
HAL Id: tel-03202196
https://theses.hal.science/tel-03202196

Submitted on 19 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

machine learning for modeling dynamic stochastic
systems : application to adaptive control on deep-brain

stimulation
Rémi Souriau

To cite this version:
Rémi Souriau. machine learning for modeling dynamic stochastic systems : application to adaptive
control on deep-brain stimulation. Signal and Image Processing. Université Paris-Saclay, 2021. En-
glish. �NNT : 2021UPASG004�. �tel-03202196�

https://theses.hal.science/tel-03202196
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T:
2
0
2
1
U
PA

S
G
0
0
4

Machine Learning for Modeling
Dynamic Stochastic Systems:

Application to Adaptive Control
on Deep-Brain Stimulation

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580, Sciences et Technologies de
l’Information et de la Communication - STIC

Spécialité de doctorat: Traitement du Signal et des Images
Unité de recherche: Université Paris-Saclay, Univ Evry, IBISC, 91020,

Evry-Courcouronnes, France.
Référent: Université d’Evry val d’Essonne

Thèse présentée et soutenue en visioconférence totale le 28 janvier
2021, par

Rémi SOURIAU

Composition du jury:

Florence Forbes Présidente
Directeur de Recherche, INRIA Rhones
Aurelia Fraysse Examinatrice
MCU-HDR, Université Paris-Saclay
Ali Mansour Rapporteur
Professeur, ENSTA Bretagne
Bertrand Rivet Rapporteur
MCU-HDR, Grenoble-INP

Vincent Vigneron Directeur
MCU-HDR, Université Paris-Saclay
Jean Lerbet Codirecteur
Professeur, Université Paris-Saclay
Eric Desailly Invité
Docteur, Fondation Ellen Poidatz
Hsin Chen Invité
Professeur, National Tsing Hua University

To my family

Acknowledgements

This thesis has been realized in the Informatique, BioInformatique, Systèmes Complexes (IBISC) laboratory
from the University of Evry Val-D’Essonne (UEVE). It was funded by the doctoral school Sciences et
technologies de l’information et de la communication (STIC) of the Université Paris-Saclay. This work
was carried out within the IBISC/SIAM team under the direction of Pr. Vincent Vigneron. This thesis
has also being supervised by Pr. Jean Lerbet from the Laboratoire de Mathématiques et Modélisation
d’Évry (LAMME) and Pr. Hsin Chen, director of the Neuro-Engineering Laboratory (NEL) from the
National Tsing Hua University (國立清華大學) (NTHU) in Taiwan.

First, I would like to thank my PhD director: Professor Vincent Vigneron for the trust he has placed
in me, for the regular support to my work especially when I was doubting (sometimes) about my work.
Pr. Vigneron helps me to have more self-confidence. I also would like to thank my co-supervisor: Professor
Jean Lerbet for every advise he gave me. Thank you to Doctor Jonathan Kobold, Professor Dominique
Fourer and every member of the IBISC laboratory who participate from near and far to my project.

Second, I would like to thank Professor 陳新 (Hsin Chen) for his participation to the project and for
welcoming me to his laboratory in Taiwan. This was an extraordinary experience I am very proud of and
happy. Thanks also to 劉子顥 (Zi-Hau Liu) for welcoming me in the NEL and make me discover this
wonderful country. Thanks to the Ministry of Science and Technology (MOST) for the financial support
and the program to discover Taiwan’s culture and many people. A special thanks also to Ramesh Perumal
for his help in this work, for providing me animal experiment data related to the Parkinson’s Disease.

Third, I would like to thank Dr. Eric Desailly and Dr. Omar Antonio Galarraga Castillo from the
foundation Ellen Poidatz for the data on walk prediction application and the regular support.

Finally, I would like to thank the thesis jury who have agreed to participate to the thesis defense: Ali
Mansour, Bertrand Rivet, Aurelia Fraysse and Florence Forbes.

i

List of contributions

First, Chapter 2 presents a review of this overview (summarized in Fig. 2.17). Second, the use of Contin-
uous Restricted Boltzmann Machine to model time-series is studied in Chapter 3. Classifiers are proposed
to learn and detect signals in an unsupervised way. These models were tested and evaluated on intracra-
nial electroencephalography (iEEG) data from Parkisonian rats in Chapter 5. Results on iEEG data are
compared with supervised approaches.

A major part of this thesis is dedicated to the study of diffusion networks which are capable to model
stochastic differential equations. Multiple improvements on the neuron architecture, the graph and the
learning procedures are presented in Chapter 4. Tests on toy data (in Chapter 4) and iEEG signals (in
Chapter 5) have been performed to challenge their learning capacity.

List of publications

• Probit latent variables estimation for a Gaussian Process classifier. Application to the detection of
High-Voltage Spindles. The 14th International Conference LVA/ICA, 2018.

• Boltzmann Machines for signals decomposition. Application to Parkinson’s disease control. The 27th
colloquium of GRETSI, communication paper, 2019.

• High-Voltage Spindles detection from EEG signals using recursive synchrosqueezing transform. The
27th colloquium of GRETSI, communication paper, 2019.

• A smart closed-loop deep-brain stimulation system. 6th Congress of the European Academy of Neu-
rology - 1st Virtual Congress, 2020.

• A review on generative Boltzmann networks applied to dynamic systems. Mechanical Systems and
Signal Processing, 2021.

• Continuous Restricted Boltzmann Machine for Unsupervised Signal Decomposition. Submitted in
Neural Network, 2021.

• Signal modelization with Stochastic Differential Equations: the Diffusion Network. Under writing,
2021(?).

iii

Contents

1 Introduction 9
1.1 Dynamic systems . 9
1.2 Bioinspired Neural Networks . 10
1.3 Organization of the manuscript . 11

2 Literature 13
2.1 Background . 13

2.1.1 Feedforward neural networks: a short presentation 13
2.1.2 Generative Boltzmann Networks . 16
2.1.3 The father of Boltzmann Machine: Hopfield Network 17

2.2 Boltzmann Machines . 18
2.2.1 Description . 18
2.2.2 Restricted Boltzmann Machine . 19
2.2.3 Learning procedures for Boltzmann Machines . 20

2.3 Extensions of Boltzmann Machines . 22
2.3.1 Multi-layers Boltzmann Machine . 22
2.3.2 Convolutional Boltzmann Machine . 24
2.3.3 Boltzmann Machine with real value visible units . 25
2.3.4 Dynamic extensions of Boltzmann Machine . 28

2.4 Diffusion Network basis . 31
2.4.1 Definitions . 31
2.4.2 Stochastic Differential Equation . 33
2.4.3 The Girsanov’s theorem . 34
2.4.4 Application to the SDE . 34
2.4.5 Back to the Diffusion Network . 34

2.5 Discussion . 35

3 DN-RBM for learning signal representation 39
3.1 Convergence of the training procedure . 39
3.2 Sizing the network . 41
3.3 Signal detection using DN-RBM . 43

3.3.1 Single channel example . 43
3.3.2 Multiple channels signal detection . 52

3.4 Discussion: comparison with the Discrete Fourier Transform 52

4 Diffusion Network 55
4.1 Training the Diffusion Network . 55

4.1.1 Module . 55
4.1.2 RC filter and noise power estimation . 56

1

4.1.3 Hidden units . 57
4.1.4 Constraint on the transfer matrix . 58
4.1.5 Learning the activation function . 58

4.2 Evaluation of DNs: applications on toy data . 58
4.2.1 Toy model . 59
4.2.2 Application 1: Missing channels reconstruction . 59
4.2.3 Application 2: Time prediction . 60

4.3 Discussion: limit and path of improvement . 62

5 Application: iEEG data analysis for the control of the deep-brain stimulation 65
5.1 Introduction . 65
5.2 HVS database and its construction . 68
5.3 Ground truth . 69
5.4 Application with machine learning methods . 72

5.4.1 The Autoencoder and the Gaussian Process classifier 72
5.4.2 Sizing models . 75
5.4.3 Discussion . 77

5.5 Evaluation of the Diffusion Network on iEEG data . 79
5.5.1 Application 1: Missing channels reconstruction . 79
5.5.2 Application 2: Prediction of horizon using a vector DN 80

6 Conclusion 85
6.1 Boltzmann machines . 85
6.2 Diffusion Network . 86
6.3 Medical applications . 87

A Gradient Descent methods for neural networks 89
A.1 Batch Gradient descent . 89
A.2 Mini-batch gradient descent . 89
A.3 Gradient descent with momentum . 91
A.4 Gradient descent with adaptive learning rate: example with RMSprop 91
A.5 Programming gradient descent with Pytorch . 92

B DN-RBM for the modelling of time-window: other experiments 93
B.1 Learning a chirp . 93
B.2 Signal-to-Noise Ratio . 93
B.3 The lower and the upper bounds . 94

2

List of Figures

1.1 Neuron structure . 10
1.2 Scheme of contextualization . 11

2.1 Feedforward neural network . 14
2.2 Activation functions . 15
2.3 Back-propagation algorithm . 16
2.4 Generative neural network . 17
2.5 Hopfield Network . 18
2.6 Boltzmann machine’s neuron . 19
2.7 Deep Belief Network and Deep Boltzmann Machine . 23
2.8 Training Boltzmann machine . 24
2.9 Convolutional RBM . 25
2.10 Gaussian-Bernouli RBM and mean and covariance RBM . 26
2.11 Continuous RBM . 28
2.12 Sïgmoid function . 29
2.13 RBM for time-series modeling . 30
2.14 Brownian Motion . 32
2.15 SDE principle . 33
2.16 Diffusion Network’s neuron . 35
2.17 Hierarchy of generative Boltzmann networks . 36

3.1 Convergence of a DN-RBM . 40
3.2 Cardinal sinus . 43
3.3 Convergence of CRBM, toy data (1) . 44
3.4 Convergence of CRBM, toy data (2) . 45
3.5 Convergence of CRBM, toy data (3) . 45
3.6 Convergence of CRBM, toy data (4) . 46
3.7 Convergence of CRBM, toy data (5) . 46
3.8 Convergence of CRBM, toy data (6) . 47
3.9 Convergence of CRBM, toy data (7) . 47
3.10 Convergence of CRBM, toy data (8) . 48
3.11 Detection of signal using DN-RBM . 48
3.12 Classifier energy-based . 50
3.13 Hidden state behavior in DN-RBM . 51
3.14 Detection on multiple channels . 53

4.1 Step answer of the RC filter . 57
4.2 Graphs for the evaluation of DNs and comparison . 59
4.3 Toy model . 60
4.4 Tests on toy data with the DN. 61

3

5.1 GABA circuitry . 66
5.2 Recording sessions . 67
5.3 Result of the threshold per channel . 70
5.4 Autoencoder . 73
5.5 Root mean square error . 75
5.6 Reconstruction of the visible layer . 76
5.7 Multiple tests for the detection of HVS . 78
5.8 Influence of the number of hidden units . 80
5.9 Reconstruction of missing channel . 82
5.10 Reconstruction of missing channels . 82
5.10 Prediction using vector DN . 84

6.1 Relation between the Diffusion network and other models 87

A.1 Stochastic gradient descent fluctuation . 90
A.2 Momentum role . 91
A.3 Gradient descent with Pytorch . 92

B.1 Non-stationary chirp in toy data and RMSE . 94
B.2 Learning chirp with two hidden units. 95
B.3 Learning chirp with five hidden units. 96
B.4 Learning chirp with sixteen hidden units. 97
B.5 DN-RBM: Influence of the SNR . 98

4

List of Tables

2.1 Table of comparison of the different models. 37

4.1 Toy model results: missing channels reconstruction. 62
4.2 Toy model results: prediction of time-window. 62

5.1 List of brain regions where LFPs signals were recorded. 68
5.2 Data organization. 71
5.3 Results detection of HVS . 79
5.4 Missing Channel Reconstruction. 81
5.5 M1D Reconstruction. 81

5

List of notations

• IR: real space

• x(t): continuous time signal at instant t.

• x[k]: k−th discrete time signal sample.

• Ja, bK set of integer between a and b.

• �: Hadamard product.

• x: vector (bold text).

• T : transpose operator.

• E[X] = 〈X〉: expectation of the random variable X.

• vi: i−th component of vector v.

• Wij : coefficient (row i, column j) of the matrix W .

• sgn(·): sign function.

• tanh(·): hyperbolic tangent.

• ∼: "equivalent to".

• N (µ,Σ): Gaussian law with mean vector µ and covariance matrix σ.

• U(D): Uniform law on D.

• | · |: absolute value

• b·c: floor function.

• 〈·, ·〉: scalar product.

• df : differential operator.

• ∂f/∂x: partial derivation.

• A−1: Matrix A inverse.

7

Chapter 1

Introduction

1.1 Dynamic systems

Modelling dynamic systems is a recurring problem in many field of studies. Generally speaking, a system
is characterized by a set of variables. These variables are governed by laws and dependence relationships.
A system is said dynamic if its variables are function of the time. From the movement of planets in space
to the movement of electrons in an atom, through the propagation of a disease or the evolution of funded
markets, dynamic systems are present in almost all real systems and are still widely studied today.

There are many different approaches to handle dynamic systems today. First, mathematical models
based on the observation and experimental validation. This approach allows to write the evolution of
variables over time as a differential equation. These models are very present in mechanics or electronics.

In automatic, the use of sensors allows to receive a constant flow of data, called signals, that must
be processed and analyzed to make decisions. Numerous signal processing tools and techniques have been
studied to interpret temporal signals. Fourier transform is, for example, one of the widely studied processing
tools that converts temporal data representation into a frequency representation. Filtering is also one of the
tools studied in signal processing to select useful information in the signals and remove the rest. There are
also several proposed operators to analyze signals such as the convolution or the inter-correlation function.
Finally, different prediction models have also been proposed in signal processing such as autoregressive
models or the Kalman filter.

In dynamics, variables are linked by causal relationships. An event that takes place in the past has an
influence on the events of the future. For example, a technical inspection not performed on a car increases
the risk of having a car crash. Statistical models such as Bayesian networks or Markov chains model
temporal information through a network where network nodes are variables of the system and links model
causal relationships between variables. Past events have an influence on the future. This influence can
be short-term but also long-term. This means an event can have consequences after a longer or shorter
duration. In the example of the car, the risk of a car crash increases after the absence of a technical
inspection. The more time passes, the greater the risk. To model a long-term causality relationship, it
is necessary to be able to store memory. Memory can be modeled using additional variables that will
synthesize past information.

The past recent years have been marked by the emergence of a large amount of database in many field.
The creation of many database paves the way to new applications. Unfortunately, these data are becoming
more and more complex and hard to interpret. In addition, many of the tools defined above are often
outdated due to the complex properties of the data (non-linearity, large dimension, non-stationary, random
variables, etc.). In order to answer the need for temporal data modeling, artificial neural networks are a
promising solution particularly studied today.

9

(a) Biological neuron. (b) Artificial neuron.

Figure 1.1: Neuron structure. (a) is a simplified scheme of a biological neuron. The dendrite receive the
information from other neurons, the nucleus process the information from input and the state of the nucleus
is transmitted to other neurons thanks to the axon and synapses. (b) is the structure of the artificial neuron.

1.2 Bioinspired Neural Networks

Models of interest in this thesis are machine learning models. Machine learning refers to methods used to
estimate a model from a set of data D. This model is characterized by a configurable function f with a set
of parameters w = (w1, w2, . . . , wp)

T . Learning the model consists in finding the best set of parameters ŵ
allowing the function f to meet the needs of the application. To achieve this objective, a loss function Lw
is defined to ensure that:

ŵ = arg min
w

Lw(D) (1.1)

The main difficulties in (1.1) are the choice of the loss function, the learning algorithm and how to design
the network architecture. There is a large number of learning models today and many families of models
sharing common properties have emerged from the literature.

An Artificial Neural Networks (ANN) is a bioinspired graphical learning model where the processing
units (neurons) are organized and connected each other. A biological neuron scheme is given in Fig. 1.1a.
The dendrites are connected to other neurons and receive the information from those neurons. The nucleus
of the neuron process the information and update or not it state. The state of the neuron is then transmitted
via the axon to other neurons thanks to the synapse connections. Fig. 1.1b gives the general structure
of ANNs. First, inputs are weighted and added with a bias. Then the linear combination passes into a
nonlinear function φ(.) which computes the neuron’s state. This property allows the model to capture
nonlinear features. Alternative structures have been proposed in the literature (see chapter 2).

An ANN is composed of visible neurons (or units) which contains the data. The success of ANNs lies into
the use of hidden (or latent) neurons in addition to visible units. Hidden neurons allow the model to learn a
new representation (called latent representation) of the data able to capture nonlinear and complex features.
The latent variables have become a popular concept in machine learning. They have been highlighted in
models such as Kalman Filter (KF) [44] or the Hidden Markov Model (HMM) [86, 21]. But contrary to
ANN, latent variables in a KF and a HMM have a physical meaning that can be interpreted. There is
no physical interpretation of the latent representation learned by an ANN. This is why they are named
nonlinear nonparametric models.

ANNs can be categorized into multiple model families. Feedforward neural networks consitute a very
popular class of supervised neural networks for classification or regression. These networks are based on
the forward propagation of information from input neurons to output neurons and the back-propagation
of the prediction error to learn the network. Boltzmann machines, also name associative memories are
stochastic neural networks that can be used for unsupervised problem. This thesis is dedicated to the study
of Boltzmann Machine.

Fig. 1.2 provides a scheme to locate the models studied in this thesis.

10

Figure 1.2: Scheme of contextualization.

1.3 Organization of the manuscript

The content of the thesis is organized as follows.
The following chapter is a review on generative neural network. It focuses on time series modeling and

its applications. The aim of the review is to provide an overview of research on the Boltzmann machines,
published in [102]. It provides answers to the following questions. What models inspired the Boltzmann
Machine ? What are the extensions of the Boltzmann machine and what are the performances of these
models ? This chapter introduces also the diffusion network which is closely related to Boltzmann Machine.

The third chapter presents some applications of the continuous restricted Boltzmann machine to model a
time window. The convergence of the learning algorithm is analysed to understand the latent representation
of the Boltzmann machine and a theorem is proposed to dimension the model. It is based on frequency
decomposition theory. Finally, we proposed new unsupervised methods for signal detection using continuous
restricted Boltzmann machines. Both methods are evaluated on toy data.

The fourth chapter is an original contribution to the stochastic dynamic modeling of diffusion net-
works inspired by Movellan [72, 73]. From the analyses of the weaknesses of the Movellan’s model, several
modifications to the model and the learning algorithm have been proposed. The performances on the mul-
tidimensional toy data with the diffusion network have been evaluated for two main tasks: signal prediction
and channel reconstruction.

Chapter 5 presents first results of the application of the Boltzmann machines and diffusion network
for the deep stimulation of Parkinsonian rat with the objective to control their symptoms. The animal
experiment context is an important aspect for the validation of the thesis works. This application is the
second major part of this thesis after the work on the generative neural networks. After the introduction
of the experiments, the studied models have been evaluated again with EEG signals from the rat brain.
These evaluations with data from a real problem aim to strengthen our confidence in the proposed models.

Finally the chapter 6 concludes this thesis and provides some highlights of the future works.

11

Chapter 2

Literature

Models of interest in this thesis are the continuous Restricted Boltzmann Machine and the Diffusion Net-
work. In this chapter, a background on feedforward neural networks will first be given to introduce some
basics about neural networks. Then, family of Boltzmann machines will be presented.

2.1 Background

2.1.1 Feedforward neural networks: a short presentation

FeedForward Neural Network (FFNN) have met a large success these recent years. This family of neural
network is composed of one layer of input units (called the input layer), one output layer and one or more
hidden layers. Neurons from the layer l take as input the state of the previous layer l−1. Then, the output
of the layer l is propagated to the layer l+1. Fig. 2.1 is an example of feedforward neural network with two
hidden layers. G. Cybenko [15] showed in 1989 a feedforward neural network with only one hidden layer
sis capable to approximate any continuous function of compact subsets of IRn. This theorem is known as
universal approximation theorem. Note that the universal approximation theorem provides no information
about the size of the network (the number of hidden units).

Each neuron has the structure given in Fig. 1.1b: inputs of a neuron are weighted with coefficient
learned beforehand and all are summed with a bias (learned too). The result of the linear combination
pass into an activation function (see Fig. 2.2 for three examples). This function plays a key role because it
is responsible of the nonlinear behavior of the network and its learning capacities. Without the activation
function, a FFNN is equivalent to a linear regression model. The first proposed neural network named
perceptron was proposed with the sign activation function φ(X) = sign(X). Then more functions have
been proposed like the sïgmoid function:

φ(X) =
1

1 + exp(−X)
(2.1)

The sïgmoid function is strictly increasing and bounded between 0 and 1 (see Fig. 2.2a). There are many
other functions used in the literature like the hyperbolic tangent (see Fig. 2.2b) or the Rectified Linear
Unit (ReLU) function (see Fig. 2.2c):

φ(X) = max(0, X), (2.2)
and many other extensions available in the literature (SeLU [47], elu or CeLU [2], etc.). The activation
function of output neurons depends on the application. For example in the case of a regression problem
the activation function of the output is the identity function. In the case of n−ary classification problem,
the softmax function is used:

yi =
exp (zi)

dim y∑
j=1

exp(zj)

, i = 1, . . .dim y (2.3)

13

(a) Principle of a FFNN. (b) Classic graph of a FFNN.

Figure 2.1: Feedforward neural network. (a) is a scheme summarizing the principle of the model. FFNN is
a supervised model: the error of prediction ε is used to learn the parameters of the model. (b) is a example
of graph of the FFNN. The model is composed of three units in the input layer, two hidden layers with five
hidden neurons each and one output layer with three units.

where yi is the state of the i−th neurons of the output layer and zi is the result of the linear combination of
neuron i. The softmax function allows to get values of neurons bounded between zero and one and neuron
outputs sum to 1.

Fig. 2.1 represents a FFNN (also named a Multi Layer Perceptron (MLP). This network is one of
the most classic and common neural network. All the neurons from a layer are connected to the next one.
Researchers proposed many graphical networks in the literature to learn various problems. The choice of the
graph depends on many factors like the nature of data (image, time-series, etc.) or the targeted application
(prediction, classification or control). Some structures derived from FFNN like the convolutional neural
network (presented in next sections), the long short-term memory [36] or the generative adversarial network
which has got a large interest the past recent years [26].

Let be the training database D = {X(n), Y (n)}n∈J1,NK of N observations. X(n) is the n−th input
observation vector and Y (n) is its associated output. λ is the set of parameters of the model. The training
procedure of the model f is based on back-propagation. First, the input data is propagated from the input
layer to the output layer. Second, the error of prediction is estimated between the result of the model
Ŷ (n) = f(X(n);λ) and the expected result Y (n). The error of prediction is adapted to the nature of the
output. For example the mean square error can be used with output units defined on IR

errmse =
1

2

N∑
n=1

∥∥∥Ŷ (n) − Y (n)
∥∥∥2

(2.4)

or the cross entropy for a binary output

errce = −
N∑
n=1

(
Y (n) log(Ŷ (n)) + (1− Y (n)) log(1− Ŷ (n))

)
(2.5)

Once the error is computed, the error is back-propagated to compute the gradient of each parameter.
Consider the case where the activation function of the output layer is linear and the error is the mean
square error. The number of hidden layer is denoted L and the size of the `−th hidden layer is equal to d`.

14

(a) Sigmoid. (b) Tangent hyperbolic. (c) ReLU.

Figure 2.2: Activation functions. Upper row: the sigmoid (a), the tangent hyperbolic (b) and the ReLU
(c). Lower row: their derivative.

do is the size of the output layer. The error measure can be decomposed into the sum of the error for each
observation in training set:

err =

N∑
n=1

err(n) (2.6)

Now consider the evaluation of the derivative of err(n) with respect to the coefficient W (`)
ji where ` refers

to the `−th layer of the FFNN. As presented in Fig. 1.1b, a linear combination is computed at the neuron
level:

z
(`)
j =

d∑̀
i=1

W
(`)
ji x

(`)
i (2.7)

and the result is passed into the activation function:

x
(`+1)
j = φ

(
z

(`)
j

)
. (2.8)

In (Eq. 2.7), the bias can be included in the transfer matrix by adding a column index i = 0 and set
x

(`)
0 = 1. The chain rule for partial derivative is applied to compute the derivative of the error for each

parameters:

∂err(n)

∂W
(`)
ji

=
∂err(n)

∂z
(`)
j

×
∂z

(`)
j

∂W
(`)
ji

(2.9)

Let δ(n,`)
j = ∂err(n)

∂z
(`)
j

the "back-propagation error" to neuron j from the `−th layers. Then, (Eq. 2.9) can be

written:
∂err(n)

∂W
(`)
ji

= δ
(n,`)
j × x(`)

i (2.10)

15

(a) Propagation. (b) Back-propagation.

Figure 2.3: Illustration of the back-propagation algorithm. First the input is propagated through the hidden
layers to the output layer. Then, the error of prediction is back-propagated to compute the gradient of each
transfer matrix.

The coefficient δ(`)
j from layer ` can be decomposed using the estimation error from the next layer:

δ
(`)
j = φ

′
(z

(`)
j)

d`+1∑
i=1

δ
(`+1)
i W

(`)
ji (2.11)

where φ′ is the derivative of the activation function. So, to compute the derivative of each parameter, the
back-propagation error from the output layer to the layer of interest has to be computed first. And then, it
is possible to compute the gradient for all parameters. Fig. 2.3 summarizes the back-propagation algorithm.

The main drawback of the back-propagation algorithm is the presence of the term φ
′
(z

(`)
j) in (Eq. 2.11).

The more hidden layers in the neural network the more the back-propagation error is multiplied by a number
of derivatives the of activation function. Back in Fig. 2.2, it is easy to note that the back-propagation error
will decrease for each layer. For example with the sïgmoid function, the error is multiplied by a coefficient
bounded between 0 and 0.25. The error becomes then negligible after some hidden layers and it becomes
very hard to learn the first layers. The choice of the activation function is then very important to reduce
the decrease of the back-propagation error. In practice, ReLU function is widely used in deep learning due
to its derivative (see Fig. 2.2c).

For a given learning task, building a network requires to choose the network topology, i.e. the number
of inputs, the number of layers, the connectivity, the activation function, etc.

2.1.2 Generative Boltzmann Networks

Another family of ANN widely studied in the literature is the family based on Boltzmann machine, some-
times called recurrent neural networks. But the recurrent neural network refers also to an extension of dy-
namic FFNN. In this thesis, the family based on Boltzmann machine will be named the family of Generative
Boltzmann Network (GBN). Contrary to FFNNs, which are discriminative models, GBNs are generative
models. A discriminative model focus on the modeling of the conditional expectancy E[output|input] and a
generative model focus on the modeling on the joint probability Pr(data). GBNs are unsupervised models.
There is no need of “output” data to learn a GBN. These properties are needed in particular in applications
where output data are not available.

