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l’UNIVERSITÉ POLYTECHNIQUE HAUTS-DE-FRANCE
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École doctorale:

Sciences Pour l’Ingénieur (ED SPI 072)
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Abstract

Cross-docking is a strategy originally introduced to optimize operations inside a ware-

house as part of the optimization of the Supply Chain. Like traditional warehouses, products

are collected from numerous freight yards such that suppliers, factories, manufactures,etc., using

trucks, and are moved towards processing centers named cross-docks. At cross-dock yard, prod-

ucts first get unloaded on inbound dock doors. Afterwards, they are sorted according to their

destinations and are immediately transferred, using handling devices, to appropriate outbound

dock doors to be sometimes consolidated with other products of the same destination and are

reloaded into shipping trucks. Unlike traditional warehouse where storage period of products

is indefinite, for cross-dock, goods are unloaded and reloaded the same day without waiting in

temporary storage area or can wait less than one day. In this PhD thesis, we study an NP-hard

optimization problem raised by cross-dock referred to “Cross-dock Door Assignment Problem

(CDAP)”. The CDAP consists in assignment of incoming and outgoing trucks to inbound and

outbound dock doors of cross-dock, respectively. The goal is to minimize the total transporta-

tion cost inside the cross-dock. The standard quadratic formulation of the CDAP includes the

Generalized Assignment Problem as subproblem. In this dissertation, we perform an extensive

cross-docking literature review. Then, we carry out a broad analysis of the standard quadratic

formulation as well as the standard linearization of the CDAP. From this in-deph study, we

propose several new non standard Mixed Integer Linear Programming models for the CDAP. To

detect the best linear model among those we propose and those existing, we compare the per-

formance of these models on instances proposed in the literature. We next propose a Lagrangian

Relaxation approach to produce the best new lower bounds to optimal solution value. This La-

grangian Relaxation is applied to the model that produces the best LP relaxation bounds. The

Lagrangian dual is solved using a subgradient algorithm. According to the experiments it seems

that large-scale instances cannot be solved with an exact method in reasonable running times and

memory requirements. Thus, we propose and implement two heuristics based on “Probabilistic

Tabu Search” to operate efficiently with larger instances of the CDAP. To assess the effective-

ness of these proposed heuristics, we compare their performance, first between them and then

with recent heuristics in the literature. The results demonstrate the efficiency of the proposed

approaches on data sets from the literature.

Keywords: cross-docking, dock door assignment, mixed integer programming, linear program-

ming relaxation, lagrangian relaxation, subgradient optimization, heuristics, probabilistic tabu

search



Résumé
Le cross-docking est une stratégie utilisée pour optimiser les opérations à l’intérieur de l’entre-

pôt dans le cadre de l’optimisation de la chaine logistique . Comme pour les entrepôts tradition-

nels, les produits sont collectés depuis plusieurs origines de production tels que les fournisseurs,

les usines, les fabricants, etc., par des camions, puis ils sont acheminés vers des plateformes appe-

lées cross-docks. Arrivés au cross-dock, les produits sont d’abord déchargés sur des quais d’entrée

du cross-dock. Ils sont ensuite triés selon leurs destinations et sont immédiatement transférés,

à l’aide des matériels de manutention, vers des quais de sortie correspondants pour, quelques

fois être consolidés avec d’autres produits allant à la même destination et sont rechargés dans

des camions sortants. Contrairement aux entrepôts traditionnels où la durée de stockage des

produits est indéfinie, pour le cross-dock, ils sont déchargés et rechargés le même jour sans at-

tendre dans la zone de stockage temporaire, ou peuvent attendre moins d’un jour. Dans cette

thèse, nous étudions le problème d’optimisation NP-difficile apparaissant dans le cross-dock ap-

pelé “Cross-dock Door Assignment Problem (CDAP)”. Le CDAP consiste à affecter des camions

entrants et sortants, respectivement aux quais d’entrée et de sortie du cross-dock. Le but est

de minimiser le coût total de transport à l’intérieur du cross-dock. La formulation quadratique

standard du CDAP inclut le problème d’affectation généralisée comme sous-problème. Dans cette

thèse, nous effectuons une revue de littérature étendue du cross-docking. Nous nous concentrons

ensuite sur la modélisation mathématique du CDAP via une formulation quadratique standard,

ainsi que sur la linéarisation standard de ce modèle. À partir de cette étude approfondie, nous

proposons plusieurs nouveaux modèles linéaires non standard pour formuler le CDAP. Nous com-

parons ensuite ces modèles entre eux et ensuite avec les modèles récents de la littérature afin

de déterminer le meilleur modèle linéaire. Nous proposons ensuite une Relaxation Lagrangienne

pour produire de meilleures nouvelles bornes inférieures à la valeur de la solution optimale. La

Relaxation Lagrangienne est appliquée au modèle qui produit de meilleures bornes inférieures

de la relaxation continue. Le dual lagrangien est résolu par l’algorithme du sous-gradient. Les

expérimentations montrent que les instances de grande taille ne peuvent pas être résolues par

une méthode exacte en temps et ressources mémoires raisonnables. Nous proposons et implé-

mentons donc deux heuristiques basées sur la recherche taboue probabiliste pour pouvoir traiter

efficacement les instances de grande taille du CDAP. Pour évaluer l’efficacité de ces deux heuris-

tiques, nous comparons leurs performances, d’abord entre elles, ensuite avec celles d’heuristiques

récentes de la littérature. Les résultats obtenus montrent l’efficacité de nos méthodes sur des jeux

de données de la littérature.

Mots-clés: cross-docking, affectation des quais, programmation en nombres entiers mixtes, re-

laxation continue, relaxation lagrangienne, algorithme du sous-gradient, heuristiques, recherche

taboue probabiliste
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Chapter 1

Introduction

In today’s competitive market where customers require short delivery time of their

orders, Supply Chain (SC) with only classic distribution centers such that warehouses,

is not enough to meet customers’ requirements. Although warehouses remain involved

and needed, when they are used alone they can not efficiently meet customers’ need. In

a typical warehouse, products are received at warehouse yard, then, they are inspected

and stored into pallet racks waiting customers’ orders. When a customer order is received

into warehouse system, the product concerned by the order is retrieved from storage

area it is stored and operations related to that order are started until it is loaded into

shipping truck. Therefore, the main operations in a typical warehouse are receiving,

inspection, storage, order-picking, shipping, etc. The interested readers can view the

details in Agustina et al. (2010); Bartholdi and Hackman (2011); Van Belle et al. (2012).

Two of those warehousing operations, namely storage and order-picking are the most

expensive because of the highest cost of inventory holding and intensive workforce, see

e.g., Bartholdi and Hackman (2011); Van Belle et al. (2012); Ramaa et al. (2012); Habazin

et al. (2017).

Nowadays new strategies are implemented to fulfill warehouse gaps. Those new stra-

tegies help to improve the functioning of Supply Chain while remaining costs saving, see

e.g., Stalk et al. (1992); Ladier and Alpan (2016a); Nguyen (2017). However, those stra-

tegies raise other new problems, many of which are combinatorial optimization problems.

The emergence of new effective methods of resolution helps to solve those combinato-

rial optimization problems raised and adapt the Supply Chain against the increasing of

customers’ requirement. Cross-docking is one of strategic and innovative techniques imple-

mented along Supply Chain. This strategy aims to eliminate the two expensive operations

1



Chapter 1. Introduction

of warehouse because, for cross-docking products are transferred to their respective des-

tinations the same day. As products are transferred immediately, cross-docking strategy

shorten delivery time which is the most requirement for customers. In this PhD. thesis,

we focus on one of combinatorial optimization problems raised by cross-docking strategy.

That combinatorial optimization problem is concerning the management of a particular

warehouse referred to cross-docking facility or cross-dock.

Many definitions of cross-docking appear in the literature review, see e.g., Bartholdi

and Gue (2004); Agustina et al. (2010); Van Belle et al. (2012). As warehouses, cross-

docking is concerning to transfer products coming from various freight yards such that

suppliers, factories, manufacturers, etc. The products are immediately transferred from

inbound to outbound dock doors of cross-dock without going through temporary storage

area, or even though some of these products can go through temporary storage, they

spend there just less than one day, see e.g., Van Belle et al. (2012); Guignard et al.

(2012). Sometimes products are required to be transferred within less than an hour, refer

to e.g., Bartholdi and Gue (2004). Thus, cross-docking facility is simply a transit area

into which products “cross-dock” the facility to be shipped to the respective destinations.

Cross-docking strategy raises many combinatorial optimization problems that cannot

be solved in reasonable time (polynomial time) using only exact methods because of the

size and/or the practical constraints that make hard the resolution of those optimization

problems. In view of this fact, many recent works in the literature review showed that

the scientific community is increasingly turning to hybrid resolution techniques in which

the aim is to combine at the best the components of different exact methods, heuristics

and metaheuristics. Those combinatorial optimization problems are classified according to

three levels of decision namely strategic, tactical and operational, see e.g., Agustina et al.

(2010); Van Belle et al. (2012). The combinatorial optimization problem we tackle in this

PhD. thesis belongs to the operational level of decision and it is referred to the Cross-

dock Door Assignment Problem (CDAP). The standard mathematical formulation

of this optimization problem has been introduced for the first time by Zhu et al. (2009). We

are going to focus our works particularly on theoretical and methodological aspects and

will propose new innovative linear models and algorithms to solve efficiently that problem

that is a well-known NP-hard combinatorial optimization problem, refer to e.g., Garey

and Johnson (1983) about an NP-complete problem.

The Cross-dock Door Assignment Problem can be briefly described as follows : On

cross-dock yard, receiving trucks get their products unloaded on input dock doors. Using
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products handling devices inside cross-dock like forklifts, pallet jack, etc., the products are

immediately transferred to output dock doors to be loaded into shipping trucks. Accor-

dingly, the CDAP can be represented with inputs parameters that are a set of incoming

trucks and a set of outgoing trucks to be docked on sets of inbound and outbound dock

doors of cross-dock, respectively, with the goal of to look up an optimal assignment of

those incoming and outgoing trucks on inbound and outbound dock doors, respectively,

that minimizes the total weighted distance traveled by products handling devices inside

cross-dock. In resolution approaches, we propose several new Mixed Integer Linear Pro-

gramming (MILP) models, a Lagrangian Relaxation approach and two heuristics based

on Tabu Search (TS) to solve the Cross-dock Door Assignment Problem (CDAP). The

proposed resolution approaches carry out :

• Assignment of a set M of all incoming trucks on a set I of inbound dock doors repre-

sented by a partition XM,I

• Assignment of a set N of all outgoing trucks on a set J of outbound dock doors

represented by a partition YN,J

All those proposed resolution approaches have proven a better performance to solve CDAP

than those recently proposed in literature review.

This PhD. thesis contains three contributions, two of them have been successfully pu-

blished and the third contribution is a manuscript in preparation for submission to the

publication. The first contribution entitled “A comparative study of formulations

for a Cross-dock Door Assignment Problem” has been accepted for publication

in December 2018 into The International Journal of Management Science (Omega) and

co-authored with Pr. Saïd Hanafi, Dr. Raca Todosijević, Dr. Oualid Guemri, Pr. Fred

Glover and Pr. Shahin Gelareh (contribution order). The second contribution “A La-

grangian heuristic approach for the Cross-dock Door Assignment Problem” is

a manuscript under preparation for submission to publication. It is an improvement of

the conference article entitled “A Lagrangian Relaxation for Cross-dock Door As-

signment Problem” presented into 11th edition of Journées Polyèdres et Optimisation

3
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Combinatoire (JPOC’11) co-authored with Pr. Saïd Hanafi and Mcf Christophe Wilbaut.

The third contribution “Probabilistic Tabu Search for Cross-dock Door Assign-

ment Problem” has been published in March 2019 into European Journal of Operational

Research (EJOR) and co-authored with Dr. Oualid Guemri, Pr. Saïd Hanafi, Dr. Raca

Todosijević, and Pr. Fred Glover.

This dissertation is composed by 6 chapters and is organized as follows. The chapter 2

presents the main operations into warehouse, the cost incurred by operations and how big

pallet are split into small units and the movement of those units. Among those warehouse’s

internal operations, the two most costly operations are reviewed.

The chapter 3 covers the state of the art for the cross-docking strategy. This chap-

ter describes in more details cross-dock warehouse and the strategies involved by cross-

docking ; the three levels of decision such that strategic, tactical and operational. The stu-

dies related to those decision levels include optimization problems like cross-dock network

design (strategic level), cross-dock layout design (tactical level), dock-door assignment,

truck scheduling, etc. (operational level). We detail different combinatorial optimization

problems that arise in operational decision level because we focus on an operational op-

timization problem. Afterwards, we emphasize on Cross-dock Door Assignment Problem

that is the case of study of this dissertation.

The chapter 4 is a broad development of two articles, a published journal and a confe-

rence articles. In this chapter, we carry out a broad analysis of a standard quadratic

mathematical formulation proposed in Zhu et al. (2009) and a standard linearization for

CDAP based on the linearization made in Fortet (1960). Then, we propose eight new

non standard MILP models for the CDAP. To detect the best MILP model among those

we proposed and the models recently proposed into the literature, we have performed

an exhaustive empirical analysis using benchmark data sets from literature introduced

by Guignard et al. (2012). Those MILP models are implemented and solved using CPLEX

solver into Java environment. Afterwards, we choose one MILP model to which we apply a

Lagrangian Relaxation (LR) procedure. The goal of the Lagrangian Relaxation approach

is to find new and better lower bounds on the optimal solution value. We use sub-gradient

optimization algorithm to solve the Lagrangian dual model. The same benchmark data

sets, Guignard et al. (2012), are used to evaluate the performance of our Lagrangian Re-

laxation approach. The results of Lagrangian dual are compared with those given by LP

relaxation of the corresponding MILP model and the recent results given by Lagrangian

Relaxation from literature, Nassief et al. (2016). The Lagrangian Relaxation model is
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solved using CPLEX solver and the sub-gradient optimization algorithm is implemented

into Java environment.

The chapter 5 is also a large development of a published journal article. In this chapter,

we implemented in Java environment two heuristics based on Probabilistic Tabu Search.

We have referred those heuristics to PTS1 and PTS2. Our probabilistic algorithm is

based on Tabu Search proposed by Glover (1986). We use Probabilistic Tabu Search

(PTS) to solve efficiently large scale instances of CDAP for which there is so far no exact

method that can solve them. We embedded an exploration heuristic to this algorithm

for neighborhood exhaustive exploration avoidance. We have carried out computational

experiments to analyse on the one hand the performance of PTS1 and PTS2 between and

on the other hand we compare their performance with recent heuristics from literature.

The chapter 6 closes this dissertation with a general conclusion and draws up future

research directions. The conclusion and future works are followed by two appendices that

give, in tables, the detailed computational results and by a bibliography.
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Chapter 2

Warehouse operations management

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Products flow and units handling . . . . . . . . . . . . . . . . . 8

2.3 Warehouse operations . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Inspection and receiving . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Put-away . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Order-picking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.4 Accumulation, sorting and packing . . . . . . . . . . . . . . . . 11

2.3.5 Shipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Introduction

A Supply Chain (SC) can be defined as a sequence of processes through which pro-

ducts flow from upstream (suppliers) into large pallets namely pallet-load to downstream

(customers) into small units or into pieces. Warehouses as well as cross-docks are the in-

termediate points of Supply Chain where products are unloaded, inspected and managed

before shipping. Those distribution centers are considered as inventory buffer points that

link the flow of products between suppliers from upstream and customers to downstream.
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2.2 Products flow and units handling

In Supply Chain, products are handled generally in small boxes while they are moving

down from upstream to downstream. From upstream, products flow in large boxes e.g., in

pallet-load. At each move to downstream, a pallet-load is successively broken down and

sometimes repalletized into small units such that carton, inner pack, unit, etc., until it

can no longer be divided, see e.g., Figure 2.1 below.

Figure 2.1 – Pallet movement from upstream to downstream in a Supply Chain, Bar-

tholdi and Hackman (2011)

2.3 Warehouse operations

The Figure 2.2 is a schematic representation of the main operations that are handled in

a typical warehouse. It gives the general pattern of product flow inside typical warehouse.

A warehouse is designed to have enough storage area to store incoming products from

suppliers, that implies a rigorous management of storage space. The products can come

from various freight yard into pallet-load and are shipped into cartons. Other products

can arrive at warehouse into cartons and shipped into inner-packs, sometimes into pieces.

The shipment into cartons or inner-packs,...will depend on the customers commands and

whether products concerned by the customers commands are shipped to the same desti-

nation or not. This deep division of pallet-load requires more labor. Generally the smaller

the handling unit, the greater the handling cost, see e.g., Habazin et al. (2017); Bartholdi

and Hackman (2011). At the arrival, the products are received and inspected, those for

which arrival coincides with customer’s orders are not stored, they go immediately to next
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Figure 2.2 – Typical warehouse operations, Bartholdi and Hackman (2011)

operations for shipping, that is, direct put-away to primary operation (see Figure 2.2).

The time products spend in warehouse storage area is not known in advance. When

customer order is received into Warehouse System, the product concerned by this customer

order is retrieved from storage area and is picked for being loaded into shipping trucks

(order-picking). We can summarize the process as follows:

When products arrive at warehouse

• Inspection : checking damaged products

• Receiving : reorganization and repackaging

• Put-away : direct put-away to reserve or to primary

When customer order is received

• Order-picking : preparing customer order

• Accumulation, sorting and packing

• Shipping

These main activities are briefly described in the following subsections.
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2.3.1 Inspection and receiving

Arrival of products is notified and unloading starts. Cartons are scanned, products

are inspected to raise possible exceptions such that damage, wrong description etc., any

exception is notified. Large cartons are broken into small ones before being put-away for

storage or being put-away to primary. When the large boxes are broken, additional boxes

with small size are sometimes needed for repackaging, see e.g., Bartholdi and Hackman

(2011).

2.3.2 Put-away

The operation put-away to primary happens when the arrival of products coincides

with customer order, therefore the products concerned by the order are immediately

handled for shipping. For put-away to reserve, products are stored into a specified location

area of warehouse during indefinite time. For this operation, an appropriate storage space

is determined. This is important because it makes easy to retrieve pallet from its location

area upon the reception of customer order for this product. The put-away to reserve

operation requires more labor to move product until its storage space. Before put-away to

reserve operation, an inventory of storage areas is performed to know occupied, available

areas and where everything is stored, see e.g., Habazin et al. (2017). Storage area of a

product is scanned to make easy finding when it will be ordered.

2.3.3 Order-picking

When a customer order is received into warehouse system, an inventory of products

is performed to verify if the customer order is possible for shipping. The flow time is the

time elapsed from reception of customer order until the products concerned by the order

are loaded into shipping truck. A Warehouse Management System (WMS) is an impor-

tant software system used to manage and coordinate automatically the warehouse’s main

operations like keeping record of storage capacity, checking and updating stock, check

of a customer order against available quantity of the ordered product in stock, raising

shortage for a product and maintaining accurate inventory by recording warehouse tran-

sactions, etc. The WMS updates stock using real-time information, for instance Auto ID

Data Capture (AIDC) technology such that barcode scanner, mobile computers, Wireless

Local Area Network (WLAN), Radio Frequency Identification (RFID) to efficiently mo-
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nitor the flow of products. For other details, interested readers can refer to Ramaa et al.

(2012).

2.3.4 Accumulation, sorting and packing

Accumulation involves putting together different orders of a given customer in single

package (packing). Before accumulation, orders are sorted according to their destinations.

Those operations need a great precaution in order to meet customer’s order accuracy.

2.3.5 Shipping

If all checks related to an order are done, it is ready to be loaded into shipping truck.

The shipping process is not expensive compared to operations detailed above.

2.4 Conclusion

In this chapter, the flow of products from upstream to downstream into Supply Chain

and the management of large pallet-loads into small packs have been presented. The main

operations of a warehouse have been reviewed. Among those operations, we have shown

that storage and order-picking are the most expensive due to the highest cost of inventory

holding and intensive labor, respectively. In the next chapter, we are going to make the

state of the art for cross-docking showing the improvement of cross-docking strategy on

classical warehouse. Afterwards we are going to focus on the main combinatorial optimi-

zation problems that are raised by cross-docking strategy. We emphasize on Cross-dock

Door Assignment Problem (CDAP) that is the case of study of this dissertation.

11





Chapter 3

Cross-docking and Supply Chain

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Cross-docking definitions . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Companies implementing cross-docking . . . . . . . . . . . . . 17

3.4 Cross-docking decision levels . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Strategic level decisions . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2 Tactical level decisions . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.3 Operational level decisions . . . . . . . . . . . . . . . . . . . . . 25

3.5 Operational optimization problems . . . . . . . . . . . . . . . . 26

3.5.1 The Cross-dock Door Assignment Problem . . . . . . . . . . . . 27

3.5.2 Truck Scheduling Problem . . . . . . . . . . . . . . . . . . . . . 28

3.5.3 Trucks Sequencing Problem . . . . . . . . . . . . . . . . . . . . 29

3.5.4 Transshipment Problem . . . . . . . . . . . . . . . . . . . . . . 30

3.5.5 Cross-dock Congestion Problem . . . . . . . . . . . . . . . . . . 31

3.5.6 Vehicle Routing Problem with Cross-docking . . . . . . . . . . 32

3.6 Cross-dock Door Assignment Problem . . . . . . . . . . . . . . 34

3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.2 Background for CDAP and Literature review . . . . . . . . . . 37

3.6.3 Mathematical quadratic formulation for CDAP . . . . . . . . . 40

3.6.4 Some variants of the CDAP . . . . . . . . . . . . . . . . . . . . 44

3.6.5 Connections with other Assignment problems . . . . . . . . . . 49

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

13



Chapter 3. Cross-docking and Supply Chain

In this chapter we describe in more details cross-docking in Supply Chain and how

some transportation companies have managed to lower their cost after having implemen-

ted cross-docking. Different decisions classified in three levels to successfully implement

the cross-docking are also discussed in this chapter. A literature review for most combi-

natorial optimization problems raised by cross-docking strategy is conducted. Finally, the

combinatorial optimization problem tackled in this PhD thesis is described and different

variants of this problem are also discussed.

3.1 Introduction

In Supply Chain, products packaged in cartons or other packaging materials are moved

from one point to another point. Thereby, a carton of products is brought to travel a

certain distance that separates the point upstream to the point downstream. Logistic or

Supply Chain is then defined as a sequence of processes consisting of moving products

from upstream to downstream and vice versa, in other words from producer to final

customer and in reverse logistic, from the final customer to the producer. That is, Supply

Chain Management (SCM) is the set of methods, resources and processes that are used to

manage and improve the Supply Chain performance. The goal of a Supply Chain manager

is to estimate the exact need at each stage, from the production of the finite products

until delivery to the final customers.

At each step of flow of product until to its final destination, a supply chain cost is

incurred. This cost can be expressed in several ways such that a function of distance that

the product must travel from the point of production to the point of destination or vice

versa, the damage that the product may incur during its displacements, the delays or

distance that incurs transportation equipment used to deliver product from one point to

another, the cost of storage of the product in a warehouse, etc. To try to optimize this cost,

an important question is raised and need to be efficiently answered : how to move down

products from upstream to downstream at very low cost ? Behind this question, several

other questions and decisions can be listed, such that the best time and the frequency

for the move, the best path to be taken in the logistic network, at what dock door of the

platform to allocate mean of transportation, etc. This question does not only address to

the means of transportation, but also the organization aspects.

The ultimate goal of Supply Chain is to meet the customer requirements, i.e, a high ser-
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vice level, a short delivery time and a customer order accuracy with a minimum cost kno-

wing that customer satisfaction is a key performance indicator in logistic. Cross-docking

is one of strategies that helps to tackle those challenges.

3.2 Cross-docking definitions

Generally, the consumer goods factory produces the same consumer good in very large

quantities. Then, these quantities of a given product are loaded until truck is fully loaded.

The trucks fully loaded are sent to storage warehouses which can be located either near

the factory or retail store or somewhere else in the network of suppliers, retailers and

customers. In fact, retail store and customers generally do not need a high volume of the

same product. Usually, small stores and customers need a small quantity of each product

supplied by a storage warehouse. In the storage warehouse, the product are stored for

unknown time. In addition, during the time the product is stored, it does not generate

a profit. On the contrary it incurs an inventory holding which is one of the two most

expensive operations in warehouse as mentioned in chapter 2.

Cross-docking is an alternative dynamic and Just-in-Time strategy which consists

to transfer directly the products from trucks that come from different suppliers (called

incoming trucks) to trucks going to different retailers and customers (called outgoing

trucks) without storing those products. If shipping truck of a product is not available on

the yard, that product will need to be stored for a while into a temporary storage area of

the platform. Unlike classical warehouse, the storage time cannot exceed more than a day,

sometimes products are stored for less than an hour, see e.g., Bartholdi and Gue (2004);

Agustina et al. (2010); Van Belle et al. (2012); Guignard et al. (2012). To cope with this

non storage of products, cross-docking strategy is involved for the products whose final

retailers and customers are already known in advance before they leave the suppliers. That

is, origins and destinations of products are known in advance. The fact products are not

stored or can be stored for few hours in platform accelerates their flow from their origins

going through distribution center to their respective destinations. Accordingly, all costs

that were related to the storage and order picking operations namely inventory holding

cost and intensive labor cost, respectively, are significantly reduced or completely dropped.

This is the key difference between cross-docking strategy and classical warehouse.

In Van Belle et al. (2012), the authors give a general definition of cross-docking as

“the process of unloading freight from inbound vehicles and loading these goods into out-
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Figure 3.1 – An example of a cross-dock with temporary storage, Gelareh et al. (2020)

bound vehicles, with minimal handling and with little or no storage in between”. Cross-

docking strategy takes place in a distribution warehouse called “cross-docking facility”

or “cross-dock”.

The cross-dock warehouse consists of a set of dock doors on each of its sides (inbound

and outbound), ideally without temporary storage area. Cross-docks have several layouts,

the Figure 3.1 taken from our published paper in Gelareh et al. (2020) is one of the

schematic representations of cross-dock with a temporary storage area and an example of

flow of products inside the facility. In the same way as in Van Belle et al. (2012), the term

cross-docking expresses the process of receiving products on inbound dock doors and then

transferring them directly across the cross-dock to outbound dock doors. In simple terms,

incoming products arrive through means of transportation such that trucks, trailer trucks

and are docked on inbound dock doors of the cross-dock terminal. Once incoming trucks

or trailer trucks have been docked, the packed products (pallets) get unloaded, sorted

and screened to identify their end destinations. Afterwards, the pallets are moved to

outbound dock doors of cross-dock terminal using manual material handling devices such

that hand pallet truck, forklift, electric pallet truck, etc., see e.g., Figure 3.2, or using an

automated mode such that a network system of conveyor belts. To outbound dock doors

side, products can be consolidated with those in pending for the same destination and are

loaded into outgoing trucks that are already docked. After loading operation, the products

can then make their way to the final destinations. Generally, the number of incoming and

outgoing trucks by period is larger than the number of dock doors of cross-dock. A dock
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Hand Pallet Truck Forklift Electric Pallet Truck

Source :www.sunnforest.com/Material-Handling-Equipment/Warehouse-Equipment.html

Figure 3.2 – Example of distribution center material handling devices

door of cross-dock is an arranged area where trucks or trailer trucks are unloaded, for

inbound dock doors and loaded, for outbound dock doors. Here, to dock a truck or trailer

truck means to place it to the dock door. The operations of handling packed products in

cross-dock are sometimes similar to those handled on harbor or airport. In fact, at harbor

yard, after ships are docked, the containers get unloaded and then, they are put away

in temporary gate, waiting to be loaded into another ship or a trailer truck. At airport,

the determination of how airplanes are affected to gates and the system of transferring

passengers from gate to gate aims to minimize traveled distance by passengers. Fore more

details, interested reader can refer to e.g., Van Belle et al. (2012); Zeinebou and Abdellatif

(2013).

3.3 Companies implementing cross-docking

Cross-docking strategy has been implemented and has lowered the cost for several

transportation companies. For instance, the distribution chain company Wal-Mart in US

is cited to be on the top of position of retailer companies to begin implementation of the

cross-docking in the retail sector in the late 1980s. Wal-Mart success began by defining

the goals that were consisting to provide to customers the access to quality of goods,

to make those goods available where and when customers need them, to develop a cost

structure that enables competitive pricing, to build and maintain a reputation for absolute

reliability, for more details, readers can refer to Stalk et al. (1992); Nguyen (2017).

The following paragraph is the citations of Stalk et al. (1992) about the success of Wal-

Mart company :

“The key to achieving these goals was to make the way the company replenished
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inventory the centerpiece of its competitive strategy. This strategic vision reached its

fullest expression in a largely invisible logistics technique known as ’cross-docking’.

In this system, goods are continuously delivered to Wal-Mart’s warehouses where

they are selected, repacked, and then dispatched to stores, often without ever staying

in inventory space. Instead of spending valuable time in the warehouse, goods just

cross from one loading dock to another in 48 hours or less.” Stalk et al. (1992)

In Bartholdi and Gue (2004), the authors stated that the transportation company

Home Depot has operated cross-docking in Philadelphia that serves more than 100 stores

in the Northeast. But, before using cross-docking, Home Depot used to order each store

separately from suppliers and the orders were sent directly to Home Deport stores in par-

tially loaded truck known as Less Than TruckLoad (LTL). Now, to reduce the costs, the

company uses cross-docking. Here is how Home Deport has processed to reduce transpor-

tation costs from suppliers to its facility and from facility to retailers. Therefore, instead

of using LTL, all the orders are consolidated among the stores on suppliers side and are

loaded in full truck load quantities. That is, each truck (incoming truck) leaves vendor

and comes to Home Deport facility fully loaded with consolidated orders, this is known as

Full Truck Load (FTL). On a specific day in week, each of 100 Home Deport store places

orders for each supplier or vendor at time. All the orders are consolidated on the supplier

side and are loaded into fully loaded truck, then fully loaded trucks are sent to Home De-

port cross-dock. As the orders arrive at cross-dock already consolidated, the workers are

only transferring products to loading trucks (outgoing trucks or delivery trucks) destined

to distribute them to individual stores, retailers or customers. Outgoing trucks are fully

loaded with consolidated orders coming from many suppliers before leaving the cross-dock

facility. Transportation cost is extremely reduced by the fact that incoming and outgoing

trucks come in and leave cross-dock in fully loaded.

Other examples of successful application of cross-docking in Europe are viewed in La-

dier and Alpan (2016a). In this work, authors made a survey during which they visited

eight transportation companies located in France that apply cross-docking strategy in

their daily transportation activities. The authors compared the problems related to cross-

docking that are studied in academic literature and application of cross-docking in those

transportation companies visited. The goal was to compare academic study related to

cross-docking and cross-docking application in industry. After the survey, the authors rai-

sed a certain gap between cross-docking in theory and in industry practice and gave some

directions of research to bring literature closer to practice.
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3.4 Cross-docking decision levels

Even though cross-docking offers significant cost saving, like any functional system,

it is not a complete package of solutions for all the problems of the Supply Chain. In

fact, cross-docking success, when this strategy is used appropriately, depends on how

well the transportation network is designed and managed. For instance, the success of

cross-docking depends on how well the network of cross-docks (cross-docking network) is

located to connect origins and destinations of products together. Therefore, the success of

an individual cross-dock is influenced by how well is designed, exploited and managed the

whole network of cross-docks in which that individual cross-dock is located, see e.g., Yang

et al. (2010). Other factors that affect an individual cross-dock are for instance the size,

shape, number of dock doors of the platform ; the number of handling devices used inside

cross-dock, the time spent by material handling devices traveling between dock doors

pair while they are moving pallets, congestion caused by the movements of those material

handling devices, etc. Therefore, to successfully plan, design, implement and manage a

cross-dock, several decisions are to be made. Those decisions are classified in three levels,

namely, strategic, tactical and operational.

3.4.1 Strategic level decisions

The decisions to be made at the strategic level are long-term decisions and are usually

concerning physical characteristic of cross-dock. Those decisions are taken in order to

strengthen the time span of the cross-dock and to influence further operations inside the

platform. Some examples of strategic decisions to be taken into account when planning

to design cross-docking are as follows:

The cross-docking network refers to a network of one or several cross-docks connected

together. It is a subsystem of supply chain formed by one or several cross-docks with

inbound and outbound transport routes and the stakeholders connected to the cross-

docks by those routes, see e.g., Buijs et al. (2014).

The location of an individual cross-dock geographically in cross-docking network and in

the network of suppliers, retailers and customers is an important strategic decision. To

learn more about location of cross-dock, we refer the interested reader to e.g., Agustina

et al. (2010); Van Belle et al. (2012).

The Layout design of a cross-dock is also an important physical characteristic. Once
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location of individual cross-dock in cross-docking network is determined, the decision

concerning the layout of cross-dock has to be made. The layout design of a cross-dock

refers to the shape, the size and the number of dock doors of a cross-dock. The interested

reader can refer to the extensive overview made on cross-docking concept in Van Belle

et al. (2012). As far as shape is concerned, cross-docks have a lot of variety of shapes

which are usually described by a letter such that I, L, T, H, U, E and X. Usually the

number of dock doors imposes the shape that must have a cross-dock.

In Bartholdi and Gue (2004), the authors have focused on how the shape affects

cross-dock performance. In view of this fact, they have studied different shapes of cross-

docks with the purpose to find out what have to be the best shape for cross-dock. They

have listed the commonly used shapes such that I, L, and T and other unused such

that U, H and E. The authors conducted computational experiments on I, L, T, H,

and X-shape cross-docks considering several characteristics such that the size, the shape,

the flows concentration and a part of inbound dock doors. Through the results of their

computational experiments, they concluded that performance of cross-dock depends on

two factors such that the size and the shape and that most of cross-docks are I-shape, that

is, long, narrow rectangles. The authors argued that for number of dock doors, I-shape is

the best layout with few than about 150 dock doors on each of the two sides of cross-dock,

T-shape is the best efficient for cross-dock with intermediate size, that is, between 150

and 200 dock doors and that X-shape is the best for approximately more than 200 dock

doors.

In Stephan and Boysen (2011), the authors stated that L-shapes and H-shape cross-

docks are less efficient than I-shape cross-docks because those cross-docks provide addi-

tional corners that not help improving traveled distance.

The cross-docks visited in Ladier and Alpan (2016a), seven out of the eight cross-docks

are I-shape. In fact, all those cross-docks have less than one hundred dock doors where

I-shape is the most efficient in accordance with Bartholdi and Gue (2004). Another reason

that the authors argued to explain why all cross-docks are I-shape is that in France the

biggest cross-docks are built by real estate agents who choose I-shape layout because it

can be easy to divide when it comes to renting to logistic companies. This survey is a

chapter of the thesis of Ladier (2014).

Number of dock doors is also a strategic decision. Once the shape of cross-dock is

defined, the number of dock doors must also be decided and how they are placed along

the cross-dock, either on only one side or on two sides or on all the sides of the platform.
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Clearly, the decision of shape is influenced by the size of the platform.

Internal transportation system is also a strategic decision that must be considered.

This decision is concerning how products are moved from inbound to outbound dock

doors of the cross-dock. Thus, products can be moved either manually by workers using

material handling devices, see e.g., Figure 3.2, or using an automated mode like a network

system of conveyor belts or a combination of those two first internal transportation modes.

For more details about flow of products inside cross-dock, interested reader can refer to

e.g., Stephan and Boysen (2011); Van Belle et al. (2012); Ladier and Alpan (2016a). In

Ladier and Alpan (2016a), the majority of visited cross-docks use internal transportation

system in the following distribution: 63% of cross-docks use manual transportation, 13%

use automated transportation mode and 25% use combined mode of transportation. For

the visited cross-docks, the authors explained why an automated and combination modes

are used widely more than what is stated in academic literature by the fact that when

automated and combined transportation mode are used, some operational decisions are

delegated to Information Technology (IT) system.

The number of material handling devices used inside cross-dock is also a strategic

decision, refer to e.g., Agustina et al. (2010).

3.4.2 Tactical level decisions

Decisions made on tactical level are mid-term decisions for cross-dock. Those decisions

influence directly operational decisions. Some of tactical decisions include:

Flow of products through cross-docking network configuration. The cross-

docking network configuration refers to how products flow from cross-dock to cross-dock

in the cross-docking network until they are delivered to retailers and customers. There are

several cross-docking network configurations. Those configurations are classified according

to the size of the cross-docking network. For more details about cross-docking network

configurations, interested readers can refer to Buijs et al. (2014). The simple cross-docking

network configuration is so-called one single configuration. In this network configuration,

there is only one cross-dock in which all products go through, see e.g., Figure 3.3. The

second cross-docking network configuration is referred to single layer of cross-docks confi-

guration. In this network configuration, several cross-docks are connected together but

each product crosses one cross-dock bypassing other cross-docks, see e.g., Figure 3.4. The

third network configuration is called hub-and-spoke system network configuration. In this
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Figure 3.3 – One single network configuration, Zhang (2016)

Figure 3.4 – Single layer of cross-docks network configuration, Zhang (2016)
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Figure 3.5 – Hub-and-spoke system network configuration, Zhang (2016)

configuration, goods can be shipped through multiple cross-docks grouped in stages, see

e.g., Figure 3.5.

Preemption is also a tactical decision. In individual cross-dock, operations manager must

decide whether or not to allow ongoing unloading/loading of a truck to be interrupted.

