than an hour, see e.g., ( )

( ); ( ) ( ). To cope with this
non storage of products, cross-docking strategy is involved for the products whose final
retailers and customers are already known in advance before they leave the suppliers. That
is, origins and destinations of products are known in advance. The fact products are not
stored or can be stored for few hours in platform accelerates their flow from their origins
going through distribution center to their respective destinations. Accordingly, all costs
that were related to the storage and order picking operations namely inventory holding
cost and intensive labor cost, respectively, are significantly reduced or completely dropped.

This is the key difference between cross-docking strategy and classical warehouse.

In ( ), the authors give a general definition of cross-docking as

“the process of unloading freight from inbound vehicles and loading these goods into out-
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Suppliers _ Customers

Cross-Dock

FIGURE 3.1 — An example of a cross-dock with temporary storage, Gelareh et al. (2020)

bound wvehicles, with minimal handling and with little or no storage in between”. Cross-
docking strategy takes place in a distribution warehouse called “cross-docking facility”

or “cross-dock”.

The cross-dock warehouse consists of a set of dock doors on each of its sides (inbound
and outbound), ideally without temporary storage area. Cross-docks have several layouts,
the Figure 3.1 taken from our published paper in Gelareh et al. (2020) is one of the
schematic representations of cross-dock with a temporary storage area and an example of
flow of products inside the facility. In the same way as in Van Belle et al. (2012), the term
cross-docking expresses the process of receiving products on inbound dock doors and then
transferring them directly across the cross-dock to outbound dock doors. In simple terms,
incoming products arrive through means of transportation such that trucks, trailer trucks
and are docked on inbound dock doors of the cross-dock terminal. Once incoming trucks
or trailer trucks have been docked, the packed products (pallets) get unloaded, sorted
and screened to identify their end destinations. Afterwards, the pallets are moved to
outbound dock doors of cross-dock terminal using manual material handling devices such
that hand pallet truck, forklift, electric pallet truck, etc., see e.g., Figure 3.2, or using an
automated mode such that a network system of conveyor belts. To outbound dock doors
side, products can be consolidated with those in pending for the same destination and are
loaded into outgoing trucks that are already docked. After loading operation, the products
can then make their way to the final destinations. Generally, the number of incoming and

outgoing trucks by period is larger than the number of dock doors of cross-dock. A dock
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Hand Pallet Truck Forklift Electric Pallet Truck

Source :www.sunnforest.com/Material-Handling-Equipment/Warehouse-Equipment.html

FIGURE 3.2 — Example of distribution center material handling devices

door of cross-dock is an arranged area where trucks or trailer trucks are unloaded, for
inbound dock doors and loaded, for outbound dock doors. Here, to dock a truck or trailer
truck means to place it to the dock door. The operations of handling packed products in
cross-dock are sometimes similar to those handled on harbor or airport. In fact, at harbor
yard, after ships are docked, the containers get unloaded and then, they are put away
in temporary gate, waiting to be loaded into another ship or a trailer truck. At airport,
the determination of how airplanes are affected to gates and the system of transferring
passengers from gate to gate aims to minimize traveled distance by passengers. Fore more
details, interested reader can refer to e.g., Van Belle et al. (2012); Zeinebou and Abdellatif

(2013).

3.3 Companies implementing cross-docking

Cross-docking strategy has been implemented and has lowered the cost for several
transportation companies. For instance, the distribution chain company Wal-Mart in US
is cited to be on the top of position of retailer companies to begin implementation of the
cross-docking in the retail sector in the late 1980s. Wal-Mart success began by defining
the goals that were consisting to provide to customers the access to quality of goods,
to make those goods available where and when customers need them, to develop a cost
structure that enables competitive pricing, to build and maintain a reputation for absolute
reliability, for more details, readers can refer to Stalk et al. (1992); Nguyen (2017).

The following paragraph is the citations of Stalk et al. (1992) about the success of Wal-

Mart company :

“The key to achieving these goals was to make the way the company replenished
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inventory the centerpiece of its competitive strategy. This strategic vision reached its
fullest expression in a largely invisible logistics technique known as ’cross-docking’.
In this system, goods are continuously delivered to Wal-Mart’s warehouses where
they are selected, repacked, and then dispatched to stores, often without ever staying
in inventory space. Instead of spending valuable time in the warehouse, goods just

cross from one loading dock to another in 48 hours or less.” ( )

In ( ), the authors stated that the transportation company
Home Depot has operated cross-docking in Philadelphia that serves more than 100 stores
in the Northeast. But, before using cross-docking, Home Depot used to order each store
separately from suppliers and the orders were sent directly to Home Deport stores in par-
tially loaded truck known as Less Than TruckLoad (LTL). Now, to reduce the costs, the
company uses cross-docking. Here is how Home Deport has processed to reduce transpor-
tation costs from suppliers to its facility and from facility to retailers. Therefore, instead
of using LTL, all the orders are consolidated among the stores on suppliers side and are
loaded in full truck load quantities. That is, each truck (incoming truck) leaves vendor
and comes to Home Deport facility fully loaded with consolidated orders, this is known as
Full Truck Load (FTL). On a specific day in week, each of 100 Home Deport store places
orders for each supplier or vendor at time. All the orders are consolidated on the supplier
side and are loaded into fully loaded truck, then fully loaded trucks are sent to Home De-
port cross-dock. As the orders arrive at cross-dock already consolidated, the workers are
only transferring products to loading trucks (outgoing trucks or delivery trucks) destined
to distribute them to individual stores, retailers or customers. Outgoing trucks are fully
loaded with consolidated orders coming from many suppliers before leaving the cross-dock
facility. Transportation cost is extremely reduced by the fact that incoming and outgoing

trucks come in and leave cross-dock in fully loaded.

Other examples of successful application of cross-docking in Europe are viewed in

( ). In this work, authors made a survey during which they visited
eight transportation companies located in France that apply cross-docking strategy in
their daily transportation activities. The authors compared the problems related to cross-
docking that are studied in academic literature and application of cross-docking in those
transportation companies visited. The goal was to compare academic study related to
cross-docking and cross-docking application in industry. After the survey, the authors rai-
sed a certain gap between cross-docking in theory and in industry practice and gave some

directions of research to bring literature closer to practice.
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3.4 Cross-docking decision levels

Even though cross-docking offers significant cost saving, like any functional system,
it is not a complete package of solutions for all the problems of the Supply Chain. In
fact, cross-docking success, when this strategy is used appropriately, depends on how
well the transportation network is designed and managed. For instance, the success of
cross-docking depends on how well the network of cross-docks (cross-docking network) is
located to connect origins and destinations of products together. Therefore, the success of
an individual cross-dock is influenced by how well is designed, exploited and managed the
whole network of cross-docks in which that individual cross-dock is located, see e.g.,

( ). Other factors that affect an individual cross-dock are for instance the size,
shape, number of dock doors of the platform ; the number of handling devices used inside
cross-dock, the time spent by material handling devices traveling between dock doors
pair while they are moving pallets, congestion caused by the movements of those material
handling devices, etc. Therefore, to successfully plan, design, implement and manage a
cross-dock, several decisions are to be made. Those decisions are classified in three levels,

namely, strategic, tactical and operational.

3.4.1 Strategic level decisions

The decisions to be made at the strategic level are long-term decisions and are usually
concerning physical characteristic of cross-dock. Those decisions are taken in order to
strengthen the time span of the cross-dock and to influence further operations inside the
platform. Some examples of strategic decisions to be taken into account when planning
to design cross-docking are as follows:

The cross-docking network refers to a network of one or several cross-docks connected
together. It is a subsystem of supply chain formed by one or several cross-docks with
inbound and outbound transport routes and the stakeholders connected to the cross-
docks by those routes, see e.g., ( ).

The location of an individual cross-dock geographically in cross-docking network and in
the network of suppliers, retailers and customers is an important strategic decision. To
learn more about location of cross-dock, we refer the interested reader to e.g.,

(2010); (2012).

The Layout design of a cross-dock is also an important physical characteristic. Once
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location of individual cross-dock in cross-docking network is determined, the decision
concerning the layout of cross-dock has to be made. The layout design of a cross-dock
refers to the shape, the size and the number of dock doors of a cross-dock. The interested
reader can refer to the extensive overview made on cross-docking concept in

( ). As far as shape is concerned, cross-docks have a lot of variety of shapes
which are usually described by a letter such that I, L, T, H, U, E and X. Usually the

number of dock doors imposes the shape that must have a cross-dock.

In ( ), the authors have focused on how the shape affects
cross-dock performance. In view of this fact, they have studied different shapes of cross-
docks with the purpose to find out what have to be the best shape for cross-dock. They
have listed the commonly used shapes such that I, L, and T and other unused such
that U, H and E. The authors conducted computational experiments on I, L, T, H,
and X-shape cross-docks considering several characteristics such that the size, the shape,
the flows concentration and a part of inbound dock doors. Through the results of their
computational experiments, they concluded that performance of cross-dock depends on
two factors such that the size and the shape and that most of cross-docks are I-shape, that
is, long, narrow rectangles. The authors argued that for number of dock doors, I-shape is
the best layout with few than about 150 dock doors on each of the two sides of cross-dock,
T-shape is the best efficient for cross-dock with intermediate size, that is, between 150
and 200 dock doors and that X-shape is the best for approximately more than 200 dock

doors.

In ( ), the authors stated that L-shapes and H-shape cross-
docks are less efficient than I-shape cross-docks because those cross-docks provide addi-

tional corners that not help improving traveled distance.

The cross-docks visited in ( ), seven out of the eight cross-docks
are I-shape. In fact, all those cross-docks have less than one hundred dock doors where
I-shape is the most efficient in accordance with ( ). Another reason
that the authors argued to explain why all cross-docks are I-shape is that in France the
biggest cross-docks are built by real estate agents who choose I-shape layout because it
can be easy to divide when it comes to renting to logistic companies. This survey is a

chapter of the thesis of ( ).

Number of dock doors is also a strategic decision. Once the shape of cross-dock is
defined, the number of dock doors must also be decided and how they are placed along

the cross-dock, either on only one side or on two sides or on all the sides of the platform.
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Clearly, the decision of shape is influenced by the size of the platform.
Internal transportation system is also a strategic decision that must be considered.
This decision is concerning how products are moved from inbound to outbound dock
doors of the cross-dock. Thus, products can be moved either manually by workers using
material handling devices, see e.g., Figure 3.2, or using an automated mode like a network
system of conveyor belts or a combination of those two first internal transportation modes.
For more details about flow of products inside cross-dock, interested reader can refer to
e.g., (2011); (2012); ( ). In
( ), the majority of visited cross-docks use internal transportation
system in the following distribution: 63% of cross-docks use manual transportation, 13%
use automated transportation mode and 25% use combined mode of transportation. For
the visited cross-docks, the authors explained why an automated and combination modes
are used widely more than what is stated in academic literature by the fact that when
automated and combined transportation mode are used, some operational decisions are
delegated to Information Technology (IT) system.
The number of material handling devices used inside cross-dock is also a strategic

decision, refer to e.g., ( ).

3.4.2 Tactical level decisions

Decisions made on tactical level are mid-term decisions for cross-dock. Those decisions

influence directly operational decisions. Some of tactical decisions include:

Flow of products through cross-docking network configuration. The cross-
docking network configuration refers to how products flow from cross-dock to cross-dock
in the cross-docking network until they are delivered to retailers and customers. There are
several cross-docking network configurations. Those configurations are classified according
to the size of the cross-docking network. For more details about cross-docking network
configurations, interested readers can refer to ( ). The simple cross-docking
network configuration is so-called one single configuration. In this network configuration,
there is only one cross-dock in which all products go through, see e.g., Figure 3.3. The
second cross-docking network configuration is referred to single layer of cross-docks confi-
guration. In this network configuration, several cross-docks are connected together but
each product crosses one cross-dock bypassing other cross-docks, see e.g., Figure 3.4. The

third network configuration is called hub-and-spoke system network configuration. In this
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FIGURE 3.3 — One single network configuration, Zhang (2016)
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FIGURE 3.4 — Single layer of cross-docks network configuration, Zhang (2016)
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FIGURE 3.5 — Hub-and-spoke system network configuration, Zhang (2016)

configuration, goods can be shipped through multiple cross-docks grouped in stages, see

e.g., Figure 3.5.

Preemption is also a tactical decision. In individual cross-dock, operations manager must
decide whether or not to allow ongoing unloading/loading of a truck to be interrupted.
If preemption is allowed, the unloading or loading of truck can be interrupted at any
time, then the truck is put-away and is replaced by the next one. The uncompleted unloa-
ding/loading truck that has been put-away will be reassigned and processed later either
to the same dock door or to an another dock door according to the case that minimizes
the cost. The cost of moving away the truck from the dock door and the cost to back it
for reassignment to dock door are taken into account. In Ladier and Alpan (2016a) no
one of the visited cross-docks use preemption.

Temporary storage and its capacity is consisting to decide whether intermediate sto-
rage area is allowed or not and if the capacity of storage area is limited or unlimited. If
temporary storage is allowed, an unloaded product can be put-away into temporary sto-
rage area for a short time that can not exceed 24 hours. Practically, a product have to be
temporarily stored in the prepared storage area in the case the shipping truck destined to

that product is not yet available on outbound dock door (not yet docked), see e.g., Ladier
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( ). Resources like number of workers or conveyed belts used to handle
products inside the platform are also decided into tactical level decisions.
Service mode of dock doors of cross-dock is another important tactical decision. Ha-
ving two kinds of dock doors (inbound and outbound), to set up and optimize the cross-
dock, operating mode of dock doors is decided. There are two common operating modes
of dock doors: Exclusive mode and mixed mode of service and the third service mode not

commonly used is referred to combined mode, see e.g., ( )

(2016a).

3.4.2.1 Exclusive mode

For a good management of the cross-dock and a good traveling of material handling
devices between inbound and outbound dock doors of the platform, the service mode of
dock doors that is commonly used is exclusive mode. That is, inbound and outbound
dock doors are dedicated and fixed exclusively to inbound and outbound operations,
respectively. In simple words, when this service mode is used, inbound side is used to
serve origins exclusively and outbound side is used to serve destinations exclusively. The
Figure 3.1 depicts an axample of I-shape cross-dock configured to use exclusive mode
of dock doors with a small temporary storage area. In ( ), four
cross-docks out of all visited cross-docks use exclusive mode of dock doors. As this service
mode have the fixed inbound dock doors for inbound operations and fixed outbound dock
doors for outbound operations which makes easy internal operations for managers, the
exclusive mode is widely used. In this service mode, each outbound dock door can serve
a fixed set of destinations, in that case it is called destination exclusive mode, and each
inbound dock door can serve a fixed set of origins, in this case it is called origin exclusive

mode, see e.g., ( ).

