
HAL Id: tel-03202134
https://theses.hal.science/tel-03202134v1

Submitted on 19 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decoding algorithms for lattices
Vincent Corlay

To cite this version:
Vincent Corlay. Decoding algorithms for lattices. Applications [stat.AP]. Institut Polytechnique de
Paris, 2020. English. �NNT : 2020IPPAT050�. �tel-03202134�

https://theses.hal.science/tel-03202134v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
0I

P
PA

T0
50 Decoding Algorithms for Lattices

Thèse de doctorat de l’Institut Polytechnique de Paris (ED IP Paris)
préparée à Télécom Paris

École doctorale n◦626 de l’Institut Polytechnique de Paris
Spécialité de doctorat: Réseaux, Informations et Communications

Thèse présentée et soutenue à Mitsubishi Electric R&D Centre Europe, le 09/12/2020, par

VINCENT CORLAY

Composition du Jury :

Charly Poulliat
Professeur, INP-ENSEEIHT Toulouse Président

Frédérique Elise Oggier
Maı̂tre de conférences, Nanyang Technological University Rapporteur

Jean-Pierre Tillich
Directeur de recherche, INRIA Paris Rapporteur

Jean-Claude Belfiore
Docteur, Huawei France Examinateur

Robert Calderbank
Professeur, Duke University Examinateur

Hans-Andrea Loeliger
Professeur, ETH Zürich Examinateur

Philippe Ciblat
Professeur, Télécom Paris Directeur de thèse

Loı̈c Brunel
Docteur, Mitsubishi Electric R&D Centre Europe Co-Directeur de thèse

Joseph Jean Boutros
Professeur, Texas A&M University Encadrant

2

“Euclidean space coding is to Hamming space coding
as classical music is to rock ’n’ roll.”

Neil Sloane

This figure depicts a 2-dimensional projection of the 240 lattice points composing the first shell of
the Gosset lattice E8. The edges join lattice points that are nearest neighbors.
See http://www.math.lsa.umich.edu/~jrs/coxplane.html for more information on this projection.

http://www.math.lsa.umich.edu/~jrs/coxplane.html

Remerciements

Beaucoup de personnes ont contribué au bon déroulement de cette thèse, de près ou de loin, et je tiens
à les remercier chaleureusement. Je voudrais en particulier mentionner les personnes suivantes.

Tout d’abord, je remercie profondément mes trois encadrants de thèse, Joseph, Philippe et Löıc pour
leur accompagnement pendant ces trois années. Ce fut une réelle chance d’être encadré par des personnes
aussi compétentes, diverses et complémentaires. Joseph, Philippe et Löıc, j’espère sincèrement pouvoir
continuer à collaborer avec vous pour les années à venir.

Je remercie également les membres de mon jury de thèse. Merci Charlie Pouillat de l’INP-ENSEEIHT
d’avoir accepté de présider ma soutenance. Toute ma gratitude va aux professeurs Frédérique Oggier de
Nanyang Technological University et Jean-Pierre Tillich de l’INRIA Paris pour leur travail de lecture et
leurs commentaires sur le manuscrit de thèse. Merci à Jean-Claude Belfiore de Huawei France, Robert
Calderbank de Duke University et Hans-Andrea Loeliger de ETH Zürich qui m’ont honoré en acceptant
d’être examinateurs.

Bien sûr, je remercie mes parents pour leur soutien et leur présence pendant l’ensemble de mon cursus
scolaire.

Enfin, comment ne pas mentionner celle qui a eu la lourde tâche de partager la vie d’un doctorant ?
Merci du fond du cœur Lucie pour ta patience et ton soutien inconditionnel.

3

Contents

Presentation of the thesis and its main topics

1 Présentation de la thèse en français 9
1.1 Contexte de la thèse . 9

1.1.1 Un vieux problème . 9
1.1.2 Un nouveau problème . 10

1.2 Contributions et nouveautés . 10

2 Introduction 11
2.1 Abstract . 11
2.2 Thesis outline . 11
2.3 Main contributions . 13
2.4 Publications . 14

3 The channel coding problem 16
3.1 A general presentation . 16

3.1.1 Problem statement . 16
3.1.2 The power-limited and the bandwidth-limited regimes 17

3.2 From the 50’s to the 80’s . 18
3.2.1 The union bound and the minimum distance . 18
3.2.2 Hard-decision decoding, Viterbi algorithm, sequential decoding, and the cutoff rate 19

3.3 From the 90’s until today . 21
3.3.1 A brief history of “modern” coding theory . 21
3.3.2 The combining paradigm on a tree . 22
3.3.3 From LDPC codes and polar codes to the single parity-check k-groups 23

3.4 Is the channel coding problem really solved? . 24

4 An overview of lattices 25
4.1 What is a lattice? . 26

4.1.1 A general presentation . 26
4.1.2 Additional definitions . 27

4.2 Standard lattice decoders and lattice constructions . 30
4.2.1 BDD, list decoding, optimal and quasi-optimal decoding 30
4.2.2 Coset decomposition and construction of lattices from codes 31

4.3 Lattice packing problems . 33
4.3.1 Sphere packing . 34
4.3.2 Lattices with additive Gaussian noise . 35

4.4 Main computational problems . 38
4.4.1 Description of the problems . 39
4.4.2 Hardness results . 39
4.4.3 Enumeration and basis reduction algorithms . 40
4.4.4 Lattice-based cryptography . 44
4.4.5 The enumeration algorithm in digital communications 45

A new framework for building and decoding group codes

5 The k-ing groups and the single parity-check k-groups 47
5.1 Preliminaries . 48

4

CONTENTS 5

5.2 Construction of group codes . 49
5.3 Decoding algorithms . 52

5.3.1 Existing decoding algorithm for Γ(V, α, β, k) (and Γ(V, β, k)P) 52
5.3.2 Decoding paradigm for Γ(V, β, k)P and Γ(V, α, β, k) 52
5.3.3 List decoding with and without the splitting strategy 54

6 Parity lattices 61
6.1 Algorithms and theorems . 61

6.1.1 Properties of the parity lattices . 61
6.1.2 Recursive decoding . 62
6.1.3 Decoding performance on the Gaussian channel . 65

6.2 Parity lattices with k = 2 and k = n
1

log logn . 70
6.2.1 Parity lattices with k = 2 (BW lattices) . 70

6.2.2 Parity lattices with k = n
1

log logn . 79
6.3 Appendix . 80

6.3.1 The Merge Sort Algorithm . 80
6.3.2 Proof of Theorem 6.3 . 80
6.3.3 Proof of Lemma 6.3 . 82
6.3.4 Proof of Lemma 6.6 . 82
6.3.5 Proof of Lemma 6.7 . 83
6.3.6 Proof of Theorem 6.7 . 84
6.3.7 Proof of Theorem 6.8 . 86

7 Study of some famous group codes 87
7.1 Turyn’s construction of the Leech lattice and the Nebe lattice 87

7.1.1 The polarisation of lattices . 87
7.1.2 The lattice Γ(2S, T2θ, T, 3) . 88
7.1.3 Construction of the Leech lattice and Nebe lattice 88

7.2 Decoders for Leech and Nebe lattices . 89
7.2.1 Existing decoding algorithms for Λ24 and N72 . 89
7.2.2 New BDDs and list decoders for Γ(2S, T2θ, T, 3) . 90
7.2.3 Bounding the list size of Λ24 and N72 . 93
7.2.4 Decoding Λ24 and N72 on the Gaussian channel . 93
7.2.5 The 3-parity-Leech lattice in dimension 72 . 95

7.3 Construction and decoding of codes . 96
7.3.1 Reed-Muller codes as single parity-check group . 96
7.3.2 Codes obtained via the k-ing construction . 96

7.4 Additional numerical results . 97
7.4.1 Lattice decoding benchmark . 97
7.4.2 Finite constellation . 98

7.5 Appendix . 98
7.5.1 The polarisation of Forney in [For88b] . 98
7.5.2 Proof of Lemma 7.1 . 99
7.5.3 The good polarisation of the Leech lattice . 99
7.5.4 A proof that R(N72) >

√
2ρ(N72) . 100

7.5.5 Proof of Lemma 7.4 . 101

Lattices and neural networks with and without learning

8 Neural network approaches to point lattices decoding 103
8.1 Preliminaries . 104
8.2 From the CVP in Rn to the CVP in P(B). 105
8.3 Voronoi-reduced lattice basis . 105

8.3.1 Voronoi- and quasi-Voronoi-reduced basis . 105
8.3.2 Some examples . 107

8.4 Finding the closest corner of P(B) for decoding . 109
8.4.1 The decision boundary . 109

6 CONTENTS

8.4.2 Decoding via a Boolean equation . 110
8.4.3 The HLD . 110
8.4.4 The decision boundary as a piecewise affine function 112
8.4.5 Complexity analysis: the number of affine pieces of the decision boundary 114

8.5 Complexity reduction . 117
8.5.1 Folding strategy . 117
8.5.2 Neglecting many affine pieces in the decision boundary 120
8.5.3 Learning perspective . 121

8.6 Appendix . 122
8.6.1 Proofs of Section 8.3.2 . 122
8.6.2 Proof of Theorem 8.4 . 124
8.6.3 First order terms of the decision boundary function before folding for An 124
8.6.4 Proof of Theorem 8.6 . 124
8.6.5 Proof of Theorem 8.7 . 125
8.6.6 Proof of Theorem 8.10 . 126
8.6.7 Proof of Theorem 8.8 . 127
8.6.8 Proof of Theorem 8.11 . 128

9 A lattice-based approach to the expressivity of deep ReLU neural networks 129
9.1 The advantage of depth over width . 129
9.2 Appendix . 130

9.2.1 Some results on the expressive power of deep neural networks 130
9.2.2 The triangle wave function of [Tel16] . 130
9.2.3 Proof of Theorem 9.1 . 131

10 Decoding with Deep Learning 135
10.1 Learning protocol and training statistics . 135

10.1.1 Brief introduction to deep learning vocabulary . 135
10.1.2 Training statistics for the Gaussian channel . 135

10.2 Multilevel MIMO detection with Deep Learning . 136
10.2.1 The network structure . 137
10.2.2 Simulation results . 139

10.3 Decoding in P(B) . 141

Conclusions and perspectives
10.4 Thesis conclusions . 144

Notations

• AWGN: additive white Gaussian noise.

• BDD: bounded-distance decoder.

• BW: Barnes-Wall.

• CPWL: continuous piecewise linear.

• CVP: closest vector problem.

• DNN: deep neural network.

• HLD: hyperplane logical decoder.

• MIMO: multiple-input multiple-output.

• MLD: maximum-likelihood decoding.

• OSD: ordered statistics decoder.

• QMLD: quasi-maximum-likelihood decoding.

• ReLU: rectified linear unit.

• SNR: signal-to-noise ratio.

7

Part

Presentation of the thesis and its
main topics

8

Chapter 1

Présentation de la thèse en français

1.1 Contexte de la thèse

Le contexte de cette thèse est le problème de communication, rencontré dans d’innombrables situations.
Ce très vieux problème, illustré sur la Figure 1.1, peut être présenté comme suit : un émetteur veut
envoyer un message à un récepteur par le biais d’un canal de communication bruité. Plus précisément,
l’émetteur doit envoyer le message de telle sorte que la probabilité d’erreur et l’énergie moyenne du signal
transmis soient minimisées, tandis que le débit d’information (c’est-à-dire la vitesse) de la communication
doit être maximisé.

Emetteur RécepteurCanal

signalmessage

message estimé

signal reçu

Figure 1.1: Le problème de communication.

1.1.1 Un vieux problème

Claude Shannon découvrit les meilleures performances de communication numérique possible dans son
célèbre article “A mathematical theory of communication” en 1948. Pour obtenir ces performances
optimales, l’émetteur envoie généralement une version codée de son message. Cette opération est appelée
codage de canal. Le message étant transmis sous forme de chiffres, la longueur de bloc du message se
réfère au nombre de chiffres codés ensemble. Les performances optimales de communication ne peuvent
être atteinte que si l’on considère une longueur de bloc de très grande taille.

Comme le remarqua Peter Elias dès 1955 et comme le rapporta David Forney, “tous codes choisis au
hasard fonctionnent aussi bien que les meilleurs codes, c’est-à-dire que la plupart des codes sont de bons
codes”. Le problème de codage est donc un problème de décodage : il consiste à trouver des codes qui
ont une structure particulière, de manière à simplifier la mise en œuvre du décodage, sans sacrifier les
performances de communication. Il a fallu quarante ans pour trouver de tels codes.

Depuis les années 90 et l’avènement des turbo codes, des techniques de codage quasi-optimaux avec
des décodeurs efficaces permettent de se rapprocher de la limite de Shannon, c’est-à-dire d’atteindre les
performances optimales étant donné une grande longueur de bloc. Néanmoins, en raison de certaines
contraintes telles que la latence, on ne peut parfois utiliser que des blocs de taille moyenne. Bien qu’il
soit théoriquement toujours possible d’obtenir des performances satisfaisantes avec des blocs de longueur
modérée, les techniques utilisées avec des blocs de grande longueur ne sont pas efficaces dans ce contexte.
En fait, le codage de canal pour une longueur de bloc modérée est un problème ouvert : on ne connâıt
pas de décodeurs efficaces pour des systèmes opérant à proximité des meilleures performances possibles
dans des dimensions modérées.

En outre, deux régimes distincts sont généralement envisagés pour le problème du codage de canal : le
régime limité en puissance et le régime limité en largeur de bande. Dans le premier, le débit d’information
(c’est-à-dire la vitesse en Bauds) est faible, contrairement au second. Pour le régime à largeur de bande
limitée, on considère généralement un objet mathématique appelé réseau de points.

9

10 CHAPTER 1. PRÉSENTATION DE LA THÈSE EN FRANÇAIS

1.1.2 Un nouveau problème

Récemment, des révolutions ont été amorcées dans de nombreux domaines de l’ingénierie par l’avènement
de l’apprentissage profond depuis 2010. Les algorithmes d’apprentissage profond sont un sous-ensemble
des algorithmes d’apprentissage automatique. L’idée principale de ces algorithmes est d’entrâıner un
réseau de neurones à résoudre des problèmes. Dans notre domaine d’intérêt spécifique, les communica-
tions numériques, d’innombrables articles ont essayé d’utiliser l’apprentissage profond pour résoudre le
problème de décodage/détection depuis 2016.

Cependant, la plupart de ces articles présentent des résultats de simulation : par exemple, un problème
de décodage est défini et différentes architectures de réseaux de neurones sont considérées de manière
heuristique. L’apprentissage est effectué et les résultats sont présentés. Très peu de travaux tentent de
comprendre théoriquement ce que peuvent ou ne peuvent pas faire les réseaux de neurones. Jusqu’à
présent, l’apprentissage profond reste une bôıte noire et il est très difficile de prédire si cet algorithme
sera efficace pour un problème donné dans le cadre du codage du canal.

1.2 Contributions et nouveautés

La thèse aborde les deux problèmes présentés dans la Section 1.1, dans le cadre des réseaux de points.
Le premier problème est lié au codage de canal dans des dimensions modérées. Comme expliqué dans

la Section 1.1.1, alors que des techniques de codage efficaces existent dans les dimensions basses n ≤ 30
et les dimensions hautes n ≥ 1000, ce n’est pas le cas des dimensions intermédiaires. Dans la thèse,
nous étudions le décodage de réseaux de points intéressants dans ces dimensions intermédiaires. Nous
présentons de nouvelles familles de réseaux de points obtenues en appliquant récursivement des contrôles
de parité. Ces familles comprennent des réseaux de points célèbres, tels que les réseaux Barnes-Wall, les
réseaux Leech et Nebe, ainsi que de nouveaux réseaux de parité. Nous montrons que tous ces réseaux
de points peuvent être décodés efficacement avec un nouveau décodeur récursif par liste. Cela permet
d’obtenir des performances de pointe pour les communications sur un canal bruité.

Le deuxième problème concerne les réseaux de neurones. Notre perspective est différente de celle de
la plupart des articles : nous proposons d’étudier la complexité du problème que les réseaux de neurones
doivent résoudre. Nous présentons une nouvelle approche au problème du décodage des réseaux de points
pour s’adapter aux opérations effectuées par un réseau de neurones. Cela permet de mieux comprendre
ce qu’un réseau de neurones peut et ne peut pas faire dans le cadre de ce problème, et d’obtenir des
indications concernant la meilleure architecture du réseau de neurones. Notre analyse fournit également
des exemples pertinants expliquant pourquoi les réseaux de neurones profonds sont plus efficaces que
les réseaux de neurones peu profonds. En d’autres termes, nous essayons de répondre à des questions
fondamentales telles que:

• Pouvons-nous comprendre pourquoi les réseaux de neurones sont plus efficaces pour décoder certains
réseaux de points spécifiques ?

• Pouvons-nous modéliser la fonction de décodage des réseaux de points comme une fonction calculée
par un réseau de neurones ?

• Pouvons-nous utiliser la fonction de décodage des réseaux de points pour expliquer pourquoi les
réseaux de neurones profonds sont plus efficaces que les réseaux de neurones peu profonds ?

Chapter 2

Introduction

2.1 Abstract

This thesis discusses two problems related to lattices, an old problem and a new one. Both of them are
lattice decoding problems: Namely, given a point in the space, find the closest lattice point.

The first problem is related to channel coding in moderate dimensions. While efficient lattice schemes
exist in low dimensions n ≤ 30 and high dimensions n ≥ 1000, this is not the case of intermediate
dimensions. We investigate the decoding of interesting lattices in these intermediate dimensions. We
introduce new families of lattices obtained by recursively applying parity checks. These families include
famous lattices, such as Barnes-Wall lattices, the Leech and Nebe lattices, as well as new parity lattices.
We show that all these lattices can be efficiently decoded with an original recursive list decoder.

The second problem involves neural networks. Since 2016 countless papers tried to use deep learning1

to solve the decoding/detection problem encountered in digital communications. We propose to inves-
tigate the complexity of the problem that neural networks should solve. We introduce a new approach
to the lattice decoding problem to fit the operations performed by a neural network. This enables to
better understand what a neural network can and cannot do in the scope of this problem, and get hints
regarding the best architecture of the neural network. Some computer simulations validating our analysis
are provided.

2.2 Thesis outline

The first part of the document introduces the main topics covered in this thesis. We discuss the channel
coding problem and propose an overview of lattices.

• Chapter 3 provides a brief history of the channel coding problem. We present the main strate-
gies investigated by coding theorists to approach the Shannon limit with a reasonable decoding
complexity. Reasons for failure or success of these strategies are discussed. We also explain the
differences between the power-limited and the bandwidth-limited regimes. Lattice coding for the
latter regime is introduced.

• Chapter 4 is an introduction to lattices. We first give in Section 4.1 an overview of the different
abstract meaning of the term lattice that one may encounter. Standard lattice parameters are
then defined. Section 4.2 describes several categories of lattice decoders. Coset decomposition
and constructions of lattices from codes are also presented. We discuss in Section 4.3 the two
most famous lattice packing problems. Finally, the last section describes the main computational
problems related to lattices. Hardness results as well as existing algorithms are presented. We also
show applications in cryptography and digital communications.

The second part of the thesis investigates the construction and the decoding of a remarkable set of lattices
and codes viewed as group codes: We treat in a unified framework the Leech lattice and the Golay code
in dimension 24, the Nebe lattice in dimension 72, the Barnes-Wall lattices, and the Reed-Muller codes.
We also present a new family of lattices called the parity lattices. The common aspect of these group
codes is that they can be obtained as single parity-check k-groups or via the k-ing construction. We

1Sometimes more shallow than deep.

11

12 CHAPTER 2. INTRODUCTION

exploit these constructions to introduce a new efficient paradigm for decoding. This leads to efficient list
decoders and quasi-optimal decoders on the Gaussian channel. This part of the thesis is divided in three
chapters.

• The k-ing construction and the single parity-check k-groups are introduced in Section 5.2 of Chap-
ter 5. The baseline decoding algorithms as well as the splitting strategy for efficient list decoding
are described in Section 5.3.

• Chapter 6 is dedicated to the study of a new family of lattices named parity lattices. The chapter
is divided into two main sections. In Section 6.1, we first define the parity lattices. Recursive
versions of the algorithms of Chapter 5, to decode the parity lattices, are then presented. We
also provide formulas to assess the performance of these algorithms on the Gaussian channel. In
Section 6.2, we further investigate the recursive list-decoding algorithms for the parity lattices with

k = 2 (Barnes-Wall lattices) and k = n
1

log logn .

• In Chapter 7, we study the decoding of famous group codes obtained via either the k-ing construc-
tion or as parity-check k-groups. Sections 7.1 and 7.2 focus on the construction and the decoding of
the Leech and Nebe lattices as special cases of the k-ing construction. We also consider a sublattice
of the Nebe lattice: a parity lattice with k = 3. Section 7.3 addresses the case of codes built with
the parity-check construction or with the k-ing construction. Finally, Section 7.4 presents some
additional numerical results: A benchmark of the performance of existing schemes is provided and
a finite constellation designed.

In the third part of the thesis, we jointly study lattices and neural networks. We characterize the
complexity of the lattice decoding problem from a neural network perspective. On the one hand, this
problem is shown to be equivalent to computing a continuous piecewise linear (CPWL) function restricted
to the fundamental parallelotope of the lattice. On the other hand, it is known that any function
computed by a rectified linear unit (ReLU) feed-forward neural network is CPWL. As a result, we
count the number of affine pieces in the CPWL decoding function to characterize the complexity of
the decoding problem. We investigate strategies to efficiently compute this CPWL function. Besides,
this CPWL function is also used to underline the advantage of depth over width in neural network
architectures. This part of the thesis is composed of three chapters.

• In Chapter 8, we first show in Section 8.2 how the lattice decoding problem can be restricted to
the fundamental parallelotope P(B). This new lattice decoding problem in P(B) induces a new
type of lattice reduction basis. This category of basis, called Voronoi-reduced basis, is presented
in Section 8.3. In Section 8.4, we introduce the decision boundary to decode componentwise. The
discrimination with respect to this boundary can be implemented via the hyperplane logical decoder
(HLD). It is also proved that, under some assumptions, this boundary is a CPWL function with an
exponential number of pieces. Finally, we show in Section 8.5 that for some famous dense lattices
this function can be computed at a reduced complexity via folding with deep neural networks.
We also argue that the number of pieces to consider for quasi-optimal decoding is reduced with
multiple-input multiple-output (MIMO) lattices on the Gaussian channel, which makes the problem
easier.

• We show how lattice theory can be used to establish new results in the field of deep learning in
Chapter 9. We prove a result which highlights the advantage of depth over width in neural network
architectures.

• The last chapter reports some simulation results where deep learning is used to decode/detect.
We first describe the training paradigm in Section 10.1. Then, we propose an original neural
network for the problem of MIMO detection in Section 10.2: The architecture is based on the
projected gradient descent, a multi-plateau sigmoid function is considered, and we propose a twin-
network structure. Simulation results are reported. In the last section, we describe the decoding
performance of standard feed-forward neural networks where the point to decode is aliased in P(B).

2.3. MAIN CONTRIBUTIONS 13

2.3 Main contributions

Chapter 3

• We argue that capacity approaching schemes are based on the “combining paradigm on a tree”.
This tree represents component codes, unlike the tree of codes studied before the advent of modern
coding theory which represents codewords. This enables to avoid the decoding computational cutoff
rate. We show how this paradigm can be adapted to moderate dimensions, a regime that has not
been studied much in the literature. This naturally leads to a new class of codes presented in the
second part of the thesis: the recursive parity-check k-groups (see in particular Chapter 6).

Chapter 5

• We establish a new abstract framework for group codes: It is composed of Γ(V, α, β, k), obtained
via the k-ing construction, and its subgroup Γ(V, β, k)P constructed as single parity-check k-group.
See Section 5.2.

• A new decoding paradigm to decode any group code Γ(V, β, k)P is summarized within Algo-
rithm 5.1. Algorithms 5.2 and 5.3 are extensions of this first algorithm to decode Γ(V, α, β, k).
A new technique, called the splitting strategy, is then introduced to reduce the complexity of these
algorithms in the scope of list decoding. See Section 5.3.

Chapter 6

• We introduce new lattices reffered to as parity lattices. These lattices are recursively built as
Γ(V, β, k)P . Recursive versions of the algorithms of Section 5.3 are presented to decode these new
lattices. A modified list-decoding algorithm is proposed for the Gaussian channel: Our analysis
reveals that it is easier to explore a non-spherical body for quasi-optimal decoding than the usual
sphere considered for regular list decoding2. Analytic expressions to assess the performance are
provided, along with examples. These examples demonstrate the potential of the modified list-
decoding algorithm to approach the Poltyrev limit. The formulas also enable to establish design
guidelines. See Section 6.1.

• The complexity of the recursive list decoder for the parity lattices is investigated for the cases k = 2,

which includes Barnes-Wall (BW) lattices, and k = n
1

log logn . Regarding regular list decoding, the
complexity is linear in the list size. For BW lattices, this allows to achieve a lower complexity than

the one of existing regular list decoders. Moreover, while the coding gain is reduced for k = n
1

log logn ,
compared to k = 2, so is the list size and thus the list-decoding complexity. See Figure 6.4. Finally,
the modified list-decoding algorithm yields quasi-optimal decoding performance for BW lattices
over the Gaussian channel, at a reasonable complexity, up to dimension 128. See Section 6.2.

Chapter 7

• The Leech lattice Λ24 and the Nebe lattice N72 are built as instances of Γ(V, α, β, 3). New decod-
ing algorithms for Λ24 and N72 are developed as an application of our decoding paradigm. See
Section 7.2.

• We show that the parity lattice L3·24 = Γ(V, β, 3)P , as sublattice of N72, has performance only
0.2 dB apart from N72 on the Gaussian channel. Moreover, the decoding complexity of L3·24

is significantly reduced. See Section 7.2.5. This is a remarkable result in finding a complexity-
performance trade-off.

• Reed-Muller codes are recursively obtained from Γ(V, β, 2)P and some famous short-length self-
dual binary codes built as Γ(V, α, β, k). We establish a connection between idempotents and the
component codes of the k-ing construction. See Section 7.3.

Chapter 8

• We first state a new closest vector problem (CVP), where the point to decode is restricted to the
fundamental parallelotope P(B). See Problem 8.1. This problem naturally induces a new type of
lattice basis reduction, called Voronoi-reduced basis. See Definition 8.1. In Section 8.3, we prove
that some famous dense lattices admit a Voronoi-reduced basis. We also show that it is easy to get
quasi-Voronoi-reduced bases for random MIMO lattices up to dimension n = 12.

2Even if the volume of the non-spherical body is larger than the one of the sphere required for quasi-optimal decoding.

14 CHAPTER 2. INTRODUCTION

• A new paradigm to address the CVP problem in P(B) is presented. We introduce the notion of
decision boundary in order to decode componentwise in P(B). This decision boundary partition
P(B) into two regions. The discrimination of a point with respect to this boundary enables to
decode. The hyperplane logical decoder (HLD, see Algorithm 8.2) is a brute-force algorithm which
computes the position of a point with respect to this decision boundary. The HLD can be viewed
as a shallow neural network.

• In Section 8.4.5, we show that the number of affine pieces in the decision boundary grows exponen-
tially with the dimension for some basic lattices such as An, Dn, and En (see e.g. Theorem 8.5).
This induces both a HLD of exponential complexity and a shallow (one hidden layer) neural network
of exponential size (Theorem 8.6).

• In Section 8.5.1, in order to compute the decision boundary function in polynomial time, the folding
strategy is introduced (see e.g. Theorem 8.9). The folding strategy can be naturally implemented
by a deep neural network.

• Regarding less structured lattices, such as the ones considered in the scope of MIMO, we argue
that the decoding problem on the Gaussian channel, to be addressed by a neural network, is easier
compared to decoding dense lattices (in low to moderate dimensions). Namely, only a small fraction
of the total number of pieces in the decision boundary function should be considered for quasi-
optimal decoding. As a result, smaller shallow neural networks can be considered, which makes
the training easier and the decoding complexity reasonable.

Chapter 9

• We prove that there exists a function f that can be computed by a deep neural network of polyno-
mial size where any function g computed by a shallow neural network of polynomial size induces an
approximation error growing exponentially with the dimension. See Theorem 9.1. This highlights
the advantage of depth over width in neural network architectures.

Chapter 10

• Two simulation settings for decoding/detection via deep learning are considered. With both neural
networks, the complexity remains reasonable with MIMO lattices but not with dense lattices.

2.4 Publications

Peer-reviewed Journals

1. Vincent Corlay, Joseph J. Boutros, Philippe Ciblat, and Löıc Brunel, A new framework for building
and decoding group codes, Submitted to IEEE Transactions on Information Theory.
The paper corresponds to Chapters 5, 6, and 7.

2. —, Neural network approaches to point lattice decoding, Submitted to IEEE Transactions on
Information Theory.
The paper corresponds to Chapter 8.

International conferences

1. Vincent Corlay, Joseph J. Boutros, Philippe Ciblat, and Löıc Brunel, “Multilevel MIMO Detection
with Deep Learning”, Asilomar Conference on Signals, Systems, and Computer, Pacific Grove
(USA), October 2018.

2. —, “Neural Lattice Decoders”, IEEE Global Conference on Signal and Image Processing (Global-
SIP), Anaheim (USA), November 2018.

3. —, “A Turyn-based neural Leech decoder,” 2019 International Workshop on Coding and Cryptog-
raphy (WCC), Saint-Jacut-de-la-Mer (France), March 2019.

4. —, “On the CVP for the root lattices via folding with deep ReLU neural networks,” IEEE Inter-
national Symposium on Information Theory (ISIT), Paris (France), July 2019.

2.4. PUBLICATIONS 15

5. —, “On the decoding of Barnes-Wall lattices,” IEEE International Symposium on Information
Theory (ISIT), Los Angeles (USA), June 2020.

Other

1. Vincent Corlay, Joseph J. Boutros, Philippe Ciblat, and Loic Brunel, “A lattice-based approach to
the expressivity of deep ReLU neural networks,” February 2019.

Chapter 3

The channel coding problem

3.1 A general presentation

3.1.1 Problem statement

Picture yourself standing in a noisy hall full of people with your friend on the other side of the hall. You
want to communicate an information to your friend. Obviously, you should speak louder than if both of
you were alone in a small room. In other words, you should increase the power of your voice because
of the ambient noise in the hall. If your friend is not too far, perhaps he could hear you but not fully
understand what you would say. In this case, instead of screaming you could try to repeat your message
several times.

This example is an instance of the communication problem encountered in countless situations. The
most famous model of this problem is called the discrete-time additive white Gaussian noise (AWGN)
channel. It is expressed by the following equation

y = f(z) + w, (3.1)

where:

• The vector z = (z1, z2, ..., zk), zi ∈ {0, 1}, is the message. z is assumed to be uniformly distributed
over {0, 1}k.

• f(z) ∈ Rn is the channel input (the transmitted signal). The function f(·) is an encoding function.

• y ∈ Rn is the received message.

• w = (w1, w2, ...wn) is a Gaussian noise vector with i.i.d components wi ∼ N (0, σ2).

Transmitter Receiver

w

yx = f(z) ẑz

Figure 3.1: Discrete-time AWGN channel. The dashed square represents the communication channel.

The model is summarized on Figure 3.1. The three fundamental quantities of the communication
problem are:

• The reliability of the communication: It is measured by the probability that the receiver, given y,
is not able to recover the exact message z.

• The information rate (or speed) of communication: It refers to the average amount of information
transmitted per use of the channel. Let us call one use of the channel a dimension. In our model,
the message is sent over n dimensions. The information rate is denoted by R and is measured in
bits per dimension (bits/dim).

16

3.1. A GENERAL PRESENTATION 17

• The quality of the communication channel: It is the average energy of the transmitted signal
compared to the one of the noise. It is measured by the signal-to-noise ratio (SNR).

In our example of two people in a hall, two solutions are proposed to improve the reliability of the
communications: Improve the SNR by increasing the power of your voice compared to the one of the
noise or decrease the information rate by repeating several times the message. This latter option is
achieved by coding the message: I.e. f(z) 6= z. For each element in {0, 1}k we associate an element of a
set C where |C| = |{0, 1}k| = 2k. This operation is called channel coding. The set C is called a code and
its elements are called codewords. For instance, repeating the message means that a repetition code is
used and the codeword x ∈ C corresponding to z is obtained as x = f(z) = (z, z) and n = 2k.

The (optimal) decoding operation, for the receiver, consists in finding the most likely message z given
the received y. This is called maximum a posteriori decoding. Since the message is chosen uniformly at
random in {0, 1}k, it is equivalent to finding the codeword x ∈ C maximizing the probability of receiving
y given z, called maximum likelihood decoding (MLD). Given our AWGN channel model, it simply
consists in finding the closest codeword from y, i.e. performing minimum Euclidean distance decoding.

In 1948, Claude Shannon established the maximum information rate at which a reliable communica-
tion is possible with a given SNR [Sha48]. Here, reliable means that the error probability is vanishing
for n→ +∞. This quantity is called the capacity, denoted by C. For the discrete-time AWGN channel
the capacity is

C =
1

2
log2(1 + SNR). (3.2)

The SNR associated to the capacity C is named Shannon limit. Shannon proved his result with the
random coding argument: I.e. he considered an ensemble1 of random codes and showed that the average
error probability of codes in the ensemble is vanishing when n→ +∞ and R ≤ C.

However, even if we admit that a code randomly chosen in this ensemble is also good, this result does
not answer the main practical question: How do we encode and decode such a code? This question has
been studied by generations of researchers for seven decades.

When looking for a good code for channel coding, the goal is twofold:

• The codewords of C should be packed in the space with some desirable properties: The probability
that y is not in the decoding region of the transmitted codeword should be low. This is the coding
problem.

• Given the received message y it should not be too hard to recover the transmitted message z. This
is the decoding problem.

In fact, as noticed as early as 1955 by Elias [Eli55] and reported in [CF07], “almost all randomly chosen
codes perform essentially as well as the best codes; that is, most codes are good codes”. The channel
coding problem is therefore essentially a channel decoding problem: It consists in “finding classes of
codes that have some special structure, so as to simplify implementation, without sacrificing average
performance over the class” [CF07]. For instance, the special class of codes with a group structure has
the same average performance as the class of random codes, while being simpler to manipulate [Gal68].

We shall see in the sequel that depending on the information rate (and thus the SNR), different
categories of codes are considered.

3.1.2 The power-limited and the bandwidth-limited regimes

Let Z = {0, 1, ...,Q−1}. The discrete-input AWGN channel is a special case of the discrete-time AWGN
channel model where the input of the channel f(z) is restricted to this equiprobable Q-ary alphabet.
The maximum information rate achievable with this model is given by the mutual information curves on
Figure 3.2 [FU98]. Of course, the greater Q, the higher the achievable rate at high SNR. Note however
that the value of Q does not impact the information rate achievable at low SNR.

Consider the encoding function f : {0, 1}k → Zn.The function f is not surjective if the information
rate is less than log2Q: Figure 3.2 shows that C should contain only a fraction of R/ log2Q elements of
Zn such that |C| = 2nR. While this approach can solve the coding problem on the discrete-time AWGN
channel for low rates, there is still a gap of 1.53 dB for high rates (above ≈3 bits/dim). Note also that
Z can be binary when R < 1, which makes many practical operations easier.

1I.e., a set

18 CHAPTER 3. THE CHANNEL CODING PROBLEM

-10 0 10 20 30 40 50

0

1

2

3

4

5

6

Figure 3.2: Maximum information rates achievable with low error probability [FU98]. The black dashed
line represent the capacity of the discrete-time AWGN given by (3.2). The black lines represent the
maximum information rate achievable on the discrete-input channel with different number of levels
(log2Q =1, 2, 3, 4, 5, and 6). The grey dashed line is the curve 1/2 log2 SNR shifted by 1.53 dB to the
right.

As a result, there are two distinct regimes for the channel coding problem: the power-limited and the
bandwidth-limited regimes. In the former, the rate is low, typically R < 1 and binary codes are usually
considered. Moreover, when R << 1 the SNR is low and the capacity C behaves like a linear function
in the SNR. For the bandwidth-limited regime, R > 1, either multilevel schemes based on binary codes,
such as bit-interleaved coded modulation, or lattice-based constellations2 are generally used. Note that
a code is often called a constellation in this second regime.

The lattice-based approach is the following. Consider the set Z = Z (the integers). We remove points
of this infinite constellation3 Zn to get a sub-constellation Λ with vol(Λ) > 1 points per volume unit. If
we select the elements of Λ inside a hypercube of size Qn, we get a constellation C with |C| ≈ Qn/ vol(Λ)
and the information rate is R ≈ 1

n log2 |C|. Consequently, the constellation Λ, provided that it has the
good properties for the Gaussian channel, can be used for coding at several information rates4. The
remaining 1.53 dB are obtained by choosing elements of the infinite constellation within a sphere rather
than a cube. Indeed, the asymptotic second order moment of a sphere is 1.53 dB smaller than the one
of a cube. This problem, called the shaping problem, can be solved independently of the coding problem
when |C| is large enough5: We shall not discuss it further in this chapter.

Despite these differences between low rate and high rate regimes, the coding problem in both cases
can be addressed with the same guidelines. As a result, for both regimes, the problem amounts to
finding a code C, finite or infinite, where the codewords are appropriately packed and where the decoding
operation can be efficiently performed. We shall present these guidelines in the next sections.

For more information on the channel models considered, the reader can consult [PS08] [Zam14].

3.2 From the 50’s to the 80’s

3.2.1 The union bound and the minimum distance

In the 50’s, the main goal was to find codes with a large minimum distance: The value

d(C) = min
x 6=x′∈C

d(x, x′), (3.3)

2Efficient lattices can also be obtained as multilevel schemes.
3While preserving the group structure of Zn.
4Note that the quality of the channels presented are a function of the SNR. Consequently, these channel models implicitly

include an average power constraint. Nevertheless, to study the lattice packing problem (i.e. without the shaping problem)
this average power constraint can be removed. In this case, the channel is called the unconstrained AWGN channel (see
Problem 4.2). In the following chapters of this thesis, we shall mainly consider the (discrete-input) unconstrained AWGN
channel.

5Note that on the receiver side, y is in general decoded in the infinite constellation, not restricted to C. Namely, the
decoder may find a closest element in the infinite constellation which is not a codeword in C. Such a decoder is called a
lattice decoder, to be opposed with a nearest-codeword decoder. While it was known since [deB75] that lattice decoding
achieves 1/2 log2(SNR), it was not obvious if the approximation made by the lattice decoder is negligible such that one
can get 1/2 log2(1 + SNR). It was finally proved in [EZ04] and [dZB18] that a lattice decoder can be optimal.

3.2. FROM THE 50’S TO THE 80’S 19

should be the largest possible. Here d(·) denotes the Euclidean distance. This goal was motivated
by an estimate of the MLD performance of a given code C obtained via the union bound. This es-
timate is based on the pairwise error probability between two codewords, defined as the probability
that the received message y is closer to x′ than to the transmitted x, x′ 6= x, x, x′ ∈ C. We denote
this probability by P (x′|x). Let σ2 be the variance of the Gaussian noise. It is easily shown that,
with a channel as (3.1), P (x′|x) = Q(d(x, x′)/2σ), where Q(·) is the Gaussian tail function defined as

Q(t) = 1/
√

2π
∫ +∞
t

e−u
2/2du. The union bound yields

Pe(opt) ≤
1

|C|
∑

x

∑

x′ 6=x

Q

(
d(x, x′)

2σ

)
, (3.4)

where Pe(opt) denotes the MLD performance of the code. Let τi be the average number of points at a
distance di from a codeword x. Equation (3.4) becomes

Pe(opt) ≤
∑

i

τiQ

(
di
2σ

)
. (3.5)

Let τ = τ1 be the average number of codewords at the minimum distance of C. Given that the terms
τi are not too large, the error probability at large SNR can be estimated with the first term of the sum
in (3.5). We get

Pe(opt) ≈ τQ
(
d(C)
2σ

)
, (3.6)

which highlights the interest of finding codes with a large minimum distance.
As a result, the first approach to build codes was algebraic. The idea was to set strong deterministic

constraints on the structure of the code to have a minimum distance as large as possible. Some of the
most famous outcomes of this line of research are the (8, 4, 4) Hamming code [Ham50], the (24, 12, 8)
Golay code [Gol49], the Leech lattice in dimension 24 [Lee67], the families of Reed-Muller codes [Ree54]
[Mul54], BCH codes [BRC60] [Hoc59], and Barnes-Wall lattices [BW59] (in low dimensions), Reed-
Solomon codes [RS60], and more recently the Nebe lattice in dimension 72 [Neb12]. Computer searches
to find convolutional codes (presented in the following subsection) with a good minimum distance were
also performed.

3.2.2 Hard-decision decoding, Viterbi algorithm, sequential decoding, and
the cutoff rate

On the decoding side, a solution often used in practice was to quantize the received message in the discrete
space of the code. Efficient algorithms to solve equations in the space of the code can then be used.
A famous instance of this category of algorithms is the Berlekamp-Massey algorithm [Ber68] [Mas69].
This paradigm is called hard-decision decoding. While it makes the decoding easier, it also costs 2 to
3 dB compared to the MLD performance of the code on the AWGN channel. Note that a significant
improvement in this line of work was made recently with the Guruswami-Sudan list decoder of Reed-
Solomon codes [Sud97] [GS99].

When y is not quantized at the input of the decoder, the decoding algorithm is called a soft-decoder.
As explained in the previous section, the optimal (soft) decoder should find the closest codeword to y.
The brute-force approach is to compare the distance of y with all codewords in C. The complexity is
≈ |C| and intractable when the dimension increases. This observation motivated the invention of tree
and trellis-based codes, where one codeword is a path in the tree/trellis. This enables to find the closest
codeword to y at lower complexity. For instance, convolutional codes, introduced by Elias [Eli55], are
finite-state Markov processes where the code is viewed as a time series. At each given time, the code
is in a given state which depends only on a finite number of previous scalar values zi−j , 0 < j ≤ ν of
the message z. The quantity ν + 1 is called the constraint length. Since the state of the code at time i
depends only on the previous state of the code and zi, these codes are efficiently represented by a trellis.
They admit an efficient optimal decoding algorithm, the Viterbi algorithm [Vit67], the complexity of
which depends on ν. Similarly, a sequential decoder [Woz57] operates on the trellis/tree of the code by
looking for the most likely path/codeword. This decoder is dynamic as even if it has established one
candidate path, it is allowed to change its hypothesis.

20 CHAPTER 3. THE CHANNEL CODING PROBLEM

One way to understand these efficient decoders is the following. They look for the neighbor codewords
of x in C that are close to y, similarly to a sphere decoder6 which looks for the closest lattice point in
a sphere around y. Indeed, as explained by Arikan in [Ari16], sequential decoders behave like the
theoretical guessing decoder. The principles of this guessing decoder are the following. A candidate for
the transmitted x is submitted by the decoder and a “genie” tells the decoder whether it is correct or
not. If not, a second candidate is submitted by the decoder and the process stops when x is found. The
complexity is obtained as the average number of candidates that the decoder has to submit to the genie
before finding the transmitted x. The best order for this genie-aided decoder is the MLD order: The
closest codeword x1 to y is first submitted, then the second closest codeword x2 is submitted, and so on.
Consequently, a codeword x′ is submitted to the genie if a pairwise error occurs between x and x′. Let
Ey[·] denote the expectation with respect to the probability distribution of y. The average complexity
with respect to y, denoted by Ey[C], is given by the average number of pairwise errors:

Ey[C] = Ex[
∑

x′ 6=x

P (x′|x)]. (3.7)

Consider a random ensemble similar to the one used by Shannon to prove the capacity (see the text
below (3.2)). The complexity of the decoder can be averaged over this random ensemble. It can be
shown that the average pairwise error probability is (see e.g. [Ari16])

EC [P (x′|x)] =
∑

C
P (C)P (x′|x) ≤ 2−nR0 , (3.8)

where P (C) denotes the probability of choosing the code C in the ensemble and the quantity R0 is
discussed below. The average complexity is thus given by

ECEy[C] =
1

C
∑

x

∑

x′ 6=x

EC [P (x′|x)] ≤ (2nR−1)2−nR0 ,

≤ 2n(R−R0).

(3.9)

Only the upper bound is shown here but the converse also holds [Ari16]. As a result, R0 acts as a
decoding computational cutoff rate: For R > R0, the average decoding complexity is exponential in n.
Note that (3.9) is also the union bound on the average performance of the random ensemble. Hence, we
have

EC [Pe(opt)] ≤ 2−n(R0−R). (3.10)

This latter quantity should be compared with the random-coding exponent E(R), which quantifies the
speed at which the error probability, given an optimal decoder, vanishes when the information rate is
smaller than the capacity [Gal68]. Namely,

EC [Pe(opt)] ≤ 2−nE(R), (3.11)

where E(R) is a positive convex function in R ∈ [0, C] and E(R) → 0 when R → C. One has R0 < C,
which highlights that decoders behaving as the guessing decoder are not efficient in the range R0 < R ≤
C.

The fundamental limit encountered here is not the code but the decoding paradigm: Looking for the
most likely codeword among all possible codewords. This phenomenon has a nice geometric interpre-
tation. Consider the following lemma, which shows that as n → ∞, the norm of the Gaussian noise
concentrates around its mean. In other words, only noise vectors whose norm is equal to the mean are
likely. We name these noise vectors typical noise.

Lemma 3.1 (Typical noise). Let σ2 be the variance of the noise on the unconstrained AWGN channel
(see Problem 4.2). As n→∞, for fixed ε > 0 the probability that (1− ε)nσ2 < ||w||2 < (1 + ε)nσ2 goes
to 1.

As a result, good codes should have spherical decision regions. This leads to Figure 3.3.
We conclude that a different paradigm should be considered to decode beyond the cutoff rate. This

problem was not solved until 1993. In fact, it took so long to solve this problem that, as explained
in [FU98], many communications engineers believed that the cutoff rate R0 was the “practical capacity”.

6See Chapter 4 for more information on the sphere decoder.

3.3. FROM THE 90’S UNTIL TODAY 21

Figure 3.3: Decision region of two codes. The center of each decision region represents the transmitted
codeword. In low dimensions the number of facets of decision regions is relatively low, as illustrated on
the left, and the probability that the transmitted point leaves the decision region is well approximated by
the union bound: The pairwise error events are approximately independent. However, good codes in high
dimensions have spherical decision regions, as illustrated on the right, resulting from a high number of
neighboring codewords. The number of facets is high and the pairwise error events are not independent
anymore. From a decoding perspective, trying all neighboring codewords close to y becomes intractable.

3.3 From the 90’s until today

3.3.1 A brief history of “modern” coding theory

The breakthrough happened in 1993 with turbo codes [BGT93]. The discovery was so unexpected,
and made by researchers that were neither information theorists nor channel coding theorists, that many
believed the existence of a factor 2 mistake, accounting for the 3 dB gain achieved by turbo codes over all
other known practical codes. It was soon recognized that turbo codes do approach capacity. According
to [Bou20], this breakthrough was the result of using jointly the four following principles, which had
never been done before. Note that the inventors probably did not know the importance of each principle
as implied by their motivations.

• Recursive convolutional codes. They were commonly used at this period as high rate systematic
codes within trellis coded modulation (invented by Ungerboeck).

• Parallel concatenation instead of serial concatenation. Claude Berrou was an electrical engineer
and his motivation was to use only one clock rather than two for hardware implementation. Indeed,
serial concatenation requires a different clock for each code.

• The interleaver. It was added such that the two convolutional codes have different inputs.

• Soft-output decoding, as recommended by Gérard Battail.

In other words, they managed to make the code look random and powerful enough, similarly to the
one used by Shannon for its theorem, while maintaining some structure suited to iterative decoding. This
invention was quickly followed by the re-discovery of low density parity-check (LDPC) codes [MN96],
invented by Gallager in his PhD thesis more than forty years earlier [Gal62]. The recent computer
simulations have shown that LDPC codes approach the capacity within tenth of dB (when the information
rate is smaller than 1).

Nevertheless, until 2008 there were only a few theoretical results on (practical) capacity achieving
codes. There only existed a proof that LDPC codes, under iterative decoding, achieve the capacity of
the binary erasure channel.

In 2008, polar codes were invented by Arikan [Ari09]. These codes provably achieve the capacity of
any binary input memoryless channel and have a deterministic construction. The beauty of these codes
is that the capacity proof explains how they should be constructed and decoded. Unfortunately, polar
codes with successive-cancellation decoding (the low-complexity decoder used in the proof) are efficient
only if the code length is very large. Indeed, the original idea of Arikan was initially to create several
virtual channels to “boost” the cutoff rate such that it is easier to code each individual channel with an
outer code. However, for large code length the channels become so good (or so bad) that the outer codes
are not needed. This is not the case for smaller code length.

22 CHAPTER 3. THE CHANNEL CODING PROBLEM

Finally, at the same period, it was proved in [KRU13] that spatial coupling, i.e. combining several
LDPC codes with extra edges as for convolutional LDPC codes [FZ99], enables to achieve the capacity
of any binary input memoryless channels under iterative decoding.

How good are these codes with respect to their minimum distance, to compare with the codes of
Section 3.2.1? Polar codes and turbo codes have a relatively low minimum distance, increasing as

√
n

and log n, respectively (e.g. with turbo codes an error-floor is often encountered at low to medium error
probability). While it is possible to construct LDPC codes with a large minimum distance, increasing
linearly with n, their iterative decoding threshold is in this case far from the capacity. Indeed, as
discussed in the next section, the local neighborhood of a variable node should be a tree. Therefore,
the Tanner graph of the code should not have too many cycles and it is known that cycle-free codes
have a poor minimum distance [ETV99]. Hence, an efficient LDPC code should not have a too high
minimum distance to avoid local cycles fatal to iterative decoding, but not too low to remain capacity
approaching. With spatial-coupling, the minimum distance can be increased, but the required number
of decoding iterations also significantly increases. As a result, to the best of our knowledge all known
efficient capacity approaching schemes are not asymptotically good in terms of minimum distance.

The study of these capacity approaching/achieving codes is often named modern coding theory, as
the name of the reference book by Urbanke and Richardson [UR08], even though it is now a thirty years
old field. Many researchers refer to these codes as codes on graphs... even though many older codes were
also modeled via graphs.

3.3.2 The combining paradigm on a tree

Whereas these coding techniques (turbo codes, LDPC codes, polar codes) may seem different at a first
glance, we argue that they all involve the same underlying idea: Small component codes (e.g. single
parity-check codes) should be stacked in a tree such that the reliability of the symbol estimates produced
at each level of the tree increases as one goes up in the tree. The two key ingredients are:

• A tree.

• Combining operations at each level of the tree.

We call this idea the combining paradigm on a tree. Unlike the tree codes of the Section 3.2.1, the tree
does not represent codewords but component codes.

Regarding LDPC codes, unfolding the Tanner graph around a variable node yields a local tree. On
Figure 3.4a, this tree is shown with the usual variable nodes/check nodes representation. Figure 3.4b
depicts a similar tree where the combining paradigm is emphasized: First, n channel observations are
grouped in small sets of k elements. The k elements within one set are combined to produce an estimate
of a symbol whose reliability is higher than the one of each individual element in the set. Then these n/k
estimates are again grouped in sets of k elements and again combined to produce more reliable estimates.
The process is repeated until the reliability is sufficiently high. Note that the estimates produced at each
level are for different symbols than the child-node symbols.

(a) Representation of the local neighborhood of a
variable node in a LDPC code. The half edges on
the variable nodes represent a channel observation.
The small spheres represent variable nodes and the
squares check nodes. Each check node and variable
node are of degree 3.

(b) Alternative representation of the local neighbor-
hood of a variable node in a LDPC code. At each level
of the tree, four symbol estimates and one channel
observation are combined to produce a more reliable
estimate of a symbol. The rounded squares denote a
combining operation.

Figure 3.4: Tree representation of the local neighborhood of a symbol for a LDPC code.

3.3. FROM THE 90’S UNTIL TODAY 23

0 0

(a) Tree representation of a Polar
code. Each symbol is split into
two symbols. The tree is explored
in a depth-first manner. The com-
bining operations are performed
both in the forward and backward
directions. The leafs where the re-
liability is null are frozen.

(b) Reversed tree representation
of a code obtained via the Plotkin
(u, u + v) construction. After
a combining operation (rounded
squares) the two symbols ob-
tained are merged into one higher
dimensional symbol.

(c) Reversed tree representation
of Figure 3.5a, but where the sin-
gle parity checks are performed
on four symbols and the variable
nodes above the rounded squares
represent a symbol obtained from
the four child node variables.

Figure 3.5: How the polar code tree can be transformed in a LDPC code-like tree.

Polar codes, obtained via the Plotkin (u, u + v) construction, can be represented with a similar
(reversed) tree. This is illustrated on Figure 3.5a. Polar codes rely on a similar combining paradigm.
A symbol y is observed from the channel. It is split into two symbols y = (y1, y2). These two symbols
are combined to produce two new symbols with different reliabilities. Unlike LDPC codes, the tree is
explored in a depth-first manner. The combining operations are performed both in the forward and
backward direction.

3.3.3 From LDPC codes and polar codes to the single parity-check k-groups

What is specific to asymptotic dimensions for these codes among the two key ingredients of the combining
paradigm on a tree? For LDPC codes, the local tree structure around each symbol of the code is
obtained by choosing randomly a large enough sparse parity-check matrix. Hence, the deep-enough tree
structure is obtained with large dimensions. However, the combining operations have nothing specific
to large dimensions. On the contrary, the tree for polar codes is obtained deterministically. The large
dimension is necessary for the combining operations, which become very simple and efficient thanks to
the polarization phenomenon. Indeed, only successive-cancellation operations are involved.

This combining paradigm on a tree has been extensively studied for large dimensions (typically
n ≥ 1000) but not much in low and moderate dimensions. LDPC codes are inefficient when n is too
small. Some studies consider polar codes in moderate dimensions. They focus on “fixing” the combining
principles: Indeed, “polar” codes do not totally polarize if n is not large and the successive-cancellation
combining operation is not efficient. As a result, low dimensional polar codes should be concatenated
with an outer codes (e.g. a cyclic redundancy check) and list decoding should be considered [TV15]. Note
that these principles can also be used with Reed-Muller codes as explained by Dumer in [DS06]. Indeed,
they admit the same decoding tree7 as polar codes since they are also constructed via the recursive
(u, u+ v) construction.

For moderate dimensions, instead of “fixing” the combining operations of polar codes, one could
consider the combining operations of LDPC codes based on single parity checks. Nevertheless, since the
LDPC code tree can not be obtained, the deterministic tree of polar codes should be used. If we reverse
the tree of Figure 3.5a, we get a tree similar to the one of LDPC codes shown on Figure 3.4b. This
is illustrated on Figure 3.5b. Unlike LDPC codes, two symbols are concatenated at each level of the
tree and the parity checks involve higher dimensional symbols. I.e. the parity checks are performed on
Q-ary alphabets rather than binary alphabets, where Q increases with the depth of the tree. Of course,
instead of considering parity checks on two symbols, we could also consider parity checks on k symbols,
e.g. k = 4 to match Figure 3.4b. This yields the tree on Figure 3.5c. This latter tree represents the
recursive version of a new class of codes, called single parity-check k-groups. These codes are studied in
the second part of the thesis. Since the paradigm is different than sequential decoding, the cutoff rate is

7In fact, this decoding method was introduced for Reed-Muller codes before the invention of polar codes.

24 CHAPTER 3. THE CHANNEL CODING PROBLEM

unlikely to appear as a fundamental complexity barrier. We shall see that these codes are very efficient
in moderate dimensions.

3.4 Is the channel coding problem really solved?

Figure 3.6: Shape of the maximum information rates achievable with low error probability on the discrete-
time AWGN channel as a function of the SNR and the code length n.

Equation (3.2) holds only when the code length n → ∞. The maximum rate achievable with low
error probability, say C ′(n, SNR), is smaller if the code length is not asymptotically large. Nevertheless,
C ′(n, SNR) increases fastly towards the capacity C when n is not too large [PPV10]. It means that
relatively large rates, e.g. above the cutoff rate, can be achieved with small block lengths. The shape of
the the maximum information rates achievable C ′(n, SNR) is plotted on Figure 3.6. Solving the channel
coding problem can be understood as having efficient schemes for any code length n and SNR.

As discussed in the previous section, capacity achieving/approaching schemes based on iterative
decoding are only efficient for large n. Moreover, very little schemes being both practical and quasi-
optimal have been proposed for moderate dimensions since the advent of modern coding theory.

Note however that the new 5G communications standard targets some ultra-reliable low-latency
communications (often named URLLC) applications. In this scope, there was recently a renewed interest
in short-length codes. For instance [WABM16] investigates the optimal performance of known small-
length binary codes with the ordered statistics decoder. The decoder considered is however too complex
to be practical. The schemes in [DS06] and [TV15] (discussed in the previous section) are efficient
in moderate dimensions, but they are also for low information rates as they are based on binary codes.
Schemes for information rates R > 1 in moderate dimensions have not been studied a lot in the literature.
Parity lattices, constructed as single parity-check k-groups, enable to fill this gap.

Chapter 4

An overview of lattices

This thesis is about lattices. The first question we should address is therefore: What is a lattice? In
“common” language, it usually refers to an infinite set of points with a periodic structure in Rn. Such
a periodic structure is illustrated on Figure 4.1 for R2. In this scope, a lattice is also called a (regular)
sphere packing: The lattice points are the centers of spheres whose radius is half the smallest distance
between any two points of the set.

Figure 4.1: A lattice sphere packing in R2.

Nevertheless, lattices have a long history and have been studied by scientists from many different
schools of thoughts. One may encounter several perspectives. Arguably, one can group the scientists
who have been working on lattices into the three following fields, with the following distinguished repre-
sentatives:

• Pure mathematicians such as Conway, Sloane, Nebe, Rains, Quebbemann, Martinet, Elkies, Via-
zovska, Cohn...

• Digital communications engineers (and information theorists) such as Forney, Ungerboeck, Calder-
bank, Feder, Zamir...

• Computer scientists, especially cryptographers, such as Goldwasser, Micciancio, Regev, Nguyen,
Stehlé...

Which references should consult a newcomer in the field of lattices? The mathematician should
choose the SPLAG [CS99], considered by many as the holy bible of lattices. [Mar03] and [Ebe99] may
be complementary. The book of Zamir [Zam14] is suited to the information theorist and the papers of
Forney (e.g. [For88a] [For88b] [FTS00]) to digital communications engineers. Computer scientists, with
interest in computational complexity, should consult the book by Micciancio and Goldwasser [MG02], or
the survey by Micciancio and Regev [MR09] for an overview of lattice-based cryptography. Finally, if the

25

26 CHAPTER 4. AN OVERVIEW OF LATTICES

reader enjoys history, he should consult [Tho83] to find how the discovery of simple groups is connected
to lattices.

Before diving into lattices, we start with an abstract family of codes which we call group codes. We
shall see that lattices can be seen as special instances of group codes. The notion of group codes is helpful
to link lattices with other class of codes: E.g. binary linear codes are also group codes. Consequently,
any lattice-result or algorithm based on the properties inherited from the group structure should be
translatable to other group codes.

Given an additive group G, we define a group code C as a subgroup of Gk, where Gk is the Cartesian
products of G with itself, k times. We may consider that these group codes admit a distance metric
which is endowed with the group property and additive over k-tuples, i.e.

d(s, s′) = d(0, s− s′), s, s′ ∈ G,

Given x = (s1, ..., sk) ∈ Gk, d(0k, x) =
∑
i

d(0, si),
(4.1)

where the notation sk means (s, ..., s, s), with s ∈ G repeated k times. All groups considered in this
thesis are Abelian. G may be richer than a group and be a ring. In this case, we shall consider that C
is a G-module. This implies that C is linear as, given α, α′ ∈ G and x, x′ ∈ C, then α · x + α′ · x′ ∈ C.
A G-module is free if it has a basis; all elements can be obtained as linear combinations of the basis
elements.

4.1 What is a lattice?

4.1.1 A general presentation

Definition 4.1 (Real lattice). A real lattice Λ of rank-n is a set composed of all integer linear combi-
nations of n linearly independent vectors in Rn:

Λ = {x ∈ Rn : x =

n∑
i=1

zigi = zG, z ∈ Zn}, (4.2)

where G is a generator matrix of Λ whose rows are the basis vectors in B = {gi}ni=1.

