
HAL Id: tel-03202114
https://theses.hal.science/tel-03202114

Submitted on 19 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chemical reactions in turbulence : numerical studies
through direct numerical simulations

Wenwei Wu

To cite this version:
Wenwei Wu. Chemical reactions in turbulence : numerical studies through direct numerical simula-
tions. Earth Sciences. Université du Littoral Côte d’Opale; Shanghai Jiao Tong University, 2021.
English. �NNT : 2021DUNK0577�. �tel-03202114�

https://theses.hal.science/tel-03202114
https://hal.archives-ouvertes.fr


Shanghai Jiao Tong University
Université du Littoral Côte d’Opale

Chemical Reactions in Turbulence: Numerical
Studies Through Direct Numerical Simulations

by

Wenwei Wu

A thesis submitted in partial satisfaction of the requirements for the degree
of Doctor in Sciences of the Earth Universe, Space, specialty Earth, Fluid envelops

at Shanghai Jiao Tong University and Université du Littoral Côte d’Opale
Laboratory of Oceanology and Geosciences, Ecole doctorale Sciences Technologies Santé

Jury: Shanghai
Ivana Vinkovic, Reviewer and President of the Jury February 25th, 2021
Lipo Wang, Thesis Advisor
Francois G. Schmitt, Thesis Advisor
Enrico Calzavarini, Thesis Advisor
Sergio Chibbaro, Reviewer
David Hung, Reviewer
Yongxiang Huang, Member
Chien-Pin Chen, Member





上海交通大学交大密西根学院 

Université du Littoral Côte d’Opale 

 

 

 

湍流中的化学反应：通过

直接数值模拟的数值研究 
 

吴文伟 

 

 

上海交通大学与 Université du Littoral Côte d’Opale 博士学位论文 

 地球科学、流体力学专业 

委员会成员： 上海 

Ivana Vinkovic（主席） 2021 年 2 月 25 日 

王利坡 

Francois G. Schmitt 

 

Enrico Calzavarini  

Sergio Chibbaro  

孔令逊  

黄永祥  

陈谦斌  



  

 

  



Abstract

The present work focuses on the statistical properties of reactive scalars undergoing reversible chemical reactions
in incompressible turbulence. Theoretical analysis about the statistical properties of scalars at different order
of moments were carried out based on appropriately proposed approximations and models. The theoretically
derived results were then compared with numerical results obtained by direct numerical simulation (DNS). In
the direct numerical simulation, the spatial derivatives were mainly approximated by using a pseudo-spectral
method, since the turbulent velocity and scalar fields are generally of periodic boundary conditions. For the
special configurations in which the boundary condition is not periodic, a finite difference method with fine
schemes was used to approximate the spatial derivatives. The numerical time integration was implemented by
a third order Runge-Kutta scheme.

In statistically steady homogeneous isotropic turbulence, the chemical species retained close to a dynamical
equilibrium state sustained by random large-scale reactant sources. A competition exists between the chemical
reaction that tends to dump reactant concentration fluctuations and enhance their correlation intensity and
the turbulent mixing that on the contrary increases fluctuations and remove relative correlations. A unique
control parameter, the Damköhler number (Daθ) that can be constructed from the scalar Taylor micro-scale, the
reactant diffusivity and the reaction rate, was found to characterize the functional dependence of fluctuations
and correlations. Such a dependence was validated in a variety of conditions, i.e., at changing the reaction
order, the Reynolds and the Schmidt numbers. The larger is the Damköhler number, the more depleted are the
scalar fluctuations as compared to the fluctuations of a passive scalar field in the same conditions, and the more
intense are the correlations. A saturation in this behaviour was observed beyond Daθ ' O(10). We provide an
analytical prediction for this phenomenon which is in excellent agreement with the direct numerical simulation
results.

In the non-homogeneous anisotropic turbulence: the turbulent Kolmogorov flow (TKF), it was found that the
mean velocity profile has the same form with the forcing. The only non-zero shear stress term is proportional to
the cosine function, and the normal stress components all involve a square cosine expression. The normal stresses
are never equal, showing that as expected the turbulence is anisotropic. It was also shown that a quadratic
nonlinear constitutive equation can be proposed for this flow, involving a linear term and two nonlinear terms in
the form of traceless and symmetric tensors. For about half of the flow domain, the linear term is dominating.
Whereas for the vanishing mean velocity gradient regions, only one non-linear term remains non-zero and
becomes constant. The reversible reactions discussed in the homogeneous isotropic case were also studied with
the background flow as the TKF. The theoretical predictions about the dependence of the fluctuations and the
correlations of the reactive scalars on the Daθ in homogeneous isotropic flow are found to work also for the TKF
case. It indicates that, in the quasi-equilibrium state, the dependence of the statistical properties of reactive
scalars on the scalar diffusion and reaction rate is weakly influenced by the background velocity field.

By adopting Dirichlet boundary conditions for the scalars, a combustor like configuration was also proposed.
In such a configuration, the reacting system is strongly deviated from the chemical equilibrium. The entire flow
consists of two buffer layers and a bulk region, in which the scalar mean gradient is maintained by the boundary
conditions to provide non-negligible source of the chemical reaction. A theoretical model based on the PDF of
the passive scalar can satisfactorily predict the mean and fluctuation of reactants, if the associated Damköhler



ii

number (Da1) is sufficiently large. The correlation coefficient between the scalar quantities are determined by
two counteracting effects, the turbulent mixing and the chemical kinetics. Under the non-equilibrium condition
with strong chemical sources, the chemical kinetics also plays important roles in determining the scalar energy
spectra. For large Da1, the spatial distribution of the forward reaction and net reaction assume stripe like
structures, making the scalar field more intermittent. Consistently, large Da1 will shift the scalar energy from
the small wave number range to the large wave number range, which is different from the quasi-equilibrium
case.

All the works carried out in this thesis are devoted to the numerical and theoretical explorations about
reactive scalars in incompressible turbulence of different configurations. Our findings also suggest new ideas for
future studies, which are discussed in the conclusions.



 

                           摘要 

本工作着重于不可压缩湍流中涉及可逆反应的反应标量的统计特性研究。基于合

理的假设和模型，对关于标量不同阶矩的统计特性进行了理论分析。并且，理论

推导结果与直接数值模拟（DNS）结果进行了比对。因为研究所涉及的湍流速度

与标量场的边界条件一般是周期性的，所以在直接数值模拟中，空间导数主要是

通过伪谱法近似。对于一些边界条件不是周期性的特殊构造，空间导数由高精度

有限差分法进行近似。数值上，时间推进采用三阶龙格-库塔格式。 

 在统计稳态均匀各向同性湍流中，由于大尺度随机源项的作用，反应物被约

束在一个动态平衡之中。在此状态下，化学反应倾向于减小反应物的脉动并加强

反应物之间的相关性。相反，湍流混合过程会促进反应物的脉动并减小反应物之

间的相关性。结合标量的泰勒尺度、反应物扩散系数和反应速率，我们提出了一

个关键控制系数：达姆科勒数 Daɵ 用于定量描述反应物的脉动和相关性。相应定

量关系在我们的工作所涉及的所有反应阶数、雷诺数和施密特数条件下都得到了

证实。Daɵ 越大，反应物的脉动相比于相同条件下非反应物标量的脉动就越小，

同时反应物之间的相关性越强。相应趋势在 Daɵ 接近于 10 的时候达到饱和。对

此现象，我们做出理论预测并与直接数值模拟结果取得很好的一致。 

 在非均匀各向异性湍流：Kolmogorov 湍流中，我们发现平均速度与扰动力

的形式一致。剪切应力项中只有一项非零，并成余弦形式；法向应力项都成余弦

的平方的形式。各个法向应力项相互之间均不相等，体现了湍流的各向异性。此

外，我们验证了关于 Kolmogorov 湍流的一种涉及一个线性项和两个非线性项的

零迹对称张量形式的二次非线性本构方程。在大约一半的计算域中，线性项是主

导项。然而在速度梯度接近于零的区域，只有一个非线性项不为零并以常数项的

形式存在。均匀各向同性湍流中所讨论过的化学反应也在以 Kolmogorov 湍流为

背景流体的情况下进行研究。均匀各向同性条件下理论推导所得到的关于反应标

量脉动值和相关性与 Daɵ 的定量关系在 Kolmogorov 湍流中也得到验证。这说明

在近化学反应平衡态下，反应标量的统计特性与标量扩散过程以及反应速率的关

系几乎不受背景流场的影响。 

 通过对标量给定狄利克雷边界条件，我们提出了一个类似燃烧器的结构。在

该结构中，整个反应系统明显偏离化学反应平衡态。流场由两个缓冲区和一个主

区组成。在主区中，标量的平均梯度由边界条件所维持，产生足够强的化学反应

源项。我们提出了一个基于非反应物标量的概率密度函数预测反应物标量平均值

和脉动值的理论分析模型，并在正向反应速率足够大的情况下得到验证。反应物

之间的相关系数由湍流混合过程和化学机制所决定。在非化学平衡状态并且反应

源项足够强的情况下，化学机制对标量的脉动能谱起关键作用。当正向反应速率

足够大，正向反应速率和总反应速率的空间分布成条纹状，使得反应物场更具间

越性。与之一致的是，正向反应速率足够大情况下，小波长范围的标量的脉动能

量会被转移到大波长范围。该结果与近化学平衡态的结果十分不同。 

 本论文所做的所有工作都致力于关于不同构造下不可压缩湍流中化学反应

的数值和理论探索。我们的工作同时对未来的相关工作提出了新的想法，具体详

见结论部分。 





Résumé 
Dans cette thèse, les propriétés statistiques des scalaires réactifs subissant 

des réactions chimiques réversibles en turbulence incompressible ont été 

étudiées au moyen de simulations numériques directes et d'analyses 

théoriques. Les cas étudiés incluent les réactions proches et fortement 

déviées des états d'équilibre chimique, en écoulement turbulent homogène 

et isotrope, et inhomogène anisotrope. Des analyses théoriques des 

propriétés statistiques des scalaires pour différents ordres de moments ont 

été effectuées sur la base d'approximations et de modèles. Les résultats 

théoriques ont ensuite été comparés aux résultats numériques obtenus par 

simulations numériques directes. 

 

Introduction 

La turbulence, domaine complexe mais scientifiquement important, existe 

dans de nombreuses situations, telles que les écoulements dans les moteurs 

automobiles, les réacteurs chimiques, les écoulements environnementaux, 

y compris les océanographiques et météorologiques. Une caractéristique 

essentielle des écoulements turbulents est que le champ de vitesse du fluide 

varie de manière significative et irrégulière à la fois en position et en temps. 

En conséquence, les vitesses sont apparemment aléatoires et chaotiques. 

Cependant, du point de vue statistique, certaines propriétés intrinsèques et 

universelles de la turbulence peuvent être trouvées, par exemple la loi -5/3 



décrivant le processus de cascade d'énergie régissant les tourbillons de 

turbulence. Dans la turbulence, il y a également des scalaires advectés. 

Certains sont appelés scalaires passifs car ils n’apportent pas de rétroaction 

sur l’écoulement (généralement incompressible). Certains sont appelés 

scalaires réactifs car ils impliquent une réaction en plus du transport par 

l’écoulement. L'objectif principal de cette thèse est d’étudier les propriétés 

statistiques de scalaires réactifs en turbulence incompressible, possédant 

une réaction sans influencer l’écoulement. Dans le monde réel, des 

exemples de scalaire réactif dans une turbulence incompressible peuvent 

être les concentrations de réactifs chimiques (sels nutritifs) ou le 

phytoplancton dans l'océan. 

 

Simulations numériques directes 

Les équations aux dérivées partielles à résoudre numériquement dans cette 

thèse sont les équations de Navier-Stokes pour la vitesse et les équations 

de advection-diffusion pour les scalaires non réactifs, ajoutés à des temres 

de réaction pour les scalaires réactifs. Les simulations numériques directes 

ont été mises en œuvre en résolvant ces équations aux dérivées partielles, 

dans différentes configurations, en utilisant la méthode pseudo-spectrale 

ou la méthode des différences finies. Lorsque les quantités ont des 

conditions aux limites périodiques, la méthode pseudo-spectrale est 

préférée en raison de sa grande précision dans l'approximation des dérivées 



spatiales. Les méthodes pseudo-spectrales utilisées ici ont adopté les séries 

de Fourier comme fonctions orthogonales. Pour éviter l'erreur de crénelage 

due à la convolution des modes à grand nombre d'ondes introduite par le 

terme non linéaire, la technique de désaliasing lisse a été utilisée. Pour les 

configurations dans lesquelles les conditions aux limites des scalaires ne 

sont pas périodiques, une méthode aux différences finies avec des schémas 

d'ordre élevé (schéma de huitième ordre à pas spatial vers l’amont et 

schéma de centre du dixième ordre pour approximer respectivement les 

dérivées spatiales du premier et du second ordre) a été utilisée. 

L'intégration temporelle numérique a été implémentée de manière explicite 

par un schéma Runge-Kutta du troisième ordre. Les analyses statistiques 

des grandeurs d'intérêt ont été mises en œuvre dans un état stationnaire 

statistique, qui a été maintenu par forçage numérique pour la vitesse et les 

scalaires. Dans la configuration anisotrope, le forçage des scalaires se 

faisait via un gradient moyen, tandis que dans la configuration isotrope, la 

vitesse et les fluctuations scalaires sont soutenues par un forçage portant 

sur l’ensemble des nombres d’onde. 

 

Résultats et discussion 

Nous avons d'abord étudié le cas des réactions chimiques réversibles en 

turbulence homogène et isotrope. La réaction fait intervenir trois réactifs 

R1, R2 et P, dont les fluctuations ont été maintenues par un forçage à grande 



échelle avec une amplitude constante et une phase aléatoire, subissant une 

réaction réversible. En outre, un scalaire passif non réactif T est également 

considéré pour comparaison. Le système réactionnel se trouve dans un état 

de quasi-équilibre chimique, qui est maintenu par la compétition entre la 

réversibilité de la réaction, qui impose un équilibre chimique global à l'état 

statistiquement stationnaire, et la variabilité du forçage scalaire, qui 

introduit une stochasticité dans les champs scalaires. L'amplitude du 

forçage scalaire a été contrainte pour générer de petites fluctuations 

scalaires par rapport à la quantité moyenne globale de scalaire (~10% de la 

quantité moyenne), sinon la quantité scalaire totale pourrait être négative, 

ce qui n'a aucun sens pour la concentration de réactif. Dans ce cas, la 

vitesse de réaction nette globale était faible dans l'état d'équilibre 

dynamique, et donc trop faible pour modifier les lois d’échelle et la 

distribution statistique des scalaires. En conséquence, les scalaires réactifs 

ont montré la même loi d’échelle (spectre d’énergie en Fourier) que celui 

du scalaire non réactif. Les fluctuations des scalaires réactifs et non réactifs 

normalisés par leurs écarts types obéissaient à des distributions 

gaussiennes. A partir des spectres de cohérence entre scalaires réactifs, il a 

été trouvé que les coefficients de corrélation entre scalaires réactifs sont 

indépendants du nombre d'onde (échelle de longueur). Un tel résultat 

suggère que le coefficient de corrélation entre deux scalaires réactifs est le 

même que celui entre leurs gradients. 



L'effet de la réaction sur les propriétés statistiques des scalaires a été 

principalement mis en évidence dans les corrélations et l'amplitude des 

fluctuations, sur lesquelles nous avons réalisé non seulement des 

simulations numériques mais aussi des approches théoriques. Pour les 

analyses de modélisation des coefficients de corrélation des scalaires 

réactifs, quatre conditions ou hypothèses préalables sont nécessaires: 1. 

l'état stationnaire statistique; 2. la linéarisation des termes de la réaction, 

qui est viable à condition que les fluctuations des scalaires soient faibles 

par rapport aux quantités moyennes; 3. le fait que le coefficient de 

corrélation entre deux scalaires réactifs est le même que celui entre leurs 

gradients; 4. l'hypothèse que le forçage d’un scalaire ne peut pas être 

fortement corrélé avec celui d’un autre scalaire, ce qui est garanti par 

l'implémentation du forçage temporel aux scalaires. Puis dans le cadre de 

cette modélisation, à partir des équations gouvernant les scalaires réactifs, 

des dérivations mathématiques ont été effectuées pour obtenir des 

équations approchées sur les covariances et les auto-variances des scalaires 

réactifs, ce qui a finalement conduit à des expressions analytiques montrant 

que les coefficients de corrélation des scalaires réactifs sont des fonctions 

d'un paramètre de contrôle unique: le nombre de Damköhler (Daθ). Daθ est 

construit comme le rapport entre l'échelle de temps de diffusion scalaire à 

travers un domaine de la taille de la micro-échelle scalaire de Taylor (λθ
2/D) 

et l'échelle de temps de réaction chimique (τr). De plus, Daθ s'est avéré être 



une combinaison des paramètres importants caractérisant le mouvement 

turbulent et la diffusion scalaire, y compris le nombre de Reynold basé sur 

Taylor (Reλ), le nombre de Schmidt (Sc), le nombre de Damköhler 

traditionnel (Da) et l'échelle de Taylor pour les scalaires. (λθ). Les 

prédictions théoriques sur les coefficients de corrélation montrent qu'avec 

un petit Daθ (réaction faible), les scalaires réactifs sont faiblement corrélés 

avec des coefficients de corrélation négligeables. Au fur et à mesure que 

Daθ augmente (réaction plus forte), les scalaires réactifs deviennent 

progressivement soit positifs soit négatifs en corrélation avec les 

coefficients de corrélation évoluant asymptotiquement vers certaines 

constantes. Les transitions entre zéro et les quantités saturées des 

coefficients de corrélation se produisent toujours lorsque Daθ est à peu près 

dans la plage de [0,1,10]. En ce qui concerne l'amplitude de la fluctuation 

scalaire, bien que la réaction montre un effet global sur le dumping des 

fluctuations scalaires, nous pouvons supposer que l'apport d'énergie aux 

scalaires réactifs pour lesquels l'ordre de la réaction est de 1 (en R1 et P) 

est à peu près le même qu’avec l'apport d'énergie au scalaire non réactif. 

Avec cette hypothèse supplémentaire, la modélisation peut être étendue 

aux fluctuations des scalaires réactifs normalisés par la fluctuation du 

scalaire non réactif, qui se sont également avérés être des fonctions du 

paramètre de contrôle de Daθ. Les fluctuations normalisées des scalaires 

réactifs étaient théoriquement comme étant 1 lorsque Daθ est petit (réaction 



faible), indiquant que les scalaires réactifs sont des mêmes fluctuations 

avec le scalaire non réactif subissant le même environnement turbulent et 

le même forçage externe. Lorsque Daθ augmente (réaction plus forte) 

jusqu’à des valeurs de l’ordre de 0.1, les fluctuations normalisées 

commencent à diminuer. Les tendances à la baisse cessent lorsque Daθ 

atteint environ 10, les fluctuations normalisées saturant à certaines 

constantes. Les transitions se sont avérées se produire à peu près dans la 

même plage de Daθ que celle des coefficients de corrélation. Selon la 

définition de Daθ, la compétition entre les processus chimiques et le 

mélange turbulent est essentielle pour déterminer les fluctuations de 

concentration des réactifs et leur intensité de corrélation. Plus précisément, 

les processus chimiques ont tendance à réduire les fluctuations de 

concentration des réactifs et à améliorer leur intensité de corrélation. Alors 

qu'au contraire, le mélange turbulent augmente les fluctuations et supprime 

les corrélations relatives. Nos analyses de modélisation théorique ont été 

fortement validées par les simulations numériques, car les dépendances 

fonctionnelles des fluctuations et les corrélations des grandeurs scalaires 

caractérisées par Daθ sont bien confirmées par les résultats DNS dans la 

gamme complète des conditions explorées avec un ordre de réaction 

variable (2 à 4), le nombre de Reynolds basé sur Taylor (20 à 150) et le 

nombre de Schmidt (0.1 à 4). 

Le rôle clé de Daθ implique également l'importance de la micro-échelle 



scalaire de Taylor λθ dans le mélange des espèces chimiques. Tout d'abord, 

il a été remarqué que λθ ne varie pas significativement pour les différents 

champs scalaires R1, R2, P et le champ scalaire passif de référence T. De 

plus, nos résultats numériques ont montré que λθ est à peu près inversement 

proportionnel à la racine carrée du nombre de Schmidt, surtout sous la 

condition d'un grand nombre de Reynolds. Une telle relation implique que 

Daθ peut être considéré comme le rapport de la plus grande échelle de 

temps de l'écoulement turbulent (grand temps de rotation des tourbillons) 

à l'échelle de temps typique associée au processus chimique (τr). Une telle 

idée a été témoignée dans une série de simulations où les champs scalaires 

sont advectés par l'écoulement turbulent spatialement filtré, ne conservant 

que de grands tourbillons. Il a été constaté que la micro-échelle de Taylor 

scalaire λθ et les coefficients de corrélation des scalaires réactifs dans les 

champs de vitesse de seulement quelques modes les plus grands sont les 

mêmes que ceux convectés par tout le flux. Cette dernière observation peut 

être d'un intérêt pratique pour l'estimation des régimes atteints par les 

réactions biogéochimiques à petite échelle dans l'océan. Par exemple, si 

l'on considère un champ réactif comme la concentration locale de 

phytoplancton dans l'océan. Les échelles de temps utilisées pour construire 

le nombre de Daθ sont: le grand temps typique de rotation des tourbillons 

de l'écoulement turbulent tridimensionnel, qui est normalement de l'ordre 

de plusieurs heures, et le temps de croissance typique de la population, 



c'est-à-dire du ordre d'un jour. Cela conduit à une valeur de Daθ <1, ce qui 

signifie qu'à de petites échelles, plus précisément à des échelles où le flux 

océanique peut être approché comme un écoulement turbulent 

tridimensionnel avec une cascade d'énergie directe, la concentration de 

phytoplancton peut être considérée en toute sécurité comme un champ 

scalaire passif. 

Dans le cas isotrope homogène, l'analyse théorique des propriétés 

statistiques des scalaires réactifs a été faiblement affectée par les propriétés 

à petite échelle de l'écoulement turbulent. Cela nous a incité à considérer 

la turbulence anisotrope non homogène, telle que l'écoulement turbulent de 

Kolmogorov (TKF). L'écoulement de Kolmogorov (KF) est un exemple 

d'écoulement de canal turbulent sans frontières, qui est statistiquement non 

homogène dans une direction et anisotrope. Généralement, le système KF 

correspond aux équations de Navier-Stokes étudiées dans un domaine 

périodique, à pression constante, et forcées par un forçage sinusoïdal. Au-

dessus d'un nombre de Reynolds critique, l'écoulement devient turbulent et 

nous le désignons par écoulement turbulent de Kolmogorov (TKF). 

Tout d'abord, nous avons acquis une compréhension plus approfondie 

du TKF forcé dans la direction x par une force sinusoïdale dépendant de la 

coordonnée z. On a constaté que le profil moyen de la composante de 

vitesse alignée sur le forçage a la même forme, avec un amortissement d'un 

facteur κ, par rapport à la valeur de vitesse moyenne calculée à partir du 



terme de forçage. On a trouvé que la valeur de κ était comparable à celle 

rapportée dans les travaux existants et qu'elle augmentait faiblement avec 

le nombre de Reynolds, indiquant une possible saturation asymptotique à 

très grand Re. Le seul terme de contrainte de cisaillement non nul est la 

covariance entre les composantes de vitesse le long des directions x et z. 

Plus important encore, cette contrainte de cisaillement non nulle est 

proportionnelle à l'intégrale de la composante de vitesse moyenne le long 

de la direction z, qui est une fonction cosinus. Un tel résultat numérique a 

validé la convergence de la simulation, puisqu'il peut être théoriquement 

obtenu en faisant la moyenne de la composante x des équations de Navier-

Stokes. Les composantes de contrainte normales impliquent toutes des 

fonctions cosinus carrées. Ces derniers ne sont jamais égaux, montrant que, 

comme prévu, la turbulence est anisotrope. En additionnant les trois 

contraintes normales, on obtient une expression en cosinus carré de 

l'énergie cinétique, dont les coefficients étaient en bon accord avec les 

valeurs rapportées par les travaux déjà publiés. 

Ensuite, nous avons également étudié les fermetures pour l'écoulement 

turbulent de Kolmogorov, qui proposent des équations constitutives entre 

le tenseur de contrainte anisotrope et le tenseur de vitesse de déformation 

moyenne. Premièrement, selon l’hypothèse de viscosité turbulente de 

Boussinesq, un modèle de fermeture linéaire, qui suggère une relation 

linéaire entre les deux tenseurs. Un tel modèle linéaire suggère que 



l'alignement entre les deux tenseurs est de 1. Les résultats numériques ont 

montré que l'alignement est supérieur à 0,9 pour environ 46% du volume, 

où le gradient moyen de vitesse est grand. Cela indique que pour environ 

la moitié du volume avec un fort gradient de vitesse moyenne, la relation 

linéaire entre les tenseurs de déformation et de contrainte est 

approximativement valide. Il a également été montré qu'une équation 

constitutive non linéaire quadratique peut être proposée pour ce flux, 

impliquant un terme linéaire et deux termes non linéaires sous forme de 

tenseurs sans trace et symétriques. Pour environ la moitié du domaine 

d'écoulement, le terme linéaire domine. Alors que pour les régions de 

gradient de vitesse moyenne de fuite, un seul terme non linéaire reste non 

nul et devient constant. Par conséquent, un coefficient de viscosité efficace 

peut en effet être estimé pour TKF, mais contrairement à ce qui a été dit 

précédemment, globalement tous les termes linéaires et non linéaires sont 

nécessaires pour la fermeture complète. 

Après l’analyse du champ de vitesse dans le TKF, les réactions 

réversibles discutées pour le cas isotrope homogène ont également été 

introduites pour étendre notre analyse théorique sur les propriétés 

statistiques des scalaires réactifs turbulents à la turbulence non homogène 

et anisotrope, par exemple la TKF. Ici, nous n'avons considéré qu'une 

réaction du second ordre avec un nombre de Schmidt égal à 1. En tant que 

grandeur clé dans la définition de Daθ, le carré de l'échelle micrométrique 



scalaire de Taylor λθ s'est avéré être une fonction cosinus carrée de la 

position z. Cependant, ils n’ont pas de grandes fluctuations, correspondant 

à moins de 10% de la valeur moyenne. Ainsi, λθ peut grossièrement être 

considéré comme constant dans TKF. Pour les fluctuations normalisées et 

les coefficients de corrélation des scalaires réactifs, qui sont les principaux 

sujets des prédictions théoriques proposées dans le cas isotrope homogène 

précédent, nos résultats numériques ont montré qu'ils sont faiblement 

influencés par la position en TKF. Plus important encore, les dépendances 

des fluctuations normalisées et des coefficients de corrélation des scalaires 

réactifs sur le Daθ, théoriquement dérivés dans le flux isotrope homogène, 

pourraient également être validées par les résultats numériques dans le cas 

TKF actuel. Ceci indique que, dans l'état de quasi-équilibre, les 

dépendances des propriétés statistiques des scalaires réactifs sur la 

diffusion scalaire et la vitesse de réaction sont faiblement influencées par 

le champ de vitesse sous-jacent. 

 

Pour les réactions irréversibles en turbulence isotrope homogène, la 

linéarisation du terme de réaction est valable car les fluctuations des 

scalaires réactifs sont faibles par rapport aux quantités moyennes à l'état de 

quasi-équilibre. Cependant, un système réactif fortement dévié de l'état 

d'équilibre global et avec des fluctuations relativement plus importantes 

des scalaires réactifs peut être plus significatif sur le plan pratique. Par 



exemple dans l'océan, les fluctuations affichées par les populations 

planctoniques peuvent atteindre des valeurs comparables à celles de la 

densité moyenne de population. De plus, les scalaires réactifs avec des 

fluctuations plus importantes sont plus intéressants physiquement, car 

l’écoulement réactif possède une non-linéarité plus forte, ce qui est une 

caractéristique principale des écoulements turbulents. Pour ces raisons, il 

sera intéressant d'explorer différentes configurations d'écoulement où de 

fortes sources chimiques pourraient produire des écarts prononcés par 

rapport à l'état d'équilibre global. Ainsi, une configuration semblable à une 

chambre de combustion de scalaires réactifs, dans laquelle les champs 

scalaires possèdent des conditions aux limites de Dirichlet dans une 

direction, a été explorée. Dans une telle configuration, l’écoulement global 

se compose de deux couches tampons générées par une technique 

numérique et d'une région centrale de mélange entre les deux. Les 

fluctuations des scalaires sont maintenues par un gradient moyen 

intrinsèque imposé par les conditions aux limites, au lieu d'un forçage 

isotrope comme adopté auparavant. En conséquence, le système réactif est 

supposé être fortement dévié de l'état d'équilibre chimique. Les propriétés 

statistiques et d'échelle des scalaires réactifs dans un système de réaction 

réversible du second ordre avec un nombre de Schmidt de 1 ont été étudiées, 

en comparaison avec un scalaire passif non réactif. 

Dans ce cas, il existe deux nombres de Damköhler: Da1 et Da2 pour les 



réactions directe et inverse respectivement. Nous avons maintenu Da2 

comme une constante et avons fait varier le rapport Γ = Da1/Da2 de 1 à 100. 

Les amplitudes des taux de réaction directe et inverse ont d'abord été 

examinées. On a trouvé que l'amplitude de la vitesse de réaction directe 

pouvait être significativement plus grande que celle de la vitesse de 

réaction inverse, en particulier lorsque Γ est grand. Ceci indique que le 

système réactif dans une telle configuration était en effet fortement dévié 

de l'état d'équilibre chimique. Pour une meilleure compréhension de cette 

configuration nouvellement développée composée de deux couches 

tampons et d'une région de mélange, les moments du scalaire passif ont été 

explorés à la fois numériquement et théoriquement. Sous la condition d'état 

stationnaire statistique et en utilisant l'hypothèse de longueur de mélange, 

l'expression analytique du profil moyen du scalaire passif peut être dérivée 

de l'équation d’advection-diffusion. Ces analyses théoriques suggèrent que 

le transport scalaire à la fois dans les couches tampons et dans la région 

centrale de mélange peut être considéré comme des diffusions scalaires 

turbulentes avec différentes diffusivités turbulentes. Surtout, les prévisions 

théoriques étaient en excellent accord avec les résultats numériques. 

Avec un Γ grand, la fonction de densité de probabilité (PDF) de la 

vitesse de réaction nette (Rnet) culmine pour la valeur Rnet = 0 et devient 

asymétrique et plus étendue pour les grandes valeurs de Rnet. Alors que 

lorsque Γ est proche de 1, la PDF culmine à une valeur modérée de Rnet. 



Une telle différence doit être causée par le mécanisme chimique, ce qui 

peut être vu plus clairement à partir de la distribution spatiale des vitesses 

de réaction. Les visualisations des taux de réaction ont montré que, pour 

les petits Γ, les régions avec une réaction directe élevée sont distribuées sur 

des valeurs étendues. Alors que pour Γ grand, les distributions spatiales de 

la réaction directe et de la réaction total se distribuent selon des structures 

en forme de bande, ce qui rend le champ scalaire plus intermittent par 

rapport au scalaire passif de référence. L'intermittence peut également être 

étudiée via les spectres d'énergie scalaire bidimensionnels. À partir des 

spectres d'énergie des scalaires réactifs normalisés par les spectres 

d'énergie du scalaire passif, il a été constaté qu'un Γ plus élevé fait passer 

plus d'énergie scalaire de grandes échelles de longueur à de petites échelles, 

indiquant que les réactions chimiques plus fortes ont tendance à concentrer 

la quantité scalaire locale et à renforcer l’intermittence scalaire. 

Les coefficients de corrélation entre les scalaires réactifs ont été 

déterminés par deux effets antagonistes, le mélange turbulent et la 

cinétique chimique. Fait intéressant, les réactifs R1 et R2 se sont révélés 

plus positivement corrélés avec un Γ plus grand, bien qu'ils soient censés 

se consommer plus rapidement. Ce résultat peut s'expliquer par le fait que 

les PDF de R1 et R2 étaient de plus en plus positivement biaisés avec 

l'augmentation de Γ dans la configuration actuelle. De plus, les spectres de 

cohérence des scalaires réactifs étaient fortement dépendants du nombre 



d'onde, en nette distinction avec le cas de quasi-équilibre. En particulier, la 

corrélation entre les scalaires réactifs construits avec une forte réaction 

provient principalement de la contribution à petite échelle. 

A l'instar des analyses faites dans le cas homogène et isotrope, des 

prédictions théoriques sur les moments des scalaires réactifs (r.m.s des 

fluctuations et les grandeurs moyennes) ont également été réalisées ici. 

Une condition préalable nécessaire est que le PDF du scalaire passif (T) 

soit connu. Essentiellement, les analyses de modélisation actuelles se 

concentrent sur le lien entre le scalaire réactif et le scalaire passif, par 

lequel les moments des scalaires réactifs peuvent être calculés à partir du 

PDF connu du scalaire passif. Pour le cas de Γ infiniment grand (réaction 

directe extrêmement forte), les réactifs R1 et R2 ne peuvent pas coexister. 