3.4.2.2 Mixed mode

In this service mode of dock doors, an intermixed sequence of receiving and shipping
trucks to be processed per dock door is allowed, that is, a same dock door can have dual
function of receiving incoming and shipping trucks. In other words, incoming or outgoing
truck can be assigned at any dock door or to the same dock door. In
( ), five out of eight visited cross-docks use mixed mode of service. The Figure 3.6

depicts the mixed mode of dock doors.
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FIGURE 3.6 — Mixed mode of door service, Shakeri et al. (2008)

3.4.2.3 Combined mode

The combination mode of service is the combination of exclusive and mixed mode. In
the combined mode, a subset of dock doors works in exclusive mode and the rest of dock
doors work in mixed mode, see e.g., Van Belle et al. (2012). The combined mode cannot be
covered in practice because it would cause confusion between exclusive and mixed mode

of dock doors,see e.g., Ladier and Alpan (2016a).

3.4.3 Operational level decisions

The operational level decisions are short-term decisions. Those operational decisions
are made on daily or weekly basis by cross-dock operations manager. This decision level
raises several questions related to the management of cross-dock operations. For instance,
the question like how trucks will be unloaded when they arrive on cross-dock? This
question raises a set of decisions that must be made such that unloading will be done
either manually using material handling devices or with automated system ; whether big
cartons will be divided and repacked or not; etc. Other questions like when unloading
operation will start and when trucks leave cross-dock ? The cross-dock operations manager
can decide, for example, either that all incoming and shipping trucks have to be available
at the cross-dock ground from the beginning of operations until the end or at any time

incoming truck arrives it is processed and as soon as it ends up being unloaded it leaves

25



Chapter 3. Cross-docking and Supply Chain

and outgoing truck leaves as soon as it ends up being loaded.

A cross-dock operations manager can decide also to ship goods directly from origins to
destinations in the case all shipping trucks are available on the platform yard. In that case
no product can go through temporary storage area. This is the case for frozen or fresh
products that have to be shipped immediately to the respective destinations so that they
are not damaged. The products that have been temporarily stored can be consolidated
inside cross-dock with new arriving products of the same destination before being loaded
into shipping truck. Other decision can be made about the number of material handling
devices, that is, the fewer or more forklifts to use inside the cross-dock to handle shipments.
For all those operational decisions, the interested reader can refer to e.g.,

( ), for the impact of operations manager decisions on the operational effectiveness of
cross-dock, the reader can refer to e.g., ( ) in which the authors have used
a computer simulation considering an I-shape cross-dock and forklifts as devices used to

handle pallets inside the cross-dock.

3.5 Operational optimization problems

As we have just seen in Section 3.4.3 above, the operational level raises a lot of deci-
sions that are made on daily or weekly basis. It is obvious that each decision raises one
or more optimization problems so that if we solve this or these optimization problems,
we optimize the operational level of the cross-dock at the point where these problems
have been solved. An optimization problem consists of finding the best solution among
all feasible solutions. The best solution can be the shortest path, the shortest duration of
operations (makespan), a maximum benefit using a minimum resource, etc. Those optimi-
zation problems are usually NP-hard. An optimization problem is NP-hard if it can not be
solved optimally in polynomial time, i.e., reasonable time using a known polynomial algo-
rithm, assuming P !=NP. To solve such problems, we use approximation algorithms such
that heuristics that do not guarantee an optimal solution but an approximate solution in

reasonable time.

As our study addresses one of the operational class of optimization problems, we
perform in the following sections a large description of the main optimization problems
that occur at the operational level of decision. Then we emphasize on the combinatorial
optimization problem “The Cross-dock Door Assignment Problem (CDAP)” that we deal
with in this PhD thesis as well as the configuration of the cross-dock to which we apply that
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FIGURE 3.7 — Cross-docking facility operations, Stephan and Boysen (2011)

optimization problem. We continue with presenting different variants of this optimization

problem as proposed in literature.

3.5.1 The Cross-dock Door Assignment Problem

The Cross-dock Door Assignment Problem (CDAP) consists of assigning trucks to dock
doors in order to optimize (minimize, maximize) operations inside the cross-dock. The
schematic representation of those operations inside cross-dock is depicted in Figure 3.7.
The Cross-dock Door Assignment Problem assumes that all incoming and outgoing trucks
are available on cross-dock yard before the beginning of planning the cross-docking ope-
rations. The objective is to minimize transportation cost inside the cross-dock by finding
an optimal assignment of trucks dock doors. Therefore, the distance traveled by pallets
handling device inside the cross-dock while transferring products between inbound and
outbound dock doors can be reduced if outbound dock door on which a destination truck
of item is assigned is near to the inbound dock door where the corresponding origin is
docked. The Cross-dock Door Assignment Problem is also known as the Truck-to-dock
Door Assignment Problem (TDAP) because this optimization problem deals with assign-
ment of trucks to dock doors. In fact, when an incoming truck arrives on the facility, it
is necessary to decide on what inbound dock door it will be assigned. Due to the flows
of products between incoming and shipping trucks, it is also necessary to decide on what
outbound dock door this shipping truck will be assigned. Therefore, a good assignment of

all incoming and outgoing trucks to dock doors will decrease dock door delay, will affect
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the total time of unloading of products, total traveling time inside the facility and the time
during which all products get loaded, in short, it will reduce cross-dock internal opera-
tions duration. The traveled distance can be expressed as the total time used to transfer
all products from inbound to outbound dock doors. The Cross-dock Door Assignment

Problem is more explicitly explained further in section 3.6

3.5.2 Truck Scheduling Problem

Having more trucks than dock doors available, dock doors can be scheduled over
time. While Cross-dock Door Assignment Problem takes into account the space dimension
explicitly by seeking to minimize the total weighted distance traveled inside the cross-
dock by material handling devices, this optimization problem ignores temporal dimension.
That is, CDAP does not consider arrival and departure time of each truck at and from
cross-dock (time window of truck). The Truck Scheduling Problem takes into account the
temporal dimension explicitly by considering the time window of trucks, that is, arrival
and departure time of each truck on and from cross-dock, respectively, the time at which
each truck will be processed on dock door. A good scheduling of trucks to dock doors will
cause a good flowing of products. Therefore, the makespan which is the total operational
time span from the start of unloading the first incoming truck until end of loading the last
shipping truck will be shortened and congestion inside the facility will be minimized. The
objective of this optimization problem is to minimize the makespan. For more details, we

refer the reader to e.g., ( ); ( ).

Generally, in the standard CDAP, origin and destination of trucks are set, that is, the
trucks coming from the same origin or serving the same destination are assigned to the
same inbound /outbound dock door respectively while dock door capacity is still imposed.
In the case of the Truck Scheduling Problem, the trucks coming from the same origin or
serving the same destination can be assigned to different dock doors if the assignment

minimizes the makespan.

The Truck Scheduling Problem considers a deterministic environment in which all data
are certain and reliable. That is, no condition can cause delay of trucks from arriving on
time. Thus, arrival and departure time of each truck are fixed. Nevertheless, in realistic
environment, the arrival or departure time of truck can be delayed due to several condi-
tions such that traffic congestion, truck failure, road accidents, the weather, etc. Those life

conditions make arrival time of truck to be uncertain. In ( ), the
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authors have proposed a Robust Truck-to-dock Door Scheduling Problem. For this variant
of trucks scheduling, the authors have considered realistic conditions in the formulation of
the problem taking the trucks arrival times as a decision variable. The authors concluded
that the mathematical formulation of the Robust Truck-to-dock Door Scheduling Problem

remains feasible and stable even though it faces those disruptions.

Some combinatorial optimization problems combine Trucks scheduling and CDAP to
benefit advantages of both optimization problems. The purpose is to determine when
and at which dock door each incoming and outgoing truck will be handled in order to
ensure the quick turnover and on-time deliveries. Therefore, a new combinatorial opti-
mization problem referred to Truck-to-dock Door Scheduling Problem is raised. In

( ), the authors have considered a combined CDAP with operational time
constraint within cross-dock. In this problem, they considered also the time windows of
arrival and departure of a truck, operational time for a cargo and the capacity of cross-
dock. The cargo whose shipment is not fulfilled in current cross-dock could be handled
in another cross-dock where treatment capacity is available. The goal is to minimize the
operational time of the cargoes to ship and the number of cargoes not shipped. The cost
is the total operation time of cargoes and the total penalty incurred. The penalty cost
occurs when a cargo misses the shipping truck or its shipping truck is not yet docked.
Other works about CDAP combined with Truck Scheduling can bee viewed in e.g.,

( ). For literature review and relevant works related to the sche-
duling of trucks on dock doors of cross-dock, we refer interested readers to e.g.,
(2010); (2014); (2010); (2006);
(2014); (2009); (2012).

3.5.3 Trucks Sequencing Problem

Unlike Truck-to-dock Door Assignment and Truck Scheduling Problems, Truck sequen-
cing problem does not take into account neither space dimension nor temporal dimension.
In fact, having the number of incoming and outgoing trucks greater enough than the num-
ber of inbound and outbound dock doors, only a part of incoming and outgoing trucks
can be assigned and get unloaded and loaded simultaneously while excess incoming and
outgoing trucks are put-away in waiting buffer until the previous assigned ones end up
getting unloaded/loaded. Therefore, while waiting, all those trucks are sequenced into

queue to influence the efficiency of the cross-dock. For instance, a product in incoming
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truck which is in waiting queue while the corresponding outgoing truck of this product
is assigned on dock door ready to be loaded and can not be replaced by another out-
going truck, this kind of situations leads to a delay which affects the performance of the
cross-dock. The Truck Sequencing Problem seeks to determine an optimal sequence or
the order into which the waiting trucks are processed to dock doors and determines on
which dock door exactly each truck is processed to improve cross-dock efficiency. That is,
a truck is not assigned to a specific dock door but to any available dock dock according to

the established sequence. For more details, we refer the interested reader to e.g.,

(2016a).

3.5.4 Transshipment Problem

This optimization problem looks for determining a good flow of products, on the one
hand, between suppliers and cross-dock and on the other hand, between cross-dock and
customers. This involves a good and tight synchronization between incoming and outgoing
trucks. The purpose is to minimize the transportation, the penalty and the inventory costs
in distribution network. The transshipment problem considers also the decisions made by
operations’ managers on how goods are moved inside the facility like if incoming goods can
be consolidated in staging area with some goods present in temporary storage to complete
the freight, see e.g., ( ). In ( ), the authors have
studied the case of transshipment problem considering the fixed transportation schedules,
that is, arrival and departure time for transportation schedules are fixed. On the one hand,
the suppliers ship the packed products towards cross-docks through fixed transportation
schedules, the cargoes can delay into facility for consolidation and the related inventory
holding cost is applied as a penalty, the cargoes that will need inventory service at the
last time point of its time horizon will incur the high inventory penalty cost. On the other
hand, the customers receive their cargoes from cross-dock. In transshipment-inventory
models, a frequent assumption is that a demand which cannot be fulfilled by one supply
point can be completed through some other supply points. The goal is then to evaluate a
control policy for replenishment. The total cost denotes transportation cost from suppliers
to cross-docks, transportation cost from cross-docks to customers, the inventory cost and

the penalty cost.
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3.5.5 Cross-dock Congestion Problem

Beside all those combinatorial optimization problems that arise within cross-docking,
most of studies in literature review seemed to ignore the congestion issue of material
handling devices inside the cross-docking terminal. However, this congestion is still a
relevant problem and should be considered if we seek to manage the movement of material
handling devices inside the cross-dock. In agreement with ( ), as the
amount of incoming products entering into cross-dock increases, knowing in addition that
the products have to be quickly handled inside the terminal in order to be immediately
shipped, accordingly, the number of material handling devices must be multiplied and
the speed up of movement of those handling devices is required to meet to goal of cross-
docking strategy. This may create a congestion within the terminal. In
( , ), the authors stated that the longer it takes to empty an incoming truck,
the more material handling devices are required and the more congested the dock door
will be. Due to this, the congestion and interference of pallets handling devices inside the
terminal increase. In ( ), the authors have stated that looking for
minimizing total traveled distance inside cross-dock leads to group unloading and loading
goods in the same area that generates the congestion and slowdowns the overall process.
Accordingly, within the cross-dock, seeking to minimize the congestion is in conflict with

minimizing distance and vice versa.

In ( ), the auhors have performed a simulation in which they showed
that a cross-dock with staging area at each inbound and outbound dock door reduce
the dock door congestion inside terminal. The simulation showed that direct unloa-
ding/loading increases queuing of forklifts and congestion both at inbound and outbound
sides of cross-dock while indirect unloading/loading reduces queuing and congestion and
produces a higher throughput of pallets shipped from receiving side to shipping side but
it requires a higher labor time to handle completely a pallet. Direct unloading/loading
is applicable for pure cross-docking where unloaded pallets are directly sent to outbound
dock door to be loaded into shipping trucks without going through temporary storage
area. For a cross-dock with indirect unloading/loading, each inbound and outbound dock
door have a staging area. Pallets are unloaded from incoming trucks to a staging area of
inbound dock door and then are transferred from inbound staging area to staging area of
outbound dock door, and finally from staging area of outbound dock door to be loaded

into shipping trucks. Therefore, a pallet is picked up three times which consumes lot of
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space and time, increases labor cost and possibility of damaging a pallet.

In Gue and Kang (2001); Yang et al. (2010); Van Belle et al. (2012), the authors have
defined cross-dock according to the number of touches a pallet can undergo inside the
cross-dock. A one-touch cross-dock corresponds to direct unloading/loading (pure cross-
docking). For a two-touch or single-stage cross-dock, products are received either into a
staging area of inbound dock door or into that of outbound dock door. The Figure 3.8
depicts the two-touch cross-dock. The multiple-touch or two-stage corresponds to indirect
unloading/loading, see e.g., Figure 3.9. In two-touch and multiple touch (single-stage and
two-stage) the pallet is handled one more time and more floor space inside cross-dock is
needed. This implies a larger cross-dock which increases the weighted distance traveled
by handling devices. The interested readers on a single-stage and two-stage cross-docks

can refer to e.g., Gue and Kang (2001) about the queuing of cross-dock’s entities.

3.5.6 Vehicle Routing Problem with Cross-docking

In Supply Chain, goods are picked from various suppliers or other freight yards and
are loaded into trucks and moved towards the distribution centers. In this case, the dis-
tribution center is referred to the cross-dock. Those goods have to be shipped to multiple
destinations after having been sorted according to their respective destinations and so-

metimes consolidated into cross-dock. That is, the cross-dock is considered to be the
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FIGURE 3.9 — A two-stage or multiple-touch cross-dock, Gue and Kang (2001)

departure and arrival node of all vehicles involved in the defined transportation network.
In a given transportation network, the process of products picking from a defined node
and products delivering to the customers in that transportation network is known under
Vehicle Routing Problem (VRP). The goal of VRP is to determine the number of vehicles
to use in that transportation network, the optimal path that each used vehicle have to

follow from suppliers to customers through cross-dock node.