If preemption is allowed, the unloading or loading of truck can be interrupted at any

time, then the truck is put-away and is replaced by the next one. The uncompleted unloa-

ding/loading truck that has been put-away will be reassigned and processed later either

to the same dock door or to an another dock door according to the case that minimizes

the cost. The cost of moving away the truck from the dock door and the cost to back it

for reassignment to dock door are taken into account. In Ladier and Alpan (2016a) no

one of the visited cross-docks use preemption.

Temporary storage and its capacity is consisting to decide whether intermediate sto-

rage area is allowed or not and if the capacity of storage area is limited or unlimited. If

temporary storage is allowed, an unloaded product can be put-away into temporary sto-

rage area for a short time that can not exceed 24 hours. Practically, a product have to be

temporarily stored in the prepared storage area in the case the shipping truck destined to

that product is not yet available on outbound dock door (not yet docked), see e.g., Ladier

23



Chapter 3. Cross-docking and Supply Chain

and Alpan (2016a). Resources like number of workers or conveyed belts used to handle

products inside the platform are also decided into tactical level decisions.

Service mode of dock doors of cross-dock is another important tactical decision. Ha-

ving two kinds of dock doors (inbound and outbound), to set up and optimize the cross-

dock, operating mode of dock doors is decided. There are two common operating modes

of dock doors: Exclusive mode and mixed mode of service and the third service mode not

commonly used is referred to combined mode, see e.g., Van Belle et al. (2012); Ladier and

Alpan (2016a).

3.4.2.1 Exclusive mode

For a good management of the cross-dock and a good traveling of material handling

devices between inbound and outbound dock doors of the platform, the service mode of

dock doors that is commonly used is exclusive mode. That is, inbound and outbound

dock doors are dedicated and fixed exclusively to inbound and outbound operations,

respectively. In simple words, when this service mode is used, inbound side is used to

serve origins exclusively and outbound side is used to serve destinations exclusively. The

Figure 3.1 depicts an axample of I-shape cross-dock configured to use exclusive mode

of dock doors with a small temporary storage area. In Ladier and Alpan (2016a), four

cross-docks out of all visited cross-docks use exclusive mode of dock doors. As this service

mode have the fixed inbound dock doors for inbound operations and fixed outbound dock

doors for outbound operations which makes easy internal operations for managers, the

exclusive mode is widely used. In this service mode, each outbound dock door can serve

a fixed set of destinations, in that case it is called destination exclusive mode, and each

inbound dock door can serve a fixed set of origins, in this case it is called origin exclusive

mode, see e.g., Ladier and Alpan (2016a).

3.4.2.2 Mixed mode

In this service mode of dock doors, an intermixed sequence of receiving and shipping

trucks to be processed per dock door is allowed, that is, a same dock door can have dual

function of receiving incoming and shipping trucks. In other words, incoming or outgoing

truck can be assigned at any dock door or to the same dock door. In Ladier and Alpan

(2016a), five out of eight visited cross-docks use mixed mode of service. The Figure 3.6

depicts the mixed mode of dock doors.
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Figure 3.6 – Mixed mode of door service, Shakeri et al. (2008)

3.4.2.3 Combined mode

The combination mode of service is the combination of exclusive and mixed mode. In

the combined mode, a subset of dock doors works in exclusive mode and the rest of dock

doors work in mixed mode, see e.g., Van Belle et al. (2012). The combined mode cannot be

covered in practice because it would cause confusion between exclusive and mixed mode

of dock doors,see e.g., Ladier and Alpan (2016a).

3.4.3 Operational level decisions

The operational level decisions are short-term decisions. Those operational decisions

are made on daily or weekly basis by cross-dock operations manager. This decision level

raises several questions related to the management of cross-dock operations. For instance,

the question like how trucks will be unloaded when they arrive on cross-dock ? This

question raises a set of decisions that must be made such that unloading will be done

either manually using material handling devices or with automated system ; whether big

cartons will be divided and repacked or not ; etc. Other questions like when unloading

operation will start and when trucks leave cross-dock ? The cross-dock operations manager

can decide, for example, either that all incoming and shipping trucks have to be available

at the cross-dock ground from the beginning of operations until the end or at any time

incoming truck arrives it is processed and as soon as it ends up being unloaded it leaves
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and outgoing truck leaves as soon as it ends up being loaded.

A cross-dock operations manager can decide also to ship goods directly from origins to

destinations in the case all shipping trucks are available on the platform yard. In that case

no product can go through temporary storage area. This is the case for frozen or fresh

products that have to be shipped immediately to the respective destinations so that they

are not damaged. The products that have been temporarily stored can be consolidated

inside cross-dock with new arriving products of the same destination before being loaded

into shipping truck. Other decision can be made about the number of material handling

devices, that is, the fewer or more forklifts to use inside the cross-dock to handle shipments.

For all those operational decisions, the interested reader can refer to e.g., Ladier and Alpan

(2016a), for the impact of operations manager decisions on the operational effectiveness of

cross-dock, the reader can refer to e.g., Yang et al. (2010) in which the authors have used

a computer simulation considering an I-shape cross-dock and forklifts as devices used to

handle pallets inside the cross-dock.

3.5 Operational optimization problems

As we have just seen in Section 3.4.3 above, the operational level raises a lot of deci-

sions that are made on daily or weekly basis. It is obvious that each decision raises one

or more optimization problems so that if we solve this or these optimization problems,

we optimize the operational level of the cross-dock at the point where these problems

have been solved. An optimization problem consists of finding the best solution among

all feasible solutions. The best solution can be the shortest path, the shortest duration of

operations (makespan), a maximum benefit using a minimum resource, etc. Those optimi-

zation problems are usually NP-hard. An optimization problem is NP-hard if it can not be

solved optimally in polynomial time, i.e., reasonable time using a known polynomial algo-

rithm, assuming P !=NP. To solve such problems, we use approximation algorithms such

that heuristics that do not guarantee an optimal solution but an approximate solution in

reasonable time.

As our study addresses one of the operational class of optimization problems, we

perform in the following sections a large description of the main optimization problems

that occur at the operational level of decision. Then we emphasize on the combinatorial

optimization problem “The Cross-dock Door Assignment Problem (CDAP)” that we deal

with in this PhD thesis as well as the configuration of the cross-dock to which we apply that
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Figure 3.7 – Cross-docking facility operations, Stephan and Boysen (2011)

optimization problem. We continue with presenting different variants of this optimization

problem as proposed in literature.

3.5.1 The Cross-dock Door Assignment Problem

The Cross-dock Door Assignment Problem (CDAP) consists of assigning trucks to dock

doors in order to optimize (minimize, maximize) operations inside the cross-dock. The

schematic representation of those operations inside cross-dock is depicted in Figure 3.7.

The Cross-dock Door Assignment Problem assumes that all incoming and outgoing trucks

are available on cross-dock yard before the beginning of planning the cross-docking ope-

rations. The objective is to minimize transportation cost inside the cross-dock by finding

an optimal assignment of trucks dock doors. Therefore, the distance traveled by pallets

handling device inside the cross-dock while transferring products between inbound and

outbound dock doors can be reduced if outbound dock door on which a destination truck

of item is assigned is near to the inbound dock door where the corresponding origin is

docked. The Cross-dock Door Assignment Problem is also known as the Truck-to-dock

Door Assignment Problem (TDAP) because this optimization problem deals with assign-

ment of trucks to dock doors. In fact, when an incoming truck arrives on the facility, it

is necessary to decide on what inbound dock door it will be assigned. Due to the flows

of products between incoming and shipping trucks, it is also necessary to decide on what

outbound dock door this shipping truck will be assigned. Therefore, a good assignment of

all incoming and outgoing trucks to dock doors will decrease dock door delay, will affect
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the total time of unloading of products, total traveling time inside the facility and the time

during which all products get loaded, in short, it will reduce cross-dock internal opera-

tions duration. The traveled distance can be expressed as the total time used to transfer

all products from inbound to outbound dock doors. The Cross-dock Door Assignment

Problem is more explicitly explained further in section 3.6

3.5.2 Truck Scheduling Problem

Having more trucks than dock doors available, dock doors can be scheduled over

time. While Cross-dock Door Assignment Problem takes into account the space dimension

explicitly by seeking to minimize the total weighted distance traveled inside the cross-

dock by material handling devices, this optimization problem ignores temporal dimension.

That is, CDAP does not consider arrival and departure time of each truck at and from

cross-dock (time window of truck). The Truck Scheduling Problem takes into account the

temporal dimension explicitly by considering the time window of trucks, that is, arrival

and departure time of each truck on and from cross-dock, respectively, the time at which

each truck will be processed on dock door. A good scheduling of trucks to dock doors will

cause a good flowing of products. Therefore, the makespan which is the total operational

time span from the start of unloading the first incoming truck until end of loading the last

shipping truck will be shortened and congestion inside the facility will be minimized. The

objective of this optimization problem is to minimize the makespan. For more details, we

refer the reader to e.g., Agustina et al. (2010); Van Belle et al. (2012).

Generally, in the standard CDAP, origin and destination of trucks are set, that is, the

trucks coming from the same origin or serving the same destination are assigned to the

same inbound/outbound dock door respectively while dock door capacity is still imposed.

In the case of the Truck Scheduling Problem, the trucks coming from the same origin or

serving the same destination can be assigned to different dock doors if the assignment

minimizes the makespan.

The Truck Scheduling Problem considers a deterministic environment in which all data

are certain and reliable. That is, no condition can cause delay of trucks from arriving on

time. Thus, arrival and departure time of each truck are fixed. Nevertheless, in realistic

environment, the arrival or departure time of truck can be delayed due to several condi-

tions such that traffic congestion, truck failure, road accidents, the weather, etc. Those life

conditions make arrival time of truck to be uncertain. In Ladier and Alpan (2016b), the
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authors have proposed a Robust Truck-to-dock Door Scheduling Problem. For this variant

of trucks scheduling, the authors have considered realistic conditions in the formulation of

the problem taking the trucks arrival times as a decision variable. The authors concluded

that the mathematical formulation of the Robust Truck-to-dock Door Scheduling Problem

remains feasible and stable even though it faces those disruptions.

Some combinatorial optimization problems combine Trucks scheduling and CDAP to

benefit advantages of both optimization problems. The purpose is to determine when

and at which dock door each incoming and outgoing truck will be handled in order to

ensure the quick turnover and on-time deliveries. Therefore, a new combinatorial opti-

mization problem referred to Truck-to-dock Door Scheduling Problem is raised. In Miao,

Lim and Ma (2009), the authors have considered a combined CDAP with operational time

constraint within cross-dock. In this problem, they considered also the time windows of

arrival and departure of a truck, operational time for a cargo and the capacity of cross-

dock. The cargo whose shipment is not fulfilled in current cross-dock could be handled

in another cross-dock where treatment capacity is available. The goal is to minimize the

operational time of the cargoes to ship and the number of cargoes not shipped. The cost

is the total operation time of cargoes and the total penalty incurred. The penalty cost

occurs when a cargo misses the shipping truck or its shipping truck is not yet docked.

Other works about CDAP combined with Truck Scheduling can bee viewed in e.g., Ting

and Rodríguez López (2012). For literature review and relevant works related to the sche-

duling of trucks on dock doors of cross-dock, we refer interested readers to e.g., Boysen

and Fliedner (2010); Buijs et al. (2014); Gelareh et al. (2016); Lim et al. (2006); Miao

et al. (2014); Miao, Lim and Ma (2009); Shakeri et al. (2012).

3.5.3 Trucks Sequencing Problem

Unlike Truck-to-dock Door Assignment and Truck Scheduling Problems, Truck sequen-

cing problem does not take into account neither space dimension nor temporal dimension.

In fact, having the number of incoming and outgoing trucks greater enough than the num-

ber of inbound and outbound dock doors, only a part of incoming and outgoing trucks

can be assigned and get unloaded and loaded simultaneously while excess incoming and

outgoing trucks are put-away in waiting buffer until the previous assigned ones end up

getting unloaded/loaded. Therefore, while waiting, all those trucks are sequenced into

queue to influence the efficiency of the cross-dock. For instance, a product in incoming
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truck which is in waiting queue while the corresponding outgoing truck of this product

is assigned on dock door ready to be loaded and can not be replaced by another out-

going truck, this kind of situations leads to a delay which affects the performance of the

cross-dock. The Truck Sequencing Problem seeks to determine an optimal sequence or

the order into which the waiting trucks are processed to dock doors and determines on

which dock door exactly each truck is processed to improve cross-dock efficiency. That is,

a truck is not assigned to a specific dock door but to any available dock dock according to

the established sequence. For more details, we refer the interested reader to e.g., Ladier

and Alpan (2016a).

3.5.4 Transshipment Problem

This optimization problem looks for determining a good flow of products, on the one

hand, between suppliers and cross-dock and on the other hand, between cross-dock and

customers. This involves a good and tight synchronization between incoming and outgoing

trucks. The purpose is to minimize the transportation, the penalty and the inventory costs

in distribution network. The transshipment problem considers also the decisions made by

operations’ managers on how goods are moved inside the facility like if incoming goods can

be consolidated in staging area with some goods present in temporary storage to complete

the freight, see e.g., Alpan et al. (2011). In Miao, Yang and Fu (2009), the authors have

studied the case of transshipment problem considering the fixed transportation schedules,

that is, arrival and departure time for transportation schedules are fixed. On the one hand,

the suppliers ship the packed products towards cross-docks through fixed transportation

schedules, the cargoes can delay into facility for consolidation and the related inventory

holding cost is applied as a penalty, the cargoes that will need inventory service at the

last time point of its time horizon will incur the high inventory penalty cost. On the other

hand, the customers receive their cargoes from cross-dock. In transshipment-inventory

models, a frequent assumption is that a demand which cannot be fulfilled by one supply

point can be completed through some other supply points. The goal is then to evaluate a

control policy for replenishment. The total cost denotes transportation cost from suppliers

to cross-docks, transportation cost from cross-docks to customers, the inventory cost and

the penalty cost.
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3.5.5 Cross-dock Congestion Problem

Beside all those combinatorial optimization problems that arise within cross-docking,

most of studies in literature review seemed to ignore the congestion issue of material

handling devices inside the cross-docking terminal. However, this congestion is still a

relevant problem and should be considered if we seek to manage the movement of material

handling devices inside the cross-dock. In agreement with Shuib and Fatthi (2012), as the

amount of incoming products entering into cross-dock increases, knowing in addition that

the products have to be quickly handled inside the terminal in order to be immediately

shipped, accordingly, the number of material handling devices must be multiplied and

the speed up of movement of those handling devices is required to meet to goal of cross-

docking strategy. This may create a congestion within the terminal. In Tsui and Chang

(1990, 1992), the authors stated that the longer it takes to empty an incoming truck,

the more material handling devices are required and the more congested the dock door

will be. Due to this, the congestion and interference of pallets handling devices inside the

terminal increase. In Ladier and Alpan (2016a), the authors have stated that looking for

minimizing total traveled distance inside cross-dock leads to group unloading and loading

goods in the same area that generates the congestion and slowdowns the overall process.

Accordingly, within the cross-dock, seeking to minimize the congestion is in conflict with

minimizing distance and vice versa.

In Yang et al. (2010), the auhors have performed a simulation in which they showed

that a cross-dock with staging area at each inbound and outbound dock door reduce

the dock door congestion inside terminal. The simulation showed that direct unloa-

ding/loading increases queuing of forklifts and congestion both at inbound and outbound

sides of cross-dock while indirect unloading/loading reduces queuing and congestion and

produces a higher throughput of pallets shipped from receiving side to shipping side but

it requires a higher labor time to handle completely a pallet. Direct unloading/loading

is applicable for pure cross-docking where unloaded pallets are directly sent to outbound

dock door to be loaded into shipping trucks without going through temporary storage

area. For a cross-dock with indirect unloading/loading, each inbound and outbound dock

door have a staging area. Pallets are unloaded from incoming trucks to a staging area of

inbound dock door and then are transferred from inbound staging area to staging area of

outbound dock door, and finally from staging area of outbound dock door to be loaded

into shipping trucks. Therefore, a pallet is picked up three times which consumes lot of
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Figure 3.8 – Single-stage or two-touch cross-dock, Gue and Kang (2001)

space and time, increases labor cost and possibility of damaging a pallet.

In Gue and Kang (2001); Yang et al. (2010); Van Belle et al. (2012), the authors have

defined cross-dock according to the number of touches a pallet can undergo inside the

cross-dock. A one-touch cross-dock corresponds to direct unloading/loading (pure cross-

docking). For a two-touch or single-stage cross-dock, products are received either into a

staging area of inbound dock door or into that of outbound dock door. The Figure 3.8

depicts the two-touch cross-dock. The multiple-touch or two-stage corresponds to indirect

unloading/loading, see e.g., Figure 3.9. In two-touch and multiple touch (single-stage and

two-stage) the pallet is handled one more time and more floor space inside cross-dock is

needed. This implies a larger cross-dock which increases the weighted distance traveled

by handling devices. The interested readers on a single-stage and two-stage cross-docks

can refer to e.g., Gue and Kang (2001) about the queuing of cross-dock’s entities.

3.5.6 Vehicle Routing Problem with Cross-docking

In Supply Chain, goods are picked from various suppliers or other freight yards and

are loaded into trucks and moved towards the distribution centers. In this case, the dis-

tribution center is referred to the cross-dock. Those goods have to be shipped to multiple

destinations after having been sorted according to their respective destinations and so-

metimes consolidated into cross-dock. That is, the cross-dock is considered to be the
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Figure 3.9 – A two-stage or multiple-touch cross-dock, Gue and Kang (2001)

departure and arrival node of all vehicles involved in the defined transportation network.

In a given transportation network, the process of products picking from a defined node

and products delivering to the customers in that transportation network is known under

Vehicle Routing Problem (VRP). The goal of VRP is to determine the number of vehicles

to use in that transportation network, the optimal path that each used vehicle have to

follow from suppliers to customers through cross-dock node.

An efficient optimization for the Vehicle Routing Problem may increase the through-

put of the cross-dock. In Wen et al. (2009), the authors proposed a vehicle routing problem

with cross-docking using homogeneous vehicles for transportation of customers’ orders via

a cross-dock as a node. The objective was to minimize the travelling time of trucks taking

into account the time window of each truck. The authors proposed a Mixed Integer Pro-

gramming (MIP) model and a Tabu Search heuristic to solve the problem. The interested

readers can also refer to Birim (2016).
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3.6 Cross-dock Door Assignment Problem

The NP-hard combinatorial optimization problem we tackle in this PhD thesis is

an optimization problem referred to “Cross-dock Door Assignment Problem (CDAP)”.

Truck scheduling, truck sequencing or transshipment problems are also concerned by

the assignment of trucks to dock doors of the facility taking into account other factors

like for instance the time window. In this dissertation, we focus more precisely on the

optimization of the activity related to the cross-dock itself while supposing that some

external elements have been decided previously. The corresponding problem is the Cross-

dock Door Assignment Problem whose the standard quadratic mathematical formulation

has been introduced in Zhu et al. (2009).

3.6.1 Introduction

Cross-dock Door Assignment Problem looks for to optimize allocation of dock doors

of cross-dock taking into account several factors, namely the shape, the flow of volume of

pallets from incoming to outgoing trucks, those pallets cross the cross-dock from inbound

to outbound dock doors. We start our study by tackling this optimization problem in

general terms and further we describe different variants of CDAP as they have been

proposed in Tsui and Chang (1990, 1992); Cohen and Keren (2008, 2009); Zhu et al. (2009);

Tarhini et al. (2016). Afterwards we focus on the variants of this problem proposed in Zhu

et al. (2009) . We choose this variant because it takes into account more real application

such that the management of the capacity of dock doors. This optimization problem has

also been studied in Guignard et al. (2012); Nassief et al. (2016)

The authors in Tsui and Chang (1990, 1992), have been the first to be interested

and worked on the Cross-dock Door Assignment Problem. In Tsui and Chang (1990), the

authors have proposed a basic bi-linear programming model for assigning receiving and

shipping trucks to respectively inbound and outbound dock doors considering only assign-

ment constraints both for dock doors and trucks. That is, according to the mathematical

formulation, each inbound (respectively outbound) dock door is assigned to a single re-

ceiving (respectively shipping) truck and each receiving (respectively shipping) truck is

assigned to a single inbound (respectively outbound) dock door. This assumes that the

number of receiving (respectively shipping) trucks is equal to the number of inbound (res-

pectively outbound) dock doors. In Tsui and Chang (1992), the authors improved their
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former solution proposing a new solution based on Branch and Bound (B&B) algorithm.

In Bermudez and Cole (2001), the authors have developed a Genetic Algorithm (GA) to

solve the basic mathematical model introduced by Tsui and Chang (1990) in a breakbulk

terminal to minimize the total weighted distance traveled inside the terminal composed

by inbound and outbound dock doors and an open dock door. In Cohen and Keren (2008,

2009), the authors studied another variant of Cross-dock Door Assignment Problem. They

extended the formulation proposed in Tsui and Chang (1990) by relaxing the assignment

constraints between outbound dock doors and outgoing trucks. That is, the authors pro-

posed a new mathematical formulation that allows several outbound dock doors to serve a

single destination. In that new mathematical model, the capacity of each outbound dock

door is set to be equal the capacity of a truck. At inbound side, they kept assignment

constraint as in Tsui and Chang (1990). Thus, the authors defined a new parameter for

truck capacity, considering that tall trucks have the same capacity, and an additional

decision variable. For a broad explanation, after a truck is unloaded, the freight is sent

to corresponding destination at load dock door (outbound dock door). If the total freight

sent to that destination exceeds the capacity of truck, the amount of that freight is split

into several shipping dock doors that will be reserved to allocate that destination. We let

recall that in the author’s formulation, the capacity of each outbound dock door is equal

the capacity of an outgoing truck.

In Tarhini et al. (2016), the authors proposed a slight change in the mathematical

formulation of Tsui and Chang (1990). In fact, Tarhini et al. (2016) include in their

formulation an additional decision variable that controls the assignment of trucks on

dock doors. That is, the objective function value will be distorted if any incoming truck

was assigned to outbound dock door. As the problem is still hard for large instances,

the authors proposed an evolutionary Scatter Search (SS) algorithm based on Genetic

Algorithm metaheuristic to minimize the total traveled distance.

In Küçükoğlu and Öztürk (2017), the authors proposed a new variant of combinatorial

optimization problem named “Truck-to-Door Assignment and Product placement Problem

in Cross-Dock (TDAPP-CD)”. In that study, the authors considered a Truck-to-dock Door

Assignment Problem in cross-docking center with a temporary storage area. The study

takes into account moving steps of products according to the product flow path: “inbound

dock doors → temporary storage area → outbound dock doors”. The authors

proposed a Mixed Integer Programming model to minimize the total distance traveled by

the product on the path.
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Taking into account the increasing of amount of freights to handle on cross-dock yard,

it is not practical for a dock door to allocate a single origin, even less to reserve several dock

doors for a single destination. Accordingly, the configuration in Tsui and Chang (1990,

1992) and those in Cohen and Keren (2008, 2009); Tarhini et al. (2016) are not suitable

for realistic applications unlike the configuration considered in Zhu et al. (2009) where the

authors have proposed a generalized mathematical formulation that takes into account

more realistic considerations. That is, in Zhu et al. (2009) mathematical formulation, the

authors take into consideration the capacity of each dock door and the fact that each ori-

gin (respectively destination) must be assigned to one dock door. That is, each inbound

(respectively outbound) dock door can allocate more than one origin(respectively desti-

nation) and each origin (respectively destination) is assigned to one and only one inbound

(respectively outbound) dock door. Below are the considered outlines for the generali-

zed mathematical formulation for Zhu et al. (2009) for the Cross-dock Door Assignment

Problem:

• Incoming (respectively shipping) trucks are aggregated into origins (respectively desti-

nations), i.e., from a given origin can come more than one truck and a given destination

can be served by more than one truck.

• Assignment of origins and destinations instead of assignment of trucks.

• Each dock door can allocate more than one origin (respectively destination) as long as

the capacity of dock door is not exceeded.

From the two side of an I-shape cross-dock, the resulting mathematical model can be seen

as a bi-Generalized Assignment Problem (GAP) if we consider separately one side, see

e.g.,Guignard et al. (2012).

Due to the nature of the CDAP such that the large amount of freights to handle and the

dynamic nature of freight flow patterns which increases the number of material handling

devices to use for transferring pallets from inbound to outbound dock doors, increasing

and arrangement of number of dock doors and assignment of trucks to dock doors, the

Cross-dock Door Assignment Problem is a known NP-hard combinatorial optimization

problem. In addition, as seen above, the variant of Zhu et al. (2009) that we deal with all

along this dissertation includes the Generalized Assignment Problem as a sub-problem.

As GAP is an NP-hard combinatorial optimization problem, see e.g., Ross and Soland

(1975); Sahni and Gonzalez (1976), the CDAP is also NP-hard.
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3.6.2 Background for CDAP and Literature review

A key difference between a classical warehouse and a cross-docking warehouse is that,

unlike warehouses where products remain (sometimes for long duration) until they are

ordered by final customers, the products handled by cross-dock are not permitted to

remain on the platform beyond 24 hours, see e.g., Guignard et al. (2012), sometimes

are required to be transferred within less than an hour, see e.g., Bartholdi and Gue

(2004). As explicitly detailed in section 3.4, three classes of cross-docking problems can

be summarized as follows : strategic problems determine a good location for the cross-

dock and its layout design ; operational problems determine the best assignment of truck

to dock door, locations where goods will be temporarily stored, the best synchronization

between arriving and departing trucks at the dock doors of the cross-dock etc. ; and tactical

problems determine the flow of products through the cross-dock to minimize costs and

make supply meet demand. For a broad literature reviews in relation of other variants

of cross-docking problems, we refer the interested readers to Boysen and Fliedner (2010);

Bellanger et al. (2013); Bodnar et al. (2015); Hermel et al. (2016); Küçükoğlu (2016);

Küçükoğlu and Öztürk (2017).

All along this dissertation, we deal with the variant of Cross-dock Door Assignment

Problem in which a set of incoming trucks called origins come from various sources of pro-

ducts such as suppliers, manufacturers, factory, warehouses, other cross-docks, etc., and

unload their pallets of products on a set of inbound dock doors, at which point unloaded

pallets are sorted in a staging area based on their destinations. Finally, the pallets are

directly transferred within the cross-dock using material handling devices such as forklifts

to a set of outbound dock doors where they are or not consolidated with other products

going on the same destination and loaded onto outgoing trucks called destinations. The

goal of the Cross-dock Door Assignment Problem is to find the best assignment of origins

(origin trucks) to inbound dock doors and destinations (destination trucks) to outbound

dock doors so that the total cost of transporting pallets from inbound dock doors to

outbound dock doors within the platform is minimized while it keeps satisfying a set

of constraints. As already mentioned, the transportation cost is considered as the total

weighted distance traveled inside the cross-dock by the used material handling devices.

The problems of truck-to-dock door assignment assume that there are enough dock

doors to accommodate all incoming and outgoing trucks, that is, each truck may be

assigned to dock door, therefore, for these problems time aspects are not taken into
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(i) (ii) (iii)

Tsui and Chang (1990)

Tsui and Chang (1992)

Tarhini et al. (2016)

Cohen and Keren (2008)

Cohen and Keren (2009)

Zhu et al. (2009)

Guignard et al. (2012)

Nassief et al. (2016)

Nassief (2017)

Table 3.1 – The Cross-dock Door Assignment Problems, dock doors assignment strategy

account.

The Cross-dock Door Assignment Problems may be classified according to several cri-

teria. The first criterion is based on the dock doors allocation strategy. Several types of

allocation restrictions are possible : The cited papers into column (i) of Table 3.1 deal

with the variant of CDAP where each dock door must serve only one origin(respectively

destination) and each origin(respectively destination) must be assigned to only one in-

bound(respectively outbound) dock door ; the papers cited into column (ii) of Table 3.1

deal with the variant of the CDAP where each inbound dock door serves only one origin

at a time, but the same destination may be assigned to several outbound dock doors ; and

the variant of CDAP dealt with into the works in column (iii) of Table 3.1 consider a

generalized case where each inbound (respectively outbound) dock door may serve more

than one origin (respectively destination).

The second criterion considers whether and how capacity constraints are taken into

account : In Tsui and Chang (1990, 1992) and Tarhini et al. (2016), there are no limitations

of capacities on the inbound and outbound dock doors ; In Cohen and Keren (2008,

2009) there are no limitations of capacities on inbound dock doors but only capacities of

outbound dock doors are taken into account and dock door capacity is considered equal

to the capacity of a truck ; In Zhu et al. (2009), the authors extended the model proposed

by Tsui and Chang (1990) considering capacity constraints on both inbound and outbound

dock doors in order to take into account more realistic considerations. This what makes

Zhu et al. (2009) model to be standard or generalized.

The third criterion is based on the layout design of a cross-dock as the specification of

dock doors as either inbound or outbound dock doors. The so-called I-shape for cross-dock

layout design is one of the most often considered shape in the literature, see e.g., Tsui

and Chang (1990, 1992); Gue (1999); Bartholdi III and Gue (2000); Oh et al. (2006);

Cohen and Keren (2008, 2009). Figure 3.10 taken from our published paper in Gelareh
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Figure 3.10 – Cross-dock : Exclusive mode of dock door, Gelareh et al. (2020)

et al. (2020) describes the I-shape cross-docking operations in greater detail. An I-shaped

cross-dock has a rectangular shape, with receiving dock doors on one side and outbound

dock doors on the other side. Therefore, rectilinear distances may accurately simulate

distances traversed by the forklifts following clearly marked lanes, see Figure 3.10. Other

cross-dock shapes considered in the Cross-dock Door Assignment Problems are so-called

semi-permanent and dynamic layouts, see e.g., Brown (2003); Bozer and J. Carlo (2008);

Yu et al. (2008). For other shapes of a cross-dock layout considered in the cross-dock li-

terature we refer the reader to e.g., Bartholdi and Gue (2004). In this PhD thesis we deal

with the CDAP where each dock door may serve more than one origin(respectively des-

tination), capacity constraints are imposed on each dock door and I-shape cross-docking

operations are allowed. This variant of the problem was introduced in Zhu et al. (2009) as

a standard formulation of CDAP and as an extension of the basic formulation of Tsui and

Chang (1990). In Guignard et al. (2012), the authors subsequently used the model of Zhu

et al. (2009) to develop three heuristics, the first two are based on local search and the

third is based on Convex Hull Relaxation (CHR). Recently, in Nassief et al. (2016), the

authors proposed a Mixed Integer Programming formulation of the CDAP which consists

to determine optimal paths for commodities from origins to destinations via inbound and

outbound dock doors. In that same work, the authors proposed some valid inequalities for

the problem as well as a Lagrangian Relaxation heuristic to tackle large-scale instances.

In Nassief et al. (2018), the authors presented a study on the standard CDAP as defined

in Zhu et al. (2009) with and without load and unload times. They proposed several new
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formulations and a branch and price solution strategy.

The computational experimentation shows that CDAP is extremely difficult to solve

to optimality. As already introduced, the CDAP includes the Generalized Assignment

Problem (GAP) as a sub-problem and the GAP problem is NP-hard. The GAP is a well-

established field of research in terms of both modeling and solution approaches, and has

been extensively studied in papers such as e.g., Chu and Beasley (1997); Wilson (1997);

Dıaz and Fernández (2001); Lorena et al. (2002); Yagiura, Ibaraki and Glover (2004);

Yagiura et al. (2006); Jeet and Kutanoglu (2007); Woodcock and Wilson (2010); Liu and

Wang (2015). In addition, several variants of the GAP have been proposed in the lite-

rature including the Multi-Resource GAP, see e.g., Yagiura, Iwasaki, Ibaraki and Glover

(2004), the multi-level GAP, see e.g., Laguna et al. (1995), the generalized quadratic as-

signment problem, see e.g., Cordeau et al. (2006); Mateus et al. (2011); McKendall and

Li (2017); Pessoa et al. (2010), the generalized assignment problem with special ordered

sets, see e.g., French and Wilson (2007) and the quadratic three-dimensional assignment

problem, see e.g., Hahn, Kim, Stuetzle, Kanthak, Hightower, Samra, Ding and Guignard

(2008). In Zhu et al. (2009), the authors establish a relationship between the Generalized

Quadratic three-dimensional Assignment Problem (GQ3AP) and the CDAP and show

that the CDAP can be solved as a GQ3AP.

3.6.3 Mathematical quadratic formulation for CDAP

The Cross-dock Door Assignment Problem can be described mathematically as follows.

On left side we are having a setM of incoming trucks named origins that have to be docked

and unloaded at a set I of inbound dock doors and at right side we are having a set N

of outgoing trucks named destinations to be docked to a set J of outbound dock doors.

The total amount of pallets delivered to each origin m ∈ M is sm > 0, sm is dispatched

into small amounts of flows fm,n such that each flow fm,n ≥ 0 is destined to destination

n ∈ N . Therefore, the total amounts of flows coming from origin m ∈M and received by

different destinations can be computed as sm =
∑

n∈N fm,n, ∀m ∈ M . In the same way,

on the outbound dock doors side, each destination n ∈ N receives total amount of flows

rn > 0. This amount rn is defined as the total amount of flows coming from different

origins and destined to n ∈ N . Accordingly, rn is computed as rn =
∑

m∈M fm,n,∀n ∈ N .

The statements sm > 0 and rn > 0 means that no origin can enter to the facility empty

nor no destination can leave facility empty. The capacity of each inbound dock door i ∈ I
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is denoted Si, this parameter represents the total number of origins with a quantity of

load sm for each origin that inbound dock door i can allocate. Likewise, the capacity of

each outbound dock door j ∈ J is denoted Rj, it means the total number of destinations

with quantity of load rn each destination that outbound dock door j is able to allocate.

For an I-shape cross-dock configuration, it is supposed that all dock doors have the

same capacity, that is, ∀i ∈ I, j ∈ J, Si = Rj. This variant of the CDAP we deal with

in this PhD thesis considers that each subset Mi : Mi ⊂ M which denotes the subset of

al origins assigned to inbound dock door i ∈ I and likewise each subset Nj : Nj ⊂ N

which denotes the subset of all destinations assigned to outbound dock door j ∈ J are

handled the same time. From above description of the optimization problem, we will use

the following notations in the rest of this thesis:

Sets

• M : Set of origins referring to incoming trucks

• N : Set of destinations referring to outgoing trucks

• I : Set of inbound (strip) dock doors

• J : Set of outbound (stack) dock doors

Parameters

• sm : Available number of pallets from origin m ∈M

• rn : Number of pallets destined to destination n ∈ N from each origin m ∈M

• Si : Capacity of inbound dock door i ∈ I

• Rj : Capacity of outbound dock door j ∈ J

• di,j : Distance between inbound and outbound dock doors pair (i, j)

• fm,n : Number of pallets flow from origin m ∈M destined to destination n ∈ N

fm,n is considered as the number of trips required by the material handling device to move

pallets originating from origin m ∈ M assigned to dock door i ∈ I to destination n ∈ N
assigned to dock door j ∈ J .
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Decision variables

In order to formally model this combinatorial optimization problem, two binary deci-

sion variables are defined. On the left side of I-shape cross-dock a decision variable xm,i
for managing assignment of the set M of origins to the set I of inbound dock door and

on the right side of I-shape cross-dock a decision variable yn,j for managing assignment of

the set N of destinations to the set J of outbound door.

∀m ∈M, i ∈ I, xm,i =

1 if origin m is assigned to inbound dock door i

0 otherwise

∀n ∈ N, j ∈ J, yn,j =

1 if destination n is assigned to outbound dock door j

0 otherwise

The real model considered in thesis assumes the following configurations :

• Exclusive mode

• I-shape cross-dock

• More vehicles than dock doors (in both sides !), i.e, |M | > |I| and |N | > |J |

• A same count of vehicles input/output |M | = |N |

• A same count of dock doors input/output i.e., |I| = |J |

• No preemption

• No interchangeability - each unit is assigned to a destination

Let Ω =< m−i−j−n > be the flow path to move the amount fm,n from originm ∈M
to destination n ∈ N through inbound and outbound dock door i ∈ I and outbound dock

door j ∈ J . The flow path Ω will be established if both of the following conditions are

fulfilled at the same time: origin m ∈ M is assigned to inbound dock door i ∈ I, i.e.,

xm,i = 1 and destination n ∈ N is assigned to outbound dock door j ∈ J , i.e., yn,j = 1.

When the flow path is established, the used material handling device starts routing the

flow fm,n from origin m ∈ M to destination n ∈ N through inbound and outbound dock

doors pair (i, j) : ∀i ∈ I, j ∈ J .

According to the above sets, parameters and decision variables, the CDAP may be
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formally modeled as the following quadratic model Q as proposed in Zhu et al. (2009)

(Q)



min f(x, y) =
∑
m∈M

∑
i∈I

∑
n∈N

∑
j∈J

fm,ndi,jxm,iyn,j

subject to :∑
i∈I

xm,i = 1, ∀m ∈M

∑
j∈J

yn,j = 1, ∀n ∈ N

∑
m∈M

smxm,i ≤ Si, ∀i ∈ I

∑
n∈N

rnyn,j ≤ Rj, ∀j ∈ J

xm,i, yn,j ∈ {0, 1}, ∀m ∈M,n ∈ N, i ∈ I, j ∈ J

(3.1a)

(3.1b)

(3.1c)

(3.1d)

(3.1e)

(3.1f)

The quadratic interactivity (transportation cost) which denotes the weighted distance

by moving flow fm,n along distance di,j between inbound dock door i ∈ I and outbound

dock door j ∈ J from origin m ∈ M , when m is assigned to inbound dock door i, to

destination n ∈ N when n is assigned to outbound dock door j is computed as fm,n×di,j,
i.e., the objective function (3.1a) sums up the total weighted distance traveled from all

inbound dock doors |I| to all outbound dock doors |J | according to all distribution flows

fm,n between all origins and all destinations. In the quadratic model Q, the number of

constraints is computed as follows, |M | + |N | + |I| + |J | and the number of variables is

computed as follows, |M ||I|+ |N ||J |.