Dans cette condition, des relations définies entre les scalaires réactifs et le 

scalaire passif peuvent être obtenues. Alors que pour le cas de Γ fini, nous 

avons dû proposer une hypothèse que le produit de R1 et R2 (R1R2) a 

localement une limite supérieure, qui est une constante divisée par Γ. De 

plus, la PDF conditionnelle de R1R2 sur le scalaire passif doit être 

modélisée. Ici, celle-ci a été initialement considérée comme étant 

uniformément distribuée. Ainsi, les prédictions théoriques sur les 

fluctuations moyennes et les quantités moyennes des scalaires réactifs 

pourraient être obtenues en faisant l'intégrale du scalaire réactif dans 

l'espace d'échantillonnage statistique du scalaire passif. Lorsque nous 



avons validé les résultats de la modélisation avec des simulations 

numériques, il a été constaté que les prédictions théoriques pouvaient 

correspondre aux résultats numériques lorsque Γ est significativement 

grand. Les modèles devraient être encore améliorés pour comprendre les 

situations avec un Γ plus petit. 

 

Contributions scientifiques 

Les contributions scientifiques de cette thèse peuvent être résumées 

comme suit: (1) le sujet de cette thèse, qui est une combinaison de réaction 

et de scalaire passif dans des écoulements turbulents, est nouveau; (2) nous 

avons développé une configuration pour la simulation numérique de la 

réaction turbulente, dans laquelle la positivité et la forte fluctuation des 

scalaires réactifs sont assurées; (3) dans l'étude sur les réactions en 

turbulence isotrope homogène, nous avons introduit un paramètre clé (Daθ) 

caractérisant la compétition entre diffusion scalaire et réaction, et montré 

son rôle important dans la détermination des fluctuations et corrélations du 

scalaire réactif; (4) dans l'étude sur les réactions chimiques soutenues par 

les conditions aux limites de Dirichlet, nous avons proposé une 

modélisation établissant un lien entre les moments du scalaire réactif et le 

PDF du scalaire non réactif. 

 

Travaux futurs 



Par rapport aux études sur la combustion turbulente et les scalaires passifs 

en turbulence, relativement peu de travaux ont été consacrés à la réaction 

en turbulence incompressible, en particulier les réactions réversibles. Un 

problème inévitable concernant les réactions réversibles est l'équilibre 

chimique. Les propriétés statistiques des scalaires réactifs peuvent être 

extrêmement différentes dans un système réactif proche et fortement dévié 

de l'état d'équilibre chimique. Pour le cas avec état de quasi-équilibre 

discuté dans cette thèse, les fluctuations des scalaires doivent être 

contraintes à environ 10% des quantités moyennes pour assurer la 

positivité des concentrations. Cependant, un tel phénomène n'a pas de bon 

sens pratique pour des problèmes de turbulence typiques. Dans l'océan réel, 

les fluctuations affichées par les populations phytoplanctoniques peuvent 

atteindre des valeurs comparables à celles de la densité moyenne de 

population, car il existe des régions où la densité est très faible et des 

situations où une énorme accumulation peut être observée. Des solutions 

simples peuvent être d'imposer des concentrations négatives numériques à 

zéro ou d'exprimer les quantités de concentration sous la forme de 

fonctions de puissance. Cependant, ces opérations introduisent trop 

d'interférences arbitraires dans le problème. Il est donc important de 

proposer des configurations assurant le quasi-équilibre chimique, la 

positivité des scalaires réactifs et non de petites fluctuations scalaires, de 

préférence sans trop d'interférences artificielles ou du moins seulement 



avec des corrections physiquement raisonnables des quantités de 

concentration. 

Une façon simple d'amplifier les fluctuations consiste à faire passer le 

système dans un état de non-équilibre. Une autre raison pour laquelle l'état 

de non-équilibre est intéressant est que le terme de réaction peut être plus 

important. Une opération proposée dans cette thèse consiste à introduire 

des conditions aux limites de Dirichlet pour les scalaires réactifs. 

Cependant, une telle configuration brise l'isotropie des scalaires. Une 

réflexion plus approfondie sur une configuration conservant l'isotropie des 

champs scalaires et possédant en même temps une source de réaction non 

négligeable par rapport à la convection ou à la diffusion peut être 

intéressante. De plus, il est également intéressant d'étudier les réactions 

irréversibles, dans lesquelles le terme de réaction peut être non négligeable 

car l'équilibre chimique n'est pas impliqué. 

Sur la base du domaine cubique isotrope homogène étudié dans un 

premier temps dans cette thèse, une configuration anisotrope avec des 

conditions aux limites de Dirichlet et des couches tampons pour les 

scalaires a été développée et discutée. Les champs scalaires réactifs dans 

cette dernière configuration sont beaucoup plus complexes, car la non-

linéarité induite par la source de réaction est bien présente et active. Ainsi, 

les analyses de modélisation sur les propriétés statistiques des scalaires 

réactifs sont beaucoup plus difficiles. Une telle configuration est d'un grand 



potentiel pour une exploration plus profonde et plus large au-delà de 

l'analyse théorique menée jusqu'à présent dans cette thèse. Dans les 

présents travaux, les prédictions théoriques sur les profils moyens et les 

fluctuations des scalaires réactifs pourraient correspondre aux tests 

numériques uniquement pour les cas avec une réaction directe infiniment 

grande ou beaucoup plus grande que la réaction inverse. De plus, les 

prédictions théoriques actuelles sur les profils moyens et les fluctuations 

des scalaires réactifs nécessitent la condition préalable que le PDF du 

scalaire passif subissant la même convection et diffusion soit connu. Dans 

les travaux futurs sur une telle configuration, un objectif important peut 

être l'amélioration de la modélisation pour une gamme d'applications plus 

large et la proposition d'expressions plus compactes sur les moments des 

scalaires réactifs. Une autre direction peut être la modification des 

hypothèses actuelles, qui fonctionnent mal pour le cas de réaction directe 

faible. Ou tout nouveau cadre théorique basé directement sur les équations 

gouvernantes des scalaires réactifs peut également être envisagé. 

En outre, une analyse plus approfondie et plus complète des autres 

propriétés statistiques des scalaires réactifs, par exemple les coefficients de 

corrélation, peut également être les sujets intéressants pour les travaux 

futurs sur cette configuration. 

Concernant le cas d'écoulement de Kolmogorov étudié dans cette thèse, 

dans les travaux futurs, nous proposons également d'explorer différentes 



formes de forçage pour mieux comprendre les expressions des différents 

moments du champ de vitesse. Il reste également à comprendre à partir 

d'arguments analytiques pourquoi la viscosité turbulente est une constante 

indépendante de la position dans un tel écoulement, contrairement à ce que 

l'on trouve dans un écoulement similaire mais différent tel qu'un 

écoulement en canal ou des écoulements en couche limite. De plus, les 

modèles de fermeture du scalaire passif dans le « Kolmogorov flow » 

peuvent également être examinés, et l'extension aux scalaires réactifs sera 

plus intéressante. 

Les lois d’échelle des scalaires turbulents a toujours été d'un grand 

intérêt depuis le cadre théorique de Kolmogorov-Obukhov-Corrsin. La 

réaction, en particulier la réaction rapide, est censée introduire une 

structure « de falaise » (« ramp-cliff ») dans les champs scalaires, et ainsi 

favoriser l'intermittence. Pour examiner cette idée et l’explorer plus avant, 

la comparaison des statistiques pertinentes, telles que les fonctions de 

structure et les spectres d'énergie, entre les scalaires passifs et réactifs peut 

être utile. Etant donné que le terme de réaction est généralement non 

linéaire, la convolution des champs scalaires existants peut se refléter dans 

les nombres d'onde élevés. Ainsi, pour une simulation numérique directe 

convaincante sur les problèmes turbulents concernant la réaction, la 

demande en ressource de calcul est plus élevée, car la résolution spatiale 

numérique doit être plus fine que celle requise par le scalaire passif. 



En un mot, cette thèse a mené des études de base et préliminaires sur 

les scalaires réactifs en turbulence incompressible, par des simulations 

numériques directes et des analyses théoriques. Les nouvelles découvertes 

accompagnent toujours de nouveaux problèmes. En complément ou en 

développement des travaux réalisés dans cette thèse, de nombreuses 

questions intéressantes attendent encore des investigations 

complémentaires dans les travaux futurs. 
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The objectives of this thesis are the following:

• Obtain numerically statistical laws characterizing the fluctuations of reactive quantities for second order

reaction or higher orders;

• Estimate the scaling properties of the reactive and passive scalars, using Fourier power spectra and struc-

ture functions for the intermittent properties;

• Perform a parametric study by varying e.g. the reaction order or the Damkholer number and study their

effects in a statistical sense;

• Check different configurations to try to obtain the universal laws.

0.3 Organization of the thesis

The rest of this thesis is organized as follows. Chapter 1 introduces some basic concepts and classical theories

about the incompressible turbulence and passive scalar fields convected. Chapter 2 presents some fundamentals

and models about the chemical reaction, and it reviews the literature discussing the dynamics of reactive scalars

in incompressible turbulence. Chapter 3 introduces some basic ideas of the numerical methods in computational

fluid mechincs, in particular the pseudo-spectral and the finite difference approaches. It also discusses how they

were implemented in this thesis. The subsequent chapters are about the original works of this thesis. Chapter

4 focuses on the reaction processes in homogeneous isotropic turbulence. In Chapter 5, an anisotropic and

non-homogeneous turbulent flow: the turbulent Kolmogorov flow is discussed by testing an original turbulence

closure model and by investigating chemical reactions in such flow. As a development of the homogeneous

isotropic case, a configuration with Dirichlet boundary conditions for scalars is introduced and investigated in
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Chapter 6. This configuration has the advantage of producing strongly out of equilibrium chemical reactions.

Finally, in Chapter 7, a summary of the thesis and some ideas about the future works are identified.



Chapter 1

Introduction

Turbulence, scientifically important and challenging, exists widely in various situations, such as flows in auto-

motive engines, chemical reactors, environmental flows including oceanographical and meteorological flows. It

can be observed from the clouds on the sky, a turbulent jet ejected by an aircraft generating wakes, plumes

spiraling up and spreading, or the whirls on the sea surface visualized from a satellite. An essential feature of

turbulent flows is that the fluid velocity field varies significantly and irregularly in both position and time. Thus

they are seemingly random and chaotic (Pope, 2000). From the statistical point of view, physicists have been

focusing on finding some intrinsic and universal properties of turbulence, although turbulent motions can be of

different configurations, different boundary conditions, and generated by various types of forcing (such as string

to a cup of water). In turbulence studies, turbulent flows are considered to be composed of eddies of different

sizes, which can span a very large range of scales. For example, the largest eddies in the ocean are of the order

of kilometers or even larger, but the smallest eddies are invisible to human eyes. Typically, the external forcing

is exerted at the large scales. Because of the energy cascade, the turbulent kinetic energy flows hierarchically

towards the smaller scales till the smallest end where the kinetic energy is dissipated to heat. According to a

picture originally proposed by Kolmogorov (1941a,b), at the scales much smaller than the domain or forcing

scale but larger than the smallest eddies, the information of boundary or forcing from largest scale is lost, and

the effect of dissipation is negligible. Thus universality is believed to exist in the properties of turbulent motions

of these scales because they are fully determined by the inertial interaction between eddies. This range of scales

is called inertial range and it is the main focus of most of fundamental studies in turbulence theories.

This chapter is an introduction about some fundamentals concerning incompressible turbulence and non-

reactive scalars transported in it. It is organized as follows. In section 1.1, the mathematical description of the
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turbulent motion, Navier-Stokes equations, is first introduced. Then the idea of energy cascade in turbulent

and the classical K41 theory quantifying the scaling behaviors in turbulent flow are introduced. Section 1.2 is

about passive scalars in incompressible turbulence, focusing on the governing equations, statistical properties,

scaling behaviors and intermittency of passive scalar. In next chapter, Chapter 2, the fundamentals about the

reactive scalars in turbulence, which is the main topic of this thesis, are presented.

1.1 Turbulent flow

1.1.1 Navier-Stokes equations

Lagrangian and Eulerian description

To derive the equations fully describing the motion of turbulent flows, the clarification of the framework under

which the motion of fluids is described is needed. There are two ways to describe fluid motion. One is the

Lagrangian description, in which fluid particles are followed as they move through the flow field. The other is

the Eulerian description, in which the properties of the flow field are monitored using a fixed reference frame. In

fact, most studies about fluids mechanics are based on the Eulerian description, because the global properties

of the flow field or the properties at specific region are of physicists’ interests, instead of any particular fluid

particles. However, the understanding of the Lagrangian description is also necessary because the derivation

of the momentum equation about fluid motion is exactly the application of Newton’s second law to the fluid

particles.

The Lagrangian description is based on tracing the motion of fluid particles. The position of a fluid particle

is the function of current time t, the reference time t0 and the position of this particle at the reference time r0:

r(t; r0, t0). And the velocity of this particle is the temporal derivative of r(t; r0, t0): u = dr(t; r0, t0)/dt. In such

a track-dependent description, a property of the fluid field F is described as function of the position and time:

F = F [r(t; r0, t0), t].

The Eulerian description focuses on properties of flow field at the locations of interest, in which the fluid

particles are not discriminated. A property of the fluid field F is the function of position and time: F = F (x, t).

F [r(t; r0, t0), t] and F (x, t) are two descriptions of one quantity. When r = x,

F [r(t; r0, t0), t] = F (x, t). (1.1)
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By taking the temporal derivative of Eq. (1.1), it yields

d

dt
F [r(t; r0, t0), t] =

∂F

∂r1

dr1

dt
+
∂F

∂r2

dr2

dt
+
∂F

∂r3

dr3

dt
+
∂F

∂t

=
∂F

∂x1
u1 +

∂F

∂x2
u2 +

∂F

∂x3
u3 +

∂F

∂t
= (u · ∇)F +

∂F

∂t
=

D

Dt
F (x, t). (1.2)

Eq. (1.2) builds the connection between Lagrangian and Eulerian description of fluids, in which D
Dt is called

material derivative.

Continuum approximation and Reynolds’ transport theorem

A fluid is composed of a huge number of fluid molecules. From the chemical or atomically physical point of

view, the properties of these molecules may be taken into consideration. However, in fluid mechanics, the fluids

are studied by considering a control volume much larger than the fluid molecule, and averaging the behavior

of the fluid molecules inside. For example, the pressure of the flow field instead of the collision among fluid

molecules is considered. These control volumes are microscopically infinitely large but macroscopically infinitely

small. They are valid only when the length scale of physical interest is much larger than the mean free path of

fluid molecules, which means the fluid is of continuous distribution. This is one of the fundamental hypotheses

in fluid mechanics, called continuum approximation. The continuum approximation is valid when the Knudsen

number Kn = ι/L is much smaller than unity, where ι is the mean free path of the molecules and L is the

length scale of interest. Generally, Kn � 1 is satisfied in the nature, except in very few cases, for example in

the quasi-vacuum environment or at the thinner reaches of the tenuous gases.

Using the concepts of continuum and control volume, the governing equations of flow motions can be derived

by considering the conservation laws of mass, momentum or energy. The physical laws applied to an control

volume are always in Lagrangian description. As aforementioned, the operation of material derivative ( DDt ) is

needed, and it is necessary to transform such operations into the volume integrals of Eulerian description. The

theorem for this transformation is called Reynolds’ transport theorem. Let V (t) be a control volume of arbitrary

shape and F (t) be a quantity of interest as functions of time t. The Reynolds’ transport theorem states

D

Dt

∫

V (t)

F (t)dV =

∫

S(t)

F (t)u · dS +

∫

V (t)

∂F

∂t
dV. (1.3)

The Reynolds’ transport theorem can be mathematically derived by considering the definition of derivative from

the perspective of limit (Kundu et al., 2012; Currie, 2002). The right hand side of Eq. (1.3) are in Eulerian
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description and the left hand side ia applicable to refer to specific physical law.

Mass conservation and momentum conservation

By considering the mass conservation and the momentum conservation of fluid motion, the continuity equation

and the equation of momentum conservation are readily obtained (Kundu et al., 2012; Currie, 2002):

1

ρ

Dρ

Dt
+∇ · u = 0, (1.4)

ρ(
∂u

∂t
+ (u · ∇)u) = ρf +∇(τij), (1.5)

where ρ is number density of fluid particles, f is the acceleration by the net body force and τij is the stress

tensor. Mathematically, Eq. (1.4) is derived by considering the F in Eq. (1.3) as ρ, and Eq. (1.5) is derived by

considering the F as ρu and using Newton’s second law.

The set of equations of Eq. (1.4) and Eq. (1.5) has more unknowns than the number of equations. In order

to produce a solvable system, a constitutive equation about the stress tensor τij (for newtonian fluid) is needed:

τij = −pδij + 2µ(Sij −
1

3
(∇ · u)δij) + µv(∇ · u)δij , (1.6)

where p is the pressure; µ is the coefficient of dynamic viscosity; µv is the coefficient of bulk viscosity, which can

be considered as 0 by Stokes assumption (Kundu et al., 2012); δij is Kronecker delta tensor, whose component

is 1 when i = j and 0 when i 6= j; Sij = 1
2 (uixj +

uj
xi

) is the strain rate tensor. Substituting Eq. (1.6) into Eq.

(1.5) produces the Navier-Stokes Equations:

ρ(
∂u

∂t
+ (u · ∇)u) = ρf −∇p+ µ4u + (µv +

1

3
µ)∇ · u. (1.7)

In this thesis, only the incompressible turbulent flows are considered, which are of constant density. For

incompressible fluids, Eq. (1.4) and Eq. (1.7) are simplified to:

∇ · u = 0, (1.8)

and
∂u

∂t
+ (u · ∇)u = −∇p/ρ+ ν4u + f , (1.9)

where ν = µ/ρ is the coefficient of the kinematic viscosity.
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Eq. (1.9) can be made dimensionless by choosing characteristic length scale L and characteristic veloc-

ity amplitude U as reference scales. This leads to the following dimensionless Navier-Stokes Equations for

incompressible fluids:
∂u

∂t
+ (u · ∇)u = Re−14u−∇p+ f , (1.10)

where

Re =
UL

ν
(1.11)

is the Reynolds number. Turbulent flow is characterized by large Reynolds number, and the flow with small

Reynolds number is called laminar flow. When Re = LU/ν � 1, the non-linear convection term ((u · ∇)u) is

dominant, and the inertial force of the fluid motion is much stronger than the viscous force which is to slow

down the fluid motion. Thus the flow is chaotic and unstable. More importantly, the flow with large Re is

of most interest of physicists, because the flow motion is of a large span of length scales. Then the inertial

range of length scales, which are between the largest scales and the smallest scales and believed to contain some

universal properties, is more distinguishable.

Vortex stretching

The turbulent motion can be considered as a collection of numerous eddies. Thus an important feature of

turbulence is the rotational motion (Pope, 2000). By taking the curl of Eq. (1.10) without external body

forcing, it yields
Dω

Dt
= Re−14ω + ω · ∇u, (1.12)

where ω = ∇ × u is called as the vector of vorticity, which is twice of the rotation rate of the fluid. In the

circumstance of large Re, the viscous term Re−14ω can be neglected.

Considering an infinitesimally small material line l = δx, it evolves as

Dl

Dt
= l · ∇u, (1.13)

which is exactly the same as Eq. (1.12) without the viscous term. Thus the vorticity component in the direction,

along which the fluid material line element is stretched by the velocity gradient, tends to increase. In other

word, the vector of the vorticity tends to align with the principle direction of the mean stain rate. Such a

phenomenon is called as vortex stretching. It is very important in turbulent motion because it is the process

about how the eddies extract energy from the mean shear flow. It is noteworthy that the process of vortex
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stretching exists not only in two dimensional turbulence since the angular momentum of eddy is concerned.

This indicates the three dimensional and two dimensional turbulence are fundamentally different.

1.1.2 Energy cascade

In about 500 years ago, the turbulent flow was recognized to be composed by eddies of different sizes, e.g. the

drawing by Leonardo da Vinci of the flowing water out of a ditch, as shown in figure 1.1.

Figure 1.1: Drawing of turbulence by Leonardo da Vinci (15th century).

The energy from outside of the turbulent flow is injected, by external forces or boundary conditions, into the

flow at the large scales. The flow motion at these scales are of largest Reynolds number, and most unstable. As

a result, they eventually will break up into smaller and smaller eddies. Such a process stops when the eddies of

small enough scales are reached, in which the viscosity is important. The breaking-up of eddies is accompanied

with the transfer of energy, which will eventually be dissipated into heat by viscosity. This whole process is

called turbulent cascade. An illustration about this process is given in figure 1.2. The concept of energy cascade

in turbulence was first introduced by Richardson (1922) with a famous verse:

Big whirls have little whirls

that feed on their velocity,

And little whirls have lesser whirls

and so on to viscosity.

In Navier-Stokes equations (Eq. (1.10)), the convection term ((u ·∇)u) is responsible for transferring the energy

to smaller scales and the dissipation term (Re−14u) is responsible for dissipating the energy into heat at the

smallest scales. In order to have stationary turbulence, energy have to be added at the large scales to maintain

the motion of eddies, otherwise the entire kinetic energy will gradually vanish, through the cascade process.
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F����� �.�: Richardson’s turbulent cascade. Energy-
containing eddies break up into smaller eddies and energy

is transferred until it is dissipated by viscosity.

turbulent motions of eddies much smaller than energy-containing or forc-
ing scales, are statistically isotropic, in other words are independent of the
motions of large eddies. In reality the motions of large scale eddies (L),
can be inhomogeneous and anisotropic but in the cascade the information
is lost so that the motion of very small scale can be locally homogeneous
and isotropic.
The second hypothesis of Kolmogorov was that at very high Re number
the statistics of these small scale turbulent motions are independent from
large scales and characterized by the kinematic viscosity (n) and the aver-
age rate of dissipation of turbulence kinetic energy per unit mass (e). ByEnergy dissipation, e

The average rate of
dissipation of
turbulence kinetic
energy per unit mass

means of dimensionless analysis, Kolmogorov scales were introduced as
follows:

h =

✓
n3

e

◆1/4

(3.11)

uh = (ne)1/4 (3.12)

th =
⇣n

e

⌘1/2
(3.13)

Figure 1.2: Illustration of turbulent cascade (Ardeshiri, 2016). L is the length scale of domain and η is the
smallest length scale, kolmogorov microscale. Energy is injected from outside of the flow at the largest scales.
Then the largest eddies break up into eddies of smaller and smaller size and energy is meanwhile transferred.
This process continues until the smallest eddies and the energy is dissipated by viscosity.

1.1.3 Kolmogorov’s 1941 theory

In general, the N-S equations can not be solved analytically. However based on the N-S equations, physicists

have obtained some theories describing the fundamentals of turbulent motions, such as those proposed by

Richardson (1922), Taylor (1935) and Kolmogorov (1941b,a). A milestone in the studies of turbulence is the

Kolmogorov theory in 1941 (Kolmogorov, 1941a,b), which is the first quantitative description to the energy

cascade process in turbulence. The Kolmogorov’s 1941 (K41) theory is based on the following assumpotions:

Kolmogorov’s hypothesis of local isotropy. At sufficiently high Reynolds number, the small-

scale turbulent motions of the scale (l� L) are statistically isotropic.

Kolmogorov’s first similarity hypothesis. In every turbulent flow at sufficiently high Reynolds

number, the statistics of the small-scale turbulent motions of the scale (l� L) have a universal form

that is uniquely determined by ν and ε (energy dissipation rate, the average rate of dissipation of

turbulent kinetic energy per unit mass).

Kolmogorov’s second similarity hypothesis. In every turbulent flow at sufficiently high

Reynolds number, the statistics of the small-scale turbulent motions of the scale in the range

(η � l� L) have a universal form that is uniquely determined by ε, independent of ν .

The hypothesis of local isotropy states that the turbulent motions of small scales are isotropic, although the

forcing or boundary conditions at large scale are generally anisotropic. When the energy cascade reaches small
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enough scales, the information of largest scales is lost and the isotropy is restored.

The first similarity hypothesis states that when the information of largest scales is lost, the statistical

properties of turbulent flows are fully dependent on the viscosity ν and dissipation rate ε (〈ν2 ( ∂ui∂xj
+

∂uj
∂xi

)2〉).

Therefore, by dimensional analysis, the smallest scales (Kolmogorov scales) are estimated as:

η =

(
ν3

ε

)1/4

, uη = (νε)
1/4

, τη =
η

uη
=
(ν
ε

)1/2

, (1.14)

where η, uη and τη are the Kolmogorov length scale, Kolmogorov velocity scale and Kolmogorov time scale

respectively. The Reynolds number at the Kolmogorov scale is Reη = (ηuη)/ν = 1.

The second similarity hypothesis is about the inertial range of scale, where the effect of energy dissipation is

also negligible. Thus the dissipation rate ε, which is also the energy injection rate at largest scales and energy

transfer rate at the intermediate scales because of energy conservation, is the only key parameter to determine

the properties of flow motion.

The motion of the largest eddies is of the integral length scale L and characteristic velocity U . By dimensional

analysis, L can be estimated as

L =
U3

ε
. (1.15)

According to Eq. (1.11) and (1.14), the ratio of the largest scale to the smallest scale is

L

η
= Re3/4. (1.16)

This explains why the flow motion with larger Reynolds number spans a larger range of scales.

Kolmogorov assumes that the flow is self-similar at the scale much smaller than the largest scales. An

important consequence of this assumption is that there is a unique scaling exponent h in the scaling relation of

the velocity difference δu(l) = u(x+ l)− u(x):

δu(αl) = αhδu(l). (1.17)

This scaling relation implies the scaling behavior of the structure functions

Sq(l) = 〈|δu|q〉 = 〈|u(x+ l)− u(x)|q〉 ∼ lζ(q), (1.18)

where ζ(q) is the scaling exponent of qth order structure function.
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By considering the famous Kármán-Howarth equation in terms of the structure function and neglecting the

viscous term in the inertial range (Monin and Yaglom, 1975; Pope, 2000), the Kolmogorov 4/5th law can be

obtained as

〈(u(x+ l)− u(x))3〉 = −4

5
εl. (1.19)

This is an exact result about the scaling behavior of third order longitudinal structure function derived from

the Navier-Stokes equations, indicating the scaling exponent of third order structure function is ζ(3) = 1. K41

theory suggests that ζ(q) is linearly dependant on q, i.e. ζ(q) = q/3.

However, the linear dependance between ζ(q) and q was later found incorrect, because of the internal

intermittency. The phenomenon of the internal intermittency in turbulence was first found in the turbulent

motion by Batchelor and Townsend (1949), when they revealed that the instantaneous energy dissipation rate

could evolve to large value intermittently in their experiment. In order to take the internal intermittency into

account, the refined similarity hypotheses were proposed by Kolmogorov (1962) and Obukhov (1962) for the

velocity field. This hypothesis leads to a non-linear expression of ζ(q) as

ζ(q) =
q

3
− µ

18
(q2 − 3q), (1.20)

where µ is a constant, called as intermittency exponent. Later, in the the multifractal framework (Yaglom,

1966; Mandelbrot, 1974; Frisch, 1995), which suggests that the energy cascade has multifractal statistics, the

scaling exponent is estimated as

ζ(q) =
q

3
−K(

q

3
), (1.21)

where K( q3 ) is model-dependant (for example β model (Frisch et al., 1978) or lognormal model (Obukhov, 1962;

Kolmogorov, 1962)).

Although K41 theory was found questionable, for second order structure function, ζ(2) = 2/3 is nevertheless

a good estimation. In the work by Kolmogorov (1941b), the second order structure function was considered.

And by dimensional analysis, it was derived that

S2(l) = C ′ε2/3l2/3, (1.22)

where C ′ is the Kolmogorov constant and believed to be universal. Such a result confirms the estimation of

ζ(2) = 2/3. The scaling law of the energy cascade can also be derived based on the results of structure functions.



16 Introduction

Taking the advantage of Fourier Transform, for the eddies of length scale of l, k = 2π/l is the corresponding

wave number. To fully understand the energy cascade, the velocity u is decomposed into mean part and

fluctuating part:

u = 〈u〉+ u′. (1.23)

in which 〈·〉 means the ensemble average, 〈u〉 is the mean velocity, i.e. the motion of 0 wave number (largest

scale), and u′ is the sum of the velocity of other modes (smaller scales). An important feature of turbulent flow

is that u′ is comparable with or dominant over 〈u〉. The tensor of autocovariance is

Rij(r) = 〈u′i(x)u′j(x + r)〉. (1.24)

Taking the Fourier transform of Rij(r) produces

Φij(k) =
1

8π3

∫
Rij(r)e−ik·rdr, (1.25)

where k is the vector of wave number. Then the energy spectrum is defined in k space, as the integral of 1
2Φii

in the sphere with radius of |k|:

E(k) =

∫
1

2
Φii(k)δ(k − |k|)dk, (1.26)

where the repeating index of Φii is Einstein summation convention, i.e. 1
2Φii = 1

2 (Φ11 + Φ22 + Φ33) in three

dimensional space.

The autocovariance Rij has the same dimension with the second order structure function S2(l). Thus by

dimensional analysis, a −5/3 scaling relation can be found in the energy spectrum (Obukhov, 1941):

E(k) = Cε2/3k−5/3, (1.27)

where C is a constant. This result is known as Kolomogorov-Obukhov’s −5/3 law (Kolmogorov, 1941a,b;

Obukhov, 1941), quantitatively describing the energy cascade in the inertial range.

1.2 Passive Scalars

The concentration of a substance or intensity of a property convected by a turbulent flow can exhibit a very

complex structure, evolving broadly in both space and time. Such substances can be dye diluted in the water

or smoke dispersing in air. The property can be the temperature of air flow when cooling a hot fin. The



1.2 – Passive Scalars 17

turbulent convection of these substances are important in many circumstances, such as in the atmospheric

studies, chemical and thermal engineering, and biological research. They are all one-dimensional quantities

and share the same form of governing equation. Thus they are described as scalars (in comparison with vector

such as velocity). Scalars in the turbulent environment are transported and dispersed by the turbulent eddies

from largest to smallest scales, under the action of thermal or molecular diffusion as well. In many cases, the

advected scalars have strong effects on the turbulent flow, i.e. the velocity field. For example, some considerable

change in temperature can significantly change the fluid density. These scalars are called active scalars, which

are beyond the consideration of this thesis. The passive scalars are undergoing dispersion and mixing processes

mainly driven by the turbulent flow, but does not couple back on the flow dynamics, leading to negligible change

in the property of background flow (Monin and Yaglom, 1975; Libby and Williams, 1976; Shraiman and Siggia,

2000; Warhaft, 2000; Mitrovic and Papavassiliou, 2004).

1.2.1 Advection-diffusion equation

Let θ be a passive scalar field, for example representing the molecular concentration of any species. By consid-

ering the F in Eq. (1.3) as the volumetric density (θρ) and using the Fick’s law of diffusion (Bergman et al.,

2011), the advection-diffusion equation of passive scalar can be obtained. In incompressible fluid, it reads

∂θ

∂t
+ (u · ∇)θ = D4θ + q̇, (1.28)

where θ is the passive scalar, D is the species diffusivity for species or thermal conductivity for temperature, q̇

is the external source or sink. In the dimensionless from, the governing equation of passive scalar is

∂θ

∂t
+ (u · ∇)θ = (Re · Sc)−14θ + q̇, (1.29)

where Sc = ν/D is the Schmidt number.

Eq. (1.29) is in a form similar with Eq. (1.10). Thus physicists are interested in analogizing the properties

of passive scalar to that of velocity, especially questing for the universality in the inertial range of scales and

under the condition of large enough Reynolds (Re) and Peclét (Pe = Re · Sc) numbers.
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Moments of passive scalar

Similar with the Reynolds decomposition of velocity u (Eq. (1.23)), θ can be decomposed into mean part and

fluctuating part:

θ = 〈θ〉+ θ′. (1.30)

The 〈θ〉 is the mean quantity of scalar, i.e. the amplitude of the 0 wave number mode (largest scale), and θ′

is the sum of the rest modes (smaller scales). Then the scalar variance is defined as the mean square of the

fluctuating part: 〈θ′2〉. The scalar variance describing the magnitude of the fluctuation of θ is also called as

scalar energy, because it is an analogy of the kinematic energy for velocity 〈(u′iu′i/2)〉. Considering the ensemble

average (〈·〉) of Eq. (1.28), it yields

∂〈θ〉
∂t

+∇ · (〈u〉〈θ〉) = D4〈θ〉 − ∇ · 〈u′θ′〉+ 〈q̇〉. (1.31)

The covariance between passive scalar and velocity 〈u′θ′〉 at the right-hand-side of the Eq. (1.31) is the turbulent

flux of passive scalar.