An efficient optimization for the Vehicle Routing Problem may increase the through-
put of the cross-dock. In Wen et al. (2009), the authors proposed a vehicle routing problem
with cross-docking using homogeneous vehicles for transportation of customers’ orders via
a cross-dock as a node. The objective was to minimize the travelling time of trucks taking
into account the time window of each truck. The authors proposed a Mixed Integer Pro-
gramming (MIP) model and a Tabu Search heuristic to solve the problem. The interested

readers can also refer to Birim (2016).
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3.6 Cross-dock Door Assignment Problem

The NP-hard combinatorial optimization problem we tackle in this PhD thesis is
an optimization problem referred to “Cross-dock Door Assignment Problem (CDAP)”.
Truck scheduling, truck sequencing or transshipment problems are also concerned by
the assignment of trucks to dock doors of the facility taking into account other factors
like for instance the time window. In this dissertation, we focus more precisely on the
optimization of the activity related to the cross-dock itself while supposing that some
external elements have been decided previously. The corresponding problem is the Cross-
dock Door Assignment Problem whose the standard quadratic mathematical formulation

has been introduced in ( ).

3.6.1 Introduction

Cross-dock Door Assignment Problem looks for to optimize allocation of dock doors
of cross-dock taking into account several factors, namely the shape, the flow of volume of
pallets from incoming to outgoing trucks, those pallets cross the cross-dock from inbound
to outbound dock doors. We start our study by tackling this optimization problem in

general terms and further we describe different variants of CDAP as they have been

proposed in ( , ); ( 7 ); ( );
( ). Afterwards we focus on the variants of this problem proposed in
( ) . We choose this variant because it takes into account more real application

such that the management of the capacity of dock doors. This optimization problem has

also been studied in ( ) ( )
The authors in ( ) ), have been the first to be interested
and worked on the Cross-dock Door Assignment Problem. In ( ), the

authors have proposed a basic bi-linear programming model for assigning receiving and
shipping trucks to respectively inbound and outbound dock doors considering only assign-
ment constraints both for dock doors and trucks. That is, according to the mathematical
formulation, each inbound (respectively outbound) dock door is assigned to a single re-
ceiving (respectively shipping) truck and each receiving (respectively shipping) truck is
assigned to a single inbound (respectively outbound) dock door. This assumes that the
number of receiving (respectively shipping) trucks is equal to the number of inbound (res-

pectively outbound) dock doors. In ( ), the authors improved their
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former solution proposing a new solution based on Branch and Bound (B&B) algorithm.
In ( ), the authors have developed a Genetic Algorithm (GA) to
solve the basic mathematical model introduced by ( ) in a breakbulk
terminal to minimize the total weighted distance traveled inside the terminal composed
by inbound and outbound dock doors and an open dock door. In ( ,

), the authors studied another variant of Cross-dock Door Assignment Problem. They
extended the formulation proposed in ( ) by relaxing the assignment
constraints between outbound dock doors and outgoing trucks. That is, the authors pro-
posed a new mathematical formulation that allows several outbound dock doors to serve a
single destination. In that new mathematical model, the capacity of each outbound dock
door is set to be equal the capacity of a truck. At inbound side, they kept assignment
constraint as in ( ). Thus, the authors defined a new parameter for
truck capacity, considering that tall trucks have the same capacity, and an additional
decision variable. For a broad explanation, after a truck is unloaded, the freight is sent
to corresponding destination at load dock door (outbound dock door). If the total freight
sent to that destination exceeds the capacity of truck, the amount of that freight is split
into several shipping dock doors that will be reserved to allocate that destination. We let
recall that in the author’s formulation, the capacity of each outbound dock door is equal

the capacity of an outgoing truck.

In ( ), the authors proposed a slight change in the mathematical
formulation of ( ). In fact, ( ) include in their
formulation an additional decision variable that controls the assignment of trucks on
dock doors. That is, the objective function value will be distorted if any incoming truck
was assigned to outbound dock door. As the problem is still hard for large instances,
the authors proposed an evolutionary Scatter Search (SS) algorithm based on Genetic

Algorithm metaheuristic to minimize the total traveled distance.

In ( ), the authors proposed a new variant of combinatorial
optimization problem named “ Truck-to-Door Assignment and Product placement Problem
in Cross-Dock (TDAPP-CD)’. In that study, the authors considered a Truck-to-dock Door
Assignment Problem in cross-docking center with a temporary storage area. The study
takes into account moving steps of products according to the product flow path: “inbound
dock doors — temporary storage area — outbound dock doors”. The authors
proposed a Mixed Integer Programming model to minimize the total distance traveled by

the product on the path.
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Taking into account the increasing of amount of freights to handle on cross-dock yard,

it is not practical for a dock door to allocate a single origin, even less to reserve several dock

doors for a single destination. Accordingly, the configuration in ( ,
) and those in ( , ) ( ) are not suitable
for realistic applications unlike the configuration considered in ( ) where the

authors have proposed a generalized mathematical formulation that takes into account
more realistic considerations. That is, in ( ) mathematical formulation, the
authors take into consideration the capacity of each dock door and the fact that each ori-
gin (respectively destination) must be assigned to one dock door. That is, each inbound
(respectively outbound) dock door can allocate more than one origin(respectively desti-
nation) and each origin (respectively destination) is assigned to one and only one inbound
(respectively outbound) dock door. Below are the considered outlines for the generali-
zed mathematical formulation for ( ) for the Cross-dock Door Assignment

Problem:

e Incoming (respectively shipping) trucks are aggregated into origins (respectively desti-
nations), i.e., from a given origin can come more than one truck and a given destination

can be served by more than one truck.
e Assignment of origins and destinations instead of assignment of trucks.

e Each dock door can allocate more than one origin (respectively destination) as long as

the capacity of dock door is not exceeded.

From the two side of an I-shape cross-dock, the resulting mathematical model can be seen
as a bi-Generalized Assignment Problem (GAP) if we consider separately one side, see
e.g., ( ).

Due to the nature of the CDAP such that the large amount of freights to handle and the
dynamic nature of freight flow patterns which increases the number of material handling
devices to use for transferring pallets from inbound to outbound dock doors, increasing
and arrangement of number of dock doors and assignment of trucks to dock doors, the
Cross-dock Door Assignment Problem is a known NP-hard combinatorial optimization
problem. In addition, as seen above, the variant of ( ) that we deal with all
along this dissertation includes the Generalized Assignment Problem as a sub-problem.

As GAP is an NP-hard combinatorial optimization problem, see e.g.,

( ); ( ), the CDAP is also NP-hard.

36



3.6. Cross-dock Door Assignment Problem

3.6.2 Background for CDAP and Literature review

A key difference between a classical warehouse and a cross-docking warehouse is that,
unlike warehouses where products remain (sometimes for long duration) until they are
ordered by final customers, the products handled by cross-dock are not permitted to
remain on the platform beyond 24 hours, see e.g., ( ), sometimes
are required to be transferred within less than an hour, see e.g.,

( ). As explicitly detailed in section 3.4, three classes of cross-docking problems can
be summarized as follows : strategic problems determine a good location for the cross-
dock and its layout design ; operational problems determine the best assignment of truck
to dock door, locations where goods will be temporarily stored, the best synchronization
between arriving and departing trucks at the dock doors of the cross-dock etc. ; and tactical
problems determine the flow of products through the cross-dock to minimize costs and
make supply meet demand. For a broad literature reviews in relation of other variants

of cross-docking problems, we refer the interested readers to ( )

(2013); (2015); (2016); (2016);
(2017).

All along this dissertation, we deal with the variant of Cross-dock Door Assignment
Problem in which a set of incoming trucks called origins come from various sources of pro-
ducts such as suppliers, manufacturers, factory, warehouses, other cross-docks, etc., and
unload their pallets of products on a set of inbound dock doors, at which point unloaded
pallets are sorted in a staging area based on their destinations. Finally, the pallets are
directly transferred within the cross-dock using material handling devices such as forklifts
to a set of outbound dock doors where they are or not consolidated with other products
going on the same destination and loaded onto outgoing trucks called destinations. The
goal of the Cross-dock Door Assignment Problem is to find the best assignment of origins
(origin trucks) to inbound dock doors and destinations (destination trucks) to outbound
dock doors so that the total cost of transporting pallets from inbound dock doors to
outbound dock doors within the platform is minimized while it keeps satisfying a set
of constraints. As already mentioned, the transportation cost is considered as the total

weighted distance traveled inside the cross-dock by the used material handling devices.

The problems of truck-to-dock door assignment assume that there are enough dock
doors to accommodate all incoming and outgoing trucks, that is, each truck may be

assigned to dock door, therefore, for these problems time aspects are not taken into
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TABLE 3.1 — The Cross-dock Door Assignment Problems, dock doors assignment strategy

account.

The Cross-dock Door Assignment Problems may be classified according to several cri-
teria. The first criterion is based on the dock doors allocation strategy. Several types of
allocation restrictions are possible : The cited papers into column (i) of Table 3.1 deal
with the variant of CDAP where each dock door must serve only one origin(respectively
destination) and each origin(respectively destination) must be assigned to only one in-
bound(respectively outbound) dock door; the papers cited into column (%) of Table 3.1
deal with the variant of the CDAP where each inbound dock door serves only one origin
at a time, but the same destination may be assigned to several outbound dock doors; and
the variant of CDAP dealt with into the works in column (%ii) of Table 3.1 consider a
generalized case where each inbound (respectively outbound) dock door may serve more

than one origin (respectively destination).

The second criterion considers whether and how capacity constraints are taken into
account : In ( : ) and ( ), there are no limitations
of capacities on the inbound and outbound dock doors; In ( ,

) there are no limitations of capacities on inbound dock doors but only capacities of
outbound dock doors are taken into account and dock door capacity is considered equal
to the capacity of a truck; In ( ), the authors extended the model proposed
by ( ) considering capacity constraints on both inbound and outbound
dock doors in order to take into account more realistic considerations. This what makes

( ) model to be standard or generalized.

The third criterion is based on the layout design of a cross-dock as the specification of
dock doors as either inbound or outbound dock doors. The so-called I-shape for cross-dock

layout design is one of the most often considered shape in the literature, see e.g.,

(1990, 1992); (1999); (2000); (2006);

( , ). Figure 3.10 taken from our published paper in
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Customers

Cross-Dock

et al. (2020) describes the I-shape cross-docking operations in greater detail. An I-shaped
cross-dock has a rectangular shape, with receiving dock doors on one side and outbound
dock doors on the other side. Therefore, rectilinear distances may accurately simulate
distances traversed by the forklifts following clearly marked lanes, see Figure 3.10. Other
cross-dock shapes considered in the Cross-dock Door Assignment Problems are so-called
semi-permanent and dynamic layouts, see e.g., Brown (2003); Bozer and J. Carlo (2008);
Yu et al. (2008). For other shapes of a cross-dock layout considered in the cross-dock li-
terature we refer the reader to e.g., Bartholdi and Gue (2004). In this PhD thesis we deal
with the CDAP where each dock door may serve more than one origin(respectively des-
tination), capacity constraints are imposed on each dock door and I-shape cross-docking
operations are allowed. This variant of the problem was introduced in Zhu et al. (2009) as
a standard formulation of CDAP and as an extension of the basic formulation of Tsui ancd
Chang (1990). In Guignard et al. (2012), the authors subsequently used the model of Zhu
et al. (2009) to develop three heuristics, the first two are based on local search and the
third is based on Convex Hull Relaxation (CHR). Recently, in Nassicf et al. (2016), the
authors proposed a Mixed Integer Programming formulation of the CDAP which consists
to determine optimal paths for commodities from origins to destinations via inbound and
outbound dock doors. In that same work, the authors proposed some valid inequalities for
the problem as well as a Lagrangian Relaxation heuristic to tackle large-scale instances.
In Nassiel et al. (2018), the authors presented a study on the standard CDAP as defined

in Zhu et al. (2009) with and without load and unload times. They proposed several new
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formulations and a branch and price solution strategy.

The computational experimentation shows that CDAP is extremely difficult to solve
to optimality. As already introduced, the CDAP includes the Generalized Assignment
Problem (GAP) as a sub-problem and the GAP problem is NP-hard. The GAP is a well-
established field of research in terms of both modeling and solution approaches, and has

been extensively studied in papers such as e.g., ( ) ( );

(2001); (2002); (2004);
(2006); (2007); (2010);
( ). In addition, several variants of the GAP have been proposed in the lite-
rature including the Multi-Resource GAP, see e.g.,

( ), the multi-level GAP, see e.g., ( ), the generalized quadratic as-
signment problem, see e.g., ( ); ( );

( ); ( ), the generalized assignment problem with special ordered
sets, see e.g., ( ) and the quadratic three-dimensional assignment

problem, see e.g.,

( ). In ( ), the authors establish a relationship between the Generalized
Quadratic three-dimensional Assignment Problem (GQ3AP) and the CDAP and show
that the CDAP can be solved as a GQ3AP.

3.6.3 Mathematical quadratic formulation for CDAP

The Cross-dock Door Assignment Problem can be described mathematically as follows.
On left side we are having a set M of incoming trucks named origins that have to be docked
and unloaded at a set I of inbound dock doors and at right side we are having a set NV
of outgoing trucks named destinations to be docked to a set J of outbound dock doors.
The total amount of pallets delivered to each origin m € M is s,, > 0, s,, is dispatched
into small amounts of flows f,, , such that each flow f,,, > 0 is destined to destination
n € N. Therefore, the total amounts of flows coming from origin m € M and received by
different destinations can be computed as s, = >y fmmn, Vm € M. In the same way,
on the outbound dock doors side, each destination n € N receives total amount of flows
r, > 0. This amount r, is defined as the total amount of flows coming from different
origins and destined to n € N. Accordingly, r,, is computed as 7, = >/ finn, ¥n € N.
The statements s, > 0 and r, > 0 means that no origin can enter to the facility empty

nor no destination can leave facility empty. The capacity of each inbound dock door i € 1
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is denoted S;, this parameter represents the total number of origins with a quantity of
load s, for each origin that inbound dock door 7 can allocate. Likewise, the capacity of
each outbound dock door j € J is denoted R;, it means the total number of destinations

with quantity of load r,, each destination that outbound dock door j is able to allocate.

For an I-shape cross-dock configuration, it is supposed that all dock doors have the
same capacity, that is, Vi € I, j € J, S; = R;. This variant of the CDAP we deal with
in this PhD thesis considers that each subset M; : M; C M which denotes the subset of
al origins assigned to inbound dock door 7 € I and likewise each subset N; : N; C N
which denotes the subset of all destinations assigned to outbound dock door j € J are
handled the same time. From above description of the optimization problem, we will use

the following notations in the rest of this thesis:

Sets

M : Set of origins referring to incoming trucks

N : Set of destinations referring to outgoing trucks

I : Set of inbound (strip) dock doors

J : Set of outbound (stack) dock doors

Parameters

Sm : Available number of pallets from origin m € M

r, : Number of pallets destined to destination n € N from each origin m € M

S; : Capacity of inbound dock door i € I

R; : Capacity of outbound dock door j € J

d; ; - Distance between inbound and outbound dock doors pair (3, j)

fm.n : Number of pallets flow from origin m € M destined to destination n € N

fm,n 1s considered as the number of trips required by the material handling device to move
pallets originating from origin m € M assigned to dock door ¢ € I to destination n € N

assigned to dock door j € J.
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Decision variables

In order to formally model this combinatorial optimization problem, two binary deci-
sion variables are defined. On the left side of I-shape cross-dock a decision variable z,, ;
for managing assignment of the set M of origins to the set I of inbound dock door and
on the right side of I-shape cross-dock a decision variable ¥, ; for managing assignment of
the set N of destinations to the set J of outbound door.