In the quadratic mathematical model Q, objective function (3.1a) minimizes the total

transportation cost inside the cross-dock taking into account the constraints (3.1b)-(3.1f)

classified into three groups. The two sets of multiple choice constraints (3.1b) and (3.1c)

ensure that each origin (respectively destination) must be allocated to one and only one

inbound (respectively outbound) dock door, respectively. We group (3.1b) and (3.1c) into

a set of assignment constraints (i). The two sets constraints (3.1d) and (3.1e) guarantee

that the capacity of each inbound (respectively outbound) dock door is respected. We

group (3.1d) and (3.1e) into a set of the capacity constraints or knapsack constraints (ii).

And the last constraint (3.1f) imposes the binary requirement on the decision variables

(iii).
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3.6.4 Some variants of the CDAP

We recall that the combinatorial optimization problem we are dealing with in this dis-

sertation is related to assignment of trucks to dock doors of an I-shape cross-dock that uses

an exclusive operating mode of dock doors. The standard quadratic formulation detailed

above is originally proposed in Zhu et al. (2009). This mathematical formulation refers to

real application where any inbound (respectively outbound) dock door is constrained to

allocate more than one origin (respectively destination) respecting the dock door capacity,

see e.g., the set of constraints (ii) and each origin (respectively destination) is assigned

to one and only one dock door, see e.g., the set of constraints (i). In the following of this

section, we present some variants of the CDAP (summary in Table 3.2) and we raise some

of their limitations as regards to their real applications.

Variants of

CDAP

Summry of related

mathematical formulation

Related remarks

and limitations

Zhu et al. (2009) Each dock door (in-

bound/outbound) can allocate

more than one origin/destination

managing the capacity of dock door

This is the standard or generali-

zed variant of CDAP. This varant

takes into account the amount of

resources available, namely capacity

of dock doors

Tsui and Chang

(1990, 1992)

In this variant of CDAP, each dock

door is assigned one truck and dock

door capacity is not considered

The related model can not be ap-

plied in real applications given a lot

of incoming/outgoing trucks excee-

ding number of dock doors

Tarhini et al.

(2016)

Same as Tsui and Chang (1990,

1992), just a slight change of assi-

gnment of incoming trucks

Same limitations as Tsui and Chang

(1990, 1992)

Cohen and Keren

(2008, 2009)

At inbound side, the same as Tsui

and Chang (1990, 1992), at out-

bound side, the feasible solution re-

quires number of dock doors to ex-

ceed much enough number of out-

going trucks

This variant is the worst given

that it requires additional dock

doors than in Tsui and Chang

(1990, 1992), the resources (out-

bound dock doors) are mismanaged

Table 3.2 – The variants of Cross-dock Door Assignment Problem (CDAP)
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3.6.4.1 Variant of Tsui and Chang

The proposed mathematical formulation by Tsui and Chang (1990, 1992) seems not

to be feasible in real applications. In fact, the formulation supposes that each inbound

(respectively outbound) dock door allocates only one incoming (respectively outgoing)

truck and that each incoming (respectively outgoing) truck is assigned to one inbound

(respectively outbound) dock door. Only assignment constraints (i) are considered for both

dock doors and trucks. The dock doors capacity is not taken into account, that makes

this formulation unusable for real applications given the very large number of trucks to

be assigned to dock doors which far exceeds the number of dock doors.

Tsui and Chang Model:

Qt&c



min f(x, y) =
∑
m∈M

∑
i∈I

∑
n∈N

∑
j∈J

fm,ndi,jxm,iyn,j

subject to :∑
i∈I

xm,i = 1, ∀m ∈M

∑
j∈J

yn,j = 1, ∀n ∈ N

∑
m∈M

xm,i = 1, ∀i ∈ I

∑
n∈N

yn,j = 1, ∀j ∈ J

xm,i, yn,j ∈ {0, 1}, ∀m ∈M,n ∈ N, i ∈ I, j ∈ J

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.2e)

(3.2f)

The objective function (3.2a) and the assignment constraints (3.2b) and (3.2c) are

similar to the objective function (3.1a) and assignment constraints (3.1b) and (3.1c) of

previous standard model in Zhu et al. (2009). The models QT&C of Tsui and Chang (1990,

1992) and Q differ from each other to the constraints (3.2d) and (3.2e) which guarantee

that each inbound (respectively outbound) dock door have to allocate a single origin

(respectively destination).

According to that mathematical formulation of Tsui and Chang, the model requires

on left side the number of origins |M | to be equal to the number of inbound dock doors |I|
and likewise, on the right side, the number of destinations |N | to be equal to the number

of outbound dock doors |J |. Those requirements are due to the pairs of constraints (3.2b)

and (3.2d) that handle trucks to dock doors on left side and (3.2c) and (3.2e) on right side

of I-shape cross-dock. This problem configuration makes the Tsui and Chang (1990, 1992)
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mathematical model unusable in real applications, for instance, in the case the number of

inbound dock doors is greater that the number of incoming trucks, i.e., |I| > |M | and/or
the number of outbound dock doors is greater than the number of outgoing trucks, i.e.,

|J | > |N |, fictitious incoming and/or outgoing trucks with zero quantities will be created.

A slight more realistic configuration of Tsui and Chang model can be proposed to avoid

those fictitious incoming and outgoing trucks by modifying constraints (3.2d) and (3.2e)

related to assignment of dock doors as follows:
∑
m∈M

xm,i ≤ 1, ∀i ∈ I

∑
n∈N

yn,j ≤ 1, ∀j ∈ J

(3.3a)

(3.3b)

Those constraints (3.3a) and (3.3b) ensure that any inbound dock door i ∈ I (respectively

outbound dock door j ∈ J) can allocate one incoming truck m ∈ M (respectively one

outgoing truck n ∈ N) or not. For the reverse case, that is, the number of incoming trucks

is greater than the number of inbound dock doors, i.e., |M | > |I| and/or the number of

outgoing trucks is greater than the number of outbound dock doors, i.e., |N | > |J |, the
model QT&C will be infeasible.

3.6.4.2 Variant of Tarhini et al.

In Tarhini et al. (2016), the authors proposed a new formulation of Cross-dock Door

Assignment Problem directly based on the model introduced in Tsui and Chang (1990).

In the quadratic model, the authors defined an additional decision variable to control only

the assignment of origins to dock doors. The authors’ mathematical model is depicted as

follows:

Additional decision variable:

zm,i =

1 if incoming truck m ∈M is assigned to inbound dock door i ∈ I

MAX if incoming truck m is assigned to any outbound dock door j ∈ J

Tarhini et al. model :

Qt :



minimize
∑
m∈M

∑
i∈I

∑
n∈N

∑
j∈J

fm,ndi,jxm,iyn,jzm,i

subject to :

(3.2b)− (3.2f)

zm,i ∈ {1,MAX}, ∀m ∈M, i ∈ I

(3.4a)

(3.4b)
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The constraint (3.4b) is related to the additional integer variable. The variable will take

value 1 for normal dock doors assignment, i.e., according to I-shape cross-docking facility,

normal assignment imposes origins to be assigned to inbound dock doors and destinations

to outbound dock doors. If any incoming truck is assigned to any outbound dock door

which corresponds to abnormal assignment according to the authors in Tarhini et al.

(2016), zm,i will take a highest integer value, MAX, that will distort the value of the

final solution.

3.6.4.3 Variant of Cohen and Keren

As for Zhu et al. (2009), Cohen and Keren consider also the assignment of origins

and destinations instead of trucks, see e.g., Cohen and Keren (2008, 2009). The authors

take into account another criterion of assigning destinations to outbound dock doors as

described below.

While each inbound dock door i ∈ I allocates one origin at time as in Tsui and

Chang (1990, 1992), on outbound side, a single destination n ∈ N can be assigned to

several loading dock doors j, k, l ∈ J . In fact, the freight flow fm,n destined to desti-

nation n is split and sent to load dock doors j, k, l to which n is assigned. It means

that, in case the total freight flows rn =
∑

m∈M fm,n, ∀n ∈ N sent to destination n im-

poses several shipping trucks, the freight fm,n is split into several outbound dock doors

j, k, l ∈ J to which those shipping trucks serving destination n are docked. That is, the

capacity of dock door is considered to be equal to the capacity of a truck. The authors

considered that the capacity Cm of truck m ∈ M must respect the following condition∑
n∈N fm,n ≤ Cm, ∀m ∈ M and that shipping and incoming trucks have the same capa-

city. Therefore ν = (
∑

m∈M fm,n)/C, ∀n ∈ N denotes the number of trucks serving the

same destination n where C stands for the capacity of incoming (respectively shipping)

truck. This number ν of trucks is equal to the number of load dock doors that are reserved

to allocate the destination n. In that case, fm,n must be split and sent to ν load dock doors.

The split is a certain percentage of fm,n, however, all the splits of fm,n are not known

in advance but are related to ν dock doors. In view of this fact, for any combination of

n ∈ N and m ∈ M according to the flow fm,n between m and n, a new decision variable

αm,i,j,n is defined to handle how the percentages of fm,n are sent to ν outbound dock

doors. Those percentages are such that for all inbound dock door i ∈ I the percentages

αm,i,j,n×fm,n, αm,i,k,n×fm,n, αm,i,l,n×fm,n, . . . are sent from i to the shipping dock doors

j, k, l, · · · ∈ J : j 6= k, k 6= l, j 6= l, etc.
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Additional parameters:

C : The capacity of a truck

D : Capacity of a dock door

Additional decision variable:

αm,i,j,n is the portion of fm,n that was originating fromm unloaded at inbound dock door i,

and moved to shipping dock door j. All combinations having receiving dock door i that was

not assigned to originm have αm,i,j,n = 0. The same case is true for all combinations having

shipping dock door j to which destination n is not assigned. However, if m is assigned to

inbound dock door i and n assigned to outbound dock door j we have 0 ≤ αm,i,j,n ≤ 1.

Cohen and Keren model:

Qck



min f(x, y, α) =
∑
m∈M

∑
i∈I

∑
n∈N

∑
j∈J

di,jfm,nαm,i,j,nxm,iyn,j

subject to :∑
i∈I

xm,i = 1, ∀m ∈M

∑
j∈J

yn,j = [(
∑
m∈M

fm,n)/D], ∀n ∈ N

∑
i∈I

∑
j∈J

xm,iyn,jαm,i,j,n = 1, ∀m ∈M,∀n ∈ N

∑
m∈M

xm,i ≤ 1, ∀i ∈ I

∑
n∈N

yn,j ≤ 1, ∀j ∈ J

∑
i∈I

∑
m∈M

∑
n∈N

xm,ifm,nαm,i,j,nyn,j ≤ C, ∀j ∈ J

0 ≤ αm,i,j,n ≤ 1, ∀m ∈M, i ∈ I, n ∈ N, j ∈ J

xm,i, yn,j ∈ {0, 1}, ∀m ∈M, i ∈ I, n ∈ N, j ∈ J

(3.5a)

(3.5b)

(3.5c)

(3.5d)

(3.5e)

(3.5f)

(3.5g)

(3.5h)

(3.5i)

The objective function (3.5a) minimizes the weighted distance traveled inside the cross-

dock by finding optimal flow in the case of several shipping dock doors for a single des-

tination. The constraint (3.5b) guarantees that any origin must be assigned to only one

inbound dock door while the constraint (3.5c) ensures that each destination is assigned to

enough loading dock doors, the constraints (3.5d) means that for each flow fm,n between

origin m and destination n, the sum of percentages αm,i,j,n is equal to 1. The constraints

(3.5e) and (3.5f) ensure that each inbound(respectively outbound) dock door can allocate

one incoming (respectively outgoing) truck. The constraint (3.5g) guarantees that the

total flows sent to a shipping dock door j cannot exceed the capacity of a truck. The
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constraint (3.5h) defines the bounds of the continuous variable αm,i,j,n. Constraint (3.5i)

defines the classical integrality requirement of binary variables xm,i and yn,j.

In Tsui and Chang (1990, 1992); Tarhini et al. (2016) the number of dock doors must

be equal to the number of trucks and in Cohen and Keren (2008, 2009), at outgoing

side a destination can be docked to more than one dock door, this requires the number

of load dock doors to be big enough than the number of destinations. All those other

variants of CDAP are still simplistic compared to the variant of Zhu et al. (2009) given

that nowadays the amount of freights flow is still increasing day after day. Therefore, the

number of trucks is big enough than the number of dock doors. The main ingredients for

the variant in Zhu et al. (2009) is that the authors consider the management of resources

that are dock doors. Each dock door, whether inbound or outbound dock door, is managed

as knapsack able to receive more than one object increasing the profit of using the dock

door considered as a knapsack.

3.6.5 Connections with other Assignment problems

In this section we present some Assignments problems and depict some connections

between those problems and the CDAP standard problem we deal with in this dissertation.

3.6.5.1 Assignment and Generalized Assignment Problem

In Ross and Soland (1975), the authors have given the first formal definition of Ge-

neralized Assignment Problem (GAP). They have described the GAP as a special case

of classical Assignment Problem (AP). In fact, in the GAP, each task is assigned to one

and only one agent while each agent can be assigned to more than one task. For broad

details, a set of tasks have to be assigned to a set of agents where each agent has limited

resources. The agent’s resources can be for instance the number of hours per day. To be

achieved, each task requires a certain amount of agent’s resources. The importance of the

Generalized Assignment Problem is not only its direct application but it appears as a

sub-problem in many practical and complex combinatorial optimization problems in the

literature, as for instance in our variant of the CDAP.

Ross and Soland (1975) mathematical formulation for the GAP is as follows. Let

M = {1, 2, ..., |M |} refers to the set of tasks’ index and I = {1, 2, ..., |I|} refers to the set

of agents’ index. The parameter ct,p is the cost incurred when task t ∈ M is executed or
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assigned to agent p ∈ I. To be completely executed at,p refers to the amount of resource

that task t requires from agent p and Ap is the amount of resource available for agent

p. A decision variable εt,p is defined to ensure an optimal assignment of all tasks |M | to
agents I ′ ⊆ I, that is, whether a given task t ∈M is executed by an agent p ∈ I or not.

Taking into account those sets and parameters above, the GAP is mathematically

formulated as follows.

∀t ∈M, p ∈ I, εt,p =

1 if task t is assigned to agent p

0 otherwise

(GAP )



minimize
∑
t∈M

∑
p∈I

cm,iεt,p

subject to :∑
i∈I

εt,p = 1 ∀t ∈M

∑
m∈M

at,pεt,p ≤ Ap ∀i ∈ I

εt,p ∈ {0, 1}, ∀t ∈M, p ∈ I

(3.6a)

(3.6b)

(3.6c)

(3.6d)

The objective function (3.6a) minimizes the total cost when all tasks |M | are assigned to

agents I ′ ⊆ I, that is, the solution does not guarantee that all available resources will be

used, this means that in optimal solution, some agents can still free of assignment. The

assignment constraint (3.6b) ensures that each task t ∈M must be assigned to one agent

p ∈ I, the knapsack constraint (3.6c) ensures that an agent p can be assigned multiple

tasks respecting the capacity Ap of that agent. Constraint (3.6d) fixes the classical binary
decision variable.

The Generalized Assignment Problems do not assume whether or not this task must

be executed by this agent, those optimization problems just seek an optimal arrangement

of tasks to agents until all tasks are assigned and completely executed with a minimal

cost. Accordingly, the parameter at,p is constant for each agent, that is, at,p = at and

means the amount of resource required by task t regardless the agent p.

In comparison with an I-shape cross-dock and the variant of CDAP we deal with in

this study, there is a relation between the Generalized Assignment Problem (GAP) and

the Cross-dock Door Assignment Problem (CDAP). In fact, an inbound dock door i ∈ I
(respectively an outbound dock door j ∈ J) can be seen as an agent p ∈ I and an

origin m ∈ M (respectively a destination n ∈ N) can be compared to a task t ∈ M . On
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the two sides of I-shape cross-dock, volume of goods sm from an origin m (respectively

volume of demand rn from a destination n) can be compared to the resource at required

by task t to be executed and the capacity Si of inbound dock door i (respectively capacity

Rj of outbound dock door j) can be compared to he capacity Ap of the agent p, see

e.g., Guignard et al. (2012). Accordingly, CDAP includes GAP as sub-problem on each

side of I-shape cross-dock.

In Ross and Soland (1975); Sahni and Gonzalez (1976), the authors showed that the

Generalized Assignment Problem is NP-hard. Accordingly, CDAP is also NP-hard. In

addition, according to the computational experiments, the CDAP is still complicated

using exact methods and more specially for large scale instances.

3.6.5.2 Quadratic and Generalized Quadratic Assignment Problems

The Quadratic Assignment Problem (QAP) is one of the difficult combinatorial opti-

mization problems to solve using exact methods, especially when the size of the problem

grows up. In Adams et al. (2007), the authors have defined the QAP as following

QAP min


∑
i∈N

∑
j∈N

bi,jxi,j +
∑
i∈N
i6=k

∑
j∈N
j 6=l

∑
k∈N

∑
l∈N

ci,j,k,lxi,jxk,l : x ∈ X, x ∈ {0, 1}

 (3.7a)

where:

x ∈ X ≡

x ≥ 0 :

∑
i∈N

xi,j = 1, ∀j ∈ N

∑
j∈N

xi,j = 1, ∀i ∈ N

The objective function and the constraints all gathered into (3.7a) minimize to total cost

bi,j of implanting units |N | to location |N | (first term of objective) and the quadratic cost

ci,j,k,l of material flow between a unit i implanted to location j and unit k implanted to

location l (second term of objective function). The locations j and l are separated by a

distance dj,l and the units i and k exchanges a flow wi,k. Therefore the cost ci,j,k,l = dj,lwi,k

denotes the weighted distance which corresponds to the product of flow wi,k between unit

i and unit k with the distance dj,l between the location j and location l where unit i

and unit k are implanted, respectively. The assignment constraints ensure that in each

location j is implanted one unit i and each unit i is implanted in one location j. Those

two constraints require that the number of units must be equal the number of locations.

In Hahn, Kim, Guignard, Smith and Zhu (2008), the authors have extended this model
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by formally modeling the QAP as a Generalized Quadratic Assignment Problem (GQAP).

Afterwards, using Reformulation Linearization Technique (RLT), the authors have pro-

posed a linearization of quadratic objective function. Like GAP, the GQAP consider that

locations j and l can allocate each one more than one unit respecting the capacity of

each location. This implies that the number of units can be greater that the number of

locations. Additional parameters such that location capacity, the space needed for each

unit are defined.

• M : the set of units

• N : the set of locations

• ai,j is the space needed to implant unit i in location j

• bj is the available space for location j

Hahn et al. GQAP model :

GQAP min


∑
i∈M

∑
j∈N

bi,jxi,j +
∑
i∈M
i6=k

∑
j∈N
j 6=l

∑
k∈M

∑
l∈N

ci,j,k,lxi,jxk,l : x ∈ X, x ∈ {0, 1}

 (3.8a)

where:

x ∈ X ≡

x ≥ 0 :

∑
i∈M

ai,jxi,j ≤ bj, ∀j ∈ N∑
j∈N

xi,j = 1, ∀i ∈M

The constraint ∑
i∈M

ai,jxi,j ≤ bj, ∀j ∈ N

ensures that a location j can allocate several units i respecting location capacity bj while

constraint ∑
j∈N

xi,j = 1, ∀i ∈M

ensures that each unit i is implanted in one location. As the QAP is hard to solve mainly

due the quadratic term, the GQAP is also hard to solve.

The common relation between GQAP and the variant of CDAP we deal with in this

study is that both combinatorial optimization problems seek to minimize a quadratic

objective function of a cross-product of binary decision variables while managing a finite
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amount of resources such that locations and dock doors, respectively. Moreover, in Hahn,

Kim, Stuetzle, Kanthak, Hightower, Samra, Ding and Guignard (2008), it has been pro-

ved that Cross-dock Door Assignment Problem (CDAP) can be solved as Generalized

Quadratic three-dimensional Assignment Problem (GQ3AP). The Standard formulation

of CDAP presenting a quadratic term of the two binary decision variables xm,i and yn,j
and being hard to solve, some linearization techniques slightly similar to those used to

linearize the GQAP have been employed to linearize the quadratic model of Zhu et al.

(2009).

We also took a look at the Reformulation and Linearization Technique (RLT) applied

on 0-1 integer programming problem in Adams and Sherali (1990). In Adams and Sherali

reformulation, a new set of constraints is added for each variable xj as follows. For each

constraints
∑

i∈N aixi ≤ b of original problem, both constraints
∑

i∈N aixixj ≤ bxj and∑
i∈N aixi(1 − xj) ≤ b(1 − xj) are added ; and for each constraint

∑
i∈N cixi = d of

original problem, the constraint
∑

i∈N cixixj = dxj is added. This RLT is known to

produce the tight linear programming relaxation bounds, see e.g., Pessoa et al. (2010). The

intent was to apply Adams and Sherali Adams and Sherali (1990) RLT on the standard

quadratic formulation of the CDAP Zhu et al. (2009) to confirm the tightness of the linear

programming relaxation bounds of the standard CDAP. The computational results given

by this RLT to the standard CDAP are not presented in this dissertation.

3.7 Conclusion

In this chapter we have defined cross-docking and we have given some applications in

practice. The difference between warehouse and cross-docking and the strategies employed

by cross-docking have been shown, among those strategies, cross-docking eliminates the

two most costly operations of warehouses, namely storage and order-picking. The three

decision levels, namely strategic, tactical and operational, used to successfully implement

a cross-docking have been described. We then have focused on operation level to describe

relevant optimization problems raised by cross-docking on that level including the optimi-

zation problem we deal with in this PhD thesis. We have emphasized on the combinatorial

optimization problem referred to Cross-dock Door Assignment Problem (CDAP) that we

tackle here. We have explained the complexity of CDAP due to the presence of cross-

product of binary decision variables and to the nature of CDAP. Some variants of this

problem have been described and their mathematical formulations have been discussed
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and compared with the variant we tackle. A certain relation between the variant of CDAP

we deal with here and other classes of assignment problems have been established. In the

next chapter we are going to develop and present some new solutions, more precisely we

develop new non standard Mixed Integer Linear Programming (MILP) models and we

prove their equivalence as well as their equivalence to the standard linear MIP for CDAP.
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Chapter 4

Mathematical Programming

Formulations for the Cross-dock Door

Assignment Problem

Chapter notes : This chapter is a broad development of two articles, a journal ar-

ticle published September 2018 into The International Journal of Management Science

(Omega) and a manuscript undergoing preparation for submission to publication for

which the preliminary experimentation results have been presented into 11th edition of

Journées Plyhèdres et Optimization Combinatoire (JPOC’11) https://jpoc11.event.

univ-lorraine.fr/resource/page/id/9
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In this chapter, as widely developed into chapter 3, we tackle the variant of the Cross-

dock Door Assignment Problem (CDAP) proposed for the first time in Zhu et al. (2009).

This variant of CDAP is an extension of the classical mathematical model introduced in

Tsui and Chang (1990, 1992) to take into account the management of dock doors as finite

resources. We propose new Mixed Integer Linear Programming (MILP) formulations for

the Cross-dock Door Assignment Problem, afterwards, we prove the equivalence between

those new MILP models and carry out an extensive comparative study on benchmark data

sets from the literature to compare performance between these models and with existing

MIP models from literature. To the best of our knowledge, the best MILP model for the

CDAP is the one we have proposed for the first time, the results of which are published

in Gelareh et al. (2020). Afterwards, we pick one of the proposed MILP models that gives

a good compromise between the best lower bounds by the Linear Programming (LP)

relaxation and running time consumption and then we apply a Lagrangian Relaxation

(LR) approach to generate new and better lower bounds on the optimal solution value

given by that MILP model. We use the sub-gradient optimization method to solve the

Lagrangian dual problem. The computational results show that Lagrangian dual improves

significantly the LP relaxation lower bound and the lower bound given by a recent La-

grangian Relaxation from literature, Nassief et al. (2016). However, this improvement is

offset by an important increase of the computational effort needed to solve the relaxation

especially when the size of the problem increases.

4.1 Introduction

As already pointed out in chapter 3, cross-docking is a strategy implemented into the

cross-dock. We recall that a cross-dock is a type of warehouse in supply chain management

that allows orders to be prepared without going through the phase of storing products

in the warehouse and subsequently selecting them for delivery. We also recall that Cross-

dock Door Assignment Problem (CDAP) is concerning the management of fully loaded

incoming trucks named origins that enter to a cross-dock facility and unload their products

on inbound dock doors of that facility. The unloaded products are immediately sorted and
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organized according to their destinations and, using material handling devices inside the

facility such that forklift, those products are immediately transferred to outbound dock

doors to be loaded into outgoing trucks named destinations or delivery trucks for being

distributed to final customers. Unlike classical warehouses, on cross-dock yard, products

are unloaded and loaded without placing them in temporary storage. The goal of the

CDAP is to assign origins on inbound dock doors and destinations on outbound dock

doors so that the total transportation cost inside the cross-dock is minimized.

The standard quadratic formulation for the CDAP as proposed in Zhu et al. (2009)

is hard to solve, even for small-sized instances. Because of the NP-hard character of the

CDAP, most of the studies of this combinatorial optimization problem in the literature

have been dedicated to developing efficient heuristic solution approaches to cope with

large scale instances.

To the best of our knowledge, there are only three Mixed Integer Programming (MIP)

formulations for the CDAP in the literature, namely the standard MIP model and the

MIP models proposed in Nassief et al. (2016, 2018). In this chapter, we propose eight new

non standard MILP models for the CDAP and demonstrate the mathematical equivalence

of all 11 models, together with rigorously proving some of their properties. In order to

detect which of these 11 models is the best, we conduct an extensive comparative analysis

on benchmark instances from the literature, which discloses that the best MILP model is

one proposed in this chapter for the first time. We further prove the equivalence of these

formulations and identify their integrality properties. Finally, we perform an extensive

comparative study of their performance on benchmark instances from the literature, re-

porting the number of instances solved optimally or not, upper bounds they provide, and

CPU time consumed by a CPLEX MIP solver applied to each formulation. More precisely,

the comparison of performance between the models is not done analytically as in Nassief

et al. (2018), but empirically.

We next propose a Lagrangian Relaxation approach that we apply to the best MILP

formulation we proposed for the CDAP to produce a new lower bound on the optimal

value and to improve the bound provided by the LP relaxation. The choice of that MILP

model for Lagrangian Relaxation is based on a compromise between the LP bound and

the processing time to obtain it. The proposed Lagrangian Relaxation relaxes the derived

knapsack constraints (new capacity constraints) related to dock doors that have been

added to strengthen that best MILP model. The Lagrangian dual problem is solved using

the sub-gradient optimization algorithm. The results of computational experiments show
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that the Lagrangian dual model improves significantly the LP relaxation bound but still

consuming more important CPU time than LP relaxation.

For solving the MILP and Lagrangian models, we have selected the CPLEX solver

of IBM since it is one of the most effective solvers and because it is a good indicator of

model performance, in the respect that if one model performs better than another using

CPLEX then the same ranking of the models occurs when applying other leading solvers.

The rest of this chapter is organized as follows. In section 4.2, we describe the standard

quadratic mathematical model originally proposed in Zhu et al. (2009) and the standard

linearization of quadratic model. Then, we present the customary approaches to linearize

this standard quadratic model of CDAP, that is, we describe the way we replace the

cross-product of decision variables in the objective function and the standard MIP model

for CDAP. In section 4.3 we introduce new sets of constraints and build new non-standard

MILP models for CDAP. We additionally prove the equivalence of those new non standard

MILP models between them as well as their equivalence to the standard MIP model

presented in literature. In section 4.4, we deal with the integrality requirement on the

additional decision variable used to linearize the quadratic objective function and prove

that the relaxation of the integrality requirement on some variables will not affect the

optimal solution value. In section 4.5 we present the Lagrangian Relaxation (LR) approach

and the sub-gradient optimization method we use to solve the Lagrangian dual model.

In section 4.6, we provide an exhaustive comparative analysis of the MILP models in

order to identify the best MILP model, afterwards, we provide Lagrangian dual results.

Computational experiments on both MILP models and Lagrangian Relaxation are carried

out on the benchmark data set from the literature. The last section 4.7 of this chapter is

dedicated to the conclusion.

4.2 Standard Formulation for the CDAP

In this section we present the standard quadratic formulation for the CDAP proposed

in Zhu et al. (2009) together with the standard approach for linearizing this model. In

addition, we present some valid equalities and inequalities for the resulting Mixed Integer

Programming model.
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4.2.1 Standard quadratic formulation

We recall that the standard quadratic formulation of the CDAP is as follows. Given

a set M of incoming trucks (origins), a set N of outgoing trucks (destinations), a set I of

inbound dock doors and a set J of outbound dock doors, each inbound/outbound dock

door may serve more than one origin/destination respectively subjected to the dock doors’

capacity constraints and to the assignment constraints of origins/destinations. If the origin

m ∈M is assigned to the inbound dock door i ∈ I and the destination n ∈ N is assigned

to the outbound dock door j ∈ J , a transportation cost is incurred. The transportation

cost is the product of di,j and fm,n, where di,j refers to the distance between inbound dock

door i and outbound dock door j, and fm,n is the number of pallets moved from the origin

m to the destination n. The total number of pallets delivered by an origin m ∈ M can

be computed as sm =
∑

n∈N fm,n and the total number of pallets received at destination

n ∈ N is computed as rn =
∑

m∈M fm,n. The capacity of an inbound dock door i ∈ I is

denoted by Si and the capacity of an outbound dock door j ∈ J is denoted by Rj. In

order to formally model the CDAP, we use the binary decision variable xm,i to indicate

whether origin m ∈ M is assigned to inbound dock door i ∈ I or not ; and the binary

decision variable yn,j to indicate whether destination n ∈ N is assigned to outbound dock

door j ∈ J or not.

According to those sets and decision variables, the CDAP is mathematically formulated

in the model Qzh below, see e.g., Zhu et al. (2009).

(Qzh)



min f(x, y) =
∑
m∈M

∑
i∈I

∑
n∈N

∑
j∈J

fm,ndi,jxm,iyn,j

subject to :∑
i∈I

xm,i = 1, ∀m ∈M

∑
j∈J

yn,j = 1, ∀n ∈ N

∑
m∈M

smxm,i ≤ Si, ∀i ∈ I

∑
n∈N

rnyn,j ≤ Rj, ∀j ∈ J

xm,i, yn,j ∈ {0, 1}, ∀m ∈M,n ∈ N, i ∈ I, j ∈ J

(4.1a)

(4.1b)

(4.1c)

(4.1d)

(4.1e)

(4.1f)

In the objective function (4.1a), the quadratic cost cm,i,n,j = fm,ndi,j of product flow fm,n

between origin m ∈ M and destination n ∈ N and the distance di,j between inbound
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dock door i ∈ I and outbound dock door j ∈ J is linked by the quadratic term xm,iyn,j

of binary decision variables xm,i and yn,j. The objective function (4.1a) minimizes the

total transportation cost inside the cross-dock. The two sets of constraints (4.1b) and

(4.1c) stand for assignment constraints constraints while the sets of constraints (4.1d)

and (4.1e) are the capacity constraints. The last set of constraints (4.1f) imposes the

binary requirement on the decision variables, see chapter 3 section 3.6.3.

4.2.2 Standard linearization for the CDAP

In this part, we depict the standard approach for linearizing the quadratic term xm,iyn,j

in the quadratic model Qzh. The linearization most used and probably the most natural

was first presented in Fortet (1960). It is sometimes called classic or standard linearization.

Given that a quadratic objective function is harder to solve than a linear objective,

the quadratic mathematical formulation Qzh may be linearized by dropping the quadratic

term xm,i×yn,j of binary decision variables. Therefore, we introduce a new binary decision

variable zm,i,n,j to replace the quadratic term and setting zm,i,n,j as follows:

zm,i,n,j = xm,iyn,j, ∀m ∈ m, i ∈ I, n ∈ N, j ∈ J

In this case of study of the CDAP, as told in chapter 3 this new introduced decision

variable zm,i,n,j indicates whether a path Ω =< m − i− j − n > is established or not. Ω

denotes a transfer path of flow fm,n of products from the origin m ∈M to the destination

n ∈ N according to whether m is assigned to inbound dock door i ∈ I or not and n is

assigned to outbound dock door j ∈ J or not. That is, if an origin m ∈ M is assigned to

inbound dock door i ∈ I, i.e., xm,i = 1 and a destination n ∈ N assigned to outbound dock

door j ∈ J , i.e., yn,j = 1, the path Ω is established, this implies that, xm,iyn,j = 1 = zm,i,n,j

(xm,i, yn,j and zm,i,n,j binary). In addition, to ensure that the new binary variable zm,i,n,j
for all m ∈ m, i ∈ I, n ∈ N , j ∈ J satisfies its required property (e.g., zm,i,n,j = 1 iff

xm,i = yn,j = 1), the following constraints (4.2a)-(4.2d) need to be stated and added in

the standard linear modelM0,0 for CDAP.



zm,i,n,j ≤ xm,i, ∀m ∈M, ∀i ∈ I,∀n ∈ N,∀j ∈ J

zm,i,n,j ≤ yn,j, ∀m ∈M, ∀i ∈ I,∀n ∈ N,∀j ∈ J

zm,i,n,j ≥ xm,i + yn,j − 1, ∀m ∈M, ∀i ∈ I,∀n ∈ N,∀j ∈ J

zm,i,n,j ≥ 0 ∀m ∈M, ∀i ∈ I,∀n ∈ N,∀j ∈ J

(4.2a)

(4.2b)

(4.2c)

(4.2d)
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Thereby, the resulting Mixed Integer Programming modelM0,0 is :

(M0,0)



min g(z) =
∑
m∈M

∑
i∈I

∑
n∈N

∑
j∈J

di,jfm,nzm,i,n,j

subject to∑
i∈I

xm,i = 1, ∀m ∈M

∑
j∈J

yn,j = 1, ∀n ∈ N

zm,i,n,j ≤ xm,i, ∀n ∈ N,m ∈M, i ∈ I, j ∈ J

zm,i,n,j ≤ yn,j, ∀n ∈ N,m ∈M, i ∈ I, j ∈ J

zm,i,n,j ≥ yn,j + xm,i − 1, ∀n ∈ N,m ∈M, i ∈ I, j ∈ J∑
m∈M

smxm,i ≤ Si, ∀i ∈ I

∑
n∈N

rnyn,j ≤ Rj, ∀j ∈ J

xm,i, yn,j ∈ {0, 1}, ∀m ∈M, i ∈ I, n ∈ N, j ∈ J.

zm,i,n,j ≥ 0 ∀m ∈M, i ∈ I, n ∈ N, j ∈ J.

(4.3a)

(4.3b)

(4.3c)

(4.3d)

(4.3e)

(4.3f)

(4.3g)

(4.3h)

(4.3i)

(4.3j)

The assignment constraints (4.3b)− (4.3c) and the capacity constraints (4.3g)− (4.3h)

are still the same as in Qzh model above. Constraints (4.3d) and (4.3e) ensure that if the

origin m is not assigned to the receiving dock door i and the destination n is not assigned

to the shipping dock door j, then the transfer path Ω cannot be established. On the

other hand, if the origin m is assigned to the receiving dock door i and the destination

n is assigned to the shipping dock door j, then the transfer path Ω is established due to

constraints (4.3f)

The set of constraints that the MIP M0,0 must satisfy can be decomposed into two

sets : i) the set of assignment constraints (4.3b) − (4.3f) and the constraints (4.3i) and

(4.3j) on the decision variables which will be gathered into set as A0, and ii) the set of

capacity constraints (4.3g) − (4.3h) which will be gathered into set as C0.

4.3 Non Standard Assignment and Capacity constraints

In this section we present three sets of assignment constraints that are deduced from

the set A0 as a result of the valid equalities and inequalities as stated in the preceding

section. Additionally, we prove the equivalence of these sets of constraints. We also present
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a set of capacity constraints deduced directly from the set C0 and we prove the equivalence

between the constraints gathered into those two sets.

4.3.1 Assignment constraints

In this part, we present some valid equalities and inequalities for the resulting Mixed

Integer Programming model.

The next proposition provides some valid equalities for above modelM0,0.

Proposition 4.3.1 The constraints of the following system

∑
i∈I

zm,i,n,j = yn,j, ∀m ∈M,n ∈ N, j ∈ J

∑
j∈J

zm,i,n,j = xm,i, ∀m ∈M,n ∈ N, i ∈ I

∑
i∈I

∑
j∈J

zm,i,n,j = 1, ∀m ∈M,n ∈ N

(4.4a)

(4.4b)

(4.4c)

are valid for the MIPM0,0.