In a GBN, the state of each neuron is updated according to the previous state of the network until the
global state of the network becomes stable. This state is called the equilibrium state. A full graph of a
GBN is given in Fig. 2.4a. The coefficient Wij refers to the weight of the link from the neuron i to the

16

(a) Full graph (b) Symmetric graph (c) Restricted graph

Figure 2.4: Graphs with 4 neurons. White neurons are visible neurons and gray neurons are hidden
neurons. Double direction arrow means Wij = Wji, else Wij 6= Wji. In (a) and (b), the link Wij . In (c),
the coefficient Wij refers to the weight of the symmetric link between the i−th visible unit vi and the j−th
hidden unit hj .

neuron j. In a network with n neurons, let note W = (Wij)1≤i,j≤n the transfer matrix between all the
neurons of the network and let note ξ = (ξi)

T
1≤i≤n the bias vector (not represented in Fig. 2.4). There are

two kinds of neurons: visible neurons and hidden neurons. The visible neurons are the observations and
the hidden neurons are the latent information. The hidden neurons are trained to capture and synthesize
the data features. The latent information refers to the data features unknown by the user.

Further sections in this chapter are dedicated to the presentation of the GBN’s family.

2.1.3 The father of Boltzmann Machine: Hopfield Network

In 1982 and 1984, Hopfield presented the first two deterministic and generative neural networks, respectively,
the binary Hopfield Network (bHN) [37] and the continuous Hopfield Network (cHN) [38]. His work on
deterministic networks later inspired many research works on probabilistic networks. Both bHN and cHN
have symmetric connections between neurons (Wij = Wji) and no feedback link (Wii = 0). Fig. 2.4b gives
the graph of a Hopfield Network (HN) and Fig. 2.5 gives the two neuron structures of bHN and cHN. HNs
has been used in different research fields like image processing for noise reduction in [80] or more recently
for super-resolution images [58] or in economics in [81].

The bHN employs binary neurons (sj = +1, or, sj = −1). The weighted inputs and the bias pass into
the activation function called the sign function to provide a binary output:

sj = sgn

(
ξj +

n∑
i=1

Wijsi

)
. (2.12)

The energy function of the bHN is:

EbHN (s) = −
∑

1≤i,j≤n
i 6=j

Wijsisj −
n∑
i=1

ξisi. (2.13)

The main limitation of the binary behavior of these neurons is its capacity of data representation. For
instance with n neurons, a bHN can encode 2n different states. Continuous neurons increase significantly

17

(a) bHN (b) cHN

Figure 2.5: HNs’ neuron structure. φ(.) is the activation function: the sign function in (a) and the sigmoïd
function in 2.5b. In (b) Rj and Cj are, respectively, the resistor and capacitor of neuron j. There is no
reason that Rj and Cj are the same for all neurons. See section 2.4 for more details.

this capacity of representation with only few neurons. In addition, data are barely binary. The benefit of
transitioning from a binary network to a continuous network is then double.

In 1984, Hopfield proposed as a generalization of bHN the cHN to get closer to the biological neuron
behavior. He proposed a new architecture for working with continuous neurons varying continuously over
time. The structure of the neuron j is given in Fig. 2.5b. The activation function is now sigmoïd function.
The state space of the network became a n−dimensional hypercube bounded with the variation range of
the activation function. The weighted input is converted into a current and passes an electronic RC filter.
Xj is the input voltage of φ(.). The variation of Xj(t) (see Fig. 2.5b) is given by the following differential
equation:

Cj
dXj(t)

dt
= −Xj(t)

Rj
+ ξj +

n∑
i=1

Wijφ(Xi(t)). (2.14)

The state of the cHN tends to an equilibrium state characterized by the energy function:

EcHN (s) = −
∑

1≤i,j≤n
i 6=j

Wijsisj −
n∑
i=1

ξisi +

n∑
i=1

1

Ri

si∫
0

φ−1(s′)ds′. (2.15)

The energy function in (Eq. 2.15) introduced by Hopfield is a Lyapunov function. A Lyapunov function
is a scalar, positive definite function. The gradient vector of the function is negative around the solution.
EcHN is the sum of EbHN in (Eq. 2.13) and an integral term due to the continuous behavior of neurons.

The deterministic nature of artificial neurons limits their functioning. First, the evolution of the state
s tends to decrease the energy, until the the equilibrium state corresponding to the lowest possible energy
is reached. As many local minima are present in the energy landscape, the state of the network converges
to a local minima. The second limitation is the risk of overfitting during the training step: a training
procedure tends to decrease as much as possible the energy function over a training database. Not stopping
the training procedure of these models will result a over specialization of these models to fit exclusively
with the training database and not anymore with the validation set.

2.2 Boltzmann Machines

2.2.1 Description

Introduced by Fahlman and Hinton in 1983 [23], the Boltzmann Machine (BM) is the stochastic extension
of the bHN. A stochastic model is a model involving random processes. These are in many cases where
stochastic models are more adapted than deterministic model to fit with real world application where

18

Figure 2.6: Structure of the neuron j of a BM. φ(Xj) = Pr(sj = 1|s)
.

random processes are present. Each neuron can be seen as a Bernoulli random variable. Like in the bHN,
the BM is composed of visible and hidden units. The neuron structure in a BM is depicted in Fig. 2.6
where sj is the state of the neuron j (’0’ or ’1’).

For each neuron, the result of the linear combination of the inputs is thresholded by an activation
function φ(.) such as the sigmoïd function:

φ(Xj) =
1

1 + exp(−Xj)
. (2.16)

As this function is bounded between 0 and 1, the result of φ(Xj) can be interpreted as the probability
Pr(sj = 1|s), i.e. the probability that sj = 1 given the previous state of the network. The ’sample’ step
in Fig. 2.6 consists in sampling an uniform random variable uj ∼ U[0,1] and the state sj depending on the
inequality:

sj =

{
1, if uj < Pr(sj = 1|s),
0 otherwise.

(2.17)

The sampling step in (Eq. 2.17) is at the origin of the stochastic behavior of the network (to be compared
with (Eq. 2.12)). At a given time, even if the expected state of a neuron is fixed to ’0’ or ’1’ by the state
of the network itself, there is always a possibility that the state of the neuron will change. The probability
of overfitting is then reduced.

The BM is an energy based model. The energy of a BM is similar to the energy function of the bHN
(see (Eq. 2.13)): EBM (s) = EcHN (s). The associated joint probability PBM (s) is defined as:

PBM (s) =
1

Z
exp (−EBM (s)) , (2.18)

where Z is a marginalization constant so that PBM is a probability distribution function, i.e.

Z =
∑

s∈J0,1Kn
exp (−EBM (s)) (2.19)

Z is also called the partition function.

2.2.2 Restricted Boltzmann Machine

Fig. 2.4b represents the architecture of a BM, each neurons being updated independently. For a large
network, update neurons sequentially can be time consuming. Smolensky proposed in 1986 the Harmonium
model [98], known, today, as the Restricted Boltzmann Machine (RBM). The graph structure of the RBM
in Fig. 2.4c is a bi-partite BM with two layers: the visible layer v ∈ J0, 1Kn and the hidden layer h ∈ J0, 1Km.
Neurons from the same layer are not connected to each other. For a given state of one layer, neurons from

19

the second layer are each other conditionally independent and can be updated at once. Removing links
between neurons reduces the complexity of the model. To balance this restriction on the network structure,
neurons or layers can be added (see section 2.3.1). We note W ∈ IR(n×m) the transfer matrix between the
two layers and ξv and ξh the bias vectors of, respectively, the visible layer and the hidden layer. The energy
expression of a RBM and of a BM are the same but thanks to the absence of intra-layer links, the energy
function of the BM can be simplified into (Eq. 2.20):

ERBM (v,h) = −vTWh− vT ξv − hT ξh. (2.20)

Like for BM, a joint probability distribution function is defined for the RBM and the marginalized proba-
bility distribution over visible units as:

PRBM (v,h) =
1

Z
exp (−ERBM (v,h)) , (2.21)

where Z is the normalization constant Z =
∑
v

∑
h

exp (−ERBM (v,h)). Hidden units are not accessible in

the training database. Compute the energy function in (Eq. 2.20) requires to sample the hidden units.
The free energy FRBM (v) is an energy function where hidden state are marginalized [64]. The free energy
is defined as:

PRBM (v) =
1

Z

∑
h

exp (−ERBM (v,h)) =
1

Z
exp (−FRBM (v)) , (2.22)

where

FRBM (v) = −vT ξv −
m∑
j=1

log
(

1 + exp(vTW (:, j) + ξhj)
)
, (2.23)

withW (:, j) the j−th column vector ofW . Training a RBM is performed in minimizing the energy function
(Eq. 2.20) or the free energy function (Eq. 2.23). In the first case, hidden neurons are involved into the
learning algorithm. In the second case, hidden neurons are marginalized. Different learning procedures of
BMs has been explored in the literature.

2.2.3 Learning procedures for Boltzmann Machines

A training set D = {vk}1≤k≤N composed of N observations is used to find the best set of parameters
P = {W, ξ}, ξ regrouping visible and hidden bias vectors. Let P 0(v) be the probability distribution over
the training set, P∞(v) be the probability distribution of the data corresponding to the equilibrium state
and P q(v) be the probability distribution after q steps of reconstruction (a reconstruction step corresponds
to a two-way sampling between the visible and the hidden layers: h sampled from v and v sampled from
h). Finally, s = (v,h)T is the set of all units of the model.

Different methods to train BMs have been proposed in the literature. In this section, the minimization
of the Contrastive Divergence (CD) (see [29, 4]) is presented as well as other methods.

Training Boltzmann Machines using the Contrastive Divergence

An intuitive idea to train the BM consists in maximizing the joint log-likelihood:

LML(P|D) =

N∑
k=1

logPRBM (vk). (2.24)

where "ML" refers to Maximum Likelihood.
Working directly on (Eq. 2.24) is difficult due to the presence of the constant Z. The minimization

of the Kullback-Leibler (KL) divergence noted G [49] between P 0(v) and P∞(v) is equivalent to the
maximization of the log-likelihood and bypass the need to calculate Z. P 0(v) is the distribution function

20

of the visible units over the training set and P∞(v) is the distribution function of the visible units after the
model converges to the equilibrium state. The derivation of G with respect to the parameters leads to the
following update rule for each parameter λi [34]:

∂G

∂λi
=

〈
∂EBM (s)

∂λi

〉
0

−
〈
∂EBM (s)

∂λi

〉
∞
, (2.25)

where 〈.〉0 is the expectation over the training set at the initial time and 〈.〉∞ is the expectation value at
the equilibrium state.

More specifically, the update law of the weight Wij between neurons i and j and the update law bias of
neuron i are: {

∆Wij ∝ (< sisj >0 − < sisj >∞)
∆ξi ∝ (< si >0 − < si >∞)

(2.26)

Updating the parameters requires to compute at each iteration the equilibrium distribution which means
a large number of calculus. To reduce the loss function, the minimization of the KL-divergence is replaced
by the Minimization of the Contrastive Divergence (MCD) [29] which consists in minimizing the contrast
D between two KL-divergences:

D = KL(P 0(v), P∞(v))−KL(P q(v), P∞(v)). (2.27)

where: P q(v) is the distribution function of the visible units after q steps of Gibbs sampling.
The only case where D is zero is the case when P 0(v) = P q(v), i.e. when after q steps of reconstruction

the probability distribution does not change, then the RBM is already stable and P 0(v) = P∞(v). Update
rules become:

∂D

∂λi
=

〈
∂EBM (s)

∂λi

〉
0

−
〈
∂EBM (s)

∂λi

〉
q

, (2.28)

with 〈.〉q the expectation after q reconstruction steps. In the case of RBMs with binary values, note that
〈si〉q refers to the probability of si = 1 after q iterations (even, if, in practice, q = 1). Markov Chain Monte
Carlo (MCMC) method is used with the sampling rule (Eqs. 2.16-2.17), to estimate 〈si〉q. The update
equations for the transfer matrix coefficient Wij and the bias ξi at each iteration can be deduced from (Eq.
2.28): {

∆Wij ∼ 〈sisj〉0 − 〈sisj〉1 ,
∆ξi ∼ 〈si〉0 − 〈si〉1 .

(2.29)

To conclude, minimizing the KL-divergence can be replaced by the MCD rule to speed up the training.
Note that if the energy function is used with explicit values of neurons like in (Eq. 2.29), the learning
algorithm requires to sample the hidden units to update the parameters of the model.

Carreira-Perpinan [6], MacKay [62], Williams [114] and Yuille [119] studied properties of the CD and
demonstrated MCD rule converges to the optimal solution with a small bias.

Training based on free energy

To avoid the approximation of the CD by sampling hidden units, different training methods using the free
energy ((Eq. 2.23)) have been proposed to get a better approximation than the log-likelihood in (Eq. 2.24).
The main advantage is the free energy does not require to be minimized with respect to the hidden variables.
Marlin et al. in [64] review various scores based on free energy to train BMs.

Younes [118] and Tieleman [106] proposed to simulate the Markov chain with only one step to estimate
the probability distribution PBM (s) and to update the parameters with a small learning rate to maximize
LML(P|D) given (Eq. 2.24). The Constrastive Divergence [29] can also be used to learn the parameters of

21

a BM by replacing the energy function in (Eq. 2.28) with the free energy function. The Ratio Matching
proposed by Hyvärinen [43] consists in minimizing the Euclidean distance between the conditional proba-
bility of each component of vki = 1 and vki = 0 given vk\i, the visible layer without the i−th component:

LRM (P|D) =
N∑
k=1

n∑
i=1

∑
ε∈J0,1K

P∞(vk)
(
P 0(vki = ε|vk\i)− P∞(vki = ε|vk\i)

)2
. (2.30)

The Generalized Score Matching proposed by Lyu in [61] and improved by Marlin in [64] consists in
maximizing the difference of the inverses of the conditional probabilities of a visible unit vki given vk\i

known over the training set. The function to maximize is given by:

LGSM (P|D) =

N∑
k=1

n∑
i=1

P∞(vk)

(
1

P 0(vki |vk\i))
− 1

P∞(vki |vk\i))

)2

. (2.31)

Marlin [64] concludes in his paper on the inductive principles for RBM that the stochastic maximum
likelihood and the CD are well suited in many situations (applications, computation time, . . .).

Research on training algorithm for RBM remains active today. In Montavon’s paper [71], the Wasserstein
distance [109] is used instead of the KL divergence to train Wasserstein Restricted Boltzmann Machine
(WRBM). Kuleshov proposed to use variational inference techniques to train RBM [48]. Finally, Fisher
introduced in [24] the Boltzmann Encoded Adversarial Machine (BEAM) which consists in adding an
adversarial term in the loss function.

2.3 Extensions of Boltzmann Machines

One of the major strength of the RBM lies in its flexible architecture which makes it suitable for many
different applications. There exists a lot of versions of the RBM, for instance some papers propose to modify
the original BM with a ReLU activation function [74] or to fuzzified the parameters of the model as in the
Fuzzy Restricted Boltzmann Machine (FRBM) [7]. In this section some well-known extensions of the RBM
are presented.

2.3.1 Multi-layers Boltzmann Machine

In practice, RBM are preferred to fully connected BM to model complex systems because of RBM update
rule. However, the absence of inter-layer links in the RBM reduces the capacity of the model to capture
complex features. A simple solution to overcome this limit is to add additional hidden layers to capture
high-order information. Two RBMs with multiple hidden layers have been proposed in the literature: the
Deep Belief Network (DBN) and the Deep Boltzmann Machine (DBM).

Deep Belief Network

In FFNNs, the information is propagated from the input layer to the output layer and the error of pre-
diction output is back-propagated [28] to correct the parameters of the network by minimizing the loss
function. Back-propagation algorithm proposed by Sejnowski and Lecun [54] has however some well-known
limitations: the training requires labeled data, it is hard to learn parameters (see Sec. 2.1.1). The DBN
introduced in 2006 by Hinton [35, 30] has been proposed to pretrain deep neural network. The DBN can
be seen as stacked RBMs (see Fig. 2.7a), each RBMs being trained independently. Let h(i) be the i−th
hidden layer. The first step consists in learning W (1) between the visible and the first hidden layer h(1).
The observations from the training set are sampled into the first hidden layer and will constitute a new
training set for the next RBM. In Fig. 2.7a for instance, once the parameters between (v,h(1)) are trained,
the second RBM (h(1),h(2)) is trained but h(1) is updated by ignoring v and is computed only with respect

22

(a) DBN (b) DBM

Figure 2.7: Graphs of Deep Belief Network and Deep Boltzmann Machines. In both figures, all links
between neurons are represented with one arrow for the visibility. In (a), links between the two last layers
are undirected and structures between other layers are directed graph.

to h(2). A large number of applications used DBN or its extension e.g. for face recognition [41], audio clas-
sification task [56], machine health monitoring systems[121, 45], schizophrenia prediction [84], for detecting
faults in axial coupling systems [112] or for time series forecasting [50].

Deep Boltzmann Machines

Unlike DBN, the DBM [93] is an undirected graph. In the Fig. 2.7b, v and h(2) are updated in function
of h(1). v and h(2) allow to update h(1) according to (Eq. 2.32) the following equation:


Pr(v = 1|h(1)) = φ

(
W (1)h(1) + ξv

)
,

Pr(h(2) = 1|h(1)) = φ
(
W (2)Th(1) + ξh

(2)
)
,

Pr(h(1) = 1|v,h(2)) = φ
(
W (1)Tv +W (2)h(2) + ξh

(1)
)
.

(2.32)

The structure of the DBM in Fig. 2.7b can be seen as a RBM whose visible and second hidden layers are
concatenated into one layer. The visible and the hidden layers h(i) (i being an even number) are updated
at once and all hidden layer h(j) (j an odd number) are updated at once. The feedback information from
deepest layers when updating lower layers allows the DBM to be more robust than the DBN [95]. For a
given visible layer, the mean field inference allows to update hidden layers [94, sect. 4.2].

This method consists in estimating the probability of activation of each hidden neuron given the visible
layer only. In the case of two hidden layers h(1) and h(2), the mean field inference allows us to compute
the probability of h(2) given the visible layer and to update h(1) according to v and Pr(h(2)|v) (see Fig.
2.8a). The DBM training algorithm presented in [27, Chap. 20] for a 3-layer model requires to apply mean
field inference for each iteration due to the change of weight matrices. A greedy layerwise pretraining of
DBM has been proposed by Salakhudinov and Larochelle in [95, 94] to simplify the training of the DBM.
Like DBN, each RBM is trained independently but weight values are doubled to compute layers which are
connected with two layers. Fig. 2.8b illustrates one step of training.

23

(a) Mean field inference. (b) Greedy layerwise pretraining.

Figure 2.8: Methods to train DBM. In (a), each iteration consists in updating h(1) with v and h(2) from
the previous iteration. h(2) is then updated. For the first iteration, h(2) value is 0 but the transfer matrix
W1 is doubled. The number of iterations has to be sufficiently large to stabilize the estimation probability
q(h(2)|v). Note that q(h(2)|v) is not binary but represents the expectation of the state h(2). In (b), each
RBM is trained independently. For the first RBM, h(1) is updated with two times the weight matrix and
the bias. For the other RBM each layer has been updated with two times the weight matrix except in the
last RBM where the last layer is updated normally. Once a RBM is trained, the training set is converted
into the hidden layer with two times the weigth matrix for the next RBM.

2.3.2 Convolutional Boltzmann Machine

Deep RBM architectures ignore the geometric data structure and connect all visible units to each hidden
unit. RBMs can become quickly huge and hard to train efficiently in applications like image processing.
Lee et al. [55] proposed the convolutional Restricted Boltzmann Machine (conv-RBM), using as depicted
in Fig. 2.9, a set of K convolutional filters for sampling K hidden representations of the input image v
("∗" is put for the convolution operator):

Pr(h
(k)
ij = 1|v) = φ

(
ξhk + (W (k)T ∗ v)i,j

)
, (2.33)

Pr(vij = 1|{h(k)}1≤k≤K) = φ

(
ξv +

K∑
k=1

(W (k) ∗ h(k))i,j

)
. (2.34)

In order to stack conv-RBM to form a convolutional DBN, the dimensions of the hidden representation
are reduced using a probabilistic max-pooling operator. The probabilistic max-pooling consists in converting
blocks Bα in the hidden representation h(k) into a single pixel p(k)

α . The pixel p(k)
α is equal to one if one

hidden units in the block Bα is equal to one. A constraint on hidden units in Bα is enforced: at most one
hidden unit can be equal to one in Bα. The structure of a conv-RBM is given in Fig. 2.9 and the energy
function of the max-pooling conv-RBM is:

Econv−RBM (I, h) = −
∑

1≤i,j≤NH

K∑
k=1

(
h

(k)
ij (W (k)T ∗ v)i,j + ξhkh

(k)
ij

)
− ξv

∑
1≤i,j≤NV

vij , (2.35)

subj. to
∑

(i,j)∈Bα

h
(k)
ij ≤ 1, ∀k, α

24

Figure 2.9: Max-pooling convolutional RBM. The figure on the left is the original model designed for image
processing. The figure on the right is a 1-D convolutional RBM adapted for temporal signal processing.

In practice, deep architectures are preferred to capture more complex features. conv-RBMs are stacked
to form a convolutional Deep Belief Network (cDBN). conv-RBM has been introduced for instance to
detect pedestrian [78, 111], but this model has also been used to model time series for environmental sound
classification [92] and in [97] for rolling bearing fault analysis. A sound signal being seen as a 1D image
(see Fig 2.9), the model learns dynamic dependencies between sampled values.

2.3.3 Boltzmann Machine with real value visible units

Neurons in BMs are binary. However, variables of real systems generally have a continuous or discrete
behaviour. This is the case, for example, in image processing [105] where the pixels of an image vary
between 0 and 256 in 8 bits coding. To keep the continuous behavior of the visible units, several extensions
of the BM have been proposed to tolerate continuous visible units.

Gaussian-Bernoulli Restricted Boltzmann Machines

In 2006, Hinton proposed the GBRBM [33] to reduce the dimensionality of the RBM using continuous
visible units. Hidden units keep on the binary behaviour but visible units are random variables following a
conditioned Gaussian distribution (hence the name) with a variance σ2

ii (see Fig. 2.10a), i.e.:

Pr(vi|h) ∼ N
(
W (i, :)h+ ξvi , σ

2
ii

)
. (2.36)

The energy is now defined as:

EGBRBM (v,h) =
n∑
i=1

(vi − ξvi)2

2σ2
ii

−
n∑
i=1

m∑
j=1

vi
σ2
ii

hjWij −
m∑
j=1

hjξ
h
j . (2.37)

An improved training procedure of the GBRBM is proposed in [11]. The GBRBM is now systematically
combined with new extensions of the RBM to handle continuous data. For example, [12] proposed a DBM
with Gaussian visible units for facial reconstruction. The main limitation of the GBRBM is that the model
does not learn the covariance between visible units, and so GBRBM gives unsatisfactory results for modeling
natural images as in [32] where neighboring pixels may be strongly correlated. A recent paper reconsiders
the GBRBM as a mixture of Gaussian model for modeling natural image statistics [65].

25

(a) GBRBM, neuron. (b) mcRBM, graph model.

Figure 2.10: (a) Structure of visible units in a Gaussian-Bernoulli Restricted Boltzmann Machine
(GBRBM). The state is sampled from the Gaussian distribution with mean Xi and variance σ2

ii. (b)
the visible layer v and the mean hidden layer µ form a GBRBM. R is a matrix whose columns filter v.
Each column is associated to a hidden neurons of c. P is a transfer matrix between c and filtered visible
neurons (vTR)2 (P is a diagonal matrix with non-positive entries).

Mean and covariance Restricted Boltzmann Machines

The mean and covariance Restricted Boltzmann Machine (mcRBM) proposed by Hinton and Ranzato [32]
has two groups of hidden units: mean units and covariance units. Mean units capture information about the
mean intensity of each visible neurons and covariance units model dependencies between visible units. The
BM with visible and mean units forms the GBRBM and the BM with the visible and covariance units forms
the covariance Restricted Boltzmann Machine (covRBM). The energy function of a mcRBM is defined as
the sum of the energy of a GBRBM between the visible units v and the mean units µ (see (Eq. 2.37)) and
the energy of a covRBM between visible units v and covariance units c:

EmcRBM (v,µ, c) = EGBRBM (v,µ) + EcovRBM (v, c). (2.38)

The covariance term aims to capture correlations between visible neurons. An intuitive idea is to define a
tensor W where each coefficient Wijk associates two visible neurons, vi and vj and one hidden neurons hk.
In the case of natural images whose dimensions are those of the visible layer, the number of parameters
shall increase in an exponential way with the number of hidden neurons.

To avoid a large number of parameters, the tensor is factorized in two matrices R and P . The product
vTR is a row vector where each component is a projection of v filtered by a column of R. Each coefficients
of the row vector are squared to avoid divergence of parameters during the learning [16]. The second factor
matrix P gives the projection to sample covariance hidden units. The energy of the covariance hidden units
is given by:

EcovRBM (v, c) = −cT ξc −
(
vTR

)
�
(
vTR

)
Pc. (2.39)

with � the Hadamar product and ξc the bias vector of the covariance layer. The structure of a mcRBM
is given in Fig. 2.10b. In practice, the Hybrid Monte Carlo (HMC) sampling algorithm [77, sect.5] is
used to teach the mcRBM to prevent sampling of visible units which requires to inverse a square matrix of
dimension dim(v)2. Like the conv-RBM, mcRBM has been proposed for image processing but it has also
been used to model time series. In [16], Dahl used mcRBM for the speech recognition task. The difference
between the conv-RBM and the mcRBM lies in the modelling approach of those models. On one hand the

26

conv-RBM models local correlations – we have an assumption on the geometry (spatial and/or temporal)
of data –, on the other hand the mcRBM, considers only global correlations.

Laws to update neurons are:

Pr(v|µ, c) ∼ N

(
Σ

(
m∑
j=1

Wijµj

)
,Σ

)
Pr(µj = 1|v) = φ

(
n∑
i=1

Wijvi + ξµj

)
Pr(ck = 1|v) = φ

(
1
2

F∑
f=1

Pfk

(
n∑
i=1

Rifvi

)2

+ ξck

) (2.40)

where the covariance matrix Σ =
(
R diag(Pc)RT

)−1 and F is the number of rows of the matrix P and the
number of columns of R.