A real lattice Λ is an additive rank-n discrete subgroup of Rn: 0n is in Λ, given x ∈ Λ then −x ∈ Λ,
and x1 + x2 ∈ Λ where x1, x2 ∈ Λ. See [Des86] for the discrete part. Moreover, since Z is a ring, a real
lattice Λ is a free Z-module. Of course, the rank-n lattice can also be described in Rm, m ≥ n, by a
n ×m generator matrix G. Namely, the lattice lies in an (m − n)-dimensional subspace of Rm. In this
case, their always exists a (unitary) rotation matrix Q ∈ Rm×m such that G′ = GQ describes the lattice
in Rn. The lattice is said full-rank if m = n.

In other words, a real lattice is a group sphere packing in Rn. The periodic structure in Figure 4.1
is a real lattice. Note that real lattices are naturally embedded in the Euclidean vector space Rn. As a
result, the lattice points are sometimes called vectors by abuse of language. Moreover, it is now obvious
that real lattices are special cases of group codes.

In general, the distance between two points of a real lattice is evaluated as1 d(x1, x2) = ||x1 − x2||,
x1, x2 ∈ Λ (|| · || stands for the Euclidean norm). The norm of an element x = zG ∈ Λ is thus obtained
as d2(x, x) = zGGT zT and the distance between two elements is d2(x1, x2) = (z1 − z2)GGT (z1 − z2)T .
The map d2 : Rn × Rn → R is a symmetric bilinear form and the map q : Rn → R, q(x) = d2(x, x)
is a positive definite quadratic form. The matrix Γ = GGT is called the Gram matrix of Λ and it can
be used to define the lattice (up to a rotation). Lattices may thus be called positive definite quadratic
forms in some contexts.

Two lattices are equivalent Λ′ ∼= Λ if their generator matrices, G′ and G respectively, are related by
G′ = cUGB, where c is a non zero constant, U a unimodular matrix, and B an orthogonal matrix. If the
constant c should be explicit, we write Λ′ ∼= cΛ. Hence, two Gram matrices Γ and Γ′ define equivalent
lattices if and only if there exists a unimodular matrix U such that Γ′ = c2UΓUT .

A real lattice is said to be integer if it is a subgroup of Zn (or Zn itself), i.e. all the coefficients of
the basis vectors are integers. It is said to be integral if Γ has integer entries.

Definition 4.2 (Complex lattice). A complex lattice of rank-n is a set composed of all (complex) integer
linear combinations of n linearly independent vectors in Cn.

1Note that in this case d2(·, ·) is the distance metric respecting properties (4.1).

4.1. WHAT IS A LATTICE? 27

Similarly, a complex lattice is a discrete subgroup of Cn and a J-module, where J is a ring in C: Any
x ∈ Λ is obtained as x =

∑n
i=1 zigi, where the integer zi ∈ J and {gi}ni=1 is a basis of Λ. A complex

lattice is said to be integer if it is a subgroub of Jn.
One could go on by defining a quaternionic lattice as a rank-n discrete subgroup of Hn generated by

n linearly independent vectors, where H is the Hurwitz ring of quaternionic integers. These examples
highlight that a general definition of a lattice could be the following. Note however that the term lattice
refers most of the time to a real lattice in this thesis.

Definition 4.3 (Lattice). A lattice is a free J-module, where J is a ring, together with a positive definite
quadratic form q.

One must be careful when choosing J : If it is not a principal ideal domain, the J-module may not
be free. Nevertheless, some authors (e.g. [CS99, Chapter 2.6]) still consider these objects as lattices
(non-principal lattices). This emphasizes that the notion of lattice has several meanings.

Most of the time one is interested in the properties of real lattices and the more abstract lattices
are used to simplify the constructions of real lattices. Indeed, given a rank-n lattice in Cn one can get
a generator matrix for the corresponding real lattice in R2n. As an example, let J be either the ring

of Gaussian integers Z[i], or the ring of algebraic integers Z[λ], λ = 1+i
√

7
2 . A real generator matrix is

obtained as follows: Map each component a+ ib of the complex generator matrix to

[
a b
−b a

]
or

[
a b

(a−
√

7b)/2 (b+
√

7a)/2

]
, (4.3)

if J is respectively Z[i] and Z[λ]. For instance, finding a real lattice with a coding gain2 equal to 8
in dimension 72 was a long–standing open problem. Such a lattice was recently found by Nebe via its
complex Z[λ] structure [Neb12].
Additionally, complex J structures of a real lattice enables to easily find rotations R : Λ → Λ, as
illustrated by the following example. We first establish a notation: Given a complex J-lattice Λ with
generator matrix G, we denote by θΛ the lattice generated by θ ·G, θ ∈ J . We have θΛ ⊆ Λ.

Example 4.1 (Gosset lattice E8). The Gosset lattice is famous because it yields the densest sphere
packing3 in dimension 8. Let φ = 1 + i ∈ Z[i]. E8 can be generated both over Z[i] and Z[λ]. As a result,
the lattices φE8 and λE8 are two sublattices of E8, equivalent to E8, scaled by a factor

√
2, and rotated

by an angle π
4 and arctan

√
7, respectively.

4.1.2 Additional definitions

We define standard lattice parameters in this section.

Definition 4.4 (Fundamental region). A set F ⊆ Rn is called a fundamental region of a lattice Λ if the
union of all “lattice shifts” of this region covers the entire space with no overlap between any two regions.

• Rn = ∪x∈Λ(x+ F),

• vol((x1 + F) ∩ (x2 + F)) = 0, for all x1, x2 ∈ Λ, x1 6= x2,

where vol(F) denotes the volume of a region F .

Definition 4.5 (Fundamental parallelotope). The set obtained by taking any linear combinations of the
basis vectors in B with coefficients in [0, 1) is called the fundamental parallelotope of Λ:

P(B) = {y ∈ Rn : y =

n∑

i=1

αigi, 0 ≤ αi < 1}. (4.4)

By abuse of notation, we may write P(Λ) to denote one of the parallelotopes of Λ.

Definition 4.6 (Voronoi region). The Voronoi region of x ∈ Λ is the set of lattice points of Rn closer
to x than any other lattice point:

V(x) = {y ∈ Rn : ‖y − x‖ ≤ ‖y − x′‖,∀x′ 6= x where x, x′ ∈ Λ}. (4.5)
2See Definition 4.9.
3The fact that E8 is densest lattice sphere packing in dimension 8 is not a new result. However, the general result, i.e.

that it is the densest among lattice and non-lattice sphere packings, was only obtained recently by Viazovska [Via17].

28 CHAPTER 4. AN OVERVIEW OF LATTICES

A Voronoi facet denotes a subset of the points

{y ∈ Rn : ‖y − x‖ = ‖y − x′‖,∀x′ 6= x where x, x′ ∈ Λ}, (4.6)

which are in a common hyperplane.
The additive group property of the lattice yields V(0) + x = V(x). Similarly, the parallelotope of a
lattice point x is P(B) + x. Hence, all Voronoi regions and parallelotopes have the same volume, do not
overlap4, and cover the space. These two regions are fundamental regions of the lattice.

In many situations, it is useful to represent the basis of the lattice in the orthogonal coordinate system
of the Gram-Schmidt vectors {g∗i }ni=1: Starting with g∗1 = g1, the Gram-Schmidt vectors are recursively
computed from 1 to n as

g∗i = gi −
i−1∑
j=1

〈gi, g∗j 〉
||g∗j ||2︸ ︷︷ ︸
µi,j

· g∗j . (4.7)

This yields5 a lower triangular generator matrix R of Λ:

g1

g2

.

.
gn

︸ ︷︷ ︸

G

=

||g∗1 || 0 0 . . . 0
µ2,1||g∗1 || ||g∗2 || 0 . . . 0

µ3,1||g∗1 || µ3,2||g∗2 || ||g∗3 ||
. . .

...
...

...
. . .

. . . 0
µn,1||g∗1 || µn,2||g∗2 || . . . µn,n−1||g∗n−1|| ||g∗n||

︸ ︷︷ ︸

R

·

g∗1
||g∗1 ||
g∗2
||g∗2 ||
.
.
g∗n
||g∗n||

︸ ︷︷ ︸

Q

, (4.8)

where Q is an orthogonal matrix.
With this Gram-Schmidt representation, we see that vol(P(B)) =

∏
i ||g∗i || = det(R). Since det(Q) = ±1,

then det(G) = ±det(R) and vol(P(B)) = |det(G)|. Note that P(B) depends on the lattice basis B.
Nevertheless, any other basis of Λ is obtained by multiplying G by a unimodular matrix U (on the left)
where det(U) = ±1. This operation does not change the volume of the parallelotope. One can also notice
that vol(P(B)) = vol(V(x)) where V(x) is independent of the basis B. This highlights that vol(P(B)) is
a constant of Λ. It is called the fundamental volume.

Definition 4.7 (Fundamental volume). Let G be any generator matrix of a lattice Λ. The fundamental
volume of Λ is defined as

vol(Λ) = | det(G)|. (4.9)

Definition 4.8 (Minimum distance and packing radius). The minimum distance d(Λ) of a lattice Λ is
defined as the minimal norm between any two points of Λ. The packing radius is the radius of the largest
sphere contained in V(0), i.e. ρ(Λ) = d(Λ)/2.

Warning: In the second part of this thesis, dedicated to group codes, d(·) refers to the squared
minimal norm. So we have ρ2(Λ) = d(Λ)/4.

An easy way to increase the minimum distance of the lattice is to scale it. However, scaling also in-
creases the fundamental volume of the lattice. Therefore, the quantity of interest is often the fundamental
coding gain rather than the minimum distance.

Definition 4.9 (Fundamental coding gain). The fundamental coding gain of a lattice Λ is the ratio of
the minimum distance and the normalized fundamental volume of the lattice

γ(Λ) =
d2(Λ)

vol(Λ)
2
n

. (4.10)

By abuse of language, in this thesis we use the term sphere to refer both to a sphere and a ball. Let
Br(y) denote a sphere of radius r centered at y ∈ Rn. If the center is irrelevant the sphere is denoted
Br. Let us recall that the volume of a n-dimensional unit sphere is

vol(B1) = Vn =
π
n
2

Γ(n
2

+ 1)
≈ 1√

nπ

(
2πe

n

)n
2

. (4.11)

4Neglecting the boundaries for the Voronoi regions.
5Note that this is an instance of a QR decomposition.

4.1. WHAT IS A LATTICE? 29

Figure 4.2: Parameters of a lattice. The black arrows represent a basis B. The shaded area is the
parallelotope P(B). The packing radius is the radius of the smallest circle and the covering radius the
one of the largest circle. The kissing number τ of this lattice is 2 and the Voronoi number τf is 6. In
this case, all Voronoi vectors are relevant.

Definition 4.10 (Lattice density and packing efficiency). The density Υ of a lattice Λ represents the
fraction of the space covered by spheres of radius ρ. It is given by the ratio between the volume of a
sphere of radius ρ and the fundamental volume of Λ:

Υ =
Vn · ρn

vol(Λ)
. (4.12)

The centered density, another conventional parameter, is Υ/Vn = γ
n
2 /2n.

Let ρe be the radius of a sphere with volume vol(Λ). The packing efficiency is

ρpack(Λ) =
ρ

ρe
. (4.13)

We clearly see that the packing efficiency and the density are maximized if the Voronoi region has a
spherical shape.

Definition 4.11 (Kissing number). The number of lattice points located at a distance d(Λ) from the
origin is the kissing number τ .

Definition 4.12 (Voronoi vector). A vector v ∈ Λ is called Voronoi vector if the hyperplane

{y ∈ Rn : y · v =
1

2
||v||2} (4.14)

has a non empty intersection with V(0). The vector is said relevant if the intersection includes a n− 1-
dimensional face of V(0).

An example of Voronoi vectors which are not relevant is obtained with the lattice Z2. The corners of
the Voronoi region (a square) are 0-dimensional faces located between two lattice points. We denote by
τf the number of relevant Voronoi vectors, referred to as the Voronoi number. For root lattices [CS99],
the Voronoi number is equal to the kissing number τ . It is proved in [CS92] that all non-zero short
vectors in a coset6 x+ 2Λ of Λ, x ∈ Λ, are Voronoi vectors. There are |Λ/2Λ| − 1 cosets of Λ (6= Λ) and
thus at least 2(2n − 1) Voronoi vectors. For random lattices, there are only two short vectors per coset,
all relevant, and τf = 2n+1 − 2 (with probability 1) [CS92].

6See the beginning of Section 4.2.2 for a definition of the term coset.

30 CHAPTER 4. AN OVERVIEW OF LATTICES

Definition 4.13 (Theta series and lattice shell). The theta series of a lattice Λ is

ΘΛ(q) =
∑

x∈Λ

q‖x‖
2

, (4.15)

=

∞∑

i=0

τiq
i, (4.16)

where τi represents the number of lattice points of norm i in Λ. Moreover, a lattice shell denotes the set
of τi lattice points at a distance i from the origin (with τ4ρ2 = τ).

For instance, the first non-zero term of the series is τq4ρ2

as there are τ lattice points at a distance
d(Λ) from the origin. These lattice points constitute the first lattice shell.

Definition 4.14 (Covering radius). The covering radius of Λ is defined as

R(Λ) = max
y∈Rn

min
x∈Λ

d(y, x), (4.17)

Definition 4.15 (Dual lattice). For any lattice Λ the dual lattice Λ∗ is defined as follows:

Λ∗ = {u ∈ Rn : u · x ∈ Z, ∀ x ∈ Λ}. (4.18)

Note that if G is a square generator matrix for Λ, then (G−1)T is a generator matrix for Λ∗. Moreover,
if a lattice is equivalent to its dual, it is called a self-dual (or unimodular) lattice. For instance, E8 and
Λ24 are self-dual.

Definition 4.16 (KZ basis). Consider a lower triangular generator matrix G of a lattice Λ where the
rows of G are the basis vectors. The basis is said to be Korkin-Zolotarev (KZ) reduced if it has the
following property:

• g11 = d(Λ),

• The lattice generated by the n− 1× n− 1 right lower part of G is KZ reduced.

The main lattice parameters are depicted on Figure 4.2.

4.2 Standard lattice decoders and lattice constructions

4.2.1 BDD, list decoding, optimal and quasi-optimal decoding

Given a lattice Λ, a radius r > 0, and any point y ∈ Rn, the task of a list decoder is to determine all
points x ∈ Λ satisfying d(x, y) ≤ r: i.e. compute the set Λ ∩Br(y). If r < ρ(Λ), there is either no point
or a unique point found and the decoder is known as a bounded-distance decoder (BDD). In this thesis,
BDD means that we consider a decoding radius r = ρ(Λ) where in case of a tie between several lattice
points, one of them is randomly chosen by the decoder. When d(x, y) < ρ(Λ), we say that y is within
the guaranteed (or unique) error-correction radius of the lattice. If r ≥ ρ(Λ), there may be more than
one point in the sphere. In this case, the process is called list decoding rather than BDD.
Note that a modified list decoder may output a set of lattice points T 6= Λ ∩Br(y). Therefore, we may
refer to list decoders where T = Λ ∩Br(y) as “regular” list decoders.
Optimal decoding simply refers to finding the closest lattice point in Λ to any point y ∈ Rn. In the
literature, optimal decoding is usually said that an optimal decoder solves the closest vector problem
(CVP). If regular list decoding is used, it is equivalent to choosing a decoding radius equal to R(Λ) and
keeping the closest point to y in the list outputted by the list decoder.

Let x ∈ Λ and w be a Gaussian vector where each component is i.i.d with distribution N (0, σ2).
Consider the point y obtained as

y = x+ w. (4.19)

Since this model is similar to the discrete-time AWGN channel (see (3.1)), x is referred to as the
transmitted point, y the received point, and the process described by (4.19) is also called a Gaus-
sian channel. It is discussed in Section 4.3.2. The point error probability under optimal decoding is
Pe(opt, σ

2) = P (y /∈ V(x)). On the Gaussian channel, given equiprobable symbols, optimal decoding is
also referred to as maximum likelihood decoding (MLD). Moreover, we say that a decoder is quasi-MLD
(QMLD) if Pe(dec, σ

2) ≤ Pe(opt, σ2) · (1 + ε), for ε > 0.

4.2. STANDARD LATTICE DECODERS AND LATTICE CONSTRUCTIONS 31

4.2.2 Coset decomposition and construction of lattices from codes

Coset decomposition of a discrete group

Let S and T be discrete sets endowed with the group property (i.e. group codes), where T ⊆ S. If the
order of the quotient group S/T is q, then S can be expressed as the union of q cosets of T . We denote
by [S/T] a system of coset representatives for this quotient group. It follows that

S =
⋃

xi∈[S/T]

T + xi = T + [S/T]. (4.20)

Of course, the groups S and T will be mainly lattices in this thesis. Let Λ be a lattice and Λ′ ⊆ Λ be
one of its sublattices. The lattice Λ can be expressed as Λ = Λ′ + [Λ/Λ′].

Theorem 4.1. Let Λ′ ⊆ Λ be lattices. The order of the quotient group is equal to the ratio of the
fundamental volumes

|Λ/Λ′| = vol(Λ′)

vol(Λ)
. (4.21)

Proof. Since Λ = Λ′ + [Λ/Λ′], it is the union of |Λ/Λ′| cosets of Λ′. The space Rn can be expressed as

Rn = Λ + P(Λ) = Λ′ + [Λ/Λ′] + P(Λ) = Λ′ + P(Λ′). (4.22)

This shows that P(Λ′) is the union of |Λ/Λ′| instances of P(Λ) and thus has a volume |Λ/Λ′| times
larger.

Example 4.2 (Gaussian heuristic). The Gaussian heuristic enables to approximate the number of lattice
points within a sphere B. Similarly to the proof of Theorem 4.1, the idea is to count the number of
parallelotopes in B. If the volume of the sphere is large enough (compared to the one of P(Λ)), one can
neglect the boundaries and the number of points in B is

|Λ ∩B| ≈ vol(B)

vol(Λ)
. (4.23)

For large dimensions, the Gaussian heuristic can also be used to estimate the average minimum distance
of “typical” random n-dimensional lattices of volume vol. We estimate the average minimum distance
of these random lattices as the radius of the n-sphere B of volume vol (i.e. this is the case |Λ ∩ B| = 1
in (4.23)):

d(Λ) ≈ vol
1
n

V
1
n
n

≈
√

n

2πe
· vol

1
n , (4.24)

where we used (4.11). Note however that the heuristic (4.23) is not always accurate as emphasized
in [MO90], especially when there is a low number of points within the set.

Example 4.3 (Z/2Z and Z2/RZ2). Figure 4.3 shows two lattices Λ represented as Λ = ∪x∈[Λ/Λ′]Λ
′+x.

We let RZ2 denote the real version of φZ[i] (obtained e.g. with (4.3)).

Construction of lattices from codes

Throughout the recent history of lattices, a popular method to construct lattices with interesting prop-
erties (and often easily decodable) has been to use the coset decomposition of a lattice along with a
code [CS99].

Definition 4.17 (Construction A). Let Λ1 ⊂ Λ0 be J-lattices. Let C be a linear code of length m over
[Λ0/Λ1], denoted as C[Λ0/Λ1]. A new lattice Λ ⊆ Λm0 of dimension n is obtained as

Λ = Λm1 + C[Λ0/Λ1] = {x ∈ Λm0 : x mod Λm1 ∈ C[Λ0/Λ1]}. (4.25)

Given a good code, this method enables to build lattices with a large coding gain. For real lattice,
we have

γ =
d2(Λ)

vol(Λ)
2
n

=
min{d2(Λ1), d2(C[Λ0/Λ1])}(

vol(Λ1)m

|C[Λ0/Λ1]|

) 2
n

. (4.26)

32 CHAPTER 4. AN OVERVIEW OF LATTICES

(a) The real integers Z represented as 2Z ∪
2Z + 1, (where [Z/2Z] = {0, 1}).

(b) Z[i] represented as (φZ[i] + 0) ∪ (φZ[i] +
1), (where [Z[i]/φZ[i]] = {0, 1}). The real
version is (RZ2 + (0, 0)) ∪ (RZ2 + (1, 0)).

Figure 4.3: Examples of coset decomposition of lattices.

An advantage of this construction is that theses lattices admit an obvious decoding algorithm, called a
multistage decoder. It is illustrated in Figure 4.4 and works as follows. Given a point y = x0 + x1 + w
to decode, where x0 ∈ C[Λ0/Λ1] and x1 ∈ Λm1 :

1. Compute y′ = y mod Λm1 .

2. Decode y′ in C[Λ0/Λ1] as x̂0.

3. Decode y − x0 in Λm1 as x̂1.

4. The decoded lattice point is x̂ = x̂0 + x̂1.

Deode in Λm
1

w

x̂x y
x1 ∈ C[Λ0/Λ1]

mod Λm
1 De. in C[Λ0/Λ1]

x2 ∈ Λ1

Figure 4.4: Multistage decoder.

However, it may be too complicated to decode in C[Λ0/Λ1] or to find a code C[Λ0/Λ1] with the desired
properties. Consequently, several levels may be considered to reduce the order of [Λ0/Λ1].

Definition 4.18 (Construction by code formula). Let Λa ⊂ Λa−1 ⊂ ... ⊂ Λ1 ⊂ Λ0 be J-lattices.
Consider several linear codes, one for each quotient group Λi−1/Λi: Ci[Λi−1/Λi]

. We say that a lattice Λ

can be described by a code formula if the following holds.

Λ =Λma + Ca[Λa−2/Λa−1] + ...+ C2
[Λ1/Λ2] + C1

[Λ0/Λ1],

=
{
xa +

a∑
i=1

xi ∈ Λm0 : xa ∈ Λma , xi ∈ Ci[Λi−1/Λi]

}
.

(4.27)

The above definition means that the ith level of the lattice is an element of the code Ci[Λi−1/Λi]
. If

the set described by (4.27) is not constrained to be a lattice, Construction by code formula is called the
multilevel construction. This latter construction was introduced by Imai and Hirakawa in 1977 [IH77].
These constructions have been largely exploited in the scope of binary lattices [For88a] [For88b] [Loe97]
[FTS00] [Reg05] [dZB18].

Definition 4.19 (Real binary lattice). A real lattice Λ of dimension n is binary if there exists an
integer a such that 2aZn ⊂ Λ ⊂ Zn.

Examples. We provide several examples of binary lattices:

4.3. LATTICE PACKING PROBLEMS 33

• Construction A based on one dimensional real integers: Let Λ0 = Z and Λ1 = qZ. Let CZq be a

linear code of length n and dimension k over Zq = [Z/qZ], generated by a matrix A ∈ Zk×nq (i.e.
we assume that the code is free). A new lattice Λ(A) is obtained as

Λ(A) = qZn + CZq ={x ∈ Zn : x mod q ∈ CZq} = {x ∈ Zn : x = zA+ qZn, z ∈ Zk}. (4.28)

Given a systematic generator matrix of CZq of the form A = (Ik P), a generator matrix for Λ(A) is

G =

(
qIn−k 0
P Ik

)
. (4.29)

Note that the same lattice can be defined via the parity-check matrix H ∈ Zn×kq of CZq :

Λ = {x ∈ Zn : xH mod q = 0}. (4.30)

Two instances of this construction are the following.

– Let q = p be a prime and CFp be linear code of length n over the finite field Fp.The group
Λ0/Λ1 injects naturally into Fp via an additive group isomorphism. Then the lattice is

Λ = pZn + CFp . (4.31)

– Let A be the generator matrix of the (linear) quaternary Golay code Q̂24 over Z4. It is shown
in [BSC95] that Λ(A) is the Leech lattice.

• Construction D based on one dimensional real integers: Note that (4.27) does not always yield a
lattice, in contrary to the following construction D (as in [SI17]).

Definition 4.20 (Construction D). Choose Λ0 = Z and decompose it as Λ0 = qaZ+[qa−1Z/qaZ]+
...+ [Z/qZ]. Let C1

Zq ⊆ C2
Zq ⊆ ... ⊆ CaZq be nested linear codes of length m over Zq. Let the vectors

gi1, .., g
i
ki

span Ci. The lattice Λ consists of all points of the form

Λ =
{
xa +

a∑
i=1

qi
ki∑
j=1

αijg
i
j , xa ∈ Λma , α

i
j ∈ {0, 1, ..., q − 1}

}
. (4.32)

In some cases, it can be shown that Construction by code formula and Construction D are equiv-
alent. See e.g. [KO14] and the following example.

• Construction by code formula based on one dimensional real integers and binary quotient group:
Again, choose Λ0 = Z, decompose it as Λ0 = 2aZ + [2a−1Z/2aZ] + ...+ [Z/2Z] and choose binary
codes C1

Z2
⊆ C2

Z2
⊆ ... ⊆ CaZ2

of length n, such that the Schur product of any two codewords of
Ci is contained in Ci+1, for all i. In this case the Construction by code formula always yields a
lattice, which is the same as the one obtained with Construction D [KO14]. For instance, nested
Reed-Muller codes do have this properties. The lattice is

Λ = 2aZn + 2a−1CaZ2
+ ...+ 2C2

Z2
+ C1

Z2
. (4.33)

• Construction by code formula based on one dimensional complex integers: Choose Λ0 = Z[i],
decompose it as Λ0 = φaZ[i] + [φa−1Z[i]/2aZ[i]] + ... + [Z[i]/φZ[i]] (where |Z[i]/φZ[i]| = 2) and
choose binary codes C1

[Z[i]/φZ[i]] ⊆ C2
[Z[i]/φZ[i]] ⊆ ... ⊆ Ca[Z[i]/φZ[i]] of length n/2 such that the Schur

product of any two codewords of Ci is contained in Ci+1, for all i. The (complex) lattice is

Λ = φaZ[i]n + φa−1Ca[Z[i]/φZ[i]] + ...+ C1
[Z[i]/φZ[i]]. (4.34)

The real version of this lattice Λr is a binary lattice since 2aZn ⊂ Λr ⊂ Zn.

4.3 Lattice packing problems

We present two famous lattice packing problems. These problems could also be established for any
discrete sets in the Euclidean space. Nevertheless, researchers have been focusing on lattices as their
group structure is very helpful for manipulations. Moreover, in many situations the group structure of
lattices does not prevent them from being good with respect to these problems.

34 CHAPTER 4. AN OVERVIEW OF LATTICES

For instance, it was proved recently that the lattice A3 (the “Orange in a market” packing), E8, and
Λ24 are the best sphere packings possible in their respective dimension [Via17] [CKM+17]. The result
for the A3 lattice (also known has the face-centered cubic lattice) was one of the first conjecture related
to lattices. The conjecture was made in the seventeenth century by the astronomer Johannes Kepler.
Gauss showed that no other lattice sphere packing is better but it was only in 1998 that Hales proved
that no non-lattice packing is better, thus proving the conjecture7.

4.3.1 Sphere packing

Problem 4.1 (Lattice sphere packing). The lattice sphere packing problem asks to find lattices with
the highest coding gain, i.e. with the highest radius of the packing spheres relatively to the fundamental
volume.

This problem is equivalent to maximizing the density Υ. Remember that the packing spheres are
included in the Voronoi regions. Consequently, since the space not covered by the packing spheres should
be minimized, a good lattice packing should have “spherical” Voronoi regions.
How large can the fundamental coding gain be? Is it bounded? The answer to the latter question is
positive, and it was shown by Minkowski that for any lattice Λ, d(Λ) ≤ √n · vol(Λ)

1
n .

Theorem 4.2 (Minkowski’s first theorem). Let Λ be any lattice in Rn. For any lattice Λ ⊂ Rn, we have

γ(Λ) ≤ n. (4.35)

In a given dimension n, the highest possible coding gain is called the Hermite constant. It is known
for n ≤ 8 and n = 24 (and achieved by the lattice shown in Figure 4.5).

Theorem 4.3 (Hermite constant). Let Λ be any lattice in Rn. The Hermite constant is the highest
achievable coding gain by a lattice in a given dimension n.

γn = max
Λ

γ(Λ). (4.36)

What about a lower bound on the highest density achievable by a lattice in dimension n? This can be
obtained via the Minkowski-Hlawaka theorem. The theorem was introduced by [deB75] in this scope (see
also [Zam14, Chapter 7]). Intuitively, the Gaussian heuristic (see Example 4.2) should become accurate
if the point density is uniform: I.e. if the number of lattice points per unit volume is almost everywhere
ζ = 1

vol(Λ) . The number of lattice points in any sphere B would then be ζ ·vol(B). More generally, such a

lattice (if it exists) enables to replace sampling by integration in a body S: i.e.
∑
x∈S f(x) = ζ

∫
S f(x)dx.

The result of Minkowski (but proved by Hlawaka and Siegel) proves that there exists such a random set
of lattices. In particular if f(x) = 1x∈S , it implies that the Gaussian heuristic becomes exact for this set
of lattices.

Theorem 4.4 (Minkowski-Hlawaka). For each dimensions n > 1, there exists a random ensemble of
lattice L, called the Minkowski-Hlawaka ensemble, such that for any bounded set S:

EL[|S ∩ Λ|] =
vol(S)

vol(Λ)
. (4.37)

Now, choose S as a sphere of radius ρe, centered on 0, such that vol(Bρe(0)) = vol(Λ) − ε. Equa-
tion (4.37) shows that (on average) there is no non-zero lattice point in Bρe(0). The minimum distance
of at least one lattice of the ensemble (random coding argument), say Λ, must be at least as large as the
radius of this sphere: i.e. d(Λ) ≥ ρe. This yields the following theorem.

Theorem 4.5. For any n ≥ 1, there exists a lattice Λ ∈ Rn with packing efficiency ρpack >
1
2 .

Figure 4.5 presents the densest lattice sphere packings known8 in dimension n ≤ 80. For large n, it
is known [CS99, Chapter 1] that

n

2πe
≤ γn ≤

1.744n

2πe
. (4.38)

7Note that the proof of Hales is computer based: The result was a big achievement for the field of computer based proof
verification but it has also drawn criticism as this proof technique provides less understanding of the problem than usual
ones, and is thus prone to error.

8Based on the data of: http://www.math.rwth-aachen.de/∼Gabriele.Nebe/LATTICES/density.html

4.3. LATTICE PACKING PROBLEMS 35

0 8 12 16 24 32 48 72

0.6

0.7

0.8

0.9

1

Figure 4.5: The densest lattice sphere packings in dimensions n ≤ 80. The laminated lattices (see [CS99])
are shown by the white dots. Note that the dimensions 8, 16, 24, 32, 48, and 72 are “special” as they
achieve a local maximum. The names of the dense lattices in these special dimensions are E8, BW16,
Λ24, Q32, P48{n,p,q}, and N72, respectively.

4.3.2 Lattices with additive Gaussian noise

The second lattice problem is the following.

Problem 4.2 (Lattice coding on the unconstrained AWGN channel). Let x ∈ Λ and w be a Gaussian
vector with i.i.d components N (0, σ2). Let y ∈ Rn such that y = x + w. Find a lattice Λ such that
Pe(opt) = P (y /∈ V(x)) < ε.

This unconstrained AWGN channel is to be opposed with the power constrained AWGN channel,
where the average norm of the lattice points x should not be greater than a given value. This problem
is trivial if the variance of the noise is small relatively to the volume of the lattice. Therefore, the error
probability (of wrong decoding) is in general evaluated with respect to the volume-to-noise ratio (VNR).

Definition 4.21 (Volume-to-noise ratio). The volume-to-noise ratio, denoted by ∆, is

V NR = ∆ =
vol(Λ)

2
n

2πeσ2
. (4.39)

Thanks to the additive group structure of lattices, the error probability does not depend on the
lattice point transmitted. We shall therefore consider that the transmitted point x is the origin. The
probability of correct decoding Pc = P (y ∈ V(x)) (with an optimal decoder) is Pc =

∫
V(0)

f(t)dt, where

f(t) =
1

(
√

2πσ)n
e−
||t||
2σ2 . (4.40)

Trivially, the error probability is then Pe = 1− Pc.
The union bound, presented in Section 3.2, can be used with the Theta series to estimated the MLD

performance of a lattice Λ. The probability of error per lattice point of a lattice Λ is bounded from above
by

Pe(opt) ≤ Pe(ub), (4.41)

where

Pe(ub) =
1

2
ΘΛ

(
exp(− 1

8σ2
)

)
− 1

2
. (4.42)

It can be easily shown that ρ2

2σ2 = πe∆γ
4 . For ∆→∞, the term τq4ρ2

dominates the sum in ΘΛ(q), then

Pe(opt) ≤
τ

2
exp(−πe∆γ

4
) + o

(
exp(−πe∆γ

4
)

)
. (4.43)

36 CHAPTER 4. AN OVERVIEW OF LATTICES

For moderate ∆, only the lattice shells within ≈ 3 dB of the first lattice shell (i.e. at a squared distance
of 2 · d2(Λ) from the origin), need to be considered to get a good estimate of the MLD performance.

How small can Pe(opt) be? There is a simple lower bound for this problem (which applies to any
lattice). The lower bound is based on the geometric fact that no decoding region of a given volume can
be better than a sphere:

Pc ≤
∫
Bρe(0)

f(t)dt, (4.44)

where ρe is the radius of a sphere of volume vol(Λ). It is therefore often called the sphere lower bound.
A method to compute this bound for a given n is provided in [TVZ99]. Remember Lemma 3.1 which
states that the squared norm of the noise vector concentrates around it mean nσ2. Asymptotically, the
error probability can be made small if the decoding sphere radius is larger than the one of the “noise
sphere” of squared radius nσ2, where its volume is ≈ (2πeσ2)

n
2 for n large (see (4.11)). It follows that

one must have vol(Λ)
n
2 ≥ 2πeσ2 if the error probability is to be small (see e.g. [FTS00] or [IZF13]).

Theorem 4.6 (Asymptotic Sphere bound). For large n, given any lattice Λ, the error probability can
not be small if the noise variance is greater than

σ2 ≥ vol(Λ)
2
n

2πe
. (4.45)

Poltyrev proved in 1997 that there exist lattices achieving this bound.

Theorem 4.7 (Poltyrev limit). Let σ2
max = vol(Λ)

2
n /2πe. For the unconstrained AWGN channel with

noise variance σ2, there exists a sequence of lattice Λn such that for σ ≤ σmax, the error probability
decreases exponentially in n.

The following VNR value is called the Poltyrev limit.

vol(Λ)
2
n

2πeσ2
max

= 1. (4.46)

We present three different methods to prove that a family of lattices achieves the Poltyrev limit.
The ensemble studied by the first proof (which was the first discovered) is not practical as we do not
know how to decode these lattices. However, the ensembles considered by the two other methods admit
efficient decoding algorithms.

Minkowski-Hlawaka based proof

We investigate the average performance of a Minkowski-Hlawaka ensemble of lattices L (see Theorem 4.4):
Pe = EΛ∈L[Pe(Λ)]. Consider regular list decoding where r is the radius of a decoding sphere around
the received point y. Pe is bounded from above by the probability that the norm of the noise is greater
than the radius of the decoding sphere plus the probability that another point than 0 is in the decoding
sphere:

Pe ≤P (||w|| > r) + EL[P (y /∈ VΛ(x))],

≤P (||w|| > r) + ELP (|Br(y) ∩ Λ\0| > 1),

≤P (||w|| > r) + ELEy[|Br(y) ∩ Λ\0|].
(4.47)

Using the uniformity property of a Minkowski-Hlawaka ensemble (see Theorem 4.4), the expected number
of lattice points depends only on the volume of the sphere and not on its location:

ELEy[|Br(y) ∩ Λ\0|] = EyEL[|Br(y) ∩ Λ|] = EL[|Br(0) ∩ Λ|]. (4.48)

Moreover, with Equation (4.37) we get

EL[|Br(0) ∩ Λ|] =

(
r

ρe

)n
, (4.49)

where ρe is the radius of a sphere of volume vol(Λ). Lemma 3.1 indicates that if we choose r slightly

greater than the typical norm of the noise
√
nσ2, say r =

√
nσ2(1+ε1) then P (||w|| > r)→ 0. Moreover,

4.3. LATTICE PACKING PROBLEMS 37

if r < ρe then (r/ρe)
n → 0. Hence, if ρe =

√
nσ2(1 + ε2), ε2 > ε1, then Pe → 0 when n→ 0. The VNR

obtained with this lattice is

(Vn(
√
nσ2(1 + ε2))n)

2
n

2πeσ2
→ 1 when n→ +∞ (ε2 → 0). (4.50)

This proof works for any lattice ensemble with the uniformity property of the Minkowski-Hlawaka ensem-
ble. For instance, Loeliger proved that random Construction A lattices9 do have this property [Loe97]
and therefore inherits the result.

Remark 4.1. While being a useful theoretical tool, random Construction A lattices can be seen as the
worst choice from a decoding complexity view point (and hence for practical communications systems).
Indeed, Regev proved in 2005 that decoding random Construction A lattices are as hard as decoding any
lattice (see Section 4.4.4).

Remark 4.2. The above proof implies that the coding gain of these sphere bound achieving lattices is
Θ(n): Normalize the lattice such that vol(Λ) = 1, then σ2

max = 1
2πe , and the noise sphere has radius

nσ2
max. Since there is only one lattice point in this noise sphere (the center of the sphere), the minimum

distance of the lattice is Ω(n). Does it means that Pe(opt) can not be small if γ(Λ) = o(n)? No: If
vol(Bnσ2

max
(0)\V(0)) is negligible, the error probability can be small despite a small coding gain. For

instance, the construction presented in the next subsection achieves the Poltyrev limit despite having a
coding gain of the form nλ, λ < 1.

Low-density Construction A lattices

Nicolas di Pietro studied recently an ensemble similar to the one of Loeliger but where the random code
over Znq is replaced by a random low density parity-check code CFp over the finite field Fp. This ensemble
of lattices is called low density Construction A (LDA) lattices [dZB18]. The proof technique relies on
the same idea as the one above: Prove that there is only the transmitted lattice point in the decoding
sphere. More specifically, it consists in computing the probability that the integer points (except the
origin) in the decoding sphere Bnσ2

max(1−ε)(y) are in the lattice (i.e. belong to CFp). Namely, compute
the quantity (assuming that the integer points in pZn are not in the decoding sphere):

∑

x∈Zn\0\pZn∩Bnσ2
max(1−ε)(y)

P (x ∈ Λ), (4.51)

where P (x ∈ Λ) = P (xH = 0 mod p), and where each column of H has m non zero value (chosen
uniformly at random) with each of these non-zero value is chosen uniformly at random in {0, ..., p− 1}.
Showing that (4.51) goes to 0 when n→ +∞ proves that the ensemble achieves the Poltyrev limit. Note
that with this construction it is critical that the decoding sphere is not centered at the origin as the
minimum distance of the lattices in this ensemble is o(n).

The advantage of this construction is that there exists an efficient (but suboptimal) decoder: The
iterative message passing algorithm. It is shown in [dPBZB12] that performance within 0.8 dB of the
Poltyrev limit can be achieved with this decoding algorithm.

Information theoretic proof

While the proofs for the two previous constructions rely on averaging and geometric arguments, this last
result, established in [FTS00], is based on the chain rule of information theory. Consider the channel
defined by the random variables Y = A+B +W , where A,B are inputs and W is the noise. The chain
rule of information theory states that

I(AB;Y) = I(A;Y) + I(B;Y |A), (4.52)

where I(·; ·) denotes the mutual information.
This equations means that one should code A at the information rate I(A;Y) and B at I(B;Y |A). On
the receiving side, on should first decode A with negligible error probability and then decode B given A.
This principle applies as follows to lattices build via Construction A or D.

Let the transmitted message be x = a + b′, where a ∈ P(Λ0) and b′ ∈ Λ0. The received message is
y = a+b′+w where w is the usual Gaussian noise. The mod Λ0 operation (as on Figure 4.4) creates the

9Where the generator matrix of the code is chosen uniformly at random over Zk×nq , a specific scaling is applied to Λ(A),
and q →∞.

38 CHAPTER 4. AN OVERVIEW OF LATTICES

mod Λ0 channel y′ = a + w mod Λ0. Let w′ = w mod Λ0. Then, y′ = a + w′. It is shown in [FTS00]
that the capacity of this channel can be computed has C(Λ0, σ

2) = log V (Λ0)−h(Λ0, σ
2) where h(Λ0, σ

2)
is the differential entropy of the mod Λ0 aliased noise. This capacity is achieved when the distribution
of a is uniform in P(Λ0).

The Λ0/Λ1 channel is a special mod Λ1 channel where the input b is restricted to the discrete set
Λ0/Λ1 ∩ P(Λ1) = [Λ0/Λ1] mod Λ1 = [Λ0/Λ1] (if the coset representatives are properly chosen), instead
of P(Λ1) for the regular mod Λ1 channel. Since [Λ0/Λ1] +P(Λ0) = P(Λ1), given a transmitted message
x = a+ b+ c, a ∈ P(Λ0), b ∈ [Λ0/Λ1], c ∈ Λ1, then y′ = x+w mod Λ1 = a+ b+w′ is a proper mod Λ1

channel.
Now, let A be a continuous random variable uniformly distributed in P(Λ0) and B a discrete random

variable uniformy distributed in [Λ0/Λ1]. Then, I(AB;Y ′) = C(Λ1, σ
2). By the chain rule of information

theory (4.52):

C(Λ1, σ
2) = C(Λ0, σ

2) + C(Λ0/Λ1, σ
2). (4.53)

Consequently, if the noise variance is high relatively to the volume of Λ0, then C(Λ0) ≈ 0 and C(Λ1) ≈
C(Λ0/Λ1). This can also be understood as follows: If Λ1 is fixed and Λ0 is chosen such that vol Λ0 →
0, then the variable B over [Λ0/Λ1] tends to a continuous variable over the entire P(Λ1), where the
continuous uniform variable over P(Λ1) is precisely the capacity achieving scheme.

Assume that Λ1 ∈ RN and that a code of length m over [Λ0/Λ1] is used. Considering that vol Λ0

is negligible, one should code [Λ0/Λ1] with with a capacity achieving code C[Λ0/Λ1] of information rate

R = C(Λ0/Λ1, σ
2) = 2

mN log |C[Λ0/Λ1]| bits per two dimensions. With (4.21), we get

log vol(Λ)
2
mN = log

(
vol(Λ1)m

|C[Λ0/Λ1]|

) 2
mN

= log
vol(Λ1)

2
N

|C[Λ0/Λ1]|
2
mN

= log vol(Λ1)
2
N −R. (4.54)

Then, if vol(Λ1) is large enough such that Pe(Λ1, σ
2) = 0, then it can be shown that

C(Λ0/Λ1, σ
2) ≈ log

vol(Λ1)
2
N

2πeσ2
. (4.55)

As a result, V NR(Λ, σ2) ≈ 1 and the error probability with multistage decoding (see Figure 4.4) is

Pe ≤ Pe(C[Λ0/Λ1]) + Pe(Λ1) ≈ 0. (4.56)

Nevertheless, as explained in Section 4.2.2, binary codes are easier to build and to decode than non-
binary codes. Therefore, several levels of partitioning can are can be considered and Λa ⊂ ... ⊂ Λ1 ⊂ Λ0

can simply be chosen as 2a−1Z ⊂ ...,⊂ 2Z ⊂ Z. Then via the chain rule of informations theory:

C(Λa/Λ0, σ
2) = C(Λ0/Λ1, σ

2) + ...+ C(Λa−1/Λa, σ
2), (4.57)

and each level should be coded via a capacity achieving binary code of rate C(Λi−1/Λi, σ
2) to get a

capacity achieving lattice.

The disadvantage of this multilevel construction under multistage decoding is the error propagation of
the successive-cancellation type decoder: If the information rates are not correctly chosen or the dimen-
sion n is not large enough, significant loss in performance are observed in practice. For instance, [YLW13]
used polar codes [Ari09] to code each level of a Construction D lattice. The advantage of polar codes
over other codes is that it is easy to build a capacity achieving code with a specific information rate
(but smaller than 1). Hence, it is theoretically possible to code each level at its capacity. Neverthe-
less, [YLW13] reports disappointing performance since the error probability is vanishing at more than
1.75 dB from the Poltyrev limit for a block-length n = 8000.
Nevertheless, [WH95] [WFH99] exhibit very satisfactory performance, on the discrete-time AWGN chan-
nel, using binary turbo codes at each level of a (non-lattice) multilevel finite constellation.

4.4 Main computational problems

We describe the main computational problems related to lattices. We state some hardness results and
present some techniques to solve these problems.

4.4. MAIN COMPUTATIONAL PROBLEMS 39

4.4.1 Description of the problems

Problem 4.3 (Search-SVP). Given a real lattice Λ represented by a given basis, find x ∈ Λ such that
||x|| = d(Λ), i.e. find a shortest vector.

Search-SVP is in general simply called SVP. Approximate-SVPδ (or Search-SVPδ) is a relaxed version
of Search-SVP where one asks for a vector x whose size is bounded away from the non-zero shortest vector:
||x|| ≤ δ · d(Λ). Approximate-SVPδ is often simply called SVPδ. Hermite-SVP asks to find a non-zero
lattice vector whose norm is only a function of the volume of the lattice (and not the minimum distance):

||x|| ≤ δ · vol(Λ)
1
n . The quantity δ

1
n is called the root approximation factor for Approximate-SVPδ and

the root Hermite factor for Hermite-SVP. Finally, Decisional-SVP asks whether d(Λ) ≤ r or d(Λ) > r
and GapSVPδ (or Promise SVPδ) wether d(Λ) ≤ r or d(Λ) ≥ δ · r where r ∈ Q.

Problem 4.4 (Search-CVP). Given a real lattice Λ in Rn represented by a given basis and a point
y ∈ Rn, find the closest lattice point x ∈ Λ to y.

Similarly, this problem is often called CVP. Decisional-CVP asks if d(y,Λ) ≤ r, r ∈ Q. CVPδ and
GapCVPδ are the analog of SVPδ and GapSVPδ, respectively.

Problem 4.5 (Search BDDδ). Given a lattice Λ represented by a given basis and a point y ∈ Rn such
that d(y,Λ) < δ · d(Λ), find the closest lattice point x ∈ Λ to y.

These problems have been intensively studied by both computer scientists and communications en-
gineers. However, the hardness of these problems has been almost exclusively investigated by computer
scientists. Indeed, hardness results hold for arbitrary lattices: they are worst-case hardness. Commu-
nications engineers are not interested in arbitrary lattices but in structured lattices used for a specific
goal. Their “trick” is to build a family of lattices easily decodable while having the desired properties.
As a rule of thumb, the more structured a lattice is, the easier to decode it is, but the less likely to
have the desired property it is. Moreover, communications engineers sometimes care of non-asymptotic
dimensions, which is a case not handled by complexity theory. Of course, knowing that a specific problem
is hard (via a connection with another hard problem) may be a useful information in order not to waste
time at looking for an unlikely efficient solution. We present hardness results for arbitrary lattices in the
next subsection.

4.4.2 Hardness results

The following theorems report connections between the problems and some hardness results. Note that
these theorems represent only a small subset of existing results on these problems, see e.g. Figure 3
in [LvdPdW12]. We refer to the lecture notes of Regev [Reg09] and the book [MG02] for the proofs of
the results presented in this section.

Theorem 4.8 (Connections between the problems). The following statements hold:

• SVPδ is not harder10 than CVPδ.

• Solving Hermite-SVP with a Hermite factor δ can be used linearly many times to solve Approximate-
SVP with an approximation factor δ2 in polynomial time.

• GapSVPδ can be polynomially reduced to BDD 1
δ

√
n logn.

Theorem 4.9 (Complexity). The following statements hold:

• Search-SVP is NP-complete11.

• Decisional CVP is NP-complete.

• GapCVPδ is NP-hard for δ ≤ nO(1
log logn).

• GapCVPδ is not NP-hard for δ ≥
√
n

logn .

As example, we provide the proof showing that Decisional-CVP is NP-hard.

10In other words, given oracle access to a subroutine which returns approximate closest vectors in a lattice, one may find
in polynomial time approximate shortest vectors in a lattice with the level of approximation maintained.

11Under randomized reduction.

40 CHAPTER 4. AN OVERVIEW OF LATTICES

Proof. The proof is based on a reduction from the subset-sum problem (which is NP-hard): Given n+ 1
integers a1,...,an, S, the goal is to decide whether there is a set A ⊂ {1, ..., n} such that

∑
i∈A ai = S.

Given a subset-sum instance, we reduce it to a Decisional-CVP instance where r =
√
n and

G =

a1 2 0 . . . 0
a2 0 2 . . . 0
...

...
. 0

an 0 . . . 0 2

 , y = (S, 1, ..., 1). (4.58)

First, we show that a solution for the subset-sum problem is a vector x ∈ Λ such that d(x, y) =
√
n.

Assume that there is a set A ⊆ {1, ..., n} such that
∑
i∈A ai = S and consider the vector obtained by

summing the row vectors of G. The first coordinate is S and the remaining ones are either 0 or 2. As a
result, d(x, y) =

√
n. Then, we show that x is the closest vector in Λ to y. Clearly, due to the form of

G, the last n coordinates of any point x′ ∈ Λ have to be even. This implies that d(y, x′) ≥ √n. Hence, x
is the closest vector to y. As a result, given an oracle for Decisional-CVP, one can solve the subset-sum
problem in polynomial time.

All these problems do not admit polynomial time algorithms for an approximation factor δ = poly(n);
the best known algorithms have exponential complexity. Moreover, it is conjectured that the quantum
paradigm does not enable to improve (significantly) existing classical algorithms12. This does not mean
that these algorithms are NP-hard for any δ = poly(n). They are believed to be (exponentially) hard as
no efficient classical and quantum algorithms exist for these problems despite being intensively studied.
Moreover, they are connected to other problems which are also believed to be hard such as learning
parity with noise and the subset sum problem.

The SVP and CVP problems are deeply related. Many algorithms for the CVP are significantly
faster if they are provided with a good basis, i.e. a basis composed of relatively short vectors that are
“as orthogonal as possible”. Hence, Approximate-SVP is often solved as preprocessing of the CVP. And
Approximate-SVP is solved using several k-dimensional CVP (k << n). As a result, these algorithms
are recursively calling themselves in a well determined manner. Similarly, exact and approximation
algorithms (i.e. solving the problem without or with an approximation factor δ) are complementary:
Approximation algorithms in high dimension use exact algorithms in lower dimension. And these exact
algorithms use approximation algorithms as preprocessing.

We discuss some of the most famous algorithms for CVP and SVP in the next subsection.

4.4.3 Enumeration and basis reduction algorithms

The enumeration algorithm

The goal of this algorithm is to enumerate the lattice points located in a sphere centered at a given
y ∈ Rn, as illustrated in Figure 4.6a. The algorithm can be represented as a depth-first search on a tree,
as shown on Figure 4.6b.

Let G be a lower triangular generator matrix of the lattice (i.e. the matrix R in (4.8)). Let {g∗i }ni=1
be the Gram-Schmidt vectors, see (4.7). Let y ∈ Rn and x = zG be a lattice point, z ∈ Zn. The
enumeration algorithm outputs all vectors z ∈ Zn such that ||zG− y||2 < r2. It is based on the following
representation of ||zG− y||2:

||zG− y||2 =

n∑
j=1

(
zj ||g∗j ||+

n∑
i=j+1

zi,jµi,j ||g∗j || − yj

)2

=

n∑
j=1

||g∗j ||2
(
zj +

n∑
i=j+1

zi · µi,j −
yj
||g∗j ||

)2

. (4.59)

This equation shows that a lattice point x is in a sphere of radius r only if the lattice point represented
by the last k components of x, which is in the lattice generated by the k×k right lower part of G, is also
in the sphere of radius r (of dimension k). Consequently, the paths leading to a node at the kth level of
the tree on Figure 4.6b correspond to lattice points inside the sphere of radius r in dimension k. The n
equations, one for each level of the tree, have the form (from Equation 4.59)

||g∗n−k|| · |zn−k +

n∑
i=n−k+1

ziµi,n−k −
yn−k
||g∗n−k||

| ≤

√√√√r2 −
n∑

j=n−k+1

||g∗j ||2
(
zj +

n∑
i=j+1

zi,jµi,j −
yj
||g∗j ||

)2

︸ ︷︷ ︸
ν

, (4.60)

12In contrary to the problem of factoring integers, where an efficient quantum algorithm exists but no classical one.

4.4. MAIN COMPUTATIONAL PROBLEMS 41

where 0 ≤ k < n. The range for each zn−k becomes

− ν

||g∗n−k||
−

n∑
i=n−k+1

ziµi,n−k +
yn−k
||g∗n−k||

≤ zn−k ≤
ν

||g∗n−k||
−

n∑
i=n−k+1

ziµi,n−k +
yn−k
||g∗n−k||

. (4.61)

This last equation explains why the enumeration algorithm can be seen as enumerating the lattice points
of Zn in an ellipsoid.

(a) Geometrical representation. The black
points represent lattice points and the white
one is the point y to decode.

k = 2

k = 0

k = 1

k = 3

k = 4

(b) Tree representation. Each path in the tree
represents a lattice point, where the nodes on
each path are the scalar components of the lattice
point.

Figure 4.6: Representations of the enumeration algorithm.

Example 4.4. Let

G =

 ||g∗n−2|| 0 0
µn−1,n−2||g∗n−2| ||g∗n−1|| 0
µn,n−2||g∗n−2|| µn,n−1||g∗n−1|| ||g∗n||

 (4.62)

Given a point y ∈ R3, the enumeration algorithm processes as follows.

• First, the points of the projected 1-dimensional lattice generated by G = ||g∗n||, located in the 1-
dimensional sphere of radius r, are: {ẑn : (ẑn||g∗n|| − yn)2 < r2}. The {ẑn} constitutes the nodes
at the level k = 1 of the tree on Figure 4.6b.

• The points in the projected 2-dimensional lattice, located in the 2-dimensional sphere of radius r,
are computed as: {ẑn−1 : ([ẑn−1||g∗n−1|| + ẑnµn,n−1||g∗n−1||] − yn−1)2 < r2 − (ẑn||g∗n|| − yn)2}, for
the ẑn found at the previous step. The {ẑn−1} constitutes the nodes at the level k = 2 of the tree
on Figure 4.6b.

• Finally, the lattice points within the sphere are found by computing the last coordinate ẑn:
{ẑn : ([ẑn||g∗n|| + ẑn−1µn−1,n−2||g∗n−2|| + ẑn−2µn,n−2||g∗n−3||] − yn−2)2 < r2 − ([ẑn−1||g∗n−1|| +
ẑnµn,n−1||g∗n−1||]− yn−1)2 − (ẑn||g∗n|| − yn)2}.

How is the tree explored ? Compute r2 ← r2− (ẑn||g∗n||− yn)2 and recursively call the algorithm for each
ẑn in the range. When a leaf is reached at depth n, or all ẑi have been tried at a given level, go up from
one level and try another zi+1 in the range.

If one is interested in the closest point to y rather than enumerating all the points, the search radius
r can be updated each time a point is found (i.e. a leaf is reached at depth n).

The enumeration algorithm was first presented in [Poh81] and further analyzed and improved by the
same authors in [FP85]. We shall refer to their strategy as the Fincke-Pohst (FP) strategy (name of the
authors). An improvement was proposed in [SE94], called the Schnorr-Euchner (SE) strategy. There are
two main differences between the two strategies. The first difference lies in the way (4.61) is computed.
The SE strategy performs more operations in the higher dimensions (lower part of the tree) whereas
the FP strategy performs more operations in the lower dimensions. This is an advantage as some paths
in the tree do not lead to a leaf of depth n. The second difference is the enumeration order: The FP
strategy investigates each dimension from the lower bound on the zi onward (given by (4.61)) whereas

42 CHAPTER 4. AN OVERVIEW OF LATTICES

the SE strategy starts with the integer the closest from the median of the lower and upper bound of zi.
For instance, the components of the first point x∗ = zG outputted by the enumeration algorithm with
the SE strategy are computed as

zn−k = b yn−k
||g∗n−k||

−
n∑

i=n−k+1

ziµi,n−ke, (4.63)

where b·e denotes the round function. This point is called the Babai point. It is easily seen that the
error at each level is upper bounded by half the norm ||g∗i ||. Hence, we have:

d(x∗, y) ≤ 1

2

∑

i

||g∗i ||. (4.64)

Finally, pruning techniques on the enumeration tree are often considered to speed up the enumeration.
Extreme prunning, introduced in [GNR10], is often used in practice in the field of cryptography. It
enables to solve the SVP for most lattices, with the enumeration algorithm and up to dimension 110, in
about 62 CPU days.

Complexity analysis of the enumeration algorithm

Obviously, the enumeration algorithm is a sequential algorithm similarly to the algorithms discussed in
Section 3.2.2: each path in the tree represents a lattice point. As a result, if the algorithm is used to
solve the CVP, one should expect an exponential complexity in many situations (see the discussion on
the cutoff rate in Section 3.2.2). We report the main existing complexity analyses of the enumeration
algorithm.

To begin with, FP analyzed the complexity of their algorithm with a fixed decoding radius. They
proved in [FP85] that the complexity of the enumeration algorithm with a radius r is at most13

O

(
n2 ·

(
1 +

n− 1

b4r2dc

)b4r2dc
)
, (4.65)

where 1
d is a lower bound of min{||g∗i ||2 |1 < i < n}.

FP suggests the following lower bound: If ||g∗i || is an element of the diagonal of G, then 1/||g∗i || is an
element of the diagonal of G−1. Hence, d can be chosen as the norm of the longest column vector14

of G−1. Note that a lower bound on ||g∗i || is also the smallest singular value of G. Nevertheless, the
bound (4.65) is exponential in the decoding radius. In general, the radius should increase with n: the
volume of a sphere goes to zero if r2 does not increase linearly with n (see Equation (4.11)). As a result,
the Gaussian heuristic (4.23) predicts that there would be no point in the sphere if the radius does not
increase with n.

[HV05] proposed a finer analysis than the one of FP for a given radius: They performed an average-
case complexity analysis for lattice decoding on the unconstrained AWGN channel (see Problem 4.2),
where the generator matrix G of the lattice has i.i.d. N (0, 1) components. The main ideas of their
analysis are as follows. The complexity of the enumeration algorithm depends on the number of nodes
in the explored tree. The number of nodes at a given depth corresponds to the number of lattice points
in a k-dimensional sphere of radius r. Consequently, the expected complexity C(n, σ2, r) is the sum of
the expected number of points in k-dimensional sphere of radius r = αnσ2 centered at y:

C(n, σ2, r) =

n∑
k=1

(number of operations/nodes) · Eky,G[|Bkr (y) ∩ Λk|]. (4.66)

The probability that a lattice point x̂ = ẑG lies in a sphere centered at y = zG+ w is

γ

(
r2

σ2 + ||ẑ − z||2 ,
k

2

)
, (4.67)

where γ(p, q) denotes the incomplete gamma function of argument p and q degrees of freedom. Notice
that x̂− x = x′ = z′G is another lattice point. Hence, we get

Ey,G[|Bkr (y) ∩ Λk|] =

∞∑

l=0

γ

(
r2

σ2 + l
,
k

2

)
· (number of lattice points in Zk with ||z′||2 = l). (4.68)

13Simulations show that this bound is often pessimistic.
14FP also use this obervation to justify that the LLL algorithm [LLL82], discussed in the next subsection, should be

applied on G−1 as preprocessing.

4.4. MAIN COMPUTATIONAL PROBLEMS 43

The number of lattice points in Zk with ||z′||2 = l is simply the coefficients of the Theta series of Zk,
which we call rk(l). Hence, we get

C(n, σ2, r) =

n∑

k=1

(number of operations/nodes)

∞∑

l=0

rk(l)γ

(
r2

σ2 + l
,
k

2

)
. (4.69)

Unfortunately, this function is neither trivial to analyze nor to compute. Its asymptotic behavior is
studied in [JO05] when each zi ∈ {−L,L+ 1, ...L} (in the scope of digital communications). It is shown
to behave exponentially as Lδn, where δ decreases when the SNR increases.

Kannan was the first to analyze the enumeration algorithm to solve the CVP [Kan83], i.e. not with a
fixed decoding radius. It is a worst-case analysis. The algorithm analyzed is the enumeration algorithm
combined with a long preprocessing; the KZ-reduced basis is computed before running the enumeration
algorithm. The whole algorithm is named Kannan’s algorithm. The three main ingredients of his analysis
are the following:

• The distance between the point to decode y and its closest lattice point is smaller or equal than
the one with the Babai point (see (4.64)).

• The number of lattice points in the decoding sphere is upper bounded by the one in the circum-
scribed hypercube: I.e. in Equation (4.60), ν is not updated and has a fixed value equals to r.

• It it is possible to bound the number of lattice points in this circumbscribed hypercube given the
worst-case KZ basis: I.e. the worst-case rate of decrease of the length of the Gram-Schmidt vectors.

Of course, this analysis implies knowing the cost of computing the KZ basis (and thus solving the SVP).
It turns out that a similar analysis can be performed to estimate this cost: Kannan’s KZ reduction
algorithm involves KZ reducing the n − 1 projected lattice, and using the enumeration algorithm at
y = 0, where the radius of the sphere is upper bounded in this case by min ||gi||. Hence, the analysis of
these two algorithms enables to upper bound the complexity of the CVP and SVP.