Proof. The valid equalities (4.4a) and (4.4b) are directly deduced from constraints (4.3b)

and (4.3c) by multiplying them by yn,j and xm,i, respectively. On the other hand, the valid

equality (4.4c) is a direct consequence of the valid equalities (4.4a) and (4.4b) taking into

account the constraints (4.3b) and (4.3c). �

The two sets of valid equalities (4.4a) and (4.4b) imply that if the origin m is assigned

to the inbound dock door i, then the commodity from the origin m to the destination n

must be routed through inbound dock door i and some outbound dock door j ; similarly,

if the destination n is assigned to an outbound dock door j, then the commodity from

the origin m to the destination n must be routed through outbound dock door j and

some inbound door i. The set of inequalities (4.4c) imply that the commodity from the

origin m to the destination n is routed via a unique pair (i, j) of inbound dock door i and

outbound dock door j.

The first set of assignment constraint that we present here is based on the observation

that the nature of the problem implies that the large set of constraints (4.3f) may be

replaced by a smaller one as stated in the next proposition.
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4.3. Non Standard Assignment and Capacity constraints

Proposition 4.3.2 The constraints (4.3f) may be replaced by the set of equalities:∑
i∈I

∑
j∈J

zm,i,n,j = 1, ∀m ∈M,n ∈ N

Proof. Constraints (4.3f) ensure that if xm,i = yn,j = 1 then zm,i,n,j = 1 as well, otherwise

they are redundant. On the other hand equalities
∑

i∈I
∑

j∈J zm,i,n,j = 1 for all m ∈
M,n ∈ N require that for each m and n there are unique i′ and j′ so that zm,i′,n,j′ = 1.

From constraints (4.3b) and (4.3c), it follows that for each m and n there are as well

unique i′′ and j′′ so that xm,i′′ = yn,j′′ = 1. Taking into account constraints (4.3d) and

(4.3e) we have zm,i,n,j = 0 if i 6= i′′ or j 6= j′′ and zm,i,n,j ≤ 1 if i = i′′ or j = j′′. This

implies that i′ = i′′ and j′ = j′′ and therefore if xm,i′′ = yn,j′′ = 1 then zm,i′′,n,j′′ = 1 �.

As a consequence of the preceding property we obtain the following set of assignment

constraints :

Assignment constraints A1 :

(A1) :



∑
i∈I

xm,i = 1, ∀m ∈M

∑
j∈J

yn,j = 1, ∀n ∈ N

zm,i,n,j ≤ xm,i, ∀n ∈ N,m ∈M, i ∈ I, j ∈ J

zm,i,n,j ≤ yn,j, ∀n ∈ N,m ∈M, i ∈ I, j ∈ J∑
i∈I

∑
j∈J

zm,i,n,j = 1, ∀m ∈M,n ∈ N

xm,i, yn,j ∈ {0, 1}, ∀m ∈M, i ∈ I, n ∈ N, j ∈ J.

zm,i,n,j ≥ 0, ∀m ∈M, i ∈ I, n ∈ N, j ∈ J.J.

(4.5a)

(4.5b)

(4.5c)

(4.5d)

(4.5e)

(4.5f)

(4.5g)

The following corollary is a direct consequence of the preceding property.

Corollary 4.3.1 Assignment constraints A0 and A1 are equivalent.

Replacing the constraints (4.5c) and (4.5d) with equalities :
∑
j∈J

zm,i,n,j = xm,i, ∀m ∈M,n ∈ N, i ∈ I

∑
i∈I

zm,i,n,j = yn,j, ∀m ∈M,n ∈ N, j ∈ J

respectively we obtain the set of assignment constraints gathered into A2
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Assignment constraints A2 :

(A2) :



∑
i∈I

xm,i = 1, ∀m ∈M

∑
j∈J

yn,j = 1, ∀n ∈ N

∑
i∈I

zm,i,n,j = yn,j, ∀m ∈M,n ∈ N, j ∈ J

∑
j∈J

zm,i,n,j = xm,i, ∀n ∈ N,m ∈M, i ∈ I

xm,i, yn,j ∈ {0, 1}, ∀m ∈M, i ∈ I, n ∈ N, j ∈ J.

zm,i,n,j ≥ 0, ∀m ∈M, i ∈ I, n ∈ N, j ∈ J.

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.6e)

(4.6f)

The equality (4.5e)∑
i∈I

∑
j∈J

zm,i,n,j = 1, ∀m ∈M,n ∈ N

can be a result from (4.5a) and (4.5b). Therefore, the inclusion of equalities (4.6c) and

(4.6d) together with (4.5a) and (4.5b) make constraints
∑

i∈I
∑

j∈J zm,i,n,j = 1 for all

m ∈ M,n ∈ N redundant and therefore we do not need to include them in the set A2.

The equivalency of the sets of constraints A1 and A2 is then formally proved by the next

proposition.

Proposition 4.3.3 Constraints A1 and A2 are equivalent.

Proof.

(⇒) From constraints (4.5e) we have that for each m ∈ M and n ∈ N there are unique

i ∈ I and j ∈ J so that zm,i,n,j = 1. This, together with constraints (4.5a) - (4.5d), further

implies that xm,i = 1 and xm,i′ = 0, i′ ∈ I, i′ 6= i as well as yn,j = 1 and yn,j′ = 0, j′ ∈ J, j′ 6=
j. Therefore we have

∑
i′∈I zm,i′,n,j′ = yn,j′ = 0, j′ ∈ J, j′ 6= j and

∑
i′∈I zm,i′,n,j = yn,j = 1.

Similarly, we have
∑

j′∈J zm,i′,n,j′ = xm,i′ = 0, i′ ∈ I, i′ 6= i and
∑

j′∈J zm,i,n,j′ = xm,i = 1.

Consequently, constraints A1 imply constraints A2.

(⇐) Constraints (4.6c) and (4.6d) imply constraints (4.5c) and (4.5d), respectively. On the

other hand, constraints (4.6a) together with constraints (4.6d) imply constraints (4.5e)

∀m ∈ M,n ∈ N and constraint (4.6b) together with constraint (4.6c) imply constraint

(4.5e) ∀m ∈M,n ∈ N . Consequently, constraints A2 imply constraints A1.�

As already pointed out, the following constraints∑
i∈I

∑
j∈J

zm,i,n,j = 1, ∀m ∈M,n ∈ N
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are redundant for the setA2. However, an interesting observation is that replacing constraints

(4.6a) and (4.6b) by constraints∑
i∈I

∑
j∈J

zm,i,n,j = 1, ∀m ∈M,n ∈ N

leads to another valid set of assignment constraints, as follows.

Assignment constraints A3 :

(A3) :



∑
i∈I

zm,i,n,j = yn,j, ∀m ∈M,n ∈ N, j ∈ J

∑
j∈J

zm,i,n,j = xm,i, ∀n ∈ N,m ∈M, i ∈ I

∑
i∈I

∑
j∈J

zm,i,n,j = 1, ∀m ∈M,n ∈ N

xm,i, yn,j, zm,i,n,j ∈ {0, 1}, ∀m ∈M, i ∈ I, n ∈ N, j ∈ J.

zm,i,n,j ≥ 0, ∀m ∈M, i ∈ I, n ∈ N, j ∈ J.

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.7e)

Note that this set of constraints is in the same format as the constraints already proposed

in the paper of Nassief et al. (2016); Nassief (2017).

Proposition 4.3.4 Constraints A2 and A3 are equivalent.

Proof.

(⇒) Constraints (4.6a) and (4.6d) imply constraints (4.7c) and therefore constraints A1

imply constraints A3.

(⇐) Constraints (4.7a) and (4.7c) imply constraints (4.6a), while constraints (4.7b) and

(4.7c) imply constraints (4.6b). Hence, constraints A3 imply constraints A1. �

From propositions 4.3.2, 4.3.3 and 4.3.4 we have the following consequence.

Corollary 4.3.2 Assignment constraints A0, A1, A2 and A3 are equivalent.

4.3.2 Capacity constraints

Starting from the capacity constraints (4.3g) and (4.3h) gathered into a set C0 as

below :

(C0) :


∑
m∈M

smxm,i ≤ Si, ∀i ∈ I∑
n∈N

rnyn,j ≤ Rj, ∀j ∈ J
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as xm,i and yn,j are positive (xm,i, yn,j ∈ {0, 1}), we may derive the following set of valid

inequalities :

(C1) :


∑
m∈M

smzm,i,n,j ≤ Siyn,j, ∀i ∈ I, n ∈ N, j ∈ J

∑
n∈N

rnzm,i,n,j ≤ Rjxm,i, ∀j ∈ J,m ∈M, i ∈ I.

(4.8a)

(4.8b)

Indeed, these two sets of constraints are obtained by multiplying the capacity constraints

(4.3g) and (4.3h) by yn,j and xm,i, respectively. In Nassief et al. (2016) these two constraints

are also considered as valid inequalities. The meaning of the newly established constraints

is as follows. Constraints (4.8a) ensure that the total amount of commodities with the

destination n routed via the inbound - outbound dock door pair (i, j) do not exceed the

capacity limit of the inbound dock door i. Similarly, constraints (4.8b) ensure that the

total amount of commodities with the origin m routed via the inbound - outbound dock

door pair (i, j) respects the capacity bound of the outbound dock door j.

As already mentioned, the constraints gathered into set C1 provide also valid inequa-

lities in Nassief et al. (2016). In this section we go further and prove the equivalence

between capacity constraints C0 and C1 for the CDAP. The proof is based on the fact that

zm,i,n,j = xm,iyn,j and the observation that assignment constraints guarantee the existence

of n′ ∈ N and j′ ∈ J such that yn′,j′ = 1 as well as the existence of m′ ∈ M and i′ ∈ I
such that xm′,i′ = 1 (due to the problem definition).

Proposition 4.3.5 Capacity constraints C0 and C1 for the CDAP are equivalent.

Proof.

(⇒) Multiplying constraints (4.3g) by yn,j for all n ∈ N, j ∈ J , we obtain the following

inequality∑
m∈M

smzm,i,n,j ≤ yn,jSi, ∀i ∈ I, n ∈ N, j ∈ J, (using the fact thatzm,i,n,j = xm,iyn,j)

Similarly, we show that constraints (4.3h) imply constraints (4.8b).

(⇐) If we consider the constraint (4.8a), we have∑
m∈M

smzm,i,n,j =
∑
m∈M

smxm,iyn,j ≤ Siyn,j, ∀i ∈ I, n ∈ N, j ∈ J

Keeping in mind that there exist n′ ∈ N and j′ ∈ J such that yn′,j′ = 1 (this follows from

assignment constraints) we have∑
m∈M

smxm,i ≤ Si, ∀i ∈ I
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Similarly, we can show that constraints (4.8b) imply constraints (4.3h).�

4.4 MIP models and integrality properties

In this section we present MIP models that may be deduced by combining the as-

signment and capacity constraints presented in the preceding sections. In addition, we

identify the integrality properties of these models.

4.4.1 Eleven MIP models

Having four equivalent sets of assignment constraints Ak, for all k = 0, ..., 3 and two

equivalent sets of capacity constraints Ch, for all h = 0, 1 we come up with 8 different new

MIP formulations. These 8 MIPs may be stated in general form as :

(Mk,h) min{g(z) : Ak, Ch}, for all k = 0, 1, 2, 3, for all h = 0, 1.

The following proposition enable us to generate three new MIP models.

Proposition 4.4.1 The constraints (4.3d) and (4.3e) are redundant in the MIP models

M0,0,M0,1 andM1,1.

Proof. In modelsM0,0 andM0,1 constraints (4.3d) and (4.3e) are redundant since we seek

to minimize the objective function and the objective coefficients in the CDAP are positive,

that is, cm,i,n,j = fm,ndn,j ≥ 0, fm,n ≥ 0 for all m ∈ M,n ∈ N and di,j > 0 for all i ∈
I, j ∈ J . In addition, in both models the equality zm,i,n,j = xm,iyn,j remains true even

if we exclude constraints (4.3d) and (4.3e), due to the fact that the zm,i,n,j variables are

bounded from below only by constraints (4.3f). Namely, if xm,i = yn,j = 1, then due

to constraints (4.3f) zm,i,n,j will equal 1 as well, while otherwise zm,i,n,j takes the value

0 (again due to the fact that the objective coefficients in the CDAP are positive). The

preceding reasoning leads as well as to the conclusion that in modelsM0,0 andM0,1 with

excluded constraints (4.3d) and (4.3e), the integrality requirement on variables zm,i,n,j
may be relaxed.

On the other hand, in the modelM1,1 the constraints 4.3d (resp. (4.3e)) force zm,i,n,j to

be equal to zero if xm,i = 0 (resp. yn,j = 0). Since the parameters fm,n are positive and

by consequence the data sm and rn are also positive, the capacities constraints (4.8a) and

(4.8b) imply zm,i,n,j = 0 if xm,i = 0 or yn,j = 0.
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Table 4.1 – Number of constraints for each MIP model

MIP Total number of constraints

M0,0 3|I||J ||M ||N |+ |I|+ |J |+ |M |+ |N |

M0,1 |I||J |(3|M ||N |+ |M |+ |N |) + |M |+ |N |

M1,0 (2|I||J |+ 1)|M ||N |+ |I|+ |J |+ |M |+ |N |

M1,1 |I||J |(2|M ||N |+ |M |+ |N |) + |M ||N |+ |M |+ |N |

M2,0 (|M ||N |+ 1)(|I|+ |J |) + |M |+ |N |

M2,1 (|M |+ |N |)(1 + |I||J |) + |M ||N |(|I|+ |J |)

M3,0 |M ||N |(|I|+ |J |+ 1) + |I|+ |J |

M3,1 |M ||N |(|I|+ |J |+ 1) + |I||J |(|M |+ |N |)

M′0,0 |M ||N ||I||J |+ |I|+ |J |+ |M |+ |N |

M′0,1 |I||J |(|M ||N |+ |M |+ |N |) + |M |+ |N |

M′1,1 (|I||J |+ 1)(|M ||N |+ |M |+ |N |)

Hence the constraints (4.3d) and (4.3e) are redundant in the MIP modelsM0,0,M0,1

andM1,1.�

As a consequence of the above proposition, we have three new MIP modelsM′0,0,M′0,1

and M′1,1 obtained from the corresponding models Mk,h by dropping the constraints

(4.3d) and (4.3e). In the modelM1,0 the constraints (4.3d) and (4.3e) cannot be omitted

because if this is the case, it will be missing a connection between variables zm,i,n,j and

xm,i on the one hand and variables zm,i,n,j and yn,j on the other hand.

The 11 MIPs have the same number of binary variables, i.e., |I||J ||M ||N |+ |I||M |+
|J ||N |. The Table 4.1 provides the number of constraints in each of the 11 MIP models

Mk,h, for all k = 0, .., 3, h = 0, 1 andM′0,0,M′0,1,M′1,1.

Comparing the number of constraints for each of these 11 MIP models shown in

Table 4.1, it may be inferred that the number of constraints in the modelM2,0 is smaller

than in any other model. As will be shown in Section 4.7 reserved for computational

results, the reason why the modelM2,0 is solved the fastest is probably due the the fact

it has fewer constraints than other models.
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4.4.2 Integrality properties of MIPs

This section provides properties which show that in all our MIP formulations the

requirement zm,i,n,j ∈ {0, 1} for all m ∈ M,n ∈ N, i ∈ I, j ∈ J, can be relaxed to require

just zm,i,n,j ∈ [0, 1] for all m ∈M,n ∈ N, i ∈ I, j ∈ J .

Proposition 4.4.2 The integrality requirement on variables zm,i,n,j ∈ {0, 1} for all m ∈
M,n ∈ N, i ∈ I, j ∈ J, in constraints A0 may be relaxed. Moreover, the binary variables

zm,i,n,j ∈ {0, 1} may be replaced by zm,i,n,j ≥ 0.

Proof. Suppose zm,i,n,j = α > 0 for some m ∈ M,n ∈ N, i ∈ I, j ∈ J . Then, due to

constraints (4.3d) and (4.3e) we have xm,i = 1 and yn,j = 1 respectively. This further

implies zm,i,n,j = α ≥ 1 from the constraint (4.3f) and therefore α = 1. The last statement

is deduced from constraints (4.3d) and (4.3e), and the fact that the variables xm,i and yn,j
are binary. �

Proposition 4.4.3 The integrality requirement zm,i,n,j ∈ {0, 1} in constraints A1 may be

relaxed.

Proof. Let suppose that we just impose requirement zm,i,n,j ≥ 0 and for some m ∈ M
and n ∈ N and some i ∈ I and j ∈ J we have zm,i,n,j = α > 0. Because of constraints

(4.5d) we have α ≤ 1. In addition, constraints (4.5c) and (4.5d) imply that yn,j = 1

and xm,i = 1. On the other hand, constraints (4.5a) and (4.5b) imply that yn,j′ = 0

for all j′ ∈ J, j′ 6= j and xm,i′ = 0 for all i′ ∈ I, i′ 6= i. This implies in turn that

zm,i′′,n,j′ = 0 for all j′ ∈ J, j′ 6= j, i′′ ∈ I (from constraints (4.5c)) and zm,i′,n,j′′ = 0 for

all i′ ∈ I, i′ 6= i, j′′ ∈ J (from constraints (4.5d)). Hence, taking into account constraint

(4.5e) we have 1 =
∑

i′′∈I
∑

j′′∈J zm,i′′,n,j′′ = zm,i,n,j = α. Consequently, the integrality

requirement zm,i,n,j ∈ {0, 1} in constraints A1 may be relaxed. �

Proposition 4.4.4 The integrality requirement zm,i,n,j ∈ {0, 1} in constraints A2 may be

relaxed.

Proof. Suppose we impose requirement zm,i,n,j ≥ 0. Because of constraint (4.6c) we

have zm,i,n,j ≤ 1. Suppose then for some fixed m ∈ M and n ∈ N and some i ∈ I

and j ∈ J , we have zm,i,n,j = α ∈ {0, 1}. Then, this implies that yn,j = 1 and xm,i =

1 because of constraints (4.6c) and (4.6d). Hence, from constraints (4.6c) and (4.6d)
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follow
∑

i′∈I,i′ 6=i zm,i′,n,j = 1− α and
∑

j′∈J,j′ 6=j zm,i,n,j′ = 1− α. Taking into account that∑
i∈I
∑

j∈J zm,i,n,j =
∑

i∈I xm,i =
∑

j∈J yn,j = 1 (this chain of equalities is deduced by

summing the constraints (4.6c) over set J and the constraints (4.6d) over set I noting

that
∑

i∈I xm,i = 1 and
∑

j∈J yn,j = 1 ) we have

1 =
∑
i∈I

∑
j∈J

zm,i,n,j ≥
∑

i′∈I,i′ 6=i

zm,i′,n,j +
∑

j′∈J,j′ 6=j

zm,i,n,j′ + zm,i,n,j = 2− α.

This implies α ≥ 1 which is a contradiction. Hence, the integrality requirement may be

relaxed. �

Proposition 4.4.5 The integrality requirement zm,i,n,j ∈ {0, 1} in constraints A3 may be

relaxed.

Proof. Analogous to the proof of Proposition 4.4.4. �

Note that the preceding property of the zm,i,n,j variables in constraints A3 has also

been detected in Nassief et al. (2016, 2018).

Proposition 4.4.6 The integrality requirement may be relaxed on the variables zm,i,n,j ∈
{0, 1} for all m ∈M,n ∈ N, i ∈ I, j ∈ J, in modelsM′0,0,M′0,1 andM′1,1.

Proof. The proof is a direct consequence of the preceding propositions and Proposition

4.4.1, which implies that in each of modelsM′0,0,M′0,1 andM′1,1 constraints (4.3d) and

(4.3e) may be deduced from the constraints in a model. �

To the best of our knowledge, the standard MIP formulationM0,0 was already consi-

dered in Zhu et al. (2009), while another type of reformulation that looks like the model

M3,0 has been proposed in Nassief et al. (2016). On the other hand, the remaining MIPs

have not been yet considered for solving the CDAP.

4.5 Lagrangian Relaxation for the CDAP

In section 4.7, computational experiments carried out on benchmark instances from

the literature show that MILP model (M2,0)min {g(z) : A2, C0} is the fastest model for

CDAP known so far. We also recall that the derivative MILP model (M2,1)min {g(z) :

A2, C1} is obtained by replacing initial capacity constraints (3.1d) and (3.1e) gathered

into C0 by (4.8a) and (4.8b) gathered into C1 to strengthenM2,0. In Nassief et al. (2016),
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the authors have considered the MILP model (M3,0)min {g(z) : A3, C0} and instead

of replacing the constraints (4.1d)-(4.1e) by (4.8a) and (4.8b) respectively, the authors

have added them as redundant and they came out a new MILP model (M3,0,1)min {g(z) :

A3, C0, C1} for CDAP. That resulting MILP modelM3,0,1 is too weak in term of processing

time consumption. This is may be due to the big number of constraints, but it performs

the same LP relaxation lower bound asM2,1.

The following of this section provides the Lagrangian Relaxation approach that we

have used to exploit the MIP model M2,1 so as to provide new lower bound to optimal

solution value found so far. Lagrangian Relaxation is a well-known optimization method

that has been significantly investigated to solve many optimization problems. It consists

of reducing problem complexity by introducing hard constraints associated with their

respective penalties as a part of objective function (Geoffrion; 1972, 1974). Lagrangian

Relaxation has been used in Held and Karp (1970, 1971) to solve Traveling Salesman

Problem (TSP).

The integral MILP modelM2,1 to which we apply Lagrangian Relaxation approach is

defined as follows :

(M2,1)



min g(z) =
∑
m∈M

∑
i∈I

∑
n∈N

∑
j∈J

di,jfm,nzm,i,n,j

subject to : ∑
m∈M

smzm,i,n,j ≤ Siyn,j, ∀i ∈ I, n ∈ N, j ∈ J

∑
n∈N

rnzm,i,n,j ≤ Rjxm,i, ∀j ∈ J,m ∈M, i ∈ I.

∑
i∈I

xm,i = 1, ∀m ∈M

∑
j∈J

yn,j = 1, ∀n ∈ N

∑
i∈I

zm,i,n,j = yn,j, ∀m ∈M,n ∈ N, j ∈ J

∑
j∈J

zm,i,n,j = xm,i, ∀n ∈ N,m ∈M, i ∈ I

xm,i, yn,j, zm,i,n,j ∈ {0, 1}, ∀m ∈M,n ∈ N, i ∈ I, j ∈ J.

zm,i,n,j ∈ {0, 1}, ∀m ∈M,n ∈ N, i ∈ I, j ∈ J.

(4.9a)

(4.9b)

(4.9c)

(4.9d)

(4.9e)

(4.9f)

(4.9g)

(4.9h)

(4.9i)

Here, we propose a Lagrangian Relaxation procedure that relaxes the derived capa-

city constraints (4.9b) and (4.9c). For Nassief et al. (2016), in the considered MIP model
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M3,0,1, the authors relaxed capacity constraints (4.9b) and (4.9c) together with assign-

ment constraints (4.9f) - (4.9g) in a Lagrangian way and solve Lagrangian dual model

using sub-gradient optimization algorithm. The authors showed that the Lagrangian ob-

jective function can be decomposed into three sub-problems, each sub-problem in a space

of the corresponding decision variable xm,i, yn,j and zm,i,n,j respectively. Unfortunately the

Lagrangian lower bound found is worse. In fact, from the results of computational expe-

riments, the lower bound value of Lagrangian dual is smaller than that of corresponding

LP relaxation for all instances.

In our case of study, the relaxation of the constraints (4.9b) and (4.9c) in a Lagrangian

fashion has been motivated by the following findings : i) some preliminary computational

experiments showed that the optimal solution value when capacity constraints (4.9b) and

(4.9c) are dropped is the same as the LP relaxation lower bound of (M2,0)min {g(z) :

A2, C0} and the model is faster than LP relaxation ofM2,0 ; ii) the LP relaxation lower

bound ofM2,1 is better than that ofM2,0 for all instances, see e.g., Table A.5.

We define λi,n,j, γj,m,i ≥ 0 that stand for the Lagrange multipliers associated to each

capacity constraints (4.9b) and (4.9c), respectively.

The Lagrangian Relaxation model can be stated as follows :

LR(λ, γ)



min l(λ, γ) =
∑
m∈M

∑
i∈I

∑
n∈N

∑
j∈J

am,i,n,jzm,i,n,j −
∑
n∈N

∑
j∈J

bn,jyn,j

−
∑
m∈M

∑
i∈I

cm,ixm,i

subject to :∑
i∈I

xm,i = 1, ∀m ∈M

∑
j∈J

yn,j = 1, ∀n ∈ N

∑
i∈I

zm,i,n,j = yn,j, ∀m ∈M,n ∈ N, j ∈ J

∑
j∈J

zm,i,n,j = xm,i, ∀n ∈ N,m ∈M, i ∈ I

xm,i, yn,j ∈ {0, 1}, ∀m ∈M,n ∈ N, i ∈ I, j ∈ J

zm,i,n,j ≥ 0, ∀m ∈M,n ∈ N, i ∈ I, j ∈ J

where :

• am,i,n,j = di,jfm,n + λi,n,jsm + γj,m,irn
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• bn,j =
∑

i∈I λi,n,jSi

• and cm,i =
∑

j∈J γj,m,iRj

4.5.1 Solving Lagrangian Dual model

We let v(P) denotes the optimal value of a minimization optimization problem P and

v(P) denotes the optimal value given by the usual LP relaxation of the same problem.

For any Lagrange multiplier µ, let LRµ denotes the Lagrangian Relaxation program for

problem P . It is well known that LRµ provides a lower bound v(LRµ) on the optimal

solution value for the original linear problem. The goal is to find an optimal value µ

that provides the best lower bound value by solving Lagrangian dual model related to

the Lagrangian program LRµ. Let zD be the Lagrangian dual model associated to LRµ.

Theoretically, v(P) ≤ v(zD) ≤ v(P).

In our case of study, the best possible lower bound is obtained by solving the Lagran-
gian dual program (D) below :

(D)

max z = v(LR(λ, γ))

subject to : λ, γ ≥ 0

v(M2,1) ≤ v(D) ≤ v(M2,1), for all λ, γ ≥ 0

where :

• v(M2,1) is the LP relaxation lower bound of the modelM2,1

• v(D) is the lower bound obtained by solving dual model D

• v(M2,1) is the optimal solution value of the modelM2,1

The sub-gradient optimization method, see e.g., Shor (1968); Schirotzek (1986); Fi-

sher (1981), is one of the existing iterative algorithms to find good values for Lagrange

multipliers. For a certain number of iterations, the sub-gradient optimization algorithm

adjusts iteratively the value of Lagrange multipliers to the solution value that is the

best or near the best lower bound. To solve the Lagrangian dual program D, we use the

sub-gradient optimization algorithm, see e.g., Held et al. (1974); Fisher (1981). At each

iteration, the sub-gradient optimization method depicted in algorithm 4.1 solves Lagran-

gian dual and updates Lagrange multipliers λi,n,j and γj,m,i to move Lagrangian lower

bound value v(LR(λ, γ)) in direction of optimal solution value of original problemM2,1.
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Algorithm 4.1 Sub-gradient Optimization Algorithm
Parameters :

1: LB ← −∞ ; UB ← Upper bound on v(M2,1) ;

2: σ0 ← 2 ; ε← 10−5 ; t← 0 Ncount ← 0;Nmax

3: (λ0, γ0)← (0,0){λ, γ start by zero}

4: (λ0, γ0)← (d(4.9b),d(4.9c)){λ, γ start by dual value of associated LP}

5: repeat

6: Solve Lagrangian model LR(λt, γt)

7: l(λt, γt)← LR(λt, γt) {l(λt, γt) is optimal value of LR(λ, γ) model at iteration t}

8: if (l(λt, γt) > LB) then

9: LB ← l(λt, γt)

10: Ncount ← 0

11: else

12: Ncount ← Ncount + 1

13: end if

14: Compute the sub-gradient G(λt, γt) of LR(λ, γ)

15: Compute stepsize ϕt ← σt(UB−l(λt,γt)))
||G(λt,γt)||2

16: Updates Lagrange multipliers (λt+1, γt+1)←Max{0, (λt, γt) + ϕt.G(λt, γt)}
17: if Ncount ≥ Nmax then {if no progress in more than Nmax iterations}

18: α← random(0, 1)

19: if ασt ≤ ε then

20: σt+1 ← σ0 {reset σt+1 to its starting value}

21: else

22: σt+1 ← ασt

23: end if

24: Ncount ← 0

25: else

26: σt+1 ← σt

27: end if

28: t← t+ 1

29: until terminate()

30: Return LB
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Let (x∗, y∗, z∗) be an optimal solution of Lagrangian Relaxation LR(λt, γt) obtained

at iteration t, the sub-gradient of the associated function v(LR(λt, γt)) at that iteration

t is G(λt, γt) = (Gλt ,Gγt) where:


Gλti,n,j =

∑
m∈M

smz
∗
m,i,n,j − Siy∗n,j, ∀i ∈ I, n ∈ N, j ∈ J

Gγ
t

i,m,j =
∑
n∈N

rnz
∗
m,i,n,j −Rjx

∗
m,i, ∀i ∈ I,m ∈M, j ∈ J

From sub-gradient algorithm 4.1 below, the stopping criteria are a maximum number

of iterations, a maximum processing time to solve each instance and if the sub-gradient

G(λt, γt) equal to zero. If one of these criteria is met, the sub-gradient algorithm terminates

(line 29) returning the best lower bound found so far (line 30). In this algorithm, LB stands

for the lower bound on optimal solution value of M2,1. After a number of consecutive

iterations nMax without improvement of LB, the parameter σt ∈ [0, 2] starting with

σ0 = 2 is decreased by a random value α ∈]0, 1[ and σt is reset to its initial value 2 if it

attains ε. The lines 3 and 4 define that sub-gradient algorithm starts by zero or by dual

values of associated LP for Lagrange multipliers.

The upper bound UB is generated by a constructive heuristic. This heuristic begins

by assigning in sequential way all origins on inbound dock doors. Afterwards, regarding

origins assignment, each destination is then assigned in a greedy way. After this initial as-

signment, origins are removed from dock doors where they are assigned and are reassigned

in a greedy way regarding destinations assignment.

4.6 Computational results

All tests presented in this section were conducted on a personal computer Intel(R)

Core(TM) with i7-6700HQ 2.60GHz CPU and 16GB of RAM, running Windows 10 OS.

To solve the MIP formulations and Lagrangian model we have used CPLEX 12.6.3 solver

and the sub-gradient algorithm has been coded in Java IDE. The MIP formulations are

compared in terms of the quality of the upper bounds they provide, and the CPU time

consumed by CPLEX to solve an instance with a time limit set to 2 hours (7200 seconds).

Lagrangian Relaxation and LP relaxation lower bounds are compared as well as the CPU

time consumed. For sub-gradient algorthmin 4.1 one of the two criteria, 2 hours or 2000

iterations has to be fulfilled for the algorithm to end. For testing purposes, 50 benchmark
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instances a proposed in Guignard et al. (2012) were used. The authors have generated this

data set in the following way. They filled the flow matrix (fm,n), for all m ∈ M,n ∈ N
with randomly generated integer values between 10 and 50 until 25% of the flow matrix

was filled. It is assumed that a destination n will receive a flow of at least fm,n from one

origin m which will send at least flow fm,n to one destination n. The process is repeated

until all |M | origins and all |N | destinations are accommodated assuming |M | = |N |.
To generate the distance matrix, the I-shape cross-docking facility is assumed to have an

equal number of inbound and outbound dock doors, i.e., |I| = |J |. Most of the applications

instances have cross-docks with a width of 90 feet and dock doors with a width of 12 feet,

which corresponds approximately to the proportion of 8 to 1. Therefore, in all instances

distances range from 8 to 8+|I|−1. In addition, the I-shaped cross-dock has a rectangular

shape, with receiving dock doors on one side and outbound dock doors on the other

side. Therefore, rectilinear distances may accurately simulate distances traversed by the

forklifts following clearly marked lanes, see e.g., Guignard et al. (2012). This means that

all instances are generated to correspond to a realistic situation. The capacity of each

dock door is set to be equal to the total flow coming from all origins divided by the total

number of inbound dock doors, plus the quotient of p% of the slackness of the total flow,

where p ∈ {5, 10, 15, 20, 30}. More precisely, the dock door capacity is calculated using

the following formula :

Slack =

∑
m∈M sm

|I|
∗ p%

Dock door capacity =

∑
m∈M sm

|I|
+ Slack =

∑
m∈M sm

|I|
(1 + p%)

The number of origins/destinations in the instances ranges from 8 to 20, while the number

of inbound/outbound dock doors is between 4 and 10.

For the MIP formulations, the computational results are divided into two parts. In the

first part we test the MIP models where integrality requirements on the variables zm,i,n,j
are relaxed, while in the second part we keep the integrality requirements. We identify

models with relaxed integrality requirements by denoting them as Mk′,h where Mk,h is

the corresponding model with the integrality requirement intact.

a. https://tinyurl.com/yb6l6vmz
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4.6. Computational results

4.6.1 Comparison of models - with integrality requirement on

variables zm,i,n,j relaxed

In Tables 4.2 and 4.3, we provide a summary of the results obtained by the 11 MIP

models (with a relaxed integrality requirement on the variables zm,i,n,j). By the convention

that “solving ” an instance means that a feasible solution is found, Table 4.2 provides

summary results in terms of the number of instances solved (row “# instances”), the

number of instances solved to optimality (row “# optimal”), the average optimality gap

attained by CPLEX (row “gap”), the average CPU time used by CPLEX to solve an

instance (row “CPU time”) and the average number of nodes processed (row “# nodes”).

Table 4.3 provides some detailed results for each class of instances for models that suc-

ceed in solving all instances. Instances with the same number of origins/destinations and

inbound/outbound dock doors form a class. The number of origins/destinations and in-

bound/outbound dock doors in each class is given in the first column of the Table 4.3 in

the form |N |×|I|. The remaining columns of the table report for each method the average

solution value (column “value”), the average CPU time (column “CPU time”) and the

average optimality gap (column “gap”) attained by CPLEX on each class.
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M0′,0 M0′,1 M1′,0 M1′,1 M2′,0 M2′,1 M3′,0 M3′,1 M′0′,0 M′0′,1 M′1′,1

# instances 38 50 50 44 50 49 50 47 41 50 50

# optimal 21 29 38 28 45 34 45 34 29 29 34

gap 0.143 0.213 0.020 0.030 0.010 0.037 0.010 0.022 0.029 0.193 0.033

CPU time 3546.10 3449.20 2069.87 3102.73 745.35 2489.73 768.48 2406.56 2325.72 3275.19 2801.96

# nodes 403590.47 919624.10 21718.80 3423.85 6909.22 3721.92 7254.68 4107.19 2115087.02 1522937.64 5134.08

Table 4.2 – Comparison of models - integrality requirement on variables zm,i,n,j relaxed

|N | × |I|
M0′,1 M1′,0 M2′,0 M3′,0 M′0′,1 M′1′,1

value time gap value time gap value time gap value time gap value time gap value time gap

8x4 5120.8 2.92 0.000 5120.8 1.15 0.000 5120.8 0.22 0.000 5120.8 0.23 0.000 5120.8 1.69 0.000 5120.8 3.08 0.000

9x4 5978.2 5.82 0.000 5978.2 1.53 0.000 5978.2 0.20 0.000 5978.2 0.38 0.000 5978.2 3.56 0.000 5978.2 4.70 0.000

10x4 6319.8 28.28 0.000 6319.8 2.76 0.000 6319.8 0.34 0.000 6319.8 0.53 0.000 6319.8 15.58 0.000 6319.8 11.99 0.000

10x5 6427.8 297.31 0.000 6427.8 8.73 0.000 6427.8 0.77 0.000 6427.8 1.18 0.000 6427.8 111.90 0.000 6427.8 97.44 0.000

11x5 7555.6 1600.02 0.000 7555.6 14.52 0.000 7555.6 1.40 0.000 7555.6 1.94 0.000 7555.6 572.83 0.000 7555.6 673.42 0.000

12x5 7972.8 5838.02 0.109 7970.2 61.64 0.000 7970.2 2.75 0.000 7970.2 3.58 0.000 7978.8 5791.21 0.107 7970.2 749.89 0.000

12x6 10452.4 5119.59 0.093 10449.8 413.18 0.000 10449.8 12.10 0.000 10449.8 13.75 0.000 10474.8 4655.11 0.056 10452.4 4879.05 0.015

15x6 13819.6 7200.00 0.500 13756.4 5878.42 0.001 13756.4 61.56 0.000 13756.4 128.25 0.000 13849.4 7200.00 0.452 13842.6 7200.00 0.040

15x7 14786.2 7200.00 0.524 14705.8 7200.00 0.028 14688.8 174.13 0.000 14688.8 334.93 0.000 14761.8 7200.00 0.446 14836.0 7200.00 0.061

20x10 29869.4 7200.00 0.902 29904.0 7200.00 0.174 29602.4 7200.00 0.101 29641.4 7200.00 0.101 29638.2 7200.00 0.873 33157.2 7200.00 0.216

Table 4.3 – Comparison of models on each instance class - integrality requirement on variables zm,i,n,j relaxed



4.6. Computational results

From the reported results we observe that only models M0′,1, M1′,0, M2′,0, M3′,0,

M′0′,1, and M′1′,1, enable us to solve all the 50 instances using CPLEX. Among them,

modelsM2′,0 andM3′,0 are the best two, both yielding the best optimality gap (0.010%),

solving the largest number (45) of instances to optimality and consuming the least CPU

time on the average. Their superiority over the other models is also confirmed by a 95%

confidence interval plot of the optimality gap (see Figure 4.1). The MIP formulation

M2′,0 needed 745.35 seconds on average, while M3′,0 consumed 768.48 seconds to solve

an instance. These values are about three times less than the average CPU time consumed

by the next fastest formulationM1′,0. On the other hand, the two worst models, in terms

of the number of solved instances, turn out to be models M0′,0 and M′0′,0 for which

CPLEX was only able to solve 38 and 41 instances, respectively. In addition, we observe

that all models M0′,1, M1′,0, M2′,0, M3′,0, M′0′,1, and M′1′,1 are capable of optimally

solving instances with up to 11 origins/destinations and 5 inbound/outbound dock doors.