Mean Product of Student t-distributions

The Mean Product of Student t-distributions (mPoT) proposed in [69] extends the Product of Student t-
distributions (PoT) [113] in the same way the mcRBM extends the covRBM. Like the mcRBM, the mPoT
has one visible layer and two hidden layers: the binary latent vector µ modelling the means of visible units
and the continuous hidden units c following a Gamma distribution to model the dependencies between the
visible units. The BM between v and µ is a GBRBM and the BM between v and c is a PoT. The energy
of the mPoT is given by the following sum:

EmPoT (v,µ, c) = EGBRBM (v,µ) + EPoT (v, c) (2.41)

And the energy of the PoT model is:

EPoT (v, c) =
dim c∑
i=1

[
ci

(
1 +

1

2
(Ri

Tv)2

)
+ (1− γ) log ci

]
(2.42)

where Ri is a filter vector associated to the value of the i−th hidden unit ci.

Spike and slab Restricted Boltzmann Machines

Courville proposed in 2011 the spike and slab Restricted Boltzmann Machine (ssRBM) [13], an original
approach to model correlations between the visible neurons. The ssRBM is a bipartite graph with visible
neurons v, each one following a Gaussian distribution, and hidden units. Each hidden unit is composed
of a binary variable called spike and a continuous vector called slab. Denote the spike vector h ∈ J0, 1Km,
whose component hi is associated to a slab vector of dimension k s(i) ∈ IRk. The visible layer is sampled by
means of each slab vector for which the associated spike value is equal to one. The associated slab vector
s(i) gives the intensity of the i−th component. The energy function is given by:

EssRBM (v, {hi, s(i)}1≤i≤m) =
1

2
vTΛv −

m∑
i=1

(
vTW (i)s(i)hi +

1

2
s(i)

T
α(i)s(i) + ξhi hi

)
. (2.43)

W (i) is the i−th weight matrix (n × k) between v and s(i). α(i) and Λ are both diagonal matrices which
prevent s(i) and v from having large values. Courville showed that ssRBM provides better results than
mcRBM in image classification tasks [13]. However, according to [27, chap. 20], the risk with the ssRBM
is to obtain a non-positive definite covariance matrix which can be avoided with heuristic rules. Courville
also proposed some extensions to the ssRBM [14] to provide results in classification task. Goodfellow [25]
added an additional term to the ssRBM to make the partition function Z tractable at the loss of loosing
the generative property. In [117], the ssRBM has been mixed with the DBM and the conv-RBM to form a
Contrastive spike and slab Convolutional Deep Boltzmann Machine (CssCDBM) for image classification.

27

Figure 2.11: Structure of the hidden neuron i of a DN-RBM. The expression of the activation function
φi(xi) is given in (Eq. 2.44).

Continuous Restricted Boltzmann Machines

Another approach of continuous neuron has been proposed by Chen and Murray: the continuous Restricted
Boltzmann Machine (DN-RBM) in [8], a RBM using the neuron structure in Fig. 2.11. Chen and Murray
proposed the abbreviation "CRBM" for continuous RBM. Different models based on RBM using the prefix
’c’ are already mentioned previously (conditional, convolutional, covariance [69] and now continuous). The
continuous RBM has been introduced for the first time as a special case of the Diffusion Network (presented
in Sec. 2.4). To avoid any confusion with the previous models, the name DN-RBM is used.

In the DN-RBM, the activation function is unique for each neuron. The expression of the activation
function is given by:

sj = φj(Xj) = θL + (θH − θL)
1

1 + exp(−ajXj)
(2.44)

where θL and θH are respectively the lower and the upper bounds of the function. aj is a slope parameter
of φj(.). The influences of the parameter aj are in the behavior of neurons and in the noise regularization.
An illustration of the role of aj is given in Fig. 2.12.

The energy function of the DN-RBM is very similar to the energy of the cHN [39]:

EDN−RBM (s = {v,h}) = −vTWh− vT ξv − hT ξh +
∑

i

1

ai

∫ si

0
φ−1(s′)ds′, (2.45)

with φ−1(.) the inverse of the activation for a coefficient slope ai = 1. As for BM, we can use the MCD rule
to train parameters of the DN-RBM. (Eq. 2.29) does not change for the DN-RBM and the update law for
the coefficient ai reads :

∆ai ∝
1

a2
i

∫ 〈si〉0
〈si〉1

φ−1(s′)ds′. (2.46)

Like BMs, the DN-RBM is used to model the stochastic equilibrium of the network. The neuron structure
can be used in a large number of RBM extension (previously presented) and the continuous behavior for
the hidden units allows us to capture more information than with binary units. Like for binary RBMs, it
is possible to associate extension of the RBM to the DN-RBM in many applications such as wind speed
forecasting in [40] or evaluation of sound quality in [42] where author train a DBN using the structure of
DN-RBM.

2.3.4 Dynamic extensions of Boltzmann Machine

Modelling causal relationships is essential for time series forecasting. Prediction models are usually dis-
criminative. Different approaches using modified FFNN have been proposed to model temporal data like

28

(a) Behaviour of neuron (b) Regularization of noise

Figure 2.12: Influence of the activation parameters ai. (a) displays the activation between -1 and 1 for
three different values of a. The bigger the parameter ai, the more the neuron will have a binary behavior.
The smaller ai, the more the neuron will have a linear behavior. In (b), the two schemes describe how the
noise influences the state of the neuron. At a given time, Xi(t) is a Gaussian random variable centered
on µi(X(t)) = ξi +

∑
jWijsj with a variance σ2. In the left figure, ai has a low value, the slope of the

function is almost horizontal. The dispersion of the noise is "compressed" and the state of the neuron is
almost deterministic. If ai is high like in the second schema, the slope of the curve is more vertical and the
dispersion of the state increases.

the Elman Networks [83], autoencoders [51], Recurrent Neural Network (RNN) [67] or Long-Short Term
Memory (LSTM) [36].

In BMs, the state of the network is updated from the visible layer of the training set which, in this par-
ticular case, is D = {v[k]}1≤k≤N , until the equilibrium state is reached. All v[k] are treated independently
regardless the previous state. Models previously presented in this paper can be used to handle temporal
data by using a short time-window to the visible units as illustrated in [50] which make use of extensions
of BMs but alternative structures have also been proposed mixing generative and discriminative properties
of the RBM to take into account past observations, e.g. the Discriminative Restricted Boltzmann Ma-
chine (DRBM) and the Hybrid Discriminative Restricted Boltzmann Machine (HDRBM) for classification
tasks [53, 52].

Conditional Restricted Boltzmann Machine

The conditional Restricted Boltzmann Machine (CRBM) [70] is an extension of the vector autoregressive
(VAR) model [60] using RBM structure (see Fig. 2.13a). A linear combination of the past observations are
added to the bias values of the visible and the hidden layers (see (Eq. 2.47)). The energy of a CRBM and
a classical RBM are similar. Let define the following iterative schemes:

ξv[k] = ξv[0] +
p∑
i=1

B(i)v[k − i],

ξh[k] = ξh[0] +
p∑
i=1

C(i)v[k − i].
(2.47)

ξv[0] and ξh[0] are fixed biases of, respectively, the visible and hidden units, B(i) and C(i) are transfer
matrices between the observation v[k− i] and, respectively, the visible and the hidden layers. p is the past
observation order. Unlike VAR model, there is no proposed criterion for choosing p. The CRBM can also be
used in other applications such as modelling the dependencies of a Multiple Input Multiple Output (MIMO)
system as in [115], intra/inter-gender voice conversion [116] or missing label classification [59].

29

(a) CRBM (b) TRBM (c) RNN-RBM (d) GRBM

Figure 2.13: Architectures of RBMs for sequential dynamic systems. One direction arrows materialize the
dependencies. The probability of interest is the conditional probability of the new state given past states.
In (c), the prediction of ĥ[k] is a RNN.

Temporal Restricted Boltzmann Machines

A similar structure of CRBM has been proposed in [103] named Temporal Restricted Boltzmann Machine
(TRBM) which models the current state of the network conditionally on past hidden units. This structure
reminds the HMM. (Eq. 2.48) of the TRBM is slightly modified with respect to (Eq. 2.47) to describe
CRBM

ξh[k] = ξh[0] +

p∑
i=1

Aih[k − i]. (2.48)

Past hidden units are required to update present hidden units. Because hidden units are not available,
training a TRBM using CD algorithm requires to sample hidden units from a sequence of observations. A
large number of applications has been proposed using TRBM and its extensions like in [22] with an Input-
Output TRBM used for 2D facial expression transfer. A widely used extension of TRBM is the Recurrent
Temporal Restricted Boltzmann Machine (RTRBM) [104] (see Fig. 2.13b) where visible and hidden units at
time k (v[k],h[k]) depends conditionally on the previous hidden state h[k−1]. The hidden units in a TRBM
memorize past observations. In the literature, we can find a large number of TRBM-based architectures for
different applications. For instance Nakashika used the RTRBM for voice conversion in [76, 75]. Mittelman
introduced the Structured Recurrent Temporal Restricted Boltzmann Machines (SRTRBM) and the Spike-
and-slab SRTRBM to learn time series signals [68] for different examples (motion capture video or weather
modeling). Introduced by Boulanger-Lewandowski, the Recurrent Neural Network - Restricted Boltzmann
Machine (RNN-RBM) [5] (see Fig. 2.13c) is a combination of a RTRBM and a RNN. The expectation of
hidden units (or mean field) ĥ[k] is propagated through the RNN structure:

ĥ[k] = φ
(
W (1)ĥ[k − 1] +W (2)v̂[k] + ξĥ

)
, (2.49)

and the biases in the RTRBM are defined as:{
ξv[k] = ξv[0] +Aĥ[k],

ξh[k] = ξh[0] +Bĥ[k].
(2.50)

The RNN-RBM is a popular extension of the TRBM. It provides better results than RTRBM for human
motion modelling or polyphonic music modelling [5]. A similar approach replacing the RNN by a LSTM
has been proposed in [110] to model long term dependencies in music generation.

30

Gated Restricted Boltzmann Machine

Initially proposed for video compression and denoising using the temporal structure by Memisevic [66], the
Gated Restricted Boltzmann Machine (GRBM) is a discriminative extension of the RBM (see Fig. 2.13d for
a graphical representation). It is composed of two visible layers and one hidden layer: the input layer x, the
output layer y and the hidden layer h. The three layers are connected with a 3D tensor W of dimensions
nx × ny × nh. The energy function is given by:

EGRBM (y,h;x) = −
nx∑
i=1

ny∑
j=1

nh∑
k=1

Wijkxiyjhk −
nh∑
k=1

ξhkhk −
ny∑
j=1

ξyj yj . (2.51)

Here, the function to maximize during the training stage is the conditional probability Pr(y|x):

Pr(y|x) =
∑
h

Pr(y,h|x) =
∑
h

1

Z(x)
exp(−EGRBM (y,h;x)), (2.52)

with Z(x) the marginal function. Inference test allows to estimate h and y as functions of x. The tensorW
in (Eq. 2.51) captures the correlations between the input and the output layers. Setting y = x allows the
GRBM to capture dependencies between the input components of x [87] as for an autoencoder. For large
inputs, the number of parameters may quickly become too large to use this model for real time applications.
Models using factors like mcRBM (see Fig. 2.10b) are preferred to GRBM to model the correlations between
the visible neurons. Thereby the GRBM can be used to estimate observation x̂[k + 1] as function of past
x̂[k] [51]. Fig. 2.13d gives the graph representation of the GRBM.

These RBM-based approaches for modelling dynamic systems are used with sequential data. The next
section introduces the Diffusion Network for the modelling of dynamic continuous systems.

2.4 Diffusion Network basis

The Diffusion Network (DN) has been introduced by Movellan in [72, 73]. The DN is an artificial neural
network based on a Stochastic Differential Equation (SDE) (see [79]) to model time dependencies between
neurons of the network. A SDE is a complex mathematical tool much used in mechanics, or financial
engineering. The use of DN requires the understanding of mathematical terms not normally used in neural
network. A preliminary introduction to mathematics notions is previously needed.

2.4.1 Definitions

Definition 2.4.1 (Stochastic process). A continuous/discrete time stochastic process is of Random Value
(RV) (X(t))t≥0 (t ∈ IR) / (X[n])n≥0 (n ∈ IN) defined on the same probability space. A continuous process
(X(t))t≥0 is said to be Gaussian if ∀n ∈ IN, 0 ≤ t0 < t1 < · · · < tn : (X(t0), . . . , X(tn)) is a Gaussian
vector. A white noise is an example of stochastic process.

Definition 2.4.2 (Filtration). The studied phenomena depends on (continuous) time. What is known at
time t is gathered in the stack σ-field F(t). F(t) can be interpreted as the "information gathered at time
t". A filtration is an increasing sequence of sub σ-fields of F , i.e. F(s) ⊂ F(t), if s ≤ t (see Fig. 2.14).

Definition 2.4.3 (Brownian Motion). The Brownian motion or Wiener process (B(t))t≥0 is a continuous
stochastic process for which B(0) = 0 and ∀0 ≤ s ≤ t, B(t)− B(s) ∼ N (0, t− s). Fig. 2.14 is an example
of 1−D Brownian motion. For s ≤ t, E [B(t)|F(s)] = B(s) and Var [B(t)|F(s)] = t− s.

31

Figure 2.14: A Brownian motion of dimension 1. If the signal B(u) is known until time s, the value of B(t)
with t ≥ s is a Gaussian noise centered in B(s) and with the variance Var [(B(t)|F(s))] proportional to the
distance t− s.

Definition 2.4.4 (Wiener integral). Let ξ be the set of piece-wise constant functions:

ξ =

{
f : IR+ → IR, f(s) :=

n−1∑
i=0

ai1[ti,ti+1[(s), n ∈ IN

}
(2.53)

For f ∈ ξ, the Wiener integral is:

I(f) =

+∞∫
0

f(s)dB(s) =
n−1∑
i=0

ai (B(ti+1)−B(ti)) (2.54)

Definition 2.4.5 (Itô stochastic integral). The Itô stochastic integral extends the Wiener integral for
stochastic integrands. Let (Ω,F , IF, IP) be a filtered probability space with a Brownian motion B on it (i.e.
B is an IF−Brownian motion).

ψ =


(θ(t))t∈IR+ adapted, θt is F(t)−measurable s.t.

∃n ∈ IN, θ(t) =
n−1∑
i=0

θi1]ti,ti+1](t) and s.t. ∀i ∈ J0, n− 1K, θi ∈ L2(IP)


For θ ∈ ψ, it is natural to define

+∞∫
0

θsdBs as:

I(θ) =

+∞∫
0

θsdBs =

n−1∑
i=0

θi(Bti+1 −Bti)

Remark. Adaptness of (θ(t))t≥0 implies that θi is F(t)−measurable. Note that ξ ⊂ ψ. For θ ∈ ψ, it is

natural to define
t∫

0

θ(s)dB(s) as:

t∫
0

θ(s)dB(s) =

n−1∑
i=0

θi(B(ti+1)−B(ti)). (2.55)

32

Figure 2.15: SDE principle. The differential dX(t) is the sum of a deterministic part called the drift term
µ(X(t), t) and a stochastic part the called diffusion term σ(X(t), t).

2.4.2 Stochastic Differential Equation

An Ordinary Differential Equation (ODE) describes the temporal evolution of a signal. However, an ODE
is not adapted to model the dynamic of a stochastic process. To model the uncertainty part of a stochastic
process with a differential equation, an additional noisy term has to be added. An ODE with an additional
noisy term is called SDE. Let X(t) ∈ IRd a stochastic process. A SDE is written in the following form:

X(t) = X(0) +

t∫
0

µ(X(s), s)ds+

t∫
0

σ(X(s), s)dB(s) (2.56)

where (B(s))s≥0 is a standard Brownian motion. (Eq. 2.56) can be also written in short differential form
as:

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dB(t) (2.57)

where

• µ : IR+ × IRd → IRd is the the drift term.

• σ : IR+ × IRd → IRd × IRd is the diffusion term.

• B an IRd−Brownian motion.

The drift term is the deterministic part of the equation and the diffusion term is the stochastic part of
the equation. Fig. 2.15 is a scheme illustrating the SDE model.

Theorem 2.4.1 (Existence and Uniqueness). Let µ and σ be continuous functions in space s.t. ∃K > 0
satisfying:

• ∀t ∈ [0, T],∀x, y ∈ IRn, |µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y| (Lipschitz property in space,
uniformly in time).

• |µ(t, x)|2 + |σ(t, x)|2 ≤ K(1 + |x|2).

• X(0) can be random, independent of B and in L2(IP).

Then, (Eq. 2.56) admits an unique solution which satisfies: E
[
supt∈[0,T] |X(t)|2

]
< +∞.

33

2.4.3 The Girsanov’s theorem

Theorem 2.4.2 (Change of probability). Let IP and IQ two probability spaces. And, let (B(t))t≥0 be a
d−dimensional Brownian motion on (Ω,F(t), IP) and (F(t))t≥0 its canonical filtration (F(t) = σ(B(s), s ≤
t)), (θ(s))s≥0 is a d−dimensional and adapted process and L(t) well defined:

dIQ

dIP

∣∣∣∣
F(t)

= L(t) = exp

 t∫
0

θ(s)dB(s)− 1

2

t∫
0

|θ(s)|2ds

 (2.58)

Then,

D(t) = B(t)−
t∫

0

θ(s)ds (2.59)

is a standard IQ−Brownian motion.

2.4.4 Application to the SDE

Let X = (X(t))t≥0 a d−dimensional process (also named "path") for which (Eq. 2.57) can be written.
The drift and the diffusion are two parametric functions and λ is the set of parameters. Let be IQλ and R,
respectively, the probability measure of the model for a given set of parameter and the probability measure
of a reference path. The reference is induced by a DN with no drift (only the diffusion term σ (X(t), t)).
In (Eq. 2.57), the Brownian motion (B(t))t≥0 is a IQλ−Brownian motion. Let denote:

B̃(t) = B(t) +

t∫
0

µ (X(s), s)

σ (X(s), s)
ds (2.60)

the R−Brownian motion. Indeed, from (Eq. 2.60) and (Eq. 2.57):

dX(t) = σ (X(t), t) dB̃(t) (2.61)

In (Eq. 2.60), θs can be identified from (Eq. 2.59) and, according to the Girsanov’s theorem:

dIQλ

dR

∣∣∣∣
F(t)

= exp

 t∫
0

µ (X(s), s)

σ (X(s), s)
dB̃(s)− 1

2

t∫
0

∣∣∣∣µ (X(s), s)

σ (X(s), s)
)

∣∣∣∣2 ds

 (2.62)

(Eq. 2.61) is injected in the previous equation:

dIQλ

dR

∣∣∣∣
F(t)

= Lλ(X) = exp

 t∫
0

µ (X(s), s)

σ (X(s), s)2 dX(s)− 1

2

t∫
0

∣∣∣∣µ (X(s), s)

σ (X(s), s)

∣∣∣∣2 ds

 (2.63)

Lλ(X) can be interpreted as the likelihood of the path X generated with the SDE in (Eq. 2.57)
compared to the likelihood of the reference model (without drift). For a fixed X used as a training set,
Lλ(X) is the likelihood function of the set of parameters λ.

2.4.5 Back to the Diffusion Network

The DN is a fully connected neural network with non-symmetrical links as represented in Fig. 2.4a. This
model extends the cHN by adding a noise generator inside the neuron structure (see Fig. 2.16). The signal

34

Figure 2.16: Electronic structure of the neuron j in a DN.

of interest is the input of the activation function X(t) = (Xj(t))1≤j≤d ∈ IRd where d is the size of the
network.

X(t) is a stochastic process which can be written under the following SDE system:

dXj(t) = µj (X(t), t) dt+ σjdBj(t), ∀j = 1, 2, . . . , d (2.64)

(Eq. 2.65) gives the expression of the drift for the j−th neuron.

µj(X(t), t) = κj

(
−ρjXj(t) + ξj +

d∑
i=1

WijSi(t)

)
(2.65)

In (Eq. 2.65), ρj and κj are, respectively, the inverse resistor and the inverse capacitance of the neuron i
(Fig. 2.16). W is the transfer matrix between neurons (see Fig. 2.4a). Si(t) = φi(Xi(t)) is the output of
neuron i and φi is the i−th activation function of the neuron. The activation function of a DN is a sigmoïd
function:

Sj = φj(Xj) = θL + (θH − θL)
1

1 + exp(−ajXj)
(2.66)

The state of a neuron Sj is bounded between θL and θH which are respectively the lower and the upper
bounds of the sigmoïd function. aj is a slope parameter of φj(.). The parameter aj regularizes the behavior
and the noise of the neuron j. An illustration of the role of aj is given in Fig. 2.12.

The sampling rule of a sequence with a sampling period ∆t = tk+1 − tk is given by:

Xj(tk+1) = Xj(tk) + µj(X(tk), tk)∆t+ σjZj(tk)
√

∆t (2.67)

where Zj(t) is a standard Gaussian noise.
Training a DN consists in finding the SDE which gives the best description of the data. Movellan in [73]

proposed a training procedure based on Monte Carlo Expectation Maximization (MCEM) algorithm using
(Eq. 2.63) as the loss function. A new training procedure of the DN will be proposed in the chapter 4.

2.5 Discussion

Table 2.1 lists the different models mentioned in this review and offers a comparison between them. To
quantify the impact of those models a mark for each model related to the number of documents (all type)
found on SCOPUS has been proposed. Marks are based on the number of documents we got when we
enter the name of the model (all field). Some specific rules have been added to avoid bias for the DN

35

Figure 2.17: Hierarchy of generative Boltzmann network. Each cell represents a model and directed links
give the kinship relating one model to an extension. The tree starts from the yellow cell with the bHN
proposed in 1982. Orange cells are models that have impacted significantly the research onto this family.
The RBM is the original model. The GBRBM is used in almost all applicative papers because of the
continuous behavior of the visible units. The DBN and the DBM are two deep versions of the RBM. The
other orange cell models presented in the paper have impacted the research on RBM’s extensions.

and the DN-RBM. The exact number of documents is not a relevant indicator due to the introduced bias.
Another bias lies in the fact that each author does not call a model with the same name (for example, the
Gaussian-Bernoulli RBM has also been called the Gaussian RBM or the Continuous RBM). Also some
different models can have the same name or acronym (example: CRBM with ‘c’ for continuous, covariance,
conditional or convolutional). Finally, the diffusion network is a very popular expression used in many
different fields. The mark in Table 2.1 is put for each model before and after 2010 to provide an idea of a
global evolution. Fig. 2.17 summarizes the hierarchy of models presented in the section.

36

M
od

el
N
am

e
D
at
e

V
is
ib
le

u
n
it
s

H
id
d
en

u
n
it
s

(G
)
/
(D

)
M
ar
k

M
ar
k

S
ou

rc
es

b
eh

av
io
r

b
eh

av
io
r

<
20
10

≥
20
10

H
id
de

n
M
ar
ko
v
M
od

el
19

66
D
is
cr
et
e

D
is
cr
et
e

D
[8
6]

bi
na

ry
H
op

fie
ld

N
et
w
or
k

19
82

B
in
ar
y

B
in
ar
y

G
?
?
?

?
?

[3
7]

co
nt
in
uo

us
H
op

fie
ld

N
et
w
or
k

19
84

C
on

ti
nu

ou
s

C
on

ti
nu

ou
s

G
?
?
?
?

?
?
?
?

[3
8]

B
ol
tz
m
an

n
M
ac
hi
ne

19
83

B
in
ar
y

B
in
ar
y

G
?
?
?
?
?

?
?
?
?
?

[1
]

R
es
tr
ic
te
d
B
ol
tz
m
an

n
M
ac
hi
ne

19
86

B
in
ar
y

B
in
ar
y

G
?
?

?
?
?
?
?

[3
1]

D
ee
p
B
el
ie
f
N
et
w
or
k

20
06

B
in
ar
y

B
in
ar
y

G
?
?

?
?
?
?
?

[3
5]

D
ee
p
B
ol
tz
m
an

n
M
ac
hi
ne

20
09

B
in
ar
y

B
in
ar
y

G
?
?
?

?
?
?
?
?

[9
3]

co
nv

ol
ut
io
na

lR
B
M

20
09

B
in
ar
y

B
in
ar
y

G
?

?
?
?
?
?

[5
5]

co
nv

ol
ut
io
na

lD
B
N

20
09

B
in
ar
y

B
in
ar
y

G
?
?

?
?
?
?
?

[5
5]

G
au

ss
ia
n-
B
er
no

ul
li
R
B
M

20
06

C
on

ti
nu

ou
s

B
in
ar
y

G
?
?

?
?
?

[1
2]

co
va
ri
an

ce
R
B
M

20
10

C
on

ti
nu

ou
s

B
in
ar
y

G
?

?
?
?

[8
7]

m
ea
n
an

d
co
va
ri
an

ce
R
B
M

20
10

C
on

ti
nu

ou
s

B
in
ar
y

G
?

?
?

[3
2]

P
ro
du

ct
of

St
ud

en
t
t-
di
st
ri
bu

ti
on

s
20

03
C
on

ti
nu

ou
s

C
on

ti
nu

ou
s

G
?
?

?
?

[1
13
]

m
ea
n
P
ro
du

ct
of

St
ud

en
t
t-
di
st
ri
bu

ti
on

s
20

10
C
on

ti
nu

ou
s

B
an

d
C

G
?
?

[6
9]

sp
ik
e
an

d
sl
ab

R
B
M

20
11

C
on

ti
nu

ou
s

B
an

d
C

G
?
?

[1
3]

C
on

tr
as
ti
ve

sp
ik
e
an

d
sl
ab

C
on

vo
lu
ti
on

al
D
B
M

20
18

C
on

ti
nu

ou
s

B
an

d
C

G
?

[1
17
]

C
on

di
ti
on

al
R
B
M

20
07

B
in
ar
y

B
in
ar
y

G
?

?
?
?

[9
6]

G
at
ed

R
B
M

20
07

B
in
ar
y

B
in
ar
y

G
?

?
?
?

[6
6]

D
is
cr
im

in
at
iv
e
R
B
M

20
08

B
in
ar
y

B
in
ar
y

D
?

?
?
?
?

[5
2]

H
yb

ri
d
D
is
cr
im

in
at
iv
e
R
B
M

20
08

B
in
ar
y

B
in
ar
y

D
an

d
G

?
?
?
?

[5
2]

T
em

po
ra
lR

B
M

20
07

B
in
ar
y

B
in
ar
y

D
?