1 if origin m is assigned to inbound dock door i
VmeM,icl, ;=

0 otherwise

' 1 if destination n is assigned to outbound dock door j
VneN,jeJ, yn; =
0 otherwise
The real model considered in thesis assumes the following configurations :

e Exclusive mode

I-shape cross-dock

More vehicles than dock doors (in both sides!), i.e, |M| > |I] and |N| > |J|

A same count of vehicles input/output |M| = |N|
e A same count of dock doors input/output i.e., [I| = |J]|

e No preemption

No interchangeability - each unit is assigned to a destination

Let € =< m—t—j—n > be the flow path to move the amount f,, ,, from origin m € M
to destination n € N through inbound and outbound dock door ¢ € I and outbound dock
door j € J. The flow path € will be established if both of the following conditions are
fulfilled at the same time: origin m € M is assigned to inbound dock door i € I, i.e.,
ZTm,i = 1 and destination n € N is assigned to outbound dock door j € J, ie., y,,; = 1.
When the flow path is established, the used material handling device starts routing the
flow f,,, from origin m € M to destination n € N through inbound and outbound dock
doors pair (i,7): Vie l,j € J.

According to the above sets, parameters and decision variables, the CDAP may be
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formally modeled as the following quadratic model ) as proposed in ( )

min f(z,y) = DX DD Smadigtmiyny  (31a)
meM i€l neN jeJ
subject to :

> i =1, YmeM  (3.1b)
iel

Q) > =1, Yne N  (3.1c)
jeJ
Z SmTim,i S Sia Viel (31d)
meM
Z T'nYn,j S Rj, V] eJ (316)
neN
Tmiy Ynj € {0, 1}, VYmeMmneN,iecl,jeJ (3.1f)

\

The quadratic interactivity (transportation cost) which denotes the weighted distance
by moving flow f,,, along distance d;; between inbound dock door ¢ € I and outbound
dock door j € J from origin m € M, when m is assigned to inbound dock door 7, to
destination n € N when n is assigned to outbound dock door j is computed as f, » X d; ;,
i.e., the objective function (3.1a) sums up the total weighted distance traveled from all
inbound dock doors |/] to all outbound dock doors |J| according to all distribution flows
fm.n between all origins and all destinations. In the quadratic model Q, the number of

constraints is computed as follows, |M| + |N| + |I| + |.J| and the number of variables is

computed as follows, |M||I| + |N||J]|.

In the quadratic mathematical model @, objective function (3.1a) minimizes the total
transportation cost inside the cross-dock taking into account the constraints (3.1b)-(3.1f)
classified into three groups. The two sets of multiple choice constraints (3.1b) and (3.1c)
ensure that each origin (respectively destination) must be allocated to one and only one
inbound (respectively outbound) dock door, respectively. We group (3.1b) and (3.1c) into
a set of assignment constraints (). The two sets constraints (3.1d) and (3.1e) guarantee
that the capacity of each inbound (respectively outbound) dock door is respected. We
group (3.1d) and (3.1e) into a set of the capacity constraints or knapsack constraints (7).

And the last constraint (3.1f) imposes the binary requirement on the decision variables

(iii).
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3.6.4 Some variants of the CDAP

We recall that the combinatorial optimization problem we are dealing with in this dis-
sertation is related to assignment of trucks to dock doors of an I-shape cross-dock that uses
an exclusive operating mode of dock doors. The standard quadratic formulation detailed
above is originally proposed in ( ). This mathematical formulation refers to
real application where any inbound (respectively outbound) dock door is constrained to
allocate more than one origin (respectively destination) respecting the dock door capacity,
see e.g., the set of constraints (i7) and each origin (respectively destination) is assigned

to one and only one dock door, see e.g., the set of constraints (7). In the following of this

section, we present some variants of the CDAP (summary in Table 3.2) and we raise some

of their limitations as regards to their real applications.

Variants of

CDAP

Summry of related

mathematical formulation

Related remarks

and limitations

(

Each dock

door (in-
bound/outbound) can allocate
more than one origin/destination

managing the capacity of dock door

In this variant of CDAP, each dock
door is assigned one truck and dock

door capacity is not considered

Same as ( :
), just a slight change of assi-

gnment of incoming trucks

At inbound side, the same as

(1990,

bound side, the feasible solution re-

), at out-

quires number of dock doors to ex-
ceed much enough number of out-

going trucks

This is the standard or generali-
zed variant of CDAP. This varant
takes into account the amount of
resources available, namely capacity
of dock doors

The related model can not be ap-
plied in real applications given a lot
of incoming/outgoing trucks excee-
ding number of dock doors

Same limitations as

(1990, 1992)

This variant is the worst given
that it requires additional dock
doors than in

(1990,

bound dock doors) are mismanaged

), the resources (out-
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3.6.4.1 Variant of Tsui and Chang

The proposed mathematical formulation by ( , ) seems not
to be feasible in real applications. In fact, the formulation supposes that each inbound
(respectively outbound) dock door allocates only one incoming (respectively outgoing)
truck and that each incoming (respectively outgoing) truck is assigned to one inbound
(respectively outbound) dock door. Only assignment constraints (i) are considered for both
dock doors and trucks. The dock doors capacity is not taken into account, that makes

this formulation unusable for real applications given the very large number of trucks to

be assigned to dock doors which far exceeds the number of dock doors.

Tsui and Chang Model:

§
mm f(xa y) = Z Z Z Z fm,ndi,jxm,iyn,j (323>
meM i€l neN jeJ
subject to :

> i =1, YmeM  (3.2b)

iel
Qe > =1, VneN  (3.2c)

jed
> wpi=1, Viel (3.2d)

meM

Z Unj = 1, VjeJ (3.2¢)

neN
\ Tpmis Ynj € {0,1}, VmeMmneN,iecl,jeJ (3.2f)

The objective function (3.2a) and the assignment constraints (3.2b) and (3.2c) are
similar to the objective function (3.1a) and assignment constraints (3.1b) and (3.1c) of
previous standard model in (2009). The models QT4 of (1990,

) and @ differ from each other to the constraints (3.2d) and (3.2e) which guarantee
that each inbound (respectively outbound) dock door have to allocate a single origin

(respectively destination).

According to that mathematical formulation of Tsui and Chang, the model requires
on left side the number of origins | M| to be equal to the number of inbound dock doors ||
and likewise, on the right side, the number of destinations |/V| to be equal to the number
of outbound dock doors |J|. Those requirements are due to the pairs of constraints (3.2b)
and (3.2d) that handle trucks to dock doors on left side and (3.2c) and (3.2e) on right side

of I-shape cross-dock. This problem configuration makes the ( , )
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mathematical model unusable in real applications, for instance, in the case the number of
inbound dock doors is greater that the number of incoming trucks, i.e., |I| > |M| and/or
the number of outbound dock doors is greater than the number of outgoing trucks, i.e.,
|J| > | N|, fictitious incoming and/or outgoing trucks with zero quantities will be created.
A slight more realistic configuration of Tsui and Chang model can be proposed to avoid
those fictitious incoming and outgoing trucks by modifying constraints (3.2d) and (3.2e)

related to assignment of dock doors as follows:

> i<, Viel (3.3a)
meM
> i<, VjeJ (3.3b)
neN

Those constraints (3.3a) and (3.3b) ensure that any inbound dock door ¢ € I (respectively
outbound dock door j € J) can allocate one incoming truck m € M (respectively one
outgoing truck n € N) or not. For the reverse case, that is, the number of incoming trucks
is greater than the number of inbound dock doors, i.e., |[M| > |I| and/or the number of
outgoing trucks is greater than the number of outbound dock doors, i.e., |[N| > |J|, the

QT&C

model will be infeasible.

3.6.4.2 Variant of Tarhini et al.

In ( ), the authors proposed a new formulation of Cross-dock Door
Assignment Problem directly based on the model introduced in ( ).
In the quadratic model, the authors defined an additional decision variable to control only
the assignment of origins to dock doors. The authors’ mathematical model is depicted as

follows:
Additional decision variable:

1 if incoming truck m € M is assigned to inbound dock door i €

Zm,i

MAX if incoming truck m is assigned to any outbound dock door j € J

Tarhini et al. model :

)
minimize Z Z Z Z Fmndi jTm iYn.jZm.i (3.4a)
meM i€l neN jeJ
Ot subject to :
(3.2b) — (3.2f)

Zmi € {1, MAX}, Vme M,iel (3.4b)
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The constraint (3.4b) is related to the additional integer variable. The variable will take
value 1 for normal dock doors assignment, i.e., according to I-shape cross-docking facility,
normal assignment imposes origins to be assigned to inbound dock doors and destinations
to outbound dock doors. If any incoming truck is assigned to any outbound dock door
which corresponds to abnormal assignment according to the authors in

( ) Zm. will take a highest integer value, M AX, that will distort the value of the

final solution.

3.6.4.3 Variant of Cohen and Keren

As for ( ), Cohen and Keren consider also the assignment of origins
and destinations instead of trucks, see e.g., ( , ). The authors
take into account another criterion of assigning destinations to outbound dock doors as

described below.

While each inbound dock door ¢ € I allocates one origin at time as in
( , ), on outbound side, a single destination n € N can be assigned to
several loading dock doors j,k,l € J. In fact, the freight flow f,,, destined to desti-
nation n is split and sent to load dock doors j,k,l to which n is assigned. It means

that, in case the total freight flows r, = > fmn, Y1 € N sent to destination n im-

meM
poses several shipping trucks, the freight f,,, is split into several outbound dock doors
J,k,l € J to which those shipping trucks serving destination n are docked. That is, the
capacity of dock door is considered to be equal to the capacity of a truck. The authors
considered that the capacity C,, of truck m € M must respect the following condition
Y nen fmm < Cm, ¥Ym € M and that shipping and incoming trucks have the same capa-
city. Therefore v = (3, c1s fmn)/C,¥n € N denotes the number of trucks serving the
same destination n where C' stands for the capacity of incoming (respectively shipping)
truck. This number v of trucks is equal to the number of load dock doors that are reserved
to allocate the destination n. In that case, f,,, must be split and sent to v load dock doors.
The split is a certain percentage of f,, ,, however, all the splits of f,,, are not known
in advance but are related to v dock doors. In view of this fact, for any combination of
n € N and m € M according to the flow f,,, between m and n, a new decision variable
Qi jn 18 defined to handle how the percentages of f,,, are sent to v outbound dock
doors. Those percentages are such that for all inbound dock door i € I the percentages

Qmiimn X fmms Qmikn X fmns Qmitn X fmn, - . are sent from 4 to the shipping dock doors

Gk o€ AR kAL L et
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Additional parameters:
C' : The capacity of a truck
D : Capacity of a dock door

Additional decision variable:
Qi i jm 18 the portion of f,, ,, that was originating from m unloaded at inbound dock door 4,
and moved to shipping dock door j. All combinations having receiving dock door i that was
not assigned to origin m have a,,, ; ;,, = 0. The same case is true for all combinations having
shipping dock door j to which destination n is not assigned. However, if m is assigned to

inbound dock door 7 and n assigned to outbound dock door j we have 0 < ay, ;. < 1.

Cohen and Keren model:

(.
mn f(x>y7 a) = Z Z Z Zdi,jfm,nam,i,j,nxm,iyn,j (353)
meM i€l neN jeJ
subject to :
D =1, VYm e M (3.5b)
iel
Y Ui =D fmn)/D, VneN (3.5c)
jedJ meM
Z Zl'm,iyn,jam,i,j,n =1, Vm e M,Vn € N (3.5d)
Q° { el jeJ
> i <1, Viel (3.5¢)
meM
> yng <1, VieJ (3.56)
neN
DD D wmifmamigayng < C, vjeJ (3.5g)
1€l meM neN
0 < amijn <1, Vm e M,i€l,ne N,jecJ (3.5h)
Tm,is Yn,j € {0, 1}, VYme M,ie€I,ne N,jeJ (3.50)

The objective function (3.5a) minimizes the weighted distance traveled inside the cross-
dock by finding optimal flow in the case of several shipping dock doors for a single des-
tination. The constraint (3.5b) guarantees that any origin must be assigned to only one
inbound dock door while the constraint (3.5¢) ensures that each destination is assigned to
enough loading dock doors, the constraints (3.5d) means that for each flow f,,, between
origin m and destination n, the sum of percentages oy, ; j is equal to 1. The constraints
(3.5e) and (3.5f) ensure that each inbound(respectively outbound) dock door can allocate
one incoming (respectively outgoing) truck. The constraint (3.5g) guarantees that the

total flows sent to a shipping dock door j cannot exceed the capacity of a truck. The

48



3.6. Cross-dock Door Assignment Problem

constraint (3.5h) defines the bounds of the continuous variable a,y, ; ;. Constraint (3.51)

defines the classical integrality requirement of binary variables x,,; and y,, ;.

In ( : ) ( ) the number of dock doors must
be equal to the number of trucks and in ( , ), at outgoing
side a destination can be docked to more than one dock door, this requires the number
of load dock doors to be big enough than the number of destinations. All those other
variants of CDAP are still simplistic compared to the variant of ( ) given
that nowadays the amount of freights flow is still increasing day after day. Therefore, the
number of trucks is big enough than the number of dock doors. The main ingredients for
the variant in ( ) is that the authors consider the management of resources
that are dock doors. Each dock door, whether inbound or outbound dock door, is managed
as knapsack able to receive more than one object increasing the profit of using the dock

door considered as a knapsack.

3.6.5 Connections with other Assignment problems

In this section we present some Assignments problems and depict some connections

between those problems and the CDAP standard problem we deal with in this dissertation.

3.6.5.1 Assignment and Generalized Assignment Problem

In ( ), the authors have given the first formal definition of Ge-
neralized Assignment Problem (GAP). They have described the GAP as a special case
of classical Assignment Problem (AP). In fact, in the GAP, each task is assigned to one
and only one agent while each agent can be assigned to more than one task. For broad
details, a set of tasks have to be assigned to a set of agents where each agent has limited
resources. The agent’s resources can be for instance the number of hours per day. To be
achieved, each task requires a certain amount of agent’s resources. The importance of the
Generalized Assignment Problem is not only its direct application but it appears as a
sub-problem in many practical and complex combinatorial optimization problems in the

literature, as for instance in our variant of the CDAP.

( ) mathematical formulation for the GAP is as follows. Let
M = {1,2,...,| M|} refers to the set of tasks” index and I = {1, 2, ...,|I|} refers to the set

of agents’ index. The parameter ¢, is the cost incurred when task ¢ € M is executed or
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assigned to agent p € I. To be completely executed a;, refers to the amount of resource
that task ¢ requires from agent p and A, is the amount of resource available for agent
p. A decision variable ¢, is defined to ensure an optimal assignment of all tasks |M] to

agents I’ C I, that is, whether a given task ¢ € M is executed by an agent p € I or not.
Taking into account those sets and parameters above, the GAP is mathematically
formulated as follows.