However, only models M2′,0 and M3′,0 succeed in optimally solving each instance with

up to 15 origins/destinations and 7 inbound/outbound dock doors. On the largest class

of instances, modelM2′,0 exhibits slightly better performance in terms of solution value

thanM3′,0 (see Appendix A).

Figure 4.1 – 95% confidence interval plot of the optimality gap-integrality requirement

on variables zm,i,n,j relaxed

To further assess the performance of models M0′,1, M1′,0, M2′,0, M3′,0, M′0′,1, and

M′1′,1 which enable CPLEX to provide a solution for all instances considered, we use

performance profiles as suggested in Dolan and Moré (2002). For each method two perfor-
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mance profiles are generated : one with respect to the best upper bounds found and the

another with respect to the CPU times consumed. We denote the best upper bound by

UM and denote the CPU time consumed in solving an instance by TM. Then, to compare

UM or TM for different models, we compute the ratio RM
M = MM/minM′∈M{MM′}, where

MM stands for UM or TM and M is the set of models to be compared. Therefore, the

performance profile of modelM with respect to metric RM
M measured over each instance

s in a set S is simply the graph of the cumulative distribution function, defined as :

FM
M(r) = |{s ∈ S |RM

M ≤ r}|/|S|.

In the graph, RM
M values are given on the x-axis, while FM

M values are given on y-axis.

Figure 4.2 – Performance profile-solution values : integrality requirement on variables

zm,i,n,j relaxed

From the performance profiles presented in Figures 4.2 and 4.3 we may conclude that

models M2′,0 and M3′,0 clearly dominate all the others. The average optimally gaps

presented in Table 4.2 were indicative of this advantage, but this is now confirmed by the

upper bound and CPU time performance profiles, where we see the graphs ofM2′,0 and

M3′,0 on top of the others. If we compare the upper bound performance profiles ofM2′,0

andM3′,0 we see that they cross once in the interval [1, 1.005]. Namely, the upper bound

performance profile of M3′,0 dominates that of M2′,0 in the interval [1, 1.0025], which

means thatM3′,0 finds an upper bound within 0.25% of the best upper bound for more
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Figure 4.3 – Performance profile-CPU times : integrality requirement on variables zm,i,n,j
relaxed

instances than M2′,0. Starting from the crossing point, the upper bound performance

profile ofM2′,0 starts to dominate that ofM3′,0. In addition, we observe that the largest

deviation from the best solution value attained by modelM2′,0 is about 0.25% less than

the largest deviation from the best solution value attained by modelM3′,0. However, the

difference between modelsM2′,0 andM3′,0 is not statistically significant, in terms of the

optimality gap, as can be observed from the 95% confidence interval plot of the optimality

gap (see Figure 4.1). On the other hand, if we compare CPU times in the performance

profiles of M2′,0 and M3′,0, we observe that the model M2′,0 clearly outperforms the

model M3′,0. The superiority of M2′,0 over M3′,0 in terms of CPU time consumed is

established by a Wilcoxon signed rank test, refer to e.g., Wilcoxon (1945), which yields

a p-value < 0.0001 (i.e., p = 5.3e−6). In view of these observations we may say that the

modelM2′,0 is better than any other model compared, especially if a high quality solution

is sought in a short time.

4.6.2 Comparison of models - with integrality requirement on

variables zm,i,n,j imposed

Similary to Tables 4.2 and 4.3, in Tables 4.4 and 4.5 we again compare the preceding

models but now with the integrality requirement imposed on the variables zm,i,n,j
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M0,0 M0,1 M1,0 M1,1 M2,0 M2,1 M3,0 M3,1 M′0,0 M′0,1 M′1,1

# instances 46 47 50 47 50 49 50 49 41 48 50

# optimal 21 28 45 39 45 39 45 38 29 27 34

gap 0.268 0.239 0.015 0.016 0.011 0.024 0.012 0.026 0.158 0.248 0.026

CPU time 4324.69 3544.65 1036.82 1818.23 841.08 1891.40 1177.04 2053.82 2284.94 3525.66 2693.76

# nodes 416648.28 394352.79 16222.62 386.43 10639.40 384.55 24638.02 606.80 2113500.12 450466.65 1040.50

Table 4.4 – Comparison of models - integrality requirement on variables zm,i,n,j imposed

|N | × |I|
M0,1 M2,0 M3,0 M′1,1

value time gap value time gap value time gap value time gap

8x4 5120.8 0.70 0.000 5120.8 0.15 0.000 5120.8 0.35 0.000 5120.8 2.49 0.000

9x4 5978.2 1.25 0.000 5978.2 0.21 0.000 5978.2 0.54 0.000 5978.2 4.64 0.000

10x4 6319.8 1.67 0.000 6319.8 0.38 0.000 6319.8 0.93 0.000 6319.8 16.38 0.000

10x5 6427.8 6.31 0.000 6427.8 1.00 0.000 6427.8 3.17 0.000 6427.8 98.49 0.000

11x5 7555.6 6.04 0.000 7555.6 1.64 0.000 7555.6 4.24 0.000 7555.6 210.63 0.000

12x5 7970.2 14.40 0.000 7970.2 3.67 0.000 7970.2 14.32 0.000 6280.4 898.74 0.000

12x6 10449.8 87.18 0.000 10449.8 26.09 0.000 10449.8 80.48 0.000 10449.8 4106.28 0.004

15x6 13756.4 648.34 0.000 13756.4 132.93 0.000 13756.4 622.78 0.000 13867.6 7200.00 0.035

15x7 14688.8 2402.35 0.000 14688.8 1044.73 0.000 14688.8 3843.62 0.000 14965.0 7200.00 0.065

20x10 30165.4 7200.00 0.145 29828.2 7200.00 0.105 30004.2 7200.00 0.124 31067.2 7200.00 0.155

Table 4.5 – Comparison of models on each instance class - integrality requirement on variables zm,i,n,j imposed
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The results presented in Table 4.4 show that only 4 of 11 models enable CPLEX to

provide a solution for each instance in the data set. These four models are :M1,0,M2,0,

M3,0 andM′1,1. Of these, modelM′1,1 enabled 34 instances to be solved to optimality,

while the remaining three enabled 45 instances to be solved. More precisely, just on the

class containing the largest instances, models M1,0, M2,0, M3,0 failed to find optimal

solutions and the best performance in terms of solution quality is exhibited by model

M2,0 (see Table 4.5). Further, if we compare the average optimality gap attained by

using these 4 models, we see that the least average optimality gap is provided by M2,0

(0.011%), while modelM′1,1 yields the largest average optimality gap (0.024%). From the

95% confidence interval plot of the optimality gaps in Figure 4.4, we observe that there

is no significant difference among these four models. Comparing the average CPU time

consumed to solve an instance, modelM2,0 yields the least average CPU time consumed

(841.08) which is significantly less than the average CPU time consumed when using

modelM1,0 (1036.82), the second best of the models by this criterion. To further verify

thatM2,0 is best in terms of solution quality and solution time performance, in Figures 4.5

and 4.6 we draw the upper bound and CPU time performance profiles of models M1,0,

M2,0,M3,0 andM′1,1 using the approach described in the preceding section. These figures

show that the graphs representing the upper bound and CPU time performance profiles

of model M2,0 lie above the others. The superiority of model M2,0 over models M1,0

and M3,0, the closest competitors in terms of CPU time consumption is confirmed by

the Wilcoxon signed rank test which yields p-values of 5.48e−8 and 5.18e−9 by comparing

M2,0 andM1,0, andM2,0 andM3,0 , respectively. On the other hand, we recall that, in

terms of the number of solved instances, the modelsM0,0 andM′0,0 were the two worst,

enabling CPLEX to solve only 38 and 41 instances, respectively.

The comparison results in the previous tables lead to some interesting observations.

We see that after relaxing the integrality restrictions on the variables zm,i,n,j, modelM1′,0

is less efficient(causes CPLEX to perform less efficiently) than the corresponding model

M1,0. However, modelM2′,0 is better than its corresponding modelM2,0 regarding both

solution quality and CPU time consumed. These observations lead to the conclusion that

is difficult to say in the case of certain models whether it is better to relax the integrality

requirement for some variables or not. However, it is interesting to observe that the

standard linear MIP formulationM0,0 is the weakest. It consumes a substantial amount

of CPU time even for the simple instances, and additionally consumes a lot of memory for

some instances. The associated MIP formulationM0′,0 behaves the same way in terms of
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Figure 4.4 – 95% confidence interval plot of the optimality gap-integrality requirement

on variables zm,i,n,j imposed
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Figure 4.5 – Performance profile-solution values : integrality requirement imposed on

variables zm,i,n,j

Figure 4.6 – Performance profile-CPU times : integrality requirement imposed on va-

riables zm,i,n,j
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memory consumption but is slightly faster in terms of running times. In sum, we conclude

that the modelM2′,0 is the best among those considered in this chapter 4, both with and

without relaxing the integrality requirement. We emphasize once again that to the best

of our knowledge, the “ winning ” modelsM2′,0 andM2,0 are considered here for the first

time.

The LP relaxations of modelsM0,0,M0,1,M′0,0,M′0,1 are the weakest, yielding an LP

relaxation value of zero on all instances. The average LP relaxation values of the remaining

models as well as the average CPU times (in second) needed to obtain these values, over

entire set of instances, are given in Table 4.6. As we can see the model M2,0 exhibits

the best compromise between LP relaxation value and CPU time consumption. This may

explain why models M2′,0 and M2,0 are the best. In addition, the results reported in

Table 4.6 suggest that the behavior of the models detected in this chapter may be very

similar to the behavior when some other MIP solver is used. The models M0,0, M0,1,

M′0,0, M′0,1 would be most likely the worst, while the models M2′,0 , M2,0, M3,0, and

M3′,0 andM1,0 would be most likely among the best.

M1,0 M1,1 M2,0 M2,1 M3,0 M3,1 M′1,1

LP value 9627 10006 9627 10028 9627 10028 10004

CPU time 0.67 13.02 0.21 7.37 0.33 7.52 7.88

Table 4.6 – Comparison of LP relaxations

Expect the worst MIPs M0,0, M0,1, M′0,0, M′0,1 which yield LP relaxation lower

bound zero for all instances, we see in table 4.6 that all MIPs modelsMk,h,∀k = 1, ..., 3

and h = 1 yield an average lower bound value slightly higher that the average lower

bound of corresponding MIPMk,h,∀k = 1, ..., 3 and h = 0. We can conclude that the two

derived sets of constraints (4.8a) and (4.8b) impact improvement of the LP lower bound.

Computational results of all 11 MIPs models and their performance are detailed on Ap-

pendix A.

4.6.3 Lower bounds comparison forM2,1 and Nassief et al.(2016)

Table 4.7 summarizes the computational results of the Lagrangian Relaxation ap-

proach. The first column stands for the name of the instance class. For each class of
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instances, the column BKS stands for the average value of the best known solutions, the

three columns under M2,1 CPLEX are the average for optimal solution value, gap (in

percentage) and CPU time (in second), respectively for the original MILP model M2,1.

For each class of instances, the remaining nine columns LB, dev(%) and Time (in second)

under M2,1 LP , M2,1 LR , (λ0, γ0) = (0, 0) and M2,1 LR , (λ0, γ0) = (d(4.9b), d(4.9c))

stand for average lower bound value, deviation and CPU time (in second). The deviation

expressed in percentage is computed as follows : dev(%) = 100(BKS − LB)/BKS.

The results in the Table 4.7 prove that Lagrangian Relaxation lower bounds are better

than those of LP relaxation and that the sub-gradient is sensitive to the starting values of

Lagrange multipliers. Indeed, the LR lower bound is better when sub-gradient starts by

dual values than when it starts by empty constraints for Lagrange multipliers. However,

the associated processing time is more important than that of the LP relaxation. The

lower bounds and deduced deviation forM2,1 MILP model are compared with LR lower

bound ad deviation in Nassief et al. (2016), i.e., the two columns under heading LR

Nassief. Lagrangian lower bound in Nassief et al. (2016) is weak and smaller than the

corresponding LP relaxation lower bound. Detailed computational results can be viewed

in the appendix table A.8
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N x I BKS
M2,1 CPLEX M2,1 LP M2,1 LR , (λ0, γ0) = (0, 0) M2,1 LR , (λ0, γ0) = (d(4.9b), d(4.9c)) LR Nassief

Value Gap(%) Time LB dev(%) Time LB dev(%) Time LB dev(%) Time LB dev(%)

8x4 5120.80 5120.80 0.00 2.13 4984.05 2.67 0.14 5007.82 2.20 0.40 5020.64 1.95 0.18 4955.62 3.22

9x4 5978.20 5978.20 0.00 4.31 5789.05 3.16 0.24 5864.15 1.90 0.39 5871.43 1.78 0.29 5743.22 3.93

10x4 6319.80 6319.80 0.00 6.11 6078.96 3.79 0.37 6185.08 2.11 0.43 6192.91 1.99 0.34 6015.12 4.80

10x5 6427.80 6427.80 0.00 51.59 6148.77 4.32 1.83 6208.49 3.39 1.22 6225.22 3.13 0.65 6079.96 5.39

11x5 7555.60 7555.60 0.00 270.63 7190.16 4.81 0.25 7313.91 3.17 2.94 7347.72 2.73 1.78 7087.54 6.17

12x5 7970.20 7970.20 0.00 313.63 7603.30 4.60 0.32 7807.48 2.04 7.18 7830.81 1.75 4.59 7505.67 5.83

12x6 10449.80 10453.00 0.03 3590.95 9797.74 6.20 0.55 10034.31 3.94 93.84 10078.59 3.51 40.17 9695.58 7.19

15x6 13756.40 13883.80 0.09 7200.00 12985.44 5.60 0.97 13266.99 3.55 168.79 13341.26 3.01 117.58 12803.30 6.93

15x7 14688.80 15061.60 0.07 7200.00 13659.07 7.00 2.12 13796.78 6.05 557.38 13927.86 5.16 236.00 13440.01 8.49

20x10 29171.40 - - - 26038.50 10.73 66.96 25838.99 11.40 4139.04 25872.56 11.29 3305.62 25665.55 12.01

Avg 10743.88 - - - 10027.50 5.29 7.37 10132.40 3.98 497.16 10170.90 3.63 370.72 9899.16 6.40

Table 4.7 – Lower bounds comparison forM2,1 and Nassief et al. (2016)



4.7. Conclusion

4.7 Conclusion

In this chapter, we started the study of the Cross-dock Door Assignment Problem

(CDAP) from the standard quadratic formulation of the problem and we have derived 11

nonstandard Mixed Integer Linear Programming (MILP) models for the CDAP. Eight of

these 11 proposed MILP models are considered in this chapter for the first time. We prove

the equivalence between all these models, with an integrality requirement imposed on the

z variables, in the sense of admitting the same feasible and optimal solutions. We also

establish results about the integrality properties of these models. These results further

imply the equivalence of the models that have relaxed integrality requirement on the z

variables.

To detect the best model among these 11, an exhaustive empirical study has been

performed on benchmark instances from the literature, applying the CPLEXMIP software

to compare the formulations in terms of the number of instances they enable to be solved to

optimality, upper bounds they provide, and the CPU time consumed. The results reveal

that the best model is one of the eight MILP formulations proposed in this study. In

addition, we picked the MILP model that gives good compromise between LP relaxation

lower bound and CPU time consumption and apply the Lagrangian Relaxation procedure

that relaxes the capacity constraints. The goal was to produce new lower bounds on

optimal solution value. Lagrangian dual was solved using the sub-gradient optimization

algorithm. The lower bound given by our Lagrangian dual outperforms that given by LP

relaxation and that given by Lagrangian dual from literature but the consumed processing

time is important specially for large scale instances.

However, the challenge remains to identify an effective solution algorithm and model

formulation for handling large scale instances whose solution remains elusive. A possible

research direction is to propose a hybrid approach that combines the best model from

those identified in this chapter with an existing or newly proposed heuristic algorithm.

This heuristic can be combined to the sub-gradient method to solve efficiently Lagrangian

dual model.
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Chapter 5. Probabilistic Tabu Search for the Cross-dock Door Assignment Problem

The solutions proposed in chapter 4 are still weak for large instances of the Cross-dock

Door Assignment Problem (CDAP). In this chapter, we propose and implements two no-

vel heuristics that solve efficiently the CDAP. The proposed heuristics are evaluated on 99

benchmark instances from the literature, disclosing that our heuristics approaches outper-

form recent state-of-the-art approaches by reaching 45 previous best-known solutions in

the literature and discovering 53 new best-known solutions while consuming significantly

less CPU time.

5.1 Introduction

The heuristics that we have proposed are applied to an considering I-shape cross-dock.

We recall that for an I-shape cross-dock where the inbound dock doors are set at one side

and the sets of outbound dock doors are set at the opposite side, fully loaded incoming

trucks enter the cross-dock and unload goods at inbound dock doors and unloaded goods

are immediately transferred to outbound dock doors to be loaded into outgoing truck the

same day. For a broad description, literature review and mathematical formulation of the

Cross-dock Door Assignment Problem, let’s refer the readers to chapter 3 on section 3.6.

The CDAP is considered as an instance of an assignment problem as shown in Guignard

et al. (2012). Assignment problems are well-studied optimization problems that have

given rise to numerous proposals for solution algorithms including both metaheuristics

and exact methods, see, e.g., Pentico (2007). To briefly indicate some of the more salient

contributions, variants of assignment problems that have received attention include : The

Generalized Assignment Problem (GAP), see, e.g., Yagiura et al. (2006), the generalized

quadratic assignment problem, see, e.g., Pessoa et al. (2010) and the quadratic three-

dimensional assignment problem, see, e.g., Hahn, Kim, Stuetzle, Kanthak, Hightower,

Samra, Ding and Guignard (2008). In Zhu et al. (2009), the authors observe a relationship

between the Generalized Quadratic three-dimensional Assignment Problem (GQ3AP) and

the CDAP we study here which discloses that the CDAP can be solved as GQ3AP.

Some Mixed Integer Programming formulations of the studied problem may be found

in Guignard et al. (2012); Nassief et al. (2016); Gelareh et al. (2020). According to the

computational results reported in the previous chapter, instances with up to 15 ori-

gins/destinations and 7 indoors/outdoors may be optimally solved by the CPLEX MIP

solver within the time limit of two hours. However, the largest instances remain elusive
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for the CPLEX MIP solver and therefore there is a need for heuristic approaches.

In this chapter, we develop two novel heuristics based on Probabilistic Tabu Search

(PTS) utilizing a new neighborhood structure applicable both to CDAP and related pro-

blems to solve this NP-hard optimization problem.

We recall that Tabu Search (TS) is a metaheuristic introduced by Glover (1986) that

cross boundaries of feasibility or local. It guides a local search to explore the solution

space beyond local optimality by using adaptive memory to create a flexible search. The

two variant of PTS differ from each other in the way they construct a candidate list of

solutions and accept new incumbent solutions. In addition, we propose a new extension

of the swap neighborhood that allows the exchange of more than two elements and we

design an efficient heuristic method to explore it. Extensive testing is performed on bench-

mark instances from the literature to assess the performance of our proposed approaches,

showing that our PTS heuristics outperform the previous state-of-the art approaches by

reaching 45 previous best-known solutions and discovering 53 new best-known solutions

on a set of 99 instances. In addition, the CPU time consumed by our approaches during

exploration these existing solutions and the 53 new best solutions is substantially less

than that consumed by the previous state-of-the art methods. We also conduct tests to

show that our heuristic exploration yields a good trade-off between solution quality and

CPU time in comparison with exhaustive exploration of our new neighborhood structure.

The rest of the chapter is organized as follows. The next section describes the main

ingredients of the proposed heuristics based on Probabilistic Tabu Search, including a

procedure for constructing an initial solution, as well as the neighborhood structures

used and efficient ways of exploring them. Section 5.3 presents the two Probabilistic Tabu

Search heuristics built on the ingredients described in the preceding section and Section 5.4

is dedicated to computational experiments to assess the merit of the proposed approaches.

Finally, Section 5.5 offers concluding observations.

5.2 Main ingredients of the Probabilistic Tabu Search

approaches

In this section we present the main ingredients of our proposed Probabilistic Tabu

Search heuristics with multiple neighborhood structures. First, we present the procedure

used to generate an initial solution and then we describe neighborhood structures exploited
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by our PTS heuristics. In addition, we expose the data structures and updating procedures

used in our implementation.

A solution of the CDAP is represented by partitions ofM and N denoted by X and Y ,

respectively. Each element Xi of X is a set containing all origins assigned to the inbound

dock door i ∈ I. Similarly, each element Yj is a set containing all destinations assigned

to the outbound dock door j ∈ J . More formally, using two binary variables defined as

follows : xm,i and yn,j indicate whether or not an incoming truck m ∈ M is assigned to

inbound dock door i ∈ I, and whether or not an outgoing truck n ∈ N is assigned to

outbound dock door j ∈ J , respectively, the set Xi and Yj may be expressed as :

Xi = {m ∈M : xm,i = 1} and Yj = {n ∈ N : yn,j = 1}

We note that some sets Xi or Yj can be empty in a feasible solution.

The objective function (3.1a)

f(x, y) =
∑
m∈M

∑
i∈I

∑
n∈N

∑
j∈J

di,jfm,nxm,iyn,j (see chapter 3 subsection 3.6.3)

of a solution (X, Y ) may be computed as :

f(X, Y ) =
∑
i∈I

∑
j∈J

∑
m∈Xi

∑
n∈Yj

fm,ndi,j

Correspondingly, on origin side of I-shape cross-dock that we express by the letter τ = o,

the cost incurred by assigning origin m ∈ M to inbound dock door i ∈ I for a given

partition Y , may be expressed as

com,i(Y ) =
∑
j∈J

∑
n∈Yj

fm,ndi,j (5.1a)

and on destination side of I-shape cross-dock that we express by the letter τ = d, the cost

of assigning destination n ∈ N to outbound dock door j ∈ J for a given partition X, may

be expressed as

cdn,j(X) =
∑
i∈I

∑
m∈Xi

fm,ndi,j (5.2a)

The amount of capacity S(Xi) (respectively R(Yj)) consumed at each inbound (res-

pectively outbound) dock door with respect to the solution (X, Y ) is expressed as :

S(Xi) =
∑
m∈Xi

sm , ∀i ∈ I

R(Yj) =
∑
n∈Yj

rn , ∀j ∈ J
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5.2.1 Constructive heuristic to generate an initial solution

We use the following procedure described in Algorithm 5.1 to build an initial so-

lution. First, the procedure sorts the origins so that their numbers of pallets, sm, are in

descending order of size, and then assigns these origins to the inbound dock doors in a

random fashion (line 6) respecting the capacity constraint of these dock doors (line 4).

The destinations are then assigned to the outbound dock doors using a greedy procedure

in which the destinations are similarly sorted in descending order according to the to-

tal number of pallets rn they receive (line 10). After that, the destinations are assigned

one by one to the outbound dock doors following the established order. This latter as-

signment is accomplished by assigning a destination n to a dock door j associated with

the minimum assignment cost cdn,j(X), where cdn,j(X) depends on the given assignment

of origins (lines 11-17). We have found that sorting the origins and destinations in this

simple manner greatly enhances the algorithm’s ability to find a feasible initial solution

that satisfies the dock doors’ capacities, although of course there is no guarantee that the

solution will be feasible. Namely, some origins (destinations) may remain non-assigned to

inbound (outbound) dock doors. If this happens, non-assigned origins (destinations) are

assigned to inbound (outbound) dock doors in a greedy way so that the violation of the

capacity constraints is minimized. To measure the violation of the capacity constraints

the following function is used :

g(X, Y ) =
∑
i∈I

max{0, S(Xi)− Si}+
∑
j∈J

max{0, R(Yj)−Rj}

After that, in order to attain feasibility, we launch a PTS algorithm, whose steps are

given in Section 5.3. In this case, the PTS considers g(X, Y ) as the objective function

and may accept also infeasible solutions. Once a feasible solution is found, it is used as an

initial solution for the PTS which works only with feasible solutions and uses the CDAP

objective function, f(X, Y ) (see Section 5.3 for more details). Starting from this point,

a candidate list N (X, Y ) is forced to contain only feasible solutions at each subsequent

iteration. The procedure is depicted in Algorithm 5.1, it checks the capacity constraints

of dock doors.
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Algorithm 5.1 Constructive heuristic
1: Create empty solution : Xi = φ for all i ∈ I, and Yj = φ for all j ∈ J ;

2: Sort the origins m ∈M in descending order of their sm values ;

3: for each m ∈M do

4: Let I ′ = {i ∈ I : S(Xi) + sm ≤ Si} be the set of inbound dock doors that can

receive the origin m ∈M ;

5: if I ′ 6= φ then

6: Select randomly an inbound dock door i ∈ I ′ ;
7: Xi = Xi ∪ {m} ;
8: end if

9: end for

10: Sort the destinations n ∈ N in descending order of their rn values ;

11: for each n ∈ N do

12: Let J ′ = {j ∈ J : R(Yj) + rn ≤ Rj} be the outbound dock doors that can receive

the destination n ∈ N ;

13: if J ′ 6= φ then

14: Let j = argmin{cdn,j′(X) : j′ ∈ J ′} be the dock door with the smallest cost

cdn,j′(X) associated ;

15: Yj = Yj ∪ {n} ;
16: end if

17: end for

18: Return (X, Y ).

5.2.2 Neighborhood structures and move evaluation

A solution (X, Y ) corresponds to a partition of the set of origins M and a partition

of set of destinations N , respectively. The moves that define the neighborhood structure

consist of transferring a truck from one dock door to another, and of exchanging two

subsets of trucks between two dock doors. Hence, we define the neighborhood structures of

the current solutionN τ
(X, Y ) that affect either the origins (side τ = o) or the destinations

(side τ = d). For each side τ ∈ {o, d}, we denote by τ̄ the opposite side of τ , i.e., if τ = o

then τ̄ = d and vice-versa. Specifically, we divide the moves into the following two types

Shift moves and Swap moves. It is worth mentioning that we consider only feasible moves

when defining the neighborhood structure. However, in the exceptional case where the
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solution returned by the initial solution procedure is not feasible, the algorithm accepts

only moves that decrease infeasibility until a feasible solution is found. Then, only feasible

moves are performed.

5.2.2.1 Shift moves

For a given side (origin side τ = o or destination side τ = d), a shift move trans-

fers a selected truck (origin or destination) from one dock door to another (inbound or

outbound).

For the origin side τ = o, a solution that is a neighbor of the current solution (X, Y ) is

obtained by shifting an origin m ∈ M from its current inbound dock door i (m ∈ Xi) to

another inbound dock door i∗ ∈ I−{i} selected randomly among the k best inbound dock

doors, that is, dock doors having the smallest costs com,i∗(Y ). More precisely, for each origin

m ∈M , we re-index the inbound dock doors i′ ∈ I−{i} so that com,1(Y ) ≤ com,2(Y ) ≤ ... ≤
com,|I|−1(Y ) and let Ikm = {1, ..., k} be the set identifying the inbound dock doors i′ ∈ I−{i}
with the k smallest values com,i′(Y ). A neighboring solution (X ′, Y ′) ∈ N o,k

Shift(X, Y ) is

obtained by setting Y ′ = Y (partition Y still fixed) and selecting randomly i∗ ∈ Ikm and

for all i′ ∈ I setting

X ′i′ =


Xi − {m} if i′ = i

Xi∗ + {m} if i′ = i∗

Xi otherwise

(5.3a)

Analogously, for the destination side τ = d, a solution in the neighborhood of the

current solution (X, Y ) is obtained by shifting a destination n ∈ N from its current

outbound dock door j (n ∈ Yj) to another outbound dock door j∗ ∈ J − {j} selected

randomly among the k best outbound dock doors, that is, dock doors having the smallest

costs cdn,j∗ . For the sake of completeness, we provide definitions of these moves as well:

for each destination n ∈ N , we re-index the outbound dock doors j′ ∈ J − {j} so that

cdn,1(X) ≤ cdn,2(X) ≤ ... ≤ cdn,|J |−1(X) and let Jkn = 1, ..., k be the set identifying the

outbound dock doors j′ ∈ J − {j} with the k smallest values cdn,j′(X). A neighboring

solution (X ′, Y ′) ∈ N d,k

Shift(X, Y ) is obtained by setting X ′ = X (partition X still fixed)

and selecting randomly j∗ ∈ Jkn − {j} and for all j′ ∈ J setting

Y ′j′ =


Yj − {n} if j′ = j

Yj∗ + {n} if j′ = j∗

Yj otherwise

(5.4a)
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Remark 1: if k = 1, the origin m (respectively the destination n) is transferred to the

best i∗ inbound dock door (respectively to j∗ outbound dock door) , while if k = |I| − 1

(respectively k = |J | − 1), the origin m (respectively the destination n) is transferred to

a randomly selected i∗ inbound dock door (respectively j∗ outbound dock door).

5.2.2.2 Swap moves

A swap move consists of exchanging trucks between two different dock doors. In our

implementation, we consider two groups of swap moves : elementary swap moves and

multiple swap moves. An elementary swap move consists of exchanging two different trucks

between two different dock doors, while a multiple swap move consists of exchanging two

subsets of trucks between two different dock doors.

Formally, for the origin side τ = o, a neighborhood solution (X ′, Y ′) ∈ N o,p,q

Swap(X, Y ) is

obtained by setting Y ′ = Y (partition Y still fixed), choosing i, i′ ∈ I with i 6= i′, selecting

P ⊆ Xi such that |P | = p and Q ⊆ X ′i such that |Q| = q and for all h ∈ I setting

X ′h =


Xh − P if h = i

Xh +Q if h = i′

Xh otherwise

(5.5a)

Similarly, for the destination side τ = d, a neighboring solution (X ′, Y ′) ∈ N d,p,q

Swap(X, Y )

is obtained by setting X ′ = X (partition X still fixed), choosing j, j′ ∈ J with j 6= j′,

selecting P ⊆ Yj such that |P | = p and Q ⊆ Y ′j such that |Q| = q and for all h ∈ J setting

Y ′h =


Yh − P if h = j

Yh +Q if h = j′

Yh otherwise

(5.6a)

Remark 2: An elementary swap moves can be derived from the above definition by

choosing p = 1 and q = 1.

The set of neighboring solutions generated by swap moves that affect setsXi andXi′ on

origin side (respectively Yj and Yj′ on destination side) will be denoted by N o,p,q

XSwap
(Xi, Xi′)

(resp. N d,p,q

YSwap
(Yj, Yj′)). Using these definitions, on origin side (τ = o), we have :

N o,p,q

Swap(X, Y ) =
⋃

i,i′∈I,i6=i′
N o,p,q

XSwap
(Xi, Xi′)
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and similarly, on destination side (τ = d), we have :

N d,p,q

Swap(X, Y ) =
⋃

j,j′∈J,j 6=j′
N d,p,q

YSwap
(Yj, Yj′)

In Section 5.2.2.4, we describe an efficient procedure to explore the swap neighborhoods.

5.2.2.3 Data structures to evaluate and update moves

To efficiently evaluate each move presented in the preceding section we use auxiliary

data structures. By move evaluation we mean the change in the objective function caused

by executing a certain move on a current solution. Here we present only a method to

evaluate efficiently the shift moves, since each swap move (elementary or multiple) can be

easily transformed into a set of shift moves.

From equation (3.1a) the objective function value of a solution (X, Y ) can be expressed

as

f(X, Y ) =
∑
i∈I

∑
j∈J

∑
m∈Xi

∑
n∈Yj

fm,ndi,j

Using equation (5.1a), this can be rewritten as

f(X, Y ) =
∑
i∈I

∑
m∈Xi

com,i(Y ) (5.7a)

Or equivalently by equation (5.2a) :

f(X, Y ) =
∑
j∈J

∑
n∈Yj

cdn,j(X) (5.8a)

Again, we differentiate shift moves that affect origin - inbound dock door assignments

(τ = o) and those that affect destination - outbound door assignments (τ = d).

First consider a shift move on origin side (τ = o), that transfers an origin m ∈M from

its current inbound dock door i (m ∈ Xi) to another inbound dock door i∗ ∈ Ikm − {i}.
The objective function change produced by this shift move is given by

∆o(m, i, i∗) = f(X ′, Y )− f(X, Y )

Using the expressions (5.7a) and (5.8a) we obtain

∆o(m, i, i∗) = com,i∗(Y )− com,i(Y ) (5.9a)

99



Chapter 5. Probabilistic Tabu Search for the Cross-dock Door Assignment Problem

Next consider a shift move on the destination side τ = d, that transfers a destination

n ∈ N from its current inbound dock door j (n ∈ Yj) to another inbound door j∗ ∈
Jkn − {j}. The objective function change produced by this shift move is given by

∆o(n, j, j∗) = f(X, Y ′)− f(X, Y )

Similarly, using the expressions (5.7a) and (5.8a) we obtain

∆d(n, j, j∗) = cdn,j∗(X)− cdn,j(X) (5.10a)

As a consequence of the expressions (5.9a) and (5.10a), a shift move can be evaluated in

constant time O(1), if we make reference to the two matrices com,i(Y ) and cdn,j(X). Hence,

to achieve this constant time computation of the objective function change ∆o(m, i, i∗)

and ∆d(n, j, j∗), we need to update the two matrices com,i(Y ) and cdn,j(X) after each shift

move.

Let c′om,i(Y ) (respectively c′dn,j(X)) be the value at entry (m, i) (respectively (n, j)) in

the matrix com,i(Y ) (respectively cdn,j(X)) after a shift move. From equations (5.1a) and

(5.2a) that provide the definitions of com,i(Y ) and cdn,j(X) respectively, we observe that the

execution of a shift move on the origin side, τ = o, affects the matrix cdn,j(X) and vice

versa. More precisely, after a shift move on the origin side, τ = o, we have

c′dn,j(X
′) =

∑
i∈I

∑
m∈X′i

di,jfm,n

Using expression (5.3a), we obtain

c′dn,j(X
′) = cdn,j(X) + fm,n(di∗,j − di,j) (5.11a)

Similarly, after a shift move on the side τ = d, we have

c′om,i(Y
′) =

∑
j∈J

∑
n∈Y ′j

di,jfm,n

Using expression (5.4a), we obtain

c′om,i(Y
′) = com,i(Y ) + fm,n(di,j∗ − di,j) (5.12a)

As a consequence, the complexity of updating ∆o after a shift move on the origin

side τ = d is O(|N | × |J |) and the complexity of updating ∆d after a shift move on the

destination side τ = o is O(|M | × |I|).
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5.2.2.4 Efficient exploration of the swap neighborhood

The complexity of the neighborhood N o,p,q

Swap(X, Y ) is O(
∑

i.i′∈I,i6=i′
(|Xi|
p

)(|Xi′ |
q

)
). Conse-

quently, the exhaustive exploration of the union of neighborhoods N o,p,q

Swap(X, Y ), 1 ≤
p ≤ |Xi| and 1 ≤ q ≤ |Xi′ |, which we denote by N o

Swap(X, Y ), has the complexity

O(
∑

i,i′∈I,i6=i′ 2
|Xi|+|Xi′ |). However, if each solution in N o

Swap(X, Y ) is feasible, then the

best solution in this neighborhood can be found by an exploration of smaller complexity,

as we demonstrate in the following proposition.

Proposition 5.2.1 The best solution within the union of swap neighborhoods

N o

Swap(X, Y ) can be determined with time complexity O(
∑

i.i′∈I,i6=i′ |Xi| + |Xi′ |) if all so-

lutions in N o

Swap(X, Y ) are feasible.

Proof. Consider two sets Xi and Xi′ and define X imp
i = {m ∈ Xi : ∆o(m, i, i′) < 0}

and X imp
i′ = {m′ ∈ Xi′ : ∆o(m′, i′, i) < 0}. By these definitions the best multiple swap

move that affects sets Xi and Xi′ is the one that exchanges sets X imp
i and X imp

i′ . Denote

the solution obtained from such a swap move by (X i,i′ , Y ). The generation of this solution

requires O(|Xi|+ |Xi′ |) operations, since sets X imp
i and X imp

i′ may be generated in linear

time complexity O(|Xi|) and O(|Xi′|), respectively. Consequently, the best solution in the

neighborhood N o

Swap(X, Y ) i.e (X∗, Y ∗) = argmin{f(X i.i′ , Y ) : i, i′ ∈ I, i 6= i′} may be

found with complexity O(
∑

i.i′∈I,i6=i′ |Xi|+ |X ′i|).�

The preceding result does not hold if there is an infeasible solution in the neighborhood

N o

Swap(X, Y ). This can be demonstrated by a small example involving only 3 incoming

trucks m1, m2 and m3 with loads sm1 = 3, sm2 = 5 and sm3 = 8, respectively. Suppose we

have only two incoming dock doors i1 and i2 both with capacity Si1 = Si2 = 10. Further,

in the solution (X, Y ), assume trucks m1 and m2 with loads 3 and 5 are assigned to the

first incoming door i1 and truck m3 with load 8 is assigned to the door i2. Then the

neighborhood N o

Swap(X, Y ) contains both feasible and infeasible solutions with respect to

the capacity constraints. Let ∆o(m1, i1, i2) > 0, ∆o(m2, i1, i2) < 0 and ∆o(m3, i2, i1) < 0.