The passive scalar flux is generally unknown. Its determination belongs to the closure of turbulence. As

an analogy with molecular motion and the introduction of the diffusivity constant, a simplifying assumption is

sometimes used, which sates that the passive scalar flux is linked with the mean gradient, using a diffusivity

tensor. This was proposed by Batchelor (1949), as

〈u′θ′〉 = −DT,ij∇〈θ〉, (1.32)

where DT,ij is the turbulent diffusivity tensor. A further simplification is to assume that this diffusivity tensor

is diagonal (Monin and Yaglom, 1975). A last simplification is to assume that this tensor is proportional to the

unit tensor, and thus depends on only one parameter DT , providing a proportionality between vectors (Pope,

2000; Tennekes and Lumley, 1972):

〈u′θ′〉 = −DT∇〈θ〉, (1.33)

where DT is the turbulent diffusivity of the passive scalar. This is called the mixing length hypothesis, which is

useful for modelling purpose, but is not compatible with intermittency and long-range correlations in turbulent

fluctuations. As mentioned in the book by Tennekes and Lumley (1972), the mixing length hypothesis is rather

well satisfied only when the turbulent flow is mean gradient driven. But in other cases, such as buoyancy driven

flow or homogeneous flow, the mixing length hypothesis is not valid.
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The energy of the passive scalar is defined as the variance of the fluctuation 〈θ′2〉. In a canonical case where

the mean gradient of passive scalar ∇θ is constant and the external source is of zero mean 〈q̇〉 = 0, the governing

equation of θ′ can be derived from the Reynolds decomposition of Eq. (1.28), as

Dθ′

Dt
= D4θ′ + q̇′ − u · ∇〈θ〉. (1.34)

By multiplying Eq. (1.34) with θ′ and taking ensemble average (〈·〉), it can be obtained that

1

2

D〈θ′2〉
Dt

= −D〈(∇θ′)2〉+ 〈θ′q̇′〉 − 〈u′θ′〉 · ∇〈θ〉. (1.35)

The minus sign of the dissipation term D〈|∇θ′2|〉 indicates it is responsible for the energy lose of the fluctuation

of passive scalar. On the other hand, in addition to the energy injection from the external source, the fluctuation

of passive scalar can also be sustained by the passive scalar mean gradient, whose energy injection power is

proportional to the flux of passive scalar 〈u′θ′〉.

1.2.2 Obukhov-Corrsin theory

Similarily with Kolmogorov’s and Obukhov’s theories for the scaling properties of the velocity field, results for

passive scalars can also be obtained.

The autocovariance of scalar is defined as

Rθ(r) = 〈θ′(x)θ′(x + r)〉. (1.36)

Taking the Fourier transform of Rθ(r) produces

Φθ(k) =
1

8π3

∫
Rθ(r)e−ik·rdr. (1.37)

Then the energy spectrum is defined in k space, as the integral of 1
2Φθ in the sphere with radius of |k|:

Eθ(k) =

∫
1

2
Φθ(k)δ(k − |k|)dk. (1.38)

The global scalar variance is the integral of Eθ(k) all over the amplitude of wave numbers:

〈θ′2〉 =

∫
Eθ(k)dk. (1.39)
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Here the the energy spectrum of the scalar Eθ(k) describes the fluctuation of θ at the length scale of (2π/k).

Following Kolmogorov (1941b), Obukhov (1949) and Corrsin (1951) argued that, under the condition of

high enough Re and Pe numbers, there is also an energy cascade process of passive scalars from large to small

scales, at which the fields of passive scalars are locally isotropic. Together with the scaling of the velocity field,

this forms the classical KOC (Kolmogorov-Obukhov-Corrsin) theoretical framework.

In real space, Obukhov and Corrsin’s results (Obukhov, 1949; Corrsin, 1951), stated independently, are that

the scaling relation second order structure function of a passive scalar follow:

S2
θ (l) = 〈|δθ|2〉 = C ′θε

−1/3εθl
2/3, (1.40)

and in Fourier space:

Eθ(k) = Cθε
−1/3εθk

−5/3, (1.41)

where C ′θ and Cθ are constants and εθ (2D〈 ∂θ∂xi
∂θ
∂xi
〉) is the dissipation rate of scalar variance. The energy

spectrum of scalar variance obeys a similar scaling law with the kinematic energy spectrum in the inertial

range.

Effect of Schmidt number

An extension of Obukhov-Corrsin theory was done by Batchelor in 1959 (Batchelor, 1959; Batchelor et al., 1959).

In the study about turbulent passive scalar field, the smallest length scale is characterized by the Batchelor

scale ηB (Batchelor, 1959) which is different from the smallest length scale of velocity field (Kolmogorov scale

η) with a factor of the square root of Schmidt number Sc (ν/D), as:

ηB =
η

Sc1/2
. (1.42)

When Sc ∼ 1, the −5/3 law for passive scalar refers to the scaling behavior in the inertial range (between

large scale L and η). For the case of very large Sc (η � ηB), the length scales between L and η is referred

as inertial-convective range, in which the −5/3 scaling law holds. Moreover, in this circumstance, the range of

length scales even smaller than η but larger than ηB (called as the viscous-convective range) is also of interest,

in which the energy of passive scalar variation scales as k−1 (Batchelor, 1959). For a passive scalar field with

Sc � 1 (ηB � η), the inertial range can be divided into inertial-convective range (between L and ηB) and

inertial-diffusive range (between ηB and η). The −5/3 law holds in the inertial-convective range, while the
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scaling coefficient in the inertial-diffusive range is −17/3 (Batchelor et al., 1959).

Numerical studies of the Obukhov-Corrsin theory

Soon after the use of computers, a lot of numerical studies based on the N-S equations and the convection-

diffusion equation of passive scalar were implemented for examining the Obukhov-Corrsin theory (Sreenivasan,

1991; Sreenivasan and Antonia, 1997), whose prerequisite is high enough Re and Pe numbers. With the

development of super computers, the numerical spatial resolution becomes finer and finer. Thus the direct

numerical simulations about the passive scalar in turbulence with high Re and Pe numbers (the Kolmogorov

scale is smaller and finer grid size is required to resolve it) is possible.

The −5/3 scaling behavior in the energy spectrum of the passive scalar variance is one main conclusion of the

Obukhov-Corrsin theory. This have been well observed in some numerical studies (Warhaft, 2000; Yeung et al.,

2005). In the past few decades, several numerical studies about the passive scalar spectrum were interested

in the effect of Sc number. Some works focused on the cases of small Sc (Yeung et al., 2002; Yeung and

Sreenivasan, 2014; Hill, 2017). In the work by Briard and Gomez (2015), the energy spectrum of passive scalar

variance in isotropic turbulence, with Re = 160 and Pr between 10−6 and 1, was numerically studied∗. For the

case of Pr = 1, a −5/3 slope was found for the spectrum between Pr3/4kη and kη, where kη is wave number

corresponding to the Kolmogorov scale. With the decrease of Pr, a more detailed scaling behavior than that

stated by Batchelor et al. (1959) was detected. The spectrum gradually evolves into a combination of a −17/3

slope between Pr3/4kη and
√
Prkη and a −11/3 slope between

√
Prkη and kη. Meanwhile, high Sc number,

for which even better resolution is required to resolve the Batchelor scale (η/Sc1/2), is also of high interest

(Warhaft, 2000; Gotoh et al., 2015). In the work by Donzis et al. (2010), direct numerical simulation data

was used to examine the spectrum of passive scalar fluctuation maintained by uniform mean gradient in forced

stationary isotropic turbulence. The Sc number varies from 1/8 to 1024, and Taylor-scale Reynolds number

(Reλ) varies from 8 to 650 on the periodic domains of 643 to 40963 grid points. It was clearly observed that,

for all Reynolds numbers, there was a general trend for the high wave number spectrum to flatten towards k−1

as Sc increases.

1.2.3 Probability density function, structure function and intermittency

The probability density function (PDF) of the passive scalar did not received attention as much as the energy

spectrum until the 1980s, because the fluctuation of passive scalar normalized by its standard derivation had

∗Pr means Prandtl number, which is equivalent to Sc when dealing with temperature as a passive scalar.
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Figure 1.3: The probability density function of normalized velocity (upper curve) and temperature (lower
curve) in a grid-generated turbulence (shown in the work of Jayesh and Warhaft (1991)). For legibility purpose,
the upper curve has been shifted by 2 decades with respect to the lower one. Note that in the labels, the θ and
u are the fluctuations and θ′ and u′ are the corresponding rms. The deviation of PDF from Gaussian curve for
the scalar is larger than that of the velocity, because the intermittency of the scalar field is relatively stronger.

been assumed of Gaussian distribution in homogeneous turbulence, which was a satisfactory model. However, it

was then found in experimental and theoretical studies that the PDF of the passive scalar has exponential tails

(see figure 1.3). It indicates that the probability of the scalar to reach extremely high or low values is larger

than what was believed before. Such a phenomenon is of practical interest, for example when the scalar is the

concentration of a toxic chemical. The exponential tails in the profile of scalar PDF is a manifestation of the

internal intermittency of passive scalars, associated with the sharp ramp-cliff structures in the small scale scalar

field (Shraiman and Siggia, 2000; Warhaft, 2000). Figure 1.4 is a numerical result showing the intermittency in

a passive scalar field, in which the large scale of plateau structures are separated by small scale cliff structures.

The most common measure of intermittency is the scaling exponents of the structure functions, hence not

for the field itself, but for its increments. For passive scalars, similarily with Eq. (1.18), the KOC theory implies

a scaling relation of the structure function of the passive scalar as

Sqθ (l) = 〈|δθ|q〉 = 〈|θ(x+ l)− θ(x)|q〉 ∼ lζθ(q), (1.43)

where ζθ(q) is the scaling exponent of qth order passive scalar structure function. Without intermittency, the
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Figure 1.4: A visualization of a passive scalar field, by Chen and Kraichnan (1998).

scaling behaviors of passive scalar and velocity are supposed to be identical, as

ζ(q) = ζθ(q) = q/3. (1.44)

Taking the internal intermittency into consideration, similar with velocity (Kolmogorov, 1962; Obukhov, 1962),

the refined similarity hypotheses for passive scalars were also proposed (Stolovitzky et al., 1995). Then it was

soon confirmed that, with intermittency, the ζ-q and ζθ-q curves are nonlinear instead of straight lines (see

figure 1.5).

With the help of super computers, more precise inspection of the intermittency is an interesting topic for the

numerical simulations of passive scalar in high Reynolds number turbulent flow (Warhaft, 2000; Borgas et al.,

2004; Yeung et al., 2005). Iyer et al. (2018) studied the intermittency of a passive scalar in three-dimensional

turbulence at Taylor-scale Reynolds number of 650, using direct numerical simulations on a 40963 grid. The

Schmidt number is unity. The passive scalar fluctuation was forced by a uniform mean gradient. The scaling

exponents of structure function of order higher than about 12 was found to saturate to about 1.2. Interestingly,

the fractal dimension of the steepest fronts, associated with very large scalar gradients, was found as about 1.8,

which adds up with the saturation value of scaling exponent to be the number of spatial dimension 3. In the

work by Gotoh and Watanabe (2015), direct numerical simulation with 40963 grid points was implemented for

an isotropic steady turbulence with Reλ = 805. Two passive scalars with Sc = 0.72 were studied: one (θ) is

forced by a random source that is Gaussian and white in time, and the other (q) is forced by the mean uniform

scalar gradient. The local scaling exponents of the two passive scalars: ζθn,0(r) and ζqn,0(r) as functions of

separation distance r and order n were introduced. They were computed based on the zeroth (isotropic) terms
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of the Legendre expansions of the structure function. Then the scaling exponents ζθn and ζqn were determined

as the slopes of the ζθn,0(r) − r and ζqn,0(r) − r curves (obtained by fitting with least-square method). Mostly

importantly, ζθn and ζqn were found to be very close to each other. Such a result revealed the universality in

the scaling behavior of turbulent passive scalar. In figure 1.3, non-Gaussian tails are more clearly found in the

PDF profiles of passive scalars compared with the PDF of velocity. Moreover, figure 1.5 shows the ζθ-q curve is

more bending than the ζ-q curve, i.e. the structure function of the passive scalar is of more abnormal scaling

behavior. Both these results suggest that the passive scalar field is more intermittent than the velocity.

Figure 1.5: The scaling exponents ζ and ζθ from experiments by Schmitt (2005, 2006), compared with the
theoretical predictions of K41 and KOC theories (Huang, 2009).



Chapter 2

Reactive scalars in incompressible

turbulence

The problem of scalar transport and mixing becomes physically rich when reactions are taken into consideration,

such as biological or chemical reactions. For example, in the marine system, many micro-biological species are

under the influence of both the turbulent dynamics of their living fluid environment and the reactive interactions

between the species, or species and nutrition distribution. Specifically, species interaction can be modeled as

chemical or biological reactions, e.g. preys and predators or species and nutrition, involving chemical or biological

quantities (such as the concentration of phytho- or zooplanktons) as reactive scalars. Different from the passive

scalars, which are transported without reaction, reactive scalars are more complex because the reactions almost

always make the system non-linear (Eq. (2.7)). Because of the motion of turbulent eddies in the ocean, the

plankton and nutrition as reactants and products of reactions are efficiently mixed and redistributed. When

transported in the turbulent flow, the turbulence is responsible for not only bringing reactants together so

that reaction can occur within a finite time, but also for dispersing the products of reaction. These species

and nutrients are at the bottom of the food chain in the marine world. Thus the dynamics of such system is

important in a number of aspects, e.g. larval recruitment, fishing and environmental monitoring (Hill, 1976;

Warhaft, 2000; Neufeld and Hernández-García, 2009).

From a fundamental point of view, such a reactive scalar mixing problem in incompressible turbulence is

especially meaningful in the following senses. Firstly, the nonreactive passive scalar turbulence alone has been

the subject of many studies (Monin and Yaglom, 1975; Libby and Williams, 1976; Mitrovic and Papavassiliou,

2004). When the chemical source is added, how scalars interact needs to be taken into consideration. Secondly,
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reactive turbulence has been typically considered as the combustion case, with large variation of the fluid density

and very fast reaction rates. There exist abundant literature on turbulence combustion (Peters, 2000; Pope,

2000; Poinsot, 2017; Zhao et al., 2018a; Zhang et al., 2020). Relatively, the theoretical knowledge of statistical

laws, including scaling behavior, of the reactive scalars and the effects of chemical reaction on the passive scalar

mixing in incompressible turbulence is still very sparse.

In this chapter the basic concepts, fundamental theories and some numerical studies about reactive scalars

in incompressible turbulence are introduced. It is organized as follows. Section 2.1 introduces the basic chemical

kinetics for formulating the reaction source terms in the governing equations of reactive scalars, and some chem-

ical and biological models, which simplify the real reacting system from a theoretical point of view. In section

2.2, the statistical properties of reactive scalars, including the mean, variance and correlation are discussed

based on the governing equations of reactive scalars. Last but not least, in section 2.3, a literature review about

the analytical, numerical and experimental studies of turbulent reactive scalar is presented.

2.1 Chemical kinetics

2.1.1 General descriptions

The basic concepts about chemical kinetics (Law, 2006; Neufeld and Hernández-García, 2009) are introduced

here, before being used in the fluid mechanics framework.

The general form of irreversible reaction between N species: M1, M2, . . . , MN is

N∑

i=1

n′iMi

γ1

GGGGGGA

N∑

i=1

n′′iMi, (2.1)

where Mi can be a reactant or a product; γ1 is the reaction rate coefficient; n′i and n′′i are the reaction order of

Mi. The order of the reaction is
∑N
i=1 n

′
i. Considering the mole concentration of Mi: θi, the rate of change of

θi is

ωi =
dθi
dt
. (2.2)

For any two reacting species Mi and Mj , a species independent quantity ω can be introduced:

ω =
ωi

n′′i − n′i
=

ωj
n′′j − n′j

. (2.3)

Thus ω is defined as the reaction rate. The phenomenological law of chemical reaction states that ω is propor-
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tional to the product of the concentrations of the reactants:

ω = γ1

N∏

i=1

θ
n′
i
i . (2.4)

It is noteworthy that, according to Eq. (2.4), the dimension of the reaction rate coefficient γ1 is not universal,

but dependent on which reaction it refers to.

In reality, there is no absolutely irreversible reaction, every reaction of (2.1) is associated with the reverse

reaction of it. The overall reaction is a reversible reaction:

N∑

i=1

n′iMi

γ1
GGGGGGBFGGGGGG

γ2

N∑

i=1

n′′iMi, (2.5)

where γ2 is the reaction rate coefficient of backward reaction. The reaction rate of the backward reaction is

defined similar with the forward reaction. Thus the net reaction is

ωforward − ωbackward = γ1

N∏

i=1

θ
n′
i
i − γ2

N∏

i=1

θ
n′′
i
i . (2.6)

For specific species Mj , the net chemical source is

ωj = (n′′j − n′j)(γ1

N∏

i=1

θ
n′
i
i − γ2

N∏

i=1

θ
n′′
i
i ). (2.7)

After enough long time and without external supply of reactant, the reversible reaction will finally reach its

chemical equilibrium state, at which both the forward and backward reactions are still ongoing but of the same

rate, i.e. the net reaction rate is 0.

2.1.2 Models in chemical and biological systems

In a incompressible turbulence environment, such as in the ocean, various reactions exist. For example the

decomposition of carbonic acid into H2O and CO2 and the process of photosynthesis. However, chemical

reactions in reality are always highly multi-steps and of complex chemical dynamics. From a theoretical point

of view, it is appreciated to propose some chemical models summarizing the main mechanism and behaviors

in complex chemical reactions. More generally, some biological processes can also be modeled as reaction. For

example, the cluster of plankton blooms where the reactants are various nutrients transported by the flow.

Theoretically, the interaction between plankton and their nutrition can be considered as two reactants in one
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reaction with one’s number grows at the cost of the consumption of the other. In this section, some mathematical

models about the chemical and biological process are reviewed (Neufeld and Hernández-García, 2009).

Chemical models

As an example of the chemical kinematics described in section 2.1, an elementary second order irreversible

reaction is in the from of:

A + B γ−→ C. (2.8)

If we consider it as a 0-dimensional problem, the concentrations of A, B and C evolve according to

dA
dt

=
dB
dt

= −dC
dt

= −γAB, (2.9)

from which the difference between the concentration of A and B is found as invariant, because

d(A− B)

dt
= 0.

Thus we can define constant Q as

Q = A(t)− B(t) = A(0)− B(0),

which then produces the temporal ordinary partial equation of A as

dA
dt

= γQA− γA2. (2.10)

Eq. (2.10) is an example of how a nonlinear term arise in a single chemical reaction.

In the reaction of (2.8), if the concentration of one reactant is hold as constant (for example the reactant of

B), the equation about the temporal evolutions of A and C become

dA
dt

= −dC
dt

= −γ′A, (2.11)

where γ′ = γB can be taken as another reaction rate coefficient. Then the reaction is

A γ′

−→ C, (2.12)
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which is an example of first order reaction. Consider the reverse of reaction (2.8):

C γ−→ A + B. (2.13)

Such a decomposition process is another example of first order reaction.

Imagine the concentration of C is the reaction (2.12) is also hold as constant. Then the reaction becomes

A γ′

−→ ∅. (2.14)

Such a reaction corresponds to the decaying process of a chemical, generally in an exponential manner. The

reverse of reaction (2.14) is

∅ γ′

−→ A, (2.15)

which is called as zeroth reaction.

Biological models

When dealing with a single species, the evolution of the population can be modelled in the framework of birth-

death-saturation model. For an individual species A, the model considering only birth and death states that

the temporal evolution of A follows
dA
dt

= bA− dA. (2.16)

Here the b and d are the growth rate and death rate respectively. The terms of bA and −dA indicate that this

process consists of the combination of the reaction of A b−→ 2A and A d−→ ∅. In such case, it is easy to find

that A evolves exponentially as e(b−d)t. Thus if b is smaller than d, A will decay to infinitesimally small quickly.

The case with b larger than d is of more interest, in which A can grow explosively. However this is unrealistic

in biology. The problem lies in the modelling about the growth. The growth of a species replies on the supply

from the environment, such as food and oxygen. Thus the growth subjects to the finiteness of the resources.

The reaction A b−→ 2A has to be replaced with A + B b′−→ 2A, where B represents the food. The modified

coefficient of reaction rate b′ is function of A, as b′ = b(1 − A/Amax), where Amax is the carrying capacity of

the environment, also the saturation value of A. It means that A cannot grow without superior limit, but it

will saturate when approaching Amax.

Another model for biological reaction is the prey-predator model, which can be used for studying the

evolution of fish population due to fishing behavior. Let A and B represent the concentrations of prey and
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predator. In addition to the aforementioned birth and death for both prey and predator, the number of preys is

supposed to decrease with large number of predators, and the predators can flourish with plenty of preys. The

behavior of preying is the key in the prey-predator model. Thus for the prey, it is assumed that the decrease in

population is mostly due to being preyed, i.e. the natural death of prey is less important. Similarly, the increase

of predator population is assumed as strongly dependant on the feeding and relatively weakly on proliferation.

Therefore, the evolutions of A and B follow:

dA
dt

= (γ1 − γ2B)A,
dB
dt

= (γ2A− γ3)B. (2.17)

And the corresponding reactions are

A γ1−→ 2A, A + B γ2−→ 2B, B γ3−→ ∅. (2.18)

Consequently, such a chemical scheme produces persistent chemical oscillations, in which A and B increase and

decrease alternatively and periodically.

2.2 Advection-diffusion-reaction equation

The governing equation of a reactive scalar θj is the advection-diffusion equation of passive scalar (Eq. (1.28))

with the addition of the chemical source term ωj :

∂θj
∂t

+ (u · ∇)θj = D4θj + ωj + q̇. (2.19)

Let Θj (can be the global average of θj) be the characteristic quantity of θj . The characteristic time scale for

the reaction is Θj/ωj . Let us note τmix the characteristic time scale of scalar transport, which is generally

dependant on the scalar convection and diffusion. The Damköhler number Da is defined as the ratio between

the time scales of scalar transport and reaction, as:

Da =
τmix

Θj/ωj
. (2.20)

Such a dimensionless parameter is a key parameter, quantifying the effect of reaction on the evolution of reactive

scalar in comparison with the effect of turbulent convection-diffusion.

In the advection-diffusion-reaction equation (Eq. (2.19)), the reaction term ωj is generally non-linear. As
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a result, it is generally impossible to derive the analytical expression about the statistical properties of the

reactive scalar (the mean quantity or the variance etc.), unless the reaction is simple and of low order, such as

the first-order reaction (Corrsin, 1958). Consider θ as a reactive scalar undergoing first order reaction of

θ
γ−→ ∅. (2.21)

in homogeneous isotropic turbulent flow. Then the evolution equation for θ(x, t) reads

∂θ

∂t
+ (u · ∇)θ = D4θ − γθ + q̇. (2.22)

By writing the left-hand-side of Eq. (2.22) in the form of material derivative and doing the ensemble average,

it yields
D〈θ〉
Dt

= D4〈θ〉 − γ〈θ〉+ 〈q̇〉. (2.23)

The diffusion term D4〈θ〉 is 0 because of the homogeneity. Thus if there is no external supply (q̇ = 0), the

mean quantity 〈θ〉 is supposed to decay exponentially.

Considering the variance of θ, by multiplying the equation of fluctuating scalar (obtained from (2.22)-(2.23))

and doing ensemble average, it yields

1

2

D〈θ′2〉
Dt

= −D〈|∇θ|2〉 − γ〈1
2
θ′2〉+ 〈q̇′θ′〉. (2.24)

Similarly with Eq. (1.35), the fluctuations of reactive scalars in homogeneous isotropic turbulence are sustained

by the external energy source 〈q̇′θ′〉, and dissipated by the dissipation term −D〈|∇θ|2〉. In addition, the decrease

of scalar fluctuation energy due to reaction is more rapid because the term of −γ〈 12θ
′2〉 produces an exponential

decay.

Consider a second order reaction in the most simple form :

θ1 + θ2
γ−→ ∅. (2.25)

With isotropy and homogeneity, similar with Eq. (2.24), the evolution equations of the mean and variance of

θ1 are
D〈θ1〉
Dt

= D4〈θ1〉 − γ〈θ1〉〈θ2〉 − γ〈θ′1θ′2〉+ 〈q̇1〉 (2.26)
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and
1

2

D〈θ′21 〉
Dt

= −D〈|∇θ1|2〉 − γ〈θ′21 θ′2〉 − γ〈θ′21 〉〈θ2〉 − γ〈θ′1θ′2〉〈θ1〉+ 〈q̇′1θ′1〉. (2.27)

Compared with first order reaction (Eq. (2.23) and (2.24)), the evolutions of the mean and variance of reactive

scalars in the second reaction are much more complicated, because the non-linear reaction term involves the

second and even third order covariance of the fluctuations of reactants. The covariance normalized by the

product of the r.m.s of scalar fluctuations is the correlation coefficient between the reactive scalars:

r(θ1, θ2) =
〈θ′1θ′2〉

〈θ′21 〉1/2〈θ′22 〉1/2
. (2.28)

The correlation coefficient is a classical mathematical quantity characterizing how strong two zero-mean vari-
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Figure 2.1: Scatter plots about the example θ′1-θ′2 joint distribution in the case of (a) r(θ1, θ2) = −0.9; (b)
r(θ1, θ2) = 0; and (c) r(θ1, θ2) = 0.9.

ables (θ′1 and θ′2) are correlated. According to Cauchy-Schwartz inequality, r(θ1, θ2) can only evaluate in the

range of

− 1 ≤ r(θ1, θ2) ≤ 1. (2.29)

r(θ1, θ2) = 0 means θ1 and θ2 are not correlated. For example, in figure 2.1(b), a distribution of θ′1 is independent

with θ′2. A positive r(θ1, θ2) corresponds to the case of θ1 and θ2 being positively correlated, in which θ′1 is

more likely to be the same sign with θ′2. Figure 2.1(c) shows the joint distribution of θ′1 and θ′2 in the case of

r(θ1, θ2) = 0.9, which means θ1 and θ2 are strongly correlated. Similarly, a negative r(θ1, θ2) indicates that θ′1

is more likely to be the opposite sign with θ′2 (figure 2.1(a)). Extremely, when r(θ1, θ2) is 1 or −1, θ1 and θ2

are perfectly positively or negatively correlated.
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2.3 Interactions between turbulence and reactions

Taking advantage of computer science and the governing equations, there were some analytical and numerical

studies aiming at better understanding and exploring the statistical properties of the reactive scalars in the

interaction with incompressible turbulence. On the other hand, a well known example for the turbulent reactive

scalars in the real world is the ocean. Thus some experimental studies carried out measurement of the statistical

properties of reactive scalars in the ocean or aquatic environment. In this section, some of these studies are

reviewed.

2.3.1 Analytical studies on reactive scalars

In fully developed turbulence, universal scaling relations are classically discussed in the framework of

Kolmogorov-Obukhov phenomenology for the velocity field, as well as the Obukhov-Corrsin approach for passive

scalars advected by the turbulent velocity. This now forms the classical KOC (Kolmogorov-Obukhov-Corrsin)

theoretical framework for fluid turbulence with advected passive scalars (Warhaft, 2000). Chemical reactions

have been considered quite early in such framework, for some specific cases. The earliest works on the statistical

theory of turbulent chemical reactions were done by Corrsin (1958, 1961, 1964a), Pao (1964) and O’Brien (1966,

1971, 1975).

In the work by Corrsin (1958), the reactive scalar in first order reaction (Γ C−→ ∅) and homogeneous

turbulence was considered. The equation of the global scalar variance (Eq. (2.24)), which indicates a exponential

decay of scalar variance, was derived. Corrsin (1961) studied the mixing of a scalar contaminant undergoing

a first-order chemical reaction in isotropic turbulence. Theoretically he deduced the energy spectrum of the

reactive scalar in different wave number ranges. A −5/3 scaling relation was found for the reactive scalar in

the inertial range (figure 2.2(a)). Later, Corrsin (1962) extended the problem to the first order reaction with

product (Γ C−→ P), and derived that the mean, variance and energy spectrum of P were similar with that of Γ,

only with slight amendment. It is noteworthy that, in the process of deriving the variance of P, the covariance

term between Γ and P was involved. Corrsin (1962) simply assumed that Γ and P are perfectly correlated.

Then Corrsin (1964a) extended the theoretical analysis about the first order reaction to a second order reaction.

A −5/3 scaling relation was also found in the inertial range of the energy spectrum (figure 2.2(b)). Moreover,

the nonlinear reaction term causes some additional spectral transfer and more importantly a loss in the spectral

energy.

In the work by Pao (1964), the theories about the evolution of mean and variance of reactive scalar in a

first order reaction was developed into a general form, which theoretically quantifies the decaying process of
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Figure 2.2: (a) Figure 1 in Corrsin (1961): A quantitative sketch of the variance spectrum of reactive scalar
undergoing a first order reaction. (b) Figure 1 in Corrsin (1964a): A quantitative sketch of the variance spectrum
of reactive scalar undergoing a second order reaction. Here C is the coefficient of reaction rate; k or m is the
wave number; G is the wave number dependant scalar variance.

reactants in various first order reaction, such as A −→ B; A� B; A −→ B, B −→ C; A −→ B −→ C. Moreover, an

unified spectral transfer concept was proposed, which led to a general expression about the variance spectrum.

Such a formulation generalizes the scaling behavior of first order reactive scalar at the range of large wave

number (for both the cases of Sc number much smaller and larger than 1), which was the same with that of the

passive scalar. O’Brien (1966) extended the theoretical analysis about the decaying moments of reactive scalars

to a second order reaction with single reactant, where the reaction term for the reactant A is −γA2, where γ

is the reaction rate coefficient. The global variance of the reactive scalar was shown to decay asymptotically

as t−11/2. O’Brien (1971) further investigated a high order reaction with two reactants (A and B) and a rapid

reaction rate. It was derived that, for the stoichiometric case (take A as example, same for B),

lim
t→∞
〈A′2〉 ∼ t−3/2, lim

t→∞
〈A〉2 ∼ t−3/2, lim

t→∞
〈A′2〉/〈A〉2 = π − 1. (2.30)



2.3 – Interactions between turbulence and reactions 35

While for the non-stoichiometric case, the asymptotical decay of the covariance 〈A′B′〉 follows t−9/4e−γt
3/2

,

where γ is the reaction rate coefficient.

2.3.2 Numerical studies on reactive scalars

The covariance between reactants and the development of the introduction of models for the covariance terms

were important early topics of turbulent mixing analyses (Lamb and Shu, 1978; Heeb and Brodkey, 1990).

Heeb and Brodkey (1990) did numerical simulations about the irreversible reactions during turbulent mixing,

and compared with experimental results to examine 14 closure theories. For the two non-premixed reactants

case, it was found (Toor, 1969) that the covariance is almost invariant for very slow and very rapid second-

order reactions. In a direct numerical simulation about the influence of convective turbulence on chemical

reactions in the atmospheric boundary layer by Molemaker and de Arellano (1998), two species A and B

representing the reactants in second order irreversible reaction were introduced. The one-dimensional spectrum

of covariance between the reactants (averaged in space and time and normalized) were plotted (figure 2.3),

and a −2/3 scaling law was found. Chemical reaction introduces various complexities to the passive scalar

Figure 2.3: Figure 2(b) in Molemaker and de Arellano (1998): one-dimensional spectrum of the covariance
between two chemical species (averaged in space and time and normalized).

problem, e.g. new characteristic time scale and the nonlinear source of the governing equation. Theoretically,

the order of the chemical reaction determines the linearity of the scalar equation. For the purpose of validating

a theory of turbulent diffusion of chemically reacting gaseous admixtures, Elperin et al. (1998) numerically

studied the irreversible first-order reaction in homogeneous and isotropic incompressible turbulence to satisfy the

assumptions used in analyses. The direct numerical simulation results demonstrated that turbulent transport
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is strongly modified with chemical reactions or phase transitions, where the diffusion of the admixtures is

strongly reduced when the Damköhler number is large. Moreover, Elperin et al. (2017) numerically studied a

reactive premixed flow through a channel to simulate the highly nonlinear dependence of the reaction rate in a

typical premixed flames. The modeled reaction rate depends only on the species concentration. The numerical

results showed that the vortex tubes do not change across the reaction zone; meanwhile the calculated turbulent

diffusion coefficients match well the theoretical predictions.

Among the existing results, the effects of chemical reaction on the turbulent mixing are also of particular

interest (Hill, 1976). For instance, the second-order chemical reactions in a reactor (Mao and Toor, 1971),

or series-parallel reactions (A + B −→ R, R + B −→ S) (Chakrabarti et al., 1995). Sykes et al. (1994) used

Large Eddy Simulation (LES) to study the chemically reactive mixing of two species, in a system with one

reactant injected into an uniformly mixed layer containing the other one. The segregation coefficient, defined

as the covariance of the two reactants normalized by the product of their mean quantities, is the measure of the

turbulent mixing. It was shown that the two reactants were significantly segregated when the reaction was fast.