1 if task ¢ is assigned to agent p
Vie M, pel, g,=

0 otherwise

[ minimize chmﬂft’p (3.6a)
teM pel
subject to :
(GAP) e, =1 Vie M (3.6b)
i€l
> ey <A, Viel (3.6¢)
meM
\ erp € {0, 1}, Vte M, pel (3.6d)

The objective function (3.6a) minimizes the total cost when all tasks | M| are assigned to
agents I’ C I, that is, the solution does not guarantee that all available resources will be
used, this means that in optimal solution, some agents can still free of assignment. The
assignment constraint (3.6b) ensures that each task ¢ € M must be assigned to one agent
p € I, the knapsack constraint (3.6¢) ensures that an agent p can be assigned multiple
tasks respecting the capacity A, of that agent. Constraint (3.6d) fixes the classical binary

decision variable.

The Generalized Assignment Problems do not assume whether or not this task must
be executed by this agent, those optimization problems just seek an optimal arrangement
of tasks to agents until all tasks are assigned and completely executed with a minimal
cost. Accordingly, the parameter a;, is constant for each agent, that is, a;, = a, and

means the amount of resource required by task t regardless the agent p.

In comparison with an I-shape cross-dock and the variant of CDAP we deal with in
this study, there is a relation between the Generalized Assignment Problem (GAP) and
the Cross-dock Door Assignment Problem (CDAP). In fact, an inbound dock door i € I
(respectively an outbound dock door j € J) can be seen as an agent p € [ and an

origin m € M (respectively a destination n € N) can be compared to a task ¢t € M. On
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the two sides of I-shape cross-dock, volume of goods s, from an origin m (respectively
volume of demand 7, from a destination n) can be compared to the resource a; required
by task t to be executed and the capacity S; of inbound dock door i (respectively capacity
R; of outbound dock door j) can be compared to he capacity A, of the agent p, see
e.g., ( ). Accordingly, CDAP includes GAP as sub-problem on each

side of I-shape cross-dock.

In ( ); ( ), the authors showed that the
Generalized Assignment Problem is NP-hard. Accordingly, CDAP is also NP-hard. In
addition, according to the computational experiments, the CDAP is still complicated

using exact methods and more specially for large scale instances.

3.6.5.2 Quadratic and Generalized Quadratic Assignment Problems

The Quadratic Assignment Problem (QAP) is one of the difficult combinatorial opti-
mization problems to solve using exact methods, especially when the size of the problem

grows up. In ( ), the authors have defined the QAP as following

QAP min E E b jxi; + E g E E CijhaTijTrg x € X,x € {0,1} p  (3.7a)
i€N jEN e JEN keN leN
7 J#l

where:

reX=Kx>0:

The objective function and the constraints all gathered into (3.7a) minimize to total cost
b; ; of implanting units | N| to location |N| (first term of objective) and the quadratic cost
¢ k1 of material flow between a unit ¢ implanted to location j and unit k£ implanted to
location [ (second term of objective function). The locations j and [ are separated by a
distance d;; and the units ¢ and k exchanges a flow w; ;. Therefore the cost ¢; j ;1 = d;w;
denotes the weighted distance which corresponds to the product of flow w; ; between unit
¢ and unit & with the distance d;; between the location j and location [ where unit i
and unit k£ are implanted, respectively. The assignment constraints ensure that in each
location j is implanted one unit ¢ and each unit ¢ is implanted in one location j. Those

two constraints require that the number of units must be equal the number of locations.

In ( ), the authors have extended this model
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by formally modeling the QAP as a Generalized Quadratic Assignment Problem (GQAP).
Afterwards, using Reformulation Linearization Technique (RLT), the authors have pro-
posed a linearization of quadratic objective function. Like GAP, the GQAP consider that
locations j and [ can allocate each one more than one unit respecting the capacity of
each location. This implies that the number of units can be greater that the number of
locations. Additional parameters such that location capacity, the space needed for each

unit are defined.

e M : the set of units
e N : the set of locations
® a,; is the space needed to implant unit ¢ in location j

e b, is the available space for location j

Hahn et al. GQAP model :

GQAP min Z Zbi’jxi’j + Z Z Z Zci,j,klxi,jxk,l cx e X,z e{0,1} » (3.8a)

i€EM jEN 1€EM jeEN keM leN
i#h A

where:
Zamxm S bj7 V] c N
ieM

X5 = 17 Vie M

JEN

reX=<Kx>0:

The constraint
Z Q55 j S bj, VQ e N
ieM
ensures that a location j can allocate several units i respecting location capacity b; while

constraint
Z Li 5 = 1, Vie M
jeN
ensures that each unit 7 is implanted in one location. As the QAP is hard to solve mainly

due the quadratic term, the GQAP is also hard to solve.

The common relation between GQAP and the variant of CDAP we deal with in this
study is that both combinatorial optimization problems seek to minimize a quadratic

objective function of a cross-product of binary decision variables while managing a finite
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amount of resources such that locations and dock doors, respectively. Moreover, in

( ), it has been pro-
ved that Cross-dock Door Assignment Problem (CDAP) can be solved as Generalized
Quadratic three-dimensional Assignment Problem (GQ3AP). The Standard formulation
of CDAP presenting a quadratic term of the two binary decision variables z,,; and v, ;
and being hard to solve, some linearization techniques slightly similar to those used to

linearize the GQAP have been employed to linearize the quadratic model of
(2009).

We also took a look at the Reformulation and Linearization Technique (RLT) applied
on 0-1 integer programming problem in ( ). In Adams and Sherali
reformulation, a new set of constraints is added for each variable z; as follows. For each
constraints ZZEN a;x; < b of original problem, both constraints ZieN a;x;x; < bxr; and

Yien @izi(1 — ;) < b(1 — x;) are added; and for each constraint ) .., ciz; = d of

original problem, the constraint ). . c;wxr; = dx; is added. This RLT is known to
produce the tight linear programming relaxation bounds, see e.g., ( ). The
intent was to apply Adams and Sherali ( ) RLT on the standard
quadratic formulation of the CDAP ( ) to confirm the tightness of the linear

programming relaxation bounds of the standard CDAP. The computational results given

by this RLT to the standard CDAP are not presented in this dissertation.

3.7 Conclusion

In this chapter we have defined cross-docking and we have given some applications in
practice. The difference between warehouse and cross-docking and the strategies employed
by cross-docking have been shown, among those strategies, cross-docking eliminates the
two most costly operations of warehouses, namely storage and order-picking. The three
decision levels, namely strategic, tactical and operational, used to successfully implement
a cross-docking have been described. We then have focused on operation level to describe
relevant optimization problems raised by cross-docking on that level including the optimi-
zation problem we deal with in this PhD thesis. We have emphasized on the combinatorial
optimization problem referred to Cross-dock Door Assignment Problem (CDAP) that we
tackle here. We have explained the complexity of CDAP due to the presence of cross-
product of binary decision variables and to the nature of CDAP. Some variants of this

problem have been described and their mathematical formulations have been discussed
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and compared with the variant we tackle. A certain relation between the variant of CDAP
we deal with here and other classes of assignment problems have been established. In the
next chapter we are going to develop and present some new solutions, more precisely we
develop new non standard Mixed Integer Linear Programming (MILP) models and we

prove their equivalence as well as their equivalence to the standard linear MIP for CDAP.
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Chapter 4

Mathematical Programming
Formulations for the Cross-dock Door

Assignment Problem

Chapter notes : This chapter is a broad development of two articles, a journal ar-
ticle published September 2018 into The International Journal of Management Science
(Omega) and a manuscript undergoing preparation for submission to publication for
which the preliminary experimentation results have been presented into 11% edition of
Journées Plyhédres et Optimization Combinatoire (JPOC’11) https://jpocll.event.

univ-lorraine.fr/resource/page/id/9
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In this chapter, as widely developed into chapter 3, we tackle the variant of the Cross-
dock Door Assignment Problem (CDAP) proposed for the first time in ( ).
This variant of CDAP is an extension of the classical mathematical model introduced in

( , ) to take into account the management of dock doors as finite
resources. We propose new Mixed Integer Linear Programming (MILP) formulations for
the Cross-dock Door Assignment Problem, afterwards, we prove the equivalence between
those new MILP models and carry out an extensive comparative study on benchmark data
sets from the literature to compare performance between these models and with existing
MIP models from literature. To the best of our knowledge, the best MILP model for the
CDAP is the one we have proposed for the first time, the results of which are published
in ( ). Afterwards, we pick one of the proposed MILP models that gives
a good compromise between the best lower bounds by the Linear Programming (LP)
relaxation and running time consumption and then we apply a Lagrangian Relaxation
(LR) approach to generate new and better lower bounds on the optimal solution value
given by that MILP model. We use the sub-gradient optimization method to solve the
Lagrangian dual problem. The computational results show that Lagrangian dual improves
significantly the LP relaxation lower bound and the lower bound given by a recent La-
grangian Relaxation from literature, ( ). However, this improvement is
offset by an important increase of the computational effort needed to solve the relaxation

especially when the size of the problem increases.

4.1 Introduction

As already pointed out in chapter 3, cross-docking is a strategy implemented into the
cross-dock. We recall that a cross-dock is a type of warehouse in supply chain management
that allows orders to be prepared without going through the phase of storing products
in the warehouse and subsequently selecting them for delivery. We also recall that Cross-
dock Door Assignment Problem (CDAP) is concerning the management of fully loaded
incoming trucks named origins that enter to a cross-dock facility and unload their products

on inbound dock doors of that facility. The unloaded products are immediately sorted and

26



4.1. Introduction

organized according to their destinations and, using material handling devices inside the
facility such that forklift, those products are immediately transferred to outbound dock
doors to be loaded into outgoing trucks named destinations or delivery trucks for being
distributed to final customers. Unlike classical warehouses, on cross-dock yard, products
are unloaded and loaded without placing them in temporary storage. The goal of the
CDAP is to assign origins on inbound dock doors and destinations on outbound dock

doors so that the total transportation cost inside the cross-dock is minimized.

The standard quadratic formulation for the CDAP as proposed in ( )
is hard to solve, even for small-sized instances. Because of the NP-hard character of the
CDAP, most of the studies of this combinatorial optimization problem in the literature
have been dedicated to developing efficient heuristic solution approaches to cope with

large scale instances.

To the best of our knowledge, there are only three Mixed Integer Programming (MIP)
formulations for the CDAP in the literature, namely the standard MIP model and the
MIP models proposed in ( , ). In this chapter, we propose eight new
non standard MILP models for the CDAP and demonstrate the mathematical equivalence
of all 11 models, together with rigorously proving some of their properties. In order to
detect which of these 11 models is the best, we conduct an extensive comparative analysis
on benchmark instances from the literature, which discloses that the best MILP model is
one proposed in this chapter for the first time. We further prove the equivalence of these
formulations and identify their integrality properties. Finally, we perform an extensive
comparative study of their performance on benchmark instances from the literature, re-
porting the number of instances solved optimally or not, upper bounds they provide, and
CPU time consumed by a CPLEX MIP solver applied to each formulation. More precisely,
the comparison of performance between the models is not done analytically as in

( ), but empirically.

We next propose a Lagrangian Relaxation approach that we apply to the best MILP
formulation we proposed for the CDAP to produce a new lower bound on the optimal
value and to improve the bound provided by the LP relaxation. The choice of that MILP
model for Lagrangian Relaxation is based on a compromise between the LP bound and
the processing time to obtain it. The proposed Lagrangian Relaxation relaxes the derived
knapsack constraints (new capacity constraints) related to dock doors that have been
added to strengthen that best MILP model. The Lagrangian dual problem is solved using

the sub-gradient optimization algorithm. The results of computational experiments show
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that the Lagrangian dual model improves significantly the LP relaxation bound but still

consuming more important CPU time than LP relaxation.

For solving the MILP and Lagrangian models, we have selected the CPLEX solver
of IBM since it is one of the most effective solvers and because it is a good indicator of
model performance, in the respect that if one model performs better than another using

CPLEX then the same ranking of the models occurs when applying other leading solvers.

The rest of this chapter is organized as follows. In section 4.2, we describe the standard
quadratic mathematical model originally proposed in ( ) and the standard
linearization of quadratic model. Then, we present the customary approaches to linearize
this standard quadratic model of CDAP, that is, we describe the way we replace the
cross-product of decision variables in the objective function and the standard MIP model
for CDAP. In section 4.3 we introduce new sets of constraints and build new non-standard
MILP models for CDAP. We additionally prove the equivalence of those new non standard
MILP models between them as well as their equivalence to the standard MIP model
presented in literature. In section 4.4, we deal with the integrality requirement on the
additional decision variable used to linearize the quadratic objective function and prove
that the relaxation of the integrality requirement on some variables will not affect the
optimal solution value. In section 4.5 we present the Lagrangian Relaxation (LR) approach
and the sub-gradient optimization method we use to solve the Lagrangian dual model.
In section 4.6, we provide an exhaustive comparative analysis of the MILP models in
order to identify the best MILP model, afterwards, we provide Lagrangian dual results.
Computational experiments on both MILP models and Lagrangian Relaxation are carried
out on the benchmark data set from the literature. The last section 4.7 of this chapter is

dedicated to the conclusion.

4.2 Standard Formulation for the CDAP

In this section we present the standard quadratic formulation for the CDAP proposed
in ( ) together with the standard approach for linearizing this model. In
addition, we present some valid equalities and inequalities for the resulting Mixed Integer

Programming model.
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4.2.1 Standard quadratic formulation

We recall that the standard quadratic formulation of the CDAP is as follows. Given
a set M of incoming trucks (origins), a set N of outgoing trucks (destinations), a set I of
inbound dock doors and a set J of outbound dock doors, each inbound/outbound dock
door may serve more than one origin/destination respectively subjected to the dock doors’
capacity constraints and to the assignment constraints of origins/destinations. If the origin
m € M is assigned to the inbound dock door ¢ € I and the destination n € N is assigned
to the outbound dock door j € J, a transportation cost is incurred. The transportation
cost is the product of d; ; and f,, ,, where d; ; refers to the distance between inbound dock
door 7 and outbound dock door 7, and f,, ,, is the number of pallets moved from the origin
m to the destination n. The total number of pallets delivered by an origin m € M can
be computed as s, = Zne ~ fmn and the total number of pallets received at destination
n € N is computed as r, = Zme 17 fmn- The capacity of an inbound dock door ¢ € [ is
denoted by S; and the capacity of an outbound dock door j € J is denoted by R;. In
order to formally model the CDAP, we use the binary decision variable z,,; to indicate
whether origin m € M is assigned to inbound dock door ¢ € I or not; and the binary
decision variable y, ; to indicate whether destination n € N is assigned to outbound dock

door j € J or not.

According to those sets and decision variables, the CDAP is mathematically formulated

in the model Q*" below, see e.g., ( ).