Then if we use the procedure from the preceding proposition, only the move that exchanges

trucks m2 and m3 between dock doors will be considered as a potential improving move,

but this move is infeasible. Consequently, the current solution (X, Y ) would be the best

solution. However, in the case that ∆o(m1, i1, i2) + ∆o(m2, i1, i2) + ∆o(m3, i2, i1) < 0, a

swap move that exchanges trucksm1 andm2 from one side with a truckm3 from the other

side is an improving move. So, the procedure used in the preceding proposition may fail to

reach the best solution if there is an infeasible solution in the neighborhood N o
Swap(X, Y ).
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However, to avoid an exhaustive exploration of the neighborhood N o

Swap(X, Y ), which

may be time consuming due to its large cardinality, but to be still able to find near best

solution, we propose the following heuristic exploration of the neighborhood N o

Swap(X, Y ).

We consider two sets Xi and Xi′ and sort the origins in Xi (respectively Xi′) in ascen-

ding order with respect to ∆o(m, i, i′) (respectively ∆o(m′, i′, i)). Represent the established

order by Xi = {m1,m2, ...,m|Xi|} and X ′i = {m′1,m′2...,m′|Xi′ |}, respectively. Then the pro-

cedure tries to find the best improving move by exchanging sets L = {m1,m2, ...,mp}, 1 ≤
p ≤ |Xi| and L′ = {m′1,m′2, ...,m′q}1 ≤ q ≤ |Xi′ |. The steps of the procedure are given in

Algorithm 5.2. As will be shown in the computational results section, this procedure is

able to find a solution which is the best solution or close to the best solution, while taking

much smaller CPU time than an exhaustive exploration. Henceforth, when we speak of

the swap neighborhood we refer to the set of solutions inspected by the procedure in

Algorithm 5.2.

Algorithm 5.2 Exploration of Swap Neighbourhood (o,Xi, Xi′)

1: Sort the origins m ∈ Xi in ascending order of the values ∆o(m, i, i′) ;

2: Sort the origins m′ ∈ Xi′ in ascending order of the values ∆o(m′, i′, i) ;

3: Set N o

XSwap
(Xi, Xi′) = φ ; and L = φ;

4: for each m ∈ Xi do

5: L = L+ {m} ; L′ = φ

6: for each m′ ∈ Xi′ do

7: L′ = L′ + {m′} ;
8: if S(Xi) + S(L′)− S(L) ≤ Si and S(Xi′) + S(L)− S(L′) ≤ Si′ then

9: (X ′, Y ′) = (X, Y ) ;

10: X ′i = X ′i + L′ − L ;

11: X ′i′ = X ′i′ + L− L′ ;
12: N o

XSwap
(Xi, Xi′) = N o

XSwap
(Xi, Xi′) + (X ′, Y ′) ;

13: end if

14: end for

15: end for

16: Return N o

XSwap
(Xi, Xi′) ;

Hence, the complexity of the procedure that explores the entire swap neighborhood of

a solution (X, Y ) on the side τ = o is O(
∑

i.i′∈I,i6=i′ |Xi||Xi′ |+ |Xi|log|Xi|+ |Xi′|log|Xi′|).

Remark 3: If there is no infeasible solution in the swap neighborhood of the current
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solution the heuristic procedure described in Algorithm 5.2 and the exhaustive exploration

procedure return the same solution.

Analogous results hold for the exploration of the neighborhood N d

Swap(X, Y ) and we

will not bother to describe them.

5.3 Probabilistic Tabu Search

In this section we present the Probabilistic Tabu Search approaches we use to solve the

CDAP. Probabilistic Tabu Search is a variant of the metaheuristic Tabu Search introduced

in Glover (1986). The main steps of our PTS procedure for solving the CDAP are presented

in Algorithm 5.3. Starting from an initial solution, PTS is run until a predefined stopping

criterion is met. The procedure presented in Algorithm 5.1 is used to generate an initial

solution and afterwards it uses the following function to evaluate the visited solutions. At

each iteration, our PTS approach constructs a candidate list N (X, Y ), selects a solution

from it to be the new incumbent solution, updates the tabu list TL, the auxiliary data

structures com,i(Y ) and cdn,j(X) (as explained in the preceding section) and the best solution

found so far. To construct a candidate list N (X, Y ) and select a new incumbent solution

we propose two approaches which lead to two different variants of PTS which we denote

PTS1 and PTS2. In both variants the tabu list (TL) (referred to as short term memory

in the original tabu search approach) is managed in the simplest way. The old incumbent

solution (X, Y ) is added to the tabu list and if the size of the list is greater than l, the

oldest solution in TL, added before the l most recent iterations, is deleted.

Algorithm 5.3 Probabilistic Tabu Search : General Framework
1: Generate an initial solution (X, Y ) using the procedure in Algorithm 5.1

2: Assign any non-assigned trucks in a greedy way using the function g(X, Y ) ;

3: Set (X∗, Y ∗) = (X, Y ) ; TL = φ ;

4: while a stopping criterion is not met do

5: if (X∗, Y ∗) is feasible then

6: F (X, Y ) = f(X, Y ) ;

7: else

8: F (X, Y ) = g(X, Y ) ;

9: end if
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10: N (X, Y ) = Construct_candidate_list(X, Y, TL) ;

11: (X, Y ) = Select_solution(N (X, Y ), F (X, Y )) ;

12: Update matrices comi(Y ) and cdnj(X) ;

13: Update tabu list TL ;

14: (X ′′, Y ′′) = argmin{F (X ′, Y ′) : (X ′, Y ′) ∈ N (X, Y )} ;
15: (X∗, Y ∗) = argmin{F (X ′′, Y ′′), F (X∗, Y ∗)} ;
16: end while

17: Return (X∗, Y ∗) ;

5.3.1 Probabilistic Tabu Search : Variant 1

The first PTS variant, denoted PTS1, constructs a candidate list N (X, Y ) using Algo-

rithm 5.4. The procedure first selects side τ ∈ {o, d} at random. After that, it constructs

a candidate list of size µ, selecting half of the solutions from the shift neighborhoods

N τ,k

Shift(X, Y ) and half of the solutions from the swap neighborhood N τ

ZSwap
(Z,Z ′) (where

N τ

ZSwap
(Z,Z ′) corresponds either to N o

XSwap
(Xi, Xi′) or N d

YSwap
(Yi, Yi′) depending on the

chosen side τ). Solutions from the neighborhoods are chosen based on a random variable

p generated in [0, 1] : if p ∈ [0, 0.6] the best solution from the neighborhood is chosen, if

p ∈]0.6, 0.8] a solution among the b best ones is chosen, and finally if p ∈]0.8, 1] a random

solution is chosen. The procedure considers solutions to be admissible only if they are not

in the tabu list TL (see i.e. Algorithm 5.4)

Algorithm 5.4 Candidate list construction in PTS1
Function Construct_candidate_list((X, Y ), µ, b, TL)

1: N (X, Y ) = φ ;

2: Select a side τ ∈ {o, d} at random ;

3: for 1 to µ
2
do

4: p = random(0, 1);

5: if p ∈ [0, 0.6] then

6: k∗ = 1

7: end if

8: if p ∈ [0.6, 0.8] then

9: k∗ = b

10: end if
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11: if p ∈ [0.8, 1] and τ = o then

12: k∗ = |I|
13: end if

14: if p ∈ [0.8, 1] and τ = d then

15: k∗ = |J |
16: end if

17: Select a random solution (X ′, Y ′) ∈ N τ,k∗

Shift(X, Y )− TL ;

18: N (X, Y ) = N (X, Y ) + (X ′, Y ′) ;

19: end for

20: for 1 to µ
2
do

21: if τ = o then

22: (Z,Z ′) = (Xi, Xi′), i 6= i′, (Xi, Xi′) chosen at random ;

23: end if

24: if τ = d then

25: (Z,Z ′) = (Yj, Yj′), j 6= j′, (Yj, Yj′) chosen at random ;

26: end if

27: p = random(0, 1) ;

28: if p ∈ [0, 0.6] then

29: Select the best solution (X ′, Y ′) ∈ N τ
ZSwap

(Z,Z ′)− TL ;

30: end if

31: if p ∈ [0.6, 0.8] then

32: Among b best select a random (X ′, Y ′) ∈ N τ
ZSwap

(Z,Z ′)− TL ;

33: end if

34: if p ∈ [0.8, 1] then

35: Select a random solution (X ′, Y ′) ∈ N τ
ZSwap

(Z,Z ′)− TL ;

36: end if

37: N (X, Y ) = N (X, Y ) + (X ′, Y ′) ;

38: end for

39: Return N (Y, Y ) ;

In our implementation, we do not use any auxiliary data structure or procedure to

avoid repetition of solutions in the candidate list. The reason is that the size of the

candidate list is chosen to be much smaller than the size of the pool of candidate solutions

(see computational results in Section 5.4) and therefore the probability of having repeated
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solutions is very small. Moreover, the use of an auxiliary data structure or procedure would

slow down the proposed heuristics.

To choose a new incumbent solution, PTS1 uses the procedure in Algorithm 5.5, which

simply selects the best solution in the candidate list as the new incumbent.

Algorithm 5.5 Solution Selection in PTS1
1: Procedure Select_solution(N (X, Y ), F (X, Y ))

2: (X ′′, Y ′′) = argmin{F (X ′, Y ′) : (X ′, Y ′) ∈ N (X, Y )} ;
3: Return (X ′′, Y ′′) ;

5.3.2 PTS : Variant 2

The second PTS variant, denoted PTS2, constructs a candidate listN (X, Y ) according

to Algorithm 5.6. The procedure first chooses a side τ ∈ {o, d}, at random, as a basis

for building the candidate list. Then it adds to the candidate list solutions from the

neighborhood N τ,1

Shift(X, Y ). If there is no improving solution available to be added, it

proceeds by adding solutions from the neighborhood N τ,1,1

Swap(X, Y ). If still no improving

solutions exist to be added, it adds to the candidate list the best solutions from the swap

neighborhood N τ

Swap(Z,Z
′), which corresponds either to N o

Swap(Xi, Xi′) or N d

Swap(Yi, Yi′)

depending on the chosen side τ . As in the first variant, the procedure considers solutions

to be admissible only if they are not in the tabu list TL.

Algorithm 5.6 Candidate list construction in PTS2
Procedure Construct_candidate_list(X, Y, TL)

1: N (X, Y ) = φ ;

2: Select a side τ ∈ {o, d} at random ;

3: N (X, Y ) = N τ,1

Shift(X, Y )− TL ;

4: if no improving solution is available in N (X, Y ) then

5: N (X, Y ) = N (X, Y ) +N τ,1,1

Swap(X, Y )− TL ;

6: end if

7: if no improving solution is available in N (X, Y ) then {multiple swap moves}

8: if τ = o then

9: L = {(Xi, Xi′) : i, i′ ∈ I, i 6= i′} ;
10: end if

11: if τ = d then
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12: L = {(Yj, Yj′) : j, j′ ∈ J, j 6= j′} ;
13: end if

14: for each pair (Z,Z ′) ∈ L do

15: Select the best solution (X ′, Y ′) ∈ N τ

ZSwap
(Z,Z ′)− TL ;

16: N (X, Y ) = N (X, Y ) + {(X ′, Y ′)} ;
17: end for

18: end if

19: Return N (X, Y ) ;

To select a new incumbent solution, PTS2 uses Algorithm 5.7. The procedure first

sorts the neighboring solutions of the solution (X, Y ) in increasing order with respect

to the objective function (line 1). Then if the set of improving neighboring solutions

N ∗(X, Y ) is not empty we set η∗ = min(|N ∗(X, Y )|, b), otherwise η∗ = b. After this, in

line 7 the procedure selects at random one of the η∗ best solutions in the candidate list to

be new incumbent solution. This means that in the case where improving solutions exist

the choice is made among at most b best improving solutions. On the other hand, if there

is no improving solutions, the choice is made among exactly the b best (non-improving

solutions) in the candidate list.

Algorithm 5.7 Solution Selection in PTS2
Procedure Select_solution(N (X, Y ), F (X, Y ), b)

1: Sort solutions in N (X, Y ) in increasing order with respect to the function F (X, Y ),

i.e., F (X ′1, Y ′1) ≤ F (X ′2, Y ′2) ≤ ... ≤ F (X ′η, Y ′η), where η = |N (X, Y )| ;
2: Let N ∗(X, Y ) = {(X ′k, Y ′k) : F (X

′k, Y
′k) < F (X, Y )}

3: if N ∗(X, Y ) 6= φ then η∗ = min(|N ∗(X, Y )|, b) ;
4: else

5: η∗ = b ;

6: end if

7: Select a solution (X ′′, Y ′′) randomly from the set (X ′1, Y ′1), (X ′2, Y ′2), ..., (X ′η
∗
, Y ′η

∗
)

8: Return (X ′′, Y ′′) ;
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5.4 Computational Results

In this section, we first compare the results of exhaustive and heuristic exploration

of the swap neighborhood. The goal is to show that our heuristic exploration yields a

good trade-off between solution quality and CPU time in comparison with exhaustive

exploration. Following this, we compare our methods with the state-of-the art methods

from the literature. Our approaches were implemented in Java and executed on a PC

with 16 GB of RAM and using an Intel Xeon E3-1505M v5 processor with 2.80 GHz. For

testing purposes, we have used the same benchmark data sets of the chapter 4 that are

introduced in Guignard et al. (2012).

Later, the authors generated a new set of large-scale instances in the same man-

ner. In the newly generated instances, the number of origins/destinations is chosen from

{25, 50, 75, 100} and the number of indock doors/outdock doors is chosen from {10, 20, 30, 43}.
The first set of test problems is referred to as “SetA” and contains 50 instances, while

the second (large-scale) set is denoted “SetB” and contains 49 instances. The name of

each instance has the format 00x00S00, where the first 00 refers to the number of ori-

gins/destinations, the second 00 after x refers to the number of inbound/outbound dock

doors and the last 00 after S is the slack. For example, the instance name 8x4S30 refers to

an instance with eight origins, eight destinations, four inbound dock doors, four outbound

dock doors and slack equal to 30%.

5.4.1 Comparison of exhaustive and heuristic exploration of swap

neighborhood

In order to highlight the advantage of using our proposed heuristic exploration of the

swap neighborhood presented in Algorithm 5.2, as contrasted to exhaustive exploration,

we perform the following test. On each test instance we generate an initial feasible solu-

tion using Algorithm 5.1 and perform heuristic and exhaustive exploration of the swap

neighborhood starting from this solution.

For comparison purposes we store the best solution value found, the CPU time consu-

med (in milliseconds) and the number of solutions evaluated by both approaches. Table 5.1

presents the average values obtained over the SetA and SetB instances (Columns ’CPU’,

’value’ and ’#solutions’). In addition, we report the average percentage deviations of so-

lution values found by heuristic exploration from those found by exhaustive exploration
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(Column ’% dev.’), and the number of instances in each data sets where heuristic and

exhaustive exploration reach the same value (Column ’#same.’).

The outcomes show that the heuristic exploration is significantly faster than the ex-

haustive one as a result of evaluating significantly fewer solutions (as expressed in the

proposition of Section 5.2.2.4). Despite evaluating fewer solutions, it is able to find solu-

tions with a quality only slightly worse than that obtained with an exhaustive exploration,

as evidenced by the fact that the average percentage deviations are 0.02% and 0.008%

on setA and setB, respectively. In addition, it should be emphasized that on 71 out of 99

instances these two approaches return the same solution as final.

Data Set
Heuristic Exhaustive

%dev #same
CPU(ms) Value #solutions CPU(ms) Value #solutions

SetA 0.01 11419.04 65.84 0.40 11416.80 331.76 0.020 33/50

SetB 3.27 562505.60 2542.98 11960.76 562459.90 51537734.50 0.008 38/49

Table 5.1 – Heuristic vs. Exhaustive exploration of swap neighborhood

5.4.2 Comparison with methods from the literature

As a basis for comparison, we refer to the following four leading heuristics from the

literature : two local search based heuristics, named LS1 and LS2, the Convex Hull Re-

laxation (CHR) heuristic proposed by Guignard et al. (2012) and the Lagrangian Relaxa-

tion (LR) heuristic proposed by Nassief et al. (2016).

After some tuning, the parameters of our algorithms are set in the following way. Both

PTS1 and PTS2, use a stopping criterion that limits the number of iterations performed.

For both methods, the limiting number is set to 105 on SetA and to 2× 105 on SetB. The

parameter b of the selection procedures is set to 3 and the size of the tabu list is set to
|M |+|N |+|I|+|J |

16
. For PTS1, the size µ of the neighborhood N(X, Y ) is set to |M |+|N |

2
. On

each instance, our PTS heuristics are executed 10 times using different random seeds.

In Tables 5.2 and 5.3, we compare the results of PTS1 and PTS2 on SetA instances

with the Best Known Solution (BKS) values reported in Guignard et al. (2012) and Nassief

et al. (2016). The BKS values in Table 5.2 are found by the LS1, LS2, CHR, CPLEX and

LR heuristics, while the BKS values in Table 5.3 are found by LS1 and LS2. Tables 5.2 and

5.3 provide summary results over test classes while detailed results may be found in the

Appendix C. By convention, the test class is formed by instances with the same number of
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|N | × |I| BKS
M3,0 M2,0 PTS1 PTS2

CPU(s) CPU(s) Best Avg. CPU(s) Best Avg. CPU(s)

8x4 5120.8 0.35 0.15 5120.8 5120.8 3.50 5120.8 5120.8 1.10

9x4 5978.2 0.54 0.21 5978.2 5978.2 4.04 5978.2 5978.2 1.03

10x4 6319.8 0.93 0.38 6319.8 6319.8 4.61 6319.8 6319.8 1.10

10x5 6427.8 3.17 1.00 6427.8 6427.8 4.20 6427.8 6427.8 1.46

11x5 7555.6 4.24 1.64 7555.6 7555.6 4.73 7555.6 7555.9 1.55

12x5 7970.2 14.32 3.67 7970.2 7970.2 5.29 7970.2 7970.2 1.53

12x6 10449.8 80.48 26.09 10449.8 10449.8 4.84 10449.8 10453.1 2.06

15x6 13756.4 622.78 132.93 13756.4 13756.4 6.55 13756.4 13773.0 2.29

15x7 14688.8 3843.62 1044.73 14688.8 14688.8 6.13 14688.8 14703.0 2.81

20x10 29171.4 7200.00 7200.00 29151.2 29157.8 7.89 29151.2 29342.0 5.17

Avg 10743.88 768.48 745.35 10741.86 10742.53 5.18 10741.86 10764.39 2.01

Table 5.2 – Summary results on “SetA” instances

origins/destinations and inbound/outbound doors. Therefore, the headings of Tables 5.2

and 5.3 are defined as follows. The number of origins/destinations and inbound/outbound

dock doors in each class is given in the first column in the form |N | × |I|. The second

column is dedicated to BKS values. In columns three and four in Table 5.2 we present

the CPU time needed for CPLEX to solve the recent best MIP formulations M2,0 and

M3,0 for CDAP (see chapter 4, section 4.6 of computational results), where column three

(Column ‘M3,0’) is taken from Nassief et al. (2016) and column four (Column ‘M2,0’) is

taken from chapter 4, section 4.6. Remaining columns report the results of our heuristics.

On each instance our heuristics were executed 10 times recording the best solution value

and the average solution value found in 10 runs, and the average CPU time spent in

solving the instance. The averages of these values over the instances from the same test

class are reported in Columns ‘Best’, ‘Avg.’, and ‘CPU’, respectively.

In Table 5.4, we report the total number of instances, over each data set, where the

first approach in the comparison provides better, equal or worse solutions than the second

approach in the comparison. For example, under the header PTS1 vs BKS, we provide the

total numbers of instances where PTS1 offers better (Columns ’Best’), equal (Columns

’Equal’), and worse (Columns ’Worse’) solution than BKS.

From the results presented for SetA instances in appendix Table B.1, we see that both
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|N | × |I| BKS
PTS1 PTS2

Best Avg. CPU(s) Best Avg. CPU(s)

25x10 48446.0 48268.0 48287.1 21.68 48280.0 48341.0 12.58

25x20 51741.0 51533.0 51618.4 19.81 51562.0 52334.2 28.51

50x10 187945.4 187395.0 187551.5 72.99 187469.0 188446.8 26.26

50x20 230622.2 229566.2 230233.4 48.71 231038.0 233009.4 49.41

50x30 264322.3 262510.0 263745.3 46.43 265606.0 268292.8 84.85

50x43 330661.0 330285.0 332378.3 47.46 335036.0 341233.4 121.07

75x10 431150.2 429874.2 430538.9 172.98 430845.2 432162.1 44.84

75x20 513604.6 511545.2 512406.4 89.49 514356.6 518236.2 73.03

75x30 608476.0 605108.0 606868.6 83.37 611928.0 616832.8 111.24

100x10 756508.0 754670.6 755528.7 352.63 755725.0 757630.9 68.74

100x20 933612.6 929704.0 931873.7 153.61 934695.4 939120.4 103.30

100x30 1113857.0 1102169.2 1105648.0 130.49 1114188.4 1122055.4 143.05

Avg 504253.51 501137.59 502307.05 117.41 504369.71 507363.03 70.51

Table 5.3 – Summary results on “SetB” instances

Data Set
PTS1 vs BKS PTS2 vs BKS PTS1 vs PTS2

Better Equal Worse Better Equal Worse Better Equal Worse

SetA 4 45 1 4 45 1 0 50 0

SetB 49 0 0 27 0 22 43 3 3

All 53 45 1 31 45 23 43 53 3

Table 5.4 – Comparison of methods in terms of solution quality

algorithms PTS1 and PTS2 only fail to reach the best-known solution value previously

reported in the literature on a single instance (i.e., 20x10S15), while they both establish

new best-known solution values for four instances. Regarding CPU-time, we observe that

PTS2 is more than 2 times faster on average than PTS1. However, the average solution

values found by PTS1 are in general better than those of PTS2 and sometimes better

than the previously found best-known solution values (see Table B.1 in the Appendix

B, for the instances 20x10S5, 20x10S10, 20x10S20, 20x10S30). Furthermore, the results

reported (chapter 4) and Nassief et al. (2016) show that instances with up to 15 ori-

gins/destinations and 7 indoors/outdoors are optimally solved by the CPLEX MIP solver

within the maximum of 492 seconds. On these instances, the PTS algorithms were able

to reach all optimal solutions in less than 8 seconds. Moreover, for instances with 20
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origins/destinations and 10 indoors outdoors, CPLEX did not reach optimal solutions in

two hours while the PTS algorithms provide better results in less than 10 seconds. This

comparison with CPLEX results indicates the merit of using probabilistic tabu search for

solving hard optimization problem such as CDAP.

On the other hand, on SetB, PTS1 outperforms the state-of-the-art methods, LS1 and

LS2, in finding the best-found solution. On several instances even the average solution va-

lues reported by PTS1 are better than the best solution values found by LS1 and LS2 (see

Table B.2 in the Appendix C). Comparing the best solutions found by PTS1 and PTS2,

we see that PTS2 is better than PTS1 on 3 instances, ties with PTS1 on 3 instances,

while on the remaining 43 instances PTS1 is better than PTS2. Comparing the average

solution values of PTS1 and PTS2, we see that PTS1 outperforms PTS2 on 48 out of

49 instances (see Table B.2 in the Appendix C). We also see that PTS2 performs very

well on instances with 10 indoors/outdoors where it obtains results very close to those of

PTS1, while consuming very little CPU time compared to PTS1. In addition, compared

to the BKS method, PTS2 provides better solutions on 27 instances out of 49 instances.

Previous findings indicate that PTS1 outperforms the other approaches in terms of

solution quality. In order to check if this superior performance is significant or not, we

perform the Wilcoxon signed rank test, see e.g., Wilcoxon (1945). The resulting p-values

of 1.1101× 10−9, 1.1101× 10−7, and 6.7951× 10−9 when comparing PTS1 vs LS1, PTS1

vs LS2, and PTS1 vs PTS2, respectively, reveal the significance of the differences that

establish the superiority of PTS1.

Comparing the running times of PTS1 and PTS2, we see that : PTS2 is better on ins-

tances with 10 dock doors (instances with reduced neighborhood structure) ; the methods

are very similar on instances with 20 dock doors (where sometimes PTS1 is better than

PTS2) ; PTS1 in general outperforms PTS2 in terms of running time on instances with

30 doors and on one instance with 43 doors, even though the neighborhood considered in

PTS1 is much larger than the neighborhood considered in PTS2. On the other hand, the

running times of our methods are much better than those of LS1 and LS2 (see Table B.2

in the Appendix C).

In the light of these results, we conclude that PTS2 is more suitable for small problems,

while PTS1 is more suitable for large problems. We conjecture that the good performance

of PTS1 on large instances may be explained by the fact that it explores a smaller neigh-

borhood than PTS2, which enables it to achieve a better tradeoff between intensification

and diversification than PTS2 within the same amount of time.
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5.5 Conclusion

In this chapter, two Probabilistic Tabu Search heuristics have been presented to tackle

the Cross-dock Door Assignment Problem (CDAP) that has important applications in

supply chain management. Their main differences are embodied in the ways they generate

candidate lists and accept solutions in each iteration. Our methods are implemented in an

innovative manner using a new large swap neighborhood structure for solving either the

CDAP or similar problems. In addition, a supporting heuristic is proposed to explore the

large swap neighborhood efficiently. The merit of our proposed algorithms is assessed by

comparing them with the most effective methods from the literature on two benchmark

data sets, likewise from the literature. Computational tests disclose that our approaches

significantly outperform the previously proposed methods by reaching 45 previous best-

known solutions and establishing 53 new best-known solutions over the full set of 99

instances. In addition, the CPU time consumed by our approaches is substantially less

than consumed by the previous state-of-the art methods.
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Chapter 6

Conclusions and Future works

Conclusions

All along this PhD thesis, our works focused on an NP-hard combinatorial optimiza-

tion problem referred to “Cross-dock Door Assignment Problem (CDAP)” also known as

“Truck-to-dock Door Assignment Problem (TDAP)”.

Numerous studies have been performed and improved in order to solve the CDAP.

Because of the NP-hard character of the CDAP, most of researchers have turned to the

implementation of heuristics based algorithm. According to the best of our knowledge,

very few exact methods and mathematical formulations for CDAP have been proposed

until now.

First, we focused on a broad analysis of two standard mathematical formulations pro-

posed in the literature for CDAP, the first one is a standard quadratic formulation and

the second one is the standard linear model. Further, other related mathematical formu-

lations have been analyzed. However, those models remain too weak to solve the problem

even for small instances. Our main idea has been to exploit those two standard mo-

dels to mathematically formulate new linear models for the CDAP. Using mathematical

theories of reformulation and linearization, we have mathematically formulated eight new

nonstandard MILP models for the CDAP that we have implemented and solved using

CPLEX solver. We then showed equivalence between those new nonstandard linear mo-

dels as well as their equivalence with those in literature. An exhaustive empirical study

has been conducted on benchmark data sets from literature. The results of computatio-

nal experiments have proven that one of those eight new nonstandard linear models for
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CDAP is the best even compared to the those in literature. Afterwards, we carried out

a Lagrangian Relaxation (LR) procedure with the aim to produce new lower bounds on

optimal value. We selected the model for Lagrangian Relaxation on the basis of a good

compromise between LP lower bound and CPU time consumption given by that model

against MIP models performing the same LP lower bound. The Lagrangian dual is solved

using the sub-gradient optmization algorithm. Computational experiments proved that

the Lagrangian dual improved significantly LP lower bound and the lower bound given

by Lagrangian Relaxation from literature.

Even though some of the proposed new linear models for the CDAP are good and

our Lagrangian algorithm gives good lower bounds, those methods remain weak for large

scale instances. Thereby, we proposed and implemented a heuristic based on Tabu Search

(TS) to efficiently solve large scale instances of CDAP. We focused more precisely on

Probabilistic Tabu Search (PTS). Depending on how candidate list of new solutions is

built and the way a new incumbent solution is selected from the candidate list of solutions,

we have proposed two approaches that leaded to two different variants of PTS that we

denoted by PTS1 and PTS2 . The merit of our proposed PTS is assessed by comparing

PTS1 and PTS2 with the most effective and recent algorithms from literature review on

two sets of benchmark data set. Computational experiments demonstrated the efficiency

of our algorithms.

Future works directions

The MIP models presented in the chapter 4 are applicable to pure cross-docks with

fixed mode of dock doors in a pre-distribution environment without arrival and departure

restrictions. Hence, a possible future research direction is to consider a less restrictive mo-

del that also takes into account availability of trucks, stochasticity of arrivals, uncertainty

in contents of trucks.

Future works may also include adapting the models that we have presented in the chap-

ter 4 to handle other cross-docking facility shapes and to carry out associated theoretical

and empirical analysis.

Considering the PTS proposed in chapter 5, future work will examine the ways to

exploit advantages of each of the proposed PTS heuristics by combining their best features

within one scheme to yield other variants for solving CDAP. We envision that benefits
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will accrue from future works that study the impact of cross-docking facilities on vehicle

scheduling in a supply chain by combining CDAP with the vehicle routing problem.

To benefit the advantages of models formulation and algorithms, a possible future

research direction is to propose a hybrid approach that combines the best MIP model

from those identified in chapter 4 with our newly proposed PTS and the combine PTS

with the sub-gradient optimization method to tackle big instances in a Lagrangian fashion.
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Appendix A

Detailed results of computational

experiments on new MIP Models and

Lagrangian Relaxation for the CDAP

In this annex, we provide detailed results of computational experiments carried out on

entire data sets referred to "SetA" for all mathematical models and Lagrangian Relaxation

presented in the chapter 4. The mathematical models are run for several cases of test,

once when integrality requirements on the 3 variables of the MIP models are imposed (see

e.g.,Tables A.1, A.2, A.6a and A.6b), second case when the used linearization variable

zm,i,n,j is the only one relaxed (see e.g., Tables A.3, A.4, A.7a and A.7b) and the last case

we tested the models for LP relaxations (see e.g., Tables A.5). For Lagrangian Relaxation,

detailed results are presented in Table A.8. The sign ’-’ in the Tables A.1, A.2, A.3, A.4

and A.8 implies that CPLEX could not provide a feasible solution within the imposed

time limit. In the Tables A.6 and A.7 we perform Wilcoxon signed rank statistical tests

for all of the models that are able to provide a feasible solution for tested instance. The

tests are carried out to compare the superiority between models for each pair of models

both for the solution quality and runtime.
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A.1 Comparison of models - Integrality requirement on variables xm,i, yn,j and zm,i,n,j

imposed

A.1.1 Quadratic model Q and Linear ModelsM0,0, M0,1, M1,0, M1,1, M2,0 for each class of instances

and general average

Instances
Q M0,0 M0,1 M1,0 M1,1 M2,0

Solution Time Gap Solution Time Gap Solution Time Gap Solution Time Gap Solution Time Gap Solution Time Gap

8x4S30 5063 1.016 0.000 5063 8.140 0.000 5063 4.590 0.000 5063 0.760 0.000 5063 4.688 0.000 5063 0.160 0.000

8x4S20 5086 1.281 0.000 5086 7.040 0.000 5086 1.968 0.000 5086 0.560 0.000 5086 2.156 0.000 5086 0.140 0.000

8x4S15 5112 1.484 0.000 5112 1.281 0.000 5112 1.812 0.000 5112 0.610 0.000 5112 3.094 0.000 5112 0.140 0.000

8x4S10 5169 1.703 0.000 5169 1.320 0.000 5169 2.078 0.000 5169 0.720 0.000 5169 4.250 0.000 5169 0.140 0.000

8x4S5 5174 1.891 0.000 5174 1.150 0.000 5174 1.204 0.000 5174 0.830 0.000 5174 3.690 0.000 5174 0.160 0.000

8x4 5120.8 1.475 0.000 5120.8 3.786 0.000 5120.8 2.330 0.000 5120.8 0.696 0.000 5120.8 3.576 0.000 5120.8 0.148 0.000

9x4S30 5904 3.000 0.000 5904 60.970 0.000 5904 47.046 0.000 5904 1.170 0.000 5904 11.719 0.000 5904 0.280 0.000

9x4S20 5937 3.750 0.000 5937 22.450 0.000 5937 15.172 0.000 5937 1.310 0.000 5937 5.953 0.000 5937 0.190 0.000

9x4S15 5976 4.031 0.000 5976 3.890 0.000 5976 11.719 0.000 5976 1.450 0.000 5976 5.375 0.000 5976 0.160 0.000

9x4S10 6027 4.266 0.000 6027 4.360 0.000 6027 3.563 0.000 6027 1.280 0.000 6027 9.812 0.000 6027 0.230 0.000

9x4S5 6047 4.484 0.000 6047 2.560 0.000 6047 2.296 0.000 6047 1.050 0.000 6047 9.406 0.000 6047 0.190 0.000

9x4 5978.2 3.906 0.000 5978.2 18.846 0.000 5978.2 15.959 0.000 5978.2 1.252 0.000 5978.2 8.453 0.000 5978.2 0.210 0.000

10x4S30 6193 6.937 0.000 6193 486.840 0.000 6193 1785.390 0.000 6193 1.300 0.000 6193 14.266 0.000 6193 0.280 0.000

10x4S20 6267 10.219 0.000 6267 2226.250 0.000 6267 102.330 0.000 6267 1.480 0.000 6267 20.266 0.000 6267 0.360 0.000

10x4S15 6296 13.031 0.000 6296 200.760 0.000 6296 112.234 0.000 6296 1.520 0.000 6296 22.328 0.000 6296 0.280 0.000

10x4S10 6325 14.890 0.000 6325 46.970 0.000 6325 313.469 0.000 6325 1.720 0.000 6325 32.718 0.000 6325 0.380 0.000

10x4S5 6518 15.266 0.000 6518 5.110 0.000 6518 5.000 0.000 6518 2.340 0.000 6518 47.391 0.000 6518 0.580 0.000

10x4 6319.8 12.069 0.000 6319.8 593.186 0.000 6319.8 463.685 0.000 6319.8 1.672 0.000 6319.8 27.394 0.000 6319.8 0.376 0.000

10x5S30 6308 46.670 0.000 6308 7200 0.144 6308 2342.703 0.000 6308 3.770 0.000 6308 48.406 0.000 6308 0.750 0.000

10x5S20 6342 75.766 0.000 6342 5290.090 0.000 6342 7200 0.053 6342 3.770 0.000 6342 66.375 0.000 6342 0.720 0.000

10x5S15 6397 96.090 0.000 6397 4078.950 0.000 6397 1430.656 0.000 6397 7.140 0.000 6397 113.766 0.000 6397 0.890 0.000
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10x5S10 6476 107.516 0.000 6476 921.290 0.000 6476 1692.734 0.000 6476 9.380 0.000 6476 95.156 0.000 6476 1.550 0.000

10x5S5 6616 110.547 0.000 6616 140.640 0.000 6616 69.610 0.000 6616 7.50s 0.000 6616 77.344 0.000 6616 1.090 0.000

10x5 6427.8 87.318 0.000 6427.8 3526.194 0.029 6427.8 2547.141 0.011 6427.8 6.015 0.000 6427.8 80.209 0.000 6427.8 1.000 0.000

11x5S30 7468 1642.047 0.000 7468 7200 0.286 7420 2960.140 0.000 7420 5.380 0.000 7420 84.797 0.000 7420 1.130 0.000

11x5S20 7439 1841.641 0.000 7439 7200 0.215 7439 919.157 0.000 7439 5.660 0.000 7439 45.000 0.000 7439 0.910 0.000

11x5S15 7543 2049.750 0.000 7543 7200 0.141 7542 7200.000 0.094 7535 7.220 0.000 7535 156.671 0.000 7535 1.780 0.000

11x5S10 7572 2074.469 0.000 7572 5300.109 0.000 7572 5090.563 0.000 7572 5.470 0.000 7572 197.234 0.000 7572 1.420 0.000

11x5S5 7812 2078.730 0.000 7812 125.375 0.000 7812 366.187 0.000 7812 6.450 0.000 7812 276.960 0.000 7812 2.980 0.000

11x5 7566.8 1937.327 0.000 7566.8 5405.097 0.128 7557 3307.209 0.019 7555.6 6.036 0.000 7555.6 152.132 0.000 7555.6 1.644 0.000

12x5S30 8017 7200,000 0.140 8017 7200 0.371 7964 7200.000 0.351 7923 15.440 0.000 7923 320.860 0.000 7923 4.640 0.000

12x5S20 7992 6455.703 0.000 7992 7200 0.259 7939 7200.000 0.263 7939 16.360 0.000 7939 266.890 0.000 7939 3.910 0.000

12x5S15 7999 3625.188 0.000 7999 7200 0.249 7939 5336.187 0.000 7939 12.910 0.000 7939 228.734 0.000 7939 3.390 0.000

12x5S10 8008 2209.593 0.000 8008 7200 0.262 7978 1576.938 0.000 7978 12.560 0.000 7978 376.781 0.000 7978 3.000 0.000

12x5S5 8072 96.172 0.000 8072 7200 0.144 8072 452.546 0.000 8072 14.730 0.000 8072 320.937 0.000 8072 3.410 0.000