Komori et al. (1991) simulated two reactants of second-order irreversible reaction introduced through different

parts of the bounding surface of turbulent flow. They developed a model with the Damköhler number based

on the integral timescale to estimate the segregation parameter. Leonard and Hill (1988) studied the decaying

reactive scalars undergoing a second-order irreversible reaction in homogeneous turbulence, with pseudospectral

method and in up to 1283 domains. Two interesting results were found. The first one is that the regions in

the flow field where reaction rates are the highest are correlated with locations of high strain rates. The other

one is that the chemical reaction rate constant does not appreciably affect the microscales of the dissipation

of concentration fluctuations, which is supported by a closure theory. Numerical simulations about the decay

moments of reactive scalars in irreversible reactions was also carried out, which are one main focus of early

theoretical studies (Corrsin, 1958, 1964a; O’Brien, 1966). Neufeld et al. (2002) carried out a two-dimensional

numerical simulation about the temporal evolution of the spatial distribution of reactive scalar in the advection

of fluid field. The reactants were in elementary reactions in open or closed flows. The evolution of the reactive

scalar field was found to be dependent on the Damköhler number. When the Damköhler number is small,

the variance decays and the reactive scalar field is gradually of spatially homogeneous distribution. But when

Damköhler number is large, the structure of filaments with strong perturbations soon grows in the reactive

scalar field.

Following these early studies and numerical results, we developed in this thesis numerical simulations of

reactive scalars, in different configurations, which are the topic of the different remaining chapters.
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2.3.3 Turbulence and reactive scalars in biological oceanography

With ocean turbulence in mind, Lopez et al. (2001) numerically studied the nutrient-phytoplankton-zooplankton

interactions in chaotic flows. The simulation results displayed a smooth-filamental transition in the concentration

patterns. Hernandez-Garcia and Lopez (2004) studied the planktonic population living in an open and chaotic

fluid flow, using a predator-prey model. This study showed that a strong chaotic flow is beneficial for sustaining

plankton blooms by deforming the filament structures of the flow under the action of stretching and dilution.

Gros̆elj et al. (2015) carried out a two dimensional numerical study about a cyclic competition between three

biological species. The reacting system consists of A + B −→ A, A −→ 2A, B + C −→ B, B −→ 2B, C + A −→ C,

C −→ 2C. The effect of reaction, in comparison with the turbulent convection-diffusion, on the evolution of the

global statistical property of reactants was investigated. A transition from rotating spiral waves to collective

oscillations as Damköhler number decreases from very large to very small was observed for the evolutions of

the average densities of the species. The work by Powell and Okubo (1994) explored the effect the biological

interaction on the variance spectrum of the plankton populations in the sea, using a predator-prey model. They

concluded that there is no general result in this phenomenon, since the biological interaction may either flatten

or steepen the spectrum, which is dependant on the process of diffusion.

The scaling behavior of reactive scalar is also of high interest. Some studies focus on possible applications in

the field of chemical and biological oceanography, where the typical times of biogeochemical reactions may be

large. Seuront et al. (1996, 1999) studied the intermittency of phytoplankton and temperature fields from ocean

observations. It has been found that phytoplankton was nearly dynamically passive (similar to temperature)

at small scales but biologically active at large scales. The phytoplankton statistics, considered via the proxy of

fluorescence measurements, have found some scaling relations with −1.2 spectral slopes, interpreted as signature

of biological activity (Seuront et al., 1996; Lovejoy et al., 2001; Derot et al., 2015). Such -1.2 slope was not

always detected: Yamazaki et al. (2006) measured the microstructure of phytoplankton in fully developed oceanic

turbulence by using LED (Light Emitting Diode) fluorescence probe. The spectra of both phytoplankton and

velocity exhibited −5/3 slope in the inertial subrange.

An important aspect in understanding ocean turbulence is the species transport process, either in the interior

or at the interface of the ocean. This issue is particularly acute for biogeochemical studies. For instance, the

mixing process at the ocean and atmosphere interface drives the pelagic food because of the light available for

photosynthesis at the surface. Till now, there is no unanimous agreement on the effects of turbulence on species

transportation, including the feeding, growth and mortality rates of the species (Mackenzie, 2000). Under some

conditions, the swimming marine species, together with high dissipation rates produced by the aggregations of



38 Reactive scalars in incompressible turbulence

living organisms of different sizes, might generate intense turbulence comparable with those by the strong winds

near the ocean surface (Kunze, 2019). In these studies, a major question was how efficient the mixing will be

in the ocean. From the important multiscale feature in turbulence, it is reasonable to expect that the mixing

efficiency hinges on length scales. Very small whorls introduced into a fluid will be quickly damped by friction,

and thus will not mix the fluid. Probably, zooplankton schooling introduces larger scales and increases mixing

efficiency (Dewar, 2009).

So far, there are no considerable number of studies devoted into the turbulence-reaction interaction con-

cerning oceanology and biology. The main reasons are that such a topic is highly interdisciplinary and the

conditions in the ocean are not controllable. Thus the problems are too complicated to have universal and

unanimous conclusions. In the contrast, more studies about turbulent reactive scalar are interested in the

numerical simulations of the canonical cases.



Chapter 3

Numerical implementation of direct

numerical simulations

The partial differential equations in turbulence studies (Eqs. (1.9), (1.28), (2.19)) are generally not analytically

solvable, i.e. the analytical expressions of the velocity and scalars as functions of continuous spatial and temporal

variables (x and t) generally can not be derived from the governing equations. Alternatively, the numerical

solutions expressed as functions of discrete variables can be used to describe the flow and scalar fields. These

numerical solutions are obtained by solving the set of algebraic equations derived from the governing equations

in the discrete domain. To have a detailed and reliable numerical solution, considerable computational time

and storage for obtaining and recording the data are needed. Thus the numerical simulations of turbulence

problems strongly rely on the availability of computers.

A lot of methods have been developed for the numerical simulations of the turbulence problems. Some numer-

ical methods include models about the turbulent motions, for example the Smagorinsky model (Smagorinsky,

1963) and dynamic model (Germano et al., 1991; Lilly, 1992; Meneveau et al., 1996) in Large Eddy Simulation

(LES), k − ε model (Jones and Launder, 1972) and k − ω model (Menter, 1994) in Reynolds-Averaged Navier-

Stokes (RANS). The general idea of these models is to build the linkage between the small-scale quantities and

the large-scale quantities based on the modeling of turbulent fluxes. Then the large-scale quantities are to be

numerically solved, while the small-scale statistics are provided by the model. The benefit of using models in

numerical simulations is lower computational cost, since the fineness of the spatial resolution is only required

for resolving the large scale. However, the drawback is also evident. The models introduce some artificial

hypotheses and simplifications to the problem, at the risk of reducing the accuracy and credibility of the results.
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In contrast, the Direct Numerical Simulation (DNS) implements numerical simulation based directly on the

governing equations without modeling assumptions. The spatial resolution of DNS is required to be fine enough

to resolve the smallest scale (e.g. Kolmogorov scale for velocity (1.14) and Batchelor scale for scalar (1.42)).

The results obtained by DNS are much more reliable than using models. Thus DNS is also called numerical

experiment, as the preferred numerical method for examining theoretical analysis. However, The computational

cost is high (Pope, 2000; Laizet and Lamballais, 2009; Koblitz et al., 2017), with a computational time roughly

proportional to Re3 (Davidson, 2004). The numerical simulations for this thesis are implemented as DNS.

3.1 Spatial discretization and approximation of derivatives

The discretization of the spatial domain is the first and very important step for numerical simulations of turbulent

flows. It not only defines the framework in which the numerical solutions are expressed, but also allows the

approximation of the spatial derivative with an algebraic expression of the discrete quantities. Essentially, the

process of spatial discretization means to build a mesh of discrete grid points in the spatial domain. Such a

mesh is supposed to be all over the positions of interest, orthogonal or at least near-orthogonal, and fine enough

or specially refined to capture the physically interesting structures (Liseikin, 1999; Ferziger and Perić, 2001;

Zikanov, 2010). The spatial discretization can be very complicated in irregular or nonuniform geometries, such

as the wing flow or engine.

In this thesis, the canonical case of turbulence and reaction have been studied. The computational domain

is a three dimensional cube. The spatial discretization is implemented by building uniformly structured discrete

grids along the straight lines of Cartesian coordinate systems. The spatial coordinate vector x in the discrete

domain is

x = i
Lx
Nx

ex + j
Ly
Ny

ey + k
Lz
Nz

ez, (3.1)

where Lx, Ly, Lz and Nx, Ny, Nz are the length of the domain and the number of discrete grids in each direction;

i, j and k are integers ranging from 1 toNx, Ny andNz respectively. Because of the cubic computational domain,

we have Nx = Ny = Nz = N and Lx = Ly = Lz = L in this thesis. Larger N provides better spatial resolution,

but meanwhile increases the cost of computation.

3.1.1 Pseudo-spectral methods

As proposed in K41 theory (Kolmogorov, 1941a,b) and validated by numerous works (Sreenivasan, 1991; Sreeni-

vasan and Antonia, 1997), for the turbulent flow at the scale much smaller than the geometric size of the domain,
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the information of large scale or boundary conditions are lost. Thus in the studies focusing on the universal

properties of turbulent motion, the boundary condition can be as simple as possible, generally periodic. In this

circumstance, pseudo-spectral methods (Orszag, 1971; Eswaran and Pope, 1988b; Mansour and Wray, 1994; Sri-

pakagorn et al., 2004; Hou and Li, 2007) are the preferred numerical approach, because of their high accuracy

in approximating the spatial derivatives.

The general idea of pseudo-spectral methods

The idea of pseudo-spectral methods is similar with the method of separation of variables used for solving

partial differential equations analytically. When the method of separation of variables is used for solving PDEs,

the solutions are expressed as a series of infinite number of continuous eigenfunctions with coefficients. These

eigenfunctions are linearly independent and orthogonal with each other, for example cos, sin, Bessel functions

and Chebyshev polynomials (Zikanov, 2010; Moin, 2010). Then in the numerical simulation with pseudo-spectral

methods, the solutions are expressed as a series of finite number of discrete eigenfunctions with coefficients, where

the number of the eigenfunctions are generally equal or proportional to the number of discrete grids. For both

methods, the final solutions are obtained by determining the coefficients of the eigenfunctions.

In the numerical simulation of turbulent motions in a periodic domain with a pseudo-spectral method, the

eigenfunctions mostly used are the Fourier series (other functions such as Chebychev polynomials for bounded

domain). Specifically for solving the Navier-Stokes equations (Eq. (1.9)) and the diffusion-convection equations

of the scalars (Eq. (1.28) and (2.19)), the velocity and scalar in real space u(x, t) and θ(x, t) are represented in

spectral space (also called Fourier space) by finite Fourier series:

u(x, t) =
∑

k

û(k, t)eik·x, θ(x, t) =
∑

k

θ̂(k, t)eik·x. (3.2)

The discrete wave number vector k is

k =
2π

L
(iekx + jeky + kekz ), (3.3)

where i, j and k are integers ranging from −N2 + 1 to N
2 (N is generally even integer). Nπ

L represents the

computational maximum resolved wave number in Fourier space. Actually, when non-linear term is concerned,

for dealiasing, the maximum resolved wave number should be smaller (Hou and Li, 2007). eik·x is the discrete

complex eigenfunction at the mode k. û(k, t) and θ̂(k, t) are complex numbers, called the Fourier coefficients

of velocity and scalar at the mode k. The objective of pseudo-spectral methods is to determine the û(k, t) and
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θ̂(k, t), which can then be transformed into real space quantities (u(x, t) and θ(x, t)) via Eq. (3.2). Eq. (3.2) is

called as the discrete Fourier inverse transform for obtaining real space quantities with Fourier space quantities.

The reverse of Eq. (3.2) is called the discrete Fourier transform:

û(k, t) =
∑

x

u(x, t)e−ik·x, θ̂(k, t) =
∑

x

θ(x, t)e−ik·x, (3.4)

where x goes over all the discrete grid points. It is very convenient to approximate the spatial derivatives by

using Fourier series in a pseudo-spectral method, because the operation of spatial derivation in real space is a

arithmetic operation of multiplication in Fourier space. For example from Eq. (3.2), it can be easily found that

∇ · u(x, t) =
∑

k

ik · û(k, t)eik·x,
∂θ

∂x
(x, t) =

∑

k

ikxθ̂(k, t)e
ik·x. (3.5)

It is noteworthy that the pseudo-spectral method is not called spectral method because not every term in

the Navier-Stokes equations (Eq. (1.9)) and the diffusion-convection equations of the scalars (Eq. (1.28) and

(2.19)) are computed in Fourier space (Orszag, 1971, 1972). In Fourier space, it is efficient and accurate in

computing the real space derivatives but not the non-linear terms (convection term and probably also reaction

term), which become convolutions. In a pseudo-spectral method, it is in real space that the non-linear terms are

computed, whose Fourier coefficients are then obtained by Fourier transform. By computing the non-linear term

in real space, the number of operations at each time step can be proportional to Nlog(N), where N represents

the number of discrete grids in real space and also the maximum resolved wave number in Fourier space, instead

of N2 by computing the convolution (Canuto et al., 1987).

Smooth dealiasing

In the discrete Fourier transform of non-linear terms, there are high wave number modes beyond the resolved

range generated. These extra high wave number modes are called aliasing error. To maintain the numerical

stability, dealiasing is needed to get rid of the aliasing error. Otherwise, as shown in figure 3.1, the aliasing error

can lead to the abnormal peak of the energy spectrum at the resolved high wave number modes. Moreover, the

numerical results at the the low wave number modes can be also distorted. The implementation of dealiasing

leads to neglect some of the largest resolvable wave number components, generally performed for each numerical

time step. The most commonly method is the 2/3 spherical truncation (Orszag, 1971), which means to enforce

the Fourier coefficients of the modes with |k| > 2
3
Nπ
L as 0. In this thesis, the method of smooth dealiasing was

used. Instead of the sudden cut-off, a filter of the high wave number modes with a relative smooth filtering
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Figure 3.1: The comparison of the energy spectra of velocity numerically obtained by pseudo-spectral methods
with and without dealiasing. k = |k| is the amplitude of wave number vector. The dotted curve is the filtering
function of smooth dealiasing.

function is suggested in the smooth dealiasing. Numerically, at each time step, the û(k, t) and θ̂(k, t) are

filtered by multiplying a real filtering coefficient F (k), which is the function of wave number amplitude k = |k|.

Specifically:

F (k) = e−α( kLNπ )β , (3.6)

where α = β = 36 is generally suggested (the dotted curve in figure 3.1). Compared with the conventional 2/3

rule approach, the smooth dealiasing is capable to reduce numerical high frequency instabilities (Hou and Li,

2007).

The implementation of pseudo-spectral method in this thesis

In this thesis, the pseudo-spectral method is used for solving the Navier-Stokes equations (Eq. (1.9)), also

the diffusion-convection equation of the scalars (Eq. (1.28) and (2.19)) when the scalar fields are of periodic
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boundary conditions. Specifically, Eq. (1.9) and (2.19) are first rewritten as:

∂u

∂t
= ν4u + L(u),

∂θ

∂t
= D4θ + L(θ), (3.7)

with L(u) = −(u · ∇)u− ∇p
ρ

+ f , L(θ) = −(u · ∇)θ + ω + q̇.

In Fourier space, Eq. (3.7) are expressed as

∂û

∂t
= −ν|k|2û + L̂(û),

∂θ̂

∂t
= −ν|k|2θ̂ + L̂(θ̂), (3.8)

where û, L̂(û), θ̂ and L̂(θ̂) as the Fourier coefficients obtained from the discrete Fourier transform of u, L(u), θ

and L(θ) respectively. The pressure term −∇p/ρ in L(u) is dealt with projection method (page 211 in (Pope,

2000)). Then new variables ũ and θ̃ are defined as:

ũ = û · exp(ν|k|2t), θ̃ = θ̂ · exp(ν|k|2t), (3.9)

which lead to
∂ũ

∂t
= (

∂û

∂t
+ ν|k|2û)exp(ν|k|2t), ∂θ̃

∂t
= (

∂θ̂

∂t
+ ν|k|2θ̂)exp(ν|k|2t). (3.10)

Thus the compact expressions about ũ and θ̃ can be derived by substituting Eq. (3.9) into Eq. (3.8), as

∂ũ

∂t
= L̂(ũ · exp(−ν|k|2t))exp(ν|k|2t), ∂θ̃

∂t
= L̂(θ̃ · exp(−ν|k|2t))exp(ν|k|2t). (3.11)

Eq. (3.11) are transient PDEs, which can be solved by performing discrete time marching strating from the

initial conditions. More details about the time marching are presented in section 3.2.

3.1.2 Finite difference methods

In addition to the pseudo-spectral method, the finite difference method (Zhao et al., 2018a,b; Demosthenous

et al., 2016) and finite volume method (Versteeg and Malalasekra, 2007) are also widely used in approximating

the spatial derivatives. In this thesis, the cases with the scalar fields of Dirichlet boundary conditions, by

which the scalar quantity at the boundary are prescribed, are also investigated. In such circumstance, the finite

difference method was used for solving the scalar equations.
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Some basic concepts about finite difference methods

As commonly used methods in the direct numerical simulation of turbulent motions (Kristoffersen and Anders-

son, 1993; Desjardins et al., 2008; Demosthenous et al., 2016), the general idea of the approximation of spatial

derivative using finite difference method is originated from the definition of derivatives. In a two-dimensional

continuous domain with x and y as coordinate variables, the derivative of a function F (x, y) with respect to x

is defined as
∂F

∂x
(x, y) = lim

∆x→0

F (x+ ∆x, y)− F (x, y)

∆x
. (3.12)

It is very straightforward to show that in the discrete domain, the ∂F
∂x at the grid point of (i, j) can be approx-

imated as
∂F

∂x

∣∣
i,j
≈ Fi+1,j − Fi,j

∆x
, (3.13)

where ∆x = xi+1 − xi is the grid step. When the spatial resolution tends to be infinitely fine, i.e. ∆x

approaches 0, such an approximation approaches the exact derivative. The approximation of (3.13) is called

first order forward scheme. It can also be derived by considering the Taylor series of F (x, y) at the grid of (xi+1,

yi) with respect to (xi, yi), which is

Fi+1,j = Fi,j +
∂F

∂x

∣∣
i,j

∆x+
∂2F

∂x2

∣∣
i,j

(∆x)2

2
+
∂3F

∂x3

∣∣
i,j

(∆x)3

6
+ . . . . (3.14)

Then a precise expression of ∂F∂x
∣∣
i,j

is obtained as

∂F

∂x

∣∣
i,j

=
Fi+1,j − Fi,j

∆x
+
∂2F

∂x2

∣∣
i,j

∆x

2
+
∂3F

∂x3

∣∣
i,j

(∆x)2

6
+ . . . . (3.15)

It is clearly seen that the approximation of (3.13) can be obtained by neglecting the polynomial terms with the

order of O(∆x) and higher in (3.15). These neglected terms are called truncation error. The scheme of (3.13)

is of first order accuracy because its truncation error is dominated by the first order polynomial.

Construction of finite difference schemes of high order of accuracy

One advantage of finite difference methods is the convenience in constructing difference schemes of high order

of accuracy, which is necessary for capturing the intermittent structure, for example in turbulence or rapid

reactions.

One most commonly used method for constructing a difference scheme of high order of accuracy is by

considering the Taylor expansions at more grid points, i.e. taking the information from more grid points into
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consideration. For example, to approximate ∂F
∂x

∣∣
i,j
, the Taylor expansion at the grid point of (xi−1, yj):

Fi−1,j = Fi,j −
∂F

∂x

∣∣
i,j

∆x+
∂2F

∂x2

∣∣
i,j

(∆x)2

2
− ∂3F

∂x3

∣∣
i,j

(∆x)3

6
+ . . . , (3.16)

can also be considered.

By subtracting Eq. (3.14) by Eq. (3.16) and neglecting the polynomial terms with order higher than O(∆x2),

it yields
∂F

∂x

∣∣
i,j
≈ Fi+1,j − Fi−1,j

2∆x
. (3.17)

The approximation by Eq. (3.17) is of second order accuracy, called second order center scheme.

Similarly, difference schemes with higher order of accuracy or for higher order derivatives can be constructed

by considering more grid points. For example, the fourth order center scheme for ∂F
∂x

∣∣
i,j

reads

∂F

∂x

∣∣
i,j
≈ −Fi+2,j + 8Fi+1,j − 8Fi−1,j + Fi−2,j

12∆x
, (3.18)

the second order center scheme for ∂2F
∂x2

∣∣
i,j

reads

∂2F

∂x2

∣∣
i,j
≈ Fi+1,j − 2Fi,j + Fi−1,j

∆x2
, (3.19)

and the second order center scheme for mixed derivative ∂2F
∂x∂y

∣∣
i,j

reads

∂2F

∂x∂y

∣∣
i,j

=
1

2∆x

(
Fi+1,j+1 − Fi+1,j−1

2∆y
− Fi−1,j+1 − Fi−1,j−1

2∆y

)
+O((∆x)2, (∆y)2). (3.20)

Boundary conditions

In finite difference method, for the grid points in the inner domain, the difference scheme discussed above can

be directly applied to the governing equations to obtain the discrete algebraic equations. However, for the

grids at the boundaries, special treatments are generally needed, because the boundary conditions are generally

not periodic. Otherwise the boundary grids are essentially the same as those in the inner domain, like in

pseudo-spectral methods.

There is one important requirement for the scheme used for the boundary grids, that is to have the order of

accuracy not lower than that of the inner domain grids, because the accuracy of the entire numerical simulation

is determined by the calculation on all the grid points. A big truncation in one grid will be propagated to other

grids, and gradually to the entire domain. Thus a lower order of accuracy at the boundary will compromise
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high orders of accuracy at other positions.

For a function F (x) with x ∈ [0, L], the discrete function and coordinate can be F = [F0, F1, . . . , FN ] and

x = [x0, x1, . . . , xN ] with x0 = 0 and xN = L. A Dirichlet boundary condition such as F (0) = α can numerically

be employed as F0 = α. For a Neumann boundary condition, which prescribes the gradient of the quantity

at the boundary, an asymmetric scheme can be used. If it is a second order center scheme used in the inner

domain, the numerical implementation of the Neumann boundary condition ∂F
∂x

∣∣
0 or L = β at the grid of x1 and

xN can be
−3F0 + 4F1 − F2

2∆x
= β and

3FN−2 − 4FN−1 + FN
2∆x

= β. (3.21)

An important technique for implementing the boundary condition is using the ghost grids, i.e. defining the

grids beyond the boundary, such as the grids of x−2 = −2∆x, x−1 = −∆x and xN+1 = L+∆x, xN+2 = L+2∆x.

For example with the Dirichlet boundary of F (0) = α, if the approximation of ∂F
∂x in the inner domain is

implemented with the fourth order center scheme (Eq. (3.18)), we can have not only F0 = α but also F−1 = α

at the ghost grid. The benefit of doing this is that there is no special treatment needed in the approximation

of ∂F
∂x

∣∣
1
, which requires the value of F−1 according to Eq. (3.18). With the Neumann boundary condition

∂F
∂x

∣∣
0

= β, F−1 can be prescribed as F0 − ∆xβ, which suggests a slope of the Neumann boundary condition

value between the boundary grid and ghost grid.

The implementation of finite difference method in this thesis

In some configurations explored in this thesis, the scalar fields are of Dirichlet boundary conditions (Chapter

6), which requires a finite difference method for solving the scalar equations. In order to ensure the accurate

approximation of the intermittent structures in the turbulent motion or fast reaction, very fine finite difference

schemes are used. Specially, the first-order derivative is approximated by using eighth order upwind difference

scheme, which is dependent on the local velocity. For example, at the grid point of (xi, yj , zk), when ux;i,j,k > 0,

∂θ
∂x

∣∣
i,j,k

is approximated as

∂θ

∂x

∣∣
i,j,k
≈ 1

280
(
θi,j,k − θi−5,j,k

∆x
)− 1

28
(
θi,j,k − θi−4,j,k

∆x
) +

1

6
(
θi,j,k − θi−3,j,k

∆x
)− 1

2
(
θi,j,k − θi−2,j,k

∆x
)

+
5

4
(
θi,j,k − θi−1,j,k

∆x
)− 1

2
(
θi,j,k − θi+1,j,k

∆x
) +

1

14
(
θi,j,k − θi+2,j,k

∆x
)− 1

168
(
θi,j,k − θi+3,j,k

∆x
),
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and when ux;i,j,k < 0, ∂θ∂x
∣∣
i,j,k

is approximated as

∂θ

∂x

∣∣
i,j,k
≈ 1

280
(
θi+5,j,k − θi,j,k

∆x
)− 1

28
(
θi+4,j,k − θi,j,k

∆x
) +

1

6
(
θi+3,j,k − θi,j,k

∆x
)− 1

2
(
θi+2,j,k − θi,j,k

∆x
)

+
5

4
(
θi+1,j,k − θi,j,k

∆x
)− 1

2
(
θi−1,j,k − θi,j,k

∆x
) +

1

14
(
θi−2,j,k − θi,j,k

∆x
)− 1

168
(
θi−3,j,k − θi,j,k

∆x
).

As to the second-order derivative ∂2θ
∂x2

∣∣
i,j,k

, tenth order center difference scheme is used:

∂2θ

∂x2

∣∣
i,j,k
≈5

3
(
θi+1,j,k − 2θi,j,k + θi−1,j,k

∆x2
)− 20

21
(
θi+2,j,k − 2θi,j,k + θi−2,j,k

4∆x2
)

+
5

14
(
θi+3,j,k − 2θi,j,k + θi−3,j,k

9∆x2
)− 5

63
(
θi+4,j,k − 2θi,j,k + θi−4,j,k

16∆x2
)

+
1

126
(
θi+5,j,k − 2θi,j,k + θi−5,j,k

25∆x2
).

The polynomial coefficients in the above schemes are determined by considering the Taylor expansions of the

neighbor grids, by which 8th and 10th order of accuracy are ensured for the approximations of the first and

second order derivative respectively.

The Dirichlet boundary conditions are employed by prescribing the scalar quantities at the boundary grids

and using 4 extra ghost grids beyond the boundary. Thereby, the above schemes can be applied to both the

grids on the boundaries and the inner domain.

3.2 Temporal discretization and time integration

For a time-dependent PDE, the temporal discretization is needed for approximating the time-derivative terms.

The discretization of the temporal domain is generally implemented by discretizing the temporal coordinate t

into a series of uniform time steps: tn = t0+n∆t with n as an integer rangeing from 0 to infinity. t0 corresponds to

the initial time, at which the quantities of the entire spatial domain are prescribed by the initial conditions. Then

a specific marching scheme is applied to the governing equations for doing the numerical temporal integration,

in which the known information of one time step (tn) can be used to compute the unknown quantities at next

time step (tn+1).
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3.2.1 Numerical marching schemes

Implicit and explicit schemes

In turbulent studies, the temporal derivative is generally linear and only of first order (Eq. (1.9) and (2.19)).

Therefore, the PDE about of F (representing velocity components or scalar), which is a function of spatial and

temporal coordinates (x and t), can be written in the form of

∂F

∂t
= L(x, F,

∂F

∂x
,
∂2F

∂x2
, · · · ), (3.22)

where L includes every term of the PDE except the temporal derivative, like Eq. (3.11).

A simple way to approximate ∂F
∂t can be a scheme similar with Eq. (3.13). Moreover, after the spatial

discretization of the spatial derivatives, the right hand side of Eq. (3.22) are approximated with algebraic

expressions of the discrete F . Therefore, in a discrete form, Eq. (3.22) can be approximated as

Fn+1
i − Fni

∆t
≈ L(· · · , Fni−1, F

n
i , F

n
i+1, · · · ). (3.23)

In Eq. (3.23), the quantities with superscript of n are of the time step of tn, which are known; and the superscript

of n + 1 indicates the time step of tn+1, which are unknown and to be computed. Thus Eq. (3.23) provides a

straightforward scheme for numerical temporal integration, as

Fn+1
i ≈ L(· · · , Fni−1, F

n
i , F

n
i+1, · · · )∆t+ Fni . (3.24)

Eq. (3.24) is one of the explicit schemes, which means the every unknown quantity at the time step of tn+1 can

be explicitly expressed as function of quantities at the time step of tn. In contrast, if the quantities used in the

right hand side of Eq. (3.23) are all of the unknown time step, an implicit scheme can be derived, as

Fn+1
i − L(· · · , Fn+1

i−1 , F
n+1
i , Fn+1

i+1 , · · · )∆t ≈ F
n
i . (3.25)

With such a scheme, the numerical marching from tn to tn+1 is generally implemented by considering Eq. (3.25)

for all the spatial grid points simultaneously and doing the computation in the form of vector and matrix.

The explicit scheme is easier for implementation than the implicit scheme, however the implicit scheme is

generally more stable (Magoulès, 2011), which allows a larger ∆t. Sometimes, a compromise can be made

between the explicit and implicit schemes, i.e. considering the discrete quantities at both the current and next
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time steps in the approximation of spatial derivatives. For example Eq. (3.22) can be approximated as

Fn+1
i − Fni

∆t
≈ L(· · · , Fni−2, F

n
i−1, F

n
i , F

n+1
i+1 , F

n+1
i+2 , · · · ), (3.26)

which provides a semi-implicit temporal marching scheme.

The third order Runge-Kutta scheme

The numerical temporal integration in this thesis is implemented by using third order Runge-Kutta scheme

(Shu and Osher, 1988). For a canonical temporal differential equation

∂F

∂t
= L(F ), (3.27)

the third order Runge-Kutta scheme reads

F 1 =F 0 + ∆t · L(F 0),

F 2 =
3

4
F 0 +

1

4
F 1 +

1

4
∆t · L(F 1), (3.28)

F 3 =
1

3
F 0 +

2

3
F 2 +

2

3
∆t · L(F 2).

where F 3 are the unknown quantities at the time of (t + ∆t), and F 0 are the known quantities at the time

t. Let us take the pseudo-spectral method as example (it is more straightforward in finite difference method).

Applying (3.28) to Eq. (3.11), it yields the expressions of obtaining û3 and θ̂3 at the time of t + ∆t with û0

and θ̂0 at the time of t as

û1 = (û0 + ∆tL̂(û0)) · exp(−ν|k|2∆t),

û2 =
3

4
û0 · exp(−ν|k|2 ∆t

2
) +

1

4
û1 · exp(ν|k|2 ∆t

2
) +

1

4
∆tL̂(û1) · exp(ν|k|2 ∆t

2
), (3.29)

û3 =
1

3
û0 · exp(−ν|k|2∆t) +

2

3
û2 · exp(−ν|k|2 ∆t

2
) +

2

3
∆tL̂(û2) · exp(−ν|k|2 ∆t

2
),
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and

θ̂1 = (θ̂0 + ∆tL̂(θ̂0)) · exp(−ν|k|2∆t),

θ̂2 =
3

4
θ̂0 · exp(−ν|k|2 ∆t

2
) +

1

4
θ̂1 · exp(ν|k|2 ∆t

2
) +

1

4
∆tL̂(θ̂1) · exp(ν|k|2 ∆t

2
), (3.30)

θ̂3 =
1

3
θ̂0 · exp(−ν|k|2∆t) +

2

3
θ̂2 · exp(−ν|k|2 ∆t

2
) +

2

3
∆tL̂(θ̂2) · exp(−ν|k|2 ∆t

2
).

3.2.2 Choice of the time step

Generally, a larger numerical time step ∆t is favorable for the efficiency of numerical simulation, because fewer

time steps of computation are required for the simulation to converge or reach a statistically stationary state.

However, similarly with ∆x, which needs to be smaller enough for a good resolution, the ∆t also cannot be too

large for the sake of numerical stability.

The stability of a numerical simulation mainly concerns the round-off error. After approximating the spatial

and temporal derivatives with certain difference schemes, the continuous PDEs are transformed into some

algebraic equations. These algebraic equations are solved by computers. Since the data stored in the computers

are of finite digits, the final solutions we can get must be different from the exact solutions. Such difference

are called the round-off error. Although the round-off error can be very small with advanced computers, if

inappropriate numerical marching methods are chosen, the round-off error will be amplified at each numerical

time step and finally lead to the divergence.

Therefore, the maximum ∆t can be determined by considering the temporal evolution of the round-off errors.

The two most widely used methods for the stability analysis are the Neumann method and the matrix method.

The general idea of both methods are deriving the evolution equations of the round-off error (εn) based on the

discrete governing equations and then expressing the increasing rate of the amplitude of the round-off error
|εn+1|
|εn| as function of ∆x and ∆t. Then under the constraint of |ε

n+1|
|εn| 6 1, the maximum ∆t as function of ∆x

can be obtained. More details can be referred to Zikanov (2010). It is noteworthy that the stability analysis

provides the necessary but not sufficient condition for the numerical stability.