Recently, this analysis was improved in [HS10] where the authors managed to compute directly the
number of lattice points in the decoding sphere (instead of the circumscribed hypercube). The complexity
of the SVP and CVP with Kannan’s algorithms are respectively 2O(n) · n n

2e and 2O(n) · nn/2.

Lattice reduction algorithms: LLL and BKZ

Lattice reduction algorithms are used to solve Approximate-SVP. They are also often implemented as
preprocessing algorithms in the scope of the CVP to improve the lattice basis quality.

In Equation (4.61), notice that the diagonal coefficients of G (i.e. the norm of the Gram-Schmidt
vectors) are dividing coefficients in the lower and upper bound of the possible values of zn−k. If these
coefficients are small, the range for zn−k becomes very large. Intuitively, the goal of a reduction algorithm
should be to make these diagonal coefficients large. Nevertheless, the product of the diagonal coefficients
Πn
i=1||g∗i || is a constant: It is the determinant of the generator matrix which is equal to the fundamental

volume of the lattice. As a result, avoiding small coefficients means making them more balanced: the
maximum should be smaller and the minimum larger. Assuming that the coefficients are in decreasing
order, it means avoiding the decrease to be too fast.

The standard algorithm to address Approximate-SVP is the LLL algorithm, introduced in 1982 by
Lenstra, Lenstra, and Lovasz [LLL82]. LLL finishes in polynomial time but achieves a (worst-case)
approximation factor of δ = 2O(n). Despite this bad approximation constant, the LLL tends to perform
better than its worst-case performance [GN08]. E.g. the LLL often finds several shortest vectors when
used in small dimensions (up to n ≈ 30). The LLL algorithm is composed of two main subalgorithms.
The first one is called size reduction. It makes the off-diagonal coefficients smaller than the coefficients on
the diagonal. The second one is a swapping algorithm: It swaps two row vectors if the decrease between
two succesive values on the diagonal (i.e. the norm of the Gram-Schmidt vectors) is too fast, and a new
triangular matrix is then computed. The swapping operations are performed sequentially going from the
top coefficient to the bottom one, several times, until a design criterion is achieved.

This algorithm was generalized in [Sch87] [SE94]. Instead of swapping two rows, the Blockwise-KZ
(BKZ)-k algorithm sequentially reduces blocks of size k ≤ n around the diagonal of G: For all 1 < i < n
(neglecting the boundaries) a KZ basis is computed for the k-dimensional lattice generated by the k× k
submatrix around the i, ..., i+ k− 1 diagonal coefficients of G using a k-dimensional SVP solver. BKZ-k
is the algorithm used in practice for Approximate-SVP in large dimensions.

44 CHAPTER 4. AN OVERVIEW OF LATTICES

BKZ does not have the best theoretical bound among reduction algorithms. In fact, its performance
is in general assessed via numerical simulations or via simulation models [CN11]. In the latter case, KZ
bases are not computed in dimension k but the results are estimated: For blocks of size ' 40, most
k-dimensional lattices behave as random lattices and it is possible to predict the length of the vectors of
the KZ-reduced basis.

The approximation factor for Approximate-SVP achieved by BKZ-k diminishes with k but the run-
time of BKZ-k is dominated by the complexity of the k-dimensional SVP solver. Often, the k-dimensional
SVP is solved using enumeration-based algorithms. For Hermite-SVP, BKZ-k outputs a vector of norm

≈ (k
1
2k)n · vol(Λ)

1
n (4.70)

in time ≈ k
k
2e when n is sufficiently large compared to k [ABF+20]. Using the connection between

Hermite-SVP and Approximate-SVP (see Theorem 4.8), the root approximation factor is estimated as

(k
1
2k)2 and the norm of the vector outputted by BKZ-k is (k

1
k)n · d(Λ). Notice that using the Gaussian

heuristic given by (4.24), d(Λ)/ vol(Λ)
1
n ≈

√
n

2πe and the approximation factor is simply the Hermite

factor divided by
√

n
2πe . In general, the root approximation factor is smaller than the root Hermite

factor.
To summarize, a rule of thumb is: If one pays a complexity15 2O(k), the resulting approximation

factor is kO(n/k).
Implementations of the BKZ algorithm are available via publicly available libraries such as FPLLL

[dt19]. Extensive numerical simulations were performed in 2008 [GN08] to characterize the practical
performance of BKZ. The authors of [GN08] made the following obervations on BKZ:

• The Hermite factor of a BKZ-reduced lattice basis does not depend on the lattice unless it has an
exceptional structure.

• For BKZ-28 and BKZ-100, the root Hermite factor obtained is 1.0109 and 1.009, respectively
(slightly better than k

1
2k). Based on these approximations and the current computing power, the

authors estimated that “a root Hermite factor of 1.005 in dimension 500 looks totally out of reach”.

The Darmstadt SVP challenge [MG10] enables to test the efficiency of a reduction algorithm. Cur-
rently (in 2020), lattice sieving algorithm are used for the k-dimensional SVP solver in BKZ (rather
than enumeration-based algorithms) despite the memory cost that grows exponentially with the lattice
dimension n [ABF+20].

4.4.4 Lattice-based cryptography

The dawn of lattice-based cryptography dates back to 1996, when Ajtai’s discovered that it is possible to
construct cryptographic schemes whose security are based on the worst-case hardness of lattice problems
[Ajt96]. It means that if one manages to break the cryptographic scheme (even with a low success rate),
then one can solve any instance of the underlying lattice problem. This is to be opposed with average-
case hardness based cryptographic schemes. In this latter setting, one knows that the average instance
of a problem is hard, but one should be careful when choosing a specific instance of the problem: It
should not be easier than the average case.

The cryptographic scheme proposed by Ajtai is a family of one-way functions. However, we shall
present lattice-based cryptography via a more recent problem called learning with errors (LWE). This
problem was introduced by Regev in 2005 [Reg05]. Its success is mainly due to the worst-case to average-
case reduction combined with the computational and memory efficiency of the associated cryptosystems16

as well as a low decryption error rate. The worst-case to average-case reduction is based on a (both
quantum and classical) reduction from worst-case GapSVPδ to LWE, which was established in [Reg05]
[Pei09] [BLP+13].

Problem 4.6 (Search-LWE). Let Λ(A), with A ∈ Zk×n chosen uniformly at random, be a Construction
A lattice. Let y = zA + w where z is selected uniformly at random in Zkq and the error w chosen from

a normal distribution with standard deviation αq (and rounded to the nearest integer). Let β < d(Λ(A))
2 .

The LWE problem asks to find ẑ ∈ Zkq , such that d(y, ẑA) ≤ β.

15The bound with Kannan’s algorithm is 2O(k) · k k
2e but there exists other algorithms to compute a KZ basis where the

complexity is reduced but the space required increased.
16E.g. in the case of public key encryption, the public key size is relatively small, a low number of operations is required

per encrypted bit, and the cryptosystem does not expand much each encrypted bit.

4.4. MAIN COMPUTATIONAL PROBLEMS 45

There is also a decisional version of LWE which is related to the dual lattice of Λ(A). At first glance,
search LWE seems to be hard since it is an instance of a BDD problem. The worst-case to average-case
reduction states that under any discrete Gaussian error distribution (and over some non-restrictive choice
of parameters), LWE is at least as hard as solving GapSVPδ. Moreover, since GapSVPδ is as hard as
BBD1/δ (up to a polynomial factor, see Theorem 4.8) LWE is as hard as the hardest BDD1/δ problem.

The practical security of LWE can be established based on the best known algorithm for Approximate-
SPVδ. Consequently, the parameters of cryptosystems based on LWE should be chosen such that
Approximate-SPVδ is hard, i.e. based on the length of the shortest vector outputted by the best known
SVPδ algorithm :

min{q, δ · vol(δ)
1
n } = min{q, δq1− kn }, (4.71)

where δ, the Hermite factor, is estimated with (4.70).

Remark 4.3. An immediate consequence of these results is that lattices from the Loeliger ensemble (see
Section 4.6) are as hard to decode as any lattice. In other words, it is a worst-case choice of family from
a practical view point.

4.4.5 The enumeration algorithm in digital communications

In the field of digital communications, lattices can efficiently model the communication channels encoun-
tered in diverse situations. The detection problem consists in finding the closest lattice point to the
received point where the lattice depends on the channel characteristics. Consequently, versions of the
enumeration algorithm are often used in practice for detection. They are called sphere decoders in this
field.

Sphere decoding, based on the FP strategy, was first introduced by [VB99] in digital communications
for fading channels. The semitutorial paper [AEVZ02] then presented the SE strategy [SE94]. More-
over, [Lin11] analyzes how basis reduction affects sub-optimal detection decoders and [BK98] considers
Kannan’s algorithm for communications. This small survey is far from being exhaustive.

An important channel where lattices are used as model is the MIMO channel. Consider a flat quasi-
static MIMO channel with n transmit antennas and n receive antennas. The channel coefficients between
the transmit antennas and the receive antennas are represented by a n×n matrix G. For simplicity, it is
assumed that G has real entries. Any complex matrix of size n/2 can be transformed into a real matrix
of size n with (4.3). Let z ∈ Zn be the channel input, i.e., z is the uncoded information sequence. The
input message yields the output y ∈ Rn via the following flat MIMO channel equation

y = z ·G︸︷︷︸
x

+ w. (4.72)

We call a lattice generated by a matrix G representing a MIMO channel, a MIMO lattice. Sphere
decoding was introduced by [DCB00] [DGC03] in this scope. We shall investigate MIMO lattices several
times in this thesis.

Part

A new framework for building and
decoding group codes

46

Chapter 5

The k-ing groups and the single
parity-check k-groups

The Leech lattice was discovered at the dawn of the communications era [Lee67]. Recently, it was
proved that the Leech lattice is the densest packing of congruent spheres in 24 dimensions [CKM+17].
Between these two major events, it has been subject to countless studies. This 24-dimensional lattice is
exceptionally dense for its dimension and, unsurprisingly, has a remarkable structure. For instance, it
contains the densest known lattices in many lower dimensions and it can be obtained in different ways
from these lower dimensional lattices. In fact, finding the simplest structure for efficient decoding of the
Leech lattice has become a challenge among engineers. Forney even refers to the performance of the best
algorithm as a world record [For89a]. Of course, decoding the Leech lattice is not just an amusing game
between engineers as it has many practical interests: Its high fundamental coding gain of 6 dB makes
it a good candidate for high spectral efficiency short block length channel coding and its spherical-like
Voronoi region of 16969680 facets [CS99] enables to get state-of-the-art performance for operations such
as vector quantization or lattice shaping. The Leech lattice is also related to the discovery of some of
the most exciting objects of pure mathematics; please, refer to [Tho83] to find how the history of simple
groups is connected to this lattice.
Recently, Nebe solved a long standing open problem when she found an extremal even unimodular lattice
in dimension 72 [Neb12]. The construction she used to obtain this new lattice involves the Leech lattice
and Turyn’s construction [AMT67] [MS77, Chap. 18, Sec 7.4]. This 72-dimensional extremal lattice
(referred to as the Nebe lattice) is likely to have better property than the Leech lattice for the operations
mentioned above. However, unlike the Leech lattice, its decoding aspect has not been studied much and,
to the best of our knowledge, no efficient decoding algorithm is known. Moreover, none of the existing
decoding algorithms for the Leech lattice seems to scale to the Nebe lattice. The primary motivation of
this work was to propose a new decoder for this lattice1.

In this thesis, these two lattices are presented as special instances of general constructions: We
introduce a generic framework for two constructions of group codes. These families of group codes are
named the k-ing groups Γ(V, α, β, k) and the single parity-check k-groups Γ(V, β, k)P , where Γ(V, β, k)P ⊆
Γ(V, α, β, k). In the literature, only particular cases of the k-ing construction were studied: Either for
some fixed k or jointly for several k with codes. As examples, the groups Γ(V, α, β, k) for k = 3 (known as
Turyn’s construction) include the Leech lattice and the Nebe lattice. Regarding the single parity-check
k-goups, Barnes-Wall lattices and Reed-Muller codes are part of the case k = 2. Nevertheless, there is no
paper studying the general properties of single parity-check k-goups in the literature. The parity lattices,
a new family of lattices studied in this thesis, are instances of single parity-check k-goups, recursively
constructed as Γ(V, β, k)P .

This framework enables to jointly investigate the construction of many group codes, existing ones
and new ones, and to present a new decoding paradigm for all of them. The paradigm can be either
used for bounded-distance decoding (BDD), for list decoding, or for (quasi or exact)-maximum likelihood
decoding (MLD) on the additive white Gaussian channel. For regular list decoding (i.e. enumerating
all lattice points in a sphere whose radius is greater than half the minimum distance2 of the lattice),
the paradigm is combined with a technique called the splitting strategy which enables to reduce the

1An efficient decoder was found, see Chapter 7.
2In this part, we consider squared distances. Therefore, for consistency we should have stated: Greater than a quarter

of the minimum distance.

47

48 CHAPTER 5. THE K-ING GROUPS AND THE SINGLE PARITY-CHECK K-GROUPS

complexity. Regarding quasi-optimal decoding on the Gaussian channel, our analysis reveals that regular
list decoding is not the best choice with our decoding paradigm from a complexity point of view. A
modified version of the regular list decoder is therefore presented. Formulas to predict the performance
of these algorithms on the Gaussian channel are provided. Throughout this part of the thesis, we discuss
similarities and differences between our decoding paradigm and exisiting algorithms, such as (among
others) the ordered statistics decoder (OSD) [FL95], the successive-cancellation decoder of Reed-Muller
codes and Polar codes [DS06] [TV15], and the iterative decoder of LDPC codes.

These new decoding algorithms uncover the performance of several lattices on the Gaussian channel.
For instance, Barnes-Wall lattices, the Nebe lattice, and the 3-parity-Leech lattice (established in the
thesis) are very competitive in their respective dimension: They have performance similar to known
lattices whose dimension is an order of magnitude larger.

While the emphasis is put on lattices in this thesis, the main decoding paradigm is presented for arbi-
trary group codes. Indeed, based on our current understanding of the approach, we see no fundamental
obstacle that prevents this paradigm to be extended to any group code built via the parity construction
or the k-ing construction. Some examples with binary linear codes are provided at the end of the part
(in Chapter 7), but they are not as developed as the ones with lattices. These studies are left for future
work. Even for lattices, many cases are not covered and left for future work.

5.1 Preliminaries

Warning: In this part of the thesis, the distances d(·), d(·, ·), and the decoding radius r
refer to squared norms when used with real lattices.

Group code and (regular) codes. A group code Gk is defined as in Section 4.1. All groups in this
part admit a distance metric as (4.1). A (regular) code is a subspace of a vector space over a finite field.
We use d(G) to denote the minimum distance of the group G. Let G′ be a group with G ⊂ G′ and let
Br(y) be a ball of radius r centered at y ∈ G. The set G ∩ Br(y) represents the elements x ∈ G where
d(x, y) ≤ r. Let L(G, r, y) = |G ∩ Br(y)|, y ∈ G′ be the number of elements in the set G ∩ Br(y). The
quantity

L(G, r) = max
y∈G′
|G ∩Br(y)| (5.1)

denotes the maximum number of elements in the set G ∩Br(y), for any y ∈ G′. In most situations it will
be convenient to consider the relative radius δ = r/d(G), which enables to define l(G, δ, y) = L(G, r =
δd(G), y) and l(G, δ) = L(G, r). By abuse of notations, we set Br(y) = Bδ(y); it should be clear from the

context whether the radius or relative radius is used. We also define the relative distance: δ(x, y) = d(x,y)
d(G) .

Lattice. We consider lattices as a free J-module, where the possible rings J considered in this part

are Z, Z[i], and Z[λ], λ = 1+i
√

7
2 . We recall that given a complex lattice ΛC with generator matrix GC,

the lattice generated by θ ·GC is denoted θΛC, θ ∈ J . Let Λ, with generator matrix G, be the real lattice
obtained via (4.3) from the complex lattice ΛC. The real version of θΛC can be either obtained using
(4.3) on θ ·GC or from G as follows. Let R(2, θ) be the 2× 2 matrix obtained from θ via (4.3), e.g.

R(2, λ) =

[
1/2

√
7/2

−
√

7/2 1/2

]
and R(2, φ) =

[
1 1
−1 1

]
, (5.2)

where φ = 1 + i. The scaling-rotation operator R(n, θ) in even dimension n is defined by the application
of R(2, θ) on each pair of components. I.e. the scaling-rotation operator is R(n, θ) = In/2 ⊗ R(2, θ),

where In is the n × n identity matrix and ⊗ the Kronecker product. Then, the real version of θΛC is
generated by G ·R(n, θ). We name it either RθΛ or θΛ.
We say that an integral lattice (i.e. the Gram matrix has integer entries) is even if ‖x‖2 is even for
any x in Λ. Moreover, an integral lattice with vol(Λ) = 1 is called unimodular or self-dual lattice. The
following Johnson-type bound on the list size for arbitrary lattices is proved in [MG02, Chapter 5].

Theorem 5.1. Let Λ be a lattice in Rn. The list size L(Λ, r), defined by (5.1), is bounded as:

• L(Λ, r) ≤ 1
2ε if r ≤ d(Λ)(1/2− ε), 0 < ε ≤ 1/4.

• L(Λ, r) ≤ 2n if r = d(Λ)/2.

5.2. CONSTRUCTION OF GROUP CODES 49

Let Λn ∈ Rn be part of a family of lattices with instances in several dimensions n. If we want to
specify the list size for the lattice in a given dimension n, we simplify the notations as follows: We let
L(n, r) = L(Λn, r) and l(n, δ) = l(Λn, δ).

Complexity analysis. The complexity of the proposed algorithms is denoted by C or CA.i, where i
represents the number of the algorithm. The decoding complexity of a group code G is expressed as
C(G), where the considered decoding technique is clear from the context.

In general, C denotes the worst-case running time. By abuse of notation, we use equalities (e.g.
C = X) even though we only provide upper-bounds on the worst-case running time. We adopt this
approach to characterize the complexity of the proposed algorithms, which does not take into account
the position of the point y to be decoded. However, to assess the complexity of the algorithms on the
Gaussian channel, we take advantage of the distribution of the point y to be decoded and assess the
average complexity Ey[C] (warning: Ey[C] does not denote the average worst-case complexity but the
average complexity).

The complexity of decoding in a group G with a specific decoder is denoted by CGdec, where “dec”
should be replaced by the name of the decoder: E.g. if G is a lattice Λ, the complexity of BDD,
optimal decoding, MLD, and quasi-MLD are CΛ

BDD, CΛ
opt, C

Λ
MLD, CΛ

QMLD, respectively. Moreover, we

denote by CG∩Bδ(y), CGstor., and Cclos.(n), the complexity of computing the set G ∩ Bδ(y), storing an
element belonging to G, and finding the closest element to y among n elements, respectively. If not
specified, the set Λ ∩ Bδ(y) can be computed via the sphere decoding algorithm [VB99]. In this case
CΛ∩Bδ(y) = CΛ

Sph.dec.,δ.

In general, we assume that CGdec >> CGstor. and that kCGdec >> Cclos.(k). Hence, we have

kCGdec + kCGstor. + Cclos.(k) ≈ kCGdec. (5.3)

Similarly, we also have:

CG∩Bδ(y) + l(G, δ)CGstor. + Cclos.(l(G, δ)) ≈ CG∩Bδ(y). (5.4)

By abuse of notations, we may write kCGdec + kCGstor. + Cclos.(k) = kCGdec (e.g. if G ∈ Rn
k , we sometimes

write kCGdec +O(n) = kCGdec if the O(n) is not relevant in the context).
When recursively decoding a lattice Λn ∈ Rn, we simplify the notation C(Λn, δ) by writing C(n, δ).

The Õ notations is used to ignore logarithmic factors. The notation f(n) = Õ(h(n)) is equivalent to:
∃k such that f(n) = O(h(n) logk(h(n))) (since logk(n) = O(nε) for any ε > 0).

Finally, the complexity exponent is defined as log C(n,δ)
logn .

Extremal lattice. The fundamental coding gain of an even unimodular lattice of dimension n is at
most 2b n24c+ 2. Lattices achieving this coding gain are called extremal.

5.2 Construction of group codes

We begin by defining two group codes of length k over an arbitrary discrete group G. We have the
repetition code

(k, 1)G = {(m1,m2, ...,mk),m1 = m2 = ... = mk ∈ G}, (5.5)

and the single parity-check code

(k, k − 1)G
′

G ={(n1, n2, ..., nk), ni ∈ G,
k∑
i=1

ni = 0 mod G′},

={(n1, n2, ..., nk), ni ∈ G,
k∑
i=1

ni ∈ G′}

(5.6)

where G′ ⊂ G. G′ = {0} corresponds to the standard parity check.

Definition 5.1. Consider discrete Abelian groups S, T, V , where V ⊂ T ⊂ S. Let us denote α = [S/T]
and β = [T/V], two groups of coset representatives. The k-ing construction of a group Γ is defined as

Γ(V, α, β, k) = V k + (k, k − 1)
{0}
β + (k, 1)α. (5.7)

50 CHAPTER 5. THE K-ING GROUPS AND THE SINGLE PARITY-CHECK K-GROUPS

Note that this k-ing construction can be seen as a non-binary instance of Construction B [CS99].
Since any coordinate of V k can be decomposed as the sum of two elements of V where the first element
is constant over all coordinates, (5.7) can be re-written as

Γ(V, α, β, k) ={(m′ + n′1,m
′ + n′2, ...,m

′ + n′k),m′ ∈ V + α, n′i ∈ V + β,

k∑
i=1

n′i ∈ V },

={(m′ + t1,m
′ + t2, ...,m

′ + tk),m′ ∈ V + α, ti ∈ T,
k∑
i=1

ti ∈ V },

(5.8)

since V + β is the group T , regardless of the choice of coset representatives β. We denote the group
V + α by T ∗. The k-ing construction has the following form using T ∗ and T instead of α and β:

Γ(V, T ∗, T, k) = V k + (k, k − 1)VT + (k, 1)T∗ = Γ(V, α, β, k). (5.9)

Figure 5.1 illustrates the relationships between S, T, T ∗, V, α, and β.

T ∗

S

α

β

T

β

V

α

Figure 5.1: Relationships between S, T, T ∗, V, α, and β.

Two obvious subgroups of Γ(V, α, β, k) are:

• The single parity-check k-group in T k

Γ(V, β, k)P =V k + (k, k − 1)
{0}
β ,

={(v1 + n1, v2 + n2, ..., vk −
∑
i6=k

ni), vi ∈ V, ni ∈ β},

={(t1, t2, ..., v′k −
∑
i 6=k

ti), v
′
k ∈ V, ti ∈ T},

(5.10)

where the last expression is the most useful in practice. This group code can be viewed as a
generalized Construction A group [FV96], since a code is applied on the quotient group T/V .

• The repetition k-group in T ∗
k

Γ(V, α, k)R := V k + (k, 1)α. (5.11)

Using these subgroups, we introduce two alternative representations of the k-ing construction, which will
be useful for decoding. First, we have

Γ(V, α, β, k) = Γ(Γ(V, β, k)P , α, k)R,

=
⋃
m∈α

{Γ(V, β, k)P +mk}, (5.12)

where mk is (m, ...,m).
Second, we present Γ(V, α, β, k) as a parity-check-like group. The following equation shows that the
k-ing construction can be seen as a parity-check k-group since pk can be recovered from p1, ..., pk−1, but
“enhanced” as an additional constraint is put on the pi 6=k: All m’s should be equal in the decomposition
pi = m+ ni.

Γ(V, α, β, k) ={(v1 + p1, v2 + p2, ..., vk + pk),

vi ∈ V, pi 6=k = m+ ni ∈ [S/V], pk = m−
∑
i 6=k

ni,m ∈ α, ni ∈ β}. (5.13)

Regarding the notations, following (5.8) and (5.13), the letters m, n, and p are used to denote elements
of the quotient groups α, β, and S/V respectively. The letters m′, n′, and p′ denotes elements of V +α,
V + β, and V + S/V respectively.

With (5.10), we easily see that d(Γ(V, β, k)P) = min{d(V), 2d(T)}. The minimum distance of
Γ(V, α, β, k) is provided by the next theorem.

5.2. CONSTRUCTION OF GROUP CODES 51

Theorem 5.2. The minimum distance of Γ(V, α, β, k) satisfies

min{d(V), 2d(T), kd(S)} ≤ d(Γ(V, α, β, k)) ≤ min{d(V), 2d(T)}. (5.14)

Proof. Using (5.7), x can be decomposed as x = v + c1 + c2 with v ∈ V k, c1 ∈ (k, 1)α, c2 ∈ (k, k − 1)
{0}
β .

There are two cases to be addressed:

1. c1 = 0k. Then, x ∈ Γ(V, β, k)P where d(Γ(V, β, k)P) = min{d(V), 2d(T)} from (5.10).

2. c1 6= 0k. Then, given x = (x1, ..., xk), every xi 6= 0 because V , α, and β have 0 as the unique
common element. Considering xi ∈ S all of minimum squared norm, we get d(Γ(V, α, β, k)) ≥
kd(S).

Theorem 5.2 is not fundamentally new: It was presented for several fixed k in [For88b] for group
codes and for arbitrary k in [DB04], but only in the scope of codes.

The main idea behind the k-ing construction is to find groups such that d(V) ≈ 2d(T) ≈ kd(S). E.g.
if d(V) = 4d(S), it is pointless to choose a large k >> 4: the bottleneck on d(Γ(V, α, β, k)) would be
d(V) regardless of the value kd(S).
When using Theorem 5.2, there are two main cases to consider:

• First, the case d(V) = 2d(T) = kd(S). Then, the inequalities in Theorem 5.2 become equalities.

• Second, the case d(V) = 2d(T) > kd(S). Then, Theorem 5.2 yields d(Γ(V, α, β, k)) ≥ kd(S).
Can we get d(Γ(V, α, β, k)) > kd(S)? The degree of freedom, in order to achieve this inequality,
is the choice of coset representatives α (or equivalently T ∗). In some cases, a technique called
polarisation [Neb12] enables to choose T ∗ (i.e. α) such that d(Γ(V, α, β, k)) > kd(S).

As we shall see in the sequel, a lot of famous lattices and codes can be obtained via the k-ing
construction and single parity-check k-groups, including:

• The Leech lattice and the Nebe lattice.

• The Reed-Muller codes, the hexacode, and the Golay code.

• The Barnes-Wall lattices.

• Many quasi-cyclic codes (see [LS01]).

• New interesting group codes (presented in this thesis).

Most papers study the k-ing construction for a fixed k. As a result, various names exist for this con-
struction given a fixed k:

• If k = 3, it is Turyn’s construction [MS77, Chap. 18, sec 7.4] (also known as the cubing construction
[For88b]).

• If k = 4, it is the two-level squaring construction [For88b].

• If k = 5, it is the quinting construction [LS01].

• If k = 7, it is the septing construction [LS01].

Note also that Γ(V, β, 2)R ⊂ T 2 is the squaring construction [For88b] (equivalent to the Plotkin (u, u+v)
construction [Plo60]).
Some examples. While α and β are always finite groups, in these examples we show that S, T, V can
be either finite (i.e. with codes) or infinite (i.e. with lattices).

1. Take V = 2Z and T = Z. Then, β = [Z/2Z]. The checkerboard lattice is Dn = Γ(V, β, n)P .

2. Take S = (Z/2Z)2, T = (2, 1)Z/2Z (the binary repetition code), and V = {02}. Then, α =
[(Z/2Z)2/(2, 1)Z/2Z], β = [(2, 1)Z/2Z/0

2]. The first order Reed-Muller code of length 8, RM(1, 3),
is Γ(V, α, β, 4). More generally, any Reed-Muller code of length 2m is obtained as RM(r,m) =
Γ(V, α, β, 4), where V = RM(r− 2,m− 2), the first quotient group is α = [RM(r,m− 2)/RM(r−
1,m− 2)], and the second quotient group is β = [RM(r − 1,m− 2)/RM(r − 2,m− 2)] [For88b].
These codes can also be obtained as single parity-check group. See (7.32).

52 CHAPTER 5. THE K-ING GROUPS AND THE SINGLE PARITY-CHECK K-GROUPS

5.3 Decoding algorithms

In this section, we introduce the main decoding algorithms. The decoding paradigm is first presented in
Subsection 5.3.2. We then explain how to combine this paradigm with list decoding, with and without
the splitting strategy, in the following subsection. A detailed complexity analysis is also provided.

5.3.1 Existing decoding algorithm for Γ(V, α, β, k) (and Γ(V, β, k)P)

To the best of the author’s knowledge, there exists only one “efficient” optimal algorithm for the k-ing
construction called trellis decoding. This decoding algorithm uses a graph-based representation of (5.7)
to efficiently explore all the cosets of V k in Γ(V, α, β, k). As an example, the trellis of a Γ(V, α, β, 3)
group is illustrated on Figure 5.2 with |α| = 3 and |β| = 2. Each path in this three sections trellis
corresponds to a coset of V 3 in Γ(V, α, β, 3). Each edge is associated with a coset of V in S: E.g. given
α = {m1,m2,m3} and β = {n1, n2}, the two upper edges on the left should be labeled m1 + n1 and
m1 + n2, respectively. All the edges in the upper part of the trellis correspond to the same m1 and the
sub-trellis formed by these edges is a standard single parity-check trellis. This sub-trellis is repeated
three times for m1,m2, and m3. Standard trellis algorithms, such as the Viterbi algorithm, can then be
used to decode the group.

α
β

Figure 5.2: Trellis representing a Γ(V, α, β, 3) with |α| = 3 and |β| = 2. The edges labeled with the same
α are associated with the same m1 ∈ α.

Trellis decoding of Γ(V, α, β, k) involves decoding in V for each edge in the trellis. The number of
edges in the trellis is:

2|α||β|+ (k − 2)|α||β|2. (5.15)

Therefore, the complexity is dominated by the quantity |α||β|2CVdec. For more information on trellis
decoding of group codes, the reader should refer to [For88b] or [DBNS08].

Of course, trellis decoding can also be used to decode the single parity-check k-group Γ(V, β, k)P .
The number of edges in the standard single parity-check trellis is 2|β|+ (k − 2)|β|2.

5.3.2 Decoding paradigm for Γ(V, β, k)P and Γ(V, α, β, k)

Let G be a group with V ⊂ T ⊂ S ⊂ G. Set y ∈ Gk and let x = (t1, t2, ..., tk) ∈ Γ(V, β, k)P be the closest
element to y (with respect to d(·, ·)).
The minimum distance of V is (in general) larger than the one of T . Hence, decoding yj in the coset
of V to which the element tj belongs is safer than decoding in T . Moreover, remember that Γ(V, β, k)P
is a Construction A over V k with a single parity-check code over a Q-ary alphabet, where Q = |β|.
Therefore, any set of k−1 tj ’s is enough to know in which coset of V k in Γ(V, β, k)P is located x. Hence,

given t1, t2, ...tk−1, the element tk can be recovered by decoding yk− (−∑k−1
j=1 tj) in V (and adding back

−∑k−1
j=1 tj on the decoded element), as shown by Algorithm 5.1. All algorithms presented in this part

of the thesis are variations of Algorithm 5.1.
It is easily seen that the complexity of Algorithm 5.1 is

CA.5.1 = kCTdec + kCVdec, (5.16)

where we used the simplification of Equation (5.3).
Then, we introduce two algorithms to decode Γ(V, α, β, k). The first algorithm uses representa-

tion (5.12) of the k-ing construction: Γ(V, α, β, k) is decoded via |α| use of Algorithm 5.1, as described
in Algorithm 5.2. The second algorithm avoids the investigation of the |α| cosets of Γ(V, β, k)P while
keeping a similar strategy: Algorithm 5.1 is slightly modified to address the additional constraints of an
“enhanced” parity check (see (5.13)). This yields Algorithm 5.3. Note that the first step of this latter

5.3. DECODING ALGORITHMS 53

algorithm involves decoding in S instead of T .
The complexity of Algorithm 5.2 is

CA.5.2 = |α|(kCTdec + kCVdec), (5.17)

and the one of Algorithm 5.3 is

CA.5.3 = kCSdec + kCVdec. (5.18)

Algorithm 5.1 Decoder for Γ(V, β, k)P

Input: y = (y1, y2, ..., yk) ∈ Gk.

1: Decode y1, y2, ..., yk in T as t1, t2, ..., tk.
2: for 1 ≤ i ≤ k do
3: Decode yi − (−∑j 6=i tj) in V as vi.

Add (t1, ..., ti−1, vi + (−∑j 6=i tj), ti+1, ..., tk) to the list T .
4: end for
5: Return the closest element of T to y.

Algorithm 5.2 Decoder 1 for Γ(V, α, β, k)

Input: y = (y1, y2, ..., yk) ∈ Gk.

1: for m ∈ α do
2: y′ ← y −mk

3: Decode y′1, y
′
2, ..., y

′
k in T as t1, t2, ..., tk.

4: for 1 ≤ i ≤ k do
5: Decode y′i − (−∑j 6=i tj) in V as vi.

Add (t1, ..., ti−1, vi + (−∑j 6=i tj), ti+1, ..., tk) to the list T .
6: end for
7: end for
8: Return the closest element of T to y.

Algorithm 5.3 Decoder 2 for Γ(V, α, β, k)

Input: y = (y1, y2, ..., yk) ∈ Gk.

1: Decode y1, y2, ..., yk in S as t1, t2, ..., tk.
2: Decompose each tj as tj = vj +mj + nj , vj ∈ V , mj ∈ α, nj ∈ β.
3: for 1 ≤ i ≤ k do
4: if m1 = ... = mj 6=i = ... = mk then
5: Compute pi = mj −

∑
j 6=i nj .

6: Decode yi − pi in V as vi. Add (t1, ..., ti−1, vi + pi, ti+1, ..., tk) to the list T .
7: end if
8: end for
9: Return the closest element of T to y or declare failure if T is empty.

Example. We illustrate the main idea behind Algorithm 5.1 through the following example. Take
k = 3, V = {0} ⊂ T , and consider an element x = (t1, t2, t3) ∈ Γ(V, β, k)P . We transmit t1, t2, t3 ∈ T
through a noisy channel as shown on Figure 5.3. To recover x, we first decode each symbol y1, y2, y3 ∈ G
independently in T as t̂1, t̂2, t̂3. Nevertheless, one of the three symbols might not be correctly decoded, e.g.
t̂1 6= t1. We can then use the two other symbols (assumed to be correctly decoded, i.e. t̂2 = t2, t̂3 = t3)
and the parity check constraint to recover t1 as −t̂2 − t̂3.

Now assume that we don’t know which t̂i is not correctly decoded (again, we assume that only one t̂i
is not correctly decoded). In this case, we output a list T with three candidates, one for each possibility:

54 CHAPTER 5. THE K-ING GROUPS AND THE SINGLE PARITY-CHECK K-GROUPS

Channel y1 y2 y3
(Hard)

t1 t2 t3
Deoding in T t̂2 t̂3t̂1

−t̂2 − t̂3

Figure 5.3: Decoding example of Γ(V, β, k)P with V = {0} ⊂ T and k = 3.

t̂1 is not correctly decoded, t̂2 is not correctly decoded, and t̂3 is not correctly decoded. The list T is
thus:

T = {(−t̂2 − t̂3, t̂2, t̂3), (t̂1,−t̂1 − t̂3, t̂3), (t̂1, t̂2,−t̂2 − t̂3)}. (5.19)

This decoding paradigm is successful, i.e. x ∈ T , if at most one t̂i is not correclty. If more than two t̂i,
t̂j are not correctly decoded, the parity-check constraint is useless, and the element x can not be recovered.

Similarities with some existing algorithms. The decoding paradigm of these algorithms is similar
to the OSD [FL95]. The main idea of the OSD, to decode a (n, k) binary code, is to use the k most
reliable bits to re-encode the codeword and correct errors. The order of the OSD refers to the number
of bits that are flipped among the k most reliable bits: E.g. in the case of binary codes, one candidate
is generated with the order 0,

(
k
1

)
candidates with the order 1,

(
k
2

)
candidates with the order 2, etc...

For Algorithm 5.1, k − 1 coordinates are used to “re-encode” (here it means finding the coset of V)
the remaining coordinate via the parity constraint. Unlike the regular OSD, we do not know the k − 1
most reliable coordinates. Therefore, all k possibilities are considered: We use k instances of the OSD
of order 0.

The paradigm also presents similarities with the algorithm of [SA06]. In this paper, binary lattices,
i.e. lattices that are subset of a 2m-scaled version of Zn, are constructed by employing the Kronecker
product. They consider for instance the lattice D4⊗D4, which is a sublattice of D4⊕D4⊕D4⊕D4. Let
x = (a, b, c, d) ∈ D4 ⊗D4. Then, a, b, c, d ∈ D4. The main observation made in [SA06] for decoding is
that from any set of three blocks of coordinates (e.g. {a, b, c}), it is “simple” to decode the whole lattice
point (in the paper this is called “decodability” under “subset constraint”). This is the same idea as the
one exploited by Algorithm 5.1, where given any set of k − 1 tj it is simple to decode the lattice point.

5.3.3 List decoding with and without the splitting strategy

We recall that regular list decoding consists in computing the set Γ(V, β, k)P ∩ Bδ(y): i.e. finding all
lattice points x ∈ Γ(V, β, k)P where d(y, x) ≤ r, y ∈ Rkn. The parameter δ = r/d(Γ(V, β, k)P) is the
relative decoding radius.
For the sake of simplicity, we present list decoding with and without the splitting strategy in the scope
of lattices and we assume that V ∼=

√
2T : The groups T, V, and thus Γ(V, β, k)P are lattices in Rn and

Rkn, respectively. We do not consider list decoding beyond the minimum distance, i.e. δ < 1.
We now explain how Algorithm 5.1 can be adapted to list decoding. We shall see that the splitting
strategy is a useful “trick” to reduce the complexity of list decoding without the splitting strategy, where
this latter version is the natural generalization of Algorithm 5.1.

Without the splitting strategy

Remember that d(Γ(V, β, k)P) = d(V) = 2d(T). List decoding Γ(V, β, k)P with a radius r without the
splitting strategy consists in list decoding each yj (Step 1 of Algorithm 5.1) in T with a radius r/2 and
each yi− (−∑j 6=i tj) (Step 3) in V with a radius r. In both cases the relative radius is δ = r

2d(T) = r
d(V)

and the maximum number of elements in each list is l(T, δ) = l(V, δ) = L(T, r2) = L(V, r) (see Section 5.1
for the definitions of L(·, ·) and l(·, ·)). As a result, Step 3 (of Algorithm 5.1), for a given i, should be
executed for any of the combinations of candidates (for each tj 6=i) in the k−1 lists: I.e. l(T, δ)k−1 times.
The resulting maximum number of stored elements (for this given i) is l(T, δ)k−1 · l(V, δ). Consequently,
the number of elements in T is bounded from above by

k · l(T, δ)k−1 · l(V, δ) = k · l(T, δ)k. (5.20)

This list decoding version of Algorithm 5.1 is presented in Algorithm 5.4.

5.3. DECODING ALGORITHMS 55

Algorithm 5.4 List dec. for Γ(V, β, k)P ∈ Rkn without the splitting strategy

Input: y = (y1, y2, ..., yk) ∈ Rkn, 0 ≤ δ.

1: Compute the sets T1 = T ∩Bδ(y1), T2 = T ∩Bδ(y2), ..., Tk = T ∩Bδ(yk).
2: for 1 ≤ i ≤ k do
3: Set j1 < j2 < ... < jk−1, where j1, j2, ..., jk−1 ∈ {1, 2, ..., k}\{i}.
4: for each (tj1 , ..., tjk−1

) ∈ Tj1 × Tj2 × ...× Tjk−1
do

5: Compute the set Vi = V ∩Bδ(yi − (−∑j′ tjj′)).
6: for vi ∈ Vi do
7: Add (tj1 , ..., tji−1 , vi + (−∑j′ tjj′), tji , ..., tjk−1

) to the list T .
8: end for
9: end for

10: end for
11: Return T .

Lemma 5.1 (Complexity without the splitting strategy). Algorithm 5.4 outputs the set Γ(V, β, k)P ∩
Bδ(y) in worst-case time

CA.5.4 =kCT∩Bδ(y) + k · l(T, δ)k−1CV ∩Bδ(y). (5.21)

Proof. We first prove that all points x = (x1, x2, ..., xk) ∈ Γ(V, β, k)P ∩ Bδ(y) are outputted by Algo-
rithm 5.4. If d(yi, xi) > r/2 then d(yj , xj) < r/2 for all j 6= i. Hence, among the k lists T1, T2, ..., Tk
computed at Step 1 of the algorithm, at least k − 1 of them contain the correct t∗j = xj .
Assume (without loss of generality) that all Tj , 1 ≤ j 6= i ≤ n, contain t∗j . Since d(y, x) ≤ r, one has
d(yi, xi) ≤ r. Therefore, Vi = V ∩Bδ(yi − (−∑j 6=i t

∗
j)) contains v∗i = xi − (−∑j 6=i t

∗
j).

As a result, all x ∈ Γ(V, β, k)P ∩Bδ(y) are outputted by the algorithm.
The complexity is obtained by reading Algorithm 5.4, with the simplification of Equation (5.3).

Note that if δ < 1
4 (the relative packing radius), there is only one element in each of the set computed

in Algorithm 5.4. Algorithm 5.4 is in this case equivalent to Algorithm 5.1 (adapted to lattices).

Similarities with the OSD. We established in Section 5.3.2 similarities between Algorithm 5.1 and
the OSD of order 0. With Algorithm 5.4, lists of candidates are generated for the k− 1 coordinates used
for “re-encoding”. This algorithm can thus be seen as k instances of the OSD of order k − 1. Note that
if all possibilities were used to generate each list of candidates (i.e. trying all |β|k−1 cosets to compute∑
j′ tjj′ at Step 5 and then optimally decoding in V), the algorithm would be optimal but with a much

higher complexity: ≈ |β|k−1CVopt instead of ≈ k · l(T, δ)k−1CVopt.
Moreover, the “order” of Algorithm 5.4 could be reduced: At Step 4 of the algorithm, the combinations

with only ν lists could be considered (and the k−1−ν remaining elements could be BDD lattice points),

where this operation would be repeated
(
k
ν

)
times. The maximum number of outputted element would

be

k ·

(
k

ν

)
· l(T, δ)ν . (5.22)

We did not study this latter approach. This is left for future work. Nevertheless, the splitting strategy
can be seen as a method to reduce the order of Algorithm 5.4.

With the splitting strategy

The complexity of Algorithm 5.4 can be reduced via two splitting strategies. The first splitting strategy
exploits the following observation: Assume (without loss of generality) that d(yi, xi) >

r
2 (and thus∑

j 6=i d(xj , yj) ≤ r
2). This case can be split into two sub-cases. Let 0 ≤ a′ ≤ r

2 .

• If a′ ≤∑j 6=i d(xj , yj) ≤ r
2 then r

2 < d(xi, yi) ≤ r − a′:
Then, each yj should be list decoded in T with a radius r

2 and yi − (−∑j 6=i tj), for all resulting
combinations of tj , list decoded in V with a radius r − a′.

• Else 0 ≤∑j 6=i d(xj , yj) < a′ and r
2 < d(xi, yi) ≤ r:

Then, each yj should be list decoded in T with a radius a′, and yi − (−∑j 6=i tj), for all resulting
combinations of tj , list decoded in V with a radius r.

56 CHAPTER 5. THE K-ING GROUPS AND THE SINGLE PARITY-CHECK K-GROUPS

These two sub-cases are illustrated in Figure 5.4. The number of stored elements (when computing
each sub-case) is bounded by

• l(T, δ)k−1 · l(V, a1 = r−a′
d(V)), for the first sub-case,

• l(T, a2 = a′

d(T))k−1 · l(V, δ) for the second sub-case.

Consequently, if we choose a1 = a2 = 2
3δ, the number of elements in T is bounded from above by

k
[
l(T, δ)k−1l(V,

2

3
δ) + l(T,

2

3
δ)k−1l(V, δ)

]
, (5.23)

which is likely to be smaller than k · l(T, δ)k, the bound obtained without the splitting strategy.

0

d(xi, yi)

y1, ..., yj 6=i, ..., yk yi

0 δ

∑
j 6=i d(xj, yj)

∑
j 6=i δ(xj , yj)

r/2 < d(xi, yi) ≤ r − a′

r/2 r − a′ r

a2 = (r − a′)/d(V)

δ(xi, yj)

a′ ≤ ∑
j 6=i d(xj , yj) < r/2

0 a′

yiy1, ..., yj 6=i, ..., yk

d(xi, yi)

0 δ

∑
j 6=i δ(xj, yj)

a1 = a′/d(T)

δ(xi, yj)

rr/2

∑
j 6=i d(xj , yj)

0 <
∑

j 6=i d(xj , yj) < a′ r/2 < d(xi, yi) ≤ r

Sub-ase 2Sub-ase 1

Figure 5.4: Possible noise repartition, in the scope of the first splitting strategy. From the top to
the bottom: Representation of y as (y1, ..., yj 6=i, ..., yk, yi) with the associated possible noise levels;
Unnormalized gauge representing the two noise levels; Normalized gauge representing the two noise
levels.

Algorithm 5.5 List dec. for Γ(V, β, k)P ∈ Rkn with the splitting strategy (first splitting strategy
with two sub-cases)

Input: y = (y1, y2, ..., yk) ∈ Rkn, 0 ≤ δ.

1: for η ∈ {δ, 2
3δ,

δ
2

∗
, δ3
∗
, δ4
∗} do

2: Set T η1 , T η2 , ..., T ηk as global variables.
3: Compute the sets T η1 = T ∩Bη(y1), T η2 = T ∩Bη(y2), ..., T ηk = T ∩Bη(yk).
4: end for
5: for 1 ≤ i ≤ k do
6: T1 ← SubR(y1, y2, ..., yk, δ, 2/3δ, i).
7: T2 ← SubR(y1, y2, ..., yk, 2/3δ, δ, i).
8: end for
9: Return T = {T1, T2}.
∗The sets T

δ
2
i , T

δ
3
i , and T

δ
4
i are computed only if used by the subroutine.

Lemma 5.2 (Complexity using the first splitting strat. with two sub-cases, no second splitting strat.).
Algorithm 5.5 with the subroutine listed in Algorithm 5.6, outputs the set Γ(V, β, k)P∩Bδ(y) in worst-case
time

CA.5.5 =kCT∩Bδ(y) + k
[
l(T, δ)k−1CV ∩B 2

3
δ
(y) + l(T,

2

3
δ)k−1CV ∩Bδ(y)

]
. (5.24)

5.3. DECODING ALGORITHMS 57

Algorithm 5.6 Subroutine of Algorithm 5.5 (without the second splitting strategy)

Function SubR(y1, y2, ..., yk, δ1, δ2, i)
Input: y = (y1, y2, ..., yk) ∈ Rkn, 1 ≤ t, 0 ≤ δ1, δ2, 1 ≤ i ≤ k.

1: Set j1 < j2 < ... < jk−2, where j1, j2, ..., jk−1 ∈ {1, 2, ..., k}\{i}.
2: for each (tj1 , ..., tjk−1) ∈ T δ1j1 × T

δ1
j2
...× T δ1jk−1

do

3: Compute the sets Vi = V ∩Bδ2
(
yi − (−

∑
j′ tjj′)

)
4: for vi ∈ Vi do
5: Add (tj1 , ..., tji−1 , vi + (−

∑
j′ tjj′), tji , ..., tjk−1) to the list T .

6: end for
7: end for
8: Return T .

Note: The set T∩B 2
3 δ

(y) is obtained by removing the lattice points too far from y in the set T∩Bδ(y).
Hence, we made the approximation CT∩Bδ(y),T∩B 2

3
δ
(y) ≈ CT∩Bδ(y).

Similarly, the second splitting strategy splits the case 0 ≤ d(xj , yj) ≤ r
2 , j 6= i, into several sub-cases.

Let 0 ≤ a′ ≤ r
2 . We recall that we have

∑
j 6=i d(xj , yj) ≤ r

2 .

• If a′ ≤ d(xj , yj) ≤ r
2 then 0 ≤ d(xl, yl) ≤ r

2 − a′, ∀l where 1 ≤ l 6= j 6= i ≤ k:
Then, yj should be list decoded in T with a radius r

2 and each yl list decoded in T with a radius
r
2 − a′.

• Else 0 ≤ d(xj , yj) < a′ and for one l, 1 ≤ l 6= j 6= i ≤ k, one may have a′ ≤ d(xl, yl) ≤ r
2 :

Then, yj should be list decoded in T with a radius a′, yl list decoded in T with a radius r
2 , and all

the remaining y′s list decoded in T with a radius a′.

Of course, since it is not possible to know the index l where3 a′ ≤ d(xl, yl) ≤ r
2 , all k − 2 possibilities

should be computed (which yields k − 1 possibilities if we include the first sub-case a′ ≤ d(xj , yj) ≤ r
2).

If we choose a′ = r
2 −a′ = r

4 , the product of the maximum list size of each k− 1 case is l(T, δ)l(T, δ2)k−2.
As a result, the maximum number of possibilities to consider for

∑
j 6=i tj is

(k − 1)l(T, δ)l(T,
δ

2
)k−2, (5.25)

instead of l(T, δ)k−1 without this second splitting strategy.

Algorithm 5.7 Subroutine of Algorithm 5.5 (with once the second splitting strategy)

Function SubR(y1, y2, ..., yk, δ1, δ2, i)
Input: y = (y1, y2, ..., yk) ∈ Rkn, 1 ≤ t, 0 ≤ δ1, δ2, 1 ≤ i ≤ k.

1: for 1 ≤ l 6= i ≤ k do
2: Set j1 < j2 < ... < jk−2, where j1, j2, ..., jk−2 ∈ {1, 2, ..., k}\{i, l}.
3: for each (tl, tj1 , ..., tjk−2) ∈ T δ1l × T

δ1/2
j1

× T δ1/2j2
...× T δ1/2jk−2

do

4: Compute the sets Vδ2i = V ∩Bδ2
(
yi − (−tl −

∑
j′ tjj′)

)
5: for vi ∈ Vδ2i do
6: Add (tj1 , ..., tl, ...tji−1 , vi + (−tl −

∑
j′ tjj′), tji , ..., tjk−1) to the list T .

7: end for
8: end for
9: end for

10: Return T .

The combination of the two splitting strategies is implemented via the association of the subroutine
listed in Algorithm 5.7 with Algorithm 5.5. Substituting (5.25) in (5.23), the number of element in T is
bounded from above by

k(k − 1)
[
l(T, δ)l(T,

δ

2
)k−2l(V,

2

3
δ) + l(T,

2

3
δ)l(T,

δ

3
)k−2l(V, δ)

]
,

= k(k − 1)l(T, δ)l(T,
2

3
δ)
[
l(T,

δ

2
)k−2 + l(T,

δ

3
)k−2], (5.26)

3One may not have a′ ≤ d(xl, yl), ∀l, 1 ≤ l 6= i ≤ k. It is not an issue as we would then simply decode with a radius
greater than necessary.

58 CHAPTER 5. THE K-ING GROUPS AND THE SINGLE PARITY-CHECK K-GROUPS

where we used l(T, δ) = l(V, δ).

Lemma 5.3 (Complexity using the first splitting strat. with two sub-cases and once the second splitting
strat.). Algorithm 5.5, with the subroutine listed in Algorithm 5.7, outputs the set Γ(V, β, k)P ∩Bδ(y) in
worst-case time

CA.5.5 =kCT∩Bδ(y) + (k2 − k)
[
l(T, δ)l(T,

δ

2
)k−2CV ∩B 2

3
δ
(y) + l(T,

2

3
δ)l(T,

δ

3
)k−2CV ∩Bδ(y)

]
. (5.27)

Example 5.1. Let δ < 1
2 . Using Theorem 5.1 we have: l(T, δ) < 2n, l(T, 2

3δ) = 2, and l(T, δ2) =

l(T, δ3) = 1. On the one hand, the complexity of Algorithm 5.4 (without the splitting strategy), given by
Equation (5.21), becomes:

CA.5.4 =kCT∩Bδ(y) + k(2n)k−1CV ∩Bδ(y),

≈k(2n)k−1CV ∩Bδ(y).
(5.28)

On the other hand, the complexity of Algorithm 5.5, with the subroutine listed in Algorithm 5.7, given
by Equation (5.27), becomes:

CA.5.5 = kCT∩Bδ(y) + (k2 − k)[2nCV ∩B 2
3
δ
(y) + 2CV ∩Bδ(y)],

≈ (k2 − k)2nCV ∩B 2
3
δ
(y).

(5.29)

As a result, the worst-case complexity is quasi-linear in l(T, δ) with the splitting strategies, which is the
space dimension n in this case, whereas it is polynomial of order k − 1 in l(T, δ) without the splitting
strategy.

The second splitting strategy can be applied several times. Assume that d(x1, y1) > r
2 and d(x2, y2) >

r
4 . Then,

∑k
j=3 d(xj , yj) ≤ r

4 . Hence, instead of decoding each yj with a relative radius δ
2 , we apply

(again) the second splitting strategy which yields

(k − 2)l(T,
δ

2
)l(T,

δ

4
)k−3 (5.30)

possibilities instead of l(T, δ2)k−2. Substituting (5.30) in (5.25) yields

(k − 1)(k − 2)l(T, δ)l(T,
δ

2
)l(T,

δ

4
)k−3. (5.31)

It is not necessary to further apply this second splitting strategy as we do not consider list decoding
beyond the minimum distance, i.e. δ < 1 and l(T, δ4) < l(T, 1

4) = 2. Hence, (5.31) becomes

(k − 1)(k − 2)l(T, δ)l(T,
δ

2
). (5.32)

Substituting (5.32) in (5.23), the number of elements in T is bounded from above by (when applying
twice the second splitting strategy)

k(k − 1)(k − 2)l(T, δ)l(T,
2

3
δ)
[
l(T,

δ

2
) + l(T,

1

3
δ)
]
. (5.33)

Lemma 5.4 (Complexity using the first splitting strat. with two sub-cases and twice the second splitting
strat.). Algorithm 5.5, with the subroutine listed in Algorithm 5.8, outputs the set Γ(V, β, k)P ∩Bδ(y) in
worst-case time

CA.5.5 = kCT∩Bδ(y)+k(k − 1)(k − 2)
[
l(T, δ)l(T,

δ

2
)CV ∩B 2

3
δ
(y) + l(T,

2

3
δ)l(T,

δ

3
)CV ∩Bδ(y)

]
. (5.34)

Finally, an alternative to the first splitting strategy is to split the analysis into three cases instead of
two. Let 0 ≤ a′ ≤ a′′ ≤ r

2 .

• If a′′ ≤∑j 6=i d(xj , yj) ≤ r
2 then r

2 < d(xi, yi) ≤ r − a′′:
Then, each yj should be list decoded in T with a radius r

2 and yi − (−∑j 6=i tj), for all resulting
combinations of tj , list decoded in V with a radius r − a′′.

5.3. DECODING ALGORITHMS 59

Algorithm 5.8 Subroutine of Algorithm 5.5 (with twice the second splitting strategy)

Function SubR(y1, y2, ..., yk, δ1, δ2, i)
Input: y = (y1, y2, ..., yk) ∈ Rkn, 1 ≤ t, 0 ≤ δ1, δ2, 1 ≤ i ≤ k.

1: for 1 ≤ l 6= i ≤ k do
2: for 1 ≤ m 6= l 6= i ≤ k do
3: Set j1 < j2 < ... < jk−3, where j1, j2, ..., jk−3 ∈ {1, 2, ..., k}\{i, l,m}.

4: for each (tl, tm, tj1 , ..., tjk−3) ∈ T δ1l × T
δ1
2

m × T
δ1
4

j1
× T

δ1
4

j2
...× T

δ1
4

jk−2
do

5: Compute the sets Vδ2i = V ∩Bδ2
(
yi − (−tl − tm −

∑
j′ tjj′)

)
6: for vi ∈ Vδ2i do
7: Add (tj1 , ..., tl, ..., tji−1 , vi + (−tl − tm −

∑
j′ tjj′), tji , ..., tm, ...tjk−1) to the list T .

8: end for
9: end for

10: end for
11: end for
12: Return T .

• Else if a′ ≤∑j 6=i d(xj , yj) ≤ a′′ then r
2 < d(xi, yi) ≤ r − a′:

Then, each yj should be list decoded in T with a radius a′′ and yi − (−∑j 6=i tj), for all resulting
combinations of tj , list decoded in V with a radius r − a′.

• Else 0 ≤∑j 6=i d(xj , yj) < a′ and r
2 < d(xi, yi) ≤ r:

Then, each yj should be list decoded in T with a radius a′ and yi − (−∑j 6=i tj), for all resulting
combinations of tj , list decoded in V with a radius r.

The number of stored elements is bounded by

• l(T, δ)k−1 · l(V, δ − a1

2 = r−a′′
d(V)), for the first sub-case,

• l(T, a1 = a′′

d(T))k−1 · l(V, δ − a2

2 = r−a′
d(V)) for the second sub-case,

• l(T, a2 = a′

d(T))k−1 · l(V, δ) for the third sub-case.

The number of candidates in T is bounded from above by

k
[
l(T, δ)k−1l(V, δ − a1

2
) + l(T, a1)k−1l(V, δ − a2

2
) + l(T, a2)k−1l(V, δ)

]
. (5.35)

Substituting (5.32) in (5.35), the maximum number of elements to process at the last step of the algorithm
is upper bounded by (when applying the first splitting strategy with three cases and twice the second
splitting strategy)

k(k − 1)(k − 2)
[
l(T, δ)l(T,

δ

2
)l(V, δ − a1

2
) + l(T, a1)l(T,

a1

2
)l(V, δ − a2

2
) + l(T, a2)l(T,

a2

2
)l(V, δ)

]
. (5.36)

Lemma 5.5 (Complexity using the first splitting strat. with three sub-cases and once or twice second
splitting strat.). Algorithm 5.9 outputs the set Γ(V, β, k)P ∩Bδ(y) in worst-case time:

• If one uses the subroutine listed in Algorithm 5.7 (once the second splitting strategy)

CA.5.9 = kCT∩Bδ(y) + (k2 − k)
[
l(T, δ)l(T,

δ

2
)k−2CV ∩B

δ− a1
2

(y) + l(T, a1)l(T,
a1

2
)k−2CV ∩B

δ− a2
2

(y)

+ l(T, a2)l(T,
a2

2
)k−2CV ∩Bδ(y)

]
.

(5.37)

• If one uses the subroutine listed in Algorithm 5.8 (twice the second splitting strategy)

CA.5.9 = kCT∩Bδ(y) + k(k − 1)(k − 2)
[
l(T, δ)l(T,

δ

2
)CV ∩B

δ− a1
2

(y) + l(T, a1)l(T,
a1

2
)CV ∩B

δ− a2
2

(y)

+ l(T, a2)l(T,
a2

2
)CV ∩Bδ(y)

]
.

(5.38)

60 CHAPTER 5. THE K-ING GROUPS AND THE SINGLE PARITY-CHECK K-GROUPS

Algorithm 5.9 List dec. for Γ(V, β, k)P ∈ Rkn with the splitting strategy (first splitting strategy
with three sub-cases)

Input: y = (y1, y2, ..., yk) ∈ Rkn, 3/4 ≤ δ, 0 < a2 < a1 < δ.

1: for η ∈ {δ, a1, a2, a1/2, a2/2} do
2: Set T η1 , T η2 , ..., T ηk as global variables.
3: Compute the sets T η1 = T ∩Bη(y1), T η2 = T ∩Bη(y2), ..., T ηk = T ∩Bη(yk).
4: end for
5: for 1 ≤ i ≤ k do
6: T1 ← SubR(y1, y2, ..., yk, δ, δ − a1

2 , i).
7: T2 ← SubR(y1, y2, ..., yk, a1, δ − a2

2 , i).
8: T3 ← SubR(y1, y2, ..., yk, a2, δ, i).
9: end for

10: Return T = {T1, T2, T3}.

Similarities with [GP17]. The first splitting strategy is used in [GP17] to prove that the worst-
case list size of the Barnes-Wall lattices (which belong to the family of parity lattices with k = 2, see
Section 6.2.1) is polynomial in the lattice dimension for any decoding radius bounded away from the
minimum distance. For instance, Equation (5.23) for k = 2 and δ = 5/8 becomes the same equation as
the one at the end of the proof of Lemma 2.5 in [GP17]. While [GP17] also investigates the decoding
aspect of Barnes-Wall lattices, a different technique is used, resulting in a complexity quadratic in the
list size. Finding an algorithm with quasi-linear dependence in the list size is stated as an open problem
in [GP17]. As shown in this section, the splitting strategy for decoding enables to get this quasi-linear
complexity in the list size. See Section 6.2.1 for more details on [GP17].