12x5 8017.6 3917.331 0.028 8017.6 7200 0.257 7978.4 4353.134 0.123 7970.2 14.400 0.000 7970.2 302.840 0.000 7970.2 3.670 0.000

12x6S30 10276 7200 0.232 10276 7200 0.394 10357 7200 0.457 10228 126.490 0.000 10228 1081.235 0.000 10228 9.470 0.000

12x6S20 10396 348.219 0.000 10396 7200 0.419 10452 7200 0.409 10312 42.950 0.000 10312 650.234 0.000 10312 37.750 0.000

12x6S15 10420 7200 0.054 10420 7200 0.293 10413 7200 0.384 10362 62.230 0.000 10362 87.313 0.000 10362 5.170 0.000

12x6S10 10480 7200 0.034 10480 7200 0.243 10456 4273.516 0.000 10456 107.250 0.000 10456 1135.890 0.000 10456 5.590 0.000

12x6S5 10894 760.265 0.000 10894 7200 0.213 10891 877.531 0.000 10891 96.980 0.000 10891 1393.453 0.000 10891 72.480 0.000

12x6 10493.2 4541.697 0.064 10493.2 7200 0.313 10513.8 5350.209 0.250 10449.8 87.180 0.000 10449.8 869.625 0.000 10449.8 26.092 0.000

15x6S30 13712 7200 0.386 13850 7200 0.619 13722 7200 0.618 13567 389.730 0.000 13567 3451.828 0.000 13567 27.980 0.000

15x6S20 - - - 14013 7200 0.628 13916 7200 0.569 13720 966.050 0.000 13720 5432.985 0.000 13720 270.550 0.000

15x6S15 13946 7200 0.474 - - - 13951 7200 0.566 13765 405.730 0.000 13765 6511.375 0.000 13765 147.780 0.000

15x6S10 13956 7200 0.446 - - - 14053 7200 0.648 13803 582.450 0.000 13803 5239.437 0.000 13803 20.560 0.000

15x6S5 13927 7200 0.061 14136 7200 0.631 14129 7200 0.595 13927 897.750 0.000 14042 7200 0.025 13927 197.800 0.000

15x6 - - - - - - 13954.2 7200 0.599 13756.4 648.342 0.000 13779.4 5567.125 0.005 13756.4 132.934 0.000

15x7S30 14630 7200 0.583 - - - 14657 7200 0.792 14409 2136.470 0.000 14469 7200 0.023 14409 504.840 0.000

15x7S20 14808 7200 0.585 - - - 14837 7200 0.655 14514 1795.580 0.000 14723 7200 0.043 14514 680.580 0.000

15x7S15 14916 7200 0.596 14906 7200 0.596 - - - 14657 2251.700 0.000 14797 7200 0.045 14657 417.660 0.000

15x7S10 15053 7200 0.584 15087 7200 0.617 - - - 14810 3789.730 0.000 14929 7200 0.045 14810 1352.470 0.000

15x7S5 15179 7200 0.169 15355 7200 0.697 - - - 15054 2038.280 0.000 15460 7200 0.080 15054 2268.090 0.000

15x7 14917.2 7200 0.503 - - - - - - 14688.8 2402.352 0.000 14875.6 7200 0.047 14688.8 1044.728 0.000121
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20x10S30 29219 7200 0.802 30756 7200 0.954 30522 7200 0.952 29458 7200 0.124 34666 7200 0.257 29081 7200 0.089

20x10S20 29219 7200 0.884 30928 7200 0.970 30769 7200 0.938 29754 7200 0.130 34162 7200 0.240 29609 7200 0.099

20x10S15 29973 7200 0.842 30844 7200 0.979 31278 7200 0.980 30156 7200 0.145 - - - 29967 7200 0.130

20x10S10 29766 7200 0.812 31388 7200 1.000 31557 7200 0.953 30039 7200 0.142 - - - 29880 7200 0.099

20x10S5 30824 7200 0.836 32442 7200 1.000 33062 7200 0.981 31420 7200 0.186 - - - 30604 7200 0.110

20x10 29800.2 7200 0.835 31271.6 7200 0.980 31437.6 7200 0.961 30165.4 7200 0.145 - - - 29828.2 7200 0.105

Average - - - - - - - - - 10843.28 1057.831 0.015 - - - 10809.56 841.080 0.011

Table A.1 – Quadratic model Q and linear modelsM0,0,M0,1,M1,0,M1,1 andM2,0

A.1.2 Linear Models M2,1, M3,0, M3,1, M′0,0M′0,1 and M′1,1 for each class of instances and general

average

Instances
M2,1 M3,0 M3,1 M′0,0 M′0,1 M′1,1

Solution Time Gap Solution Time Gap Solution Time Gap Solution Time Gap Solution Time Gap Solution Time Gap

8x4S30 5063 1.281 0.000 5063 0.340 0.000 5063 1.250 0.000 5063 1.016 0.000 5063 7.391 0.000 5063 1.485 0.000

8x4S20 5086 0.718 0.000 5086 0.360 0.000 5086 0.735 0.000 5086 0.313 0.000 5086 6.953 0.000 5086 1.594 0.000

8x4S15 5112 1.047 0.000 5112 0.340 0.000 5112 1.172 0.000 5112 0.250 0.000 5112 1.953 0.000 5112 2.750 0.000

8x4S10 5169 1.781 0.000 5169 0.370 0.000 5169 1.672 0.000 5169 0.234 0.000 5169 1.172 0.000 5169 2.937 0.000

8x4S5 5174 1.110 0.000 5174 0.360 0.000 5174 1.328 0.000 5174 0.172 0.000 5174 0.672 0.000 5174 3.672 0.000

8x4 5120.8 1.187 0.000 5120.8 0.354 0.000 5120.8 1.231 0.000 5120.8 0.397 0.000 5120.8 3.628 0.000 5120.8 2.488 0.000

9x4S30 5904 2.094 0.000 5904 0.343 0.000 5904 4.282 0.000 5904 1.047 0.000 5904 23.922 0.000 5904 2.578 0.000

9x4S20 5937 3.546 0.000 5937 0.656 0.000 5937 2.562 0.000 5937 0.390 0.000 5937 10.375 0.000 5937 4.250 0.000

9x4S15 5976 1.954 0.000 5976 0.469 0.000 5976 2.516 0.000 5976 0.328 0.000 5976 9.031 0.000 5976 4.406 0.000

9x4S10 6027 3.125 0.000 6027 0.656 0.000 6027 4.078 0.000 6027 0.359 0.000 6027 4.406 0.000 6027 5.157 0.000

9x4S5 6047 2.968 0.000 6047 0.562 0.000 6047 6.140 0.000 6047 0.266 0.000 6047 3.016 0.000 6047 6.812 0.000

9x4 5978.2 2.737 0.000 5978.2 0.537 0.000 5978.2 3.916 0.000 5978.2 0.478 0.000 5978.2 10.150 0.000 5978.2 4.641 0.000

10x4S30 6193 3.985 0.000 6193 0.578 0.000 6193 3.750 0.000 6193 4.531 0.000 6193 233.594 0.000 6193 7.125 0.000

10x4S20 6267 5.875 0.000 6267 0.719 0.000 6267 4.032 0.000 6267 2.609 0.000 6267 120.312 0.000 6267 20.656 0.000

10x4S15 6296 3.859 0.000 6296 0.985 0.000 6296 4.968 0.000 6296 2.063 0.000 6296 53.484 0.000 6296 15.016 0.000

10x4S10 6325 4.516 0.000 6325 0.594 0.000 6325 6.360 0.000 6325 1.735 0.000 6325 30.516 0.000 6325 19.562 0.000
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10x4S5 6518 6.515 0.000 6518 1.750 0.000 6518 8.437 0.000 6518 0.438 0.000 6518 6.250 0.000 6518 19.516 0.000

10x4 6319.8 4.950 0.000 6319.8 0.925 0.000 6319.8 5.509 0.000 6319.8 2.275 0.000 6319.8 88.831 0.000 6319.8 16.375 0.000

10x5S30 6308 15.969 0.000 6308 1.750 0.000 6308 36.813 0.000 6308 24.516 0.000 6308 7200 0.052 6308 72.766 0.000

10x5S20 6342 16.375 0.000 6342 3.279 0.000 6342 43.234 0.000 6342 28.375 0.000 6342 7200 0.045 6342 72.125 0.000

10x5S15 6397 17.672 0.000 6397 2.344 0.000 6397 57.720 0.000 6397 19.062 0.000 6397 1833.047 0.000 6397 115.031 0.000

10x5S10 6476 62.906 0.000 6476 3.328 0.000 6476 104.593 0.000 6476 7.578 0.000 6476 52.797 0.000 6476 127.422 0.000

10x5S5 6616 47.250 0.000 6616 5.156 0.000 6616 72.703 0.000 6616 1.359 0.000 6616 56.468 0.000 6616 105.125 0.000

10x5 6427.8 32.034 0.000 6427.8 3.171 0.000 6427.8 63.013 0.000 6427.8 16.178 0.000 6427.8 3268.462 0.019 6427.8 98.494 0.000

11x5S30 7420 26.593 0.000 7420 2.312 0.000 7420 47.047 0.000 7420 1144.422 0.000 7428 7200 0.056 7420 128.969 0.000

11x5S20 7439 22.204 0.000 7439 3.234 0.000 7439 76.672 0.000 7439 308.235 0.000 7439 770.875 0.000 7439 126.187 0.000

11x5S15 7535 60.594 0.000 7535 3.875 0.000 7535 102.719 0.000 7535 42.140 0.000 7535 376.390 0.000 7535 186.641 0.000

11x5S10 7572 108.859 0.000 7572 4.687 0.000 7572 143.516 0.000 7572 28.172 0.000 7572 154.610 0.000 7572 319.390 0.000

11x5S5 7812 222.980 0.000 7812 7.094 0.000 7812 221.234 0.000 7812 7.610 0.000 7812 185.375 0.000 7812 291.953 0.000

11x5 7555.6 88.246 0.000 7555.6 4.240 0.000 7555.6 118.238 0.000 7555.6 306.116 0.000 7557.2 1737.450 0.011 7555.6 210.628 0.000

12x5S30 7923 113.765 0.000 7923 38.047 0.000 7923 163.375 0.000 7971 7200 0.135 - - - 7923 1516.469 0.000

12x5S20 7939 149.703 0.000 7939 7.922 0.000 7939 172.484 0.000 7939 2088.500 0.000 7939 2902.703 0.000 7939 874.234 0.000

12x5S15 7939 163.297 0.000 7939 9.797 0.000 7939 217.344 0.000 7939 3534.954 0.000 7939 1371.703 0.000 7939 559.703 0.000

12x5S10 7978 200.296 0.000 7978 6.875 0.000 7978 221.078 0.000 - - - 7978 1454.594 0.000 7978 777.641 0.000

12x5S5 8072 229.891 0.000 8072 8.953 0.000 8072 331.297 0.000 8072 20.328 0.000 8072 5735.812 0.000 8072 765.656 0.000

12x5 7970.2 171.390 0.000 7970.2 14.319 0.000 7970.2 221.116 0.000 - - - - - - 7970.2 898.741 0.000

12x6S30 10228 260.750 0.000 10228 95.250 0.000 10228 605.078 0.000 - - - 10276 7200 0.336 10228 5770.203 0.000

12x6S20 10312 416.578 0.000 10312 64.609 0.000 10312 719.297 0.000 - - - 10388 7200 0.405 10312 7200 0.020

12x6S15 10362 348.047 0.000 10362 37.578 0.000 10362 759.938 0.000 - - - 10582 7200 0.392 10362 3408.453 0.000

12x6S10 10456 609.422 0.000 10456 81.469 0.000 10456 1115.046 0.000 - - - 10500 7200 0.314 10456 2948.844 0.000

12x6S5 10891 1045.265 0.000 10891 123.484 0.000 10891 1368.704 0.000 10891 11.593 0.000 10891 2624 0.000 10891 1203.891 0.000

12x6 10449.8 536.012 0.000 10449.8 80.478 0.000 10449.8 913.613 0.000 10891 11.593 0.000 10527.4 6285 0.289 10449.8 4106.278 0.004

15x6S30 13567 1516.781 0.000 13567 687.437 0.000 13567 3323.718 0.000 13776 7200 0.524 13809 7200 0.624 13685 7200 0.034

15x6S20 13720 5090.156 0.000 13720 818.453 0.000 13805 7200 0.017 13922 7200 0.468 13815 7200 0.504 13873 7200 0.036

15x6S15 13765 5129.641 0.000 13765 406.375 0.000 13765 7005.172 0.000 13911 7200 0.407 13861 7200 0.545 13844 7200 0.031

15x6S10 13803 4759.063 0.000 13803 449.500 0.000 13803 4475.172 0.000 - - - - - - 13860 7200 0.027

15x6S5 13940 7200.000 0.009 13927 752.141 0.000 13983 7200 0.024 13960 7200 0.314 14331 7200 0.625 14076 7200 0.045

15x6 13759 4739.128 0.002 13756.4 622.781 0.000 13784.6 5840.812 0.008 - - - - - - 13867.6 7200 0.035

15x7S30 14409 7200 0.004 14409 2711.282 0.000 14510 7200 0.024 - - - 14724 7200 0.653 14665 7200 0.055123
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15x7S20 14679 7200 0.029 14514 3227.375 0.000 14583 7200 0.027 - - - 15001 7200 0.712 14792 7200 0.059

15x7S15 14742 7200 0.036 14657 4199.359 0.000 14798 7200 0.050 14855 7200 0.508 15056 7200 0.644 14941 7200 0.067

15x7S10 15113 7200 0.062 14810 4628.078 0.000 14923 7200 0.046 14843 7200 0.446 14867 7200 0.581 14941 7200 0.059

15x7S5 15443 7200 0.068 15054 4452.016 0.000 14381 7200 0.072 15190 7200 0.365 15278 7200 0.665 15486 7200 0.083

15x7 14877.2 7200 0.040 14688.8 3843.622 0.000 14639 7200 0.044 - - - 14985.2 7200 0.651 14965 7200 0.065

20x10S30 34095 7200 0.237 29415 7200 0.119 34252 7200 0.248 29344 7200 0.828 30125 7200 0.937 30069 7200 0.135

20x10S20 34886 7200 0.255 29941 7200 0.125 35010 7200 0.259 29346 7200 0.845 30242 7200 0.942 31759 7200 0.177

20x10S15 34353 7200 0.240 29934 7200 0.115 35565 7200 0.267 29666 7200 0.805 31278 7200 0.949 31327 7200 0.164

20x10S10 34563 7200 0.241 30322 7200 0.120 35308 7200 0.258 29527 7200 0.833 31209 7200 0.951 30933 7200 0.147

20x10S5 - - - 30409 7200 0.141 - - - - - - 32681 7200 0.975 31248 7200 0.151

20x10 - - - 30004.2 7200 0.124 35033.75 7200 0.258 29470.75 - - 31107 7200 0.951 31067.2 7200 0.155

Average - - - 10827.16 1177.042 0.012 - - - - - - - - - 10972,2 2693.764 0.023

Table A.2 – Linear ModelsM2,1, M3,0, M3,1, M′0,0M′0,1 andM′1,1

A.2 Comparison of models - Integrality requirement on variable zm,i,n,j relaxed

A.2.1 MIP Models M′0,0, M′0,1, M′1,0, M′1,1, M′2,0 and M′2,1class of instances and general average

Instances
M0′,0 M0′,1 M1′,0 M1′,1 M2′,0 M2′,1

Solution Time Gap Solution Time Gap Solution Time Gap Solution Time Gap Solution Time Gap Solution Time Gap

8x4S30 5063 9.380 0.000 5063 5.390 0.000 5063 1.422 0.000 5063 6.718 0.000 5063 0.188 0.000 5063 1.516 0.000

8x4S20 5086 7.094 0.000 5086 3.610 0.000 5086 0.922 0.000 5086 5.704 0.000 5086 0.156 0.000 5086 1.125 0.000

8x4S15 5112 1.310 0.000 5112 2.540 0.000 5112 1.109 0.000 5112 8.671 0.000 5112 0.234 0.000 5112 2.063 0.000

8x4S10 5169 1.440 0.000 5169 2.047 0.000 5169 1.157 0.000 5169 10.469 0.000 5169 0.219 0.000 5169 3.390 0.000

8x4S5 5174 1.200 0.000 5174 1.016 0.000 5174 1.140 0.000 5174 14.297 0.000 5174 0.281 0.000 5174 2.563 0.000

8x4 5120.8 4.085 0.000 5120.8 2.921 0.000 5120.8 1.150 0.000 5120.8 9.172 0.000 5120.8 0.216 0.000 5120.8 2.131 0.000

9x4S30 5904 60.650 0.000 5904 12.312 0.000 5904 1.282 0.000 5904 10.828 0.000 5904 0.230 0.000 5904 2.547 0.000

9x4S20 5937 14.310 0.000 5937 8.078 0.000 5937 1.406 0.000 5937 14.375 0.000 5937 0.120 0.000 5937 2.500 0.000

9x4S15 5976 3.890 0.000 5976 3.454 0.000 5976 1.300 0.000 5976 15.219 0.000 5976 0.140 0.000 5976 3.484 0.000

9x4S10 6027 3.760 0.000 6027 3.218 0.000 6027 1.359 0.000 6027 18.016 0.000 6027 0.300 0.000 6027 3.547 0.000
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9x4S5 6047 1.920 0.000 6047 2.031 0.000 6047 1.875 0.000 6047 19.812 0.000 6047 0.230 0.000 6047 9.485 0.000

9x4 5978.2 16.906 0.000 5978.2 5.819 0.000 5978.2 1.444 0.000 5978.2 15.650 0.000 5978.2 0.204 0.000 5978.2 4.313 0.000

10x4S30 6193 630.450 0.000 6193 35.562 0.000 6193 2.328 0.000 6193 28.125 0.000 6193 0.300 0.000 6193 3.434 0.000

10x4S20 6267 486.640 0.000 6267 43.078 0.000 6267 2.703 0.000 6267 36.828 0.000 6267 0.310 0.000 6267 4.734 0.000

10x4S15 6296 165.090 0.000 6296 37.188 0.000 6296 2.453 0.000 6296 28.219 0.000 6296 0.250 0.000 6296 4.235 0.000

10x4S10 6325 49.250 0.000 6325 22.156 0.000 6325 2.610 0.000 6325 65.469 0.000 6325 0.330 0.000 6325 5.578 0.000

10x4S5 6518 5.360 0.000 6518 3.422 0.000 6518 3.703 0.000 6518 130.781 0.000 6518 0.530 0.000 6518 12.563 0.000

10x4 6319.8 267.358 0.000 6319.8 28.281 0.000 6319.8 2.759 0.000 6319.8 57.884 0.000 6319.8 0.344 0.000 6319.8 6.109 0.000

10x5S30 6308 7200 0.108 6308 585.235 0.000 6308 8.125 0.000 6308 164.312 0.000 6308 0.500 0.000 6308 21.234 0.000

10x5S20 6342 7200 0.057 6342 501.547 0.000 6342 7.781 0.000 6342 127.420 0.000 6342 0.940 0.000 6342 30.579 0.000

10x5S15 6397 6265.420 0.000 6397 162.531 0.000 6397 8.406 0.000 6397 289.969 0.000 6397 0.780 0.000 6397 47.547 0.000

10x5S10 6476 2341.390 0.000 6476 200.765 0.000 6476 8.250 0.000 6476 632.828 0.000 6476 0.780 0.000 6476 69.812 0.000

10x5S5 6616 70.670 0.000 6616 36.485 0.000 6616 11.063 0.000 6616 2236.328 0.000 6616 0.840 0.000 6616 88.797 0.000

10x5 6427.8 4615.496 0.033 6427.8 297.313 0.000 6427.8 8.725 0.000 6427.8 690.171 0.000 6427.8 0.768 0.000 6427.8 51.594 0.000

11x5S30 7443 7200 0.281 7420 4581.484 0.000 7420 10.220 0.000 7420 436.484 0.000 7420 0.970 0.000 7420 59.078 0.000

11x5S20 7475 7200 0.205 7439 2218.235 0.000 7439 8.047 0.000 7439 279.266 0.000 7439 0.860 0.000 7439 30.797 0.000

11x5S15 7543 7200 0.196 7535 699.515 0.000 7535 14.233 0.000 7535 585.766 0.000 7535 1.640 0.000 7535 62.984 0.000

11x5S10 7572 7200 0.028 7572 341.891 0.000 7572 17.375 0.000 7572 966.000 0.000 7572 1.660 0.000 7572 204.937 0.000

11x5S5 7812 1533.420 0.000 7812 158.970 0.000 7812 22.734 0.000 7812 7200,000 0.039 7812 1.880 0.000 7812 995.375 0.000

11x5 7569.0 6066.684 0.142 7555.6 1600.019 0.000 7555.6 14.522 0.000 7555.6 1893.503 0.008 7555.6 1.402 0.000 7555.6 270.634 0.000

12x5S30 8009 7200 0.408 7923 7200 0.205 7923 150.469 0.000 7923 4174.328 0.000 7923 3.220 0.000 7923 859.704 0.000

12x5S20 7991 7200 0.344 7939 7200 0.090 7939 48.609 0.000 7939 1154.922 0.000 7939 2.240 0.000 7939 108.110 0.000

12x5S15 7990 7200 0.212 7939 7200 0.123 7939 29.891 0.000 7939 626.469 0.000 7939 2.280 0.000 7939 78.328 0.000

12x5S10 8003 7200 0.226 7991 7200 0.126 7978 47.875 0.000 7978 1038.156 0.000 7978 2.730 0.000 7978 115.250 0.000

12x5S5 8072 6253.406 0.000 8072 390,000 0.000 8072 31.344 0.000 8110 7200 0.018 8072 3.300 0.000 8072 406.765 0.000

12x5 8013.0 7010.681 0.238 7972.8 5838.016 0.109 7970.2 61.638 0.000 7977.8 2838.775 0.004 7970.2 2.754 0.000 7970.2 313.631 0.000

12x6S30 10228 7200 0.416 10228 7200 0.315 10228 518.766 0.000 10303 7200 0.027 10228 26.950 0.000 10228 2350.593 0.000

12x6S20 10323 7200 0.390 10325 7200 0.150 10312 419.500 0.000 10377 7200 0.031 10312 9.450 0.000 10312 2745.188 0.000

12x6S15 10462 7200 0.267 10362 4331.140 0.000 10362 313.610 0.000 10388 7200 0.030 10362 7.050 0.000 10362 1220.735 0.000

12x6S10 10534 7200 0.286 10456 6334.672 0.000 10456 458.340 0.000 10579 7200 0.049 10456 12.050 0.000 10456 4438.219 0.000

12x6S5 10891 699.047 0.000 10891 532.125 0.000 10891 461.250 0.000 11091 7200 0.093 10891 4.980 0.000 10907 7200,000 0.030

12x6 10487.6 5899.809 0.272 10452.4 5119.587 0.093 10449.8 434.293 0.000 10547.6 7200,000 0.046 10449.8 12.096 0.000 10453.0 3590.947 0.006

15x6S30 13848 7200 0.670 13638 7200 0.500 13567 3701.510 0.000 13705 7200 0.037 13567 26.390 0.000 13656 7200,000 0.027125
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15x6S20 13802 7200 0.592 13750 7200 0.513 13720 7200 0.002 13871 7200 0.050 13720 68.500 0.000 13799 7200,000 0.033

15x6S15 14003 7200 0.745 13814 7200 0.441 13765 7200 0.005 13991 7200 0.054 13765 96.470 0.000 13956 7200,000 0.040

15x6S10 - - - 13803 7200 0.441 13803 6834,000 0.000 14006 7200 0.049 13803 24.390 0.000 13923 7200,000 0.329

15x6S5 - - - 14093 7200 0.604 13927 4457,000 0.000 14452 7200 0.083 13927 92.030 0.000 14085 7200,000 0.036

15x6 - - - 13819.6 7200 0.500 13756.4 5878.424 0.001 14005.0 7200,000 0.054 13756.4 61.556 0.000 13883.8 7200,000 0.093

15x7S30 - - - 14488 7200 0.480 14415 7200 0.022 14713 7200 0.071 14409 70.950 0.000 14491 7200,000 0.041

15x7S20 - - - 14656 7200 0.499 14533 7200 0.023 14973 7200 0.083 14514 62.940 0.000 14760 7200,000 0.041

15x7S15 - - - 14745 7200 0.572 14680 7200 0.030 14829 7200 0.074 14657 283.130 0.000 14915 7200,000 0.066

15x7S10 - - - 14814 7200 0.438 14824 7200 0.034 15746 7200 0.126 14810 208.470 0.000 14958 7200,000 0.058

15x7S5 - - - 15228 7200 0.630 15077 7200 0.031 - - - 15054 245.170 0.000 16184 7200,000 0.137

15x7 - - - 14786.2 7200 0.524 14705.8 7200 0.028 - - - 14688.8 174.132 0.000 15061.6 7200,000 0.069

20x10S30 - - - 29158 7200 0.917 29158 7200 0.153 33038 7200 0.221 28943 7200,000 0.091 34546 7200,000 0.254

20x10S20 - - - 29695 7200 0.870 29657 7200 0.168 34362 7200 0.247 29314 7200,000 0.094 35563 7200,000 0.270

20x10S15 - - - 29594 7200 0.905 29719 7200 0.171 - - - 29416 7200,000 0.095 34497 7200,000 0.245

20x10S10 - - - 30319 7200 0.926 29827 7200 0.172 - - - 29776 7200,000 0.110 - - -

20x10S5 - - - 30581 7200 0.892 31159 7200 0.205 - - - 30563 7200,000 0.114 34211 7200,000 0.231

20x10 - - - 29869.4 7200 0.902 29904.0 7200 0.174 - - - 29602.4 7200,000 0.101 - - -

Average - - - 10830,26 3449.196 0.213 10818.84 2080.296 0.020 - - - 10786.98 745.347 0.010 - - -

Table A.3 – MIP ModelsM′0,0, M′0,1, M′1,0, M′1,1, M′2,0 andM′2,1

A.2.2 MIPs ModelsM3′,0,M3′,1,M′0′,0,M′0′,1 andM′1′,1 for each class of instances and general average

Instances
M3′,0 M3′,1 M′0′,0 M′0′,1 M′1′,1

Solution Time Gap Solution Time Gap Solution Time Gap Solution Time Gap Solution Time Gap

8x4S30 5063 0.250 0.000 5063 2.297 0.000 5063 0.688 0.000 5063 2.843 0.000 5063 2.266 0.000

8x4S20 5086 0.187 0.000 5086 2.390 0.000 5086 0.218 0.000 5086 2.359 0.000 5086 2.047 0.000

8x4S15 5112 0.219 0.000 5112 3.375 0.000 5112 0.157 0.000 5112 1.391 0.000 5112 2.828 0.000

8x4S10 5169 0.250 0.000 5169 5.454 0.000 5169 0.156 0.000 5169 1.297 0.000 5169 4.188 0.000

8x4S5 5174 0.250 0.000 5174 4.750 0.000 5174 0.110 0.000 5174 0.563 0.000 5174 4.078 0.000

8x4 5120.8 0.231 0.000 5120.8 3.653 0.000 5120.8 0.266 0.000 5120.8 1.691 0.000 5120.8 3.081 0.000

9x4S30 5904 0.422 0.000 5904 3.687 0.000 5904 0.875 0.000 5904 7.094 0.000 5904 3.547 0.000
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9x4S20 5937 0.375 0.000 5937 3.328 0.000 5937 0.344 0.000 5937 3.859 0.000 5937 3.609 0.000

9x4S15 5976 0.282 0.000 5976 4.516 0.000 5976 0.297 0.000 5976 3.891 0.000 5976 4.641 0.000

9x4S10 6027 0.391 0.000 6027 10.500 0.000 6027 0.265 0.000 6027 1.671 0.000 6027 5.281 0.000

9x4S5 6047 0.422 0.000 6047 8.672 0.000 6047 0.219 0.000 6047 1.282 0.000 6047 6.437 0.000

9x4 5978.2 0.378 0.000 5978.2 6.141 0.000 5978.2 0.400 0.000 5978.2 3.559 0.000 5978.2 4.703 0.000

10x4S30 6193 0.469 0.000 6193 2.844 0.000 6193 3.969 0.000 6193 27.078 0.000 6193 4.703 0.000

10x4S20 6267 0.531 0.000 6267 4.720 0.000 6267 2.125 0.000 6267 21.937 0.000 6267 8.423 0.000

10x4S15 6296 0.422 0.000 6296 7.390 0.000 6296 1.797 0.000 6296 15.390 0.000 6296 7.282 0.000

10x4S10 6325 0.453 0.000 6325 9.547 0.000 6325 1.421 0.000 6325 9.797 0.000 6325 11.203 0.000

10x4S5 6518 0.781 0.000 6518 23.375 0.000 6518 0.344 0.000 6518 3.688 0.000 6518 28.343 0.000

10x4 6319.8 0.531 0.000 6319.8 9.575 0.000 6319.8 1.931 0.000 6319.8 15.578 0.000 6319.8 11.991 0.000

10x5S30 6308 0.843 0.000 6308 44.578 0.000 6308 22.125 0.000 6308 299.891 0.000 6308 23.438 0.000

10x5S20 6342 0.937 0.000 6342 39.250 0.000 6342 26.063 0.000 6342 64.266 0.000 6342 40.156 0.000

10x5S15 6397 1.094 0.000 6397 54.500 0.000 6397 17.515 0.000 6397 91.000 0.000 6397 66.703 0.000

10x5S10 6476 1.406 0.000 6476 104.344 0.000 6476 6.985 0.000 6476 93.093 0.000 6476 105.453 0.000

10x5S5 6616 1.625 0.000 6616 348.344 0.000 6616 1.078 0.000 6616 11.265 0.000 6616 251.454 0.000

10x5 6427.8 1.181 0.000 6427.8 118.203 0.000 6427.8 14.753 0.000 6427.8 111.903 0.000 6427.8 97.441 0.000

11x5S30 7420 1.422 0.000 7420 75.922 0.000 7420 1055.984 0.000 7420 1683.297 0.000 7420 47.031 0.000

11x5S20 7439 1.344 0.000 7439 102.344 0.000 7439 281.672 0.000 7439 742.485 0.000 7439 42.547 0.000

11x5S15 7535 2.031 0.000 7535 199.906 0.000 7535 37.734 0.000 7535 354.220 0.000 7535 93.218 0.000

11x5S10 7572 1.922 0.000 7572 362.500 0.000 7572 25.610 0.000 7572 42.453 0.000 7572 261.047 0.000

11x5S5 7812 3.000 0.000 7812 1229.484 0.000 7812 7.312 0.000 7812 41.672 0.000 7812 2923.250 0.000

11x5 7555.6 1.944 0.000 7555.6 394.031 0.000 7555.6 281.662 0.000 7555.6 572.825 0.000 7555.6 673.419 0.000

12x5S30 7923 5.984 0.000 7923 597.656 0.000 7965 7200,000 0.139 7944 7200 0.127 7923 1137.219 0.000

12x5S20 7939 3.094 0.000 7939 779.641 0.000 7939 2186.516 0.000 7961 7200 0.127 7939 335.266 0.000

12x5S15 7939 2.547 0.000 7939 233.328 0.000 7939 3488.593 0.000 7939 7200 0.128 7939 151.875 0.000

12x5S10 7978 2.985 0.000 7978 114.125 0.000 - - - 7978 7200 0.152 7978 261.656 0.000

12x5S5 8072 3.266 0.000 8072 384.953 0.000 8072 1774.141 0.000 8072 156.062 0.000 8072 1863.422 0.000

12x5 7970.2 3.575 0.000 7970.2 421.941 0.000 - - - 7978.8 5791.212 0.107 7970.2 749.888 0.000

12x6S30 10228 8.922 0.000 10228 2756.407 0.000 - - - 10296 7200 0.112 10228 3984.922 0.000

12x6S20 10312 6.704 0.000 10312 3082.359 0.000 - - - 10369 7200 0.170 10312 3178.234 0.000

12x6S15 10362 8.328 0.000 10362 3290.953 0.000 - - - 10362 3208.406 0.000 10362 4246.547 0.000

12x6S10 10456 8.875 0.000 10456 5610.969 0.000 - - - 10456 4531.797 0.000 10456 5785.547 0.000127
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12x6S5 10891 35.922 0.000 10982 7200 0.051 10891 10,000 0.000 10891 1135.360 0.000 10904 7200 0.073

12x6 10449.8 13.750 0.000 10468.0 4388.138 0.010 - - - 10474.8 4655.113 0.056 10452.4 4879.050 0.015

15x6S30 13567 149.906 0.000 13679 7200 0.025 13776 7200,000 0.523 13567 7200 0.478 13687 7200 0.038

15x6S20 13720 112.750 0.000 13750 7200 0.022 13922 7200,000 0.468 13869 7200 0.469 13779 7200 0.037

15x6S15 13765 158.266 0.000 13805 7200 0.024 13920 7200,000 0.404 13856 7200 0.421 13793 7200 0.035

15x6S10 13803 112.562 0.000 13843 7200 0.020 - - - 13931 7200 0.414 13849 7200 0.035

15x6S5 13927 107.781 0.000 14258 7200 0.058 13927 7200,000 0.060 14024 7200 0.477 14105 7200 0.053

15x6 13756.4 128.253 0.000 13867.0 7200 0.030 - - - 13849.4 7200 0.452 13842.6 7200 0.040

15x7S30 14409 306.203 0.000 14634 7200 0.060 - - - 14579 7200 0.481 14491 7200 0.046

15x7S20 14514 259.125 0.000 14724 7200 0.051 - - - 14630 7200 0.496 14652 7200 0.051

15x7S15 14657 303.813 0.000 14862 7200 0.053 14848 7200,000 0.550 14682 7200 0.398 14711 7200 0.052

15x7S10 14810 313.516 0.000 15141 7200 0.076 - - - 14810 7200 0.408 14956 7200 0.065

15x7S5 15054 492.000 0.000 15708 7200 0.104 15128 7200,000 0.492 15108 7200 0.449 15370 7200 0.089

15x7 14688.8 334.931 0.000 15013.8 7200 0.069 - - - 14761.8 7200 0.446 14836.0 7200 0.061

20x10S30 29028 7200,000 0.103 34089 7200 0.244 29086 7200,000 0.826 28786 7200 0.861 31927 7200 0.194

20x10S20 29232 7200,000 0.096 34421 7200 0.246 29710 7200,000 0.821 29581 7200 0.881 33059 7200 0.217

20x10S15 29666 7200,000 0.103 - - - 29753 7200,000 0.814 29444 7200 0.864 31783 7200 0.183

20x10S10 29687 7200,000 0.089 - - - 29916 7200,000 0.805 29889 7200 0.870 34723 7200 0.250

20x10S5 30594 7200,000 0.114 - - - 30484 7200,000 0.828 30491 7200 0.890 34294 7200 0.237

20x10 29641.4 7200,000 0.101 - - - 29789.8 7200,000 0.819 29638.2 7200 0.873 33157.2 7200 0.216

Average 10790.88 768.478 0.010 - - - - - - 10810.52 3275.188 0.193 11166.060 2801.957 0.033

Table A.4 – MIPs ModelsM3′,0,M3′,1,M′0′,0,M′0′,1 andM′1′,1

A.3 Comparison of models - LP relaxation

The Table A.5 below reports the experiment results of LP relaxation of all the MIP models presented in chapter 4.