?
?
?
?

[1
03
]

R
ec
ur
re
nt

T
em

po
ra
lR

B
M

20
09

B
in
ar
y

B
in
ar
y

D
?

?
?
?

[1
04
]

St
ru
ct
ur
ed

R
ec
ur
re
nt

T
em

po
ra
lR

B
M

20
14

B
in
ar
y

B
in
ar
y

D
?

?
?

[6
8]

R
ec
ur
re
nt

N
eu

ra
lN

et
w
or
k
-
R
B
M

20
12

B
in
ar
y

B
in
ar
y

D
?

?
?
?
?

[5
]

D
iff
us
io
n
N
et
w
or
k

19
93

C
on

ti
nu

ou
s

C
on

ti
nu

ou
s

G
?

?
?

[7
3]

D
iff
us
io
n
N
et
w
or
k
-
R
B
M

20
02

C
on

ti
nu

ou
s

C
on

ti
nu

ou
s

G
?

?
[9
]

T
ab

le
2.
1:

T
ab

le
of

co
m
pa

ri
so
n
of

th
e
di
ffe

re
nt

m
od

el
s.

C
ol
um

n
(G

)
/
(D

)
re
fe
rs

to
G
en

er
at
iv
e
m
od

el
of

D
is
cr
im

in
at
iv
e
m
od

el
.

M
ar
ks

ar
e
ba

se
d
on

th
e
nu

m
be

r
of

do
cu

m
en
t
on

SC
O
P
U
S
w
he

n
w
e
en
te
r
th
e
na

m
e
of

th
e
m
od

el
(s
om

e
sp
ec
ifi
c
ru
le

ha
s
be

en
ad

de
d
to

av
oi
d

bi
as
).

T
he

ex
ac
t
nu

m
be

r
of

do
cu

m
en
ts

is
no

t
a
re
le
va
nt

in
di
ca
to
r
du

e
to

th
e
in
tr
od

uc
ed

bi
as
.
W
e
ch
oo

se
to

gi
ve

a
m
ar
k
in

fu
nc

ti
on

of
th
e

or
de

r
of

m
ag

ni
tu
de

of
th
e
nu

m
be

r
of

do
cu

m
en
ts
.

W
A
R
N
IN

G
:t
he

co
lu
m
n
of

vi
si
bl
e
un

it
s
be

ha
vi
ou

r
is
no

t
si
gn

ifi
ca
nt
ly

be
ca
us
e
G
au

ss
ia
n
vi
si
bl
e
un

it
s
of

th
e
G
B
R
B
M

ar
e
al
m
os
t
al
w
ay
s
us
ed

in
ev
er
y
B
M

ex
te
ns
io
n.

37

Chapter 3

DN-RBM for learning signal representation

This chapter is dedicated to the use of DN-RBM on a time-window of signals. The aim is to understand
how the model converges and how the DN-RBM can be used to detect non stationary signals. First, the
convergence of the model using a time-window is studied to better understand the role of the hidden state.
In the second section, the influence of the hidden layer size is studied. Finally, an algorithm of detection is
proposed to detect non stationary signals and results on experiments with toy data are given.

3.1 Convergence of the training procedure

Let consider a DN-RBM trained on short-time window of signal to model it. Suppose a time-window
v = (v(t1), . . . , v(tm))T where m is the window length (and the size of the visible layer). In a DN-RBM
composed of n hidden neurons bounded between θH = +θ and θL = −θ. Let hi, the i−th component of
the hidden layer defined as hi = φi(xi) where xi ∼ N (zi, σ)) with:

zi = ξhi +
m∑
j=1

Wijv(tj) (3.1)

Let wi the i−th line vector of the transfer matrixW . wi can be seen as a temporal vectorWij = wi(tj).
For a signal without offset the hidden bias vector ξh = (ξh1 , . . . , ξ

h
n)T (where n is the number of hidden

units) tends to zeros during the training and zi becomes:

zi =

m∑
j=1

wi(tj)v(tj) = Γwiv(0) (3.2)

where "(0)" in Γwiv(0) is put to emphasize there are no time-shift between v and wi. The sum over i of
the correlation function Γwiv is also present in the energy function:

−hTWv = −
n∑
i=1

hizi = −
n∑
i=1

hiΓwiv(0) (3.3)

The learning step consists in maximizing the likelihood of data for the probability function. This is
equivalent to minimize the energy function (Eq. 2.45) for every observation. Because the hidden units are
bounded, the bigger zi, the lower is the energy. zi is a scalar product and the Cauchy–Schwartz inequality
reads:

|zi| = |wiv| ≤ ‖wi‖ × ‖v‖ (3.4)

The equality in (Eq. 3.4) is observed when the line vector v and the i−th line of the transfer matrix wi

are co-linear, i.e. wi
T = αv. The non-linear behavior of neurons ensures that α will not diverge. If α→∞,

39

(a) Scheme of energy variation. (b) hTWv variation.(Toy example)

(c) Hidden state with one neuron. (d) Hidden state with two neurons.

Figure 3.1: A discover of this work is the role of the phase between lines of the transfer matrix and the visible
layer. (a) is a scheme to explain how the energy varies in function of the phase between the hidden state
and the signal. The correlation between each the signal and line i of W gives how h and the energy varies.
(b) shows a sinus function and the variation of the energy term hTWv for three well-trained DN-RBMs
with respectively 1, 2 and 3 hidden unit(s). Both hidden units capture the same frequency but with a delay
which ensures an energy level as stable as possible regardless of the phase of the visible layer. (c) and (d)
are two diagrams explaining the movement of hidden neuron(s) when the observation window is shifted.
In the case of one hidden neurons (c), the hidden neuron state (red point) oscillates around 0. The point
0 may correspond to a signal that is not correlated to the transfer matrix or the absence of a signal. In
the case of two hidden neurons (d) the hidden revolve around the gravity center (0 in the figure). The
distance to the gravity center gives the intensity of the learned component. The angle gives the phase of
the learned component. At least two hidden units are needed to rebuild the visible layer from the hidden
representation.

40

then the neuron’s behavior would tend to be binary and the model would not be able to reconstruct the
signal.

The learning step of the DN-RBM in (Eq. 2.29) and (Eq. 2.46) captures the frequencies of the signal.
The transfer matrix will capture the different signal components observable in the training set. The phase
ψ between the visible layer and vectors wi changes when the visible layer is shifted in time: wi and v can
be correlated (ψ = 0), non-correlated (|ψ| = π/2) or anti-correlated (|ψ| = π). Fig. 3.1a shows the three
configurations for a signal containing a single frequency. The value of the hidden unit is the projection
value of the window of observation onto the i−th line of the transfer matrix. This property allows to keep
a negative energy component for cases ψ = 0 and |ψ| = π. However, when |ψ| = π/2 the energy associated
to the i−th line of the transfer increase and tends to zero.

For a given time-window v, each hidden units hi = φi(zi) gives the non linear transform of a Gaussian
noise centered around the correlation between the visible layer and the i−th line of the transfer matrix
Γwiv(0). The product hiΓwiv(0) tends to remain positive and to decrease the energy according to (Eq.
3.3). In the case |ψ| = π/2, the correlation Γwiv(0) tends to zero. When the observation window is shifted
in time, the energy component of the i−th hidden unit hiwiv oscillates with a frequency twice than the
captured frequency in wi. Fig. 3.1b plots the evolution in time of the energy term hTWv for a DN-RBM
trained with a sinusoidal signal. The upper plot is the original signal, the last three ones are the hTWv
terms in time with, resp. 1 ≤ n ≤ 3 hidden units. Note that for a DN-RBM with two or three hidden units
all hidden neurons capture the same frequency but with a delay of π/2 and π/3 for the DN-RBM with resp.
two and then three hidden units. The delay introduced between the hidden units allows them to keep the
energy as stable as possible.

In a well trained DN-RBM, the weights of the transfer matrix capture the main signal components.
The frequency information is then included in the lines of the transfer matrix and the hidden state gives
the correlation information between the observed signal and the transfer matrix. At least two hidden
units specialized on the same frequency are required to be able to reconstruct the learned frequency with
the corresponding phase and intensity (see Fig. 3.1c and Fig. 3.1d). In the case of signal with multiple
frequencies, this is not impossible that a hidden units will be specialized on more than one frequency.

3.2 Sizing the network

In neural network community, there is no criterion to size a network: choice of the number of hidden layers
and the then number of units in each hidden layer. Contrary to the VAR model (for example) where the
Akaike Information Criterion (AIC) is used to choose the size of the model. The researchers have to choose
the size of neural networks according to the specific score of the application. In the application of signal
decomposition, the root mean square error is chosen to the check the performance of the DN-RBM.

Let the toy data be given in Fig. 3.3a. The signal duration is 30 second, the first 15 second of signal
is the training set and the last 15 second is the validation set. DN-RBMs has been trained with 2 to 20
hidden units and the Root Mean Square Error (RMSE) over the validation set has been computed. Results
are plotted in Fig. 3.3b. In particular, the results of three models, with respectively, two, five and ten
hidden units is detailed in figures 3.4-3.6. Once the model is trained, a time-window from the validation
set is selected and reconstructed using one step of Gibbs sampling. In figures 3.4-3.6.a, the plot on the
left gives the temporal representation of v0 (in blue), the original signal and v1 (in red) the reconstructed
signal. The plot on the right is the Fourier transform of both signals. The transfer matrix of each model is
given in figures 3.4-3.6.b on the left. The right plot gives the Fourier transform of each rows of the transfer
matrix.

A similar experience is performed with a new toy signal where the intensity of each frequency of the
toy data is reversed. The component with the higher frequency have the most energy. See figures 3.7-3.10
for the results with the second toy database. Both experiences confirm that DN-RBMs learn the frequency
information of the signal. With not enough hidden units, the model will focus on the learning of the

41

frequencies with the highest intensities. The more the model have hidden neurons, the more the model
learns the frequencies with lower intensity.

In figures 3.4-3.9, it is easy to notice that frequencies learned by hidden units are phase-shifted. As
explain in Sec. 3.1, the different phases between hidden units ensure a stable energy regardless the phase
of the visible layer.

Let a signal s be defined as the linear combination of two signals c1 and c2:

s = a1c1 + a2c2 (3.5)

where a1 > a2 > 0 and wi is another signal defined as:

wi = ci (3.6)

According to previous observations, a DN-RBM without a sufficient number of hidden neurons focuses only
on few features of the training database. If wi is a row of the transfer matrix that learns only one component,
what is the priority feature learned from s? (wi = c1 or wi = c2). According to the demonstration in Sec.
3.1, the scalar product between wi and s is present in the energy function:

−hTWv = −
n∑
i=1

hi〈s, wi〉T (3.7)

where 〈., .〉T is a scalar product in the time-window of length T . In an energy model, the learning step
encourages the lowest possible energy. In other words, according to the previous demonstration in Sec. 3.1,
the learning step of a DN-RBM tends to get the biggest possible scalar product between time-window of
the training signal and rows of the transfer matrix. According to Cauchy-Schwartz inequality:

〈c1, c2〉T ≤ ||c1||T .||c2||T (3.8)

From (Eq. 3.8):

−(a1 − a2)〈c1, c2〉T ≥ −(a1 − a2)||c1||T .||c2||T
a1.||c1||2T − a2.||c2||2T − (a1 − a2)〈c1, c2〉T ≥ a1.||c1||2T − a2.||c2||2T − (a1 − a2)||c1||T .||c2||T

〈s, c1〉T − 〈s, c2〉T ≥ a1.||c1||2T − a2.||c2||2T − (a1 − a2)||c1||T .||c2||T
〈s, c1〉T − 〈s, c2〉T ≥ (a1.||c1||T + a2.||c2||T)× (||c1||T − ||c2||T). (3.9)

In (Eq. 3.9), (a1.||c1||T + a2.||c2||T) > 0. Then, ||c1||T > ||c2||T is a sufficient condition for having
〈s, c1〉T > 〈s, c2〉T . Now, let suppose:

∀t ∈ IR, c1(t) = cos(2πf1t)

∀t ∈ IR, c2(t) = cos(2πf2t)

∀T ∈ IR, 〈s, wi〉T =
T∫
0

s(t)wi(t)dt

(3.10)

The norm of ci is:

||ci||2T =

T∫
0

cos(2πfit)
2dt =

T

2
(1 + sinc(4πfiT)) (3.11)

where sinc is the cardinal sinus. Consider the ratio xi = Tfi = T/Ti between the time-window length of
observation and the period of ci. Fig. 3.2 gives sinc(4πxi) function of xi. The upper bound of the cardinal
sinus decreases and tends to 0 when xi increase. For T at least superior to max(T1, T2), the cardinal sinus
is negligible next to one and the norm of both sinus becomes equivalent: ||c1||T ∼ ||c2||T . In (Eq. 3.9),

42

Figure 3.2: Cardinal sinus function of xi = Tfi.

the parenthesis (||c1||T − ||c2||T) tends quickly to zero while (a1.||c1||T + a2.||c2||T) is positive and remain
bounded. With T > max(T1, T2), 〈s, c1〉T is likely greater than 〈s, c2〉T . Fig. 3.2 shows that the cardinal
sinus becomes quickly negligible when the ratio between T and f−1

i increases.
The DN-RBM tends to learn first frequencies with the higher intensity to reduce as much as possible

the energy of the model. In both toy examples, the models succeed to learn all the five frequencies with
ten hidden units. A larger size of hidden layer is then not required anymore because all the information
is learned. In Fig. 3.3b the RMSE stops to decrease significantly after reaching a hidden layer with ten
neurons. This observation is coherent with results on Figures 3.4-3.6.

According to previous demonstration and results on toy data, the following lemma is proposed:

Lemma 1. If s(t) is a signal composed of n frequencies:

s(t) =

n∑
i=1

an cos(2πfnt), (3.12)

then, at most 2× n hidden units are sufficient to learn each frequency of the signal with a DN-RBM.

Additional experiences are proposed in Appendix B to evaluate the DN-RBM.

3.3 Signal detection using DN-RBM

Now, let us focus on the application of signal detection by considering two examples. First, a single channel
signal and second, a multiple channels signal.

3.3.1 Single channel example

In this example, a single channel signal X(t) is considered (see Fig. 3.11). X(t) is a non stationary signal
with two states: {

State 1: X(t) = z(t)

State 2: X(t) = s(t) + z(t)
(3.13)

where z(t) ∼ σN (0, 1) with σ = 0.3 is a noisy component and s(t) is a sinusoïdal signal weighted by a
Hanning window. The state 2 appears randomly and the goal of this application is to detect the presence of

43

(a) Toy data, first database. (b) RMSE in function of the hidden layer
size

Figure 3.3: Toy data. In (a), the left plot is the temporal signal and the right plot is the Fourier transform
of the signal. (b) is the result of multiple testing: RMSE in function of the hidden layer size.

s(t). In this experiment, the frequency of s(t) is 25 Hz. A DN-RBM with 2 hidden neurons and 200 visible
neurons is trained using a session of 30s of signal. The sampling frequency is 1kHz which corresponds to
an observation window of 200ms for the visible layer. Fig. 3.11 gives the result for a test signal. The
model manages to find the frequency. The hidden state and the energy level are both promising entries for
a classifier to detect the state 2.

44

(a) Reconstruction.

(b) Transfer matrix.

Figure 3.4: Result of training with two hidden units.

(a) Reconstruction.

(b) Transfer matrix.

Figure 3.5: Result of training with five hidden units.

45

(a) Reconstruction.

(b) Transfer matrix.

Figure 3.6: Result of training with ten hidden units.

(a) Toy data, second database. (b) RMSE in function of the hidden layer
size

Figure 3.7: Toy data. In (a), the left plot is the temporal signal and the right plot is the Fourier transform
of the signal. (b) is the result of multiple testing: RMSE in function of the hidden layer size.

46

(a) Reconstruction.

(b) Transfer matrix.

Figure 3.8: Result of training with two hidden units.

(a) Reconstruction.

(b) Transfer matrix.

Figure 3.9: Result of training with five hidden units.

47

(a) Reconstruction.

(b) Transfer matrix.

Figure 3.10: Result of training with ten hidden units.

(a) Validation set + hTWv in time. (b) Hidden state and marginal distribution.

Figure 3.11: Detection of sinus in toy data. In (a), the validation set and the energy term hTWv in time
are given. In (b), 1000 points randomly selected of hidden state (for visibility) are plotted in the hidden
representation space. Marginal distribution over the two dimensions are also given.

48

Bayes classifier based on energy level

The use of the energy level to detect the state 2 has been proposed in [101]. This methods is based
on the computation of the energy terms e = hTWv and the application of a Otsu’s threshold to detect
the signal. In this section a Bayes classifier is proposed. As explain in Sec. 3.1, the presence of the
learned signal in the visible unit tends to decrease the energy regardless the phase of the signal. Fig. 3.12
is an illustration of signals with the energy term e(t). e(t) is computed using the time-window v(t) =
(X(t), X(t − T), X(t − 2T), . . . , X(t − pT))T where X(t) is the learned signal. p is the order of past
observation (p + 1 points) and T is the sampling period (or lag value) allowing to decrease the number
of the visible units while keeping a time-window "large" enough to capture the desired frequencies. The
signal X(t) in Fig. 3.12 are real data presented in Chapter 5. The presence of the sinus components
are characterized by an increase of energy. During the phase without signal, the energy level decreases
and is centered on zero. The idea of the classifier is to model the distribution of energy as two Gaussian
distributions. The distribution centered on zero with low variance (no signal) and a Gaussian with a larger
standard deviation (see Fig. 3.12c for an example). Let the classifier with the two following states:{

State 1: H0 := {e ∼ N1(µ0,Σ0)}
State 2: H1 := {e ∼ N1(µ1,Σ1)}

(3.14)

where N1 is a Gaussian law of dimension 1. The proposed algorithm given in Algo. 1 is an iterative
algorithm which uses the Bayes classifier to classify the energy level. At each iteration, the energy level
is classified using the current level of classification. The distribution of both class is then estimated. The
Bayes classifier is then applied using equation:

B(i) =
Pr(h(i) ∈ H0)

Pr(h(i) ∈ H1)
=

Φc(h(i);µ0,Σ0)

Φc(h(i);µ1,Σ1)

H0

≷
H1

Pr(H1)

Pr(H0)
(3.15)

to find the new level for the next iteration. h(i) refers to the i−th latent representation of the training
database and Φc(.;µ,Σ) is the cumulative distribution function of Gaussian N (µ,Σ). The result gives then
the energy level to separate the two classes.

The binary classification based on the energy level is weaken by unsupervised properties of the DN-RBM.
The DN-RBM can learn undesirable components of the signal and model can make false detections. In Fig.
3.12a, the presence of non stationary offset has be learned by the DN-RBM. The energy term e(t) increases
then in the case of non stationary offset (see the energy level at 7.5 second). To avoid the false detection
due to offset, each visible layer is standardized according to:

∀i ∈ J1,dim vK, v∗i =
vi

dim v∑
j=1

vj

(3.16)

Results of the classifier with the new dataset v∗ is given in Fig. 3.12b. The DN-RBM succeeds to learn
only the useful components.

Bayes classifier based on hidden units

A Bayes classifier using the latent representation can be used to detect the sinus function. From the
observation of latent representation in Fig. 3.11b and in Fig. 3.13 it appear clearly it is possible to detect the
signal from the hidden state. The hidden representation is modeled by a mixture of a Gaussian distribution
and an uniform distribution. As explain in Fig. 3.1, in the case without signals, hidden units will tend to
zero. When signals appear, the hidden state starts to turns around the null point. The phenomena can also
be applied on DN-RBM with more than two hidden units. The dimension of the distribution of both states

49

(a) Without standardization. (b) With standardization. (c) Histogram of energy level.

Figure 3.12: Detection of signal with the Bayes classifier (energy level). Energy level in time is also plotted
in both case. In case (a) (without standardization), the DN-RBM learns the non-stationary offset. The
model then detects both sinus signal and the offset (see at 7.5 second). To reduce the number of false
detection, the standardization (see (b)) automatically remove the offset before the training of the DN-
RBM. Signals are intracranial ElectroEncephaloGraphy (iEEG) signals presented in Chapter 5. The figure
(c) gives the histogram of the energy level of the training set (case with standardization).

is equal to the number of hidden units. The points from the Gaussian distribution are associated to the
state 1 (Eq. 3.13) and the points from the second distribution are associated to the state 2. According to
observation on toy data (see Fig. 3.11b) and real data (see Fig. 3.13), the second distribution is modeled
as an uniform distribution in a ball Rn (n being the size of the hidden layer) of radius R. Let us denote
the null hypothesis and the alternative one:{

State 1: H0 := {h ∼ Nn(µ,Σ)}
State 2: H1 := {h ∼ U [Rn]}

(3.17)

Algo. 2 is proposed to learn the classification rule.
The initialization of label (H0 or H1 for each point) is performed by considering (arbitrary) that the

10% quantile closest points to the gravity center µ over the training set coincide to H0. The other points are
attributed to H1. First, the radius R (bounding the uniform distribution) is estimated: R̂ = max dist(X,µ)
where the "dist" function is the Euclidean distance. After initialization, the estimated covariance matrix Σ̂
and the proportion π0 = Pr(H0)/Pr(H1) are sequentially computed. Then, new labels by computing the
Bayes factor B(i) of each hidden state h(i) are estimated:

B(i) =
Pr(h(i) ∈ H0)

Pr(h(i) ∈ H1)
=

Φc(h(i);µ,Σ)

1/V

H0

≷
H1

Pr(H0)

= V × Φc(h(i);µ,Σ)
H0

≷
H1

π0 (3.18)

where Φc(.;µ,Σ) is the cumulative distribution function of Gaussian N (µ,Σ). The new labels of the hidden

50

Algorithm 1 Train based classifier on energy level
Require: e : training set.
Require: idx : index vector which covers the full variation of the energy level

2level0 = (max(e) + min(e))/5
for epoch← 0 to epochs do
eg1 = e s.t. e < levelepoch : group without signal
eg2 = e s.t. e > levelepoch : group with signal
Estimate µ0, µ1, Σ0 and Σ1

π0 = Pr(H1)/Pr(H0) ≈ 1 (π0 is fixed to 1 to avoid data hazard and bug)
label = Φc(idx;µ0,Σ0)

Φc(idx;µ1,Σ1) > π0, Φc(.;µ,Σ) is the cumulative function of Gaussian distribution of mean µ

and variance Σ2

Deduce levelepoch+1 by dichotomy according to (Eq. 3.15).
end for
return levelepochs

(a) Hidden state from data without standardization. (b) Hidden state from data with standardization.

Figure 3.13: Hidden state from DN-RBM trained with two hidden units with data introduced in Chapter
5. Each point is the latent representation of a multi-channels short-time window (200ms). States with and
without sinus signal detected by the Bayes classifier are, respectively, in blue and red. In (a), the DN-RBM
learned the apparition of non-stationary offset (see Fig. 3.12a). Observations in real time show the offset
has been captured according to the green direction in the latent space (dimension 2). The sinus function
is captured according to the orange dotted line. When the signal appears, the hidden state alternates
between states on the top right and on the down left and will pass into the area associated to the learned
Gaussian distribution. The two states (Eq. 3.13) are inseparable with two hidden units. In (b), however,
the standardization allows to remove the offset and only the frequencies of the sinus function has been
learned. The two states can be easily separated with two hidden units.

51

state are given by B(i) for all i ∈ J1, NK where N is the size of the database. The algorithm allows to detect
the signal and can be adapted for every size of the hidden layer.

Algorithm 2 Train based classifier on hidden unit
Require: h, n (h: training set, n: dimension of h).
µ← mean(h)
d← dist(h,µ)
R̂← max(d): radius of the ball.
V ← π

n
2

R̂n

Γ(n2 +1)
hH0 = the 10% closest point from µ.
for epoch← 0 to epochs do
hH0 ← XH0 − µ: centered point.
Σ← 1

#hH0
hTH0

hH0 : covariance matrix.

π0 ←
#hH0

#h−#hH0

label← V × Φc(h;µ,Σ) > π0

hH0 ← h(label == 1)
end for
return V , µ, Σ, π0

3.3.2 Multiple channels signal detection

Consider now that DN-RBM input is a time-window of a multi-channel signals. For a given time-window,
signals for each channels are concatenated sequentially to get the visible layer (see Fig. 3.14b). To reduce
the dimension of the model, observation windows are down sampled. The toy example here is a six channels
signal with the two states presented in (Eq. 3.13). But here, some channels contain only noise. A DN-RBM
was trained with n = 2 which gives the result in Fig. 3.14. Columns of W associated to signal channels
capture the frequency and the columns associated to channels without sinus remain null.

The DN-RBM is then able to detect the signal and adapt the detection to each channels.

3.4 Discussion: comparison with the Discrete Fourier Transform

The classical Discrete Fourier Transform (DFT) of a signal s[t] defined for t ∈ J0, T K is given by:

S[k] =
1

T
(〈s, cos〉k + i 〈s, sin〉k) (3.19)

〈s, cos〉k is a scalar product between the signal and a sinus signal of frequency k. The result of the scalar
product can also be founded into the Fourier series of the signal:

s[t] =
∑
k

ak cos (2πfkt) + bk sin (2πfkt) (3.20)

where fk is the k−th frequency presents in the signal s, ak is the scalar product between s and the cosinus
of frequency fk and bk is the scalar product between s and the sinus of frequency fk.

In a DN-RBM, the hidden state gives the image of the scalar product between the signal and the learned
components in the transfer matrix W . The imaginary part in the DFT is a second scalar product with the
same frequency as the real part but the sinus signal has a phase of π/2 compared to the real part. The same
phenomenon is observed in the DN-RBM: to minimize the energy for each observation from the training set,
a DN-RBM with multiple hidden neurons captures the same frequency information under different phase.

52

(a) Multiple channel toy signal.

(b) Structure of the transfer matrix.

(c) Learned W

Figure 3.14: Detection on multiple channels. A DN-RBM is trained with the data depicted in (a) as input.
The signal has six channels and channel 2 and 5 have no signal. (b) gives the data organization in the
transfer matrix W . (c) is the learned transfer matrix W . Only the visible units associated to channels with
the signal learned the frequency information.

53

Finally sampling the visible units consists in computing the image of the linear combination of the different
learned component times the hidden states:

v = f

(∑
i

hi ×Wi

)
(3.21)

The cos in (Eq. 3.20) is replaced by the transfer matrix. The DN-RBM acts like the Fourier transform but
by learning its own decomposition.