(

min f(xa y) = Z Z Z Z fm,ndi,jxm,iyn,j (41&)
meM i€l neN jeJ
subject to :
D ami=1, VmeM  (4.1b)
iel
Q) D i =1, VneN  (4.1c)

jed
> smami < S, Viel (4.1d)
meM
> ratng < RBj, VieJ (4.1e)
neN

\ Ty Ynj € {0,1}, VmeMmneN,iel,jeJ (4.1f)

In the objective function (4.1a), the quadratic cost ¢, ;nj = fimndi; of product flow f,,

between origin m € M and destination n € N and the distance d;; between inbound
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dock door ¢ € I and outbound dock door j € J is linked by the quadratic term x,, ;y, ;
of binary decision variables x,,; and y, ;. The objective function (4.1a) minimizes the
total transportation cost inside the cross-dock. The two sets of constraints (4.1b) and
(4.1c) stand for assignment constraints constraints while the sets of constraints (4.1d)
and (4.1e) are the capacity constraints. The last set of constraints (4.1f) imposes the

binary requirement on the decision variables, see chapter 3 section 3.6.3.

4.2.2 Standard linearization for the CDAP

In this part, we depict the standard approach for linearizing the quadratic term x,, ;y» ;
in the quadratic model Q*". The linearization most used and probably the most natural

was first presented in ( ). It is sometimes called classic or standard linearization.

Given that a quadratic objective function is harder to solve than a linear objective,
the quadratic mathematical formulation Q" may be linearized by dropping the quadratic
term x,,; Xy, ; of binary decision variables. Therefore, we introduce a new binary decision

variable 2, ; to replace the quadratic term and setting 2, ;. ; as follows:
Zmying = Tm,ilYn,j Vmem,iel,neN,jeJ

In this case of study of the CDAP, as told in chapter 3 this new introduced decision
variable z,;,; indicates whether a path 2 =< m —1i — j —n > is established or not. 2
denotes a transfer path of low f,, ,, of products from the origin m € M to the destination
n € N according to whether m is assigned to inbound dock door ¢ € I or not and n is
assigned to outbound dock door j € J or not. That is, if an origin m € M is assigned to
inbound dock door ¢ € I, i.e., z,,,; = 1 and a destination n € N assigned to outbound dock
door j € J,i.e., y,; = 1, the path ) is established, this implies that, 2., ;yn; = 1 = 2Zm.in,;
(Tm iy Yn; and 2, ; binary). In addition, to ensure that the new binary variable z,, ;.
for all m € m, i € I, n € N, j € J satisfies its required property (e.g., zmin,; = 1 iff
Tpm,i = Yn; = 1), the following constraints (4.2a)-(4.2d) need to be stated and added in
the standard linear model M%° for CDAP.

(ming < Tmis Vm € M,Vi € I,¥n € N,Yje€J (4.2a)
Zming < Yn,j VYm e M,Vie I,Yne N,VjeJ (4.2b)
Zmjing = Tmi+ Ynj — 1, VYm e M,Vie I,vne N,VjeJ (4.2¢)
Zmjim,g > 0 VYm e M,Vie I,Yne N,VjeJ (4.2d)
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Thereby, the resulting Mixed Integer Programming model M%0 is :

§
min g(z) = Z Z Z Z di,jfm,nzm,i,n,j (433)
meM i€l neN jeJ
subject to
> i =1, Vm e M (4.3b)
iel
> =1, Vne N (4.3¢)
jed
Zmjimg < T Vne NNme M,iel,jeJ (4.3d)
(MO0) . .
Zming < Ynj Vne Nme M,iel,jeJ (4.3e)
Zmyimg = Ynj + Tmi — 1, Vne Nyme Myiel, jeJ (4.3f)
Z SmTim,i S Sia Viel 43g)
meM
> ruyny < Rj, VjeJ (4.3h)
neN
Ty Ynj € {0, 1}, VmeM,i€l,neN,jeJ (4.3
\ Zming = 0 Vme M,ieI,ne N,jeJ (4.3

The assignment constraints (4.3b) — (4.3¢) and the capacity constraints (4.3g) — (4.3h)
are still the same as in Q*" model above. Constraints (4.3d) and (4.3e) ensure that if the
origin m is not assigned to the receiving dock door ¢ and the destination n is not assigned
to the shipping dock door j, then the transfer path 2 cannot be established. On the
other hand, if the origin m is assigned to the receiving dock door ¢ and the destination
n is assigned to the shipping dock door j, then the transfer path €2 is established due to
constraints (4.3f)

The set of constraints that the MIP M%° must satisfy can be decomposed into two
sets : ¢) the set of assignment constraints (4.3b) — (4.3f) and the constraints (4.3i) and
(4.3j) on the decision variables which will be gathered into set as A%, and i) the set of
capacity constraints (4.3g) — (4.3h) which will be gathered into set as C°.

4.3 Non Standard Assignment and Capacity constraints

In this section we present three sets of assignment constraints that are deduced from
the set A° as a result of the valid equalities and inequalities as stated in the preceding

section. Additionally, we prove the equivalence of these sets of constraints. We also present
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a set of capacity constraints deduced directly from the set C® and we prove the equivalence
between the constraints gathered into those two sets.
4.3.1 Assignment constraints

In this part, we present some valid equalities and inequalities for the resulting Mixed

Integer Programming model.

The next proposition provides some valid equalities for above model M%°,

Proposition 4.3.1 The constraints of the following system

( sz,i,n,j = Yn,j> VYme M,ne N,jeJ (4.4a)
el
> Zmimg = T VmeMneN,icl (4.4b)
jedJ
SN zming =1, Vm € M,n € N (4.4¢)
L el jeJ

are valid for the MIP M.

Proof. The valid equalities (4.4a) and (4.4b) are directly deduced from constraints (4.3b)
and (4.3c) by multiplying them by y,, ; and x,, ;, respectively. On the other hand, the valid
equality (4.4c) is a direct consequence of the valid equalities (4.4a) and (4.4b) taking into
account the constraints (4.3b) and (4.3¢). O

The two sets of valid equalities (4.4a) and (4.4b) imply that if the origin m is assigned
to the inbound dock door 4, then the commodity from the origin m to the destination n
must be routed through inbound dock door ¢ and some outbound dock door j; similarly,
if the destination n is assigned to an outbound dock door j, then the commodity from
the origin m to the destination n must be routed through outbound dock door j and
some inbound door i. The set of inequalities (4.4c) imply that the commodity from the
origin m to the destination n is routed via a unique pair (7, j) of inbound dock door i and

outbound dock door j.

The first set of assignment constraint that we present here is based on the observation
that the nature of the problem implies that the large set of constraints (4.3f) may be

replaced by a smaller one as stated in the next proposition.
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Proposition 4.3.2 The constraints (4.3f) may be replaced by the set of equalities:

Zzzm,i,w’:L Vme M,ne N

iel jeJ
Proof. Constraints (4.3f) ensure that if z,,,; = y,, ; = 1 then 2,,;,; = 1 as well, otherwise
they are redundant. On the other hand equalities > ;c; > c;2min; = 1 for all m €
M,n € N require that for each m and n there are unique ¢ and j' so that z,,;,; = 1.
From constraints (4.3b) and (4.3c), it follows that for each m and n there are as well
unique ¢ and j” so that z,,,» = y,» = 1. Taking into account constraints (4.3d) and
(4.3e) we have z,;,; = 0if i # " or j # j” and z,,,,,; < 1if i =" or j = j”. This
implies that ¢ = " and j' = j” and therefore if x,, ;» = y,, j» = 1 then 2, j» =1 O.

As a consequence of the preceding property we obtain the following set of assignment

constraints :
Assignment constraints A’ :

(

Z Ty = 1, Ym e M (4.5a)
el
> mi=1, Vne N (4.5b)
jeJ
Zmsing < Tmis Vne NmeM,iel jeJ (4.5¢)
1
(A) Zmsing < Unjs Vne NmeM,iecl,jelJ (4.5d)
Z Z Zmsing = 1, Yme M,ne N (4.5e)
iel jeJ
Ty Unj € {0,1}, VmeM,iel,ne N,jeJ (4.5f)
| Zming = 0, Vme M,ie€l,ne N,je J.J (4.5g)

The following corollary is a direct consequence of the preceding property.
Corollary 4.3.1 Assignment constraints A and A' are equivalent.

Replacing the constraints (4.5¢) and (4.5d) with equalities :
sz,i,w = Ty, VYme M,née N,i €1
jeJ

sz%n’j =Ynj, VmeMneN,jeJ

icl

respectively we obtain the set of assignment constraints gathered into A2
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Assignment constraints A? :

( Z Tpi = 1, Ym e M (4.6a)
el
> =1, Vn e N (4.6b)
jeJ
5 sz,i,n,j = YUn,j» VYme M,ne N,jeJ (4.6¢)
(A%) QT
> Zming = T, VneNmeM,iicl (4.6d)
jeJ
Tpis Unj € {0,1}, VYme M,ieI,ne N,jeJ (4.6e)
\zm,i,n,jzoy VmEM,ZEI,nEN,jEJ (46f)

The equality (4.5¢)
Zzzm,z‘,w‘:L VYme M,ne N
iel jeJ
can be a result from (4.5a) and (4.5b). Therefore, the inclusion of equalities (4.6¢) and
(4.6d) together with (4.5a) and (4.5b) make constraints >, ;> .c;2min; = 1 for all
m € M,n € N redundant and therefore we do not need to include them in the set A2
The equivalency of the sets of constraints A' and A? is then formally proved by the next

proposition.
Proposition 4.3.3 Constraints A' and A? are equivalent.

Proof.

(=) From constraints (4.5e) we have that for each m € M and n € N there are unique
i € Iand j € Jsothat z,,,; = 1. This, together with constraints (4.5a) - (4.5d), further
implies that z,,; = land x,,» = 0,7’ € [,V #iaswellasy,; =landy,; =0,5 € J, 5’ #
j. Therefore we have Y . ; Zmirnj = Yny = 0,5 € J,j' #jand D> ) Zmimg = Ynj = 1.
Similarly, we have Zj,e] Zmit g = Tmy = 0,4 € 1,7 # i and Zj,ej Zmimng = Tmi = L.
Consequently, constraints A! imply constraints A42.

(<) Constraints (4.6¢) and (4.6d) imply constraints (4.5¢) and (4.5d), respectively. On the
other hand, constraints (4.6a) together with constraints (4.6d) imply constraints (4.5¢)
Vm € M,n € N and constraint (4.6b) together with constraint (4.6¢) imply constraint
(4.5¢) Vm € M,n € N. Consequently, constraints A2 imply constraints A'.[]

As already pointed out, the following constraints

Zszﬂ-,m:l, ‘v’mEM,nEN

icl jeJ
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are redundant for the set A2. However, an interesting observation is that replacing constraints

(4.6a) and (4.6b) by constraints

Zzﬁzmyi,nyjzl, VYme M,ne N

iel jeJ
leads to another valid set of assignment constraints, as follows.

Assignment constraints A? :

( sz,i,n,j = Yn,j, Vm € M,TL S N,] eJ (47&)
i€l
> zming = Tm: Vne Nme M,iel (4.7b)
Jj€J
3\ .
A SN zming =1, YmeMmneN  (4.7c)
iel jeJ
Tomir Ynj> Zmimg € 10,1}, Vme M,i€l,neN,jeJ (4.7d)
 Zmin,g = 0, VYme M,iel,ne N,jeJ (4.7¢)

Note that this set of constraints is in the same format as the constraints already proposed

in the paper of ( ) ( ).
Proposition 4.3.4 Constraints A*> and A3 are equivalent.

Proof.

(=) Constraints (4.6a) and (4.6d) imply constraints (4.7c¢) and therefore constraints A
imply constraints A3.

(<) Constraints (4.7a) and (4.7c) imply constraints (4.6a), while constraints (4.7b) and
(4.7¢) imply constraints (4.6b). Hence, constraints A% imply constraints A'. [J

From propositions 4.3.2, 4.3.3 and 4.3.4 we have the following consequence.

Corollary 4.3.2 Assignment constraints A°, A', A% and A? are equivalent.

4.3.2 Capacity constraints

Starting from the capacity constraints (4.3g) and (4.3h) gathered into a set C° as

below :
Z SmTmi S Si7 Viel

(CO) : meM
Zrnyn,j S ij vj €J

neN
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as Tp,; and y,, ; are positive (i, yn; € {0,1}), we may derive the following set of valid

inequalities :
Z SmZming < Siln.j, Viel,ne N,jeJ (4.8a)
> ratming < Ritm, VieJJmeM,icl. (4.8b)
neN

Indeed, these two sets of constraints are obtained by multiplying the capacity constraints
(4.3g) and (4.3h) by y,, ; and x,, ;, respectively. In ( ) these two constraints
are also considered as valid inequalities. The meaning of the newly established constraints
is as follows. Constraints (4.8a) ensure that the total amount of commodities with the
destination n routed via the inbound - outbound dock door pair (7, 7) do not exceed the
capacity limit of the inbound dock door 7. Similarly, constraints (4.8b) ensure that the
total amount of commodities with the origin m routed via the inbound - outbound dock

door pair (i, j) respects the capacity bound of the outbound dock door j.

As already mentioned, the constraints gathered into set C! provide also valid inequa-
lities in ( ). In this section we go further and prove the equivalence
between capacity constraints C° and C! for the CDAP. The proof is based on the fact that
Zmin; = Tm,iYn; and the observation that assignment constraints guarantee the existence
of n' € N and j' € J such that v, j = 1 as well as the existence of m’ € M and i’ € I
such that z,,, 7 = 1 (due to the problem definition).

Proposition 4.3.5 Capacity constraints C° and C' for the CDAP are equivalent.

Proof.
(=) Multiplying constraints (4.3g) by y,; for all n € N,j € J, we obtain the following
inequality

Z SmZmying < YnSi, Vi€ I,ne N,je J, (using the fact thatz,,;n; = TmiYn,;)
meM

Similarly, we show that constraints (4.3h) imply constraints (4.8b).
(<) If we consider the constraint (4.8a), we have

Z SmZmiin = Z SmTm,ilnj < Silnj Viel,ne N,jelJ

meM meM

Keeping in mind that there exist n’ € N and j’ € J such that v,/ = 1 (this follows from

assignment constraints) we have

Z SmTim,i S Sz’; \4) el

meM
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Similarly, we can show that constraints (4.8b) imply constraints (4.3h).0]

4.4 MIP models and integrality properties

In this section we present MIP models that may be deduced by combining the as-
signment and capacity constraints presented in the preceding sections. In addition, we

identify the integrality properties of these models.

4.4.1 Eleven MIP models

Having four equivalent sets of assignment constraints A*, for all k = 0, ...,3 and two
equivalent sets of capacity constraints C*, for all h = 0, 1 we come up with 8 different new

MIP formulations. These 8 MIPs may be stated in general form as :

(MPMy min{g(z) : A*,C"}, for all k =0,1,2,3, for all h =0, 1.
The following proposition enable us to generate three new MIP models.