Instances
M0,0 M0,1 M1,0 M1,1 M2,0 M2,1 M3,0 M3,1 M′0,0 M′0,1 M′1,1

LB Time LB Time LB Time LB Time LB Time LB Time LB Time LB Time LB Time LB Time LB Time

8x4S30 0 0.078 0 0.078 4824 0.078 4952.130 0.265 4824 0.047 4954.446 0.140 4824 0.062 4954.446 0.172 0 0.063 0 0.063 4952.130 0.125

8x4S20 0 0.047 0 0.047 4824 0.031 4970.630 0.516 4824 0.015 4974.596 0.141 4824 0.031 4974.596 0.156 0 0.016 0 0.015 4970.637 0.078
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8x4S15 0 0.047 0 0.047 4824 0.031 4979.640 0.250 4824 0.016 4985.412 0.125 4824 0.016 4985.412 0.156 0 0.015 0 0.016 4979.640 0.094

8x4S10 0 0.047 0 0.031 4824 0.047 4989.929 0.219 4824 0.015 4997.373 0.156 4824 0.016 4997.373 0.157 0 0.016 0 0.015 4989.929 0.093

8x4S5 0 0.047 0 0.047 4824 0.047 4998.932 0.281 4824 0.000 5008.430 0.141 4824 0.015 5008.439 0.140 0 0.015 0 0.016 4998.932 0.109

8x4 0 0.053 0 0.050 4824 0.047 4978.252 0.306 4824 0.019 4984.051 0.141 4824 0.028 4984.053 0.156 0 0.025 0 0.025 4978.254 0.100

9x4S30 0 0.047 0 0.047 5584 0.047 5748.583 0.406 5584 0.016 5748.583 0.187 5584 0.016 5748.583 0.312 0 0.016 0 0.031 5748.583 0.110

9x4S20 0 0.047 0 0.047 5584 0.063 5771.989 0.360 5584 0.016 5774.249 0.313 5584 0.016 5774.249 0.328 0 0.031 0 0.016 5771.989 0.140

9x4S15 0 0.046 0 0.047 5584 0.046 5784.607 0.359 5584 0.016 5788.020 0.266 5584 0.016 5788.019 0.328 0 0.016 0 0.016 5784.607 0.141

9x4S10 0 0.032 0 0.047 5584 0.032 5798.000 0.766 5584 0.031 5807.181 0.203 5584 0.031 5807.181 0.266 0 0.016 0 0.015 5798.000 0.141

9x4S5 0 0.047 0 0.062 5584 0.047 5811.281 0.828 5584 0.031 5827.223 0.250 5584 0.016 5827.220 0.297 0 0.000 0 0.031 5811.280 0.171

9x4 0 0.044 0 0.050 5584 0.047 5782.892 0.544 5584 0.022 5789.051 0.244 5584 0.019 5789.050 0.306 0 0.016 0 0.022 5782.892 0.141

10x4S30 0 0.046 0 0.047 5960 0.078 6047.390 0.375 5960 0.031 6047.390 0.265 5960 0.046 6047.390 0.297 0 0.015 0 0.016 6047.390 0.172

10x4S20 0 0.063 0 0.031 5960 0.093 6066.899 0.438 5960 0.032 6066.899 0.407 5960 0.032 6066.899 0.578 0 0.016 0 0.016 6066.890 0.188

10x4S15 0 0.047 0 0.047 5960 0.079 6078.504 0.360 5960 0.031 6078.504 0.406 5960 0.031 6078.504 0.297 0 0.015 0 0.031 6078.504 0.156

10x4S10 0 0.047 0 0.047 5960 0.093 6092.304 0.390 5960 0.031 6092.951 0.312 5960 0.031 6092.950 0.281 0 0.016 0 0.016 6092.304 0.219

10x4S5 0 0.062 0 0.047 5960 0.078 6106.285 0.657 5960 0.031 6109.039 0.469 5960 0.031 6109.038 0.265 0 0.016 0 0.015 6106.285 0.219

10x4 0 0.053 0 0.044 5960 0.084 6078.276 0.444 5960 0.031 6078.957 0.372 5960 0.034 6078.956 0.344 0 0.016 0 0.019 6078.275 0.191

10x5S30 0 0.094 0 0.047 5968 0.125 6107.830 1.375 5968 0.047 6107.831 1.000 5968 0.032 6107.831 1.063 0 0.016 0 0.047 6107.830 0.812

10x5S20 0 0.094 0 0.062 5968 0.172 6129.560 1.250 5968 0.047 6132.316 2.672 5968 0.031 6132.315 2.000 0 0.016 0 0.047 6129.564 0.844

10x5S15 0 0.110 0 0.063 5968 0.157 6142.928 1.078 5968 0.047 6149.651 2.047 5968 0.031 6149.651 2.319 0 0.031 0 0.031 6142.928 0.969

10x5S10 0 0.078 0 0.078 5968 0.156 6156.277 1.234 5968 0.031 6166.459 1.750 5968 0.031 6166.459 2.000 0 0.015 0 0.047 6156.277 0.703

10x5S5 0 0.110 0 0.078 5968 0.156 6171.533 1.047 5968 0.047 6187.569 1.672 5968 0.031 6187.569 1.907 0 0.032 0 0.031 6171.530 1.015

10x5 0 0.097 0 0.066 5968 0.153 6141.626 1.197 5968 0.044 6148.765 1.828 5968 0.031 6148.765 1.858 0 0.022 0 0.041 6141.626 0.869

11x5S30 0 0.093 0 0.078 6968 0.266 7129.435 1.484 6968 0.063 7140.886 0.235 6968 0.047 7140.886 0.218 0 0.015 0 0.047 7129.435 1.282

11x5S20 0 0.077 0 0.078 6968 0.281 7148.967 1.563 6968 0.046 7170.543 0.234 6968 0.063 7170.543 0.266 0 0.047 0 0.047 7148.967 1.312

11x5S15 0 0.094 0 0.063 6968 0.218 7160.937 1.703 6968 0.063 7189.042 0.250 6968 0.062 7189.042 0.281 0 0.047 0 0.031 7160.937 1.313

11x5S10 0 0.110 0 0.078 6968 0.250 7175.424 1.656 6968 0.078 7211.014 0.266 6968 0.047 7211.014 0.266 0 0.031 0 0.047 7174.927 1.218

11x5S5 0 0.140 0 0.078 6968 0.328 7200.141 1.828 6968 0.047 7239.324 0.250 6968 0.063 7239.323 0.297 0 0.032 0 0.031 7191.457 1.078

11x5 0 0.103 0 0.075 6968 0.269 7162.981 1.647 6968 0.059 7190.162 0.247 6968 0.056 7190.162 0.266 0 0.034 0 0.041 7161.145 1.241

12x5S30 0 0.078 0 0.094 7408 0.360 7557.605 1.563 7408 0.094 7557.605 0.250 7408 0.046 7557.605 0.265 0 0.031 0 0.079 7557.606 1.000

12x5S20 0 0.078 0 0.078 7408 0.375 7579.290 1.406 7408 0.078 7585.150 0.328 7408 0.063 7585.150 0.313 0 0.047 0 0.046 7579.290 1.079

12x5S15 0 0.110 0 0.078 7408 0.312 7591.732 1.500 7408 0.078 7604.952 0.344 7408 0.062 7604.950 0.375 0 0.031 0 0.063 7591.732 1.000

12x5S10 0 0.125 0 0.094 7408 0.297 7603.407 1.469 7408 0.078 7622.944 0.312 7408 0.094 7622.944 0.328 0 0.031 0 0.047 7603.407 1.015

12x5S5 0 0.140 0 0.109 7408 0.344 7619.232 1.797 7408 0.078 7645.856 0.359 7408 0.078 7645.856 0.359 0 0.031 0 0.047 7619.232 1.078129
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12x5 0 0.106 0 0.091 7408 0.338 7590.253 1.547 7408 0.081 7603.301 0.319 7408 0.069 7603.301 0.328 0 0.034 0 0.056 7590.253 1.034

12x6S30 0 0.204 0 0.156 9472 0.687 9735.083 4.000 9472 0.125 9735.563 0.532 9472 0.125 9735.563 0.485 0 0.047 0 0.078 9735.083 2.157

12x6S20 0 0.156 0 0.110 9472 0.641 9775.843 3.984 9472 0.125 9777.034 0.562 9472 0.141 9777.034 0.562 0 0.063 0 0.062 9775.843 2.859

12x6S15 0 0.156 0 0.110 9472 0.781 9797.628 4.031 9472 0.110 9800.352 0.578 9472 0.110 9800.352 0.578 0 0.047 0 0.078 9797.628 2.859

12x6S10 0 0.125 0 0.125 9472 0.594 9817.316 4.297 9472 0.125 9822.745 0.516 9472 0.110 9822.740 0.579 0 0.047 0 0.094 9817.316 3.094

12x6S5 0 0.156 0 0.110 9472 0.718 9839.826 4.391 9472 0.125 9852.993 0.546 9472 0.125 9852.990 0.546 0 0.046 0 0.063 9839.826 2.828

12x6 0 0.159 0 0.122 9472 0.684 9793.139 4.141 9472 0.122 9797.737 0.547 9472 0.122 9797.736 0.550 0 0.050 0 0.075 9793.139 2.759

15x6S30 0 0.282 0 0.218 12544 1.563 12882.315 11.125 12544 0.218 12891.518 0.844 12544 0.203 12891.518 0.922 0 0.063 0 0.125 12882.315 5.438

15x6S20 0 0.250 0 0.188 12544 1.844 12932.098 16.906 12544 0.203 12950.441 0.906 12544 0.235 12950.441 1.000 0 0.078 0 0.140 12930.969 5.797

15x6S15 0 0.281 0 0.187 12544 1.657 12963.356 15.531 12544 0.204 12985.758 0.938 12544 0.203 12985.758 1.016 0 0.063 0 0.125 12959.013 7.187

15x6S10 0 0.281 0 0.203 12544 1.781 12998.252 13.813 12544 0.219 13025.579 1.031 12544 0.203 13025.579 1.078 0 0.062 0 0.141 12990.504 7.547

15x6S5 0 0.281 0 0.250 12544 1.594 13035.214 15.953 12544 0.187 13073.910 1.125 12544 0.203 13073.910 1.172 0 0.078 0 0.109 13027.347 8.875

15x6 0 0.275 0 0.209 12544 1.688 12962.247 14.666 12544 0.206 12985.441 0.969 12544 0.209 12985.441 1.038 0 0.069 0 0.128 12958.030 6.969

15x7S30 0 0.438 0 0.344 12992 0.891 13515.606 1.781 12992 0.266 13537.166 1.828 12992 0.313 13537.166 2.000 0 0.110 0 0.141 13514.354 12.797

15x7S20 0 0.406 0 0.313 12992 0.781 13578.144 2.422 12992 0.281 13616.176 2.016 12992 0.281 13616.175 2.156 0 0.110 0 0.141 13576.959 14.000

15x7S15 0 0.406 0 0.265 12992 0.797 13615.824 2.328 12992 0.266 13661.328 2.078 12992 0.328 13661.328 2.313 0 0.078 0 0.156 13613.546 17.875

15x7S10 0 0.407 0 0.266 12992 0.813 13651.894 2.969 12992 0.250 13708.061 2.141 12992 0.266 13708.061 2.547 0 0.094 0 0.140 13649.435 17.812

15x7S5 0 0.328 0 0.281 12992 0.796 13695.068 3.375 12992 0.266 13772.643 2.515 12992 0.297 13772.643 2.500 0 0.094 0 0.141 13689.502 17.891

15x7 0 0.397 0 0.294 12992 0.816 13611.307 2.575 12992 0.266 13659.075 2.116 12992 0.297 13659.075 2.303 0 0.097 0 0.144 13608.759 16.075

20x10S30 0 2.203 0 1.156 24552 2.922 25729.454 79.500 24552 1.312 25765.030 43.328 24552 1.562 25765.030 57.109 0 0.328 0 0.578 25725.915 54.922

20x10S20 0 1.515 0 1.141 24552 2.875 25878.510 99.781 24552 1.250 25931.489 62.032 24552 1.281 25931.489 52.047 0 0.359 0 0.703 25870.040 55.062

20x10S15 0 2.172 0 1.266 24552 2.469 25972.320 111.687 24552 1.219 26042.433 67.468 24552 1.375 26042.430 65.906 0 0.375 0 0.578 25961.326 46.437

20x10S10 0 3.735 0 2.734 24552 2.297 26063.120 104.532 24552 1.219 26160.667 70.844 24552 1.391 26160.660 76.484 0 0.359 0 0.579 26050.259 46.079

20x10S5 0 2.062 0 1.016 24552 2.391 26163.443 120.375 24552 1.203 26292.884 91.125 24552 1.406 26292.880 88.704 0 0.360 0 0.656 26142.669 44.562

20x10 0 2.337 0 1.463 24552 2.591 25961.369 103.175 24552 1.241 26038.501 66.959 24552 1.403 26038.498 68.050 0 0.356 0 0.619 25950.042 49.412

Average 0 0.363 0 0.246 9627.2 0.672 10006.234 13.02408 9627.200 0.210 10027.504 7.375 9627.2 0.227 10027.504 7.520 0 0.072 0 0.117 10004.241 7.879

Table A.5 – LP relaxation for all Models
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A.4 Wilcoxon signed rank statistical tests for all of the models both for solution

quality and runtime

In this part we provide results of Wilcoxon signed rank test applied to each pair of models regarding both solution quality and runtime.

The corresponding p-values are provided in Tables A.6 and A.7. The p-value < 0.0001 means that there is significant difference between

two models in the comparison, otherwise there is no significant difference. The models included in comparison are these that are able to

provide a feasible solution for each test instance in the benchmark set.

M1,0 M2,0 M3,0 M′1,1

M1,0 - 0.07 0.81 1.20e-03

M2,0 0.07 - 0.31 6.10e-05

M3,0 0.81 0.31 - 6.10e-05

M′1,1 1.20e-03 6.10e-05 6.10e-05 -

(a) p-value in terms of solution value

M1,0 M2,0 M3,0 M′1,1

M1,0 - 5.48e-08 0.11 5.18e-09

M2,0 5.48e-08 - 5.18e-09 5.18e-09

M3,0 0.11 5.18e-09 - 5.18e-09

M′1,1 5.18e-09 5.18e-09 5.18e-09 -

(b) p-value in terms of CPU time

Table A.6 – p-values for all pairs of models in terms of solution value and CPU time - integrality requirement on variables zm,i,n,j imposed
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M0′,1 M1′,0 M2′,0 M3′,0 M′0′,1 M′1′,1

M0′,1 - 0.06 4.37e-04 3.2e-03 0.28 0.01

M1′,0 0.06 - 2.00e-03 2.00e-03 0.31 4.38e-04

M2′,0 4.37e-04 2.00e-03 - 0.81 0.01 4.38e-04

M3′,0 3.2e-03 2.00e-03 0.81 - 0.10 4.38e-04

M′0′,1 0.25 0.31 0.01 0.10 - 0.10

M′1′,1 0.01 4.38e-04 4.38e-04 4.38e-04 0.10 -

(a) p-value in terms of solution value

M0′,1 M1′,0 M2′,0 M3′,0 M′0′,1 M′1′,1

M0′,1 - 1.07e-07 5.18e-09 5.18e-09 4.17e-05 4.6e-03

M1′,0 1.07e-07 - 5.18e-09 5.18e-09 2.34e-07 7.74e-08

M2′,0 5.18e-09 5.18e-09 - 5.3e-06 5.18e-09 5.18e-09

M3′,0 5.18e-09 5.18e-09 5.3e-06 - 5.18e-09 5.18e-09

M′0′,1 4.17e-05 2.34e-07 5.18e-09 5.18e-09 - 0.3421

M′2′,1 4.6e-03 7.74e-08 5.18e-09 5.18e-09 0.3421 -

(b) p-value in terms of CPU time

Table A.7 – p-values for all pairs of models in terms of solution value and CPU time - integrality requirement on variables zm,i,n,j relaxed

A.5 Detailed experiment results of Lagrangian Relaxation approach for the CDAP

The table A.8 provides, on the one hand, detailed solution value, gap and CPU time (in second) of the MILP Model M2,1. On the

other hand, it gives lower bounds given by LP relaxation and Lagrangian Relaxation and associated deviation (in percentage) and CPU

time (in second). Our lower bounds are compared to the lower bound given by Lagrangian dual of Nassief et al. (2016). The detailed

results show that Lagrangian Relaxation improves significantly LP relaxation while still consuming important CPU time and that the

lower bound of Nassief et al. (2016) is weak even compared with LP relaxation lower bound.

N x I BKS
M2,1 CPLEX M2,1 LP M2,1 LR (λ0, γ0) = (0, 0) M2,1 LR (λ0, γ0) = (d(4.9b), d(4.9c)) LR Nassief

Value Gap(%) Time LB dev(%) Time LB dev(%) Time LB dev(%) Time LB dev(%)

8x4S30 5063.00 5063.00 0.00 1.52 4954.45 2.14 0.14 4980.85 1.62 0.17 4982.94 1.58 0.17 4879.72 3.62

8x4S20 5086.00 5086.00 0.00 1.13 4974.60 2.19 0.141 4999.26 1.71 0.47 5011.69 1.46 0.20 4959.36 2.49
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8x4S15 5112.00 5112.00 0.00 2.06 4985.41 2.48 0.125 5006.55 2.06 0.17 5022.61 1.75 0.17 4965.29 2.87

8x4S10 5169.00 5169.00 0.00 3.39 4997.37 3.32 0.156 5020.41 2.87 0.48 5037.99 2.53 0.14 4981.37 3.63

8x4S5 5174.00 5174.00 0.00 2.56 5008.43 3.20 0.141 5032.01 2.74 0.69 5047.99 2.44 0.22 4992.39 3.51

9x4S30 5904.00 5904.00 0.00 2.55 5748.58 2.63 0.187 5820.87 1.41 0.30 5826.53 1.31 0.31 5643.63 4.41

9x4S20 5937.00 5937.00 0.00 2.50 5774.25 2.74 0.313 5847.93 1.50 0.38 5853.43 1.41 0.28 5738.70 3.34

9x4S15 5976.00 5976.00 0.00 3.48 5788.02 3.15 0.266 5856.15 2.01 0.53 5874.10 1.71 0.23 5764.45 3.54

9x4S10 6027.00 6027.00 0.00 3.55 5807.18 3.65 0.203 5889.14 2.29 0.36 5893.13 2.22 0.31 5775.67 4.17

9x4S5 6047.00 6047.00 0.00 9.49 5827.22 3.63 0.25 5906.64 2.32 0.36 5909.98 2.27 0.31 5793.63 4.19

10x4S30 6193.00 6193.00 0.00 3.43 6047.39 2.35 0.265 6151.15 0.68 0.28 6154.81 0.62 0.28 5966.34 3.66

10x4S20 6267.00 6267.00 0.00 4.73 6066.90 3.19 0.407 6170.80 1.53 0.33 6178.29 1.42 0.39 5985.61 4.49

10x4S15 6296.00 6296.00 0.00 4.24 6078.50 3.45 0.406 6191.01 1.67 0.31 6197.10 1.57 0.42 6008.90 4.56

10x4S10 6325.00 6325.00 0.00 5.58 6092.95 3.67 0.312 6193.02 2.09 0.33 6207.74 1.85 0.30 6032.79 4.62

10x4S5 6518.00 6518.00 0.00 12.56 6109.04 6.27 0.469 6219.39 4.58 0.92 6226.63 4.47 0.33 6081.95 6.69

10x5S30 6308.00 6308.00 0.00 21.23 6107.83 3.17 1 6164.76 2.27 1.59 6187.46 1.91 0.55 6035.49 4.32

10x5S20 6342.00 6342.00 0.00 30.58 6132.32 3.31 2.672 6191.81 2.37 0.63 6207.31 2.12 0.61 6052.80 4.56

10x5S15 6397.00 6397.00 0.00 47.55 6149.65 3.87 2.047 6199.78 3.08 0.58 6221.92 2.74 0.59 6065.64 5.18

10x5S10 6476.00 6476.00 0.00 69.81 6166.46 4.78 1.75 6224.86 3.88 1.53 6237.75 3.68 0.73 6106.22 5.71

10x5S5 6616.00 6616.00 0.00 88.80 6187.57 6.48 1.672 6261.26 5.36 1.78 6271.67 5.20 0.78 6139.65 7.20

11x5S30 7420.00 7420.00 0.00 59.08 7140.89 3.76 0.235 7270.78 2.01 4.56 7291.43 1.73 1.74 7010.42 5.52

11x5S20 7439.00 7439.00 0.00 30.80 7170.54 3.61 0.234 7298.66 1.89 2.06 7327.84 1.49 1.58 7067.05 5.00

11x5S15 7535.00 7535.00 0.00 62.98 7189.04 4.59 0.25 7305.86 3.04 2.70 7353.53 2.41 1.22 7085.16 5.97

11x5S10 7572.00 7572.00 0.00 204.94 7211.01 4.77 0.266 7329.57 3.20 2.67 7376.23 2.59 1.50 7116.17 6.02

11x5S5 7812.00 7812.00 0.00 995.38 7239.32 7.33 0.25 7364.67 5.73 2.69 7389.59 5.41 2.86 7158.92 8.36

12x5S30 7923.00 7923.00 0.00 859.70 7557.61 4.61 0.25 7747.05 2.22 2.67 7771.41 1.91 3.56 7424.64 6.29

12x5S20 7939.00 7939.00 0.00 108.11 7585.15 4.46 0.328 7791.00 1.86 3.02 7810.62 1.62 4.47 7480.92 5.77

12x5S15 7939.00 7939.00 0.00 78.33 7604.95 4.21 0.344 7809.33 1.63 10.20 7835.87 1.30 4.81 7507.12 5.44

12x5S10 7978.00 7978.00 0.00 115.25 7622.94 4.45 0.312 7829.89 1.86 7.14 7854.41 1.55 4.31 7532.83 5.58
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12x5S5 8072.00 8072.00 0.00 406.77 7645.86 5.28 0.359 7860.14 2.62 12.88 7881.75 2.36 5.81 7582.84 6.06

12x6S30 10228.00 10228.00 0.00 2350.59 9735.56 4.81 0.532 9962.15 2.60 123.63 10002.52 2.20 27.56 9562.16 6.51

12x6S20 10312.00 10312.00 0.00 2745.19 9777.03 5.19 0.562 10010.72 2.92 131.23 10045.43 2.59 14.64 9659.25 6.33

12x6S15 10362.00 10362.00 0.00 1220.74 9800.35 5.42 0.578 10052.92 2.98 36.78 10098.44 2.54 57.45 9702.98 6.36

12x6S10 10456.00 10456.00 0.00 4438.22 9822.75 6.06 0.516 10042.95 3.95 61.16 10096.46 3.44 43.80 9769.04 6.57

12x6S5 10891.00 10907.00 0.03 7200.00 9852.99 9.53 0.546 10102.79 7.24 116.41 10150.12 6.80 57.42 9784.47 10.16

15x6S30 13567.00 13656.00 0.027 7200.00 12891.52 4.98 0.844 13188.39 2.79 77.33 13257.99 2.28 108.88 12648.51 6.77

15x6S20 13720.00 13799.00 0.033 7200.00 12950.44 5.61 0.906 13249.50 3.43 195.16 13327.07 2.86 115.48 12733.53 7.19

15x6S15 13765.00 13956.00 0.04 7200.00 12985.76 5.66 0.938 13293.88 3.42 200.08 13365.96 2.90 126.00 12805.58 6.97

15x6S10 13803.00 13923.00 0.329 7200.00 13025.58 5.63 1.031 13285.84 3.75 171.31 13381.11 3.06 108.27 12883.72 6.66

15x6S5 13927.00 14085.00 0.036 7200.00 13073.91 6.13 1.125 13317.35 4.38 200.05 13374.15 3.97 129.25 12945.15 7.05

15x7S30 14409.00 14491.00 0.041 7200.00 13537.17 6.05 1.828 13715.48 4.81 394.06 13849.00 3.89 320.81 13270.69 7.90

15x7S20 14514.00 14760.00 0.041 7200.00 13616.18 6.19 2.016 13777.99 5.07 646.94 13904.29 4.20 244.17 13380.46 7.81

15x7S15 14657.00 14915.00 0.066 7200.00 13661.33 6.79 2.078 13846.16 5.53 746.77 13924.79 5.00 260.48 13465.39 8.13

15x7S10 14810.00 14958.00 0.058 7200.00 13708.06 7.44 2.141 13802.26 6.80 401.36 13968.66 5.68 142.16 13530.42 8.64

15x7S5 15054.00 16184.00 0.137 7200.00 13772.64 8.51 2.515 13842.01 8.05 597.75 13992.58 7.05 212.39 13553.12 9.97

20x10S30 28541.00 34546.00 0.254 7200.00 25765.03 9.73 43.328 25821.48 9.53 4098.61 25891.09 9.28 2653.09 25293.03 11.38

20x10S20 28963.00 35563.00 0.27 7200.00 25931.49 10.47 62.032 25749.27 11.10 4013.03 25841.37 10.78 4932.11 25539.57 11.82

20x10S15 29134.00 34497.00 0.245 7200.00 26042.43 10.61 67.468 25857.00 11.25 4954.76 25821.88 11.37 2627.17 25719.50 11.72

20x10S10 29286.00 - - - 26160.67 10.67 70.844 25908.78 11.53 2567.67 25919.38 11.50 454.47 25853.68 11.72

20x10S5 29933.00 34211.00 0.231 7200.00 26292.88 12.16 91.125 25858.42 13.61 5061.14 25889.07 13.51 5861.25 25921.98 13.40

Avg 10743.88 - - - 10027.50 5.29 7.37 10132.40 3.98 497.16 10170.90 3.63 370.72 9899.16 6.40

Table A.8 – Detailed comparison of lower bounds forM2,1 and Nassief et al.(2016)
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Appendix B

Detailed results of computational

experiments on PTS1 and PTS2 for the

CDAP

In this annex, we provide detailed results on entire data sets “SetA” and on large-scale

set of instances referred to “SetB” given by our PTS1 and PTS2 algorithms.

In Tables B.1 and B.2, we compare results found by our heuristic approaches with

those reported in the literature by other methods. For PTS1 and PTS2 we report the best

solution value (Column ’Best’) and the average solution value found in 10 runs (Column

’Avg.’) as well the average CPU time (Column ’CPU’). In Table B.1, together with the

best known solutions (Column ’BKS’), we report the CPU time needed for CPLEX to

solve the recent best MIP formulations for CDAP. The first one (Column ’M3,0’) is taken

from Nassief et al. (2016) and the second one (Column ’M2,0’) is taken from Gelareh et al.

(2020) (See chapiter 4 section 4.5). The results reported show that instances with up to 15

origins/destinations and 7 indoors/outdoors are optimally solved by CPLEX MIP solver

within the maximum time limit of 492 seconds. On these instances, PTS algorithms were

able to reach all optimal solutions in less than 8 seconds. Moreover, for instances with

20 origins/destinations and 10 indoors/outdoors, CPLEX did not reach optimal solutions

in two hours while the PTS algorithms provide better results in less than 10 seconds.

This comparison with CPLEX results, underscores the value of using Probabilistic Tabu

Search for solving hard optimization problem such as CDAP. In Table B.2, the results are

compared with those of the LS1 and LS2 heuristics proposed by Guignard et al. (2012),

which are the only two methods executed on the “SetB” instances so far. For LS1 and LS2
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we report the best solution value (Column ’Cost’) and the normalized CPU time. Since

LS1 and LS2 were executed on a machine with an AMD Phenom 9600 processor with

2.31gigahertz, a machine with different characteristics than our machine, we normalize

their running times using the approach described in Dongarra (Dongarra (2014)) and

data from http://www.cpubenchmark.net/. All comparisons were made according to the

Passmark CPU Score (PCPUS). The running times were normalized by using our machine

as the reference point, i.e., Norm.Time(Algo) = PCPUS (AMD Phenom 9600) × Time(Algo)
PCPUS(Intel Xeon E3−1505M)

,

where Algo refers to LS1 & LS2. The Passmark CPU Scores of the processors AMD

Phenom 9600 and Intel Xeon E3-1505M are 2303 and 8978, respectively. In each table,

the boldfaced values correspond to the values that are equal or better than current BKS

values, while underlined values denote the new BKS values established by our PTS. The

values in italics correspond to the optimal solution values as reported in Gelareh et al.

(2020).

Instances BKS
M3,0 M2,0 PTS1 PTS2

CPU(s) CPU(s) Best Avg. CPU(s) Best Avg. CPU(s)

8x4S5 5174 0.25 0.28 5174 5174.0 3.87 5174 5174.0 1.69

8x4S10 5169 0.25 0.22 5169 5169.0 3.68 5169 5169.0 1.12

8x4S15 5112 0.22 0.23 5112 5112.0 3.46 5112 5112.0 0.98

8x4S20 5086 0.1 0.16 5086 5086.0 3.29 5086 5086.0 0.87

8x4S30 5063 0.25 0.19 5063 5063.0 3.20 5063 5063.0 0.83

9x4S5 6047 0.42 0.23 6047 6047.0 4.50 6047 6047.0 1.25

9x4S10 6027 0.39 0.3 6027 6027.0 4.11 6027 6027.0 1.09

9x4S15 5976 0.28 0.14 5976 5976.0 3.93 5976 5976.0 0.92

9x4S20 5937 0.37 0.12 5937 5937.0 3.90 5937 5937.0 0.97

9x4S30 5904 0.42 0.23 5904 5904.0 3.74 5904 5904.0 0.90

10x4S5 6518 0.78 0.53 6518 6518.0 5.10 6518 6518.0 1.38

10x4S10 6325 0.45 0.33 6325 6325.0 4.87 6325 6325.0 1.09

10x4S15 6296 0.42 0.25 6296 6296.0 4.55 6296 6296.0 0.98

10x4S20 6267 0.53 0.31 6267 6267.0 4.40 6267 6267.0 0.97

10x4S30 6193 0.47 0.3 6193 6193.0 4.13 6193 6193.0 1.07

10x5S5 6616 1.62 0.84 6616 6616.0 4.54 6616 6616.0 1.80

10x5S10 6476 1.41 0.78 6476 6476.0 4.45 6476 6476.0 1.51

10x5S15 6397 1.09 0.78 6397 6397.0 4.14 6397 6397.0 1.37

10x5S20 6342 0.94 0.94 6342 6342.0 4.02 6342 6342.0 1.32

10x5S30 6308 0.84 0.5 6308 6308.0 3.86 6308 6308.0 1.31

11x5S5 7812 3 1.88 7812 7812.0 5.23 7812 7812.0 2.12

11x5S10 7572 1.92 1.66 7572 7572.0 4.95 7572 7572.0 1.61

11x5S15 7535 2.03 1.64 7535 7535.0 4.76 7535 7535.0 1.36

11x5S20 7439 1.34 0.86 7439 7439.0 4.47 7439 7439.0 1.29
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11x5S30 7420 1.42 0.97 7420 7420.0 4.23 7420 7421.6 1.36

12x5S5 8072 3.27 3.3 8072 8072.0 5.81 8072 8072.0 1.76

12x5S10 7978 2.98 2.73 7978 7978.0 5.53 7978 7978.0 1.58

12x5S15 7939 2.55 2.28 7939 7939.0 5.36 7939 7939.0 1.48

12x5S20 7939 3.09 2.24 7939 7939.0 5.06 7939 7939.0 1.43

12x5S30 7923 5.98 3.22 7923 7923.0 4.68 7923 7923.0 1.40

12x6S5 10891 35.92 4.98 10891 10891.0 5.36 10891 10891.0 2.72

12x6S10 10456 8.87 12.05 10456 10456.0 5.13 10456 10456.0 1.98

12x6S15 10362 8.33 7.05 10362 10362.0 4.89 10362 10378.5 1.82

12x6S20 10312 6.70 9.45 10312 10312.0 4.61 10312 10312.0 1.92

12x6S30 10228 8.92 26.95 10228 10228.0 4.22 10228 10228.0 1.84

15x6S5 13927 107.78 92.03 13927 13927.0 7.32 13927 13927.0 2.47

15x6S10 13803 112.56 24.39 13803 13803.0 7.02 13803 13810.7 2.20

15x6S15 13765 158.27 96.47 13765 13765.0 6.54 13765 13792.3 2.23

15x6S20 13720 112.75 68.5 13720 13720.0 6.17 13720 13750.0 2.31

15x6S30 13567 149.90 26.39 13567 13567.0 5.68 13567 13585.2 2.22

15x7S5 15054 492 245.17 15054 15054.0 6.90 15054 15063.1 3.36

15x7S10 14810 313.52 208.47 14810 14810.0 6.49 14810 14843.1 2.70

15x7S15 14657 303.81 283.13 14657 14657.2 6.16 14657 14658.2 2.68

15x7S20 14514 259.12 62.94 14514 14514.0 5.80 14514 14537.6 2.72

15x7S30 14409 306.20 70.95 14409 14409.0 5.31 14409 14413.2 2.61

20x10S5 29933 7200.00 7200.00 29907 29909.6 9.16 29907 30004.4 6.39

20x10S10 29286 7200.00 7200.00 29236 29253.3 8.49 29236 29567.3 5.01

20x10S15 29134 7200.00 7200.00 29135 29135.5 7.77 29135 29345.7 4.81

20x10S20 28963 7200.00 7200.00 28945 28951.2 7.18 28945 29051.5 4.81

20x10S30 28541 7200.00 7200.00 28533 28539.6 6.85 28533 28741.3 4.82

AVG 10743.88 768.48 745.35 10741.86 10742.53 5.18 10741.86 10764.39 2.01

Table B.1 – Detailed results on “SetA” instances

Instance
LS1 LS2 PTS1 PTS2

Cost CPU(s) Cost CPU(s) Best AVG CPU(s) Best AVG CPU(s)

25x10S5 49144 49.76 49335 50.79 49013 49014.8 26.11 49013 49013.0 13.81

25x10S10 48949 29.76 48941 33.09 48672 48699.3 23.49 48740 48869.5 12.50

25x10S15 48556 31.29 48504 33.60 48407 48415.6 20.08 48407 48477.0 12.10

25x10S20 48215 21.80 48235 23.09 47934 47949.3 19.11 47926 47977.6 12.24

25x10S30 47480 19.75 47426 20.78 47314 47356.5 19.61 47314 47368.1 12.25

25x20S30 51921 46.43 51741 51.30 51533 51618.4 19.81 51562 52334.2 28.51

50x10S5 191773 1036.07 191788 1153.30 191160 191241.3 78.29 191186 192350.7 26.58

50x10S10 189409 1371.08 189833 1362.87 189166 189478.5 66.16 189573 190316.3 26.19

50x10S15 188006 862.66 188264 800.33 187315 187417.9 69.16 187377 188834.9 26.45

50x10S20 186800 988.61 186578 956.55 186085 186246.2 72.28 185975 186788.2 26.24
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50x10S30 183961 423.76 184013 401.96 183249 183373.7 79.04 183234 183943.9 25.85

50x20S5 238048 1814.59 239673 1874.62 237656 238244.5 59.28 239835 241379.3 50.66

50x20S10 235178 2020.58 234807 1985.69 233341 234045.4 44.56 235326 236932.9 51.59

50x20S15 230758 2004.67 230666 1921.30 229638 230429.2 45.58 230375 233110.0 48.04

50x20S20 227698 1836.91 227883 1879.75 226448 227134.2 45.65 228332 230201.4 50.93

50x20S30 221892 1831.01 222060 1783.04 220748 221313.8 48.48 221322 223423.5 45.85

50x30S15 275973 1532.68 275121 1782.79 273166 274455.9 50.52 276938 278798.1 91.23

50x30S20 264199 632.82 263790 783.91 261725 263099.9 43.55 264729 267802.5 86.29

50x30S30 254056 481.99 254795 503.28 252639 253680.2 45.23 255151 258277.8 77.02

50x43S30 332318 1789.71 330661 1893.34 330285 332378.3 47.46 335036 341233.4 121.07

75x10S5 440248 2337.89 440420 2423.05 439055 439478.3 158.11 440181 441088.8 44.82

75x10S10 435985 2268.11 435970 2354.30 434275 435134.7 157.91 435595 437051.9 44.88

75x10S15 431405 2162.17 431686 2185.77 430005 430781.3 171.16 430663 432183.0 45.28

75x10S20 427468 2250.16 427522 2084.70 426385 427176.8 179.44 427168 428920.9 44.74

75x10S30 420851 1732.51 420660 1704.04 419651 420123.3 198.28 420619 421566.1 44.48

75x20S5 531762 2096.76 532873 2243.49 529131 529964.2 86.09 532968 535724.6 72.92

75x20S10 523447 2377.65 521970 2479.23 520127 521708.1 86.09 524001 526829.3 72.91

75x20S15 514760 2508.21 514981 2466.14 512170 512788.7 87.11 515098 519040.7 73.93

75x20S20 506346 2210.40 506114 2512.06 504502 505141.8 90.33 506313 511407.4 72.29

75x20S30 493417 2449.47 493977 2527.96 491796 492429.4 97.83 493403 498179.1 73.09

75x30S10 636697 1769.45 634304 1792.02 630259 631982.2 78.17 637957 644569.3 113.86

75x30S15 620356 1919.00 618688 1921.56 613001 614840.5 81.81 621149 626365.0 112.66

75x30S20 600422 2230.92 601199 2151.91 599329 601011.5 84.85 605055 610181.4 114.44

75x30S30 580490 2369.18 582766 2349.43 577843 579640.3 88.66 583551 586215.3 103.99

100x10S5 773971 1429.05 773498 1369.54 771172 771976.4 319.05 771368 774128.9 68.89

100x10S10 764866 1288.74 763908 1384.93 762282 763320.3 311.69 763469 765036.1 69.55

100x10S15 757159 1496.00 757046 1368.00 755040 755955.7 348.72 756236 758154.4 68.04

100x10S20 750658 1321.06 750394 1323.62 748611 749327.1 367.73 750047 751747.3 68.52

100x10S30 738033 1122.26 737694 1253.34 736248 737063.8 415.95 737505 739087.7 68.69

100x20S5 966474 1262.06 970189 1154.32 961900 964422.8 142.32 968861 973939.2 104.34

100x20S10 951882 1147.65 949715 1267.19 945835 948003.6 145.08 952317 958369.8 102.84

100x20S15 935443 1294.64 936227 1284.38 931525 933518.5 151.57 935246 940053.2 102.65

100x20S20 921746 1266.68 922768 1334.65 916505 918597.7 157.15 920851 923581.8 102.52

100x20S30 894685 1424.95 896656 1367.74 892755 894825.9 171.95 896202 899657.8 104.15

100x30S5 1170457 722.86 1167044 700.03 1154077 1159790.8 121.82 1164617 1174570.3 141.40

100x30S10 1145700 1065.31 1142881 1104.81 1127161 1130487.3 126.65 1140965 1149830.1 145.87

100x30S15 1113552 1149.70 1119040 1184.08 1103176 1105138.4 130.40 1116441 1123978.2 146.01

100x30S20 1093126 1264.11 1096146 1232.82 1081933 1086086.7 133.10 1093174 1100436.0 143.75

100x30S30 1052682 1292.33 1057544 1271.81 1044499 1046736.6 140.48 1055745 1061462.5 138.23

AVG 504253.511388.88504448.861410.05501137.59502307.05117.41 504369.71507363.03 70.51

Table B.2 – Detailed results on “SetB” instances
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