Chapter 6

Parity lattices

This chapter is dedicated to the study of a new family of lattices named parity lattices (see Definition 6.1
below). It is divided into two sections. The first section discusses the parity lattices for arbitrary k. The

second section is about parity lattices obtained with k = 2 and k = n
1

log logn .

6.1 Algorithms and theorems

6.1.1 Properties of the parity lattices

Families of single parity-check groups can be built by recursively applying the single parity-check con-
struction (see Equation (5.10)). For instance, a new family of lattices is obtained as follows.

First, given d(Γ(V, β, k)P) = min{2d(T), d(V)}, we shall consider only lattices where d(V) = 2d(T).
In order to find two lattices having this property, with V ⊂ T , we consider a lattice T over a complex
ring J , and rotate it by an element θ ∈ J , with |θ| =

√
2, to get V : i.e. V = θ · T . This yields V ∼=

√
2T

and d(Γ(θT, β, k)P) = 2d(T). The ring J can for instance be Z[i] or Z[λ].
More formally, let ΛC

c be a lattice over a complex ring J , where J is either Z[i] or Z[λ]. We denote by
Λc ∈ Rc the corresponding real lattice, with real dimension c. Let Ln be the real lattice obtained via
(4.3) from a complex lattice LC

n and θLn be the real lattice obtained from θ · LC
n. Also, β = [Ln/θLn].

Definition 6.1. Let n = c · kt, t ≥ 0. The parity lattices in dimension kn are defined by the following
recursion:

Lkn = Γ(θLn, β, k)P ,

= {(v1 + n1, v2 + n2, ..., vk −
∑
i6=k

ni), vi ∈ θLn, ni ∈ β},

= {(t1, t2, ..., v′k −
∑
i 6=k

ti), v
′
k ∈ θLn, ti ∈ Ln},

(6.1)

with initial condition Lc = Λc. The number t of recursive steps should not be confused with ti ∈ Ln.

The fundamental coding gain of these lattices is given by the following theorem. It shows that a
small k maximizes the asymptotic density as a function of n but a large k minimizes the number of
recursive steps t needed to reach a given density.

Lemma 6.1. Let n = c · kt, t ≥ 0 and g be the coding gain of Lc. The fundamental coding gain of the
parity lattices is

γ(Ln) =
g · 2t
2
t
k

= n
1

log2 k
− 1
k log2 k 2log2 g−logk(c)(1− 1

k). (6.2)

Proof. Scale Lc such that vol(Lc) = 1. First, we compute the minimum distance: d(Lkn) = min{d(θLn), 2d(Ln)} =
2d(Ln), with initial condition d(Lc) = g. Hence, d(Ln) = g · 2t. Second, we have

vol(Lkn)
2
kn =

(
vol(θLn)k

|β|k−1

) 2
kn

=

(
(vol(Ln) · 2

n
2)k

2(n
2

)(k−1)

) 2
kn

,

= vol(Ln)
2
n · 2

1
k ,

(6.3)

61

62 CHAPTER 6. PARITY LATTICES

with initial condition vol(Lc)
2/kn = 1. Hence, vol(Ln)2/kn = 2t/k and the fundamental coding gain

becomes:

γ(Ln) =
g · 2t

2t/k
= 2t−

t
k 2log2 g =

(n
c

) 1
log2 k

− 1
k log2 k 2log2 g.

For instance, taking J = Z[i], θ = φ = 1 + i, k = 3, and an initial condition L2 = Z2, yields a
series of lattices with γ(Ln) = O(n0.4206). Another example: J = Z[λ], k = 3, and an initial condition
L24 = Λ24, one gets a denser series but with the same asymptotic behavior with respect to the coding
gain O(n0.4206).

A generator matrix for Lkn, say GLkn , as a function of GLn has the following form:

GLkn =

GθLn 0 0 . . . 0
GLn −GLn 0 . . . 0

0 GLn −GLn . . . 0
0 0 GLn . . . 0
...

...
. . .

. . .
...

0 0 . . . GLn −GLn

. (6.4)

6.1.2 Recursive decoding

Presentation of the recursive algorithms

The decoding algorithms of the previous chapter can be adapted to decode groups recursively built
from the single parity-check construction. As examples, we adapt Algorithms 5.1, 5.4, and 5.5 in the
recursive Algorithms 6.1, 6.2, and 6.3, respectively, to decode the parity lattices Lkn = Γ(θLn, β, k)
(presented in Definition 6.1). Hence, we have T = Ln and V = θLn. Since l(Ln, δ) = l(θLn, δ), we set
l(n, δ) = L(n, r) = l(Ln, δ) to simplify the notations. Moreover, we also write C(δ) for C(nk , δ) and l(δ)
for l(nk , δ).

Algorithm 6.1, a recursive BDD, is obtained by replacing Steps 1-3 of Algorithm 5.1 by the recursive
Steps 4-7. Regarding Step 6: The point yi − (−∑j 6=i tj) should be decoded in the lattice RθLc·kt . It is

equivalent to decode (yi − (−∑j 6=i tj)) · R(c · kt, θ)−1 in Lc·kt and then rotate the output lattice point

by R(c · kt, θ).
The recursive list decoders involve the above modifications as well as the following one: The “remov-

ing” steps (Steps 14 and 15 in Algorithms 6.2 and Steps 11 and 12 in Algorithm 6.3) are added to ensure
that a list with no more than l(n, δ) elements is returned by each recursive call. This enables to control
the complexity of the algorithm. However, we shall see that the step in bold is not always necessary for
the Gaussian channel.

The recursive version of all algorithms presented in the previous chapter are obtained in a similar
manner.

Algorithm 6.1 Recursive BDD for Lkn = Γ(θLn, β, k), n = c · kt
Function RecL(y, t)
Input: y = (y1, y2, ..., yk) ∈ Rkn, 0 ≤ t.

1: if t = 0 then
2: xopt ← Decode (BDD) y in Λc.
3: else
4: t1 ← RecL(y1, t− 1), t2 ← RecL(y2, t− 1),...,

tk ← RecL(yk, t− 1).
5: for 1 ≤ i ≤ k do
6: vi ← RecL([yi − (−∑j′ tjj′)] ·R(c · kt, θ)T , t− 1) ·R(c · kt, θ).
7: x̂i ← (tj1 , ..., tji−1

, vi + (−∑j′ tjj′), tji , ..., tjk−1
)

8: end for
9: end if

10: Return xopt = arg min
1≤i≤k

||y − x̂i||.

6.1. ALGORITHMS AND THEOREMS 63

Algorithm 6.2 Recursive list dec. for Lkn = Γ(θLn, β, k)P ∈ Rkn without the splitting strategy

Function ListRecL(y, t, δ)
Input: y = (y1, y2, ..., yk) ∈ Rkn, 0 ≤ t, 0 ≤ δ.

1: if t = 0 then
2: T ← The set Λc ∩Bδ(y).
3: else
4: T1 ← ListRecL(y1, t− 1, δ), T2 ← ListRecL(y2, t− 1, δ),..., Tk ← ListRecL(yk, t− 1, δ).
5: for 1 ≤ i ≤ k do
6: Set j1 < j2 < ... < jk−1, where j1, j2, ..., jk−1 ∈ {1, 2, ..., k}\{i}.
7: for each (tj1 , ..., tjk−1

) ∈ Tj1 × Tj2 ...× Tjk−1
do

8: Vi ← ListRecL([yi − (−∑j′ tjj′)] ·R(c · kt, θ)T , t− 1, δ) ·R(c · kt, θ).
9: for vi ∈ Vi do

10: Add (tj1 , ..., tji−1
, vi + (−∑j′ tjj′), tji , ..., tjk−1

) in the list T .
11: end for
12: end for
13: end for
14: Remove all elements in T at a relative distance > δ from y.
15: Sort the remaining elements in T in a lexicographic order and remove all duplicates.
16: end if
17: Return T .

Preliminary complexity analysis

The following theorem presents the complexity of the recursive BDD.

Theorem 6.1. Let n = c · kt and y ∈ Rn. If d(y, Ln) < ρ2(Ln), then Algorithm 6.1 outputs the closest
lattice point to y in time

CA.6.1(n,
1

4
) = O(n

1+ 1
log2k). (6.5)

Proof.

C(n,
1

4
) =2kC(

n

k
,

1

4
) +O(n) = O(n)

logk n∑
i=0

(
2k

k

)i
,

=O(n
1+ 1

log2k).

Regarding the recursive list decoders, we address the following question. Among the proposed
list-decoding strategies enumerated in the previous chapter, which one should be used to
minimize the complexity with respect to the space dimension n?
We assume that k = o(n). For 1

4 < δ < 1, list decoding without the splitting strategy induces a

complexity bounded from below by l(n/k, δ)k−1 ·C(n/k, δ). Unwinding the recurrence yields a complexity

≥ n(k−1) logk
1
2ε , if δ = 1

2 − ε, 0 < ε < 1
4 and

C(n, δ) ≥ nΩ(logk n), (6.6)

if δ > 1
2 (assuming l(n, δ > 1

2) = Ω(n)). Consequently, we study the different splitting strategies to break
this super-polynomial complexity.

First, when should one consider the second splitting strategy? We recall that this strategy linearizes
l(n, δ)k−1 in: (k − 1)l(n, δ)l(n, δ/2)k−1 if used once and (k − 1)(k − 2)l(n, δ)l(n, δ/2) if used twice.
Obviously, if k = 2 the strategy is pointless and if k = 3 it should be considered at most once. However,
for any k > 3, the second splitting strategy should be used (to avoid a super-polynomial
complexity):

• Once if l(n, δ) > 1 and l(n, δ2) = 1, i.e. for 1
4 ≤ δ < 1

2 (using Theorem 5.1).

• Twice if l(n, δ2) > 1, i.e. for 1
2 ≤ δ < 1.

64 CHAPTER 6. PARITY LATTICES

Algorithm 6.3 Recursive list dec. for Lkn = Γ(θLn, β, k)P ∈ Rkn with the splitting strategy (first
splitting strategy with two sub-cases)

Function ListRecL(y, t, δ)
Input: y = (y1, y2, ..., yk) ∈ Rkn, 0 ≤ t, 0 ≤ δ.

1: if t = 0 then
2: x̂← The set Λc ∩Bδ(y).
3: else
4: for η ∈ {δ, 2/3δ, 1/2δ, 1/3δ} do
5: T η1 ← ListRecL(y1, t− 1, η), T η2 ← ListRecL(y2, t− 1, η), ..., T ηk ← ListRecL(yk, t− 1, η).
6: end for
7: for 1 ≤ i ≤ k do
8: T1 ← SubR(y1, y2, ..., yk, t, δ, 2/3δ, i).
9: T2 ← SubR(y1, y2, ..., yk, t, 2/3δ, δ, i).

10: end for

11: Remove all elements in T = {T1, T2} at a relative distance > δ from y.
12: Sort the remaining elements in T in a lexicographic order and remove all duplicates.
13: end if
14: Return T .

Algorithm 6.4 Subroutine of the recursive Algorithm 6.3 (with once the second splitting strategy)

Function SubR(y1, y2, ..., yk, t, δ1, δ2, i)
Input: y = (y1, y2, ..., yk) ∈ Rn, 1 ≤ t, 0 ≤ δ1, δ2, 1 ≤ i ≤ k.

1: for 1 ≤ l 6= i ≤ k do
2: Set j1 < j2 < ... < jk−2, where j1, j2, ..., jk−2 ∈ {1, 2, ..., k}\{i, l}.
3: for each (tl, tj1 , ..., tjk−2) ∈ T δ1l × T

δ1/2
j1

× T δ1/2j2
...× T δ1/2jk−2

do

4: Vδ2i ← ListRecL([yi − (−tl −
∑
j′ tjj′)] ·R(c · kt, θ)T , t− 1), t− 1, δ2) ·R(c · kt, θ).

5: for vi ∈ Vδ2i do
6: Add (tj1 , ..., tji−1 , vi + (−tl −

∑
j′ tjj′), tji , ..., tjk−1) in the list T .

7: end for
8: end for
9: end for

10: Return T .

Second, should one use the first slitting strategy with two sub-cases or three? We analyze the behavior
of the first splitting strategy with two sub-cases. Depending on the second splitting strategy, there is
a multiplicative term kx1 , 1 ≤ x1 ≤ 3, in the complexity formulas. Moreover, assume that C(n, 2

3δ)
has polynomial complexity O(nx2), where x2 is a positive constant. The complexity has the form (see
Equations (5.24), (5.27), and (5.34))

C(n, δ) ≈ kx1

[
l(

2

3
δ)C(δ) +

l(δ)

kx2
O(nx2)

]
,

≤ kx1−x2 l(δ)O(nx2)

logk n∑
i=0

(
kx1 l(2

3
δ)

kx2

)i
,

= kx1−x2 l(δ)O(nx1nlogk l(
2
3
δ)),

(6.7)

where we assumed that kx1−x2 l(2
3δ) > 1.

Equation (6.7) illustrates the critical aspect of l(n, 2
3δ). If 1

4 < δ < 3
4 , we have l(n, 2

3δ) < l(n, 1
2) = O(1)

(using Theorem 5.1). But if 3
4 ≤ δ < 1, then l(n, 2

3δ) = Ω(n). Hence, the first splitting strategy with
two-cases induces a super-polynomial complexity for δ ≥ 3

4 , but not for δ < 3
4 (assuming that l(n, δ) is

not super-polynomial).
On the other hand, the splitting strategy with three cases yields a complexity (see Equation (5.38))

C(n, δ) ≈kx1
[
l(δ)C(a1) + l(2(δ − a1))C(δ − a2

2
) + l(a2)C(δ)]. (6.8)

To avoid the super-polynomial behavior, we need l(a2) = O(1). We set a2 = 1
2 − ε′1 (see Theorem 5.1)

6.1. ALGORITHMS AND THEOREMS 65

which implies δ− a2

2 = δ− 1
4 +

ε′1
2 . It is then possible to show by induction that (6.8) is polynomial in n

if l(δ) is also polynomial in n (see the next sections).
As a result, one should choose the first splitting strategy with two cases if δ < 3

4
, but

with three cases otherwise.
Note: When we address the complexity of these recursive list decoders, the left-hand term of (5.3)

should be updated to include the complexity of the removing steps performed at each recursion. The
most expensive operation is the sorting step. It can be realized with the classical Merge Sort algorithm
in time O(n · l(nk , δ) log l(nk , δ)) (see Appendix 6.3.1). This term should be added to the first line of (6.7)

and thus compared with kx1 l(δ)
kx2

O(nx2) for the recursion. In our analyses, we assume that the former
term is negligible compared to the latter one. Potential errors induced by this approximation only involve
a log l(δ) term which has no impact on the conclusions we draw.

6.1.3 Decoding performance on the Gaussian channel

Similarly to the previous section, we also restrict the analysis to the lattices Γ(V, β, k)P where V ∼=
√

2T .
Nevertheless, it should be possible to extend it to other group codes (such as binary linear codes) built
via the single parity-check construction.

Lemma 6.2. Let x ∈ Λ ⊂ Rn and let y ∈ Rn be the point to decode. Let T denote the list outputted by
a list-decoding algorithm. The point error probability under list decoding is bounded from above by:

Pe(dec) ≤Pe(opt) + P (x /∈ T). (6.9)

Proof.

Pe(dec) =P (y /∈ V(x)) + P (x /∈ T ∩ y ∈ V(x)),

≤P (y /∈ V(x)) + P (x /∈ T).
(6.10)

In the sequel, we derive formulas to estimate the term P (x /∈ T) obtained with several versions of
the recursive list decoders presented in the previous section.

Choosing the decoding radius for regular list decoding on the Gaussian channel

Consider the Gaussian channel where y = x + w, with y ∈ Rn, x ∈ Λ ⊂ Rn, and w ∈ Rn with i.i.d
N (0, σ2) components. With a regular list decoder T = Λ ∩Bδ(y) and

P (x /∈ T) = P (||w||2 > r). (6.11)

Since ||w||2 is a Chi-square random variable with n degrees of freedom, P (||w||2 > r) = F (n, r, σ2),
where, for n even :

F (n, r, σ2) = e
− r

2σ2

n/2−1∑
k=0

1

k!

(r

2σ2

)k
. (6.12)

Theorem 6.2. Consider Algorithm 6.2 with the following input parameters. The point y = x+w, where
y ∈ Rkn, x ∈ Lkn, and w ∈ Rkn with i.i.d N (0, σ2) components. Moreover, t ≥ 0 and δ = r/d(Lkn). We
have

P (x /∈ T) = F (kn, r, σ2). (6.13)

Based on (6.9), quasi-optimal performance with regular list decoding is obtained by choosing a de-
coding radius r = E[||w||2](1+ε) = nσ2(1+ε) such that F (n, r, σ2) < η · Pe(opt, σ2) (in practice η = 1/2
is good enough). Moreover, it is easy to show that ε→ 0 when n→ +∞. We denote by δ∗ the relative
decoding radius corresponding to this specific r:

δ∗ =
nσ2(1 + ε)

d(Λ)
. (6.14)

Of course, the greater δ∗, the greater the list-decoding complexity.

66 CHAPTER 6. PARITY LATTICES

A modified list-decoding algorithm

Notice that due to the “removing step” (Steps 14 and 11, in bold, of Algorithms 6.2 and 6.3, respectively),
some points that are correctly decoded by Algorithm 6.1 (the BDD) are not in the list outputted by
Algorithms 6.2 and 6.3 (if δ = 1/4 or even slightly greater): The decoding radius is r in V and r/2 in T ,
but only the points at a distance less than r from y are kept. Hence, if a point found at the last recursive
step is at a distance greater than r from y, even if it is the unique point found, it is not kept and an
empty list is returned. On the contrary, the BDD outputs a point even if it is further than r = 1

4d(Lkn)
from y. Of course, the relative decoding radius δ can be increased to avoid this situation, but at the cost
of a greater decoding complexity.

To avoid the situation mentioned above, we remove Step 14 in Algorithm 6.2. We will see in the
rest of the chapter that this enables to choose smaller decoding radii for QMLD than with regular
list decoding and reduce the complexity despite the absence of the removing step. In terms of error
probability, decoding in a sphere is the best choice given a finite decoding volume around the received
point y. However, there may be larger non-spherical volumes that achieve satisfactory performance but
that are less complex to explore. This is the main idea behind this modified list-decoding algorithm.
This subsection concentrates on the analysis of the error probability of the modified algorithm. The
analysis of the asymptotic complexity is deferred to the next sections.

Theorem 6.3. Consider Algorithm 6.2 without Step 14 with the following input parameters. The point
y is obtained on a Gaussian channel with VNR ∆ = vol(Lkn)2/kn/2πeσ2 as y = x+ w, where y ∈ Rkn,
x ∈ Lkn, and w ∈ Rkn with i.i.d N (0, σ2) components. Moreover, t ≥ 0 and δ is the relative decoding
radius. We have

P (x /∈ T) ≤ Ukn(δ,∆), (6.15)

where

Un(δ,∆) = min
{(k

2

)
Un
k

(δ,
∆

2
1
k

)2 + kUn
k

(δ, 2
k−1
k ∆)(1− Un

k
(δ,

∆

2
1
k

))k−1, 1
}
. (6.16)

The initial condition Uc(δ,∆) corresponds to the decoding performance in Lc: Uc(δ,∆) = P (x /∈ Tc),
where Tc denotes the list of candidates obtained when list decoding in Lc.

The proof is provided in Appendix 6.3.2. For instance, a regular list decoder for Lc with relative
decoding radius δ is used in Algorithm 6.2. Consequently, the initial condition is

Uc(δ,∆) = F (c, f(δ), f(∆)), (6.17)

with f(δ) = δ · d(Lc), and f(∆) = vol(Lc)
2
c /(2πe∆).

As illustrated by the next example, (6.16) means that the lattices of smaller dimensions are decoded

with the same relative radius but with a VNR that is either greater, 2
k−1
k ∆, or smaller, ∆/2

1
k . This

result is a consequence of the following properties of the parity lattices: vol(Ln)
2
n = vol(Lkn)

2
kn /2

1
k and

d(Ln) = d(Lkn)/2.

Example 6.1. Let Λ24 be the Leech lattice and let β = [Λ24/λΛ24], where λ = 1+i
√

7
2 (see Section 7.1.1

for more details on λΛ24). The k-parity-Leech lattices are defined as Lkn = Γ(λLn, β, k)P with initial
condition Λc = Λ24. On the Gaussian channel and with Algorithm 6.2 without Step 14, the probability
that the transmitted lattice point is not in the outputted list is given by (6.16). We let the initial condition
U24(∆) be the performance of the optimal decoder for Λ24 (δ is thus irrelevant in this case). It means
that Step 2 of Algorithm 6.2 is modified by using a MLD decoder for Λ24.

For the lattice Lk·24, the value of Uk·24(∆) is obtained by adding the performance curves representing

•
(
k
2

)
· (PΛ24

e (opt,∆))2, shifted by 10 log10(2
1
k) dB to the right,

• and kPΛ24
e (opt,∆) shifted by 10 log10(2

k−1
k) dB to the left (assuming that (1− Un

k
(∆

2
1
k

))k−1 ≈ 1).

The results for k = 3 and k = 7 are shown by the dashed line in Figure 6.1. Since there is only
one recursive step, Algorithm 6.2 is equivalent to Algorithm 5.4. The associated decoding complexity is
obtained from (5.21) where the term l(T, δ) is set to 1 since the MLD decoder of Λ24 returns only one
candidate (note that (5.21) reduces to (5.16) in this case). Consequently, we get

C(Lk·24) = 2kCΛ24
MLD +O(k · 24). (6.18)

6.1. ALGORITHMS AND THEOREMS 67

1 1.5 2 2.5 3 3.5

Distance to Poltyrev limit (dB)

10
-4

10
-3

10
-2

P
o

in
t

E
rr

o
r

P
ro

b
a

b
ili

ty

Figure 6.1: Performance curves for Example 6.1.

The probability Uk·k·24(∆) is obtained in a similar manner from Uk·24(∆). For instance, U7·7·24(∆) is
also plotted in the figure. The corresponding decoding complexity of Lk·k·24 (without using the splitting
strategy) is obtained from (5.21) (with l(T, δ) set to k, the number of candidates obtained at the previous
recursive step):

C(Lk·k·24) =k(1 + kk−1)C(Lk·24) +O(k · k · 24),

≈2kk+1CΛ24
MLD +O(24k2).

(6.19)

Figure 6.1 depicts the quasi-MLD performance of L3·24 (obtained in Section 7.2.5) for comparison.
We shall see in the next chapter that the Nebe lattice N72, constructed as Γ(λΛ24, α, β, 3), has the

following properties: vol(N72)
2

n=72 = vol(T = Λ24)
2
n/3 and d(N72) = 2d(Λ24). Hence, (6.16) becomes

Un=72(∆) = min
{

3Un
3

(∆)2 + 3Un
3

(2∆)(1− Un
3

(δ,∆))2, 1
}
. (6.20)

Taking Un
3

(∆) = PΛ24
e (opt,∆), we get a similar curve as U3·24 for L3·24 but shifted by 10·log10(2

1
3) = 1 dB

to the left. The curve U72(∆) is shown on Figure 6.1. See Section 7.2.4 for more details.

If the splitting strategies are considered, as in Algorithm 6.3 (without Step 11), the error probability is
slightly greater due to specific cases, such as having simultaneously 2

3
r
2 < ||wj || < r

2 and 2
3r < ||wi|| < r,

which are not correctly decoded (whereas they were without the splitting strategy).
For the case k = 2, it is shown in Appendix 6.3.2 that with the splitting strategy we get the recursion

Un(δ,∆) = min
{
Un

2
(δ,

∆√
2

)2 + 2
[(
Un

2
(
2

3
δ,

∆√
2

)− Un
2

(δ,
∆√

2
)
)
Un

2
(
2

3
δ,
√

2∆)+

(1− Un
2

(
2

3
δ,

∆√
2

))Un
2

(δ,
√

2∆)
]
, 1
}
.

(6.21)

Assume that the parity lattices are Poltyrev capacity approaching1. In other words, in (6.9) for any
∆ > 1 we assume that Pe(opt,∆) ≈ 0 and Pe(dec,∆) ≈ P (x /∈ T). Can we decode at 0 dB with
the proposed decoding paradigm (without considering the complexity issue)? To answer this question,
we theoretically analyse the behavior of (6.16) to characterize the performance the modified decoding
algorithm (without the splitting strategy). The theoretical analysis of (6.21) is left for future work.

Without loss of generality, let c = 2, L2 = Z2, and n = 2 · kt. Assume that a regular list decoder is
used for the lattice L2. Consider ∆ expressed in dB. We approximate the log log behavior of U2(δ,∆)
by an affine function (which is reasonable if the range for ∆ is not too large, see e.g. the curve t = 0 on
Figure 6.2a). We have

1It is still to be proven, but we conjecture that they are.

68 CHAPTER 6. PARITY LATTICES

U2(δ,∆) = F (2, f(δ), f(∆)) = e−rπe10
∆
10 ,

≈ min{10−a∆−b, 1}
(6.22)

The quantity P (x /∈ T) = U2·kt(∆) has the following behavior.

Theorem 6.4. Let Lc = Z2 and n = 2·kt. Assume that U2(∆) ≈ min{10−a∆−b, 1}, where ∆ is expressed
in dB and a is large enough. Then, U2·kt(∆), given by (6.16), has the following behavior.

U2·kt(∆) ≈ 1 if ∆ < Tt,

log10(U2·kt(∆)) ≈ −2ta∆− bt if ∆ > Tt.
(6.23)

with −bt = 2taTt and where the threshold Tt increases at each recursive step as

Tt = Tt−1 +
10 log10(2)

k
+

log10(k
2−k
2

)

2ta
, (6.24)

with

T0 ≈ −
b

a
. (6.25)

Consequently, the main parameters are a, b, and k where:

• a determines the number of recursive steps needed to reach the desired slope (error exponent) 2ta.

• The initial threshold T0 is a function of b and a.

• k determines the speed at which the threshold moves to the right.

Moreover, we see that the
(
k
2

)
coefficient may have a significant effect on the threshold for the first

recursion, but after a few recursive steps it becomes negligible as the slope of the curve 2ta increases.
As examples, Figures 6.2 shows numerical evaluations of (6.16), with Lc = Z2, n = 2 · kt, U2(δ,∆) =

F (2, f(δ), f(∆)), and where k = 12 with two different δ. The value of δ determines the parameters a
and b, and thus the location of the thresholds. Note that a and thus the asymptotic slope of the curves
does not vary significantly with δ.

0 1 2 3 4 5

Distance to Poltyrev limit(dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
o

in
t

E
rr

o
r

P
ro

b
a

b
ili

ty

(a) δ = 0.3

-1 -0.5 0 0.5 1 1.5 2 2.5 3

Distance to Poltyrev limit(dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
o

in
t

E
rr

o
r

P
ro

b
a

b
ili

ty

(b) δ = 0.6

Figure 6.2: Numerical evaluation of (6.16) for k = 12, the initial condition as (6.17), Λc = Z2, and with
two different values of δ. The location of the threshold depends on δ. On the contrary, the asymptotic
slope of the curves does not vary significantly with δ.

Proof. Assuming that a is large enough, the second element of (6.16) is negligible. Therefore, Un(∆) is
estimated as

6.1. ALGORITHMS AND THEOREMS 69

Un(∆) ≈
t−1∏

i=0

(
k2 − k

2

)2i

·
(
U2(δ,

∆

2
t
k

)

)2t

,

=

t−1∏

i=0

(
k2 − k

2

)2i

· 102t·[−a(∆− t·10·log10(2)
k)−b].

(6.26)

and thus

log10(Un(∆)) ≈ −a2t∆ + 2t
[
a · t · 10 · log10(2)

k
+ log10

(
k2 − k

2

)
− b
]
. (6.27)

This first model does not take into account the fact that Un(∆) ≤ 1. Indeed, there is a threshold located
at

∆ = T0 ≈ −
b

a
. (6.28)

Consequently, the function is more accurately represented by a piecewise affine function with two pieces:
A first piece which is equal to 1 and a second piece which decreases with ∆.

log10(U2(∆)) ≈ 0 if ∆ < T0,

log10(U2(∆)) ≈ −a∆− b if ∆ > T0,
(6.29)

If follows that (first without considering the effect of the
(
k
2

)
coefficient)

log10(U2·kt(∆)) ≈ 0 if ∆ < T ′t ,

log10(U2·kt(∆))

log10(k
2−k
2

)
≈ −2ta∆− b′t if ∆ > T ′t ,

(6.30)

with −b′t = 2taT ′t and where the threshold T ′t evolves as

T ′t = Tt−1 +
10 log10(2)

k
. (6.31)

Finally, we add the effect of the
(
k
2

)
coefficient to get the behavior of U2·2t(∆):

log10(U2·kt(∆)) ≈ 0 if ∆ < Tt,

log10(U2·kt(∆)) ≈ −2ta∆− bt if ∆ > Tt.
(6.32)

with −bt = 2taTt and where the threshold Tt is

Tt = T ′t +
log10(k

2−k
2

)

2ta
. (6.33)

Unfortunately, the (worst-case) decoding complexity in this situation, i.e. without the splitting
strategy, is super-polynomial in the dimension: It has the form nc·k logn, where c is a constant. This
underlines the interest of the splitting strategy.

Finally, one could wonder if the rate at which slope increases could be improved. One could for
instance consider a stronger code than a single parity check such that at least three lists, instead of two,
should not contain the good candidate for the decoding to fail. The slope would then increase as 3ta.

Similarities with LDPC codes and polar codes. The above discussion highlights that the pe-
formance of the parity lattice improves with each additional recursive step. This was expected as the
parity lattices can be represented under the form of a tree in the framework of the “combining paradigm
on tree” (see Section 3.3.3), as shown on Figure 6.3. We propose a brief summary of the analysis in
Sections 3.3.2 and 3.3.3, where we argue that LDPC codes, polar codes, and parity lattices involve the
same underlying idea: Namely, small component codes (e.g. single parity-check codes) are stacked in a
tree such that the reliability of the symbol estimates produced at each level of the tree increases as one
goes up in the tree. The two key ingredients are:

70 CHAPTER 6. PARITY LATTICES

Figure 6.3: Tree representation of the parity lattices with k = 4. The half edges on the variable nodes
represent a channel observation. At each level of the tree, four symbol estimates are combined to produce
a more reliable estimate. The rounded squares denote a combining operation via a parity check.

• A tree.

• Combining operations at each level of the tree.

Whereas one of the two elements is obtained via asymptotic dimensions for LDPC and polar codes, they
are obtained in non-asymptotic dimensions with the parity lattices. Regarding LDPC codes, unfolding
the Tanner graph around a variable node yields a local tree. However, this tree structure is obtained
by choosing randomly a large enough sparse parity-check matrix in large dimensions. Nevertheless, the
combining operations based on parity checks have nothing specific to large dimensions. On the contrary,
the tree for polar codes, based on the (u, u + v) recursion, is obtained deterministically. The large
dimension is necessary for the combining operations, which become very simple and efficient thanks to
the polarization phenomenon. As a result, if one wants an efficient code in moderate dimensions, one
can consider the combining operations of LDPC codes based on single parity checks and a deterministic
tree similar to the one of polar codes. This yields the tree on Figure 6.3.

6.2 Parity lattices with k = 2 and k = n
1

log logn

We further study two families of parity lattices: We treat the case k = 2 (BW lattices) and the case

k = n
1

log logn . The recursive decoders yield regular list decoders with a complexity linear in the list size

for both family of lattices. With k = n
1

log logn , the list size is reduced and so is the regular list-decoding
complexity, but at the cost of a lower coding gain : O(log n) versus O(

√
n) for BW lattices. Our results

are summarized in Figure 6.4.
The main idea to bound the list size of the parity lattices, when δ > 1/2, is to compute the maximum

number of elements outputted by the recursive algorithms presented in Sections 6.1.2 without the remov-
ing step. As a result, when a recursive call is made with δ > 1/2 the algorithm do not need to include
the removing step (Step 11 in Algorithm 6.3), but it should if δ ≤ 1/2 (because we use the bounds of
Theorem 5.1 in this latter case).

The behavior of the algorithm on the Gaussian channel is also investigated for k = 2. We analytically
estimate the average complexity for quasi-optimal decoding of BWn. It is shown to be quadratic in the
dimension up to n = 64 and quartic for n = 128. Moreover, we also highlight that the average complexity
of the proposed BDD on the Gaussian channel is O(n log n).

6.2.1 Parity lattices with k = 2 (BW lattices)

We study the parity lattices obtained with k = 2, Lc = Z2 and θ = φ = 1+i. They are called Barnes-Wall
lattices in the literature. These lattices are expressed as

BW2n = Γ(φBWn, β, 2) where BW2 = Z2, θ = φ. (6.34)

In general, the lattice φBWn = RφBWn is denoted by RBWn [For88b]. We adopt this notation for the
rest of the document.

6.2. PARITY LATTICES WITH K = 2 AND K = N
1

LOG LOGN 71

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

C
o

m
p

le
x
it
y
 e

x
p

o
n

e
n

t

Figure 6.4: Bounds on the (worst-case) regular list decoders complexity with respect to the decoding
radius. We recall that the complexity exponent is defined as logC(n, δ)/ log n. Three curves are displayed
for the complexity of: The list decoder in [GP17] for BW lattices, the new algorithm for BW lattices,

and the new algorithm for the parity lattices with k = n
1

log logn .

Note that for any parity-check k-group with k = 2 we have

Γ(V, β, 2)P = {(v′1 + n1, v
′
2 − n1), v′i ∈ V, n1 ∈ β},

= {(v′1 +m, v′3 +m), v′i ∈ V,m ∈ β},
= Γ(V, β, 2)R,

(6.35)

where we set n1 = m. This representation goes under the name squaring construction [For88b]. Hence,
this squaring construction defines BW lattices as

BW2n = {(v′1 +m︸ ︷︷ ︸
u1∈BWn

, v′2 +m︸ ︷︷ ︸
u2∈BWn

), v′i ∈ RBWn,m ∈ [BWn/RBWn]}.
(6.36)

The squaring construction can be expressed under the form of the Plotkin (u, u+v) construction [Plo60]:

Γ(V, β, 2)R = {(v′1 +m, v′3 +m), v′i ∈ V,m ∈ β},
= {(v′1 +m, v′1 + v2︸ ︷︷ ︸

v′3

+m), v′i ∈ V,m ∈ β},

= {(u1, u1 + v2), u1 ∈ T, v2 ∈ V }.

Finally, BW lattices can also be presented via the two-level squaring construction (see [For88b, Sec-
tion IV.B]):

BW2n = Γ(V, α, β, 4), V = RBWn/2, α = [BWn/2/RBWn/2], β = [RBWn/2/2BWn/2]. (6.37)

These lattices were one of the first series discovered with an infinitely increasing fundamental coding
gain [BW59]: It increases as γ(BWn) =

√
2 ·γ(BWn/2) =

√
n/2 (using Lemma 6.1). This series includes

dense lattices in lower dimensions such as D4, E8, Λ16 [CS99], and is deeply related to Reed-Muller
codes [For88b] [MS77]: BW lattices admit a Construction D based on these codes.

Several algorithms have been proposed to decode BW lattices. [For88b] uses the trellis representation
of the two-level squaring construction to introduce an efficient MLD algorithm for the low dimension in-
stances of BWn. Nevertheless, the complexity of this algorithm is intractable for n > 32: Equation (5.15)
(which gives the number of edges in the trellis) applied to (6.37) yields 2 · 22n/8 + 2 · 23n/8, e.g. decoding
in BW128 involves 2 · 248 + 2 · 232 decoders of BW32. Forney states in [For88b] : “The first four numbers
in this sequence2, i.e., 2, 4, 16, and 256, are well behaved, but then a combinatorial explosion occurs:
65 536 states for BW64, which achieves a coding gain of 7.5 dB, and more than four billion states for

2Forney refers to the number of states per section of the trellis, which is 22n/8

72 CHAPTER 6. PARITY LATTICES

BW128, which achieves a coding gain of 9 dB. This explosion might have been expected from capacity
and R0 (cutoff rate) considerations”.

Later, [MN08] proposed the first BDDs running in polynomial time; a parallelisable one of com-
plexity O(n2) and a sequential one of complexity O(n log2 n). The parallelisable decoder was generalized
in [GP17] to work beyond the packing radius, still in polynomial time. It is discussed later in the chapter.
The sequential decoder uses the BW multilevel construction to perform multistage decoding: Each of the
≈ log n levels is decoded with a Reed-Muller decoder of complexity n log n. This decoder was also further
studied, in [HVB13], to design practical schemes for communications over the AWGN channel. However,
the performance of this sequential decoder is far from MLD. A simple information-theoretic argument
explains why multistage decoding3 of BW lattices cannot be efficient: The rates of some component
Reed-Muller codes exceed the channel capacities of the corresponding levels [FTS00] [YLW13].

As a result, no BW decoder, being both practical and quasi-optimal on the Gaussian channel, have
been designed and executed for dimensions greater than 32.

A new BDD

We adapt Algorithm 5.1 to Barnes-Wall lattices to get Algorithm 6.5.

Algorithm 6.5 Double-sided (u, u+ v) decoder of BW2n

Input: y = (y1, y2) ∈ R2n.

1: Decode (BDD) y1, y2 in BWn as u1, u2.
2: Decode (BDD) y2 − u1 in RBWn as v2. Store x̂← (u1, u1 + v2).
3: Decode (BDD) y1 − u2 in RBWn as v1. Store x̂′ ← (u2 + v1, u2).
4: Return xdec = argmin

x∈{x̂,x̂′}
||y − x||

Given an element y = (y1, y2) to be decoded, a trivial algorithm for a code obtained via the (u, u+v)
construction is to first decode y1 as u1, and then decode y2 − u1 as v2 (see the end of Section 6.2.1 for
more details). This algorithm could be called a single-sided decoder or a successive-cancellation decoder.
Algorithm 6.5 can be seen as a double-sided (u, u + v) decoder since we also decode y2 as u2 and then
y1 − u2 as v2. Theorem 6.5 shows that Algorithm 6.5 is a BDD with an error-correction radius equal to
ρ2(BW2n).

Theorem 6.5. Let y be a point in R2n such that d(y,BW2n) is less than ρ2(BW2n). Then, Algorithm 6.5
outputs the closest lattice point x ∈ BW2n to y.

Proof. The result follows from Lemma 5.1 since Algorithm 6.5 is a special case of Algorithm 5.4.

Algorithm 6.1, with k = 2 and θ = φ, is the recursive version of Algorithm 6.5. This algorithm is
similar to the parallel decoder of [MN08]. The main difference is that [MN08] uses the automorphism
group of BW2n to get four candidates at each recursion whereas we generate only two candidates. Nev-
ertheless, both our algorithm and [MN08] have four recursive calls at each recursive section and have the
same asymptotic complexity. We apply Theorem 6.1 for the case k = 2.

Theorem 6.6. Let n = 2t+1 and y ∈ Rn. If d(y,BWn) < ρ2(BWn), then Algorithm 6.1 outputs the
closest lattice point to y in time O(n2).

Could a similar algorithm have a quasi-linear complexity? The quadratic complexity is due to the
four recursive calls. Having only two recursive calls would make it quasi-linear (O(n log n)). Therefore,
if we knew beforehand whether we should go for (u1, u1 + v2) or (u2 + v1, u2) the algorithm would
be of quasi-linear complexity. Of course, it is not possible to have this information before decoding.
Nevertheless, we can re-organize the recursive calls in order to minimize the average number of recursive
calls.
Let the point to be decoded be y = x + w, where y ∈ R2n, x = (x1, x2) ∈ BW2n, w = (w1, w2) ∈ R2n,
and w1, w1 ∼ D, and where D is an arbitrary probability distribution and where w1 and w2 are i.i.d. Let
r = 1/4 · d(BW2n) (δ = 1/4). We denote by pr : P (||wi||2 < r) and pe : P (d(y1, u1) < r

2 | ||w1|| > r
2).

An overview of the modified algorithm is presented in Figure 6.5. See Appendix 6.3.3 for more details
and the proof of the next Theorem.

3Where only one candidate is decoded at each level.

6.2. PARITY LATTICES WITH K = 2 AND K = N
1

LOG LOGN 73

v2u2
v2

v1u2

v1

u1
p r

2

y = (y1, y2)

(1− p r
2
)pe (1− p r

2
)(1 − pe)

(1− p r
2
)(1 − pe)

p r
2
+ (1 − p r

2
)pe

Figure 6.5: Probabilistic tree representing the possible behavior of the BDD with the re-organized
recursive calls. To be read from the top to the bottom. y1 is first decoded in BWn as u1. If ||w1|| < r/2
(with a probability p r

2
) then v2 is decoded (right arrow). Otherwise, either d(y1, u1) > r/2 or d(y1, u1) <

r/2 (but where u1 6= x1, the point sent) and the tree presents the induced events. As a result, a black
arrow represents one recursive call. The number of recursive calls to reach one outcome is obtained by
counting the black arrows in the given path. The average number of recursive calls made within one
recursive section depends on the noise statistics.

Lemma 6.3. Let n = 2t+1 and y ∈ Rn. If d(y,BWn) < ρ2(BWn), a modified version of Algorithm 6.1
outputs the closest lattice point to y in time:

C(n, r) <C(
n

2
,
r

2
)[2(p r

2
+ [(1− p r

2
)(1− pe)]2)+

3(1− p r
2

)(1− pe)(p r
2

+ (1− p r
2

)pe) + 4(1− p r
2

)pe] +O(n).
(6.38)

Consequently, the complexity depends on the noise statistics. See Section 6.2.1 for the case of
Gaussian noise.

List decoding BW lattices

As mentionned at the beginning of the section, [GP17] adapts the parallel BDD of [MN08], which uses the
automorphism group of BWn, to output a list of all lattice points lying at a distance r = d(BWn)(1− ε),
0 < ε ≤ 1, from any y ∈ Rn in time

O(n2) · L(n, r2)2. (6.39)

A critical aspect regarding the complexity of this decoder is the list size. Theorem 5.1 provides bounds on
the list size when r ≤ d(BWn)/2. The following lemma, addressing r > d(BWn)/2, is proved in [GP17].

Lemma 6.4 (Results from [GP17]). The list size of BWn lattices is bounded as [GP17]:

• L(n, r) = O(n2 log2 24) if r = 3
4d(BWn).

• And

L(n, r) = O(n16 log2
1
ε), (6.40)

if r ≤ d(BWn)(1− ε), 0 < ε < 1
4 .

The case d(BWn)/2 < r2 ≤ d(BWn)(3/4 − ε) is not explicitly proved in [GP17], but it is similar to
Lemma 2.5 of the paper. We state it below and prove it via Algorithm 6.3, which implements the first
splitting strategy (but without the second splitting strategy).

Lemma 6.5. The list size of BWn lattices is bounded as

L(n, r) = O(nlog2 4b 3
4ε c) (6.41)

if r ≤ d(BWn)(3
4 − ε), 0 < ε < 1

4 .

74 CHAPTER 6. PARITY LATTICES

Proof. The maximum number of elements outputted by Algorithm 6.3 without the removing step (for
the recursive calls with δ > 1/2) is an upper bound on the list size l(n, δ). Hence, a non-recursive
bound is given by Equation (5.23), which is the maximum number of elements in the output list of
Algorithm 5.5 (the non-recursive version of Algorithm 6.3). To lighten the notations, we write l(δ) for
l(n/2, δ). Unwinding (5.23) and using Theorem 5.1 for l(2/3δ) yields

l(n, δ) ≤2
[
l(

2

3
δ)l(δ) + l(δ)l(

2

3
δ)] = 4l(

2

3
δ)l(δ) = 4b 3

4ε
cl(δ),

=

(
4b 3

4ε
c
)log2 n

· l(Z2, δ),

=O(nlog2 4b 3
4ε
c).

(6.42)

The proof highlights that the removing step should be kept for δ ≤ 1/2 because we rely on the bounds
given by Theorem 5.1 for this situation.

Equation (6.40) shows that the list size of BW lattices is of the form nO(log 1
ε) and thus polynomial in

the lattice dimension for any radius bounded away from the minimum distance. Combining (6.39) with

(6.40), the list decoder complexity becomes nO(log 1
ε) for any r < d(BWn)(1− ε), ε > 0. This result is of

theoretical interest: It proves that there exists a polynomial time decoding algorithm (in the dimension)
for any radius bounded away from the minimum distance.

First, we show that the constant in (6.40) can be improved from 16 down to 8, as stated by the
following lemma, proved in Appendix 6.3.4.

Lemma 6.6 (Improved constant). The list size of the BWn lattices is bounded as:

• L(n, r) = O(n2 log2 12) if r = 3
4d(BWn).

And

L(n, r) = O(n8 log2
1
ε), (6.43)

if r ≤ d(BWn)(1− ε), 0 < ε ≤ 1
4 .

While this lemma enables to improve the bound on the complexity of the algorithm of [GP17], the
quadratic dependence in the list size remains a drawback: As explained at the end of Section 5.3.3,
finding an algorithm with quasi-linear dependence in the list size is stated as an open problem in [GP17].

In the following, we demonstrate that if we use our decoding paradigm with the first splitting strategy
(i.e. Algorithm 6.3), rather than the automorphism group of BWn for list decoding, we get complexity
linear in the list size. This enables to both improve the list-decoding complexity and get a practical
quasi-optimal decoding algorithm on the Gaussian channel up to n = 128.

We compute below the complexity of our algorithm for δ < 9/16. The complexity analysis for larger
δ (which is the proof of Theorem 6.7) is provided in Appendix 6.3.6. The main idea of the analysis
consists in combining the splitting strategies as recommended in Section 6.1.2 and analysing the induced
complexity.

If δ < 3
8 then 2

3δ <
1
4 and we have l(δ) = O(1), l(2

3δ) = 1. Moreover, C(2
3δ) ≤ C(1

4) = O(n2)
(Theorem 6.6). The baseline equation is (5.24), which becomes

C(n, δ) =4C(δ) + l(δ)O(n2) = l(δ)O(n2 logn) = Õ(n2). (6.44)

If 3
8 ≤ δ < 9

16 and C(2
3δ) ≤ C(3

8) = O(n2 log n). Equation (5.24) becomes

C(n, δ) =l(δ)O(n2 logn)

log2 n∑
i=0

(
2l(2

3
δ) + 2

4

)i
,

=l(δ)O(n1+log2[1+l(2
3
δ)] logn),

=l(δ)Õ(n1+log2[1+l(2
3
δ)]),

(6.45)

which is Õ(n1+log2 3) if δ < 1/2.
Note that for these cases (δ < 1/2) the decoder of [GP17] is more efficient: Indeed, Theorem 5.1

shows that when δ < 1/2, then l(n, δ) = O(1) and the decoding complexity, given by (6.39), is O(n2).
Nevertheless, the following theorem shows that our decoder is better for larger values of δ and, as we
shall see in the next subsection, is useful even when δ < 1/2 for quasi-optimal decoding on the Gaussian
channel.

6.2. PARITY LATTICES WITH K = 2 AND K = N
1

LOG LOGN 75

Dimension n 16 32 64 128 256

Dist. to Polt. (dB) sphere bound 4.05 3.2 2.5 1.9 1.4

Dist. to Polt. (dB) MLD 4.5 3.7 3.1 2.3 ?

Table 6.1: Sphere lower bound on the best performance achievable by any lattice Λ for PΛ
e (opt, n, σ2) =

10−5 and MLD performance of BWn for Pe(opt, n, σ
2) = 10−5.

Theorem 6.7. Let n = 2t+1, y ∈ Rn. The set BWn ∩Bδ(y) can be computed in worst-case time:

• O(n2) if δ < 1
2 (algorithm of [GP17]).

• l(δ)O(n2+log2[
l(2

3
δ)+1

2]) ≈ O(n1+log2 4b 3
4ε c

2]) if δ = 3
4 − ε, 0 < ε.

• O(n1+log2 432) if δ = 3
4 .

• l(δ)O(n2) = O(n8 log2
1
ε+2) if δ = 1− ε, 0 < ε < 1

4 .

Decoding on the Gaussian channel

We apply the analysis presented in Section 6.1.3 to the case k = 2 to establish the smallest list-
decoding radius δ required for quasi-optimal decoding. The first element needed is the MLD perfor-
mance PBWn

e (opt, n, σ2) of BWn. As mentioned earlier it is not known for n > 32. Nevertheless,
PΛ
e (opt, n, σ2) can be lower-bounded for any lattice Λ in n dimensions using the sphere lower bound

(see Section 4.3.2). Table 6.1 provides the sphere lower bound on the best performance achievable for
PΛ
e (opt, n, σ2) = 10−5. With (6.12), we can compute the smallest δ, for the corresponding values of σ2,

such that P (x /∈ T) = P (||w||2 > r) / 10−5 with regular list decoding. This value is denoted δ∗. Using
δ∗ yields quasi-optimal decoding performance, regardless of the MLD performance of BWn. The values
of δ∗ as a function of n are presented in Figure 6.6. The corresponding (worst-case) decoding complexity
is obtained with Theorem 6.7. It is super-quadratic for all n ≥ 16.

Running the simulations (with δ∗ found at the sphere bound) enables to estimate the MLD perfor-
mance of BWn lattices. The results are presented4 in Table 6.1, and are at ≈ 0.5 dB of the sphere
bound5. In Figure 6.6 the corresponding values of δ∗ (still with regular list decoding) are depicted by
the diamonds.

As explained in Section 6.1.3, the error probability of the list-decoding algorithm without the removing
step can be estimated with Equation (6.16) (without the splitting strategy) or (6.21) (with the first
splitting strategy). Hence, we can also compute the smallest δ such that with this algorithm P (x /∈
T δ) / 10−5 (at the MLD performance). We shall also denote this value by δ∗. However, the decoding
complexity should be updated to take into account the fact that there is no removing step in the algorithm
even when δ < 1/2.

We consider the modified decoding algorithm with the first splitting strategy (Algorithm 6.3 without
the removing step). To mitigate the complexity and simplify the analysis, whenever δ ≤ 1/4 we shall
use the BDD presented in Algorithm 6.1. Hence, in (6.21), Un(δ ≤ 1

4 ,∆) = Pe(BDD,n,∆). The error
probability Pe(BDD,n,∆) is shown in Figure 6.7. Note that due to the rounding operation in Z2, this
BDD has better performance than if a sphere of relative radius δ = 1/4 (the initial condition in (6.17))
were used: MLD decoding in Z2 is performed. In the literature, the performance of BDDs is often
estimated via the “effective error coefficient” [FV96] [SA06]. Nevertheless, it it not always accurate,
especially in high dimensions. We therefore rely on the Monte Carlo simulations presented in Figure 6.7
for Pe(BDD,n,∆). The estimated δ∗ with this decoder, shown in Figure 6.6, are significantly smaller
than the ones obtained with the regular list decoder. In particular, δ∗ < 3/8 for n ≤ 64 and δ∗ < 1/2
for n = 128.

We now study the complexity of this latter algorithm. We shall use the notation l′(n, δ, y) to denote
the number of elements returned by the algorithm without the removing step.

4These estimations were not performed with the regular list decoder, but with the algorithm presented in the rest of
the section.

5We have not yet investigated the case n = 256.

76 CHAPTER 6. PARITY LATTICES

16 32 64 128 256

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 6.6: Values of the list-decoding relative radius δ∗, for BWn, such that P (x /∈ T) ≈ 10−5.

1 1.5 2 2.5 3 3.5

Distance to Poltyrev limit(dB)

10
-3

10
-2

10
-1

P
o
in

t
E

rr
o
r

P
ro

b
a
b
ili

ty

Figure 6.7: Performance of the recursive BDD for the Barnes-Wall lattices on the Gaussian channel.

If δ ≤ 3/8 Equation (6.42) becomes

l′(n, δ) ≤2
[
l′(

1

4
)l′(δ) + l′(δ)l′(

1

4
)] = 4l′(δ)

=4log2 n · l(Z2, δ) = O(n2).
(6.46)

However, considering the average complexity, and taking into account the removed duplicates (see Step 12
in Algorithm 6.3), one has

Ey[l′(n, δ, y)] ≤2
[
l′(

1

4
)Ey[l′(δ)] + Ey[l′(δ)]l′(

1

4
)− l′(1

4
)l′(

1

4
)]− Ecy.

=4Ey[l′(δ)]− 2− Ecy,
(6.47)

where Ecy denotes the average number of common elements in the lists obtained with the (u, u + v)
recursion and (u + v, u) recursion. We observed experimentally that for δ ≤ 3/8, Ey[l′(n, δ, y)] is close
to 1. This observation is not taken into account in the next theorem, which bounds the average list size
and the average complexity. It is however in the interpretation following the theorem.

Theorem 6.8. Let Ey[l′(n, δ, y)] be the average list size of Algorithm 6.3 without the removing step. Let
η denote Ey[l′(n, 3/8, y)]. Ey[l′(n, δ, y)] is bounded from above as

6.2. PARITY LATTICES WITH K = 2 AND K = N
1

LOG LOGN 77

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Distance to Poltyrev limit (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
o
in

t
E

rr
o
r

P
ro

b
a
b
ili

ty

Figure 6.8: Modified Algorithm 6.3 for the BW lattices up to n = 128 and the sphere lower bounds.
∗For n = 128, ℵ(δ) = 1000 and ℵ(2/3δ) = 4.

• Ey[l′(n, δ, y)] = O(n2+log2 η.) if 3/8 < δ ≤ 9/16.

The average complexity is bounded from above as:

• Ey[C(n, δ)] = ηÕ(n2) if δ ≤ 3/8.

• Ey[C(n, δ)] = Ey[l′(δ, y)]Õ(n1+log2[1+η]) if 3/8 < δ ≤ 9/16.

See Appendix 6.3.7 for the proof.
As a result, based on the observation that η is close to 1, the average complexity is estimated as:

• Ey[C(n, δ)] = Õ(n2) if δ ≤ 3/8.

• Ey[C(n, δ)] = Õ(n4) if 3/8 < δ ≤ 9/16.

Since δ∗ < 3/8 for n < 64 and δ∗ < 1/2 for n = 128 for quasi-MLD, we conclude that the decoding
complexity is quadratic for n ≤ 64 and quartic for n = 128.

For a practical implementation, we can bound the maximum number of points kept at each recursive
step: I.e. instead of being removed, Step 11 of Algorithm 6.3 is modified such that the ℵ(δ) best candi-
dates are kept at each recursive step. The size of the list ℵ(δ), for a given δ, is a parameter to be fine
tuned: For n =16, 32, 64, we set ℵ(δ) =5, 10, 20, respectively. For n = 128, ℵ(δ) = 1000 (<< than our
bound in O(n2) on Ey[l′(δ, y)]) and ℵ(2/3δ) = 4 yields quasi-MLD performance. Figure 6.8 depicts the
simulation results for BW lattices up to n = 128.

Probabilistic improvement.
In the complexity formula (6.38) for the BDD, given Gaussian noise, pr is computed with (6.12). pe
is more difficult to compute but is typically very small, even with large noise variance, and decreases
with the dimension as the relative volume of the packing spheres decreases. We therefore make the
approximation that it is equal to 0. Figure 6.9 presents the complexity exponent of (6.38) as a function
of the dimension. It is quasi-linear. We made the simulations with the noise variance at the maximum
value (equivalent to the Poltyrev limit). When running this BDD we indeed observed that it has quasi-
linear complexity.

Can we apply the same idea to list decoding? Unfortunately, Lemma 6.8 (in appendix) does not hold
if the decoding radius r > d(BW2n)/4. The probability that a point x is not in the outputted list must
therefore be updated:

P (x /∈ T) ≤P (u1 /∈ T1)2 + 2P (v2 /∈ V2) + P ′. (6.48)

78 CHAPTER 6. PARITY LATTICES

10
0

10
2

10
4

10
6

1.2

1.3

1.4

1.5

1.6

Figure 6.9: Numerical computation of (6.38) with pe = 0, σ2 = σ2
max, and where we set O(n) = n.

vu

Z2 RZ2 RZ2 2Z2

BW8

BW4 RBW4

Figure 6.10: Illustration of the alternative single-sided (u, u + v) decoder with BW8. The edges on the
right of a node represent a v-direction and the ones on the left the u-direction. This algorithm is a
depth-first search on a tree where the v-directions are first explored.

where P ′ represents the probability of the two error events in the proof of Lemma 6.8. We leave this
analysis as future work, but this approach may yield quasi-linear time quasi-MLD decoding for n ≤ 64.

Comparison with the “single-sided” (u, u+ v) decoder.
As mentionned in the previous subsection on the BDD, our paradigm can be seen as a double-sided
(u, u + v) decoder, to be opposed with the single-sided (u, u + v) decoder. A slightly different version
of the single-sided decoder was presented in [SB95] [DS06] in the scope of Reed-Muller codes (and also
in [TV15] with polar codes): Instead of first decoding u and then v, the order is reversed: v is first
decoded and then u follows6(see also Section 3.3.2). The latter version can be easily translated in our
framework and thus adapted to BW lattices.

Let y = x + w, with x = (u, u + v) ∈ BWn and w the Gaussian noise. The decoder consists in first
decoding (or list decoding) y2 − y1 in RBWn

2
as v̂ and then decoding (or list decoding) y1 + y2 − v̂

in 2BWn
2

. This principle is applied recursively down to BW2 = Z2. An illustration is provided in
Figure 6.10 for n = 8.
Let ∆(BWn) = vol(BWn)

2
n /(2πeσ2) be the VNR. On the one hand, the VNR decreases in the v-

direction: We have y2−y1 = v+w1 +w2, where w1 +w2 ∼ N (0, 2σ2). The VNR for decoding in RBWn
2

is

6We show below that the two versions are in fact equivalent.

6.2. PARITY LATTICES WITH K = 2 AND K = N
1

LOG LOGN 79

∆(RBWn
2

) =
vol(RBWn

2
)

2
n

2πe2σ2
=

√
2 vol(BWn)

2
n

2 · 2πeσ2
=

∆(BWn)√
2

. (6.49)

On the other hand, the VNR increases in the u-direction: Given that v is correctly decoded, we have
y1 + y2 − v̂ = 2u+ w1 + w2, where again w1 + w2 ∼ N (0, 2σ2). The VNR for decoding in 2BWn

2
is

∆(2BWn
2

) =
4 vol(BWn

2
)

2
n

2πe2σ2
=

4 vol(BWn)
2
n√

2

2 · 2πeσ2
=
√

2∆(BWn). (6.50)

As a result, the error probability can be computed with the following recursion:

Un(δ,∆) = Un
2

(δ,
∆√

2
) + Un

2
(δ,
√

2∆)(1− Un
2

(δ,
∆√

2
)), (6.51)

where the initial condition U2(δ,∆) is for instance given by (6.17) if regular list decoding in Z2 is
performed. Note that the error probability is the same if the “standard” single-sided (u, u+ v) decoder
(first decode u and then v) is considered. Hence, the two versions are equivalent.

(6.51) can be compared with the error probability of the double-sided (u, u+v) decoder (without the
splitting strategy) given by (6.21):

Un(δ,∆) =Un
2

(δ,
∆√

2
)2 + 2Un

2
(δ,
√

2∆)(1− Un
2

(δ,
∆√

2
)). (6.52)

We see that the main advantage of the double-sided decoder lies in the squaring of Un
2

(δ,∆/
√

2), but

which comes at a cost of a greater complexity given a fixed δ. The term Un
2

(δ,∆/
√

2) is a severe
bottleneck of (6.51).

Nevertheless, the error probability of the single-sided decoder can be improved with the same “trick”
as in [DS06]: Subcodes resulting from “frozen” bits in the v-directions can be considered. In our case,
this translates in studying sublattices of BWn with frozen cosets.

Consider the example of Figure 6.10. The right-most leave is the error prone one. Therefore, one could
freeze one coset of 2Z2/2RZ2 and thus decode in 2RZ2 instead of 2Z2. As a result, the inital condition
in this leave becomes U2(δ, 2∆) instead of U2(δ,∆). However, the volume of the resulting sublattice Λ

of BW8 is increased: vol(Λ) = vol(BW8) · |2Z2/2RZ2| = 2 vol(BW8) and we have ∆(Λ) = 2
1
4 ∆(BW8).

Hence, one should compare Un(δ,∆) and Un(δ, ∆

2
1
4

) (given by (6.51)) where the inital condition for the

right-most leave is replaced by U2(δ, 2∆) in the latter case.
The study of this algorithm is left for future work.