Many research on signal processing propose the use of dictionary learning to decompose a signal with a
sparse representation [63, 107]. The DN-RBM can be seen as a non linear and stochastic dictionary learning
methods where the transfer matrix is learned and the hidden representation is bounded. The properties of
the DN-RBM offer a variety of advantages and possible improvement approaches are currently available.
DN-RBM is an unsupervised generative model that can learn the optimal frequencies to detect and can be
used as a classifier or predictor. DN-RBM can extract uncorrelated components but separability depends
on the data. A model architecture study is needed to help hidden units to separate components in function
of the application.

54

Chapter 4

Diffusion Network

This chapter presents an original contribution for the research on DN. First, a new training procedure based
on gradient descent is proposed. The equation is rewritten to simplify the learning of parameters and several
approximations are proposed. Finally, the model has been validated on toy data: reconstruction of missing
channels, prediction with a vector DN and prediction using multiple DNs from an unique observation.

4.1 Training the Diffusion Network

4.1.1 Module

The DN consists in modelling the variation of a d−dimensional stochastic process (or path)X = (X(t))t≤T
as a system of stochastic differential equation (see (Eq. 2.64)). Let λ be the set of parameters and Lλ(X)
(according the Girsanov’s theorem) the likelihood function of the set of parameters λ. Then

Lλ(X) = exp

 d∑
j=1

1

σ2
j

 T∫
0

µj (X(t), t) dXj(t)−
1

2

T∫
0

µj (X(t), t)2 dt

 . (4.1)

Training a DN consists in finding the SDE which gives the best description of the data. Let us give a fixed
path X as the training set. The derivation of the log-likelihood for each parameter λi is given by:

∂ logLλ(X)

∂λi
=

1

σ2
j

d∑
j=1

 T∫
0

∂µj(X(t), t)

∂λi
dXj(t)−

T∫
0

µj(X(t), t)

∂λi
µj(X(t), t)dt

 . (4.2)

The λi are solutions of the stochastic equations if ∀i, ∂ logLλ(X)
∂λi

= 0. In the literature, Movellan et al.
proposed to maximize the log-likelihood using MCEM algorithm [73]. In this study, the gradient descent
algorithm is proposed to train the DN. But first, the drift function is rewritten to simplify its expression:

µj(X(t), t) = κj

(
−ρjXj(t) + ξj +

d∑
i=1

WijSi(t)

)

= −τjXj(t) + ψj +

d∑
i=1

ωijφ(Xi(t)). (4.3)

Parameters τj , ψj and ωij are, respectively, the product of ρj , ξj and Wij with κj . The writing of the drift
function in (Eq. 4.3) allows to highlight two terms in the SDE. The first term is a linear product between
the signal Xj(t) and the constant τj . The RC filter inside the neuron structure (see Fig. 2.16) is responsible

55

of this term: 1
RjCj

= κjρj = τj . The second term quantifies the influence of the network on each channels.
It is the product of the transfer matrix and the signal values filtered by φ. φ(.) is the activation function
of the model. Initial works on DN proposed the use of sigmoïd function but a different activation has been
tested during this thesis.

In real life problem, continuous time data are not available, only sampled signals are. The two integrals
inside the density Lλ(X) (Eq. 2.58) are Itô integrals (cf. Sec. 2.4.1). Sampled signal X(t) is a piece-wise
constant function. The integral of the drift term is equal to the discrete sum :

T∫
0

µ2
j (X(t), t)dt =

s−1∑
k=0

µj(X(tk), tk)
2∆t,

T∫
0

µj(X(t), t)dXj(t) =
s−1∑
k=0

µj(X(tk), tk) (Xj(tk+1)−Xj(tk)) ,

(4.4)

with 0 = t0 < t1 < . . . < ts = T and tk+1 = tk + ∆t, ∆t being the sampling period. The log likelihood
defined in (Eq. 4.1) becomes:

logLλ(X) =
d∑
j=1

s−1∑
k=0

(
1

σ2
j

µj(X(tk), tk) (Xj(tk+1)−Xj(tk))−
∆t

2σ2
j

µj(X(tk), tk)
2

)

=

s−1∑
k=0

d∑
j=1

(
1

σ2
j

µj(X(tk), tk) (Xj(tk+1)−Xj(tk))−
∆t

2σ2
j

µj(X(tk), tk)
2

)

=
s−1∑
k=0

M(X(tk+1),X(tk), tk) (4.5)

where M(X(tk+1),X(tk), tk) is a term named module for now equal to the contribution at the instant tk of
the log density logLλ(X). Maximizing logLλ(X) is equivalent to maximizing each moduleM(X(tk+1),X(tk), tk)
independently. Writing the loss function as a sum of module is useful, for the learning procedure, to use
mini-batch gradient descent algorithm (See Appendix A).

4.1.2 RC filter and noise power estimation

The drift function µj (see (Eq. 4.3)) is composed of two terms. The first term is a linear term −τjXj(t). If
the other terms of the SDE in the DN are ignored, (Eq. 2.64) leads to a classic linear first order differential
equation:

dXj(t)

dt
= −τjXj(t) (4.6)

This equation has an evident solution:

Xj(t) = Xj(0) exp(−τjt), for t ≥ 0. (4.7)

For τj > 0, the first term forces the sampled signal to converge toward zero more or less faster depending
of |τj |. Sampling the signal with the DN diverges if τj < 0. The first term of the µj allows the model to
remain stable.

The second term (
∑
i
ωijφ(Xi(t))) is the nonlinear combination of the network which competes with the

first term by adding a disturbance caused by the global state of the network to the signal.
In practice, the learning algorithm using Girsanov’s theorem fails to find the parameter τj . Various

procedures to learn the parameter τj have been tested without success. The training step encourages τj
to be very small and the model fails to perform good results in the proposed applications. The proposed
solution in this thesis consists in estimating τj directly from the signal Xj(t). The structure of the neurons

56

Figure 4.1: Step answer of the RC filter. T is the time constant of the filter. The choice of τ = 1/T is
adapted to make the system able to converge close to a after the time ∆t.

is composed of a RC filter (see Fig. 2.16). The parameter τj is the inverse time constant of the filter.
An estimation based on the step answer of the filter is then proposed. Let (X(tk))k∈J0,sK be the training
sequence and ∆t be the sampling period. The RC filter in the neuron’s structure is a first order system, the
step order is given in Fig. 4.1 where a is the command (see Fig. 4.1) or the step input. The initial slope of
the answer of the RC filter is equal to τj and the command a is the mean absolute speed of the signal over
the training set:

a =
1

s

s−1∑
k=0

∣∣∣∣Xj(tk+1)−Xj(tk)

∆t

∣∣∣∣ (4.8)

The estimation of τj is then given by:

τ̂j = α× a =
α

s

s−1∑
k=0

∣∣∣∣Xj(tk+1)−Xj(tk)

∆t

∣∣∣∣ (4.9)

where α is a hyper-parameter which measures how fast the RC filter converges. For example, choosing
α = 5 allows the filter to converge to 99% towards the command in one time step.

In addition to the parameter τj , each neuron has a constant noise power σ2
j . The noise power gives the

variance of dXj(t). The standard deviation σj can easily be estimated for each neuron j:

σ̂j =

√√√√1

s

s−1∑
k=0

(Xj(tk+1)−Xj(tk))
2 (4.10)

4.1.3 Hidden units

Hidden neurons have various names: observators (or software sensor), latent variables, hidden states,
Hidden neurons are not strictly necessary in DN [73]. They are expected to learn the hidden structure of
the sequential data distribution itself.

The use of hidden units allows a synthesis of the data to define latent characteristics of the system.
However, using hidden units requires an additional step during the learning phase: sampling the hidden
path before to compute the loss function. The maximization of the log-likelihood logLλ(X) is then based
on the visible path and the sampled hidden path. The hidden path is sampled at each epoch with the (Eq.
2.67). Note that there is no rule for choosing the noise power value σj and the RC filter parameter τj for
each hidden neuron.

57

Algorithm 3 Training of a DN
Require: epochs, bs, η: epoch number, batch size and learning rate.
Estimate the noise power of each neuron σj . (Eq. 4.10)
Estimate the RC filter of each neuron τj . (Eq. 4.9)
for epoch← 0 to epochs do
Select randomly a mini batch tk of size bs.
Sample hidden neurons (if any).
loss← 0
for k ← 0 to bs do
loss← loss−M(X(tk+1),X(tk), tk)

end for
Compute gradient for each parameters.
Update parameters.
Validation.

end for

4.1.4 Constraint on the transfer matrix

The DN proposed by Movellan in [73] is a full connected network (see Fig. 2.4a), i.e. all neurons are con-
nected to each other. The link between a neuron and itself is problematic during the learning. Experiments
on real signals show the diagonal of the transfer matrix (or link from a neuron to itself) tends to increase
significantly in comparison of the other coefficients if parameters τj for all j are fixed to large value. This
phenomenon decreases the performance of the model. No mathematical demonstration has been found to
explain this problem. The signal Xj(t) in the j−th equation of the system of SDEs appears in the first two
terms:

µj(X(t), t) = −τjXj(t) + ωjjφ(Xj(t)) + ... (4.11)

A large and positive value of ωjj counterbalances the linear term −τjXj(t). The bounded nature of the
activation function φ(.) prevents the signal Xj(t) to diverge in case of large and positive ωjj . This phe-
nomenon is observed when the training of the DN is not stopped just after the convergence of the loss
function. A solution to avoid the problem of convergence is to apply a null constraint on the diagonal of
the transfer matrix. This is equivalent to consider a graph without link self connections.

The learning algorithm of a DN is given in Algo. 3.

4.1.5 Learning the activation function

In the drift function (see (Eq. 4.3)), signals are filtered by the activation function φ. The filter φ is arbitrary
chosen by the user. A parameter vi is added to adapt the activation function for each neuron. The drift
function becomes:

∀j ∈ J1, dK, µj(X(t), t) = −τjXj(t) + ψj +

d∑
i=1

ωijφ(viXi(t)). (4.12)

In the next section, DNs will be evaluated using or not the adaptive parameter of the activation function
V = (v1, . . . , vd)

T .

4.2 Evaluation of DNs: applications on toy data

This section is dedicated to the evaluation of DNs and the comparison with other models. Two applications
are proposed to evaluate the performance of the DN: the reconstruction of missing channels and the

58

(a) DN graph. (b) MLP graph.

(c) RNN graph.

Figure 4.2: Graphs for the evaluation of DNs and comparison. Grey neurons are hidden neurons (optional
for the DN). The goal for each model is to estimate the next state of the data.

prediction of time-window signal presenting a vector of observation. Results from DNs are compared with
results from MLP and the RNN (see Fig. 4.2). For each models, the same input/output data is used.

4.2.1 Toy model

Toy data are simulated by a DN. The proposed DN is composed of four neurons as depicted in Fig. 4.3a.
The channel X1 is first sampled. Then, the other channels are generated by the DN according to the SDEs.
Each neuron of the DN has the parameter τj = 100 and σj = 10−2 ∀j. The activation function is linear.
The first channel X1 is a non stationary sinus composed of two frequencies: 10Hz and 20Hz. The sinus
signal s(t) appears only during 1.5 second and is then filtered by an Hanning window:

s(t) = 0.5 hann(t)× [sin(2π10t) + 0.5 sin(2π20t)] (4.13)

The sampling frequency is 1kHz and the validation set is given in Fig. 4.3b.
The procedure of generation of the toy signals ensures the presence of a diffusion between the channels

and the global signal form is close to the process presented in Chapter 5.

4.2.2 Application 1: Missing channels reconstruction

The DN is a generative model. This application consists in evaluating the capacity of the model to generate
(or reconstruct) a missing neuron signal according to the other neurons. After the training procedure, the
information of one (or more) neuron(s) is removed. The objective is to reconstruct the missing neurons
according to the other and past observations of the network.

59

(a) Graph structure. (b) Validation session

Figure 4.3: Toy model. (a) is the graph structure of the toy data. (b) is an example of time-series sampled
using the model.

Let (X(tk))k∈J0,sK ∈ IRp be a stochastic process. At each time tk, the input vector X(tk) is used to
predict the next sampleX(tk+1). Once the missing neurons inX(tk+1) are retained for the next prediction,
the true value of the other neurons is taken for the prediction. The result with a DN is given in Fig. 4.4a.
The DN is trained without hidden unit and the activation function is learned. The fourth channel only is
removed and reconstructed according to the three firsts.

Four models are compared: DNs (with and without learning the activation function), a MLP and a
RNN. For each model, the RMSE is evaluated as:

RMSEapp1 =
1

#missing channels

∑
j∈missing data

√√√√ 1

T

s−1∑
k=0

(
X̂j(tk)−Xj(tk)

)2
(4.14)

where "#missing channels" is equal to the number of missing channels (= 1 in this case of study). Results
are given in Table 4.1. The hyper-parameter value for the DN are given in Table 4.1, such as the number of
hidden units, the learning parameters etc. The number of parameters refers to the number of parameters
trained with the gradient descent. The estimation of τj and σj for all j in the DN’s case is not included in
this counting.

The DNs is very good for missing channel reconstruction. Technically, the result with the MLP is the
best but note that there is no hidden unit with the DN and less parameters to learn. Finally, the result
with the DN with the learning of the activation function is better than the case without the learning of the
activation function.

4.2.3 Application 2: Time prediction

The sampling rule given in (Eq. 2.67) allows to predict X(tk+1) according to previous samples X(tk). The
multidimensional signal (X(tk))k∈J0,sK ∈ IR4 is reorganized into the following database:(

X̃(tk)
)
k∈J0,bs/NsequencecK

∈ IR4×Nsequence

where X̃(tk) is a sequence of observations. The sampling period of this new database is equal to ∆̃t =
Nsequence ×∆t. Graphs used for prediction for both models are the same as those presented in Fig. 4.3b
where X becomes X̃. Fig. 4.4b gives the result for the DN with learning of the activation function. The
black signal is the initial state of the network. The blue signal is the expected state after sampling and the
red signal is the result obtain with the model. The red area is computed using the noise power of the DN.

60

(a) Missing channel reconstruction.

(b) Prediction of time-window.

Figure 4.4: Tests on toy data with the DN. (a) The fourth channel is reconstructed using a DN. The blue
signal is the true signal and the red signal is the signal sampled using the DN according to the state of the
other neurons. (b) Prediction of time-window, toy data. The black signal is the initial state of the network.
The blue signal is the expected state after sampling and the red signal is the result obtain with the model.
The red area is computed using the noise power of the DN.

61

Table 4.1: Toy model results: missing channels reconstruction.

DN (1) DN (2) MLP RNN
α (DN only) 5.0 5.0 - -

Number of hidden units 0 0 5 5
Number of parameters 16 20 49 74
Activation function tanh tanh (learned) elu elu
(hidden units only) linear linear

RMSE 5.011E-01 4.174E-01 2.983E-01 6.034E-01

Table 4.2: Toy model results: prediction of time-window.

DN (1) DN (2) MLP RNN
α (DN only) 1.0 1.0 - -

Number of hidden units 0 0 10 10
Number of parameters 640,000 640,800 16,810 16,910
Activation function tanh tanh (learned) elu elu
(hidden units only) linear linear

RMSE 4.083E-01 3.535E-01 4.442E-01 3.430E-01

Results are given in Table 4.1. At time tk, X̃(tk) is used to predict the next sample X̃(tk+1). The
RMSE used to evaluate each models is defined as:

RMSEapp2 =

√√√√√ 1

bs/Nsequencec × d×Nsequence

bs/Nsequencec∑
k=1

d×Nsequence∑
j=1

(̂̃
Xj(tk)− X̃j(tk)

)2

(4.15)

In this experience, the RNN got the best results. Results between all models are close but, the number
of parameters of the DN is much more larger than for the other models. According on Fig. 4.4b, DNs
predicts successfully a time-window of the toy model.

4.3 Discussion: limit and path of improvement

The learning procedure of the DN has been revisited in this chapter. Parameters of the model has been
rewritten to simplify the learning procedure and estimations for the RC filter. An estimation of the noise
power of each neuron has been proposed. The comparison with the other model with the toy data shows
the DN is functioning. The choice of the neuron structure and the number of hidden units for the other
models is not optimal. With more investigation, it is possible to get better results. But the idea was to
keep an equivalent number of neurons between models to remain comparable. The DN is able to handle
the different applications without hidden units.

The DN, however, retains some defaults that deserve more investigations. First, the learning procedure
using gradient descent algorithm and Girsanov’s theorem fails to learn the RC filter parameters enabling
a good performance on applications. An estimation based on the mean absolute speed of signals has been
proposed. This estimation requires an additional hyper-parameter α which has a major influence on the
result. Second, results on toy data show that adding hidden neurons in the DN does not improve significantly
the performances of the model. In addition, the hidden units are not available in the training database,
there is no rule to estimate the RC filter and the noise power of hidden units. The estimation proposed in
the tests on toy data consisted in taking the mean over visible units.

Despite these defaults, notice that unlike other families of ANNs, DNs are largely unknown. And, in the
same way that many models originally proposed for feedforward neural network have inspired researchers to

62

propose extensions to BMs, it stays possible to apply again these different approaches for DNs. Additional
tests on DNs will be proposed on Chapter 5 on real data.

63

Chapter 5

Application: iEEG data analysis for the
control of the deep-brain stimulation

This works is originated from a French-Taiwan collaboration between the UEVE, the University of Paris-
Saclay and the NTHU.

5.1 Introduction

The Parkinson’s Disease (PD) is a progressive degenerative disease described for the first time by James
Parkinson in 1817 [82]. The causes of the disease remain unknown today. Around 0,2 % of the population
are affected by the disease. This ratio increases to 1 % for people above 60 y.o. [108]. The number of
people living with PD is expected to double in 25 years [19]. This increase is partly the result of the ageing
increase of the population.

PD is very well known for it symptoms: tremor, slowness of movements or absence of postural reflexes.
Symptoms of the PD are attributed to the degeneration of dopaminergic neurons in the BAsal GAnglia
(GABA). The GABA circuitry is a neural loop between the cortex and different brain regions. It is playing a
key role of regularization in the control of body movements. The state of neurons from the Substantia Nigra
pars compacta (SNpc) activates the dopaminergic receptor D1 and inhibits the dopaminergic receptor D2
of the striatum. For patients with PD, the degeneration of the SNpc would be responsible of the abnormal
activity of neurons in the GABA and, therefore, the symptoms. Fig. 5.1 (according to [57, Chapter 19])
gives the GABA biological pathway in both patient’s state (without and with the Parkinson disease). The
state of the patients continues to deteriorate in time. Four phases has been identified to characterize the
progress of the disease.

1. The first expression of the symptoms is not strong enough yet to diagnose the disease with
certainty. There is no specific test for diagnosing PD.

2. The Parkinson’s "honeymoon" period is the name of the period where medicament to relieve
patient from symptoms of the PD remain efficient. The medicament’s treatment aims to add a sub-
stance (Levodopa [88]) which mimics the role of the dopamine or compensate for dopamine deficiency
with an exogenous input.

3. The motor complications start when medicament’s treatments are no longer efficient. It is the
ON/OFF phase when the symptoms appear and disappear.

4. The advanced phase manifests itself in falls, loss of balance, vegetative disorders and intellectual
difficulties.

65

Figure 5.1: GABA circuitry in two cases: the normal state in the left and the Parkinsonian state on the
right. Researches on brain functioning have identified different areas (or regions) in the brain. Each area
has specific functions and the different brain regions interact with other areas. There are some type of
interactions such as activation and inhibition links. An "activated" brain area will active and inhibit (or
deactivate) brain regions with, respectively, activation and inhibition links. Red color is put for inhibition
links and blue color for activation links. Notice that different pathways are proposed in the literature
(with more or less details). Dashed lined in the Parkinsonian state correspond to the dysfunction parts
in the pathway. Every parts of the GABA circuitry and its interactions are necessary to ensure the good
functionning of the body movement. The degeneration of the SNpc leads to a global dysfunction of the
GABA pathways. The research on the brain functioning remains active today and our understanding
continues to evolve.

After the third phase, it has been shown that the Deep Brain Stimulation (DBS) is an efficient technique
to relieve patients from the symptoms of the PD [3]. DBS necessitates the implantation by surgery of stim-
ulation electrodes connected to a stimulator placed in the subclavicular cavity. This will allow continuous
electrical stimulation in the SubThalamic Nucleus (STN). Since DBS is not a zero-risk procedure, this
treatment is only considered if there are disabling symptoms despite optimized pharmacotherapy. Biologi-
cal mechanisms are not widely understood today and a permanent application of the DBS leads to several
side effects like psychiatric ones. The second drawback of the DBS concerns the battery life duration of the
system. A surgery procedure is required to change battery of the patient every 5-6 years.

A low energy closed-loop system to control the DBS is therefore needed and the research on the subject
is very active [90]. Dejean in [17] shows the arrival of the PD’s symptoms can be predicted by detecting the
presence of High-Voltage Spindles (HVS) in brain Local Field Potentials (LFPs). The HVS is a synchronous
spike-and-wave patterns oscillating in the 5-13 Hz frequency band. Suppressing HVS signals has been found
useful for delaying the progress of PD and deleting symptoms. The control of the DBS is a promising trail
to reduce side effects induced by the DBS. But the HVS detection is a challenging problem for two reasons.

66

0 20 40 60
time (s)

-1

-0.5

0

0.5

1

V
ol

ta
ge

 (
V

)

10 -6 motor cortex layer 2/3

0 20 40 60
time (s)

-1

-0.5

0

0.5

1

V
ol

ta
ge

 (
V

)

10 -6 motor cortex layer 5b

0 20 40 60
time (s)

-1

-0.5

0

0.5

1

V
ol

ta
ge

 (
V

)

10 -6 striatum

0 20 40 60
time (s)

-1

-0.5

0

0.5

1

V
ol

ta
ge

 (
V

)

10 -6somatosensory cortex layer5b

(a) PD rat recording session: example one.

0 20 40 60
time (s)

-1

-0.5

0

0.5

1

V
ol

ta
ge

 (
V

)

10 -6 motor cortex layer 2/3

0 20 40 60
time (s)

-1

-0.5

0

0.5

1

V
ol

ta
ge

 (
V

)

10 -6 motor cortex layer 5b

0 20 40 60
time (s)

-1

-0.5

0

0.5

1

V
ol

ta
ge

 (
V

)

10 -6 striatum

0 20 40 60
time (s)

-1

-0.5

0

0.5

1

V
ol

ta
ge

 (
V

)

10 -6somatosensory cortex layer5b

(b) PD rat recording session: example two.

Figure 5.2: Two recording sessions from different PD rats. The high amplitude corresponds to HVS. We
note in (a) that the channel M1U does not work. In (b), the frequency information from the channel SD is
out of range of the expected frequency for the HVS. This figure highlights difficulties we can meet to detect
the HVS and the need to adapt the model for each patient.

67

Notation Region name
M1D Layer 5b of the primary motor cortex
M1U Layer 2/3 of the primary motor cortex
M2D Layer 5b of the secondary motor cortex
M2U Layer 2/3 of the secondary motor cortex
SD Layer 5b of the primary somatosensory cortex
SU Layer 2/3 of the primary somatosensory cortex

STRI Dorsal region of striatum
THAL Ventrolateral thalamus

Table 5.1: List of brain regions where LFPs signals were recorded.

First, symptoms of the PD appear some milliseconds after the first HVS. Second, many factors like the
progression of the disease, the location of probes inside the brain makes recorded signals very different from
a patient to another. A fast and robust model capable to learn automatically from the data on real time is
then required.

If detecting a signal on a frequency range seems apparently simple, there are different constraints making
the problem more difficult. First, the recorded signals can be very different (HVS’s frequencies and form)
between two PD rats or two recording channels. The diffusion of signals inside the brain is not exactly
the same for all people, some channels may provide no useful information or have unexpected frequencies.
Second, the recorded signals can also change in time. As part of a progressive disease, HVS can appear more
or less frequently according to the disease progress. Moreover, the electronic probes may move inside the
brain or deteriorate over time. In the worst case a probe may disconnect. Finally, we know that symptoms
appears only a few milliseconds after the HVS. A fast adaptive system capable to predict the venue of the
HVS from multi-channel signals is expected.

Previous works on iEEG data have been proposed by Dr. Ramesh Perumal. The detection of HVS is
performed on a single recording channel using a method based on the Cosine Wavelet Transform (CWT)
[10]. In this chapter, new unsupervised algorithms are proposed to detect HVS on multiple recording
channels. In parallel to the work presented in this chapter, an analysis presented in [100] proposes another
detection method based on the synchrosqueezing transform for a time-frequency analysis in real time. This
study has been proposed to detect HVS using M1D channel only.

5.2 HVS database and its construction

Fig. 5.2 gives two typical recording sessions of PD rats. Data extracted from PD rats are used to test
different systems. The PD rat models were induced in 3-4 months old Sprague-Dawley rats by unilateral
injection (coordinates: AP -4.4 mm, ML +1.2 mm, V -7.8 mm relatively to bregma) of 6-OHDA in the
medial forebrain bundle at the rate of 0.5µl/min using an integrated electrophysiology instrument suitable
for DBS procedure. Four weeks following the unilateral injection of 6-OHDA, the lesioned group of rats were
determined as successful PD models through amphetamine-induced rotational behaviour (Amp, 3mg/kg,
ip) by measuring the rotational speed of the lesioned rats as 6 turns per minute.The rats were unilaterally
implanted bipolar stimulation electrode into the ipsilateral STN with their initial coordinates at AP -3.6
mm and L +2.5 mm. The electrode was lowered slowly along the dorsal ventral axis of brain and then
advanced ventrally to the STN to obtain the electrophysiological signal with a strikingly silent structure.
The LFPss were recorded from eight or four different brain regions depending on PD rat. The different
brain regions are listed in Table 5.1. The sampling frequency was 1 kHz and the recording duration of one
session was 60 seconds (60,000 samples). Several sessions have been recorded on PD rats.

The collected data were carried out by researchers from the NeuroEngineeringLab (NEL) in Taïwan.
Results of experiments were saved in different formats (mat, csv) and organized differently according to

68

Algorithm 4 Ground truth: definition procedure

Require: X ∈ IR(K×R): raw data with R channels and K time samples.
for r ← 0 to R do
X[:, r] = X[:, r]/ std(X[:, r]) (Preprocessing)
Xcwt = | cwt(X[:, r])| (Cosine wavelet transform: Ncwt ×K)
E[5Hz;13Hz] =

∑
f∈[5Hz;13Hz]

Xcwt[:, :] (Sum of CWT between 5 Hz and 13 Hz)

thesh = OTSU(E[5Hz;13Hz]) (Threshold per channel)
Y [:, r] = X[:, r] > thesh

end for

Y = 1
R

R∑
r=1

Y [:, r] > 3
4 (Decision for all channels)

Y = medianFilt(Y, 1sec) (Denoising)
return X, Y

the researchers. The first step consists in standardizing all the received data. Each PD rat has a different
number of recording sessions. The second step was to observe the sessions for each rat in order to select two
sessions per rats: one for training, the other to validate the model. The session selection is an important
step to ensure that the data contains HVSs because some recording sessions do not have any HVS signals or
very few. Table 5.2 summarizes the organization of the database after the standardization and the selection
of the training and validation sets. Columns "Training_Session" "and Validation_Session" are respectively,
the chosen number of both training and validation sessions.