Proposition 4.4.1 The constraints (4.3d) and (4.3e) are redundant in the MIP models
MO0 MO and MBE

Proof. In models M®*? and M%! constraints (4.3d) and (4.3e) are redundant since we seek
to minimize the objective function and the objective coefficients in the CDAP are positive,
that is, ¢min; = fmndn; > 0, frun > 0forallm € M,n € N and d;; > 0 for all i €
I,j7 € J. In addition, in both models the equality zp,;n; = Zmyn; Temains true even
if we exclude constraints (4.3d) and (4.3e), due to the fact that the z,,,, ; variables are
bounded from below only by constraints (4.3f). Namely, if z,,; = y,,; = 1, then due
to constraints (4.3f) zy,;,; will equal 1 as well, while otherwise z,,;, ; takes the value
0 (again due to the fact that the objective coefficients in the CDAP are positive). The
preceding reasoning leads as well as to the conclusion that in models M%°? and M%! with
excluded constraints (4.3d) and (4.3e), the integrality requirement on variables 2, ;
may be relaxed.

On the other hand, in the model M"! the constraints 4.3d (resp. (4.3e)) force 2, ;,.; to
be equal to zero if z,,,; = 0 (resp. y,; = 0). Since the parameters f,,, are positive and
by consequence the data s, and r, are also positive, the capacities constraints (4.8a) and

(4.8b) imply 2y in; = 0 if @ = 0 or y,; = 0.
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TABLE 4.1 — Number of constraints for each MIP model

MIP Total number of constraints
M B M[INT+ 1]+ |J] + [M] + [N
M (ZI[JIBIMIN| + [M| + |NJ) + |M]| + |N]
ML CU[[J+ DIM[[N|+ [I] + |J] + [M] + [N|
M (N[ JI2IM[N| + |M| + |N]) + [M[|N] 4 [M] + [N
M>? (IM[INT+ D) (U] +[J]) + [M] + [N|
M>! (IM]+ INDQ + [I][J]) + [M[NI(] + 1)
MP? [MIINT(H+ [T+ 1) + [+ ]
M [MIINT(]+ 171+ 1) + {[[JI([M] + [N])
M? [M{INTU[|J]+ [T+ [J] + [M] 4 [N]
M [LI[JI(M[INT + [M] + [N|) + [M] 4 [N]
M (L[[J]+ DAMIIN| + [M] + [N])

Hence the constraints (4.3d) and (4.3e) are redundant in the MIP models M®° M%1
and M0

As a consequence of the above proposition, we have three new MIP models M”00 A0
and MY obtained from the corresponding models M*" by dropping the constraints
(4.3d) and (4.3e). In the model M0 the constraints (4.3d) and (4.3¢) cannot be omitted
because if this is the case, it will be missing a connection between variables z,,;, ; and

Ty, on the one hand and variables z,,;,; and y, ; on the other hand.

The 11 MIPs have the same number of binary variables, i.e., |I||J||M||N|+ |I||M]| +
|J||N|. The Table 4.1 provides the number of constraints in each of the 11 MIP models
MFR forall k=0,..,3, h=0,1 and MO0 MO AL

Comparing the number of constraints for each of these 11 MIP models shown in
Table 4.1, it may be inferred that the number of constraints in the model M?? is smaller
than in any other model. As will be shown in Section 4.7 reserved for computational
results, the reason why the model M?? is solved the fastest is probably due the the fact

it has fewer constraints than other models.
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4.4.2 Integrality properties of MIPs

This section provides properties which show that in all our MIP formulations the
requirement z,,;,; € {0,1} for all m € M,n € N,i € I,j € J, can be relaxed to require
just zmin; € 10,1 forallme M,ne Nyiel,je J.

Proposition 4.4.2 The integrality requirement on variables 2y, ;,; € {0,1} for all m €
M,n € N,i € 1,5 € J, in constraints A° may be relazed. Moreover, the binary variables

Zming € {0,1} may be replaced by Zmiim,g = 0.

Proof. Suppose z,,in; = a > 0 for some m € M,n € N,i € I,j € J. Then, due to
constraints (4.3d) and (4.3e) we have x,,; = 1 and y,; = 1 respectively. This further
implies 2, ;n; = @ > 1 from the constraint (4.3f) and therefore o = 1. The last statement
is deduced from constraints (4.3d) and (4.3e), and the fact that the variables z,,; and vy, ;

are binary. [

Proposition 4.4.3 The integrality requirement zp, ;. ; € {0,1} in constraints A may be

relazed.

Proof. Let suppose that we just impose requirement z,,;,; > 0 and for some m € M
and n € N and some 7 € [ and j € J we have z,,,,; = o > 0. Because of constraints
(4.5d) we have o < 1. In addition, constraints (4.5¢) and (4.5d) imply that y,; = 1
and x,,; = 1. On the other hand, constraints (4.5a) and (4.5b) imply that y, ;; = 0
for all j/ € J,j/ # j and x,, = 0 for all i’ € I,i' # 4. This implies in turn that
Zminny = 0 for all j" € J,j" # j,i" € I (from constraints (4.5¢)) and 2, ;» = 0 for
all i € I,7" #1i,j" € J (from constraints (4.5d)). Hence, taking into account constraint
(4.5¢) we have 1 = ., Zj,,eJ Zm,it mg? = Zminj = . Consequently, the integrality

requirement z,,;,; € {0,1} in constraints A' may be relaxed. OJ

Proposition 4.4.4 The integrality requirement z, ;. ; € {0,1} in constraints A* may be

relaxed.

Proof. Suppose we impose requirement z,,;,; > 0. Because of constraint (4.6c) we
have z,,;,; < 1. Suppose then for some fixed m € M and n € N and some i € [
and j € J, we have z,,,; = a € {0,1}. Then, this implies that y,,;, = 1 and z,,; =
1 because of constraints (4.6¢) and (4.6d). Hence, from constraints (4.6¢) and (4.6d)
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follow Zi,eli,# Zmitn,j = 1 —a and Zj,er,¢j Zmin,; = 1 — a. Taking into account that
Y il ZjeJ Zmimg = D icl Tmi = ZjGJ Yn; = 1 (this chain of equalities is deduced by
summing the constraints (4.6¢) over set J and the constraints (4.6d) over set / noting

that > ,c; Tm: =1and 3, ;y,; =1) we have
L= Zming = D Zmimit D Zming T Zming =2 - a.
i€l jeJ el i’ #i j'ed,j'#j

This implies @ > 1 which is a contradiction. Hence, the integrality requirement may be

relaxed. O

Proposition 4.4.5 The integrality requirement 2y, ; .; € {0,1} in constraints A* may be

relaxed.

Proof. Analogous to the proof of Proposition 4.4.4. [J

Note that the preceding property of the z,,;,; variables in constraints A* has also

been detected in ( : ).

Proposition 4.4.6 The integrality requirement may be relazed on the variables zp, ;pn; €

{0,1} for allm € M,n € N,i € I,j € J, in models M""°, M1 and M1

Proof. The proof is a direct consequence of the preceding propositions and Proposition
4.4.1, which implies that in each of models M0 M'%1 and M constraints (4.3d) and

(4.3e) may be deduced from the constraints in a model. [J

To the best of our knowledge, the standard MIP formulation M%° was already consi-
dered in ( ), while another type of reformulation that looks like the model
M?39 has been proposed in ( ). On the other hand, the remaining MIPs
have not been yet considered for solving the CDAP.

4.5 Lagrangian Relaxation for the CDAP

In section 4.7, computational experiments carried out on benchmark instances from
the literature show that MILP model (M?°)min{g(z) : A? C°} is the fastest model for
CDAP known so far. We also recall that the derivative MILP model (M?!) min {g(z) :
A% C'} is obtained by replacing initial capacity constraints (3.1d) and (3.1e) gathered
into C° by (4.8a) and (4.8b) gathered into C' to strengthen M?°. In (2016),
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the authors have considered the MILP model (M3°)min{g(z) : A% C°} and instead
of replacing the constraints (4.1d)-(4.1e) by (4.8a) and (4.8b) respectively, the authors
have added them as redundant and they came out a new MILP model (M3%1) min {g(z) :
A3,C% C'} for CDAP. That resulting MILP model M?%! is too weak in term of processing
time consumption. This is may be due to the big number of constraints, but it performs

the same LP relaxation lower bound as M?1.

The following of this section provides the Lagrangian Relaxation approach that we
have used to exploit the MIP model M?! so as to provide new lower bound to optimal
solution value found so far. Lagrangian Relaxation is a well-known optimization method
that has been significantly investigated to solve many optimization problems. It consists
of reducing problem complexity by introducing hard constraints associated with their
respective penalties as a part of objective function ( : , ). Lagrangian
Relaxation has been used in (

Problem (TSP).

, ) to solve Traveling Salesman

The integral MILP model M??! to which we apply Lagrangian Relaxation approach is

defined as follows :

(

min g(z) = Z Z Z Zdi,jfmvnzm%n’j (4.9a)
meM 1€l neN jeJ
subject to :
> Smzming < Sitnj: VieI,Lne N,jeJ (4.9b)
meM
> rozming < Ritm, VjeJmeM,iel (4.9c)
neN
> mi=1, VYm e M (4.9d)
(M2h) el
>y =1, VneN (4.9)
jeJ
szzn] = Ynj» Vm e M,ne N,jeJ (4.9f)
icl
> Zmimg = T VneN,meMiiecl (49g)
jeJ
xm,ivyn,jyzm,i,n,j S {07 1}7 vm € Man € Nal € I?] € J. (49h)
\ Zmiing € {0,1}, YmeMmneN,iel jeJ (49

Here, we propose a Lagrangian Relaxation procedure that relaxes the derived capa-

city constraints (4.9b) and (4.9¢). For ( ), in the considered MIP model
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M3%1 the authors relaxed capacity constraints (4.9b) and (4.9¢) together with assign-
ment constraints (4.9f) - (4.9¢) in a Lagrangian way and solve Lagrangian dual model
using sub-gradient optimization algorithm. The authors showed that the Lagrangian ob-
jective function can be decomposed into three sub-problems, each sub-problem in a space
of the corresponding decision variable x,, ;, ¥ ;j and 2, ; » ; respectively. Unfortunately the
Lagrangian lower bound found is worse. In fact, from the results of computational expe-
riments, the lower bound value of Lagrangian dual is smaller than that of corresponding

LP relaxation for all instances.

In our case of study, the relaxation of the constraints (4.9b) and (4.9¢) in a Lagrangian
fashion has been motivated by the following findings : i) some preliminary computational
experiments showed that the optimal solution value when capacity constraints (4.9b) and
(4.9¢) are dropped is the same as the LP relaxation lower bound of (M?%)min {g(z) :
A?,C°} and the model is faster than LP relaxation of M*?; i) the LP relaxation lower
bound of M?! is better than that of M?? for all instances, see e.g., Table A.5.

We define A, j,Vjm,q > 0 that stand for the Lagrange multipliers associated to each
capacity constraints (4.9b) and (4.9¢), respectively.

The Lagrangian Relaxation model can be stated as follows :

;

min i) = 3D YD Omingming = ) D bustn
meM i€l neN jeJ neN jeJ
D IP I
meM i€l
subject to :
Z xm,i = 17 Vm S M
iel
LR(N,7) > =1, Vn €N
jed
sz,i,n,j:yn,ja VmEM,nGN,jGJ
i€l
szjiynjj:xmm Vne Nme M€l
=
Tpis Yn,j € {0, 1}, VYmeMmneN,iecl,jel
Zming = 0, VmeMneN,iel jeJ

where :

® Uming = di,jfm,n + /\i,n,jsm + Yim,iTn
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® bnj = icr NinjSi

o and ¢ =D i Vim,ilR

4.5.1 Solving Lagrangian Dual model

We let v(P) denotes the optimal value of a minimization optimization problem P and
v(P) denotes the optimal value given by the usual LP relaxation of the same problem.
For any Lagrange multiplier p, let LR, denotes the Lagrangian Relaxation program for
problem P. It is well known that LR, provides a lower bound v(LR,) on the optimal
solution value for the original linear problem. The goal is to find an optimal value u
that provides the best lower bound value by solving Lagrangian dual model related to
the Lagrangian program LR,. Let zp be the Lagrangian dual model associated to LR,,.

Theoretically, v(P) < v(zp) < v(P).

In our case of study, the best possible lower bound is obtained by solving the Lagran-
gian dual program (D) below :

max z = V(LR(A,
- { (LR, 7))

subject to : Ay >0

v(M?21) < (D) < v(M>), forall A, v >0
where :

e v(M?21) is the LP relaxation lower bound of the model M?!
e v(D) is the lower bound obtained by solving dual model D

e v(M?>!) is the optimal solution value of the model M?!

The sub-gradient optimization method, see e.g., ( ) ( );

( ), is one of the existing iterative algorithms to find good values for Lagrange
multipliers. For a certain number of iterations, the sub-gradient optimization algorithm
adjusts iteratively the value of Lagrange multipliers to the solution value that is the
best or near the best lower bound. To solve the Lagrangian dual program D, we use the
sub-gradient optimization algorithm, see e.g., ( ) ( ). At each
iteration, the sub-gradient optimization method depicted in algorithm 4.1 solves Lagran-
gian dual and updates Lagrange multipliers A;, ; and 7, ,,; to move Lagrangian lower

bound value v(LR(A,7)) in direction of optimal solution value of original problem M?1.
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Algorithm 4.1 Sub-gradient Optimization Algorithm

L

o

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

30

Parameters :
LB <+ —o0; UB < Upper bound on v(M?>1);
092,107t < 0 Neount < 0: Nyaa
(A%,79) < (0,0){\, v start by zero}
(A%,7°) + (d(4.9b),d(4.9¢)){\, v start by dual value of associated LP}
repeat
Solve Lagrangian model LR(\!,~")
L(AE, A1)+ LR(AE,AY) {I(AY,+") is optimal value of LR(A,~) model at iteration ¢}
if (I(\',~4") > LB) then
LB « I(\',4")
Neount <0
else

Ncount — Ncount + 1
end if

Compute the sub-gradient G(\',7") of LR(A,7)

o' (UB=I(A\' 1))
G A

Updates Lagrange multipliers (A", 1) «<— Max{0, (A%, ") + ©".G(\},41)}

Compute stepsize ¢!

if Neount = Niae then {if no progress in more than N,,,, iterations}
a < random(0, 1)
if ao? < € then
o« o0 {reset o'*! to its starting value}
else
ottt « act
end if
Neount <0
else
ot gt
end if
t—t+1
until terminate()

: Return LB
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Let (z*,y*, 2*) be an optimal solution of Lagrangian Relaxation LR(\',~") obtained
at iteration ¢, the sub-gradient of the associated function v(LR(A,~")) at that iteration
tis G(A, ") = (6, G"") where:

)\t . .
G = SmZmin; — S, Vi€elneNjelJ

meM
t
Y _ E * * - .
gi,m,j — Tnzm’i7n’j - R].Tmﬂ, VZ E ],m E M,j 6 J
neN

From sub-gradient algorithm 4.1 below, the stopping criteria are a maximum number
of iterations, a maximum processing time to solve each instance and if the sub-gradient
G(\', ~") equal to zero. If one of these criteria is met, the sub-gradient algorithm terminates
(line 29) returning the best lower bound found so far (line 30). In this algorithm, L B stands
for the lower bound on optimal solution value of M?!. After a number of consecutive
iterations nMax without improvement of LB, the parameter of € [0,2] starting with
0% = 2 is decreased by a random value « €]0, 1] and o is reset to its initial value 2 if it
attains €. The lines 3 and 4 define that sub-gradient algorithm starts by zero or by dual

values of associated LP for Lagrange multipliers.