The Courant-Friedrichs-Lewy stability condition

When the time marching is implemented with explicit scheme, the value of time step is always crucial for the

numerical stability. In a famous paper by Courant et al. (1928) (English translation as Courant et al. (1967)),

the Courant-Friedrichs-Lewy (CFL) stability condition is proposed as the necessary condition for the stability

of explicit time-stepping schemes. The CFL condition states that, for a discrete point in the temporal-spatial
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Figure 3.2: The illustration of the physical domain of dependence of Eq. (3.31) (thick dashed line) and the
numerical domain of dependence (gray area).

space, its physical domain of dependence must be included in the numerical domain of dependence. A good

example to explain the CFL condition is the one-dimensional linear convection equation:

∂s

∂t
+ Λ

∂s

∂x
= 0, (3.31)

where s = s(x, t) is any quantity as function of x and t; Λ is a positive constant, as the speed of propagation.

The PDE of Eq. (3.31) has a general solution as:

s = F (x− Λt), (3.32)

where F is any function of x−Λt. The solution of (3.32) indicates that s(x, t) is in the form of wave propagation

at the constant speed of Λ. Thus for the point of (xi, tn), the physical domain of dependence is the straight

line of the slope of 1/Λ and passing it, as shown in figure 3.2. Numerically, if Eq. (3.31) is discretized with the

approximation of
∂s

∂t

∣∣n
i
≈ sn+1

i − sni
∆t

,
∂s

∂x

∣∣n
i
≈
sni − sni−1

∆x
, (3.33)

the time marching is implemented as

sn+1
i = −Λ

∆t

∆x
(sni − sni−1) + sni . (3.34)
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The numerical result of sn+1
i is dependent on sni and sni−1. Thus the numerical domain of dependence is the

grey area shown in figure 3.2. In figure 3.2, the numerical domain of dependence includes the physical domain

of dependence. Thus the scheme of (3.34) can be stable, although not surely. Otherwise, if the slope of ∆t/∆x

is larger than 1/Λ, the numerical scheme is unstable because it fails to capture the physical information in need.

The Courant number (also called CFL number) (Le Veque, 1990; Blazek, 2005) is defined as

Λ
∆t

∆x
. (3.35)

Quantitatively, CFL stability condition states that the CFL number should not be larger than unity.

The PDE of Eq. (3.31) is meaningful to the turbulence simulation because its spatial derivative term is in

a similar form with the convection term of the N-S equation and the scalar equation (Eq. (1.9) and (1.28)),

which is generally the dominant term. When the N-S equation or the scalar equation is solved with an explicit

method, the CFL number can be defined as

|u|max
∆t

∆x
, (3.36)

where |u|max is the global maximum of the absolute value of single-component velocity.

3.3 Numerical forcing

The energy cascade of the kinematic energy and scalar fluctuation in the inertial length scale are of high

interest in turbulence studies. The source of the fluctuation comes generally from the mean part of the quantity

of interest in physical space or external input in spectral space. Thus in the numerical simulations about a

turbulence in statistically stationary state, lots of techniques for numerical forcing were developed (Eswaran

and Pope, 1988a,b; Moin and Mahesh, 1998; Overholt and Pope, 1998; Alvelius, 1999; Rao and de Bruyn Kops,

2011). Each forcing scheme has pros and cons.

The energy cascade concerns only the fluctuating part of velocity or scalar. Thus it is a natural choice to

introduce the forcing from the mean part, for example by imposing a mean gradient (Sreenivasan, 1991; Gotoh

and Watanabe, 2015; Gauding et al., 2017; Iyer et al., 2018). With the existence of a mean gradient, due to

the vortex stretching as discussed in the sections of 1.1.1, the energy is extracted from the mean motions and

transferred into the fluctuations of velocity by shear stress, i.e. turbulent diffusion. For the scalar, in the case

of no external forcing and when the scalar is of constant mean gradient such as θ = θ′ + Gz, the governing
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equation of the variance of scalar (Eq. (1.35)) becomes

1

2

D〈θ′2〉
Dt

= −D〈(∇θ′)2〉 −G〈u′zθ′〉. (3.37)

The variance of scalar fluctuations can be sustained by a source proportional to the turbulent flux of scalar

(covariance of scalar and velocity) (Tennekes and Lumley, 1972). However, the forcing by a mean gradient makes

one particular direction different from the others, leading to the breakdown of the local isotropy (Sreenivasan,

1991; Biferale and Procaccia, 2005; Gotoh and Watanabe, 2015; Iyer et al., 2018).

Another widely used numerical forcing is the large scales forcing, which is generally isotropic. The idea of

this type of forcing is to limit the artificial information at several largest scales, without significant interfer-

ence to the universal properties in the inertial range of turbulent motions. Typically these numerical forcings

are implemented in Fourier space, in which the length scales can be well-identified after the discrete Fourier

transform.

To have a steady supply of turbulent energy, many works simply prescribed the energy spectrum at large

scale modes, for example by freezing the amplitude of the velocity in a given range of wave numbers (Siggia

and Patterson, 1978). The large scale motions were totally artificial. The desired spectrum in the prescribed

range should be known in advance, otherwise there might be a big distortion to the problem being studied

especially when the maximum wave number was not large enough. A modification can be allowing the free

evolutions of individual modes in a range of scales while maintaining the average energy in this range as

constant (Chasnov, 1991; Machiels, 1997). It allowed a more physically meaningful energy spectrum. However

there was a discontinuity between forced and unforced modes, which might develop to be a large numerical

error (Kerr, 1985; Sullivan et al., 1994). There are also some other works adopting the idea of prescribing the

large scale quantities. For example Siggia (1981) tried to model the stain rate of large scales.

In order to avoid introducing too much artificial information, instead of prescribing the large scale quantities,

some works adopted a deterministic forcing, which is a linear amplification of the existing large scale fields

(Kerr, 1981; Vincent and Meneguzzi, 1991). The factor of amplification was generally dynamically determined

for controlling the numerical error and accelerating the convergence. In the work by Overholt and Pope (1998),

the factor of amplification was determined from a damper-like system of numerical equations, in which the large

scale spectrum obtained was approaching a target spectrum. Such a scheme of forcing can be considered as a

modification of the method prescribing the large scale energy spectrum, achieving a relatively better convergence

efficiency. There were also works proposed an amplification factor being adjusted each numerical step to ensure

a constant input power (Schumacher et al., 2007; Ghosal et al., 1995). For the existing velocity field in Fourier
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space û(k, t), the forcing f̂(k, t) is

f̂(k, t) = εin
û(k, t)∑

k∈Kf
|û(k, t)|2

δk,kf
, (3.38)

where Kf is a set of small amplitude wave number vectors, i.e. the forced modes, for example Kf = {k : |k|2 6

8}; kf is any wave number vector in Kf ; εin is the prescribed input power. The forcing of constant power is

more physically meaningful. The simulation can generally evolve stably because the dissipation rate must be

equal to the prescribed input power after the simulation is converged.

However, the forcing adding in a deterministic way means that the information of past steps always remains

in the forcing. It is then hard to fully lost the effect of the initial condition. Thus there were studies that

considered the stochastic forcing, which is weakly dependent on the existing fields because the random process

is included. The commonly used stochastic forcings are of constant amplitude (Alvelius, 1999; Gotoh and

Watanabe, 2015) and random phase. For example

f̂(k, t) =
∑

k∈Kf

Ake
iφ(k,t), (3.39)

where Ak is the prescribed amplitude at the mode of k and φ(k, t) is the random phase, independent for each

wave number and time step. In the work of Watanabe and Gotoh (2004) and Gotoh and Watanabe (2015), the

forcings for both velocity and passive scalar were added in Fourier space. The real and complex parts of the

forcings were first obtained as wave number independent and time-delta Gaussian random numbers, and then

normalized to ensure the constant amplitude. By adopting forcing of random phase, the convergence of simula-

tion is accelerated since the effect of initial condition is limited. The drawback is the undeserved discontinuity

in temporal evolution. Thus a compromise can be made by adopting the forcing as linear amplification of the

existing fields while adjusting the phase with a random process to a certain degree (Perlekar et al., 2012). The

random number for adjusting the phase can be Gaussian distributed, equally distributed, or generated from the

Uhlenbeck-Ornstein process (Wax, 1954; Eswaran and Pope, 1988b).

3.4 Direct numerical simulations of reactive turbulent flows

DNS has been widely used for the numerical simulation of chemical reactions in turbulent flow, but most of the

studies focused on the compressible case, such as turbulent combustion (Vervisch and Poinsot, 1998). Relatively

fewer works focused on the DNS of the reactive scalar in incompressible turbulence (De Bortoli et al., 2005).
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Figure 3.3: The DNS results of the energy spectra of the reaction rates (γ1R1R
n
2 − γ2P ) of the first order

(solid line) and second order (dashed line) reactions in the form of (3.40). k = |k| is the amplitude of wave
number vector. The dealiasing is implemented as smooth dealiasing, with a filtering function (Eq. (3.6)) shown
as the dotted curve.

Since no change in density or heat release is considered in incompressible turbulence, the most noticeable

difference between the reactive scalar and the passive scalar is the reaction term in the governing equation.

The reaction terms are in the form of product of reactants and thus nonlinear for high order reaction (Hill,

1976; Heeb and Brodkey, 1990). These nonlinear reaction terms can introduce extra convolutions in the high

wave number modes of reactive scalars, which can be physically meaningful especially with large reaction rates.

When the DNS is implemented with a pseudo-spectral method, the maximum resolved wave number is needed

to be large enough to resolve the non-linear reaction terms. For example, consider the reversible reaction of

R1 + nR2

γ1
GGGGGGBFGGGGGG

γ2
P (3.40)

in homogeneous isotropic turbulence (Wu et al., 2020) with n = 0 or 1, corresponding to first and second order

reaction respectively. The net reaction rate is γ1R1R
n
2 − γ2P , whose energy spectra obtained from DNS are

shown in figure 3.3. It is clearly seen that for the second order reaction, there is a peak of the spectrum at the

range of high wave number modes. However, the further development of this peak to smaller scales can not be

reflected in DNS due to the dealiasing, i.e. insufficient resolved wave number.

In the DNS of turbulent velocity and passive scalar fields, the spatial resolution is required to be fine enough
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Figure 3.4: An illustration for the balance between reaction and diffusion in the reaction zone.

for resolving the Kolmogorov scale and Batchelor scale (Eq. (1.14) and (1.42)). When the reactive scalars are

involved, especially with fast reaction, the thickness of reaction zone δ must also be taken into consideration.

The reaction zone is like a flame front (Domingo and Vervisch, 1996; Wang et al., 2011), through which the

concentration of reactants and the reaction rate can sharply change. To capture the information in the reaction

zone, finite difference method with schemes of high accuracy order (Craske and van Reeuwijk, 2015; Zhao et al.,

2018a) can be used. It generally also requires significantly more than 1 grids in the length of δ. For a canonical

reaction R1 + nR2
γ−→ ∅ in turbulence, an estimation about the thickness of the reaction zone δ can be done

by considering the balance between reaction and diffusion (convection is less important in the small scale).

Imagine the reaction zone as a flat cuboid of the lateral area of A and the thickness of δ (figure 3.4). In an

infinitesimally small time period of τ , the R1 consumed in the cuboid by reaction is equal to γR1R
n
2 τδA. In

addition, according to the Fick’s law of diffusion (Bergman et al., 2011), there is a flux of R1 entering the cuboid

due to the gradient: −D ∂R1

∂x Aτ . A balance is then built as

−D∂R1

∂x
Aτ − γR1R

n
2 δAτ = 0. (3.41)

Since the reaction zone is supposed to contain the local maximums of the reactant concentrations, which are

close to zero outside, the R1 and R2 in Eq. (3.41) can be considered as local maximums and the ∂R1

∂x can be
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estimated as −R1/δ. Thus δ can be estimated as
√

D
γ R
−n/2
2 . The factor of R−n/22 is for the special case, but

generally, δ roughly satisfies

δ ∝

√
D

γ
. (3.42)

Such a relation is similar to that derived for the thickness of flame front (Law, 2006). Eq. (3.42) suggests a finer

spatial resolution for faster reaction, with the grid size inversely proportional to the square root of the reaction

rate.



Chapter 4

Reactions in homogeneous isotropic

turbulence

In this chapter, we focus on the fundamental properties of reactive scalar mixing in homogeneous isotropic

incompressible turbulence. The flow statistics, from global to scale-dependent features are studied in details

and theoretically modelled. This chapter is organized as follows: In section 4.1, we introduce the model system,

its governing equations together with the set of dimensionless control parameters. Section 4.2 briefly specifies

the numerical methods adopted for the numerical simulation. Then the DNS results and their analyses are

presented in sections 4.3-4.7. Finally, a brief summary about this chapter is given in section 4.8.∗

4.1 Problem definition

In this chapter we consider reactions of the form:

R1 + nR2

γ1
GGGGGGBFGGGGGG

γ2
P, (4.1)

where R1, R2 and P denote three generic reactive scalars and n is an integer coefficient. The process is reversible

with independent non-zero forward/backward reaction rates γ1 and γ2. The order of the chemical reaction, which

is defined as the sum of the powers of the reactants’ concentration in the rate equation is n+ 1 for the forward

reaction, because the rate equation reads γ1R1R
n
2 , while is of the first order for the backward reaction with

∗The content of this chapter is based on our published paper “Wu, W., E. Calzavarini, F. G. Schmitt, and L. Wang (2020).
Fluctuations and correlations of reactive scalars near chemical equilibrium in incompressible turbulence. Physical Review Fluids 5,
084608.”

https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.5.084608
https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.5.084608
https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.5.084608
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reaction rate γ2P . The reactants are assumed to be subject to molecular diffusion and to fluid advection. The

evolution equations for the velocity and the concentration fields R1(x, t), R2(x, t) and P (x, t) read:

∂u

∂t
+ (u · ∇)u = ν4u−∇p/ρ+ f , (4.2)

∇ · u = 0, (4.3)

and
∂R1

∂t
+ (u · ∇)R1 = D4R1 − γ1R1R

n
2 + γ2P + q̇R1

, (4.4a)

∂R2

∂t
+ (u · ∇)R2 = D4R2 − n(γ1R1R

n
2 − γ2P ) + q̇R2

, (4.4b)

∂P

∂t
+ (u · ∇)P = D4P + γ1R1R

n
2 − γ2P + q̇P . (4.4c)

Here u(x, t) is the three-dimensional flow velocity, p is the pressure, ρ is the fluid density set as constant, ν is the

kinematic viscosity and D is the species diffusivity (assumed as being the same for all species). To sustain the

turbulent fluctuations, large-scale forcing terms f and q̇ are introduced for the velocity and scalars, respectively.

More details about the expression of these forcing terms will be provided in section 4.2.

For comparison, a non-reactive species T undergoing both advection and diffusion is also considered. Its

local concentration evolves according to the following equation,

∂T

∂t
+ (u · ∇)T = D4T + q̇T . (4.5)

The equations for the above model system can be made dimensionless by choosing reference scales appropriate

for the present system. Since the turbulent flow is unbounded, we take the Taylor microscale (λ) and the single

component velocity fluctuation (u′) as the reference scales for space and velocity, respectively, which are defined

as: λ =
√

15ν
ε u
′, u′ = 1

3

∑
i

√
〈u2
i 〉, ε = ν

2 〈
∑
i

∑
j(∂iuj + ∂jui)

2〉. Here ε is the mean dissipation rate; 〈·〉 is

the ensemble average, but numerically represented by space and time average in this chapter without special

notation. The scalar quantities can be non-dimensionalized by means of their equilibrium values in no-flow

conditions R1,eq, R2,eq, Peq, while for the passive scalar the global mean 〈T 〉 is used as the reference value. Note

that at the equilibrium, the algebraic relation γ1R1,eqR
n
2,eq = γ2Peq holds. Furthermore, in this chapter for

simplicity we assume that R1,eq = R2,eq. This leads to the following dimensionless equations:

∂u

∂t
+ (u · ∇)u = Re−1

λ 4u−∇p+ f , (4.6)
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∇ · u = 0, (4.7)

∂R1

∂t
+ (u · ∇)R1 = (Sc Reλ)−14R1 −Da(R1R

n
2 − P ) + q̇R1

, (4.8a)

∂R2

∂t
+ (u · ∇)R2 = (Sc Reλ)−14R2 − nDa(R1R

n
2 − P ) + q̇R2 , (4.8b)

∂P

∂t
+ (u · ∇)P = (Sc Reλ)−14P +Da(R1R

n
2 − P ) + q̇P , (4.8c)

∂T

∂t
+ (u · ∇)T = (Sc Reλ)−14T + q̇T , (4.8d)

where Reλ = λ · u′/ν is the Taylor based Reynolds number, the Schmidt number Sc = ν/D is the ratio of

viscous diffusion to molecular diffusion, the Damköhler number Da = λγ1R
n
2,eq/u

′ = λγ2/u
′ represents the ratio

of flow timescale to the chemical timescale of forward or backward reaction. Note that the particular choice

R1,eq = R2,eq is crucial in obtaining a single Damköhler number, instead of two distinct ones that would be

present in general cases.

In conclusion the control parameters of the model system are Reλ, Sc, n and Da.

4.2 Numerical methods

The model system presented in Sec. 4.1 is numerically simulated in a cubic tri-periodic domain. The flow is

sustained by a large-scale forcing capable to generate a statistically steady homogeneous and isotropic turbulent

flow. The expression of the forcing field in Fourier space, f̂(k, t) reads,

f̂(k, t) =
1

τf

∑

16|k|62
√

2

û(k, t), (4.9)

with τf a time-scale being adjusted at each time step in order to provide a constant power input, i.e.
∫
V
f ·udx3 =

const.. This type of forcing, called linear, has been adopted e.g. in (Schumacher et al., 2007). Note also that

the zero mode |k| = 0 is not forced in order to prevent the development of a global mean flow, i.e., in our

simulations 〈u〉 = 0. Similarly, the external source term on scalars (q̇θ with θ = R1, R2, P or T in Eq. (4.8)) is

also isotropic and acting at the largest scales; however it is constant in amplitude (Alvelius, 1999; Gotoh et al.,
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Table 4.1: Parameters for the simulations: Reλ is the Taylor scale based Reynolds number; Sc is the Schmidt
number; Da = λγ1R

n
2,eq/u

′ = λγ2/u
′ is the Damköhler number based on Taylor scale; n is the order of R2 in

the reaction; N3 is the total number of grid points; η is the Kolmogorov length or dissipative length; |k|max
is the maximum wave number amplitude kept by the dealiasing procedure; |k|max · η is the spatial resolution
condition; dt/τη is the time step normalized by the Kolmogorov time scale τη.

No. 1 2 3 4
Reλ 20 40 80 150
Sc 0.1-4 0.1-4 0.1-1/2-4 1
Da 0.0005 - 50 0.0003 - 30 0.0005 - 20 0.001 - 10
n 1 1 - 3 1 - 3 1 - 3
N3 643 643 ∗/1283 † 1283 ∗/2563 † 2563

|k|maxη 3.12 1.48 ∗/2.95 † 1.26 ∗/2.52 † 1.05
dt/τη 0.044 0.06 ∗ - 0.03 † 0.044 ∗ - 0.022 † 0.034

2011; Gotoh and Watanabe, 2015). In Fourier space this reads,

ˆ̇qθ(~k, t) =
∑

16|~k|62
√

2

Q

|~k|
eiφθ(~k,t), (4.10)

where Q is the constant prescribing the overall source amplitude, |k|−1 is a normalization factor to guarantee

that the forcing amplitude is larger at small wave numbers. In particular, the random phase function φθ(k, t)

is generated independently for each scalar field and delta-correlated both in time and in wave-vector (Gotoh

et al., 2011; Gotoh and Watanabe, 2015). As a result, q̇R1
, q̇R2

, q̇P and q̇T have amplitudes of the same order,

but they are statistically independent from each other both in time and in space.

The set of dynamical equations (4.6) and (4.8) are solved numerically by means of a pseudo-spectral

code (Gauding et al., 2017, 2018), using a smooth dealiasing technique (Hou and Li, 2007) for the treatment of

non-linear terms in the equations (Section 3.1.1).

We explore the parameter space of the problem by means of a series of simulations: the Reynolds number

Reλ varies in the range Reλ ∈ [20, 150], the Schmidt number spans the interval [0.1, 4] and the Damköhler

number changes from O(10−4) to O(10), while the reaction order n is increased from one up to n = 3 (i.e. from

second to fourth order reaction). The values of the key parameters for the simulations are reported in table 4.1.

∗corresponding to Sc of 0.1-1.
†corresponding to Sc of 2-4, better resolution condition is required to resolve the Batchelor micro scale ( η

Sc1/2
) (Batchelor,

1959).
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4.3 Temporal evolution the mean and fluctuation component of scalar

fields

We begin by looking at the temporal evolution of the two first statistical moments of reactive fields, i.e., their

mean values and root-mean-square fluctuations.

Figure 4.1 shows the typical temporal evolution of the fluctuating and the mean (volumetric average) parts

of scalars for a simulation with n = 2, Da = 0.1, Sc = 1 and Reλ = 150. After a sufficiently long simulation

time, a statistically steady state is established where the global mean value for the reactive scalar fields is close

to the respective equilibrium quantities, i.e., 〈R1〉 ≈ 〈R2〉 ≈ 〈P 〉 ≈ 1. Furthermore, in spite of the presence

of a vigorous external mechanical forcing and random scalar source terms, the reactive scalar dynamics is

characterised by relatively small global fluctuations from the equilibrium state. We observe that the scalar

fluctuations are proportional to the amplitude of the mechanical forcing, which poses a limitation for the

numerical implementation of the model system, i.e. the positiveness of the scalar concentration fields (θ ≥ 0).

In order to fulfill this constraint, in the simulations for this chapter the r.m.s. of scalars reaches at maximum

10% of the mean value. The statistical convergence is reached by means of simulations extending in time ∼ 45TI ,

where TI = k/ε with k = 3u′2/2 is the integral time scale. The temporal averages are performed after at least

8TI from the beginning of the simulation (see figure 4.1).
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Figure 4.1: Evolution of the root mean square of scalar fluctuations and mean values for the case of n = 2,
Da = 0.1, Sc = 1 and Reλ = 150. Time is normalized by the integral time k/ε with k = 3u′2/2. The mean
quantities were represented with three-dimensional volumetric average here. The dash vertical line marks the
initial time for the computation of statistical quantities.
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4.4 Spectra and coherency spectra of scalars

In this section we focus on the scale-dependent behavior of reactive scalar fluctuations and their mutual corre-

lations.

4.4.1 Energy spectra
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Figure 4.2: Energy spectra of reactive and passive scalar fields, i.e. Eθ(k) with θ = R1, R2, P, T , and velocity
field Eu(k) (solid light-blue line) in the condition Reλ = 150, Sc = 1, n = 1 and Da = 10, 1, 0.1, 0.01, 0.001
(from high to bottom). Each spectra is compensated with the KOC scaling, (kη)5/3 and normalized by the
global energy 〈θ′2〉. For clarity, the energy spectra of scalars are shifted vertically by a multiplicative factor 0.1

The energy spectra of the velocity and scalars are defined as

E(k) = 4πk2〈1
2
ûi(k)û∗i (k)〉k, (4.11a)

Eθ(k) = 4πk2〈θ̂(k)θ̂∗(k)〉k, θ = R1, R2, P and T, (4.11b)

where 〈·〉k denotes the average in time and over all the modes in the shell of thickness ∆k centred at k = |k|,

ûi(k) and θ̂(k) are the Fourier coefficients of the mode of k, û∗i (k) and θ̂∗(k) are the corresponding complex

conjugates.

Figure 4.2 depicts the log-log plots of the three-dimensional energy spectra of scalars of a typical case at

Reλ = 150, Sc = 1, n = 1, compensated with k−5/3, which is the scaling expected in the inertial regime both
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for the velocity and for a passive scalar field, i.e., the KOC scaling Kolmogorov (1941b,a). The spectra are also

normalized by the total energy for each scalar. The figure shows that the spectra are indistinguishable from

the ones of a passive scalar, and display the same scaling in the inertial range. This proves that in the present

condition the reaction terms have a negligible effect on the scalar energy transfer. Remarkably, this behaviour

is also Damköhler number independent. The latter observation is qualitatively confirmed also by visualisations

of the instantaneous scalar fields for different Da values. Despite perceptible larger fluctuations for the small

Da case (the one where the chemistry is slower) it appears that the spatial structure of the fields is not affected

by the magnitude of Da.

4.4.2 Coherency spectra

The coherency spectrum between two scalar fields θ1 and θ2 is defined as

Coθ1,θ2(k) =
〈|θ̂1(k)θ̂2

∗
(k)|〉k√

〈θ̂1(k)θ̂1

∗
(k)〉k〈θ̂2(k)θ̂2

∗
(k)〉k

. (4.12)

This function describes the scale dependence, in spectral space, of the correlation coefficient between two scalar

fields.
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Figure 4.3: Coherency spectra of the reactive scalars, under the condition of Reλ = 80, Sc = 1, n = 1. The
horizontal axis is normalized in terms of the Kolmogorov scale η. The dash vertical line marks the maximum
wave number at which the scalar source terms acts.
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Figure 4.3 shows the results for the generic case at fixed Reλ = 80, Sc = 1, n = 1 and varying Da. It is

interesting to note that for all the cases the coherency spectra are nearly k independent; in particular, they are

constant in the inertial range. A non constant behavior is observed at small wave-numbers |k| ≥ 2
√

2, which

correspond to the largest physical scales. This is due to the action of the random scalar source that strongly

reduces the intensity of correlations. Moreover, the absolute value of Coθ1,θ2 increases as Da increases, which

agrees with the picture that fast chemical reactions build up correlations.

4.5 Global correlation coefficients of reactive scalars

In this section the global correlation coefficients for the scalar fields is investigated. We begin with a theoretical

argument for the prediction of its functional dependence on varying the dimensionless a priori control parameters

Reλ, Sc,Da and n. We will later compare the prediction with the numerical results.

The global correlation coefficients between reactive scalars are defined as

r(θ1, θ2) =
〈θ′1θ′2〉

〈θ′21 〉1/2〈θ′22 〉1/2
. (4.13)

Here θ1 and θ2 are the scalars under consideration.

The global value of the cross product of scalar gradients 〈∇θ1∇θ2〉 can be estimated in terms of the global

value of cross product of scalars 〈θ1θ2〉 normalized by the square of a characteristic length-scale λθ. For a scalar

quantity θ, define λθ as in (Ristorcelli, 2006):

λ2
θ =

〈θ′2〉
〈(∂xθ)2〉

. (4.14)

Such a length scalar can be interpreted as the Taylor microscale of θ. Consequently, this allows to introduce

an a posteriori control parameter, the Damköhler number based on scalar Taylor micro-scale and diffusivity,

denoted here Daθ, which is defined as

Daθ = ReλScDaλ
2
θ =

λ2
θ

D
γ1R

n
2,eq. (4.15)

It has to be noted that such a number includes a combination of the three a priori control parameters

(Reλ,Sc,Da) for the model system, with the addition of the λθ scale, which therefore plays a key role in

the analysis.

The theoretical prediction is based on the following two hypotheses. First, given the fact that the reactive
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scalar fluctuations are small with respect to the equilibrium global value, the chemical sources can then be

linearized in the following way.

R1R
n
2 − P ≈ (〈R1〉+R′1)(〈R2〉+ n〈R2〉n−1R′2)− (〈P 〉+ P ′) ≈ R′1 + nR′2 − P ′, (4.16)

where we have used also the fact that 〈R1〉 ≈ 〈R2〉 ≈ 〈P 〉 ≈ 1 (see again figure 4.1) ). Second, we assume

that there are no correlations between the source term for a given scalar and other reactive scalars, which

is here reasonably guaranteed from the fact that the source terms are delta-correlated in time with a fixed

amplitude. Such an assumption, however, is not a general feature of reactive turbulence, and needs to be

considered specifically.

In the following sections, theoretical prediction is presentation step be step in section 4.5.1, 4.5.2, and 4.5.3.

And the comparison with number results is in section 4.5.4.

4.5.1 Relation between correlation coefficients and coherency spectra

First, we prove that in current configuration, the global correlation coefficient between two scalars is the same

as their correlation coefficient at each length scale.

In a two reactive scalar system where fluctuations are introduced by external perturbations, e.g., randomly

introduced in the phase space, in the simulations for this chapter. It is reasonable to assume that:

1. the energy distribution of R1 is the same as that of R2 on different length scales;

2. the correlation coefficient between R1 and R2 conditional on different length scales is invariant.

Consider the one-dimensional case and analysis in three-dimensional space can be implemented similarly.

The fluctuating parts of R1 and R2 are expressed in the form of Fourier modes as

R′1 =
∑

k

Ak(t) sin(kx) + ak(t) cos(kx), R′2 =
∑

k

Bk(t) sin(kx) + bk(t) cos(kx). (4.17)

The global correlation coefficient is

r(R1, R2) =
〈[
∑
k Ak(t) sin(kx) + ak(t) cos(kx)][

∑
k Bk(t) sin(kx) + bk(t) cos(kx)]〉

〈[
∑
k Ak(t) sin(kx) + ak(t) cos(kx)]2〉1/2〈[

∑
k Bk(t) sin(kx) + bk(t) cos(kx)]2〉1/2

=

∑
k AkBk + akbk

[
∑
k(A2

k + a2
k)]1/2[

∑
k(B2

k + b2k)]1/2
, (4.18)

where · denotes time average.
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Since the energy distributions of R1 and R2 on different length scales are the same (assumption 1), we define

α as
A2

1 + a2
1

B2
1 + b21

=
A2

2 + a2
2

B2
2 + b22

= · · · =
∑
k(A2

k + a2
k)

∑
k(B2

k + b2k)
= α2.

Then the denominator of Eq. (4.18) can be further written as

[
∑

k

(A2
k + a2

k)]1/2[
∑

k

(B2
k + b2k)]1/2 = (

∑

k

B2
k + b2k) · α =

∑

k

α(B2
k + b2k) =

∑

k

(A2
k + a2

k)1/2(B2
k + b2k)1/2.

Thus it yields

r(R1, R2) =

∑
k AkBk + akbk∑

k(A2
k + a2

k)1/2(B2
k + b2k)1/2

. (4.19)

The coherency spectrum between R′1 and R′2, CoR1,R2
, describes the correlation coefficients between two

scalars corresponding to each length scale. At the mode k,

CoR1,R2(k) =
〈[Ak(t) sin(kx) + ak(t) cos(kx)][Bk(t) sin(kx) + bk(t) cos(kx)]〉

〈[Ak(t) sin(kx) + ak(t) cos(kx)]2〉1/2〈[Bk(t) sin(kx) + bk(t) cos(kx)]2〉1/2

=
AkBk + akbk

(A2
k + a2

k)1/2(B2
k + b2k)1/2

. (4.20)

From the second assumption that the correlation coefficients of R1 and R2 are the same at each length scales,

for any k, we obtain

CoR1,R2
(k) =

A1B1 + a1b1

(A2
1 + a2

1)1/2(B2
1 + b21)1/2

=
A2B2 + a2b2

(A2
2 + a2

2)1/2(B2
2 + b22)1/2

= . . .

=

∑
k AkBk + akbk∑

k(A2
k + a2

k)1/2(B2
k + b2k)1/2

= r(R1, R2). (4.21)

Therefore, the global correlation coefficient between R1 and R2 is the same as the correlation coefficient at each

wave number or length scale.

4.5.2 Correlation coefficients of reactive scalar gradients

As shown in figure 4.2 and figure 4.3, the energy distribution and the correlation coefficients of the reactive

scalars remain almost independent of the length scale. Under these two conditions, it is ready to derive that

the global correlation coefficient between two reactive scalars is the same as their coherency spectrum at each

length scale (section 4.5.1).
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Another quantity of primary importance is the global correlation coefficients of the gradients of scalars,

which can be defined along one direction (e.g. x) only because of isotropy:

r(θ1,x, θ2,x) =
〈∂θ1∂x

∂θ2
∂x 〉

〈(∂θ1∂x )2〉1/2〈(∂θ2∂x )2〉1/2
. (4.22)

For various scalars, the (almost) identical spectra of the scalar energy (figure 4.2) implies the (almost) identical

spectra of the energy of scalar gradient quantities. In addition, since Eq. (4.12) is the definition of the coherency

spectrum between not only θ1 and θ2 but also their gradients, the coherency spectra between the gradients of

two reactive scalars are also almost k independent. Therefore, the correlation coefficient of the gradients of two

reactive scalars is also identical at each length scale, and supposed to be the same as the correlation coefficient

of these two reactive scalars. Figure 4.4 presents the global correlation coefficients of the reactive scalars and

their gradients against Da with Reλ = 150, Sc = 1, n = 1. The speculation that the correlation coefficients

between the reactive scalars are the same as that of their gradients is well testified, except for the cases of

Da = 0.01 and 0.1, in which the condition that the coherency spectra is k independent is not satisfied at the

largest scales (figure 4.3).
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Figure 4.4: The global correlation coefficients of the reactive scalars and their gradients along x direction,
under the condition of Reλ = 150, Sc = 1, n = 1.
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4.5.3 Analytical prediction for reactant correlations

Under the conditions of R′1 � 〈R1〉, R′2 � 〈R2〉, P ′ � 〈P 〉 and 〈R1〉 ≈ 〈R2〉 ≈ 〈P 〉 ≈ 1 (figure 4.1), the net

reaction rate can be estimated as

R1R
n
2 − P ≈ (〈R1〉+R′1)(〈R2〉+ n〈R2〉n−1R′2)− (〈P 〉+ P ′) ≈ R′1 + nR′2 − P ′. (4.23)

Correspondingly, the equations for fluctuating scalars become

DR′1
Dt

≈ 1

ReλSc
4R′1 −Da(R′1 + nR′2 +M ′) + q̇R1

, (4.24a)

DR′2
Dt

≈ 1

ReλSc
4R′2 − nDa(R′1 + nR′2 +M ′) + q̇R2

, (4.24b)

DM ′

Dt
≈ 1

ReλSc
4M ′ −Da(R′1 + nR′2 +M ′) + q̇M , (4.24c)

where M ′ = −P ′ and q̇M = −q̇P . The same form of Eq. (4.24c) as Eq. (4.24c) implies that R′1 and M ′ behave

statistically the same.