6.2.2 Parity lattices with k = n
1

log logn

Let us choose k = n
1

log logn . Since n = c · kt, it implies that

t =
log logn · log n

c

logn
∼ log log n. (6.53)

We can assume that t is an integer since we consider asymptotic dimensions in this section.
We obtain a family of lattices with a fundamental coding gain growing as γ = O(log n) (using Lemma 6.1).
First, we provide bounds on the list size of these lattices.

Lemma 6.7. The list size of the parity lattices Ln, with k = n
1

log logn , is bounded as

• L(Ln, r) = Õ(n3) if r ≤ d(Ln)(3
4 − ε).

• L(Ln, r) = Õ(n6) if r = 3
4d(Ln).

• L(Ln, r) = min{Õ(n3 log2
1
ε), Õ(n3 log logn)} if r ≤ d(Ln)(1− ε), 0 < ε < 1/4.

Notice that for 3/4 < r < 1, one can choose between the polynomial bound in 3 log2
1
ε or the super-

polynomial bound in 3 log log n but with a reduced dependency in ε.
Then, the list-decoding complexity of these lattices is provided by the following theorem.

Theorem 6.9. The set Ln ∩Bδ(y), where log k = logn
log logn , can be computed in worst-case time:

• O(n log n) if δ < 1
4 .

80 CHAPTER 6. PARITY LATTICES

• O(n2 log n) if 1/4 < δ < 3
9 .

• O(n2 log n1+log23) if δ < 1
2 .

• l(δ)Õ(n3) = Õ(n6) if δ = 3
4 − ε.

• Õ(n9) if δ = 3
4 .

• l(δ)Õ(n2) = Õ(n3 log2
1
ε+2) if δ = 1− ε, ε < 1/4.

The proofs of Lemma 6.7 and Theorem 6.9 are available in Appendix 6.3.5 and 6.3.6, respectively.
Figure 6.4 shows how this decoding complexity compare with the decoding complexity of BW lattices.
In the proofs and as explained in Section 6.1.2 (see (6.7)), we clearly see that the complexity depends
on the number of times the second splitting strategy is used: E.g. x1 − 1 times induces a list-decoding
complexity of ≈ nx1 (for δ < 3/4). Consequently, reducing this x1 − 1 coefficient (in a similar manner
to the probabilistic BDD of BW lattices?) would enable to approach the linear complexity.

These results can be confronted with [DP19], where the authors present the first polynomial-time
BDD near Minkowski’s bound (γ = O(n/ log n)), but where the polynomial seems to be of higher order.

6.3 Appendix

6.3.1 The Merge Sort Algorithm

Let lk,n = (xn1 , x
n
2 ..., x

n
k) be a list of k elements x of dimension n (assume for the sake of simplicity

that k is a power of 2). This list can be split into two lists of equal size l
k/2,n
1 and l

k/2,n
2 and we write

lk,n = (l
k/2,n
1 , l

k/2,n
2).

Then, we define the function Merge as a function that takes two sorted lists of k elements x of dimension
n as input (as well as k and n) and returns a unique sorted list of the 2k elements. There exists several
variants of this function, but the complexity is always O(n · k).

Algorithm 6.6 Merge Sort Algorithm

Function: MS(lk,n, k, n)

Input: lk,n = (l
k/2,n
1 , l

k/2,n
2), k ≥ 1, n ≥ 1.

1: if k = 1 then
2: Return lk,n.
3: else
4: Return Merge(MS(l

k/2,n
1 , k2 , n),M(l

k/2,n
2 , k2 , n), k, n)

5: end if

Let C(k, n) be the complexity of the MS function (Algorithm 6). The complexity of this algorithm
is C(k, n) = 2C(k/2, n) +O(k · n) = O(k log k · n)

6.3.2 Proof of Theorem 6.3

If Step 14 is removed at the last recursive iteration of Algorithm 6.2 the sent point x = (x1, x2, ..., xk) is
not in the outputted list if

• xi /∈ Ti for at least two lists Ti (at Step 4 of Algorithm 6.2),

• or if x1, ..., xj 6=i, ..., xk ∈ T1, ..., Tj , ..., Tk, and xi − (−∑j 6=i xj) /∈ Vi (for at least one i).

Let the noise w = (w1, ..., wi, ..., wk). Due to the i.i.d property of the noise, we have P (||w1||2 > r
2) =

P (||wi||2 > r
2) for all 1 ≤ i ≤ k. As a result, P (x /∈ T) becomes

P (x /∈ T) ≤

(
k

2

)
P (||wi||2 >

r

2
)2 + kP (||wi||2 > r)P (||wi||2 <

r

2
)k−1,

=

(
k

2

)
F (
n

2
,
r

2
, σ2)2 + kF (

n

2
, r, σ2)F (

n

2
,
r

2
, σ2)k−1.

(6.54)

6.3. APPENDIX 81

F T

F

F

T

T

T

F

u1 :
r
2

u2 :
r
2

v1 : r

v2 : r

(a) Without the splitting strategy

F T

T

T

F

T

T

F

F

F

T

u2 :
2
3
r
2

F

T

F

u1 :
r
2

F

u1 :
2
3
r
2

v1 :
2
3
r

u2 :
r
2

v2 :
2
3
r

T

v1 : r

v2 : r

(b) With the first splitting strategy (with two cases)

Figure 6.11: Probabilistic tree illustrating the possible events for the case k = 2. The labels on the

edges represent the result of the question ui ∈ T
r
2
i ? (Or vi ∈ Vri ?), where ui is the preceding node. The

terminating edges labeled with F (False) represent an error event (x /∈ T).

Example 6.2. Figure 6.11a depicts a probabilistic tree representing the possible events for the case7

k = 2, where the sent point is x = (u1, u1 + v2) = (u2 + v1, u2), ui ∈ Ln, vi ∈ θLn.

More generally, we have

P (x /∈ T) ≤

(
k

2

)
P (xj /∈ Tj)2 + kP (xi − (−

∑
j 6=i

xj) /∈ Vi)(1− P (xj /∈ Tj))k−1. (6.55)

This idea can be recursively applied if we remove Step 11 at each recursion. Let Un(r, σ2) denote an
upper-bound of P (x /∈ T). We have a recursion of the form

Un(r, σ2) =

(
k

2

)
Un
k

(
r

2
, σ2)2 + k · Un

k
(r, σ2)(1− Un

k
(
r

2
, σ2))k−1, (6.56)

where we set Un(r, σ2) = 1 if the right-hand term is greater than 1.

Remember that vol(Ln
k

)
2
n/k = vol(Ln)

2
n /2

1
k (see (6.3)) and that d(Γ(V, β, k)P) = d(V) = 2d(T).

Hence, if we express the recursion as a function of the VNR ∆ =
vol(Ln

k
)

2
n/k

2πeσ2 and the relative radius δ,
we get:

Un(δ,∆) =

(
k

2

)
Un
k

(δ,
∆

2
1
k

)2 + kUn
k

(δ, 2
k−1
k ∆)(1− Un

k
(δ,

∆

2
1
k

))k−1. (6.57)

With the first splitting strategy (but not the second splitting strategy) the error probability is bounded
from above as

P (n, σ2, x /∈ T) ≤

(
k

2

)
P (xi /∈ T δ)2 + k

[
P (xj /∈ T

2
3
δ, xj ∈ T δ)k−1P (xi − (−

∑
j 6=i

xj) /∈ V2/3δ
i)

+ P (xi − (−
∑
j 6=i

xj) /∈ Vδi))P (xj ∈ T
2
3
δ)k−1

]
,

(6.58)

7For the case k = 2 we use the notation x = (u1, u1 + v2), instead of x = (t1, t1 + v2), to match the notation of the
Plotkin construction. See Section 6.2.1.

82 CHAPTER 6. PARITY LATTICES

where

P (xj /∈ T
2
3
δ, xj ∈ T δ) =(1− P (xj ∈ T

2
3
δ)

P (xj ∈ T δ)
)P (xj ∈ T δ),

=P (xj ∈ T δ)− P (xj ∈ T
2
3
δ).

(6.59)

Example 6.3. Figure 6.11b depicts a probabilistic tree representing the possible events, for the case
k = 2, when the first splitting strategy is used.

6.3.3 Proof of Lemma 6.3

Assuming that d(y, x) < r = 1/4 · d(BW2n), the algorithm is re-organized as follows:

• Decode y1 as u1. If ||w1|| < r
2 , then y1 is correctly decoded as u1 and so is y2 − u1 as v2.

• Else, if ||w1|| ≥ r
2 , y1 is not correctly decoded as u1 and:

– If d(u1, y1) > r
2 , then use the (u2 + v1, u2) construction for decoding.

– Else d(u1, y1) < r
2 (y1 is close to a different point) and

∗ If d(v2, y2 − u1) > r, this means that u1 was not correctly decoded. Use the (u2 + v1, u2)
construction for decoding.

∗ Else d(v2, y2 − u1) < r. Check if d(x̂, y) < r, where x̂ = (u1, u1 + v2):

· If not, use the (u2 + v1, u2) construction for decoding.

· This last case, d(x̂, y) < r, is not possible as shown by the following lemma.

Lemma 6.8. Let x = (u, u + v) and x̂ = (u1, u1 + v2), x, x̂ ∈ BW2n and w = (w1, w2) ∈ R2n. Let
y = x+ w, where ||w1||2 > d(BWn)/4 and ||w|| < d(BW2n)/4.
If d(u1, y1) < d(BWn)/4 then d(v, y2 − u1) > d(BWn)/4 and d(x̂, y) > d(BW2n)/4.

Proof. Let x = (u, u+v) = (v′+m, v′′+m) and the point decoded x̂ = (u1, u1 +v2) = (v′2 +m1, v
′′
2 +m1),

where v, v′, v′′, v2, v
′
2, v
′′
2 ∈ RBWn and m,m1 ∈ [BWn/RBWn]. There are two cases to consider.

• If u and u1 are in the same coset of RBWn, i.e. m = m1 (but u 6= u1), then ||w1||2 > d(RBWn)/4.

• If u1 and u are not in the same coset of RBWn, i.e. m 6= m1, then y2−u1 = v′′+m−v′2−m1 +w2.
Since m 6= m1, y2 − u1 is decoded in RBWn +m−m1 instead of RBWn. Hence, even if v′′ = v′′2 ,
d(v′′ +m, v′′2 +m1) ≥ d(BWn)/4. As a result, d(y, x̂) > 2d(BWn)/4 = d(BW2n)/4.

Figure 6.5 depicts a probabilistic tree summarizing these possible behaviors of the algorithm with
the re-ordered recursive calls. With the explanations in the legend of Figure 6.5, we deduce that the
complexity is given by

C(n, r) <C(
n

2
,
r

2
)[2(p r

2
+ [(1− p r

2
)(1− pe)]2)+

3(1− p r
2

)(1− pe)(p r
2

+ (1− p r
2

)pe) + 4(1− p r
2

)pe] +O(n).
(6.60)

6.3.4 Proof of Lemma 6.6

The same proof technique as the one used to prove Theorem 1.2 in [GP17] is considered, but we optimize
the parameters.
We use the (first) splitting strategy according to the recommendations made in Section 6.1.2 (for the
case k = 2). To lighten the notations, we write l(δ) for l(n/2, δ).

• If δ = 3
4 :

We use Equation (5.35), where we set a1 = δ − a2/2. We get

l(n, δ) ≤2
[
l(δ)l(δ − a1/2) + l(a1)l(a1) + l(2[δ − a1])l(δ)].

6.3. APPENDIX 83

Let a1 = 1/2 + ε′, then 2[δ − a1] = 1/2− 2ε′ and δ − a1/2 = 1/2− ε′/2. We choose ε′ to minimize l(a1):
I.e. such that (see (6.42)) b 3

4[3/4−(1/2+ε)]c = b 3
4[3/4−1/2]c = 12, e.g. ε′ = 1

32 . Then,

l(n, δ) ≤ 2l(δ)
[
l
(31

64

)
+ l
(7

16

)]
+ n2 log2 12,

= 2l(δ)[16 + 8] + 22 log2 12 = 44l(δ) + n2 log2 12,

= n2 log2 12

log2 n∑
i=0

(
44

22 log2 12

)i
,

= O(n2 log2 12).

• If δ = 1− ε, 0 < ε < 1
4 :

Our “trick” to improve the constant (besides the above improvement) is to introduce the parameter
ε′. Equation (5.35), with k = 2, is an upper bound on the list size of BWn lattices l(n, δ). We set

a1 = 1− (2−ε′)ε and a2 = 1/2−ε. We want to show that l(n, 1−ε) ≤ c ·
(

1
ε

)x log2 n, where c is a constant
and x is a parameter to be determined. The claim is true for n = 0. We proceed by induction on n: We
assume that it is true for n/k and show that it holds for n.

l(n, δ) ≤2
[
l(δ)l(

1

2
− ε′

2
ε) + l(1− (2− ε′)ε)l(3

4
− ε/2)

+ l(
1

2
− ε)l(δ)

]
,

≤2
[
c1l(δ) + l(1− (2− ε′)ε)l(3

4
) + c2l(δ)

]
,

≤1

ε

x(log2 n−1)
(

4c1c+ 2c

[
122

(2− ε′)x
]log2 n−1

)
.

We choose ε′ such that 122

(2−ε′)x < 1 for the smallest (integer) value of x possible, e.g. ε′ = 1
8 and x = 8.

Moreover, we have c1 = 1
ε′ε = 8

ε . Hence, 4c1 + 2 = 32
ε + 2 ≤

(
1
ε

)8
. The equation becomes

≤ c(4c1 + 2) ·
(

1

ε

)8(log2 n−1)

≤ c ·
(

1

ε

)8 log2 n

.

Note: In [GP17], l(3/4) = O(n2 log2 24) and ε′ = 1/2, which yields x = 16.

6.3.5 Proof of Lemma 6.7

We use the splitting strategy according to the recommandations made in Section 6.1.2. To lighten the
notations, we write l(δ) for l(n/k, δ).

• If δ = 3
4 − ε, 0 < ε < 1

4 :

Then l(2
3δ = 1

2 − 2
3ε) = 3

4ε and l(δ2) = 4. Equation (5.33) becomes:

l(n, δ) ≤ 2k3l(δ)l(
2

3
δ)l(

δ

2
) =

3 · 8
4ε

k3l(δ) =
6

ε
k3l(δ),

=

(
6

ε
n3/ log logn

)log logn−logk c

· l(Lc, δ),

= O(n3 log nlog 6
ε).

• If δ = 3
4 :

We use Equation (5.36) (to avoid a term of the form l(n, 3/4) · Ω(n)), where we set a1 = δ − a2/2.

l(n, δ) ≤c1k3
[
l(δ)l(δ − a1/2) + l(a1)l(δ − a2/2) + l(a2)l(δ)].

Let a1 = 1/2 + ε. Then 2[δ − a1] = 1/2− 2ε and δ − a1/2 = 1/2− ε/2. Let c1 be a positive constant.

l(n, δ) ≤ k3[l(3

4
)l(

1

2
− ε/2) + l(

1

2
+ ε)l(

1

2
+ ε) + l(

1

2
− 2ε)l(

3

4
)],

= c1k
3l(

3

4
) + Õ(n6),

= Õ(n6).

84 CHAPTER 6. PARITY LATTICES

• If δ = 1− ε, 0 < ε < 1
4 :

We use Equation (5.36) with a1 = 1 − (2 − ε′)ε and a2 = 1/2 − ε. We want to show that l(n, 1 − ε) =

O(
(

1
ε

)x log2 n), where x > 1 is a parameter to be determined. The claim is true for n = 0. We proceed
by induction on n: We assume that it is true for n/k and show that it holds for n.

l(n, δ) ≤k3[l(δ)l(1

2
− ε′

2
ε) + l(1− (2− ε′)ε)l(3

4
− ε/2) + l(

1

2
− ε)l(δ)

]
,

≤k3[c1l(δ) + l(1− (2− ε′)ε)l(3/4− ε/2) + c2l(δ)
]
,

=k3O(

(
1

ε

)x(log2 n−
log2 n

log logn
)

)(1 +
n3 lognlog 6

ε

(2− ε′)x(log2 n−
log2 n

log logn
)
),

≤k3O(

(
1

ε

)x(log2 n−
log2 n

log logn
)

) ·

1 + (2− ε′)x
log2 n

log logn

23 logn
log 6

ε
log2 n

(2− ε′)x

log2 n

 .

We choose x = 3 + ε′′ and ε′ > 0 small enough such that the term under the power log2 n is O(1). We
get

l(n, δ) ≤ k3O

(

1

ε

)x(log2 n−
log2 n

log logn)

 (1 + 2x

log2 n
log logn),

≤ O
((

1

ε

)x log2 n
)
·

23 log2 n/ log logn
(

1 + 2x
log2 n

log logn

)

O(
(

1
ε

)x log2 n
log logn)

,

≤ O
((

1

ε

)x log2 n
)
.

If ε′′ is chosen smaller than 1
n , the above equation becomes:

l(n, δ) = O

(

1

ε

)3 log2 n+
log2 n
n

 = O

((
1

ε

)3 log2 n
)
.

Alternatively, we can prove the following super-polynomial (in n) bound, but with a reduced dependency
in ε. Let c1, c2 be positive constants. We have

l(n, δ) ≤2k3[l(δ)l(1

2
− ε′

2
ε) + l(1− (2− ε′)ε)l(3

4
− ε/2) + l(

1

2
− ε)l(δ)

]
,

≤2k3[c1l(δ) + l(1− (2− ε′)ε)l(3

4
) + c2l(δ)

]
,

=O(n3 log logn lognlog 6
ε) = Õ(n3 log logn).

6.3.6 Proof of Theorem 6.7

We use the splitting strategies according to the recommandations made in Section 6.1.2. The second
splitting strategy is never used for k = 2.
To lighten the notations, we write l(δ) for l(n/k, δ) and C(δ) for C(n/k, δ).

• If δ < 3
8 :

Then, 2
3δ <

1
4 . We have l(δ) = O(1), l(2

3δ) = l(δ2) = l(δ3) = 1, and C(2
3δ) = 1

2kO(n1+1/log2k).

• If k = 2, the decoder of [GP17], whose complexity is given by (6.39), yields O(n2).

• If k = n1/ log logn, we use the first splitting strategy with two sub-cases and once the second splitting
strategy. The baseline equation is (5.27), which becomes

C(n, δ) =kC(δ) + (k2 − k)
[
l(δ)O(n logn) + C(δ)

]
,

=k2C(δ) + l(δ)O(n logn) = l(δ)O(n logn)

log logn∑
i=0

ki,

=l(δ)O(n2 logn) = O(n2 logn).

6.3. APPENDIX 85

• If 3
8 ≤ δ < 1

2 :

Then, δ
2 < 1/4. We have l(2

3δ) = 2, l(δ2) = l(δ3) = 1.

• If k = 2, the decoder of [GP17], whose complexity is given by (6.39), yields O(n2).

• If k = n1/ log logn, we use the first splitting strategy with two sub-cases and once the second splitting
strategy. The baseline equation is (5.27), which becomes

C(n, δ) =kC(δ) +O(n2 logn) + (k2 − k)
[
l(δ)O(n2 logn) + l(

2

3
δ)C(δ)

]
,

=[(k2 − k)l(
2

3
δ) + k]C(δ) + l(δ)O(n2 logn),

=l(δ)O(n2 logn) ·
log logn∑
i=0

(
k2l(2

3
δ)− kl(2

3
δ) + k

k2

)i
,

=l(δ)O(n2(logn)1+log 3).

• If δ = 3
4 − ε, 0 < ε ≤ 1/4:

Then, 2
3δ <

1
2 , δ

2 <
3
8 , δ

3 <
1
4 . We have l(2

3δ) = l(δ2) = O(1), l(δ3) = 1.
We use the first splitting strategy with two sub-cases.

• If k = 2, the baseline equation is (5.24), which becomes

C(n, δ) =[2l(
2

3
δ) + 2]C(δ) + l(δ)O(n2),

=l(δ)O(n2) ·
log2 n∑
i=0

(
2l(2

3
δ) + 2

4

)i
,

=l(δ)O(n2+log2[
l(2

3
δ)+1

2
]) = l(δ)O(n1+log2[b 3

4ε
c+1]).

If δ = 1
2 , l(δ) ≤ 2n and ε = 1

4 . Then

C(n, δ) = O(n4).

If δ > 1
2 , we have l(δ) = O(nlog2 4b 3

4ε c). Then,

C(n, δ) = O(n1+log2 4b 3
4ε c

2

),

where we assumed that 3
4ε >> 1.

• If k = n1/ log logn, we use twice the second splitting strategy. The baseline equation is (5.34), which
becomes:

C(n, δ) ≤l(δ)l(δ
2

)O(n2 logn1+log 3) + k3l(
2

3
δ)C(δ),

=l(δ)O(n2 logn1+log 3)

log logn∑
i=0

(
kl(

2

3
δ)

)i
,

=l(δ)O(n3(logn)1+log 3b 3
4ε
c).

If δ = 1
2 , l(δ) ≤ 2n. Then

C(n, δ) = O(n4 logn4).

If δ > 1
2 , we have l(δ) = Õ(n3). The complexity is

C(n, δ) = Õ(n6)

• If δ = 3
4 :

Then, 2
3δ = 1

2 , δ
2 = 3

8 . We have l(2
3δ) = 2n, .

We use the first splitting strategy with three sub-cases (to avoid a term of the form Ω(n) · C(δ)).

86 CHAPTER 6. PARITY LATTICES

Let a1 = 1/2−ε′2 and a2 = 1/2−ε′1. In both cases, C(n, δ) is upper bounded by (see e.g. Equation (5.37)
and (5.38))

C(n, δ) ≤x
[
l(δ)C(a1) + l(2(δ − a1))C(δ − a2

2
) + l(a2)C(δ)],

=x
[
l(δ)C(

1

2
− ε′2) + l(

1

2
+ 2ε′2)C(

1

2
+
ε′1
2

) + l(
1

2
− ε′1)C(δ)],

where x = k if k = 2 and x = k3 if k = n1/ log logn.

• If k = 2:

We choose ε′1 small enough such that C(1/2 +
ε′1
2) = C(1

2) = O(n
1+log2 4b 3

4 1
4

c2
) and ε′2 such that

l(1
2 + 2ε′2) = l(1

2) = n
log2 4b 3

4 1
4

c
. The complexity is

C(n, δ) ≤l(δ)O(n2) + l(
1

2
)C(

1

2
) + cC(δ),

=O(n2+2 log2 12) +O(n1+log2(12·36)) + cC(δ),

=O(n1+log2 432).

• If k = n1/ log logn:
The complexity is

C(n, δ) =Õ(n6+2) + Õ(n3+6) + ck3C(δ),

=Õ(n9).

• If δ = 1− ε, 0 < ε < 1
4 :

We use the first splitting strategy with three sub-cases. In both cases, C(n, δ) is upper bounded by (see
Equation (5.37) and (5.38))

C(n, δ) ≤x
[
l(δ)C(

3

4
− ε′) + l(

1

2
+ ε′ − ε)C(

3

4
− ε/2) + l(1/2− ε)C(δ)

]
,

where x = k if k = 2 and x = k3 if k = n1/ log logn. We choose ε′ = 1
4 + ε′′, where ε′′ ≤ ε. The bound

becomes

C(n, δ) ≤2x
[
l(δ)C(

1

2
− ε′) + l(

3

4
− (ε− ε′))C(

3

4
− ε/2) + l(1/2− ε)C(δ)

]
• If k = 2:

C(n, δ) =l(δ)O(n2) = O(n8 log2
1
ε

+2).

• If k = n1/ log logn:

C(n, δ) =l(δ)Õ(n2) = Õ(n3 log2
1
ε

+2).

6.3.7 Proof of Theorem 6.8

The result on the complexity is obtained by adapting (6.44), (6.45), and the complexity formulas in
Theorem 6.7.

• If 3/8 < δ ≤ 9/16:
We use the fact Ey[l′(n2 ,

3
8 , y)] ≥ Ey[l′(n4 ,

3
8 , y)] ≥

Ey[l′(n, δ, y)] ≤2
[
Ey[l′(

3

8
, y)]l(δ) + l(δ)Ey[l(

3

8
, y)]],

≤4Ey[l′(
3

8
, y)]l(δ) = O(nlog2(4Ey [l′(3

8
,y)])),

=O(n2+log2 Ey [l′(3
8
,y)]).

(6.61)

Chapter 7

Study of some famous group codes

7.1 Turyn’s construction of the Leech lattice and the Nebe lat-
tice

The story of Turyn’s construction starts in 1967, when Turyn constructed the Golay code from versions of
the extended Hamming code [AMT67] [MS77, Chap. 18, sec 7.4]. According to Nebe [Neb10], it has then
been remarked independently in [Tit80], [LM82], and [Que84] that there is an analogous construction
of Λ24 based on E8. Turyn’s construction re-appeared in [CS86] under the form of 4096 cosets of the
lattice (E8)3. Finally, it was rediscovered in the scope of the “cubing construction” in [For88b], i.e. as
Γ(V, α, β, 3).

Among the three groups S, T, V used in the construction Γ(V, α, β, 3), let us take V as 2S. To build
the Leech lattice, we have S, T ∼= E8 and to build the Nebe lattice we have S, T ∼= Λ24. Moreover, to
obtain theses two lattices via the k−ing construction, the coset representatives α should be chosen such
that d(Γ(V, α, β, 3)) > 3d(S) (see Theorem 5.2). We already established via (5.8) that choosing α is
equivalent to choosing T ∗. In the next section, we explain how to get T ∗ via lattice polarisation.

7.1.1 The polarisation of lattices

The groups S, T, T ∗, V = 2S we are considering are lattices of rank n. In the scope of the polarisation
of lattices, T ∗ is a rotation of T by an angle of 2θ. Therefore, it is denoted T2θ.

Definition 7.1. Given a lattice S, we call (T, T2θ) a polarisation of S [Neb12] if

S ∼= T ∼= T2θ,

S = T2θ + T, and T2θ

⋂
T = 2S.

(7.1)

Let GS be a generator matrix of S. Finding a polarisation of the lattice S (if it exists) is equivalent
to finding a scaling-rotation matrix R, R ·RT = 2I, with

GT = GS ·R and GT2θ = GS ·RT ,

such that the basis vectors giT and giT2θ
, 1 ≤ i ≤ n, are versions of the vectors giS scaled by a factor of√

2 and rotated by an angle of ±θ = arctan
√

7. Indeed, consider two vectors giT and giT2θ
of the same

size and having an angle of 2θ. Summing these two vectors yields a vector giS having half the size of giT ,
as illustrated by Figure 7.1:

||giS ||2 = ||giT + giT2θ
||2 = 0.5× ||giT ||2, (7.2)

since cos (2θ) = −3/4. One would thus get GS = GT + GT2θ
. Such a rotation matrix can be found

via a Z[λ]-structure of S; Let GC
S be a (complex) generator matrix of S over the ring of integers Z[λ],

λ =
√

2eiθ = 1+i
√

7
2 . Multiplying GC

S by λ yields a new matrix whose rows are new vectors belonging

to the lattice, scaled by
√

2, and having the desired angle with the basis vectors. Hence, GC
T can be

obtained as λGC
S and GC

T2θ
as ψGC

S , where ψ = λ̄ is the conjugate of λ. Therefore, if we let GS be

the real generator matrix obtained from GC
S (via (4.3)), the real rotation matrix R for polarisation is

R(n, λ) = In/2 ⊗R(2, λ).

87

88 CHAPTER 7. STUDY OF SOME FAMOUS GROUP CODES

giS

giT2θ

θ

giT

Figure 7.1: Illustration of giT + giT2θ
= giS .

7.1.2 The lattice Γ(2S, T2θ, T, 3)

Given three lattices S, T and T2θ, respecting properties (8.22), the lattice Γ(2S, T2θ, T, 3) is obtained
from Turyn’s construction as

Γ(2S, T2θ, T, 3) ={(a = m′ + n′1, b = m′ + n′2, c = m′ + n′3),

m′ ∈ T2θ, n
′
1, n
′
2, n
′
3 ∈ T, n′1 + n′2 + n′3 ∈ 2S},

={(a = v1 +m+ n1, b = v2 +m+ n2, c = v3 +m− n1 − n2),

v1, v2, v3 ∈ 2S, m ∈ α, n1, n2 ∈ β}.

(7.3)

A generator matrix of Γ(2S, T2θ, T, 3) is

GΓ(2S,T2θ,T,3) =

[
G(3,1) ⊗GT2θ

G(3,2) ⊗GT

]
(7.4)

where G(3,1) and G(3,2) are generator matrices for the (3, 1) binary repetition code and the (3, 2) binary
single parity-check code, respectively. Obviously, F2 is naturally embedded into Z for the two binary
codes. From (7.4), a generator matrix of Γ(2S, T2θ, T, 3) over Z[λ] can be expressed as

GC
Γ(2S,T2θ,T,3) =

λ λ λ
ψ ψ 0
0 ψ ψ

︸ ︷︷ ︸

=Pb

⊗GC
S , (7.5)

where GC
S is a generator matrix of S over Z[λ].

7.1.3 Construction of the Leech lattice and Nebe lattice

Theorem 7.1. Let S ∼= E8 and T ,T2θ be two lattices respecting properties (8.22). Then, Γ(2S, T2θ, T, 3)
is the Leech lattice with fundamental coding gain equal to 4 [Tit80] [LM82] [Que84].

The following proof is not new, but it enables to make a clear link between the k-ing construction
and Λ24 using our notations.

Proof. We let E8 be scaled such that d(E8) = 2 and vol(E8) = 1. This version of the Gosset lattice is
even. Then, S = 1√

2
E8 has d(S) = 1, vol(S) = 2−4 and vol(T) = vol(T2θ) = 1, d(T) = d(T2θ) = 2. Also,

|α| = |β| = 24 from (4.21).
Firstly, using Theorem 5.2, we have d(Γ(2S, T2θ, T, 3)) ≥ 3. Then, assume that a = m′ + n′1 and
b = m′+n′2 (with the notations of (7.3)) have both odd squared norms. This is equivalent to having the

scalar products 〈m′, n′1〉 = ν
2 and 〈m′, n′2〉 = ν′

2 , where ν and ν′ are integers. Therefore, 〈m′, n′1 + n′2〉 is
integer and c = m′ + n′1 + n′2 has an even squared norm. We just proved that Γ(2S, T2θ, T, 3) is even.
This implies that d(Γ(2S, T2θ, T, 3)) = 4.
The last step aims at proving that Γ(2S, T2θ, T, 3) has a unit volume. (7.3) shows that Γ(2S, T2θ, T, 3) is
obtained as the union of |α||β|2 = 212 cosets of (2S)3. Hence, vol(Γ(2S, T2θ, T, 3)) = vol((2S)3)/212 = 1.
Finally, Λ24 is the unique lattice in dimension 24 with fundamental coding gain equal to 4.

Note: From this polarisation perspective, the construction of the Leech lattice from Forney [For88b]
might appear as a surprising result; indeed, he also uses the construction Γ(2S, T2θ, T, 3) but the lattices
T and T2θ are obtained via an unexpected manner. It is discussed in Appendix 7.5.1.

Lemma 7.1. Let S ∼= Λ24 and T ,T2θ be two lattices respecting properties (8.22). Then, the lattice
Γ(2S, T2θ, T, 3) has a fundamental coding gain equal to 6 or 8 [Gri10].

7.2. DECODERS FOR LEECH AND NEBE LATTICES 89

The proof of Lemma 7.1 is similar to that of Theorem 7.1 (see Appendix 7.5.2). In this case, the
polarisation does not ensure Γ(2S, T2θ, T, 3) > 3d(S) = 6. Additional work to choose T2θ is needed.
In Appendix 7.5.3, we discuss the vectors of squared norm 6 in Γ(2S, T2θ, T, 3) and explain how to
efficiently count them.

Definition 7.2. Let S be the Z[λ]-structure Λ24 with automorphism group SL2(25) (see Appendix 7.5.3).
Set T2θ = λS and T = ψS. The Nebe lattice is defined as N72 = Γ(2S, T2θ, T, 3).

Theorem 7.2. N72 has a fundamental coding gain equal to 8 [Neb12].

Proof. Check that Γ(2S, T2θ, T, 3) has no vectors of squared norm 6 by computing all possibilities of
(7.38), as explained in Appendix 7.5.3.

7.2 Decoders for Leech and Nebe lattices

Given Λ24 constructed as Γ(2S, T2θ, T, 3), in [CS86] a point in R24 is decoded in all 212 cosets of (2S)3 and
the best candidate is kept (see (ii) below). N72 is the union of 236 cosets of (2S)3 (S ∼= Λ24). As a result,
all decoders based on a search in all cosets of (2S)3, as the one proposed by Conway and Forney for Λ24,
are intractable for N72. Our decoders are also based on coset decomposition of the lattice. However, as
we shall see in the sequel, it is not necessary to investigate all cosets to get efficient decoders.
In this section, we first review the literature on decoding algorithms for Λ24 and N72. While the decoding
of Λ24 has been extensively studied, the literature on decoders for N72 is not as rich: Only [Mey13] studied
this aspect, but the proposed decoder is highly suboptimal.
Then, we describe two sets of decoding algorithms for lattices constructed as Γ(2S, T2θ, T, 3). These
algorithms are obtained as direct applications of Algorithms 5.2 and 5.3 (and their list-decoding versions)
presented in Section 5.3.

7.2.1 Existing decoding algorithms for Λ24 and N72

History of the decoders of Λ24

Λ24 appeared under many different forms in the literature (which may be equivalent to Turyn’s con-
struction). Among others, Λ24 can be obtained as (i) 8192 cosets of 4D24, (ii) 4096 cosets of (

√
2E8)3,

(iii) 2 cosets of the half-Leech lattice H24, where H24 is constructed by applying Construction B on the
Golay code C24, and (iv) 4 cosets of the quarter-Leech lattice, where quarter-Leech lattice is also built
with Construction B but applied on a subcode of C24. Finally, one of the simplest constructions is due
to [BSC95], where the Leech lattice is obtained via Construction A applied on the quaternary Golay
code.

The history of MLD algorithms for Λ24 starts with [CS84], where Conway and Sloane used (i) to
compute the second moment of the Voronoi region of Λ24. The first efficient decoder was presented
in [CS86] by the same authors using construction (ii). Two years later, Forney reduced the complexity of
the decoder by exploiting the same construction (ii), which he rediscovered in the scope of the “cubing
construction”, with a 256-state trellis diagram representation [For88b] (see Section 5.3.1 for a presentation
of trellis). A year later, it was further improved in [LL89] and [BSS89] thanks to (iii) combined with an
efficient decoder of C24. Finally, (iv) along with the Hexacode is used to build the fastest ever known
MLD decoder by Vardy and Be’ery [VB93].

To further reduce the complexity, (suboptimal) BDD were also investigated based on the same con-
structions: e.g. [For89a] with (iii) and [ABV+94] [Var95] [FV96] with (iv). In these papers, it is shown
that these BDD do not change the error exponent (i.e. the effective minimum distance is not diminished)
but increase the “equivalent error coefficient”. The extra loss is roughly 0.1 dB on the Gaussian channel
compared to the optimal performance.
As we shall see in the sequel, our decoding paradigm applied to the Leech lattice is more complex than
the state-of-the-art decoders of Vardy [Var95] [FV96] which requires only ≈ 300 real operations. But
again, this latter decoder is specific to the Leech lattice whereas our decoder is more universal as it can
be used, among others, to decode the Nebe lattice and the Barnes-Wall lattices.

90 CHAPTER 7. STUDY OF SOME FAMOUS GROUP CODES

S ∼= 1√
2
Λ24 T2θ, T 2S N72

d 2 4 8 8
ρ2 1

2 1 2 2
R2 1 2 4 > 4

Table 7.1: Parameters of N72 with a normalized volume equal to 1.

S ∼= 1√
2
E8 T2θ, T 2S Λ24

d 1 2 4 4
ρ2 1

4
1
2 1 1

R2 1
2 1 2 2

Table 7.2: Parameters of Λ24 with a normalized volume equal to 1.

The decoder of the Nebe lattice in [Mey13]

First, notice that we can multiply (on the left) the matrix Pb given in (7.5) by a unimodular matrix to
get the following new matrix Pb′:

Pb′ =

1 1 λ
0 ψ ψ
0 0 2

 =

1 1 0
0 0 1
ψ −λ 0

 · Pb. (7.6)

Similarly to (7.5), Pb′⊗GC
S , S ∼= Λ24, is a basis for the Nebe lattice which induces the following structure:

N72 ={(a, b, c) ∈ C36 : a ∈ S, b− a ∈ T, c− (b− a)− λa ∈ 2S}, (7.7)

where (7.7) is derived from the columns of Pb′. A successive-cancellation-like algorithm can thus be
considered: given y = (y1, y2, y3) in C36, y1 is first decoded in S as t1, y2 − t1 is then decoded in T
as t2, and y3 − t2 − λt1 is decoded in 2S as t3. In [Mey13], this successive-cancellation algorithm is
proposed, with several candidates for t1 which are obtained via sphere decoding with a given radius r.
Among all resulting approximations, the closest to y is kept. It is proved in [Mey13], that the lattice
point x̂ outputted by the algorithm using a decoding radius r = R(S), the covering radius of S, has an
approximation factor ||y − x̂|| ≤

√
7||y − xopt||. Additionally, this algorithm is guaranteed to output the

closest point xopt ∈ Γ(2S, T2θ, T, 3) to y if d(y, xopt) ≤ R(S), where R(S) is unfortunately smaller by a
factor

√
2 than the packing radius ρ(N72), c.f. Tables 7.1 (we also provide Table 7.2 with the parameters

of Λ24 for comparison).

7.2.2 New BDDs and list decoders for Γ(2S, T2θ, T, 3)

We present two decoding strategies: The first one, based Algorithm 5.2, involves |α| decoding of the
underlying parity lattice. The second one, based on Algorithm 5.3, involves decoding the component
lattices S with a larger radius.

First decoder

We first adapt Algorithm 5.2 to Γ(2S, T2θ, T, 3) by choosing the decoders for T and V = 2S, at Steps 3
and 5, as BDDs. We name it Algorithm 5.2’.

Theorem 7.3. Let Γ(2S, T2θ, T, 3) and y be respectively a lattice and a point in R3n.
If d(y,Γ(2S, T2θ, T, 3)) < ρ2(Γ(2S, T2θ, T, 3)), then Algorithm 5.2’ outputs the closest lattice point x ∈
Γ(2S, T2θ, T, 3) to y in time

CA.5.2′ = 6|α|CSBDD. (7.8)

Proof. We first show that x is the closest lattice point to y. Assume that, at Steps 1-2, m corresponds to
the coset of the closest lattice point to y. Then, the result follows from Theorem 5.1 since Algorithm 5.2’
is a special case of Algorithm 5.4 used α times.
Regarding the complexity, we use Equation (5.17) with k = 3 and where CSBDD = C2S

BDD.

7.2. DECODERS FOR LEECH AND NEBE LATTICES 91

It is insightful to compare Algorithm 5.2’ to trellis decoding. The complexity is reduced from ≈
|α||β|2CSCV P to ≈ |α|CSBDD (but where trellis decoding is optimal unlike Algorithm 5.2’).

Algorithm 5.5’ is the list-decoding version of Algorithm 5.2’: It consists in repeating |α| times (once for
each coset of Γ(2S, β, 3)P) Algorithm 5.5, with k=3, using the first splitting strategy with two sub-cases
and once the second splitting strategy. The complexity is obtained by multiplying (5.27) by |α|.
Theorem 7.4. Let Γ(2S, T2θ, T, 3) and y be respectively a lattice and a point in R3n. Algorithm 5.5’
outputs the set Γ(2S, T2θ, T, 3) ∩Bδ(y) in worst-case time

CA.5.5′(δ) =|α|
[
3CT∩Bδ(y) + 6l(T, δ)l(T,

δ

2
)CV ∩B 2

3
δ
(y) + l(T,

2

3
δ)l(T,

δ

3
)CV ∩Bδ(y)

]
. (7.9)

Proof. The proof to show that all points in the set Γ(2S, T2θ, T, 3)∩Br(y) are outputted by the algorithm
is the same as the one of Theorem 5.3.

Corollary 7.1. Let Λ24 = Γ(2S, T2θ, T, 3) (constructed as in Lemma 7.1). Algorithm 5.5’ with a decoding
radius r = d(T) = d(E8), i.e. δ = d(E8)/d(Λ24) = 1/2, solves the CVP for Λ24 with worst-case
complexity

CA.5.5′(δ =
1

2
) =|α|

[
3CT∩Bδ(y) + 6[2n2CE8∩B 1

3
(y) + 3CE8∩B 1

2
(y)]
]
,

/24 · 6 · 2 · 8 · 2 · CE8∩B 1
2

(y) ≈ 211CE8∩B 1
2

(y).
(7.10)

Proof. If S ∼= E8, d(T) = R2(Γ(2S, T2θ, T, 3)) (the covering radius).

To the best of our knowledge, the covering radius of N72 appears nowhere in the literature. However,
Gabriele Nebe showed in a private communication that it is greater than

√
2ρ(N72). The proof is available

in Appendix 7.5.4. As a result, Algorithm 5.5’ with δ = 1/2 is not optimal for N72.
Note that the complexity can be slightly reduced if one wants only the closest lattice point and not

the entire list: list decoding in V can be replaced by MLD decoding in V .

Second decoder

Algorithm 7.1 implements Algorithm 5.3 as follows:

• Step 1 of Algorithm 5.3 involves list decoding in S with r = ρ2(Γ(2S, T2θ, T, 3))/2. Consequently,
Steps 3-7 of Algorithm 5.3 are performed for any of the combinations of candidates in two lists.

• Regarding Step 2 of Algorithm 5.3, ti is decomposed as ti = m′i+n′i instead of ti = vi+mi+ni. To
this end, we assume that one has a generator matrix GS of S = T2θ+T , such that GS = GT2θ

+GT ,
where GT2θ

and GT are the generator matrices1 of T2θ and T respectively.

• The condition mj1 6=i = mj2 6=i of Algorithm 5.3 at step 4 is computed by checking if m′j1 6=i−m′j2 6=i ∈
V = 2S.

• Step 5 of Algorithm 5.3 becomes p′i = m′j1 − n′j1 − n′j2 .

Let ρ2 = ρ2(Γ(2S, T2θ, T, 3)). We have ρ2

2 ≤ d(S)/2, but for the lattices of interest, Λ24 and N72,
ρ2

2 = d(S)/2. Consequently, CS∩Bρ2/2(y) = CS∩B1/2(y): The relative radius for decoding in S is 1/2.

Using Theorem 5.1, we get2 L(S, d(S)/2) ≤ 2n but we have no better bound. The complexity is

CA.7.1(δ =
1

4
) ≤3CS∩B 1

2
(y) + 3l(S,

1

2
)2C2S

BDD,

≤3CS∩B 1
2

(y) + 12n2C2S
BDD.

(7.11)

As a result, even for BDD the splitting strategies should be considered.
Algorithm 7.2 (and its subroutine given in Algorithm 7.3) is a modified version of Algorithm 7.1

to use the splitting strategies. It is almost identical to Algorithm 5.5 (and its subroutine given by
Algorithm 5.7) except that the sets S ∩ B are computed instead of T ∩ B. The complexity is obtained
via (5.27).

1Note that the construction presented for Λ24 and N72 yields generator matrices satisfying this property.
2When S ∼= Λ24, it is an equality and it is conjectured in [Mey13] that this maximum is attained only if yi is located in

a deep hole.

92 CHAPTER 7. STUDY OF SOME FAMOUS GROUP CODES

Algorithm 7.1 Second decoder for Γ(2S, T2θ, T, 3) without the splitting strategies

Input: y = (y1, y2, y3) ∈ R3n, GS = GT2θ
+GT , 0 ≤ δ.

1: Compute the sets T1 = S ∩B2δ(y1), T2 = S ∩B2δ(y2), T3 = S ∩B2δ(y3).
2: for 1 ≤ i ≤ k = 3 do
3: Set j1 < j2, j1, j2 ∈ {1, 2, 3} \ {i}.
4: for each (tj1 , tj2) ∈ Tj1 × Tj2 do
5: Compute zj1 = tj1G

−1
S , zj2 = tj2G

−1
S .

6: Compute m′j1 = zj1GT2θ
, m′j2 = zj2GT2θ

, and n′j1 = zj1GT , n′j2 = zj2GT .
7: if m′j1 −m′j2 ∈ 2S then
8: Compute p′i = m′j1 − n′j1 − n′j2 .

9: Compute the sets Vi = V ∩Bδ2
(
yi − p′i

)

10: for vi ∈ Vi do
11: Add (t1, ..., ti−1, vi + p′i, ti+1, ..., tk) to the list T .
12: end for
13: end if
14: end for
15: end for
16: Return T .

Algorithm 7.2 Second decoder for Γ(2S, T2θ, T, 3) with the splitting strategy (first splitting strategy
with two sub-cases)

Input: y = (y1, y2, y3) ∈ R3n, GS = GT2θ
+GT , 0 ≤ δ.

1: for η ∈ {2δ, 2
32δ, 2δ

2

∗
, 2δ

3

∗} do
2: Set T η1 , T η2 , T η3 as global variables.
3: Compute the sets T η1 = S ∩Bη(y1),

T η2 = S ∩Bη(y2), T η3 = S ∩Bη(y3).
4: end for
5: for 1 ≤ i ≤ k do
6: T1 ← SubR(y1, y2, ..., yk, δ, 2/3δ, i).
7: T2 ← SubR(y1, y2, ..., yk, 2/3δ, δ, i).
8: end for
9: Return T = {T1, T2}.

*The sets T
δ
2
i and T

δ
3
i are computed only if used by the Subroutine.

Algorithm 7.3 Subroutine of Algorithm 7.2 (with once the second splitting strategy)

Function SubR(y1, y2, ..., yk, δ1, δ2, i)
Input: y = (y1, y2, ..., yk) ∈ Rkn, 1 ≤ t, 0 ≤ δ1, δ2, 1 ≤ i ≤ k.

1: for 1 ≤ l 6= i ≤ k do
2: Set j = {1, 2, 3}\{i, l}.
3: for each (tl, tj) ∈ T δ1l × T

δ1/2
j do

4: Compute zl = tlG
−1
S , zj = tjG

−1
S .

5: Compute m′l = zlGT2θ , m′j = zjGT2θ ,
and n′l = zlGT , n′j = zjGT .

6: if m′j −m′l ∈ 2S then
7: Compute p′i = m′l − n′l − n′j .
8: Compute the sets Vi = V ∩Bδ2

(
yi − p′i

)
9: for vi ∈ Vi do

10: Add (t1, ..., ti−1, vi + p′i, ti+1, ..., tk) to the list T .
11: end for
12: end if
13: end for
14: end for
15: Return T .

7.2. DECODERS FOR LEECH AND NEBE LATTICES 93

Theorem 7.5. Let Γ(2S, T2θ, T, 3) and y be respectively a lattice and a point in R3n. Algorithm 7.2
outputs the set Γ(2S, T2θ, T, 3) ∩Bδ(y) in worst-case time

CA.7.2(δ) = 3CS∩B2δ(y) + 6[l(S, 2δ)l(S, δ)CV ∩B 2
3
δ
(y) + l(S,

4

3
δ)l(S,

2δ

3
)CV ∩Bδ(y)]. (7.12)

For instance, for BDD (δ = 1
4) we now get a complexity

CA.7.2(δ =
1

4
) =3CS∩B 1

2
(y) + 6l(S,

1

3
)CV ∩B 1

4
(y) + 12nCV ∩B 1

6
(y),

≤3CS∩B 1
2

(y) + [18 + 12n]CVBDD,
(7.13)

i.e. a complexity linear in n whereas it was quadratic within (7.11).
Which list decoder should we use among the two presented? The choice between the two strategies

depends if it is more expensive to pay |α| or CT∩B2δ(y) and l(S, 2δ)l(S, δ).

7.2.3 Bounding the list size of Λ24 and N72

We bound the list size of Λ24 and N72 via the maximum number of elements in the list T returned by
Algorithm 5.5’ (without the removing step) or Algorithm 7.2, similarly to what we did with the parity
lattices. The bounds are obtained via (5.26) combined with the following lemma.

Lemma 7.2. Let Λ = Λ′ + [Λ/Λ′] and y ∈ Rn. Let xi ∈ [Λ/Λ′].

|Br(y) ∩ Λ| =
|Λ/Λ′|∑

i=1

|Br(y − xi) ∩ Λ′|, (7.14)

≤ |Λ/Λ′| ·max
i
|Br(y − xi) ∩ Λ′|. (7.15)

Lemma 7.3. The list size of Λ24 and N72 are respectively bounded as

l(Λ24, δ) ≤min{24 · 6 · l(E8, δ)l(E8,
2

3
δ)
[
l(E8,

δ

2
) + l(E8,

δ

3
)
]
,

6[l(E8, 2δ)l(E8, δ)l(E8,
2

3
δ) + l(E8,

4

3
δ)l(E8,

2δ

3
)l(E8, δ)

]
},

(7.16)

l(N72, δ) ≤min{212 · 6 · l(Λ24, δ)l(Λ24,
2

3
δ)
[
l(Λ24,

δ

2
) + l(Λ24,

δ

3
)
]
,

6[l(Λ24, 2δ)l(Λ24, δ)l(Λ24,
2

3
δ) + l(Λ24,

4

3
δ)l(Λ24,

2δ

3
)l(Λ24, δ)

]
}.

(7.17)

The first splitting strategy with three cases could also be used to obtain better bounds for large δ
(see the chapter on the parity lattices).

7.2.4 Decoding Λ24 and N72 on the Gaussian channel

The analysis is similar to the one performed for BW lattices in Section 6.2.1. We will therefore be brief
on the explanations.

The sphere lower bound for PΛ
e (opt, n, σ2) = 10−4 in dimension 72 yields a distance to Poltyrev limit

of 2.1 dB. The MLD performance of Λ24 for this error probability is 3.3 dB. Regarding the relative radius
to ensure P (x /∈ T δ) = P (||w||2 > r) / 10−4 with regular list decoding, we find with Equation (6.12) a
value δ∗ ≈ 0.57 for N72 and δ∗ ≈ 0.41 for Λ24.

An important observation when computing the performance of the modified list decoders on the
Gaussian channel is the following. Let T ∈ Rn. For Λ24 and N72 constructed as Γ(2S, T2θ, T, 3), we have
(see e.g. the proof of Theorem 7.1)

vol(Γ(2S, T2θ, T, 3))
2

3n = vol(T)
2
n , (7.18)

whereas for the parity lattices, we have vol(Lkn)
2

3n = 2
1
k vol(T)

2
n . This means that the equivalent VNR

∆ is the same when decoding in Γ(2S, T2θ, T, 3) and in T . This will be taken into account in the formulas
below to estimate δ∗.

94 CHAPTER 7. STUDY OF SOME FAMOUS GROUP CODES

Decoding Λ24.
Note that E8 = BW8 (used as S to construct Λ24) can be decoded via the algorithm presented in
Section 6.2.1.

With the first list decoder (the list-decoding version of Algorithm 5.2’ without the splitting strategy),
(6.16) becomes (see the proof of Theorem 6.3)

U24(δ,∆) = min{3U8(δ,∆)2 + 3U8(δ, 2∆)(1− U8(δ,∆))2, 1}. (7.19)

Assume that δ∗ ≤ 1
4 with this algorithm. If this holds, T, V ∼= E8 are decoded with Algorithm 6.1 (the

recursive BDD). Hence, U8(1
4 ,∆) = Pe(BDD,∆) is given by the curve n = 8 in Figure 6.7. With (7.19),

for ∆ = 3.3 dB we find U24(δ = δ∗,∆) ≤ 10−4, which confirms that δ∗ < 1/4. As a result, we can use
Algorithm 5.2’ for quasi-MLD decoding of Λ24. The complexity of Algorithm 5.2’ is

CΛ24
QMLD = CA.5.2′(Λ24, δ = δ∗) =24(3CA.6.1(E8) + 3CA.6.1(RE8)),

=96CA.6.1(E8).
(7.20)

Alternatively, if we use the second list decoder without the splitting strategy (i.e. Algorithm 7.1), (6.16)

becomes (since vol(S)
2
n = 1/2 vol(T)

2
n)

U24(δ,∆) = min{3U8(2δ,
∆

2
)2 + 3U8(δ, 2∆)(1− U8(δ,

∆

2
))2, 1}, (7.21)

where U8(δ,∆) is now computed with (6.21) since E8 is list decoded as in Section 6.2.1 (i.e. with
Algorithm 6.3 without the removing step). With this strategy, we find δ∗ ≈ 1/4. The complexity is
(similarly to (7.11))

CΛ24
QMLD = CA.7.1(Λ24, δ = δ∗) =3C(E8, 2δ) + 3l′(E8, 2δ)

2C(E8, δ). (7.22)

Decoding N72.
Regarding N72, with the first decoder we have (similarly to (7.19))

U72(δ,∆) = min{3U24(δ,∆)2 + 3U24(δ, 2∆)(1− U24(δ,∆))2, 1}. (7.23)

Consider a MLD decoder for Λ24 such that U24(δ,∆) = PΛ24
e (opt,∆). Then, when ∆ > 1, U72(δ,∆) ≈

3(PΛ24
e (opt,∆))2. The performance of this decoder for N72 is shown by the curve U72(∆) on Figure 6.1

in Example 6.1. Unlike for the parity lattices, the curve for PΛ24
e (opt,∆) should not be shifted to the

right before squaring, as expalined in Example 6.1. We easily see that this decoder is powerful enough
to get quasi-MLD performance for N72. The complexity is then

CN72
QMLD =212 · [3CΛ24

MLD + 3CΛ24
MLD],

=212 · 6 · CΛ24
MLD.

(7.24)

If we use the second list decoder without the splitting strategy (i.e. Algorithm 7.1), (6.16) becomes

U72(δ,∆) = min{3U24(2δ,
∆

2
)2 + 3U24(δ, 2∆)(1− U24(δ,

∆

2
))2, 1}, (7.25)

where U24(δ,∆) is computed with (7.19). We find δ∗ ≈ 0.22. The complexity is

CN72
QMLD = CA.7.1(N72, δ = δ∗) =3C(Λ24, 2δ) + 3l′(Λ24, 2δ)

2C(Λ24, δ). (7.26)

Finally, if we use Algorithm 7.2, the complexity is

CA.7.2(N72, δ) =3C(Λ24, 2δ) + 6(l′(Λ24, 2δ)l
′(Λ24, δ)C(Λ24, 2/3δ)+

l′(Λ24,
4

3
δ)l′(Λ24,

2

3
δ)C(Λ24, δ)).

(7.27)

Nevertheless, computing the optimal δ∗ for quasi-MLD in this latter case is more involved and left for
future work.

The curve of quasi-optimal performance of N72 on the Gaussian channel is depicted in Figure 7.2.
The figure also shows the performance of L3·24 discussed in the next section. The performance of N72 is
at a distance of 2.6 dB only from Poltyrev limit at around 10−5 of error per point.

7.2. DECODERS FOR LEECH AND NEBE LATTICES 95

1 1.5 2 2.5 3 3.5

Distance to Poltyrev limit (dB)

10
-4

10
-3

10
-2

P
o
in

t
E

rr
o
r

P
ro

b
a
b
ili

ty

Figure 7.2: Performance of N72 and L3·24 on the Gaussian channel. The union bound is computed from
the two first lattice shells of N72. The curves for Λ24 are also provided for comparison.

7.2.5 The 3-parity-Leech lattice in dimension 72

Looking at the complexity given by Equations (7.8) and (7.9), it is tempting to consider the parity
lattice Γ(2S, β, 3)P instead of N72. Indeed, the worst-case complexity of Algorithms 5.2’ and 5.5’ would
be reduced by a factor of |α| = 212. This lattice L3·24 = Γ(λΛ24, [Λ24/λΛ24], 3)P is the 3-parity-
Leech lattice considered in Example 6.1. L3·24 has the same minimum distance as N72 and a volume
vol(L3·24) = vol(N72)× |α| (using (4.21)). Its fundamental coding gain is:

γ(L3·24) = γ(Γ(2S, T2θ, T, 3))× 1

(212)
2
72

≈ 6.35. (7.28)

Lemma 7.4. The kissing number of L3·24 is 28,894,320.

The proof is provided in Appendix 7.5.5. The kissing number is about 27.75 smaller than the kissing
number of N72 (which is 6, 218, 175, 600). As a result, one can state the following regarding the relative
performance of these two lattices on the Gaussian channel: 1 dB is lost by the parity-Leech lattice
due to a smaller γ, but using the rule of thumb that 0.1 dB is lost each time the kissing number is
doubled [FU98], there is also an improvement of 0.8 dB. Overall, we expect the performance of these
two lattices to be only 0.2 dB apart but where the decoding complexity of the 3-parity-Leech lattice is
significantly reduced. The quasi-MLD performance is shown in Figure 7.2 and it is indeed at 0.2 dB
from the one of N72.

Consider Algorithm 5.4 for decoding. (6.16) yields

U3·24(δ,∆) =3U24(δ,
∆

2
1
3

)2 + 3U24(δ, 2
2
3 ∆)(1− U24(δ,

∆

2
1
3

))2. (7.29)

A MLD decoder for Λ24 as subroutine is not powerful enough to get quasi-MLD performance (see the
curve for U3·24 on Figure 6.1). We can for instance consider a sphere decoder computing Λ24∩Bδ·d(Λ24)(y).
Then U24(δ,∆) = F (24, δ · d(Λ24), σ2) and δ∗ should be chosen such that 3 · F (24, δ∗ · d(Λ24), σ2)2 ≈
1/2 ·PL3·24

e (opt, σ2). We find δ∗ ≈ 25/64. With Theorem 5.1 we get that l(Λ24, δ
∗) = 4. The (worst-case)

complexity of Algorithm 5.4, given by Lemma 5.1, becomes

CL3·24
QMLD =3CΛ24∩Bδ∗·d(Λ24)(y) + 3l(Λ24, δ

∗)2CΛ24∩Bδ∗·d(Λ24)(y),

=51 · CΛ24∩Bδ∗·d(Λ24)(y).
(7.30)

96 CHAPTER 7. STUDY OF SOME FAMOUS GROUP CODES

7.3 Construction and decoding of codes

7.3.1 Reed-Muller codes as single parity-check group

Another single parity-check group respecting the property d(V) = 2d(T) is the well-known Reed-Muller
codes, defined by the squaring construction as:

RM(r,m) ={(v′1 +m, v′2 +m), v′1, v
′
2 ∈ RM(r − 1,m− 1),

m ∈ [RM(r,m− 1)/RM(r − 1,m− 1)]},
(7.31)

where r ≤ m and with initial condition:

RM(a, 0) = F2, RM(−a− 1, 0) = {0}, a ∈ Z+.

In our framework the Reed-Muller codes are:

RM(r,m) =Γ(V, β, 2)R, V = RM(r − 1,m− 1),

β = [RM(r,m− 1)/RM(r − 1,m− 1)].
(7.32)

Algorithm 5.1 can be adapted to Reed-Muller codes to yield the recursive Algorithm 7.4 (the analog of
Algorithm 6.1), with complexity O(n2).

Algorithm 7.4 Recursive BDD of RM(r,m) (where 2n = 2m)

Function RecRM(y, r,m)
Input: y ∈ R2m , r ≥ 0,m ≥ 0

1: if m = 0 then
2: if r ≥ 0 then
3: if y > 0 then xopt ← 1 else xopt ← 0 end if // Decoding in F2

4: else
5: xopt ← 0 // Decoding in {0}
6: end if
7: else
8: u1 ← RecRM(y1, r,m− 1), u2 ← RecRM(y2, r,m− 1)

9: v2 ← RecRM((y2 − u1), r − 1,m− 1). Store x̂← (u1, v2 + u1).
10: v1 ← RecRM((y1 − u2), r − 1,m− 1). Store x̂′ ← (u2 + v1, u2).

11: xopt = argmin
x∈{x̂,x̂′}

||y − x||

12: end if
13: Return xopt

7.3.2 Codes obtained via the k-ing construction

In this subsection, the groups S, T, V involved in the construction Γ(V, α, β, n) are finite, i.e. we consider
codes.
The distance metric d(·, ·) that we use with codes is the Hamming distance. Again, for k = 3, choosing
codes such that d(V) = 2d(T) = 4d(S) might yield a minimum distance of Γ(V, α, β, 3) equal to 3d(S)
(see Theorem 5.2 in Section 5.2). We also need the concept of polarisation for codes.

The polarisation of codes

Let S, T , and V be codes. The analog of (8.22) for codes instead of lattices is a code T ∗ satisfying

T ∼= T ∗, and S = T + T ∗, and T
⋂
T ∗ = V. (7.33)

In this scope, T ∼= T ∗ means that T and T ∗ are different versions of the same code. The main difference
with (8.22) is that S and T are not required to be the same code.
Such a pair (T, T ∗) can be obtained via tools of the theory of cyclic codes, namely idempotents [MS77,
Chap. 8, Sec. 3]. Indeed, idempotents enable to easily compute the sum and intersection of two codes.