5.3 Ground truth

To evaluate the different explored models in this thesis, a reference output is defined to compare all
results of each model with the reference. For each rat, we consider two 1 minute sessions. One session is
used to train the model and to learn the ground truth. The second session is used to evaluate the model.
Algo. 4 summarizes the different steps to learn the ground truth.

The preprocessing step is a standardization step. The variances of the LFPs signals are estimated and
set to one by standardization, channel per channel. The frequencies characteristics of the HVS are identified
by the CWT. The computation of the sum of the CWT coefficients between 5 Hz and 13 Hz gives the
energy of each channel in time and in the frequency range of the HVS signal. Automatic thresholding from
the shape of the histogram of the signal is applied on each channel to detect the HVS. Otsu’s method
provides a threshold θ(i) for i−th channel. The HVS is detected on the channel i at time t if Xi(t) > θ(i).

Fig. 5.3 gives the evolution of this energy through time and the histogram of it over the training set.
As it is illustrated in Fig. 5.2 (see Sec. 5.1), some channels may not capture the signals for many possible
reasons. The HVS is detected in the decision step if the HVS is detected in at least 3

4 of all channels. The
choice of 3

4 is for taking into account the fact the HVS will may not appear on all channels. It also helps
to be more robust against possible false detection caused by a single channel.

After the detection step, some false detections and/or misses may remain during the transition with
and without HVS. The duration of an HVS is rarely less than 2 seconds. Then, false detections are deleted
by applying a median filter of 1 second length. Sometimes, during the state “with HVS”, the model based
on Otsu’ thresholding fails to detect the HVS. To remove this source of mistakes, a window of 200ms is
automatically treated as a part of the HVS after the detection using Otsu’ thresholding.

The ground truth makes it possible to define an output vector to compare models. However, ground
truth extraction on low quality data may still be (slightly) noisy. For some PD rats in particular, the
definition of the ground truth provides mitigate results.

69

(a) Sum of CWT’s coefficients between 5-13 Hz through time.

(b) Histograms of the sum of CWT coefficients in 5-13 Hz band.

Figure 5.3: Result of the threshold per channel. In (a), the presence of HVS is usually identified by the
peak in the sum of CWT’s coefficient between 5-13Hz only on the last three channels. The channel X1

did not capture any information of the HVS. (b) gives histograms of channels, the distribution of CWT’s
coefficient between 5-13Hz over the session was modelized as a mixture of two Gaussian distributions.
The first Gaussian corresponds to a heavy tailed distribution of low values. It corresponds to the state
without HVS. The second Gaussian on the right with large value and large dispersion corresponding to the
distribution during the HVS state. Otsu’s method is used to separate the two cases. The vertical red line
gives the threshold learned with Otsu’s method for each channel (θ(i)). The channel X1 did not capture
any information, it can be due to a dysfunction of the recording probes (see Fig. 5.2a as an example).

70

R
ec

or
d

N
u
m

b
er

C
h
an

n
el

n
am

e
S
es

si
on

T
ra

in
in

g
V

al
id

at
io

n
N

ot
e

ID
of

ch
an

n
el

s
d
u
ra

ti
on

(m
s)

se
ss

io
n

se
ss

io
n

20
16
01
06

N
9_

L
E
S

4

m
ot
or

co
rt
ex

la
ye
r
2/
3

60
00
0

7
28

m
ot
or

co
rt
ex

la
ye
r
5b

st
ri
at
um

so
m
at
os
en

so
ry

co
rt
ex

la
ye
r
5b

20
16
01
13

N
9_

L
E
S

4
sa
m
e
as

pr
ev
io
us

60
00
0

15
19

20
16
01
13

N
9_

L
E
S
ni
gh

t
4

sa
m
e
as

pr
ev
io
us

60
00
0

12
14

20
16
04
07

N
14
_
L
E
S

4
sa
m
e
as

pr
ev
io
us

60
00
0

27
28

20
16
04
20

N
14
_
L
E
S

4
sa
m
e
as

pr
ev
io
us

60
00
0

1
29

20
16
04
21

N
12
_
L
E
S

4
sa
m
e
as

pr
ev
io
us

60
00
0

24
25

20
16
05
04

N
14
_
L
E
S

4
sa
m
e
as

pr
ev
io
us

60
00
0

10
25

20
16
05
05

N
12
_
L
E
S

4
sa
m
e
as

pr
ev
io
us

60
00
0

22
23

P
-R

-4
20
13
12
05

8

L
ay
er

5b
of

th
e
pr
im

ar
y
m
ot
or

co
rt
ex

60
00
0

1
2

L
ay
er

2/
3
of

th
e
pr
im

ar
y
m
ot
or

co
rt
ex

L
ay
er

5b
of

th
e
se
co
nd

ar
y
m
ot
or

co
rt
ex

L
ay
er

2/
3
of

th
e
se
co
nd

ar
y
m
ot
or

co
rt
ex

L
ay
er

5b
of

th
e
pr
im

ar
y
so
m
at
os
en

so
ry

co
rt
ex

L
ay
er

2/
3
of

th
e
pr
im

ar
y
so
m
at
os
en

so
ry

co
rt
ex

D
or
sa
lr

eg
io
n
of

st
ri
at
um

ve
nt
ro
la
te
ra
lt
ha

la
m
us

20
14
01
20

P
-R

-6
B
A
SE

L
IN

E
4

L
ay
er

5b
of

th
e
pr
im

ar
y
m
ot
or

co
rt
ex

60
00
0

12
13

L
ay
er

2/
3
of

th
e
pr
im

ar
y
m
ot
or

co
rt
ex

L
ay
er

5b
of

th
e
pr
im

ar
y
so
m
at
os
en

so
ry

co
rt
ex

L
ay
er

2/
3
of

th
e
pr
im

ar
y
so
m
at
os
en

so
ry

co
rt
ex

P
-R

-4
20
13
12
05

8

L
ay
er

5b
of

th
e
pr
im

ar
y
m
ot
or

co
rt
ex

60
00
0

1
2

L
ay
er

2/
3
of

th
e
pr
im

ar
y
m
ot
or

co
rt
ex

L
ay
er

5b
of

th
e
se
co
nd

ar
y
m
ot
or

co
rt
ex

L
ay
er

2/
3
of

th
e
se
co
nd

ar
y
m
ot
or

co
rt
ex

L
ay
er

5b
of

th
e
pr
im

ar
y
so
m
at
os
en

so
ry

co
rt
ex

L
ay
er

2/
3
of

th
e
pr
im

ar
y
so
m
at
os
en

so
ry

co
rt
ex

D
or
sa
lr

eg
io
n
of

st
ri
at
um

ve
nt
ro
la
te
ra
lt
ha

la
m
us

20
16
01
13

N
9_

L
E
S
ni
gh

t
4
(→

3)

L
ay
er

5b
of

th
e
pr
im

ar
y
m
ot
or

co
rt
ex

60
00
0

4
6

L
ay
er

2/
3
of

th
e
pr
im

ar
y
m
ot
or

co
rt
ex

C
ha

nn
el
s
1
an

d
2

D
or
sa
lr

eg
io
n
of

st
ri
at
um

ar
e
id
en
ti
ca
l.

ve
nt
ro
la
te
ra
lt
ha

la
m
us

?
4

In
ta
ct

si
te

M
1
de

ep
la
ye
r
(5
b)

59
99
9

33
34

In
ta
ct

si
te

M
1
up

la
ye
r

L
es
io
n
si
te

M
1
de

ep
la
ye
r
(5
b)

L
es
io
n
si
te

M
1
up

la
ye
r

?
4

sa
m
e
as

pr
ev
io
us

59
99
9

19
20

?
4

sa
m
e
as

pr
ev
io
us

59
99
9

26
30

T
ab

le
5.
2:

D
at
a
or
ga

ni
za
ti
on

.

71

Let H0 be the hypothesis "no HVS" and H1 the hypothesis "presence of HVS" and h the decision
attached to an observation window. The following evaluation tools are considered:

• The sensitivity: Se = Pr(h ∈ Ĥ1|H1).

• The specificity: Sp = Pr(h ∈ Ĥ0|H0).

• The mean delay of detection.

The mean delay of detection is estimated after the application of a median filter on the model output to
eliminate the noisy detection (detection of less than 1 second).

Remark. Notice that the aim of the application is not to have a model with 100% sensitivity and 100%
specificity, but to be able to detect the HVS the sooner as possible and if possible before the ground truth.
The sensitivity and the specificity are useful to make sure the studied model detects efficiently the HVS.
But detecting the HVS before the ground truth will decrease the sensitivity. Note also that the ground truth
defined in previous sections is not perfect. The evaluation has to be viewed with hindsight and requires a
balance between the sensitivity, the specificity and the mean delay of detection.

5.4 Application with machine learning methods

Three models has been studied in this thesis and compared with the groundtruth. The first one is the
combination of the DN-RBM with the Bayes classifier presented in Sec. 3.3. The second one is a supervised
model based on the use of an autoencoder and a Gaussian process classifier [99]. These methods were
presented in [101] as the combination of the DN-RBM with the Otsu threshold method. The next section
presents the main principles of the autoencoder and the Bayes classifier.

The autoencoder and the DN-RBM are two neural networks with the same objective: to reduce the size
of the data before the classification step. To detect the presence of HVS, the short-time window signal has
to be large enough to capture the desired frequencies. The sampling frequency is equal to 1 kHz and the
fundamental frequency of a HVS is 5Hz or higher. A window of length 200ms ensures to have at least one
period of HVS and is used as input of models.

5.4.1 The Autoencoder and the Gaussian Process classifier

Autoencoder

The autoencoder is a feedforward neural network which computes a compressed representation of the data.
The model is composed of an encoder part (or transfer matrix) and a decoder part (see Fig. 5.4). The
encoder computes the latent representation of the input data and the decoder reconstructs the input data
according to the latent representation, i.e. x = f(x) where f is the neural network model. Once the model
is trained, only the encoder module is retained to compress the data.

Gaussian Process classifier

A Bayesian Network (BN) is a directed acyclic graph. Each nodes is a Random Variable (RV). A link
from node a to node b means the state of b depends on the state of a, a is then a parent of b. In a BN,
it is impossible to have two parent nodes of each other. A Gaussian Process (GP) is a Bayesian Network
with continuous valued nodes. Let X ∈ IRd be the parent of Y ∈ J0, 1K. Let note D = {X(n),Y (n)}n∈[1,N]

the training set with X = {X(n)}n∈[1,N] being independent randomly selected input observations and
Y = {Y (n)}n∈[1,N] the associated output decision respectively. The GP classifier focus on modeling the
posterior probabilities by defining the latent variables fn = f(X(n)).

72

Figure 5.4: Autoencoder. The passage from the input layer to the hidden layer is the encoder part and the
second passage from the hidden layer to the output layer is the decoder part. Back-propagation algorithm
is used to learn this model. Autoencoders with multiple hidden layers are also possible.

The model used here is the probit model: Pr(Y = 1|X) = Φ(f(X)) where Φ denotes the cumulative
density function of the standard normal distribution, i.e. φ(x)→ 0 for x→ −∞ and φ(x)→ 1 for x→ +∞.
The likelihood of the probit model with independent observations, given by f = {f(X(n))}n∈[1,N] is:

p(Y |f) =

N∏
n=1

p(Y (n)|fn) =

N∏
n=1

Φ(Y (n)fn). (5.1)

In a GP, f is a stochastic process which associates a zero mean normal random value to an input X(n).
For X from the training set D, p(f |X,Θ) ∼ N (0,CN) where Θ is a set of hyper-parameters and CN is a
covariance matrix modelized by a squared exponential and a Gaussian noise [89], i.e. :

CN (X(i),X(j)) = θ2
0 exp

−1

2

dim(X(i))∑
n=1

(X
(i)
n −X(j)

n)2

λ2
n

+ θ2
1δ(X(i),X(j)). (5.2)

X
(i)
n is the n−th component of X(i) and δ(·) is the Kronecker delta. The set of hyper-parameters Θ is

composed of
{
θ1, θ2, {λn}n∈[1,N]

}
. Baye’s posterior probability rule of the latent variable f with Θ known

(p(f |D,Θ)) can be written:

p(f |D,Θ) =
p(Y |f)p(f |X,Θ)

p(D|Θ)
=
N (f |0, CN)

p(D|Θ)

N∏
n=1

Φ(Y (n)fn). (5.3)

The marginalization of (Eq. 5.3) for a new observation X(N+1) gives:

Pr(fN+1|D,Θ,X(N+1)) =

∫
Pr(fN+1|f,X,Θ,X(N+1)) Pr(f |D,Θ)df, (5.4)

and the expectation of the (Eq. 5.4) gives:

Pr(Y (N+1)|D,Θ,X(N+1)) =

∫
Pr(Y (N+1)|fN+1) Pr(fN+1|D,Θ,X

(N+1))dfN+1. (5.5)

73

The posterior probability q(f |D,Θ) is modelized as N (m, A) to compute Pr(Y (N+1) = 1|D,Θ,X(N+1)).
Then, for a new observationN+1, we can show that the posterior probability of fN+1 is q(fN+1|D,Θ,X(N+1)) ∼
N (µ, σ) with: {

µ = kTC−1
N m,

σ2 = κ− kT (C−1
N − C

−1
N AC−1

N)k.
(5.6)

where k =
(
CN (X(1),X(N+1)), . . . , CN (X(n),X(N+1))

)T
is the covariance vector between each observation

of the training set and the new observationX(N+1) and κ = CN (X(N+1),X(N+1)) = θ2
0 +θ2

1 is the variance
of X(N+1).
With the approximation of Pr(f |D,Θ), (Eq. 5.5) becomes:

Pr(Y (N+1) = 1|D,Θ,X(N+1)) = Φ

(
µ√

1 + σ2

)
(5.7)

Training a GP consists in finding {Θ,m, A}. We can learn Θ by computing the log-likelihood of the
posterior probability log q(Y |X,Θ) (Eq. 5.8) (see [89, Chapter 5]) and its gradient as a function of Θ:

log q(Y |X,Θ) = −1

2
fTC−1

N f + log p(Y |f)− 1

2
log det

(
I +W

1
2CNW

1
2

)
(5.8)

with W = −∆f log p(Y |f) (The Hessian of the log likelihood given f), the unormalized log likelihood
log p(f |D,Θ) is maximized:

log p(f |D,Θ) = log p(Y |f) + log p(f |X)

= log p(Y |f)− 1

2
fTC−1

N f − 1

2
log det(CN)− N

2
log 2π.

(5.9)

For a given Θ, we can find m = arg maxf log p(f |D,Θ) by using the Newton’s method. (Eq. 5.10) and
(Eq. 5.11) give the gradient and the Hessian of log p(f |D,Θ), respectively.

∇f log p(f |D,Θ) = ∇f log p(Y |f)− C−1
N f. (5.10)

∆f log p(f |D,Θ) = ∆f log p(Y |f)− C−1
N . (5.11)

The maximization of log p(f |D,Θ) makes use of the first and second order partial derivation of log p(Y |f)
in function of fi:

∂

∂fi
log p(Y |f) =

Yiφ(fi)

Φ(Yifi)
. (5.12)

∂2

∂f2
i

log p(Y |f) = − φ(fi)
2

Φ(Yifi)2
− Yifiφ(fi)

Φ(Yifi)
. (5.13)

Where φ(.) is the density function of the standard normal distribution. Learningm allows to compute (Eq.
5.8) and their gradient in function of Θ. We implement a gradient descent search of the optimum Θ∗ that
leads to the following iterative algorithm:

Θ(k+1) = Θ(k) − αk∇Θ log q(Y |X,Θ)). (5.14)

But (Eq. 5.14) requires to inverse the N × N matrix CN at each iteration which can be time consuming
for a large number of observations. Two solutions are possible to decrease the learning time. First, to
decrease the size of the training database N and to select randomly the training samples. Second, compute
an approximation of the inverse matrix C−1

n

74

Figure 5.5: Root mean square error of reconstruction over the testing set of iEEG data as a function of H
(size of the hidden layer). DN-RBMs has hidden units (from 2 to 30).

Once m and Θ found, we can compute A =
(
C−1
N +W

)−1.
Finally, the GP classifier is learned by identifying the covariance matrix between observations CN as a
function of the hyper-parameters Θ, the mean vector m is learned at each iteration and the covariance
matrix A is deduced from CN and m.

Once the learning is done, the prediction step computes the covariance vector k between the new ob-
servation X(N+1) and the training set X and then estimates the probability Pr(Y (N+1) = 1|D,Θ,X(N+1)).
If Pr(Y (N+1) = 1|D,Θ,X(N+1)) > 0.5 then Y (N+1) = ±1.

Learning the model consists in two steps: learning the hyper-parameters Θ and learning the parameters
of q(fN+1|D,Θ,X(N+1)). The prediction of Y (N+1) is based on the posterior probability: the N + 1 input
is compared to the N first inputs and the model compute correlation between the new observation and the
previous ones to compute the output.

5.4.2 Sizing models

The three following classifier are trained with different sizes of hidden layer:

(a) DN-RBM+Bayes (hidden state),

(b) autoencoder+GP classifier and

(c) DN-RBM+Bayes (energy level).

Previous experiences to size both networks have been proposed in [99, 101]. New experiences have been
proposed for this thesis in the following sections. The dimension of the DN-RBM is chosen in function of
the results of the classifier. However, the study proposed in Sec. 3.2 has also been performed for iEEG
data to size a DN-RBM independently. Results are given in Fig. 5.5 from the RMSE of the reconstruction
in function of visible units and Fig. 5.6 for four cased of size of hidden layer.

Let R be the number of recording channels for a given PD rat. The period of the HVS is close to 200ms
for all the tested PD rats. To be able to detect the HVS, each model has been trained using a time-window
of length 200ms as input. In the case of DN-RBM approaches, the time-window is downsampled to reduce
the size of the network. The sampling period is fixed to 20ms which is sufficient to detect frequencies up to

75

(a) dimH = 2. (b) dimH = 8.

(c) dimH = 12. (d) dimH = 30.

Figure 5.6: Reconstruction of the visible layer. Model has been trained using channel M1D of iEEG data for
different dimensions of the hidden layer. The selected window used for the reconstruction contains an HVS.
On the 4 figures, the upper plot gives the temporal signals and the lower plots are the Fourier transforms.

76

25Hz and then (in most cases) the three first harmonics of the HVS signal. The size of the visible layer of
a DN-RBM is then equal to 10×R, with R the number of channels.

DN-RBM + Bayes classifier (hidden state)

Different models have been tested for different value of n, the size of the hidden layer. The noise power
σ is fixed to 10−2. First, the average reconstruction error is evaluated to estimate how well the trained
DN-RBM is able to reconstruct data:

MSE = ‖〈v〉0 − 〈v〉1‖
2 (5.15)

Since the computation of the expected visible layer for all sample of the database is time consuming, the
average over the set of tests is computed:

MSE ≈ 1

N

N∑
n=1

∥∥∥v(n) − v̂(n)
∥∥∥2

(5.16)

where v̂(n) is the reconstructed visible layer of the observation v(n) after one reconstruction step. The
results of the second classifier are then evaluated using the sensitivity Se, the specificity Sp and the mean
detection time. An overview of the mean results and their uncertainty is given in Fig. 5.7a with box-plots.
According to the multiple tests, the case n = 4 is promising. Table 5.3 gives the results for each PD rats
with n = 4.

Autoencoder + Gaussian Process classifier

For the model autoencoder + GP classifier, only the influence of hidden layer size n is studied. The size of
the training set remains an important choice because the correlation matrix CN dimension depends on the
number of observation used for the training procedure.

Previous study in [99] shows the more observation are in the training set, the more the model will be
efficient. The number of observations is fixed to 200 and the sensitivity, the specificity and the mean delay
of detection are given for different sizes n in Fig. 5.7c. Table 5.3 gives detailed results in the case where
n = 10.

DN-RBM + Bayes classifier (energy level)

Results of the model DN-RBM + Bayes classifier based on the energy level is based on the computation and
classification of the energy term −hTWv (see Sec. 3.3.1). To avoid false detection due to non stationary
offset, an additional step of standardisation of each visible layer is applied independently aforehead the use
of DN-RBM (see (Eq. 3.16)). Previous work proposed in [101] uses Otsu’s threshold to classify both state.
In this thesis, the Bayes classifier has been tested. The noise power is fixed to 10−2. The results are given
in Fig. 5.7b in function of the size of the hidden layer. Table 5.3 gives detailed results in the case where
n = 6.

5.4.3 Discussion

Each of the three proposed models detects successfully HVS signals. Results are better on the sensitivity for
the unsupervised models. For other evaluation criteria, the results of the GP classifier is equivalent to other
models. In the case of DN-RBM, there is a trade-off between sensitivity and specificity. In the case of the
classification based on the hidden states, the more the number of hidden neurons, the more the sensitivity
of the model decreases. The trend is reversed in the case of the energy-based classification but is much less
pronounced. Fig. 5.8 shows the results obtained for the classifier with hidden neurons with different sizes

77

(a) DN-RBM + Bayes (hidden unit).

(b) DN-RBM + Bayes (energy function).

(c) Autoencoder + GP classifier.

Figure 5.7: Multiple tests for the detection of HVS. DN-RBMs have been trained for each PD rats and for
different size of hidden layer (n) ten times. After computing the mean over the ten models, a box plot is
proposed for each for each hidden layer.

78

Data Sensitivity Specificity Delay (ms)
Record C N m1 m2 m3 m1 m2 m3 m1 m2 m3

01 8 12 0.99 0.77 0.92 0.90 0.89 0.99 -47 +18 +63
02 4 26 0.60 0.61 0.63 0.87 0.82 0.91 +23 +8 +7
03 8 9 0.90 0.55 0.72 0.93 0.94 0.99 +16 +18 +83
04 3 15 0.57 0.58 0.53 0.87 0.82 0.84 +4 -11 -20
05 4 10 0.99 0.77 0.87 0.67 0.77 0.93 -57 +0 +4
06 4 5 1.00 0.62 0.96 0.98 0.95 0.99 -52 -2 +7
07 4 4 0.98 0.72 0.82 0.93 0.93 1.00 -108 -2 +18
08 4 22 0.78 0.66 0.63 0.88 0.79 0.91 +5 +10 +49
09 4 10 0.97 0.86 0.82 0.92 0.89 0.97 -25 -1 +6
10 4 16 0.74 0.59 0.53 0.90 0.83 0.91 +12 +0 +25
11 4 4 0.98 0.66 0.94 0.90 0.97 0.98 +8 +10 +65
12 4 2 0.76 0.90 0.90 0.98 0.85 1.00 +1 +4 +5
13 4 6 0.97 0.65 0.89 0.90 0.95 0.97 -2 +11 +4
14 4 9 1.00 0.58 0.97 0.75 0.92 0.83 -23 +3 +2
15 4 1 0.99 0.64 0.96 0.97 0.98 1.00 -64 +1 +10

mean 0.88 0.68 0.81 0.89 0.89 0.95 -21 +4 +22

Table 5.3: Results with DN-RBM + Bayes classifier (hidden units) (m1), the autoencoder + GP classifier
(m2) and DN-RBM + Bayes classifier (energy level) (m3). C is the number of channels and N the number
of HVS detected (by the ground truth). For each rat, ten models are trained. Then, the mean over models
of the sensitivity, the specificity and the mean delay of detection compared with the ground truth method
are given in the table. A negative value on the delay means the model detect the HVS before the ground
truth.

of the hidden layer. A small number of latent units causes some false detections but allows detection of the
HVS signal. According to Table 5.3 the classifier with the hidden state allows to obtain a better sensitivity
and the classifier using energy level provides a better specificity. The classification based on the hidden units
detects the HVS signals earlier. In addition, it is necessary to recall that the energy-based classification
required an additional standardization step on the visible layer to not detect undesirable components. In
practice, adding an additional step will slow down the detection of HVS.

5.5 Evaluation of the Diffusion Network on iEEG data

In this section, the use of DN is proposed for the two applications presented in Chapter 4. Previous studies
provide solution to detect the HVS based on the analysis of time-window. The main issue of interest in
this study is to see what the DN could bring to improve previous approaches. First, the missing channels
reconstruction application to generate signals in event of malfunction of some electronic probes for example.
Second, the prediction of time-window to evaluate the capacity of the model to predict. As for the toy
data, ten models (DNs, RNNs and MLPs) has been trained. The RMSE is given for each model (see (Eq.
4.14) and (Eq. 4.15)). Tests has been realized on the PD rat P-R-4 20131205 (see Table 5.2).

5.5.1 Application 1: Missing channels reconstruction

Results are separated in two parts. First, each recording channel has been reconstructed in function of
the other ones. Table 5.4 summarizes the results for the eight channels and Fig. 5.9 gives four examples
of reconstruction of signal. The blue signal is the expected signal and the red signal is sampled using the
DN. The DN succeeded to reconstruct each channel efficiently. The DN with the learning of the activation

79

(a) Detection of HVS with 4 hidden units. (b) Detection of HVS with 30 hidden units.

Figure 5.8: Detection of HVS using the DN-RBM + Bayes (hidden state). The two figures give the results
on the validation set for two sizes of hidden layer. This figure highlights the compromise between the
sensitivity and the specificity by modifying the size of the hidden layer. Adding hidden units will reduce
the number of false detection but will slow down the detection of HVS.

function (DN 2 in tables) provides best results for all channels. Note that results can change bit by repeating
the experiment (due to the noise of the DN or the random selection of mini-batch during the learning stage).
The performance depends on the removed channels too. Table 5.4 gives results for each architecture. For
channel M1D, results are very close between the DN and the MLP, by repeating the experiment, the MLP
can be better for this channel only.

The second part of results concerns the reconstruction of the first channel (M1D) if more than one
channels is removed. Table 5.5 gives quantitative results for one to five missing channels (on eight in total)
and Fig. 5.10 is the result for the DN only. For each case, both DNs succeed to reconstruct the channel
M1D. The efficiently decreases each time a new channel is removed. The DN with the learned of the
activation function provides best results.