By multiplying Eq. (4.24a), (4.24b) and (4.24c) with R′2, M ′ and R′1 respectively and averaging (〈·〉) on time

and space, it yields:

〈DR
′
1

Dt
R′2〉+

1

ReλSc
〈∇R′2∇R′1〉 ≈ −Da(〈R′2R′1〉+ n〈R′22 〉+ 〈R′2M ′〉) + 〈R′2q̇R1

〉, (4.25a)

〈DR
′
2

Dt
M ′〉+

1

ReλSc
〈∇M ′∇R′2〉 ≈ −nDa(〈M ′R′1〉+ n〈M ′R′2〉+ 〈M ′2〉) + 〈M ′q̇R2〉, (4.25b)

〈DM
′

Dt
R′1〉+

1

ReλSc
〈∇R′1∇M ′〉 ≈ −Da(〈R′21 〉+ n〈R′1R′2〉+ 〈R′1M ′〉) + 〈R′1q̇M 〉. (4.25c)

In Eq. (4.25a), the term 〈R′2q̇R1
〉 is estimated as 0, because the time-delta forcing to one scalar (R1) can

not be strongly correlated with another scalar (R2). Moreover, the small net reaction rate implies that the

instantaneous reactive scalar is weakly influenced by other scalar(s). Thus at the statistical stationary state,

〈DR
′
1

Dt R
′
2〉 can be assumed negligibly small, i.e. 〈DR

′
1

Dt R
′
2〉 ∼ 0.

As discussed in section 4.5.2, the correlation coefficients of the reactive scalars is roughly the same as the
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correlation coefficients of their gradients, which in isotropic turbulence can be estimated as

〈∂xR′2∂xR′1〉 ≈ 〈∂yR′2∂yR′1〉 ≈ 〈∂zR′2∂zR′1〉

≈ 〈(∂xR′2)2〉1/2〈(∂xR′1)2〉1/2 · 〈R′2R′1〉
〈R′22 〉1/2〈R′21 〉1/2

≈ 〈R
′2
2 〉1/2〈R′21 〉1/2

λ2
θ

· 〈R′2R′1〉
〈R′22 〉1/2〈R′21 〉1/2

≈ 〈R
′
2R
′
1〉

λ2
θ

, (4.26)

where λθ is the Taylor microscale for scalars (Eq. (4.14)).

Consequently,

1

ReλSc
〈∇R′2∇R′1〉 =

1

ReλSc
(〈∂xR′2∂xR′1〉+ 〈∂yR′2∂yR′1〉+ 〈∂zR′2∂zR′1〉) ≈

3

ReλScλ2
θ

〈R′2R′1〉. (4.27)

From Eq. (4.25a) it yields

3〈R′2R′1〉 ≈ −Daθ(〈R′2R′1〉+ n〈R′22 〉+ 〈R′2M ′〉), (4.28)

where Daθ = ReλScλ
2
θDa =

λ2
θγ1R

n
2,eq

D is the Damköhler number based on scalar Taylor micro-scale and diffu-

sivity (Eq. (4.15)).

Similarly, from Eq. (4.25b) and (4.25c),

3〈M ′R′2〉 ≈ −nDaθ(〈M ′R′1〉+ n〈M ′R′2〉+ 〈M ′2〉), (4.29)

3〈R′1M ′〉 ≈ −Daθ(〈R′21 〉+ n〈R′1R′2〉+ 〈R′1M ′〉). (4.30)

Because R′1 and M ′ are statistically the same (see Eq. (4.24a) and (4.24c)), we can define

C = 〈R′1M ′〉, c = 〈R′2R′1〉 = 〈R′2M ′〉, V = 〈R′21 〉 = 〈M ′2〉, v = 〈R′22 〉, (4.31)

i.e.
C

V
= r(R1,M) = −r(R1, P ),

c√
V v

= r(R1, R2) = r(R2,M) = −r(R2, P ).

Then Eq. (4.28), (4.29) and (4.30) can be rewritten as

3c ≈ −Daθ(2c+ nv), (4.32a)

3c ≈ −nDaθ(C + nc+ V ), (4.32b)
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3C ≈ −Daθ(C + nc+ V ), (4.32c)

which then leads to the solutions as

r(R1, P ) ≈ Daθ
3 + n2Daθ +Daθ

, (4.33a)

r(R1, R2) = −r(R2, P ) ≈ −nDaθ√
3 + n2Daθ +Daθ

√
3 + 2Daθ

. (4.33b)

4.5.4 Comparison with numerical results
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Figure 4.5: Correlation coefficients between R1 and R2 (r(R1, R2)), R1 and P (r(R1, P )), R2 and P (r(R2, P ))
as functions of Daθ, under the condition of (a): n = 1 (b): n = 2 and (c): n = 3 and the Schmidt number
Sc = 1. Theoretical predictions are shown in black lines.

We provide here the central result of the derivation based on the above steps. The above expressions of Eq.

(4.33a) and (4.33b) show that the concentration field for R1 is positively correlated to P , while is negatively

correlated to R2. Furthermore, the correlations r(R1, R2) and r(R2, P ) are opposite in sign. They also show

that for large Daθ the correlations reach a saturation plateau, whose value depends on the reaction order n. For

n = 1 the correlations coefficients have all the same intensity and only differs in sign. The asymptotically large

Daθ limit in this case leads to the values r = ±1/2. At asymptotically large n and Daθ, it yields r(R1, P ) ' 0

and r(R1, R2) = −r(R2, P ) ' 1. On the opposite, in the condition of vanishing values of Daθ, corresponding to

a negligible role of chemical processes and predominance of mixing, all the correlations coefficients tend to zero.

In figure 4.5 we report the numerical measurements of the correlation coefficients between the reactive scalars
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as functions of Daθ, for a set of simulations characterized by different reaction order n and different Reλ, ranging

over more than a decade. It can be seen that for low Daθ values, corresponding to slow reaction rates, R1, R2

and P behave as almost independent passive scalars, as expected. Thus the correlation coefficients are about

zero when Daθ is small. As Daθ increases, the scalars become more and more correlated and the correlation

coefficients gradually approach plateaus, which are n dependent. All these tendencies are in excellent agreement

with the theoretical predictions, which are also reported on the same figure.
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Figure 4.6: Correlation coefficients between R1 and R2 (r(R1, R2)), R1 and P (r(R1, P )), R2 and P (r(R2, P ))
as functions of Daθ, under the condition of (a): Reλ = 20 (b): Reλ = 40 and (c) Reλ = 80. The order of R2

(n) is 1. Theoretical predictions are shown in black lines.

Figure 4.6 further confirms the range of validity of the prediction, by displaying the same correlations now

for the case of different Schmidt numbers in the range from 0.1 to 4 and for n = 1. Again the trends are well

captured by the theoretical predictions.

4.6 Reactant variances

4.6.1 Chemical equilibrium and the effect of reaction on it

The probability density functions (PDF) of the scalar fields are reported in figure 4.7. It can be seen that

despite the different amplitudes of the standard deviations, their normalised shapes do not deviate significantly

from Gaussian. No noticeable difference is observed in the comparison of reactive scalars with the passive one.

Furthermore, side-by-side visualisations of instantaneous snapshots of reactive and passive scalars do not allow

to perceive clear difference in their spatial structure (figure 4.8).
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Figure 4.7: PDF of the scalar quantities (main panel) and normalized with respect to their standard deviations
(inset, the black lines are Gaussian curves) under the condition of Reλ = 150, Sc = 1, n = 2 and Da = 0.1.

In our system the global chemical equilibrium condition 〈R1R
n
2 〉 = 〈P 〉 is toughly satisfied by construction

due to the irreversible reactive scalar source term. We also note that in the above described statistically steady

condition the advecting flow is the main responsible for local departures in time and space from the chemical

equilibrium condition. The magnitude of such deviations depends on the turbulent intensity and it grows

with Reλ. We observe that the root-mean-square intensity of the local reaction rate Da(R1R
n
2 − P ) scales

approximately as ∼ Re
3/2
λ in the range of Reynolds number explored in this chapter (figure 4.9). Moreover, as

shown in the bottom panels of figure 4.9, it is interesting to see that the reaction rate normalized by its standard

deviation is of a PDF independent of Reλ.

4.6.2 Analytical prediction for reactant variances and comparison with DNS

As we have already mentioned the turbulent advection and the scalar forcing are the sources of scalar spatial-

temporal fluctuations. In the case of passive scalars such fluctuations are smoothed out by diffusion. For the

reactive case, the chemical sources function as an additional dumping mechanism. In other words, it is expected

that the chemical reaction term acts as a global sink to suppress the scalar energy in addition to dissipation via

molecular diffusion.

In the present model system this scenario can be understood by means of the following argument. We mul-

tiply the linearized transport equations for the reactive scalars (Eq. (4.24)) with the corresponding fluctuation

field R′1, R′2 and P ′ and perform volume and time average 〈·〉. At statistical stationary state, summing the
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Figure 4.8: Visualisation of two-dimensional instantaneous sections of the R1 field at Reλ = 150, Sc = 1 and
for three different Da values.

obtained equations of scalar dissipation rates (εR1 , εR2 and εP ) for the considered reactive fields reads:

εR1
+ εR2

+ εP =
〈(∇R′1)2〉
ReλSc

+
〈(∇R′2)2〉
ReλSc

+
〈(∇P ′)2〉
ReλSc

≈ −Da〈R′1 + nR′2 − P ′〉2 + 〈R′1q̇R1〉+ 〈R′2q̇R2〉+ 〈P ′q̇P 〉. (4.34)

The above equation shows that the reaction is always responsible of removing the scalar energy. A consequence

of this is that one expects smaller scalar fluctuations for the reactive fields as compared to a passive scalar. In

particular, we expect that the scalar variance will be a monotonically decreasing function in Daθ.

To have a quantitative understanding for such scenario we compare the fluctuations of the reactive scalars

with the ones of a passive scalar in the same dynamical conditions, i.e., subject to the same advective flow, and

having the same diffusion and under the effect of an independent statistical realization of the source term q̇θ.

In order to develop also in this case a quantitative prediction for the phenomenon we need to introduce the

key assumption that the scalar energy input due to the source term on the field R1 is approximately same as

the one provided on a passive scalar field T in the same conditions, i.e.

〈R′1q̇R1〉 ' 〈T q̇T 〉. (4.35)

The soundness of this hypothesis lies on the fact that in the present conditions the reactant R1 has fluctuation

of similar intensity as the passive scalar case.

Now we derive the theoretical expressions of the variance of reactant scalars normalized by that of the passive

scalar (T ).
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Figure 4.9: PDF of reaction rate Da(R1R
n
2 −P ) at Da = 0.1 and Sc = 1 for n = 1 (left) and n = 2 (right) for
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3.

By multiplying Eq. (4.24a), (4.24b) and (4.24c) with R′1, R′2 and M ′, respectively and averaging (〈·〉) in

space and time, we obtain

1

2

D〈R′21 〉
Dt

+
1

ReλSc
〈|∇R′1|2〉 ≈ −Da(〈R′21 〉+ n〈R′1R′2〉+ 〈R′1M ′〉) + 〈R′1q̇R1

〉, (4.36a)

1

2

D〈R′22 〉
Dt

+
1

ReλSc
〈|∇R′2|2〉 ≈ −nDa(〈R′1R′2〉+ n〈R′22 〉+ 〈R′2M ′〉) + 〈R′2q̇R2

〉, (4.36b)

1

2

D〈M ′2〉
Dt

+
1

ReλSc
〈|∇M ′|2〉 ≈ −Da(〈R′1M ′〉+ n〈R′2M ′〉+ 〈M ′2〉) + 〈M ′q̇M 〉. (4.36c)

The dissipation terms above, e.g. 1
ReλSc

〈|∇R′1|2〉, can be estimated similarly as Eq. (4.26). Under the isotropic
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and statistical stationary conditions, the turbulent energy of R′1, R′2 and P ′ are approximately determined as

3〈R′21 〉 ≈ −Daθ(〈R′21 〉+ n〈R′1R′2〉+ 〈R′1M ′〉) +ReλScλ
2
θ〈R′1q̇R1

〉, (4.37a)

3〈R′22 〉 ≈ −nDaθ(〈R′1R′2〉+ n〈R′22 〉+ 〈R′2M ′〉) +ReλScλ
2
θ〈R′2q̇R2

〉, (4.37b)

3〈M ′2〉 ≈ −Daθ(〈R′1M ′〉+ n〈R′2M ′〉+ 〈M ′2〉) +ReλScλ
2
θ〈M ′q̇M 〉. (4.37c)

Similarly, based on Eq. (4.8d), the turbulent energy of T ′ is

3〈T ′2〉 ≈ ReλScλ2
θ〈T ′q̇T 〉. (4.38)

Define

w = ReλScλ
2
θ〈R′2q̇R2

〉, W = ReλScλ
2
θ〈R′1q̇R1

〉 = ReλScλ
2
θ〈M ′q̇M 〉,

VT = 〈T ′2〉, WT = ReλScλ
2
θ〈T ′q̇T 〉.

(4.39)

Together with Eq. (4.31), (4.37a), (4.37b) and (4.38) we obtain

3V ≈ −Daθ(V + nc+ C) +W, (4.40a)

3v ≈ −nDaθ(2c+ v) + w, (4.40b)

3VT ≈WT . (4.40c)

It is worthy noting that for all the scalar quantities the delta-correlated external forcing is exerted in the

same way with constant amplitude. When 〈R′21 〉 is close to 〈T ′2〉 ( VVT close to 1), it is reasonable to assume

W ≈WT . Together with Eq. (4.33a), (4.33b), (4.40a) and (4.40c) we obtain

〈R′21 〉
〈T ′2〉

=
〈P ′2〉
〈T ′2〉

=
V

VT
≈ 3 + n2Daθ +Daθ

3 + n2Daθ + 2Daθ
. (4.41)

From Eq. (4.32), the ratio between the fluctuation magnitudes of R2 and R1 is determined as

〈R′22 〉
〈R′21 〉

=
v

V
≈ 3 + 2Daθ

3 + n2Daθ +Daθ
, (4.42)
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which leads to
〈R′22 〉
〈T ′2〉

=
〈R′21 〉
〈T ′2〉

〈R′22 〉
〈R′21 〉

=
V

VT

v

V
≈ 3 + 2Daθ

3 + n2Daθ + 2Daθ
. (4.43)

It is found that the fluctuations of the reactive scalars (R1, R2 and P ) are close to that of passive scalar (T )

when Daθ is small, but gradually decrease as Daθ increases. The figure 4.10 shows the normalized fluctuations
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Figure 4.10: The fluctuations of the reactive scalars normalized by the fluctuation of passive scalar (T ) as
functions of Daθ, under the condition of (a): n = 1 (b): n = 2 and (c): n = 3 and the Schmidt number Sc = 1.
Theoretical predictions are shown in black lines.

of the reactive scalars (R1, R2 and P ) as measured from the DNS, in agreement with the above theoretical

prediction.

4.7 Taylor micro scale of scalar concentration fields

As we have discussed in the above sections the correlations and fluctuations of the concentration of reactive

scalars are well described by means of the control parameter Daθ, which contains the scalar Taylor micro scale

of λθ. In this section we aim at gaining more insight into this key spatial scale.

The scalar Taylor microscale was notably first studied by Stanly Corrsin (Corrsin, 1957), in the context of

scalar mixing in turbulent flows. He hypothesized that such a scale is proportional to the intensity of turbulence

and inversely to the Schmidt number of the problem, i.e.

λ2
θ

λ2
∝ 1

Sc
.
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However, further experimental and numerical studies (Bahri et al., 2015; Corrsin, 1964b) have reported that

such a dependence is not straightforward, as it shows finite Reλ effects and different trends for asymptotically

small and large Sc values (see (Ristorcelli, 2006) for a recent discussion).

We show the results of our simulations in figure 4.11(a). The figure reports the dimensionless λ2
θ (actually

λ2
θ/λ

2, because the length is non-dimensionalized by λ) as functions of Sc under the conditions of Reλ from 20

to 150. Figure 4.11(a) indicates that a clear −1 scaling law exists between λ2
θ and Sc for the largest Reλ case,

with a prefactor ' 0.3, implying that in the limit of intense turbulence the Daθ number can be approximated

as

Daθ ' 0.3ReλDa = 3TI/τr. (4.44)

Here τr = (γ1R2,eq)
−1 is the typical time of the reaction. Remarkably, this result reveals that the unique a

posteriori control parameter that we have identified with Daθ can be considered as the ratio of the largest time

scale of the turbulent flow to the typical time scale associated to the chemical process.

Finally, we remark that λθ does not vary significantly over the different scalar fields R1, R2, P and the

reference passive scalar field T . This is exemplified in Figure 4.11(b) for all the simulations at Reλ = 150 and

Sc = 1. The figure shows that any λθ evaluated on a reactive field is at best 15% different from the reference

λT case. Such difference vanishes for very small (the mixing dominated limit) or very large Da and shows a

weak increase trend with the order of the reaction. We can conclude that λT can here be taken as a convenient

approximation of λθ. The estimations of Daθ in the this chapter are based on such an assumption.

4.7.1 Taylor micro scale of scalars advected by a coarse-grained turbulent flow

field

In order to understand better the role of λθ, we perform a series of simulations where the scalar fields are

advected by a coarse-grained, i.e. spatially filtered turbulent flow, denoted as ũ. The filter functions as a

spectral low pass, defined as

ˆ̃u =
∑

|k|6K

û(k), (4.45)

where K specifies the maximum wave number kept in the modified field. Such a filter retains only the large

eddies of the turbulent flow, down to a wavelength 2π/K. The Taylor scale for scalars convected by the filtered

flow is denoted as λ̃θ. It is noteworthy that the length quantities are always non-dimensionalized by the Taylor

scale of unfiltered flow λ, instead of the Taylor scale of the filtered flow. Interestingly, it is worth exploring

what is the impact of the hierarchy of flow scales, extending from the domain size down to the dissipative



80 Reactions in homogeneous isotropic turbulence

0.1 1
Sc

0.1

1
2

2

0.3
Sc

Re =20
Re =40
Re =80
Re =150

(a)

10 3 10 2 10 1 100 101

Da

1

1.1

1.2

1.3

T

R1

T
,n=1

R2

T
,n=1

P

T
,n=1

R1

T
,n=2

R2

T
,n=2

P

T
,n=2

R1

T
,n=3

R2

T
,n=3

P

T
,n=3

(b)

Figure 4.11: a) Taylor micro scales of scalars (computed on T ) as functions of Sc. The red line draw is 0.3/St.
A power law fit of the form aScb on the Reλ = 150 data set gives a = 0.29 ± 0.1 and b = −0.93 ± 0.02. b)
Taylor micro scales of the reactive scalars with respect to the passive scalar one with different order of reaction,
as functions of Da for all the simulations at Reλ = 150 and Sc = 1.

scales, on the reactive scalar dynamics. In particular, we aim to understand the dependence of the scalar

correlation coefficients and the scalar Taylor microscale on the maximum wavenumber K. According to the

above discussion, it is reasonably expected that the small scales of the fluid have a negligible influence, because

the scaling mixing process and relevant quantities are controlled by the large eddy turnover time TI .

Results are presented for a typical case, i.e. Sc = 1, Reλ = 80 and Da = 0.05 corresponding to Daθ = 1.42.

Figure 4.12(a) shows that the correlation coefficients vary quite weakly with the filter parameter K. The

deviation becomes noticeable only for K ≤ 3, which corresponds to scales larger than the large eddy turnover

scale of the flow, in the sense that the forcing is active up to |k| = 2
√

2. Such behavior is also well captured by the

theoretical predictions of (4.33a) and (4.33b) if the Damköhler number Daθ̃ adopted is built on the measured

scalar Taylor scale λ̃θ, instead of the original Daθ. This confirms again the relevance of the scalar Taylor

microscale in characterizing the present reactive scalar system. It is worth noting that, differently from the

correlation coefficients, the scale λ̃θ varies sensibly with the filter wavenumber K, as reported in figure 4.12(b).
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Figure 4.12: (a) Correlation coefficients of scalar evolving in a coarse-grained turbulent flow filed, compared
with theoretical predictions and (b) Taylor micro scales of the scalars convected by filtered velocity (λ̃θ) as
functions of the maximum wave number of filtered velocity (K), at Sc = 1, Reλ = 80 and Da = 0.05 (Daθ =
1.42).

4.8 Summary

In summary, the statistical properties of species undergoing reversible chemical reactions in a turbulent environ-

ment have been studied. We have addressed this by means of a model system in which the flow is statistically

steady turbulence and the chemical species are retained in a dynamical equilibrium state due to the action of

random large-scale source terms. It is observed that the reactive scalar fluctuations have a Gaussian distribution

and energy spectra are essentially identical to the one of a passive scalar field transported by the same flow.

This can be explained by the overall small amplitude of the reaction terms in the present close-to-equilibrium

conditions. However, in such a state a competition still exists between the chemical processes, which tend to

dump reactant concentration fluctuations and enhance their correlation intensity, and the turbulent mixing,

which on the contrary increases fluctuations and remove relative correlations.

We quantitatively describe this phenomenon by considering the linearised equations for the reactive scalar

fluctuations. A unique control parameter, the Damköhler number (Daθ), can be constructed as the ratio between

the time scale of scalar diffusion across a domain of the size of the scalar Taylor micro-scale (λ2
θ/D) and the

chemical reaction time scale τr. Importantly, Daθ characterises the functional dependence of fluctuations and

correlations of the scalar quantities in the full range of explored conditions with variable reaction order, the
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Reynolds number and the Schmidt number. The larger is such a Damköhler number the more depleted are the

scalar fluctuations as compared to the fluctuation of a passive scalar field in the same conditions, and the more

intense are the correlations. A saturation in this behaviour is observed beyond Daθ ' O(10). These results

reveal the significance of the scalar Taylor micro-scale for problems involving the mixing of chemical species.

We have shown that in the limit of intense turbulence the relation proposed by Corrsin (1957) λθ ∼ λSc−1/2

holds approximately, meaning that Daθ can also be viewed as the ratio of the large-eddy-turnover time of the

flow over the typical chemical reaction time.



Chapter 5

Turbulent Kolmogorov flows and chemical

reactions

In Chapter 4, the statistical behaviors of the reactive scalars in homogeneous isotropic turbulence were in-

vestigated. However, realistic turbulent flows are rarely homogeneous or isotropic, because of the presence of

boundaries or spatial dependent forces, such as the channel flow and the wall bounded flow. The Kolmogorov

flow (Meshalkin and Sinai, 1961; Green, 1974; She, 1987; Borue and Orszag, 1996; Lucas and Kerswell, 2014)

is an example of open turbulent flow, i.e. a flow without boundaries, which is statistically non-homogeneous

along one direction and anisotropic. In the late 1950s, A. N. Kolmogorov has proposed to few of his students

to study the stability properties of such flow, and an answer was proposed soon after Meshalkin and Sinai

(1961), with a Reynolds number threshold of
√

2 confirmed also later by Green (1974). The KF system hence

corresponds to the Navier-Stokes equations studied in a periodic domain, with a constant pressure, and forced

by a sinusoidal forcing. Above the critical Reynolds number, the flow becomes turbulent and we denote this as

turbulent Kolmogorov flow (TKF), a flow which is statistically stationary and anisotropic in one direction.

In this chapter, the TKF and the reactive scalars convected in it are discussed based on direct numerical

simulations and theoretical analyses. This chapter is divided into two parts. First the classical turbulence

closure based on eddy-viscosity Boussinesq’s approach and a nonlinear quadratic closure about the velocity

fields in the TKF are numerical examined. Then numerical studies about reactive scalars were carried out for

extending the theoretical models about the reactive scalars in chemically quasi-equilibrium state discussed in

Chapter 4 to reactions in the TKF.
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5.1 Numerical examinations about closure models

The TKF is now considered a classical flow model system to study non-homogenous, anisotropic, sheared

turbulence (Borue and Orszag, 1996; Shebalin and Woodruff, 1997; Biferale and Toschi, 2001; Balmforth and

Young, 2002; Boffetta et al., 2005; Musacchio and Boffetta, 2014). As discussed by Musacchio and Boffetta

(2014), TKF can be considered, to some respect, as a turbulent channel flow without boundaries. Many of

the numerical studies devoted to TKF have focused on two-dimensional configurations (She, 1987; Berti and

Boffetta, 2010; Lucas and Kerswell, 2014, 2015). In this section we consider a three-dimensional Navier-Stokes

incompressible turbulence forced in the x direction by a sinusoidal force depending on the z coordinate.∗

5.1.1 The Kolmogorov flow model system

Equations of motion and numerical implementations

To generate the TKF, the forcing in the governing equations for the incompressible Navier-Stokes equations

(Eq. (4.2)) is a sinusoidal function in the form:

f = A sin
(

2π
z

H

)
ex, (5.1)

where A is a constant, H is the length of the side of the cubic domain chosen here as the characteristic length

scale. Such force, in the x direction and depending on the z variable, makes the flow anisotropic in the z

direction. It is convenient to introduce the following reference scales for velocity and time for this section:

U0 = (AH)
1/2

, (5.2)

T0 =
H

U0
=

(
H

A

)1/2

. (5.3)

From this one can construct the Reynolds number as

Re0 =
U0H

ν
, (5.4)

which thus becomes the only dimensionless control parameter in the system.

In the following discussion in this section, the quantities are in dimensionless units. As in section 4.2, the

model system is numerically simulated in a cubic tri-periodic domain, using the means of a pseudo-spectral code

∗The content of this chapter is based on our paper “Wu, W., F. G. Schmitt, E. Calzavarini, and L. Wang. A quadratic constitutive
equation for the turbulent Kolmogorov flow.” to be submitted to Physical Review E.
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Table 5.1: The dimensionless key global parameters after reaching a statistically stationary state. A = 1
is the amplitude of forcing to velocity; H = 1 is the length of the domain, also reference scales for length;
U0 = 1 and T0 = 1 are the reference scales for velocity and time respectively as indicated in Eq. (5.2). The
first column is the Run number; Re0 = HU0

ν is the Reynolds number based on domain length; Reλ0
=

λ0u
′
0

ν is
the Reynolds number based on global Taylor microscale, where λ0 =

√
15ν/ε0u

′
0, ν is the kinematic viscosity,

u′0 =
√

1
3

∑
i〈u′2i 〉 is the global root-mean square of single component velocity, ε0 = ν

2 〈
∑
i

∑
j(∂iuj + ∂jui)

2〉
is the global energy dissipation rate, 〈·〉 denotes the average in time and all over the domain. N3 is the grid
size; η0 = (ν3/ε0)1/4 is the global Kolmogorov scale; |k|max · η0 is the resolution condition; Ttotal is the total
simulation time and Tl is the large eddy turnover time, i.e. Ttotal/Tl denotes the number of large eddy turnover
time spanned by the simulation.

No. Re0 Reλ0
ν ε0 η0 N3 |k|max · η0 Ttotal/Tl

1 787.5 38.7 0.0013 0.51 0.008 1283 2.64 462.5
2 984.4 43.5 0.001 0.52 0.0067 1283 2.22 445.0
3 1211.5 49.3 0.00083 0.52 0.0058 1283 1.90 427.1
4 1575.0 57.4 0.00063 0.52 0.0047 1283 1.56 403.5
5 2099.9 66.9 0.00048 0.54 0.0038 1283 1.25 761.2
6 3149.9 83.9 0.00032 0.57 0.0028 2563 1.82 259.4
7 6299.8 123.4 0.00016 0.56 0.0016 2563 1.08 386.0
8 15749.6 198.3 6.3e-05 0.56 0.00083 5123 1.09 70.2

with a smooth dealiasing technique. The time-marching scheme adopts a third order Runge-Kutta method.

The global non-dimensional values of the key parameters for the simulations are reported in table 5.1.

The total integration time is long enough, as shown in Table 5.1, not only to ensure that the statistics have

converged, but also to have a sample space large enough for the statistical estimations, especially for the runs

with small number of grids. It is noteworthy that the adimensionalization implemented in this section is different

from Chapter 4. Because of anisotropy along z direction, the quantities such as the Taylor micro scale λ and

Kolmogorov length η are functions of position z in the TKF. The quantities listed in table 5.1 with the subscript

of 0 means they are the global values obtained from the average also over z, i.e. 〈·〉.

Reynolds decomposition and velocity moments

Let us consider a Reynolds decomposition of the velocity into mean and fluctuating quantities u = 〈u〉z + u′

(〈·〉z denotes the average over time and spatially in x and y directions) and note the three components of the

velocity u = (u, v, w). Because of the periodicity in x and y directions, the derivatives with respect to x and y

of mean quantities are 0. By taking the average in time and spatially in x and y direction of the Navier-Stokes

equations, one obtains the following relations:

−∂zτ =
1

Re0
∂2
zU(z) + sin(2πz),

∂z〈w′2〉z = −∂z〈p〉z,
(5.5)
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where U = 〈u〉z and the shear stress is τ = −〈u′w′〉z. Using the first line of this relation, it is found that

for laminar flows when τ = 0, the mean velocity profile is also sinusoidal while the pressure field is constant

(Meshalkin and Sinai, 1961).

For turbulent flows, it is well-known that the mean velocity profile is also sinusoidal (Borue and Orszag,

1996), but this is a numerical result which has, to our knowledge, no direct analytical explanation. We obtain

the following z-dependence for U :

U(z) = κ sin(2πz). (5.6)

The numerical estimations of κ are plotted in figure 5.1. The maximum value of the mean turbulent velocity

is of the order of the characteristic velocity built using the forcing values, since we obtain values of κ between

1.01 and 1.12, increasing with the Reynolds number (figure 5.1 and Table 5.2). The values of κ found here are

compatible with the value of κ = 1.1 found by Borue and Orszag (1996) (the value of the Reynolds number in

the latter work is not provided).

For large Reynolds number, using equations (5.5) and (5.6) we find that ∂zτ is proportional to sin(2πz),

obtaining finally:

τ =
1

2π

(
1− (2π)2 κ

Re0

)
cos(2πz). (5.7)

The different first and second moments of the velocity obtained after averaging Navier-Stokes equations are

shown in figures 5.2 and 5.3. As proposed by Sarris et al. (2007), one criterion for the convergence of Kolmogorov

flow simulations is that the left-hand-side and right-hand-side of equation (5.7) must be comparable. As shown

in figure 5.2(b), this criterion is satisfied in our simulation (when the Re0 is large enough for the diffusion term

to be neglected). Moveover, only one component of the mean velocity is non-zero; concerning second moments,

only one shear stress term is non-zero, involving the product u′w′. The turbulence is anisotropic since all normal

stress components of the stress tensor are different: 〈u′2〉z > 〈w′2〉z > 〈v′2〉z. The diagonal terms have twice

the spatial frequency of the forcing. Since cos(2θ) = 2 cos2 θ − 1, they can be written as:

〈u′2〉z = α1 + β1 cos2(2πz),

〈v′2〉z = α2 + β2 cos2(2πz),

〈w′2〉z = α3 + β3 cos2(2πz),

(5.8)

where numerically the couple of values (αi, βi) of each component of the velocity, for each run, are listed in table

5.2. This will be an important information for the quadratic closure done in the next section. Consequently,
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No. α1 β1 α2 β2 α3 β3 κ
1 0.2247 0.1121 0.1483 0.0837 0.2279 0.0498 1.0084
2 0.2291 0.1155 0.1545 0.0885 0.2271 0.0504 1.0253
3 0.2282 0.1152 0.1622 0.0886 0.2378 0.0553 1.0273
4 0.2327 0.1141 0.1665 0.0920 0.2483 0.0587 1.0438
5 0.2385 0.1223 0.1704 0.0951 0.2489 0.0643 1.0734
6 0.2422 0.1291 0.1749 0.1034 0.2674 0.0772 1.1288
7 0.2605 0.1394 0.1749 0.1092 0.2678 0.0744 1.1325
8 0.2766 0.1364 0.1811 0.1092 0.2590 0.0714 1.1242

Table 5.2: The numerical values of the coefficients in Eq. 5.8 for each run.

we can write also the evolution of the mean kinetic energy:

K(z) = α+ β cos2(2πz), (5.9)

where the coefficients α and β are plotted in figure 5.1. The values found for the latter are in good agreement

with the values reported in (Borue and Orszag, 1996) (α = 0.34 and β = 0.14). We address again here that

these values are Reynolds-number dependent. Since the Reynolds number of the simulation in Borue and Orszag

(1996) is not known, quantitative results cannot be precisely compared here.
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Figure 5.1: The coefficients obtained by fitting the profiles of mean velocity and kinetic energy, κ in Eq. 5.6
and α and β in Eq. 5.9, as function of Reλ0

.
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Figure 5.2: (a) The adimensional mean quantities of each component of the velocity of Run 8. The only
non-zero term is 〈u〉z, having a maximum value of κ, where κ = 2.82. (b) The different adimensional shear
stress terms of Run 8. The only non-zero term is 〈u′w′〉z. Its z dependence is given by relation (5.7).