Let C be a cyclic code, i.e. an ideal in the ring of polynomial over the field F2 modulo xn + 1. The
codewords of C are all multiples of a generator polynomial g(x). Therefore, we say that C is generated
by g(x) and we use the notation C = 〈g(x)〉. An idempotent E(x) is a polynomial having the property:

E(x) = E(x)2. (7.34)

7.4. ADDITIONAL NUMERICAL RESULTS 97

It is shown in [MS77, Chap. 8, Sec. 3] that any cyclic code contains a unique idempotent such that
C = 〈E(x)〉. Consider two codes C = 〈E(x)〉 and C ′ = 〈E′(x)〉. The sum and the intersection of these
two codes can be derived thanks to the properties of idempotents:

C + C ′ = 〈E(x) + E′(x) + E(x)E′(x)〉.
C ∩ C ′ = 〈E(x)E′(x)〉. (7.35)

The proof of (7.35) is straightforward (see problem (10) in [MS77, Chap. 8, Sec. 3]). Moreover, an
idempotent is said to be primitive in the ring F2[x]/xn + 1 if it is the idempotent of an ideal that
does not contain any smaller ideal (a minimal ideal, also called an irreducible code). Any two primitive
idempotents θi(x) and θj(x) satisfy: θi(x) · θj(x) = 0. Finally, the dual of C is generated by the
reciprocal 1 + E(x).
Note: this connection between idempotents and the polarisation is believed to be new.

Decoders for some binary codes

Let T = (8, 4, 4) be a extended binary Hamming code and T ∗ = (8, 4, 4)∗ a different version, by
coordinate permutation in F8

2, of this same code such that T +T ∗ is the (8, 7, 2) single parity-check code
and T ∩ T ∗ is the (8, 1, 8) repetition code. T and T ∗ are obtained as follows: It is well-known that the
simplex code Sm = (n = 2m − 1,m, 2m−1) is generated by any primitive idempotent θs(x), where s
is prime with n. A version of the dual of the simplex code is the Hamming code, which has therefore
1 + θs(x) as idempotent. If m = 3, the two possibilities are θ1(x) and θ3(x). 〈1 + θ1(x)〉 as well as
〈1 + θ3(x)〉 are both the (7, 4, 3) Hamming codes. Hence, if we choose T and T ∗ as 〈1 + θ1(x)〉 and
〈1 + θ3(x)〉 both extended by adding an overall parity-check bit we get the desired result.
The k-ing construction for the two following codes was previously presented in [DB04], but without the
use of idempotents.

Theorem 7.6. Take V = T ∩ T ∗, α = |(T + T ∗)/T |, and β = |T/(T ∩ T ∗)|. Γ(V, α, β, 3) is the binary
Golay code of length 24 and Γ(V, α, β, 5) is a (40, 20, 8) type II extremal code [DB04].

Proof. Similarly to the proof of Theorem 7.1, one needs to show that the minimum distance of Γ(V, α, β, k)
is a multiple of 4. Combining this property with Theorem 5.2, i.e. d(Γ(V, α, β, k)) ≥ 6, yields the result.
See [DB04] for more details.

Similarly to Λ24, one can use Algorithm 5.2 since |α| = 23 is small. This yields an efficient BDD
algorithm for these two codes, with complexity:

CA.5.2 = 23 · (k · CTBDD + k · CVBDD), (7.36)

where k = 3 for the Golay code and k = 5 for the second code of length 40.
Now, let T = (24, 12, 8) be the binary Golay code and T ∗ = (24, 12, 8)∗ a different version of this same
code such that T + T ∗ is the (24, 23, 2) single parity-check code and T ∩ T ∗ is the (24, 1, 24) repetition
code.

Theorem 7.7. Take V = T ∩ T∗, α = |(T + T ∗)/T |, and β = |T/(T ∩ T ∗)|. Γ(V, α, β, 3) is a [72,36,12]
code [DB04].

Again, Algorithm 5.2 can be considered for BDD of this code, where the decoding in T needs to be
done with a radius equal to only 3 since d(Γ(V, α, β, 3))/2 < 2d(T)/2. The complexity is

CA.5.2 =211 · (3CTBDD + 3CVBDD).

With these settings, Algorithm 5.2 is similar to the one introduced in [DBNS08, Sec. 5] since the first step
in both algorithms, i.e. trying all the cosets m′ ∈ α, is the same (but no BDD property is mentioned
in [DBNS08]). However, since |α| is large in this case, the decoding complexity may be lower with
Algorithm 5.3.

7.4 Additional numerical results

7.4.1 Lattice decoding benchmark

We compare the performance of lattices and decoders shown in the previous sections to existing schemes
in the literature at Pe = 10−5. For fair comparison at different dimensions, we let Pe be either the

98 CHAPTER 7. STUDY OF SOME FAMOUS GROUP CODES

101 102 103

0

0.5

1

1.5

2

2.5

3

3.5

4

D
is

ta
n

c
e

 t
o

 P
o

lt
y
re

v
 l
im

it
 (

d
B

)

Figure 7.3: Performance of different lattices for normalized error probability Pe = 10−5.

symbol-error probability or the normalized error probability, which is equal to the point-error probabil-
ity divided by the dimension (as done in e.g. [TVZ99]).
First, several constructions have been proposed for block lengths around n = 100 in the literature.
In [MKO18] a two-level construction based on BCH codes with n = 128 achieves this error probability
at 2.4 dB. The decoding involves an OSD of order 4 with 1505883 candidates. In [AV00] the multilevel
(non-lattice packing) S127 (n = 127) has similar performance but with much lower decoding complexity
via generalized minimum distance decoding. In [SSP11] a turbo lattice with n = 102 and in [SFS08] a
LDLC with n = 100 achieve the error probability with iterative methods at respectively 2.75 dB and 3.7
dB (unsurprisingly, these two schemes are efficient for larger block lengths). All these schemes are out-
performed by BW64, the 3-parity-Leech lattice, and N72, where Pe = 10−5 is reached at respectively 2.3
dB, 2.02 dB and 1.85 dB. Moreover, BW128 has Pe = 10−5 at 1.7 dB, which is similar to many schemes
with block length n = 1000 such as the LDLC (1.5 dB) [SFS08], the turbo lattice (1.2 dB) [SSP11],
the polar lattice with n = 1024 (1.45 dB) [YLW13], and the LDA lattice (1.27 dB) [dPBZB12]. This
benchmark is summarized on Figure 7.3.

7.4.2 Finite constellation

Since the decoding complexity of BW64 is only quadratic, this lattice is a good candidate to design finite
constellations in dimension 64. We uncover the performance of a Voronoi constellation [CS83] [For89b]
based on the partition BW64/2

ηBW64 via Monte Carlo simulation, where η is the desired rate in bits
per channel use (bpcu): i.e. both the coding lattice and the shaping lattice are based on BW64. It
follows that the encoding complexity is the same as the decoding complexity. Figure 7.4 exhibits the
performance of our scheme for η = 4 bpcu. In our simulation, the errors are counted on the uncoded
symbols. Consequently, the error probability also includes potential errors due to incomplete encoding,
which seem to be negligible compared to decoding errors. Again, we plotted the best possible performance
of any lattice-based constellation in dimension 64 (obtained from [TVZ99]). The scheme performs within
0.7 dB of the bound.

7.5 Appendix

7.5.1 The polarisation of Forney in [For88b]

Let us consider a Z[i]-structure of E8, and let GS be a real generator matrix obtained from this structure
(e.g. via (4.3)). Forney applies the rotation R(8, φ) on GS to obtain the generator matrix GT2θ

of T2θ

7.5. APPENDIX 99

24 25 26 27 28 29 30 31 32

10
-5

10
-4

10
-3

10
-2

10
-1

N
o
rm

a
liz

e
d
 E

rr
o
r

P
ro

b
a
b
ili

ty
 (

p
e
r

c
h
a
n
.
u
s
e
)

Figure 7.4: Performance of a Voronoi constellation based on the partition BW64/2
4BW64 where Algo-

rithm 6.3’, with δ = 3/8 and ℵ(δ) = 20, is used for encoding and decoding. The cutoff-rate limit is
1.7+0.179 dB right to Shannon limit (coding + shaping loss for n = 64) [FU98].

(T2θ is called RE8 in [For88b]). I.e. the lattice S is scaled by a factor of
√

2 but rotated by an angle of
π/4 6= θ = arc tan

√
7. The lattice T2θ (R∗E8 in [For88b]) is then constructed via the union of 8 cosets

of 2S, which is called the small miracle octad generators (SMOG). Forney does not explain how he found
the SMOG.
It is possible to find a rotation matrix B ∈ Aut(RE8) such that GRE8 · B is a also generator matrix of
RE8 but where the vectors have an angle of θ with the corresponding basis vectors in GS . It follows that
the “standard” polarisation rotation operator is R = G−1

S ·GRE8
·B and a “standard” generator matrix

for T2θ is GT2θ
= GS ·RT . Finally, one can verify that the SMOG is composed of coset leaders of 2S in

the lattice generated by GT2θ
.

To conclude, the lattices T and T2θ chosen by Forney form a polarisation of S, but the generator matrices
chosen are unconventional.

7.5.2 Proof of Lemma 7.1

Proof. We let Λ24 be scaled such that d(Λ24) = 4 and vol(Λ24) = 1. Then, S = 1√
2
Λ24 has d(S) = 2,

vol(S) = 2−12 and vol(T) = vol(T2θ) = 1, d(T) = d(T2θ) = 4. Also, |α| = |β| = 212 from (4.21).
Using Theorem 5.2, we have d(Γ(2S, T2θ, T, 3)) ≥ 6. Then, (7.3) shows that Γ(2S, T2θ, T, 3) is obtained
as the union of |α||β|2 = 236 cosets of (2S)3. Hence, vol(Γ(2S, T2θ, T, 3)) = vol((2S)3)/236 = 1. The

lattice has a fundamental coding gain of d/ vol2/72 ≥ 6.

7.5.3 The good polarisation of the Leech lattice

Equation (5.13) is re-written below:

Γ(V, α, β, k) = {(p1, p2, ..., pk),

p1 = v1 +m+ n1, p2 = v2 +m+ n2, ...,

pk = vk +m− (n1 + ...+ nk−1)), vi ∈ V,m ∈ α, ni ∈ β}.
(7.37)

Let d(V), 2d(T) > kd(S) and consider an element x ∈ Γ(V, α, β, k). Assume that vi = 0, ∀i, and that m
and the n′is are chosen so that the first k − 1 components of x have d(0, pi) = d(S). Observe that given
m and the n′is, there is no degree of freedom on pk and one can wonder whether it is possible to have
d(0, pk) = d(S). If not, we have succeeded to get d(Γ(V, α, β, k)) > kd(S).

100 CHAPTER 7. STUDY OF SOME FAMOUS GROUP CODES

Vectors of squared norm 6 in Γ(2S, T2θ, T, 3)

Let us consider a version of Γ(2S, T2θ, T, 3) with a unit volume such that the squared minimum distance
is either 6 or 8. We investigate the vectors of squared norm equal to 6 in Γ(2S, T2θ, T, 3).
Let x = (a, b, c) ∈ Γ(2S, T2θ, T, 3). Obviously, the vectors of squared norm 6 in Γ(2S, T2θ, T, 3) exist if
we can find a point x such that ||a|| = ||b|| = ||c|| = d(S). Assume that ||a|| = ||b|| = d(S), can we find c
such that ||c|| = d(S)? With (7.37), we deduce that this is equivalent to asking: Can we find m,n1, n2

such that

||m+ n1 mod 2S||2 = 2,

||m+ n2 mod 2S||2 = 2,

||m+ n1 + n2 mod 2S||2 = 2?

(7.38)

The computational cost of running through all possibilities is ≈ |α||β|2 = 236. This can be however
reduced as follows. Let us choose the coset representatives p of S/2S of minimum squared norm; i.e.
0,2,3,4. The kissing number of Λ24 being 2 × 24 × (212 − 1), the number of coset representatives of
p of squared norm 2 is limited to 24 × (212 − 1). Since m + n mod 2S yields one of these coset

representatives p of minimum squared norm, for a given m, there can be only 24×(212−1)
212−1 vectors n such

that ||m + n mod 2S||2 is of squared norm 2. Hence, the computational cost of the search can be
reduced to ≈ |α| × 242, which is tractable via computer search.

Similarly, the squared-norm-6 vectors in Γ(2S, T2θ, T, 3) can also be characterized as follows. Consider
a point (a, b, c) ∈ Γ(2S, T2θ, T, 3) of squared norm 6 in Γ(2S, T2θ, T, 3); a = m+ n1 6= b = m+ n2 6= c =
m+n1 +n2, with ||a|| = ||b|| = ||c|| = d(S). As stated above, for a given m, there can be only 24 distinct
pairs m + n of minimum squared norm. Obviously, a, b, c should be three distinct elements among one
of the |α| possible sets of 24 distinct pairs.
Since a+b+c mod 2S ∈ α, having vectors of squared norm 6 in Γ(2S, T2θ, T, 3) is equivalent to asking if
we can find three distinct minimum squared norm elements in m+β such that their sum is in α. Hence,
the bad vectors of the polarisation (T, T2θ) of S, as defined in [NP13], are:

B((T, T2θ)) =
⋃

m∈α
{a+ b+ c ∈ α : a 6= b 6= c, ||a|| = ||b|| = ||c|| = d(S), a, b, c ∈ m+ β}.

The good polarisation

Let (T, T2θ) and (T ′, T ′2θ), T 6= T ′ and T2θ 6= T ′2θ, be two distinct polarisations of a lattice S. These two
polarisations are said to be equivalent if they are in the same orbit under the action of Aut(S). Indeed,
two distinct polarisations in the same orbit have the same set of bad vectors B((T, T2θ)). If S ∼= E8,
Aut(S) is transitive on the set of polarisation matrices (T, T2θ). However, Nebe proved in [NP13] that
there are 16 orbits if S ∼= Λ24. Moreover, polarisations from only one of these orbits give B((T, T2θ)) = ∅.
Therefore, only these polarisations enable to build a extremal lattice of dimension 72. Polarisations from
this orbit are called good polarisations.
A good polarisation can be obtained via one of the nine Z[λ]-structures of the Leech lattice (λ =
1+
√
−7

2). Each Z[λ]-structures is characterized by its automorphism group on Z[λ] (see Table 1 in
[Neb12]). The good polarisation, found by Nebe [Neb12], is obtained via the Z[λ]-structure of Λ24 with
the automorphism group called SL2(25).

7.5.4 A proof that R(N72) >
√

2ρ(N72)

Lemma 7.5. R(N72) >
√

2ρ(N72).

The proof of this lemma is due to Gabriele Nebe (private communication).

Proof. Let N72 be scaled such that ρ(N72) =
√

2. The proof is done by contradiction. Assume that
R(N72) =

√
2ρ(N72) = 2. Then, for any point 1/2v ∈ 1/2N72, there is a point x ∈ N72 with

||x − 1/2v|| ≤ 2. Squaring leads to ||2x − v||2 ≤ 16. So each of the 272 cosets of 2N72 in N72 has to
contain a point w = 2x− v of squared norm smaller or equal to 16.

Now N72 has exactly 107502190683149087281 pairs ±w of squared norm ≤ 16 (obtained from the
theta series of N72). This number is smaller than |N72/2N72|. Hence the covering radius of N72 is
strictly larger than 2.

7.5. APPENDIX 101

7.5.5 Proof of Lemma 7.4

Proof. The proof is similar to that of Theorem 3.3 in [Neb12]. The vectors of squared norm in Γ(V, T, 3)P
have only the following possible forms.

1. (a, 0, 0), a ∈ V and ||a||2 = 8. The number of such vectors (counting the combinations) is 196560 ·3
vectors. I.e. the minimal vectors in (V)3.

2. (n1, n2, 0), n1, n2 ∈ T, n1 +n2 ∈ V and ||n1||2 = ||n2||2 = 4. The number of such vectors (counting
the combinations) is 196560 · 48 · 3. There are 196560 possibilities for n1. Given n1 how many
choices are they for n2? This is equivalent to asking the number of squared norm 8 vectors
in the coset m + V , which are therefore congruent mod V . It is well-known (see Theorem 2
in [CS99, Chap.12]) that this number is 48, 24 mutually orthogonal pairs of vectors (one can check
that |T/V | = 212 ·48 = 196560, the number of minimal vectors of Λ24). Hence, there are 48 choices
for n2. Finally, the factor 3 comes from the combinations.

Part

Lattices and neural networks with
and without learning

102

Chapter 8

Neural network approaches to point
lattices decoding

In 2012 Alex Krizhevsky and his team presented a revolutionary deep neural network in the ImageNet
Large Scale Visual Recognition Challenge [KSH12]. The network largely outperformed all the competi-
tors. This event triggered not only a revolution in the field of computer vision but has also affected many
different engineering fields, including the field of digital communications.

In our specific area of interest, the physical layer, countless studies have been published since 2016.
For instance, reference papers such as [OH17] gathered more than 800 citations in less than three years.
However, most of these papers present simulation results: e.g. a decoding problem is set and differ-
ent neural network architectures are heuristically considered. Learning via usual gradient-descent-like
techniques is performed and the results are presented.

Our approach is different: we try to characterize the complexity of the decoding problem that should
be solved by the neural network.

Neural network learning is about two key aspects: first, finding a function class Φ = {f} that
contains a function “close enough” to a target function f∗. Second, finding a learning algorithm for the
class Φ. Naturally, the less “complex” the target function f∗, the easier the problem. We argue that
understanding this function f∗ encountered in the scope of the decoding problem is of interest to find
new efficient solutions.

Indeed, the first attempts to perform decoding operations with “raw” neural networks (i.e. without
using the underlying graph structures of existing sub-optimal algorithms, as done in [NBB16]) were
unsuccessful. For instance, an exponential number of neurons in the network is needed in [GCHtB17]
to achieve satisfactory performance when decoding small length polar codes. We made the same ob-
servation when we tried to decode dense lattices typically used for channel coding [CBCB18b]. So far,
it was not clear whether such a behavior is due to either an unadapted learning algorithm or a con-
sequence of the complexity of the function to learn. However, unlike for channel decoding (i.e. dense
lattice decoding), neural networks can sometimes be successfully trained in the scope of MIMO detec-
tion [SDW17] [CBCB18b].

In this chapter, the problem of lattice decoding is investigated. Lattices are well-suited to understand
these observed differences as they can be used both for channel coding and to model MIMO channels.

We embrace a feed-forward neural network perspective. These neural networks are aggregation of
perceptrons and compute a composition of the functions executed by each perceptron. For instance, if
the activation functions are rectified linear unit (ReLU), each perceptron computes a piecewise affine
function. Consequently, all functions in the function class Φ of this feed-forward neural network are
continuous piecewise linear function (CPWL).

We shall see that, under some assumptions, the lattice decoding problem is equivalent to computing
a CPWL. The target f∗ is thus a CPWL. The complexity of f∗ can be assessed, for instance, by counting
its number of affine pieces.

It has been shown that the minimum size of shallow neural networks, such that Φ contains a given
CPWL function f∗, directly depends on the number of affine pieces of f∗ whereas deep neural networks
can “fold” the function and thus benefit of an exponential complexity reduction [MPCB14]. On the one
hand, it is critical to determine the number of affine pieces in f∗ to figure out if shallow neural networks
can solve the decoding problem. On the other hand, when this is not the case, we can investigate if there
exist preproccessing techniques to reduce the number of pieces in the CPWL function. We shall see that

103

104 CHAPTER 8. NEURAL NETWORK APPROACHES TO POINT LATTICES DECODING

these preprocessing techniques are sequential and thus involve using a deep neural network.

Due to the nature of feed-forward neural networks, our approach is mainly geometric and combina-
torial. It is restricted to low and moderate dimensions. Again, our main contribution is not to present
new decoding algorithms but to provide a better understanding of the decoding/detection problem from
a neural network perspective.

8.1 Preliminaries

Geometry. First, given a lattice Λ, the set Tf (x), for x ∈ Λ, denotes the set of lattice points having a
common Voronoi facet with x.

Let P(B) be the topological closure of the fundamental parallelotope P(B) and
◦
P(B) the interior of

P(B). A k-dimensional element of P(B) \
◦
P(B) is referred to as k-face of P(B). There are 2n 0-faces,

called corners or vertices. This set of corners is denoted CP(B). The subset of CP(B) obtained with zi = 1
is C1

i,P(B) and C0
i,P(B) for zi = 0. To lighten the notations, we shall sometimes use C1

P(B) and C0
P(B).

The remaining k-faces of P(B), k > 0, are parallelotopes. For instance, a (n − 1)-face of P(B), say
Fi, is itself a parallelotope of dimension n− 1 defined by n− 1 vectors of B. Throughout this part of the
thesis, the term facet refers to a n− 1-face.

Let vj denote the vector orthogonal to the hyperplane

{y ∈ Rn : y · vj − pj = 0}. (8.1)

A polytope (or convex polyhedron) is defined as the intersection of a finite number of half-spaces (as in
e.g. [Cox73])

Po = {x ∈ Rn : x ·A ≤ b, A ∈ Rn×m, b ∈ Rm}, (8.2)

where the columns of the matrix A are m vectors vj .
Since a parallelotope is a polytope, it can be alternatively defined from its bounding hyperplanes. Note
that the vectors orthogonal to the facets of P(B) are basis vectors of the dual lattice. Hence, a second
useful definition for P(B) is obtained through the basis of the dual lattice:

P(B) ={x ∈ Rn : x ·G−1 ≥ 0 , x ·G−1 ≤ 1, G ∈ Rn×n}, (8.3)

where each column vector of G−1 is orthogonal to two facets of P(B) and (G−1)T is a basis for the dual
lattice of Λ.

We say that a function g : Rn−1 → R is CPWL if there exists a finite set of polytopes covering
Rn−1, and g is affine over each polytope. The number of pieces of g is the number of distinct polytopes
partitioning its domain.

∨ and ∧ denote respectively the maximum and the minimum operator. We define a convex (resp.
concave) CPWL function formed by a set of affine functions related by the operator ∨ (resp. ∧). If {gk}
is a set of K affine functions, the function f = g1 ∨ ... ∨ gK is CPWL and convex.

Neural networks. Given n scalar inputs y1, ..., yn a perceptron performs the operation σ(
∑
i wi · yi).

The parameters wi are called the weights or edges of the perceptron and σ(·) is the activation function.
The activation function σ(x) = max(0, x) is called ReLU. A perceptron can alternatively be called a
neuron.
Given the input y1, ..., yn, a feed-forward neural network simply performs the operation [GBC16]:

ẑ = σd(...σ2(σ1(y ·G1 + b1) ·G2 + b2) · ... ·Gd + bd), (8.4)

where:

• d is the number of layer of the neural network.

• Each layer of size mi is composed of mi neurons. The weights of each neuron of a layer are stored
in the mi columns of the matrix Gi. The vector bi represents mi biases.

• The activation functions σi are applied componentwise.

8.2. FROM THE CVP IN RN TO THE CVP IN P(B). 105

y

y′y′

Figure 8.1: The point y ∈ P(B) + x is translated in the fundamental parallelotope (in red on the figure)
to get the point y′ ∈ P(B). The blue arrows represent a basis B of the lattice.

8.2 From the CVP in Rn to the CVP in P(B).

It is well-known in lattice theory that Rn can be partionned as Rn =
⋃
x∈Λ(P(B)+x). The parallelotope

to which a point y0 ∈ Rn belongs is:

y0 ∈ P(B) + x, (8.5)

with

x = by0G
−1c ·G, (8.6)

where the floor function b·c is applied componentwise. This floor function should not be confused with
the round function b·e. Hence, a translation of y0 by −x results in a point y located in the fundamental
parallelotope P(B). An instance of this operation is illustrated on Figure 8.1. As a result, a point y0 to
decode can be processed as follows:

• Step 0: a noisy lattice point y0 = x+w is observed, where x ∈ Λ and w ∈ Rn is an additive noise.

• Step 1: compute t = by0 ·G−1c and get y = y0 − t ·G which now belongs to P(B).

• Step 2: find ẑ, where x̂ = ẑ ·G is the closest lattice point to y.

• Step 3: the closest point to y0 is x̂0 = x̂+ t ·G.

Since Step 1 and Step 3 have negligible complexity, an equivalent problem to the CVP in Rn is the
CVP in P(B), which can simply be stated as follows.

Problem 8.1. Given a point y ∈ P(B), find the closest lattice point x̂ = ẑ ·G.

Remark 8.1. Consider a point y = x + w, where w = ε1g1 + ... + εngn, x ∈ Λ, 0 ≤ ε1, ..., εn < 1,
g1, ..., gn ∈ B. Obviously, y ∈ x+P(B). The well-known Zero-Forcing (ZF) decoding algorithm computes

ẑ = by ·G−1e = by0 ·G−1e+ xG−1. (8.7)

In other words, it simply replaces each εi by the closest integer, i.e. 0 or 1. The solution provided by this
algorithm is one of the corners of the parallelotope x+ P(B).

Remark 8.2. From a complexity theory view point, Problem 8.1 is NP-hard. Indeed, since the above
Steps 0,1, and 3 are of polynomial complexity, Problem 8.1 can be polynomially reduced to the CVP,
which is known to be NP-hard (as stated in the previous section).

8.3 Voronoi-reduced lattice basis

8.3.1 Voronoi- and quasi-Voronoi-reduced basis

The natural question arising from Problem 8.1 is the following: Is the closest lattice point to any point
y ∈ P(B) one of the corners of P(B)? Unfortunately, as illustrated on Figure 8.2, this is not always the
case. Consequently, we introduce a new type of basis reduction.

Definition 8.1. Let B be the Z-basis of a rank-n lattice Λ in Rn. B is said Voronoi-reduced if, for any
point y ∈ P(B), the closest lattice point x̂ to y is one of the 2n corners of P(B), i.e. x̂ = ẑG where
ẑ ∈ {0, 1}n.

106 CHAPTER 8. NEURAL NETWORK APPROACHES TO POINT LATTICES DECODING

y

z = (−1, 1)

Figure 8.2: The red arrows represent the basis vectors. The orange area in P(B) belongs to the Voronoi
region of the point x = z · G, where z = (−1, 1) (in red on the figure). Since this lattice point is not a
corner of P(B), any point in this orange area, such as y, is not decoded to one of the corner of P(B) (the
four blue points on the figure).

We will use the abbreviation VR basis to refer to a Voronoi-reduced basis. Figure 8.3 shows the
hexagonal lattice A2, its Voronoi cells, and the fundamental parallelotope of the basis B1 = {v1, v2},
where v1 = (1, 0) corresponds to z = (1, 0) and v2 = (1

2 ,
√

3
2) corresponds to z = (0, 1). The basis B1 is

Voronoi-reduced because

P(B1) ⊂ V(0) ∪ V(v1) ∪ V(v2) ∪ V(v1 + v2). (8.8)

Lattice basis reduction is an important field in Number Theory. In general, a lattice basis is said to be
of good quality when the basis vectors are relatively short and close to being orthogonal. We cite three
famous types of reduction to get a good basis: Minkowski-reduced basis, Korkin-Zolotarev-reduced (or
Hermite-reduced) basis, and LLL-reduced basis for Lenstra-Lenstra-Lovász [MG02] [Coh96]. A basis is
said to be LLL-reduced if it has been processed by the LLL algorithm. This algorithm, given an input
basis of a lattice, outputs a new basis in polynomial time where the new basis respects some criteria, see
e.g. [Coh96]. The LLL-reduction is widely used in practice to improve the quality of a basis. The basis
B1 in Figure 8.3 is Minkowski-, KZ-, and Voronoi-reduced.

Note that this new notion ensures that the closest lattice point x̂ to any point y ∈ P(B) is obtained
with a vector ẑ having only binary values (where x̂ = ẑ ·G). As a result, it enables to use a decoder with
only binary outputs to optimally solve the CVP in P(B).

Unfortunately, not all lattices admit a VR basis (see the following subsection). Nevertheless, as we
shall see in the sequel, some famous dense lattices listed in [CS99] admit a VR basis. Also, in some cases
the LLL-reduction leads to a quasi-VR basis. Indeed, the strong constraint defining a VR basis can be
relaxed as follows.

Definition 8.2. Let C(B) be the set of the 2n corners of P(B). Let O be the subset of P(B) that is
covered by Voronoi cells of points not belonging to C(B), namely

O = P(B) \

P(B)

⋂

 ⋃

x∈C(B)

V (x)

 . (8.9)

The basis B is said quasi-Voronoi-reduced if vol(O)� vol(Λ).

Let d2
OC(B) = minx∈O,x′∈C(B) ‖x − x′‖2 be the minimum squared Euclidean distance between O

and C(B). The sphere packing structure associated to Λ guarantees that d2
OC ≥ ρ2. Let Pe(B) be the

probability of error for a decoder where the closest corner of P(B) to y is decoded. In other words,
the space of solution for this decoder is restricted to CP(B). The following lemma tells us that a quasi-
Voronoi-reduced basis exhibits quasi-optimal performance on a Gaussian channel at high signal-to-noise
ratio. In practice, the quasi-optimal performance is also observed at moderate values of signal-to-noise
ratio.

8.3. VORONOI-REDUCED LATTICE BASIS 107

(0,0) (1,0)

(0,1) (1,1)

Figure 8.3: Voronoi-reduced basis B1 for A2 (in red) and a non-reduced basis B2 (in blue). P(B1) is
partitioned into 4 parts included in the Voronoi cells of its corners. P(B2) has 10 parts involving 10
Voronoi cells. The small black dots in P(B) represent Gaussian distributed points in R2 that have been
aliased in P(B).

Lemma 8.1. The error probability on the Gaussian channel when decoding a lattice Λ in P(B) can be
bounded from above as

Pe(B) ≤ Pe(ub)+

vol(O)

det(Λ)
· (e∆)n/2 · exp(−πe∆γ

4
· d

2
OC

ρ2
),

(8.10)

for ∆ large enough and where Pe(ub) is defined by (4.43).

Proof. If B is Voronoi-reduced and the decoder works inside P(B) to find the nearest corner, then the
performance is given by Pe(opt).
If B is quasi-Voronoi-reduced and the decoder only decides a lattice point from C(B), then an error shall
occur each time y falls in O. We get

Pe(B) ≤ Pe(opt) + Pe(O),

≤ Pe(ub) + Pe(O).
(8.11)

where

Pe(O) =

∫
· · ·
∫

O

1√
2πσ2

n exp(−‖x‖
2

2σ2
) dx1 . . . dxn

≤ 1√
2πσ2

n exp(−d
2
OC

2σ2
) vol(O)

=
vol(O)

det(Λ)
· (e∆)n/2 · exp(−πe∆γ

4
· d

2
OC

ρ2
).

This completes the proof.

8.3.2 Some examples

Structured lattices

We first state the following three theorems on the existence of VR bases for some famous lattices. The
proofs are provided in Appendix 8.6.1.

Consider a basis for the lattice An with all vectors from the first lattice shell. Also, the angle between
any two basis vectors is π/3. Let Jn denote the n × n all-ones matrix and In the identity matrix. The

108 CHAPTER 8. NEURAL NETWORK APPROACHES TO POINT LATTICES DECODING

Gram matrix is

ΓAn = G ·GT = Jn + In =

2 1 1 ... 1
1 2 1 ... 1
1 1 2 ... 1
.
1 1 1 ... 2

. (8.12)

Theorem 8.1. A lattice basis of An defined by the Gram matrix (8.12) is Voronoi-reduced.

Consider the following Gram matrix of E8.

ΓE8
=

4 2 0 2 2 2 2 2
2 4 2 0 2 2 2 2
0 2 4 0 2 2 0 0
2 0 0 4 2 2 0 0
2 2 2 2 4 2 2 0
2 2 2 2 2 4 0 2
2 2 0 0 2 0 4 0
2 2 0 0 0 2 0 4

. (8.13)

Theorem 8.2. A lattice basis of E8 defined by the Gram matrix (8.13) is Voronoi-reduced with respect

to
◦
P(B).

Theorem 8.3. There exists no Voronoi-reduced basis for Λ24.

Unfortunately, for most lattices such theorems can not be proved. However, quasi-Voronoi-reduced
bases can sometimes be obtained. For instance, the following Gram matrix corresponds to a quasi-
Voronoi-reduced basis of E6:

ΓE6 =

3 3
2 0 0 3

2
3
2

3
2 3 0 0 3

2
3
2

0 0 3 3
2

3
2

3
2

0 0 3
2 3 3

2
3
2

3
2

3
2

3
2

3
2 3 3

2
3
2

3
2

3
2

3
2

3
2 3

, (8.14)

with
d2
OC

ρ2 = 1.60 (2dB of gain) and vol(O)
det(Λ) = 2.47× 10−3. The ratio of Pe(ub) by the second term of the

right-hand side of (8.10) is about 10−4 at ∆ = 1 then vanishes further for increasing ∆.
Obviously, the quasi-VR property is good enough to allow the application of a decoder working

with C(B).If an optimal decoder is required, e.g. in specific applications such as lattice shaping and
cryptography, the user should let the decoder manage extra points outside C(B). For example, the
disconnected region O (see (8.9)) for E6 defined by ΓE6

includes extra points where zi ∈ {−1, 0, 1,+2}
instead of {0, 1} as for C(B).

Unstructured MIMO lattices

We investigate the VR properties of typical random MIMO lattices where the lattice is generated by a
matrix G with i.i.d. N (0, 1) components. The basis obtained via this random process is in general of
poor quality. As mentionned in the previous subsection, the standard and cheap process to obtained
a basis of better quality is to apply the LLL algorithm. As a result, we are interested in the following
question: Is a LLL-reduced random MIMO lattice quasi-Voronoi-reduced?

In the previous subsection, we highlighted that two quantities enable to characterize the loss in
the error probability on the Gaussian channel (Pe(O), see Equation (8.11)) due to non-VR parts of
P(B): Vol(O) and dOC(B). Unfortunately, for a given basis, these quantities are in general difficult to
compute because it requires sampling in a n-dimensional space. Nevertheless, one can directly estimate
the term Pe(O), without computing these two quantities, via Monte Carlo simulations: Noisy points y
are generated, aliased in P(B) and decoded with an optimal algorithm. If the decoded point is not a
corner of P(B), i.e. ẑ 6∈ {0, 1}n, we declare an error. Comparing the resulting performance with the one
obtained with the optimal algorithm enables to assess the term Pe(O) and observe the loss in the error
probability on the Gaussian channel caused by the non-VR parts of P(B).

8.4. FINDING THE CLOSEST CORNER OF P(B) FOR DECODING 109

0 1 2 3 4 5 6 7

Distance to Poltyrev limit (dB)

10
-4

10
-3

10
-2

10
-1

10
0

P
o

in
t

E
rr

o
r

P
ro

b
a

b
ili

ty

Figure 8.4: Assessment of the performance loss, on the Gaussian channel, due to non-VR parts of P(B)
for LLL-reduced random MIMO lattice; the random generator matrix G is generated with i.i.d. N (0, 1)
components and the LLL-reduced basis is used for decoding. For each point, we average the performance
obtained with 1000 random generator matrices G.

The simulation results are depicted on Figure 8.4. Up to dimension n = 12, considering only the
corners of P(B) yields no significant loss in performance. We can conclude that, on average for the
considered model, a LLL-reduced basis for n ≤ 12 is quasi-VR. However, for larger dimensions, the loss
increases and becomes significant.

In summary, the VR approximation can be made for a LLL-reduced random MIMO lattice up to
dimension 12 (e.g. in the scope of the MIMO channel, up to 6 antennas).

8.4 Finding the closest corner of P(B) for decoding

Thanks to the previous section, we know that the CVP in P(B), with a VR basis, can be optimaly
solved with an algorithm having only binary outputs. In this section, we introduce the notion of decision
boundary for decoding. It enables to find, componentwise, the closest corner of P(B) to any point
y ∈ P(B). This process exactly solves the CVP if the basis is VR. This discrimination can be implemented
with the hyperplane logical decoder (HLD). It can also be applied to lattices admitting only a quasi-VR
basis to yield quasi-MLD performance in presence of additive white Gaussian noise. The complexity of
the HLD depends on the number of affine pieces in the decision boundary, which is exponential in the
dimension. More generally, we shall see that this exponential number of pieces induces shallow neural
networks of exponential size.

8.4.1 The decision boundary

We show how to decode one component of the vector ẑ. Without loss of generality, if not specified, the
integer coordinate to be decoded for the rest of this section is ẑ1. The process presented in this section
should be repeated for each zi, 1 ≤ i ≤ n to recover all the components of ẑ. Given a lattice with a
VR basis, exactly half of the corners of P(B) are obtained with z1 = 1 and the other half with z1 = 0.
Therefore, one can partition P(B) in two regions, where each region is:

RCiP(B)
=

⋃

x∈CiP(B)

V(x) ∩ P(B), (8.15)

with i = 1 or 0. The intersections between RC1
P(B)

and RC0
P(B)

define a boundary. This boundary splitting

P(B) into two regions C0
P(B) and C1

P(B), is the union of some of the Voronoi facets of the corners of P(B).

110 CHAPTER 8. NEURAL NETWORK APPROACHES TO POINT LATTICES DECODING

y

z1 = 0 z1 = 0

z1 = 1 z1 = 1

h1 h2 h3

Figure 8.5: The hexagonal lattice A2 with a VR basis. The two upper corners of P(B) (in red) are
obtained with z1 = 1 and the two other ones with z1 = 0 (in blue). The decision boundary is illustrated
in orange. Given the green point y, ẑ1 should be decoded to 1 because y is above the decision boundary.

Each facet can be defined by an affine function over a compact subset of Rn−1, and the boundary is
locally described by one of these functions.

Obviously, the position of a point to decode with respect to this boundary determines whether ẑ1

should be decoded to 1 or 0. For this reason, we call this boundary the decision boundary. Moreover,
the hyperplanes involved in the decision boundary are called boundary hyperplanes. An instance of a
decision boundary is illustrated on Figure 8.5.

8.4.2 Decoding via a Boolean equation

Let B be VR basis. The CVP in P(B) is solved componentwise, by comparing the position of y with the
Voronoi facets partitioning P(B). This can be expressed in the form of a Boolean equation, where the
binary (Boolean) variables are the positions with respect to the facets (on one side or another). Therefore,
one should compute the position of y relative to the decision boundary via a Boolean equation to guess
whether ẑ1 = 0 or ẑ1 = 1.

Consider the orthogonal vectors to the hyperplanes containing the Voronoi facet of a point x ∈ C1
P(B)

and a point from Tf (x) ∩ C0
P(B). These vectors are denoted by vj as in (8.1). A Boolean variable uj(y)

is obtained as:

uj(y) = Heav(y · vj − pj) ∈ {0, 1}, (8.16)

where Heav(·) stands for the Heaviside function. Since V(x) = V(0) + x, orthogonal vectors vj to all
facets partitioning P(B) are determined from the facets of V(0).

Example 8.1. Let ẑ = (ẑ1, ẑ2) and y ∈ P(B) the point to be decoded. Given the red basis on Figure 8.5,
the first component ẑ1 is 1 (true) if y is above hyperplanes h1 and h2 simultaneously or above h3. Let
u1(y), u2(y), and u3(y) be Boolean variables, the state of which depends on the location of y with respect
to the hyperplanes h1, h2, and h3, respectively. We get the Boolean equation ẑ1 = u1(y) · u2(y) + u3(y),
where + is a logical OR and · stands for a logical AND.

Given a lattice Λ ⊂ Rn of rank n, Algorithm 8.1 enables to find the Boolean equation of a coordinate
ẑi. It also finds the equation of each hyperplane needed to get the value of the Boolean variables involved
in the equation. This algorithm can be seen as a “training” step to “learn” the structure of the lattice.
It is a brute-force search that may quickly become too complex as the dimension increases. However, we
shall see in Section 8.4.4 and 8.4.5 that these Boolean equations can be analyzed without this algorithm,
via a study of the basis. Note that the decoding complexity does not depend on the complexity of this
search algorithm.

8.4.3 The HLD

The HLD is a brute-force algorithm to compute the Boolean equation provided by Algorithm 8.1. The
HLD can be executed via the three steps summarized in Algorithm 8.2.

8.4. FINDING THE CLOSEST CORNER OF P(B) FOR DECODING 111

Algorithm 8.1 Brute-force search to find the Boolean equation of a coordinate ẑi for a lattice Λ

1: Select the 2n−1 corners of P(B) where zi = 1 and all relevant Voronoi vectors of Λ.
2: for each of the 2n−1 corners where zi = 1 do
3: for each relevant Voronoi vector of Λ do
4: Move in the direction of the selected relevant Voronoi vector by half its norm + ε (ε being a

small number).
5: if The resulting point is outside P(B). then
6: Do nothing. //There is no decision boundary hyperplane in this direction.
7: else
8: Find the closest lattice point x′ = z′G (e.g. by sphere decoding [AEVZ02]).
9: if z′i = 1 then

10: Do nothing. //There is no decision boundary hyperplane in this direction.
11: else
12: Store the decision boundary orthogonal to this direction. //z′i = 0
13: end if
14: end if
15: end for
16: for each decision boundary hyperplane found (at this corner) do
17: Associate and store a Boolean variable to this hyperplane (corresponding to the position of the

point to be decoded with respect to the hyperplane).
18: end for
19: The Boolean equation of ẑi contains a Boolean AND of these variables.
20: end for
21: The equation is the Boolean OR of the 2n−1 AND coming from all corners.

Algorithm 8.2 HLD

1: Compute the inner product of y with the vectors orthogonal to the decision boundary hyperplanes.
2: Apply the Heaviside function on the resulting quantities to get its relative positions under the form

of Boolean variables.
3: Compute the logical equations associated to each coordinate.

112 CHAPTER 8. NEURAL NETWORK APPROACHES TO POINT LATTICES DECODING

Heav(l3)Heav(l1)

11

Heav(l2)

1

-1

ẑ1

y1

y2

Figure 8.6: Neural network performing HLD decoding on the first symbol ẑ1 of a point in P(B) for the
lattice A2 (see Example 8.1). Heav(·) stands for Heaviside(·). The first part of the network computes
the position of y with respect to the boundary hyperplanes to get the variables uj(y). The second part
(two last layers) compute the Boolean ANDs and Boolean ORs of the decoding Boolean equation.

Implementation of the HLD

Since Steps 1-2 are simply linear combinations followed by activation functions, these operations can be
written as:

l1 = σ(y ·G1 + b1), (8.17)

where σ is the Heaviside function, G1 a matrix having the vectors vj as columns, and b1 a vector of biases
containing the pj . Equation (8.17) describes the operation performed by a layer of a neural network (see
(8.4)) . The layer l1 is a vector containing the Boolean variables uj(y).

Let li−1 be a vector of Boolean variables. It is well known that both Boolean AND and Boolean OR
can be expressed as:

li = σ(li−1 ·Gi + bi),

where Gi a matrix composed of 0 and 1, and bi a vector of biases. Therefore, the mathematical expression
of the HLD is:

z1 = σ(σ(σ(y ·G1 + b1) ·G2 + b2) ·G3 + b3). (8.18)

Equation (8.18) is exactly the definition of a feed-forward neural network (see (8.4)) with three layers.
Figure 8.6 illustrates the topology of the neural network obtained when applying the HLD to the lattice
A2.

8.4.4 The decision boundary as a piecewise affine function

In order to better understand the decision boundary, we characterize it as a function rather than a
Boolean equation. We shall see in the sequel that it is sometimes possible to efficiently compute this
function and thus reduce the decoding complexity.

Let {ei}ni=1 be the canonical orthonormal basis of the vector space Rn. For y ∈ Rn, the i-th coordinate
is yi = y · ei. Denote ỹ = (y2, . . . , yn) ∈ Rn−1 and let H = {hj} be the set of affine functions involved in
the decision boundary. The affine boundary function hj : Rn−1 → R is

hj(ỹ) = y1 =

(
pj −

∑

k 6=1

ykv
k
j

)
/v1
j , (8.19)

where vkj is the kth component of vector vj . For the sake of simplicity, in the sequel hj shall denote the
function defined in (8.19) or its associated hyperplane depending on the context.

Theorem 8.4. Consider a lattice defined by a VR basis B = {gi}ni=1. Let H = {hj} be the set of affine
functions involved in the decision boundary. Assume that g1

1 > 0. Suppose also that x1 > λ1 (in the basis
{ei}ni=1), ∀x ∈ C1

P(B) and ∀λ ∈ Tf (x)∩C0
P(B). Then, the decision boundary is given by a CPWL function

f : Rn−1 → R, expressed as
f(ỹ) = ∧Mm=1{∨lmk=1hm,k(ỹ)}, (8.20)

8.4. FINDING THE CLOSEST CORNER OF P(B) FOR DECODING 113

where hm,k ∈ H, 1 ≤ lm < τf , and 1 ≤M ≤ 2n−1.

The proof is provided in Appendix 8.6.2. In the previous theorem, the orientation of the axes relative
to B does not require {gi}ni=2 to be orthogonal to e1. This is however the case for the next corollary,
which involves a specific rotation satisfying the assumption of the previous theorem. Indeed, with the
following orientation, any point in C0

P(B) is in the hyperplane {y ∈ Rn : y · e1 = 0} and has its first

coordinate equal to 0, and g1
1 > 0 (if it is negative, simply multiply the basis vectors by −1).

Corollary 8.1. Consider a lattice defined by a VR basis B = {gi}ni=1. Suppose that the n − 1 points
B\{g1} belong to the hyperplane {y ∈ Rn : y · e1 = 0}. Then, the decision boundary is given by a CPWL
function as in (8.20).

0

0.5

1.5

1

1.5

2

2.5

3

1
2

1.50.5
1

0.50 0

(a) The orientation of the basis satisfies the assump-
tions of Theorem 8.4 but not the ones of Corollary 8.1.

0

0.5

10
3

0.2

2.5 1.5

0.4

2 1.5

0.6

1

0.8

0.5 20

1

1.2

(b) The orientation of the basis satisfies the assump-
tions of Theorem 8.4 and Corollary 8.1.

Figure 8.7: CPWL decision boundary function for A3. The basis vectors are represented by the blue
lines. The corner points in C1

P(B) are in red and the corner points in C0
P(B) in black.

0

0.5

1

1.5

1.5

2

2.5

3

1 21.50.5 10.50 0

Figure 8.8: “Neighbor figure” of CP(B) for A3. Each edge connects a point x ∈ C1
P(B) to an element of

Tf (x) ∩ C0
P(B). Consequently, each edge is orthogonal to a local affine function of the decision boundary

function f . The edges are labeled with the names of the corresponding affine functions. Theorem 8.5
and its proof show that each set Tf (x)∩C0

P(B) generates a convex part of the decision boundary function

f with |Tf (x) ∩ C0
P(B)| pieces. E.g. on the figure there are one set with |Tf (x) ∩ C0

P(B)| = 3, two with

|Tf (x) ∩ C0
P(B)| = 2, and one with |Tf (x) ∩ C0

P(B)| = 1, thus f has 8 pieces.

Example 8.2. Consider the lattice A3 defined by the Gram matrix (8.12). To better illustrate the
symmetries we rotate the basis1 to have g1 collinear with e1. Theorem 8.4 ensures that the decision

1Note that the orientation of the basis does not satisfy the assumptions of Corollary 8.1.

114 CHAPTER 8. NEURAL NETWORK APPROACHES TO POINT LATTICES DECODING

boundary is a function. The function is illustrated on Figure 8.7a. On Figure 8.8 each edge is orthogonal
to a local affine function of f . The edges are labeled with the name of the corresponding affine function.
The [·] groups all the set of convex pieces of f that includes the same hpj .

The equation of the function is (we omit the ỹ in the formula to lighten the notations):

f =
[
hp1
∨ h1 ∨ h2

]
∧
[

(hp2
∨ h1) ∧ (hp2

∨ h2)
]
∧
[
hp3

]
,

where hp1
, hp2

and hp3
are hyperplanes orthogonal to g1 (the p index stands for plateau). Functions for

higher dimensions (i.e. An, n ≥ 3) are available in Appendix 8.6.3. On Figure 8.7b, the same function
is illustrated with the rotation of Corollary 8.1.

The notion of decision boundary function can be generalized to non-VR basis under the assumptions
of the following definition. A surface in Rn defined by a function g of n − 1 arguments is written as
Surf(g) = {y = (g(ỹ), ỹ) ∈ Rn, ỹ ∈ Rn−1}.

Definition 8.3. Let B be a is quasi-Voronoi-reduced basis of Λ. Assume that B and {ei}ni=1 have the
same orientation as in Corollary 8.1. The basis is called semi-Voronoi-reduced (SVR) if there exists at
least two points x1, x2 ∈ C1

P(B) such that Surf(∨`1k=1g1,k)
⋂

Surf(∨`2k=1g2,k) 6= ∅, where `1, `2 ≥ 1, g1,k are

the facets between x1 and all points in Tf (x1) ∩ C0
P(B), and g2,k are the facets between x2 and all points

in Tf (x2) ∩ C0
P(B).

The above definition of a SVR basis imposes that the boundaries around two points of C1
P(B), defined

by the two convex functions ∨`mk=1hm,k, m = 1, 2, have a non-empty intersection. Consequently, the min
operator ∧ leads to a boundary function as in (8.20).

Corollary 8.2. P(B) for a SVR basis B admits a decision boundary defined by a CPWL function as in
(8.20).

From now on, the default orientation of the basis with respect to the canonical axes of Rn is assumed
to be the one of Corollary 8.1. We call f the decision boundary function. The domain of f (its input
space) is D(B) ⊂ Rn−1. The domain D(B) is the projection of P(B) on the hyperplane {ei}ni=2. It is a
bounded polyhedron that can be partitioned into convex regions which we call linear regions. For any ỹ
in one of these regions, f is described by a unique local affine function hj . The number of those regions
is equal to the number of affine pieces of f .

8.4.5 Complexity analysis: the number of affine pieces of the decision bound-
ary

An efficient neural lattice decoder should have a reasonable size, i.e. a resonable number of neurons.
Obviously, the size of the neural network implementing the HLD (such as the one of Figure 8.6) depends
on the number of affine pieces in the decision boundary function. It is thus of high interest to charac-
terize the number of pieces in the decision boundary as a function of the dimension. Unfortunately, it is
not possible to treat all lattices in a unique framework. Therefore, we investigate this aspect for some
well-known lattices.

The lattice An
We count the number of affine pieces of the decision boundary function f obtained for z1 with the basis
defined by the Gram matrix (8.12).

Theorem 8.5. Consider an An-lattice basis defined by the Gram matrix (8.12). Let oi denote the
number of sets Tf (x) ∩ C0

P(B), x ∈ C1
P(B), where |Tf (x) ∩ C0

P(B)| = i. The decision boundary function f
has a number of affine pieces equal to

n∑

i=1

i · oi, (8.21)

with oi =
(
n−1
n−i
)
.

Proof. For any given point x ∈ C1
P(B), each element in the set Tf (x) ∩ C0

P(B) generates a Voronoi facet of

the Voronoi region of x. Since any Voronoi region is convex, the |Tf (x) ∩ C0
P(B)| = i facets are convex.

8.4. FINDING THE CLOSEST CORNER OF P(B) FOR DECODING 115

Consequently, the set Tf (x) ∩ C0
P(B) generates a convex part of the decision boundary function with i

pieces.
We now count the number of sets Tf (x) ∩ C0

P(B) with cardinality i. It is obvious that ∀x ∈ C0
P(B):

x+g1 ∈ C1
P(B). We walk in C0

P(B) and for each of the 2n−1 points x ∈ C0
P(B) we investigate the cardinality

of the set Tf (x+ g1) ∩ C0
P(B). This is achieved via the following property of the basis.

∀x ∈ C0
P(B), x

′ ∈ An\{gj , 0}, 2 ≤ j ≤ n :

x+ gj ∈ Tf (x+ g1), x+ x′ 6∈ Tf (x+ g1) ∩ C0
P(B).

(8.22)

Starting from the lattice point 0, the set Tf (0 + g1) ∩ C0
P(B) is composed of 0 and the n− 1 other basis

vectors. Then, for all gj1 , 2 ≤ j1 ≤ n, the sets Tf (gj1 + g1) ∩ C0
P(B) are obtained by adding any of the

n− 2 remaining basis vectors to gj1 . Indeed, if we add gj1 to gj1 , the resulting point is outside of P(B).
Hence, the cardinality of these sets is n − 1 and there are

(
n−1

1

)
ways to choose gj1 : any basis vectors

except g1. Similarly, for gj1 +gj2 , j1 6= j2, the cardinality of the sets Tf (gj1 +gj2 +g1)∩C0
P(B) is n−2 and

there are
(
n−1

2

)
ways to choose gj1 +gj2 . More generally, there are

(
n−1
k

)
sets Tf (x)∩C0

P(B) of cardinality
n− k.

Summing over k = n− i = 0 . . . n− 1 gives the announced result.

Theorem 8.5 implies that the HLD, applied on An, induces a neural network (having the form given
by (8.18)) of exponential size. Indeed, remember that the first layer of the neural network implementing
the HLD performs projections on the orthogonal vectors to each affine piece.

Neverthless, one can wonder whether a neural network with a different architecture can compute the
decision boundary more efficiently. We first address another category of shallow neural networks: ReLU
neural networks with two layers. Deep neural networks shall be discussed later in the chaper. Note that
in this case we do not consider a single function computed by the neural network, like the HLD, but any
function that can be computed by this class of neural network.

Theorem 8.6. A ReLU neural network with two layers needs at least

n∑

i=2

(i− 1)×
(
n− 1

n− i

)
(8.23)

neurons for optimal decoding of the lattice An.

The proof is provided in Appendix 8.6.4. Consequently, this class of neural networks is not efficient.
However, we shall see in the sequel that deep neural networks are better suited.

Other dense lattices
Similar proof techniques can be used to compute the number of pieces obtain with some bases of other
dense lattices such as Dn, n ≥ 2, and En, 6 ≤ n ≤ 8.

Consider the Gram matrix of Dn given by (8.24). All basis vectors have the same length but we have
either π/3 or π/2 angles between the basis vectors. This basis is not VR but SVR. It is defined by the
following Gram matrix.

ΓDn =

2 0 1 ... 1
0 2 1 ... 1
1 1 2 ... 1
.
1 1 1 ... 2

. (8.24)

Theorem 8.7. Consider a Dn-lattice basis defined by the Gram matrix (8.24). Let oi denote the number
of sets Tf (x) ∩ C0

P(B), x ∈ C1
P(B), where:

• |Tf (x) ∩ C0
P(B)| = [1 + (n− 2− i)]︸ ︷︷ ︸

(li)

, and

• |Tf (x) ∩ C0
P(B)| =

1 + 2(n− 2− i)︸ ︷︷ ︸
(1)

+

(
n− 2− i

2

)
︸ ︷︷ ︸

(2)

︸ ︷︷ ︸

(lli)

.

116 CHAPTER 8. NEURAL NETWORK APPROACHES TO POINT LATTICES DECODING

The decision boundary function f has a number of affine pieces equal to

n−2∑
i=0

((li) + (lli))× oi − 1, (8.25)

with oi =
(
n−2
i

)
.

0

0.5

1

1.5

2

2.5

1

0.5

0
2.521.510.50

Figure 8.9: CPWL boundary function for
D3. The basis is rotated to better illus-
trate the symmetry: g1 is collinear with
e1.

0

0.5

1

1.5

2

2.5

1
0.5

2.521.510.500

Figure 8.10: “Neighbor figure” of CP(B)

for D3. Each edge connects a point x ∈
C1
P(B) to an element of Tf (x) ∩ C0

P(B).

We presents the two different “neighborhood patterns” encountered with this basis of Dn (this gives
(li) and (lli)). In the proof available in Appendix 8.6.5, we then count the number of simplices (i.e. (oi))
in each of these two categories.

The decision boundary function for D3 is illustrated on Figure 8.9. We investigate the different
“neighborhood patterns” by studying Figure 8.10: I.e. we are looking for the different ways to find the
neighbors of x ∈ C1

P(B) in Tf (x) ∩ C0
P(B), depending on the form of x. In the sequel, (li), (lli), and (1),

(2) refer to Equation (8.25) and
∑
j gj denotes any sum of points in the set {0, gj}nj=3, where g2 is the

basis vector orthogonal to g1. We recall that adding g1 to any point x ∈ C0
P(B) leads to a point in C1

P(B).

(li) This pattern is the same as the (only) one encountered for An with the basis given by Equa-
tion (8.12). We first consider any point in C1

P(B) of the form
∑
j gj + g1. Its neighbors in C0

P(B) are
∑
j gj

and any
∑
j gj + gi, where gi is any basis vector having an angle of π/3 with g1 such that

∑
j gj + gi is

not outside P(B). Hence, |Tf (
∑i
j=1 gj +g1)∩C0

P(B)| = 1+n−2− i. E.g. for n = 3, the closest neighbors

of 0 + g1 in C0
P(B) are 0 and g3. g2 is perpendicular to g1 and is not a closest neighbor of g1.

(lli) The second pattern is obtained with any point of the form
∑
j gj + g2 + g1 and its neighbors in

C0
P(B).

∑
j gj + g2 and any

∑
j gj + g2 + gi,

∑
j gj + gk are neighbors of this point in C0

P(B), where gi, gk
are any basis vectors having an angle of π/3 with g1 such that (respectively)

∑
j gj + g2 + gi,

∑
j gj + gk

are not outside P(B). This terms generate the (1) in the formula. E.g. for n = 3, the closest neighbors of
0+g2+g1 in C0

P(B) are g2, g2+g3, and g3. Moreover, for n = 3 one “neighborhood case” is not happening:

from n = 4, the points gi + gj ∈ C0
P(B), 3 ≤ i < j ≤ n, are also closest neighbors of g2 + g1. This explains

the binomial coefficient (2). Hence, |Tf (
∑i
j=1 gj + g2 + g1) ∩ C0

P(B)| = 1 + 2(n− 2− i) +
(
n−2−i

2

)
.

Finally, we investigate En, 6 ≤ n ≤ 8. The basis we consider is almost identical to the basis of Dn

given by (8.24), except one main difference: there are two basis vectors orthogonal to g1 instead of one.
This basis is not VR but SVR. It is defined by the following Gram matrix.

ΓEn =

2 0 0 1 ... 1
0 2 1 1 ... 1
0 1 2 1 ... 1
1 1 1 2 ... 1
.
1 1 1 1 ... 2

. (8.26)

8.5. COMPLEXITY REDUCTION 117

Theorem 8.8. Consider an En-lattice basis, 6 ≤ n ≤ 8, defined by the Gram matrix (8.24). The
decision boundary function f has a number of affine pieces equal to

n−3∑
i=0

(
[1 + (n− 3− i)]︸ ︷︷ ︸

(li)

+ 2

[
1 + 2(n− 3− i) +

(n− 3− i
2

)]
︸ ︷︷ ︸

(lli)

+

1 + 3(n− 3− i)︸ ︷︷ ︸
(1)

+ 3
(n− 3− i

2

)
︸ ︷︷ ︸

(2)

+
(n− 3− i

3

)
︸ ︷︷ ︸

(3)

︸ ︷︷ ︸

(llli)

)(n− 3

n− i
)

︸ ︷︷ ︸
(oi)

− 3.

(8.27)

We first highlight the similarities with the function of Dn defined by (8.24). As with Dn, we have
case (li). Case (lli) of Dn is also present but obtained twice because of the two orthogonal vectors. The
terms n− 2− i in (li) and (lli) of Equation (8.25) are replaced by n− 3− i also because of the additional
orthogonal vector.

Then, there is a new pattern (llli): Any point of the form
∑
j gj + g3 + g2 + g1 and its neighbors in

C0
P(B), where

∑
j gj represents any sum of points in the set {0, gj}nj=4. For instance, the closest neigh-

bors in C0
P(B) of g3 + g2 + g1 ∈ C1

P(B) are the following points, which we can sort in three groups as on

Equation (8.27): (1) g2 + gj , g3 + gj , g2 + g3 + gj , (2) gj + gk, g2 + gj + gk, g3 + gj + gk, (3) gj + gi + gk,
4 ≤ i < j < k ≤ n. The formal proof is available in Appendix 8.6.7.

8.5 Complexity reduction

In this section, we first show that a technique called the folding strategy enables to compute the deci-
sion boundary function at a reduced (polynomial) complexity. The folding strategy can be seen as a
preprocessing step to simplify the function to compute. The implementation of this technique involves
a deep neural network. As a result, the exponential complexity of the HLD is reduced to a polynomial
complexity by moving from a shallow neural network to a deep neural network. The folding strategy
and its implementation is first presented for the lattice An. We then show that folding is also possible
for Dn and En.