5.5.2 Application 2: Prediction of horizon using a vector DN

For this application, vector DNs using a time-window of 200ms has been tested on iEEG data and compare
with MLP and RNN. For each PD rat, each model has been trained using the same database. Results with
the DN are given in Fig. 5.10. Four examples have been proposed on four different PD rats on the sequence
with HVS signal. DNs learn frequency components with varying degrees of success in function of PD rats.

The RMSE of the prediction is computed for the PD rat P-R-4 20131205 for each model:

• DN (without learning the activation function): RMSE=7.832E-01,

• DN (with learning the activation function): RMSE=7.325E-01,

• MLP: RMSE=8.134E-01,

• RNN: RMSE=8.074E-01.

According to Fig. 5.10, DNs successfully predict a time-window from a sequence of observation with
the same length. Results depends on the PD rat and channel. On Fig. 5.11a for example, the prediction is
correct visually for channels M1U, M1D and STRI but there is a phase shift between the expected signal and
the predicted signal for the channel SD. The comparison with other models show the DN provides better
results. The main drawback of the DN in comparison with the other model is the number of parameters,
to predict a time-window of length N since a sequence of the same length is required. To reduce the size of
the model, other graph architecture could be considered.

80

Table 5.4: Missing Channel Reconstruction.

Missing channela RMSE (DN 1) RMSE (DN 2) RMSE (MLP) RMSE (RNN)
M1D 5.688E-01 4.980E-01 4.985E-01 6.085E-01
M1U 4.773E-01 3.953E-01 4.173E-01 4.489E-01
M2D 8.187E-01 7.480E-01 9.124E-01 9.241E-01
M2U 5.795E-01 4.692E-01 5.113E-01 6.710E-01
SD 7.090E-01 6.799E-01 9.124E-01 1.035E+00
SU 9.937E-01 9.671E-01 1.320E+00 1.269E+00

STRI 4.969E-01 4.524E-01 4.905E-01 6.787E-01
THAL 6.376E-01 5.755E-01 6.162E-01 8.818E-01

a The missing channel.
Bold text give the best result for each tests.

Table 5.5: M1D Reconstruction.

Missing channela RMSE (DN 1) RMSE (DN 2) RMSE (MLP) RMSE (RNN)
1 5.688E-01 4.980E-01 4.985E-01 6.085E-01
2 5.272E-01 4.581E-01 4.609E-01 5.186E-01
3 7.163E-01 6.258E-01 8.102E-01 7.524E-01
4 1.013E+00 7.834E-01 3.182E+00 1.156E+00
5 1.281E+00 9.991E-01 2.874E+00 1.214E+00

a Channels are removed in the order of channels presented in Table 5.1.
Bold text give the best result for tests.

81

(a) M1D (b) M1U

(c) STRI (d) SU

Figure 5.9: Reconstruction of missing channel. Observed signals are in blue and signals predicted by the
DN in red.

(a) M1D with two missing channels. (b) M1D with three missing channels.

(c) M1D with four missing channels. (d) M1D with five missing channels.

Figure 5.10: Reconstruction of missing channel for more than one missing channels. The blue color is put
for real signals and the red color is put the signals predicted by the DN.

82

(a) Vector DN, example 1. (4 channels)

(b) Vector DN, example 2. (8 channels)

83

(c) Vector DN, example 3. (4 channels)

(d) Vector DN, example 4. (4 channels)

Figure 5.10: Vector DN, testing on iEEG data. The networks are composed of a time-window of 200ms with
all the channels. The black signal represent the network state "X(tk)". The targeted prediction "X(tk+1)"
is the blue signal and the red signal gives the sampled signal. The red area is the diffusion term of each
neuron. Each figures come from different rats on a sequence with HVS. Results depends on the PD rats.

84

Chapter 6

Conclusion

In this thesis, the use of artificial neural networks has been studied for applications involving time series
data. Artificial neural networks are learning models inspired by the functioning of biological neural networks.
The purpose of learning models is to allow the computer to learn by itself the rules governing data from
a system using a training database. This solution is especially effective to deal with problems in many
applications previously unreachable to human understanding. Today, research on artificial neural networks
is very active, and is focused on different families of neural networks. Each family is characterized by
common properties shared by the networks. The family based on Boltzmann machines, presented in this
thesis, is issued from the family of unsupervised models. The output data are not necessary to learn these
models, the Boltzmann machines identifying and learning by themselves data features. Boltzmann machines
are also stochastic. Stochastic models are models involving random phenomena to be much closer to reality.
Finally, Boltzmann machines are generative models. Unlike discriminative models that are limited to learn
a conditional probability distribution Pr(Y |X), Boltzmann machines learn a joint probability distribution
Pr(Y,X). This opens the door to Boltzmann machines to a wide range of applications unreachable for
discriminative models such as the reconstruction of missing data for example. These properties explain the
increasing interest of the neural networks community for Boltzmann machines in recent decades.

6.1 Boltzmann machines

The emergence of the Boltzmann family of machines began in 1982 thanks to Hopfield’s work on binary and
deterministic networks followed by deterministic and continuous networks. His work led Hinton to propose
the famous RBM that has generated great interest in the neural network community. Numerous extensions
were subsequently proposed to address the different constraints of data often encountered in applications.
Thus, different directions to extend the scope of Boltzmann machines were proposed: networks to work
with continuous visible units, deep networks, and networks to process time series, etc. The main strength
of the Boltzmann machine family lies in its great flexibility: it is easy to transform the classic Boltzmann
machine to fit to any problem. Many extensions of the Boltzmann machine have been often inspired by
previous models. The bibliographic review proposed at the beginning of the thesis shows how research on
Boltzmann machines was developed and gives main paths of improvement:

• How the neurons interact each other? Researchers have proposed different structures to take
account priors of the data. For example mcRBM and GRBM encourage the network to capture
correlations between variables. Some researchers proposed to adapt an existing model like Lee et al.
in [55] with the conv-RBM. A mixture of models has also been studied, like the CssCDBM or the
RNN-RBM.

• How the information is processed inside a neuron? Some modifications of the neuron structure
have been proposed to better fit in with the data behavior. For example the GBRBM and the DN-RBM

85

have been proposed to deal with continuous data. Neuron structure has also been studied to improve
the performance of the network (see for example [74]).

• How the model is trained? The motivation of this path of improvement is to reduce the bias
between the data distribution Pdata(x) and the estimated data distribution Pmodel(x) by modifying
the cost function. This question has been addressed by changing the metrics between Pdata(x) and
Pmodel(x) as in [43, 61, 71] or by adding a penalization term [24].

The more neurons, the more computational efforts are needed: massive networks should not be the only
way to reduce the modelling mistake. The choice of the dimension remains today an unsolved issue. There
is neither theorem nor criterion (equivalent to the AIC for auto-regressive models or Extrem Learning
Machine (ELM) methods for feedforward neural networks [18]) to help decide which is the optimal number
of hidden neurons and hidden layers. Besides being energy consuming, a large dimension network requires
much time to learn. In many papers, authors focus on the comparison of the performance between models
but barely compare computational efforts between models. The issue of computational efforts can have a
major impact in particular in real-time system for example but it is strongly depending on the data, the
application and the used hardware.

The main part of this thesis consists in studying the use of generative models to model dynamic systems.
DN-RBM are used to model a short-time window and are studied to understand how the models converge.
By rewriting the DN-RBM energy function, we were able to interpret the hidden states of these models.
The weights of the neurons in a DN-RBM learn the different frequency components contained in the learned
signals. The states of the hidden units provide the information of the correlation between the observation
window and the weight of the neurons. Based on these properties, we proposed two algorithms for automatic
detection of non-stationary signals based on the energy of the model and the hidden states. Each method
was able to learn the signals and detect them on toy data and iEEG data.

Such results are very promising. The DN-RBM learns by itself a signal representation from training
samples. The only limitation of such an approach is that DN-RBM is an unsupervised model: there is no
control about which features the model learns. A single hidden unit can be specialized on many features
present in the database which can be a problem if some features are useful and the others are not. A few
more investigations would be necessary to separate the components of interest according to the application.

6.2 Diffusion Network

Proposed by Movellan, the DN is the stochastic extension of the cHN. But contrary to RBMs, DNs did not
draw the same attention of the neural network community. In addition being an extension of the cHN, the
DN generalizes the Markov model family among which HMM, Kalman-Bucy filters, BM or RNN are special
cases. E.g. a HMM can be seen as a DN with discrete-valued hidden states and discrete-time dynamics;
a Kalman filter is a DN driven by linear dynamics; a RNN is a zero-noise DN. Fig. 6.1 summarizes the
different relations between the DN and other models. In this thesis, the DN has been re-explored in order
to propose new algorithms and to test it in different situations.

First, the SDE has been rewritten to reduce the number of parameters. The Girsanov’s theorem is used
to learn the transfer matrix, the bias vector and the noise power (σj) as well as the filter RC parameters
(τj) are estimated directly from the data. The missing data reconstruction and the prediction application
are tested on toy data and iEEG data. The DN provides interesting results. Properties of the model are
well suited to handle times series data. The comparison with the other models has to be taken with care.
Indeed, the choice of the dimension of the comparison models is purely arbitrary; there is no doubt that
the comparison models can provide better results with dimensions chosen optimally. The idea was to keep
an equivalent number of neurons because the DNs tested do not use hidden neurons.

More studies are needed to evaluate the performance of DNs and understand the limits of the models.
Two major issues of the DN require more investigations. First, tests with hidden units do not improve

86

Figure 6.1: Relation between the Diffusion network and other models.

results of the proposed applications. According to our observations, the DN is able to learn hidden units:
by sampling hidden units in parallel to visible units, the hidden signal shares common properties with the
visible signal but evaluation tools are needed. Moreover, the estimation of the noise power and the RC filter
parameters are performed by using observable data. There is no rule for the choice of the noise power and
the RC filter parameters of hidden neurons. Using additional latent units does not seem to be a solution.
One possible direction of improvement could be finding a new neuron’s architecture using a latent memory
like in LSTM. The second limit of the DN is the estimation of the RC filter parameters. The neuron
structure consists in a linear filter RC and a nonlinear perturbation caused by the state of the network.
The role of the parameter is to compete with the perturbation to prevent the neuron j to diverge too much.
In other words, the more τj is large the more the neurons will converge towards zero. The training τj using
Girsanov’s theorem tends to have a too small parameter (in absolute value). An estimation based on the
mean variation has been proposed to compute τj . This estimation is also depending on a hyper-parameter
fixed by the user. The reason for the failure to learn τj using Girsanov’s theorem the parameter is not yet
widely understood.

Despite these limitations, the results of DNs on toy data and iEEG data are encouraging. This study
shows once again how flexible the neural networks are. In addition to being able to modify the structure of
neurons or the organization of the graph, it is also possible to change the function to model. For example,
a feedforward learns a function (y = f(x)), the Boltzmann machines learn a joint probability distribution
(Pr(x, y)) and a DN learns a SDE (dX(t) = µ(X(t), t)dt+ σdB(t)).

6.3 Medical applications

In this thesis, we proposed the use of the DN-RBM to detect the presence of HVS. The DN-RBM can
learn by itself frequency informations. The transfer matrix stores features present in the training database
and the hidden state gives the correlation between the signal and the learned components. Once the model
trained, two classifiers based on the hidden state and the energy level have been studied and both allow to
efficiently detect the HVS. Results have been compared to a ground truth based on the CWT and a third
learning model. The third model is an autoencoder followed by a GP classifier, the GP is a supervised
model. The proposed approaches succeed to detect the HVS and the next step of the study consists of tests
on closed-loop systems. We have to verify if the detection still works in the closed-loop systems and we
have to ensure models will work in real-time.

87

Appendix A

Gradient Descent methods for neural
networks

The key in artificial intelligence is the learning procedure of parameters. Note λ the vector of parameters
of the studied model. Lλ, the loss function to minimize and the training set D. During the training step,
the aim is to solve the following equation:

λ̂ = arg min
λ

Lλ(Dtrain). (A.1)

There are different options to solve the equation. First, it is possible to write an explicit expression of λ̂.
Then, the algorithm expectation maximization can be used to find a solution. In the case where the first
option is not possible, the gradient descent method is a solution widely used in machine learning.

A.1 Batch Gradient descent

For a fixed λ, the gradient ∇λLλ(D) gives the direction vector to move λ in order to decrease the loss
function. Batch gradient algorithm (or Vanilla Gradient Descent) consists in updating λ from a random
initialization using the equation:

λk+1 = λk − η∇λLλ
k
(D) (A.2)

where k is the iteration of the learning procedure and η is the learning rate. The full training set is used to
update the parameter at once, this method is called the batch gradient descent (see Algo. 5).

A.2 Mini-batch gradient descent

To converge faster, the stochastic gradient descent algorithm updates parameters by computing the gradient
of the loss function using only one sample randomly selected from the training set. During the learning
step, the loss function converge faster but present many fluctuations as in Fig. A.1 due to the random
selection of sample. One drawback of the stochastic gradient descent is the risk to not converge towards
the best solution.

The mini-batch gradient descent algorithm (see Algo. 6) is a compromise between the batch gradient
descent and the stochastic gradient descent. A small set of data (of size bs) is randomly selected at each
update. During one epoch, the vector of parameters is updated as many times as possible to cover the
training set according to (Eq. A.3).

λi+1 = λi − η∇λLλ
k
(X(i−1)×bs:i×bs, Y(i−1)×bs:i×bs) (A.3)

89

Figure A.1: Stochastic gradient descent fluctuation. Figure from [91].

Algorithm 5 Batch Gradient Descent
Require: The training and the validation database Dtrain and Dvalid,
Require: The learning rate η and the number of epochs K,
Require: Initial state of parameters λ0 randomly initialized.
for k ← 0 to K − 1 do
Compute ∇λLλ

k
(Dtrain).

Update λk+1 according to (Eq. A.2).
Display Lλk+1

(Dtrain) and Lλk+1
(Dvalid) for control.

end for
return λK

Algorithm 6 Mini-batch Gradient Descent
Require: The training and the validation database Dtrain and Dvalid,
Require: The learning rate η and the number of epochs K,
Require: Initial state of parameters λ0 randomly initialized.
for k ← 0 to K − 1 do
Note λtemp = λk

Shuffle the order of the training set using the permutation operator.
for i← 1 to bNtrain/bsc do
Compute ∇λLλ

temp
(X(i−1)×bs:i×bs, Y(i−1)×bs:i×bs).

Update λtemp according to (Eq. A.3).
end for
Set λk+1 = λtemp

Display Lλk+1
(Dtrain) and Lλk+1

(Dvalid) for control.
end for
return λK

90

(a) Without momentum. (b) With momentum.

Figure A.2: Momentum role. The scheme is an example of a two-dimensional map of the loss function
where the red point is the optimal solution, the green point is the initial state of the parameters and the
blue arrow represents the update of λ. The momentum allows to keep in memory direction of last iterations
and to adapt the learning rate for each dimension.

A.3 Gradient descent with momentum

Many challenges have been addressed to the gradient descent algorithm for neural networks and are reviewed
in [91]. The main issue of the gradient descent rely on the choose of the learning rate η. A small learning
rate provides accurate result but with slow convergence while a high η is faster but can never converge. In
addition, not all parameters have the same influence on the loss function and require the learning rate to
be adjusted. Different approaches exist to improve the gradient descent algorithm. For example: heuristic
rules can be added in function of the evolution of the loss function.

Very used in gradient descent extension, the momentum [85] consists in keeping in memory gradient
of previous iterations. This method encourages a direction to update λ and helps the model to converge
faster. The gradient descent with momentum use a momentum vector v to update λ as in (Eq. A.4):{

vk+1 = γvk + (1− γ)∇λL(λk;D)

λk+1 = λk − vk+1

(A.4)

The vector momentum takes into consideration last updates of parameters. The hyper-parameters γ allows
to control how fast the momentum "forgets" last updates and the weigth of the last gradient to update
parameters.

A.4 Gradient descent with adaptive learning rate: example with RM-
Sprop

The impact of parameter variation on the loss function can be very different. Some parameters can require
larger updates while the other ones need smaller updates. Many algorithms have been proposed to adapt
the learning rate to each parameters like, for example, ADAGRAD [20], ADADELTA [120] or ADAM [46].
In this thesis, the RMSPROP has been widely used to train the models. This algorithm adapts the learning
rate for each parameters independently with an equation of the form:

λk+1
i = λki −

η√
Gki + ε

∇λLλ
k
(D) (A.5)

where Gki is function of previous gradient and provides larger updates for parameters associated with
infrequent features. The expression of Gki depends on the chosen algorithm. In the case of RMSPROP [91],
Gki is equal to the momentum of past square gradient:

Gk = γGk−1 + (1− γ)∇λ(Lλk)
2
(D) (A.6)

In (Eq. A.5), ε is a smoothing term that avoids division by zero.
In practice, these algorithms are proposed in python programming packages for deep learning: Keras or

Pytorch.

91

(a) Initialization of the model and the optimizer.

(b) Update the parameters.

Figure A.3: Gradient descent with Pytorch. (a) gives the notation for the initialization. "model" is a class
which contains at least the parameters and the function forward. "opt" is the optimizer (algorithm) class
used to train the model. "lr" refers to η, "alpha" refers to γ and "epsilon" is equal to ε in (Eq. A.5).
(b) gives the main lines of the gradient descent algorithm. In the case of unsupervised model (without
output), the loss is computed directly from the input X only. Note that in python functions and variables
"object_name" inside a class "class_name" can be accessed by "class_name.object_name".

A.5 Programming gradient descent with Pytorch

The different models tested were coded on python during the thesis. Python is a programming language
offering several packages dedicated to machine learning and neural networks. Among these packages, Py-
torch was chosen to code the models to be tested. Many tools to build deep networks easily are available.
The programmer first defines a class (named module in pytorch) by initializing the full set of parameters.
Pytorch recognizes the parameter of a model. Each time a variable is computed using the parameters, the
program keeps in memory the calculation. Then the function forward which computes the output of the
network is added in the class. Once the model is initialized, the programmer introduce an optimizer object.
The optimizer is a class referring to a learning algorithm, it takes as argument, the parameters of the model
and the hyper-parameters relative to the algorithm.

During the training procedure, the loss is computed and gradient of all parameters is computed using
simply the function backward. This function allows the programmer to not compute the gradient by himself
thanks to the program which keeps in memory the chain the calculation from the parameters to the loss
function. Finally, the function step of the optimizer updates the parameters. Fig. A.3 gives few lines as
example for coding the gradient descent.

92

Appendix B

DN-RBM for the modelling of time-window:
other experiments

In Chapter 3, tests on toy signals have been performed to evaluate the capacity of the DN-RBM to learn a
signal decomposition. In this appendix, three additional experiments are proposed. These experiences are
not presented in Chapter 3 to not overloaded it.

B.1 Learning a chirp

In previous experiments, the DN-RBM has been tested to learn non-stationary signals with fix frequencies.
Now, the DN-RBM is used to learn a chirp. A chirp is a pseudo-periodical signal with a continuously
increasing frequency:

s(t) = sin(2π(af × t)t) (B.1)

At time t, the instantaneous frequency of s is equal to af × t (a is a coefficient fixed in this application
to control how the instantaneous frequency increase). The toy data is a non-stationary signal with chirp
appearing during 1 second. Fig. B.1 gives a sequence of the toy data with a chirp (a = 10). DN-RBMs
are trained on time-window of 300 ms. Results of reconstruction and the learned transfer matrix are given
for DN-RBMs with, two, five and sixteen hidden units. Figs. B.2-B.4 gives results for the three models.
The reconstruction of the visible layer is given for two instants of the chirp (low frequencies and high
frequencies). The DN-RBM is able to learn a chirp. Lines of the transfer matrix learn multiple frequencies
and the model is able to reconstruct the chirp. Fig. B.1b gives the RMSE in function of the size of the
hidden layer. All the frequencies are learned with 15 and more hidden units.

B.2 Signal-to-Noise Ratio

The impact of the Signal-to-Noise Ratio (SNR) is studied in this section. In previous tests, the capacity of
the DN-RBM to model frequencies features has been studied regardless the noise level. Let x(t) the signal
to learn defined as: 

x(t) = s(t) + n(t)

s(t) = sin(2πft)

n(t) ∼ N (0, σ2)

(B.2)

where the frequency f is fixed to 5 Hertz and the SNR is equal to 0.5σ−2. DN-RBMs with two hidden units
are trained for different values of σ−2. Results are given in Fig. B.5 for different values of the SNR. Results
show the DN-RBM can learn the sinus even in the case of low SNR. The DN-RBM is still able to learn
frequencies even if the frequencies in question are not visible by human (see Figs. B.5c - B.5d). However,

93

(a) Non-stationary chirp in toy data . (b) RMSE function of the size of the hid-
den layer .

Figure B.1: Non-stationary chirp in toy data and RMSE. In (a), the left figure in a zoom on a time-window
with the chirp signal. The right plot is the same signal using Short-Term Fourier Transform representation.
The figure in (b) give the RMSE in function of the size of the hidden layer.

there is a level of the SNR for which the DN-RBM is no longer able to learn the frequency anymore (see
Figs. B.5e - B.5f).

B.3 The lower and the upper bounds

The last study concerns the influence of the activation function. As presented in the Sec. 2.3.3, the
activation function of neurons is a sïgmoid function:

φi(x) = θL + (θH − θL)
1

1 + exp (−aix)
(B.3)

where θL and θH are, respectively, the lower and upper bounds of the neuron (see Fig. 2.12). For hidden
units, the lower and the upper bound are fixed to: θH = −θL = 1. For the visible units, the choice of
the upper and the lower bound have an impact on the results. The first point is the update rule of the
activation function parameter ai. If si is the neuron state of the i−th neuron, then the update rule of the
activation function parameter is given by (see also (Eq. 2.46)):

∆ai ∝
1

a2
i

∫ 〈si〉0
〈si〉1

φ−1(s′)ds′ =
1

a2
i

((〈si〉0 − θL) log(〈si〉0 − θL) + (θH − (〈si〉0) log(θH − (〈si〉0))

− 1

a2
i

((〈si〉1 − θL) log(〈si〉1 − θL) + (θH − (〈si〉1) log(θH − (〈si〉1)) . (B.4)

To be able to compute the gradient of ai, the training database must be bounded between θL and θH . And
then, the choice of θL and θH will have an influence on parameters ai for all i.

For all the previous tests (toy data and iEEG data), bounds of visible units have been fixed to: θH =
−θL = 15 to avoid the saturation of data. To illustrate the influence of the choice of bounds of visible
units, Figs. B.5g-B.5h, from the previous section, give results with a SNR equal to 0.32 (same as in Figs.
B.5e-B.5f) but with θH = −θL = 5. In this case, the DN-RBM success to learn the frequency of s(t)
according to Fig. B.5h. Unfortunately, there is no rule for the choice of the bounds.

94

(a) Reconstruction 1.

(b) Reconstruction 2.

(c) Transfer matrix.

Figure B.2: Learning chirp with two hidden units. (a) and (b) are two reconstructions of visible layers at
different moments of the chirp (the chirp duration is 1 second and the time-window of the visible layer is
300 millisecond). (c) gives the learned transfer matrix and the Fourier transform of each line.

95

(a) Reconstruction 1.

(b) Reconstruction 2.

(c) Transfer matrix.

Figure B.3: Learning chirp with five hidden units. (a) and (b) are two reconstructions of visible layers at
different moments of the chirp (the chirp duration is 1 second and the time-window of the visible layer is
300 millisecond). (c) gives the learned transfer matrix and the Fourier transform of each line.

96

(a) Reconstruction 1.

(b) Reconstruction 2.

(c) Transfer matrix.

Figure B.4: Learning chirp with sixteen hidden units. (a) and (b) are two reconstructions of visible layers
at different moments of the chirp (the chirp duration is 1 second and the time-window of the visible layer
is 300 millisecond). (c) gives the learned transfer matrix and the Fourier transform of each line.

97

(a) SNR = 0.5, training signal. (b) SNR = 0.5, transfer matrix.

(c) SNR = 0.02, training signal. (d) SNR = 0.02, transfer matrix.

(e) SNR = 0.005, training sig-
nal.

(f) SNR = 0.005, transfer matrix.

(g) SNR = 0.005, training sig-
nal (2).

(h) SNR = 0.005, transfer matrix (2).

Figure B.5: Influence of the SNR. Each line is organized as bellow. The left plot is a zoom of the training
set. The plot at the middle is the learned transfer matrix and the right plot are the Fourier transform of
each row of the transfer matrix. On the last line (Figs. B.5g-B.5h), the experience from the previous lines
has been applied a second time but with another set of hyper-parameters (see Sec. B.3). The lower and
the upper bounds of visible units have been changed.

98

Bibliography

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines: A Stochastic Approach to
Combinatorial Optimization and Neural Computing. John Wiley & Sons, Inc., New York, NY, USA,
1989. ISBN 0-471-92146-7.

[2] J. Barron. Continuously differentiable exponential linear units, 2017.

[3] A. Benabid, S. Chabardes, J. Mitrofanis, and P. Pollak. Deep brain stimulation of the subthalamic
nucleus for the treatment of parkinson’s disease. The Lancet Neurology, 8(1):67–81, 2009.

[4] Y. Bengio and O. Delalleau. Justifying and generalizing contrastive divergence. Neural computation,
21(6):1601–1621, 2009.

[5] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in high-
dimensional sequences: Application to polyphonic music generation and transcription. arXiv preprint
arXiv:1206.6392, 2012.

[6] M. Carreira-Perpinan and G. Hinton. On contrastive divergence learning. In Conference of Artificial
Intelligence and Statistics, volume 10, pages 33–40, 2005.

[7] C. Chen, C. Zhang, L. Chen, and M. Gan. Fuzzy restricted boltzmann machine for the enhancement
of deep learning. IEEE Transactions on Fuzzy Systems, 23(6):2163–2173, 2015.

[8] H. Chen and A. Murray. Continuous restricted boltzmann machine with an implementable training
algorithm. IEE Proceedings-Vision, Image and Signal Processing, 150(3):153–158, 2003.

[9] H. Chen, P. Fleury, and A. Murray. Continuous-valued probabilistic behavior in a vlsi generative
model. IEEE Transactions on Neural Networks, 17(3):755–770, 2006.

[10] Y.-C. Chen, C.-C. Chang, R. Perumal, S.-R. Yeh, Y.-C. Chang, and H. Chen. Optimization and
implementation of wavelet-based algorithms for detecting high-voltage spindles in neuron signals.
ACM Transactions on Embedded Computing Systems (TECS), 18(5):1–16, 2019.