The upper bound U B is generated by a constructive heuristic. This heuristic begins
by assigning in sequential way all origins on inbound dock doors. Afterwards, regarding
origins assignment, each destination is then assigned in a greedy way. After this initial as-
signment, origins are removed from dock doors where they are assigned and are reassigned

in a greedy way regarding destinations assignment.

4.6 Computational results

All tests presented in this section were conducted on a personal computer Intel(R)
Core(TM) with i7-6700HQ 2.60GHz CPU and 16GB of RAM, running Windows 10 OS.
To solve the MIP formulations and Lagrangian model we have used CPLEX 12.6.3 solver
and the sub-gradient algorithm has been coded in Java IDE. The MIP formulations are
compared in terms of the quality of the upper bounds they provide, and the CPU time
consumed by CPLEX to solve an instance with a time limit set to 2 hours (7200 seconds).
Lagrangian Relaxation and LP relaxation lower bounds are compared as well as the CPU
time consumed. For sub-gradient algorthmin 4.1 one of the two criteria, 2 hours or 2000

iterations has to be fulfilled for the algorithm to end. For testing purposes, 50 benchmark
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instances * proposed in ( ) were used. The authors have generated this
data set in the following way. They filled the flow matrix (fy,.), for all m € M,n € N
with randomly generated integer values between 10 and 50 until 25% of the flow matrix
was filled. It is assumed that a destination n will receive a flow of at least f,,,, from one
origin m which will send at least flow f,,,, to one destination n. The process is repeated
until all |M] origins and all | V| destinations are accommodated assuming |M| = |N].
To generate the distance matrix, the I-shape cross-docking facility is assumed to have an
equal number of inbound and outbound dock doors, i.e., |I| = |J|. Most of the applications
instances have cross-docks with a width of 90 feet and dock doors with a width of 12 feet,
which corresponds approximately to the proportion of 8 to 1. Therefore, in all instances
distances range from 8 to 8+ |I|—1. In addition, the I-shaped cross-dock has a rectangular
shape, with receiving dock doors on one side and outbound dock doors on the other
side. Therefore, rectilinear distances may accurately simulate distances traversed by the
forklifts following clearly marked lanes, see e.g., ( ). This means that
all instances are generated to correspond to a realistic situation. The capacity of each
dock door is set to be equal to the total flow coming from all origins divided by the total
number of inbound dock doors, plus the quotient of p% of the slackness of the total flow,
where p € {5,10, 15,20,30}. More precisely, the dock door capacity is calculated using

the following formula :

Slack = —Zm‘ej_]‘f Sm

Sm Sm
ZmGM + Slack — ZmGM

1] 1|
The number of origins/destinations in the instances ranges from 8 to 20, while the number

of inbound/outbound dock doors is between 4 and 10.

* p%

Dock door capacity = (14 p%)

For the MIP formulations, the computational results are divided into two parts. In the
first part we test the MIP models where integrality requirements on the variables 2y, , ;
are relaxed, while in the second part we keep the integrality requirements. We identify
models with relaxed integrality requirements by denoting them as M** where M*" is

the corresponding model with the integrality requirement intact.

a. https://tinyurl.com/yb616vmz
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4.6. Computational results

4.6.1 Comparison of models - with integrality requirement on

variables z,,;, ; relaxed

In Tables 4.2 and 4.3, we provide a summary of the results obtained by the 11 MIP
models (with a relaxed integrality requirement on the variables 2, ; , ;). By the convention

that “solving ”

an instance means that a feasible solution is found, Table 4.2 provides
summary results in terms of the number of instances solved (row ‘“# instances’’), the
number of instances solved to optimality (row ‘“# optimal’’), the average optimality gap
attained by CPLEX (row ‘‘gap’’), the average CPU time used by CPLEX to solve an
instance (row ‘‘CPU time’’) and the average number of nodes processed (row ‘“# nodes”’).
Table 4.3 provides some detailed results for each class of instances for models that suc-
ceed in solving all instances. Instances with the same number of origins/destinations and
inbound /outbound dock doors form a class. The number of origins/destinations and in-
bound/outbound dock doors in each class is given in the first column of the Table 4.3 in
the form |N|x |I|. The remaining columns of the table report for each method the average

solution value (column ‘‘value’’), the average CPU time (column ‘‘CPU time’’) and the

average optimality gap (column ‘‘gap’’) attained by CPLEX on each class.
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MO0 M1 MO ML MZ0 M2Z1 M3 0 M3 L MIO’,O M/O’,l M
# instances 38 50 50 44 50 49 50 47 41 50 50
# optimal 21 29 38 28 45 34 45 34 29 29 34
gap 0.143 0.213 0.020 0.030 0.010 0.037 0.010 0.022 0.029 0.193 0.033
CPU time 3546.10 3449.20 | 2069.87 | 3102.73 | 745.35 | 2489.73 | 768.48 | 2406.56 | 2325.72 3275.19 | 2801.96
# nodes 403590.47 | 919624.10 | 21718.80 | 3423.85 | 6909.22 | 3721.92 | 7254.68 | 4107.19 | 2115087.02 | 1522937.64 | 5134.08
TABLE 4.2 — Comparison of models - integrality requirement on variables z,, ; , ; relaxed
MY M0 MZ20 M3'0 M/O’,l MV
NP} value | time | gap | value | time | gap | value | time | gap | value | time | gap | value | time | gap | value | time | gap
8x4 | 5120.8 | 2.92 ]0.000| 5120.8 | 1.15 ]0.000| 5120.8 | 0.22 [0.000| 5120.8 | 0.23 |0.000| 5120.8 | 1.69 |0.000| 5120.8 | 3.08 |0.000
9x4 | 5978.2| 5.82 ]0.000| 5978.2 | 1.53 ]0.000| 5978.2 | 0.20 [0.000| 5978.2 | 0.38 [0.000| 5978.2 | 3.56 |0.000| 5978.2 | 4.70 |0.000
10x4 | 6319.8 | 28.28 [0.000| 6319.8 | 2.76 [0.000] 6319.8 | 0.34 [0.000{ 6319.8 | 0.53 |0.000| 6319.8 | 15.58 [0.000| 6319.8 | 11.99 [0.000
10x5 | 6427.8 | 297.31 {0.000| 6427.8 | 8.73 [0.000| 6427.8 | 0.77 ]0.000{ 6427.8 | 1.18 [0.000| 6427.8 | 111.90 |0.000| 6427.8 | 97.44 ]0.000
11x5 | 7555.6 |1600.02{0.000| 7555.6 | 14.52 [0.000] 7555.6 | 1.40 [0.000{ 7555.6 | 1.94 [0.000| 7555.6 | 572.83 |0.000| 7555.6 | 673.42 |0.000
12x5 | 7972.8 |5838.02{0.109| 7970.2 | 61.64 [0.000| 7970.2 | 2.75 [0.000{ 7970.2 | 3.58 [0.000| 7978.8 {5791.21]0.107| 7970.2 | 749.89 |0.000
12x6  |10452.4|5119.59{0.093|10449.8| 413.18 {0.000{10449.8| 12.10 [0.000{10449.8| 13.75 [0.000{10474.8{4655.11]0.056|10452.4|4879.05]0.015
15x6  |13819.6]7200.00{0.500|13756.4|5878.42{0.001|13756.4| 61.56 [0.000{13756.4| 128.25 [0.000{13849.4|7200.00|0.452|13842.6|7200.00{0.040
15x7 |14786.2|7200.00{0.524|14705.8|7200.00{0.02814688.8| 174.13 |0.000|14688.8| 334.93 {0.000|14761.8|7200.00{0.446|14836.0{7200.00{0.061
20x10 129869.4|7200.00{0.902]|29904.0{7200.00|0.174]29602.4|7200.00{0.101{29641.4|7200.00{0.101|29638.2|7200.00|0.873|33157.2|7200.00|0.216

TABLE 4.3 — Comparison of models on each instance class - integrality requirement on variables z,,;, ; relaxed




4.6. Computational results

From the reported results we observe that only models M%1, M0 A0 M350
MY and M'YL, enable us to solve all the 50 instances using CPLEX. Among them,
models M?** and M3 are the best two, both yielding the best optimality gap (0.010%),
solving the largest number (45) of instances to optimality and consuming the least CPU
time on the average. Their superiority over the other models is also confirmed by a 95%
confidence interval plot of the optimality gap (see Figure 4.1). The MIP formulation
M?0 needed 745.35 seconds on average, while M?0 consumed 768.48 seconds to solve
an instance. These values are about three times less than the average CPU time consumed
by the next fastest formulation M'%. On the other hand, the two worst models, in terms
of the number of solved instances, turn out to be models M®? and M’ 00 for which
CPLEX was only able to solve 38 and 41 instances, respectively. In addition, we observe
that all models M1, M0 M0 M0 MY and MV are capable of optimally
solving instances with up to 11 origins/destinations and 5 inbound/outbound dock doors.
However, only models M?*° and M** succeed in optimally solving each instance with
up to 15 origins/destinations and 7 inbound/outbound dock doors. On the largest class
of instances, model M?"0 exhibits slightly better performance in terms of solution value

than M3 (see Appendix A).
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FIGURE 4.1 — 95% confidence interval plot of the optimality gap-integrality requirement

on variables 2, ;, ; relaxed

To further assess the performance of models M1, M0 M0 M3 0 MO and
M1 which enable CPLEX to provide a solution for all instances considered, we use

performance profiles as suggested in ( ). For each method two perfor-
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mance profiles are generated : one with respect to the best upper bounds found and the
another with respect to the CPU times consumed. We denote the best upper bound by
Un and denote the CPU time consumed in solving an instance by Ty. Then, to compare
U or T for different models, we compute the ratio RY, = M/ min mrerii M }, where
M, stands for Upq or Ty and M is the set of models to be compared. Therefore, the
performance profile of model M with respect to metric R} measured over each instance

s in a set S is simply the graph of the cumulative distribution function, defined as :
Fy(r) =|{s € S| R}, < r}|/IS].

In the graph, R} values are given on the x-axis, while F'3] values are given on y-axis.

Performance Profile - solution values
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FIGURE 4.2 — Performance profile-solution values : integrality requirement on variables

Zm.in,; Telaxed

From the performance profiles presented in Figures 4.2 and 4.3 we may conclude that
models M?? and M?* clearly dominate all the others. The average optimally gaps
presented in Table 4.2 were indicative of this advantage, but this is now confirmed by the
upper bound and CPU time performance profiles, where we see the graphs of M?*? and
M3 0 on top of the others. If we compare the upper bound performance profiles of M?0
and M?>"0 we see that they cross once in the interval [1,1.005]. Namely, the upper bound
performance profile of M?° dominates that of M?° in the interval [1,1.0025], which
means that M* finds an upper bound within 0.25% of the best upper bound for more
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Performnce profile - CPU time
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—— 3,0
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ratio of solved instances
e a

deviation from the best CPU time

FIGURE 4.3 — Performance profile-CPU times : integrality requirement on variables 2, ;  ;

relaxed

instances than M?0. Starting from the crossing point, the upper bound performance
profile of M?¥ starts to dominate that of M?"?. In addition, we observe that the largest
deviation from the best solution value attained by model M?? is about 0.25% less than
the largest deviation from the best solution value attained by model M*°. However, the
difference between models M2 and M?*0 is not statistically significant, in terms of the
optimality gap, as can be observed from the 95% confidence interval plot of the optimality
gap (see Figure 4.1). On the other hand, if we compare CPU times in the performance
profiles of M?** and M?°, we observe that the model M2 clearly outperforms the
model M?0. The superiority of M?** over M?*¥ in terms of CPU time consumed is
established by a Wilcoxon signed rank test, refer to e.g., ( ), which yields
a p-value < 0.0001 (i.e., p = 5.3¢79). In view of these observations we may say that the
model M?0 is better than any other model compared, especially if a high quality solution

is sought in a short time.

4.6.2 Comparison of models - with integrality requirement on

variables z,,;, ; imposed

Similary to Tables 4.2 and 4.3, in Tables 4.4 and 4.5 we again compare the preceding

models but now with the integrality requirement imposed on the variables 2, ; » ;

81



¢8

M0,0 MO,l MI,O Ml,l MQ,O M2’1 M3,0 M3’1 M’O,O M’O,l M’l,l
Q
# instances 46 47 50 47 50 49 50 49 41 48 50 §
# optimal 21 28 45 39 45 39 45 38 29 27 34 i
gap 0.268 0.239 0.015 0.016 0.011 0.024 0.012 0.026 0.158 0.248 0.026 §
CPU time 4324.69 3544.65 1036.82 | 1818.23 | 841.08 | 1891.40 | 1177.04 | 2053.82 2284.94 3525.66 | 2693.76 93
D
# nodes | 416648.28 | 394352.79 | 16222.62 | 386.43 | 10639.40 | 384.55 | 24638.02 | 606.80 | 2113500.12 | 450466.65 | 1040.50 §
TABLE 4.4 — Comparison of models - integrality requirement on variables z,, ;, ; imposed S;
v
g
S
Mo,l M2,0 M3’0 M’l,l §
V] 1 . . , _ )
value time gap value time gap value time gap value time gap ~
QS
8x4 5120.8 0.70 0.000 5120.8 0.15 0.000 5120.8 0.35 0.000 5120.8 2.49 0.000 §
9x4 5978.2 1.25 0.000 5978.2 0.21 0.000 5978.2 0.54 0.000 5978.2 4.64 0.000 §
=
10x4 6319.8 1.67 0.000 6319.8 0.38 0.000 6319.8 0.93 0.000 6319.8 16.38 0.000 i
=
10x5 6427.8 6.31 0.000 6427.8 1.00 0.000 6427.8 3.17 0.000 6427.8 98.49 0.000 %
Q)
11x5 7555.6 6.04 0.000 7555.6 1.64 0.000 7555.6 4.24 0.000 7555.6 210.63 0.000 Q
S
12x5 7970.2 14.40 0.000 7970.2 3.67 0.000 7970.2 14.32 0.000 6280.4 898.74 0.000 i
12x6 10449.8 87.18 0.000 | 10449.8 26.09 0.000 | 10449.8 80.48 0.000 | 10449.8 | 4106.28 | 0.004 i
-
15x6 13756.4 648.34 0.000 | 13756.4 132.93 0.000 | 13756.4 622.78 0.000 | 13867.6 | 7200.00 | 0.035 S
S
15x7 14688.8 | 2402.35 | 0.000 | 14688.8 | 1044.73 | 0.000 | 14688.8 | 3843.62 | 0.000 | 14965.0 | 7200.00 | 0.065 c?
20x10 30165.4 | 7200.00 | 0.145 | 29828.2 | 7200.00 | 0.105 | 30004.2 | 7200.00 | 0.124 | 31067.2 | 7200.00 |