5.1.2 Closures for the turbulent Kolmogorov flow

Introduce the Reynolds stress tensor defined as T = −〈u′iu′j〉z. The anisotropic stress tensor is R = −T+ 2
3KI,

where K is the kinematic energy and I is the unitary tensor. The mean velocity gradient tensor A = ∂Ui/∂xj ,

and the mean strain-rate S and rotation-rate W tensors are also introduced as:

S =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
, (5.10)

W = A− S. (5.11)

Closure of the turbulence equations corresponds to express the Reynolds stress tensor using mean quantities,

e.g. when the closure is local, using the tensors S and W. Below we first consider the simplest linear closure and

estimate the eddy-viscosity, and then we address a nonlinear closure using a quadratic constitutive equation.

Boussinesq’s eddy-viscosity hypothesis and its assessment

It is seen from equations (5.6) and (5.7) that, concerning the only non-zero non-diagonal term in the stress

tensor, its z-behaviour is the same as the mean gradient term, giving an eddy-viscosity of the form:

νT =
τ

U ′(z)
=

(
1

(2π)2κ
− 1

Re0

)
. (5.12)
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Figure 5.3: The different normal stresses: one finds 〈u′2〉z > 〈w′2〉z > 〈v′2〉z. The z-dependence is given by
the fits of equation (5.8).

The eddy-viscosity does not depend on z, but depend on the Reynolds number and the coefficient κ. For Run

7 we find a value of νT = 0.0224, as an overall estimation of the eddy-viscosity with a constant value which

does not depend on z. However, the estimation of an eddy-viscosity does not validate the linear closure. The

Boussinesq’s hypothesis, which is at the basis of all eddy-viscosity turbulence models, corresponding to a linear

proportionality between tensors (Boussinesq, 1877) :

R = 2νTS. (5.13)

For the flow considered here, there are some symmetries so that the strain as well as the stress have a simplified

form:

S =
a

2




0 0 1

0 0 0

1 0 0




(5.14)
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Figure 5.4: The mean kinetic energy K(z) = 1
2 〈uiui〉z.

and

R =




2
3K − σ

2
u 0 τ

0 2
3K − σ

2
v 0

τ 0 2
3K − σ

2
w



, (5.15)

where a = U ′(z), σ2
u = 〈u′2〉z and the same for σ2

v and σ2
w.

It is then clear, as is also the case for turbulent channel flows (Speziale, 1987; Nisizima and Yoshizawa, 1987;

Pope, 2000), that such linear relation between tensors can be realized only when diagonal terms are zero, i.e.

in an isotropic situation. However, the TKF is anisotropic and as seen in figure 5.3, the three normal stresses

are all different, which means that a precise proportionality cannot be found.

In order to quantify this alignment, we consider the inner product between tensors: A : B = {AtB} =

AijBij , where {X} is a notation for the trace of X. The norm is then ||A||2 = A : A. As a direct test of

Boussinesq’s hypothesis, we first represent here the normalized inner product of R and S tensors (which is
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similar to the cosine of an “angle” between vectors, see (Schmitt and Hirsch, 2000; Schmitt, 2007a)):

ρRS =
R : S

||R|| ||S||
. (5.16)

The ratio ρRS is thus a number between −1 and 1, which characterizes the validity of Boussinesq’s hypothesis:

it is 1 when this hypothesis is valid, and when close to 0 it corresponds to “perpendicular” tensors.

This is shown in figure 5.5. It is seen that a plateau is obtained, and that this hypothesis is approximately

valid when the velocity gradient is not small, whereas it completely fails for some range of values around the

positions where the mean velocity gradient vanishes.

More precisely, from Run 7, we find ρRS = 0.93 for z = 1/2. And by putting a threshold at ρRS = 0.9, we

find that 0.9 ≤ ρRS ≤ 1 for z ∈ [0, 0.13] ∪ [0.39, 0.59] ∪ [0.87, 1]. Hence it is larger than 0.9 for approximately

46% of the volume considered: for about half the volume, the linear relation between strain and stress tensors

is approximately valid.
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Figure 5.5: Simulation results for the test of the validity of Boussinesq’s hypothesis, representing the alignment
ρRS between R and S. The mean velocity profile is superposed in dotted line for reference.
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Test of a quadratic constitutive equation

We have seen above that the linear model cannot produce an anisotropic Reynolds stress tensor for anisotropic

flow such as the TKF. Pope (1975) has proposed to use invariant theory in turbulence modeling, representing

the stress tensor as a development into a tensor basis. Originally it was on the form R =
∑10
i=1 aiTi with 10

basis tensors. By considering a quadratic development, only three tensors are used. This is complete for two

dimensional flows (Pope, 1975), and is also a good approximation for fully 3-dimensional flows (Jongen and

Gatski, 1998). It can be used for channel flows (Schmitt, 2007b; Modesti, 2020) and we propose to use it also

here for the TKF.

In this framework, the anisotropic stress tensor writes as a three-terms developmentR = a1T1+a2T2+a3T3,

where the three tensors of the basis are all symmetric and traceless (Pope, 1975):

T1 = S, T2 = SW −WS,

T3 = S2 − 1
3η1I.

(5.17)

The coefficients ai can be written using scalar invariants of the flow, which correspond to scalar fields whose

values are independent of the system of reference. Invariants can be defined as the traces of different tensor

products (Spencer, 1971). Some of the first invariants are the following: η1 = {S2}, η2 = {W2}, η3 = {S3},

η4 = {SW2}, η5 = {S2W2}, µ1 = {R2}, µ2 = {RS}, µ3 = {RSW} and µ4 = {RS2}. All these invariants

can be here estimated numerically. Furthermore, the coefficients a1, a2 and a3 can be expressed using the

invariants. This is done by projecting the constitutive equation onto the tensor basis: successive inner product

of this equation with tensors Ti provides a system of scalar equations involving the invariants (Jongen and

Gatski, 1998). For 2D flows such as TKF, we have η3 = 0 and η5 = η1η2/2, and the system of scalar equations

is inverted to provide finally the quadratic constitutive equation using invariants:

R =
µ2

η1
S− µ3

η1η2
T2 + 6

µ4

η2
1

T3. (5.18)

For the TKF the invariants write:

η1 =
a2

2
, η2 = −a

2

2
, µ2 = aτ, (5.19)

µ3 =
a2

4

(
σ2
u − σ2

w

)
, (5.20)

µ4 =
a2

4

(
σ2
v −

2

3
K

)
. (5.21)
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The two remaining tensors of the tensor basis are:

T2 =
a2

2




−1 0 0

0 0 0

0 0 1




(5.22)

and

T3 =
a2

12




1 0 0

0 −2 0

0 0 1



. (5.23)

The quadratic constitutive equation finally writes, replacing invariants in equation (5.18):

R =
2τ

a
S +

(
σ2
u − σ2

w

) 1

a2
T2 +

(
6σ2

v − 4K
) 1

a2
T3. (5.24)

Equation (5.24) is a quadratic constitutive equation which is expressing a nonlinear closure of the turbulent

Kolmogorov flow. The first coefficient is twice the eddy-viscosity and therefore a constant, as discussed above.

Whereas the other coefficients involve ratio of [constant + cos2] divided by cos2 terms.

When a = U ′(z) ' 0, for z ' 1/4 and z ' 3/4, cos(2πz) = 0 and all S, T2 and T3 vanish, but in the three-

terms development of R, the second term and the third are non-zero constants, since the coefficients diverge (the

a2 terms cancel). In those positions, we see that R is a diagonal tensor which is not vanishing (see figure 5.6);

we see numerically that the second term is also very small and that the third term is dominant. This means that

in those positions, Boussinesq’s linear eddy-viscosity development is no more valid and the anisotropic stress

tensor is a constant perpendicular to the linear term and approximately proportional to T3 = S2 − 1
3η1I.

5.1.3 Summary

In this section, the classical turbulence closure based on eddy-viscosity Boussinesq’s approach and a nonlinear

quadratic closure about the velocity fields in the turbulent Kolmogorov flow (TKF) are numerical examined. It

was found that the mean velocity profile has the same form, with a damping of a factor κ, with respect to the

mean velocity value calculated from the forcing term. The value of this parameter was found to weakly increase

with the Reynolds number with indications of a possible asymptotic saturation at very large Re. The only

non-zero shear stress term is proportional to the cosine function, and the normal stress components all involve

a square cosine expression. The normal stresses are never equal, showing that as expected the turbulence is
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Figure 5.6: The amplitudes of the terms at the right hand side of Eq. (5.24) as function of z. The mean
velocity profile is also represented as a dotted line, for reference. The horizontal red dotted lines mark the 0
value for the amplitudes. The simulation results of Run 1, 3, 5, 7 are shown here.

anisotropic. It was also shown that a quadratic nonlinear constitutive equation can be proposed for this flow,

involving a linear term and two nonlinear terms in the form of traceless and symmetric tensors. For about half

of the flow domain, the linear term is dominating. Whereas for the vanishing mean velocity gradient regions,

only one non-linear term remains non-zero and becomes constant. Hence an effective viscosity coefficient can

indeed be estimated for TKF, but contrary to what has been stated previously (Rollin et al., 2011), globally

all linear and nonlinear terms are needed for the complete closure. Some of the values obtained here are in

agreement with a previous work (Borue and Orszag, 1996), even if the Reynolds number was not provided in

their work. We have checked the Reynolds-number dependence of the different parameters considered here,

with 8 different runs with different grid sizes from 1283 to 5123, and with Reynolds numbers from Reλ = 38.7

to 198. The parameters are found to converge for the largest Reynolds numbers considered.
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Table 5.3: Key global parameters after reaching statistically stationary state. Reλ0
= u′λ0/ν is the global

Taylor microscale, where u′ is the global root mean square of single component velocity, ν is kinematic viscosity,
λ0 is the global Taylor micro scale; Sc is the Schmidt number; n is the reaction order of R2 in the reaction; N3

is total number of grids; η0 = (ν3/ε0)1/4 is the global Kolmogorov length scale; |k|max is the maximum wave
number amplitude kept by the dealiasing procedure, |k|max ·η is the resolution condition; Da = λ0γ1R

n
2,eq/u

′ =
λ0γ2/u

′ is the Damköhler number based on Taylor scale.

Reλ0
Sc n λ0 u′ N3 η0 |k|max · η0 Da

54.7 1 1 1 1 1283 0.052 1.55 0.0085-8.5

5.2 Reactions in turbulent Kolmogorov flow

In Chapter 4, the reactive scalar mixing in homogeneous isotropic incompressible turbulence was studied by

direct numerical simulation and theoretical analysis. The fluctuations and correlations of the reactive scalars

were the main focus, and found to be uniquely dependant on the control parameter of Daθ. However, according

to the definition of Daθ (Eq. (4.15)), this number is based on scalar Taylor micro-scale, diffusivity and reaction

rate, no the velocity fields. In addition, in the modeling analysis, the fundamental condition is that the reacting

system is constrained to a quasi-equilibrium state, weakly relevant to the turbulent flow environment. Therefore,

this lead us to consider extending our theoretical analysis about the statistical properties of turbulent reactive

scalars in Chapter 4 to non-homogeneous and anisotropic turbulence, for example the TKF discussed above.

In this section we consider the same reactions and passive scalar as that discussed in section 4.1, sustained by

the same isotropic constant amplitude forcing (Eq. (4.10)). Specifically, only the second order reaction (n=1)

is discussed here. The global non-dimensional values of the key parameters for the simulations are reported

in table 5.3. It is noteworthy that the adimensionalization implemented in this section is in the same way as

Chapter 4, instead of section 5.1. Similarly with table 5.1, the quantities of the Taylor micro scale λ, Kolmogorov

length η and dissipation rate ε are functions of position z in TKF. The subscript of 0 means λ0, η0 and ε0 are

the global values obtained from the average also over z, i.e. 〈·〉.

5.2.1 Scalar Taylor micro-scale

As the Taylor microscale of θ, λθ is a key quantity in the definition of Daθ (Eq. (4.15)). In this chapter, because

the flow is supposed to be homogeneous in y direction, λθ is quantified as

λ2
θ =

〈θ′2〉z
〈(∂yθ)2〉z

. (5.25)

Figure 5.7 shows the numerical estimations of the square of Taylor microscale of the reactive scalars under

the condition of Da=8.5, in comparison with the profile of λ2. Although it can be found that λ2
θ is of the same
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Figure 5.7: The square of the Taylor microscale of θ under the condition of Da=8.5 compared with that of
the velocity, as functions of z.

shape with λ2, their fluctuations are hugely different. The value of λ is proportional to the mean gradient of

velocity ∂〈u〉z
∂z , and therefore of great variety. However, λ2

θ is not of large fluctuation, within 10% of the mean

value. Thus Daθ can be reasonably considered as independent on z and scalar. According to Eq. (4.15), the

Daθ can be roughly considered as independent of z.

5.2.2 Correlation coefficient

The correlation coefficients between reactive scalars are defined based on the fluctuating parts of scalars as

r(θ1, θ2)(z) =
〈θ′1θ′2〉z

〈θ′21 〉
1/2
z 〈θ′22 〉

1/2
z

. (5.26)

Here θ1 and θ2 are the scalars under consideration. The statistics of the correlation coefficients are implemented

for each specific z position. Thus they are functions of z.

According to the theoretical prediction about the correlation coefficients between scalars based on Daθ given

in Chapter 4, under the condition of n = 1, we have

r(R1, P ) = r(R2, P ) = −r(R1, R2) ≈ Daθ
3 + 2Daθ

. (5.27)

In figure 5.8(a), the correlation coefficients between reactive scalars at an example position are shown, and
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Figure 5.8: Correlation coefficients between reactive scalars (a) as function of Daθ at the position of z = H/2;
(b) as function of z under the condition of Da=8.5.

found to be in excellent agreement with the theoretical predictions by Eq. (5.27). Moreover, as shown in figure

5.8(b), the correlation coefficients between scalars are independent of z. This result further confirms that the

theoretical model about the correlations between reactive scalars proposed in Chapter 4 relies weakly on the

specific flow environment.

5.2.3 Variances of scalars

Similar with the correlation coefficients, the scalar fluctuations are also functions of z in the TKF. Figure 5.9(a)

illustrates such a dependence. The fluctuations of reactive scalars are evidently smaller than that of the passive

scalar. It indicates that, like in the homogenous isotropic turbulence, the reaction here also tends to dump

the fluctuations of scalars. In addition, the profile of the scalar fluctuations are toughly of sinusoidal shapes,

although the amplitude is small compared with the mean. A theoretical prediction about the fluctuations of

reactive scalars normalized by that of the passive scalar was proposed in the modeling analysis in Chapter

4. These quantities in TKF are shown in figure 5.9(b) as functions of z. Roughly, they can be considered

as independent of z. Following the procedure described in section 4.6.2, under the condition of n = 1, the

analytical predictions about the dependence of the normalized fluctuations of reactive scalars, at any z in the
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Figure 5.9: (a) Variances of reactive scalars, under the condition of Da=8.5, and passive scalar as function
of z. (b) Variances of reactive scalars normalized by the variance of passive scalar as function of Daθ at the
position of z = H/2. (b) Variances of reactive scalars normalized by the variance of passive scalar as function
of z under the condition of Da=8.5.

TKF, on the Daθ can be determined as

〈R′21 〉z
〈T ′2〉z

≈ 〈R
′2
1 〉z

〈T ′2〉z
≈ 〈R

′2
1 〉z

〈T ′2〉z
≈ 3 + 2Daθ

3 + 3Daθ
. (5.28)

As shown in figure 5.9(c), the normalized fluctuations of the reactive scalars measured from the DNS are in

agreement with the theoretical predictions by Eq. (5.28).

5.2.4 Summary

In this section, the reversible reaction discussed in Chapter 4 was introduced into the TKF. The Taylor mi-

croscales of reactive scalars as functions of the position were found to fluctuate only slightly. Thus parameter of

Daθ (the ratio of scalar diffusion time scale to the reaction time scale) is weakly influenced by the anisotropy of

the velocity fields. The statistical properties including the fluctuations and correlations of the reactive scalars

are numerical examined, whose dependence on Daθ were found to be in good agreement with the theoretical pre-

dictions proposed by the modeling analysis discussed in Chapter 4. This indicates that, in the quasi-equilibrium

state, the relations between the statistical properties of reactive scalars and the Daθ is weakly influenced by

the background velocity field.



Chapter 6

Chemical reactions sustained by Dirichlet

boundary conditions

In Chapter 4, the theoretical model was based on the linearization of reaction term, which is valid only when the

fluctuations of the scalars are not comparable to the mean quantities. The chemical source was not strong enough

to change the scaling behavior of scalars. The main reason is that the reacting system is not strongly deviated

from the global equilibrium state in the homogeneous isotropic configuration. In this chapter, a combustor-like

configuration of reactive scalars, in which the scalar fields are of Dirichlet boundary conditions in one direction,

is explored. The fluctuations of the scalars are maintained by an intrinsic mean gradient instead of isotropic

forcing. Accordingly, the reacting system is supposed to be strongly deviated from the chemical equilibrium

state and of rich physical interest. The statistical and scaling properties of reactive scalars are investigated, in

comparison with a passive scalar. The rest of this chapter is organized as follows. In section 6.1, the definitions

of the configuration and problem studied are provided. Section 6.2 elaborates the details of the numerical

methods; then in section 6.3, the modeling analysis and numerical results are presented and discussed. Finally

the conclusions of this chapter are summarized in section 6.4.∗

∗The content of this chapter is based on our paper “Wu, W., L. Wang, E. Calzavarini, F. G. Schmitt. Reactive scalars in
incompressible turbulence with strongly non-equilibrium chemistry.” to be submitted to Journal of Fluid Mechanics.
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6.1 Introduction of the model system

In this chapter, The velocity fields are exactly the same as that described in section 4.1. While the scalars are

different. The reactions considered here are second order reversible reaction, in the following form

R1 + R2

γ1
GGGGGGBFGGGGGG

γ2
P, (6.1)

where R1, R2 and P denote the three involved reactive scalars. The process is reversible with the respective

forward and backward reaction rate coefficients γ1 and γ2. The reactants are assumed to undergo diffusion and

to be transported in a passive manner by an incompressible velocity flow field upon which they do not exert

any effect. The evolution equations scalar concentrations (R1(x, t), R2(x, t) and P (x, t)) read

∂R1

∂t
+ (u · ∇)R1 = D4R1 − γ1R1R2 + γ2P + ṡR1 , (6.2a)

∂R2

∂t
+ (u · ∇)R2 = D4R2 − γ1R1R2 + γ2P + ṡR2

, (6.2b)

∂P

∂t
+ (u · ∇)P = D4P + γ1R1R2 − γ2P + ṡP . (6.2c)

Here u(x, t) is the flow velocity and D is the species diffusivity (assumed identical for all species). The source

terms ṡ are precised later below.

In the following analyses, to gain primary insights of the flow physics, a non-reactive species T is also

considered for comparison with the following governing equation

∂T

∂t
+ (u · ∇)T = D4T + ṡT . (6.3)

In Chapter 4, it was shown that large-scale statistically homogeneous and isotropic reactive scalar

sources/sinks are not able to sustain strong deviation from the chemical equilibrium, which instead needs to be

realized by imposing non-zero mean gradients profiles for the reactants. The canonical homogeneous shear flow,

although with adjustable mean scalar gradients, can not be adopted because the scalar concentrations defining

the reaction rates in Eqs. (6.2) are undetermined. Moreover, other flow cases such as the shear layer (Mellado

et al., 2009) are not suitable either because of the unstationary evolution or inherent spatial non-homogeneity.

Thus we propose here a new flow configuration, which is schematically illustrated in figure 6.1. In a cubic domain

a large-scale forcing term f (Eq. (4.9)) is exerted into the momentum equation (4.2) to sustain an homogeneous

and isotropic velocity field with periodic boundary conditions along the three directions. Differently, the scalar
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Figure 6.1: Schematic diagram of the flow configuration and computational domain. For the scalars quantities,
the periodic boundary conditions are set along x and y directions, while a Dirichlet boundary condition is used
along the z direction. The shadowed layers near the boundaries are the “buffer layers” generated artificially,
in which the quantities of scalars are close to the preset boundary values, as defined in Eq. (6.5). The part
between buffer layers is denote as the bulk region. Such setup is statistically stationary and ensures the local
positiveness of scalar concentrations.

fields are periodic only in x and y directions. Along the z direction, the following Dirichlet boundary conditions

are implemented: 



R1 = R0, R2 = 0, P = 0, T = R0 when z = 0,

R1 = 0, R2 = R0, P = 0, T = 0 when z = H,

(6.4)

where H is the length of domain in z direction and R0 is the constant boundary condition.

Numerically it is found that to realize a reasonably large fluctuation for the scalar fields, buffer layers in

the vicinity of the Dirichlet boundaries are needed, as shown in figure 6.1 by the shadowed parts with the bulk

region in between. Inside both the upper and bottom buffer layers, the artificial sources ṡθ with θ = R1, R2, P

or T are added in the scalar equations Eq. (6.2) and Eq. (6.3). Specifically, ṡθ is designed here as

ṡθ =





1
τ (θ0 − θ), in the buffer with z > H − δ or z < δ,

0, in the bulk.
(6.5)

Here θ0 is the boundary value of θ, as defined in Eq. (6.4); τ is a characteristic time scale to control the strength
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of the source terms. Obviously, small values of τ imply a large source to reduce the defect of the scalar quantities

from the boundary values. In our present simulation cases, τ is set at the order of 100 times of the numerical

time step. Another parameter δ is the buffer layer thickness, which can be tailored to adjust the scalar source

(i.e. lager thickness corresponds to larger species source) and the scalar mean gradient.

6.2 Numerical implementation

First of all, it is convenient to non-dimensionalize the above set of equations by choosing reference scales

appropriate for the present system. The domain size H, the overall scalar difference R0 in Eq. (6.4) and

the overall fluctuating velocity u′ are used as the reference quantities for the length scale, scalar and velocity,

respectively. For simplicity, in the following, symbols by default denote the corresponding nondimensionalized

ones. It then yields

∂R1

∂t
+ (u · ∇)R1 = (Sc Re)−14R1 −Da1R1R2 +Da2P + ṡR1

, (6.6a)

∂R2

∂t
+ (u · ∇)R2 = (Sc Re)−14R2 −Da1R1R2 +Da2P + ṡR2 , (6.6b)

∂P

∂t
+ (u · ∇)P = (Sc Re)−14P +Da1R1R2 −Da2P + ṡP , (6.6c)

∂T

∂t
+ (u · ∇)T = (Sc Re)−14T + ṡT , (6.6d)

where Re = H ·u′/ν is the Reynolds number; the Schmidt number Sc = ν/D is the ratio of viscous diffusion to

molecular diffusion; the ratio of flow timescale to the chemical timescale of forward and backward reaction are

characterized by the Damköhler number Da1 = Hγ1R0/u
′ and Da2 = Hγ2/u

′, respectively, and Γ = Da1/Da2.

In this chapter, Da2 is set as constant and Da1 is changeable. For the near equilibrium case in Chapter 4, the

forward and backward reactions almost balance each other and thus only one Damköhler number was needed to

describe the reaction intensity of reaction. However, for the present configuration at strongly non-equilibrium

state, the global forward and backward reactions deviate. As shown in Fig 6.2 with the increase of Γ, the global

forward rate defined by the mean scalar concentrations, i.e. Da1〈R1R2〉z, can be much larger than the global

backward rate Da2〈P 〉z, where 〈·〉z means the ensemble average with respect to z. The dimensionless boundary

conditions (for scalars) are 



R1 = 1, R2 = 0, P = 0, T = 1 when z = 0,

R1 = 0, R2 = 1, P = 0, T = 0 when z = 1.

(6.7)
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Figure 6.2: The reaction rates computed with the mean quantities as functions of z. The solid lines are for
the forward reaction rates Da1〈R1R2〉z and the dashed lines are for the backward reaction rates Da2〈P 〉z. The
clear difference can be observed. Vertical dotted lines mark the interfaces between the buffer layers and the
bulk region.

Re Reλ Sc u′ λ N3 |k|max · η τη Da2 Γ LI TI ∆t
1180 82.3 1 1 0.067 2563 2.53 0.017 1.34 100-1 0.24 0.52 7.6× 10−5

Table 6.1: Non-dimensionalized parameters for the simulations: Re = u′H/ν is the Reynolds number based
on large scale, where u′ is the single-component root-mean-square velocity, H is the length of the domain, ν is
the viscosity; Reλ = u′λ/ν is the Taylor scale λ based Reynolds number; Sc is the Schmidt number (ν/D); N3

is the number of total grid points; |k|max ·η is the resolution condition, where |k|max is the maximum amplitude
of wave number kept by the dealiasing procedure, η if the Kolmogorov lenght scale; τη is the Kolmogorov
time scale; Γ = Da1/Da2, with Da1 and Da2 as the Damkholer numbers for forward and backward reactions
respectively; LI is the integral length scale; TI is the integral time scale; ∆t is the numerical time step.

The key involved parameters in the present simulations are listed in table 6.1.

The same as described in section 4.2, the turbulent flow is statistically stationary homogeneous and isotropic,

sustained by a large-scale forcing term of (4.9). The isotropic velocity field is obtained by numerically solved

by using a pseudo-spectral code (Gauding et al., 2017, 2018) with a smooth dealiasing technique (Hou and Li,

2007) for the treatment of non-linear terms in the equations. Differently, the scalar equations Eq. (6.6) are

solved by the finite difference method.

The velocity field is initialized by prescribing the spectrum of kinematic energy in the Fourier space û(k; 0)

(Schumacher et al., 2007), where both the modulus and phases are randomly determined, under the constraint



104 Chemical reactions sustained by Dirichlet boundary conditions

(a) (b)

Figure 6.3: The three-dimensional instantaneous snapshot of (a) R1, and (b) reaction rate (Da1R1R2−Da2P )
on the isosurface of R1 = 0.5, under the condition of Γ = 10.

of zero mean (û(0; 0) = 0) and prescribed kinematic energy spectrum of

E(k; 0) =
∑

k=|k|

|û(k; 0)|2 ∝ |k|4e−2(|k|/2)2 .

Meanwhile, the scalars are linearly initialized as:





R1(x, y, z; 0) = 1− z,

R2(x, y, z; 0) = z,

P (x, y, z; 0) = 0,

T (x, y, z; 0) = 1− z.

(6.8)

Figure 6.3 shows the typical visualization of R1 and the reaction rate (Da1R1R2 −Da2P ) on the isosurface

of R1 = 0.5 under the condition of Γ = 10. It can be seen that with the properly defined buffer layer, the spatial

fluctuation of scalar can be self sustained with the total scalar quantities confined in the prescribed [0, 1] range.

The statistical stationarity of the setup can be appreciated from the temporal evolution of the scalar statisti-

cal moments. As an example, figure 6.4 shows that the evolutions of the spatial average of scalar concentrations

and root mean square of scalar fluctuation in the bulk region for the case Γ = 10. This indicates that the
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Figure 6.4: Evolution of the spatial average of the mean and root mean square of scalar fluctuation in the
bulk region for the case of Γ = 10. Time is normalized by the integral time k/ε with k = 3u′2/2. The dashed
vertical lines marks the initial time for the computation of statistical quantities.

reacting system is strongly deviated from chemical equilibrium. The following analyses will be focused on the

bulk region. Data samples are collected in a time span of about ten times of the integral time TI = k/ε with

k = 3u′2/2, once the statistically stationary state is reached.

6.3 Result analyses

6.3.1 Properties of the buffer layer and the bulk region

In the present configuration, the two buffer layers function as a source which sustain the mean scalar gradient

with positive scalar concentrations, while the bulk domain is where the turbulent mixing occurs and where the

present analysis is focused on. The means and root-mean-square (r.m.s.) of the fluctuations of the passive

scalars (T ) in the configurations with different buffer layer thickness δ are shown in figure 6.5 (a) and (b),

respectively. As can be expected, in the bulk region the mean scalar profile follows a linear relation with respect

to z, i.e. constant gradient, under the action of isotropic turbulent velocity. From the prescribed geometrical

and boundary conditions, the constant gradient is about 1/(1− 2δ).
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Figure 6.5: Numerical profiles of: (a) the mean, and (b) the r.m.s. of T with different buffer layers thickness
δ. The vertical dotted lines mark the interfaces between the buffer layers and the bulk region.

For the scalar fluctuation, figure 6.5(b) demonstrates that in the bulk region the scalar r.m.s. is almost

constant, similar to the homogeneous shear turbulence (Mellado et al., 2009). In most of the buffer layer, the

scalar r.m.s. is negligibly small, because the strong modulation effect from the source term ṡT makes the scalar

T roughly constant. Specifically, the strength of such modulation is determined by the control parameter τ . In

this sense, the present flow can be effectively tailored by the control parameters τ and δ.

Further insights of the relation between the buffer and bulk regions can be gained by the following analytical

approach. By taking the ensemble average (〈·〉z) of Eq. (6.6d), it yields

∂t〈T 〉z = (DT +D)4〈T 〉z + 〈ṡT 〉z, (6.9)

where the Reynolds stress term has been absorbed into the turbulent diffusivity DT according to the following

relation

〈uT 〉z = −DT
∂〈T 〉z
∂z

. (6.10)

Because of symmetry, only a half of the domain, in the range of z ∈ [0, 1/2] needs to be studied. Under the

statistical stationary condition, the temporal derivative term in Eq. (6.9) vanishes. Let us denote DT in the

bulk region and buffer layer as DT,1 and DT,2, respectively. Combining the specific form of ṡT (Eq. (6.5)) and
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neglecting the laminar diffusivity D in Eq. (6.9), an ordinary differential equation about 〈T 〉z is then found:





DT,2
d2〈T 〉z
dz2 = 1

τ (〈T 〉z − 1) when 0 ≤ z ≤ δ,

DT,1
d2〈T 〉z
dz2 = 0 when δ ≤ z ≤ 1/2.

(6.11)

The numerical evolution of DT , calculated according to Eq. (6.10), is shown in figure 6.6 (a). Similar to

the r.m.s. profile of T , DT is also negligibly small in most of the buffer layer, following the same modulation

mechanism as found for the source ṡT . From the analytical point of view, we approximate DT,1 and DT,2 as z-

independent constants. As discussed before, the strong modulation effect from ṡT , or more specifically from the

controlling parameter τ , leads to a small value of DT,2, while physically DT,1 is determined by the flow integral

time TI . Thus we further assume that DT,2
DT,1

∼ τ
TI
, or quantitatively DT,2

DT,1
= K τ

TI
, where the proportionality

coefficient K (K = O(1)) needs to be determined numerically.

To solve this set of ODE, four boundary conditions are needed, including 〈T 〉z(0) = 1, 〈T 〉z(1/2) = 1/2, the

continuity of 〈T 〉z at z = δ, and the continuity of the flux of 〈T 〉z at z = δ. Because of the different diffusivity

in the buffer layer’ and the bulk region, the continuity of the flux of 〈T 〉z at z = δ can be expressed as

DT,2
d〈T 〉z
dz

(z → δ−) = DT,1
d〈T 〉z
dz

(z → δ+). (6.12)

Therefore, the analytical solution of Eq. (6.11) for 〈T 〉z is obtained as

〈T 〉z(z) =





C1 sinh(
√

1
DT,2τ

z) + 1 when 0 ≤ z ≤ δ,

C2z + C3 when δ ≤ z ≤ 1/2.