[11] K. Cho, A. Ilin, and T. Raiko. Improved learning of gaussian-bernoulli restricted boltzmann machines.
In International conference on artificial neural networks, pages 10–17, 2011.

[12] K. Cho, T. Raiko, and A. Ilin. Gaussian-bernoulli deep boltzmann machine. In The 2013 International
Joint Conference on Neural Networks (IJCNN), pages 1–7, Aug 2013. doi: 10.1109/IJCNN.2013.
6706831.

[13] A. Courville, J. Bergstra, and Y. Bengio. A spike and slab restricted boltzmann machine. In Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pages
233–241, 2011.

99

[14] A. Courville, G. Desjardins, J. Bergstra, and Y. Bengio. The spike-and-slab rbm and extensions to
discrete and sparse data distributions. IEEE transactions on pattern analysis and machine intelligence,
36(9):1874–1887, 2014.

[15] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314, 1989.

[16] G. Dahl, A. Mohamed, G. Hinton, and R. M.A. Phone recognition with the mean-covariance restricted
boltzmann machine. In Advances in neural information processing systems, pages 469–477, 2010.

[17] C. Dejean, C. Gross, B. Bioulac, and T. Boraud. Dynamic changes in the cortex-basal ganglia network
after dopamine depletion in the rat. Journal of neurophysiology, 100(1):385–396, 2008.

[18] S. Ding, X. Xu, and R. Nie. Extreme learning machine and its applications. Neural Computing and
Applications, 25(3-4):549–556, 2014.

[19] E. Dorsey, R. Constantinescu, J. Thompson, K. Biglan, R. Holloway, K. Kieburtz, F. Marshall,
B. Ravina, G. Schifitto, A. Siderowf, et al. Projected number of people with parkinson disease in the
most populous nations, 2005 through 2030. Neurology, 68(5):384–386, 2007.

[20] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(Jul):2121–2159, 2011.

[21] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis: probabilistic models
of proteins and nucleic acids. Cambridge university press, 1998.

[22] M. D.Z., G. W.T., L. Sigal, I. M., and R. Fergus. Facial expression transfer with input-output
temporal restricted boltzmann machines. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Sys-
tems 24, pages 1629–1637. Curran Associates, Inc., 2011. URL http://papers.nips.cc/paper/
4368-facial-expression-transfer-with-input-output-temporal-restricted-boltzmann-machines.
pdf.

[23] S. Fahlman, G. Hinton, and T. Sejnowski. Massively parallel architectures for AI: NETL, thistle, and
boltzmann machines. In National Conference on Artificial Intelligence, pages 109–113, 01 1983.

[24] C. Fisher, A. Smith, and J. Walsh. Boltzmann encoded adversarial machines, 2018.

[25] I. Goodfellow, A. Courville, and Y. Bengio. Spike-and-slab sparse coding for unsupervised feature
discovery. arXiv preprint arXiv:1201.3382, 2012.

[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[27] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning, volume 1. MIT press Cambridge, 2016.

[28] R. Hecht-Nielsen. Theory of the backpropagation neural network. In Neural networks for perception,
pages 65–93. Elsevier, 1992.

[29] G. Hinton. Training products of experts by minimizing contrastive divergence. Neural computation,
14(8):1771–1800, 2002.

[30] G. Hinton. Deep belief networks. Scholarpedia, 4(5):5947, 2009.

100

http://papers.nips.cc/paper/4368-facial-expression-transfer-with-input-output-temporal-restricted-boltzmann-machines.pdf
http://papers.nips.cc/paper/4368-facial-expression-transfer-with-input-output-temporal-restricted-boltzmann-machines.pdf
http://papers.nips.cc/paper/4368-facial-expression-transfer-with-input-output-temporal-restricted-boltzmann-machines.pdf

[31] G. Hinton. A practical guide to training restricted boltzmann machines. In G. Montavon, G. B. Orr,
and K.-R. Müller, editors, Neural Networks: Tricks of the Trade (2nd ed.), volume 7700, pages 599–
619. Springer, 2012. URL http://dblp.uni-trier.de/db/series/lncs/lncs7700.html#Hinton12.

[32] G. Hinton and R. M.A. Modeling pixel means and covariances using factorized third-order boltzmann
machines. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
2551–2558. IEEE, 2010.

[33] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. science,
313(5786):504–507, 2006.

[34] G. Hinton and T. Sejnowski. Learning and releaming in boltzmann machines. Parallel distributed
processing: Explorations in the microstructure of cognition, 1(282-317):2, 1986.

[35] G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural computation,
18(7):1527–1554, 2006.

[36] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

[37] J. Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[38] J. Hopfield. Neurons with graded response have collective computational properties like those of
two-state neurons. Proceedings of the national academy of sciences, 81(10):3088–3092, 1984.

[39] J. Hopfield and D. Tank. Computing with neural circuits: A model. Science, 233(4764):625–633,
1986.

[40] Y. Hu, J. Liu, J. You, and P. Chan. Continuous rbm based deep neural network for wind speed fore-
casting in hong kong. In Proceedings of the International Conference on Image Processing, Computer
Vision, and Pattern Recognition (IPCV), page 368. The Steering Committee of The World Congress
in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2015.

[41] G. Huang, H. Lee, and E. Learned-Miller. Learning hierarchical representations for face verifica-
tion with convolutional deep belief networks. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2518–2525, 2012.

[42] H. Huang, R. Li, M. Yang, T. Lim, and W. Ding. Evaluation of vehicle interior sound quality using
a continuous restricted boltzmann machine-based DBN. Mechanical Systems and Signal Processing,
84:245–267, 2017.

[43] A. Hyvärinen. Some extensions of score matching. Computational statistics & data analysis, 51(5):
2499–2512, 2007.

[44] R. Kalman. A new approach to linear filtering and prediction problems. Journal of basic Engineering,
82(1):35–45, 1960.

[45] S. Khan and T. Yairi. A review on the application of deep learning in system health management.
Mechanical Systems and Signal Processing, 107:241–265, 2018.

[46] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[47] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing neural networks, 2017.

101

http://dblp.uni-trier.de/db/series/lncs/lncs7700.html#Hinton12

[48] V. Kuleshov and S. Ermon. Neural variational inference and learning in undirected graph-
ical models. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems
30, pages 6734–6743. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7250-neural-variational-inference-and-learning-in-undirected-graphical-models.pdf.

[49] S. Kullback and R. Leibler. On information and sufficiency. The annals of mathematical statistics, 22
(1):79–86, 1951.

[50] T. Kuremoto, S. Kimura, K. Kobayashi, and M. Obayashi. Time series forecasting using a deep belief
network with restricted boltzmann machines. Neurocomputing, 137:47–56, 2014.

[51] M. Längkvist, L. Karlsson, and A. Loutfi. A review of unsupervised feature learning and deep learning
for time-series modeling. Pattern Recognition Letters, 42:11–24, 2014.

[52] H. Larochelle and Y. Bengio. Classification using discriminative restricted boltzmann machines. In
Proceedings of the 25th international conference on Machine learning, pages 536–543. ACM, 2008.

[53] H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio. Learning algorithms for the classification
restricted boltzmann machine. Journal of Machine Learning Research, 13:643–669, Mar 2012.

[54] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski. A theoretical framework for back-propagation.
In Proceedings of the 1988 connectionist models summer school, volume 1, pages 21–28. CMU, Pitts-
burgh, Pa: Morgan Kaufmann, 1988.

[55] H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional deep belief networks for scalable unsuper-
vised learning of hierarchical representations. In Proceedings of the 26th Annual International Confer-
ence on Machine Learning, ICML ’09, pages 609–616, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-516-1. doi: 10.1145/1553374.1553453. URL http://doi.acm.org/10.1145/1553374.1553453.

[56] H. Lee, P. Pham, Y. Largman, and A. Ng. Unsupervised feature learning for audio classification
using convolutional deep belief networks. In Advances in neural information processing systems,
pages 1096–1104, 2009.

[57] T. Lehner, B. Miller, and M. State. Genomics, Circuits, and Pathways in Clinical Neuropsychiatry.
Academic Press, 2016.

[58] X. Li. A spatial–temporal hopfield neural network approach for super-resolution land cover mapping
with multi-temporal different resolution remotely sensed images. ISPRSjournal of photogrammetry
and remote sensing, 93:76–87, 01 2014.

[59] X. Li, F. Zhao, and Y. Guo. Conditional restricted boltzmann machines for multi-label learning with
incomplete labels. In Artificial Intelligence and Statistics, pages 635–643, 2015.

[60] H. Lütkepohl. Vector Autoregressive Models, pages 1645–1647. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[61] S. Lyu. Interpretation and generalization of score matching. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, pages 359–366. AUAI Press, 2009.

[62] D. MacKay. Failures of the one-step learning algorithm. In Available electronically at http://www.
inference. phy. cam. ac. uk/mackay/abstracts/gbm. html, 09 2001.

[63] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In
Proceedings of the 26th annual international conference on machine learning, pages 689–696. ACM,
2009.

102

http://papers.nips.cc/paper/7250-neural-variational-inference-and-learning-in-undirected-graphical-models.pdf
http://papers.nips.cc/paper/7250-neural-variational-inference-and-learning-in-undirected-graphical-models.pdf
http://doi.acm.org/10.1145/1553374.1553453

[64] B. Marlin, K. Swersky, B. Chen, and N. Freitas. Inductive principles for restricted boltzmann machine
learning. In Y. W. Teh and M. Titterington, editors, Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning
Research, pages 509–516, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL http:
//proceedings.mlr.press/v9/marlin10a.html.

[65] J. Melchior, N. Wang, and L. Wiskott. Gaussian-binary restricted boltzmann machines for modeling
natural image statistics. PloS one, 12(2):e0171015, 2017.

[66] R. Memisevic and G. Hinton. Unsupervised learning of image transformations. In Computer Vision
and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

[67] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. Recurrent neural network based
language model. In INTERSPEECH, pages 1045–1048. ISCA, 2010.

[68] R. Mittelman, B. Kuipers, S. Savarese, and H. Lee. Structured recurrent temporal restricted boltz-
mann machines. In International Conference on Machine Learning, pages 1647–1655, 2014.

[69] V. Mnih, G. Hinton, and M. Ranzato. Generating more realistic images using gated MRF’s. In
Advances in Neural Information Processing Systems, pages 2002–2010, 2010.

[70] V. Mnih, H. Larochelle, and G. Hinton. Conditional restricted boltzmann machines for structured
output prediction. arXiv preprint arXiv:1202.3748, 2012.

[71] G. Montavon, K.-R. Müller, and M. Cuturi. Wasserstein training of restricted boltzmann machines.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 3718–3726. Curran Associates, Inc., 2016. URL http://
papers.nips.cc/paper/6248-wasserstein-training-of-restricted-boltzmann-machines.pdf.

[72] J. Movellan and J. McClelland. Learning continuous probability distributions with symmetric diffusion
networks. Cognitive Science, 17(4):463–496, 1993.

[73] J. Movellan, P. Mineiro, and R. Williams. A monte carlo em approach for partially observable diffusion
processes: Theory and applications to neural networks. Neural computation, 14(7):1507–1544, 2002.

[74] V. Nair and G. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings
of the 27th international conference on machine learning, pages 807–814, 2010.

[75] T. Nakashika, T. Takiguchi, and Y. Ariki. High-order sequence modeling using speaker-dependent
recurrent temporal restricted boltzmann machines for voice conversion. Proceedings of the Annual
Conference of the International Speech Communication Association, INTERSPEECH, pages 2278–
2282, 01 2014.

[76] T. Nakashika, T. Takiguchi, and Y. Ariki. Voice conversion using rnn pre-trained by recurrent tem-
poral restricted boltzmann machines. Transactions on Audio, Speech and Language Processing, 23(3):
580–587, 2015.

[77] R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Department of Com-
puter Science, University of Toronto Toronto, Ontario, Canada, 1993.

[78] M. Norouzi, M. Ranjbar, and G. Mori. Stacks of convolutional restricted boltzmann machines for
shift-invariant feature learning. In Conference on Computer Vision and Pattern Recognition, pages
2735–2742. IEEE, 2009.

103

http://proceedings.mlr.press/v9/marlin10a.html
http://proceedings.mlr.press/v9/marlin10a.html
http://papers.nips.cc/paper/6248-wasserstein-training-of-restricted-boltzmann-machines.pdf
http://papers.nips.cc/paper/6248-wasserstein-training-of-restricted-boltzmann-machines.pdf

[79] B. Øksendal. Stochastic differential equations. In Stochastic differential equations, pages 65–84.
Springer, 2003.

[80] J. Paik and A. Katsaggelos. Image restoration using a modified hopfield network. IEEE Transactions
on image processing, 1(1):49–63, 1992.

[81] J. Park, Y. Kim, I. Eom, and K. Lee. Economic load dispatch for piecewise quadratic cost function
using hopfield neural network. IEEE transactions on power systems, 8(3):1030–1038, 1993.

[82] J. Parkinson. An essay on the shaking palsy. The Journal of neuropsychiatry and clinical neuro-
sciences, 14(2):223–236, 2002.

[83] D. T. Pham and X. Liu. Training of elman networks and dynamic system modelling. International
Journal of Systems Science, 27(2):221–226, 1996.

[84] W. H. Pinaya, A. Gadelha, O. Doyle, C. Noto, A. Zugman, Q. Cordeiro, A. Jackowski, R. Bressan,
and J. Sato. Using deep belief network modelling to characterize differences in brain morphometry in
schizophrenia. Scientific reports, 6:38897, 2016.

[85] N. Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):
145–151, 1999.

[86] L. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

[87] M. Ranzato, A. Krizhevsky, and G. Hinton. Factored 3-way restricted boltzmann machines for mod-
eling natural images. In Y. W. Teh and M. Titterington, editors, Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine
Learning Research, pages 621–628, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.
URL http://proceedings.mlr.press/v9/ranzato10a.html.

[88] O. Rascol, P. Payoux, F. Ory, J. Ferreira, C. Brefel-Courbon, and J.-L. Montastruc. Limitations of
current parkinson’s disease therapy. Annals of Neurology: Official Journal of the American Neurolog-
ical Association and the Child Neurology Society, 53(S3):S3–S15, 2003.

[89] C. Rasmussen. Gaussian processes in machine learning. In Advanced lectures on machine learning,
pages 63–71. Springer, 2004.

[90] B. Rosin, M. Slovik, R. Mitelman, M. Rivlin-Etzion, S. Haber, Z. Israel, E. Vaadia, and H. Bergman.
Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron, 72(2):370–384,
2011.

[91] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,
2016.

[92] H. Sailor, D. Agrawal, and H. Patil. Unsupervised filterbank learning using convolutional restricted
boltzmann machine for environmental sound classification. In INTERSPEECH, pages 3107–3111,
2017.

[93] R. Salakhutdinov and G. Hinton. Deep boltzmann machines. In D. van Dyk and M. Welling, editors,
Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, volume 5
of Proceedings of Machine Learning Research, pages 448–455, Hilton Clearwater Beach Resort, Clear-
water Beach, Florida USA, 16–18 Apr 2009. PMLR. URL http://proceedings.mlr.press/v5/
salakhutdinov09a.html.

104

http://proceedings.mlr.press/v9/ranzato10a.html
http://proceedings.mlr.press/v5/salakhutdinov09a.html
http://proceedings.mlr.press/v5/salakhutdinov09a.html

[94] R. Salakhutdinov and G. Hinton. An efficient learning procedure for deep boltzmann machines. Neural
Computation, 24(8):1967–2006, 2012.

[95] R. Salakhutdinov and H. Larochelle. Efficient learning of deep boltzmann machines. In Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics, pages 693–700, 2010.

[96] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative filtering.
In Proceedings of the 24th international conference on Machine learning, pages 791–798. ACM, 2007.

[97] H. Shao, H. Jiang, H. Zhang, W. Duan, T. Liang, and S. Wu. Rolling bearing fault feature learning
using improved convolutional deep belief network with compressed sensing. Mechanical Systems and
Signal Processing, 100:743–765, 2018.

[98] P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In
Parallel distributed processing: Explorations in the microstructure of cognition, pages 194–281–. MIT
Press, Cambridge, MA, 1986.

[99] R. Souriau, V. Vigneron, J. Lerbet, and H. Chen. Probit Latent Variables Estimation for a Gaussian
Process Classifier: Application to the Detection of High-Voltage Spindles. In International Conference
on Latent Variable Analysis and Signal Separation, pages 514–523. Springer, 2018.

[100] R. Souriau, D. Fourer, H. Chen, J. Lerbet, H. Maaref, and V. Vigneron. High-Voltage Spindles
detection from EEG signals using recursive synchrosqueezing transform. In Groupement de Recherche
en Traitement du Signal et des Images, August 2019.

[101] R. Souriau, V. Vigneron, J. Lerbet, and H. Chen. Boltzmann Machines for signals decomposition.
Application to Parkinson’s Disease control. In Groupement de Recherche en Traitement du Signal et
des Images, August 2019.

[102] R. Souriau, J. Lerbet, C. Hsin, and V. V. A review on generative boltzmann networks applied to
dynamic systems. Mechanical Systems and Signal Processing, 147:107072, 2021.

[103] I. Sutskever and G. Hinton. Learning multilevel distributed representations for high-dimensional
sequences. In M. Meila and X. Shen, editors, Proceedings of the Eleventh International Conference
on Artificial Intelligence and Statistics, volume 2 of Proceedings of Machine Learning Research, pages
548–555, San Juan, Puerto Rico, 21–24 Mar 2007. PMLR. URL http://proceedings.mlr.press/
v2/sutskever07a.html.

[104] I. Sutskever, G. Hinton, and G. Taylor. The recurrent temporal restricted boltzmann machine. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Pro-
cessing Systems 21, pages 1601–1608. Curran Associates, Inc., 2009. URL http://papers.nips.cc/
paper/3567-the-recurrent-temporal-restricted-boltzmann-machine.pdf.

[105] Y. Teh and G. Hinton. Rate-coded restricted boltzmann machines for face recognition. In Advances
in neural information processing systems, pages 908–914, 2001.

[106] T. Tieleman. Training restricted boltzmann machines using approximations to the likelihood gradient.
In Proceedings of the 25th international conference on Machine learning, pages 1064–1071. ACM, 2008.

[107] I. Tosic and P. Frossard. Dictionary learning: What is the right representation for my signal? IEEE
Signal Processing Magazine, 28(ARTICLE):27–38, 2011.

[108] O. Tysnes and A. Storstein. Epidemiology of parkinson’s disease. Journal of Neural Transmission,
124(8):901–905, 2017.

105

http://proceedings.mlr.press/v2/sutskever07a.html
http://proceedings.mlr.press/v2/sutskever07a.html
http://papers.nips.cc/paper/3567-the-recurrent-temporal-restricted-boltzmann-machine.pdf
http://papers.nips.cc/paper/3567-the-recurrent-temporal-restricted-boltzmann-machine.pdf

[109] C. Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.

[110] R. Vohra, K. Goel, and J. Sahoo. Modeling temporal dependencies in data using a dbn-lstm. In
International Conference on Data Science and Advanced Analytics, pages 1–4. IEEE, 2015.

[111] L. Wang. Three-dimensional convolutional restricted boltzmann machine for human behavior
recognition from rgb-d video. EURASIP Journal on Image and Video Processing, 2018(1):120,
Nov 2018. ISSN 1687-5281. doi: 10.1186/s13640-018-0365-8. URL https://doi.org/10.1186/
s13640-018-0365-8.

[112] S. Wang, J. Xiang, Y. Zhong, and H. Tang. A data indicator-based deep belief networks to detect
multiple faults in axial piston pumps. Mechanical Systems and Signal Processing, 112:154–170, 2018.

[113] M. Welling, S. Osindero, and G. Hinton. Learning sparse topographic representations with products
of student-t distributions. In Advances in neural information processing systems, pages 1383–1390,
2003.

[114] C. Williams and F. Agakov. An analysis of contrastive divergence learning in gaussian boltzmann
machines. Institute for Adaptive and Neural Computation, 2002.

[115] M. Wong, B. Farooq, and G. Bilodeau. Discriminative conditional restricted boltzmann machine for
discrete choice and latent variable modelling. Journal of choice modelling, 29:152–168, 2018.

[116] Z. Wu, E. Chng, and H. Li. Conditional restricted boltzmann machine for voice conversion. In China
Summit and International Conference on Signal and Information Processing, pages 104–108. IEEE,
2013.

[117] B. Xiaojun and W. Haibo. Contractive slab and spike convolutional deep boltzmann machine. Neu-
rocomputing, 290:208–228, 2018.

[118] L. Younes. Parametric inference for imperfectly observed gibbsian fields. Probability theory and related
fields, 82(4):625–645, 1989.

[119] A. Yuille. The convergence of contrastive divergences. In Advances in neural information processing
systems, pages 1593–1600, 2005.

[120] M. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

[121] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. Gao. Deep learning and its applications to
machine health monitoring. Mechanical Systems and Signal Processing, 115:213–237, 2019.

106

https://doi.org/10.1186/s13640-018-0365-8
https://doi.org/10.1186/s13640-018-0365-8

Titre: Apprentissage Automatique pour la Modélisation de Systèmes Stochastiques Dynamiques
: Application au Contrôle Adaptatif sur la Stimulation Cérébrale Profonde

Mots clés: Réseaux de neuronaux, Processus de Diffusion, Equation Différentielles Stochastique, Mal-
adie de Parkinson

Résumé: Ces dernières années ont été marquées
par l’émergence d’un grand nombre de base données
dans de nombreux domaines comme la médecine par
exemple. La création de ces bases données a ouvert
la voie à de nouvelles applications. Les propriétés
des données sont parfois complexes (non linéarité,
dynamique, grande dimension ou encore absence
d’étiquette) et nécessite des modèles d’apprentissage
performants. Parmi les modèles d’apprentissage ex-
istant, les réseaux de neurones artificiels ont connu
un large succès ces dernières décennies. Le succès de
ces modèles repose sur la non linéarité des neurones,
l’utilisation de variables latentes et leur grande flex-
ibilité leur permettant de s’adapter à de nombreux
problèmes. Les machines de Boltzmann présentées
dans cette thèse sont une famille de réseaux de neu-
rones non supervisés. Introduite par Hinton dans les
années 80, cette famille de modèle a connu un grand

intérêt dans le début du 21e siècle et de nouvelles
extensions sont proposées régulièrement.
Cette thèse est découpée en deux parties. Une
partie exploratoire sur la famille des machines de
Boltzmann et une partie applicative. L’application
étudiée est l’apprentissage non supervisé des sig-
naux électroencéphalogramme intracrânien chez les
rats Parkinsonien pour le contrôle des symptômes
de la maladie de Parkinson. Les machines de Boltz-
mann ont donné naissance aux réseaux de diffu-
sion. Il s’agit de modèles non supervisés qui re-
posent sur l’apprentissage d’une équation différen-
tielle stochastique pour des données dynamiques et
stochastiques. Ce réseau fait l’objet d’un développe-
ment particulier dans cette thèse et un nouvel algo-
rithme d’apprentissage est proposé. Son utilisation
est ensuite testée sur des données jouet ainsi que sur
des données réelles.

Title: Machine Learning for Modeling Dynamic Stochastic Systems: Application to Adaptive
Control on Deep-Brain Stimulation

Keywords: Neural networks, Diffusion Process, Stochastic Differential Equation, Parkinson’s Disease

Abstract: The past recent years have been
marked by the emergence of a large amount of
database in many fields like health. The creation
of many databases paves the way to new applica-
tions. Properties of data are sometimes complex
(non linearity, dynamic, high dimensions) and re-
quire to perform machine learning models. Belong
existing machine learning models, artificial neural
network got a large success since the last decades.
The success of these models lies on the non linearity
behavior of neurons, the use of latent units and the
flexibility of these models to adapt to many differ-
ent problems. Boltzmann machines presented in this
thesis are a family of generative neural networks. In-
troduced by Hinton in the 80’s, this family have got

a large interest at the beginning of the 21st century
and new extensions are regularly proposed.
This thesis is divided into two parts. A first part
exploring Boltzmann machines and their applica-
tions. In this thesis the unsupervised learning of in-
tracranial electroencephalogram signals on rats with
Parkinson’s disease for the control of the symptoms
is studied. Boltzmann machines gave birth to Diffu-
sion networks which are also generative model based
on the learning of a stochastic differential equation
for dynamic and stochastic data. This model is stud-
ied again in this thesis and a new training algorithm
is proposed. Its use is tested on toy data as well as
on real database.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Introduction
	Dynamic systems
	Bioinspired Neural Networks
	Organization of the manuscript

	Literature
	Background
	Feedforward neural networks: a short presentation
	Generative Boltzmann Networks
	The father of Boltzmann Machine: Hopfield Network

	Boltzmann Machines
	Description
	Restricted Boltzmann Machine
	Learning procedures for Boltzmann Machines

	Extensions of Boltzmann Machines
	Multi-layers Boltzmann Machine
	Convolutional Boltzmann Machine
	Boltzmann Machine with real value visible units
	Dynamic extensions of Boltzmann Machine

	Diffusion Network basis
	Definitions
	Stochastic Differential Equation
	The Girsanov's theorem
	Application to the SDE
	Back to the Diffusion Network

	Discussion

	DN-RBM for learning signal representation
	Convergence of the training procedure
	Sizing the network
	Signal detection using DN-RBM
	Single channel example
	Multiple channels signal detection

	Discussion: comparison with the Discrete Fourier Transform

	Diffusion Network
	Training the Diffusion Network
	Module
	RC filter and noise power estimation
	Hidden units
	Constraint on the transfer matrix
	Learning the activation function

	Evaluation of DNs: applications on toy data
	Toy model
	Application 1: Missing channels reconstruction
	Application 2: Time prediction

	Discussion: limit and path of improvement

	Application: iEEG data analysis for the control of the deep-brain stimulation
	Introduction
	HVS database and its construction
	Ground truth
	Application with machine learning methods
	The Autoencoder and the Gaussian Process classifier
	Sizing models
	Discussion

	Evaluation of the Diffusion Network on iEEG data
	Application 1: Missing channels reconstruction
	Application 2: Prediction of horizon using a vector DN

	Conclusion
	Boltzmann machines
	Diffusion Network
	Medical applications

	Gradient Descent methods for neural networks
	Batch Gradient descent
	Mini-batch gradient descent
	Gradient descent with momentum
	Gradient descent with adaptive learning rate: example with RMSprop
	Programming gradient descent with Pytorch

	DN-RBM for the modelling of time-window: other experiments
	Learning a chirp
	Signal-to-Noise Ratio
	The lower and the upper bounds