In the second part of the section, we argue that, on the Gaussian channel, the problem to be solved
by neural networks is easier for MIMO lattices than for dense lattices: In low to moderate dimensions,
many pieces of the decision boundary function can be neglected for quasi-optimal decoding. Assuming
that usual training techniques naturally neglect the useless pieces, this explains why neural networks of
reasonable size are more efficient with MIMO lattices than with dense lattices.

8.5.1 Folding strategy

The algorithm

Obviously, at a location ỹ, we do not want to compute all affine pieces in (8.20), whose number is for
instance given by (8.21) for An. To reduce the complexity of this evaluation, the idea is to exploit the
symmetries of f by “folding” the function and mapping distinct regions of the input domain to the
same location. If folding is applied sequentially, i.e. fold a region that has already been folded, the gain
becomes exponential. The notion of folding the input space in the context of neural networks was intro-
duced in [SM13] and [MPCB14]. We first present the folding procedure for the lattice An and explain
how this translate into a deep neural networks. We then show that this strategy can also be applied to
the other dense lattices studied in Section 8.4.5.

Folding of An
The input space D(B) is defined as in Section 8.4.4. Given the basis orientation as in Corollary 8.1, the
projection of gj on D(B) is gj itself, for j ≥ 2. We also denote the bisector hyperplane between two
vectors gj , gk by BH(gj , gk) and its normal vector is taken to be vj,k = gj − gk. Let ỹ ∈ D(B) and
let ṽj,k be a vector with the n − 1 last coordinates of vj,k. First, we define the function Fj,k, where
2 ≤ j < k ≤ n, which performs the following reflection. Compute ỹ · ṽj,k. If the scalar product is
non-positive, replace ỹ by its mirror image with respect to BH(gj , gk). Since 2 ≤ j < k ≤ n, there are(
n−1

2

)
= (n−1)(n−2)/2 functions Fj,k. The function FAn performes sequentially these O(n2) reflections:

FAn = F2,2 o F2,3 o F3,3 o ... o Fn,n, (8.28)

118 CHAPTER 8. NEURAL NETWORK APPROACHES TO POINT LATTICES DECODING

and

FAn : D(B)→ D(B)′. (8.29)

Theorem 8.9. Let us consider the lattice An defined by the Gram matrix (8.12). We have (i) D(B)′ ⊂
D(B), (ii) for all ỹ ∈ D(B), f(ỹ) = f(FAn(ỹ)) and (iii) f has exactly

2n− 1 (8.30)

pieces on D(B)′.

Equation (8.30) is to be compared with (8.21).

Example 8.3. This example follows Example 8.2. The function f for A3 restricted to D(B)′ (i.e. the
function to evaluate after folding), say fD(B)′ , is

fD(B)′ =
[
hp1 ∨ h1

]
∧
[
hp2 ∨ h2

]
∧
[
hp3

]
. (8.31)

The general expression of fnD(B)′ for any dimension n is

fnD(B)′ =
[
hp1
∨ h1

]
∧
[
hp2
∨ h2

]
∧ ... ∧

[
hpn−1

∨ hn−1

]
∧
[
hpn

]
.

Proof. To prove (i) we use the fact that BH(gj , gk), 2 ≤ j < k ≤ n, is orthogonal to D(B), then the
image of ỹ via the folding F is in D(B).

(ii) is the direct result of the symmetries in the An basis where the n vectors have the same length
and the angle between any two basis vectors is π/3. A reflection with respect BH(gj , gk) switches gj
and gk in the hyperplane containing D(B) and orthogonal to e1. Switching gj and gk does not change
the decision boundary because of the basis symmetry, hence f is unchanged.

Now, for (iii), how many pieces are left after all reflections? Similarly to the proof of Theorem 8.5, we
walk in C0

P(B) and for a given point x ∈ C0
P(B) we count the number of elements of Tf (x+ b1)∩C0

P(B) (via

Equation (8.22)) that are on the proper side of all bisector hyperplanes. Starting with Tf (x+b1)∩C0
P(B),

only 0 and g2 are on the proper side: any other point gj , j ≥ 3, is on the other side of the the bisector
hyperplanes BH(g2, gj). Hence, the lattice point g1, which had n neighbors in C0

P(B) before folding,
only has 2 now. f has only two pieces around g1 instead of n. Then, from g2 one can add g3 but no
other for the same reason. The point g2 + g1 has only 2 neighbors in C0

P(B) on the proper side. The
pattern replicates until the last corner reaching g1 + g2 + . . . + gn which has only one neighbor. So we
get 2(n− 1) + 1 pieces.

From folding to a deep ReLU neural network
For sake of simplicity and without loss of generality, in addition to the standard ReLU activation function
ReLU(a) = max(0, a), we also allow the function max(0,−a) and the identity as activation functions in
the neural network.

To implement a reflection Fj,k, one can use the following strategy.

• Step 1: rotate the axes to have the ith axis ei perpendicular to the reflection hyperplane and shift
the point (i.e. the ith coordinate) to have the reflection hyperplane at the origin.

• Step 2: take the absolute value of the ith coordinate.

• Step 3: do the inverse operation of step 1.

Now consider the ReLU neural network2 illustrated in Figure 8.11. The edges between the input layer
and the hidden layer represent the rotation matrix, where the ith column is repeated twice, and p is a
bias applied on the ith coordinate. Within the dashed square, the absolute value of the ith coordinate is
computed and shifted by −p. Finally, the edges between the hidden layer and the output layer represent
the inverse rotation matrix. This ReLU neural network computes a reflection Fj,k. We call it a reflection
block. Note tha the width of a reflexion block is O(n).

The function FAn can be implemented by a simple concatenation of reflection blocks. This leads to
a very deep and narrow neural network of depth O(n2) (the number of functions Fj,k) and width O(n)
(the width of a reflection block).

2This neural network uses both ReLU and linear activation functions. It can still be considered as a ReLU neural
network as a linear activation function can be implemented with ReLU neurons.

8.5. COMPLEXITY REDUCTION 119

p

−p

y1

y2

Figure 8.11: Reflection ReLU neural network (called reflection block). The edges between the input
neurons and the dashed square performes the rotation (Step 1). The activation functions in the dashed
square, max(0, a), max(0,−a), and a, implement the absolute value operation (Step 2). The rest of the
network does the inverse rotation (Step 3).

Regarding the 2n−1 remaining pieces after folding, we have two options (in both cases, the number of
operations involved is negligible compared to the previous folding operations). To directly discriminate
the point with respect to f , we implement the HLD on these remaining pieces with two additional hidden
layers (as in Figure 8.6): project yfolded on the 2n− 1 hyperplanes (see Theorem 8.9), with one layer of
width 2n+ 1, and compute the associated Boolean equation with an additional hidden layer. If needed,
we can evaluate f(ỹ) via O(log(n)) additional hidden layers. First, compute the n− 1 2-∨ via two layers
of size O(n) containing several “max ReLU neural networks” (see e.g. Figure 3 in [ABMM18]). Then,
compute the n-∧ via O(log(n)) layers.

Consequently, f can be computed by a ReLU network of depth O(n2) and width O(n).

Folding of other dense lattices
We now present the folding procedure for other lattices.

First, we consider Dn defined by the Gram matrix (8.24). FDn is defined as FAn except that we keep
only the Fj,k for j, k ≥ 3. Moreover, the gi are now the basis vectors of Dn instead of An, where g2 is
the basis vector orthogonal to g1.

There are
(
n−2

2

)
= (n − 2)(n − 3)/2 functions Fj,k and the function FDn performs sequentially the

O(n2) reflections.

Theorem 8.10. Let us consider the lattice Dn defined by the Gram matrix (8.24). We have (i) for all
ỹ ∈ D(B), f(ỹ) = f(FDn(ỹ)) and (ii) f has exactly

6n− 12 (8.32)

pieces on D′(B).

Equation (8.32) is to be compared with (8.25).
Sketch of proof. To count the number of pieces of f , defined on D′(B), we need to enumerate the cases
where both x ∈ C1

P(B) and x′ ∈ Tf (x) ∩ C0
P(B) are on the non-negative side of all reflection hyperplanes.

Among the points in CP(B) only the points

1. x1 = g3 + ...+ gi−1 + gi and x1 + g1,

2. x2 = g3 + ...+ gi−1 + gi + g2 and x2 + g1,

i ≤ n, are on the non-negative side of all reflection hyperplanes. It is then easily seen that the num-
ber of pieces of f , defined on D′(B), is given by equation (8.25) reduced as follows. The three terms
(n − 2 − i) (i.e. 2(n − 2 − i) counts for two), the term

(
n−2−i

2

)
, and the term

(
n−2
i

)
become 1 at each

step i, for all 0 ≤ i ≤ n − 3 (except
(
n−2−i

2

)
which is equal to 0 for i = n − 3). Hence, (8.25) becomes

(n− 3)× (2 + 4) + (2 + 3) + 1, which gives the announced result.

Consequently, f can be computed by a ReLU network of depth O(n2) and width O(n) (i.e. the same
size as the one for An).

Second, we show how to fold the function for En. FEn is defined as FAn except that, for the functions
Fj,k, 4 ≤ j < k ≤ n and j = 2, k = 3 instead of 2 ≤ j < k ≤ n, where g2, g3 are the basis vectors
orthogonal to g1. There are

(
n−3

2

)
+1 = (n−3)(n−4)/2+1 functions Fj,k and the function FEn performs

sequentially the O(n2) reflexions.

120 CHAPTER 8. NEURAL NETWORK APPROACHES TO POINT LATTICES DECODING

Dimension n 10 12 14 16
Average number of points 59 109 201 361

Table 8.1: Average number of points in a sphere of squared radius 2 · d2(Λ) centered at the origin for
random MIMO lattices Λ .

Theorem 8.11. Let us consider the lattice En, 6 ≤ n ≤ 8, defined by the Gram matrix (8.7). We have
(i) for all ỹ ∈ D(B), f(ỹ) = f(FEn(ỹ)) and (ii) f has exactly

12n− 40 (8.33)

pieces on D′(B).

Equation (8.33) is to be compared with (8.27). Consequently, f can be computed by a ReLU network
of depth O(n2) and width O(n).

8.5.2 Neglecting many affine pieces in the decision boundary

In the previous section, we showed that complexity reduction can be achieved for some structured lattices
by exploiting their symmetries. What about unstructured lattices? We consider the problem of decoding
on the Gaussian channel. The goal is to obtain quasi-MLD performance.

Empirical observations

In [CBCB18b], we performed several simulations with dense lattices (e.g. E8) and MIMO lattices (such
as the ones considered in [SDW17]), which are typically not dense in low to moderate dimensions. We
tried to minimize the number of parameters in a standard fully-connected feed-forward sigmoid neural
network [GBC16] while maintaining quasi-MLD performance. The training was performed with usual
gradient-descent-like techniques [GBC16]. The network considered is shallow, similarly to the HLD, as
it contains only three hidden layers. Let W be the number of parameters in the neural networks (i.e. the
number of edges). To be competitive, W should be smaller than 2n. For E8 we obtained a complexity

ratio log2 W
n = 2.0 whereas for the MIMO lattice the ratio is only log2 W

n = 0.78.
Similarly, we also compared the decoding complexity of MIMO lattices and dense lattices (BW16

in this case) in [CBCB18a], with a different network architectures (but still having the form of a feed-
forward neural network). The conclusion was the same: while it is possible to get a reasonable complexity
for MIMO lattices, it is much more challenging for dense lattices.

See Chapter 10 for more details on these simulations.

Explanation

We explained in the first part of the paper that all pieces of the decision boundary function are facets of
Voronoi regions. As a result, the (optimal) HLD needs to consider all Voronoi relevant vectors, which is
equal to τf = 2n+1−2 for random lattices. However, as stated below Equation (4.43) in the preliminaries,
only the first lattice shells need to be considered for quasi-MLD performance on the Gaussian channel.

Consequently, we performed simulations to know how many Voronoi facets contribute to the quasi-
MLD error probability for random MIMO lattices generated by a matrix G with random i.i.d N (0, 1)
components. We numerically generated 200000 random MIMO lattices Λ and computed the average
number of lattice points in a sphere of squared radius 2 · d2(Λ) centered at the origin. The results are
reported in Table 8.1. Figure 8.12 also provide the distribution for n = 14. For comparison, the number
of points in such a sphere is 25201 for the dense Coxeter-Todd lattice in dimension 12 and 588481 for the
dense Barnes-Wall lattice in dimension 16 [CS99, Chap. 4]. Note however that while the numbers shown
in Table 8.1 are relatively low, the increase seems to be exponential: The number of lattice points in the
sphere almost doubles when adding two dimensions. Note that estimates of these numbers could also be
obtained with the Gaussian Heuristic (see Equation (4.23)). From this perspective, it is not surprising
to get an exponential increase.

This means that the number of Voronoi facets significantly contributing to the error probability is
much smaller for random MIMO lattices compared to dense lattices in these dimensions. As a result,

8.5. COMPLEXITY REDUCTION 121

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty
 m

a
s
s
 f
u
n
c
ti
o
n

Number of points in a sphere centered at 0 with radius
2
=2*d

2
(Lambda) (3dB)

Figure 8.12: Distribution of the number of lattice points in a sphere of squared radius 2 · d2(Λ). The
random lattices in dimension n = 14 are generated by a matrix G with random i.i.d. N (0, 1) componens.
We numerically generated 200000 random lattices in dimensions n = 14 to compute the distribution.

the number of hyperplanes that should be taken into account for quasi-MLD is much smaller for random
MIMO lattices. In other words, the function to compute for quasi-optimal decoding is “simpler”: A
piecewise linear boundary with a relatively low amount of affine pieces can achieve quasi-MLD for
random MIMO lattices.

8.5.3 Learning perspective

We argue that regular learning techniques for shallow neural networks, such as gradient-descent, using
Gaussian distributed data at moderate SNR for the training, naturally selects the Voronoi facets con-
tributing to the error probability. We proved in the previous subsection that the number of Voronoi
facets from this category is low for unstructured MIMO lattices. This explains why, for quasi-optimal
decoding in low to moderate dimensions, shallow neural networks can achieve satisfactory performance
at reasonable complexity with unstructured MIMO lattices. However, the number of Voronoi facets to
consider is much higher for structured lattices. This elucidates why it is much more challenging to train
a shallow neural network with structured lattices.

In the first part of this section, we explained that for this latter category of lattices, such as An,
one should consider a deep neural network. It is thus legitimate to suppose that training a deep neural
network to decode An should be successful. However, when this category of neural networks is used,
even when we know that their function class contains the target function, the training is much more
challenging. In particular, even learning simple one dimensional oscillatory function, such as the triangle
wave function illustrated on Figure 8.13, is very difficult whereas they can be easily computed via folding.
This can only be worst for high-dimensional oscillatory functions such as the boundary decision functions.

Figure 8.13: Simple one-dimensional function which is challenging to learn via usual techniques.

This might explain the success of model-based techniques, where the neural network architectures
are established by unfolding known decoding algorithms and where the weights are initialized based on
these algorithms [NBB16]. Learning is then used to explore the functions in the function class of the
neural network that are not “too far” from the initial point in the optimization space. Nevertheless, the
initial point should already be of good quality to get satisfactory performance and learning amounts to
fine tuning the algorithm.

122 CHAPTER 8. NEURAL NETWORK APPROACHES TO POINT LATTICES DECODING

8.6 Appendix

8.6.1 Proofs of Section 8.3.2

Proof of Theorem 8.1

We need to show that none of y ∈ V(x), x ∈ Λ\CP(B), crosses a facet of P(B). In this scope, we first find

the closest point to a facet of P(B) and show that its Voronoi region do not cross P(B). It is sufficient
to prove the result for one facet of P(B) as the landscape is the same for all of them.

Let HF1 denote the hyperplane defined by B\g1 where the facet F1 of P(B) lies. While g1 is in P(B)
it is clear that −g1 is not in P(B). Adding to −g1 any linear combination of the n−1 vectors generating
F1 is equivalent to moving in a hyperplane, say HP1

, parallel to F1 and it does not change the distance
from HF1

. Additionally, any integer multiplication of −g1 results in a point which is further from the
hyperplane (except by ±1 of course). Note however that the orthogonal projection of −g1 onto HF1

is
not in F1. The only lattice point in HP1 having this property is obtained by adding all gj , 2 ≤ j ≤ n, to
−g1, i.e. it is the point −g1 +

∑n
j=2 gj .

This closest point to P(B), along with the points B\g1, form a simplex. The centroid of this simplex
is a hole of the lattice (but it is not a deep hole of An for n ≥ 3). It is located at a distance of α/(n+ 1),
α > 0, to the center of any facet of the simplex and thus to F1 and P(B).

Proof of Theorem 8.2

In this appendix, we prove Lemma 8.2. One can check that any generator matrix G obtained from the
following Gram matrix generates E8 and satisfies the assumption of Lemma 8.2. Consequently, it proves
Theorem 8.2.

ΓE8
=

4 2 0 2 2 2 2 2
2 4 2 0 2 2 2 2
0 2 4 0 2 2 0 0
2 0 0 4 2 2 0 0
2 2 2 2 4 2 2 0
2 2 2 2 2 4 0 2
2 2 0 0 2 0 4 0
2 2 0 0 0 2 0 4

. (8.34)

Lemma 8.2. Let G be a generator matrix of E8, where the set of basis vectors B are all from the first
lattice shell. Let P̊(B) be the interior of the fundamental parallelotope of E8. If (G−1)T is a generator
matrix of E8 with basis vectors from the first shell, then the G basis is Voronoi-reduced with respect to
P̊.

To prove Lemma 8.2, we need the next lemma.

Lemma 8.3. Let G be a generator matrix of a lattice Λ, where the rows of G form a basis B of Λ with
lattice points from the first shell. Let HFi denote the hyperplane defined by B\gi where the facet Fi of
P(B) lies. If (G−1)T generates Λ∗ with lattice points from the first shell of this dual lattice, then the
minimum distance between any HFi and a lattice point in Λ\P(B) is

d(Λ\P(B)), HFi) =
d(Λ)√

γ(Λ∗)×
√
γ(Λ)

. (8.35)

Proof. We derive the minimum distance between a lattice point outside of P(B), x ∈ Λ\P(B), and HFi .
This involves two steps: First, we find one of the closest lattice point by showing that any other lattice
point is at the same distance or further and then we compute the distance between this point and HFi .
In the following, ui is the basis vector of the dual lattice Λ∗ orthogonal to Fi and gi the only basis vector
of Λ where ui · gi 6= 0, gi ∈ B.

As explained in the proof for An, while gi is in P(B) it is clear that −gi is not in P(B). Adding
any linear combination of the n− 1 vectors generating the facet is equivalent to moving in a hyperplane
parallel to HFi . It does not change the distance from HFi . Additionally, any integer multiplication of
−gi results in a point which is further from the facet (except by ±1 of course). Therefore, −gi is one of
the closest lattice points in Λ\P(B) from HFi .

8.6. APPENDIX 123

How far is this point from P(B)? This distance is obtained by projecting −gi on ui, the vector
orthogonal to Fi

d(Λ\P(B), HFi) =
|gi · ui|
||ui)||

. (8.36)

First, the term gi · ui = 1 since G ·G−1 = I. Second, from the Hermite constant of the dual lattice Λ∗,
and using det G · det G−1 = 1, we get:

d(Λ∗) =

√
γ(Λ∗)

|det G|1/n . (8.37)

Since all vectors of Λ∗ are from the first shell (i.e. their norm is d(Λ∗), assumption of the lemma), (8.36)
becomes

d(Λ\P(B), HFi) =
1

d(Λ∗)
=
|det G|1/n√

γ(Λ∗)
. (8.38)

The result follow by expressing det G as a function of γ(Λ) and d(Λ).

We are now ready to prove Lemma 8.2.

Proof (of Lemma 8.2). gi, ui, and HFi are defined as in the previous proof. We apply (8.35) to E8.
Since this lattice is self-dual, γ(E∗8) = γ(E8) = 2 and (8.35) becomes

d(E8\P(B), HFi) =
d(E8)

2
= ρ(E8),

As a result, the closest lattice point outside of P(B) is at a distance equal to the packing radius. Since
the covering radius is larger than the packing radius, the basis is VR only if the Voronoi region of the
closest points have a specific orientation relatively to the parallelotope.

The rest of the proof consists in showing that HFi is a reflection hyperplane for −gi. Indeed, this
would mean that there is a lattice point of E8 on the other side of HFi , located at a distance ρ(E8) from
HFi . It follows that this lattice point is at a distance d(E8) from −gi and is one of its closest neighbor.
Hence, one of the facet of its Voronoi region lies in the hyperplane perpendicular to the vector joining
the points, at a distance ρ(E8) from the two lattice points. Consequently, this facet and HFi lie in the
same hyperplane. Finally, the fact that a Voronoi region is a convex set implies that the basis is VR.

To finish the proof, we show that HFi is indeed a reflection hyperplane for −gi. The reflection of a
point with respect to the hyperplane perpendicular to ui (i.e. HFi) is expressed as

sui(−gi) = −gi + 2 · ui · gi||ui||2
· ui.

We have to show that this point belongs to E8. The dual of the dual of a lattice is the original lattice.
Hence, if the scalar product between sui(−gi) and all the vectors of the basis of E∗8 is an integer, it
means that this point belongs to E8.

sui(−gi) · uj = −gi · uj + 2 · ui · gi||ui||2
· ui · uj .

We analyse the terms of this equation: gi · uj ∈ Z since they belong to dual lattices. We already know
that ui ·gi = 1. Also ui ·uj ∈ Z as E∗8 is an integral lattice. With Equation (8.37), we get that 2

||ui||2 = 1.

We conclude that sui(−gi) · uj ∈ Z.

Proof of Theorem 8.3

Proof. Λ24 is self-dual with γ(Λ24) = 2 and d(Λ24) = 2. Asumme that we have two generator matrices
G and G−1 satisfying the assumption of Lemma 8.3. Equation (8.35) gives

d(Λ24\P(B), HFi) =
d(Λ24)

4
=
ρ(Λ24)

2
. (8.39)

This distance is clearly smaller than the packing radius of Λ24.
Moreover, Equation (8.36) shows that if G−1 contains a point which is not from the first shell,

min
i
d(Λ\P(B), HFi) becomes smaller has max

i
||ui|| is greater. Hence, (8.39) is an upper bound on

d(Λ24\P(B), HFi).

124 CHAPTER 8. NEURAL NETWORK APPROACHES TO POINT LATTICES DECODING

8.6.2 Proof of Theorem 8.4

All Voronoi facets of f associated to a same point of C1
P(B) form a polytope. The variables within a AND

condition of the HLD discriminate a point with respect to the boundary hyperplanes where these facets
lie: The condition is true if the point is on the proper side of all these facets. For a given point y ∈ P(B),
we write a AND condition m as Heav(yAm + qm) > 0, where Am ∈ Rn×lm , qm ∈ Rlm . Does this convex
polyhedron lead to a convex CPWL function?

Consider Equation (8.16). The direction of any vj is chosen so that the Boolean variable is true for the
point in C1

P(B) whose Voronoi facet is in the corresponding boundary hyperplane. Obviously, there is a

boundary hyperplane, which we name ψ, between the lattice point 0 ∈ C0
P(B) and g1 ∈ C1

P(B). This is also

true for any x ∈ C0
P(B) and x+ g1 ∈ C1

P(B). Now, assume that one of the vector vj has its first coordinate

v1
j negative. It implies that for a given location ỹ, if one increases y1 the term y · vTj − pj decreases and

eventually becomes negative if it was positive. Note that the Voronoi facet corresponding to this vj is
necessarily above ψ, with respect to the first axis e1, as the Voronoi cell is convex. It means that there
exists ỹ where one can do as follows. For a given y1 small enough, y is in the decoding region z1 = 0. If
one increases this value, y will cross ψ and be in the decoding region z1 = 1. If one keeps increasing the
value of y1, y eventually crosses the second hyperplane and is back in the region z1 = 0. In this case f
has two different values at the location ỹ and it is not a function. If no v1

j is negative, this situation is

not possible. All v1
j are positive if and only if all x ∈ C1

P(B) have their first coordinates x1 larger than the

first coordinates of all Tf (x) ∩ C0
P(B). Hence, the convex polytope leads to a function if and only if this

condition is respected. If this is the case, we can write Heav(yAm + q) > 0 ⇔ ∧lmk=1y · am,k + qm,k > 0,
am,k, qm,k ∈ {vj , pj}. We want y1 > hm,k(ỹ), for all 1 ≤ k ≤ lm, which is achieved if y1 is greater than
the maximum of all values. The maximum value at a location ỹ is the active piece in this convex region
and we get y1 = ∨lmk=1hm,k(ỹ).

A Voronoi facet of a neighboring Voronoi cell is concave with the facets of the other Voronoi cell it
intersects. The region of f formed by Voronoi facets belonging to distinct points in C1

P(B) form concave
regions that are linked by a OR condition in the HLD. The condition is true if y is in the Voronoi region
of at least one point of C1

P(B): ∨Mm=1{∧lmk=1y · am,k + qm,k} > 0. We get f(ỹ) = ∧Mm=1{∨lmk=1hm,k(ỹ)}.
Finally, lm is strictly inferior to τf because all Voronoi facets lying in the affine function of a convex

part of f are facets of the same corner point. Regarding the bound on M , the number of logical OR
term is upper bounded by half of the number of corner of P(B) which is equal to 2n−1.

8.6.3 First order terms of the decision boundary function before folding
for An

The equations of the boundary function for An are the following.

fn=2 =
[
hp1 ∨ h1

]
∧
[
hp2
]
.

fn=3 =
[
hp1 ∨ h1 ∨ h2

]
∧
[

(hp2 ∨ h1) ∧ (hp2 ∨ h2)
]
∧
[
hp3
]
.

fn=4 =
[
hp1 ∨ h1 ∨ h2 ∨ h3

]
∧
[

(hp2 ∨ h1 ∨ h2) ∧ (hp2 ∨ h2 ∨ h3) ∧ (hp2 ∨ h1 ∨ h3)
]
∧[

(hp3 ∨ h1) ∧ (hp3 ∨ h2) ∧ (hp3 ∨ h3)
]
∧
[
hp4
]
.

8.6.4 Proof of Theorem 8.6

A ReLU neural network with n inputs and W1 neurons in the hidden layer can compute a CPWL function
with at most

∑n
i=0

(
W1

i

)
pieces [PMB13]. This is easily understood by noticing that the non-differentiable

part of max(0, a) is a n − 2-dimensional hyperplane that separates two linear regions. If one sums W1

functions max(0, di ·y), where di, 1 ≤ i ≤ w1, is a random vector, one gets W1 of such n−2-hyperplanes.
The result is obtained by counting the number of linear regions that can be generated by these W1

hyperplanes.
The proof of the theorem consists in finding a lower bound on the number of such n− 2-hyperplanes

(or more accurately the n − 2-faces located in n − 2-hyperplanes) partitioning D(B). This number is a
lower-bound on the number of linear regions. Note that these n− 2-faces are the projections in D(B) of
the n− 2-dimensional intersections of the affine pieces of f .

8.6. APPENDIX 125

We show that many intersections between two affine pieces linked by a ∨ operator (i.e. an intersection
of affine pieces within a convex region of f) are located in distinct n−2-hyperplanes. To prove it, consider
all sets Tf (x) ∩ C0

P(B) of the form {x, x + g1, x + gj}, x ∈ C0
P(B), x + gj ∈ C0

P(B). The part of decision
boundary function f generated by any of these sets has 2 pieces and their intersection is a n − 2-
hyperplane. Consider the set {0, g1, g2}. Any other set is obtained by a composition of reflections and
translations from this set. For two n − 2-hyperplanes associated to different sets to be the same, the
second set should be obtained from the first one by a translation along a vector orthogonal to the 2-face
defined by the points of this first set. However, the allowed translations are only in the direction of a
basis vector. None of them is orthogonal to one of these sets.

Finally, note that any set {x∪ (Tf (x)∩C0
P(B))} where |Tf (x)∩C0

P(B)| = i, encountered in the proof of

Theorem 8.5, can be decomposed into i− 1 of such sets (i.e. of the form {x, x− g1, x− g1 + gj}). Hence,
from the proof of Theorem 8.5, we get that the number of this category of sets, and thus a lower bound
on the number of n − 2-hyperplanes, is

∑n−1
k=0(n − 1 − k)

(
n−1
k

)
. Summing over k = n − i = 0 . . . n − 1

gives the announced result.

8.6.5 Proof of Theorem 8.7

We count the number of sets Tf (x) ∩ C0
P(B) with cardinality i. We walk in C0

P(B) and for each of the

2n−1 points x ∈ C0
P(B) we investigate the cardinality of the set Tf (x + g1) ∩ C0

P(B). In this scope, the

points in C0
P(B) can be sorted into two categories: (li) and (lli). In the sequel,

∑
j bj denotes any sum of

points in the set {0, bj}nj=3. These two categories and their properties (see also the explanations below
Theorem 8.7), are:

(li) ∀ x =
∑
j

gj ∈ C0
P(B), x

′ ∈ Dn\{gk, 0}, 3 ≤ k ≤ n :

x+ gk ∈ Tf (x+ g1), x+ x′ 6∈ Tf (x+ g1) ∩ C0
P(B).

(8.40)

(lli) ∀ x =
∑
j

gj + g2 ∈ C0
P(B),

x′ ∈ Dn\{gi,−g2 + gi,−g2 + gi + gk, 0}, 3 ≤ i < k ≤ n :

(1) (a) x+ gi ∈ Tf (x+ g1), (b) x− g2 + gi ∈ Tf (x+ g1),

(2) x− g2 + gi + gk ∈ Tf (x+ g1),

(3) x+ x′ 6∈ Tf (x+ g1) ∩ C0
P(B).

(8.41)

We count the number of sets Tf (x) ∩ C0
P(B) with cardinality i per category.

(li) is like An. Starting from the lattice point 0, the set Tf (0 + g1) ∩ C0
P(B) is composed of 0 and the

n−2 other basis vectors (i.e. without g2 because it is perpendicular to g1). Then, for all gj1 , 3 ≤ j1 ≤ n,
the sets Tf (gj1 + g1) ∩ C0

P(B) are obtained by adding any of the n − 3 remaining basis vectors to gj1
(i.e. not g1, g2, or gj1). Indeed, if we add again gj1 , the resulting point is outside P(B) and should
not be considered. Hence, the cardinality of these sets is n − 2 and there are

(
n−2

1

)
ways to choose

gj1 : any basis vectors except g1 and g2. Similarly, for gj1 + gj2 , j1 6= j2, the cardinality of the sets
Tf (gj1 + gj2 + g1) ∩ C0

P(B) is n − 3 and there are
(
n−2

2

)
ways to choose gj1 + gj2 . More generally, there

are
(
n−2
i

)
sets Tf (x) ∩ C0

P(B) of cardinality n− 1− i.
(lli) To begin with, we are looking for the neighbors of g2 + g1. First (i.e. property (1)), we have the

following 1 + 2× (n− 2) points in Tf (g2 + g1)∩C0
P(B): g2, any gj + g2, 3 ≤ j ≤ n, and any gj , 3 ≤ j ≤ n.

Second (i.e. property (2)), the
(
n−2

2

)
points gj + gk, 3 ≤ j < k ≤ n, are also neighbors of g2 + g1. Hence,

g2 + g1 has 1 + 2× (n− 2) +
(
n−2

2

)
neighbors in C0

P(B). Then, the points g1 + g2 + gj1 , 3 ≤ j1 ≤ n, have

1 + 2× (n− 2− 1) +
(
n−2−1

2

)
neighbors of this kind, using the same arguments, and there are

(
n−2

1

)
ways

to chose gj1 . In general, there are
(
n−2
i

)
sets of cardinality 1 + 2× (n− 2− i) +

(
n−2−i

2

)
.

To summarize, each set replicates
∑
i

(
n−2
i

)
times, where for each i we have both (li) sets of cardinality

1 + (n− 2− i) and (lli) sets of cardinality 1 + 2× (n− 2− i) +
(
n−2−i

2

)
. As a result, the total number

126 CHAPTER 8. NEURAL NETWORK APPROACHES TO POINT LATTICES DECODING

of pieces of f is obtained as

n−2∑
i=0

[1 + (n− 2− i)]︸ ︷︷ ︸

(li)

+

1 + 2(n− 2− i)︸ ︷︷ ︸
(1)

+

(
n− 2− i

2

)
︸ ︷︷ ︸

(2)

︸ ︷︷ ︸

(lli)

×

(
n− 2

i

)
︸ ︷︷ ︸

(oi)

− 1, (8.42)

where the -1 comes from the fact that for i = n− 2, the piece generated by (li) and the piece generated
by (lli) are the same. Indeed, the bisector hyperplane of x, x+ g1 and the bisector hyperplane of x+ g2,
x+ g2 + g1 are the same since g2 and g1 are perpendicular.

8.6.6 Proof of Theorem 8.10

Lemma 8.4. Among the elements of CP(B), only the points of the form

1. x1 = g3 + ...+ gi−1 + gi and x1 + g1,

2. x2 = g3 + ...+ gi−1 + gi + g2 and x2 + g1,

i ≤ n, are on the non-negative side of all BH(gj , gk), 3 ≤ j < k ≤ n.

Proof. In the sequel,
∑
i gi denotes any sum of points in the set {0, gi}ni=3. For 1), consider a point of

the form g3 + ...+ gj−1 + gj+1 + ...+ gi−1 + gi, j + 1 < i− 1 ≤ n− 1. This point is on the negative side
of all BH(gj , gk), j < k ≤ i. More generally, any point

∑
i gi, where

∑
i gi includes in the sum gk but

not gj , j < k ≤ n, is on the negative side of BH(gj , gk). Hence, the only points in C0
P(B) that are on the

non-negative side of all hyperplanes have the form g3 + ...+ gi−1 + gi, i ≤ n.

Moreover, if x ∈ C0
P(B) is on the negative side of one of the hyperplanes BH(gj , gk), 3 ≤ j < k ≤ n,

so is x+ g1 since g1 is in all BH(gj , gk).

2) is proved with the same arguments.

Proof. See the proof of Lemma 8.4.

Proof. (of Theorem 8.10) (i) The folding via BH(gj , gk), 3 ≤ j < k ≤ n, switches gj and gk in the
hyperplane containing D(B), which is orthogonal to e1. Switching gj and gk does not change the decision
boundary because of the basis symmetry, hence f is unchanged.

Now, for (ii), how many pieces are left after all reflections? To count the number of pieces of f ,
defined on D′(B), we need to enumerate the cases where both x ∈ C1

P(B) and x′ ∈ Tf (x) ∩ C0
P(B) are on

the non-negative side of all reflection hyperplanes.

Firstly, we investigate the effect of the folding operation on the term
∑n−2
i=0 [1 + (n− 2− i)]×

(
n−2
i

)

in Equation (8.42). Remember that it is obtained via (li) (i.e. Equation (8.40)). Due to the reflections,
among the points in C1

P(B) of the form
∑
j gj + g1 only x = g3 + g4 + ... + gi−1 + gi + g1, j ≤ n, is

on the non-negative side of all reflection hyperplanes (see result 1. of Lemma 8.4). Similarly, among
the elements in Tf (x) ∩ C0

P(B), only x − g1 and x − g1 + gi+1 (instead of x − g1 + gk, 3 ≤ k ≤ n) are

on the non-negative side of all reflection hyperplanes. Hence, at each step i, the term [1 + (n − 2 − i)]
becomes 2 (except for i = n − 2 where it is 1). Therefore, the folding operation reduced the term∑n−2
i=0 [1 + (n− 2− i)]×

(
n−2
i

)
to (n− 2)× 2 + 1.

Secondly, we investigate the reduction of the term
∑n−2
i=0

[
1 + 2(n− 2− i) +

(
n−2−i

2

)]
×
(
n−2
i

)
obtained

via (lli) (i.e. Equation 8.41). The following results are obtained via item 2. of Lemma 8.4. Among the
points denoted by

∑
j gj + g2 + g1 ∈ C1

P(B) only x = g3 + g4 + ... + gi−1 + gi + g2 + g1 is on the proper

side of all reflection hyperplanes. Among the neighbors of any of these points, of the form (lli) − (2),
only x + gi+1 + gi+2 is on the proper side of all hyperplanes. Additionally, among the neighbors of the
form (lli)− (1) and (lli)− (b), i.e. x+ gk or x− g2 + gk, 3 ≤ k ≤ n, gk can only be gi+1. Therefore, the

folding operation reduces the term
∑n−2
i=0 [1 + 2(n− 2− i) +

(
n−2−i

2

)
]×
(
n−2
i

)
to (n− 3)× 4 + 3 + 1.

8.6. APPENDIX 127

8.6.7 Proof of Theorem 8.8

Proof. We count the number of sets Tf (x) ∩ C0
P(B) with cardinality i. We walk in C0

P(B) and for each of

the 2n−1 points x ∈ C0
P(B) we investigate the cardinality of the set Tf (x + g1) ∩ C0

P(B). In this scope,

we group the lattice points x ∈ C0
P(B) in three categories. The numbering of these categories matches

the one given in the sketch of proof (see also Equation 8.47 below).
∑
j gj denotes any sum of points in

the set {0, gj}nj=4.

(li) ∀ x =
∑
j

gj ∈ C0
P(B), x

′ ∈ Dn\{gj , 0}, 4 ≤ k ≤ n :

x+ gk ∈ Tf (x+ g1), x+ x′ 6∈ Tf (x+ g1) ∩ C0
P(B).

(8.43)

(lli)−A ∀ x =
∑
j

gj + g2 ∈ C0
P(B),

x′ ∈ Dn\{gi,−g2 + gi,−g2 + gi + gk, 0}, 4 ≤ i < k ≤ n :

(1) x+ gi ∈ Tf (x+ g1), x− g2 + gi ∈ Tf (x+ g1),

(2) x− g2 + gi + gk ∈ Tf (x+ g1),

(3) x+ x′ 6∈ Tf (x+ g1) ∩ C0
P(B).

(8.44)

(lli)−B ∀ x =
∑
j

gj + g3 ∈ C0
P(B),

x′ ∈ Dn\{gi,−g3 + gi,−g3 + gi + gk, 0}, 4 ≤ i < k ≤ n :

(1) x+ gi ∈ Tf (x+ g1), x− g3 + gi ∈ Tf (x+ g1),

(2) x− g3 + gi + gk ∈ Tf (x+ g1),

(3) x+ x′ 6∈ Tf (x+ g1) ∩ C0
P(B).

(8.45)

(llli) ∀ x =
∑
j

gj + g2 + g3 ∈ C0
P(B),

x′ ∈ Dn\{gi, gi + gk, gi + gk + gl, 0}, 4 ≤ i < k < l ≤ n :

(1) x− g2 + gk ∈ Tf (x+ g1), x− g3 + gk ∈ Tf (x+ g1),

x+ gk ∈ Tf (x+ g1),

(2) x− g3 − g2 + gi + gk ∈ Tf (x+ g1),

x− g2 + gi + gk ∈ Tf (x+ g1), x− g3 + gi + gk ∈ Tf (x+ g1),

(3) x+ gi + gk + gl ∈ Tf (x+ g1),

(4) x+ x′ 6∈ Tf (x+ g1) ∩ C0
P(B).

(8.46)

We count the number of i-simplices per category.
(li) is like An. Starting from the lattice point 0, the set Tf (0 + g1) ∩ C0

P(B) is composed of 0 and the

n− 3 other basis vectors (i.e. without g2 and g3 because they are perpendicular to g1). Then, for all gj1 ,
4 ≤ j1 ≤ n, the sets Tf (gj1 + g1)∩C0

P(B) are obtained by adding any of the n− 4 remaining basis vectors

to gj1 (i.e. not g1, g2, g3 or gj1). Hence, the cardinality of these sets is n− 3 and there are
(
n−3

1

)
ways

to choose gj1 : any basis vectors except g1, g2, and g3. Similarly, for gj1 + gj2 , j1 6= j2, the cardinality of
the sets Tf (gj1 + gj2 + g1)∩ C0

P(B) is n− 4 and there are
(
n−3

2

)
ways to choose gj1 + gj2 . More generally,

there are
(
n−3
i

)
sets Tf (x) ∩ C0

P(B) of cardinality n− 2− i.
(lli) is like the basis of Dn (see (lli) in the proof in Appendix 8.6.5), repeated twice because we

now have two basis vectors orthogonal to g1 instead of one. Hence, we get that there are
(
n−3
i

)
sets of

cardinality 2×
(
1 + 2(n− 3− i) +

(
n−3−i

2

))
.

(llli) is the new category. We investigate the neighbors of a given point x =
∑
j gj+g3 +g2 +g1. First

(1), any
∑
j gj+g3 +g2 is in Tf (x)∩C0

P(B). Any
∑
j gj+g2 +gk,

∑
j gj+g3 +gk, and

∑
j gj+g3 +g2 +gk,

where 4 ≤ k ≤ n and k 6∈ {j} are also in Tf (x)∩C0
P(B). Hence, there are 3× (n−3− i) of such neighbors,

where i = |{j}| (in ∑j gj). Then, (2) any
∑
j gj + gi + gk,

∑
j gj + g2 + gi + gk, and

∑
j gj + g3 + gi + gk,

where 4 ≤ i < k ≤ n and i, k 6∈ {j}, are in Tf (x) ∩ C0
P(B). There are 3 ×

(
n−3−i

2

)
possibilities, where

128 CHAPTER 8. NEURAL NETWORK APPROACHES TO POINT LATTICES DECODING

i = |{j}|. Finally (3), any
∑
j gj + gi + gk + gl, 4 ≤ i < k < l ≤ n and i, k, l 6∈ {j} are in Tf (x) ∩ C0

P(B).

There are
(
n−3−i

3

)
of them, where i = |{j}|.

To summarize, each set replicates
∑
i

(
n−3
i

)
times, where for each i we have (li) sets of cardinality

1 +n− 3− i, (lli) 2×
(
1 + 2(n− 3− i) +

(
n−3−i

2

))
, and (llli) 1 + 3× (n− 3− i) + 3×

(
n−3−i

2

)
+
(
n−3−i

3

)
.

As a result, the total number of pieces of f is obtained as

n−3∑
i=0

(
[1 + (n− 3− i)]︸ ︷︷ ︸

(li)

+ 2

[
1 + 2(n− 3− i) +

(n− 3− i
2

)]
︸ ︷︷ ︸

(lli)

+ (8.47)

1 + 3(n− 3− i)︸ ︷︷ ︸
(1)

+ 3
(n− 3− i

2

)
︸ ︷︷ ︸

(2)

+
(n− 3− i

3

)
︸ ︷︷ ︸

(3)

︸ ︷︷ ︸

(llli)

)
×
(n− 3

n− i
)

︸ ︷︷ ︸
(oi)

− 3, (8.48)

where the -3 comes from the fact that for i = n− 3, the four pieces generated by (li), (lli), and (llli) are
the same. Indeed, the bisector hyperplane of x, x+ g1, is the same as the one of x+ g2, x+ g2 + g1, of
x+ g3, x+ g3 + g1, and of x+ g2 + g3, x+ g2 + g3 + g1, since both g2 and g3 are perpendicular to g1.

8.6.8 Proof of Theorem 8.11

Lemma 8.5. Among the elements of CP(B), only the points of the form

1. x1 = g4 + ...+ gi−1 + gi and x1 + g1,

2. x2 = g4 + ...+ gi−1 + gi + g2 and x2 + g1,

3. x3 = g4 + ...+ gi−1 + gi + g2 + g3 and x3 + g1,

i ≤ n, are on the non-negative side of all BH(gj , gk), 4 ≤ j < k ≤ n.

Proof. (of Theorem 8.11) (i) The folding via BH(gj , gk), 4 ≤ j < k ≤ n and j = 2, k = 3, switches
gj and gk in the hyperplane containing D(B), which is orthogonal to e1. Switching gj and gk does not
change the decision boundary because of the basis symmetry, hence f is unchanged.

Now, for (ii), how many pieces are left after all reflections? To count the number of pieces of f ,
defined on D′(B), we need to enumerate the cases where both x ∈ C1

P(B) and x′ ∈ Tf (x) ∩ C0
P(B) are on

the non-negative side of all reflection hyperplanes.
Firsly, we investigate the effect of the folding operation on the term

∑n−3
i=0 [1 + n − 3 − i] ×

(
n−3
i

)

in Equation (8.47). Remember that it is obtained via (li) (i.e. Equation (8.43)). Due to result 1 of
Lemma 8.5 and similarly to the corresponding term in the proof of Theorem 8.10, this term reduces to
(n− 3)× 2 + 1.

Secondly, we investigate the reduction of the term 2
[
1 + 2(n− 3− i) +

(
n−3−i

2

)]
×
(
n−3
i

)
, obtained

via (lli) (i.e. Equation (8.44)). The following results are obtained via item 2 of Lemma 8.5.
(
n−3
i

)

reduces to 1 at each step i because in C1
P(B), only the points x = g2 + g3 + gi−1 + gi + g1 are on the

non-negative side of all hyperplanes, i ≤ n. Then, since any
∑
j gj + g3 + g1 is on the negative side of

the hyperplane BH(g2, g3), (lli)− (B) generates no piece in f (defined to D′(B)). (lli)− (A) is the same
case as the case (lli) in the proof of Theorem 8.10. Hence, the term reduces to (n− 3)× (4) + 3 + 1.

Finally, what happens to the term
[
1 + 3(n− 3− i) + 3

(
n−3−i

2

)
+
(
n−3−i

3

)] (
n−3
n−i
)
, obtained via (llli)

(i.e. Equation (8.45))? The following results are obtained via item 3 of Lemma 8.5. As usual,
(
n−3
n−i
)

reduces to 1 at each step i. Then, 3(n− 3− i), due to (llli)− (1), becomes 2× 1 at each step i because
any x − g2 + gk (in (llli) − (1)), k ≤ 4 ≤ n, is on the negative side of BH(g2, g3). For x − g3 + gk and
x + gk, only one valid choice of gk remains at each step i, as explained in the proof of Theorem 8.10.
Regarding the term 3

(
n−3−i

2

)
, due to (llli) − (2), any point x − g2 + gi + gk (in (llli) − (2)) is on the

negative side of BH(g2, g3) and at each step i there is only one valid way to chose gj and gk for both
x− g3 − g2 + gj + gk and x− g3 + gj + gk. Eventually, for the last term due to (llli)− (3) only one valid
choice remain at each step i. Therefore, the term due to (llli) is reduced to to (n−4)×6 + 5 + 3 + 1.

Chapter 9

A lattice-based approach to the
expressivity of deep ReLU neural
networks

In this chapter, we show how lattice theory can be used to establish new results in the field of deep
learning. More specifically, we focus on the expressive power of deep neural networks. Typically, the goal
of this line of research is to show that there exist functions that can be well approximated by a deep
neural network with a polynomial number of parameters whereas an exponential number of parameters
is required for any shallow neural network. We therefore speak of separation theorems.

There already exist several separation theorems between shallow and deep neural networks in the
literature, which depend on various parameters. Many results like [MPCB14], [Tel16], [ABMM18] utilize
functions that are based on one dimensional approaches. In particular, a separation theorem is obtained
by Telgarsky [Tel16] via a one dimensional triangle wave function (i.e. similar to the decision boundary
for A2, illustrated on Figure 8.5). The theorem does not depend on the dimension but on a parameter
k characterizing the number of periods in the triangle wave function. Additional details on the work
of [Tel16] and a survey on recent results on this topic can be found in the Appendices 9.2.2 and 9.2.1,
respectively.

The CPWL boundary function f , obtained from An in the previous chapter, is a n-dimensional
generalization of the triangle wave function used by [Tel16]. We argue that this function enlighten
the missing dimensional dependency in the bound of [Tel16] and thus enables to prove a dimension
dependent separation theorem: We show that there exists a function f that can be computed by a
deep neural network of polynomial size where any function g computed by a shallow neural network of
polynomial size induces an approximation error growing exponentially with the dimension. The novelty
of our result lies in the fact that the approximation error grows exponentially with the dimension. To
the best of our knowledge, this is the first separation theorem depending on the space dimension.

9.1 The advantage of depth over width

The result presented in this chapter, Theorem 9.1, is partially based on the previous chapter: On the one
hand, Theorem 8.6 shows that any ReLU neural network with only one hidden layer needs an exponential
number of neurons, Ω(2n), to exactly compute the CPWL boundary function obtained for An. On the
other hand, we have shown that if one is allowed quadric depth, then there exist neural networks of
polynomial size to compute the decision boundary functions. This is an instance of the superiority of
depth over width in neural network architectures. However, we did not quantify the approximation error.
A deeper analysis of the problem yields the followig theorem.

Theorem 9.1 (The dimension dependent separation theorem). There exists a function f : Rn−1 → R,
computed by a standard ReLU neural network in O(n2) layers and O(n3) neurons, where any function
g computed by a ReLU neural network with ≤ n layers and ≤ 2n−1 neurons induces a L1 approximation
error, over the domain of the function, || f − g ||1 = Ω(2(n−1)3−n log2(n)).

The proof of Theorem 9.1 can be found in Appendix 9.2.3. The proof is based on a periodic extension
in Rn of the decision boundary of An (i.e. the function not restricted to P(B) but to a larger compact set).

129

130
CHAPTER 9. A LATTICE-BASED APPROACH TO THE EXPRESSIVITY OF DEEP RELU

NEURAL NETWORKS

9.2 Appendix

9.2.1 Some results on the expressive power of deep neural networks

The ultimate goal of research on the expressive power of deep neural networks is to find a large function
class that can only be addressed via deep neural networks and no other ways, including shallow networks
and “conventional approaches” (i.e. not deep neural networks). Results of research works in this field
are usually either capacity bounds (i.e. what can do a deep neural network) or separation bounds. These
bounds can depend on (i) the approximation error, (ii) the dimension of the input as well as (iii) the
width and (iv) the depth of the neural network.

Unfortunately, results on larger function class tend to be looser as the bounds have to hold for the
worst-case scenario. Moreover, one of the (empirically observed) strength of neural networks compared to
other techniques is their ability to efficiently approximate a given function. Therefore, stronger theorems
can be obtained for specific functions but are less representative.

Consequently, papers in the literature can be sorted based on the “size” of the function class addressed
and whether or not the results depend on (i),(ii),(iii), and (iv). The present work addresses a small
function class (even though it may be a starting point to study algebraic functions), (i), (ii), (iii) and
(iv). The following list is not exhaustive and does not include older results related to the field of circuit
complexity.

[ES16] proved a separation theorem including (i), (ii), and (iii) for a large class of function, namely
“radial” functions. Nevertheless, this separation holds only for two-layer and three-layer neural networks,
thus (iv) is missing. Also, note that [Dan17] found a simpler proof of this result and [SS17] extended
this separation result between two-layer and three-layer network to a larger class of function including
the Euclidean unit ball.

[MPCB14] achieved the best capacity theorem for deep ReLU neural networks including (ii), (iii),
and (iv). Similarly to our work, this is achieved via a small function class. These functions can be
computed via “conventional methods” as they are based on a periodic one dimensional function.

[Tel16] proved a separation theorem between shallow and deep networks (this separation theorem
was improved by [ABMM18] by re-using the same ideas) including (i), (iii) and (iv). Since this theorem
is based on a one dimensional triangle wave function (see Appendix 9.2.2), (ii) is missing (a multi-
dimensional function is considered but the bound does not depend on (ii)).

[ABMM18] achieved a multi-dimensional construction with an exponential number of linear regions
requiring only a polynomial number of parameters (part (i) of Theorem 3.9 in the paper) but the proof
is based on the fact that the high dimensional part of this function can be computed by a conventional
method (i.e. the function with wn pieces considered can be computed via a w 2-max, as shown in the
proof of Lemma 3.7).

[RPK+16] showed that any random deep ReLU network achieves an exponential number of linear
region depending on (ii),(iii) and (iv). Additionally, via the trajectory length, they observed that most
of the random linear regions in trained networks are in fact noise that should be addressed through
regularization.

Finally, [PMR+17] and [PV18] are recent results addressing large function class.

9.2.2 The triangle wave function of [Tel16]

Telgarsky considers a one dimensional triangle wave function. The key observation is that adding two
(shifted) copies of a triangle wave function increases the number of pieces in an additive manner, while
composition acts multiplicatively. Within a neural network, increasing the width of a layer is equivalent
to adding functions, while increasing the depth is equivalent to composing functions. Hence, a function
computed by a deep network, say f : R→ R, can have many more oscillations than functions computed
by networks with few layers, say g : R→ R. Roughly speaking, if the activation function in each neuron
is a triangle wave function with p pieces, a two-layer w-wide network leads to a triangle wave function
of wp pieces while a L-layer network with O(1)-width leads to pL pieces.

The difference (or “error”) between f and a line can be characterized by the triangle areas illustrated
on Figure 9.1. Hence, the L1 error between f and g is then bounded from below after summing the
triangle areas above the line (resp. below the line) whenever g is below (resp. above) this same line.
Indeed, since g has a number of pieces inferior to f , it can only cross this line a limited number of times
compared to f .

This one-dimensional result is then extended to the n-dimensional case in the following manner. A
function pỹ(y1) = (y1, ỹ) is defined. ỹ can be understood as an offset. The network is then only applied

9.2. APPENDIX 131

gf

Figure 9.1: Triangle wave function considered by Telgarsky. The doted triangle areas are used to get a
lower bound of the error between f and g.

Figure 9.2: Triangle wave function with offset in R3. The number of pieces is not increased compared to
the baseline function in R2. There is no dimensional dependence.

on y1 but the error averaged in the cube [0, 1]n.

9.2.3 Proof of Theorem 9.1

We use the same notations as in Chapter 8. Consider the basis for the lattice An given by ΓAn =
GGT = Jn + In. Let N (f) denote the number of pieces of a CPWL function f . Assume that one is only
given k pieces to build a function g approximating f , with k < N (f). What is the minimum possible
approximation error?

The decision boundary function f for A2 is similar to the triangle wave function used to prove the
main separation theorem between deep and shallow networks in [Tel16]. We quickly recall the main ideas
of the proof in [Tel16] (a more detailed explanation is also available in Appendix 9.2.2). A triangle wave
function f with p periods is considered. It has 2p+ 1 affine pieces. [Tel16] established a lower bound of
the average pointwise disagreement |f(ỹ)−g(ỹ)| over a compact set between f and a function g having k
pieces where k < 2p+ 1. This is achieved by summing the triangle areas above (resp. below) the dashed
black line, illustrated on Figure 9.1, whenever g is below (resp. above) this same line. Indeed, since g
has a limited number of pieces, it can only cross this line a limited number of times.

What happens if we consider a similar function in R3, where we replace triangles by tetrahedra?
Such a function, limited to D(B), is illustrated on Figure 8.7b. It is the decision boundary obtained for
A3 defined by (8.12). The dashed line of Figure 9.1 should now be replaced by the plane Φn=3 = {y ∈
R3 : y · e1 = 1

2 × (g1 · e1)}. Similarly to the triangle wave function, fn=3 is oscillating around Φn=3:
all pieces of fn=3 cross Φn=3. Note that the number of pieces is significantly increased compared to a
simple extension of the triangle wave function in R3 (see Figure 9.2). The same pattern is observed for
any space dimension n, where the triangles or tetrahedra become n-simplices.

Consider any convex part of f , say fm = ∨lmk=1hm,k (see (8.20)). There are 2n−1 of such fm. The
polytope

{y ∈ P(B) : y1 ≥ fm(ỹ), y · e1 ≤
1

2
× (g1 · e1)}

is a truncated simplex due to the limitation of f to D(B). For all m, 1 ≤ m ≤ 2n−1, these polytopes are
the truncated version of a n-simplex. This (non-truncated) simplex is illustrated for n = 3 on Figure 9.3.
See again Figure 8.7b to see the truncated simplices for n = 3.

132
CHAPTER 9. A LATTICE-BASED APPROACH TO THE EXPRESSIVITY OF DEEP RELU

NEURAL NETWORKS

Figure 9.3: The Voronoi cell of A3 is a rhombic dodecahedron. A subset of the facets of this polytope
generates some affine pieces of f . The non-truncated tetrahedron is the part of the dodecahedron below
the plane Φn=3.

y1

y2

⌊yG−1⌋

y − ⌊yG−1⌋G

Figure 9.4: Translation block.

Figure 9.5: Partition of P(2B) induced by
one translation block.

This same function can be extended to Rn by periodicity; we have same boundary in P(B) + x as in
P(B), for any lattice point x. Indeed, P(B) is a fundamental region of the lattice and one can perform a
tessellation of Rn with P(B). This translates into extending the boundary function of (8.20) as follows:
f(ỹ) = f(ỹ0) where y = y0 − x ∈ P(B). We consider a set P({g1, αg2, αg3, . . . , αgn}), where α = 2M

and M ≥ 1 is an integer. The new scaled region has 2M(n−1) copies of P(B). This extended function
is defined over the domain D({g1, αg2, αg3, . . . , αgn}), which is the projection of the scaled region on
the hyperplane {ei}ni=2. If we let M grow with n, the exponential increase of the volume yields a total
number of pieces superexponential in n. The next proposition shows that this extended function can be
efficiently computed by a deep and narrow neural network.

Proposition 9.1. Consider a VR or SVR basis B defining any lattice. Let f be the boundary function
defined on D(B) = D({g1, g2, g3, . . . , gn}). Consider also its extended decision boundary function defined
on the compact set D({g1, αg2, αg3, . . . , αgn}), where α = 2M . Let L and w be the depth and the width of
the neural network evaluating f on D(B). Then, the extended boundary function has Ω(2M(n−1)) pieces
and it can be computed by a ReLU neural network of width max(3(n− 1), w) and depth 3M + L.

Proof. First, let us define (without loss of generality) the 2-sawtooth ReLU activation function as
ReLU’(u) = u mod 1, ∀ u ∈ [0, 2]. This function allows to divide any interval into two equal sub-
intervals and then translates the point near the origin. For illustration in R2, as shown in Figures 9.4
and 9.5, (y1, y2) is multiplied by G−1, the 2-sawtooth ReLU’ is applied twice (on each coordinate), the
output is subtracted from the other output to implement the floor operation, and then the result is
multiplied again by the generator matrix G. This amounts to partitioning P(2B) into four equal regions
{P(B),P(B) + g1,P(B) + g2,P(B) + g1 + g2}.

In Rn, the 2-sawtooth ReLU’ is used to partition and translate P(αB), where α = 2M and M ≥ 1 is an
integer. At step `, ` = 1 . . .M , a translation block similar to the one on Figure 9.4 executes the three op-
erations: multiply by G−1/2M−`, apply n times a 2-sawtooth ReLU’, finally multiply by 2M−`G. P(αB)

9.2. APPENDIX 133

0

b2
B

e1

C

facet of V (0)

b1

A

fac
et

of
V (0

)
Φ

Figure 9.6: Illustration of the non-truncated simplex (in pink on the figure).

has αn = 2Mn regions equivalent to P(B). Similarly, if we consider the set P({g1, αg2, αg3, . . . , αgn}),
there are 2M(n−1) regions equivalent to P(B) and the extended decision boundary function defined on
the domain D({g1, αg2, αg3, . . . , αgn}) has Ω(2M(n−1)) pieces.

Hence, the extended boundary function is computed via two neural networks: A first neural network
with 3M layers based onM translation blocks of maximum width 3(n−1) converts y0 ∈ P({g1, αg2, αg3, . . . , αgn})
into y ∈ P(B). Subsequently, the second neural network, evaluating f defined on D(B), takes y as its
input.

The (extended) boundary function f for An on D({g1, αg2, αg3, . . . , αgn}) is used to prove the in-
approximability result for shallow networks. Theorem 9.1 is obtained as corollary of Theorem 9.2 with
M = n2.

Theorem 9.2. Consider an An-lattice basis defined by the Gram matrix (8.12). Let f be the (extended)
decision boundary function, defined on the compact set D({g1, αg2, αg3, . . . , αgn}), where α = 2M and
||gi|| =

√
2, 1 ≤ i ≤ n. For M large enough, any function g that can be computed by a L-deep, w-wide

ReLU neural network where L log2(w) ≤M − n has an error

||f − g||1 = Ω
(

2(n−1)M−n log2(n)
)
, (9.1)

whereas if L = 3M +O(n2) and w = 3(n− 1), f can be computed by the network.

Proof. We begin with the first part of the theorem. If the compact set P({g1, αg2, αg3, . . . , αgn}),
where α = 2M , is large enough, we can make the following approximation: There are roughly as many
Voronoi cell as parallelotopes P(B) in P({g1, αg2, αg3, . . . , αgn}). This implies that the extended decision
boundary f “contains” at least one non-truncated simplex for each P(B). With Proposition 9.1, we get
that there are 2M(n−1) P(B) in P({g1, αg2, αg3, . . . , αgn}).