(6.13)

where

C1 =
−1

2(A− B(δ−0.5)
DT,1

)
,

C2 =
BC1

DT,1
,

C3 =
1

2
− C2

2
,

with A = sinh(
√

1
τDT,2

δ) and B = cosh(
√

1
τDT,2

δ)
√

DT,2
τ . Numerically, it is found that the model solution

with DT,2
DT,1

= 4 τ
TI

matches DNS results well, as shown in figure 6.6 (b). In summary, the difference between the

buffer layer and the bulk region is mainly induced by the different turbulent diffusivity, because of the strong
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Figure 6.6: (a) Turbulent diffusivity calculated from Eq. (6.10). (b) Theoretical prediction of the mean of T
(dashed lines) compared with the DNS results (solid lines with same color). The vertical dotted lines mark the
interfaces between the buffer layers and the bulk region.

modulation effect from the source term ṡT (and other ṡ terms as well) in the buffer.

6.3.2 Statistical properties of the reactive scalars

In this section, we focus on the difference between the z-dependent statistical properties of the reactive and

passive scalars, or the effects of the chemical reaction. It can be seen from Eq. (6.6) and the corresponding

boundary conditions (6.7) that R1(z) = R2(1 − z) statistically, i.e. R1 and R2 are symmetric with respect to

the middle of the domain with z = 1/2. Therefore, for the sake of brevity the results for R2 will be omitted in

the rest analyses.

Figure 6.7 shows on the middle plane with z = 1/2 the PDFs of the scalar quantities R1 and P , together with

that of the passive scalar T . Overall, the PDF of T , denoted as pT , is symmetric and has a central maximum

at T = 0.5. Moreover, since the effect of the buffer layers can be compared to the mixing process in the shear

layer, two other local peaks appear at the tails of pT at T = 0 and T = 1 (same for other PDFs) (Mellado

et al., 2009). Larger Γ lead to stronger skew of pR1
toward the R1 = 0 side. Such skewness property is the

consequence of chemical reactions, because faster forward chemical reactions tend to deplete the reactants R1

and R2 but enrich the product P , enhancing pR1
at the R1 = 0 end and extending the pP toward the larger P

side.
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Figure 6.7: Dependence of PDFs at z = 1/2 on Γ for: (a) R1 and T , and (b) P . The insert panel in (b) plots
the peak of pP as function of Γ.

At different z values the scalar concentration PDFs are shown in figure 6.8 (a) for R1 and figure 6.8 (b) for

T . We can see clearly the mirror symmetry between pT (z) and pT (1− z), which, however, breaks down for the

R1 case, because of the strong influence from the chemical sources. In addition, the PDF of T is of particular

importance. In the modelling analysis discussed in the following section, the moments of the reactive scalars

can be theoretically predicted based on pT undergoing the same turbulent environment.

The dependence of the PDF of the net reaction rate Rnet = Da1R1R2 −Da2P = Da1(R1R2 − P/Γ) on Γ

is presented in figure 6.9 (at z = 1/2). Toward the fast chemical limit with large Γ, the PDF peaks higher at

the Rnet = 0 end and meanwhile becomes more extended toward the higher Rnet side. When Da1 and Da2 are

comparable, the PDF peaks at some moderate value of Rnet. Since all the cases are under the control of the

identical turbulence velocity, such difference must be caused by the chemical mechanism, which can be more

clearly viewed from the spatial distribution of the reaction rates. From the comparison between figure 6.10 (a)

and (d), there is a clear difference between the distribution of Rnet for Γ = 100 and Γ = 1. For large Γ (and

large Da1 as well), the large Rnet regions are highly concentrated in thin stripes, while for small Γ, regions with

high Rnet are much broader distributed, which explains the local bump in the PDF profile in figure 6.9. More

detailed understanding of such property can be clarified from the separated results of the forward and backward

reaction rates. It can be seen that a similar difference appears between figure 6.10 (b) and (e), while, figure 6.10

(c) and (f) are weakly influenced or even uninfluenced by Γ. Because the forward reaction rate is determined
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Figure 6.8: PDF of (a) R1 under the condition of Γ = 10 and (b) T at different positions.

by the correlation between R1 and R2, larger Γ will reduce in most of the flow field their coexistence, which

explains the stripe like distribution in figure 6.10 (a). Since for the present chemical kinetics the backward

reaction rate is solely determined by P , the effect of Γ on the scalar correlation is not relevant in determining

the backward reaction rate. Therefore figure 6.10 (c) and (f) are almost identical. In summary, under different

Γ the PDF and spatial distribution of the net reaction rate will be mainly determined by the forward part.

6.3.3 Moments of the reactive scalars

The reactive scalar θ (e.g. R1, R2 or P ) can be decomposed into the z-dependent mean part and the fluctuating

part as θ(x, t) = 〈θ〉z(z, t) + θ′(x, t), whose numerical results are shown in figure 6.11.

Different from the linear profile of the passive scalar T , the profiles of 〈R1〉z are concave in the bulk region,

because of chemical consumption of R1 with R2. With increasing Γ, 〈R1〉z decreases while 〈P 〉z increases,

because stronger forward reaction depletes more R1 and produce more P . The scalar means tend to saturate at

the infinite large Γ. Figure 6.11 (c) shows interestingly that the normalized 〈P 〉z by the corresponding maximum

overlaps for different Γ, which suggests a kind of universality of 〈P 〉z.

Concerning the fluctuation of R1, in the upper half of domain, i.e. z > 1/2, larger Γ leads to smaller

fluctuation, while in the lower half with z < 1/2, larger Γ leads to larger fluctuation. From the gradient

hypothesis, in isotropic turbulence the r.m.s. of R1 is reasonably determined by its mean gradient, i.e. the

larger means gradient leads to larger fluctuation, as shown in in figure 6.11 (a). Close to the middle plane where
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Figure 6.9: PDF of the reaction rate (Da1R1R2 −Da2P ) under the conditions of different Γ, at the position
of z = 1/2.

z is slightly greater than 1/2, the gradient of 〈R1〉z is equal to that of 〈T 〉z, resulting in equality of r.m.s. of R1

and r.m.s of T . For the product P , its r.m.s reaches a maximum at the edge of the bulk region and a minimum

in the middle (z = 1/2). A tentative explanation is that the fluctuation of P is determined by the fluctuation

of R1 and R2 because of the chemical kinetics and flow dynamics, i.e. turbulent transport. At the edge of the

bulk, the r.m.s. of R1 is large, but R2 fluctuates weakly, which can not lead to high peak of the r.m.s. of P .

Therefore, such maximum must come from the contribution from turbulent transport, or specifically, the large

gradient of 〈P 〉z close to the bulk edge (see the 〈P 〉z results), due to the gradient hypothesis. In parallel, at

z = 1/2 the gradient of 〈P 〉z and the turbulent transport part vanish, leading to the minimum of the r.m.s. of

P at z = 1/2.

To have further understanding of the effects of chemical reaction on the scalar statistics, the present reactive

turbulent system needs to be analyzed theoretically. Let us define X = R1−R2. Subtracting Eq. (6.6a) by Eq.

(6.6b), it yields

∂tX + (u · ∇)X = (Sc Re)−14X + ṡR1
− ṡR2

, (6.14)
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(a) (b) (c)

(d) (e) (f)

Figure 6.10: The instantaneous two-dimensional snapshot of reaction rate at the position of z = 1/2. The
upper row (a,b,c) correspond to Γ = 100; the lower row (d,e,f) correspond to Γ = 1. The first column (a,d) show
the net reaction rate (Da1R1R2−Da2P ); the second column (b,e) show the forward reaction rate (Da1R1R2);
the third column (c,f) show the backward reaction rate (Da2P ).
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Figure 6.11: The mean (solid lines) and r.m.s. (dashed lines) of (a) R1 compared with T ; (b) P under
the conditions of different Γ as functions of position (z). The main panel of (c) shows the mean profile of P
normalized by its maximum, whose function as Γ is plotted in the inset plot. There is a prefect superposition
for all Γ values. In all the plots, the vertical dotted lines mark the interfaces between the buffer layers and the
bulk region.
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with boundary conditions of 



X = 1 when z = 0,

X = −1 when z = 1.

(6.15)

Comparing the governing equation and boundary conditions of X with that of the passive scalar T (Eq. (6.6d)

and (6.7)), it yields

X = R1 −R2 = 2T − 1. (6.16)

Let us define pX(x; z) as the pdf of X at the position of z (similar definition for other random quantities).

Relation (6.16) gives:

pX(x; z) =
1

2
pT (

x+ 1

2
; z). (6.17)

First consider the case of infinitely largeDa1. This implies that R1 and R2 cannot coexist because of the finite

chemical source Da1R1(x, t)R2(x, t), leading to R1(x, t)R2(x, t) = 0. Therefore, a positive X(x, t) is equivalent

to R1(x, t) = X(x, t) and R2(x, t) = 0, while X(x, t) < 0 implies R1(x, t) = 0 and R2(x, t) = −X(x, t). For the

quantity P , subtracting Eq. (6.6d) to Eq. (6.6a), together with the boundary conditions, we conclude that

P (x, t) = T (x, t)−R1(x, t). (6.18)

Therefore, a relation between P (x, t) and X(x, t) can be obtained directly. Here, the infinitely large Da1 leads

to the following relations:





R1(x, t) = 2T (x, t)− 1, R2(x, t) = 0, P (x, t) = 1− T (x, t), when T (x, t) > 1/2,

R1(x, t) = 0, R2(x, t) = 1− 2T (x, t), P (x, t) = T (x, t), when T (x, t) < 1/2.

(6.19)

Consequently, given that the passive scalar field T is known, the mean and r.m.s. of R1 (at infinite Γ) can

be respectively determined as

〈R1〉z(z) =

1∫

0

xpX(x; z)dx =

1∫

0

1

2
xpT (

x+ 1

2
; z)dx

=2〈T |T >
1

2
〉z(z)−

1∫

1
2

pT (t; z)dt, (6.20)
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and

〈R′21 〉z(z) = 〈R2
1〉z(z)− 〈R1〉2z(z)

=

1∫

0

1

2
x2pT (

x+ 1

2
; z)dx− [

1∫

0

1

2
xpT (

x+ 1

2
; z)dx]2. (6.21)

The similar derivation can be done for P . The predictions are shown in figure 6.12 and 6.13.

For the finite but large Γ, R1(x, t) and R2(x, t) can locally coexist, i.e. R1R2 > 0. Since the overall forward

reaction is still strong (if Γ is sufficiently larger than unity), we assume here that there exits a upper limit for

R1(x, t)R2(x, t), i.e.

R1(x, t)R2(x, t) ≤ C

Γ
, (6.22)

where C is a constant to be determined. Moreover, for any given X(x, t) ∈ [−1, 1], another constraint is

R1(x, t)R2(x, t) ≤ 1−|X(x, t)|. The reason can be explained by the fact that the species concentrations R1(x, t)

and R2(x, t) need to be confined in the range of [0, 1]. Thus for a given value of X(x, t) = R1(x, t) − R2(x, t),

if R1(x, t) ≥ R2(x, t) i.e. X(x, t) ≥ 0, we have

R1(x, t)R2(x, t) ≤ R2(x, t) = R1(x, t)−X(x, t) ≤ 1−X(x, t). (6.23)

Similarly,

R1(x, t)R2(x, t) ≤ R1(x, t) = R2(x, t) +X(x, t) ≤ 1 +X(x, t), (6.24)

in the case of X(x, t) < 0. In summary, R1(x, t)R2(x, t) ≤ 1 − |X(x, t)|. Putting these together, it gives

R1R2 ∈ [0,min(CΓ , 1−|X(x, t)|)] = [0, βmax]. For a givenX(x, t) = α and R1(x, t)R2(x, t) = β, R1 =
α+
√
α2+4β

2 .

If the conditional PDF of R1R2 on X, i.e. pR1R2|X(β|α; z), is known, 〈R1〉z as function of z can be determined

as

〈R1〉z(z) =

1∫

−1

pX(α; z)

βmax∫

0

α+
√
α2 + 4β

2
pR1R2|X(β|α; z)dβdα. (6.25)

A hypothesis assumed here is that with given X(x, t), R1(x, t)R2(x, t) is equally distributed in [0, βmax(α)].

Together with the numerical results of the PDF of the passive scalar T , the mean 〈R1〉z(z) and variance

〈R′21 〉z(z) = 〈R2
1〉z(z)−〈R1〉2z(z) can then be calculated (similar analyses for R2 and P ). As shown in figure 6.12

and 6.13, when Γ > 10, the modeling and numerical results can satisfactorily match if the constant C in
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Figure 6.12: The scalar mean: (a) 〈R1〉z and (b) 〈P 〉z, as a function of z obtained from theoretical analysis
(dashed lines) based on Eq. (6.25) and DNS (solid lines with the same colors). The grey dashed lines are
from the theoretical prediction at infinitely large Da1 according to Eq. (6.20). We see that the prediction for
Γ =∞ is close to the curves for Γ = 100 and also the predictions for large Γ are close to the DNS results when
Γ=10, 30, 100. The vertical dotted lines mark the interfaces between the buffer layers and the bulk region.

Eq. (6.22) is set as 0.7. When Γ < 10, these predictions do not hold.

6.3.4 Correlation Coefficients

For scalars θ1 and θ2 under consideration, the correlation coefficients are defined (based on the fluctuating parts)

as

r(θ1, θ2)(z) =
〈θ′1θ′2〉z

〈θ′21 〉
1/2
z 〈θ′22 〉

1/2
z

. (6.26)

The scalar correlation is jointly determined by the chemical reaction and the turbulent mixing. In the

present flow configuration, the numerical simulations of the z-dependent correlation coefficients are shown in

figure 6.14.

In Chapter 4, it was found that a competition exists between the chemical reaction and turbulent mixing.

Specifically, the chemical reaction tends to dump reactant concentration fluctuations and enhance their correla-

tion intensity, while turbulent mixing increases fluctuations and removes relative correlations. For the present

non-equilibrium configuration, the reactants R1 and R2 consume each other, especially when the forward reac-

tion is strong, which explains the negative r(R1, R2) in figure 6.14(a). In the bulk region, R1 and R2 are less
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Figure 6.13: The scalar fluctuations: (a) 〈R′21 〉
1/2
z and (b) 〈P ′2〉1/2z as function of z obtained from theoretical

analysis (dashed lines) and DNS (solid lines with the same colors). The grey dashed lines are from the theoretical
prediction at infinitely large Da1 according to Eq. (6.21). We see that the prediction for Γ =∞ is close to the
curves for Γ = 100 and also the predictions for large Γ are close to the DNS results when Γ=10, 30, 100. The
vertical dotted lines mark the interfaces between the buffer layers and the bulk region.
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Figure 6.14: DNS simulations of the correlation coefficients between (a) R1 and R2; (b) R1 and P as function
of z, for different Γ cases. The vertical dotted lines mark the interfaces between the buffer layers and the bulk
region.

correlated (with less negative r(R1, R2)) at larger Γ, but more correlated (with more negative r(R1, R2)) at

smaller Γ. The reason can be given as follows. For the non-reactive case with Da1,2 = 0, the influence from the

chemical reaction on the correlation coefficient vanishes. In the present flow configuration, the fluctuations of

R1 and R2 are forced exclusively by their respective mean gradients, which are opposite with each other. Thus

R1 and R2 are perfectly negatively correlated. In the bulk region with a stronger chemical source Da1R1R2,

as Γ increases, the chemical reaction depletes more the reactants, resulting in the skewness of the PDFs of of

R1 and R2 toward the R1,2 = 0 side, as shown in figure 6.7. Therefore, the product R′1R′2 tends to be more

positive. As a result, according to the definition in Eq. (6.26), r(R1, R2) increases, i.e. R1 and R2 become

less negatively correlated. Interestingly, in the buffer layer when Γ is sufficiently large (e.g. Γ = 100) r(R1, R2)

becomes abnormally more negative. This abnormal property can be explained by the fact that at sufficiently

large Γ the chemical source Da1R1R2 in the buffer layer is much weaker, because either R1 or R2 is negligibly

small. Therefore, r(R1, R2) is close to be that of the non-reactive case.

For r(R1, P ), since R1 and P function as the mutual sources rather than sink, the result is different from

r(R1, R2). Overall, r(R1, P ) increases from −1.0 at z = 0.0 to 1.0 at z = 1.0. At z = 0 the reaction rate of P

is mainly determined by R2 since R1 remains close to constant as 1.0. Because of the stoichiometric relation,

the defect of R1 from 1.0 is determined by either R2 or P . Therefore, r(R1, P ) ∼ −1.0. In a similar manner, at
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z = 1 the reaction rate or the generation rate of P is mainly determined by R1 and thus r(R1, P ) ∼ 1.0. For the

nonreactive case, at the middle plane with z = 0.5, 〈R1〉z and 〈R2〉z are exactly equal. Thus, the concentration

of P is not influencing either R1 or R2, yielding r(R1, P ) ∼ 0. With increasing Γ, R1 will be more consumed

and P will be more produced. As shown in figure 6.7, larger Γ leads to the PDF of R1 more skewed toward the

R1 = 0 side, while the PDF of P skews differently toward the large P side. Therefore, r(R1, P ) will unanimously

decrease and shift downwards with increasing Γ, as demonstrated in figure 6.14(b).

6.3.5 Scalar Energy Spectra

The z-dependent scalar energy spectra is also investigated. At a specific z, the energy spectra corresponding to

a two-dimensional scalar field is defined as

Eθ(k, z) = 2πk2〈θ̂(k)θ̂∗(k)〉k, θ = R1, R2, P or T, (6.27)

where k is the 2D wave number and k = |k|, 〈·〉k denotes the average in time, θ̂(k) is the Fourier coefficients of

the mode of k, θ̂∗(k) is the corresponding complex conjugate.

In Chapter 4, it was shown that the scalar energy spectra at the quasi-equilibrium state with different

chemical sources are almost identical, because of the negligibly small reaction rates. For the present non-

equilibrium reactive turbulence cases, the chemical source plays important roles in determining the structure

and statistics of the scalar quantities. It is interesting to consider if such chemical source will largely influence

or change the energy spectra. Consider the R1 case for instance in figure 6.15 (a)-(c), higher Γ makes more

scalar energy to shift from small wave number range to the large wave number range, indicating that stronger

chemical reactions tend to lump the local scalar quantity and strengthen the scalar intermittency. A similar

tendency appears for the scalar P , as shown in figure 6.15 (d)-(f). Such Γ effect becomes stronger at z = 1/2

(more difference between the curves in figure 6.15 (e)), since 〈P 〉z reaches maximum at z = 1/2.

In addition, the coherency spectrum between two scalars θ1 and θ2 is defined as:

Coθ1,θ2(k) =
〈|θ̂1(k)θ̂2

∗
(k)|〉k√

〈θ̂1(k)θ̂1

∗
(k)〉k〈θ̂2(k)θ̂2

∗
(k)〉k

, (6.28)

which describes the dependence of the correlation on the scale. The plots of CoR1,R2
(k) with different Γ are

shown in figure 6.16. In the previous work for the near equilibrium case studied in Chapter 4, it was reported

that the reactive scalar coherency spectra are almost wave number independent, in particular, constant in the

inertial range, since the chemical source is negligibly small and the random scalar source strongly reduces the
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Figure 6.15: The ratio of the energy spectra of (a) R1 at z = 1
4 ; (b) R1 at z = 1

2 ; (c) R1 at z = 3
4 ; (d) P at

z = 1
4 ; (e) P at z = 1

2 ; (f) P at z = 3
4 to the energy spectrum of T at the same z.
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Figure 6.16: 2D coherency spectra between R1 and R2 at the positions of (a) z = 1/4, (b) z = 1/2 and (c)
z = 3/4.

intensity of correlations. Both for the near equilibrium and the non-equilibrium cases, on average the absolute

value of CoR1,R2(k) increases as Da increases, because fast chemical reactions build up correlations. However, in

the present non-equilibrium state, the coherency spectra of reactive scalars are strongly wave number dependent,

especially when the reaction is strong. In figure 6.16, the spectrum peaks toward the high wave number end,

indicating that the correlation between R1 and R2 is mainly from the small scale contribution, in consistence

with the stripe like structures visible in figure 6.10.

6.4 Summary

To maintain the definite positiveness of the species concentration, an original flow configuration has been

proposed, where the species are supplied from the buffer boundaries with adjustable thickness to drive chemical

reactions at the strongly out of equilibrium state. This allows to go beyond our previous exploration of reactive

scalar fields in homogeneous turbulence, where only a moderate out of equilibrium state could be attained, and

their results could be explained in term of a linearization approach of the reaction rates (Chapter 4).

Here, a theoretical modelization that take as an input the PDF of a passive scalar field can satisfactorily

predict the local mean and fluctuation of reactants for Γ > 10. The correlation coefficient between the scalar

quantities are determined by two counteracting effects, the turbulent mixing and the chemical kinetics. For

larger Γ, the spatial distribution of the forward reaction and net reaction takes a stripe like structure, making

the scalar field more intermittent.

In comparison with the existing results of the isotropic turbulence case as discussed in Chapter 4, we
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conclude that the scalar correlation is jointly determined by the chemical source and physical conditions, e.g.,

flow configuration and boundary setup. Under the non-equilibrium condition with strong chemical sources, the

chemical reaction also plays important roles in determining the scalar energy spectra. Consistently, large Γ will

shift both the scalar energy and coherency spectra from the small wave number range to the large wave number

range, which is in a sharp contrast with the near equilibrium case.



Chapter 7

Conclusion and future works

7.1 Summary of the thesis

In this thesis, the statistical properties of reactive scalars undergoing reversible chemical reactions in incom-

pressible turbulence were studied by the means of direct numerical simulations and theoretical analyses. The

cases studied include the reactions close to and strongly deviated from the chemical equilibrium states, in ho-

mogeneous isotropic and non-homogeneous anisotropic turbulent flow. Theoretical analysis on the statistical

properties of scalars at different order of moments were carried out based on appropriately proposed approxi-

mations and models. The theoretically derived results were then compared with numerical results obtained by

direct numerical simulation.

In the direct numerical simulations, for solving the PDEs of the quantities with periodic boundary conditions,

the spatial derivatives were approximated by using a pseudo-spectral method with smooth dealiasing. Otherwise,

for the special configurations in which the boundary conditions are not periodic, a finite difference method with

high-order schemes was used. The statistical analysis of the quantities of interest was implemented in a statistical

stationary state, which was maintained by numerical forcing for the velocity and scalars. In the anisotropic

configuration, the forcing is the inherent mean gradient. While in the isotropic configuration, the velocity and

scalar fluctuations are sustained with constant input power and amplitude respectively.

In the case of reversible chemical reactions in homogeneous isotropic turbulence, the reacting system is

found to be in a chemical quasi-equilibrium state. Such a state is maintained by the competition between the

reversibility of reaction, which enforces a global chemical equilibrium in the statistically stationary state, and

the variability of the scalar forcing, which introduces stochasticity into the scalar fields. The overall reaction
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rate is small in such a dynamical equilibrium state, and thus too weak to change the scaling behavior and

statistical distribution of the scalars. Moreover, the fluctuations of the scalars are found to be small compared

with the mean quantities. Thus a linearization of the reaction terms in the scalar equations is a viable analysis

approach. Based on the linearization of the reaction terms and other appropriately proposed hypotheses,

modeling analysis about the correlations and variances of fluctuations of reactive scalars were carried out. A

theoretical analysis showed that the correlation coefficients and the fluctuations of reactive scalars are functions

of a unique control parameter: the Damköhler number (Daθ), which is constructed as the ratio between the

time scale of scalar diffusion across a domain of the size of the scalar Taylor micro-scale (λ2
θ/D) and the chemical

reaction time scale τr. The larger is such a Damköhler number, the more depleted are the scalar fluctuations

as compared to the fluctuation of a passive scalar field in the same conditions, and the more intense are the

correlations. A saturation in this behaviour is observed beyond Daθ ' O(10). It indicates that the chemical

processes tend to reduce reactant concentration fluctuations and enhance their correlation intensity. While on

the contrary, the turbulent mixing increases fluctuations and removes relative correlations. Importantly, the

functional dependence of the fluctuations and the correlations of the scalar quantities characterized by Daθ

are well confirmed by the DNS results in the full range of explored conditions with variable reaction order,

the Reynolds number and the Schmidt number. The key role of Daθ also implies the significance of the scalar

Taylor micro-scale λθ in the mixing of chemical species. A deeper insight into λθ reveals that Daθ can also be

viewed as the ratio of the large-eddy-turnover time of the flow over the chemical reaction time.

In the homogeneous isotropic case, the theoretical analysis about the statistical properties of the reactive

scalars are weakly affected by the small scale properties of the turbulent flow. This inspired us to consider

the non-homogeneous anisotropic turbulence, such as the turbulent Kolmogorov flow (TKF). First, we gained a

deeper insight into the TKF with a forcing of the sinusoidal form. It was found that the mean velocity profile

has the same form, with a damping of a factor κ, with respect to the mean velocity value calculated from the

forcing term. The value of this factor was found to weakly increase with the Reynolds number with indications

of a possible asymptotic saturation at very large Re. The only non-zero shear stress term is proportional to the

cosine function, and the normal stress components all involve a square cosine expression. The normal stresses

are never equal, showing that as expected the turbulence is anisotropic. It was also shown that a quadratic

nonlinear constitutive equation can be proposed for this flow, involving a linear term and two nonlinear terms in

the form of traceless and symmetric tensors. For about half of the flow domain, the linear term is dominating.

Whereas for the vanishing mean velocity gradient regions, only one non-linear term remains non-zero and

becomes constant. Hence an effective viscosity coefficient can indeed be estimated for TKF, but contrary to
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what has been stated previously (Rollin et al., 2011), globally all linear and nonlinear terms are needed for the

complete closure. Then, the reversible reactions discussed for the homogeneous isotropic case was also studied

with the background flow as the TKF. The theoretical predictions about the dependence of the fluctuations

and the correlations of the reactive scalars on the Daθ in homogeneous isotropic flow are found to work also for

the TKF case. It indicates that, in the quasi-equilibrium state, the dependence of the statistical properties of

reactive scalars on the scalar diffusion and reaction rate is weakly influenced by the background velocity field.

For the irreversible reactions in homogeneous isotropic turbulence, the linearization of the reaction term

is valid because the fluctuations of the reactive scalars are small when compared to the mean quantities in

the quasi-equilibrium state. However, a reacting system strongly deviated from the global equilibrium state

and with relatively larger fluctuations of reactive scalars can be more practically meaningful and physically

interesting. This is because the reaction flow possesses stronger non-linearities, which is a symbolic feature

of turbulence problems. Thus, a combustor-like configuration of reactive scalars, in which the scalar fields

are of Dirichlet boundary conditions in one direction, was explored. In such a configuration, the entire flow

consists of two buffer layers and a bulk region. The fluctuations of the scalars are maintained by intrinsic mean

gradient instead of isotropic forcing. Accordingly, the reacting system is supposed to be far from the chemical

equilibrium state. The statistical and scaling properties of reactive scalars are investigated, in comparison with

a passive scalar. A theoretical model based on the PDF of the passive scalar can satisfactorily predict the mean

and fluctuation of reactants, if the associated Damköhler number (Da1) is sufficiently large. For large Da1,

the spatial distributions of the forward reaction and net reaction assume stripe like structures, which makes

the scalar field more intermittent as compared to the reference passive scalar case. The correlation coefficient

between the scalar quantities are determined by two counteracting effects, the turbulent mixing and the chemical

kinetics. Under the non-equilibrium condition with strong chemical sources, the chemical kinetics also plays

important roles in determining the scalar energy spectra. Consistently, large Da1 will shift the scalar energy

from the small wave number range to the large wave number range, which is different from the near equilibrium

case. In addition, the coherency spectra of the reactive scalars are strongly wave number dependent, in sharp

distinction with the near equilibrium case.

In summary, reactions in incompressible turbulence of both homogeneous isotropic and non-homogeneous

anisotropic cases were explored in this thesis. Theoretical analyses about the statistical properties of the reactive

scalars, in comparison with a passive scalar, were implemented and examined with direct numerical simulations

for different configurations.
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7.2 Scientific contributions

The scientific contributions of this thesis can be summarized as following:

• The topic of this thesis, which is a combination of reaction and passive scalar in turbulence, is novel;

• We developed a configuration for the numerical simulation of turbulent reaction, in which the positiveness

and strong fluctuation of reactive scalars are ensured;

• In the study about reactions in homogeneous isotropic turbulence, we introduced a key parameter (Daθ)

characterizing the competition between scalar diffusion and reaction, and showed its important role in

determining the fluctuations and correlations of reactive scalar;

• In study about Chemical reactions sustained by Dirichlet boundary conditions, we proposed modeling

analysis building a link between the moments of reactive scalar and the PDF of non-reactive scalar.

7.3 Future works

Compared with studies about turbulent combustion and passive scalars in turbulence, relatively few works have

been devoted to the reaction in incompressible turbulence, especially reversible reactions. One unavoidable

issue concerning reversible reactions is the chemical equilibrium. The statistical properties of reactive scalars

can be hugely different in a reacting system close to and strongly deviated from the chemical equilibrium

state. For the case with quasi-equilibrium state discussed in this thesis, the fluctuations of scalars have to be

constrained as about 10% of the mean quantities for ensuring the positiveness of the concentrations. However,

such a phenomenon does not make good practical sense for typical turbulence problems. In the real ocean,

the fluctuations displayed by planktonic populations can attain values that are comparable to the ones of the

mean population density, because there exist regions where nearly no individual or where huge accumulation

can be observed. Simple solutions can be to enforce the numerical negative concentrations as zero or to express

the concentration quantities in the form of power functions. However, these operations introduce too much

arbitrary interference into the problem. It is thus important to propose configurations ensuring chemical quasi-

equilibrium, the positiveness of reactive scalars and not small scalar fluctuations, preferably without too much

artificial interference or at least only with physically reasonable corrections to the concentration quantities.

A straightforward way to amplify the fluctuations is by deriving the system into a non-equilibrium state.

Another reason that the non-equilibrium state is of interest is that the reaction term can be more important.

One operation offered in this thesis is by introducing Dirichlet boundary conditions for the reactive scalars (as
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in Chapter 6). However, such a configuration breaks the isotropy of the scalars. Further consideration about a

configuration retaining the isotropy of the scalar fields and meanwhile possessing a reaction source non-negligible

compared with the convection or diffusion can be interesting. Moreover, it is also interesting to investigate the

irreversible reactions, in which the reaction term can be non-negligible because the chemical equilibrium is not

involved.

Based on the homogeneous isotropic cubic domain investigated in Chapter 4, an anisotropic configuration

with Dirichlet boundary conditions and buffer layers for scalars was developed and discussed in Chapter 6. The

reactive scalar fields in the latter configuration are much more complex, because the non-linearity induced by the

reaction source is well reserved. Thus, the modeling analyses about the statistical properties of reactive scalars

is much more challenging. Such a configuration is of great potential for deeper and broader exploration beyond

the theoretical analysis carried out so far in this thesis. In the present works, the theoretical predictions about

the mean profiles and fluctuations of the reactive scalars could match the numerical tests only for the cases with

forward reaction infinitely large or much larger than the backward reaction. In addition, the current theoretical

predictions about the mean profiles and fluctuations of the reactive scalars requires the prerequisite that the

PDF of the passive scalar undergoing the same convection and diffusion is known. In future works on such a

configuration, an important focus can be the improvement of the modeling analysis for a wider application range

and proposing more compact expressions about the moments of the reactive scalars. Another direction can be

the modification of the current hypotheses, which work poorly for the weak forward reaction case. Or any new

theoretical frameworks based directly on the governing equations of the reactive scalars can also be considered.

Furthermore, more in-depth and comprehensive analysis about other statistical properties of reactive scalars,

for example the correlation coefficients, can also be a interesting subject for future works.

Concerning the Kolmogorov flow case studied in this thesis, in future works we suggest also to explore

different shapes of forcing, to better understand the expressions of the different moments of the velocity field. It

remains also to be understood from analytical arguments why the eddy-viscosity does not depend on z for such

flow, contrary to what is found in similar but different flow such as channel flow (Schmitt, 2007b) or boundary-

layer flows. Moreover, the closure models for passive scalar in the Kolmogorov flow can also be examined, and

the extension to the reactive scalars will be more interesting.

The scaling behavior of turbulent scalars has always been of high interest since the Kolmogorov-Obukhov-

Corrsin theoretical framework. The reaction, especially fast reaction, is supposed to introduce cliff structure

into the scalar fields, and thus to promote the intermittency. For examining this idea and further exploring,

comparison of the relevant statistics, such as the structure functions and the energy spectra, between passive
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and reactive scalars can be useful. Since the reaction term are commonly non-linear, the convolution of the

existing scalar fields can be reflected in high wave number motions. Thus, for a convincing direct numerical

simulation about the turbulent problems concerning reaction, the demand in the computational resource is

higher, since the numerical spatial resolution needs be finer than that required for passive scalar.

In one word, this thesis carried out basic and preliminary studies about the reactive scalars in incompressible

turbulence by direct numerical simulations and theoretical analyses. The new discoveries always accompany

with new problems. As the complement or development of the works done in this thesis, a lot of interesting

questions are still waiting for further investigations in future works.
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