The proof involves a lower bound on the volume of one non-truncated simplex. We show that the
volume of one non-truncated simplex is Ω (1/nn) for an edge length of

√
2. Let Vn be the volume of the

non-truncated simplex. This simplex is equivalent to a hyperpyramid obtained by intersecting V (0) with
the hyperplane Φ orthogonal to e1 and located at a shift of 1

2g1 · e1. Figure 9.6 illustrates the volume
Vn in pink color in two dimensions (see also Figure 9.3 for the case in three dimensions). The blue color
represents the simplex whose vertices are {0, 1

2g1,
1
2g2, . . . ,

1
2gn}.

The volume of the hyperpyramid is Vn = S×h
n , where S is the n − 1-dimensional volume of this

hyperpyramid facet lying on Φ and h is the hyperpyramid height.
We start by determining h. Let O be the point representing the origin in Rn. Denote by C the

centroid of the simplex whose vertices are {0, g1, g2, . . . , gn}. The line OC cuts Φ at the point A and the
hyperplane {gi}ni=1 at the point B. Then h = OC −OA becomes

h = OC − 1

2
OB =

n

n+ 1
OB − 1

2
OB =

n− 1

2(n+ 1)

√
n+ 1

n
,

because OB =
√

n+1
n is the height of the simplex with edge length

√
2. The area S, i.e. the n − 1-

dimensional volume of the facet lying on Φ, is bounded from below by the area S′ of the blue simplex

134
CHAPTER 9. A LATTICE-BASED APPROACH TO THE EXPRESSIVITY OF DEEP RELU

NEURAL NETWORKS

facet lying on Φ. Figure 9.6 shows them equal in R2, but the facet of the pink simplex will be larger
that its blue counterpart for n ≥ 3. From the formula of a simplex volume, we get

S ≥ S′ =
an−1

(n− 1)!

√
n

2(n−1)/2
, a =

1

2
‖g1‖ =

1√
2
.

Finally, the lower bound of Vn is

Vn ≥
S′ × h
n

=
n(n− 1)

2n × (n+ 1)3/2 × n!

∼ 1√
2π

1

(2n/e)n
.

Hence, the volume of the non-truncated simplex is Ω(1/nn).
Hence, if K is the number of P(B) in P({g1, αg2, αg3, . . . , αgn}), the error between f and g is bounded

from below by ∫

D
|f(ỹ)− g(ỹ)|dỹ = KΩ (1/nn) , (9.2)

where K = 2M(n−1) = 2M(n−1)−n log2(n) · 2n log2(n).
Similarly to the strategy of Telgarsky (see Appendix 9.2.2), we can assume that each additional

piece in g cancels (at most) the volume of O(1) simplices in the bound. Moreover, via Theorem 1
of [RPK+16] we know that no L-deep w-wide ReLU network with input in Rn−1 can compute more than
O(2(n−1)L log2(w)) pieces. Consequently, the approximation error is bounded from below by

a× 2(n−1)(M−log2(n))−log2(n) − b× 2(n−1)L log2(w), (9.3)

where a and b are some constants. As a result, if we choose M ≥ L log2(w) + n, then the approximation
error is Ω

(
2(n−1)M−n log2(n)

)
.

The second part of the result is a direct consequence of Proposition 9.1, where the part of f on D(B)
is evaluated as follows: we implement the O(n2) reflections, that enable to reduce the number of pieces
to compute down to a linear number, via a ReLU neural network of depth O(n2) and width O(n).

Chapter 10

Decoding with Deep Learning

This last chapter reports some simulation results where deep learning is used to decode/detect.

10.1 Learning protocol and training statistics

10.1.1 Brief introduction to deep learning vocabulary

Figure 10.1 displays the usual framework to learn the parameters of a neural network [GBC16]. The
weights of the neural network are updated via usual stochastic gradient descent methods (e.g. Adam
optimizer). The gradient is computed with the backpropagation algorithm1. The optimization function
considered is the mean squared error. The label, associated to a given input of the neural network, refers
to the data considered for the training: I.e. the neural network minimizes the optimization function
when its outputs matche the labels. The batch size refers to the number of samples used to estimate the
gradient at each iteration of the training algorithm. Note that on Figure 10.1, MLD labels are used as
training statistics, not the data sent.

10.1.2 Training statistics for the Gaussian channel

We consider the case of Gaussian noise. Only a limited amount of studies discuss what training statistics
(i.e. the data and labels to train the neural network) should be used for efficient training of a neural-based
decoder. In [GCHtB17], they introduce the notion of normalized validation error to investigate which
SNR, to generate the training data, is most suited for efficient training. Indeed, in [GCHtB17] the labels
are the codewords sent, not the MLD codeword. They empirically observed that a SNR neither too high
nor too low is the most efficient. In most papers, authors mix noisy data obtained at different SNRs to
perform training, in hope that the network is efficient at all those SNRs. To the best of our knowledge,
in all papers on neural networks for decoding, the input message z associated to a noisy received signal
y is used as label for the training.

Let us call C a given constellation/code/lattice that we want to decode with a neural network and
x an element of C. Regardless of the noise, the “ideal” label that should be used for a given y is what
would have been decoded by the optimal decoder, not the transmitted sequence. Take for instance C as
a simple BPSK2. If the noise moves a point (e.g. +1) further than the decoding threshold (e.g. −0.2),
one should not tell the neural network to try to recover the original point (here +1): It should decode
the point associated to the decoding region the received y belongs to (here -1).

Remember that the optimal decoder performs the following operation. Given a y (anywhere) in the
space of C, it finds the x associated to the decoding region where y is located. Moreover, if we want the
network to learn the entire structure of C, the training sample should be composed of points sampled
randomly in its space. Equivalently, one could randomly choose elements of C (with equiprobability) and
add uniformly distributed noise.

Nevertheless, as explained in Section 8.5.2, to get quasi-MLD performance on the Gaussian channel
the network does not need to learn the entire structure of C but rather the most relevant decision
boundaries around the x. Indeed, some regions near the boundaries are so far from x such that the
Gaussian noise almost never sends x in these regions. Therefore, a quasi-MLD network can potentially

1The primary use of deep learning libraries is to provide this backpropagation algorithm.
2Binary phase-shift keying.

135

136 CHAPTER 10. DECODING WITH DEEP LEARNING

Neural Network

Neuron

AWGN

sigmoid

Output layerInput layer Hidden layer

Lattice encoding:

MLD

w1

w2

wn

z ẑ

θ

Σ

x = z ·G
x y ||zMLD − ẑ||2

y1

y2

yn

∂||zMLD−ẑ||2
∂W

Figure 10.1: Framework to learn the parameters of a neural network. W denote the parameters of the
neural network.

make many simplifications compared to a perfect MLD network and thus reduce its complexity. These
simplifications can be learned by training the network with Gaussian noise.

Unfortunately, getting MLD label can be very costly (especially compared to using the input message
z): any sample should be decoded with the optimal decoder and potentially stored. Hence, if we were
to use z as label for the training due to limited resources, what SNR should be used on the Gaussian
channel? In light of the above discussion, we would want both to learn the necessary structure of the
code to get quasi-MLD performance (i.e. the SNR should not be too high) but the “noise” in the label
(i.e. messages that are wrongly labeled with respect to the optimal decoder) should not be too high
either. Empirically, we observed that the SNR corresponding to an error probability of 10−2 is a good
trade-off: only one sample out of 100 is mis-labeled but the SNR is low enough to properly explore C.

10.2 Multilevel MIMO detection with Deep Learning

We address the case of multilevel symbol detection on MIMO channels, as defined in Section 4.4.5, via
deep neural networks. There exist many algorithms to perform MIMO detection, whose performance
ranges from optimal to highly suboptimal. A first category of decoders includes sphere decoding methods
based on lattice points enumeration and radius adaptation. The complexity of sphere decoding is clearly
less prohibitive than an exhaustive search and is polynomial in the dimension for small dimensions.
Detection based on sphere decoding is quasi-optimal and is very competitive in terms of number of
operations for dimensions less than 32. However, the dynamic tree structure of sphere decoding makes
it hardware-unfriendly.

In a second category we find linear receivers: the zero-forcing (ZF) detector and the minimum mean
squared error (MMSE) detector. Finally, a non-exhaustive list of decoders having performance somewhere
between these two categories includes: the decision feedback-equalizer (DFE), the K-best sphere decoder,
message passing methods (e.g. belief propagation, approximate message passing, expected propagation)
and semidefinite relaxation. While some of these algorithms are near-optimal in specific settings, their
performance are largely degraded when these specific conditions are not respected. As a result, the
problem of finding hardware-friendly low-complexity methods exhibiting near-optimal performance in
most settings remains open. Neural network based implementation could offer new solutions.

MIMO detection with neural networks has already been investigated by several research groups.
In [SDW17] [SDW18], the quadratic form of the MIMO channel is used to build the network. In [TXB+18]
[LL18] [ITW18] [HWJL20] sub-optimal message passing iterative MIMO decoders are improved with the
approach introduced in [HRF14] [NBB16]. The main idea of these studies is to unfold the underlying

10.2. MULTILEVEL MIMO DETECTION WITH DEEP LEARNING 137

graph used by an iterative algorithm to get improvement via learning. Simulations show that in most
cases learning enhances the performance of the considered algorithm. Nonetheless, these results are
almost never compared to optimal detection. It is therefore difficult to assess the real efficiency of such
an approach. Additionally, most studies consider binary inputs only. In [SDW18], one-hot encoding is
used to address the case of non-binary inputs. Unfortunately, the number of output neurons increases
significantly with the spectral efficiency making this solution impractical.

10.2.1 The network structure

Architecture

In [SDW17], the architecture of the network is inspired from the projected gradient descent, where the
message at step i+ 1 is estimated as:

ẑi+1 =
∏(

ẑi−η· ∂||y−z.G||
2

∂z |z=ẑi

)
=
∏

(ẑi−2η·yGT+η·ẑiGGT), (10.1)

where
∏

is a projection operator. Our neural network embraces the same paradigm. It takes the form of
an iterative algorithm where an estimate of the output is available after each iteration. It is illustrated
in Figure 10.2. A generic iteration has two layers, as shown in the figure, where the network structure is
derived from the following matrix equations:

ξk = σc
(
W 1

1,kẑk +W 2
1,kyG

T +W 3
1,kẑkGG

T +W 4
1,kvk + bias1,k

)
,

ẑk+1 = σc (W2,kξk + bias2,k) , vk+1 = W3,kzk + bias3,k.

In the expression of ξk, we can clearly recognize the terms used by the gradient descent, weighted by
W i

1 instead of η (the two other terms are a hidden variable and a bias term commonly used in neural
networks). The intuition behind this expression is that the network will learn specific learning rates η
for each iteration and each component. The operation performed between the ξ layer and the next layer
can be interpreted as the projection operator

∏
. The activation function used σc is described in the next

section.
In [SDW17], the matter of how ẑ0 should be initialized for the first iteration of the neural network is

not discussed. We address and take advantage of this question in the section on the twin-network.

The multilevel activation function

The default approach to address a multi-class problem with neural networks is to use the so-called “one-
hot encoding”. Namely, if the network should classify data between more than two categories, say M
categories, it will have M output neurons where legal combinations of values are only the M combinations
with a single neuron equal to 1 and all the others equal to 0. Unfortunately, this approach implies a
large amount of output neurons. In the network of Figure 10.2, if each component of the input message
z can take M levels, using one-hot encoding means having n×M output neurons (the neurons labeled
zk+1 in Figure 10.2) instead of n in the binary case. This implies a greater complexity as well as longer
training.

To address this issue we introduce a novel activation function. We adapt the non-linearity in the
output neurons to take into account non-binary symbols. Let the standard sigmoid function be σ(t) =
1/(1 + e−t). Our customized sigmoid function shall be defined as a sum of standard sigmoids,

σc(t) =

M∑

i=1

σ(t− τi) +A,

where τi are sigmoid shifts and A is an overall translation. As an example, for z ∈ {−2,−1, 0, 1, 2}n
(M = 5), the customized sigmoid is taken to be σc(t) = σ(t+15)+σ(t+5)+σ(t−5)+σ(t−15)+σ(t−25)−2,
as depicted on Figure 10.3.

The twin-network

To further improve our system, we considered the paradigm of random forests [SSBD14]: “divide and
conquer”. With a random forest, many decision trees are trained on a random subset of the training data
with a randomly picked subset of dimensions. One decision tree alone tends to highly overfit. However,

138 CHAPTER 10. DECODING WITH DEEP LEARNING

Fully connected Not fully connected

Iteration k

ξk

vk+1

ẑk+1GGT

ẑk+1

yGT

Iteration k + 1

ẑkGGT

ẑk

yGT

vk

Figure 10.2: Deep neural network architecture, two layers per iteration.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-25 -20 -15 -10 -5 0 5 10 15 20 25

Figure 10.3: σc(t) for 5-level integer symbols.

10.2. MULTILEVEL MIMO DETECTION WITH DEEP LEARNING 139

the random forest, based on the aggregation of the trees and a majority decision rule, has very good and
consistent results. The important idea is to introduce some randomness between the trees. The concept
of a random forest is analogous to extreme pruning successfully utilized by the cryptography community
for sphere decoding [GNR10] (also mentionned in Section 4.4.3). In this latter paper, they consider
decoding trees having low success rate and repeated the operation many times with different bases of
the lattice. They observed that complexity decreases much faster than the performance deterioration.
Therefore, in case of sub-optimality of the neural network, a solution can be to duplicate the network
and introduce randomness instead of increasing the number of parameters in the deep neural network
(DNN). An easy way to introduce randomness is to initialize neural networks, constructed as the one of
Figure 10.2, with distinct ẑ0. An instance of such system is illustrated in Figure 10.4. The first DNN is
initialized with a random ẑ0, while the second DNN receives an initial ẑ0 obtained by ZF.

DNN 2

DNN 1

min
arg

G

G

y

y

x̂1

x̂2ẑ0(ZF)

ẑ0(rand)
‖x̂1 − y‖

ẑ1

ẑ2

ẑy

‖x̂2 − y‖

Figure 10.4: Block representation of the neural system.

10.2.2 Simulation results

We present neural networks performance observed under several settings. For each of these settings, the
results reported are the best complexity-performance trade-off obtained, i.e. we decreased the neural
network size as much as possible while keeping quasi-MLD performance.

For the first set of simulations, depicted in Figure 10.5, the settings are the following. We take
n = 8 and M = 5 levels on each zi. The MIMO channel is a static channel randomly sampled from an
i.i.d. Gaussian matrix. The considered matrix instance has condition number 17 and Hermite constant
−4.7dB (as a real lattice), i.e., this is a bad channel realization and an interesting challenge to our DNN.
Additionally, we used the multilevel activation function. The training is done with the Adam optimizer
and a small batch size (≈ 200). The multilevel MIMO detector used for these simulations has 1.25n
iterations, ξ is of size 7n and v of size n. Hence, the twin-DNN has 2×1.25n×42n2 ≈ 100n3 parameters
(which is about 10 times smaller than 58).

We observe that the twin-network DNN performance is close to the MLD performance and clearly
outperforms the single DNN (we show only the curve for the randomly initialized single DNN because it
matches the one initialized with the ZF point). This means that, under a different initialization, the two
single DNNs are almost never wrong at the same time (except for the cases that cannot be recovered by
the optimal decoder). Hence, this approach can be beneficial to improve a sub-optimal neural network.

The second set of simulations was performed under the same settings as the one described above,
but the batch size is increased to ≈ 3e4 to train the network. Moreover, the size of the ξ layer is
decreased to 4n. In Figure 10.6, we show a significant improvement of performance for the single DNN
case: Within just three iterations (<< 1.25n) and with a decreased network size, we manage to get
quasi-MLD performance. The number of parameters in the network is decreased to 3× 24n2. We don’t
believe that the improvement is caused by a larger amount of data used to train the network: Firstly,
in the small-batch simulations we let the networks learn for a large enough amount of time. Secondly,
the convergence to quasi-MLD performance with a large batch size is very fast. We rather believe that
a non-noisy gradient is better suited for efficient learning in our settings.

We compare the performance of multilevel activation functions and one-hot encoding. Note that
one-hot encoding associated to the soft-max activation function yields soft outputs. Hence, we modify
the network used in Figure 10.6 by replacing each M -level output neuron (i.e. the neurons labeled zk+1

in Figure 10.2) by M neurons to get soft outputs. Moreover, we used 10 iterations. The result obtained is
depicted in Figure 10.7. We observe that we don’t manage to get quasi-optimal performance as in Figure
10.6. Additionally, the training phase of this network took significantly more time than the previous one
and required much more fine tuning of hyper-parameters. To summarize, this network is more complex
and harder to train.

140 CHAPTER 10. DECODING WITH DEEP LEARNING

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 5 6 7 8 9 10 11 12 13 14 15 16

S
y
m

b
o
l
E

rr
o

r
P

ro
b

a
b

ili
ty

SNR (dB)

MLD
ZF

DFE
single DNN - rand. init.

twin DNN - rand. and ZF init.

Figure 10.5: First simulations, with small batch
size training.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 5 6 7 8 9 10 11 12 13 14 15 16
S

y
m

b
o
l
E

rr
o

r
P

ro
b

a
b

ili
ty

SNR (dB)

MLD
single DNN - 1 iteration

single DNN - 2 iterations
single DNN - 3 iterations
single DNN - 4 iterations

Figure 10.6: Second simulations, with large batch
size (≈ 3e4).

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 5 6 7 8 9 10 11 12 13 14 15 16

S
y
m

b
o
l
E

rr
o
r

P
ro

b
a
b

ili
ty

SNR (dB)

MLD
DNN - soft outputs

Figure 10.7: DNN with soft outputs.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 8 9 10 11 12 13 14 15 16 17 18 19 20

S
y
m

b
o
l
E

rr
o
r

P
ro

b
a
b

ili
ty

SNR (dB)

MLD
DNN

Figure 10.8: DNN for the T55 MIMO channel.

10.3. DECODING IN P(B) 141

 1

 100

 10000

 1x10
6

 1x10
8

 1x10
10

 1x10
12

 1x10
14

 1x10
16

 1x10
18

 1 100 10000 1x10
6

 1x10
8

 1x10
10

 1x10
12

 1x10
14

N
b
 p

a
ra

m
e
te

rs

Constellation size

y=x - MLD correlation
i.i.d. Gaussian mat., n=8, 5 symbs, small batch size
i.i.d. Gaussian mat., n=8, 5 symbs, large batch size

T55, n=30, 2 symbs - DetNet [12]
T55, n=16, 5 symbs

Figure 10.9: Complexity analysis of the considered
models.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 5 6 7 8 9 10 11 12 13

S
y
m

b
o
l
E

rr
o

r
P

ro
b

a
b

ili
ty

SNR (dB)

MLD
single DNN - rand. init.
single DNN - DFE init.

twin DNN - rand. and DFE init.

Figure 10.10: The MIMO channel is taken to be
the generator of BW16. The number of parameters
in the neural networks is significantly increased
compared to the (usual) MIMO case.

We also performed a simulation with the T55 MIMO channel used in [SDW17]. The associated
matrix is ill-conditioned, which makes it challenging for linear detectors but not necessarily for the
sphere decoder. We take n = 16, M = 5 levels, and consider the multilevel activation function on output
neurons. We observe in Figure 10.8 that this situation is well handled by our neural network.

The complexity of the different models presented in this section is summarized in Figure 10.9. We
plot the number of parameters (number of edges) of the network as a function of the cardinality of
the constellation (obtained as Mn). We also show in blue the complexity of the neural network used
in [SDW17] for the T55 MIMO matrix. We believe that the number of parameters of this neural network
could be diminished without degrading the performance if a larger batch size is considered for the
training.

In light of these results, we may conclude that deep learning, with the proposed approach, is compet-
itive for a large range of MIMO channels. However, deep learning in some extremal situations is difficult
to set up, namely for specific channels where the function to be approximated is very challenging. For
instance, if the MIMO channel is the generator matrix of a dense lattice (e.g. E8, BW16, Λ24 [CS99]), the
function to learn is more complex (see Chapter 8). Figure 10.10 shows that even a neural network with
a large number of iterations and an increased size for each layer fails to achieve quasi-MLD performance.

10.3 Decoding in P(B)

In this last section, the point y to decode, at the output of a Gaussian channel, is aliased in P(B) before
decoding (see Section 8.2). We use a standard fully-connected feed-forward sigmoid network without any
constraint on its architecture. To be competitive, the number of parameters in the neural network should
grow slower than 2n. We consider the lattice E8 (n = 8) and the MIMO lattice T55 (n = 16) taken
from [SDW17]. We try to reduce the size of the neural network as much as possible while maintaining
quasi-MLD performance. The size of first hidden layer is taken to be of the same order of magnitude as
the lattice kissing number (τ(E8) = 240 and τ(T55) = 30). For E8, the network has three hidden layers
each with 200 neurons. Its performance is quasi-MLD but this model has W = 83200 parameters and

is too complex relative to HLD for E8. The ratio log2(W)
n = 2.0. For T55, quasi-MLD performance is

achieved with a neural network made up of three hidden layers with 30-50-50 neurons respectively and

W = 6280 parameters. The ratio log2(W)
n = 0.78. As in the previous subsection, the decoding complexity

is significantly higher the dense lattice compared to the MIMO lattice.
Now, we introduce a learning model with L1 regularization to simplify the structure of the network.

It means that the optimization function includes a term which grows with the magnitude of the weights
of the neural network. L1 regularization is a well-known technique to get a sparse neural network, with a
lower number of parameters. The idea is to reduce the complexity of the HLD while maintaining quasi-
optimal performance. The model considered shall therefore have a constrained architecture: its first
hidden layer is fixed and taken from the HLD model. The model shall thus decode the first coordinate z1

of the message z. This model is initialized with exactly the same architecture and parameters as the HLD
and we let the training simplify its architecture (except the first layer) while limiting the performance

142 CHAPTER 10. DECODING WITH DEEP LEARNING

degradation. With D4, the model simplifies the Boolean equation of z1 to two terms only: the second
hidden layer (performing the AND operations, see Section 8.4.3) shrank to two neurons while maintaining
quasi-MLD performance.
The study of this approach with other lattices is left for future work.

Part

Conclusions and perspectives

143

144

10.4 Thesis conclusions

We introduced a unified framework for building lattices and codes over groups in the second part of the
thesis. It relies on a simple parity check, which can be applied recursively. Famous lattices such as the
Leech lattice in 24 dimensions, Nebe’s extremal lattice in 72 dimensions, and Barnes-Wall lattices are
obtained in this framework. A new decoding paradigm is established from this unified group codes con-
struction by taking into account the coset parity constraint. The paradigm leads to new bounded-distance
decoders, list decoders, and quasi-optimal decoders on the Gaussian channel in terms of probability of
error per lattice point. Quasi-optimal performance for BW64, N72, and BW128 are shown to be achiev-
able at reasonable complexity. New parity lattices, such as L3·24, are also considered. They offer an
excellent performance-complexity trade-off.

We have already argued why the “combining paradigm on a tree” was likely to be successful (see
Section 3.3.2). We now try to go further and identify fundamental ingredients of our approach. In
particular, what are the key elements allowing to efficiently decode on the Gaussian channel with the
recursive parity-check construction?

• First, we made the simple observation that, unless the coding gain of the lattice is Θ(n), BDD is
not powerful enough in moderate and large dimensions. A decoding radius larger than half the
packing radius should be used.

• When considering list decoding, the explored region can be different from a sphere.

• The parity-check relation between the component codes allows to consider the relative decoding
radius. This should be opposed with standard multistage decoding (see e.g. Figure 4.4) of multilevel
schemes where each level is decoded with the same radius.

• Nevertheless, deeper levels should be decoded with a relatively stronger decoder (i.e. with a larger
relative decoding radius) than upper levels. This may imply using decoders stronger than MLD
decoders for the component codes at the deeper levels (see e.g. Section 7.2.5).

• Even though the decoders should be stronger at the deeper levels, the dimensions of the component
codes at these deeper levels are smaller, which reduces the complexity.

• The splitting strategies allow to control the number of candidates in the list at each recursive step
without sacrificing the performance.

As emphasized several times in the thesis, we believe that many ideas related to this framework should
be further investigated:

• We noticed that the MLD performance of the parity lattices on the Gaussian channel behaves
similarly to the performance of the proposed modified list decoder (see Theorem 6.4). It would
be interesting to better understand this observation. Remember that the two first methods to
prove that a family of lattices achieves the Poltyrev limit (Minkowski-Hlawaka based proof and
Low-density Construction A lattices), presented in Section 4.3.2, are also based on list decoding.
They consist in showing that, on average over the ensemble, there is only one lattice point in
the decoding sphere. With the parity lattices, we approach the Poltyrev limit even though there
are several lattice points in the decoding sphere and it is not an average performance over an
ensemble. As a result, showing the parity lattices achieve/approach the Poltyrev limit requires
new proof techniques.

• Given a large k, Theorem 6.1 shows that less recursive steps t are needed to achieve a given
density. Moreover, on the Gaussian channel, Theorem 6.4 states that the threshold Tt is better
(i.e. it increases more slowly) and thus so better is the decoder. The numerical simulations of
formula (6.16) with k ≈ 10, reported on Figure 6.2, clearly indicate that the scheme is promising:
Impresive decoding performance is shown with t as small as 4. As a result, we recommend a study
of the practical performance of parity lattices with k ≈ 10, similar to the one performed with k = 2
in Section 6.2.1. Nevertheless, without the splitting strategy, the decoding complexity is higher for
large k (see (5.21)). The study should thus involve the second splitting strategy.

• Moreover, the second splitting strategy should also be studied for the decoding of Λ24, N72, and
L3·24 on the Gaussian channel to further reduce the decoding complexity.

10.4. THESIS CONCLUSIONS 145

• In Section 7.2.5, we have depicted the remarkable performance (error probability and complexity) of
the 3-parity-Leech lattice L3·24. We believe that the lattice L3·3·24, in dimension 216, has impressive
performance and admit a reasonable-complexity decoder.

• Of course, it is tempting to continue the study of BW lattices for n = 256. BW256 was not decoded
due to lack of time, not because we failed.

• We presented a BDD for Reed-Muller codes very similar to the BDD of BW lattices. The list
decoders of BW lattices could also be adapted to Reed-Muller codes to yield quasi-MLD decoders.

• The sublattices of BWn with frozen cosets, combined with the successive-cancellation decoder,
(discussed at the end of Section 6.2.1) should be further investigated both on the theoretical side
and pratical side.

• We performed preliminary simulations to compute the second order moment of the Nebe lattice N72.
It seems to be very close to the sphere bound. However, we have not yet computed the interval of
confidence of our numerical estimation.

In summary, we believe that the elegance of the single parity-check construction and its associated de-
coders are promising for the study of group codes in moderate and large dimensions.

In the third part of the thesis, the decoding problem has been investigated from a neural network
pespective. We discussed what can and cannot be done with feed-forward neural networks in light of
the complexity of the decoding problem. We have highlighted that feed-forward neural networks should
compute a CPWL boundary function to decode. When the number of pieces in the boundary function is
too high, the size of the shallow neural networks becomes prohibitive and deeper neural networks should
be considered. For dense structured lattices, this number of pieces is high even in moderate dimensions
whereas it remains reasonable in low and moderate dimensions for unstructured random lattices. Note
that the underlying reasons explaining the failure of shallow neural networks are similar to the ones
justifying the cutoff rate (see Section 3.2): the too high number of Voronoi facets to consider.

Regarding the training aspect, learning via gradient-descent techniques allows to achieve satisfactory
decoding performance when shallow neural networks are considered along with a target function having
a limited number of affine pieces. However, when deeper neural networks are used, even when we know
that their function class contains the target function, the training is much more challenging. As a
result, many researchers now study model-based techniques, where the neural network architectures are
established by unfolding known decoding algorithms.

To conclude, we believe that current learning techniques are not able to learn efficient decoding
paradigm, such as the “combining paradigm on a tree”. As a result, unless an already existing efficient
algorithm is embeeded in the neural network architecture, current neural networks cannot learn to operate
near the Poltyrev/Shannon limit due to the curse of dimensionality. A new result in this direction would
be a real breakthrough.

Bibliography

[ABF+20] M. Albrecht, S. Bai, P-A. Fouque, P. Kirchner, D. Stehlé, and W. Wen. Faster
enumeration-based lattice reduction: Root hermite factor k1/(2k) in time kk/8+o(k).
CRYPTO, 2020.

[ABMM18] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks
with rectified linear units. International Conference on Learning Representations, 2018.

[ABV+94] O. Amrani, Y. Be’ery, A. Vardy, F.-W. Sun, and H. C. A. van Tilborg. The Leech lat-
tice and the Golay code: bounded-distance decoding and multilevel constructions. IEEE
Transactions on Information Theory, 40(4):1030–1043, Jul. 1994.

[AEVZ02] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices. IEEE
Transactions on Information Theory, 48(8):2201–2214, Aug. 2002.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. Preliminary version in STOC,
1996.

[AMT67] E. F. Assmus, H. F. Mattson, and R. J. Turyn. Research to Develop the Algebraic Theory
of Codes. Report AFCRL-67-0365 Air Force Cambridge Research Laboratories, Jun. 1967.

[Ari09] E. Arikan. Channel Polarization: A Method for Constructing Capacity-Achieving Codes
for Symmetric Binary-Input Memoryless Channels. IEEE Transactions on Information
Theory, 55(7):3051–3073, July 2009.

[Ari16] E. Arikan. On the Origin of Polar Coding. IEEE Journal on Selected Areas in Communi-
cations, 34(2):209–223, Feb. 2016.

[AV00] D. Agrawal and A. Vardy. Generalized minimum distance decoding in Euclidean space:
performance analysis. IEEE Transactions on Information Theory, 46(1):60–83, Jan. 2000.

[Ber68] E. Berlekamp. Non-binary BCH decoding. IEEE Transactions on Information Theory,
14(2):242, Mar. 1968.

[BGT93] C. Berrou, A. Glavieu, and P. Thitimajshima. Near Shannon limit error-correcting coding
and decoding: Turbo-codes. 1. IEEE International Conference on Communications, 1993.

[BK98] A. Banihashemi and A. Khandani. On the complexity of decoding lattices using the Korkin-
Zolotarev reduced basis. IEEE Transactions on Information Theory, 44(1):162–171, 1998.

[BLP+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of
learning with errors. STOC, 2013.

[Bou20] J. J. Boutros. Private communication. 2020.

[BRC60] R. Bose and D. Ray-Chaudhuri. On a class of error correcting binary group codes. Infor-
mation and Control, 3(1):68–79, 1960.

[BSC95] A. Bonnecaze, P. Sole, and A. R. Calderbank. Quaternary quadratic residue codes and
unimodular lattices. IEEE Transactions on Information Theory, 41(2):366–377, 1995.

[BSS89] Y. Be’ery, B. Shahar, and J. Snyders. Fast decoding of the Leech lattice. IEEE Journal
on Selected Areas in Communications, 7(6):959–967, Aug. 1989.

146

BIBLIOGRAPHY 147

[BW59] E. S. Barnes and G. E. Wall. Some extreme forms defined in terms of abelian groups.
Journal of the Australian Mathematical Society, 1(1):47–63, Aug. 1959.

[CBCB18a] V. Corlay, J.J. Boutros, P. Ciblat, and L. Brunel. Multilevel MIMO Detection with Deep
Learning. 52th Asilomar Conference on Signals, Systems and Computers, May 2018.

[CBCB18b] V. Corlay, J.J. Boutros, P. Ciblat, and L. Brunel. Neural Lattice Decoders. 6th IEEE
Global Conference on Signal and Information Processing, also available at: arXiv preprint
arXiv:1703.02930, Dec. 2018.

[CF07] D. Costello and G. Forney. Channel coding: The road to channel capacity. Proceedings of
the IEEE, 95(6):1150 – 1177, Jul. 2007.

[CKM+17] H. Cohn, A. Kumar, S. D. Miller, D. Radchenko, and M. Viazovska. The sphere packing
problem in dimension 24. Annals of Mathematics, 185(3):1017–1033, April 2017.

[CN11] Y. Chen and P. Nguyen. BKZ 2.0: Better Lattice Security Estimates. ASIACRYPT 2011,
pages 1–20, 2011.

[Coh96] H. Cohen. A course in computational algebraic number theory. Springer-Verlag, New York,
3rd edition edition, 1996.

[Cox73] H. Coxeter. Regular Polytopes. 3rd edition, 1973.

[CS83] J. H. Conway and N. J. A. Sloane. A fast encoding method for lattice codes and quantizers.
IEEE Transactions on Information Theory, 29(6):820–824, Nov. 1983.

[CS84] J. H. Conway and N. J. A. Sloane. On the Voronoi Regions of Certain Lattice. SIAM
Journal on Algebraic Discrete Methods, 5(3):1984, 1984.

[CS86] J. H. Conway and N. J. A. Sloane. Soft decoding techniques for codes and lattices, including
the Golay code and the Leech lattice. IEEE Transactions on Information Theory, 32(1):41–
50, Jan. 1986.

[CS92] J. H. Conway and N. J. A. Sloane. Low-Dimensional Lattices. VI. Voronoi Reduction of
Three-Dimensional Lattices. Proceedings: Mathematical and Physical Sciences by the Royal
Society, pages 55–68, Jan. 1992.

[CS99] J. Conway and N. Sloane. Sphere packings, lattices and groups. Springer-Verlag, New York,
3rd edition edition, 1999.

[Dan17] A. Daniely. Depth Separation for Neural Networks. 34th Annual Conference on Learning
Theory, pages 690–696, 2017.

[DB04] A. Desideri-Bracco. Treillis de codes quasi-cycliques. European Journal of Combinatorics,
25(18):505–516, May. 2004.

[DBNS08] A. Desideri-Bracco, A-M. Natividad, and P. Solé. On quintic quasi-cyclic codes. Discrete
applied mathematics, 156(18):3362–3375, Nov. 2008.

[DCB00] M. O. Damen, A. Chkeif, and J.-C. Belfiore. Lattice code decoder for space-time codes.
IEEE Communications Letters, 4(6):161 – 163, 2000.

[deB75] R. deBuda. The upper error bound of a new near-optimal code. IEEE Transactions on
Information Theory, 21(4):441–445, 1975.

[Des86] Roger Descombes. Éléments de théorie des nombres. PUF Mathématiques, 1986.

[DGC03] M. O. Damen, H. El Gamal, and G. Caire. On maximum-likelihood detection and the
search for the closest lattice point. IEEE Transactions on Information Theory, 49(10):2389
– 2402, 2003.

[DP19] L. Ducas and C. Pierrot. Polynomial time bounded distance decoding near Minkowski’s
bound in discrete logarithm lattice. Designs, Codes and Cryptogry, 87:1737–1748, Aug.
2019.

148 BIBLIOGRAPHY

[dPBZB12] N. di Pietro, J. J. Boutros, G. Zémor, and L. Brunel. Integer low-density lattices based on
construction A. IEEE Information Theory Workshop, pages 422–426, Sep. 2012.

[DS06] I. Dumer and K. Shabunov. Soft-decision decoding of Reed-Muller codes: recursive lists.
IEEE Transactions on Information Theory, 52(3):1260–1266, Mar. 2006.

[dt19] The FPLLL development team. FPLLL, a lattice reduction library (provided with a Python
interface), 2019.

[dZB18] N. di Pietro, G. Zémor, and J. J. Boutros. LDA Lattices Without Dithering Achieve Capac-
ity on the Gaussian Channel. IEEE Transactions on Information Theory, 64(3):1561–1594,
2018.

[Ebe99] W. Ebeling. Lattices and Codes. Springer Spektrum, Wiesbaden, 3rd edition edition,
1999.

[Eli55] P. Elias. Coding for Noisy Channels. Proceedings of the IRE, 43:356–356, 1955.

[ES16] R. Eldan and O. Shamir. The power of depth for feedforward neural networks. 29th Annual
Conference on Learning Theory, page 907–940, 2016.

[ETV99] T. Etzion, A. Trachtenberg, and A. Vardy. Which codes have cycle-free Tanner graphs?
IEEE Transactions on Information Theory, 45(6):2173–2181, 1999.

[EZ04] U. Erez and R. Zamir. Achieving 1/2 log (1+SNR) on the AWGN channel with lattice
encoding and decoding. IEEE Transactions on Information Theory, 50(10):2293–2314,
2004.

[FL95] M. P. C. Fossorier and S. Lin. Soft-decision decoding of linear block codes based on ordered
statistics. IEEE Transactions on Information Theory, 41(1379-1396):1379–1396, Sep. 1995.

[For88a] G. D. Forney. Coset codes. I. Introduction and geometrical classification. IEEE Transac-
tions on Information Theory, 34(5):1123–1151, 1988.

[For88b] G. D. Forney. Coset codes. II. Binary lattices and related codes. IEEE Transactions on
Information Theory, 34(5):1152–1187, 1988.

[For89a] G. D. Forney. A bounded-distance decoding algorithm for the Leech lattice, with general-
izations. IEEE Transactions on Information Theory, 35(4):906–909, Jul. 1989.

[For89b] G. D. Forney. Multidimensional constellations. II. Voronoi constellations. IEEE Journal
on Selected Areas in Communications, 7(6):941–958, Aug. 1989.

[FP85] U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in a
lattice, including a complexity analysis. ACM SIGSAM Bull., 44:463–471, April 1985.

[FTS00] G. D. Forney, M. D. Trott, and Sae-Young Chung. Sphere-bound-achieving coset codes and
multilevel coset codes. IEEE Transactions on Information Theory, 46(3):820–850, 2000.

[FU98] G. D. Forney and G. Ungerboeck. Modulation and coding for linear Gaussian channels.
IEEE Transactions on Information Theory, 44(6):2384–2415, Oct. 1998.

[FV96] G. D. Forney and A. Vardy. Generalized minimum-distance decoding of Euclidean-space
codes and lattices. IEEE Transactions on Information Theory, 42(6):1992–2026, Nov. 1996.

[FZ99] A. J. Felstrom and K. S. Zigangirov. Time-varying periodic convolutional codes with low-
density parity-check matrix. IEEE Transactions on Information Theory, 45(6):2181–2191,
Sep. 1999.

[Gal62] R. Gallager. Low-Density Parity-Check Codes. IRE Transactions on Information Theory,
8(1):21–28, Jan. 1962.

[Gal68] R. Gallager. Information Theory and Reliable Communication. Wiley, New York, 1968.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 3rd edition
edition, 2016.

BIBLIOGRAPHY 149

[GCHtB17] T. Gruber, S. Cammerer, J. Hoydis, and S. ten Brink. On deep learning-based channel
decoding. Conference on Information Sciences and Systems, March 2017.

[GN08] N. Gama and P. Nguyen. Predicting lattice reduction. EUROCRYPT 2008, pages 31–51,
April 2008.

[GNR10] N. Gama, P. Nguyen, and O. Regev. Lattice enumeration using extreme pruning. EURO-
CRYPT 2010, 2010.

[Gol49] M. Golay. Notes on Digital Coding. Bell System Technical Journal, 27, 1949.

[GP17] E. Grigorescu and C. Peikert. List-Decoding Barnes-Wall Lattices. Computational com-
plexity, 26:365–392, Jun. 2017.

[Gri10] R. L. Griess. Rank 72 high minimum norm lattices. Journal of Number Theory,
130(7):1512–1519, Jul. 2010.

[GS99] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-geometry
codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

[Ham50] R. Hamming. Error detecting and error correcting codes. Bell System Technical Journal,
29(2), 1950.

[Hoc59] A. Hocquenghem. Codes correcteurs d’erreurs. Chiffres (Paris), 2(116):147–156, 1959.

[HRF14] J.R. Hershey, J. Le Roux, and F.Weninger. Deep Unfolding: Model-Based Inspiration of
Novel Deep Architectures. arXiv preprint arXiv:1409.2574, Nov. 2014.

[HS10] G. Hanrot and D. Stehlé. A complete worst-case analysis of Kannan’s shortest lattice
vector algorithm. 2010.

[HV05] B. Hassibi and H. Vikalo. On the sphere-decoding algorithm I. Expected complexity. IEEE
Transactions on Signal Processing, 53(8):2806–2818, 2005.

[HVB13] J. Harshan, E. Viterbo, and J. C. Belfiore. Practical Encoders and Decoders for Euclidean
Codes from Barnes-Wall Lattices. IEEE Transactions on Information Theory, 61(11):4417–
4427, Nov. 2013.

[HWJL20] H. He, C. Weny, S. Jin, and G. Ye Liz. A Model-Driven Deep Learning Network for MIMO
Detection. IEEE Transactions on Signal Processing, 68:1702–1715, Feb. 2020.

[IH77] H. Imai and S. Hirakawa. A new multilevel coding method using error-correcting codes.
IEEE Transactions on Information Theory, 23(3):371–377, 1977.

[ITW18] M. Imanishi, S. Takabe, and T. Wadayama. Deep Learning-aided iterative detector for
massive overloaded MIMO channels. arXiv preprint arXiv:1806.10827, June 2018.

[IZF13] A. Ingber, R. Zamir, and M. Feder. Finite-Dimensional Infinite Constellations. IEEE
Transactions on Information Theory, 59(3):1630–1656, Mar. 2013.

[JO05] J. Jalden and B. Ottersten. On the complexity of sphere decoding in digital communica-
tions. IEEE Transactions on Signal Processing, 53(4):1474–1484, 2005.

[Kan83] R. Kannan. Improved algorithms for integer programming and related lattice problems.
STOC, pages 193–206, April 1983.

[KO14] W. Kositwattanarerk and F. Oggier. Connections between Construction D and related
constructions of lattices. Designs, Codes and Cryptography, 73:441–455, 2014.

[KRU13] S. Kudekar, T. Richardson, and R. Urbanke. Spatially Coupled Ensembles Universally
Achieve Capacity Under Belief Propagation. IEEE Transactions on Information Theory,
59(12):7761 – 7813, Dec. 2013.

[KSH12] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet Classification with Deep Convo-
lutional Neural Networks. Advances in Neural Information Processing Systems 25, pages
1097–1105, 2012.

150 BIBLIOGRAPHY

[Lee67] J. Leech. Notes on sphere packings. Canadian Journal of Mathematics, 19:251–257, 1967.

[Lin11] C. Ling. On the Proximity Factors of Lattice Reduction-Aided Decoding. IEEE Transac-
tions on Signal Processing, 59(6):2795–2808, 2011.

[LL89] G. Lang and F. Longstaff. A Leech lattice modem. IEEE Journal on Selected Areas in
Communications, 7(6):968–973, Aug. 1989.

[LL18] X. Liu and Y. Li. Deep MIMO Detection Based on Belief Propagation. IEEE Information
Theory Workshop (ITW), Nov. 2018.

[LLL82] A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261:515–534, 1982.

[LM82] J. Lepowsky and A. Meurman. An E8 approach to the Leech lattice and the Conway group.
Journal of Algebra, 77(2):484–504, Aug. 1982.

[Loe97] H.-A. Loeliger. Averaging bounds for lattices and linear codes. IEEE Transactions on
Information Theory, 43:1767–1773, Nov. 1997.

[LS01] S. Ling and P. Solé. On the algebraic structure of quasi-cyclic codes .I. Finite fields. IEEE
Transactions on Information Theory, 47(7):2751–2760, Nov. 2001.

[LvdPdW12] T. Laarhoven, J. van de Pol, and B. de Weger. Solving Hard Lattice Problems and the
Security of Lattice-Based Cryptosystems. IACR Cryptol. ePrint Arch., 2012:533, 2012.

[Mar03] J. Martinet. Perfect Lattices in Euclidean Spaces. Springer, 2003.

[Mas69] J. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on Information
Theory, 15(1):122–127, Jan. 1969.

[Mey13] A. Meyer. On the number of lattice points in a small sphere and a recursive lattice decoding
algorithm. Designs, Codes and Cryptography, 66:375–390, Jan. 2013.

[MG02] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Cryptographic Per-
spective. Springer-Verlag, Berlin, 2002.

[MG10] M.Schneider and N. Gama. Darmstadt SVP Challenges, 2010.

[MKO18] T. Matsumine, B. M. Kurkoski, and H. Ochiai. Construction D Lattice Decoding and Its
Application to BCH Code Lattices. 2018 IEEE Global Communications Conference, pages
1–6, Dec. 2018.

[MN96] D. MacKay and R. Neal. Near Shannon limit performance of low density parity check
codes. Electronics Letters, 32(18):1645, Aug. 1996.

[MN08] D. Micciancio and A. Nicolosi. Efficient bounded distance decoders for Barnes-Wall lattices.
IEEE International Symposium on Information Theory, pages 2484–2488, Jul. 2008.

[MO90] J. Mazo and A. Odlyzko. Lattice points in high dimensional spheres. Monatsheft Mathe-
matik, 17:47–61, 1990.

[MPCB14] G. Montùfar, R. Pascanu, K. Cho, and Y. Bengio. On the Number of Linear Regions of
Deep Neural Networks. Advances in neural information processing systems, pages 2924–
2932, 2014.

[MR09] D. Micciancio and O. Regev. Lattice-based Cryptography. Post-Quantum Cryptography,
pages 147–191, 2009.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-
Holland, Amsterdam, The Netherland, 1977.

[Mul54] D. Muller. Application of Boolean algebra to switching circuit design and to error detection.
Transactions of the I.R.E. Professional Group on Electronic Computers, 3:6–12, 1954.

BIBLIOGRAPHY 151

[NBB16] E. Nachmani, Y. Be’ery, and D. Burshtein. Learning to decode linear codes using deep
learning. Annual Allerton Conference on Communication, Control, and Computing, pages
341–346, Sept. 2016.

[Neb10] G. Nebe. A generalisation of Turyn’s construction of self-dual codes. RIMS workshop:
Research into vertex operator algebras, finite groups and combinatorics, pages 51–59, Dec.
2010.

[Neb12] G. Nebe. An even unimodular 72-dimensional lattice of minimum 8. Journal für die reine
und angewandte Mathematik, 2012(673):237–247, Dec 2012.

[NP13] G. Nebe and R. Parker. On extremal even unimodular 72-dimensional lattices. Mathematics
of Computation, 83(287):1489–1494, Jul. 2013.

[OH17] T. O’Shea and J. Hoydis. An introduction to deep learning for the physical layer. IEEE
Trans. on Cognitive Communications and Networking, 3(4):563–575, Dec. 2017.

[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. STOC,
pages 333–342, 2009.

[Plo60] M. Plotkin. Binary codes with specified minimum distance. IEEE Transactions on Infor-
mation Theory, 6(4):445–450, Sep. 1960.

[PMB13] R. Pascanu, G. Montufar, and Y. Bengio. On the number of inference regions of deep feed
forward with piece-wise linear activations. arXiv preprint arXiv:1312.6098, 2013.

[PMR+17] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. Why and When Can Deep
– but Not Shallow – Networks Avoid the Curse of Dimensionality: a Review. Center for
Brains, Minds and Machines (CBMM) Memo No. 58, 2017.

[Poh81] M. Pohst. On the computation of lattice vectors of minimal length. ACM SIGSAM Bull.,
15:37–44, 1981.

[PPV10] Y. Polyanskiy, V. Poor, and S. Verdu. Channel Coding Rate in the Finite Blocklength
Regime. IEEE Transactions on Information Theory, 56(5):2307 – 2359, May 2010.

[PS08] J. Proakis and M. Salehi. Digital Communications. McGraw Hill, 5th edition edition, 2008.

[PV18] P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions
using deep ReLU neural networks. Neural Networks, Elsevier, 108:296–330, Dec. 2018.

[Que84] H.-G. Quebbemann. A construction of integral lattices. Mathematika, 31(1):137–140, Jun.
1984.

[Ree54] I. Reed. A Class of Multiple-Error-Correcting Codes and the Decoding Scheme. 1954.

[Reg05] O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography.
STOC, 2005.

[Reg09] O. Regev. Lecture notes, 2009.

[RPK+16] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the expressive
power of deep neural networks. arXiv preprint arXiv:1606.05336, June 2016.

[RS60] I. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the society
for industrial and applied mathematics, 8(2):300–304, 1960.

[SA06] A. J. Salomon and O. Amrani. Encoding and Decoding Binary Product Lattices. IEEE
Transactions on Information Theory, 52(12):5485–5495, Dec. 2006.

[SB95] G. Schnabl and M. Bossert. Soft-decision decoding of Reed-Muller codes as generalized
multiple concatenated codes. IEEE Transactions on Information Theory, 41(1):304–308,
Jan. 1995.

[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoret-
ical Computer Science, 53(2):201–224, 1987.

152 BIBLIOGRAPHY

[SDW17] N. Samuel, T. Diskin, and A. Wiesel. Deep MIMO detection. arXiv preprint
arXiv:1706.01151, June 2017.

[SDW18] N. Samuel, T. Diskin, and A. Wiesel. Learning to Detect. arXiv preprint arXiv:1805.0763,
May 2018.

[SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and
solving subset sum problems. Math. Program, 66:181–199, 1994.

[SFS08] N. Sommer, M. Feder, and O. Shalvi. Low-Density Lattice Codes. IEEE Transactions on
Information Theory, 54(4):1561–1585, Apr. 2008.

[Sha48] C. Shannon. A Mathematical Theory of Communication. Bell System Technical Journal,
27:379–423, 1948.

[SI17] E. Strey and S. I.Costa. Lattices from Codes over Zq: Generalization of Constructions D,
D’ and D. Des. Codes Cryptography, 85(1):77–95, Oct. 2017.

[SM13] L. Szymanski and B. McCane. Learning in deep architectures with folding transformations.
International Joint Conference on Neural Networks, pages 1–8, 2013.

[SS17] I. Safran and O. Shamir. Depth-Width Tradeoffs in Approximating Natural Functions with
Neural Networks. 34th Annual Conference on Learning Theory, pages 2979–2987, 2017.

[SSBD14] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

[SSP11] A. Sakzad, M. Sadeghi, and D. Panario. Turbo Lattices: Construction and Performance
Analysis. Available: https://arxiv.org/abs/1108.1873, Aug. 2011.

[Sud97] M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. J. Com-
plexity, 13(1):180–193, Apr. 1997.

[Tel16] M. Telgarsky. Benefits of depth in neural networks. 29th Annual Conference on Learning
Theory, page 1517–1539, 2016.

[Tho83] T. Thompson. From error-correcting codes though sphere packings to simple groups. Math-
ematical Association of America, 1983.

[Tit80] J. Tits. Four presentations of Leech’s lattice. Finite simple groups, II, Proceedings of a
London Mathematical Society Researsch Symposium, pages 306–307, 1980.

[TV15] I. Tal and A. Vardy. List Decoding of Polar Codes. IEEE Transactions on Information
Theory, 61(5):2213–2226, Mar. 2015.

[TVZ99] V. Tarokh, A. Vardy, and K. Zegerr. Universal bound on the performance of lattice codes.
2013 IEEE International Symposium on Information Theory, 45(2):670–681, March 1999.

[TXB+18] X. Tan, W. Xu, Y. Be’ery, Z. Zhang, X. You, and C. Zhang. Improving Massive MIMO
Belief Propagation Detector with Deep Neural Network. arXiv preprint arXiv:1804.01002,
Apr. 2018.

[UR08] R. Urbanke and T. Richardson. Modern Coding Theory. Cambridge University Press,
2008.

[Var95] A. Vardy. Even more efficient bounded-distance decoding of the hexacode, the Golay code,
and the Leech lattice. IEEE Transactions on Information Theory, 41(5):1495–1499, Sep.
1995.

[VB93] A. Vardy and Y. Be’ery. Maximum likelihood decoding of the Leech lattice. IEEE Trans-
actions on Information Theory, 39(4):1435–1444, Jul. 1993.

[VB99] E. Viterbo and J. Boutros. A universal lattice code decoder for fading channels. IEEE
Transactions on Information Theory, 45(5):1639–1642, July 1999.

BIBLIOGRAPHY 153

[Via17] M. Viazovska. The sphere packing problem in dimension 8. Annals of mathematics,
185(3):991–1015, 2017.

[Vit67] A. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically Optimum De-
coding Algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 1967.

[WABM16] J. Wonterghem, A. Alloum, J Boutros, and M. Moeneclaey. Performance comparison of
short-length error-correcting codes. Symposium on Communications and Vehicular Tech-
nologies, 2016.

[WFH99] U. Wachsmann, R. Fischer, and J. Huber. Multilevel codes: Theoretical concepts and
practical design rules. IEEE Transactions on Information Theory, 45:1361–1391, July
1999.

[WH95] U. Wachsmann and J. Huber. Power and bandwidth efficient digital communication using
turbo codes in multilevel codes. Euro. Trans. Telecomm., 6:557–567, Sept. 1995.

[Woz57] J. Wozencraft. Sequential Decoding for Reliable Communication. National IRE Convention
Record, 5(2):11–25, 1957.

[YLW13] Y. Yan, C. Ling, and X. Wu. Polar lattices: Where Arıkan meets Forney. 2013 IEEE
International Symposium on Information Theory, Istanbul, Turkey, pages 1292–1296, Jul.
2013.

[Zam14] R. Zamir. Lattice Coding for Signals and Networks: A Structured Coding Approach to
Quantization, Modulation and Multiuser Information Theory. Cambridge University Press,
2014.

Titre: Algorithmes de décodage pour les réseaux de points

Mots clés: Réseaux de points; algorithmes de décodage; codes sur les groupes; réseaux de neurones.

Résumé: Cette thèse aborde deux problèmes
liés aux réseaux de points, un vieux problème et
un nouveau. Tous deux sont des problèmes de
décodage de réseaux de points : À savoir, étant
donné un point dans l’espace, trouver le point du
réseau le plus proche.
Le premier problème est lié au codage de canal
en dimensions intermédiaires. Alors que des
systèmes efficaces basés sur les réseaux de points
existent dans les petites dimensions n ≤ 30 et les
grandes dimensions n ≥ 1000, ce n’est pas le cas
des dimensions intermédiaires. Nous étudions
le décodage de réseaux de points intéressants
dans ces dimensions intermédiaires. Nous intro-
duisons de nouvelles familles de réseaux de points
obtenues en appliquant le contrôle de parité de
manière récursive. Ces familles comprennent des
réseaux de points célèbres, tels que les réseaux
Barnes-Wall, les réseaux Leech et Nebe, ainsi
que de nouveaux réseaux de parité. Nous mon-

trons que tous ces réseaux de points peuvent être
décodés efficacement avec un nouveau décodeur
récursif par liste.
Le deuxième problème concerne les réseaux de
neurones. Depuis 2016, d’innombrables articles
ont tenté d’utiliser l’apprentissage profond pour
résoudre le problème de décodage/détection ren-
contré dans les communications numériques.
Nous proposons d’étudier la complexité du
problème que les réseaux de neurones doivent
résoudre. Nous introduisons une nouvelle
approche du problème de décodage afin de
l’adapter aux opérations effectuées par un réseau
de neurones. Cela permet de mieux comprendre
ce qu’un réseau de neurones peut et ne peut pas
faire dans le cadre de ce problème, et d’obtenir
des indications concernant la meilleure architec-
ture du réseau de neurones. Des simulations in-
formatiques validant notre analyse sont fournies.

Title: Decoding Algorithms for Lattices

Keywords: Lattice; decoding algorithm; group code; neural network.

Abstract: This thesis discusses two problems
related to lattices, an old problem and a new
one. Both of them are lattice decoding prob-
lems: Namely, given a point in the space, find
the closest lattice point.
The first problem is related to channel coding
in moderate dimensions. While efficient lattice
schemes exist in low dimensions n ≤ 30 and high
dimensions n ≥ 1000, this is not the case of in-
termediate dimensions. We investigate the de-
coding of interesting lattices in these intermedi-
ate dimensions. We introduce new families of
lattices obtained by recursively applying parity
checks. These families include famous lattices,
such as Barnes-Wall lattices, the Leech and Nebe
lattices, as well as new parity lattices. We show

that all these lattices can be efficiently decoded
with an original recursive list decoder.
The second problem involves neural networks.
Since 2016 countless papers tried to use deep
learning to solve the decoding/detection problem
encountered in digital communications. We pro-
pose to investigate the complexity of the problem
that neural networks should solve. We introduce
a new approach to the lattice decoding problem
to fit the operations performed by a neural net-
work. This enables to better understand what a
neural network can and cannot do in the scope of
this problem, and get hints regarding the best ar-
chitecture of the neural network. Some computer
simulations validating our analysis are provided.

Institut Polytechnique de Paris
91120 Palaiseau, France

	 Presentation of the thesis and its main topics
	Présentation de la thèse en français
	Contexte de la thèse
	Un vieux problème
	Un nouveau problème

	 Contributions et nouveautés

	Introduction
	Abstract
	Thesis outline
	Main contributions
	Publications

	The channel coding problem
	A general presentation
	Problem statement
	The power-limited and the bandwidth-limited regimes

	From the 50's to the 80's
	The union bound and the minimum distance
	Hard-decision decoding, Viterbi algorithm, sequential decoding, and the cutoff rate

	From the 90's until today
	A brief history of ``modern'' coding theory
	The combining paradigm on a tree
	From LDPC codes and polar codes to the single parity-check k-groups

	Is the channel coding problem really solved?

	An overview of lattices
	What is a lattice?
	A general presentation
	Additional definitions

	Standard lattice decoders and lattice constructions
	BDD, list decoding, optimal and quasi-optimal decoding
	Coset decomposition and construction of lattices from codes

	Lattice packing problems
	Sphere packing
	Lattices with additive Gaussian noise

	Main computational problems
	Description of the problems
	Hardness results
	Enumeration and basis reduction algorithms
	Lattice-based cryptography
	The enumeration algorithm in digital communications

	 A new framework for building and decoding group codes
	The k-ing groups and the single parity-check k-groups
	Preliminaries
	Construction of group codes
	Decoding algorithms
	Existing decoding algorithm for (V,,,k) (and (V,,k)P)
	Decoding paradigm for (V,,k)P and (V,,,k)
	List decoding with and without the splitting strategy

	Parity lattices
	Algorithms and theorems
	Properties of the parity lattices
	Recursive decoding
	Decoding performance on the Gaussian channel

	Parity lattices with k=2 and k=n1loglogn
	Parity lattices with k=2 (BW lattices)
	Parity lattices with k=n1loglogn

	Appendix
	The Merge Sort Algorithm
	Proof of Theorem 6.3
	Proof of Lemma 6.3
	Proof of Lemma 6.6
	Proof of Lemma 6.7
	Proof of Theorem 6.7
	Proof of Theorem 6.8

	Study of some famous group codes
	Turyn's construction of the Leech lattice and the Nebe lattice
	The polarisation of lattices
	The lattice (2S,T2,T,3)
	Construction of the Leech lattice and Nebe lattice

	Decoders for Leech and Nebe lattices
	Existing decoding algorithms for 24 and N72
	New BDDs and list decoders for (2S,T2,T,3)
	Bounding the list size of 24 and N72
	Decoding 24 and N72 on the Gaussian channel
	The 3-parity-Leech lattice in dimension 72

	Construction and decoding of codes
	Reed-Muller codes as single parity-check group
	Codes obtained via the k-ing construction

	Additional numerical results
	Lattice decoding benchmark
	Finite constellation

	Appendix
	The polarisation of Forney in Forney1988
	Proof of Lemma 7.1
	The good polarisation of the Leech lattice
	A proof that R(N72)>2 (N72)
	Proof of Lemma 7.4

	 Lattices and neural networks with and without learning
	Neural network approaches to point lattices decoding
	Preliminaries
	From the CVP in Rn to the CVP in P(B).
	Voronoi-reduced lattice basis
	Voronoi- and quasi-Voronoi-reduced basis
	Some examples

	Finding the closest corner of P(B) for decoding
	The decision boundary
	Decoding via a Boolean equation
	The HLD
	The decision boundary as a piecewise affine function
	Complexity analysis: the number of affine pieces of the decision boundary

	Complexity reduction
	Folding strategy
	Neglecting many affine pieces in the decision boundary
	Learning perspective

	Appendix
	Proofs of Section 8.3.2
	Proof of Theorem 8.4
	First order terms of the decision boundary function before folding for An
	Proof of Theorem 8.6
	Proof of Theorem 8.7
	Proof of Theorem 8.10
	Proof of Theorem 8.8
	Proof of Theorem 8.11

	A lattice-based approach to the expressivity of deep ReLU neural networks
	The advantage of depth over width
	Appendix
	Some results on the expressive power of deep neural networks
	The triangle wave function of Telgarsky2016
	Proof of Theorem 9.1

	Decoding with Deep Learning
	Learning protocol and training statistics
	Brief introduction to deep learning vocabulary
	Training statistics for the Gaussian channel

	Multilevel MIMO detection with Deep Learning
	The network structure
	Simulation results

	Decoding in P(B)

	 Conclusions and perspectives
	Thesis conclusions

